

HALEY & ALDRICH, INC. 465 Medford Street, Suite 2200 Boston, MA 02129 (617) 886.7400

13 September 2018 File No. 131268-002

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

Attention: Shauna Little, EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent (NOI)

Temporary Construction Dewatering

Parcel 9 Haymarket Hotel

Blackstone Street and North Street

Boston, Massachusetts

Dear Ms. Little:

On behalf of our client, Haymarket Parcel 9 Investor, LLC, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during construction activities at the proposed Parcel 9 Haymarket Hotel, located at Blackstone Street and North Street, in Boston, Massachusetts (the "site").

Site Location and Historical Site Usage

The site is an approximately 29,400 square foot (sq ft) parcel of vacant land bounded by Hanover, Blackstone, and North Streets and the John F. Fitzgerald Surface Road in Boston, Massachusetts. The location of the site is shown on Figure 1, Project Locus. The Central Artery (I-93) tunnel runs beneath the northern portion of the site, as indicated on Figure 2. Although the parcel is vacant, the site is used as a staging area and storage area (wood pallets and stalls) for the Haymarket outdoor market.

Historic Sanborn Insurance Maps and aerial photographs were reviewed for site historic information. The site is part of the Shawmut Peninsula, the area of initial European settlement in the early 17th Century. Prior to filling activities in circa 1835, Blackstone Street and the surrounding area were occupied by Mill Creek. The 1867 Sanborn Map depicts the site developed with several tin shops, liquor stores, metals buildings, general stores, a cork factory, a turner, a painter, and a drugstore. A portion of the site was also formerly occupied by North Center Street. Use of the site remained commercial and light industrial

through 1909. By 1929, the Sanborn Map depicts commercial stores, a bank with upper story residential units, and a wholesale beef sausage factory occupying the site. Building use continued through at least 1951.

The buildings were razed, and the site was redeveloped into Interstate 93 (I-93) elevated highway and associated access ramps by 1955. The site remained part of the I-93 surface road until the Central Artery/Tunnel (CA/T) project commenced in the 1990s. During the course of the CA/T project, the site became a vacant surface lot. The CA/T I-93 tunnel now runs beneath a portion of the site.

Proposed Activities

We understand Haymarket Parcel 9 Investor, LLC will be entering into a long-term ground lease with the Massachusetts Department of Transportation (MassDOT), the owner of the site, to construct a new hotel on Parcel 9 with an estimated 26,000 sf footprint. Approximately 18,000 sf of the hotel footprint will be above the existing below grade Central Artery Tunnel (CA/T) structures. An area of approximately 8,000 sf will be outside the limits of the CA/T southern slurry wall and will include a one level basement. It is estimated that the excavation for the hotel above the CA/T structures will extend up to four feet below ground surface (ft bgs), corresponding with El. 14. The excavation to occur outside of the CA/T southern slurry wall is estimated to extend to 16 ft bgs, corresponding to El. 2.

Soil and Groundwater Testing Program

During the period 4 to 6 June 2018, Haley & Aldrich performed a subsurface investigation program at the Parcel 9 site for the purpose of environmental soil precharacterization. Test borings were advanced to depths ranging from 4 to 16 ft bgs, and an observation well was installed in completed borehole HA18-B207. A total of 17 soil samples were collected from the explorations, and one groundwater sample was collected from HA18-B207(OW). The results of the laboratory analysis of soil samples indicated that onsite Fill soils at the location of HA18-B207 (soil sample HB18-B207_4-8) contain levels of benzo(a)pyrene, phenanthrene, lead and zinc in soil above the applicable MCP Reportable Concentrations for soil (RCS-1).

The results of the laboratory analysis of the groundwater sample detected constituents below the applicable MCP Reportable Concentrations for groundwater (RCGW-2). Further information regarding groundwater sampling results is provided below in this letter report and in the attached Table 1.

Dewatering System and Off-site Discharge

During the remedial activities, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage and construction-generated water to enable remedial excavations in-the-dry. Dewatering activities are anticipated to start in February 2019 and are anticipated to be required for up to 6 months. On average, we estimate effluent discharge rates of about 20 gallons per minute (gpm), with occasional peak flows of approximately 75 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations or from dewatering wells installed at the site.

An effluent treatment system will be designed by the Contractor to meet the 2017 NPDES RGP Discharge Effluent Criteria. Construction dewatering includes piping and discharging treated dewatering effluent to storm drains located on or near the site that discharge to the Boston Inner Harbor near the Christopher Columbus Waterfront Park (outfall SDO 058), as shown on Figure 3. Prior to discharge, collected water will

be routed through a sedimentation tank and a bag filter and other necessary treatment components, to remove suspended solids and chemical constituents, as shown on Figure 4.

Groundwater Quality Data

One groundwater sample was obtained from observation well HA18- B207(OW) on 18 June 2018. The collected sample was submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA, for chemical analysis of 2017 NPDES Remediation General Permit parameters including volatile organic compounds, semivolatile organic compounds, polycyclic aromatic hydrocarbons, total metals, total petroleum hydrocarbons, ammonia, phenolics, dissolved lead, polychlorinated biphenyls, total suspended solids, chloride, total cyanide, total phenolics, and total residual chlorine.

Refer to Table I for a summary of groundwater analytical data. The recent groundwater analyses did not detect concentrations of chemical constituents above applicable Massachusetts Contingency Plan RCGW-2 reportable concentrations. The construction dewatering effluent at the Site will be managed under an RGP. The location of the observation well HA18-B207(OW) is shown on Figure 2.

Receiving Water Quality Information and Dilution Factor

On 10 August 2018, Haley & Aldrich collected a receiving water sample from the Boston Harbor area near outfall SDO 058 using a disposable polyethylene bailer. The surface water sample was collected and submitted to Alpha for chemical analysis of pH, ammonia, and salinity. Field parameters, including pH and temperature, were collected from surface water sample at the time of sampling. The results of receiving water quality testing are summarized in Table I.

The pH and temperature readings collected in the field were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). It is our understanding that since the receiving water is a saltwater body, hardness does not need to be analyzed on either the effluent water or receiving water. We have additionally confirmed with the MassDEP that the dilution factor for the receiving waters is 1.

Ethanol Discussion

Ethanol sampling was not conducted on the groundwater sample collected in June 2018 as site history does not suggest that ethanol was stored at the property, and a petroleum product containing ethanol is not known to have been released at the site. Ethanol has been increasingly used in fuels since 2006 (according to the 2016 NOI Fact Sheet). According to site history, the site was used as a commercial, light industrial, and residential area until the 1950s when the area was cleared for construction of I-93, with no known fuel-related storage or handling activities conducted onsite prior to highway construction.

Effluent Criteria Determination

The EPA suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the site using groundwater and receiving water data. The resulting criteria are tabulated in the attached Table I. As requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculation will be submitted to the EPA via email concurrently with the submission of this NOI, for its review.

National Marine Fisheries Services Eligibility

Based on our review of the National Marine Fisheries Services (NMFS) criterion, it is the opinion of Haley & Aldrich that temporary dewatering activities to be authorized at the site under the NPDES RGP are not likely to adversely affect federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and should not result in any take of listed species.

According to Appendix I: Endangered Species Act (ESA) Guidance and Eligibility Criteria in the NPDES RGP, and reference footnoted below¹, the Atlantic Sturgeon and the Shortnose Sturgeon are the only ESA-listed species under the NMFS jurisdiction that may have a critical habitat in Massachusetts Bay. The Shortnose Sturgeon mainly occupy deep channel sections of large coastal rivers and nearshore marine waters.

The outfall to be used for the Parcel 9 project discharge is not situated adjacent to large coastal rivers and is not expected to affect the Shortnose Sturgeon population. The closest river to the outfall is the Charles River, which is approximately 1.25 miles from the site. Similarly, the Atlantic Sturgeon is more commonly found in large rivers and brackish waters; adults who live in coastal waters are typically found in shallow areas with sand and gravel substrates. The outfall proposed for discharge is not located in an area where Atlantic Sturgeon may be found, and the discharge is similarly not expected to affect its population. Furthermore, according the CRWA and NRWA references below², resident populations of Sturgeon no longer exist in the Charles River.

Owner and Operator Information

Haymarket Parcel 9 Investor, LLC has been designated by property owner, MassDOT, as a long-term ground lessee for proposed development.

Ground Lessee:

Haymarket Parcel 9 Investor, LLC c/o CV Properties
451 D Street, Suite 100
Boston, Massachusetts 02210
Contact: Yvette Tetreault

Operator:

J. Derenzo Company 338 Howard Street Brockton, MA 02302 Contact: Steve Ando General Superintendent

Appendices

The completed "Suggested Notice of Intent" form as provided in the RGP is enclosed in Appendix A. Haley & Aldrich plans to monitor the Operator's dewatering activities on behalf of the Haymarket Parcel 9 Investor, LLC in accordance with the requirements for this NOI submission.

Appendices B and C include the National Register of Historic Places and ESA Documentation, respectively. Appendix D provides a copy of the Boston Water and Sewer Commission (BWSC) Dewatering Permit Application. This BWSC Permit Application will be submitted concurrently with this NOI. Copies of the groundwater testing laboratory data reports are provided in Appendix E. Appendix F provides the Site Contractor's dewatering submittal which includes details of the dewatering system. A Best Management

² http://blog.crwa.org/blog/5-migratory-fish-found-in-the-charles-river-ecosystem https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish/

¹ https://www3.epa.gov/region1/npdes/remediation/RGPNMFSletter.pdf

Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

Closing

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,

HALEY & ALDRICH, INC

Lindsey R. Howard, E.I.T. (NH) Staff Environmental Engineer

Michael J. Cronan, LSP Senior Project Manager Keith E. Johnson, P.E., LSP

Vice President

Attachments:

Table I - Summary of Groundwater Quality Data

Figure 1 – Site Locus

Figure 2 – Site and Subsurface Location Plan

Figure 3 – Discharge Route

Figure 4 – Proposed Treatment System Schematic

Appendix A - NOI for RGP

Appendix B – National Register of Historic Places and Massachusetts Historical Commission Documentation

Appendix C – Endangered Species Act Documentation

Appendix D – Boston Water and Sewer Commission Permit Application

Appendix E – Laboratory Data Reports

Appendix F – Typical Dewatering Treatment System Information

c: Haymarket Parcel 9 Investor, LLC, Yvette TetreaultSuffolk Construction, John RussellJ Derenzo Company, Steve Ando

G:\131268\002\NPDES RGP\Text\2018-0913-Parcel 9 NPDES RGP Text Final.docx

TABLE I SUMMARY OF GROUNDWATER ANALYTICAL RESULTS PARCEL 9 CA/T BOSTON, MA FILE NO. 131268-002

Location Name	Ac	tion Level	HA18-B207 (OW)	BOSTON HARBOR
Sample Name Sample Date	NPDES RGP Effluent	2014 MCP RCGW-2 Reportable	HA18-B207 (OW) 06/18/2018	HA18-BOSTON HARBOR-81018 8/10/2018
·		•		
Lab Sample ID	Limitations	Concentrations	L1822896-01	L1831427-01
Sample Type			Source Water	Receiving Water
Volatile Organic Compounds (ug/L)	200	4000	ND (0.50)	
1,1,1-Trichloroethane 1,1,2-Trichloroethane	200 5	4000 900	ND (0.50) ND (0.75)	- -
1,1-Dichloroethane	70	2000	ND (0.75)	-
1,1-Dichloroethene 1,2-Dichlorobenzene	3.2 600	80 2000	ND (0.50) ND (2.5)	- -
1,2-Dichloroethane	5	5	ND (0.50)	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene	320 5	6000 60	ND (2.5) ND (2.5)	- -
Acetone	NA	50000	ND (5.0)	-
Benzene Carbon tetrachloride	5 4.4	1000 2	ND (0.50) ND (0.50)	- -
cis-1,2-Dichloroethene	70	20	ND (0.50)	-
Ethylbenzene m,p-Xylenes	*	5000 NA	ND (0.50) ND (1.0)	- -
Methyl Tert Butyl Ether	70	5000	ND (1.0)	-
Methylene chloride o-Xylene	4.6	2000 NA	ND (3.0) ND (1.0)	- -
Tert-Amyl Methyl Ether (TAME)	NA	NA	ND (2.0)	-
Tert-Butyl Alcohol (tert-Butanol) Tetrachloroethene	NA 5	NA 50	ND (10) ND (0.50)	-
Toluene	*	40000	ND (0.50) ND (0.75)	- -
Trichloroethene	5	5	ND (0.50)	-
Vinyl chloride Xylene (total)	2	2 3000	ND (1.0) ND (1.0)	- -
1,4-Dioxane	NA 0.05	6000	ND (3.0)	-
1,2-Dibromoethane (Ethylene Dibromide) Total Volatile Organic Compounds	0.05 NA	2 NA	ND (0.010) ND	-
Total BTEX	100	NA NA	ND	-
Semi-Volatile Organic Compounds (ug/L)				
Acenaphthene	**	6000	0.95	-
Acenaphthylene Anthracene	**	40 30	ND (0.10) 0.7	- -
Benzo(a)anthracene	0.0038	1000	0.58	-
Benzo(a)pyrene Benzo(b)fluoranthene	0.0038 0.0038	500 400	0.54 0.61	-
Benzo(g,h,i)perylene	**	20	0.22	- -
Benzo(k)fluoranthene	0.0038 0.0038	100 70	0.25 0.58	-
Chrysene Dibenz(a,h)anthracene	0.0038	40	0.56 ND (0.10)	- -
Fluoranthene	**	200	1.8	-
Fluorene Indeno(1,2,3-cd)pyrene	0.0038	40 100	0.91 0.24	-
Naphthalene	20	700	0.38	-
Phenanthrene Pyrene	**	10000 20	2.6 1.4	-
bis(2-Ethylhexyl)phthalate	101	50000	ND (3.0)	-
Butyl benzylphthalate Diethyl phthalate	+ +	10000 9000	ND (5.0) ND (5.0)	-
Dimethyl phthalate	+	50000	ND (5.0)	- -
Di-n-butylphthalate	+	5000	ND (5.0)	-
Di-n-octyl phthalate Pentachlorophenol	0.0038	100000 200	ND (5.0) ND (10)	-
Phenol	300	2000	ND (5.0)	-
Total Semi-Volatile Organic Compounds Total Group I PAHs	NA 1	NA NA	11.76 2.8	-
Total Group II PAHs**	100	NA	8.58	-
Total Phthalates+	190	NA	ND	-
Total Petroleum Hydrocarbons (mg/L)		_		
Petroleum hydrocarbons	NA	5	ND (4.0)	-
Total Metals (mg/L)				
Antimony, Total Arsenic, Total	0.206 0.104	NA NA	ND (0.0040) 0.00809	- -
Cadmium, Total	0.0102	NA	0.00087	-
Chromium, Total Chromium VI (Hexavalent), Total	NA 0.323	NA NA	0.03817 ND (0.010)	- -
Chromium III (Trivalent), Total	0.323	0.6	0.038	-
Copper, Total Iron, Total	0.0037 5	NA NA	0.02901 10.5	-
Lead, Total	0.16	NA	0.4165	-
Mercury, Total	0.000739 0.0083	NA NA	ND (0.00020) 0.02217	-
Nickel, Total Selenium, Total	0.0083	NA NA	0.02217 ND (0.0050)	- -
Silver, Total	0.0351	NA NA	ND (0.00040)	-
Zinc, Total	0.086	NA	0.2933	-
Dissolved Metals (mg/L) Lead, Dissolved	NA	0.01	0.0043	-
Polychlorinated Biphenyls (ug/L)				
Aroclor-1016 (PCB-1016)	NA	5	ND (0.25)	-
Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232)	NA NA	5 5	ND (0.25) ND (0.25)	- -
Aroclor-1242 (PCB-1242)	NA	5	ND (0.25)	-
Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254)	NA NA	5 5	ND (0.25) ND (0.25)	- -
Aroclor-1260 (PCB-1260)	NA	5	ND (0.20)	-
Total PCBs	6.40E-05	NA	ND	-
Other				
Ammonia, Total (mg/L)	Report	NA NA	4.36 4160	ND(0.075)
Chloride, Total (mg/L) Chlorine, residual, Total (mg/L)	Report 0.0075	NA NA	4160 ND (0.020)	- -
Cyanide, Total	178	NA NA	ND (0.0050)	-
Total phenols (mg/L) Total Suspended Solids (TSS) (mg/L)	1.08 30	NA NA	ND (0.030) 230	- -
Salinity	NA	NA	-	28
Temperature (°C) pH	NA NA	NA NA	16.4 8.01	19.03 7.6
<u>r</u>	1473	1.47.7	5.01	1.0

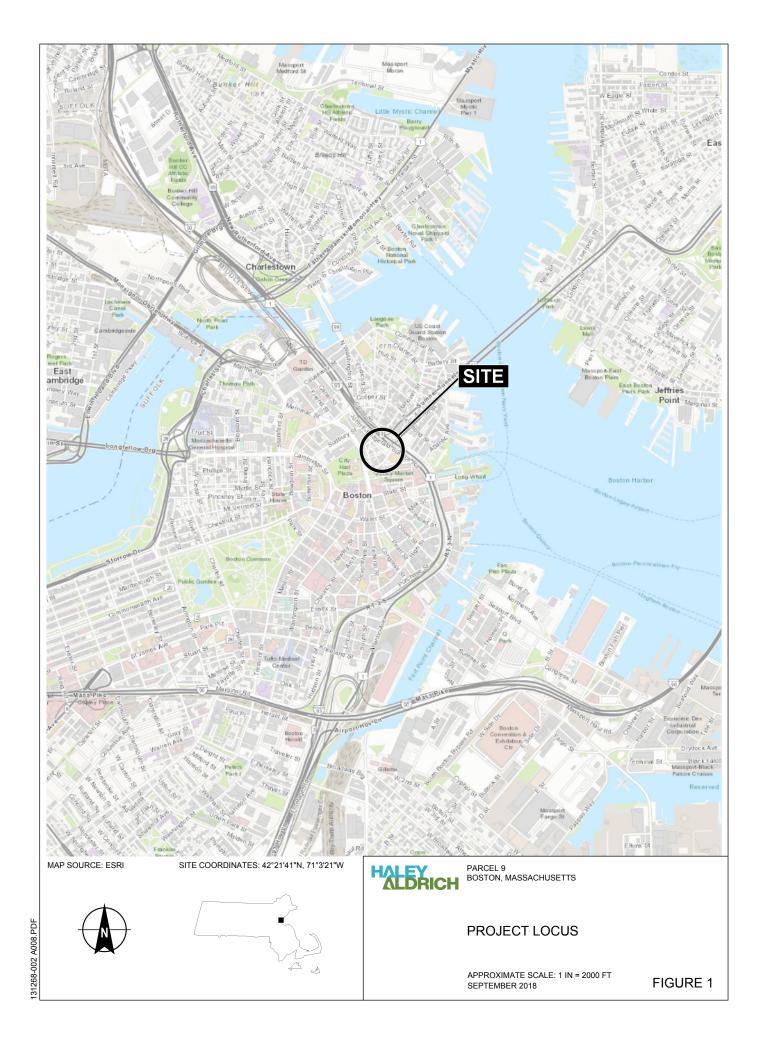
ABBREVIATIONS AND NOTES:

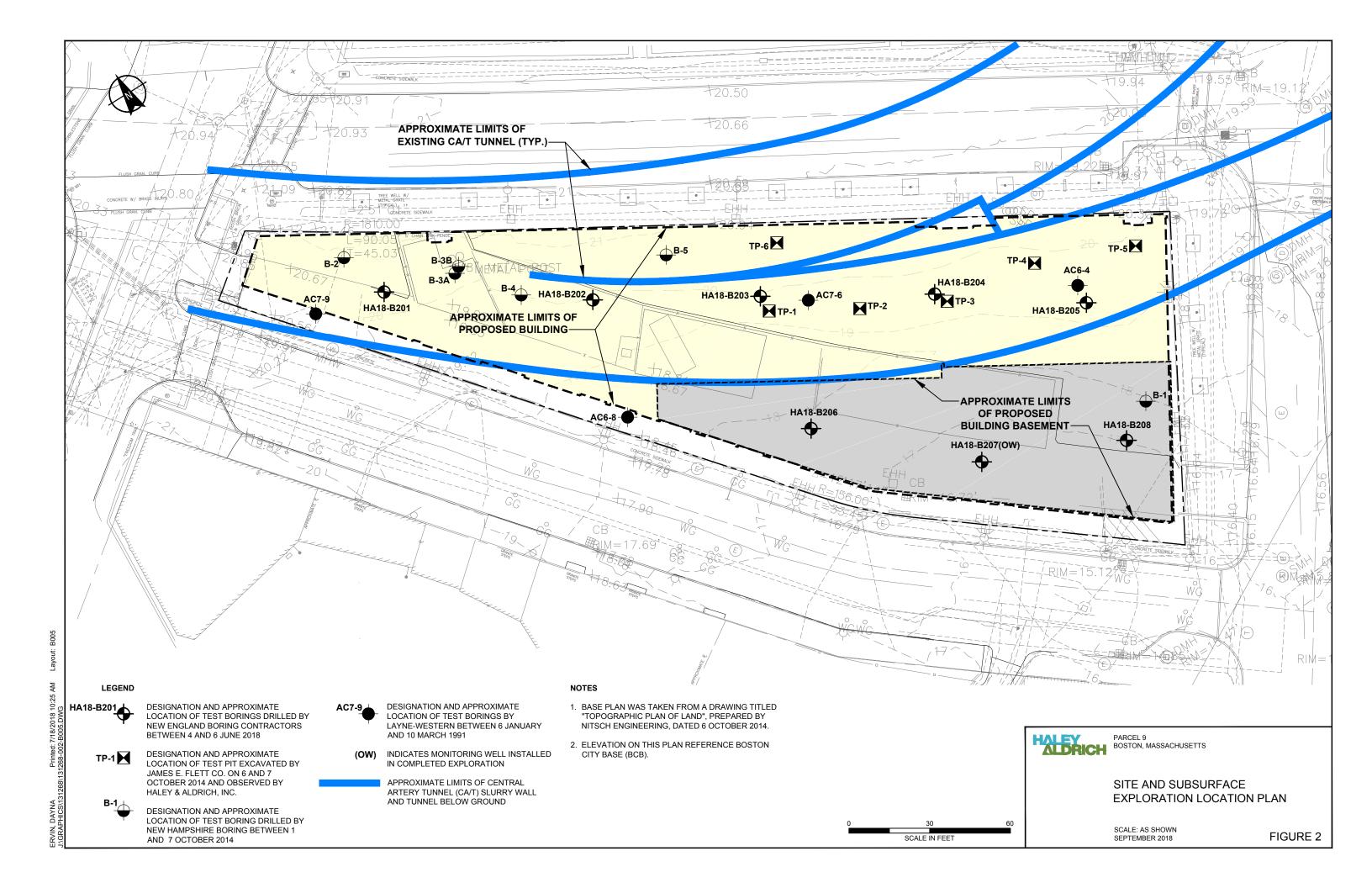
Not Analyzed

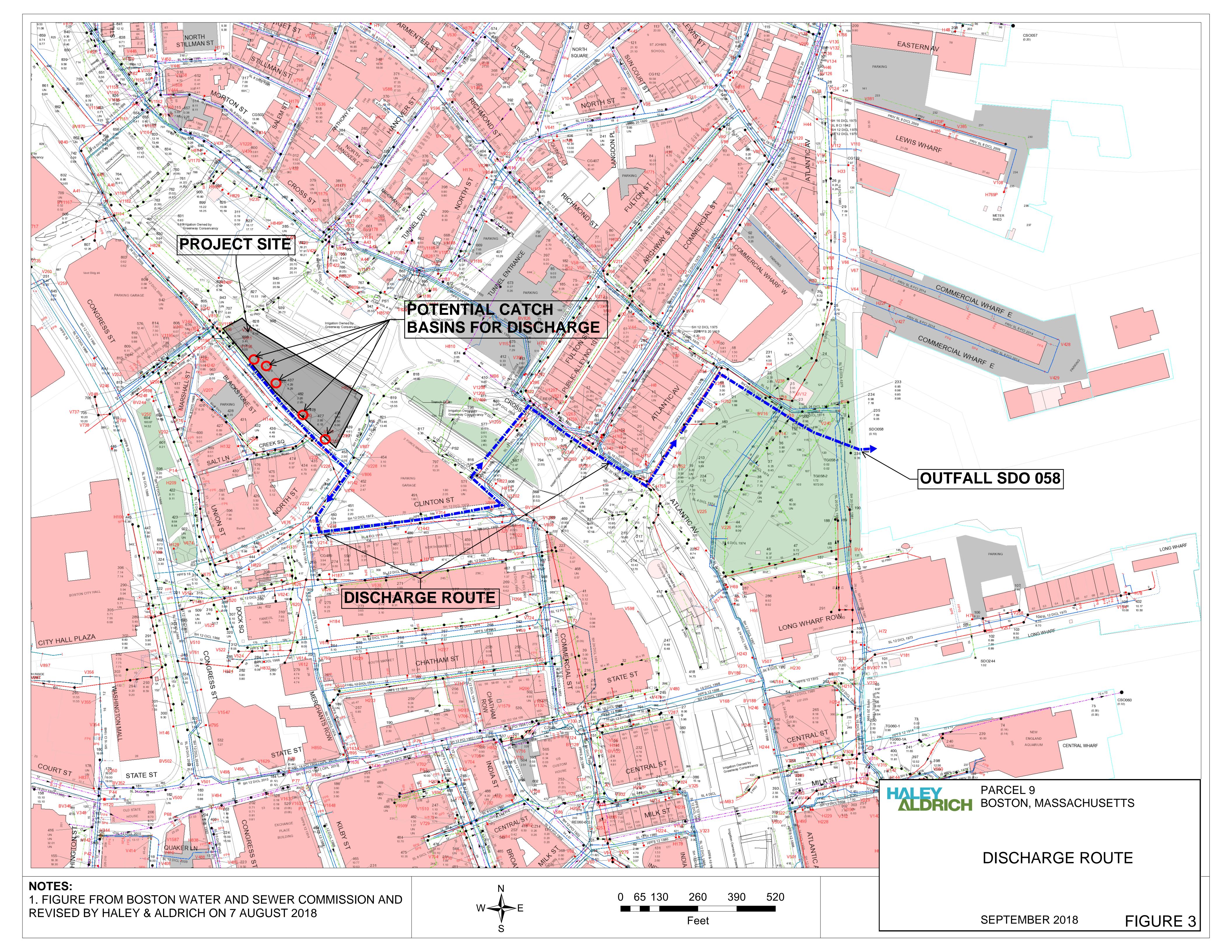
MCP: 310 CMR 40.0000 Massachusetts Contingency Plan effective 25 April 2014; revisions 23 May 2014

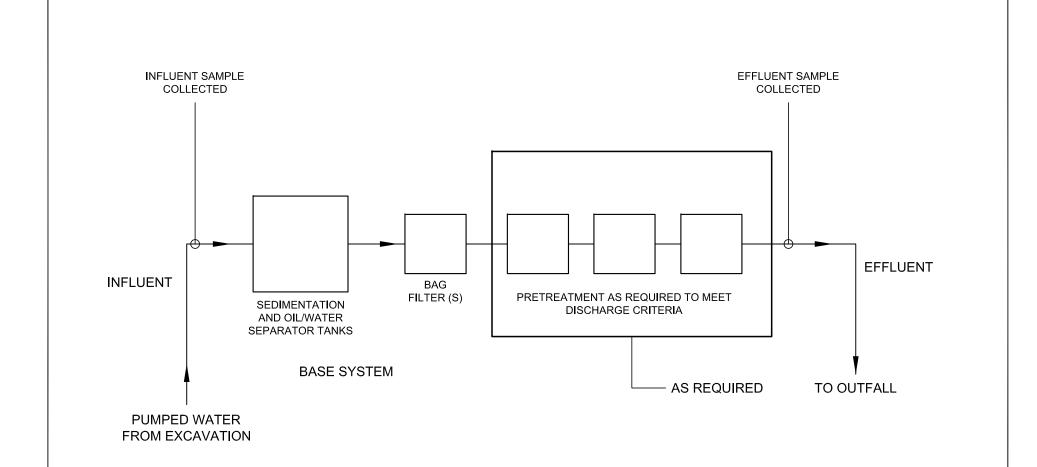
NA: Not Applicable

ug/L: micrograms per liter mg/L: milligrams per liter


ND (2.5): Not detected, number in parentheses is the laboratory reporting limit


1. This table shows Volatile and Semi-Volatile Organic Compounds detected in at least one sample and/or listed in Table 2 of the NPDES RGP. For a complete list of analytes see the laboratory data reports.


2. **Bold** values indicate an exceedance of NPDES RGP Effluent Limitations. **Bold ND** values indicate the laboratory reporting limit exceeds the NPDES RGP Effluent Limitations.


4. *: Indicates effluent limit is limited as total BTEX of 100 ug/L

5. **: Indicates effluent limit is limited as total Group II PAHs of 100 ug/l. 6. +: Indicates effluent limit is limited as total Phthalates of 190 ug/l.

LEGEND:

→ DIRECTION OF FLOW

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

PARCEL 9 BOSTON, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE SEPTEMBER 2018

FIGURE 4

APPENDIX A

NOI for RGP

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: Parcel 9 Haymarket Hotel	Site address: Blackstone and North Street							
	Street:							
	City: Boston		State: MA	Zip: 02108				
Site owner Haymarket Parcel 9 Investor, LLC has been designated	Contact Person: Yvette Tetreault							
by property owner, MassDOT, as a long-term ground lessee for proposed development.	Telephone: 617-999-5951	Email: yt	etreault@	cvprop.com				
Ground Lessee: Haymarket Parcel 9	Mailing address:							
Development, LLC	Street: 451 D Street, Suite 100							
Owner is (check one): ☐ Federal ☐ State/Tribal 🂢 Private ☐ Other; if so, specify:	City: Boston		State:MA	Zip: 02210				
3. Site operator, if different than owner	Contact Person: Steve Ando							
J. Derenzo Company	Telephone: 508-509-4879							
	Mailing address: 338 Howard Street Street:							
	City: Brockton		State: MA	Zip: 02302				
4. NPDES permit number assigned by EPA: N/A	5. Other regulatory program(s) that apply to the site (check all that apply):							
	MA Chapter 21e; list RTN(s):	□ CERCL	.A					
	3-16000	☐ UIC Program						
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Resease Detection remitt.	☐ CWA Section 404						

P Descriving water information.

B. Receiving water information:									
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):							
Boston Harbor	MA70-02	Class SB (CSO)							
	111111111111111111111111111111111111111	Category 5							
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): 🗶 Yes 🗆	No							
Are sensitive receptors present near the site? (check one): □ Yes 🕱 No If yes, specify:									
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP. Yes - MA70-02 is on the 303(d) list - Impail oxygen, and PCB in fish tissue, No final EF	lable for any of the indicated pollutants. For more informaments include enterococcus, fecal coliform, other (contam	tion, contact the appropriate State as noted in Part							
4. Indicate the seven day-ten-year low flow (7Q10) of the	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.								
Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in cordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.									
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ☐ Yes ☒ № If yes, indicate date confirmation received:									
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in according to the RGP in	ordance with the instruction in Appendix VIII?							
(check one): X Yes □ No									
C. Saurea water information.									

C. Source water information:

1. Source water(s) is (check any that apply):			
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	☐ A surface water other than the receiving water; if so, indicate waterbody:	☑ Other; if so, specify: Although "Contaminated
ĭ Yes □ No	□ Yes □ No		Groundwater" is listed, see
			table for compounds actua

2. Source water contaminants: Iron, lead, TSS, PAHs	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in the RGP? (check one): ☐ Yes ☒ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance with the instructions in Appendix VIII? (check one): □ Yes ☒ N♠
3. Has the source water been previously chlorinated or otherwise contains resi	dual chlorine? (check one): ☐ Yes 🕱 No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge 🗶 Ne	w discharge □ New source
Outfall(s): SDO 058	Outfall location(s): (Latitude, Longitude) 42.361185, -71.050801
Discharges enter the receiving water(s) via (check any that apply): □ Direct d	ischarge to the receiving water X Indirect discharge, if so, specify:
Flows through treatment system to catch basins, down Blackstone St, C	linton St, Cross St, under Christopher Columbus Waterfront Park to SDO 058
☐ A private storm sewer system 🛮 A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sev Has notification been provided to the owner of this system? (check one): 🔻 Y	·
Has the operator has received permission from the owner to use such system f	for discharges? (check one): ☐ Yes ☒ No, if so, explain, with an estimated timeframe for g BWSC approval - permit submitted concurrently with RGP Permit
Provide the expected start and end dates of discharge(s) (month/year): October 2018 - April 2019	
Indicate if the discharge is expected to occur over a duration of: 🗶 less than 1	12 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D,	above? (check one): X Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
 ☒ III – Contaminated Site Dewatering ☐ IV – Dewatering of Pipelines and Tanks ☐ V – Aquifer Pump Testing ☐ VI – Well Development/Rehabilitation ☐ VII – Collection Structure Dewatering/Remediation ☐ VIII – Dredge-Related Dewatering 	 ☒ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ☒ A. Inorganics ☐ B. Non-Halogenated Volatile Organic Compounds ☐ C. Halogenated Volatile Organic Compounds ☒ D. Non-Halogenated Semi-Volatile Organic Compounds ☒ D. Non-Halogenated Semi-Volatile Organic Compounds ☐ E. Halogenated Semi-Volatile Organic Compounds ☒ F. Fuels Parameters 	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		TD 4	D 4 4	Inf	luent	Effluent Liı	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		Χ	1 4	500NH3-B	н 75	0.00436	0.00436	Report mg/L	
Chloride		Χ	1	300.0	25000	4160000	4160000	Report µg/l	
Total Residual Chlorine	X		1	4500CL	20	ND	ND	0.2 mg/L	7.5 ug/L
Total Suspended Solids		Χ	1	2540D	5000	230000	230000	30 mg/L	_
Antimony Total	X		1	6020A	4	ND	ND	206 μg/L	640
Arsenic Total		Χ	1	6020A	1	8.09	8.09	104 μg/L	36
Cadmium Total	X		1	6020A	0.2	0.87	0.87	10.2 μg/L	8.9
Chromium III		Χ	1	6020A	10	38	38	323 µg/L	100
Chromium VI	Х		1	3500CR	10	ND	ND	323 µg/L	50
Copper Total		Х	1	6020A	1	29.01	29.01	242 μg/L	3.7
Iron Total		Χ	1	200.7	50	10500	10500	5,000 μg/L	
Lead Total		Х	1	6020A	1	416.5	416.5	160 μg/L	8.5
Mercury Total		Χ	1	245.1	0.2	ND	ND	0.739 μg/L	1.11
Nickel Total		Χ	1	6020A	2	22.17	22.17	1,450 µg/L	8.3
Selenium Total	X		1	6020A	5	ND	ND	$235.8 \mu\text{g/L}$	71
Silver Total		Χ	1	6020A	0.4	ND	ND	35.1 μg/L	2.2
Zinc Total		Χ	1	6020A	10	293.3	293.3	420 μg/L	86
Cyanide Total	X		1	4500CN	5	ND	ND	178 mg/L	1.0
B. Non-Halogenated VOCs									
Total BTEX	X		1	8260C	NA	ND	ND	100 μg/L	
Benzene	Х		1	8260C	0.5	ND	ND	5.0 μg/L	
1,4 Dioxane	X		1	8260C-S	IM 3	ND	ND	200 μg/L	
Acetone	Х		1	8260C	5	ND	ND	7.97 mg/L	
Phenol	Х		1	8270D	30	ND	ND	1,080 µg/L	300

	Known	Known		_		Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	Х		1	8260C	0.5	ND	ND	4.4 μg/L	1.6
1,2 Dichlorobenzene	Х		1	8260C	2.5	ND	ND	600 μg/L	
1,3 Dichlorobenzene	Х		1	8260C	2.5	ND	ND	320 μg/L	
1,4 Dichlorobenzene	X		1	8260C	2.5	ND	ND	5.0 μg/L	
Total dichlorobenzene	X		1	8260C	NA	NA	NA	763 µg/L in NH	
1,1 Dichloroethane	X		1	8260C	0.75	ND	ND	70 μg/L	
1,2 Dichloroethane	X		1	8260C	0.5	ND	ND	5.0 µg/L	
1,1 Dichloroethylene	X		1	8260C	0.5	ND	ND	3.2 µg/L	
Ethylene Dibromide	X		1	8260C	0.01	ND	ND	0.05 μg/L	
Methylene Chloride	X		1	8260C	3	ND	ND	4.6 µg/L	
1,1,1 Trichloroethane	X		1	8260C	0.5	ND	ND	200 μg/L	
1,1,2 Trichloroethane	X		1	8260C	0.75	ND	ND	5.0 μg/L	
Trichloroethylene	X		1	8260C	0.5	ND	ND	5.0 μg/L	
Tetrachloroethylene	X		1	8260C	0.5	ND	ND	5.0 μg/L	3.3
cis-1,2 Dichloroethylene	X		1	8260C	0.5	ND	ND	70 μg/L	
Vinyl Chloride	X		1	8260C	1.0	ND	ND	2.0 μg/L	
D. Non-Halogenated SVOC	Cs								
Total Phthalates	Х		1	8270D	NA	ND	ND	190 μg/L	
Diethylhexyl phthalate	Х		1	8270D	5	ND	ND	101 μg/L	2.2
Total Group I PAHs		Χ	1	8270D	NA	2.8	2.8	1.0 μg/L	
Benzo(a)anthracene		Χ	1	8270D	0.1	0.58	0.58		0.0038
Benzo(a)pyrene		Χ	1	8270D	0.1	0.54	0.54		0.0038
Benzo(b)fluoranthene		X	1	8270D	0.1	0.61	0.61		0.0038
Benzo(k)fluoranthene		Χ	1	8270D	0.1	0.25	0.25	As Total PAHs	0.0038
Chrysene		Х	1	8270D	0.1	0.58	0.58		0.0038
Dibenzo(a,h)anthracene		Х	1	8270D	0.1	ND	ND		0.0038
Indeno(1,2,3-cd)pyrene		X	1	8270D	0.1	0.24	0.24		0.0038

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		X	1	8270D	NA	8.58	8.58	100 μg/L	
Naphthalene		X	1	8260C	0.1	0.38	0.38	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	Х		1	608	0.2 -0.25	ND	ND	0.000064 µg/L	
Pentachlorophenol	Х		1	8270D	10	ND	ND	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons		Х	1	1664A	4000	ND	ND	5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether	Х		1	8260C	1	ND	ND	70 μg/L	
tert-Butyl Alcohol	Х		1	8260C	10	ND	ND	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	Х		1	8260C	2	ND	ND	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	hardness	salinity I.C	'sa addition	nal nollutan	its nresent): i	if so specify:	See Attach	ed Table 1	
Lead, dissolved	, narancss,	X	1	3005A		4.3	4.3		
pH		X	1	JUUJA			1.0		
Carbon Disulfide		X	0	82600	;	NA	NA		
Dibenzofuran		X	0	8270L)	NA	NA		
2-Methylnaphthalene		Х	0	8270L	SIM	NA	NA		
Vanadium		Х	0	3050E		NA	NA		
Silver		Х	0	3050E		NA	NA		
Barium		Х	0	3050E		NA	NA		
Beryllium		X	0	3050B	1	NA	NA		
Conductivity (umhos/cm)		X	0	1,9050	Α	NA	NA		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ▼ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
Types of treatment checked above will be applied IF REQUIRED per effluent monitoring sampling	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter and other necessary tro	eatment
components (potentially: Ion exchange, GAC), to remove suspended solids and undissolved chemical constituents, a on Figure 4 of the NPDES permit application.	s shown
Identify each major treatment component (check any that apply):	
X Fractionation tanks ☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
□ Chemical feed tank □ Air stripping unit 🔀 Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component: 75 gpm	
Is use of a flow meter feasible? (check one): ★ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm. 75 gpm	
Provide the average effluent flow in gpm. 20 gpm	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ★ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants 🕱 Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers 🕱 pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary See attached manufacturers cut sheets and SDSs for equipment which may be utilized if necessary. This information is only included as a contingency and is not currently needed based on groundwater data. Exact specifications on frequency, duration, quantity, and method of application are not known at this time. If the system eventually requires chemical additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): X Yes \(\sigma\) No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
▼ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☒ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🕱 Yes 🗆 No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): 🛮 Yes 🗆 No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☼ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☒ NీA
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): 🗆 Yes 🕱 🔥
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Refer to attached Haley & Aldrich, Inc. letter
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ▼ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ★ Yes □ No

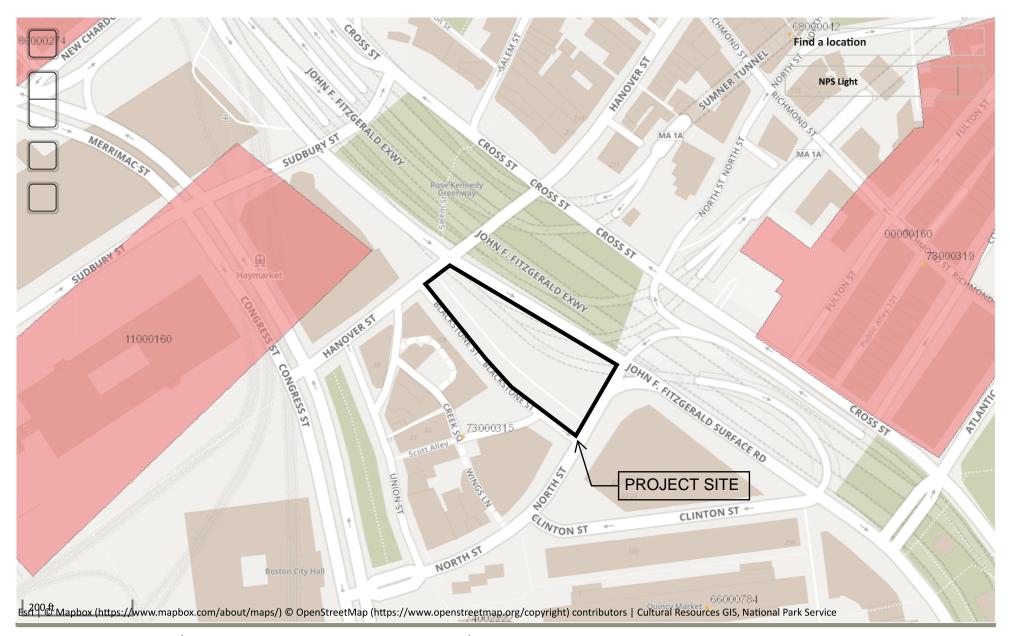
J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP meeting the requirements of this general permit will be implemented upon initiation of discharge. BMPP certification statement: Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes X No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes □ No □ N/A Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes ☒ No ☐ NA ☐ discharges, including a copy of this NOI, if requested. Pending BWSC approval - permit submitted Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site concurrently with RGP Permit discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No 🛛 NA □ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA 🕱 ☐ Other; if so, specify: Signature: Date: Print Name and Title: Haymarket Parcel 9 Ground Lessee:

Haymarket Parcel 9 Investor, LLC has been designated by property owner, MassDOT, as a long-term ground lessee for proposed development.

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have information, including the possibility of fine and imprisonment for knowing violations.							
BMPP certification statement: A BMPP meeting the requirements of this general permit will be implemented upon initiat	tion of discharge.						
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ☒ No □						
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □ No □ N/A						
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ☒ No ☐ NA ☐ Pending BWSC approval - permit submitted concurrently with RGP Permit Check one: Yes ☐ No ☒ NA ☐						
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if 30, specify:	Check one: Yes □ No □ NA 🕱						
Signature: Dat	e: 9-10-18						
Print Name and Title: J Derenzo Company Operator:							


APPENDIX B

National Register of Historic Places and Massachusetts Historical Commission Documentation

National Register of Historic Places

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. ...

Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm) | Website Policies (https://www.nps.gov/aboutus/website-policies.htm)

Note: Not all properties are digitized

Reference State	County	City	Resource	Address	Listed	Text	Photos
Number			Name		Date	Click me	Cl;ick me
83000601 MASSACHUSETTS	Suffolk	Boston	Charles Street African Methodist Episcopal Church	551 Warren St.	19830901	<u>Text</u>	<u>Photos</u>
83000602 MASSACHUSETTS	Suffolk	Boston	Codman Square District	Norfolk, Talbot, Epping, Lithgow, Cer	19830623	<u>Text</u>	<u>Photos</u>
83000603 MASSACHUSETTS	Suffolk	Boston	Gardner, Isabella Stewart, Museum	280 The Fenway	19830127	<u>Text</u>	<u>Photos</u>
83000605 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Fire Station	16 Harvard Ave.	19830331	<u>Text</u>	<u>Photos</u>
83000606 MASSACHUSETTS	Suffolk	Boston	Lawrence Model Lodging Houses	79, 89, 99 and 109 E. Canton St.	19830922	Text	Photos
83000607 MASSACHUSETTS	Suffolk	Boston	Newspaper Row	322-328 Washington St., 5-23 Milk St	19830707	Text	Photos
82000486 MASSACHUSETTS	Suffolk	Boston	Wigglesworth Building	89-83 Franklin St.	19821021	Text	Photos
83004098 MASSACHUSETTS	Suffolk	Boston	Leather District	Roughly bounded by Atlantic Ave., K	19831221	Text	Photos
83004285 MASSACHUSETTS	Suffolk	Boston	Baker, Sarah J., School	33 Perrin St.	19830707	Text	Photos
79000370 MASSACHUSETTS	Suffolk	Boston	Washington Street Theatre District	511-559 Washington St.	19790319	Text	Photos
85000318 MASSACHUSETTS	Suffolk	Boston	Dorchester Pottery Works	101-105 Victory Rd.	19850221	<u>Text</u>	<u>Photos</u>
79000368 MASSACHUSETTS	Suffolk	Boston	Bedford Building	89-103 Bedford St.	19790821	<u>Text</u>	<u>Photos</u>
80000442 MASSACHUSETTS	Suffolk	Boston	Wirth, Jacob, Buildings	31-39 Stuart St.	19801209	<u>Text</u>	<u>Photos</u>
80000445 MASSACHUSETTS	Suffolk	Boston	Metropolitan Theatre	252-272 Tremont St.	19801209	<u>Text</u>	Photos
80000446 MASSACHUSETTS	Suffolk	Boston	Hayden Building	681-683 Washington St.	19801209	<u>Text</u>	Photos
80000448 MASSACHUSETTS	Suffolk	Boston	Dill Building	11-25 Stuart St.	19801209	<u>Text</u>	Photos
80000450 MASSACHUSETTS	Suffolk	Boston	Boylston Building	2-22 Boylston St.	19801209	<u>Text</u>	<u>Photos</u>
80000451 MASSACHUSETTS	Suffolk	Boston	Boston Young Men's Christian Union	48 Boylston St.	19801209	<u>Text</u>	<u>Photos</u>
80000453 MASSACHUSETTS	Suffolk	Boston	Boston Edison Electric Illuminating Company	25-39 Boylston St.	19801209	<u>Text</u>	Photos
80000455 MASSACHUSETTS	Suffolk	Boston	West Street District	West St.	19801209	<u>Text</u>	Photos
80000460 MASSACHUSETTS	Suffolk	Boston	Liberty Tree District	Roughly bounded by Harrison Ave., \	19801209	<u>Text</u>	Photos
80000462 MASSACHUSETTS	Suffolk	Boston	Beach-Knapp District	Roughly bounded by Harrison Ave., \	19801209	<u>Text</u>	<u>Photos</u>
80000465 MASSACHUSETTS	Suffolk	Boston	Oak Square School	35 Nonantum St.	19801110	<u>Text</u>	Photos
66000127 MASSACHUSETTS	Suffolk	Boston	Arnold Arboretum	22 Divinity Ave.	19661015	<u>Text</u>	<u>Photos</u>
73000313 MASSACHUSETTS	Suffolk	Boston	Arlington Street Church	Arlington and Boylston Sts.	19730504	Text	Photos
73000322 MASSACHUSETTS	Suffolk	Boston	Old Corner Bookstore	NW corner of Washington and School	19730411	<u>Text</u>	<u>Photos</u>
75000299 MASSACHUSETTS	Suffolk	Boston	South Station Headhouse	Atlantic Ave. and Summer St.	19750213	<u>Text</u>	<u>Photos</u>
74000392 MASSACHUSETTS	Suffolk	Boston	Winthrop Building	7 Water St.	19740418	<u>Text</u>	<u>Photos</u>
80000668 MASSACHUSETTS	Suffolk	Boston	United Shoe Machinery Corporation Building	138-164 Federal St.	19800819	<u>Text</u>	<u>Photos</u>
75000300 MASSACHUSETTS	Suffolk	Boston	St. Stephen's Church	Hanover St. between Clark and Harri	19750414	<u>Text</u>	<u>Photos</u>
80000669 MASSACHUSETTS	Suffolk	Boston	Union Wharf	295-353 Commercial St.	19800622	<u>Text</u>	<u>Photos</u>
80000670 MASSACHUSETTS	Suffolk	Boston	Suffolk County Jail	215 Charles St.	19800423	<u>Text</u>	<u>Photos</u>
80000674 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, School	20 Hutchings St.	19800416	<u>Text</u>	<u>Photos</u>
80001683 MASSACHUSETTS	Suffolk	Boston	Dillaway School	16-20 Kenilworth St.	19800409	<u>Text</u>	<u>Photos</u>
66000366 MASSACHUSETTS	Suffolk	Boston	Ether Dome, Massachusetts General Hospital	Fruit St.	19661015	<u>Text</u>	<u>Photos</u>
70000539 MASSACHUSETTS	Suffolk	Boston	Otis, (First) Harrison Gray, House	141 Cambridge St.	19701230	<u>Text</u>	<u>Photos</u>
73000314 MASSACHUSETTS	Suffolk	Boston	Armory of the First Corps of Cadets	97-105 Arlington St. and 130 Columb	19730522	<u>Text</u>	<u>Photos</u>
73000315 MASSACHUSETTS	Suffolk	Boston	Blackstone Block Historic District	Area bound by Union, Hanover, Blac	19730526	<u>Text</u>	<u>Photos</u>
72000145 MASSACHUSETTS	Suffolk	Boston	Crowninshield House	164 Marlborough St.	19720223	<u>Text</u>	<u>Photos</u>
72000146 MASSACHUSETTS	Suffolk	Boston	First Baptist Church	Commonwealth Ave. and Clarendon	19720223	<u>Text</u>	<u>Photos</u>
74000391 MASSACHUSETTS	Suffolk	Boston	John Adams Courthouse	Pemberton Sq.	19740508	<u>Text</u>	<u>Photos</u>
72000150 MASSACHUSETTS	Suffolk	Boston	Trinity Rectory	Clarendon and Newbury Sts.	19720223	<u>Text</u>	<u>Photos</u>
74000385 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Burial Ground	Charter, Snowhill, and Hull Sts.	19740418	<u>Text</u>	<u>Photos</u>
74000393 MASSACHUSETTS	Suffolk	Boston	Youth's Companion Building	209 Columbus Ave.	19740502	<u>Text</u>	<u>Photos</u>
66000764 MASSACHUSETTS	Suffolk	Boston	Harding, Chester, House	16 Beacon St.	19661015	<u>Text</u>	<u>Photos</u>
74002044 MASSACHUSETTS	Suffolk	Boston	Howe, Samuel Gridley and Julia Ward, House	13 Chestnut St.	19740913		<u>Photos</u>
74002045 MASSACHUSETTS	Suffolk	Boston	King's Chapel	Tremont and School Sts.	19740502		<u>Photos</u>
70000682 MASSACHUSETTS	Suffolk	Boston	Massachusetts General Hospital	Fruit Street	19701230	<u>Text</u>	<u>Photos</u>
80000678 MASSACHUSETTS	Suffolk	Boston	All Saints' Church	211 Ashmont St.	19800616		<u>Photos</u>
81000620 MASSACHUSETTS	Suffolk	Boston	Fields Corner Municipal Building	1 Arcadia St., 195 Adams St.	19811112		<u>Photos</u>
66000770 MASSACHUSETTS	Suffolk	Boston	Massachusetts Historical Society Building	1154 Boylston St.	19661015		<u>Photos</u>
66000771 MASSACHUSETTS	Suffolk	Boston	Massachusetts Statehouse	Beacon Hill	19661015	· ·	<u>Photos</u>
76001979 MASSACHUSETTS	Suffolk	Boston	Nell, William C., House	3 Smith Ct.	19760511		<u>Photos</u>
70000687 MASSACHUSETTS	Suffolk	Boston	Old City Hall	School and Providence Sts.	19701230		<u>Photos</u>
70000690 MASSACHUSETTS	Suffolk	Boston	Old South Church in Boston	645 Boylston St.	19701230		<u>Photos</u>
70000691 MASSACHUSETTS	Suffolk	Boston	Old West Church	131 Cambridge St.	19701230		<u>Photos</u>
66000782 MASSACHUSETTS	Suffolk	Boston	Parkman, Francis, House	50 Chestnut St.	19661015		<u>Photos</u>
80000444 MASSACHUSETTS	Suffolk	Boston	Shubert, Sam S., Theatre	263-265 Tremont St.	19801209		<u>Photos</u>
80000458 MASSACHUSETTS	Suffolk	Boston	Piano Row District	Boston Common, Park Sq., Boylston	19801209	· ·	<u>Photos</u>
80000443 MASSACHUSETTS	Suffolk	Boston	Wilbur Theatre	244-250 Tremont St.	19801209		<u>Photos</u>
66000765 MASSACHUSETTS	Suffolk	Boston	Headquarters House	55 Beacon St.	19661015		<u>Photos</u>
68000042 MASSACHUSETTS	Suffolk	Boston	Pierce-Hichborn House	29 North Sq.	19681124		<u>Photos</u>
66000784 MASSACHUSETTS	Suffolk	Boston	Quincy Market	S. Market St.	19661113	<u>rext</u>	<u>Photos</u>

70000730 MASSACHUSETTS	Suffolk	Boston	St. Paul's Church	136 Tremont St.	19701230 Text	Photos
70000730 MASSACHUSETTS	Suffolk	Boston	Sears, David, House	42 Beacon St.	19701230 <u>Text</u> 19701230 Text	Photos Photos
73001953 MASSACHUSETTS	Suffolk	Boston	Sumner, Charles, House	20 Hancock St.	19731107 Text	Photos
66000130 MASSACHUSETTS	Suffolk	Boston	Beacon Hill Historic District	Bounded by Beacon St., the Charles		Photos
73001955 MASSACHUSETTS	Suffolk	Boston	Otis, (Second) Harrison Gray, House	85 Mt. Vernon St.	19730727 Text	Photos
66000768 MASSACHUSETTS	Suffolk	Boston	Long Wharf and Customhouse Block	Foot of State St.	19661113 Text	Photos
66000132 MASSACHUSETTS	Suffolk	Boston	Boston Athenaeum	10 1/2 Beacon St.	19661015 <u>Text</u>	Photos
66000788 MASSACHUSETTS	Suffolk	Boston	Tremont Street Subway	Beneath Tremont, Boylston, and Wa		Photos
70000733 MASSACHUSETTS	Suffolk	Boston	Trinity Church	Copley Sq.	19700701 Text	Photos
82004456 MASSACHUSETTS	Suffolk	Boston	Adams-Nervine Asylum	990-1020 Centre St.	19820601 <u>Text</u>	Photos
79000369 MASSACHUSETTS	Suffolk	Boston	International Trust Company Building	39-47 Milk St.	19790910 <u>Text</u>	Photos
74000388 MASSACHUSETTS	Suffolk	Boston	Eliot Burying Ground	Eustis and Washington Sts.	19740625 <u>Text</u>	<u>Photos</u>
80000463 MASSACHUSETTS	Suffolk	Boston	Russia Wharf Buildings	518-540 Atlantic Ave., 270 Congress	19801202 <u>Text</u>	<u>Photos</u>
71000087 MASSACHUSETTS	Suffolk	Boston	African Meetinghouse	8 Smith St.	19711007 <u>Text</u>	<u>Photos</u>
85002015 MASSACHUSETTS	Suffolk	Boston	Building at 138142 Portland Street	138142 Portland St.	19850905 <u>Text</u>	<u>Photos</u>
84000421 MASSACHUSETTS	Suffolk	Boston	Vermont Building	6-12 Thacher St.	19841113 <u>Text</u>	<u>Photos</u>
75000301 MASSACHUSETTS	Suffolk	Boston	Symphony and Horticultural Halls	Massachusetts and Huntington Aves	19750530 <u>Text</u>	<u>Photos</u>
73000324 MASSACHUSETTS	Suffolk	Boston	South End District	South Bay area between Huntington	19730508 <u>Text</u>	<u>Photos</u>
74000390 MASSACHUSETTS	Suffolk	Boston	Park Street District	Tremont, Park, and Beacon Sts.	19740501 <u>Text</u>	<u>Photos</u>
73000319 MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets District	Fulton, Commercial, Mercantile, Lew	19730321 <u>Text</u>	<u>Photos</u>
84002875 MASSACHUSETTS	Suffolk	Boston	Fenway-Boylston Street District	Fenway, Boylston, Westland, and He	19840904 <u>Text</u>	<u>Photos</u>
78000473 MASSACHUSETTS	Suffolk	Boston	Fenway Studios	30 Ipswich St.	19780913 <u>Text</u>	<u>Photos</u>
73000318 MASSACHUSETTS	Suffolk	Boston	Cyclorama Building	543-547 Tremont St.	19730413 <u>Text</u>	<u>Photos</u>
83004097 MASSACHUSETTS	Suffolk	Boston	Codman Building	55 Kilby St.	19831019 <u>Text</u>	<u>Photos</u>
80000676 MASSACHUSETTS	Suffolk	Boston	Charles Playhouse	74-78 Warenton St.	19800616 <u>Text</u>	<u>Photos</u>
74000382 MASSACHUSETTS	Suffolk	Boston	Ames Building	1 Court St.	19740426 <u>Text</u>	<u>Photos</u>
77001541 MASSACHUSETTS	Suffolk	Boston	Appleton, Nathan, Residence	39-40 Beacon St.	19771222 <u>Text</u>	<u>Photos</u>
66000134 MASSACHUSETTS	Suffolk	Boston	Boston Naval Shipyard	E of Chelsea St., Charlestown	19661115 <u>Text</u>	<u>Photos</u>
66000050 MASSACHUSETTS	Suffolk	Boston	Dorchester Heights National Historic Site	South Boston	19661015 <u>Text</u>	<u>Photos</u>
74002222 MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Inner harbor at mouth of Charles Riv		<u>Photos</u>
66000785 MASSACHUSETTS	Suffolk	Boston	Revere, Paul, House	19 North Sq.	19661015 <u>Text</u>	<u>Photos</u>
66000776 MASSACHUSETTS	Suffolk	Boston	Old North Church	193 Salem St.	19661015 <u>Text</u>	<u>Photos</u>
66000778 MASSACHUSETTS	Suffolk	Boston	Old South Meetinghouse	Milk and Washington Sts.	19661015 <u>Text</u>	<u>Photos</u>
66000368 MASSACHUSETTS	Suffolk	Boston	Faneuil Hall	Dock Sq.	19661015 <u>Text</u>	<u>Photos</u>
66000779 MASSACHUSETTS	Suffolk	Boston	Old State House	Washington and State Sts.	19661015 <u>Text</u>	<u>Photos</u>
85003074 MASSACHUSETTS	Suffolk	Boston	Dudley Station Historic District	Washington, Warren, and Dudley Sts		<u>Photos</u>
86000140 MASSACHUSETTS	Suffolk	Boston	Christ Church	1220 River Rd.	19860130 <u>Text</u>	<u>Photos</u>
73000317 MASSACHUSETTS	Suffolk	Boston	Boston Public Library	Copley Sq.	19730506 <u>Text</u>	Photos
86001909 MASSACHUSETTS	Suffolk Suffolk	Boston	Filene's Department Store	426 Washington St. 2529 State St.	19860724 <u>Text</u>	<u>Photos</u>
86001913 MASSACHUSETTS 86001486 MASSACHUSETTS		Boston	Second Brazer Building		19860724 <u>Text</u>	Photos
86001504 MASSACHUSETTS	Suffolk Suffolk	Boston	Sears' Crescent and Sears' Block Richardson Block	3868 and 7072 Cornhill	19860809 <u>Text</u>	Photos
85003375 MASSACHUSETTS	Suffolk	Boston Boston	Engine House No. 34	113151 Pearl and 109119 High Sts 444 Western Ave.	19851024 <u>Text</u>	Photos Photos
80000671 MASSACHUSETTS	Suffolk	Boston	Stearns, R. H., House	140 Tremont St.	19800616 <u>Text</u>	Photos
86001911 MASSACHUSETTS	Suffolk	Boston	LockeOber Restaurant	34 Winter Pl.	19860724 <u>Text</u>	Photos
80000677 MASSACHUSETTS	Suffolk	Boston	Berger Factory	37 Williams St.	19800409 <u>Text</u>	Photos
85000316 MASSACHUSETTS	Suffolk	Boston	Bigelow School	350 W. 4th St.	19850221 Text	Photos
84002890 MASSACHUSETTS	Suffolk	Boston	Moreland Street Historic District	Roughly bounded by Kearsarge, Blue		Photos
70000921 MASSACHUSETTS	Suffolk	Boston	Fort Independence	Castle Island	19701015 Text	Photos
86000375 MASSACHUSETTS	Suffolk	Boston	Harriswood Crescent	6088 Harold St.	19860313 <u>Text</u>	Photos
66000789 MASSACHUSETTS	Suffolk	Boston	U.S.S. CONSTITUTION	Boston Naval Shipyard	19661015 <u>Text</u>	Photos
87000757 MASSACHUSETTS	Suffolk	Boston	Harvard Stadium	60 N. Harvard St.	19870227 Text	Photos
72000144 MASSACHUSETTS	Suffolk	Boston	Boston Common and Public Garden	Beacon, Park, Tremont, Boylston, an		Photos
87000760 MASSACHUSETTS	Suffolk	Boston	Boston Common	Beacon, Park, Tremont, Boylston, and		Photos
87000761 MASSACHUSETTS	Suffolk	Boston	Boston Public Garden	Beacon, Charles, Boylston, and Arling		Photos
87001128 MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Monument Sq.	19870602 Text	Photos
66000138 MASSACHUSETTS	Suffolk	Boston	Bunker Hill Monument	Breed's Hill	19661015 Text	Photos
86000274 MASSACHUSETTS	Suffolk	Boston	Bulfinch Triangle Historic District	Roughly bounded by Canal, Market,	19860227 <u>Text</u>	Photos
80000675 MASSACHUSETTS	Suffolk	Boston	Dorchester-Milton Lower Mills Industrial District	Both sides of Neponset River	19800402 <u>Text</u>	Photos
86000084 MASSACHUSETTS	Suffolk	Boston	USS CASSIN YOUNG (destroyer)	Charlestown Navy Yard	19860114 <u>Text</u>	<u>Photos</u>
66000133 MASSACHUSETTS	Suffolk	Boston	Boston Light	Little Brewster Island, Boston Harboi	19661015 <u>Text</u>	<u>Photos</u>
87001481 MASSACHUSETTS	Suffolk	Boston	Long Island Head Light	Long Island	19870615 <u>Text</u>	<u>Photos</u>
87001394 MASSACHUSETTS	Suffolk	Boston	New Riding Club	52 Hemenway St.	19870820 <u>Text</u>	<u>Photos</u>
87001396 MASSACHUSETTS	Suffolk	Boston	Congress Street Fire Station	344 Congress St.	19870903 <u>Text</u>	<u>Photos</u>
87000885 MASSACHUSETTS	Suffolk	Boston	Abbotsford	300 Walnut Ave.	19870916 <u>Text</u>	<u>Photos</u>
87001889 MASSACHUSETTS	Suffolk	Boston	Sumner Hill Historic District	Roughly bounded by Seaverns Ave.,	19871022 <u>Text</u>	<u>Photos</u>
87001771 MASSACHUSETTS	Suffolk	Boston	Bunker Hill School	65 Baldwin St.	19871015 <u>Text</u>	<u>Photos</u>
87001398 MASSACHUSETTS	Suffolk	Boston	House at 17 Cranston Street	17 Cranston St.	19871120 <u>Text</u>	<u>Photos</u>
87001399 MASSACHUSETTS	Suffolk	Boston	Hoxie, Timothy, House	135 Hillside St.	19871120 <u>Text</u>	<u>Photos</u>
87001495 MASSACHUSETTS	Suffolk	Boston	Saint Augustine Chapel and Cemetery	Dorchester St. between W. Sixth and	19870918 <u>Text</u>	<u>Photos</u>

07003540 1446546111155775	C£6_11.	Dastan	District 12 Delice Station	20 Canadana Ava	10000310 Tout	Dhataa
87002549 MASSACHUSETTS 85003323 MASSACHUSETTS	Suffolk	Boston	District 13 Police Station	28 Seaverns Ave.	19880210 <u>Text</u>	Photos
	Suffolk Suffolk	Boston	Boston Harbor Islands Archeological District	Address Restricted	19851221 <u>Text</u>	Photos
82004448 MASSACHUSETTS	Suffolk	Boston	Roughan Hall	15-18 City Sq.	19820415 <u>Text</u>	Photos
82004450 MASSACHUSETTS	Suffolk	Boston	McKay, Donald, House	78-80 White St.	19820602 <u>Text</u>	Photos
82004453 MASSACHUSETTS 73000850 MASSACHUSETTS	Suffolk	Boston	Haffenreffer Brewery Town Hill District	Germania St.	19820502 <u>Text</u>	Photos
		Boston		Bounded roughly by Rutherford Ave.		Photos
74000907 MASSACHUSETTS	Suffolk	Boston	Phipps Street Burying Ground	Phipps St.	19740514 <u>Text</u>	Photos
74000911 MASSACHUSETTS	Suffolk	Boston	Clapp Houses	199 and 195 Boston St.	19740502 <u>Text</u>	Photos
74000915 MASSACHUSETTS	Suffolk	Boston	Dorchester North Burying Ground	Stroughton St. and Columbia Rd.	19740418 <u>Text</u>	<u>Photos</u>
80004396 MASSACHUSETTS	Suffolk	Boston	Boston African American National Historic Site	Museum of Afro American History, C		<u>Photos</u>
66000141 MASSACHUSETTS	Suffolk	Boston	Brook Farm	670 Baker St.	19661015 <u>Text</u>	<u>Photos</u>
73000856 MASSACHUSETTS	Suffolk	Boston	Roxbury High Fort	Beech Glen St. at Fort Ave.	19730423 <u>Text</u>	<u>Photos</u>
73000855 MASSACHUSETTS	Suffolk	Boston	Kittredge, Alvah, House	12 Linwood St.	19730508 <u>Text</u>	<u>Photos</u>
73000854 MASSACHUSETTS	Suffolk	Boston	John Eliot Square District	John Eliot Sq.	19730423 <u>Text</u>	<u>Photos</u>
66000653 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, House	125 Highland St.	19661015 <u>Text</u>	Photos
72000544 MASSACHUSETTS	Suffolk	Boston	Loring-Greenough House	12 South St.	19720426 <u>Text</u>	<u>Photos</u>
74000917 MASSACHUSETTS	Suffolk	Boston	Pierce House	24 Oakton Ave.	19740426 <u>Text</u>	<u>Photos</u>
70000540 MASSACHUSETTS	Suffolk	Boston	Fort Warren	Georges Island, Boston Harbor	19700829 <u>Text</u>	<u>Photos</u>
74002350 MASSACHUSETTS	Suffolk	Boston	Blake, James, House	735 Columbia Rd.	19740501 <u>Text</u>	<u>Photos</u>
83000604 MASSACHUSETTS	Suffolk	Boston	Loring, Harrison, House	789 E. Broadway St.	19830901 <u>Text</u>	<u>Photos</u>
88000908 MASSACHUSETTS	Suffolk	Boston	Goodwin, Ozias, House	7 Jackson Ave.	19880623 <u>Text</u>	<u>Photos</u>
88000957 MASSACHUSETTS	Suffolk	Boston	Greek Orthodox Cathedral of New England	520 Parker St.	19880630 <u>Text</u>	<u>Photos</u>
88000427 MASSACHUSETTS	Suffolk	Boston	Temple Place Historic District	1155, 2658 Temple Pl.	19880726 <u>Text</u>	<u>Photos</u>
88000959 MASSACHUSETTS	Suffolk	Boston	Eliot Hall	7A Eliot St.	19880715 <u>Text</u>	<u>Photos</u>
87001478 MASSACHUSETTS	Suffolk	Boston	Austin, Francis B., House	58 High St.	19881021 <u>Text</u>	<u>Photos</u>
89000004 MASSACHUSETTS	Suffolk	Boston	Mount Pleasant Historic District	Roughly bounded by Forest St. and N		<u>Photos</u>
89000147 MASSACHUSETTS	Suffolk	Boston	Roxbury Highlands Historic District	Roughly bounded by Dudley St., Was		<u>Photos</u>
73000325 MASSACHUSETTS	Suffolk	Boston	Hale, Edward Everett, House	12 Morley St.	19790321 <u>Text</u>	<u>Photos</u>
83004099 MASSACHUSETTS	Suffolk	Boston	LUNA (tugboat)	NDC Pier, Charles River	19831006 <u>Text</u>	<u>Photos</u>
89000974 MASSACHUSETTS	Suffolk	Boston	Massachusetts School of Art	364 Brookline Ave.	19890803 <u>Text</u>	<u>Photos</u>
89001747 MASSACHUSETTS	Suffolk	Boston	Mission Hill Triangle Historic District	Roughly bounded by Smith St., Wort		<u>Photos</u>
89002169 MASSACHUSETTS	Suffolk	Boston	St. Joseph's Roman Catholic Church Complex	Bounded by Circuit, Regent, Hulbert,		<u>Photos</u>
89002251 MASSACHUSETTS	Suffolk	Boston	Bellevue Standpipe	On Bellevue Hill at Washington St. ar		<u>Photos</u>
88000955 MASSACHUSETTS	Suffolk	Boston	First Church of Jamaica Plain	6 Eliot St.	19880715 <u>Text</u>	<u>Photos</u>
90000631 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Terrace	Between Commercial and Charter St		<u>Photos</u>
89002271 MASSACHUSETTS	Suffolk	Boston	Chestnut Hill Reservoir Historic District	Beacon St. and Commonwealth Ave.		<u>Photos</u>
90001095 MASSACHUSETTS	Suffolk	Boston	Calf Pasture Pumping Station Complex	435 Mount Vernon St.	19900802 <u>Text</u>	<u>Photos</u>
90001145 MASSACHUSETTS	Suffolk	Boston	Bowditch School	8082 Greene St.	19900803 <u>Text</u>	<u>Photos</u>
90001536 MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Roughly bounded by Jamaicaway, Pc		<u>Photos</u>
90001537 MASSACHUSETTS	Suffolk	Boston	Upham's Corner Market	600 Columbia Rd.	19901011 <u>Text</u>	<u>Photos</u>
89002125 MASSACHUSETTS	Suffolk	Boston	Roxbury Presbyterian Church		19910315 <u>Text</u>	<u>Photos</u>
90001992 MASSACHUSETTS	Suffolk	Boston	Sears Roebuck and Company Mail Order Store	309 Park Dr. and 201 Brookline Ave.		<u>Photos</u>
92000356 MASSACHUSETTS	Suffolk	Boston	Trinity Neighborhood House	406 Meridian St.	19920414 <u>Text</u>	<u>Photos</u>
73001948 MASSACHUSETTS	Suffolk	Boston	Back Bay Historic District	Roughly bounded by the Charles Rive		<u>Photos</u>
90001757 MASSACHUSETTS	Suffolk	Boston	Textile District	Roughly, Essex St. from Phillips Sq. to		<u>Photos</u>
93001489 MASSACHUSETTS	Suffolk	Boston	Massachusetts Mental Health Center	74 Fenwood Rd.	19940121 <u>Text</u>	<u>Photos</u>
93001573 MASSACHUSETTS	Suffolk	Boston	House at 1 Bay Street	1 Bay St.	19940209 <u>Text</u>	<u>Photos</u>
93001587 MASSACHUSETTS	Suffolk	Boston	Eliot Congregational Church	56 Dale St., corner 118120 Walnut!		<u>Photos</u>
85000317 MASSACHUSETTS	Suffolk	Boston	Dimock Community Health Center Complex		19850221 <u>Text</u>	<u>Photos</u>
80000672 MASSACHUSETTS	Suffolk	Boston	New England Conservatory of Music	290 Huntington Ave.	19800514 <u>Text</u>	<u>Photos</u>
94001494 MASSACHUSETTS	Suffolk	Boston	Lower Roxbury Historic District	Roughly, area surrounding Coventry,		<u>Photos</u>
94001492 MASSACHUSETTS	Suffolk	Boston	Faneuil, Peter, School	60 Joy St.	19941216 <u>Text</u>	<u>Photos</u>
95001450 MASSACHUSETTS	Suffolk	Boston	Riviera, The	•	19951207 <u>Text</u>	<u>Photos</u>
73000321 MASSACHUSETTS	Suffolk	Boston	Custom House District	Between J.F.K. Expwy. and Kirby St. a		<u>Photos</u>
96001063 MASSACHUSETTS	Suffolk	Boston	Douglass, Frederick, Square Historic District	Roughly bounded by Hammond St., (<u>Photos</u>
97000969 MASSACHUSETTS	Suffolk	Boston	Charlestown Heights	Roughly bounded by St. Martin, Bun		<u>Photos</u>
97000920 MASSACHUSETTS	Suffolk	Boston	Brighton Evangelical Congregational Church	_	19970821 <u>Text</u>	<u>Photos</u>
97000970 MASSACHUSETTS	Suffolk	Boston	Students House	96 The Fenway	19970911 <u>Text</u>	<u>Photos</u>
97000971 MASSACHUSETTS	Suffolk	Boston	North Terminal Garage	600 Commercial St.	19970911 <u>Text</u>	<u>Photos</u>
97001239 MASSACHUSETTS	Suffolk	Boston	Dorchester Temple Baptist Church	670 Washington St.	19980116 <u>Text</u>	<u>Photos</u>
97001377 MASSACHUSETTS	Suffolk	Boston	Allston Congregational Church	31-41 Quint Ave.	19971107 <u>Text</u>	<u>Photos</u>
97001472 MASSACHUSETTS	Suffolk	Boston	St. Luke's and St. Margaret's Church	5-7 St. Luke's Rd.	19971112 <u>Text</u>	<u>Photos</u>
98000149 MASSACHUSETTS	Suffolk	Boston	Eagle Hill Historic District	Roughly bounded by Border, Lexingt		<u>Photos</u>
98001082 MASSACHUSETTS	Suffolk	Boston	Boston Young Men's Christian Association	312-320 Huntington Ave.	19980820 <u>Text</u>	<u>Photos</u>
97001278 MASSACHUSETTS	Suffolk	Boston	ROSEWAY (schooner)	Boston Harbor	19970925 <u>Text</u>	<u>Photos</u>
98001292 MASSACHUSETTS	Suffolk	Boston	St. Mary's Episcopal Church	14-16 Cushing Ave.	19981030 <u>Text</u>	<u>Photos</u>
98001330 MASSACHUSETTS	Suffolk	Boston	Roslindale Baptist Church	52 Cummins Hwy.	19981105 <u>Text</u>	<u>Photos</u>
98001361 MASSACHUSETTS	Suffolk	Boston	Cathedral of St. George Historic District	517-523-525 E. Broadway	19981125 <u>Text</u>	<u>Photos</u>
98001381 MASSACHUSETTS	Suffolk	Boston	Baker Congregational Church	760 Saratoga St.	19981119 <u>Text</u>	<u>Photos</u>
99000593 MASSACHUSETTS	Suffolk	Boston	Woodbourne Historic District	Roughly bounded by Walk Hill, Good	19990604 <u>Text</u>	<u>Photos</u>

99000633 MASSACHUSETTS	Suffolk	Boston	Symphony Hall	301 Massachusetts Avenue	19990120 Text	Photos
99001302 MASSACHUSETTS	Suffolk	Boston		11 North Square	19991112 Text	Photos
99001304 MASSACHUSETTS	Suffolk	Boston	Congregation Adath Jeshurun	397 Blue Hill Ave.	19991112 <u>Text</u>	Photos
99001308 MASSACHUSETTS	Suffolk	Boston	First Congregational Church of Hyde Park	6 Webster St.	19991112 <u>Text</u>	<u>Photos</u>
99001614 MASSACHUSETTS	Suffolk	Boston	Church Green Buildings Historic District	101-113 Summer St.	19991230 <u>Text</u>	<u>Photos</u>
00000160 MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets Historic District (Boundary Incre	81-95 Richmond St.	20000303 <u>Text</u>	<u>Photos</u>
00000415 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Historic District	•	20000428 <u>Text</u>	<u>Photos</u>
00000871 MASSACHUSETTS	Suffolk	Boston		25 Ambrose St.	20000802 <u>Text</u>	<u>Photos</u>
01000088 MASSACHUSETTS	Suffolk	Boston	_	Academy Hill R., Chestnut Hill Ave., [<u>Photos</u>
01000872 MASSACHUSETTS	Suffolk	Boston	•	195-197 Ashmont St.	20010808 <u>Text</u>	<u>Photos</u>
01001048 MASSACHUSETTS	Suffolk	Boston		137 Beacon St.	20010807 <u>Text</u>	<u>Photos</u>
01001557 MASSACHUSETTS	Suffolk Suffolk	Boston	•	249 River St.	20020207 <u>Text</u>	Photos
02000081 MASSACHUSETTS 02000154 MASSACHUSETTS	Suffolk	Boston Boston	Frances and Isabella Apartments Greenwood Memorial United Methodist Church	430-432 and 434-436 Dudley St. 378A-380 Washington St.	20020222 <u>Text</u> 20020308 <u>Text</u>	Photos
02000134 MASSACHUSETTS	Suffolk	Boston	Bennington Street Burying Ground	Bennington St., bet. Swift and harmo		Photos Photos
02000348 MASSACHUSETTS	Suffolk	Boston	Paine Furniture Building	75-81 Arlington St.	20020912 <u>Text</u>	Photos
02001099 MASSACHUSETTS	Suffolk	Boston	Harrison Square Historic District	Bounded by MBTA Braintree line em	20021022 Text	Photos
03000385 MASSACHUSETTS	Suffolk	Boston	Savin Hill Historic District	Roughly bounded by Savin Hill Ave.,	20030509 <u>Text</u>	Photos
03000645 MASSACHUSETTS	Suffolk	Boston		41-43 Union Street	20030527 Text	Photos
03000781 MASSACHUSETTS	Suffolk	Boston	·	40-44 Bromfield St.	20030820 Text	Photos
04000023 MASSACHUSETTS	Suffolk	Boston	, 3	150 Magnolia St.	20040211 <u>Text</u>	Photos
04000085 MASSACHUSETTS	Suffolk	Boston	Haskell, Edward H., Home for Nurses	220 Fisther Ave., 63 Parker Hill Ave.	20040226 Text	Photos
04000119 MASSACHUSETTS	Suffolk	Boston		140 Clarendon St.	20040303 Text	Photos
04000189 MASSACHUSETTS	Suffolk	Boston	Nix's Mate Daybeacon	Nubble Channel, The Narrows, Bosto		Photos
04000426 MASSACHUSETTS	Suffolk	Boston	•	224-236 Seaver St. and 1-8 Nazing Cc		Photos
04000534 MASSACHUSETTS	Suffolk	Boston		182-186 Dudley St.	20040602 <u>Text</u>	Photos
04000959 MASSACHUSETTS	Suffolk	Boston	Fort Point Channel Historic District	Necco Court, Thomson Place, A, Binfo	20040910 <u>Text</u>	Photos
04001219 MASSACHUSETTS	Suffolk	Boston	Forest Hills Cemetery	95 Forest Hills Ave.	20041117 <u>Text</u>	Photos
04001430 MASSACHUSETTS	Suffolk	Boston	Truman ParkwayMetropolitan Park System of Greater Bo	Truman Parkway	20050105 <u>Text</u>	Photos
04001432 MASSACHUSETTS	Suffolk	Boston	VFW Parkway, Metropolitan Park System of Greater Bostor	VFW Parkway, bet. Spring And Centr	20050105 <u>Text</u>	Photos
04001572 MASSACHUSETTS	Suffolk	Boston	Morton Street, Metropolitan Park System of Greater Bosto	Morton St.	20050124 <u>Text</u>	Photos
04001573 MASSACHUSETTS	Suffolk	Boston	Neponset Valley Parkway, Metorpolitan Park System of Gre	Neponset Valley Parkway	20050124 <u>Text</u>	<u>Photos</u>
05000459 MASSACHUSETTS	Suffolk	Boston	Ayer, Frederick, Mansion	395 Commonwealth Avenue	20050405 <u>Text</u>	Photos
05000559 MASSACHUSETTS	Suffolk	Boston	Collins Building	213-217 Washington St.	20050608 <u>Text</u>	Photos
05000879 MASSACHUSETTS	Suffolk	Boston	Home for Aged Couples	409, 419 Walnut Ave. and 2055 Colu	20050811 <u>Text</u>	Photos
05000936 MASSACHUSETTS	Suffolk	Boston	South Boston Boat Clubs Historic District	1793-1849 William J. Day Blvd.	20050901 <u>Text</u>	<u>Photos</u>
05001509 MASSACHUSETTS	Suffolk	Boston	Stony Brook Reservation Parkways, Metropolitan Park Syst	Dedham, Enneking, Turtle Pond Park	20060103 <u>Text</u>	<u>Photos</u>
06000127 MASSACHUSETTS	Suffolk	Boston	5	127 Marion St.	20060315 <u>Text</u>	<u>Photos</u>
01000304 MASSACHUSETTS	Suffolk	Boston	DorchesterMilton Lower Mills Industrial District (Boundar			<u>Photos</u>
07000510 MASSACHUSETTS	Suffolk	Boston		41 Ruggles St., 746-750 Shawmut Av		<u>Photos</u>
07000861 MASSACHUSETTS	Suffolk	Boston	· ·	15 Beacon St.	20070831 <u>Text</u>	<u>Photos</u>
08000089 MASSACHUSETTS	Suffolk	Boston	Dorchester Park	Bounded by Dorchester Ave., Richmo		<u>Photos</u>
08000693 MASSACHUSETTS	Suffolk	Boston	Old Harbor Reservation Parkways, Metropolitan Park Syste	•		<u>Photos</u>
08000793 MASSACHUSETTS	Suffolk	Boston	Joshua Bates School	731 Harrison Ave.	20080822 <u>Text</u>	<u>Photos</u>
08000795 MASSACHUSETTS	Suffolk	Boston	•	147 Wordsworth St.	20080819 <u>Text</u>	Photos
08001284 MASSACHUSETTS 09000612 MASSACHUSETTS	Suffolk Suffolk	Boston		159, 161-175 Devonshire St., 18-20 A 2060 Commonwealth Ave.	20081231 <u>Text</u> 20090814 <u>Text</u>	Photos
09000012 MASSACHUSETTS	Suffolk	Boston Boston	Evergreen Cemetery Fairview Cemetery	45 Fairview Ave.	20090814 <u>Text</u> 20090916 Text	<u>Photos</u> Photos
09000717 MASSACHUSETTS	Suffolk	Boston	Mount Hope Cemetery	355 Walk Hill St.	20090910 <u>Text</u> 20090924 Text	Photos
10000039 MASSACHUSETTS	Suffolk	Boston	·	Address Restricted	20101122 Text	Photos
10000300 MASSACHUSETTS	Suffolk	Boston		154-166 Terrace St	20100528 Text	Photos
10000391 MASSACHUSETTS	Suffolk	Boston		874, 876, 880 Beacon St	20100624 <u>Text</u>	Photos
10000506 MASSACHUSETTS	Suffolk	Boston	Charles River Reservation (Speedway)Upper Basin Headqu	• •	20100719 Text	Photos
10001066 MASSACHUSETTS	Suffolk	Boston		3025 Washington St	20101227 <u>Text</u>	Photos
11000160 MASSACHUSETTS	Suffolk	Boston	United State Post Office, Courthouse, and Federal Building	G	20110408 <u>Text</u>	Photos
12000069 MASSACHUSETTS	Suffolk	Boston		24, & 2-4 Yawkey Wy., 64-76 Brooklii		Photos
12000099 MASSACHUSETTS	Suffolk	Boston	Terminal Storage Warehouse District	267-281 Medford St., 40 & 50 Termir	20120312 <u>Text</u>	Photos
12000783 MASSACHUSETTS	Suffolk	Boston	Saint Mark's Episcopal Church	73 Columbia Rd.	20140703 <u>Text</u>	Photos
12000978 MASSACHUSETTS	Suffolk	Boston	Sherman Apartments Historic District	544-546 Washington, 4-6, 12-14, 18 I	20121128 <u>Text</u>	Photos
12001012 MASSACHUSETTS	Suffolk	Boston	Central Congregational Church	67 Newbury St.	20121016 <u>Text</u>	<u>Photos</u>
12001162 MASSACHUSETTS	Suffolk	Boston	Commonwealth Pier Five	165 Northern Ave.	19791010 <u>Text</u>	<u>Photos</u>
13000621 MASSACHUSETTS		Boston		4228 Washington St.	20130827 <u>Text</u>	<u>Photos</u>
13000928 MASSACHUSETTS	Suffolk	Boston		3 Gaylord St.	20131218 <u>Text</u>	<u>Photos</u>
13000929 MASSACHUSETTS	Suffolk	Boston	Pilgrim Congregational Church	540-544 Columbia Rd.	20131218 <u>Text</u>	<u>Photos</u>
13000930 MASSACHUSETTS	Suffolk	Boston	Walton and Roslin Halls	702-708 & 710-726 Washington St., $\boldsymbol{\xi}$		<u>Photos</u>
14000272 MASSACHUSETTS	Suffolk	Boston		59 Temple Pl.	20140602 <u>Text</u>	<u>Photos</u>
14000365 MASSACHUSETTS	Suffolk	Boston	, 3	2095 Dorchester Ave.	20140627 <u>Text</u>	<u>Photos</u>
14000561 MASSACHUSETTS	Suffolk	Boston	6	825-829 Blue Hill Ave.	20140910 <u>Text</u>	<u>Photos</u>
14000698 MASSACHUSETTS	Suffolk	Boston	·	1439-1443 & 1447-1451 Blue Hill Ανε		<u>Photos</u>
14000974 MASSACHUSETTS	Suffolk	Boston	Gridley Street Historic District	Bounded by Congress, High, Pearl &	20141203 <u>Text</u>	<u>Photos</u>

14000975 MASSACHUSETTS	Suffolk	Boston	Lyman, Theodore, School	30 Gove St.	20141202 <u>Text</u>	<u>Photos</u>
14001095 MASSACHUSETTS	Suffolk	Boston	South End District (Boundary Increase)	200-224 Northampton St.	20141229 <u>Text</u>	<u>Photos</u>
15000048 MASSACHUSETTS	Suffolk	Boston	Boston Police Station Number OneTraffic Tunnel Adminis	s: 128, 150 North & 130 -140 Richmonc	20150303 <u>Text</u>	<u>Photos</u>
15000195 MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Charlestown Navy Yard	20150505 <u>Text</u>	<u>Photos</u>
86001378 MASSACHUSETTS	Suffolk	South Bost	c US Post Office Garage	135 A St.	19860626 <u>Text</u>	<u>Photos</u>

Welcome to MACRIS http://mhc-macris.net/

Massachusetts Historical Commission

William Francis Galvin, Secretary of the Commonwealth

Home | Feedback | Contact Us

MHC Home

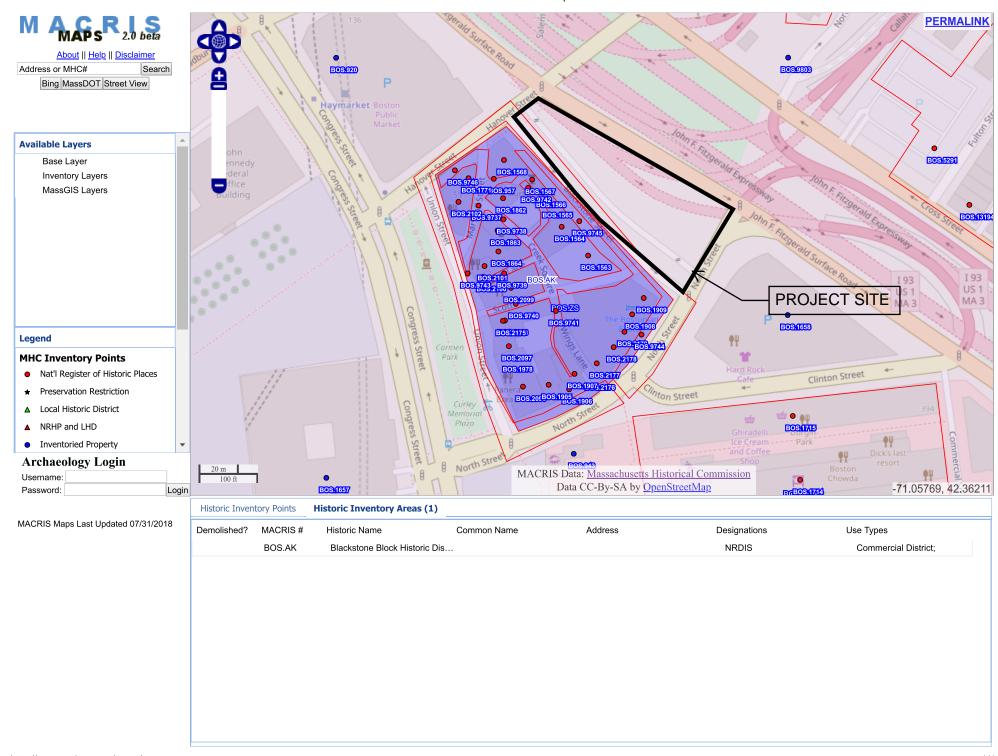
Massachusetts Cultural Resource Information System MACRIS

Scanned forms and photos now available for selected towns!

The Massachusetts Cultural Resource Information System (MACRIS) allows you to search the Massachusetts Historical Commission database for information on historic properties and areas in the Commonwealth.

Users of the database should keep in mind that it does not include information on all historic properties and areas in Massachusetts, nor does it reflect all the information on file on historic properties and areas at the Massachusetts Historical Commission.

Click here to begin your search of the MACRIS database.



Home | Search | Index | Feedback | Contact

1 of 1 6/21/17, 2:46 PM

http://maps.mhc-macris.net/

8/14/2018 MACRIS Details

Massachusetts Cultural Resource Information System

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No: BOS.AK

Historic Name: Blackstone Block Historic District

Common Name:

Address:

City/Town: Boston

Village/Neighborhood: Central Business District; Custom House - Markets

Local No:

Year Constructed:

Architect(s):

Architectural Style(s):

Use(s): Commercial District

Significance: Architecture; Commerce; Community Planning

Area(s):

Designation(s): Nat'l Register District (05/26/1973)

Building Material(s):

New Search

Previous

MHC Home

MACRIS Home

Digital Photo Not Yet

Available

APPENDIX C

ESA Documentation

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: August 07, 2018

Consultation Code: 05E1NE00-2018-SLI-2636

Event Code: 05E1NE00-2018-E-06164

Project Name: Parcel 9

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-2636

Event Code: 05E1NE00-2018-E-06164

Project Name: Parcel 9

Project Type: DEVELOPMENT

Project Description: Construction dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.36108079705683N71.05085608424298W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an
office of the National Oceanic and Atmospheric Administration within the Department of
Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

IPaC

U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

CONSUL

Project information

NAME

Parcel 9

LOCATION

Suffolk County, Massachusetts

DESCRIPTION

Construction dewatering

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

OT FOR CONSULTATION

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project.
- 4. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act 1 and the Bald and Golden Eagle Protection Act 2 .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS ACROSS
ITS ENTIRE RANGE. "BREEDS
ELSEWHERE" INDICATES THAT THE

> BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

American Oystercatcher Haematopus palliatus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8935

Breeds Apr 15 to Aug 31

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black Skimmer Rynchops niger

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/5234

Breeds May 20 to Sep 15

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Breeds May 20 to Aug 10

5/14

Buff-breasted Sandpiper Calidris subruficollis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9488

Breeds elsewhere

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds May 1 to Sep 5

King Rail Rallus elegans

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8936

Least Tern Sterna antillarum Breeds Apr 20 to Sep 10

This is a Bird of Conservation Concern (BCC) only in particular Bird

Conservation Regions (BCRs) in the continental USA

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Long-eared Owl asio otus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3631

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Purple Sandpiper Calidris maritima

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Ruddy Turnstone Arenaria interpres morinella

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Saltmarsh Sparrow Ammodramus caudacutus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Seaside Sparrow Ammodramus maritimus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 20

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Whimbrel Numenius phaeopus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9483

Breeds elsewhere

Willet Tringa semipalmata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 5

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week

of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

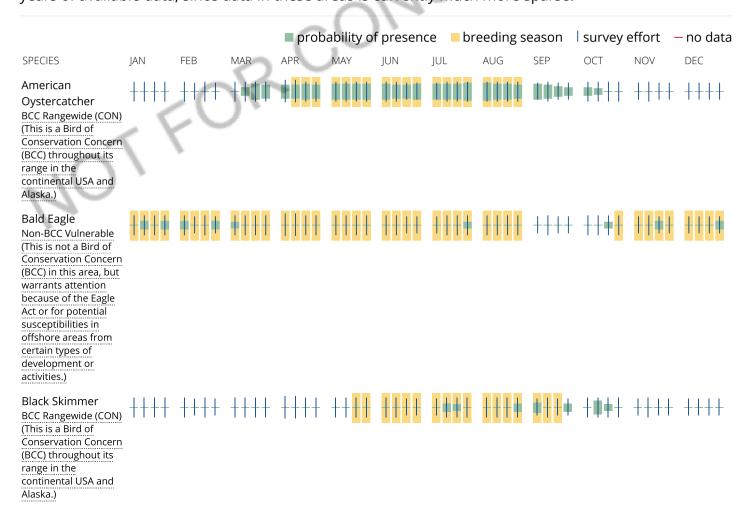
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

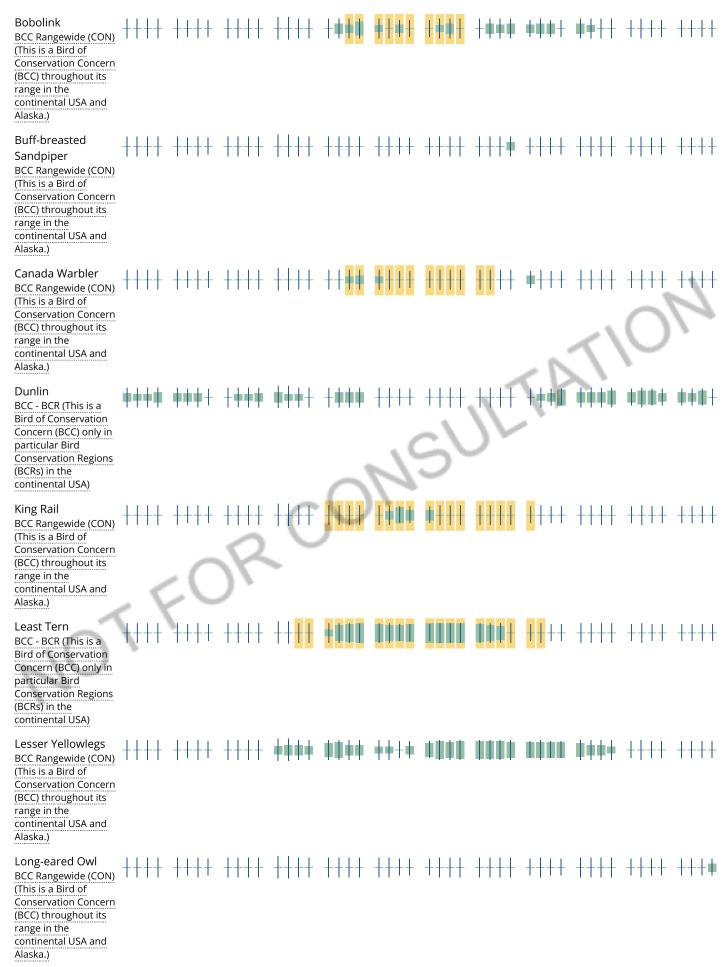
Breeding Season (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

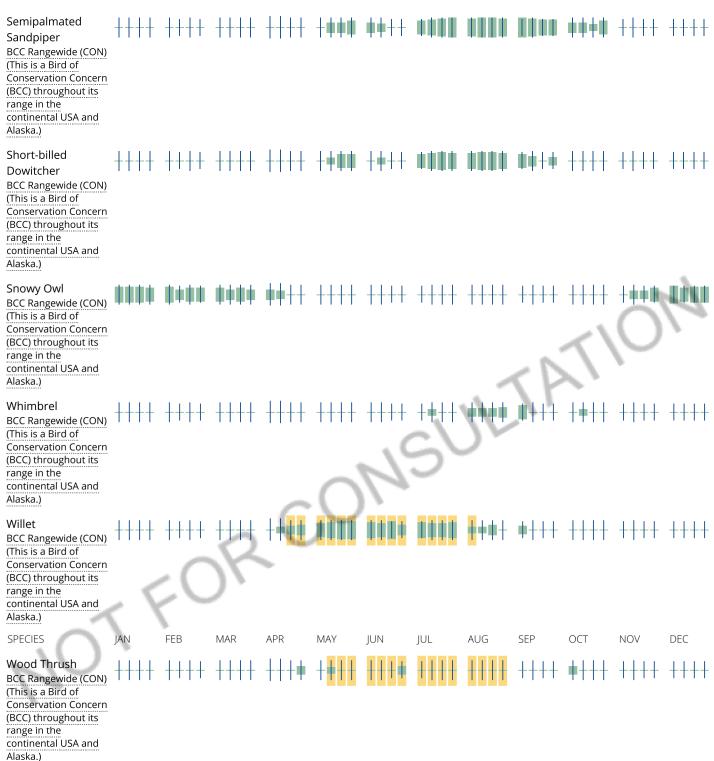
Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)

A week is marked as having no data if there were no survey events for that week.


Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review.

Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

Wildlife refuges and fish hatcheries

REFUGE AND FISH HATCHERY INFORMATION IS NOT AVAILABLE AT THIS TIME

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers</u> <u>District</u>.

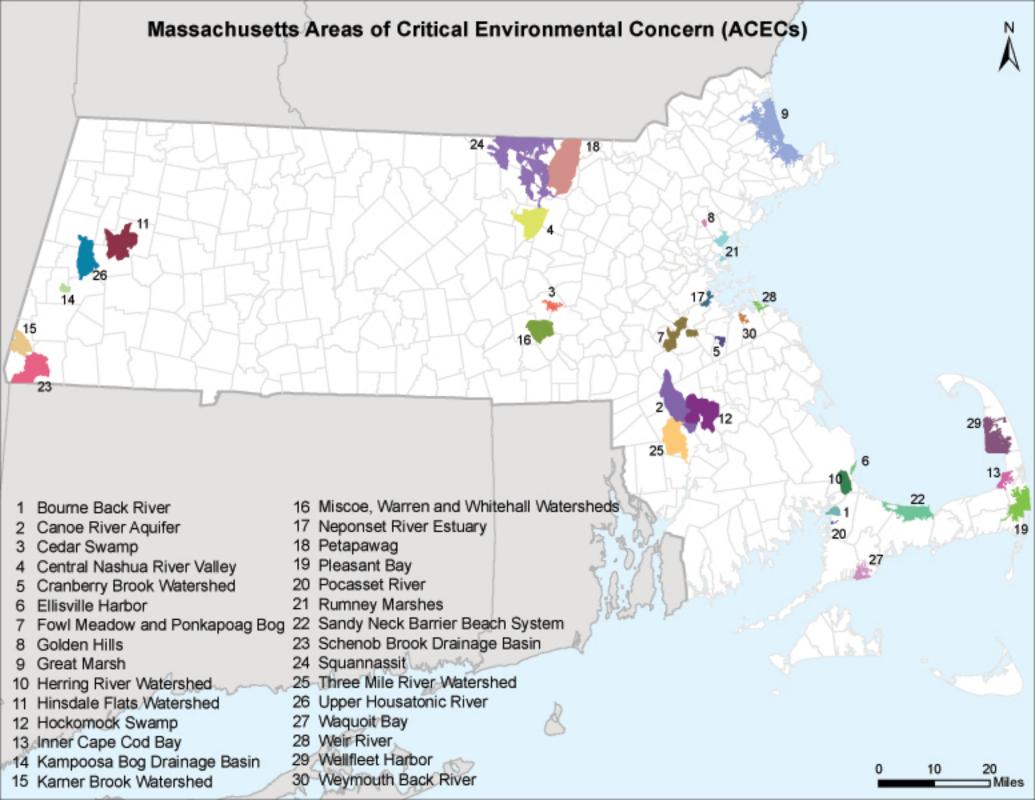
WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the NWI map to view wetlands at this location.

Data limitations

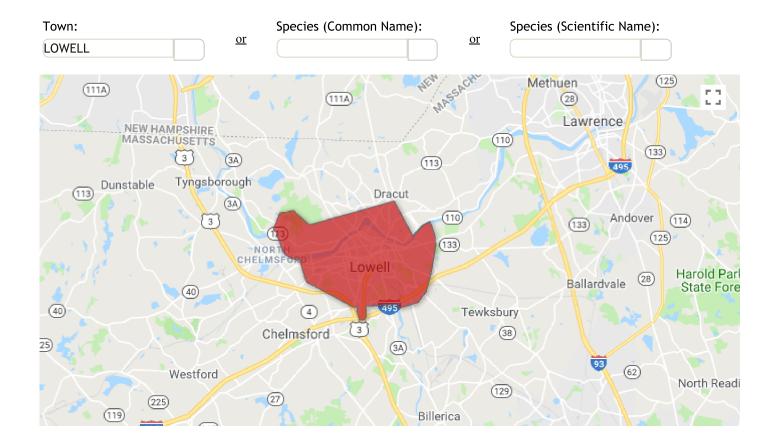
The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.


Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.


Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Map dReporta map errore

Showing 1 to 8 of 8 entries Search:					
			First	Previous 1	Next Last
Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
LOWELL	Butterfly/Moth	Cicinnus melsheimeri	Melsheimer's Sack Bearer	T	Historic
LOWELL	Vascular Plant	Deschampsia cespitosa ssp. glauca	Tufted Hairgrass	Е	1882
LOWELL	Vascular Plant	Elymus villosus	Hairy Wild Rye	E	1882
LOWELL	Reptile	Emydoidea blandingii	Blanding's Turtle	T	2007
LOWELL	Bird	Falco peregrinus	Peregrine Falcon	T	2017
LOWELL	Dragonfly/Damselfly	Gomphus vastus	Cobra Clubtail	SC	2004

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs	
LOWELL	Vascular Plant	Liatris scariosa var. novae- angliae	New England Blazing Star	SC	1882	
LOWELL	Dragonfly/Damselfly	Neurocordulia obsoleta	Umber Shadowdragon	SC	2004	
Show 100 ▼ entries						

Show Additional Info

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

November 2010

TOWIIS WILL	II ACECS WILLIIII LITERI DOUTIGATIES		November 2010
TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag		Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River		Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed	_	Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp	0 :	Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay	Chavan	Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer	Sheffield	Fowl Meadow and Ponkapoag Bog Schenob Brook
Farament	Hockomock Swamp Karner Brook Watershed		
Egremont		Shirley Stockbridge	Squannassit Kampoosa Bog Drainage Basin
Essex Falmouth	Great Marsh	Taunton	Hockomock Swamp
Foxborough	Waquoit Bay Canoe River Aquifer	raunton	Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
Ciaiton	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
Citton	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley	Opton	Watersheds
riarvara	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	3.0	Upper Housatonic River
rinigriani	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River	•	•
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
Dukes	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
2011	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

APPENDIX D

Boston Water and Sewer Commission Permit Application

13 September 2018 File No. 131268-002

Boston Water and Sewer Commission Engineering Customer Services 900 Harrison Avenue Boston, MA 02119

Attention: Matthew Tuttle

Subject: Request for Approval of Temporary Construction Dewatering

Parcel 9 Haymarket Hotel

Blackstone Street and North Street

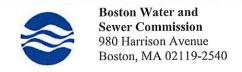
Boston, Massachusetts

Dear Mr. Tuttle:

On behalf of our client, Haymarket Parcel 9 Investor, LLC, this letter submits the Dewatering Discharge Permit Application in support of the proposed Parcel 9 Haymarket Hotel site located at Blackstone Street and North Street in Boston, Massachusetts.

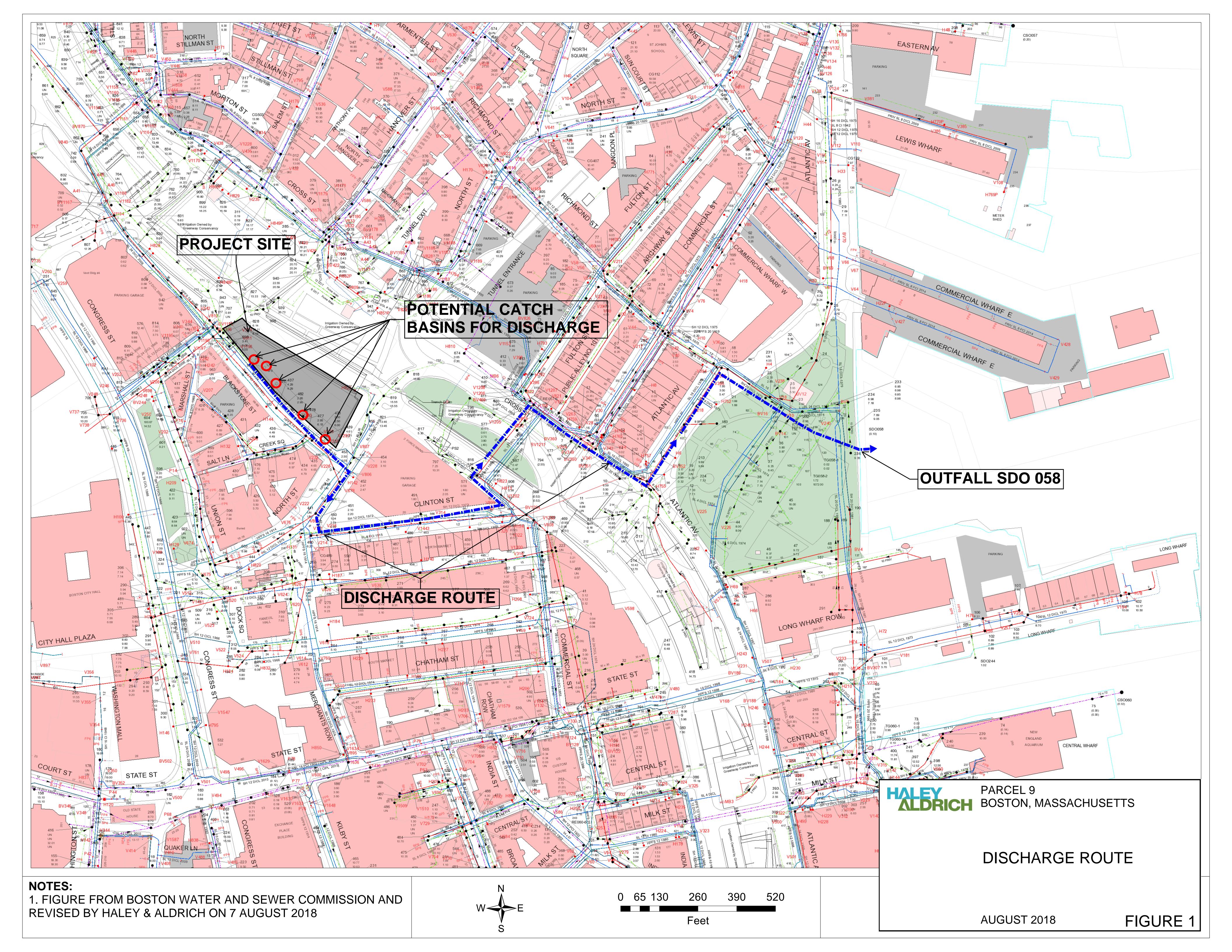
Dewatering is necessary to enable construction excavations in-the-dry, and is anticipated to begin in October 2018 and continue for up to 6 months. Prior to discharge, collected water will be routed through a sedimentation tank and bag filter at minimum to remove suspended solids and chemical constituents. The proposed dewatering discharge route and BWSC outfall locations are shown on Figure 1.

A submittal was provided to USEPA for discharge of the dewatering effluent under the Remediation General Permit (RGP). A copy of the submitted RGP application is attached. If you have any questions, please feel free to contact the undersigned at 617-886-7400.


Sincerely yours,

HALEY & ALDRICH, INC.

Michael J. Cronan, LSP Senior Project Manager


Attachments:

Dewatering Discharge Permit Application Figure 1 – Proposed Discharge Route Copy of NPDES RGP Permit Application

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE	INFORMATION HERE:	
Company Name: Haymarket Parcel 9 Developmen	t, LL Address: 451 D Street, Suite 10	00, Boston, MA 02210
Phone Number: 617-999-5951	Fax number:	
Contact person name: Yvette Tetreault	Title:	
Cell number: 617-999-5951	Email address: _ytetreault@cv	/prop.com
Permit Request (check one): ☒ New Application	☐ Permit Extension ☐ Other (S	Specify):
Owner's Information (if different from above):		
Owner of property being dewatered: Haymarket MassDOT	Parcel 9 Investor, LLC has been as a long-term ground lessee for	designated by property owner,
Owner's mailing address:	Ph	none number:
Location of Discharge & Proposed Treatment S		
Street number and name: Blackstone and North	n Street Neighborhood	Financial District
Discharge is to a: ☐ Sanitary Sewer ☐ Combine Sedi Describe Proposed Pre-Treatment System(s): (refe	imentation Tank, Bag Filter, and	r (specify): any other components as necessary
BWSC Outfall No. SDO 058 Recei		
Temporary Discharges (Provide Anticipated Dates o		To April 2019
☐ Groundwater Remediation ☐ Utility/Manhole Pumping ☐ Accumulated Surface Water	 □ Tank Řemoval/Installation □ Test Pipe □ Hydrogeologic Testing 	✗ Foundation Excavation✗ Trench Excavation□ Other
Permanent Discharges □ Foundation Drainage □ Accumulated Surface Water □ Non-contact/Uncontaminated Process	☐ Crawl Space/Footing Drain ☐ Non-contact/Uncontaminated Cool ☐ Other;	
Attach a Site Plan showing the source of the discharge and number, size, make and start reading. Note. All discharge If discharging to a sanitary or combined sewer, attach a copy of El as other relevant information.	the location of the point of discharge (i.e. the is to the Commission's sewer system will be a py of MWRA's Sewer Use Discharge permit PA's NPDES Permit or NOI application, or N	assessed current sewer charges. or application. NPDES Permit exclusion letter for the discharge, as wel
Engineering Custor 980 Harrison Aven Attn: Matthew Tutt E-mail: tuttlemp@ Phone: 617-989-7/	ue, Boston, MA 02119 le, Engineering Customer Service bwsc.org 204 Fax: 617-989-7716	Date: 9/12/18
Signature of Authorized Representative for Property Owner	- Juliane	Date:

APPENDIX E

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1822896

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Teresa Cooper Phone: (617) 886-7358

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Report Date: 06/29/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date:

06/29/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1822896-01	HA-18-B207 (OW)	WATER	BLACKSTONE STREET, BOSTON, MA	06/18/18 14:05	06/18/18

Project Name:CA/T PARCEL 9 DEVELOPMENTLab Number:L1822896Project Number:131268-003 SID 3Report Date:06/29/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:CA/T PARCEL 9 DEVELOPMENTLab Number:L1822896Project Number:131268-003 SID 3Report Date:06/29/18

Case Narrative (continued)

Report Revision

June 29, 2018: The results for Dissolved Lead are now reported.

Report Submission

June 25, 2018: This final report includes the results of all requested analyses.

June 24, 2018: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Chlorine, Total Residual

The WG1127230-4 MS recovery (0%), performed on L1822896-01 (HA-18-B207 (OW)), is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

Phenolics, Total

The WG1127744-4 MS recovery (22%), performed on L1822896-01 (HA-18-B207 (OW)), is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 06/29/18

ORGANICS

VOLATILES

L1822896

06/29/18

Project Name: CA/T PARCEL 9 DEVELOPMENT

L1822896-01

HA-18-B207 (OW)

BLACKSTONE STREET, BOSTON, MA

Project Number: 131268-003 SID 3

SAMPLE RESULTS

Date Collected: 06/18/18 14:05

Lab Number:

Report Date:

Date Received: 06/18/18
Field Prep: Refer to COC

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/20/18 08:17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Methyl tert butyl ether	ND		ug/l	1.0		1
p/m-Xylene	ND		ug/l	1.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Acetone	ND		ug/l	5.0		1
Tert-Butyl Alcohol	ND		ug/l	10		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

06/29/18

Project Name: Lab Number: CA/T PARCEL 9 DEVELOPMENT L1822896

Project Number: 131268-003 SID 3

SAMPLE RESULTS

Date Collected: 06/18/18 14:05

Report Date:

Lab ID: L1822896-01 Date Received: Client ID: 06/18/18 HA-18-B207 (OW)

Sample Location: BLACKSTONE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	107	70-130

06/29/18

Report Date:

Project Name: CA/T PARCEL 9 DEVELOPMENT Lab Number: L1822896

Project Number: 131268-003 SID 3

SAMPLE RESULTS

Lab ID: L1822896-01 Date Collected: 06/18/18 14:05

Client ID: HA-18-B207 (OW) Date Received: 06/18/18

Sample Location: BLACKSTONE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 1,8260C-SIM(M)
Analytical Date: 06/20/18 08:17

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIN	1 - Westborough Lab					
1,4-Dioxane	ND	ug/l	3.0		1	
Surrogate		% Recov	ery Qualific		eptance riteria	
1.2-Dichloroethane-d4		92			70-130	

Project Name: Lab Number: CA/T PARCEL 9 DEVELOPMENT L1822896

Report Date: **Project Number:** 131268-003 SID 3 06/29/18

SAMPLE RESULTS

Lab ID: L1822896-01 Date Collected: 06/18/18 14:05

Date Received: Client ID: HA-18-B207 (OW) 06/18/18

Sample Location: BLACKSTONE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 06/20/18 10:00 Analytical Method: 14,504.1

Analytical Date: 06/20/18 13:49

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L1822896

Project Name: CA/T PARCEL 9 DEVELOPMENT Lab Number:

Project Number: 131268-003 SID 3 **Report Date:** 06/29/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/20/18 07:44

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sampl	e(s): 01	Batch:	WG1127836-5
Methylene chloride	ND		ug/l	3.0	
1,1-Dichloroethane	ND		ug/l	0.75	
Carbon tetrachloride	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.75	
Tetrachloroethene	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.75	
Ethylbenzene	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	2.5	
1,3-Dichlorobenzene	ND		ug/l	2.5	
1,4-Dichlorobenzene	ND		ug/l	2.5	
Methyl tert butyl ether	ND		ug/l	1.0	
p/m-Xylene	ND		ug/l	1.0	
o-Xylene	ND		ug/l	1.0	
Xylenes, Total	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Acetone	ND		ug/l	5.0	
Tert-Butyl Alcohol	ND		ug/l	10	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	

Project Name: CA/T PARCEL 9 DEVELOPMENT Lab Number: L1822896

Project Number: 131268-003 SID 3 **Report Date:** 06/29/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/20/18 07:44

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	b for sampl	e(s): 01	Batch:	WG1127836-5	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	103	70-130	

Project Name: CA/T PARCEL 9 DEVELOPMENT Lab Number: L1822896

Project Number: 131268-003 SID 3 **Report Date:** 06/29/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 06/20/18 07:44

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1127841-5	
1,4-Dioxane	ND		ug/l		3.0		

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
1,2-Dichloroethane-d4	90	70-130

L1822896

Project Name: CA/T PARCEL 9 DEVELOPMENT Lab Number:

Project Number: 131268-003 SID 3 **Report Date:** 06/29/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 06/20/18 11:55 Extraction Date: 06/20/18 10:00

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	r sample(s)	: 01	Batch: WG1127	7875-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number: L1822896

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	_ab Associated	sample(s): 01	Batch: W	G1127836-3	WG1127836-4			
Methylene chloride	93		120		70-130	25	Q	20
1,1-Dichloroethane	110		110		70-130	0		20
Carbon tetrachloride	110		110		63-132	0		20
1,1,2-Trichloroethane	100		98		70-130	2		20
Tetrachloroethene	100		99		70-130	1		20
1,2-Dichloroethane	110		100		70-130	10		20
1,1,1-Trichloroethane	110		100		67-130	10		20
Benzene	100		100		70-130	0		25
Toluene	100		98		70-130	2		25
Ethylbenzene	100		100		70-130	0		20
Vinyl chloride	110		100		55-140	10		20
1,1-Dichloroethene	110		110		61-145	0		25
Trichloroethene	110		110		70-130	0		25
1,2-Dichlorobenzene	98		100		70-130	2		20
1,3-Dichlorobenzene	97		95		70-130	2		20
1,4-Dichlorobenzene	97		98		70-130	1		20
Methyl tert butyl ether	100		100		63-130	0		20
p/m-Xylene	100		90		70-130	11		20
o-Xylene	100		95		70-130	5		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Acetone	100		100		58-148	0		20
Tert-Butyl Alcohol	106		100		70-130	6		20
Tertiary-Amyl Methyl Ether	100		100		66-130	0		20

Lab Control Sample Analysis

Project Name: CA/T PARCEL 9 DEVELOPMENT

Batch Quality Control

Lab Number: L1822896

06/29/18

Project Number: 131268-003 SID 3

Report Date:

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1127836-3 WG1127836-4

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	101	70-130
Toluene-d8	97	96	70-130
4-Bromofluorobenzene	103	104	70-130
Dibromofluoromethane	110	107	70-130

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3 Lab Number:

L1822896

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ted sample(s):	01 Batch:	WG1127841-3	WG1127841-4			
1,4-Dioxane	92		92		70-130	0		25

Surrogate	LCS	LCSD	Acceptance
	%Recovery	Qual %Recovery	Qual Criteria
1,2-Dichloroethane-d4	96	94	70-130

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3 Lab Number:

L1822896

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1127	7875-2					
1,2-Dibromoethane	121	Q	-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date:

_Parameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD I Limits	<u>Column</u>
Microextractables by GC - W	estborough Lab	Associate	ed sample(s): 01	QC Batch	ID: WG1	127875-3	QC Sample: I	L1822896-01 Clie	ent ID: HA-18-	-B207 (OW)
1,2-Dibromoethane	ND	0.25	0.311	124	Q	-	-	80-120	-	20	Α

SEMIVOLATILES

06/29/18

Project Name: CA/T PARCEL 9 DEVELOPMENT Lab Number: L1822896

Project Number: 131268-003 SID 3 Report Date:

SAMPLE RESULTS

 Lab ID:
 L1822896-01
 Date Collected:
 06/18/18 14:05

 Client ID:
 HA-18-B207 (OW)
 Date Received:
 06/18/18

Sample Location: BLACKSTONE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 06/20/18 08:10

Analytical Date: 06/22/18 03:01

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborou	Semivolatile Organics by GC/MS - Westborough Lab							
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0				
Butyl benzyl phthalate	ND		ug/l	5.0		1		
Di-n-butylphthalate	ND		ug/l	5.0		1		
Di-n-octylphthalate	ND		ug/l	5.0		1		
Diethyl phthalate	ND		ug/l	5.0		1		
Dimethyl phthalate	ND		ug/l	5.0		1		
Pentachlorophenol	ND		ug/l	10		1		
Phenol	ND		ug/l	5.0		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	48	21-120	
Phenol-d6	33	10-120	
Nitrobenzene-d5	86	23-120	
2-Fluorobiphenyl	79	15-120	
2,4,6-Tribromophenol	103	10-120	
4-Terphenyl-d14	86	41-149	

06/29/18

Project Name: CA/T PARCEL 9 DEVELOPMENT Lab Number: L1822896

Project Number: 131268-003 SID 3

SAMPLE RESULTS

LE RESULTS

Report Date:

Lab ID: L1822896-01 Date Collected: 06/18/18 14:05

Client ID: HA-18-B207 (OW) Date Received: 06/18/18
Sample Location: BLACKSTONE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 06/20/18 08:15
Analytical Date: 06/22/18 16:13

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-S	SIM - Westborough Lab)				
Acenaphthene	0.95		ug/l	0.10		1
Fluoranthene	1.8		ug/l	0.10		1
Naphthalene	0.38		ug/l	0.10		1
Benzo(a)anthracene	0.58		ug/l	0.10		1
Benzo(a)pyrene	0.54		ug/l	0.10		1
Benzo(b)fluoranthene	0.61		ug/l	0.10		1
Benzo(k)fluoranthene	0.25		ug/l	0.10		1
Chrysene	0.58		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	0.70		ug/l	0.10		1
Benzo(ghi)perylene	0.22		ug/l	0.10		1
Fluorene	0.91		ug/l	0.10		1
Phenanthrene	2.6		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	0.24		ug/l	0.10		1
Pyrene	1.4		ug/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	36	21-120
Phenol-d6	26	10-120
Nitrobenzene-d5	69	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	89	10-120
4-Terphenyl-d14	76	41-149

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3 Lab Number:

L1822896

Report Date:

06/29/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 06/21/18 14:07

Analyst: SZ Extraction Method: EPA 3510C **Extraction Date:**

06/20/18 08:10

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01	Batch:	WG1127794-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l		5.0		
Di-n-octylphthalate	ND		ug/l		5.0		
Diethyl phthalate	ND		ug/l		5.0		
Dimethyl phthalate	ND		ug/l		5.0		
Pentachlorophenol	ND		ug/l		10		
Phenol	ND		ug/l		5.0		

Tentatively Identified Compounds No Tentatively Identified Compounds ND ug/l

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	28	21-120
Phenol-d6	20	10-120
Nitrobenzene-d5	58	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	80	41-149

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date:

06/29/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 06/22/18 11:50

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 06/20/18 08:15

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	S-SIM - Westbo	rough Lab	for sampl	e(s): 01	Batch: WG11277	'96-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	26	21-120
Phenol-d6	19	10-120
Nitrobenzene-d5	57	23-120
2-Fluorobiphenyl	55	15-120
2,4,6-Tribromophenol	68	10-120
4-Terphenyl-d14	79	41-149

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number: L1822896

arameter	LCS %Recovery Qual	LCSD %Recovery	% Qual	6Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - W	estborough Lab Associated samp	ole(s): 01 Batch:	WG1127794-2	WG1127794-	3		
Bis(2-ethylhexyl)phthalate	79	81		40-140	3		30
Butyl benzyl phthalate	76	77		40-140	1		30
Di-n-butylphthalate	76	77		40-140	1		30
Di-n-octylphthalate	80	82		40-140	2		30
Diethyl phthalate	71	74		40-140	4		30
Dimethyl phthalate	70	74		40-140	6		30
Pentachlorophenol	52	50		9-103	4		30
Phenol	24	26		12-110	8		30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria	
2-Fluorophenol	34	37	21-120	
Phenol-d6	25	26	10-120	
Nitrobenzene-d5	65	74	23-120	
2-Fluorobiphenyl	66	72	15-120	
2,4,6-Tribromophenol	75	76	10-120	
4-Terphenyl-d14	73	76	41-149	

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number: L1822896

ırameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
	•				
emivolatile Organics by GC/MS-SIM - Wes	tborough Lab Ass	sociated sample(s): 01 Bat	ch: WG1127796-2 WG11277	796-3	
Acenaphthene	74	61	40-140	19	40
Fluoranthene	86	64	40-140	29	40
Naphthalene	59	49	40-140	19	40
Benzo(a)anthracene	78	57	40-140	31	40
Benzo(a)pyrene	76	64	40-140	17	40
Benzo(b)fluoranthene	78	58	40-140	29	40
Benzo(k)fluoranthene	83	62	40-140	29	40
Chrysene	82	60	40-140	31	40
Acenaphthylene	69	57	40-140	19	40
Anthracene	79	61	40-140	26	40
Benzo(ghi)perylene	80	58	40-140	32	40
Fluorene	79	64	40-140	21	40
Phenanthrene	74	58	40-140	24	40
Dibenzo(a,h)anthracene	86	63	40-140	31	40
Indeno(1,2,3-cd)pyrene	80	57	40-140	34	40
Pyrene	83	62	40-140	29	40

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3 Lab Number:

L1822896

Report Date:

06/29/18

	LCS		LCSD		%Recovery		RP		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1127796-2 WG1127796-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	32	24	21-120
Phenol-d6	24	18	10-120
Nitrobenzene-d5	62	51	23-120
2-Fluorobiphenyl	57	48	15-120
2,4,6-Tribromophenol	72	58	10-120
4-Terphenyl-d14	81	61	41-149

PCBS

Project Name: CA/T PARCEL 9 DEVELOPMENT **Lab Number:** L1822896

Project Number: 131268-003 SID 3 **Report Date:** 06/29/18

SAMPLE RESULTS

Lab ID: Date Collected: 06/18/18 14:05

Client ID: HA-18-B207 (OW) Date Received: 06/18/18

Sample Location: BLACKSTONE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608
Analytical Method: 5,608 Extraction Date: 06/20/18 21:21

Analytical Date: 06/21/18 14:07 Cleanup Method: EPA 3665A Analyst: WR Cleanup Date: 06/21/18

Cleanup Method: EPA 3660B Cleanup Date: 06/21/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81		30-150	Α
Decachlorobiphenyl	66		30-150	Α

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3 Report Date:

;

L1822896 06/29/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 06/21/18 13:05

Analyst: WR

Extraction Method: EPA 608

06/20/18 21:21

Extraction Date: Cleanup Method:

Lab Number:

EPA 3665A

Cleanup Date:
Cleanup Method:

06/21/18

Cleanup Method Cleanup Date: EPA 3660B 06/21/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestboroug	h Lab for s	ample(s):	01 Batch:	WG1128093	-1
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		e	
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77	30-150	Δ
Decachlorobiphenyl	79	30-150	Δ

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date:

	LCS		LCSD		%Recovery			RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column	
Polychlorinated Biphenyls by GC - Westk	borough Lab Associa	ated sample(s)	: 01 Batch:	WG1128093	-2					
Aroclor 1016	93		-		30-150	-		30	Α	
Aroclor 1260	102		-		30-150	-		30	Α	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	84 83				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recover	v Qual	Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by G	C - Westbor	ough Lab	Associated sam	nple(s): 01 (QC Batch II	D: WG1128		, , , , , , ,	: L1800006-1		lient ID:	MS Sam	
Aroclor 1016	ND	3.12	2.83	91		-	-		40-126	-		30	Α
Aroclor 1260	ND	3.12	3.11	100		-	-		40-127	-		30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81		30-150	Α
Decachlorobiphenyl	82		30-150	Α

L1822896

Lab Duplicate Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

ty Control Lab Number:

arameter	Native Sample	Duplicate Sampl	e Units	RPD		RPD _imits	
olychlorinated Biphenyls by GC - Westborough Lab ample	Associated sample(s): 0	1 QC Batch ID:	WG1128093-4	QC Sample:	L1800006-127	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

		Acceptance		
Surrogate	%Recovery Qualifie	er %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79	81	30-150	Α
Decachlorobiphenyl	84	86	30-150	Α

METALS

06/18/18 14:05

06/18/18

Project Name: Lab Number: CA/T PARCEL 9 DEVELOPMENT L1822896 **Report Date:** 06/29/18

Project Number: 131268-003 SID 3

SAMPLE RESULTS

Lab ID: L1822896-01

Date Collected: Client ID: HA-18-B207 (OW) Date Received: Sample Location:

BLACKSTONE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00809		mg/l	0.00100		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00087		mg/l	0.00020		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Chromium, Total	0.03817		mg/l	0.00100		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Copper, Total	0.02901		mg/l	0.00100		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Iron, Total	10.5		mg/l	0.050		1	06/20/18 10:0	0 06/20/18 21:32	EPA 3005A	19,200.7	AB
Lead, Total	0.4165		mg/l	0.00100		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	06/19/18 11:3	6 06/20/18 13:20	EPA 245.1	3,245.1	MG
Nickel, Total	0.02217		mg/l	0.00200		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
Zinc, Total	0.2933		mg/l	0.01000		1	06/20/18 10:0	0 06/20/18 17:21	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	0.038		mg/l	0.010		1		06/20/18 17:21	NA	107,-	
Dissolved Metals - I	Mansfield	Lab									
Lead, Dissolved	0.0043		mg/l	0.0010		1	06/29/18 06:3	0 06/29/18 10:32	EPA 3005A	3,200.8	AM

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date: 06/29/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG1	127472-	1				
Mercury, Total	ND	mg/l	0.0002		1	06/19/18 11:36	06/20/18 09:38	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01 Bato	h: WG11	27527-	·1				
Antimony, Total	ND	mg/l	0.00400		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	06/20/18 10:00	06/20/18 15:11	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	: WG1	127529-	1				
Iron, Total	ND	mg/l	0.050		1	06/20/18 10:00	06/20/18 16:28	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

L1822896

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

Report Date: 06/29/18

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals -	Mansfield Lab	for sample	e(s): 01	Batch: V	VG1130	794-1				
Lead, Dissolved	ND		mg/l	0.0010		1	06/29/18 06:30	06/29/18 09:17	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG112747	2-2					
Mercury, Total	103		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG112752	7-2					
Antimony, Total	105		-		85-115	-		
Arsenic, Total	106		-		85-115	-		
Cadmium, Total	111		-		85-115	-		
Chromium, Total	97		-		85-115	-		
Copper, Total	97		-		85-115	-		
Lead, Total	111		-		85-115	-		
Nickel, Total	99		-		85-115	-		
Selenium, Total	112		-		85-115	-		
Silver, Total	102		-		85-115	-		
Zinc, Total	108		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG112752	9-2					
Iron, Total	113		-		85-115	-		
issolved Metals - Mansfield Lab Associated sa	ample(s): 01 Ba	atch: WG11	30794-2					
Lead, Dissolved	110		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number: L1822896

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery imits	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG1127472	-3	QC Sample:	L1822431-01	Client ID				
Mercury, Total	ND	0.005	0.0049	98		-	-	-	70-130	-		20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG1127472	:-5	QC Sample:	L1822440-01	Client ID): MS Sa	ample		
Mercury, Total	ND	0.005	0.0050	100		-	-	7	70-130	-		20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG1127527	-3	QC Sample:	L1821665-01	Client ID): MS Sa	ample		
Antimony, Total	ND	0.5	0.6048	121		-	-	-	70-130	-		20
Arsenic, Total	ND	0.12	0.1279	106		-	-	-	70-130	-		20
Cadmium, Total	ND	0.051	0.05417	106		-	-	-	70-130	-		20
Chromium, Total	ND	0.2	0.1939	97		-	-	-	70-130	-		20
Copper, Total	0.0079	0.25	0.2537	98		-	-	-	70-130	-		20
Lead, Total	ND	0.51	0.5657	111		-	-	-	70-130	-		20
Nickel, Total	0.0072	0.5	0.5087	100		-	-	-	70-130	-		20
Selenium, Total	ND	0.12	0.1317	110		-	-	-	70-130	-		20
Silver, Total	ND	0.05	0.05073	101		-	-	-	70-130	-		20
Zinc, Total	0.07005	0.5	0.6072	107		-	-	-	70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number: L1822896

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Γotal Metals - Mansfield L	ab Associated san	nple(s): 01	QC Batch	D: WG1127527-5	QC Sample	e: L1822322-01	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.5609	112	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1281	107	-	-	70-130	-	20
Cadmium, Total	0.00034	0.051	0.05378	105	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1843	92	-	-	70-130	-	20
Copper, Total	0.00261	0.25	0.2378	94	-	-	70-130	-	20
Lead, Total	0.00118	0.51	0.5363	105	-	-	70-130	-	20
Nickel, Total	0.00632	0.5	0.4679	92	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1304	109	-	-	70-130	-	20
Silver, Total	ND	0.05	0.04912	98	-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5104	102	-	-	70-130	-	20
otal Metals - Mansfield L	ab Associated san	nple(s): 01	QC Batch	D: WG1127529-3	QC Sample	e: L1821665-01	Client ID: MS S	ample	
Iron, Total	0.400	1	1.45	105	-	-	75-125	-	20
otal Metals - Mansfield L	ab Associated san	nple(s): 01	QC Batch	D: WG1127529-7	QC Sample	e: L1822322-01	Client ID: MS S	ample	
Iron, Total	0.440	1	1.45	101	-	-	75-125	-	20
Dissolved Metals - Mansfi	eld Lab Associated	d sample(s)	: 01 QC Ba	atch ID: WG11307	94-3 QC Sa	ample: L1822896	6-01 Client ID: H	HA-18-B20	7 (OW)
Lead, Dissolved	0.0043	0.51	0.5364	104	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Parameter	Native Sample Dup	olicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1127472-4	QC Sample:	L1822431-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1127472-6	QC Sample:	L1822440-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1127527-4	QC Sample:	L1821665-01	Client ID:	DUP Sample	
Lead, Total	ND	0.00104	mg/l	NC		20
Zinc, Total	0.07005	0.06892	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1127527-6	QC Sample:	L1822322-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.00034	0.00032	mg/l	6		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00261	0.00273	mg/l	4		20
Lead, Total	0.00118	0.00128	mg/l	8		20
Nickel, Total	0.00632	0.00598	mg/l	6		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date: 06/29/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1127	529-8 QC Sample: I	L1822322-01	Client ID: DU	IP Sample
Iron, Total	0.440	0.458	mg/l	4	20
Dissolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID: WG	1130794-4 QC Samp	ole: L1822896	6-01 Client ID	: HA-18-B207 (OW)
Lead, Dissolved	0.0043	0.0044	mg/l	3	20

INORGANICS & MISCELLANEOUS

Serial_No:06291813:33

Project Name: CA/T PARCEL 9 DEVELOPMENT Lab Number: L1822896

Project Number: 131268-003 SID 3 **Report Date:** 06/29/18

SAMPLE RESULTS

Lab ID: L1822896-01 Date Collected: 06/18/18 14:05

Client ID: HA-18-B207 (OW) Date Received: 06/18/18

Sample Location: BLACKSTONE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total Suspended	230		mg/l	10	NA	2	-	06/20/18 22:00	121,2540D	CW
Cyanide, Total	ND		mg/l	0.005		1	06/20/18 07:15	06/20/18 11:54	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	06/18/18 21:30	121,4500CL-D	AS
Nitrogen, Ammonia	4.36		mg/l	0.075		1	06/20/18 13:30	06/21/18 22:29	121,4500NH3-BH	l AT
TPH, SGT-HEM	ND		mg/l	4.00		1	06/21/18 17:00	06/21/18 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	06/20/18 08:00	06/21/18 05:35	4,420.1	GD
Chromium, Hexavalent	ND		mg/l	0.010		1	06/19/18 01:00	06/19/18 01:50	1,7196A	MA
Anions by Ion Chromato	graphy - West	borough	Lab							
Chloride	4160		mg/l	50.0		100	-	06/20/18 20:33	44,300.0	AU

Serial_No:06291813:33

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date: 06/29/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sa	mple(s): 01	Batch:	WG11	127230-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	06/18/18 21:30	121,4500CL-D	AS
General Chemistry -	Westborough Lab for sa	mple(s): 01	Batch:	WG11	127261-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	06/19/18 01:00	06/19/18 01:46	1,7196A	MA
General Chemistry -	Westborough Lab for sa	mple(s): 01	Batch:	WG11	127724-1				
Cyanide, Total	ND	mg/l	0.005		1	06/20/18 07:15	06/20/18 11:26	121,4500CN-CE	LH
General Chemistry -	Westborough Lab for sa	mple(s): 01	Batch:	WG11	127744-1				
Phenolics, Total	ND	mg/l	0.030		1	06/20/18 08:00	06/21/18 05:29	4,420.1	GD
General Chemistry -	Westborough Lab for sa	mple(s): 01	Batch:	WG11	127889-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	06/20/18 13:30	06/21/18 22:01	121,4500NH3-BH	TA H
General Chemistry -	Westborough Lab for sa	mple(s): 01	Batch:	WG11	128045-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	06/20/18 22:00	121,2540D	CW
Anions by Ion Chrom	atography - Westborougl	Lab for sai	mple(s):	01 B	atch: WG1	128098-1			
Chloride	ND	mg/l	0.500		1	-	06/20/18 17:33	44,300.0	AU
General Chemistry -	Westborough Lab for sa	mple(s): 01	Batch:	WG11	128490-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	06/21/18 17:00	06/21/18 21:30	74,1664A	ML

Lab Control Sample Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date:

06/29/18

Parameter	LCS %Recovery Qu	LCSD al %Recovery <u>Qual</u>	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1127230-2				
Chlorine, Total Residual	93	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1127261-2				
Chromium, Hexavalent	95	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1127724-2				
Cyanide, Total	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1127744-2				
Phenolics, Total	95	-	70-130	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1127889-2				
Nitrogen, Ammonia	99	-	80-120	-		20
Anions by Ion Chromatography - Westbo	prough Lab Associated sa	ample(s): 01 Batch: WG112809	98-2			
Chloride	104	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1128490-2				
ТРН	88	-	64-132	-		34

Matrix Spike Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number:

L1822896

Report Date: 06/29/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits RP	RPD D Qual Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1127230-4	QC Sample: L1822896-	01 Client ID:	HA-18-B207 (OW)
Chlorine, Total Residual	ND	0.248	ND	0	Q -	-	80-120 -	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1127261-4	QC Sample: L1822896-	01 Client ID:	HA-18-B207 (OW)
Chromium, Hexavalent	ND	0.1	0.097	97	-	-	85-115 -	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1127724-4	QC Sample: L1822862-	01 Client ID:	MS Sample
Cyanide, Total	0.011	0.2	0.202	95	-	-	90-110 -	30
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1127744-4	QC Sample: L1822896-	01 Client ID:	HA-18-B207 (OW)
Phenolics, Total	ND	0.4	0.089	22	Q -	-	70-130 -	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1127889-4	QC Sample: L1821666-	01 Client ID:	MS Sample
Nitrogen, Ammonia	ND	4	3.05	76	Q -	-	80-120 -	20
Anions by Ion Chromatography Sample	r - Westborouر	gh Lab Asso	ciated sar	nple(s): 01 QC	Batch ID: WG1	128098-3 QC Sample	e: L1822288-05	Client ID: MS
Chloride	0.658	4	4.87	105	-	-	90-110 -	18
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1128490-4	QC Sample: L1822729-	01 Client ID:	MS Sample
TPH	ND	25	21.6	86	-	-	64-132 -	34

Lab Duplicate Analysis Batch Quality Control

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number: L1822896

Report Date: 06/29/18

Parameter	Nati	ve Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1127230-3	QC Sample: L182	2862-01	Client ID:	DUP Sample
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1127261-3	QC Sample: L182	2896-01	Client ID:	HA-18-B207 (OW)
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1127724-3	QC Sample: L182	2862-02	Client ID:	DUP Sample
Cyanide, Total		0.010	0.008	mg/l	21		30
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1127744-3	QC Sample: L182	2896-01	Client ID:	HA-18-B207 (OW)
Phenolics, Total		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1127889-3	QC Sample: L182	1666-01	Client ID:	DUP Sample
Nitrogen, Ammonia		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1128045-2	QC Sample: L182	2896-01	Client ID:	HA-18-B207 (OW)
Solids, Total Suspended		230	210	mg/l	9		29
Anions by Ion Chromatography - Westb Sample	orough Lab Associated	I sample(s): 01 C	QC Batch ID: WG	1128098-4 QC Sa	ımple: L'	1822288-0	5 Client ID: DUP
Chloride		0.658	0.655	mg/l	0		18
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1128490-3	QC Sample: L182	2729-01	Client ID:	DUP Sample
ТРН		ND	ND	mg/l	NC		34

Serial_No:06291813:33

Project Name: CA/T PARCEL 9 DEVELOPMENT

Project Number: 131268-003 SID 3

Lab Number: L1822896 **Report Date:** 06/29/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1822896-01A	Vial HCl preserved	Α	NA		2.5	Υ	Absent		8260-SIM(14),8260(14)
L1822896-01B	Vial HCl preserved	Α	NA		2.5	Υ	Absent		8260-SIM(14),8260(14)
L1822896-01C	Vial HCl preserved	Α	NA		2.5	Υ	Absent		8260-SIM(14),8260(14)
L1822896-01D	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		504(14)
L1822896-01E	Vial Na2S2O3 preserved	Α	NA		2.5	Υ	Absent		504(14)
L1822896-01F	Vial unpreserved	Α	NA		2.5	Υ	Absent		SUB-ETHANOL(14)
L1822896-01G	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		NH3-4500(28)
L1822896-01H	Plastic 950ml unpreserved	Α	7	7	2.5	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1822896-01I	Plastic 950ml unpreserved	Α	7	7	2.5	Υ	Absent		TSS-2540(7)
L1822896-01J	Amber 950ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		TPHENOL-420(28)
L1822896-01K	Amber 1000ml HCl preserved	Α	NA		2.5	Υ	Absent		TPH-1664(28)
L1822896-01L	Amber 1000ml HCl preserved	Α	NA		2.5	Υ	Absent		TPH-1664(28)
L1822896-01M	Amber 1000ml unpreserved	Α	7	7	2.5	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1822896-01N	Amber 1000ml unpreserved	Α	7	7	2.5	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1822896-01O	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		PCB-608(7)
L1822896-01P	Amber 1000ml Na2S2O3	Α	7	7	2.5	Υ	Absent		PCB-608(7)
L1822896-01Q	Plastic 250ml NaOH preserved	Α	>12	>12	2.5	Υ	Absent		HOLD-WETCHEM()
L1822896-01R	Plastic 250ml NaOH preserved	Α	>12	>12	2.5	Υ	Absent		TCN-4500(14)
L1822896-01S	Plastic 250ml HNO3 preserved	Α	<2	<2	2.5	Y	Absent		CD-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),CR-2008T(180),PB-2008T(180),SB-2008T(180)
L1822896-01X	Plastic 120ml unpreserved split	Α	7	7	2.5	Υ	Absent		-
L1822896-01Y	Plastic 120ml HNO3 preserved Filtrates	Α	NA		2.5	Υ	Absent		PB-2008S(180)

Serial_No:06291813:33

Lab Number: L1822896

Report Date: 06/29/18

Container Information Initial Final Temp Frozen

CA/T PARCEL 9 DEVELOPMENT

Container ID Container Type Cooler pH pH deg C Pres Seal Date/Time Analysis(*)

Project Name:

Project Number: 131268-003 SID 3

Project Name:CA/T PARCEL 9 DEVELOPMENTLab Number:L1822896Project Number:131268-003 SID 3Report Date:06/29/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:CA/T PARCEL 9 DEVELOPMENTLab Number:L1822896Project Number:131268-003 SID 3Report Date:06/29/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:CA/T PARCEL 9 DEVELOPMENTLab Number:L1822896Project Number:131268-003 SID 3Report Date:06/29/18

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:06291813:33

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 11

Page 1 of 1

Published Date: 1/8/2018 4:15:49 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics, **EPA 608**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дерна	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 07430 Albeny, NY 1 Tonawanda, NY 14150				ge (-		te Re					6	1	'× .	118	,	7	100			ALPHA Job#	
Westborough, MA 0158: 8 Walkup Dr.	Manefield, MA 02048 320 Forbes Blvd	Project Information		1 - 2 - 1		-	De	liverabl	es -		-	_	_	6		0.7	1 0	_	_	_	_	_	Billing Information	
TEL 508-898-9220 FAX 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	CAT Parcel	9 Developme	nt		4000	Ema	1000			Fax		_			_	_			_	_	Same as Client Info	1500
FAX 000-030-9193	PAK 509-822-3288	Project Location:	Blackstone S				16	EQU	15 (1)	File)	-	EQui	S/4 FI	le)									PO#	
H&A Information	100 100	Project #	131268-003 8	SID 3			_	Othe	OCCUPATION.		-	, C	. .										100	
H&A Client: Haymark	set Parcel 9 Investor LLC	(Use Project name	as Projec(Q)				-		4733	ureme	nts (Prog	ranvCr	decia)				-	7.1					Disposal Site Information	-
H&A Address 465 Med	ford St	Project Manager:	Teresa Coop	er			-	Comment of the Commen	AMUNICAL		The same of	10000	HI-DRIN'S		_	-	_					_		
Boston,	MA 0212-1400	ALPHAQuote #:					1																Please identify below location of applica facilities.	able disposa
H&A Phone: 617-886-	7400	Turn-Around Tirne				Sec. 1.																	Disposal Facility:	
H&A Fax:		Standard	2	Due Date			٦.																D NU DNY	
H&A Email: fccope	c@haleyaldrich.com	(only if pre approved)		# of Days			Note	e: Select	State	from m	enu & ide	otáv crá	eria										I	
	een previously analyzed b						-	ALYSIS			0,10,10,10,1	maj sam		_	_	_	_	_	_	_	_	_	Other:	The state of the s
	requirements/comment						-	1	T	_	T	12	1	1	_		1		0 1		_	т—	Sample Filtration	- 1
3. HOLD PACN & ACN Please sample per EP Please specify Metals	A Approved 2017 NPDE	Metals ON HOLD (Fi S RGP Permit meth					58 - 2540	TRC-4500	4500	2	& 8260 SIM for Dioxane	HEXCR-3500 & Trivalent Chromium	TPHENOL-420	8. 8270TCL (including Diethythexylohthalate)	OTCL-SIM	CL-300	Rb. Se. Zn. Fe. Hg.	12. Ammonia	13.Total Hardness	A2-ALCOHOL (Ethanol)	TPH-1684	PCB-606	Done Lab to do Preservation Lab to do	9 0
		4					15	E T	3. TCN-	4	8 G	8.5	표	TOY With	8	10	Ne R	Z. A	ota	ğ	15. T	9	(Please Specify below)	4
ALPHA Lab ID	-		Colle	ction	Sample	Sampler's	1		0.10		8260	EXC	7.	S to	oi		. Total Metals -	-	13,	42-A	=	-		
(Lab Use Only)	Sample	ID	Date	Time	Matrix	Initials	ı		3	3	NO.	9 H					± 0			14.			Sample Specific Comments	- 1
22896-01	#418-13207	(ow)			AQ		х	x	x	×	×	x	x	×	x	x	x	x	x	×	×	×	dample operate comments	
		,					-	1	-	10	1	-	12	1	^	^_	^	^	^_	^	^	^		18
							\vdash	1	+	1	+-	1	_	-	-		\vdash		-		-			-
							-	+	1	+	+		-	-		_	Н		-	_	-			+
								-	_	1	_	-	_	+			-	-		-	-	_		-
							-	+	-	-	_	_		+				-			-	_		-
								1	-	1	+		-	+		_		-	\dashv	-	-	-		+
									-	-	+	_	-	-	-			-	-	_	-			-
								_	_	+	+		\vdash	-			-	-	-	-	_	-		-
								-		-	-	-	\vdash	-		-		-	\dashv	-				-
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Name P = Plastic Westboro: Certification No: MA935 Container HCI A = Amber Glass Manafield: Certification No: MA015 Container HNO3 V = Vial V = Vial Preserv. HySO4 G = Glass Preserv.		ontainer Type Preservative																	Please print clearly, legibly and comple Samples can not be logged in and turn time clock will not start until any ambig resolved. Alpha Analytical's services un Chain of Custody shall be performed in a	naround iguities are ider this accordance			
	C = Cube C = Other	, Relinguished		Date	Time		-	ved By:						0 0	E	ate/T	ime						with terms and conditions within Blanket 5 Agreement# 2015-18-Alpha Analytical by	r and
H = Na ₂ S ₂ O ₃	E = Encore D = BOD Bottle	M. other	J	6/18/18 6/18/18	1800	Matu	e.	a,	Ϋ́ň	الحوه	BAL	F/18	18	15	12	67	30			_			between Haley & Aldrich, Inc., its subside affiliates and Alphe Analytical.	laries and
Document ID: 20455 Ray 1	(1/28/2016)					, 9				-	-		,											

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-154234-1 Client Project/Site: L1822896

For:

Alpha Analytical Inc 145 Flanders Road Westborough, Massachusetts 01581-1019

Attn: Melissa Gulli

Authorized for release by: 6/23/2018 3:47:33 PM

Kuth Hayer

Ken Hayes, Project Manager II

(615)301-5035 ken.hayes@testamericainc.com

..... Links

Review your project results through

Total Access

Have a Question?

Visit us at:
www.testamericainc.com
Page 56 of 68

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

6

1 0

1 1

12

TestAmerica Job ID: 490-154234-1

Client: Alpha Analytical Inc Project/Site: L1822896

Table of Contents

Cover Page	
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	
QC Association	8
Chronicle	9
Method Summary	10
Certification Summary	11
Chain of Custody	

3

4

6

8

9

1 4

4.0

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1822896

TestAmerica Job ID: 490-154234-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-154234-1	HA-18-B207 (OW)	Water	06/18/18 14:05	06/20/18 09:15

Case Narrative

Client: Alpha Analytical Inc Project/Site: L1822896 TestAmerica Job ID: 490-154234-1

Job ID: 490-154234-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-154234-1

Comments

No additional comments.

Receipt

The sample was received on 6/20/2018 9:15 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.9° C.

GC Semi VOA

Method 1671A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 490-523479.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

3

J

4

5

6

1

a

10

11

12

Definitions/Glossary

Client: Alpha Analytical Inc Project/Site: L1822896

TestAmerica Job ID: 490-154234-1

Glossary

PQL

QC

RER

RL RPD

TEF

TEQ

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)

Client Sample Results

Client: Alpha Analytical Inc

TestAmerica Job ID: 490-154234-1

Project/Site: L1822896

Lab Sample ID: 490-154234-1 Client Sample ID: HA-18-B207 (OW) Date Collected: 06/18/18 14:05

Matrix: Water

Date Received: 06/20/18 09:15

Method: 1671A - Ethanol (GC/l Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		2000	500	ug/L			06/21/18 08:28	1
Surrogate Isopropyl acetate (Surr)	%Recovery	Qualifier	<i>Limits</i> 70 - 130				Prepared	Analyzed 06/21/18 08:28	Dil Fac

QC Sample Results

Client: Alpha Analytical Inc Project/Site: L1822896

TestAmerica Job ID: 490-154234-1

Client Sample ID: Method Blank

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-523479/4 **Matrix: Water**

Analysis Batch: 523479

Analyte

Ethanol

Surrogate

Ethanol

Surrogate

Analyte

Ethanol

Surrogate

Isopropyl acetate (Surr)

MB MB

MB MB

95

%Recovery

Result Qualifier ND

Qualifier

RL 2000

Limits

Spike

Added

50200

Limits

70 - 130

70 - 130

MDL Unit 500 ug/L

D

Prepared

Prepared

Analyzed 06/21/18 08:05

Prep Type: Total/NA

Prep Type: Total/NA

Analyzed Dil Fac 06/21/18 08:05

Dil Fac

Lab Sample ID: LCS 490-523479/5

Matrix: Water

Isopropyl acetate (Surr)

Analysis Batch: 523479

Analyte

LCS LCS

%Recovery Qualifier

92

LCS LCS 52640

Result Qualifier

Unit ug/L

%Rec. D %Rec Limits 105 70 - 130

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Isopropyl acetate (Surr) Lab Sample ID: LCSD 490-523479/6

Matrix: Water

Analysis Batch: 523479

Spike Added 50200

LCSD LCSD Result Qualifier 53090

Unit ug/L D %Rec 106

%Rec. Limits RPD 70 - 130

Prep Type: Total/NA

RPD Limit

LCSD LCSD

%Recovery Qualifier 91

Limits 70 - 130

TestAmerica Nashville

QC Association Summary

Client: Alpha Analytical Inc Project/Site: L1822896 TestAmerica Job ID: 490-154234-1

GC VOA

Analysis Batch: 523479

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-154234-1	HA-18-B207 (OW)	Total/NA	Water	1671A	
MB 490-523479/4	Method Blank	Total/NA	Water	1671A	
LCS 490-523479/5	Lab Control Sample	Total/NA	Water	1671A	
LCSD 490-523479/6	Lab Control Sample Dup	Total/NA	Water	1671A	

2

4

6

Ω

10

11

10

Lab Chronicle

Client: Alpha Analytical Inc Project/Site: L1822896

TestAmerica Job ID: 490-154234-1

Client Sample ID: HA-18-B207 (OW)

Date Collected: 06/18/18 14:05 Date Received: 06/20/18 09:15

Lab Sample ID: 490-154234-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A		1			523479	06/21/18 08:28	NMB	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Alpha Analytical Inc Project/Site: L1822896 TestAmerica Job ID: 490-154234-1

2

Method
1671AMethod Description
Ethanol (GC/FID)Protocol
EPALaboratory
TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

3

4

7

Ö

10

11 1

15

Accreditation/Certification Summary

Client: Alpha Analytical Inc Project/Site: L1822896 TestAmerica Job ID: 490-154234-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
California	State Prog	gram	9	2938	10-31-18
The following analytes	s are included in this repor	t, but accreditation	/certification is not off	ered by the governing aut	thority:
Analysis Method	Prep Method	Matrix	Analyt	e	
1671A		Water	Ethan	ol	
Maine	State Prog	gram	1	TN00032	11-03-19
The following analyte:	s are included in this repor	t, but accreditation	/certification is not off	ered by the governing aut	thority:
Analysis Method	Prep Method	Matrix	Analyt	e	
1671A		Water	Ethan	al	

,

3

6

8

9

11

COOLER RECEIPT FORM

Cooler Received/Opened On06-20-2018_@	
Time Samples Removed From Cooler 16:54 Time Samples Placed In Storage	(2 Hour Window)
1. Tracking #/ZE306540/4054 ⁹ (last 4 digits, FedEx) Courier: UP5 WT	74
IR Gun ID31470368 pH Strip Lot Chlorine Strip Lot	
2. Temperature of rep. sample or temp blank when opened:	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	YESNA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNO.
5. Were custody papers inside cooler?	YES NO NA
certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO.
Were these signed and dated correctly?	YESNO.
Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
D. Cooling process: (Ice) Ice-pack Ice (direct contact) Dry Ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YE3NONA
1. Were all container labels complete (#, date, signed, pres., etc)?	(YE)NONA
2. Did all container labels and tags agree with custody papers?	ESNONA
3a. Were VOA vials received?	(YES)NONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
4. Was there a Trip Blank in this cooler? YES. (N) NA If multiple coolers, sequence	e #
certify that I unloaded the cooler and answered questions 7-14 (intial)	
5a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO(NA)
b. Did the bottle labels Indicate that the correct preservatives were used	YESNONA
6. Was residual chlorine present?	YESNO(NA)
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	
7. Were custody papers properly filled out (ink, signed, etc)?	Y.E/SNONA
8. Did you sign the custody papers in the appropriate place?	€€\$NONA
9. Were correct containers used for the analysis requested?	(ESNONA
0. Was sufficient amount of sample sent in each container?	KESNONA

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form

I certify that I entered this project into LIMS and answered questions 17-20 (intial)

I certify that I attached a label with the unique LIMS number to each container (intial)

21. Were there Non-Conformance Issues at login? YES...NO Was a NCM generated? YES...(NO...#

Revised 8/23/17

12

ANALYTICAL REPORT

Lab Number: L1831427

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Denis Bell

Phone: (617) 886-7300

Project Name: PARCEL 9 HAYMARKET

Project Number: 131268-002

Report Date: 08/15/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PARCEL 9 HAYMARKET

Project Number: 131268-002

Lab Number:

L1831427

Report Date:

08/15/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1831427-01	HA18-BOSTON HARBOR_81018	WATER	BOSTON, MA	08/10/18 12:30	08/10/18

Serial No:08151821:02

L1831427

Project Name: PARCEL 9 HAYMARKET Lab Number:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please c	ontact Cli	ent Services	at 800-624-9220	with any que	stions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

-

Date: 08/15/18

INORGANICS & MISCELLANEOUS

Serial_No:08151821:02

Project Name: PARCEL 9 HAYMARKET Lab Number: L1831427

Project Number: 131268-002 **Report Date:** 08/15/18

SAMPLE RESULTS

Lab ID: L1831427-01 Date Collected: 08/10/18 12:30

Client ID: HA18-BOSTON HARBOR_81018 Date Received: 08/10/18
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
SALINITY	28		SU	2.0		1	-	08/14/18 05:38	121,2520B	UN
pH (H)	7.6		SU	-	NA	1	-	08/11/18 07:49	121,4500H+-B	MA
Nitrogen, Ammonia	ND		mg/l	0.075		1	08/12/18 13:30	08/13/18 23:00	121,4500NH3-BH	I AT

Serial_No:08151821:02

L1831427

Lab Number:

Project Name: PARCEL 9 HAYMARKET

Project Number: 131268-002 **Report Date:** 08/15/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab for sa	ample(s): 01	Batch	: WG11	145578-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	08/12/18 13:30	08/13/18 22:31	121,4500NH3-l	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 9 HAYMARKET

Project Number: 131268-002

Lab Number:

L1831427

08/15/18

Report Date:

Parameter	LCS %Recovery Qu	LCSD ual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1145418	-1				
рН	99	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1145578	-2				
Nitrogen, Ammonia	98	-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1146125	-1				
SALINITY	99	-			-		

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL 9 HAYMARKET

131268-002

Project Number:

I AROLL STIATIMARKIL

Lab Number:

L1831427

Report Date:

08/15/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery al Limits	RPD Qu	RPD _{ual} Limits
General Chemistry - Westborou	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1145578-4	QC Sample: L18314	32-02 Client	ID: MS Sa	ample
Nitrogen, Ammonia	ND	4	4.03	101	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL 9 HAYMARKET

Project Number: 131268-002

Lab Number:

L1831427

Report Date: 08/15/18

Parameter	Native Sample	Duplicate San	nple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01 QC Ba	atch ID: WG1145418-2	QC Sample: L1	1831275-01	Client ID:	DUP Sample
рН	6.8	6.8	SU	0		5
General Chemistry - Westborough Lab As	ssociated sample(s): 01 QC Ba	atch ID: WG1145578-3	QC Sample: L1	1831432-02	Client ID:	DUP Sample
Nitrogen, Ammonia	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab As HARBOR_81018	ssociated sample(s): 01 QC Ba	atch ID: WG1146125-2	QC Sample: L1	1831427-01	Client ID:	HA18-BOSTON
SALINITY	28	28	SU	0		

Serial_No:08151821:02

Project Name: PARCEL 9 HAYMARKET L1831427

Project Number: 131268-002 **Report Date:** 08/15/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information Container ID Container Type L1831427-01A Plastic 60ml unpreserved		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1831427-01A	Plastic 60ml unpreserved	Α	7	7	5.1	Υ	Absent		PH-4500(.01)	
L1831427-01B	Amber 120ml unpreserved	Α	7	7	5.1	Υ	Absent		SALINITY(28)	
L1831427-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	5.1	Υ	Absent		NH3-4500(28)	

Project Name: Lab Number: PARCEL 9 HAYMARKET L1831427 **Project Number:** 131268-002 **Report Date:** 08/15/18

GLOSSARY

Acronyms

EPA

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

- Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

TEO

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:PARCEL 9 HAYMARKETLab Number:L1831427Project Number:131268-002Report Date:08/15/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:08151821:02

Project Name:PARCEL 9 HAYMARKETLab Number:L1831427Project Number:131268-002Report Date:08/15/18

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08151821:02

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581	CHAIN OF CUSTODY	Albany, NY 12206 Tonawanda, NY 14150 Holm	nouth, NH 03801 f	Mahwah, NJ 0743		ge of (ir	Rec'd	8/	10/1	18	ALPHA Job# L183140	27
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Information					-	iverab					Billing Information	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name:	Parcel 9 Ha				1 1	Ema		20 Z	_ Fax		✓ Same as Client Info)
100 A Table 5 A S		Project Location:	Boston, MA				-	-	dS (1 File) L	EQ	JIS (4 File)	PO#	
H&A Information	0.00	Project #	131268-002	?			L	3						
		(Use Project name as P	roject#)				Reg	julator	y Require	ments (Program	m/Criteria)	Disposal Site Information	1
H&A Address: 465 Medf		Project Manager:	D Bell					EPA	NPDES R	GP			Please identify below location	n of
	0212-1400	ALPHAQuote #:											applicable disposal facilities.	
H&A Phone: 617-886-7		Turn-Around Time											Disposal Facility:	
H&A Fax: Ihoward@	haleyaldrich.com	Standar	d 🗸	Due Date	C.		٦.						□ NJ □ NY	
H&A Email: tcooper@	haleyaldrich.com	Rush (only if pre approve	d) [# of Days			Note	Selec	State from	menu &	identify	criteria.	Other:	
These samples have been	previously analyzed by	Alpha					-	LYSIS		2		1100 (100-17	Sample Filtration	
Other project specific red							T	Т	T		T		Campie i maddon	1
Use 2017 NPDES RGP AG TEMP 1 19,03°C pH; 7,47	C						1.pH	2. Salinity	Ammonia				Done Lab to do Perservation Lab to do	B
Please specify Metals or	TAL.						1	~	က်		1	11	(Please Specify below)	t
ALPHA Lab ID	Sa	mple ID	Coll	ection	Sample	Sampler's	1	1	1 1		1		i .	e
(Lab Use Only)			Date	Time	Matrix	Initials							Sample Specific Comments	
31427 - 01	HA18-Boston Harbor_	81018	8/10/18	1230	AQ	AF	Х	Х	Х		1			3
			-											
								-		-	-		Temp -	
			-			_	-	-		+	-			
							-	-	-	+	-			
			-					-	-	+	-	_		_
										+				-
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N				tainer Type							Please print clearly, legibly a completely. Samples can not logged in and turnaround tin will not start until any ambigi are resolved. Alpha Analytica	t be ne clock uities
= NaOH = MeOH	B = Bacteria Cup C = Cube	Relinquished I	By:	Date/,	Time		Receiv	ed By		-	Date	Timo	services under this Chain of Cu	
	O = Other	auris	4	8/10/18/		Mich		reu by	-	57		16130	shall be performed in accordan	nce with
11070701	E = Encore	MICHAEL			6130	1100	1	11	_ A90		0/18	1680	terms and conditions within Bla Service Agreement# 2015-18-/	Aloba
E - EI NGNAON	D = BOD Bottle	MI	/	8/10/18		Chen	3	el			118		Analytical by and between Hale Aldrich, Inc., its subsidiaries an	by &
ocument ID: 20455 Rev 1 (1/28	3/2016)									1	(= TO-127)		affiliates and Alpha Analytical.	eu.

APPENDIX F

Typical Dewatering Treatment System Information

Lockwood Remediation Technologies, LLC

700 Series Floc Logs

Polyacrylamide Sediment and Turbidity Control Applicator Logs

700 Series Floc Logs are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Applied Polymer Systems, Inc. or your local distributor for free testing and site-specific application information.

Primary Applications

- · Mine tailings and waste pile ditches
- Stormwater drainage from construction and building sites
- · Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- · Dredging operations as a flocculent

Features and Benefits

- Removes solubilized soils and clay from water
- · Prevents colloidal solutions in water within ditch systems
- · Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- · Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

Specifications / Compliances

- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (D. magna or O. mykiss)
- 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

Packaging

700 Series Floc Logs are packaged in boxes of four (4)

Technical Information

Appearance - semi-solid block
Biodegradable internal coconut skeleton
Percent Moisture - 40% maximum
pH 0.5% Solution - 6-8
Shelf Life – up to 5 years when stored out of UV rays

Office: 774-450-7177 • Fax: 888-835-0617

89 Crawford Street • Leominster, MA 01453

Lockwood Remediation Technologies, LLC

Placement

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

Directions for Use

(Water and Floc Log Mixing is Very Important!)

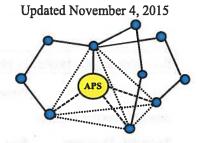
700 Series Floc Logs should be placed within the upper quarter to half of a *stabilized* ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.

Cleanup:

Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.


Precautions / Limitations

- 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will
 result and if water is necessary, use pressure washer.
- Floc Log will remain viable for up to 5 years when stored out of UV rays.
- 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 703d #3 Floc Log®

Supplied:

Applied Polymer Systems, Inc. 519 Industrial Drive

Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

3. COMPOSITION/INFORMAION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble Co-polymer gel

4. FIRST AID MEASURES

Inhalation:

None

Skin contact:

Contact with wet skin could cause dryness and chapping. Wash with water and soap. Use of

gloves recommended.

Eye contact:

Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of

persistent irritation.

Ingestion:

Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:

Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions:

Floc Logs that become wet render surfaces extremely slippery.

Protective equipment for firefighters:

No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

Dry wipe as well as possible. Keep in suitable and closed containers for disposal.

After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling:

Avoid contact with skin and eyes. Wash hands after handling.

Storage:

Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use dry handling areas only.

Personal protection equipment

Respiratory Protection:

None

Hand protection:

Dry cloth, leather or rubber gloves.

Eye Protection:

Safety glasses with side shields. Do not wear contact lenses. No special protective clothing required.

Skin protection: Hygiene measures:

Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form:

Granular semi-solid gel

Color: Odor:

Blue None

pH: Melting point: 7.73 N/A N/A

Flash point: Vapor density:

N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity (EPA-821-R-02-012)

LC 50 (Survival) / Ceriodaphnia dubia / 48h / 673 ppm NOAEC (Survival) / Ceriodaphnia dubia / 48h / 420 ppm LC 50 / Oncorhynchus mykiss / 96h / 2928 ppm

12. ECOLOGICAL INFORMATION

Chronic toxicity (EPA-821-R-02-013)

IC 25 (Survival) / P. promelas / 7 day / 77.8 ppm NOEC (Survival) / P. promelas / 7 day / 52.5 ppm IC 25 (Survival) / C. dubia / 7 day / 78.7 ppm NOEC (Survival) / C. dubia / 7 day / 52.7 ppm

IC 25 (Growth) / P. promelas / 7 day / 50.1 ppm NOEC (Growth) / P. promelas / 7 day / 52.5 ppm IC 25 (Reproduction) / C. dubia / 7 day / 66.8 ppm NOEC (Reproduction) / C. dubia / 7 day / 52.5 ppm

Bioaccumulation: Persistence / degradability: The product is not expected to bioaccumulate. Not readily biodegradable: (~85% after 180 days).

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311/312 Hazard Class:

Not concerned

RCRA Status:

Not RCRA hazardous

16. OTHER INFORMATION

NFPA and HMIS ratings:

NFPA Health:

Flammability:

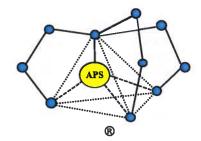
0 Reactivity:

0

HMIS Health

Flammability

0


Reactivity

0

DATE EDITED: Nov 4th 2015

1

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 712 Silt Stop

Supplied:

Applied Polymer Systems Inc. Woodstock, GA 30189

Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Aqueous solutions and powders that become wet render surfaces extremely slippery.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble co-polymer blend

4. FIRST AID MEASURES

Inhalation:

Move to fresh air. Wear dust mask while handling.

Skin contact:

Contact with wet skin could cause chapping and dryness. Wash with water and soap. In case of

persistent skin irritation, consult a physician.

Eye contact:

Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of persistent

irritation.

Ingestion:

Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:

Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions: Protective equipment for firefighters: Aqueous solutions or powders that become wet render surfaces extremely slippery.

No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

<u>Do Not flush with water.</u> Clean up promptly by sweeping or vacuum. Keep in suitable and

closed containers for disposal. After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling:

Avoid contact with skin and eyes. Avoid dust formation. Do not breath dust. Use dust mask during

handling. Wash hands after handling.

Storage:

Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls: Use local exhaust if dusting occurs. Natural ventilation is adequate in absence of dust.

Personal protection equipment

Respiratory Protection:

Dust safety masks are recommended where dusting may occur.

Hand protection:

Dry cloth, leather or rubber gloves.

Eye Protection:

Safety glasses with side shields or face masks. Do not wear contact lenses.

Skin protection:

No special protective clothing required.

Hygiene measures:

Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form: Color: Granular solid

Odor:

White / Brown None

pH:

7.02

Melting point: Flash point: N/A N/A

Vapor density:

N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL/

Oral:

LD 50 / Rattus norvegicus / oral / > 5000 mg / kg

Inhalation:

The product is not expected to be toxic by inhalation. Use dust mask while handling.

Bioaccumulation:

The product is not expected to bioaccumulate.

Persistence / degradability:

Not readily biodegradable: (~40% after 28 days)

Acute toxicity

LC 50 / Ceriodaphnia dubia / 48h / 1,617 ppm LC 50 / Pimephales promelas / 48 h / >6,720 ppm LC 50 / Pimephales promelas / 96 h / >6,720 ppm

12. ECOLOGICAL INFORMATION

Chronic toxicity

IC 25 (Survival) / Ceriodaphnia dubia / 7day / 122.5 ppm NOEC (Survival) / Ceriodaphnia dubia / 7day / 52.5 ppm

IC 25 (Reproduction) / Ceriodaphnia dubia / 7day / 59.3 ppm NOEC (Reproduction) / Ceriodaphnia dubia / 7day / 52.5 ppm

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT AND REGULATORY INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. TRANSPORT AND REGULATORY INFORMATION

TSCA Chemical Substances Inventory:

All components of this product are either listed on the inventory or are

exempt from listing.

SARA Section 311 / 312 Hazard Class:

1

RCRA Status:

Not concerned Not RCRA hazardous

16. OTHER INFORMATION

NFPA and HMIS ratings:

NFPA Health:

Flammability:

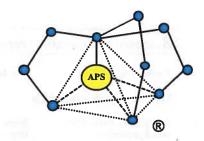
1-

Reactivity:

0

HMIS Health

Flammability


1

Reactivity

0

DATE EDITED: Jan 11th 2016

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 706b Floc Log .

Supplied:

519 Industrial Drive Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Identification of the preparation:

Anionic water-soluble Co-polymer gel mix

3. COMPOSITION/INFORMATION ON INGREDIENTS

Placement of these materials on wet walking surface will create extreme slipping hazard.

4. FIRST AID MEASURES

Inhalation:

None

Skin contact:

Contact with wet skin can cause dryness and chapping. Wash with water and soap.

Eye contact:

Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of

persistent irritation.

Ingestion:

Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:

Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions:

Floc Logs that become wet render surfaces extremely slippery.

Protective equipment for firefighters:

No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

Dry wipe as well as possible, Keep in suitable and closed containers for disposal.

After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Wash hands after handling.

Storage: Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use dry handling areas only.

Personal protection equipment

Respiratory Protection:

None

Hand protection:

Dry cloth, leather or rubber gloves.

Eye Protection:

Safety glasses with side shields. Do not wear contact lenses.

Skin protection:

No special protective clothing required.

Hygiene measures:

Wash hands before breaks and at end of work day.

PHYSICAL AND CHEMICAL PROPERTIES

Granular semi-solid gel

Color: Odor:

Blue None

pH:

7.66

Melting point:

N/A

Flash point:

N/A

Vapor density:

N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity

LC 50 / Daphnia magna / 48h / >420mg/L LC 50 / Oncorhynchus mykiss / 96h / 637 ppm

12. ECOLOGICAL INFORMATION

Chronic toxicity

IC 25 (Survival) / P. promelas / 7 day / >1680 ppm NOEC (Survival) / P. promelas / 7 day / 1680 ppm

IC 25 (Survival) / C. dubia / 7 day / 257.3 ppm

NOEC (Survival) / C. dubia / 7 day / 210 ppm

IC 25 (Growth) / P. promelas / 7 day / >1680 ppm NOEC (Survival) / P. promelas / 7 day / 1680 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 91.6 ppm NOEC (Reproduction) / C. dubia / 7 day / 105 ppm

Bioaccumulation: The product is not expected to bioaccumulate.

Persistence / degradability: Not readily biodegradable: (85% after 180 days).

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from

listing.

SARA Section 311 / 312 Hazard Class:

1

RCRA Status:

Not concerned

Not RCRA hazardous

16. OTHER INFORMATION

NFPA and HMIS ratings:

NFPA Health:

Flammability:

Dogotis

Reactivity: 0

HMIS Health

Flammability

0

Reactivity

0

DATE EDITED: Nov 4th 2015

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 705 Silt Stop

Supplied:

Applied Polymer Systems, Inc.

519 Industrial Drive

Woodstock, GA 30189

Tel. 678-494-5998

Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Aqueous solutions or powders that become wet render surfaces extremely slippery.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble Co-polymer

4. FIRST AID MEASURES

Inhalation:

Move to fresh air. Use dust mask when handling.

Skin contact:

Contact with wet skin could cause chapping and dryness. Wash with water and soap. In case of

persistent skin irritation, consult a physician.

Eye contact:

irritation.

Rinse thoroughly with plenty of water, also under the eyelids; seek medical attention in case of persistent

Ingestion:

Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:

Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions:

Aqueous solutions or powders that become wet render surfaces extremely slippery.

Protective equipment for firefighters:

No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

Do Not flush with water. Clean up promptly by sweeping or vacuum. Keep in suitable and closed

containers for disposal. After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Avoid dust formation. Do not breath dust. Use dust mask during handling. Wash hands after handling.

Storage: Keep in a cool, dry place. (0-30° C)

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use local exhaust if dusting occurs. Natural ventilation is adequate in absence of dust.

Personal protection equipment

Respiratory Protection:

Dust safety masks are recommended where dusting may occur.

Hand protection:

Dry cloth, leather or rubber gloves.

Eye Protection:

Safety glasses with side shields or face masks. Do not wear contact lenses.

Skin protection:

No special protective clothing required.

Hygiene measures:

Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form:

Granular solid

Color: Odor:

White None

pH: Melting point: Flash point: 7-8 N/A

Vapor density:

N/A N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity:

(EPA/600/4-90/027F)

LD 50 / Rattus norvegicus / oral / > 5000 mg/kg LC 50 / Oncorhynchus mykiss / 96h / 530 mg/L LC 50 / Daphnia magna / 48h / >420mg/L

EC 50 / Selenastrum capricornutum / 96h / >500mg/L

12. ECOLOGICAL INFORMATION

Chronic Toxicity: (EPA/600/R-98/182)

IC₂₅ (Survival) / P. promelas / 7 day / 358 ppm NOEC (Survival) / P. promelas / 7 day / 840 ppm IC₂₅ (Survival) / C. dubia / 7 day / 157.5 ppm NOEC (Survival) / C. dubia / 7 day / 105 ppm

IC₂₅ (Growth) / P. promelas / 7 day / 94 ppm NOEC (Growth) / P. promelas / 7 day / 105 ppm

IC₂₅ (Reproduction) / C. dubia / 7 day / 27.7 ppm NOEC (Reproduction) / C. dubia / 7 day / 26.25 ppm

Inhalation:

The product is not expected to be toxic by inhalation.

Dermal:

The results of testing on rabbits showed no toxicity even at high dose levels.

Bioaccumulation:

The product is not expected to bioaccumulate.

Persistence / degradability:

Not readily biodegradable: (~40% after 28 days).

Chronic toxicity:

A 2 yr feeding study on rats did not reveal adverse health effects.

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311 / 312 Hazard Class:

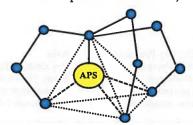
RCRA Status:

Not concerned Not RCRA hazardous

16. TRANSPORT AND REGULATORY INFORMATION

NFPA and HMIS ratings:

NFPA Health: 1 HMIS Health 1 Flammability: Flammability


1

Reactivity: Reactivity 0

DATE EDITED: Oct. 29th 2015

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 703d Floc Log®

Supplied:

Applied Polymer Systems, Inc.

519 Industrial Drive Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble Co-polymer gel

4. FIRST AID MEASURES

Inhalation:

None

Skin contact:

Contact with wet skin could cause dryness and chapping. Wash with water and soap.

Eye contact:

Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of persistent

irritation.

Ingestion:

Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:

Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions:

Floc Logs that become wet render surfaces extremely slippery.

Protective equipment for firefighters:

No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

Dry wipe as well as possible. Keep in suitable and closed containers for disposal.

After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling:

Avoid contact with skin and eyes. Wash hands after handling.

Storage:

Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use dry handling areas only.

Personal protection equipment

Respiratory Protection:

None

Hand protection:

Dry cloth, leather or rubber gloves.

Eye Protection:

Safety glasses with side shields. Do not wear contact lenses.

Wash hands before breaks and at end of work day.

Skin protection: Hygiene measures: No special protective clothing required.

PHYSICAL AND CHEMICAL PROPERTIES

Form:

Granular semi-solid gel

Color: Odor:

Blue None 7.37

pH: Melting point: Flash point:

N/A N/A

Vapor density:

N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity (EPA/600/4-90/027F)

LD 50 / Rattus norvegicus / oral / > 5000 mg/kg LC 50 / Daphnia magna / 48h / >383mg/L

LC 50 / Oncorhynchus mykiss / 96h / 1900 mg/L

Chronic toxicity (EPA/600/4-91/002)

IC 25 (Survival) / P. promelas / 7 day / 110 ppm

NOEC (Survival) / P. promelas / 7 day/ 105 ppm

IC 25 (Survival) / C. dubia / 7 day / 99.8 ppm NOEC (Survival) / C. dubia / 7 day/ 52.5 ppm

IC 25 (Growth) / P. promelas / 7 day / 130 ppm

NOEC (Growth) / P. promelas / 7 day / 105 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 58.2 ppm NOEC (Reproduction) / C. dubia / 7 day / 105 ppm

12. ECOLOGICAL INFORMATION

Fish:

LC 50 / Pimephales promelas / 96h / >1000 mg/l Water Flea: LC 50 / Daphnia magna / 48h / 383mg/l

Algae: EC 50 / Selenastrum capricornutum / 96h / >500mg/l

Bioaccumulation: The product is not expected to bioaccumulate.

Persistence / degradability: Not readily biodegradable: (~85% after 180 days).

13. DISPOSAL INFORMATION

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing. SARA Section 311 / 312 Hazard Class:

RCRA Status:

Not concerned Not RCRA hazardous

16. OTHER INFORMATION

NFPA and HMIS ratings:

NFPA Health:

Flammability:

0 Reactivity:

0

HMIS Health

Flammability

0 Reactivity

0

DATE EDITED: Nov 4th 2015

Technical Guidance for the Use of Polyacrylamides (PAM) and PAM Blends for Soil Erosion Control and Storm Water clarification

(Courtesy of Applied Polymer Systems, Inc.)

Practice Description

PAM is a water-soluble anionic polyacrylamide product used to minimize soil erosion caused by water and wind to decrease soil sealing by binding soil particles, especially clays, to hold them on site. In addition, these types of materials may also be used as a water treatment additive to remove suspended particles from runoff. When PAM is used on construction sites in the Southeast it is typically applied with temporary seeding and or mulching on areas where the timely establishment of temporary erosion control is so critical that seedings and mulching need additional reinforcement. It may be used alone on sites where no disturbances will occur until site work is continued and channel erosion is not a significant potential problem. Permanent grassing applications can be better established using PAM as a tackifier and soil conditioner.

PAMs are manufactured in various forms to be used on specific soil types, and are generally applied at a rate of up to 25 pounds/acre for dry products and 2 ½ gallons/acre of emulsion-liquid products. Using the wrong form of a PAM on a soil will result in some degree of performance failure, and increase the potential for this material to enter surface waters. PAM used alone may not reduce NTU values resulting in non-compliance water quality discharges or poor soil binding conditions. Site-specific soil-PAM testing must be performed. Exceeding the maximum application rates for this product does not increase the effectiveness of the product.

Block or Log forms of PAM and PAM blends are manufactured for specific use in drainage waterways to remove suspended particulates from runoff.

General Components of the Practice

Prior to the start of construction, a qualified professional should design the application of PAM and plans and specifications should be available to field personnel.

The application should conform to the design and specifications provided in the plans. Typical applications include the following components.

- Site Preparation
- Equipment Preparation
- PAM Application

Application

Site Preparation

Prepare site following design and specifications.

Equipment Preparation

If using a liquid application system, pump a surfactant through the injection system before and after injecting concentrated liquid PAM into sprinkler irrigation systems to help prevent valves and tubing from clogging.

PAM used in hydroseeding applications should be added as the last additive to the mix.

After their use, rinse all PAM mixing and application equipment thoroughly with water to avoid formation of PAM residues. Rinse residue should be applied to soil areas to create binding to the soil structure and increase erosion reduction.

PAM Application- Criteria for Land applied PAM Specifications

PAM shall be mixed and/or applied in accordance with all Occupational Safety and Health Administration (OSHA) Material Safety Data Sheet (MSDS) requirements and the manufacturer's recommendations for the specified use conforming to all federal, state and local laws, rules and regulations.

1.) Toxicity

All venders and suppliers of PAM, PAM mix or blends shall present or supply a written toxicity report which verifies that the PAM, PAM mix or blend exhibits acceptable toxicity parameters which meet or exceed the EPA requirements for the state and federal water quality standards. Whole effluent testing does not meet this requirement as primary reactions have occurred and toxic potentials have been reduced. Cationic forms of PAM, polymers and chitosan are not allowed for use under this guideline due to their high levels of toxicity to aquatic organisms. Emulsions shall never be applied directly to stormwater runoff or riparian waters due to surfactant toxicity.

2.) Performance

All venders and suppliers of PAM, PAM mix or blends shall supply written "site specific" testing results demonstrating that a performance of 95% or greater reduction of NTU or TSS from stormwater discharges.

Emulsion batches shall be mixed following recommendations of a testing laboratory that determines the proper product and rate to meet site requirements. Application method shall insure uniform coverage to the target area. (Emulsions shall never be applied directly to stormwater runoff or riparian waters)

Dry form (powder) may be applied by hand spreader or a mechanical spreader. Mixing with dry silica sand will aid in spreading. Pre-mixing of dry form PAM into fertilizer, seed or other soil amendments is allowed when specified in the design plan. Application method shall insure uniform coverage to the target area.

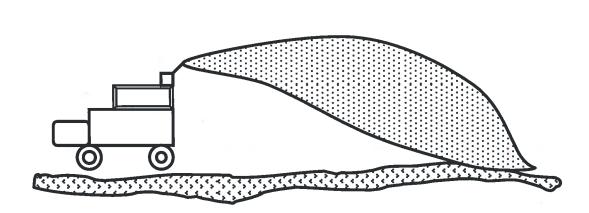
Block or Log forms shall be applied following site testing results to assure proper placement and performance and shall meet or exceed state and federal water quality requirements.

Common Problems

Consult with a registered design professional for assistance if any of the following occur:

Problems with application equipment clogging.

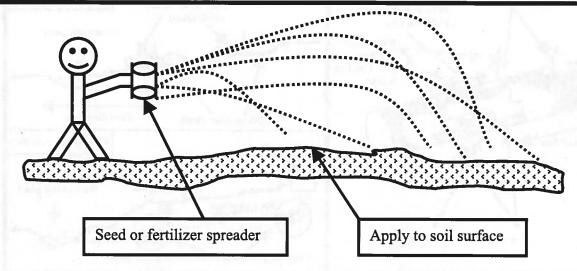
- PAM alone may not meet testing requirements for NTU reduction and soil stabilization. Site specific "blends" may be needed to meet these requirements.
- Application specifications for PAM cannot be met; alternatives may be required. Unapproved application techniques could lead to failure.
- Visible erosion occurs after application.


Maintenance

An operation and maintenance plan must be prepared for use by the operator responsible for PAM application. Plan items should include the following items.

- Reapply PAM to disturbed or tilled areas that require continued erosion control.
- Maintain equipment to provide uniform application rates.
- Rinse all PAM mixing and application equipment thoroughly with water to avoid formation of PAM residues and discharge rinse water to soil areas where PAM stabilization may be helpful.
- Downstream deposition from the use of PAM may require periodic sediment removal to maintain normal functions.

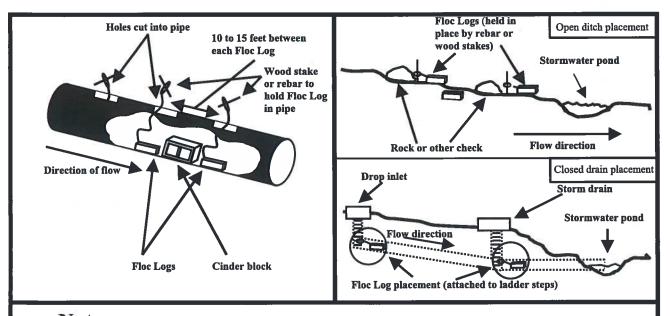
(Silt Stop Application of Temporary and Permanent Grassing)



Notes:

- 1) For use on all slope conditions which are not matted.
- 2) Application rate shall be 1.5 gallons of Silt Stop emulsion/acre or 10 pounds of Silt Stop powder/acre.
- 3) Silt Stop emulsion or powder shall be added to all hydroseeding mixes at a rate of 3000 gallons of mix/acre.
- 4) Silt Stop shall be the final additive to the hydroseeding mix.
- 5) Straw cover may be applied over the hydroseeded application.

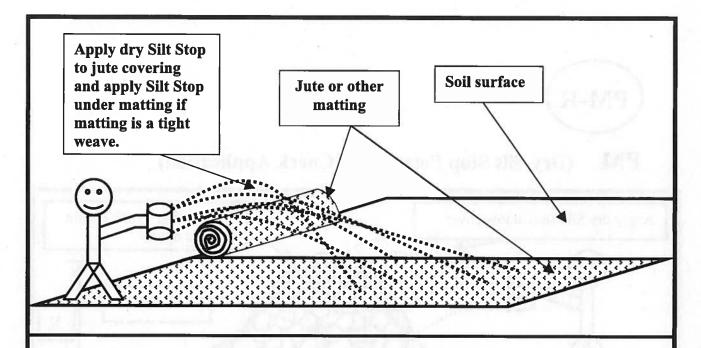
PM (Dry Silt Stop Form)



Notes:

- 1) Dry Silt Stop shall be applied using a seed or fertilizer spreader or may be mixed with other dry spread additives.
- 2) Dry Silt Stop shall be covered with straw, mulch, matting or jute.
- 3) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.
- 4) For use on all slope conditions.

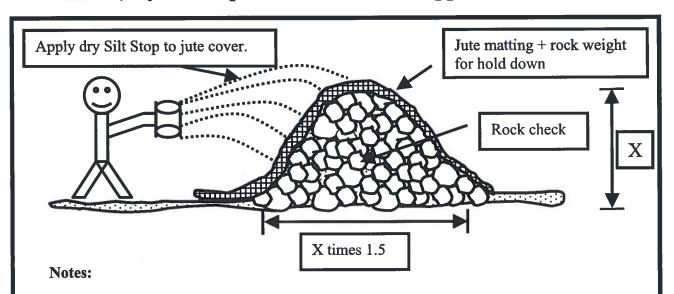
(Floc Log placement for pipes, ditch and storm drains)



Notes:

- 1) Place Floc Logs far enough upstream in turbid flows to allow adequate mixing time. (Mixing time and Floc Log type are determined from the sample analysis.)
- 2) Floc Logs should be placed 10 to 15 feet apart in a row or at points of highest water velocity; whichever is most convenient.
- 3) The number of Floc Logs placed on the site is based on results from the sample analysis. Floc Logs shall be placed in <u>all</u> catch basins and after <u>all</u> downsides of rock checks.

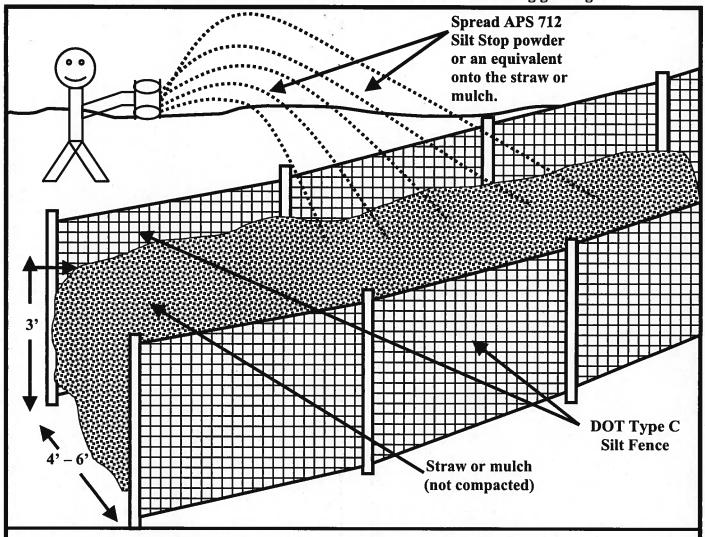
(Dry Silt Stop Form Soft Armoring Technique for Matting)



Notes:

- 1) For use on all slope conditions.
- 2) One layer of jute or other matting shall be applied to the surface of all exposed soil on 1:1 slopes.
- 3) Dry Silt Stop shall be applied to the soil if tight weave matting is used and also to the jute or burlap matting cover using a seed or fertilizer spreader.
- 4) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.

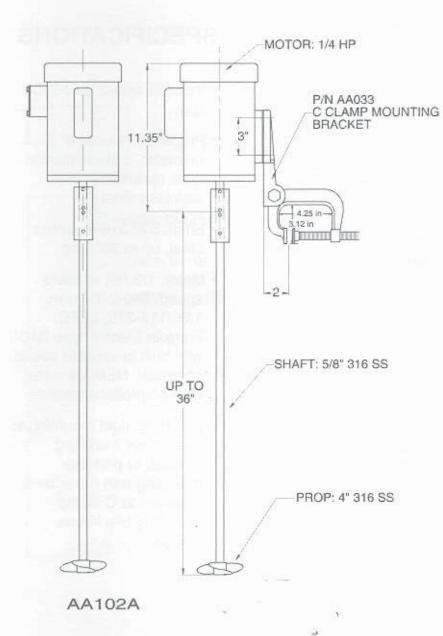
PM (Dry Silt Stop Form Rock Check Application)



- 1) One layer of jute matting shall be applied to the surface of all rock checks.
- 2) Dry Silt Stop shall be applied to the jute cover using a seed or fertilizer spreader.
- 3) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.

(SRB) Sediment Retention Barrier

Use for fine sediment retention between silt fences. Install at low areas during grading.



- 1) Use in all low areas during the grading phase.
- 2) Place 2 rows of DOT type C silt fence 4 to 6 feet apart. Place straw or mulch 3 feet deep between the silt fences.
- 3) Dry Silt Stop powder or an equivalent should be spread throughout the straw or mulch using a seed or fertilizer spreader.

pH System Components

MADDEN

MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

pulsafeeder.com

The Pulsatron Series E Plus offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Twenty distinct models are available, having pressure capabilities to 300 PSIG (21 BAR) @ 3 GPD (0.5 lph), and flow capacities to 600 GPD (94.6 lph) @ 30 PSIG (2 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within \pm 2% of maximum capacity. Please refer to the reverse side for Series E PLUS specifications.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

• Turn-Down Ratio 10:1

4-20mADC Direct or External Pacing with Stop

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers (PULSAblue, MicroVision)

PULSAtron[®] Series E Plus Electronic Metering Pumps

PULSAtron[®] Series E Plus

Specifications and Model Selection

MODEL		LPK2	LPB2	LPA2	LPD3	LPB3	LPA3	LPK3	LPF4	LPD4	LPB4	LPH4	LPG4	LPE4	LPK5	LPH5	LPH6	LPK7	LPH7	LPJ7	LPH8
Capacity	GPH	0.13	0.21	0.25	0.5	0.50	0.50	0.60	0.85	0.90	1.00	1.70	1.75	1.85	2.50	3.15	5.00	8.00	10.00	10.00	25.00
nominal	GPD	3	5	6	12	12	12	14	20	22	24	41	42	44	60	76	120	192	240	240	600
(max.)	LPH	0.5	0.8	0.9	1.9	1.9	1.9	2.3	3.2	3.4	3.8	6.4	6.6	7	9.5	11.9	18.9	30.3	37.9	37.9	94.6
Pressure	PSIG	300	250	150	250	150	100	100	250	150	100	250	150	100	150	150	100	50	35	80	30
(max.)	BAR	21	17	10	17	10	7	7	17	10	7	17	10	7	10	10	7	3.3	2.4	5.5	2
Connections	Tubing						1/4"	ID X 3/8	" OD						3/8" ID X 1/2" OD						
			3/8" ID X 1/2" OD									1/2"	ID X 3/	4" OD (I	LPH8 O	NLY)					
	Piping		1/4" FNPT											1	/4" FNF	PT					
													1	/2" FNF	PT						

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC **PVDF** 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE

316 SS Alloy C **GFPPL**

Fittings Materials Available: PVC

PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Same as fitting and check valve Injection Valve & Foot Valve Assy:

selected

Clear PVC Tubing: White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS:

For viscosity up to 3000 CPS, select connection size 3, 4, B or C with 316SS ball material. Flow rate will determine connection/ball size. Greater than 3000 CPS require spring loaded ball checks. See Selection Guide for proper connection.

Stroke Frequency Max SPM: 125 Stroke Frequency Turn-Down Ratio: 10:1 Stroke Length Turn-Down Ratio: 10:1

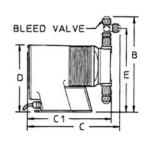
Power Input: 115 VAC/50-60 HZ/1 ph

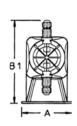
230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 1.0 Amps @ 230 VAC; Amps: 0.5 Amps Peak Input Power: 300 Watts Average Input Power @ Max SPM: 130 Watts

Custom Engineered Designs – Pre-Engineered Systems




Pre-Engineered Systems

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UVstabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

		_	_		_	_	Seri	es E Plus D	imensions	(inch	es)				_		
Model No.	А	В	В1	С	C1	D	Ε	Shpg Wt	Model No.	Α	В	В1	С	C1	D	Ε	Shpg Wt
LPA2	5.4	10.3		10.8	-	7.5	8.9	13	LPH4	6.2	10.9		11.2	-	8.2	9.5	21
LPA3	5.4	10.6	-	10.7	-	7.5	9.2	13	LPH5	6.2	11.3		11.2	-	8.2	9.9	21
LPB2	5.4	10.3	-	10.8	-	7.5	8.9	13	LPH6	6.2	11.3		11.9		8.2	9.9	21
LPB3	5.4	10.6		10.7	-	7.5	9.2	13	LPH7	6.1	11.7		11.9	-	8.2	10.3	21
LPB4	5.4	10.6	-	10.7	-	7.5	9.2	13	LPH8*	6.1	-	10.9		11.3	8.2	-	26
LPD3	5.4	10.6		11.2	-	7.5	9.2	15	LPK2	5.4	10.3		10.8	-	7.5	8.9	13
LPD4	5.4	10.6		11.2	Ξ,	7.5	9.2	15	LPK3	5.4	10.6	-	10.7	-	7.5	9.2	13
LPE4	5.4	10.6	-	11.2	-	7.5	9.2	15	LPK5	5.4	10.9	-	11.7	-	7.5	9.5	18
LPF4	5.4	10.6	-	11.7	-	7.5	9.2	18	LPK7	6.1	11.7		11.2	-	8.2	10.3	21
LPG4	5.4	10.6		11.7	-	7.5	9.2	18	LPJ7	6.1	10	-	10.7		-	-	21

NOTE: Inches X 2.54 = cm /* the LPH8 is designed without a bleed valve available

pH Control

+GF+® Signet pH/ORP Controllers

Versatile mounting options allow you to customize the installation for particular applications

- Large, scratch-resistant, self-healing display
- +GF+ Signet controllers are designed for broad application and ease of setup and operation. Multiple mounting options allow for installation best suited to your particular application. Intuitive software and four-button keypad arrangement make it easy to access important information such as measurement values, calibration data, relay setup menus, and more.

Optional universal mounting kit allows for mounting of field-mount units on pipes, tanks, and walls. RC filter kit prevents premature wearing of the relay outputs by providing protection from electrical noise. Order separately below.

Required System Components

- 1 Controller
- Preamplifier
- Electrode

Field-mount controller 56560-20

Specifications Meter only Meter only Model +GF+ Signet 8750-1 +GF+ Signet 8750-2 +GF+ Signet 8750-3 0.00 to 14.00 0.00 to 14.00 0.00 to 14.00 mV -1000 to 2000 mV -1000 to 2000 mV -1000 to 2000 mV Range Temperature -13 to 248°F (-25 to 120°C) -13 to 248°F (-25 to 120°C) -13 to 248°F (-25 to 120°C) рΗ 0.01 0.01 0.01 Resolution 1 mV 1 mV 1 mV Temperature 0.1°C (0.1°F) 0.1°C (0.1°F) 0.1°C (0.1°F) ±0.03 pН ± 0.03 ± 0.03

Accuracy	mV	±2 mV	±2 mV	±2 mV
	Temperature	±0.5°C (±1°F)	±0.5°C (±1°F)	±0.5°C (±1°F)
Temperature	compensation	Automatic, 3 kΩ Balco	Automatic, 3 kΩ Balco	Automatic, 3 kΩ Balco
Control type		On/off (limit) or proportional	On/off (limit) or proportional	On/off (limit) or proportional
Number of se	t points	Two (low, high)	Two (low, high)	Two (low, high)
	Relay	_	Two SPDT relays, 5 A at 30 VDC or 250 VAC resistive load maximum	_
Output	Current	One 4 to 20 mA, isolated, fully adjustable and reversible	One 4 to 20 mA, isolated, fully adjustable and reversible	Two 4 to 20 mA, isolated, fully adjustable and reversible
	Open collector	One open-collector, optically isolated, 50 mA max	_	Two open-collector, optically isolated, 50 mA max
Dead band		User adjustable	User adjustable	User adjustable
Housing		NEMA 4X (IP65) front panel	NEMA 4X (IP65) front panel	NEMA 4X (IP65) front panel
Display		2 x 16 alphanumeric LCD	2 x 16 alphanumeric LCD	2 x 16 alphanumeric LCD
Dimoneione /\	N ∨ H ∨ D)	Field-mou	nt: 313/16" x 313/16" x 43/16" (96 x 96	x 106 mm)

Panel-mount: 313/16" x 313/16" x 313/16" (96 x 96 x 97 mm)

12 to 24 VDC

DryLoc® pH and **ORP** electrodes

Controllers

Power

Dimensions (W x H x D)

Catalog number	Model	Mounting style	Price
S-56560-18	+GF+ Signet 8750-1	Field mount	
S-56560-28	+GF+ Signet 8750-1P	Panel mount, ¼ DIN	
S-56560-20	+GF+ Signet 8750-2	Field mount	
S-56560-30	+GF+ Signet 8750-2P	Panel mount, ¼ DIN	
S-56560-22	+GF+ Signet 8750-3	Field mount	
S-56560-32	+GF+ Signet 8750-3P	Panel mount, ¼ DIN	

12 to 24 VDC

S-05631-50 Universal mounting kit for field-mount units

S-19007-52 RC filter kit for relay use. Pack of 2

S-17106-20 NIST-traceable calibration

Preamplifiers

Preamplifiers protect the relatively weak output signal of the pH or ORP electrode from electrical interferences common in industrial environments and are required for initial system installation. Unique DryLoc® connectors allow you to quickly form robust assemblies for submersible and in-line applications.

Catalog number	Thread size	Price
S-56560-03 S-56560-04	34" NPT(M) ISO 7-1 R34"	
	1007 11171	

Electrodes

12 to 24 VDC

Feature-packed pH and ORP electrodes feature unique DryLoc connectors which offer resistance to intrusion from dirt and moisture. Extended reference path length extends electrode life over traditional combination electrodes. Electrode bodies are Ryton® PPS for added chemical resistance and feature a 3/4" NPT(M) or ISO 7-1 R3/4" threads for in-line installation. Flatsurface electrodes minimize abrasion and breakage problems by allowing sediment to sweep past the measurement surface. Bulb-style electrodes feature quick response and are well-suited to general-purpose applications. HF-resistant electrodes resist hydrofluoric acid in concentration less than 2%. LC-bulb electrodes are designed for ultrapure, low-conductivity water applications. All have a 3 k Ω Balco ATC element and measure 0 to 14 pH.

Catalog number	Туре	Thread size	Price
S-56561-02 S-56561-03	pH, flat surface	¾" NPT(M) ISO 7-1 R¾"	
S-56561-10 S-56561-11	pH, bulb style	¾" NPT(M) ISO 7-1 R¾"	
S-56561-06 S-56561-07	pH, HF-resistant bulb	¾" NPT(M) ISO 7-1 R¾"	
S-56561-14 S-56561-15	pH, LC bulb	¾" NPT(M) ISO 7-1 R¾"	
S-56561-16 S-56561-17	ORP, flat surface	¾" NPT(M) ISO 7-1 R¾"	

Material Safety Data Sheet

77% - 100% SULFURIC ACID

SECTION 1. PRODUCT IDENTIFICATION

Trade Name

77 % - 100 % Sulfuric Acid

Product Code

None

Manufacturers/Distributors

NorFalco Inc., 6000 Lombardo Center, The Genesis Blg, suite 650 Seven Hills, OH 44131 NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2

André Auger, Administration Assistant

Information Contact Product Information

1-905-542-6901 (Mississauga)

Phone Number (Transportation Emergency) Phone Number (Transportation Emergency) Canada 1-877-ERP-ACID (377-2243) U.S.A. 1-800-424-9300 CHEMTREC

Phone Number (Medical Emergency)

1-418-656-8090

Phone Number (Emergency)

CANUTEC 1-613-996-6666

Synonyms

Dihydrogen Sulfate; Oil of Vitriol; Vitriol Brown Oil; Sulphuric Acid.

Acide sulfurique (French) Sulfuric Acid / H₂SO₄

Name / Chemical Formula **Chemical Family**

Acid

Utilization Manufacturers

Chemical industries; Water treatment; Fertilizer; Pulp and Paper. CEZinc on behalf of Noranda Income Limited Partnership, Salaberry-de-Valleyfield (Quebec) Canada J6T 6L4

Xstrata Copper, Horne Smelter, Rouyn-Noranda (Quebec) J9X 5B6 Xstrata Zinc, Brunswick Smelting, Belledune, New Brunswick E0B 1G0 Xstrata Copper, Kidd Metallurgical Division, Timmins, Ontario P4N 7K1 Xstrata Nickel, Sudbury Operations, Falconbridge, Ontario P0M 1S0

SECTION 2. HAZARDS IDENTIFICATION

WHMIS (Canada)

CLASS D-1A: Very toxic material causing immediate and serious effects

CLASS E: Corrosive material

Labeling (EEC)

C Corrosive

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Name	CAS#	Percentage (%)	# CE	R Phrases ¹
Sulfuric (Acid)	7664-93-9	77 % to 100 %	231-639-5	R35
60 Deg Technical		77.7		3
66 Deg Technical	C9.50001-	93.2	Workstein -	
1.835 Electrolyte		93.2		The state of the s
98 % Technical		98	···	
99 % Technical		99	V10	
100 % Technical		100		
Water	7732-18-5	0-22		

Note 1: See section 15 for the complete wording of risk phrases.

SECTION 4. FIRST-AID MEASURES

Eye Contact

Remove contact lenses if present. Immediately flush eyes with plenty of water, holding eyelids open for at least 15 minutes. Consult a physician. Possibility of conjonctivitis, severe irritation, severe burns, permanent eye damage.

Skin Contact

Remove contaminated clothing and shoes as quickly as possible protecting your hands and body. Place under a deluge shower for 15 minutes. Flush exposed skin gently and thoroughly with running water (Pay particular attention to: Folds, crevices, creases, groin). Call a physician if irritation persists. May irritate skin, cause burns (Highly corrosive) and possibility of some scarring.

Wash contaminated clothing before reusing. While the patient is being transported to a medical facility, continue the application of cold, wet compresses. If medical treatment must be delayed, repeat the flushing with cold water or soak the affected area with cold water to help remove the last traces of sulfuric acid. Creams or ointments SHOULD **NOT** be applied before or during the washing phase of treatment.

Inhalation

Take precautions to avoid secondary contamination by residual acids. Remove the person to fresh air. If not breathing, give artificial respiration. Difficult breathing: Give oxygen. Get immediate medical attention. Possibility of damage to the upper respiratory tract and lung tissues. Maintain observation of the patient for delayed onset of pulmonary oedema. May cause irritation to the upper respiratory tract: Coughing, sore throat, shortness of breath.

Ingestion

DO NOT INDUCE VOMITING. Conscious and alert person: Rinse mouth with water and give 1/2 to 1 cup of water or milk to dilute material. Spontaneous vomiting: Keep head below hips to prevent aspiration; Rinse mouth and give ½ to 1 cup of water or milk. UNCONSCIOUS person: DO NOT induce vomiting or give any liquid. Immediately obtain medical attention.

77% - 100% SULFURIC ACID

Notes to Physicians

Continued washing of the affected area with cold or iced water will be helpful in removing the last traces of sulfuric acid. Creams or ointments should not be applied before or during the washing phase of the treatment.

SECTION 5. FIRE-FIGHTING MEASURES

Flash Point Flammable Limits Not available Not available

Auto-Ignition Temperature

Not available

Not flammable

Products of Combustion

Releases of sulfur dioxide at extremely high temperatures.

Fire Hazard

Explosion Hazard

Reacts with most metals, especially when dilute: Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container.

Extinguishing media

ERG (Emergency Response Guidebook): Guide 137

When material is not involved in fire, do not use water on material itself.

Small fire: Dry chemical or CO₂. Move containers from fire area if you can do it without risk.

Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If

insufficient water supply: knock down vapors only.

Fire involving Tanks or Car/Trailer Loads: Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices

or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.

Protective equipment

Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Spill

Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if

possible. Soak up small spills with dry sand, clay or diatomaceous earth.

Methods

Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering sewers, waterways, or low areas.

If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases.

Protective equipment

Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with cleanup. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up.

Section 7. Handling and storage

Handling

Do not get in eyes, on skin, or on clothing. Avoid breathing vapours or mist. Wear approved respirators if adequate ventilation cannot be provided. Wash thoroughly after handling. Ingestion or inhalation: Seek medical advice immediately and provide medical personnel with a copy of this MSDS.

Conditions for storage

Sulfuric acid must be stored in containers or tanks that have been specially designed for use with sulfuric acid. DO NOT add water or other products to contents in containers as violent reactions will result with resulting high heat, pressure and/or generation of hazardous acid mists.

Keep containers away from heat, sparks, and flame. All closed containers must be safely vented before each opening. For more information on sulfuric acid tanks, truck tanks and tank cars including safe unloading information go to www.norfalco.com.

Section 8. Exposure controls/Personal protection

Control parameters

		ACGIH (U.S.A.) 2008	OSHA (U.S.A.)
Name	# CAS	TLV-TWA (mg/m³)	PEL - TWA (mg/m³)
Sulfuric (Acid)	7664-93-9	0.2 (thoracic fr.)	1
60 Deg Technical	7664-93-9	0.2 (thoracic fr.)	1
66 Deg Technical	7664-93-9	0.2 (thoracic fr.)	1
1.835 Electrolyte	7664-93-9	0.2 (thoracic fr.)	1
98 % Technical	7664-93-9	0.2 (thoracic fr.)	1
99 % Technical	7664-93-9	0.2 (thoracic fr.)	1
100 % Technical	7664-93-9	0.2 (thoracic fr.)	1
Water	7732-18-5	Not established	Not established

ACGIH: American Conference of Governmental Industrial Hygienists. OSHA: Occupational Safety and Health Administration.

77% - 100% SULFURIC ACID

Sulfuric (Acid): Exposure limits may be different in other jurisdictions. NIOSH REL-TWA (≤10 hours): 1 mg/m³; IDLH: 15 mg/m³. Note:

Consult local authorities for acceptable exposure limits.

Engineering Controls Individual protection

Good general ventilation should be provided to keep vapour and mist concentrations below the exposure limits. Chemical splash goggles; Full-length face shield/chemical splash goggles combination; Acid-proof gauntlet gloves, apron, and boots; Long sleeve wool, acrylic, or polyester clothing; Acid proof suit and hood; Appropriate NIOSH respiratory protection.

< 0.6 mm Hg @ 38°C (100 °F)

In case of emergency or where there is a strong possibility of considerable exposure, wear a complete acid suit with hood, boots, and gloves. If acid vapour or mist are present and exposure limits may be exceeded, wear appropriate NIOSH respiratory protection.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Physical State and Appearance Liquid (Oily; Clear to turbid) Odour Odourless Molecular Weight 98.08 Colour Colourless to light grey Volatility < 1 (Butyl Acetate = 1.0) pH (1% soln/water) **Boiling Point** 193°C to 327 °C (379°F to 621°F) @ 760 mm Hg Vapour Density 3.4 **Melting Point** -35°C to 11°C (-31°F to 52°F) Dispersion Yes (Water) Vapour Pressure < 0.3 mm Hg @ 25°C (77 °F) Solubility Yes (Water)

GRADE	Boilin	g Point	Freezir	Specific Gravity	
	DEG °C	DEG °F	DEG °C	DEG °F	
60 DEG TECHNICAL	193	380	- 12	10	1.706
66 DEG TECHNICAL	279	535	- 35	- 31	1.835
1.835 ELECTROLYTE	279	535	- 35	- 31	1.835
98 % TECHNICAL	327	621	- 2	29	1.844
99 % TECHNICAL	310	590	4	40	1.842
100 % TECHNICAL	274	526	11	51	1.839

SECTION 10. STABILITY AND REACTIVITY

Stability Yes (Under normal conditions of ambiant temperature)

Reacts violently with water, organic substances and base solutions with evolution of heat and hazardous mists. Reactivity

Conditions to avoid

Heat: Possibility of decomposition. Release of dangerous gases (Sulfur oxides SO₂, SO₃)

Polymerization

Polymerization will not occur.

Incompatibilities

Vigorous reactions with: Water; alkaline solutions; Metals, metal powder; Carbides; Chlorates; Fulminates; nitrates; Picrates; Strong oxidizing, reducing, or combustible organic materials. Hazardous gases are evolved on

contact with chemicals such as cyanides, sulfides, and carbides.

Corrosivity

SECTION 11. TOXICOLOGICAL INFORMATION

Routes of Entry Ingestion. Inhalation. Skin and eye contacts.

Carcinogenicity Strong inorganic acid mists containing sulfuric acid (Occupational exposures): PROVEN (Human, Group 1,

IARC); SUSPECTED (Human, Group A2, ACGIH); Group X (NTP); Classification not applicable to sulfuric

acid and sulfuric acid solutions.

Mutagenicity Teratogenicity Not applicable. Not applicable.

Acute toxicity

ORAL (LD50) : 2 140 mg/kg (Rat); INHALATION (LC50, 2 hours) : 510 mg/m³ (Rat); 320 mg/m³ (Mouse).

Acute Effects

May be fatal if inhaled or ingested in large quantity. Liquids or acid mists: May produce tissue damage: Mucous membranes (Eyes, mouth, respiratory tract). Extremely dangerous by eyes and skin contact (Corrosive). Severe irritant for eyes: Inflammation (Redness, watering, itching). Very dangerous in case of inhalation (Mists) at high concentrations: May produce severe irritation of respiratory tract (Coughing, shortness of breath, choking).

Chronic Effects

Target organs for acute and chronic overexposure (NIOSH 90-117): Respiratory system, eyes, skin, teeth.

Acid mists: Overexposure to strong inorganic mists containing sulfuric acid: Possibility of laryngeal cancer (HSBD, IARC). Possibility of irritation of the nose and throat with sneezing, sore throat or runny nose. Headache, nausea and weakness. Gross overexposure: Possibility of irritation of nose, throat, and lungs with cough, difficulty breathing or shortness of breath. Pulmonary edema with cough, wheezing, abnormal lung sounds, possibly progressing to severe shortness of breath and bluish discoloration of the skin. Symptoms may be delayed. Repeated

or prolonged exposure to mists may cause: Corrosion of teeth.

Contact (Skin): Possibility of corrosion, burns or ulcers. Contact with a 1 % solution: Possibility of slight irritation with itching, redness or swelling. Repeated or prolonged exposure (Mist): Possibility of irritation with itching, burning, redness, swelling or rash.

Contact (Eye): Possibility of corrosion or ulceration (Blindness may result). Repeated or prolonged exposure

(Mist): Possibility of eye irritation with tearing, pain or blurred vision.

Ingestion: Immediate effects of overexposure: Burns of the mouth, throat, esophagus and stomach, with severe

pain, bleeding, vomiting, diarrhea and collapse of blood pressure. Damage may appear days after exposure.

Persons with the following pre-existing conditions warrant particular attention: **Toxicity**

Sulfuric (Acid): Laryngeal irritation.

Eating, drinking and smoking must be prohibited in areas where this material is handled and processed. Wash hands and face before eating, drinking and smoking.

SECTION 12. ECOLOGICAL INFORMATION

Aquatic toxicity: Slightly to moderately toxic. **Ecotoxicity**

Bluegill Sunfish (LC50; 48 hours): 49 mg/l (Tap water, 20 °C, conditions of bioessay not specified).

(HSBD).

Flounder (LC50; 48 hours): 100-330 mg/l (Aerated water, conditions of bioessay not specified). (HSBD).

EYE: Concentrated compound is corrosive. 10 % solution: Moderate eye irritant. Toxicity to Animals SKIN: Concentrated compound is corrosive. 10 % solution: Slight skin irritant,

Single and repeated exposure: Irritation of the respiratory tract; Corrosion of the respiratory tract; Lung

damage ; Labored breathing ; Altered respiratory rate ; Pulmonary oedema. Repeated exposure : Altered

red blood cell count.

Easy soil seeping under rain action Mobility (Soil) Sulfate ion: Ubiquitous in the environment. Metabolized by micro-organisms and plants.

Persistence and degradability

Bioaccumulation

Sulfate ion: Ubiquitous in the environment. Metabolized by micro-organisms and plants whitout bioaccumulation.

Biodegradation Products Not available

Biodegradation Products (Toxicity)

Not applicable

Due to the product's composition, particular attention must be taken for transportation and storage. Protect Remarks on Environment

from rain because the run-off water will become acidic and may be harmful to flora and fauna.

Not available BOD5 and COD

SECTION 13. DISPOSAL CONSIDERATIONS

Cleaned-up material may be an hazardous waste on Resource Conservation and Recovery Act (RCRA) on Disposal methods

disposal due to the corrosivity characteristic. DO NOT flush to surface water or sanitary sewer system. Comply with Federal, State, and local regulations. If approved, neutralize and transfer to waste treatment

SECTION 14. TRANSPORT INFORMATION

CLASS 8 Corrosives TDG (Canada)

PG II **UN1830 SULFURIC ACID** PIN

Special Provisions (Transport) SULFURIC ACID DOT (U.S.A.)/IMO (Maritime) Proper Shipping Name

Hazard Class 8 1830 UN Nº

CORROSIVE DOT/IMO Label

Packing Group

1000 lbs (454 kg) Reportable Quantity

Tank Cars, Tank Trucks, Vessel Shipping Containers

Guide 137

SECTION 15 REGULATORY INFORMATION

EU (Directive 67/548/EEC): Labeling (EEC)

Sulfuric (Acid): C Corrosive (Pictogram)

Annex I Index number: 016-020-00-8; EU Consolidated Inventories: EC Number 231-639-5

 $C \ge 15 \%$ C; R35; S2, 26, 30, 45.

R35- Causes severe burns Risk Phrases (EEC)

S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice Safety Phrases (EEC)

S30- Nerver add water to this product

S36/37/39- Wear suitable protective clothing, gloves and eye/face protection

S45- In case of accident or if you feel unwell, seek medical advice immediately (show the label where

possible).

ERG

77% - 100% SULFURIC ACID

CEPA DSL (CANADA)

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA): On the Domestic Substances List

(DSL); Acceptable for use under the provisions of CEPA.

Sulfuric Acid is a Class B Drug Precursor under Health Canada's Controlled Drugs and Substances Act

and Precursor Control Regulations.

Regulations (U.S.A.)

CERCLA Section 103 Hazardous substances (40 CFR 302.4); SARA Section 302 Extremely Hazardous Substances (40 CFR 355): Yes; SARA Section 313, Toxic Chemicals (40 CFR 372.65); US: TSCA

Inventory: Listed:

Sulfuric (Acid) (Final RQ): 1 000 pounds (454 kg)

Sulfuric Acid is subject to reporting requirements of Section 313, Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA), 40 CFR Part 372.

Certain companies must report emissions of Sulfuric Acid as required under The Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA), 40 CFR Part 302

For more information call the SARA Hotline 800-424-9346.

Strong Inorganic Acid Mists Containing Sulfuric Acid: Chemical listed effective March 14, 2003 to the State of California, Proposal 65.

U.S. FDA Food Bioterrorism Regulations: These regulations apply to Sulfuric Acid when being distributed, stored or used for Food or Food Processing.

Classifications HCS (U.S.A.)

Corrosive liquid

NFPA (National Fire Protection Association) (U.S.A.)

0

Reactivity

Health

Special Hazard

ACID

NPCA-HMIS Rating Fire Hazard

Reactivity

2 Health

SECTION 16. OTHER INFORMATION

References

- TLVs and BEIs (2008). Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. ACGIH, Cincinnati, OH - http://www.acgih.org
- CCOHS (2008) Canadian Centre for Occupational Health and Safety http://www.ccohs.ca/
- CSST (2008) Commission de la Santé et de la Sécurité du Travail (Québec). Service du répertoire toxicologique http://www.reptox.csst.qc.ca/
- ERG (2008). Emergency Response Guidebook, Developed by the U.S. Department of Transportation, Transport Canada, and the Secretariat of Communications and Transportation of Mexico
- HSDB (2008) Hazardous Substances Data Bank. TOXNET® Network of databases on toxicology, hazardous chemicals, and environmental health, NLM Databases & Electronic Resources, U.S. National Library of Medicine, NHI, 8600 Rockville Pike, Bethesda, MD 20894 - http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (collection) http://www-cie.iarc.fr/
- Merck Index (1999). Merck & CO., Inc, 12th edition
- NIOSH U.S. (2008) Pocket Guide to Chemical Hazards http://www.cdc.gov/niosh/npg/
- Patty's Industrial Hygiene and Toxicology, 3rd Revised Edition
- Règlement sur les produits contrôlés (Canada)
- RTECS (2008). Registry of Toxic Effects of Chemical Substances, NIOSH, CDC
- Toxicologie industrielle & intoxication professionnelle, 3e édition, Lauwerys

Glossary

- **CSST** : Commission de la Santé et de la Sécurité du Travail (Québec). **HSDB** : Hazardous Substances Data Bank.
- **IARC** : International Agency for Research on Cancer.
- NIOSH: National Institute of Occupational Safety and Health.
- NTP : U.S. National Toxicology Program.
- RTECS: Registry of Toxic Effects of Chemical Substances

Note

For further information, see NorFalco Inc. Sulfuric Acid « Storage and Handling Bulletin ».

Because of its corrosive characteristics and inherent hazards, Sulfuric Acid should not be used in sewer or drain cleaners or any similar application; regardless of whether they are formulated for residential, commercial or industrial use. NorFalco will not knowingly sell sulfuric acid to individuals or companies who repackage the product for sale as sewer or drain cleaners, or any other similar use.

The data in this Material Safety Data Sheet relates only to the specific material designated herein and does not relate to use in combination with any other material or in any process.

For additional information, please visited our website: www.norfalco.com

Written by: Groupe STEM Consultants / NorFalco Sales Inc.

Complete revision: 2009-01-24 Partial review: None Previous complete revision: 2008-01-24

2009

77% - 100% SULFURIC ACID

Verified by: Guy Desgagnés and Eric Kuraitis, Technical Representative - Sulfuric Acid

Request to: André Auger, Administration Assistant Tel.: (905) 542-6901 extension 0 Fax: (905) 542-6914 / 6924

NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2

Notice to Reader

Although reasonable precautions have been taken in the preparation of the data contained herein, it is offered solely for your information, consideration and investigation. NorFalco Sales Inc. extends no warranty and assumes no responsibility for the accuracy of the coment and expressly disclaims all liability for reliance thereon. This material safety data sheet provides guidelines for the safe handling and processing of this product; it does not and cannot advise on all possible situations, therefore, your specific use of this product should be evaluated to determine if additional precautions are required. Individuals exposed to this product should read and understand this information and be provided pertinent training prior to working with this product.

2009

B: 35.9"

D: 3.5"

Flow, gpm

C: 6.0"

E: 2.0"

TYP.

02/18/09

DWG SIZE: A SHEET: 1 OF 1 DRAWING NUMBER: ST-0002-SPC

Mirafi[®] 140N

Mirafi[®] 140N is a needlepunched nonwoven geotextile composed of polypropylene fibers, which are formed into a stable network such that the fibers retain their relative position. Mirafi[®] 140N is inert to biological degradation and resists naturally encountered chemicals, alkalis, and acids. Mirafi[®] 140N meets Aashto M288-06 Class 3 for elongation > 50%.

Mechanical Properties	Test Method	Unit	Minimum Average Roll Value		
-			MD	CD	
Grab Tensile Strength	ASTM D4632	lbs (N)	120 (534)	120 (534)	
Grab Tensile Elongation	ASTM D4632	%	50	50	
Trapezoid Tear Strength	ASTM D4533	lbs (N)	50 (223)	50 (223)	
CBR Puncture Strength	ASTM D6241	lbs (N)	310 (1380)	
Apparent Opening Size (AOS) ¹	ASTM D4751	U.S. Sieve (mm)	70 (0.212)		
Permittivity	ASTM D4491	sec ⁻¹	1	.7	
Flow Rate	ASTM D4491	gal/min/ft ² (l/min/m ²)	135 (5500)		
UV Resistance (at 500 hours)	ASTM D4355	% strength retained	7	70	

¹ ASTM D4751: AOS is a Maximum Opening Diameter Value

Physical Properties	Unit	Typical Value	
Roll Dimensions (width x length)	ft (m)	12.5 x 360 (3.8 x 110)	15 x 360 (4.5 x 110)
Roll Area	yd² (m²)	500 (418)	600 (502)
Estimated Roll Weight	lb (kg)	133 (60)	160 (72)

Disclaimer: TenCate assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

© 2012 TenCate Geosynthetics Americas Mirafi[®] is a registered trademark of Nicolon Corporation

