

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

OMNI BOSTON SEAPORT HOTEL 450 SUMMER STREET

SOUTH BOSTON, MASSACHUSETTS

MAY 7, 2018

Prepared For:

U.S. Environmental Protection Agency
Office of Ecosystem Protection
5 Post Office Square – Suite 100
Mail Code OEP06-01
Boston, MA 02109-3912

On Behalf Of:

OH NBH Owner, LLC 125 High Street, 12th Floor Boston, MA 02110

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

PROJECT NO. 6311

May 7, 2018

U.S. Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square – Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

Attention: To Whom It May Concern

Reference: Omni Boston Seaport Hotel – 450 Summer Street; South Boston,

Massachusetts

Notice of Intent for Construction Dewatering Discharge Under Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

On behalf of OH NBH Owner, LLC, McPhail Associates, LLC (McPhail) has prepared the attached Notice of Intent (NOI) for coverage under the Massachusetts Remediation General Permit (RGP) MAG910000 for the discharge of construction dewatering effluent into Boston Inner Harbor via the City of Boston storm drainage system. The temporary construction dewatering discharge will occur during construction of the proposed development of the Omni Boston Seaport Hotel located at 450 Summer Street on Massachusetts Port Authority (Massport) Parcel D-2 in South Boston, Massachusetts (subject site). Refer to **Figure 1** entitled: "Project Location Plan" for the general site locus.

These services were performed and this permit application was prepared in accordance with our proposal dated December 23, 2016, and the subsequent authorization of The Davis Company. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent Form contained in the RGP permit and Boston Water & Sewer Commission (BWSC) Dewatering Discharge Permit Application are included in **Appendix B** and supporting information is included in **Appendix C**.

A Best Management Practice Plan (BMPP) is contained in **Appendix F**.

Applicant/Operator

The applicant for the Notice of Intent-Dewatering General Permit is:

OH NBH Owner, LLC

Address: 125 High Street 12th Floor, Boston, MA 02119

Attention: Dante Angelucci

Title: Director

Phone: (617) 936-4808

Email: dangelucci@thedaviscompanies.com

Site Location and Existing Conditions

Parcel D-2 occupies an approximate 87,849 square-foot area generally bounded by Summer Street to the south, World Trade Center Avenue Bridge/Fargo Street to the west, the D Street bridge abutment to the east, and Massport Haul Road, a retaining wall and a railway right-of-way to the north. The site is presently vacant and the ground surface generally consists of gravel and grass. The limits of the subject site are depicted on **Figure 2**. Existing ground surface across the Massport Haul Road side of the site is generally level at about Elevation +9 to Elevation +11, sloping upward to the south to about Elevation +15 to Elevation +17 in the middle of the site, and again sloping upward to about Elevation +24 to +29 along Summer Street.

Proposed Scope of Site Development

It is understood that the proposed scope of development includes the construction of two, 21-story above-grade hotel towers, an 8-story above-grade mid-rise hotel, a 4 to 6-level podium, and one-below-grade level. The proposed below-grade footprint is indicated on **Figure 2.**

The proposed development will include the construction of two, 21-story above-grade hotel towers with mechanical penthouse levels and below grade space. The towers will occupy an approximate 20,000 square-foot plan and 7,000 square-foot plan area connected by an 8-story mid-rise building and a 4- to 6-level podium structure. The one level below grade space will occupy an approximate 52,800 square-foot and extend to elevation +6. The combined above-grade building footprints will occupy an approximate 73,000 square-foot plan area. The ground level slab will be at Elevation +24.5.

Site History

Prior to the early 1890's, the site was a tidal flat of Boston Harbor. In the 1890's the land was reclaimed utilizing dredged fill material obtained from the adjacent tidal flats, Fort Point Channel and Boston Harbor. The dredged fill material typically consisted of organic silt and marine clay. In addition, "city ashes, refuse, earth and waste" materials were also reportedly utilized as fill material. The top of the site was capped with approximately 5 to 10 feet of granular fill material.

Site Environmental Setting and Surrounding Historical Places

Based on an on-line edition of the Massachusetts Geographic Information Systems DEP Priority Resources Map (GIS Map) viewed on April 13, 2018, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of

Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the subject site did not identify the presence of no endangered species at or in the vicinity of the marine discharge location and/or discharge outfall. Based upon the above, the site is considered NMFS criterion pursuant to Appendix IV of the RGP. A copy of the IPaC Trust Resource Report and supporting data are included in **Appendix C**.

The GIS Map indicates that there are no water bodies or wetland areas on the subject site. The map also indicates that the closest Protected Open Space to the subject site is located approximately 2,500 feet to the east. The closest water body is the Boston Inner Harbor is located approximately 1,000 feet to the northeast of the subject site. A copy of the Massachusetts GIS Priority Resources Map is included in **Appendix C**.

A review of the online Massachusetts Cultural Resource Information System (MACRIS) and the National Register of Historical Places for Suffolk County in Boston, Massachusetts did not identify records or addresses of historic places that exist in the immediate vicinity of the subject site and/or outfall location. A copy of the MACRIS Report is included in **Appendix C**.

Summary of Groundwater Analysis

In 2018, two (2) groundwater observation wells were sampled at the subject site. Samples were collected from wells B-111 (OW) and B-106 (OW) and submitted for laboratory analysis on April 3, 2018 and April 4, 2018, respectively. Laboratory results indicate detectable concentrations of ammonia, arsenic, chromium, chloride, copper, iron, lead, total suspended solids, and select semi-volatile organic compounds (SVOCs). A summary of the groundwater results is shown in the enclosed **Table 1**. The associated laboratory analytical data reports are included in **Appendix D**.

In accordance with Section 4.2.1 of the updated 2017 NPDES RGP, a sample of water from the Boston Inner Harbor was obtained and analyzed for recoverable metals, ammonia, pH, and salinity summarized in **Table 2**. The associated laboratory analytical data reports are included in **Appendix E**.

In summary, the groundwater testing completed indicates detectable concentrations of ammonia, arsenic, chromium, chloride, copper, iron, lead, total suspended solids, acenaphthene, fluoranthene and phenanthrene were detected. Concentrations were utilized in Appendix V of the 2017 RGP, to determine if Water Quality-Based Effluent Limitations (WQBELs) for specific inorganics apply. For discharging to saltwater with a dilution factor of 0, WQBELs apply for Total Residual Chlorine, however, because the groundwater at the site has not, nor will be chlorinated, prior to or during discharge, hence the WQBEL does not apply to this specific discharge. The Appendix V calculations also indicate Technology-Based Effluent Limitations (TBELs) apply for other Inorganics and SVOCS. A copy of the TBEL and WQBEL calculations is attached in **Appendix C**.

Construction Dewatering

It is anticipated that dewatering by means of strategically located sumps and trenches should suffice to manage groundwater during foundation and utility excavations and manage water which may become trapped within the excavation areas following periods of precipitation. If on-site recharge is not feasible, it will be necessary to discharge construction dewatering effluent into the city storm drainage system.

A review of available sanitary and storm sewer system plans accessed from the BWSC indicates the presence of a dedicated stormwater drain system located within Massport Haul Road. Records supplied by BWSC indicate one discharge flow path adjacent to the site flows to a primary discharge outfall location. The discharge flow path runs east-northeast towards the harbor under Massport Haul Road. The primary discharge location is an outfall pipe listed as #SS1 according to the BWSC. The site storm drains, discharge location, and discharge flow path are shown on the enclosed **Figure 3A & 3B.**

Groundwater Treatment

Based on the results of the above referenced groundwater analyses, it is our opinion that a minimum of one (1) 10,000-gallon capacity settling tanks and 10 micron bag filter in series will be required to settle and filter out suspended and dissolved inorganic metals in the discharge to meet applicable effluent limits established by the US EPA prior to off-site discharge. If necessary, an Ion Exchange Resin Filter will be utilized to further treat levels of metals in the effluent to meet the WQBELs that are considered applicable. A schematic of the treatment system is shown on **Figure 4**.

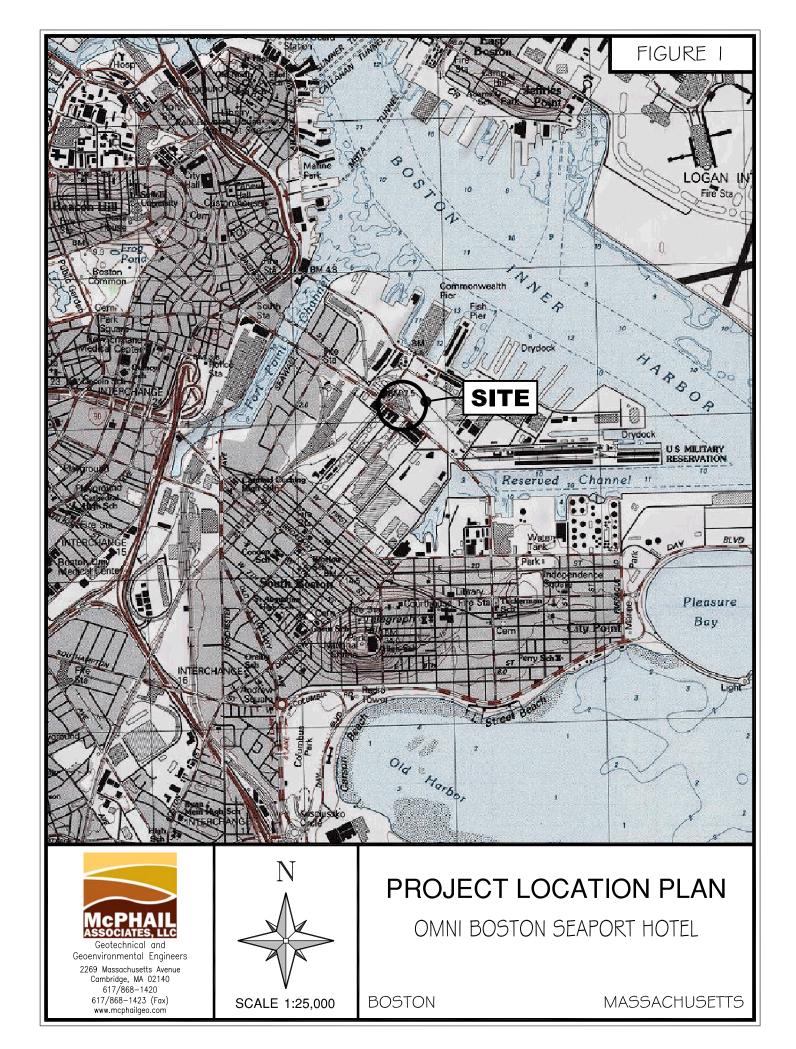
Summary and Conclusions

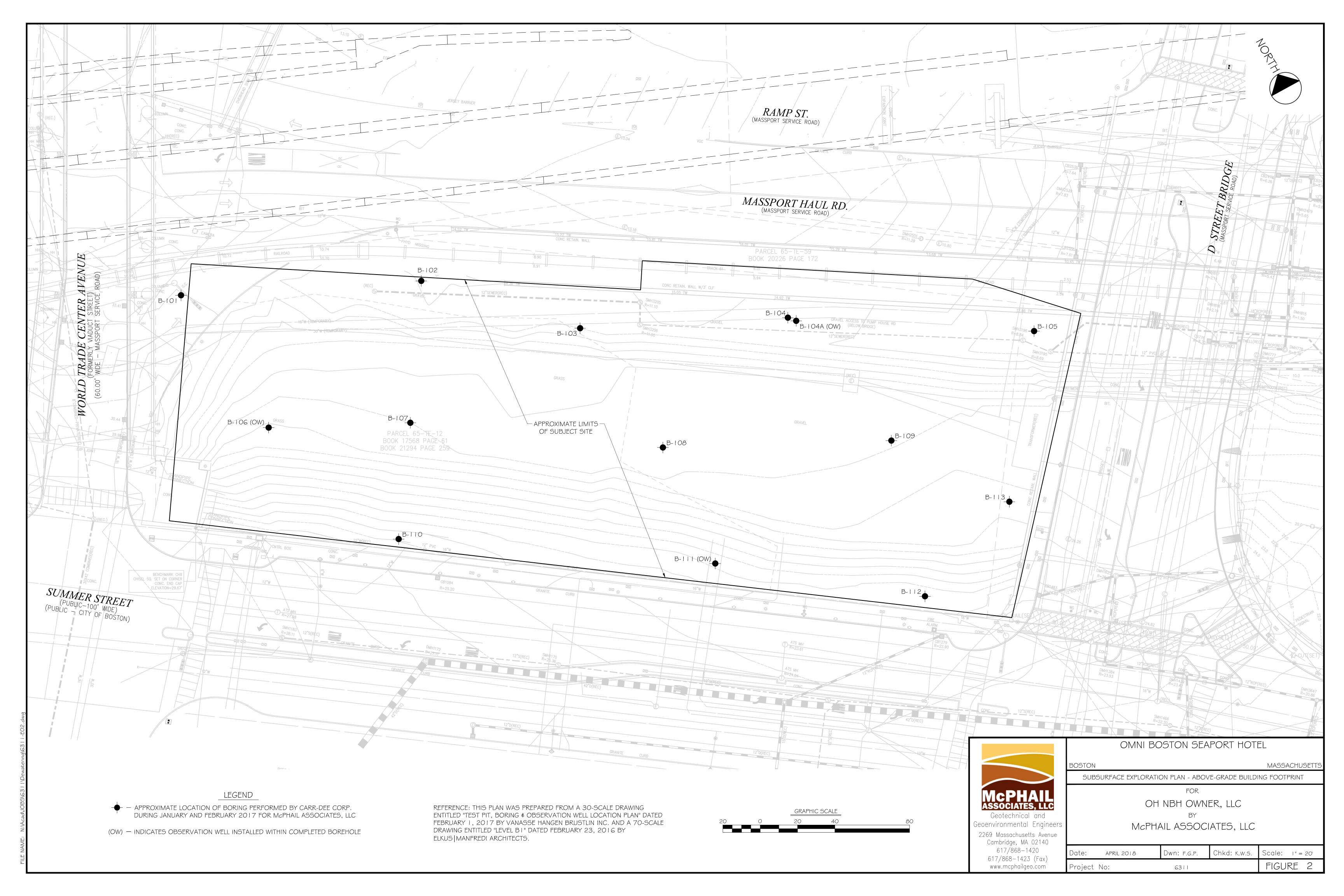
The purpose of this report is to assess site environmental conditions and groundwater data to support an application for a Massachusetts Remediation General Permit for off-site discharge of dewatered groundwater which will be encountered during the proposed development of the Omni Boston Seaport Hotel located at 450 Summer Street on Massport Parcel D-2 in South Boston, Massachusetts (subject site).

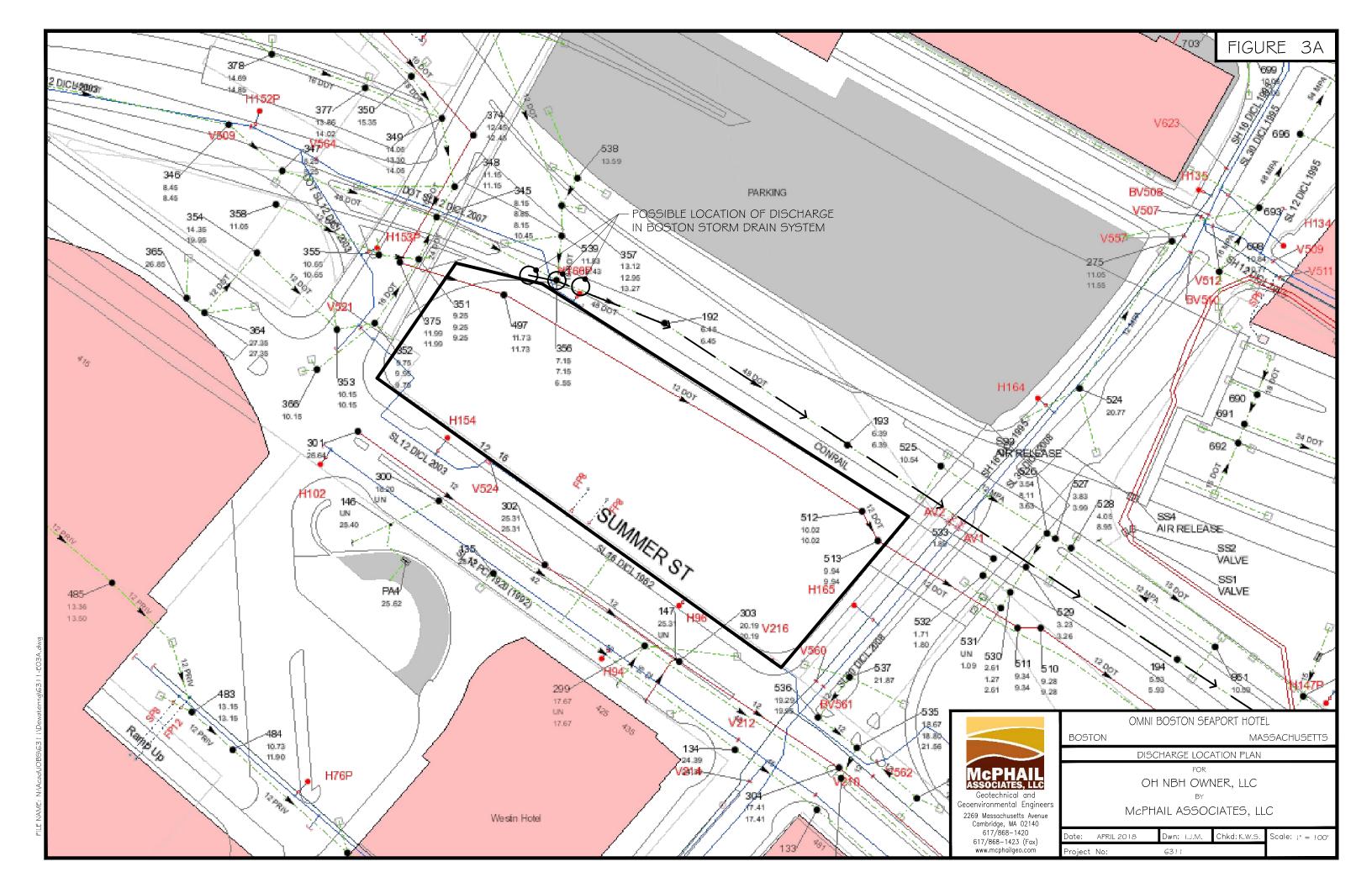
Based on the results of the above referenced groundwater analyses, treatment of construction dewatering will be necessary to meet allowable TBELs for inorganics and SVOCS established by the US EPA prior to off-site discharge. The proposed construction dewatering effluent treatment system will consist of a minimum of one (1) 10,000-gallon gallon capacity and bag filter in series to filter out sediment containing elevated levels of metals. However, should the effluent monitoring results indicate levels of in excess of the applicable TBELs and/or WQBEL established in the Massachusetts RGP, additional mitigative measures in the form of Ion Exchange Resin Filtration will be implemented to meet the allowable discharge limits.

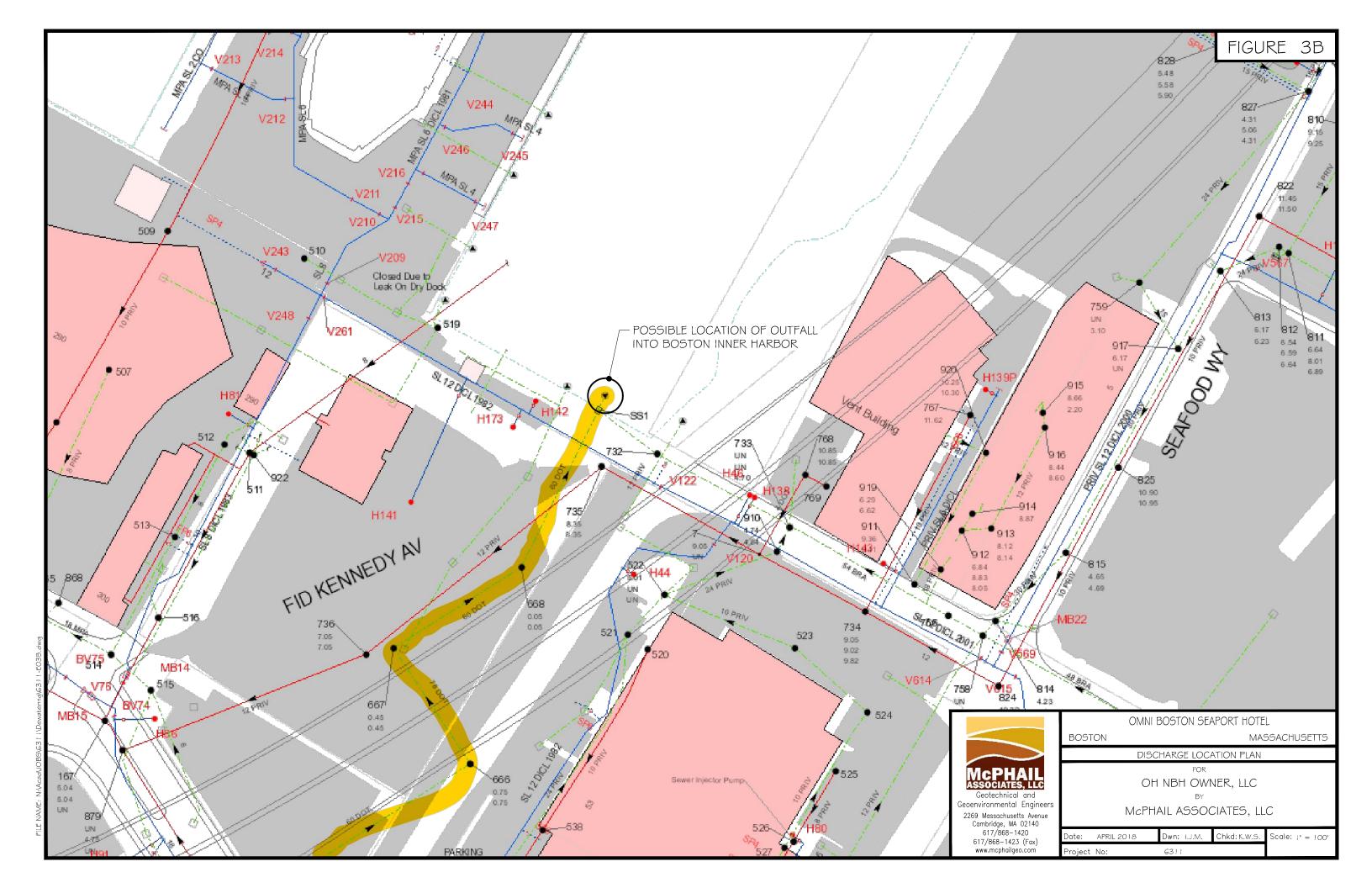
We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

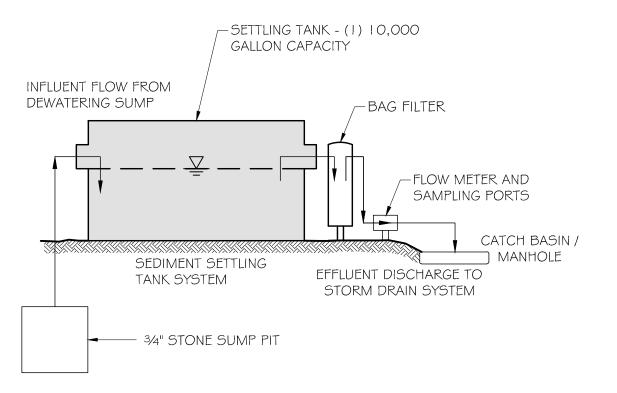
Sincerely,


McPHAIL ASSOCIATES, LLC


Kirk W. Seaman


William J. Burns, L.S.P.


N:\Working Documents\Reports\6311_RGP_041018.docx


KWS/wjb/jwp

OMNI BOSTON SEAPORT HOTEL

BOSTON MASSACHUSETTS

SCHEMATIC OF WATER FLOW

FOR

OH NBH OWNER, LLC

McPHAIL ASSOCIATES, LLC

CONSULTING GEOTECHNICAL ENGINEERS

ate: APRIL 2018 | Dwn: I.J.M. | Chkd: K.W.S. | Sc

Project No: 6311

5. Scale: N.T.S.

Table 1 - Groundwater Analytical Results

Omni Boston Seaport Hotel; South Boston, MA McPhail Job No. 6311

LOCATION		B-111 (OW)	B-106 (OW)
SAMPLING DATE	EPA-ALSCCC	4/3/2018	4/4/2018
LAB SAMPLE ID	EPA-ALSCCC	L1811481-01	L1811674-01
SAMPLE TYPE		Groundwater	Groundwater
General Chemistry (ug/l)			
Chlorine, Total Residual		ND(20)	ND(20)
Chromium, Hexavalent	50	ND(10)	ND(10)
Chromium, Trivalent		ND(10)	ND(10)
Cyanide, Total	1*	ND(5)	ND(5)
Nitrogen, Ammonia		908	2260
pH (H)		8.1	7.2
SALINITY		ND(2)	ND(2)
Solids, Total Suspended		21000	28000
Total Metals (ug/l)			
Antimony, Total		ND(4)	ND(4)
Arsenic, Total	36	ND(1)	3.33
Cadmium, Total	8.8	ND(0.2)	ND(0.2)
Chromium, Total		ND(1)	1.07
Copper, Total	3.1	1.37	1.58
Iron, Total		207	7720
Lead, Total	8.1	ND(1)	4.12
Mercury, Total	0.94	ND(0.2)	ND(0.2)
Nickel, Total	8.2	ND(2)	ND(2)
Selenium, Total	71	ND(5)	ND(5)
Silver, Total		ND(0.4)	ND(0.4)
Zinc, Total	81	ND(10)	ND(10)
Anions (ug/l)			
Chloride		325000	272000
Semivolatile Organics (ug/l)			
ALL		ND	ND
Semivolatile Organics (ug/l)			
Acenaphthene		ND(0.1)	0.32
Fluoranthene		ND(0.1)	0.28
Pyrene		ND(0.1)	0.23
SUM		-	0.83

[&]quot;*" = Value is associated with National Recommended Water Quality Criteria (Saltwater Aquatic Chronic) and not likely to reflect the EPA's approval discharge limitation value for this RGP.

Table 2 - Surface Water Analytical Results

Omni Boston Seaport Hotel; South Boston, MA McPhail Job No. 6311

LOCATION		PAVILION OUTFALL
SAMPLING DATE		5/30/2017
LAB SAMPLE ID		L1717710-01
SAMPLE TYPE	T I 4	
	Units	Surface Water
General		
SALINITY	SU	7.2
pH (H)	SU	7.5
Nitrogen, Ammonia	mg/l	0.18
MCP General Chemistry		
Chromium, Hexavalent	ug/l	ND(10)
Total Metals	-	
Antimony, Total	ug/l	ND(20)
Arsenic, Total	ug/l	1.38
Cadmium, Total	ug/l	ND(1)
Chromium, Total	ug/l	ND(1)
Copper, Total	ug/l	1.89
Iron, Total	ug/l	126
Lead, Total	ug/l	ND(5)
Mercury, Total	ug/l	ND(0.2)
Nickel, Total	ug/l	ND(2)
Selenium, Total	ug/l	ND(5)
Silver, Total	ug/l	ND(5)
Zinc, Total	ug/l	ND(10)

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present a summary of environmental conditions, including the results of testing of groundwater samples obtained from groundwater monitoring wells on the property located at Massport Parcel D-2 on Summer Street in South Boston, Massachusetts in support of an application for approval of temporary construction dewatering discharge of groundwater into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon analytical data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of OH NBH Owner, LLC. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than the submission to relevant governmental agencies, nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT - NPDES REMEDIATION GENERAL PERMIT BOSTON WATER & SEWER DEWATERING DISCHARGE PERMIT APPLICATION

Suggested Format for the Remediation General Permit Notice of Intent (NOI) II.

A. General site information:								
Name of site: Omni Boston Seaport Hotel	Site address: 450 Summer Street Massport Parcel D-2 Street:							
	City: Boston		State: MA	^{Zip:} 02210				
2. Site owner OH NBH Owner, LLC	Contact Person: Dante Angelucci	1						
OTTION OWNER, LLO	Telephone: 617-936-4808	Email: dar	ndelucci@th	nedaviscompanies.				
	Mailing address: 125 High Street 12th Floor							
	Street:							
Owner is (check one): ☐ Federal ■ State/Tribal ☐ Private ☐ Other, if so, specify:	City: Boston		State: MA	Zip: 02110				
3. Site operator, if different than owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):							
	☐ MA Chapter 21e; list RTN(s):	□ CERC1	_A					
NPDES permit is (check all that apply: ☐ RGP ☐ DGP ☐ CGP	□ NH Groundwater Management Permit or							
☐ MSGP ☐ Individual NPDES permit ☐ Other, if so, specify:	Groundwater Release Detection Permit:		Pretreatmen	t				
Z moor Z marroam ra 222 pomin Z omz., n so, specify.		☐ CWA S	Section 404					

B. Receiving water information:							
Name of receiving water(s):	Waterbody identification of receiving water	(s); Classi	fication of receiving water(s):				
Boston Inner Harbor MA70-02 SB							
Receiving water is (check any that apply): Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic	River				
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: ■ Yes □ No					
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes ■ No						
3. Indicate if the receiving water(s) is listed in the State pollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.	ate's Integrated List of Waters (i.e., CWA Section 3 s available for any of the indicated pollutants. For n Boston Inner Harbor MA70-02 - See Appendix C for furthe	nore information, contact th	nated uses are impaired, and any e appropriate State as noted in Part				
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.							
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s			0				
6. Has the operator received confirmation from the a If yes, indicate date confirmation received: 0	•	,	<u></u>				
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with th	e instruction in Appendix VIII?				
(check one): ■ Yes □ No							
C. Source water information:							
Source water(s) is (check any that apply):							
■ Contaminated groundwater	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other					
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; so, indicate waterbody:	Other; if so, specify:				
■ Yes □ No							

2. Source water contaminants: Ammonia, TSS, Arsenic, Chromium, Coppe	er, Iron, Lead, Zinc, Cyanide, and PAHs
For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): Yes No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	w discharge □ New source
Outfall(s): #356	Outfall location(s): (Latitude, Longitude) 42.348401, -71.034387
Discharges enter the receiving water(s) via (check any that apply): Direct di	scharge to the receiving water ■ Indirect discharge, if so, specify:
Discharge outfall indirectly into Boston Inner Harbor via	
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ■ Ye	
Has the operator has received permission from the owner to use such system for obtaining permission: from BWSC in tendem with this NOI	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): ■ Yes □ No
Provide the expected start and end dates of discharge(s) (month/year): May 20	018 - April 2019
Indicate if the discharge is expected to occur over a duration of: less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	c all that apply)
	a. If Activity Categ	gory I or II: (check all that apply)
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Col □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds
□ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known	7, V, VI, VII or VIII: (check either G or H)
□ V – Dewatering of Piperines and Tailes □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)	
	■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply
	 ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	

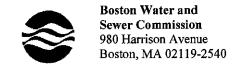
	Known	Known		l		In	Influent		mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		1	2	44350.1	75 m	2600	1584	Report mg/L	-
Chloride		1	2	443000 #	500 ■	325000	298500	Report μg/l	
Total Residual Chlorine	1		2	121,4500@	20	<dl< td=""><td><dl< td=""><td>0.2 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.2 mg/L</td><td></td></dl<>	0.2 mg/L	
Total Suspended Solids		1	2	1212540□	5000	28000 €	24500	30 mg/L	
Antimony	√		2	1,6020A 	4	<dl< td=""><td><dl b<="" td=""><td>206 μg/L</td><td></td></dl></td></dl<>	<dl b<="" td=""><td>206 μg/L</td><td></td></dl>	206 μg/L	
Arsenic		1	2	1,6020A =	0.5	3.3	2.15	104 μg/L	
Cadmium	1		2	1,6020A	0.2	<dl t<="" td=""><td><dl< td=""><td>10,2 μg/L</td><td></td></dl<></td></dl>	<dl< td=""><td>10,2 μg/L</td><td></td></dl<>	10,2 μg/L	
Chromium III	1		2	1,6020A 🖪	10	<dl e<="" td=""><td><dl< td=""><td>323 μg/L</td><td></td></dl<></td></dl>	<dl< td=""><td>323 μg/L</td><td></td></dl<>	323 μg/L	
Chromium VI	/		2	1,6020A 🖪	1	<dl< td=""><td><dl< td=""><td>323 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 μg/L</td><td></td></dl<>	323 μg/L	
Copper		✓	2	1,6020A	1 0	1.58	1.475	242 μg/L	l .
Iron		1	2	19200.7	500 €	7720	3963.5 ■	5,000 μg/L	
Lead		1	2	1,6020A =	0.5	4.12	2.56	160 μg/L	
Mercury	1		2	3,245.1	0.2	<dl< td=""><td>∢DL □</td><td>0.739 μg/L</td><td></td></dl<>	∢DL □	0.739 μg/L	
Nickel	/		2	1,6020A	0.5	⊲ DL ∎	• ⟨DL □	1,450 μg/L	
Selenium	1		2	1,6020A	5	<dl< td=""><td><dl td="" □<=""><td>235.8 μg/L</td><td></td></dl></td></dl<>	<dl td="" □<=""><td>235.8 μg/L</td><td></td></dl>	235.8 μg/L	
Silver	1		2	1,6020A =	0,4	<dl< td=""><td><dl td="" □<=""><td>35.1 μg/L</td><td><u> </u></td></dl></td></dl<>	<dl td="" □<=""><td>35.1 μg/L</td><td><u> </u></td></dl>	35.1 μg/L	<u> </u>
Zinc	1		2	1,6020A 🖪	10 📙	<dl< td=""><td><dl< td=""><td>420 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>420 μg/L</td><td></td></dl<>	420 μg/L	
Cyanide	1		2	121,4500@	5	<dl :<="" td=""><td>oDL ∎</td><td>178 mg/L</td><td></td></dl>	oDL ∎	178 mg/L	
B. Non-Halogenated VOC	<u> </u>		12	121,1000					,
Total BTEX	· /		0				: <dl ::<="" td=""><td>100 μg/L</td><td></td></dl>	100 μg/L	
Benzene	/		0				I <dl td="" □<=""><td>5.0 μg/L</td><td></td></dl>	5.0 μg/L	
1,4 Dioxane	/		0			<dl :<="" td=""><td>ı ⊲DL ∎</td><td>200 μg/L</td><td></td></dl>	ı ⊲DL ∎	200 μg/L	
Acetone	1		0				o do DL □	7.97 mg/L	
Phenol			0			<dl< td=""><td>• DL ■</td><td>1,080 μg/L</td><td>1</td></dl<>	• DL ■	1,080 μg/L	1

Parameter	Known	Known			Detection limit (µg/l)	In	fluent	Effluent Lin	nitations
	or believed absent	or believed present	# of samples	Test method (#)		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	/		0			<dl d<="" td=""><td><dl< td=""><td></td><td></td></dl<></td></dl>	<dl< td=""><td></td><td></td></dl<>		
1,2 Dichlorobenzene	1		0			<dl< td=""><td><dl b<="" td=""><td>600 μg/L</td><td></td></dl></td></dl<>	<dl b<="" td=""><td>600 μg/L</td><td></td></dl>	600 μg/L	
1,3 Dichlorobenzene	1		0			<dl< td=""><td><dl td="" ■<=""><td></td><td></td></dl></td></dl<>	<dl td="" ■<=""><td></td><td></td></dl>		
1,4 Dichlorobenzene	/		0			<dl b<="" td=""><td><dl td="" ■<=""><td></td><td></td></dl></td></dl>	<dl td="" ■<=""><td></td><td></td></dl>		
Total dichlorobenzene	1		0			<dl e<="" td=""><td><dl td="" ₫<=""><td>763 μg/L in NH</td><td></td></dl></td></dl>	<dl td="" ₫<=""><td>763 μg/L in NH</td><td></td></dl>	763 μg/L in NH	
1,1 Dichloroethane	1		0			<dl< td=""><td><dl td="" □<=""><td></td><td></td></dl></td></dl<>	<dl td="" □<=""><td></td><td></td></dl>		
1,2 Dichloroethane	1		0			<dl< td=""><td><dl td="" ■<=""><td>5.0 μg/L</td><td></td></dl></td></dl<>	<dl td="" ■<=""><td>5.0 μg/L</td><td></td></dl>	5.0 μg/L	
1,1 Dichloroethylene	V		0		L	<dl< td=""><td><dl td="" ■<=""><td></td><td></td></dl></td></dl<>	<dl td="" ■<=""><td></td><td></td></dl>		
Ethylene Dibromide	1		0			<dl< td=""><td><dl td="" □<=""><td></td><td></td></dl></td></dl<>	<dl td="" □<=""><td></td><td></td></dl>		
Methylene Chloride	1		0			<dl< td=""><td>√DL <u>B</u></td><td></td><td></td></dl<>	√ DL <u>B</u>		
1,1,1 Trichloroethane	7		0			<dl< td=""><td><dl td="" ■<=""><td></td><td></td></dl></td></dl<>	<dl td="" ■<=""><td></td><td></td></dl>		
1,1,2 Trichloroethane	1 /		0		Ţ <u></u>	<dl [<="" td=""><td><dl b<="" td=""><td>5.0 μg/L</td><td></td></dl></td></dl>	<dl b<="" td=""><td>5.0 μg/L</td><td></td></dl>	5.0 μg/L	
Trichloroethylene	1		0			<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Tetrachloroethylene	/		0			<dl c<="" td=""><td><dl b<="" td=""><td>5.0 μg/L</td><td></td></dl></td></dl>	<dl b<="" td=""><td>5.0 μg/L</td><td></td></dl>	5.0 μg/L	
cis-1,2 Dichloroethylene	1		0	1		<dl td="" ■<=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl>	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
Vinyl Chloride	✓		0			<dl< td=""><td>⊲DL <u>c</u></td><td>2.0 μg/L</td><td></td></dl<>	⊲DL <u>c</u>	2.0 μg/L	
D. Non-Halogenated SVO	Ce								
Total Phthalates	1		2	18270D- E	5.0	<dl< td=""><td><dl< td=""><td>190 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>190 μg/L</td><td></td></dl<>	190 μg/L	
Diethylhexyl phthalate	1		2	18270D- E		<dl e<="" td=""><td><dl td="" ■<=""><td>101 μg/L</td><td></td></dl></td></dl>	<dl td="" ■<=""><td>101 μg/L</td><td></td></dl>	101 μg/L	
Total Group I PAHs	1	i e	2	18270D-	0.10	<dl< td=""><td><dl td="" □<=""><td>1.0 μg/L</td><td></td></dl></td></dl<>	<dl td="" □<=""><td>1.0 μg/L</td><td></td></dl>	1.0 μ g /L	
Benzo(a)anthracene	1		2	18270D-	-	<dl< td=""><td><dl td="" □<=""><td></td><td></td></dl></td></dl<>	<dl td="" □<=""><td></td><td></td></dl>		
Benzo(a)pyrene		<u> </u>	2	18270D-	0.10	<dl b<="" td=""><td> ⟨DL □</td><td></td><td></td></dl>	⟨DL □		
Benzo(b)fluoranthene	1		2	18270D- ■	0.10	<dl e<="" td=""><td><dl< td=""><td>i</td><td></td></dl<></td></dl>	<dl< td=""><td>i</td><td></td></dl<>	i	
Benzo(k)fluoranthene	1		2	18270D- E	0.10	<dl< td=""><td><dl td="" ■<=""><td>As Total PAHs</td><td></td></dl></td></dl<>	<dl td="" ■<=""><td>As Total PAHs</td><td></td></dl>	As Total PAHs	
Chrysene	1		2	18270D-		<dl< td=""><td><dl td="" □<=""><td></td><td></td></dl></td></dl<>	<dl td="" □<=""><td></td><td></td></dl>		
Dibenzo(a,h)anthracene	1		2	18270D-		<dl< td=""><td><dl< td=""><td>1</td><td></td></dl<></td></dl<>	<dl< td=""><td>1</td><td></td></dl<>	1	
Indeno(1,2,3-cd)pyrene	 		2	18270D-	0.10	⊲DL ∎	d <dl td="" ■<=""><td>i </td><td></td></dl>	i	

	Known	Known				Ir	fluent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	-		2	18270D- ■	0.1	0.83	0.83	100 μg/L	
Naphthalene	1		2	18270D- <u>■</u>	2.5	<dl< td=""><td>C <dl< td=""><td>n 20 μg/L</td><td></td></dl<></td></dl<>	C <dl< td=""><td>n 20 μg/L</td><td></td></dl<>	n 20 μg/L	
E. Halogenated SVOCs									
Total PCBs	V		0	±		⊲DL	= <dl< td=""><td>0.000064 μg/L</td><td></td></dl<>	0.000064 μg/L	
Pentachlorophenol	1		0			<dl< td=""><td>C <dl< td=""><td>n 1.0 μg/L</td><td></td></dl<></td></dl<>	C <dl< td=""><td>n 1.0 μg/L</td><td></td></dl<>	n 1.0 μg/L	
F. Fuels Parameters Total Petroleum	· ·	<u> </u>	1						
Hydrocarbons	✓		0			◆DL	Ø <dl< td=""><td>5.0 mg/L</td><td></td></dl<>	5.0 mg/L	
Ethanol	√		0					Report mg/L	
Methyl-tert-Butyl Ether	/		0			<dl< td=""><td>■ <dl< td=""><td>ο 70 μg/L</td><td></td></dl<></td></dl<>	■ <dl< td=""><td>ο 70 μg/L</td><td></td></dl<>	ο 70 μg/L	
tert-Butyl Alcohol	1	ļ	0			⊲DL	• <dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<>	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		0			<dl< td=""><td>• <dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<></td></dl<>	• <dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<>	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperat	ure, hardness,	salinity, LC	C ₅₀ , addition	nal pollutan 121,4500l	ts present);	if so, specify			ļ
Salinity - Influent	8	T 1	2	121,2520	2 0	⊲DL	<dl< td=""><td>9</td><td></td></dl<>	9	
Temp - Influent		✓	1	YSI #		12.84 C	+		
			<u> </u>						
pH - Receiving Water		1	1	121,4500J			<u> </u>		
Salinity - Receiving Water	0		1				G		ļ.——
Temp - Receiving Water		-	1	121,2520		14.04 C	<u> </u>	-	
		<u> </u>	-				-	-	
			 	ļ		-	 		
	<u> </u>	1	-	1			 	_	<u> </u>
		 	+	 	1	-	+		

E. Treatment system information	
1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase C ■ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ☐ Other; if so, specify:	arbon Adsorption
Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Settling tank and bag filters	
Identify each major treatment component (check any that apply): ■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter □ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify: Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Frac Tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	100
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information


1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:
1 11.5. This determination was made by, (effect one) in the operator in the A in Other, it so, specify.

Appendix IV - Part 1 - NOI Page 23 of 24

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):
Does no supporting documentation include any written constanting provided by the pervises; (eleck one), = 103 = 103, if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit;
Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one):
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
one aloa representative that outlines measures the operator will early out to mitigate or prevent any auverse effects on instone properties (effects one).
I. Supplemental information
Describe any supplemental information being provided with the NOI, Include attachments if required or otherwise necessary.
NMFS Supporting Information
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

Appendix IV - Part 1 - NOI Page 24 of 24

J. Certification requirement				
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have			
A BMPP Statement has been prepared with accordance with good en BMPP certification statement: Part 2.5 of the RGP and shall be implemented upon initiation of discharge.				
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □			
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □			
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes No NA Submission of documentation to and approval from BWSC in tandem with this NO!			
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes ■ No □ NA □			
Signature: DD M V	ie: 5/4/18			
Print Name and Title: Dante Angelucci - Executive Vice President				

DEWATERING DISCHARGE PERMIT APPLICATION

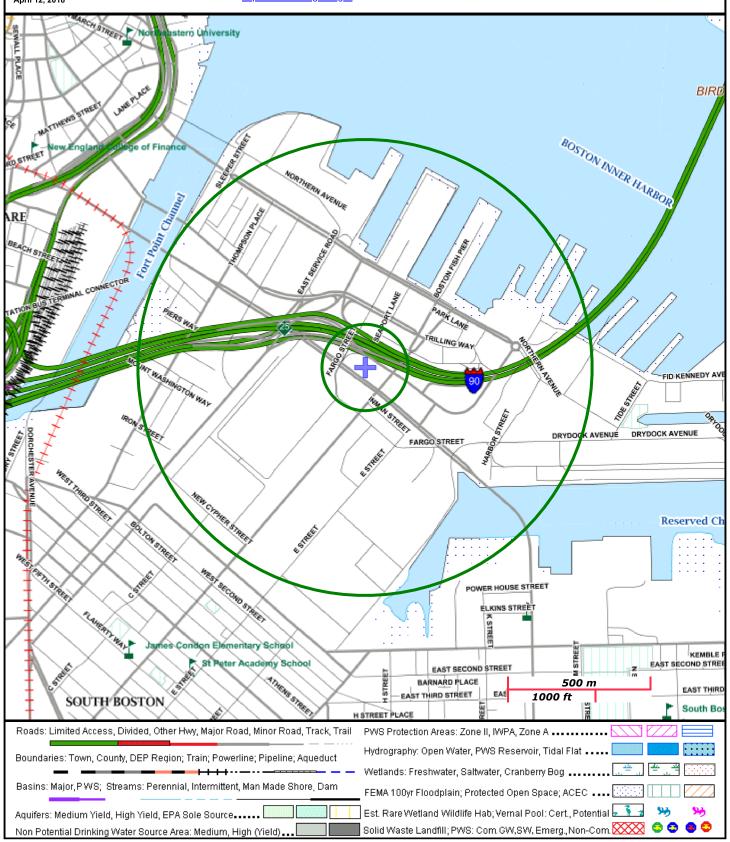
OWNER / AUTHORIZED APPLIC	ANT PROVIDE IN	FORMATION HERI	£;	
Company Name: OH NBH	Owner, Inc	Address: 125	High Stree	t 12th Floor Boston, MA 02110
Phone Number: 617 936 480)8			
Contact person name: Dante	Angelucci	Title: Executi		
Cell number: 617-633-		Email address: da	angelucci@	thedaviscompanies.com
				pecify):
Owner's Information (if different				
Owner of property being dewatered	l:	-		<u> </u>
				one number:
Location of Discharge & Propose				
Street number and name: 45	0 Summer Str	eet N	leighborhood	South Boston
Discharge is to a: ☐ Sanitary Sewe	er 🗆 Combined	Sewer 🛛 Storm Dr	ain □ Other	(specify):
Describe Proposed Pre-Treatment S	System(s): Frac	Tank and Bag F	ilters - IOI	N Resin (if necessary)
BWSC Outfall No. SS1				
Temporary Discharges (Provide A	nticipated Dates of I	Discharge): From 05	/2018	To 04/2019
☐ Groundwater Remediation	,	□ Tank Řemoval/Insta	llation	▼ Foundation Excavation
☐ Utility/Manhole Pumping ☐ Accumulated Surface Water		☐ Test Pipe ☐ Hydrogeologic Testi		□ Trench Excavation □ Other
		E 11) diogeologie 10st	6	
Permanent Discharges □ Foundation Drainage		□ Crawl Space/Footing	g Drain	
□ Accumulated Surface Water		□ Non-contact/Uncont		
□ Non-contact/Uncontaminated Proces		□ Other;		
				sewer pipe or catch basin). Include meter type, meter
number, size, make and start reading. 2. If discharging to a sanitary or combine				
				PDES Permit exclusion letter for the discharge, as well
as other relevant information.				
4. Dewatering Drainage Permit will be d	••		cessary perinits i	folio M w RA of EFA.
Submit Completed Application to:	Boston Water and Sev Engineering Customer			
	980 Harrison Avenue,			
	Attn: Matthew Tuttle, I E-mail: tuttlemp@bw	Engineering Customer Services core	e	
	Phone: 617-989-7204	Fax: 617-989		
Signature of Authorized Representative f		11111		Date: 5/4//8

APPENDIX C:

DEP PRIORITY RESOURCES MAP USGS STREAMFLOW STATISTICS REPORT DILUTION FACTOR AND WQBEL CALCULATIONS ADDITIONAL NOI SUPPORT INFORMATION

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

PARCEL D-2 MASSPORT HAUL ROAD BOSTON, MA

NAD83 UTM Meters: 4690327mN , 331749mE (Zone: 19) April 12, 2018

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found to the site. be found at: http://www.mass.gov/mgis/.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Street Name: Massport Haul Rd; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Thursday, April 5, 2018 Page 1 of 1

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: April 05, 2018

Consultation Code: 05E1NE00-2018-SLI-1499

Event Code: 05E1NE00-2018-E-03386 Project Name: Omni Boston Seaport Hotel

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-1499

Event Code: 05E1NE00-2018-E-03386

Project Name: Omni Boston Seaport Hotel

Project Type: DEVELOPMENT

Project Description: >1 acre

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.34695607582749N71.04256800859446W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Appendix I

NMFS Supplemental Information

- The discharge will be to the marine waters of Boston Harbor in Massachusetts and will not likely impact the following watersheds/rivers; Connecticut, Merrimack, Taunton or Piscataqua.
- Online and historical data indicates the possible presence of the following Marine Mammals and Reptiles at varying life stages in the Boston Harbor; Loggerhead Sea Turtle, Kemp's Ridley Sea Turtle, Leatherback Sea Turtle, Green Sea Turtle, Hawksbill Sea Turtle, North Atlantic Right Whale, and/or Fin Whale.
- No formal or informal consultation with NMFS has been made at this time, however it is not believed that permitted discharge into Boston Harbor would adversely affect the local marine fauna listed above.

APPENDIX D: LABORATORY ANALYTICAL DATA - GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1811481

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: PARCEL D-2

Project Number: 6311.9.00

Report Date: 04/13/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PARCEL D-2 **Project Number:** 6311.9.00

Lab Number: L1811481 **Report Date:** 04/13/18

Alpha Sample ID Client ID Matrix Sample Location Collection Date/Time Receive Date

L1811481-01 B-111 (OW) GROUNDWATER BOSTON 04/03/18 11:00 04/03/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

 Project Name:
 PARCEL D-2
 Lab Number:
 L1811481

 Project Number:
 6311.9.00
 Report Date:
 04/13/18

Case Narrative (continued)

Report Revision

April 13, 2018: The report has been amended to include the results for the Chloride and pH analyses.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/13/18

600, Shandow Kelly Stenstrom

ORGANICS

SEMIVOLATILES

Project Name: PARCEL D-2 Lab Number: L1811481

Project Number: 6311.9.00 **Report Date:** 04/13/18

SAMPLE RESULTS

Lab ID: Date Collected: 04/03/18 11:00

Client ID: B-111 (OW) Date Received: 04/03/18
Sample Location: BOSTON Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 04/04/18 10:57

Analytical Date: 04/07/18 03:41

Analyst: RC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Pentachlorophenol	ND		ua/l	10		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	37	21-120	
Phenol-d6	29	10-120	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	73	15-120	
2,4,6-Tribromophenol	77	10-120	
4-Terphenyl-d14	92	41-149	

Project Name: PARCEL D-2 Lab Number: L1811481

Project Number: 6311.9.00 **Report Date:** 04/13/18

SAMPLE RESULTS

Lab ID: Date Collected: 04/03/18 11:00

Client ID: B-111 (OW) Date Received: 04/03/18
Sample Location: BOSTON Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater Extraction Method: EPA 3510C

Analytical Method: 1 8270D-SIM Extraction Date: 04/04/18 10:58

Analytical Method: 1,8270D-SIM Extraction Date: 04/04/18 10:58
Analytical Date: 04/05/18 20:22

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10		1			
Fluoranthene	ND		ug/l	0.10		1			
Naphthalene	ND		ug/l	0.10		1			
Benzo(a)anthracene	ND		ug/l	0.10		1			
Benzo(a)pyrene	ND		ug/l	0.10		1			
Benzo(b)fluoranthene	ND		ug/l	0.10		1			
Benzo(k)fluoranthene	ND		ug/l	0.10		1			
Chrysene	ND		ug/l	0.10		1			
Acenaphthylene	ND		ug/l	0.10		1			
Anthracene	ND		ug/l	0.10		1			
Benzo(ghi)perylene	ND		ug/l	0.10		1			
Fluorene	ND		ug/l	0.10		1			
Phenanthrene	ND		ug/l	0.10		1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1			
Pyrene	ND		ug/l	0.10		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	35	21-120	
Phenol-d6	27	10-120	
Nitrobenzene-d5	63	23-120	
2-Fluorobiphenyl	62	15-120	
2,4,6-Tribromophenol	84	10-120	
4-Terphenyl-d14	78	41-149	

Project Name: PARCEL D-2 **Project Number:** 6311.9.00

Lab Number: L1811481

Report Date: 04/13/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/04/18 01:46

Extraction Method: EPA 3510C 04/03/18 13:51 **Extraction Date:**

Analyst: SZ

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG1103093-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l		5.0		
Di-n-octylphthalate	ND		ug/l		5.0		
Diethyl phthalate	ND		ug/l		5.0		
Dimethyl phthalate	ND		ug/l		5.0		
Pentachlorophenol	ND		ug/l		10		

Tentatively Identified Compounds

ND No Tentatively Identified Compounds ug/l

%Recovery Q	Acceptance Qualifier Criteria
48	21-120
34	10-120
82	23-120
90	15-120
93	10-120
101	41-149
	48 34 82 90 93

 Project Name:
 PARCEL D-2
 Lab Number:
 L1811481

 Project Number:
 6311.9.00
 Report Date:
 04/13/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 04/04/18 09:50

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 04/03/18 16:21

arameter	Result	Qualifier	Units	RL	I	MDL
emivolatile Organics by GC/	MS-SIM - Westbo	orough Lab fo	or sample(s)	: 01	Batch:	WG1103147-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		

Surrogate	%Recovery 0	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	89	15-120
2,4,6-Tribromophenol	102	10-120
4-Terphenyl-d14	106	41-149

Project Name: PARCEL D-2

Project Number: 6311.9.00

Lab Number: L1811481

	LCS		LCSD	9	%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associa	ated sample(s):	01 Batch:	WG1103093-2	WG1103093-3			
Bis(2-ethylhexyl)phthalate	111		108		40-140	3		30
Butyl benzyl phthalate	104		96		40-140	8		30
Di-n-butylphthalate	100		94		40-140	6		30
Di-n-octylphthalate	105		101		40-140	4		30
Diethyl phthalate	96		99		40-140	3		30
Dimethyl phthalate	92		88		40-140	4		30
Pentachlorophenol	73		77		9-103	5		30

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	52	49	21-120
Phenol-d6	40	38	10-120
Nitrobenzene-d5	87	83	23-120
2-Fluorobiphenyl	94	88	15-120
2,4,6-Tribromophenol	89	100	10-120
4-Terphenyl-d14	99	90	41-149

Project Name: PARCEL D-2

Project Number: 6311.9.00

Lab Number: L1811481

arameter	LCS %Recovery	LCSD Qual %Recov	,		RPD Qual Limits	;
emivolatile Organics by GC/MS-SIM - Westl	oorough Lab As	sociated sample(s): 01	Batch: WG1103147-2 W	G1103147-3		
Acenaphthene	89	86	40-140	3	40	
Fluoranthene	85	90	40-140	6	40	
Naphthalene	85	81	40-140	5	40	
Benzo(a)anthracene	95	98	40-140	3	40	
Benzo(a)pyrene	104	104	40-140	0	40	
Benzo(b)fluoranthene	97	104	40-140	7	40	
Benzo(k)fluoranthene	95	106	40-140	11	40	
Chrysene	92	98	40-140	6	40	
Acenaphthylene	87	80	40-140	8	40	
Anthracene	91	96	40-140	5	40	
Benzo(ghi)perylene	100	127	40-140	24	40	
Fluorene	93	89	40-140	4	40	
Phenanthrene	91	93	40-140	2	40	
Dibenzo(a,h)anthracene	116	132	40-140	13	40	
Indeno(1,2,3-cd)pyrene	113	129	40-140	13	40	
Pyrene	91	94	40-140	3	40	

Project Name: PARCEL D-2

Lab Number:

L1811481

Project Number: 6311.9.00

Report Date:

04/13/18

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1103147-2 WG1103147-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	54	50	21-120
Phenol-d6	40	36	10-120
Nitrobenzene-d5	95	89	23-120
2-Fluorobiphenyl	96	89	15-120
2,4,6-Tribromophenol	102	98	10-120
4-Terphenyl-d14	107	110	41-149

METALS

Project Name:PARCEL D-2Lab Number:L1811481Project Number:6311.9.00Report Date:04/13/18

SAMPLE RESULTS

Lab ID:L1811481-01Date Collected:04/03/18 11:00Client ID:B-111 (OW)Date Received:04/03/18Sample Location:BOSTONField Prep:Not Specified

Sample Depth:

Matrix: Groundwater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Copper, Total	0.00137		mg/l	0.00100		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Iron, Total	0.207		mg/l	0.050		1	04/04/18 13:30	04/04/18 21:01	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	04/05/18 10:53	04/05/18 16:54	EPA 245.1	3,245.1	MG
Nickel, Total	ND		mg/l	0.00200		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	04/04/18 13:30	04/05/18 10:07	EPA 3005A	3,200.8	AM
General Chemistry -	· Mansfiel	d Lab	<u> </u>								
Chromium, Trivalent	ND		mg/l	0.010		1		04/05/18 10:07	NA	107,-	

Project Name: PARCEL D-2
Project Number: 6311.9.00

Lab Number: L1811481 **Report Date:** 04/13/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	01 Batc	h: WG11	03430-	1				
Antimony, Total	ND	mg/l	0.00400		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	04/04/18 13:30	04/05/18 09:35	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	sfield Lab for sample(s	s): 01 Batch	n: WG1	103431-	1				
Iron, Total	ND	mg/l	0.050		1	04/04/18 13:30	04/04/18 18:32	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansf	field Lab for sample(s):	01 Batcl	h: WG11	03783-	·1				
Mercury, Total	ND	mg/l	0.0002		1	04/05/18 10:53	04/05/18 16:08	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Project Name: PARCEL D-2

Project Number: 6311.9.00

Lab Number: L1811481

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1103430-2				
Antimony, Total	105	-	85-115	-		
Arsenic, Total	108	-	85-115	-		
Cadmium, Total	107	-	85-115	-		
Chromium, Total	106	-	85-115	-		
Copper, Total	105	-	85-115	-		
Lead, Total	105	-	85-115	-		
Nickel, Total	105	-	85-115	-		
Selenium, Total	106	-	85-115	-		
Silver, Total	98	-	85-115	-		
Zinc, Total	110	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1103431-2				
Iron, Total	104	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1103783-2				
Mercury, Total	92	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL D-2 **Project Number:** 6311.9.00

Lab Number: L1811481

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch I	D: WG110343	0-3	QC Sample	: L1811479-01	Clien	t ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.6157	123		-	-		70-130	-		20
Arsenic, Total	0.01550	0.12	0.1518	114		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05692	112		-	-		70-130	-		20
Chromium, Total	0.00796	0.2	0.2292	111		-	-		70-130	-		20
Copper, Total	0.00268	0.25	0.2732	108		-	-		70-130	-		20
Lead, Total	0.00166	0.51	0.5600	109		-	-		70-130	-		20
Nickel, Total	0.00420	0.5	0.5456	108		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1322	110		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05034	101		-	-		70-130	-		20
Zinc, Total	ND	0.5	0.5618	112		-	-		70-130	-		20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch I	D: WG110343	1-3	QC Sample	: L1811255-02	Clien	t ID: MS Sa	ample		
Iron, Total	0.150	1	1.18	103		-	-		75-125	-		20
otal Metals - Mansfield La	b Associated sam	ple(s): 01	QC Batch I	D: WG110343	1-7	QC Sample	: L1811479-01	Clien	t ID: MS Sa	ample		
Iron, Total	34.3	1	35.6	130	Q	-	-		75-125	-		20
Гotal Metals - Mansfield La	b Associated sam	ple(s): 01	QC Batch I	D: WG110378	3-3	QC Sample	: L1811081-02	Clien	t ID: MS Sa	ample		
Mercury, Total	ND	0.005	0.0043	86		-	-		70-130	-		20
Γotal Metals - Mansfield La	b Associated sam	ple(s): 01	QC Batch I	D: WG110378	3-5	QC Sample	: L1811082-02	Clien	t ID: MS Sa	ample		
Mercury, Total	ND	0.005	0.0044	88		-	-		70-130	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL D-2
Project Number: 6311.9.00

Lab Number:

L1811481

Parameter	Native Sample Dup	olicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1103430-4	QC Sample:	L1811479-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.01550	0.01603	mg/l	3		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00796	0.00840	mg/l	5		20
Copper, Total	0.00268	0.00277	mg/l	3		20
Lead, Total	0.00166	0.00177	mg/l	6		20
Nickel, Total	0.00420	0.00467	mg/l	11		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1103431-4	QC Sample:	L1811255-02	Client ID:	DUP Sample	
Iron, Total	0.150	0.144	mg/l	4		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1103431-8	QC Sample:	L1811479-01	Client ID:	DUP Sample	
Iron, Total	34.3	34.1	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1103783-4	QC Sample:	L1811081-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1103783-6	QC Sample:	L1811082-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name:PARCEL D-2Lab Number:L1811481Project Number:6311.9.00Report Date:04/13/18

SAMPLE RESULTS

 Lab ID:
 L1811481-01
 Date Collected:
 04/03/18 11:00

 Client ID:
 B-111 (OW)
 Date Received:
 04/03/18

 Sample Location:
 BOSTON
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Groundwater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
SALINITY	ND		SU	2.0		1	-	04/04/18 02:45	121,2520B	MA
Solids, Total Suspended	21.		mg/l	5.0	NA	1	-	04/05/18 06:15	121,2540D	JT
Cyanide, Total	ND		mg/l	0.005		1	04/04/18 07:33	04/04/18 13:33	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/03/18 23:49	121,4500CL-D	AS
pH (H)	8.1		SU	-	NA	1	-	04/11/18 11:45	121,4500H+-B	GD
Nitrogen, Ammonia	0.908		mg/l	0.075		1	04/04/18 15:40	04/04/18 20:36	121,4500NH3-BH	H ML
Chromium, Hexavalent	ND		mg/l	0.010		1	04/04/18 01:20	04/04/18 01:47	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	325.		mg/l	12.5		25	-	04/11/18 22:12	44,300.0	AU

Project Name: PARCEL D-2
Project Number: 6311.9.00

Lab Number: L1811481 **Report Date:** 04/13/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab	for sam	ole(s): 01	Batch:	WG11	03225-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/03/18 23:49	121,4500CL-D	AS
General Chemistry - W	/estborough Lab	for sam	ole(s): 01	Batch:	WG11	03243-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	04/04/18 01:20	04/04/18 01:45	1,7196A	MA
General Chemistry - W	/estborough Lab	for sam	ole(s): 01	Batch:	WG11	03269-1				
Cyanide, Total	ND		mg/l	0.005		1	04/04/18 07:33	04/04/18 13:28	121,4500CN-CE	E LH
General Chemistry - W	/estborough Lab	for sam	ole(s): 01	Batch:	WG11	03405-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	04/04/18 15:40	04/04/18 20:15	121,4500NH3-BI	H ML
General Chemistry - W	/estborough Lab	for sam	ole(s): 01	Batch:	WG11	03685-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	04/05/18 06:15	121,2540D	JT
Anions by Ion Chroma	tography - Westbo	orough l	_ab for sar	mple(s):	01 B	atch: WG1	105735-1			
Chloride	ND		mg/l	0.500		1	-	04/11/18 21:24	44,300.0	AU

Project Name: PARCEL D-2
Project Number: 6311.9.00

Lab Number:

L1811481 04/13/18

Report Date:

Parameter	LCS %Recovery Qu	LCSD ual %Recovery (%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1103225-2			
Chlorine, Total Residual	93	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1103243-2			
Chromium, Hexavalent	98	-	85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1103263-1			
SALINITY	99	-		-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1103269-2			
Cyanide, Total	92	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1103405-2			
Nitrogen, Ammonia	94	-	80-120	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1105571-1			
рН	100	-	99-101	-	5
Anions by Ion Chromatography - Westb	orough Lab Associated s	ample(s): 01 Batch: WG	31105735-2		
Chloride	97	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL D-2 **Project Number:** 6311.9.00

Lab Number:

L1811481

Report Date:

04/13/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD I %Recovery	Recovery Qual Limits		RPD _imits
General Chemistry - Westbore	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	NG1103225-4	QC Sample: L181	11481-01 Client II	D: B-111 (OW	·)
Chlorine, Total Residual	ND	0.248	0.20	81	-	-	80-120	-	20
General Chemistry - Westbore	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	NG1103243-4	QC Sample: L181	11481-01 Client II	D: B-111 (OW	·)
Chromium, Hexavalent	ND	0.1	0.096	96	-	-	85-115	-	20
General Chemistry - Westbore	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	NG1103269-4	QC Sample: L181	11481-01 Client II	D: B-111 (OW	·)
Cyanide, Total	ND	0.2	0.196	98		-	90-110	-	30
General Chemistry - Westbore	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	NG1103405-4	QC Sample: L181	11481-01 Client II	D: B-111 (OW	·)
Nitrogen, Ammonia	0.908	4	4.73	96	-	-	80-120	-	20
Anions by Ion Chromatograph Sample	ny - Westboroug	h Lab Asso	ociated sar	mple(s): 01 Q0	C Batch ID: WG	1105735-3 QC S	Sample: L1812302-	02 Client ID:	MS
Chloride	9.78	4	13.5	94		-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL D-2
Project Number: 6311.9.00

Lab Number: L1811481

Parameter	Nati	ive Sample		Duplicate Sam	ple Unit	s RPI) Qual	RPD Limi	mits	
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG1103225-3	QC Sample:	L1811479-01	Client ID:	DUP Sample		
Chlorine, Total Residual		ND		ND	mg/	I NC		20		
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG1103243-3	QC Sample:	L1811481-01	Client ID:	B-111 (OW)		
Chromium, Hexavalent		ND		ND	mg/	I NC		20		
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG1103263-2	QC Sample:	L1811481-01	Client ID:	B-111 (OW)		
SALINITY		ND		ND	SU	NC				
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG1103269-3	QC Sample:	L1811481-01	Client ID:	B-111 (OW)		
Cyanide, Total		ND		ND	mg/	I NC		30		
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG1103405-3	QC Sample:	L1811481-01	Client ID:	B-111 (OW)		
Nitrogen, Ammonia		0.908	ı	0.886	mg/	2		20		
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG1103685-2	QC Sample:	L1811142-01	Client ID:	DUP Sample		
Solids, Total Suspended		610		620	mg/	2		29		
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG1105571-2	QC Sample:	L1811481-01	Client ID:	B-111 (OW)		
pH (H)		8.1		8.1	SU	0		5		
Anions by Ion Chromatography - Westbo	orough Lab Associated	sam	ple(s): 01 Q	C Batch ID: WG	1105735-4 (QC Sample: L	.1812302-0	2 Client ID: D	UP	
Chloride		9.78		9.80	mg/	0		18		

Lab Number: L1811481

Report Date: 04/13/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

PARCEL D-2

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 6311.9.00

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1811481-01A	Vial HCl preserved	Α	NA		4.1	Υ	Absent		ARCHIVE()
L1811481-01B	Vial HCl preserved	Α	NA		4.1	Υ	Absent		ARCHIVE()
L1811481-01C	Vial HCl preserved	Α	NA		4.1	Υ	Absent		ARCHIVE()
L1811481-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1811481-01E	Plastic 250ml NaOH preserved	Α	>12	>12	4.1	Υ	Absent		TCN-4500(14)
L1811481-01F	Plastic 500ml H2SO4 preserved	Α	<2	<2	4.1	Υ	Absent		NH3-4500(28)
L1811481-01G	Plastic 950ml unpreserved	Α	7	7	4.1	Υ	Absent		CL-300(28),HEXCR- 7196(1),SALINITY(28),TRC-4500(1),PH- 4500(.01)
L1811481-01H	Plastic 950ml unpreserved	Α	7	7	4.1	Υ	Absent		TSS-2540(7)
L1811481-01I	Amber 1000ml unpreserved	Α	7	7	4.1	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1811481-01J	Amber 1000ml unpreserved	Α	7	7	4.1	Υ	Absent		8270TCL(7),8270TCL-SIM(7)

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Revision 11

Page 1 of 1

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg.

EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

	CHAIN OF	CUSTO	DY	PAGE (O	F (Da	e Rec'o	d in Lat	4	13/1	8			ALI	PHA .	Job#	L	811481	1656
ALPHA	Project Information				100	Report Information Data Deliverables							Billing Information						
ANALY TO AL				1962	☐ FAX ☐ EMAIL					Same as Client info PO #:									
Westborough, MA	Mansfield, MA	Project Name:	D	1 0	0	15	ADEx				Add'l D	elivera	bles					1	
	FEL: 508-822-9300 FAX: 508-822-3288	Project Name.	TARG	el Dr	2	Re	gulat	ory R	equir	emen	ts/Re	port	Limits		18-1	To be	1	-	
Client Information	THU ASSESSMENT OF A STATE OF THE STATE OF TH	Project Location	1: 305	on		0.000	te/Fed i		n					Crite	ria	_			
Client: McPhail Ass	ociates, LLC	Project#:		.06		N.	JES NO		100	100	1		100		130	6 8	100	O P RES	311
Address: 2269 Mas	sachusetts Avenue	Project Manage		SEAMA	W								NO POR				100		
Cambridge, MA 021	140	ALPHA Quote#				_	_												
Phone: (617) 868-1	420	Turn-Around	Time		100 67	_AN	ALYS	SIS	_	_		_		_	_		_	SAMPLE HANDLING	T
These samples have it	NAN @ Mephaligac	Standard ☐ Rush (ONLY IF PRE-APPROVED)								(¥	(B)	(B)	(0)	8270/8270SIM- (D, E)	(E)			Filtration Done Not Needed Lab to do Preservation	AL # BO
Other Project Specific Requirements/Comments/Detection Limits: Circle the following if required: SALINITY HARDNESS (PH) Sect. A inorganics: Ammonia, Chloride, TRC, TSS, CrVI, CrIII, Tot-CN, RGP Metals B- Non-Hall VOC: 8260, 8260-SIM, Tot. Phenol Sect C- VOC- 8260 & 504						RGP Metals (200.8) (A)		Ammonia (4500 (A))		HexCr (7196), TRC, CI- (A)	C, F)/8260SIM					TPH-1664-(F)	SUB-ETHANOL (F)	Lab to do (Please specify below)	TLES
ALPHA Lab ID	E- PCB's, PCP(8270/8270-SIM): I Sample ID				T	Met	3	onia	3	20	(8)	-lou	504-EDB (C)	/827	PCB-608- (E)	166	ETT		
(Lab Use Only)	Sample ID	Colle Date	Time	Matrix	Sample Sampler's Matrix Initials		TSS-(A)	Amn	TCN (A)	Hex	8260 (B,	Tphe	504-	8270	PCB	TPH	SUB	Sample Specific Comments	
11481-01	7800 B-111 (OW)	4/3/18	11:00	GW	CES	X		K	×	×				X					10
The state of																			110
				2															
/CVLHX FILE																			
																			T
WAIL TO DE																			+
				Cor	ntainer Type	Р	Р	Р	Р	Р	V	A	٧	A	Α	Α	v		
				F	reservative	С	Α	D	E	A	В	D	н	A	н	В	В	Please print clearly, legit and completely. Sample	bly es can
PORM NO D1-01(FAL) (res 5-JAN-12)		Relinquished By: Ceres Stefices, Din Senso AAL 4/3/12		4/3/	Date/Time 3 8 8150			Received By:				Pate/Time AL4/3/18 16: 20 4:3:18:18:30				not be logged in and turnaround time clock will not			

ANALYTICAL REPORT

Lab Number: L1811674

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: PARCEL D-2

Project Number: 6311.9.T7
Report Date: 04/10/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PARCEL D-2 **Project Number:** 6311.9.T7

Lab Number: L1811674 **Report Date:** 04/10/18

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L1811674-01 B-106 (OW) WATER BOSTON, MA 04/04/18 14:00 04/04/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:PARCEL D-2Lab Number:L1811674Project Number:6311.9.T7Report Date:04/10/18

Case Narrative (continued)

Chlorine, Total Residual

The WG1103626-4 MS recovery (48%), performed on L1811674-01, is outside the acceptance criteria;

however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 04/10/18

Nails

ALPHA

ORGANICS

SEMIVOLATILES

Project Name: PARCEL D-2 Lab Number: L1811674

Project Number: 6311.9.T7 **Report Date:** 04/10/18

SAMPLE RESULTS

Lab ID: Date Collected: 04/04/18 14:00

Client ID: B-106 (OW) Date Received: 04/04/18
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 04/05/18 14:07

Analytical Method: 1,8270D Extraction Date: 04/05/18
Analytical Date: 04/08/18 04:17

Analyst: RC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1			
Butyl benzyl phthalate	ND		ug/l	5.0		1			
Di-n-butylphthalate	ND		ug/l	5.0		1			
Di-n-octylphthalate	ND		ug/l	5.0		1			
Diethyl phthalate	ND		ug/l	5.0		1			
Dimethyl phthalate	ND		ug/l	5.0		1			
Pentachlorophenol	ND		ug/l	10		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	62	21-120	
Phenol-d6	45	10-120	
Nitrobenzene-d5	85	23-120	
2-Fluorobiphenyl	95	15-120	
2,4,6-Tribromophenol	104	10-120	
4-Terphenyl-d14	113	41-149	

Project Name: PARCEL D-2 Lab Number: L1811674

Project Number: 6311.9.T7 **Report Date:** 04/10/18

SAMPLE RESULTS

Lab ID: Date Collected: 04/04/18 14:00

Client ID: B-106 (OW) Date Received: 04/04/18
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/05/18 14:11
Analytical Date: 04/07/18 21:11

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	l - Westborough Lal	b				
Acenaphthene	0.32		ug/l	0.10		1
Fluoranthene	0.28		ug/l	0.10		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	0.23		ug/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	36	21-120
Phenol-d6	27	10-120
Nitrobenzene-d5	48	23-120
2-Fluorobiphenyl	47	15-120
2,4,6-Tribromophenol	64	10-120
4-Terphenyl-d14	64	41-149

Project Name: PARCEL D-2
Project Number: 6311.9.T7

Lab Number: L1811674 **Report Date:** 04/10/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/04/18 21:26

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 04/04/18 15:43

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for sa	ample(s):	01	Batch:	WG1103527-1
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	
Butyl benzyl phthalate	ND		ug/l		5.0	
Di-n-butylphthalate	ND		ug/l		5.0	
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Pentachlorophenol	ND		ug/l		10	

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

	Qualifier Criteria
41	21-120
30	10-120
63	23-120
67	15-120
58	10-120
69	41-149
	30 63 67 58

 Project Name:
 PARCEL D-2
 Lab Number:
 L1811674

 Project Number:
 6311.9.T7
 Report Date:
 04/10/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 04/05/18 09:06

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 04/04/18 15:47

Result	Qualifier	Units	RL	MDL	
-SIM - Westbo	rough Lab	for sampl	e(s): 01	Batch: WG110352	28-1
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
ND		ug/l	0.10		
	ND N	-SIM - Westborough Lab ND ND ND ND ND ND ND ND ND N	ND ug/l	ND	ND

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	40	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	70	10-120
4-Terphenyl-d14	70	41-149

L1811674

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL D-2

EL D-2

Report Date: 04/10/18

Lab Number:

Project Number: 6311.9.T7

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associa	ated sample(s):	: 01 Batch:	WG1103527-2	WG1103527-3				
Bis(2-ethylhexyl)phthalate	73		83		40-140	13		30	
Butyl benzyl phthalate	70		81		40-140	15		30	
Di-n-butylphthalate	69		79		40-140	14		30	
Di-n-octylphthalate	71		80		40-140	12		30	
Diethyl phthalate	66		73		40-140	10		30	
Dimethyl phthalate	62		73		40-140	16		30	
Pentachlorophenol	41		44		9-103	7		30	

Surrogate	LCS %Recovery Qua	LCSD Il %Recovery Qual	Acceptance Criteria
2-Fluorophenol	43	47	21-120
Phenol-d6	33	34	10-120
Nitrobenzene-d5	65	70	23-120
2-Fluorobiphenyl	65	71	15-120
2,4,6-Tribromophenol	65	70	10-120
4-Terphenyl-d14	65	75	41-149

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL D-2

Project Number: 6311.9.T7

Lab Number: L1811674

Report Date: 04/10/18

arameter	LCS %Recovery G	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SI			ch: WG1103528-2 WG1103		
• ,	•				
Acenaphthene	79	72	40-140	9	40
Fluoranthene	75	68	40-140	10	40
Naphthalene	76	70	40-140	8	40
Benzo(a)anthracene	86	78	40-140	10	40
Benzo(a)pyrene	92	84	40-140	9	40
Benzo(b)fluoranthene	94	88	40-140	7	40
Benzo(k)fluoranthene	89	77	40-140	14	40
Chrysene	85	77	40-140	10	40
Acenaphthylene	80	73	40-140	9	40
Anthracene	84	77	40-140	9	40
Benzo(ghi)perylene	93	86	40-140	8	40
Fluorene	90	76	40-140	17	40
Phenanthrene	84	75	40-140	11	40
Dibenzo(a,h)anthracene	96	88	40-140	9	40
Indeno(1,2,3-cd)pyrene	94	86	40-140	9	40
Pyrene	83	76	40-140	9	40

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL D-2 Lab Number:

L1811674

Project Number: 6311.9.T7

Report Date:

04/10/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1103528-2 WG1103528-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	46	43	21-120
Phenol-d6	34	32	10-120
Nitrobenzene-d5	78	72	23-120
2-Fluorobiphenyl	79	72	15-120
2,4,6-Tribromophenol	93	79	10-120
4-Terphenyl-d14	83	76	41-149

METALS

Project Name:PARCEL D-2Lab Number:L1811674Project Number:6311.9.T7Report Date:04/10/18

SAMPLE RESULTS

Lab ID:L1811674-01Date Collected:04/04/18 14:00Client ID:B-106 (OW)Date Received:04/04/18Sample Location:BOSTON, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00333		mg/l	0.00100		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Chromium, Total	0.00107		mg/l	0.00100		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Copper, Total	0.00158		mg/l	0.00100		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Iron, Total	7.72		mg/l	0.050		1	04/05/18 08:10	04/05/18 18:55	EPA 3005A	19,200.7	LC
Lead, Total	0.00412		mg/l	0.00050		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	04/06/18 11:13	04/06/18 19:19	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	04/05/18 08:10	04/06/18 12:14	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab	<u> </u>								
Chromium, Trivalent	ND		mg/l	0.010		1		04/06/18 12:14	NA	107,-	

Project Name: PARCEL D-2
Project Number: 6311.9.T7

Lab Number:

L1811674

Report Date:

04/10/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG1	103723-	1				
Iron, Total	ND	mg/l	0.050		1	04/05/18 08:10	04/05/18 21:13	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s)	: 01 Batc	h: WG11	03727-	·1				
Antimony, Total	ND	mg/l	0.00400		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	04/05/18 08:10	04/06/18 11:40	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	n: WG11	04199-	1				
Mercury, Total	ND	mg/l	0.00020		1	04/06/18 11:13	04/06/18 19:05	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL D-2
Project Number: 6311.9.T7

Lab Number: L1811674

Report Date: 04/10/18

Parameter	LCS %Recovery	LCS Qual %Reco	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1103723-2				
Iron, Total	104	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1103727-2				
Antimony, Total	101	-	85-115	-		
Arsenic, Total	108	-	85-115	-		
Cadmium, Total	109	-	85-115	-		
Chromium, Total	107	-	85-115	-		
Copper, Total	107	-	85-115	-		
Lead, Total	102	-	85-115	-		
Nickel, Total	108	-	85-115	-		
Selenium, Total	113	-	85-115	-		
Silver, Total	100	-	85-115	-		
Zinc, Total	111	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1104199-2				
Mercury, Total	105	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL D-2 **Project Number:** 6311.9.T7

Lab Number:

L1811674

Report Date:

04/10/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch II	D: WG110372	23-3	QC Sample	: L1810728-01	Client ID: MS Sa	ample	
Iron, Total	ND	1	1.03	103		-	-	75-125	-	20
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch II	D: WG110372	23-7	QC Sample	: L1811650-01	Client ID: MS Sa	ample	
Iron, Total	23.2	1	19.7	0	Q	-	-	75-125	-	20
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch II	D: WG110372	7-3	QC Sample	: L1811650-01	Client ID: MS Sa	ample	
Antimony, Total	ND	0.5	0.5108	102		-	-	70-130	-	20
Arsenic, Total	0.01889	0.12	0.1474	107		-	-	70-130	-	20
Cadmium, Total	0.00038	0.051	0.05433	106		-	-	70-130	-	20
Chromium, Total	0.06237	0.2	0.2565	97		-	-	70-130	-	20
Copper, Total	0.07996	0.25	0.3289	100		-	-	70-130	-	20
Lead, Total	0.02178	0.51	0.5678	107		-	-	70-130	-	20
Nickel, Total	0.03773	0.5	0.5552	103		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1384	115		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04847	97		-	-	70-130	-	20
Zinc, Total	0.08629	0.5	0.6254	108		-	-	70-130	-	20
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch II	D: WG110419	9-3	QC Sample	: L1811650-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00467	93		-	-	70-130	-	20
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch II	D: WG110419	9-5	QC Sample	: L1811650-02	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00477	95		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL D-2
Project Number: 6311.9.T7

Lab Number:

L1811674

Report Date:

04/10/18

Parameter		Native Sample Du	plicate Sample	units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s):	01	QC Batch ID: WG1103723-4	QC Sample:	L1810728-01	Client ID:	DUP Sample	
Iron, Total		ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s):	01	QC Batch ID: WG1103723-8	3 QC Sample:	L1811650-01	Client ID:	DUP Sample	
Iron, Total		23.2	19.6	mg/l	17		20
Total Metals - Mansfield Lab Associated sample(s):	01	QC Batch ID: WG1103727-4	QC Sample:	L1811650-01	Client ID:	DUP Sample	
Antimony, Total		ND	ND	mg/l	NC		20
Arsenic, Total		0.01889	0.01831	mg/l	3		20
Cadmium, Total		0.00038	0.00035	mg/l	7		20
Chromium, Total		0.06237	0.05246	mg/l	17		20
Copper, Total		0.07996	0.07271	mg/l	9		20
Lead, Total		0.02178	0.02055	mg/l	6		20
Nickel, Total		0.03773	0.03210	mg/l	16		20
Selenium, Total		ND	ND	mg/l	NC		20
Silver, Total		ND	ND	mg/l	NC		20
Zinc, Total		0.08629	0.08102	mg/l	6		20
Total Metals - Mansfield Lab Associated sample(s):	01	QC Batch ID: WG1104199-4	QC Sample:	L1811650-01	Client ID:	DUP Sample	
Mercury, Total		ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s):	01	QC Batch ID: WG1104199-6	QC Sample:	L1811650-02	Client ID:	DUP Sample	
Mercury, Total		ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

 Project Name:
 PARCEL D-2
 Lab Number:
 L1811674

 Project Number:
 6311.9.T7
 Report Date:
 04/10/18

SAMPLE RESULTS

 Lab ID:
 L1811674-01
 Date Collected:
 04/04/18 14:00

 Client ID:
 B-106 (OW)
 Date Received:
 04/04/18

 Sample Location:
 BOSTON, MA
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
SALINITY	ND		SU	2.0		1	-	04/06/18 17:17	121,2520B	AS
Solids, Total Suspended	28.		mg/l	5.0	NA	1	-	04/05/18 11:00	121,2540D	JT
Cyanide, Total	ND		mg/l	0.005		1	04/05/18 09:50	04/05/18 13:12	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/05/18 00:30	121,4500CL-D	AS
pH (H)	7.2		SU	-	NA	1	-	04/06/18 17:45	121,4500H+-B	AS
Nitrogen, Ammonia	2.26		mg/l	0.075		1	04/05/18 16:30	04/06/18 21:22	121,4500NH3-BH	H ML
Chromium, Hexavalent	ND		mg/l	0.010		1	04/05/18 04:45	04/05/18 05:41	1,7196A	GD
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	272.		mg/l	12.5		25	-	04/07/18 23:46	44,300.0	JR

Project Name: PARCEL D-2
Project Number: 6311.9.T7

Lab Number: L1811674 **Report Date:** 04/10/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG1	103626-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/05/18 00:30	121,4500CL-D	AS
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG1	103682-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	04/05/18 04:45	04/05/18 05:30	1,7196A	GD
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG1	103689-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	04/05/18 11:00	121,2540D	JT
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG1	103742-1				
Cyanide, Total	ND		mg/l	0.005		1	04/05/18 09:50	04/05/18 12:52	121,4500CN-CE	E LH
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG1	103869-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	04/05/18 16:30	04/06/18 21:01	121,4500NH3-B	H ML
Anions by Ion Chroma	atography - Westb	orough	Lab for sar	mple(s):	01 E	Batch: WG1	104615-1			
Chloride	ND		mg/l	0.500		1	-	04/07/18 15:46	44,300.0	JR

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL D-2
Project Number: 6311.9.T7

Lab Number: L1811674

Report Date:

04/10/18

Parameter	LCS %Recovery	-	LCSD ecovery (%l Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: W	/G1103626-2					
Chlorine, Total Residual	97		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: W	/G1103682-2					
Chromium, Hexavalent	96		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: W	/G1103742-2					
Cyanide, Total	97		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: W	/G1103869-2					
Nitrogen, Ammonia	90		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: W	/G1104321-1					
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: W	/G1104324-1					
SALINITY	99		-			-		
Anions by Ion Chromatography - Westbo	orough Lab Associate	d sample(s): 0	1 Batch: WG	G1104615-2				
Chloride	101		-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL D-2 **Project Number:** 6311.9.T7

Lab Number: L1811674

Report Date: 04/10/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recover	y Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westbord	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1103	626-4	QC Sample: L	1811674-	01 Client	ID: B-106 (C)W)
Chlorine, Total Residual	ND	0.248	0.12	48	Q	-	-		80-120	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1103	682-4	QC Sample: L	1811672-	01 Client	ID: MS Sam	ple
Chromium, Hexavalent	ND	0.1	0.099	99		-	-		85-115	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1103	742-4	QC Sample: L	1811650-	02 Client	ID: MS Sam	ple
Cyanide, Total	ND	0.2	0.194	97		-	-		90-110	-	30
General Chemistry - Westbord	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1103	869-4	QC Sample: L	1811262-	06 Client	ID: MS Sam	ple
Nitrogen, Ammonia	3.34	4	7.28	98		-	-		80-120	-	20
Anions by Ion Chromatograph Sample	ny - Westboroug	gh Lab Asso	ociated san	nple(s): 01 Q	C Batch	ID: WG1	1104615-3 Q0	C Sample	e: L1811256	-01 Client I	D: MS
Chloride	63.6	20	86.2	113	Q	-	-		90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL D-2
Project Number: 6311.9.T7

Lab Number:

L1811674

Report Date:

04/10/18

Parameter	Nati	ve Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID): WG1103626-3	QC Sample: L181	1672-01	Client ID:	DUP Sample
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID): WG1103682-3	QC Sample: L181	1672-01	Client ID:	DUP Sample
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID): WG1103689-2	QC Sample: L181	1453-03	Client ID:	DUP Sample
Solids, Total Suspended		370	370	mg/l	0		29
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID): WG1103742-3	QC Sample: L181	1650-01	Client ID:	DUP Sample
Cyanide, Total		ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID): WG1103869-3	QC Sample: L181	1262-06	Client ID:	DUP Sample
Nitrogen, Ammonia		3.34	3.43	mg/l	3		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID): WG1104321-2	QC Sample: L181	1674-01	Client ID:	B-106 (OW)
pH (H)		7.2	7.1	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID): WG1104324-2	QC Sample: L181	1674-01	Client ID:	B-106 (OW)
SALINITY		ND	ND	SU	NC		
Anions by Ion Chromatography - Westbo	orough Lab Associated	d sample(s): 01	QC Batch ID: WG	1104615-4 QC Sa	ample: L	1811256-0	1 Client ID: DUP
Chloride		63.6	63.6	mg/l	0		18

Lab Number: L1811674

Report Date: 04/10/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

PARCEL D-2

YES

Cooler Information

Project Name:

Cooler Custody Seal

B Absent

Project Number: 6311.9.T7

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1811674-01A	Plastic 250ml HNO3 preserved	В	<2	<2	4.4	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1811674-01B	Plastic 250ml NaOH preserved	В	>12	>12	4.4	Υ	Absent		TCN-4500(14)
L1811674-01C	Plastic 500ml H2SO4 preserved	В	<2	<2	4.4	Υ	Absent		NH3-4500(28)
L1811674-01D	Plastic 950ml unpreserved	В	7	7	4.4	Y	Absent		CL-300(28),HEXCR- 7196(1),SALINITY(28),TRC-4500(1),PH- 4500(.01),TRICR-CALC(1)
L1811674-01E	Plastic 950ml unpreserved	В	7	7	4.4	Υ	Absent		TSS-2540(7)
L1811674-01F	Amber 1000ml unpreserved	В	7	7	4.4	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1811674-01G	Amber 1000ml unpreserved	В	7	7	4.4	Υ	Absent		8270TCL(7),8270TCL-SIM(7)

Project Name:PARCEL D-2Lab Number:L1811674Project Number:6311.9.T7Report Date:04/10/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:PARCEL D-2Lab Number:L1811674Project Number:6311.9.T7Report Date:04/10/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:PARCEL D-2Lab Number:L1811674Project Number:6311.9.T7Report Date:04/10/18

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Page 1 of 1

Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Revision 11

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	CUSTO	אחע			0	to Deci	4101		1111	11-	Spice	1000		Eliza		1	1
ALPHA	OTIAIN OF	10000		PAGE C	OF .		Report Information Data Deliverables								ALPHA Job#: 181674			
ANALYTICA	n.	Project Info	rmation			FAX EMAIL						Billing Information Same as Client info PO#:						
Westborough, MA	Mansfield, MA	Desir at No.	0 -	100		X	ADEx				Add'l E	Delivera	bles	F				
	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	+ HARCE	1 D-Z			_	-	Requi	remen	ts/Re	port	Limit	s		E.S	9	P. SALLING
Client Information		Project Location	on: Bost	m Mr	+	_Sta	te/Fed	Progra						Crite	eria			
Client: McPhail Ass	sociates, LLC	Project #:	能力	the state of the s	311.9.77	- NF	DES R	GP	- 1		1,500	18-	10				100	Carlo Branch
Address: 2269 Mas	sachusetts Avenue	Project Manag	er: Ku	05										-				
Cambridge, MA 02	140	ALPHA Quote	#:			_												
Phone: (617) 868-1420 Turn-Around Time					_AN	ALYS	SIS	_	1	r -	_	_		_	_	_	SAMPLE HANDLING T	
Fax:		Standard	□ R	ush (ONLY IF PR	RE-APPROVED)			1										Filtration A
	ANC Mopha. 100.cov	\sim																□ Done □ Not Needed □
	been Previously analyzed by Alpha	Due Date:	Time							3	(8)	1					-	Lab to do
Other Project Spe Circle the following	ecific Requirements/Comments	/Detection Limi	ts:			3		1		ㅎ				(ii)				☐ Lab to do
SALINITY HARDI	NESS PH					8.00		3		TRC,	F)/BZ60SIM			0			(F)	(Please specify L. below)
Sect. A inorganics: / B- Non-Hal- VOC- 8	Ammonia, Chloride, TRC, TSS, CrV 260, 8260-SIM, Tot. Phenol Sect	I,CrIII, Tot-CN, R	GP Metals			ls (2	20	(450		. (96)		20 (B	0	SIM	Œ	Œ	NOL	
D: 8270/8270-SIM:	E- PCB's, PCP(8270/8270-SIM): F	F-TPH, 8260, Sub	-Ethanol			Meta	3	ping	8	E	(B, C,	10	DB (3270	-808	664	TH.	1
ALPHA Lab ID (Lab Use Only)			Collection te Time	Sample Matrix		RGP Metals (200.8) (A)	TSS-(A)	Ammonia (4500 (A))	TCN (A)	HexCr (7196).	8260 (B, (Tphenol-420 (B)	504-EDB (C)	8270/8270SIM-	PCB-608- (E)	TPH-1664(F)	SUB-ETHANOL	Sample Specific
11674-01	B-106 (cw)	4/4/14	14:00	62	CES	Ŕ	10				~		5			-		Comments
1011 01	D 100 (cm)	14/18	19.00	0 2	Ces	H	H	H			+	님	님	X	片	片	屵	7 %
	-					tä	H	H	H	ᆔ	H	H	Н	H	H	H	H	
						t				H	Ħ	H	H	H	H	H	H	
														ī	ī	Ħ	Ħ	
ACTOR DODGE					1.49												$\bar{\Box}$	
4 100																		
Dialeta Dia																		
				Con	ntainer Type	Р	Р	Р	р	Р	v	A	v	Α	A	A	v	
				AND Y	reservative	С	Α	D	E	A	В	D	н	٨	н	В	В	Please print clearly, legibly and completely. Samples can
Relinquished By:						Da	te/Time	,		9	eceive	ed By:			, D	ate/Time	e	not be logged in and turneround time clock will not
		Ceres	20.00		-,/	4/4/1	8 4	1500	4	L	A	water to be designed in the last		4)	1/15	14	47	start until any ambiguities are resolved. All samples
FORMIND S1-01(LINJ) (198 S-JAN-12)			1-1	AL	4/4	18	18	7	THE	AM	200	M	A	4	4/1	818	34	submitted are subject to Alpha's Payment Terms.
									2	1								FATRE STEEL STEEL

APPENDIX E: LABORATORY ANALYTICAL DATA – SURFACE WATER

ANALYTICAL REPORT

Lab Number: L1717710

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: PARCEL K
Project Number: 5876.9.07
Report Date: 06/05/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PARCEL K **Project Number:** 5876.9.07

Lab Number: L1717710 **Report Date:** 06/05/17

Alpha Sample ID Client ID Matrix Sample Location Collection Date/Time Receive Date

L1717710-01 PAVILION OUTFALL WATER BOSTON, MA 05/30/17 11:30 05/30/17

Project Name:PARCEL KLab Number:L1717710Project Number:5876.9.07Report Date:06/05/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:06051717:27

Project Name:PARCEL KLab Number:L1717710Project Number:5876.9.07Report Date:06/05/17

Case Narrative (continued)

Metals

L1717710-01: The sample has elevated detection limits for antimony, cadmium, lead and silver due to the dilution required by the high concentrations of target and non-target elements.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

ANALYTICAL

Date: 06/05/17

METALS

Not Specified

Project Name: PARCEL K Lab Number: L1717710 **Project Number: Report Date:** 5876.9.07 06/05/17

SAMPLE RESULTS

Lab ID: L1717710-01

Date Collected: 05/30/17 11:30 Client ID: **PAVILION OUTFALL** Date Received: 05/30/17

Field Prep:

Sample Location: BOSTON, MA

Water Matrix:

Dilution Date Date Prep **Analytical** Method Factor **Prepared** Method **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/l 0.02000 5 06/01/17 12:15 06/02/17 09:38 EPA 3005A 3,200.8 AM0.00138 0.00100 1 3,200.8 Arsenic, Total mg/l 06/01/17 12:15 06/02/17 09:10 EPA 3005A AM 5 3,200.8 Cadmium, Total ND 0.00100 06/01/17 12:15 06/02/17 09:38 EPA 3005A mg/l AMChromium, Total ND mg/l 0.00100 1 06/01/17 12:15 06/02/17 09:10 EPA 3005A 3,200.8 AM0.00189 0.00100 1 06/01/17 12:15 06/02/17 09:10 EPA 3005A 3,200.8 Copper, Total mg/l AM Iron, Total 0.126 0.050 1 06/01/17 12:15 06/05/17 14:54 EPA 3005A 19,200.7 PS mg/l Lead, Total ND mg/l 0.00500 --5 06/01/17 12:15 06/02/17 09:38 EPA 3005A 3,200.8 ΑM Mercury, Total ND mg/l 0.00020 1 05/31/17 14:31 06/02/17 18:05 EPA 245.1 3,245.1 EΑ 1 ND 3,200.8 Nickel, Total mg/l 0.00200 06/01/17 12:15 06/02/17 09:10 EPA 3005A AM Selenium, Total ND mg/l 0.00500 1 06/01/17 12:15 06/02/17 09:10 EPA 3005A 3,200.8 AM 3,200.8 Silver, Total ND 0.00500 5 06/01/17 12:15 06/02/17 09:38 EPA 3005A AM mg/l --3,200.8 ND 0.01000 1 06/01/17 12:15 06/02/17 09:10 EPA 3005A

mg/l

AM

Zinc, Total

Serial_No:06051717:27

Project Name: PARCEL K
Project Number: 5876.9.07

Lab Number: L1717710 **Report Date:** 06/05/17

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Result Qualifier** RL**Factor Prepared** Analyzed **Parameter** Units **MDL** Batch: WG1008498-1 Total Metals - Mansfield Lab for sample(s): 01 Mercury, Total ND mg/l 0.00020 1 06/02/17 18:01 3,245.1 EΑ 05/31/17 14:31

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01 Bato	h: WG10	08855-	·1				
Antimony, Total	ND	mg/l	0.00400		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Silver, Total	ND	mg/l	0.00100		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	06/01/17 12:15	06/02/17 08:57	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	: WG10	008856-	1				
Iron, Total	ND	mg/l	0.050		1	06/01/17 12:15	06/05/17 14:44	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL K **Project Number:** 5876.9.07

Lab Number:

L1717710

Report Date:

06/05/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG100849	8-2					
Mercury, Total	103		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG100885	5-2					
Antimony, Total	88		-		85-115	-		
Arsenic, Total	98		-		85-115	-		
Cadmium, Total	87		-		85-115	-		
Chromium, Total	85		-		85-115	-		
Copper, Total	86		-		85-115	-		
Lead, Total	105		-		85-115	-		
Nickel, Total	87		-		85-115	-		
Selenium, Total	95		-		85-115	-		
Silver, Total	88		-		85-115	-		
Zinc, Total	86		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG100885	6-2					
Iron, Total	100		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL K **Project Number:** 5876.9.07

Lab Number: L1717710

Report Date: 06/05/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery imits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG1008498	3-3	QC Sample:	L1717710-01	Client ID	: PAVIL	ION OU	JTFALI	_
Mercury, Total	ND	0.005	0.00399	80		-	-	7	70-130	-		20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG1008855	5-3	QC Sample:	L1717710-01	Client ID	: PAVIL	ION OU	JTFALI	_
Antimony, Total	ND	0.5	0.4961	99		-	-	7	70-130	-		20
Arsenic, Total	0.00138	0.12	0.1370	113		-	-	7	70-130	-		20
Cadmium, Total	ND	0.051	0.05066	99		-	-	7	70-130	-		20
Chromium, Total	ND	0.2	0.1659	83		-	-	7	70-130	-		20
Copper, Total	0.00189	0.25	0.2012	80		-	-	7	70-130	-		20
Lead, Total	ND	0.51	0.5429	106		-	-	7	70-130	-		20
Nickel, Total	ND	0.5	0.3864	77		-	-	7	70-130	-		20
Selenium, Total	ND	0.12	0.1352	113		-	-	7	70-130	-		20
Silver, Total	ND	0.05	0.04103	82		-	-	7	70-130	-		20
Zinc, Total	ND	0.5	0.4478	90		-	-	7	70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL K **Project Number:** 5876.9.07

Lab Number: L1717710

Report Date: 06/05/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	b Associated sam	ple(s): 01	QC Batch II	D: WG1008855-5	QC Sample:	L1717848-02	Client ID: MS Sa	ample	
Antimony, Total	ND	0.5	0.4320	86	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1079	90	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.04579	90	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1674	84	-	-	70-130	-	20
Copper, Total	0.0565	0.25	0.2718	86	-	-	70-130	-	20
Lead, Total	ND	0.51	0.5268	103	-	-	70-130	-	20
Nickel, Total	0.0040	0.5	0.4325	86	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1063	88	-	-	70-130	-	20
Silver, Total	0.0011	0.05	0.04253	83	-	-	70-130	-	20
Zinc, Total	0.0314	0.5	0.4644	87	-	-	70-130	-	20
otal Metals - Mansfield Lab	b Associated sam	ple(s): 01	QC Batch II	D: WG1008856-3	QC Sample:	L1717848-02	Client ID: MS Sa	ample	
Iron, Total	0.111	1	0.922	81	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL K
Project Number: 5876.9.07

Lab Number: L1717710 **Report Date:** 06/05/17

Parameter	Native Sample D	uplicate Sample	units	RPD	Qual RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1008498-	4 QC Sample:	L1717710-01	Client ID:	PAVILION OUTFALL
Mercury, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1008855-	4 QC Sample:	L1717710-01	Client ID:	PAVILION OUTFALL
Arsenic, Total	0.00138	0.00119	mg/l	15	20
Chromium, Total	ND	ND	mg/l	NC	20
Copper, Total	0.00189	0.00168	mg/l	12	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1008855-	4 QC Sample:	L1717710-01	Client ID:	PAVILION OUTFALL
Antimony, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Lead, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1008855-	6 QC Sample:	L1717848-02	Client ID:	DUP Sample
Cadmium, Total	ND	ND	mg/l	NC	20
Lead, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

05/30/17 11:30

Not Specified

05/30/17

 Project Name:
 PARCEL K
 Lab Number:
 L1717710

 Project Number:
 5876.9.07
 Report Date:
 06/05/17

SAMPLE RESULTS

Lab ID:L1717710-01Date Collected:Client ID:PAVILION OUTFALLDate Received:Sample Location:BOSTON, MAField Prep:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemistry	y - Westborou	gh Lab								
Chromium, Hexavalent	ND		mg/l	0.010		1	05/31/17 01:40	05/31/17 02:04	97,7196A	KA
General Chemistry - We	estborough La	b								
SALINITY	7.2		SU	2.0		1	-	06/01/17 20:50	121,2520B	AS
pH (H)	7.5		SU	-	NA	1	-	05/31/17 07:22	121,4500H+-B	KA
Nitrogen, Ammonia	0.180		mg/l	0.075		1	06/01/17 23:30	06/02/17 23:40	121,4500NH3-BH	AT

Project Name: Lab Number: PARCEL K L1717710 Project Number: 5876.9.07

Report Date: 06/05/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemist	ry - Westborough Lab fo	or sample(s): 01	Batch:	WG1008249	9-1			
Chromium, Hexavalent	ND	mg/l	0.010		1	05/31/17 01:40	05/31/17 02:02	97,7196A	KA
General Chemistry - W	estborough Lab for sam	nple(s): 01	Batch	n: WG10	009075-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	06/01/17 23:30	06/02/17 23:35	121,4500NH3-E	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL K **Project Number:** 5876.9.07

Lab Number:

L1717710

06/05/17

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP General Chemistry - Westborough Lab	Associated sam	ple(s): 01	Batch: WG10	008249-2	WG1008249-3				
Chromium, Hexavalent	95		95		49-151	0		20	
General Chemistry - Westborough Lab Association	ciated sample(s)	: 01 Bato	ch: WG100830	4-1					
pH	100		-		99-101	-		5	
General Chemistry - Westborough Lab Association	ciated sample(s)	: 01 Bato	ch: WG100902	2-1					
SALINITY	100		-			-			
General Chemistry - Westborough Lab Association	ciated sample(s)	: 01 Bato	ch: WG100907	5-2					
Nitrogen, Ammonia	99		-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL K **Project Number:** 5876.9.07

Lab Number:

L1717710

Report Date:

06/05/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Q	RPD Limits
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1009075-4	QC Sample: L17180	80-01 Client	ID: MS S	ample
Nitrogen, Ammonia	0.413	4	3.91	87	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL K
Project Number: 5876.9.07

Lab Number:

L1717710

Report Date:

06/05/17

Parameter	Nati	ve Sample		Duplicate Sam	ple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1008304-2	QC Sample:	L1717710-01	Client ID:	PAVILION OUTFALI
рН (Н)		7.5		7.6	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1009022-2	QC Sample:	L1717150-01	Client ID:	DUP Sample
SALINITY		ND		ND	SU	NC		
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1009075-3	QC Sample:	L1718080-01	Client ID:	DUP Sample
Nitrogen, Ammonia		0.41	3	0.213	mg/	64	Q	20

Project Name:PARCEL KLab Number: L1717710Project Number:5876.9.07Report Date: 06/05/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1717710-01A	Plastic 250ml HNO3 preserved	A	<2	5.2	Υ	Absent	CD-2008T(180),NI- 2008T(180),ZN-2008T(180),CU- 2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG- U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB- 2008T(180)
L1717710-01B	Plastic 500ml H2SO4 preserved	Α	<2	5.2	Υ	Absent	NH3-4500(28)
L1717710-01C	Plastic 950ml unpreserved	Α	7	5.2	Υ	Absent	SALINITY(28),PH- 4500(.01),MCP-HEXCR7196- 10(1)

Project Name:PARCEL KLab Number:L1717710Project Number:5876.9.07Report Date:06/05/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:PARCEL KLab Number:L1717710Project Number:5876.9.07Report Date:06/05/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:PARCEL KLab Number:L1717710Project Number:5876.9.07Report Date:06/05/17

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

_ ID No.:**17873** Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

CHAIN OF CUSTODY PAGE			1	Date	Date Rec'd in Lab 5 (30/17						ALPHA Job #: [777]							
ALPHA	Project Information			Re	port li	nform	ation	Data	Deli	verab	oles	Billi	ing In	form	ation			
ANALYTICAL orio Clar Cher stry	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				FAX				EMAIL				Same a	s Clien	info	PO #:		
Westborough, MA Mansfield, MA					ADEx				Add'l De	eliverab	les					34		
TEL: 508-898-9220 TEL: 508-822-9300	Project Name: Parcel K							ement	s/Rep	oort L	imits							
FAX: 508-898-9193	Project Location: Boston, M.	Α		_	e/Fed P NPDE	-	1					Criteria						
Client: McPhial Associates, LLC	Project #: 5876.9.07			And the Control of th				E CEI	1000000					100		ENCE PROTOCO	DLS	
Address: 2269 Massachusetts Avenue	Project Manager: BED						□ No 図 No						54-5 17004	quired?		s) Required?		
Cambridge, MA 02140	ALPHA Quote #:			ANALYSIS							Incac	oriabic	Comin	JOHOC I	TOLOCOIL	y required:	T	
Phone: 617-868-1420	Turn-Around Time	Turn-Around Time														SAMPLE HANDLING Filtration	O T A L	
Fax: 617-868-1423	☑ Standard ☐ Ru	sh (ONLY IF PRE	E-APPROVED)						Total HgFeAgAsCdCrCuNiPbSbSeZn							☐ Done	L	
Email: bdowning@mcphailgeo.com	_								PbS							☐ Not Needed☐ Lab to do	В	
☐ These samples have been Previously analyzed by Alpha	Due Date: Time:	Due Date: Time:							CuN							Preservation ☐ Lab to do	O T	
Other Project Specific Requirements/Comments	/Detection Limits:	Detection Limits:						(00	Ż							(Please specify below)	T L E S	
		Salinity, HexCr	w/ 1,4 Dioxane	Only)		naphthalene (8270D)	gAsC							Delos,	Š			
				Jit,	/ 1,4	BO		lene	FeA	φ	64							
			1	Salii	1,000	(EDB	(0	htha	al Hç	PCB_608	TPH_1664	TPhenol	7	8	Ethanol			
ALPHA Lab ID Sample ID (Lab Use Only)	Collection Date Time	Sample Matrix	Sampler's Initials	표	8260	504	TSS	nap	Tot	PCI	효	ם	TCN	NH3	E	Sample Specific Comments		
17710,01 Pavilion Outfall	5/30/17 1130		TMC			ПП	ГП			П		ÌП	[_				3	
11 110.0 (Parillon Collecti	0/20/17 11	6W	(//(-			H	H	П		\Box	H	П	Ħ		H		12	
						Ц	Ц	Ц	Ш			닠	Ц					
		-				Ц	H	片	믬		Ц		片					
						Н			님		님		片					
				H	H	ዙ	H	H	님	\exists	H	片	H		퓜			
PLEASE ANSWER QUESTIONS ABOVE!		Cor	ntainer Type	Р	\ \ \	<u> </u>	Р	A	Р	A	A	A	Р	Р	V			
FLEASE ANSWER QUESTIONS ABOVE:	QUESTIONS ABOVE.			A	В	Н	A	Α	С	Н	В	D	E	D	A	Please print clearly, legib and completely. Samples		
IS YOUR PROJECT Relinquis			Preservative	Da	ate/Time	ne Received By:						Date/Time				not be logged in and turnaround time clock will		
MA MCP or CT RCP?	Binn Dr	nin	10	5/30/17 13:00 1 KW				kul sa			2 J7347 160		160	start until any ambiguities resolved. All samples	are			
FORM NO: 01-01(I) (rev. 5-JAN-12)				J3417 1745			1745 Kingle							submitted are subject to Alpha's Payment Terms				
	, , ,																	

APPENDIX F:

BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during development of the Omni Boston Seaport Hotel located at 450 Summer Street on Massport Parcel D-2 in South Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

During construction of the proposed building foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. The effluent will then flow through the necessary treatment systems and discharge through hoses or piping connected into the storm water drains A review of available subgrade sanitary and storm sewer system plans accessed from the BWSC indicates the presence of a dedicated stormwater drain system located within Massport Haul Road. Records supplied by BWSC indicate one discharge flow path adjacent to the site flow to a primary discharge outfall location. The discharge flow path runs east-northeast towards the harbor under Massport Haul Road. The primary discharge location is an outfall pipe listed as #SS1 according to the BWSC. The site storm drains, discharge location, and discharge flow path are shown on the enclosed **Figure 3A & 3B.**

Dewatering effluent treatment will consist of a settling tank, bag filters to remove suspended soil particulates. If further treatment is necessary, effluent discharge will be passed through ion resin media vessels prior to off-site discharge to lower concentrations of metals below applicable WQBELs and/or TBELs.

Discharge Monitoring and Compliance

Sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. During the first week of discharge, the operator will sample the untreated influent and treated effluent two times: one (1) sample of untreated influent and one (1) sample of the treated effluent will be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples will be analyzed in accordance with 40 CFR §136 unless otherwise specified by the RGP, with a maximum 5-day turnaround time and results will be reviewed no more than 48 hours from receipt of the results of each sampling event. After the first week, samples will be analyzed with up to a ten (10)-day turnaround time and results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as designed and achieving the effluent limitations outlined in the RGP, on-going sampling shall

be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours following initial sampling, and monthly as described below. Any adjustments/reductions in monitoring frequency must be approved by EPA in writing.

In accordance with Part 4.1 of the RGP, the operator will perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the completion of the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5) consecutive months prior to submission of any request for modification of monitoring frequency.

Dewatering activity for the Site is classified as Category III-G: Sites with Known Contamination. Monitoring shall include analysis of influent and effluent for contaminates specified by the EPA.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing, and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

Regular maintenance and periodic cleaning of the treatment system will be conducted to verify proper operation and shall be conducted in accordance with Section 1.11 of the project earthwork specifications. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues and unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. The closest water body is the Boston Inner Harbor, which is located approximately 1,000

feet to the northeast of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will pumped through bag filters and, if necessary, ion exchange chambers prior to discharge into the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bags will be replaced/disposed of as necessary.