

E-0755-006A November 20, 2018

Ms. Shauna Little
United States Environmental Protection Agency- Region 1
5 Post Office Square, Suite 100/OEP06-1
Boston, Massachusetts 02109-3912

Re: Submittal of Notice of Intent for Coverage Under the Remediation General Permit

Mystic Generating Station (Station 250) Construction Dewatering Discharge of Treated Groundwater to Mystic River Charlestown/Everett, Massachusetts

Dear Ms. Little:

On behalf of NSTAR Electric Company d/b/a Eversource Energy (Eversource), Tighe & Bond, Inc. (Tighe & Bond) is submitting the attached National Pollutant Discharge Elimination System (NPDES) Notice of Intent (NOI) (Appendix A) for coverage under the Remediation General Permit (RGP) for the replacement of the existing electric substation fence with an upgraded security fence, mostly within the same footprint, surrounding Station 250 (Mystic Generating Station), at 173 Alford Street in Charlestown/Everett, Massachusetts (the Project Site). The boundaries of the Project Site are shown on the Aerial Dewatering Site Plan (Figure 1). A Massachusetts Geographic Information Systems (MassGIS) Priority Resource Map is included as Figure 2, and a Process Flow Diagram are also included as Figure 3 (Appendix B).

As there is a need to treat and discharge water generated during construction dewatering activities, the enclosed NOI provides required information on the Project Site, proposed treatment system, discharge locations, receiving water, and laboratory analytical results from pre-discharge sampling and surface water sampling. The excavation dewatering and discharge of treated groundwater are scheduled to begin in December 2018 and end in December 2020.

Dewatered groundwater at the Project Site will be treated by a treatment system before being discharged to nearby catch basins and into stormwater drainage systems managed by the Boston Water and Sewer Commission (BWSC), or Exelon Corporation. All stormwater drainage systems specified in this NOI eventually discharge to the Mystic River. Post treatment discharge rates will range from 25 gallons per minute (GPM) to 275 GMP, with an average of 150 GPM.

Project Background

The project involves the installation of a new security fence surrounding Station 250 which will be installed majorly in the same footprint as the existing substation fence. This project is necessary to allow Eversource to comply with new federal reliability and physical security standards. Station 250 is located within a mixed industrial and commercial setting. The replacement fencing will be approximately 4,400-feet long and will consist of hardened panels supported by metal pillars and concrete foundations. The Project Site boundaries, or areas of replacement fencing subject to this RGP are shown on Figure 1 (Aerial Dewatering Site Plan), in Appendix B.

MCP History

Based on information maintained on the Massachusetts Department of Environmental Protection (MassDEP) Bureau of Waste Site Cleanup (BWSC) online database, 17 releases of oil or hazardous materials have been reported at the Station 250, Mystic Generating Station. Four of the releases, Release Tracking Number (RTNs) 3-20199, 3-21131, 3-21688 and 3-25900, are associated with Station 250. Containments of concern (COCs) associated with the releases include polychlorinated biphenyls (PCBs), petroleum constituents, lead and light non-aqueous phase liquid (LNAPL). The Disposal Site boundaries associated with each of the reported releases are shown on Figure 1 (Aerial Dewatering Site Plan).

Groundwater Characterization

To determine groundwater quality in the project area, unfiltered groundwater samples were collected from two groundwater monitoring wells (B-3 and B-17) at Station 250. LNAPL was not observed in either groundwater monitoring well during sampling events. Locations of the monitoring wells are shown on Figure 1 (Aerial Dewatering Site Plan) in Appendix B.

The groundwater samples were submitted to ESS Laboratory of Cranston, Rhode Island for laboratory analysis of Environmental Protection Agency (EPA) RGP parameters. Laboratory analytical results are summarized in Table 1 (Appendix E). Copies of the laboratory analytical reports are included in Appendix F.

Laboratory analytical results are compared to the RGP Technology Based Effluent Limitations (TBEL) and Water Quality Based Effluent Limitations (WQBEL). Containments of concern (COCs) are analytes that exceeded the applicable effluent limitation. COCs detected in the monitoring wells include ammonia, chloride, total suspended solids (TSS), copper, iron, nickel, zinc, diethylhexyl phthalate (DEHP), group I PAHs, and polychlorinated biphenyls (PCBs).

Receiving Water Classification

Mystic River (waterbody identification MA71-03) is classified as a Class SB (CSO) impaired water body and is listed in the 303(d) Impaired Waterbodies document. This portion of the Mystic River is saltwater, as MassDEP classifies it as an estuary. During critical low flow conditions, it is assumed that there is no flow in saltwater environments; therefore, a 7-day 10-year low flow (7Q10) value was not calculated for this RGP. Additionally, dilution factors for sites discharging to saltwater receiving waters is assumed to be zero (1:1) in accordance with *Appendix V: Dilution Factor and Effluent Limitation Calculations for Massachusetts* of the NPDES RGP.

As required by the NPDES RGP, a surface water sample was collected within a quarter mile of the potential outfall locations prior to discharging. The surface water sample was collected and submitted for laboratory analysis of RGP metals detected in the influent samples, ammonia, and salinity. Temperature and pH of the surface water was recorded in the field at the time of sample collection. Analytical results for the surface water sample, as well as temperature and pH are summarized in Table 2 (Appendix E). The laboratory report for the surface water sample is included in Appendix F.

Treatment System

Dewatered groundwater within the Site will be treated by a treatment system before being discharged to nearby catch basins and into stormwater drainage systems managed by the BWSC, or Exelon Corporation, ultimately discharging to the Mystic River. Outfall locations are shown on Figure 1 (Aerial Dewatering Site Plan) in Appendix B.

Depending on the level of treatment required, the treatment system may be composed of flocculation tubes, a 9,000 gallon open top fractionation tank with a weir, a series of bag filters/media vessels and organoclay media.

Due to the anticipated influent concentrations of TSS, the addition of flocculants via a series of ChitoSan tubes, may be required to achieve effluent limits. The method of application for the flocculants would be in-line discharge prior to water entering the fractionation tank. The flocculants proposed are part of the HaloKlear Dual Polymer System (DPS). With the DPS, polymers are fixed inside a tube, and continually doses the water as it moves through the tube. The polymer dose will be at a rate of 2 parts-per-million (PPM) per flocculant. When water stops flowing through the system, the polymer dosing will also cease. After water has moved through the flocculant tubes, it will enter the fractionation tank, or settling tank where coagulated solids will settle out. From the fractionation tank, water will be pumped through a series of bag filters/media vessels (i.e, organoclay) for TSS and dissolved metal removal.

Since the flocculant tubes dose the stream of water flowing through the treatment system, the frequency and duration at which the dewatered groundwater is exposed to the flocculant tubes is continuous flow, whenever dewatering is occurring. The flocculants will be added at a constant dosage rate of 2 PPM per minute per flocculant (120 PPM of flocculants per hour). The treatment system will be operated for a maximum of 8 hours per day (480 minutes per day), for a daily maximum concentration of 960 PPM per flocculant.

The proposed flocculants are part of the HaloKlear Dual Polymer System (DPS) and include HaloKlear LBP-2101, HaloKlear DBP-2100, HaloKlear LiquiFloc 2% and HaloKlear GEL-Floc. Material and Safety Data Sheets associated with this treatment system have been included after Figure 3 (Process Flow Diagram) in Appendix B.

The addition of the proposed flocculants will not add any pollutants in concentrations which exceed permit effluent limitations. Chemicals included in the DPS are naturally derived and 100% biodegradable. The HaloKlear DBP-2100 is formulated from a plant-based protein and the HaloKlear GEL-Floc is a Chitosan lactate made from the exoskeletons of crustaceans. The chemical combinations in the proposed HaloKlear DPS has additionally passed fish kill studies.

The addition of the proposed flocculant will not exceed any applicable water quality standard due to the flocculant tubes being derived from plant-based proteins and crustacean exoskeletons.

The addition of the proposed flocculants will not add any pollutants that would justify the application of permit conditions that are different or absent from this permit. There is no concern for the addition of pollutants from the addition of the flocculants; therefore, there is no concern for the application of permit conditions that are different or absent from this permit.

Best Management Practices Plan- Tighe & Bond will develop a Best Management Practices Plan (BMPP) for the groundwater extraction and treatment systems for the Project Site. The BMPP will be developed in accordance with the requirements of the RGP and will be implemented upon initiation of the discharge.

Owner and Operator

The Site owner and Site operator will be co-permittees for this NPDES RGP application. The Site operator has not been selected, and notification will be made to the EPA upon selection.

<u>Owner</u> <u>Operator</u>

NSTAR Electric Company d/b/a Eversource Energy 247 Station Drive Westwood, MA 02090 To be Determined

Notice of Intent

Preparation of this NOI has included a review of literature pertaining to Areas of Critical Environmental Concern (ACEC), Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

- Review of a MassGIS Priority Resource Map, Figure 2, shows the Project Site is not within an ACEC and no National Heritage & Endangered Species Program (NHESP) Priority Habitats for Rare Species or Estimated Habitats for Rare Wildlife are Present within a half mile downstream of the discharge location.
- Review of the "Federally Listed Endangered and Threatened Species in Massachusetts" (Appendix C) found that there are two listed species in Middlesex County (small whorled pogonia and northern long-eared bat) and three species listed in Suffolk County (piping plover, red knot, and northern long-eared bat). The small whorled pogonia is found in Groton and the piping plover is found in Revere and Winthrop. As the Project Site is not in Groton, Revere, or Winthrop these two species will not be affected by construction activities or its proposed discharges. The red knot prefers coastal beaches, rocky shores, sand and mud flats. The northern long-eared bat prefers mines and caves in the winter and forested habitats in the summer. The project area consists of an exisiting electrical substation that borders industrial and commercial properties. The discharge will go through a treatment system prior to being discharged, which will remove solids and the COCs identified in groundwater. The discharge will also go through an exisiting drainage network to an exisiting outfall. As a result, it is the opinion of Tighe & Bond that the habitats for red knot and northern long-eared bat will not be disturbed during construction or dewatering activities.
- According to the United States Fish and Wildlife Services (USFWS) Information, Planning and Conservation (IPaC) tool there are no federally threatened or endangered species within the Project Site or outfall area. There are also no critical habitats for any federally threatened or endangered species in the action area; therefore, the permit eligibility meets "Criterion A".
- Tighe & Bond has done a review of federally threatened or endangered listed species and critical habitat under the jurisdiction of National Marine Fisheries Services (NMFS). There are no threatened or endangered species or critical habitat in the Mystic River or Boston Harbor. A review of the 10 X 10 latitude and longitude squares, Summary of Essential Fish Habitat (EFH) Designations for Boston Harbor, provided by the National Oceanic and Atmospheric Administration (NOAA) confirmed there are no EFH for the threatened or endangered species under NMFS jurisdiction. Therefore, Tighe & Bond affirms the determination made by EPA that the proposed discharges and discharge related activities are not likely to adversely affect any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS.

- An electronic review of the Massachusetts Cultural Resource Information System database (Appendix D), made available through the Massachusetts Historical Commission, found several historical areas along Alford Street, adjacent to the Project Site. It is the opinion of Tighe & Bond that discharges and discharge related activities will not affect historic properties as groundwater will be pumped into fractionation tanks, treated and discharged to an existing drainage network. Therefore, permit eligibility meets "Criterion B."
- Groundwater samples were collected from groundwater monitoring wells B-3 and B-17 in July of 2017. The groundwater samples were submitted for laboratory analysis of RGP parameters. Laboratory analytical results were compared to Table 1: Parameters, Required Minimum Levels (MLs), and Common Test Methods, used for selecting sufficiently sensitive test methods for RGP NOI preparation. Although some of the laboratory analytical results do not meet the requirements set in Table 1, it is the opinion of Tighe & Bond that data collected meets the Existing Data Substitution, as specified in the RGP Part 4, Section 5. The laboratory analytical results are summarized in Table 1 included in Appendix E. Copies of the laboratory analytical reports are included in Appendix F. Laboratory analytical results were compared to the RGP TBEL and WQBEL to determine the applicable effluent limitations for the Project Site.
- The surface water sample, Mystic at Boston Inner, was collected from the Mystic River within a quarter mile of the potential outfall location in November of 2017. The surface water sample was submitted for laboratory analysis of RGP parameters that were detected in the influent samples. The laboratory analytical results are summarized in Table 2 in Appendix E. A copy of the laboratory analytical report is included in Appendix F.

The proposed treatment system has been designed to reduce the levels of associated COCs to below the applicable effluent limits. Treated effluent will be sampled at start up and in accordance with permit requirements and submitted for laboratory analysis of required analysis to confirm the treatment system is operating as designed. Sufficiently sensitive test methods and MLs will be used for influent and effluent monitoring. Additionally, the flowrate, pH and turbidity levels will be monitored within the field and recorded in accordance with RGP requirements.

If you need any additional information or assistance on this project, please do not hesitate to contact Michael E. Martin at (508) 304-6355 at your convenience. Very truly yours,

TIGHE & BOND, INC.

Colleen E. Brothers Environmental Scientist

Colleen & Brothers

Enclosures

Copy: Matthew Waldrip - Eversource

Michael E. Martin

Project Manager

List of Appendices

Appendix A Notice of Intent

Appendix B Figure 1 Aerial Dewatering Site Plan

Figure 2 MassGIS Priority Resource Map

Figure 3 Process Flow Diagram

Appendix C Federally Listed Endangered Species in Massachusetts

Summary of Essential Fish Habitat (EFH) Designations (NOAA)

Appendix D Massachusetts Cultural Resources Information System Report

Appendix E Groundwater Analytical Results (Table 1)

Surface Water Analytical Results (Table 2)

WQBEL Calculations

Appendix F Laboratory Analytical Reports

J:\E\E0755 - Eversource L&P\E0755-6 Station 250 - 345 kV\RGP\NOI Cover Letter Final.docx

APPENDIX A

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City: State: Zip						
2. Site owner	Contact Person:						
	Telephone:						
	Mailing address:	l					
	Street:						
Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify:	City:	State:	Zip:				
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCI	₋ A				
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	NIII Crown dwystar Managamant Damnit ar	□ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment					
		□ CWA S	WA Section 404				

 \square Yes \square No

B. Receiving water information:	В.	Receiving	water	info	rmation
---------------------------------	----	-----------	-------	------	---------

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	ation of receiving water(s):				
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territor	ial sea □ Wild and Scenic Ri	ver				
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No					
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No						
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.							
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		the instructions in					
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s							
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): Yes	No				
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?				
(check one): □ Yes □ No							
C. Source water information:							
1. Source water(s) is (check any that apply):							
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:				
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other					
in accordance with the instruction in Appendix VIII? (check one):	ing results as required in Part 4.2 of the RGP ordance with the instruction in Appendix sampling results as required in Part 4.2 of the RGP in accordance with the instruction in						

□ Yes □ No

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
1	1
the RGP? (check one): \square Yes \square No If yes, indicate the contaminant(s) and	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
the maximum concentration present in accordance with the instructions in Appendix VIII.	
3. Has the source water been previously chlorinated or otherwise contains residual.	tual chlorine? (check one): □ Ves □ No
3. Has the source water been previously chlorinated of otherwise contains resid	dual chiorine? (check one). 🗆 Tes 🗆 No
D. Discharge information	
1. The discharge(s) is $a(n)$ (check any that apply): \square Existing discharge \square New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water Indirect discharge, if so, specify:
\square A private storm sewer system \square A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sev	ver system:
Has notification been provided to the owner of this system? (check one): □ Ye	es □ No
Has the operator has received permission from the owner to use such system for	or discharges? (check one): Yes No, if so, explain, with an estimated timeframe for
obtaining permission:	5
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): ☐ Yes ☐ No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months ⊔ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Con □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds				
☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ D. Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	5	Infl	uent	Effluent Li	ient Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics										
Ammonia								Report mg/L		
Chloride								Report μg/l		
Total Residual Chlorine								0.2 mg/L		
Total Suspended Solids								30 mg/L		
Antimony								206 μg/L		
Arsenic								104 μg/L		
Cadmium								10.2 μg/L		
Chromium III								323 μg/L		
Chromium VI								323 μg/L		
Copper								242 μg/L		
Iron								5,000 μg/L		
Lead								160 μg/L		
Mercury								0.739 μg/L		
Nickel								1,450 μg/L		
Selenium								235.8 μg/L		
Silver								35.1 μg/L		
Zinc								420 μg/L		
Cyanide								178 mg/L		
B. Non-Halogenated VOCs	3							-		
Total BTEX								100 μg/L		
Benzene								5.0 μg/L		
1,4 Dioxane								200 μg/L		
Acetone								7.97 mg/L		
Phenol								1,080 μg/L		

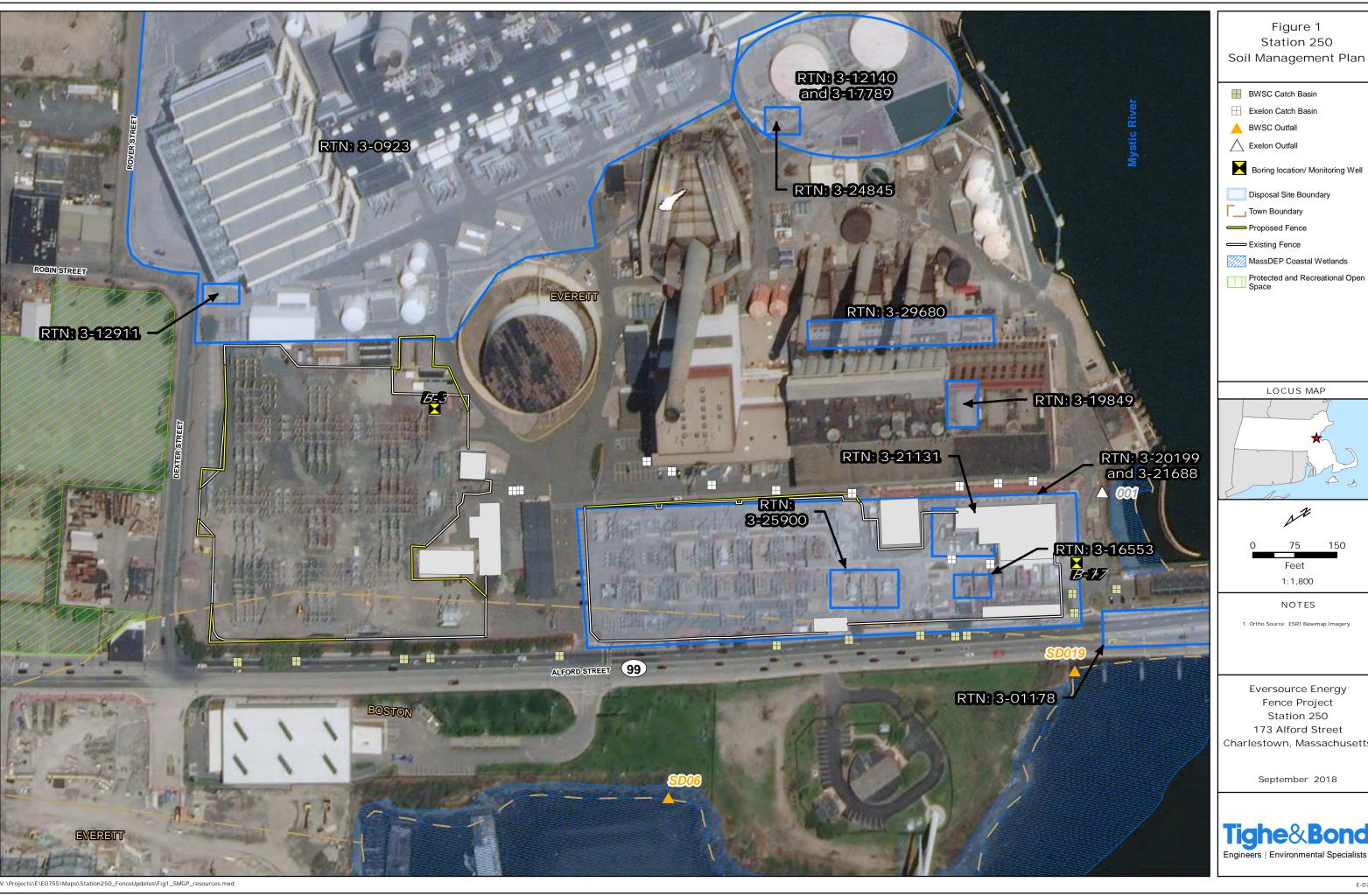
	Known	Known		_		Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 μg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 μg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVOC	s								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene									
Benzo(a)pyrene]	
Benzo(b)fluoranthene									
Benzo(k)fluoranthene								As Total PAHs	
Chrysene									
Dibenzo(a,h)anthracene									
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 μg/L	
Pentachlorophenol								1.0 μg/L	
	1	•	•	•	•				
F. Fuels Parameters Total Petroleum		1		<u> </u>		<u> </u>			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	nts present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No	

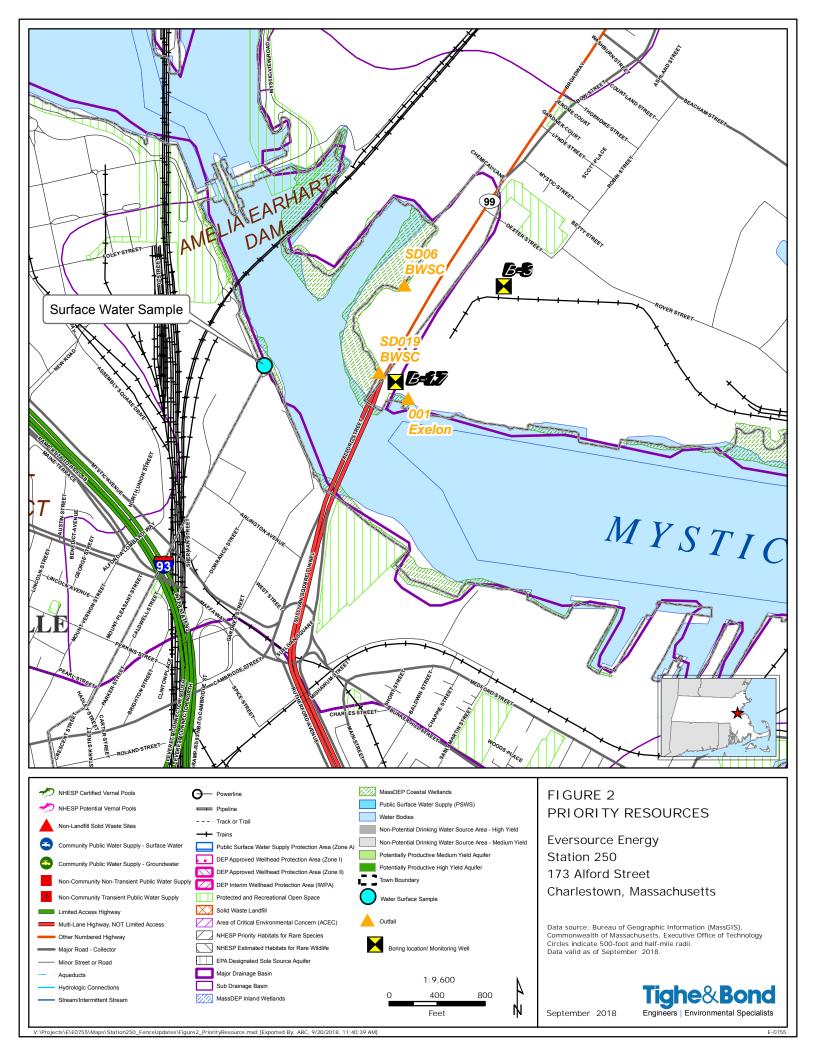
F. Chemical and additive information

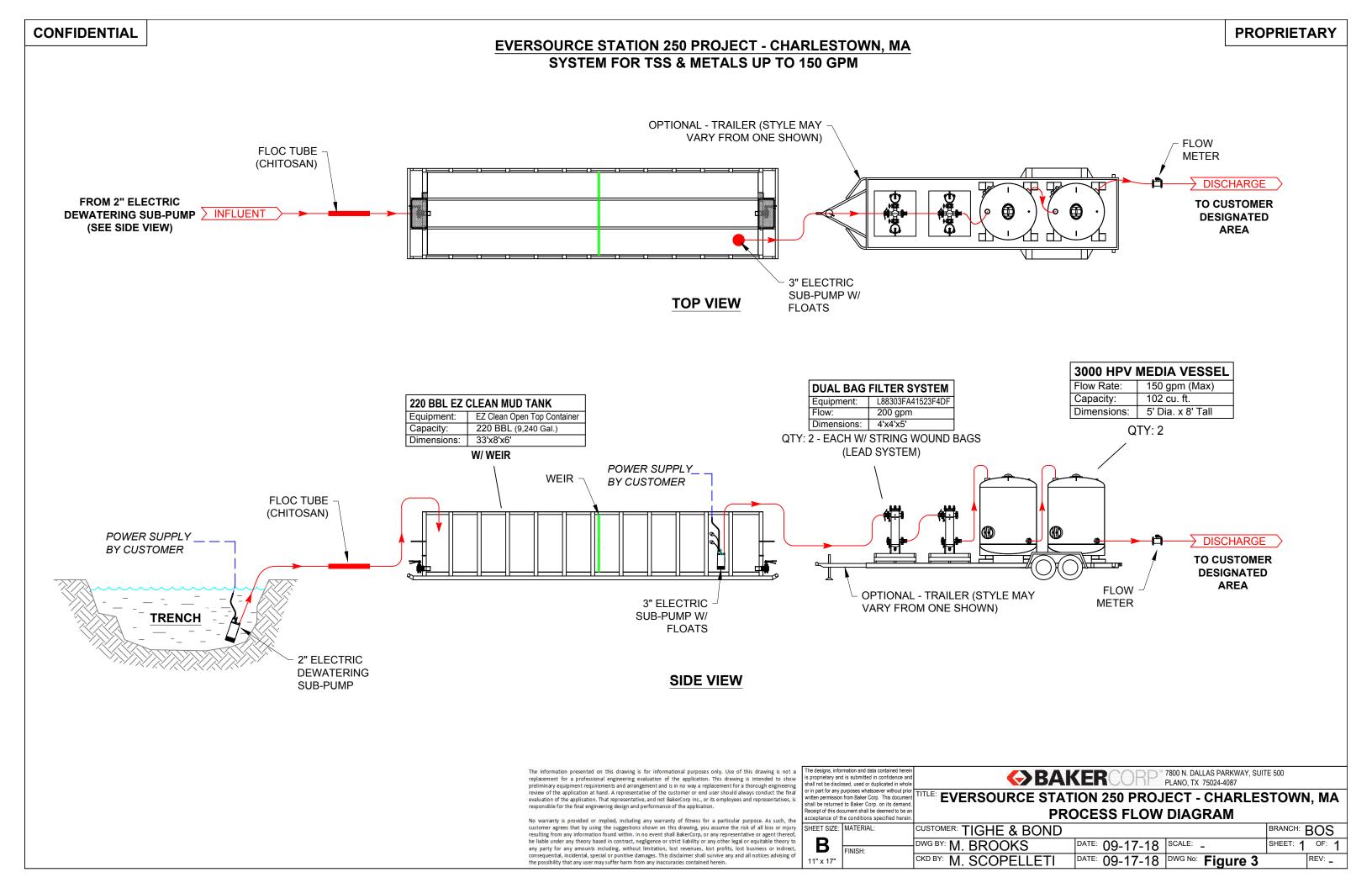

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, a	the system, or those and complete. I have
BMPP certification statement:		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes □	No □ NA □
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	Check one: Yes □	No □ NA □
Signature: Date of the second	te:	
Print Name and Title:		


APPENDIX B



Station 250

Fence Project 173 Alford Street Charlestown, Massachusetts

Tighe&Bond

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Date of issue: 03/03/2016

SECTION 1: Identification of the substance/mixture and of the company/undertaking

Product identifier

Product form : Mixture

Product name : HaloKlear LBP-2101

Product code 300014

1.2. Relevant identified uses of the substance or mixture and uses advised against

Use of the substance/mixture : Water Treatment

Details of the supplier of the safety data sheet

Dober Chemical Corp. 11230 Katherine's Crossing Suite 100 Woodridge.IL 60517 - USA

T 630-410-7300 - F 630-410-7444

regulatory@dobergroup.com - www.dober.com

Emergency telephone number

Emergency number 1-800-255-3924 / 1-813-248-0585

ChemTel

SECTION 2: Hazards identification

Classification of the substance or mixture

GHS-US classification

Not classified

2.2. Label elements

GHS-US labelling

No labelling applicable

Other hazards

No additional information available

Unknown acute toxicity (GHS-US)

Not applicable

SECTION 3: Composition/information on ingredients

3.1. **Substance**

Not applicable

Mixture

Full text of H-statements: see section 16

SECTION 4: First aid measures

Description of first aid measures

First-aid measures general : Never give anything by mouth to an unconscious person. If you feel unwell, seek medical

advice (show the label where possible).

First-aid measures after inhalation : Allow breathing of fresh air. Allow the victim to rest.

Remove affected clothing and wash all exposed skin area with mild soap and water, followed First-aid measures after skin contact

by warm water rinse.

First-aid measures after eye contact Rinse immediately with plenty of water. Obtain medical attention if pain, blinking or redness

First-aid measures after ingestion : Rinse mouth. Do NOT induce vomiting. Obtain emergency medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Symptoms/injuries : Not expected to present a significant hazard under anticipated conditions of normal use.

Indication of any immediate medical attention and special treatment needed

No additional information available

03/03/2016 EN (English) Page 1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media : Foam. Dry powder. Carbon dioxide. Water spray. Sand.

Unsuitable extinguishing media : Do not use a heavy water stream.

5.2. Special hazards arising from the substance or mixture

Fire hazard : Not flammable.

Reactivity : The product is non-reactive under normal conditions of use, storage and transport.

5.3. Advice for firefighters

Firefighting instructions : Use water spray or fog for cooling exposed containers. Exercise caution when fighting any

chemical fire. Prevent fire-fighting water from entering environment.

Protection during firefighting : Do not enter fire area without proper protective equipment, including respiratory protection.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

6.1.1. For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

6.1.2. For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area.

6.2. Environmental precautions

None known.

6.3. Methods and material for containment and cleaning up

For containment : Collect spillage.

Methods for cleaning up : Soak up spills with inert solids, such as clay or diatomaceous earth as soon as possible.

6.4. Reference to other sections

See Heading 8. Exposure controls and personal protection.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Precautions for safe handling : Wash hands and other exposed areas with mild soap and water before eating, drinking or

smoking and when leaving work. Provide good ventilation in process area to prevent formation

of vapour. No smoking.

Hygiene measures : Always wash hands after handling the product.

7.2. Conditions for safe storage, including any incompatibilities

Storage conditions : Keep only in the original container in a cool, well-ventilated place. Keep container closed when

not in use.

Incompatible products : None known. Incompatible materials : None known.

7.3. Specific end use(s)

No additional information available

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

HaloKlear LBP-2101	
ACGIH	Not applicable
OSHA	Not applicable

8.2. Exposure controls

Personal protective equipment : Avoid all unnecessary exposure.

Hand protection : Wear protective gloves/protective clothing/eye protection/face protection protective gloves.

Eye protection : Chemical goggles or safety glasses.

03/03/2016 EN (English) 2/1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Respiratory protection : Use a properly fitted, particulate filter respirator complying with an approved standard if a risk

assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the

selected respirator.

Other information : Do not eat, drink or smoke during use.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state : Liquid

Colour : Clear to milky white

Odour : vinegar

Odour threshold : No data available

pH : 3.4 - 3.8

: No data available Relative evaporation rate (butylacetate=1) Melting point : No data available : No data available Freezing point Boiling point : No data available Flash point No data available No data available Auto-ignition temperature Decomposition temperature : No data available Flammability (solid, gas) No data available Vapour pressure No data available Relative vapour density at 20 °C No data available Relative density : No data available : 0.95 - 0.99 g/ml Density Solubility Water: 100 % Log Pow : No data available No data available Log Kow Viscosity, kinematic No data available Viscosity, dynamic No data available Explosive properties No data available Oxidising properties No data available

9.2. Other information

No additional information available

SECTION 10: Stability and reactivity

10.1. Reactivity

Explosive limits

The product is non-reactive under normal conditions of use, storage and transport.

10.2. Chemical stability

Stable under normal conditions.

10.3. Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

10.4. Conditions to avoid

None under recommended storage and handling conditions (see section 7).

10.5. Incompatible materials

None known.

10.6. Hazardous decomposition products

Under normal conditions of storage and use, hazardous decomposition products should not be produced.

No data available

SECTION 11: Toxicological information

11.1. Information on toxicological effects

03/03/2016 EN (English) 3/1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Acute toxicity : Not classified
Skin corrosion/irritation : Not classified

pH: 3.4 - 3.8

Serious eye damage/irritation : Not classified

pH: 3.4 - 3.8

Respiratory or skin sensitisation : Not classified Germ cell mutagenicity : Not classified Carcinogenicity : Not classified Reproductive toxicity : Not classified Specific target organ toxicity (single exposure) : Not classified Specific target organ toxicity (repeated : Not classified

exposure)

Aspiration hazard : Not classified

Potential adverse human health effects and

symptoms

: Based on available data, the classification criteria are not met.

SECTION 12: Ecological information

12.1. Toxicity

HaloKlear LBP-2101		
LC50 fish 1	> 4000 mg/l Rainbow Trout; 96 hr	
NOEC (acute)	4000 mg/l	

12.2. Persistence and degradability

HaloKlear LBP-2101	
Persistence and degradability	Not established.

12.3. Bioaccumulative potential

HaloKlear LBP-2101		
Bioaccumulative potential	Not established.	

12.4. Mobility in soil

No additional information available

12.5. Other adverse effects

Effect on the global warming : No known ecological damage caused by this product.

Other information : No other effects known.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Waste treatment methods : Dispose of contents/container in accordance with licensed collector's sorting instructions.

Waste disposal recommendations : Dispose in a safe manner in accordance with local/national regulations.

SECTION 14: Transport information

UN-No. (IMDG) : Non Regulated
UN-No. (IMTA) : Non Regulated
UN-No. (IATA) : Non Regulated

14.2. UN proper shipping name

Proper Shipping Name (DOT) : Not applicable

Proper Shipping Name (IMDG) : Not applicable

Proper Shipping Name (IATA) : Not applicable

03/03/2016 EN (English) 4/1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

14.3. Transport hazard class(es)

Transport hazard class(es) (DOT) : Not applicable

:

Transport hazard class(es) (IMDG) : Not applicable

Transport hazard class(es) (IATA) : Not applicable

14.4. Packing group

Packing group (DOT) : Not applicable

Packing group (IMDG) : Not applicable

Packing group (IATA) : Not applicable

14.5. Environmental hazards

Marine pollutant(IMDG) : No

Marine pollutant(IATA) : No

SECTION 15: Regulatory information

15.1. US Federal regulations

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency Toxic Substances Control Act (TSCA) inventory

This product or mixture does not contain a toxic chemical or chemicals in excess of the applicable de minimis concentration as specified in 40 CFR §372.38(a) subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

15.2. International regulations

CANADA

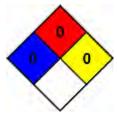
No additional information available

15.3. US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm

SECTION 16: Other information

Other information : None.


NFPA health hazard : 0 - Exposure under fire conditions would offer no hazard

beyond that of ordinary combustible materials.

NFPA fire hazard : 0 - Materials that will not burn.

NFPA reactivity : 0 - Normally stable, even under fire exposure conditions,

and are not reactive with water.

HMIS III Rating

Health : 0 - No significant risk to health

Flammability : 0
Physical : 0
Personal Protection : B

03/03/2016 EN (English) 5/1

Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Dober SDS US

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

03/03/2016 EN (English) 6/1

acc. to OSHA HCS

1 IDENTIFICATION

Product identifier

Product form : Substance

Product name : HaloKlear DBP-2100 Socks

Chemical name : Xanthan Gum
CAS No : 11138-66-2
Product code : 210014

· Relevant identified uses of the substance or mixture and uses advised against

Uses of the substance/mixture : Flocculant

· Manufacturer/Supplier:

Sound Environmental Concepts

22726 102nd Ave SE, Woodinville, WA 98077

1 (206) 730 - 5376

ray@soundenvirocon.com

- · Information department: Product safety department
- · Telephone number:
 - + 1 (206) 730 5376
- · Information department: Product safety department
- · Emergency telephone number: +1 (800) 424-9300 (24 Hours)

During normal opening times: +1 (425) 881-6464

CHEMTREC (Domestic, North America) +1-703-527-3887 CHEMTREC (International, collect calls accepted)

2 HAZARD(S) IDENTIFICATION

 Classification of the substance or mixture GHS-US Classification

Not classified

Trade Name: HaloKlear DBP-2100 Socks

2 HAZARD(S) IDENTIFICATION CONTD.

Label Elements
 GHS-US Labelling
 No labeling applicable

· Other hazards

Other hazards not contributing to

the classification

: May form combustible dust concentrations in air. May cause eye irritation.

Unknown acute toxicity (GHS-US)

Not applicable

3 COMPOSITION/INFORMATION ON INGREDIENTS

Substance

Substance type : Mono-constituent

Name : HaloKlear DBP-2100 Socks

CAS No : 11138-66-2

Fulltext of H-statements: see section 16

Mixture
Not applicable

4 FIRST AID MEASURES

· Description of first aid measures

First-aid measures general : Never give anything by mouth to an unconscious

person. If you feel unwell, seek medical advice (show

the label where possible).

First-aid measures after inhalation : A

First-aid measures after skin contact : Remove

: Allow breathing of fresh air. Allow the victim to rest.

: Removed affected clothing and wash all exposed skin area with mild soap and water, followed by warm

water rinse.

First-aid measures after eye contact

: Rinse immediately with plenty of water. Obtain

medical attention if pain, blinking or redness

persist.

First-aid measures after ingestion

: Rinse mouth. Do NOT induce vomiting. Obtain

emergency medical attention.

Trade Name: HaloKlear DBP-2100 Socks

4 FIRST AID MEASURES

· Most important symptoms and effects, both acute and delayed

Symptoms/Injuries after eye contact : Not expected to present a significant hazard under

anticipated conditions of normal use.

 $\cdot\,$ Indication of any immediate medical attention and special treatment needed

No additional information available

5 FIRE-FIGHTING MEASURES

· Extinguishing media

Suitable extinguished media : Foam. Dry powder. Carbon dioxide. Water spray. Sand.

Unsuitable extinguishing media : Do not use a heavy water stream.

· Special hazards arising from the substance or mixture

Reactivity : The product is non-reactive under normal conditions

of use, storage and transport.

Advice for firefighters

Firefighting instructions : Exercise caution when fighting any chemical fire.

Eliminate all ignition sources if safe to do so.

Use water spray of fog for cooling exposed containers.

Protection during firefighting : Do not enter fire area without proper protective

equipment, including respiratory protection.

Other information : Spills produce extremely slippery surfaces. Avoid dust

formation.

6 ACCIDENTAL RELEASE MEASURES

· Personal precautions, protective equipment and emergency procedures

· For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

· For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area

Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public

waters.

Trade Name: HaloKlear DBP-2100 Socks

6 ACCIDENTAL RELEASE MEASURES

· Personal precautions, protective equipment and emergency procedures

General measures : Use special care to avoid static electric charges.

For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area.

Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

· Methods and material for containment and cleaning up

Methods of cleaning up : On land, sweep or shovel into suitable containers.

Minimize generation of dust. Store away from other

materials.

· Reference to other sections

See Section 8. Exposure controls and personal protection.

7 HANDLING AND STORAGE

· Precautions for safe handling

Precautions for safe handling : Wash hands and other exposed areas with mild soap

and water before eating, drinking or smoking and leaving work. Provide good ventilation in process area

to prevent formation of vapor. No smoking.

· Conditions for safe storage, including and incompatibles

Storage conditions : Keep only in the original container in a cool, well-

ventilated place. Keep container closed when not in use.

Incompatible products : Oxidizing agent.
Incompatible materials : Sources of ignition.

Specific end use(s)

No additional information available

8 EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

HaloKlear DBP-2100 Socks

ACGIH : Not applicable
OSHA : Not applicable

Trade Name: HaloKlear DBP-2100 Socks

8 EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure controls

Personal protective equipment : Avoid all unnecessary exposure.

Hand protection : Wear protective gloves/protective clothing/eye

protection/face protection protective gloves.

Eye protection : Chemical goggles or safety glasses.

Respiratory protection : Use a property fitted, particulate filter respirator

complying with an approved standard if a risk

assessment indicates this necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits

of the selected respirator.

Other information : Do not eat, drink or smoke during use.

9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state : Solid

Color : White to tan
Odor : odorless

Odour threshold : No data available

pH : approximately neutral (1% solution)

Relative evaporation rate : No data available Melting point : No data available Freezing point : No data available : No data available Boiling point : No data available Flash point Auto-ignition temperature : No data available Decomposition temperature : No data available Flammability (solid, gas) : No data available Vapor pressure : No data available Relative vapor density : No data available : No data available Relative density Solubility : Water: 100 % Log Pow : No data available

Log Kow : No data available Viscosity, kinematic : No data available

Trade Name: HaloKlear DBP-2100 Socks

9 PHYSICAL AND CHEMICAL PROPERTIES

Viscosity, dynamic : No data available
Explosive properties : No data available
Oxidizing properties : No data available
Explosive limits : No data available

· Other Information

No additional information available

10 STABILITY AND REACTIVITY

· Reactivity

The product is non-reactive under normal conditions of use, storage and transport.

· Chemical stability

Stable under normal conditions.

· Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

· Conditions to avoid

Avoid dust formation.

· Incompatible materials

Oxidizing agent.

· Hazardous decomposition products

Thermal decomposition generates: Carbon dioxide. Carbon monoxide. Fume.

11 TOXICOLOGICAL INFORMATION

· Information on toxicological effects

Acute toxicity : Not classified Skin corrosion/irritation : Not classified

pH: approximately neutral (1% solution)

Serious eye damage/irritation : Not classified

pH: approximately neutral (1% solution)

Respiratory or skin sensitization : Not classified
Germ cell mutagenicity : Not classified
Carcinogenicity : Not classified
Reproductive toxicity : Not classified
Specific target organ toxicity : Not classified

(single exposure)

Trade Name: HaloKlear DBP-2100 Socks

11 TOXICOLOGICAL INFORMATION

Specific target organ toxicity

: Not classified

(repeated exposure)

Aspiration hazard

: Not classified

Potential adverse human health

effects and symptoms

: Based on available data, the classification criteria are

not met.

12 ECOLOGICAL INFORMATION

· Toxicity

HaloKlear DBP-2100 Socks (11138-66-2)

LC50 fish 1 491 mg/l Rainbow Trout; 96 hour

· Persistence and degradability

HaloKlear DBP-2100 Socks (11138-66-2)

Persistence and degradability The product is biodegradable

· Bioaccumulative potential

HaloKlear DBP-2100 Socks (11138-66-2)

Bioaccumulative potential Inherently biodegradable

· Mobility in soil

HaloKlear DBP-2100 Socks (11138-66-2)

Mobility in soil Not available

· Other adverse effects

Effect on Global warming : No known ecological damaged caused by this product.

Other information : No other effects known.

13 DISPOSAL CONSIDERATIONS

· Waste treatment methods

Waste disposal recommendations : Dispose of contents/container in accordance with

Licensed collector's sorting instructions.

Ecology – waste materials : None known.

Trade Name: HaloKlear DBP-2100 Socks

14 TRANSPORT INFORMATION

UN-No. (DOT):: Non RegulatedUN-No. (IMDG):: Non RegulatedUN-No. (IATA):: Non Regulated

· UN proper shipping name

Proper Shipping Name (DOT): : Not applicable
Proper Shipping Name (IMDG): : Not applicable
Proper Shipping Name (IATA): : Not applicable

Transport hazard class(es)

Transport hazard class(es) (DOT): : Not applicable
Transport hazard class(es) (IMDG): : Not applicable
Transport hazard class(es) (IATA): : Not applicable

Packing group

Packing group (DOT): : Not applicable
Packing group (IMDG): : Not applicable
Packing group (IATA): : Not applicable

· Environmental hazards

Marine pollutant(IMDG): : No Marine pollutant(IATA): : No

15 REGULATORY INFORMATION

US Federal regulations

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency ToxicSubstances Control Act (TSCA) inventory.

This product or mixture does not contain a toxic chemical or chemicals in excess of the applicable de minimis concentration as specified in 40 CFR §372.38(a) subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

· International Regulations

Canada

Aluminum chloride hydroxide sulfate (39290-78-3)

No additional information available

Trade Name: HaloKlear DBP-2100 Socks

15 REGULATORY INFORMATION

· US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm.

16 OTHER INFORMATION

Other information: : None

NFPA health hazard : 0 - Exposure under fire conditions would offer no

hazard beyond that of ordinary combustible

materials.

NFPA fire hazard : 0 - Materials that will not burn.

NFPA reactivity : 0 - Normally stable, even under fire exposure

conditions, and are not reactive with water.

NFPA specific hazard : NA - Not Applicable

HMIS III Rating

Health : 0 - No significant risk to health

Flammability : 0
Physical : 0
Personal Protection : B

HaloKlear

PRODUCT FACTS

DUAL PRODUCT SYSTEM

WE'VE NEVER KILLED A FISH!

Clean Water. Naturally.

Description

HaloKlear's All-Natural Water Treatment System
The Dual Product System (DPS) is quickly gaining national and international recognition as the premier all-natural stormwater treatment solution, providing unparalleled performance and reliable results in an array of projects across the globe. HaloKlear DPS uses biodegradable, natural flocculants that perform on a wide array of soil types and pH ranges. In contrast to other products on the market, the HaloKlear Dual Product System creates dense flocs with great shear strength and a low water content that settle very quickly. Solids can be efficiently removed from the water column – increasing performance and productivity while keeping costs low. In addition, HaloKlear DPS is extremely flexible with a successful track record in active, passive, and semi-passive deployment.

GREEN FOR LESS

Don't just clean the water, clean the environment Our chemistries are less toxic when water is returned to its natural environment. All of HaloKlear's products exhibit exceptionally low toxicity, and the **Dual Product System** has been proven to have zero toxicity.* No bioaccumulation concerns exist when and where HaloKlear products are used, and our products are 100% biodegradable through enzymatic activity

* Third-party toxicity testing concluded that no fish were killed by the Dual Product System (DPS) when both parts were used in combination of following Best Management Practices.

Product Benefits

- Biodegradable natural flocculants
- Effective on a wide range of pH conditions and soil types
- Functions in active, semi-passive and passive applications
- Effective in fresh water and salt water
- Works with existing equipment of a part of a customized product
- Capable of trapping hydrocarbons, metals and nutrients
- Increases performance and productivity while keeping costs low

Part One

LBP-2101 = Liquid

DBP-2100 = Dry socks

DBP-2100 MB = Loose, dry

DPS DC-1 = Dry concentrate

for making down into liquid**

Part Two

LiquiFloc = Liquid

GelFloc = Dry socks

GelFloc MB = Loose, dry

DPS DC-2 = Dry concentrate

for making down into liquid**

For additional information contact Dober at:

(800) 323-4983

info@dober.com

www.dober.com/water treatment

^{**}Not available in the North American market

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Date of issue: 03/07/2016 Revision date: 04/25/2017 Supersedes: 03/07/2016 Version: 2.0

SECTION 1: Identification of the substance/mixture and of the company/undertaking

Product identifier

Product form : Mixtures

Product name : HaloKlear LiquiFloc 2%

Product code 001401

1.2. Relevant identified uses of the substance or mixture and uses advised against

Use of the substance/mixture : Stormwater Flocculant

Details of the supplier of the safety data sheet

Dober Chemical Corp. 11230 Katherine's Crossing Suite 100 Woodridge, IL 60517 - USA T 630-410-7300 - F 630-410-7444 regulatory@dober.com - www.dober.com

Emergency telephone number

Emergency number : 1-800-255-3924 / 1-813-248-0585

ChemTel

SECTION 2: Hazards identification

Classification of the substance or mixture

GHS-US classification

Not classified

2.2. Label elements

GHS-US labeling

No labeling applicable

Other hazards

No additional information available

Unknown acute toxicity (GHS US)

Not applicable.

SECTION 3: Composition/Information on ingredients

3.1. **Substances**

Not applicable

Mixtures

Full text of H-phrases: see section 16

SECTION 4: First aid measures

4.1. **Description of first aid measures**

: Never give anything by mouth to an unconscious person. If you feel unwell, seek medical First-aid measures general

advice (show the label where possible).

First-aid measures after inhalation Allow victim to breathe fresh air. Allow the victim to rest.

First-aid measures after skin contact Remove affected clothing and wash all exposed skin area with mild soap and water, followed

by warm water rinse.

: Rinse immediately with plenty of water. Obtain medical attention if pain, blinking or redness First-aid measures after eye contact

First-aid measures after ingestion : Rinse mouth. Do NOT induce vomiting. Obtain emergency medical attention.

Most important symptoms and effects, both acute and delayed 4.2

Symptoms/effects : Not expected to present a significant hazard under anticipated conditions of normal use.

Indication of any immediate medical attention and special treatment needed

No additional information available

04/25/2017 EN (English US) Page 1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media : Foam. Dry powder. Carbon dioxide. Water spray. Sand.

Unsuitable extinguishing media : Do not use a heavy water stream.

5.2. Special hazards arising from the substance or mixture

Fire hazard : Not flammable.

Reactivity : The product is non-reactive under normal conditions of use, storage and transport.

5.3. Advice for firefighters

Firefighting instructions : Use water spray or fog for cooling exposed containers. Exercise caution when fighting any

chemical fire. Prevent fire-fighting water from entering environment.

Protection during firefighting : Do not enter fire area without proper protective equipment, including respiratory protection.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

6.1.1. For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

6.1.2. For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area.

6.2. Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

6.3. Methods and material for containment and cleaning up

Methods for cleaning up : Soak up spills with inert solids, such as clay or diatomaceous earth as soon as possible. Collect

spillage. Store away from other materials.

6.4. Reference to other sections

See Heading 8. Exposure controls and personal protection.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Precautions for safe handling : Wash hands and other exposed areas with mild soap and water before eating, drinking or

smoking and when leaving work. Provide good ventilation in process area to prevent formation

of vapor. No smoking.

7.2. Conditions for safe storage, including any incompatibilities

Storage conditions : Keep only in the original container in a cool, well-ventilated place. Keep container closed when

not in use.

Incompatible products : Strong bases. Strong acids.

Incompatible materials : Sources of ignition. Direct sunlight. Storage temperature : 10 - 50 °C will freeze at 3C.

7.3. Specific end use(s)

No additional information available

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

HaloKlear LiquiFloc 2%		
ACGIH	Not applicable	
OSHA	Not applicable	

8.2. Exposure controls

Personal protective equipment : Avoid all unnecessary exposure.

Hand protection : Wear protective gloves/protective clothing/eye protection/face protection protective gloves.

Eye protection : Chemical goggles or safety glasses.

Respiratory protection : No respiratory protection needed under normal use conditions.

Other information : Do not eat, drink or smoke during use.

04/25/2017 EN (English US) 2/6

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state : Liquid

Color : Colorless to Pale Yellow

Odor : vinegar

Odor threshold : No data available

pH : 3 - 4.5

Relative evaporation rate (butyl acetate=1) : No data available
Melting point : No data available
Freezing point : No data available

Boiling point : 99.4 °C

Flash point : No data available Auto-ignition temperature : No data available Decomposition temperature : No data available Flammability (solid, gas) No data available : No data available Vapor pressure Relative vapor density at 20 °C No data available Relative density : No data available Specific gravity / density : 1 - 1.1 g/ml Soluble. Solubility

Water:

Log Pow : No data available
Log Kow : No data available
Viscosity, kinematic : No data available
Viscosity, dynamic : No data available
Explosive properties : No data available
Oxidizing properties : No data available
Explosion limits : No data available

9.2. Other information

No additional information available

SECTION 10: Stability and reactivity

10.1. Reactivity

The product is non-reactive under normal conditions of use, storage and transport.

10.2. Chemical stability

Stable under normal conditions.

10.3. Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

10.4. Conditions to avoid

Direct sunlight. Extremely high or low temperatures.

10.5. Incompatible materials

Strong acids. Strong bases.

10.6. Hazardous decomposition products

Under normal conditions of storage and use, hazardous decomposition products should not be produced.

SECTION 11: Toxicological information

11.1. Information on toxicological effects

Acute toxicity : Not classified
Skin corrosion/irritation : Not classified
pH: 3 - 4.5

04/25/2017 EN (English US) 3/6

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Serious eye damage/irritation : Not classified

pH: 3 - 4.5

Respiratory or skin sensitization : Not classified Germ cell mutagenicity : Not classified Carcinogenicity Not classified Reproductive toxicity : Not classified STOT-single exposure Not classified STOT-repeated exposure Not classified

Aspiration hazard : Not classified

symptoms

Potential Adverse human health effects and : Based on available data, the classification criteria are not met.

SECTION 12: Ecological information

12.1. **Toxicity**

HaloKlear LiquiFloc 2%		
LC50 fish 1	193 mg/l 96 hour, O. mykiss	
LOEC (acute)	197 mg/l 96 hour, O. mykiss	
LOEC (chronic)	106 mg/l O. mykiss	
NOEC (acute)	108 mg/l 96 hour, O. mykiss	
NOEC (chronic)	58 mg/l O. mykiss	

12.2. Persistence and degradability

HaloKlear LiquiFloc 2%	
Persistence and degradability	Not established.

12.3. **Bioaccumulative potential**

HaloKlear LiquiFloc 2%	
Bioaccumulative potential	Not established.

Mobility in soil

No additional information available

Other adverse effects

Effect on global warming : No known effects from this product.

Other information : No other effects known.

SECTION 13: Disposal considerations

Waste treatment methods

Ecology - waste materials : None known.

SECTION 14: Transport information

UN-No.(DOT) : Non Regulated UN-No. (IMDG) : Non Regulated UN-No. (IATA) : Non Regulated

14.2. **UN** proper shipping name

Proper Shipping Name (DOT) : Not applicable.

Proper Shipping Name (IMDG) : Not applicable. Proper Shipping Name (IATA) : Not applicable.

04/25/2017 EN (English US) 4/6

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

14.3. Transport hazard class(es)

Class (DOT) : Not applicable.

:

Transport hazard class(es) (IMDG) : Not applicable.

Transport hazard class(es) (IATA) : Not applicable.

14.4. Packing group

Packing group (DOT) : Not applicable.

Packing group (IMDG) : Not applicable.

Packing group (IATA) : Not applicable.

14.5. Environmental hazards

Marine pollutant(IMDG) : No

Marine pollutant(IATA) : No

SECTION 15: Regulatory information

15.1. US Federal regulations

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency Toxic Substances Control Act (TSCA) inventory

This product or mixture is not known to contain a toxic chemical or chemicals in excess of the applicable de minimis concentration as specified in 40 CFR §372.38(a) subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

15.2. International regulations

CANADA

No additional information available

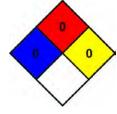
15.3. US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm

SECTION 16: Other information

Revision date : 04/25/2017 Other information : None.

NFPA health hazard : 0 - Materials that, under emergency conditions, would offer


no hazard beyond that of ordinary combustible materials.

NFPA fire hazard : 0 - Materials that will not burn under typical dire conditions, including intrinsically noncombustible materials such as

concrete, stone, and sand.

NFPA reactivity : 0 - Material that in themselves are normally stable, even

under fire conditions.

Hazard Rating

Health : 0 Minimal Hazard - No significant risk to health

Flammability : 0 Minimal Hazard
Physical : 0 Minimal Hazard

Personal protection : B

04/25/2017 EN (English US) 5/6

Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Dober SDS US

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

04/25/2017 EN (English US) 6/6

acc. to OSHA HCS

1 IDENTIFICATION

· Product identifier

Trade name: HaloKlear: Gel-Floc

- · Details of the supplier of the safety data sheet
- · Manufacturer/Supplier:

Sound Environmental Concepts 22726 102nd Ave SE, Woodinville, WA 98077 1 (206) 730 - 5376 ray@soundenvirocon.com

- · Information department: Product safety department
- · Telephone number:
 - + 1 (206) 730 5376
- · Information department: Product safety department
- · Emergency telephone number: +1 (800) 424-9300 (24 Hours)

During normal opening times: +1 (425) 881-6464

CHEMTREC (Domestic, North America) +1-703-527-3887 CHEMTREC (International, collect calls accepted)

2 HAZARD(S) IDENTIFICATION

· Classification of the substance or mixture

The product is not classified according to the Globally Harmonized System (GHS).

· Classification according to Directive 67/548/EEC or Directive 1999/45/EC *Not applicable*. Information concerning particular hazards for human and environment:

The product does not have to be labeled due to the calculation procedure of international guidelines Classification system:

The classification was made according to the latest editions of international substances lists, and expanded upon from company and literature data.

Trade Name: HaloKlear: Gel-Floc

2 HAZARD(S) IDENTIFICATION CONTD.

- · Label elements
- · Labelling according to EU guidelines:

Observe the general safety regulations when handling chemicals. The product is not subject to identification regulations according to directives on hazardous materials.

· Classification System

- · NFPA ratings (scale 0 4)
 - · *Health* = 0
 - · Fire = 0
 - · Reactivity = 0

· HMIS-ratings (scale 0 - 4)

- · Health = 0
- · Fire = 0
- · Reactivity = 0

- Other hazards
- · Results of PBT and vPvB assessment
- · PBT: Not applicable
- · vPvB: Not applicable

3 COMPOSITION/INFORMATION ON INGREDIENTS

· Chemical characterization: Mixtures

• **Description:** *Mixture of the substances listed below with nonhazardous additions.*

· Dangerous components: Void

4 FIRST-AID MEASURES

- · Description of first aid measures
- · General information: No special measures required.
- · **After inhalation:** Supply fresh air; consult doctor in case of complaints.
- · **After skin contact:** Generally the product does not irritate the skin.
- · After eye contact: Rinse opened eye for several minutes under running water.
- · After swallowing: If symptoms persist consult doctor.

Trade Name: HaloKlear: Gel-Floc

4 FIRST AID MEASURES CONTD.

- · Information for doctor:
- Most important symptoms and effects, both acute and delayed *No further relevant information available.*
- · Indication of any immediate medical attention and special treatment needed No further relevant information available

5 FIRE-FIGHTING MEASURES

- · Extinguishing media
- **Suitable extinguishing agents:** *CO2, extinguishing powder or water spray. Fight larger fires with water spray or alcohol resistant foam.*
- · Special hazards arising from the substance or mixture No further relevant information available.
- · Advice for firefighters
- · Protective equipment: No special measures required.

6 ACCIDENTAL RELEASE MEASURES

- · Personal precautions, protective equipment and emergency procedures Not required.
- · Environmental precautions: Do not allow to enter sewers/ surface or ground
- · Methods and material for containment and cleaning up: Pick up mechanically
- · Reference to other sections

See Section 7 for information on safe handling.

See Section 8 for information on personal protection equipment.

See Section 13 for disposal information.

7 HANDLING AND STORAGE

- · Handling:
- Precautions for safe handling No special measures required.
- · Information about protection against explosions and fires: No special measures required.
- · Conditions for safe storage, including any incompatibilities
- Storage:
- · Requirements to be met by storerooms and receptacles: No special requirements.
- · Information about storage in one common storage facility: Not required.
- · Further information about storage conditions: None.
- Specific end use(s) Water flocculent

Trade Name: HaloKlear: Gel-Floc

8 EXPOSURE CONTROLS/PERSONAL PROTECTION CONTD.

- Additional information about design of technical systems: No further data; see item 7.
- · Control parameters
- Components with limit values that require monitoring at the workplace:
 The product does not contain any relevant quantities of materials with critical values that have to be monitored at the workplace.
- · Additional information: The lists that were valid during the creation were used a basis.
- · Exposure controls
- · Personal protective equipment:
- General protective and hygienic measures:

The usual precautionary measures for handling chemicals should be followed.

- · Breathing equipment: Not required.
- Protection of hands:

The glove material has to be impermeable and resistant to the product/ the substance/ the preparation. Due to missing tests no recommendation to the glove material can be given for the product/ the preparation/ the chemical mixture. Selection of the glove material on consideration of the penetration times, rates of diffusion and the degradation

Material of gloves

The selection of the suitable gloves does not only depend on the material, but also on further marks of quality and varies from manufacturer to manufacturer. As the product is a preparation of several substances, the resistance of the glove material can't be calculated in advance and has therefore to be checked prior to the application.

Penetration time of glove material

The exact break through time has to be found out by the manufacturer of the protective gloves and has to be observed.

• **Eye protection:** *Not required.*

9 PHYSICAL AND CHEMICAL PROPERTIES

- · Information on basic physical and chemical properties
- · General Information
- Appearance:

Form: PowderColor: Whitish

Odor: Product specificOdour threshold: Not determined

pH-value at 20 °C (68 °F): Not applicable

Trade Name: HaloKlear: Gel-Floc

Kinematic:

9 PHYSICAL AND CHEMICAL PROPERTIES CONTD. · Change in condition Melting point/Melting range: Undetermined Boiling point/Boiling range: > 999 °C (> 1830 °F) · Flash point: Not applicable · Flammability (solid, gaseous): Not determined · Ignition temperature: · Decomposition temperature: Not determined · Auto igniting: Product is not selfigniting · Danger of explosion: Product does not present an explosion hazard.\ · Explosion limits: Lower: Not determined **Upper:** Not determined · Vapor pressure at 20 °C (68 °F): Not applicable Density at 20 °C (68 °F): Not determined · Relative density Not determined · Vapour density Not applicable · Evaporation rate Not applicable · Solubility in / Miscibility with Insoluble Water: · Partition coefficient (n-octanol/water): Not determined · Viscosity: **Dynamic:** Not applicable

Not applicable

Trade Name: HaloKlear: Gel-Floc

9 PHYSICAL AND CHEMICAL PROPERTIES CONTD.

· Solvent content:

Organic solvents: 0.0 % Solids content: 100.0%

• **Other information** No further relevant information available.

10 STABILITY AND REACTIVITY

- Reactivity
- · Chemical stability
- Thermal decomposition / conditions to be avoided: No decomposition if used according to specifications.
- · Possibility of hazardous reactions *No dangerous reactions known.*
- · Conditions to avoid No further relevant information available.
- · Incompatible materials: No further relevant information available.
- · Hazardous decomposition products: No dangerous decomposition products known.

11 TOXICOLOGICAL INFORMATION

- · Information on toxicological effects
- · Acute toxicity:
- · Primary irritant effect:
- · on the skin: No irritant effect.
- · on the eye: No irritating effect.
- · Sensitization: No sensitizing effects known.
- · Additional toxicological information:

The product is not subject to classification according to internally approved calculation methods for preparations:

When used and handled according to specifications, the product does not have any harmful effects according to our experience and the information provided to us.

Carcinogenic categories

• IARC (International Agency for Research on Cancer)

None of the ingredients is listed.

NTP (National Toxicology Program)

None of the ingredients is listed.

Trade Name: HaloKlear: Gel-Floc

11 TOXICOLOGICAL INFORMATION CONTD.

OSHA-Ca (Occupational Safety & Health Administration)
 None of the ingredients is listed.

12 ECOLOGICAL INFORMATION

- Toxicity
- · Aquatic toxicity: No further relevant information available.
- · Persistence and degradability No further relevant information available.
- · Behavior in environmental systems:
- · **Bioaccumulative potential** *No further relevant information available.*
- · Mobility in soil No further relevant information available.
- · Additional ecological information:
- General notes: Water hazard class 1 (self-assessment): Slightly hazardous for water.
 Do not allow undiluted product or large quantities of it to reach ground water, water course or sewage system.
- · Results of PBT and vPvB assessment
- · **PBT:** Not applicable.
- · **vPvB:** Not applicable.
- · Other adverse effects No further relevant information available.

13 DISPOSAL CONSIDERATIONS

- · Waste treatment methods
- · **Recommendation:** *Smaller quantities can be disposed of with household waste.*
- · Uncleaned packaging:
- **Recommendation:** *Disposal must be made according to official regulations.*

14 TRANSPORT INFORMATION

Not regulated

- · UN-Number
- · DOT, IMDG, IATA
- · UN proper shipping name
- · DOT, IMDG, IATA Not regulated

Trade Name: HaloKlear: Gel-Floc

	14 TRANSPORT INFORMATION CONTD.				
Transport hazard class(es)					
DOT, IMDG, IATA					
Class	Not regulated				
Packing group					
DOT, IMDG, IATA	Not regulated				
Special precautions for user	Not applicable				
Transport in bulk according to Annex II of					
MARPOL73/78 and the IBC Code	Not applicable				
UN "Model Regulation":	-				
15 REGULATOR	Y INFORMATION				
Safety, health and environmental regulation Sara	s/legislation specific for the substanc	e or mi			
_		e or mi			
Sara Section 355 (extremely hazardous substanc	es):	e or mix			
Sara Section 355 (extremely hazardous substance None of the ingredients are listed. Section 313 (Specific toxic chemical listings)	es):	e or mix			
Sara Section 355 (extremely hazardous substance None of the ingredients are listed. Section 313 (Specific toxic chemical listings) None of the ingredients are listed. TSCA (Toxic Substances Control Act):	es):	e or mix			
Sara Section 355 (extremely hazardous substance None of the ingredients are listed. Section 313 (Specific toxic chemical listings) None of the ingredients are listed. TSCA (Toxic Substances Control Act): All ingredients are listed.	es):	e or mix			
Section 355 (extremely hazardous substance None of the ingredients are listed. Section 313 (Specific toxic chemical listings) None of the ingredients are listed. TSCA (Toxic Substances Control Act): All ingredients are listed. Proposition 65	es):	e or mix			
Section 355 (extremely hazardous substance None of the ingredients are listed. Section 313 (Specific toxic chemical listings) None of the ingredients are listed. TSCA (Toxic Substances Control Act): All ingredients are listed. Proposition 65 Chemicals known to cause cancer:	es):	e or mix			

Trade Name: HaloKlear: Gel-Floc

15 REGULATORY INFORMATION CONTD.

· Chemicals known to cause developmental toxicity:

None of the ingredients are listed.

- Carcinogenic categories
- EPA (Environmental Protection Agency)
 None of the ingredients are listed.
- TLV (Threshold Limit Value established by ACGIH)
 None of the ingredients are listed.
- NIOSH-Ca (National Institute for Occupational Safety and Health)

 None of the ingredients are listed.
- Product related hazard informations:

Observe the general safety regulations when handling chemicals. The product is not subject to identification regulations according to directives on hazardous materials.

· Chemical safety assessment: A Chemical Safety Assessment has not been carried out.

16 OTHER INFORMATION

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship.

- **Department issuing SDS:** *Environment protection department.*
- · Contact: Mrs. Jackson

Date of preparation / last revision 02/09/2015 / - Present

· Abbreviations and acronyms:

ADR: Accord européen sur le transport des marchandises dangereuses par Route (European Agreement concerning the International

Carriage of Dangerous Goods by Road)

IMDG: International Maritime Code for Dangerous Goods

DOT: US Department of Transportation

IATA: International Air Transport Association

ACGIH: American Conference of Governmental Industrial Hygienists EINECS: European Inventory of Existing Commercial Chemical Substances

ELINCS: European List of Notified Chemical Substances

Trade Name: HaloKlear: Gel-Floc

16 OTHER INFORMATION CONTD.

CAS: Chemical Abstracts Service (division of the American Chemical Society)

NFPA: National Fire Protection Association (USA)

HMIS: Hazardous Materials Identification System (USA)

APPENDIX C

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: September 14, 2018

Consultation Code: 05E1NE00-2018-SLI-3087

Event Code: 05E1NE00-2018-E-07266

Project Name: STA 250

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-3087

Event Code: 05E1NE00-2018-E-07266

Project Name: STA 250

Project Type: ** OTHER **

Project Description: Discharging under an RGP

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.39169556178838N71.06750990759909W

Counties: Middlesex, MA | Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	I Inrestened I		Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

Summary of Essential Fish Habitat (EFH) Designations

Name of Estuary/ Bay/ River: Boston Harbor, Massachusetts

10 x 10 latitude and longitude squar es included in this bay or estuary or river (southeast corner boundaries):

4220/7100; 4210/7050; 4210/7100

Species	Eggs	Larvae	Juveniles	Adults	Spawning Adults
Atlantic salmon (Salmo salar)					
Atlantic cod (Gadus morhua)	S	S	M,S	M,S	S
haddock (Melanogrammus aeglefinus)	S	S			
pollock (Pollachius virens)	S	S	M,S		
whiting (Merluccius bilinearis)	S	S	M,S	M,S	
offshore hake (Merluccius albidus)					
red hake (Urophycis chuss)		S	S	S	
white hake (Urophycis tenuis)	S	S	S	S	
redfish (Sebastes fasciatus)	n/a				
witch flounder (Glyptocephalus cynoglossus)					
winter flounder (Pleuronectes americanus)	M,S	M,S	M,S	M,S	M,S
yellowtail flounder (Pleuronectes ferruginea)	S	S	S	S	S
windowpane flounder (Scopthalmus aquosus)	M,S	M,S	M,S	M,S	M,S
American plaice (Hippoglossoides platessoides)	S	S	S	S	S
ocean pout (Macrozoarces americanus)			S	S	
Atlantic halibut (Hippoglossus hippoglossus)	S	S	S	S	S
Atlantic sea scallop (Placopecten magellanicus)					
Atlantic sea herring (Clupea har engus)		S	M,S	M,S	
monkfish (Lophius americanus)					
bluefish (Pomatomus saltatrix)			M,S	M,S	
long finned squid (Loligo pealei)	n/a	n/a			

short finned squid (Illex illecebrosus)	n/a	n/a			
Atlantic butterfish (Peprilus triacanthus)	S	S			
Atlantic mackerel (Scomber scombrus)	M,S	M,S	M,S	M,S	
summer flounder (Paralicthys dentatus)					
scup (Stenotomus chrysops)					
black sea bass (Centropristus striata)					
surf clam (Spisula solidissima)	n/a	n/a			
ocean quahog (Artica islandica)	n/a	n/a			
spiny dogfish (Squalus acanthias)	n/a	n/a			
tilefish (Lopholatilus chamaeleonticeps)					

APPENDIX D

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Street Name: Alford; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.9052	Alford Street Bridge - Malden Bridge	Alford St	Boston	1966
BOS.13985	Sullivan Square T Station	Alford St	Boston	
BOS.13984		32 Alford St	Boston	c 1950
BOS.4226	Burbank, Silas and Son Varnish Factory	62 Alford St	Boston	c 1880
BOS.4227	Charlestown Sewerage Pumping Station	171 Alford St	Boston	1895

Friday, September 14, 2018 Page 1 of 1

APPENDIX E

TABLE 1 **Groundwater Analytical Results**

	Sample ID	em	B-3	B-17
	Sample Date	Effluent Limitations	7/13/2017	7/13/2017
	Ammonia (mg/L) Chloride (mg/L)	Report Report	1.96 1,040	0.77 399
	Total Residual Chlorine (TRC) (μg/L)	7.5/50 ⁽¹⁾	ND (20.0)	ND (20.0)
	Total Suspended Solids (TSS) (mg/L)	30	27,600	474
	Antimony (µg/L)	206	ND (10.0)	ND (10.0)
	Arsenic (μg/L) Cadmium (μg/L)	104 10.2	3.5 0.99	1.9 0.42
S	Chromium III (µg/L)	323	11.6	16.7
Inorganics	Chromium VI (µg/L)	323	ND (10.0)	ND (10.0)
lou	Copper (µg/L) Iron (µg/L) S	3.7 5,000	62.8 7,430	27.0 9,260
	Σ Lead (μg/L)	160	7.6	4.6
	Mercury (μg/L)	0.739	ND (0.200)	ND (0.200)
	Nickel (μg/L) Selenium (μg/L)	8.3 235.8	23.2 ND (2.0)	11.1 ND (2.0)
	Silver (μg/L)	35.1	ND (1.0)	ND (1.0)
	Zinc (µg/L)	86	771	174
	Cyanide (mg/L) Benzene (μg/L)	178 5.0	ND (0.005) ND (0.5)	ND (0.005) ND (0.5)
,0Cs	Toluene (ug/L)	NE	ND (0.5) ND (0.5)	ND (0.5)
Non-Halogenated VOCs	ΣΗ Ethylbenzene (μg/L)	NE	ND (0.5)	ND (0.5)
enat	Total Xylenes (µg/L)	NE 100	ND (0.5)	2.0
lalog	Total BTEX (μg/L) 1,4 Dioxane (μg/L)	100 200	ND(0.5) 0.263	2.0 0.950
-uo	Acetone (µg/L)	7,970	18.1	24.6
Z	Phenol (µg/L)	1,080	ND (100)	ND (100)
	Carbon Tetrachloride (µg/L) 1,2-Dichlorobenzene (1,2-DCB) (µg/L)	4.4 600	ND (0.3) ND (0.5)	ND (0.3) ND (0.5)
	1,2-Dichlorobenzene (1,2-DCB) (µg/L) 1,3-Dichlorobenzene (1,3-DCB) (µg/L) 1,4-Dichlorobenzene (1,4-DCB) (µg/L)	320	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
	1,3-Dichlorobenzene (1,3-DCB) (µg/L)	5.0	ND (0.5)	ND (0.5)
	Total Dichlorobenzene	NE	ND(0.5)	ND (0.5)
Halogenated VOCs	1,1-Dichloroethane (1,1-DCA) (μg/L) 1,2-Dichloroethane (1,2-DCA) (μg/L)	70 5.0	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
ted	1,1-Dichloroethylene (1,1-DCE) (µg/L)	3.2	ND (0.5)	ND (0.5)
gena	Methylene Chloride (μg/L)	4.6	ND (0.5)	ND (0.5)
Halo	1,1,1-Trichloroethane (1,1,1-TCA) (µg/L) 1,1,2-Trichloroethane (1,1,2-TCA) (µg/L)	200 5.0	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
	Tetrachloroethylene (PCE) (µg/L)	5.0	ND (0.5)	1.4
	Trichloroethylene (TCE) (μg/L)	5.0	ND (0.5)	ND (0.5)
	cis-1,2-Dichloroethylene (DCE) (µg/L) Vinyl Chloride (µg/L)	70 2.0	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)
	Ethylene Dibromide (EDB) (μg/L)	0.05	ND (0.2) ND (0.015)	ND (0.2)
	Diethylhexyl Phthalate (DEHP) (μg/L)	2.2	9.48	8.31
	Benzyl Butyl Phthalate (µg/L) Di-n-butly phthalate (µg/L)	NE NE	ND (2.34) ND (2.34)	ND (2.34) ND (2.34)
	Diethyl Phthalate (µg/L)	NE NE	ND (2.34)	ND (2.34)
	Dimethyl Phthalate (µg/L)	NE	ND(2.34)	ND(2.34)
	Di-n-octyl Phthalate (μg/L)	NE 190	ND (2.34)	ND (2.34)
	Total Phthalates (μg/L) Benzo(a)anthracene (μg/L)	0.0038/0.1 ⁽¹⁾	9.48 0.25	8.31 0.10
	Benzo(a)pyrene (μg/L)	0.0038/0.1 ⁽¹⁾	0.26	0.09
ocs	S Benzo(b)fluoranthene (μg/L)	0.0038/0.1(1)	0.33	0.11
AS b	<u>α</u> Benzo(k)fluoranthene (μg/L) ο	0.0038/0.1 ⁽¹⁾	0.12	ND (0.05)
Non-Halogenated SVOCs	Benzo(b)fluoranthene (µg/L) Benzo(k)fluoranthene (µg/L) Chrysene (µg/L) Dibenzo(a blanthracene (µg/L)	0.0038/0.1 ⁽¹⁾	0.24	0.12
aloge	Dibenzo(a,h)anthracene (μg/L) Indeno(1,2,3-cd)pyrene (μg/L)	1.0 0.0038/0.1 ⁽¹⁾	ND (0.05) 0.18	ND (0.05) 0.06
n-Hž	Total Group I PAHs (µg/L)	1.0	1.38	0.48
Ž	Acenaphthene (μg/L)	NE	0.35	0.26
	Acenaphthylene (µg/L) Anthracene (µg/L)	NE NE	ND (0.19) ND (0.19)	ND (0.19) ND (0.19)
	SE Antifracene (µg/L) SE Benzo(g,h,i)perylene (µg/L) Fluoranthene (µg/L) Fluorene (µg/L)	NE NE	0.19	ND (0.19)
	Fluoranthene (µg/L)	NE	0.41	0.31
	ဝ္ Fluorene (μg/L) O Phenanthrene (μg/L)	NE NE	ND (0.19) ND (0.19)	ND (0.19) 0.48
	Pyrene (µg/L)	NE NE	ND (0.19)	0.48
	Total Group II PAHs (μg/L)	100	0.95	1.44
<u> </u>	Naphthalene (μg/L) 1016 (μg/L)	20 NE	ND (0.19) ND (0.09)	0.37 ND (0.09)
	1016 (µg/L) 1221 (µg/L)	NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)
VOC	1232 (μg/L)	NE	ND (0.09)	ND (0.09)
S pa:	£ 1242 (µg/L) Ω 1248 (µg/L)	NE NE	ND (0.09)	ND (0.09)
enat	Σ 1248 (μg/L) 1254 (μg/L)	NE NE	ND (0.09) ND (0.09)	ND (0.09) ND (0.09)
Halogenated SVOCs	1260 (μg/L)	NE	ND (0.09)	0.10
-	Total PCBs	0.000064/0.5 ⁽¹⁾	ND(0.09)	0.10
શ	Pentachlorophenol (PCP) (μg/L) Total Petroleum Hydrocarbons (TPH) (mg/L)	1.0 5.0	ND (0.84) ND (5)	ND (0.84) ND (5)
netei	Ethanol (EtOH) (mg/L)	Report	ND (3) ND (10)	ND (3) ND (10)
aran	Methyl tert-Butyl Ether (MtBE) (μg/L)	70	ND (0.5)	ND (0.5)
		90	ND (1.0)	ND (1.0)
Fuel Parameters	tert-Amyl Methyl Ether (tAME) (µg/L) tert-Butyl Alcohol (tBA) (µg/L)	120	ND (1.0) ND (25)	ND (1.0)

1: The second standard is the compliance level

VOCs= Volatile Organic Compounds

SVOCs= Semi-Volatile Organic Compounds

TPH= Total Petroleum Hydrocarbons

PCBs= Polychlorinated Biphenyls

mg/L= milligrams per Liter

ug/L= micgrogams per Liter

NE= Not Established

ND= Not Detected

*- Effluent Limits Calculated Using the EPAs Dilution Factor and Effluent Limitation Calculations for Massachusetts from (Appendix V)

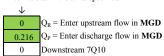
Bold Text- Exceeds RGP Effluent Limit

TABLE 2 Surface Water Analytical Results

Sample ID	Mystic at Boston Inner
Sample Date	11/15/2017
Antimony (μg/L)	NT
Arsenic (μg/L)	ND(5)
Cadmium (µg/L)	ND(10)
Chromium III (µg/L)	ND(20)
Hexavalent Chromium (mg/L)	ND(10)
Copper (µg/L)	ND(10)
Iron (mg/L)	ND(100)
Lead (μg/L)	ND(2)
Mercury (mg/L)	NT
Nickel (μg/L)	ND(20)
Selenium (μg/L)	NT
Silver (μg/L)	NT
Zinc (μg/L)	ND(50)
Ammonia (mg/L)	0.43
Salinity (ppt)	14.9
рН	7.75
Temperature °C	19.9

Notes:

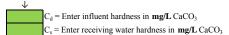
ug/L = micrograms per liter


mg/L = milligram per liter

ND = not detected

NT= not tested

Enter number values in green boxes below


Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	-
7.75	pH in Standard Units
19.9	Temperature in °C
0.43	Ammonia in mg/L
0	Hardness in mg/L CaCO ₃
14.9	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in µg/L
0	Mercury in μg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L
	•

Enter influent concentrations in the units specified

0 TRC in μg/L

U	e µg/2
1.96	Ammonia in mg/L
0	Antimony in µg/L
3.5	Arsenic in μg/L
0.99	Cadmium in µg/L
16.7	Chromium III in µg/L
0	Chromium VI in µg/L
62.8	Copper in µg/L
9260	Iron in μg/L
7.6	Lead in µg/L
0	Mercury in μg/L
23.2	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
771	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
1.4	Tetrachloroethylene in µg/L
9.48	Total Phthalates in µg/L
9.48	Diethylhexylphthalate in µg/L
0.25	Benzo(a)anthracene in µg/L
0.26	Benzo(a)pyrene in µg/L
0.33	Benzo(b)fluoranthene in µg/L
0.12	Benzo(k)fluoranthene in µg/L
0.24	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0.18	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

No flow assumed at critical low flow for saltwater unless otherwise approved by the State

B. Dilution Factor

No dilution assumed for saltwater, unless otherwise approved by the State

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Not applicable to saltwater

Step 2. Not applicable to saltwater

Step 3. Total recoverable water quality criteria for dissolved metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_d = \underline{Q_r C_r - Q_s C_s}$$

 Q_d

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Ustream (receiving water) concentration in μ g/L

Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

Q_r

 C_r = Downstream concentration in μ g/L

Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Upstream (receiving water) concentration in $\mu g/L$

Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter is greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not detected in or not sampled in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor 0.0

Dilution Factor	0.0				C 1: I 1	
A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L			Tr	
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	7.5	μg/L	50	μg/L
Total Suspended Solids	30	-		μg/L	30	μg/L
•		mg/L		/7		
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	36	μg/L		
Cadmium	10.2	μg/L	8.9	μg/L		
Chromium III	323	μg/L	100.0	μg/L		
Chromium VI	323	$\mu g/L$	50	$\mu g/L$		
Copper	242	$\mu g/L$	3.7	$\mu g/L$		
Iron	5000	$\mu g/L$		$\mu g/L$		
Lead	160	μg/L	8.5	μg/L		
Mercury	0.739	μg/L	1.11	μg/L		
Nickel	1450	μg/L	8.3	μg/L		
Selenium	235.8	μg/L	71	μg/L		
Silver	35.1	μg/L	2.2	μg/L		
Zinc			86			
	420	μg/L		μg/L		/=
Cyanide B. Nan Halananatad VOCa	178	mg/L	1.0	μg/L		μg/L
B. Non-Halogenated VOCs Total BTEX	100	μg/L				
Benzene	5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7.97	mg/L				
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs	4.4		1.6	/T		
Carbon Tetrachloride 1,2 Dichlorobenzene	4.4 600	μg/L	1.6	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	$\mu g/L$				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide Methylene Chloride	0.05 4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	$\mu g/L$	3.3	$\mu g/L$		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L μg/L	2.2	μg/L μg/L		
Total Group I Polycyclic		1.0		1.0		
Aromatic Hydrocarbons	1.0	$\mu g/L$				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Benzo(b)fluoranthene Benzo(k)fluoranthene	1.0 1.0	μg/L μg/L	0.0038 0.0038	μg/L μg/L	0.1 0.1	μg/L μg/L
Chrysene	1.0	μg/L μg/L	0.0038	μg/L μg/L	0.1	μg/L μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene F. Halogapated SVOCs	20	μg/L				
E. Halogenated SVOCs Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L μg/L			0.0	L.D. T.
F. Fuels Parameters		13				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Butyl Alcohol	120 90	μg/L				
tert-Amyl Methyl Ether	20	μg/L				

APPENDIX F

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Station 250/Mystic Charlestown Eversource RGP (N/A)

ESS Laboratory Work Order Number: 1707259

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 3:36 pm, Jul 20, 2017

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

SAMPLE RECEIPT

The following samples were received on July 13, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	Matrix	Analysis
1707259-01	B-3	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695
1707259-02	B-17	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

PROJECT NARRATIVE

524.2 Volatile Organic Compounds

1707259-01 Due to high sediment content vials were composited 1707259-02 Due to high sediment content vials were composited

C7G0199-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

1,1-Dichloroethene (86% @ 30%), Tertiary-butyl Alcohol (63% @ 30%)

CG71431-BSD1 Blank Spike recovery is above upper control limit (B+).

1,1-Dichloroethene (201% @ 70-130%), Tertiary-butyl Alcohol (163% @ 70-130%)

CG71431-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

1,1-Dichloroethene (59% @ 20%), Tertiary-butyl Alcohol (33% @ 25%)

625(SIM) Semi-Volatile Organic Compounds

1707259-01 Present in Method Blank (B).

bis(2-Ethylhexyl)phthalate

1707259-01 Surrogate recovery(ies) below lower control limit (S-).

1,2-Dichlorobenzene-d4 (29% @ 30-130%)

1707259-02 Present in Method Blank (B).

bis(2-Ethylhexyl)phthalate

C7G0249-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Di-n-octylphthalate (24% @ 20%)

CG71808-BS2 Blank Spike recovery is above upper control limit (B+).

Benzo(k)fluoranthene (142% @ 40-140%), bis(2-Ethylhexyl)phthalate (268% @ 40-140%),

Di-n-octylphthalate (151% @ 40-140%), Pyrene (144% @ 40-140%)

CG71808-BSD2 Blank Spike recovery is above upper control limit (B+).

> Benzo(a)pyrene (150% @ 40-140%), Benzo(b)fluoranthene (148% @ 40-140%), Benzo(k)fluoranthene (154% @ 40-140%), bis(2-Ethylhexyl)phthalate (244% @ 40-140%), Butylbenzylphthalate (142% @ 40-140%), Di-n-butylphthalate (153% @ 40-140%), Di-n-octylphthalate (159% @ 40-140%), Pyrene

(146% @ 40-140%)

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

C7G0195-TUN1 DDT breakdown > 20%

Classical Chemistry

1707259-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and 1707259-02

Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-3

Date Sampled: 07/13/17 11:40

Percent Solids: N/A

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL Metho	od <u>Limit</u> <u>DF</u>	Analys	<u>Analyzed</u>	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)	200.7	1	KJK	07/15/17 15:59	100	20	CG71436
Arsenic	3.5 (1.0)	3113B	1	KJK	07/19/17 5:32	100	20	CG71436
Cadmium	0.99 (0.25)	3113B	5	KJK	07/18/17 18:35	100	20	CG71436
Chromium	11.6 (4.0)	200.7	1	KJK	07/15/17 15:59	100	20	CG71436
Chromium III	11.6 (10.0)	200.7	1	JLK	07/15/17 15:59	1	1	[CALC]
Copper	62.8 (4.0)	200.7	1	KJK	07/15/17 15:59	100	20	CG71436
Hardness	239000 (165)	200.7	1	KJK	07/15/17 15:59	1	1	[CALC]
Iron	7430 (20.0)	200.7	1	KJK	07/15/17 15:59	100	20	CG71436
Lead	7.6 (1.0)	3113B	1	KJK	07/18/17 23:07	100	20	CG71436
Mercury	ND (0.200)	245.1	1	MJV	07/17/17 20:03	20	40	CG71438
Nickel	23.2 (10.0)	200.7	1	KJK	07/15/17 15:59	100	20	CG71436
Selenium	ND (2.0)	3113B	1	KJK	07/19/17 8:20	100	20	CG71436
Silver	ND (1.0)	200.7	1	KJK	07/15/17 15:59	100	20	CG71436
Zinc	771 (10.0)	200.7	1	KJK	07/15/17 15:59	100	20	CG71436

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-3

Date Sampled: 07/13/17 11:40

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-01

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
1,1,2-Trichloroethane	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
1,1-Dichloroethane	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
1,1-Dichloroethene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
1,2-Dichlorobenzene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
1,2-Dichloroethane	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
1,3-Dichlorobenzene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
1,4-Dichlorobenzene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Acetone	18.1 (5.0)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Benzene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Carbon Tetrachloride	ND (0.3)		524.2		1	07/14/17 12:53	C7G0199	CG71431
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Ethylbenzene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Methylene Chloride	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Naphthalene	0.6 (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Tetrachloroethene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Toluene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Trichloroethene	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Vinyl Chloride	ND (0.2)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Xylene O	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431
Xylene P,M	ND (0.5)		524.2		1	07/14/17 12:53	C7G0199	CG71431

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 111 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 104 %
 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-3

Date Sampled: 07/13/17 11:40

Percent Solids: N/A Initial Volume: 1070

Final Volume: 1 Extraction Method: 3510C ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 7/14/17 11:05

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	07/14/17 19:07		CG71414
Aroclor 1221	ND (0.09)		608		1	07/14/17 19:07		CG71414
Aroclor 1232	ND (0.09)		608		1	07/14/17 19:07		CG71414
Aroclor 1242	ND (0.09)		608		1	07/14/17 19:07		CG71414
Aroclor 1248	ND (0.09)		608		1	07/14/17 19:07		CG71414
Aroclor 1254	ND (0.09)		608		1	07/14/17 19:07		CG71414
Aroclor 1260	ND (0.09)		608		1	07/14/17 19:07		CG71414
Aroclor 1262	ND (0.09)		608		1	07/14/17 19:07		CG71414
Aroclor 1268	ND (0.09)		608		1	07/14/17 19:07		CG71414
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		43 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		47 %		30-150				
Surrogate: Tetrachloro-m-xylene		66 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		73 %		30-150				

Service

Page 7 of 35

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-3

Date Sampled: 07/13/17 11:40

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 7/18/17 13:45

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	0.35 (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Acenaphthylene	ND (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Anthracene	ND (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Benzo(a)anthracene	0.25 (0.05)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Benzo(a)pyrene	0.26 (0.05)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Benzo(b)fluoranthene	0.33 (0.05)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Benzo(g,h,i)perylene	0.19 (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Benzo(k)fluoranthene	0.12 (0.05)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
bis(2-Ethylhexyl)phthalate	B 9.48 (2.34)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Butylbenzylphthalate	ND (2.34)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Chrysene	0.24 (0.05)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Diethylphthalate	ND (2.34)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Dimethylphthalate	ND (2.34)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Di-n-butylphthalate	ND (2.34)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Di-n-octylphthalate	ND (2.34)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Fluoranthene	0.41 (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Fluorene	ND (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Indeno(1,2,3-cd)Pyrene	0.18 (0.05)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Naphthalene	ND (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Pentachlorophenol	ND (0.84)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Phenanthrene	ND (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
Pyrene	ND (0.19)		625 SIM		1	07/18/17 19:41	C7G0249	CG71808
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		29 %	S-	30-130				

	MECOVERY	Qualifici	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	29 %	<i>S-</i>	30-130
Surrogate: 2,4,6-Tribromophenol	76 %		15-110
Surrogate: 2-Fluorobiphenyl	45 %		30-130
Surrogate: Nitrobenzene-d5	47 %		30-130
Surrogate: p-Terphenyl-d14	59 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-3

Date Sampled: 07/13/17 11:40

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 7/14/17 16:30

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.263 (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 07/17/17 16:45	Sequence C7G0223	Batch CG71356
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		<i>36</i> %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-3

Date Sampled: 07/13/17 11:40

Percent Solids: N/A

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 1.96 (0.10)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u>	Analyst EEM	Analyzed 07/18/17 14:46	Units mg/L	Batch CG71705
Chloride	1040 (250)	300.0		500	JLK	07/17/17 23:04	mg/L	CG71735
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	07/13/17 22:16	ug/L	CG71352
Phenols	ND (100)	420.1		1	EEM	07/19/17 14:45	ug/L	CG71920
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	07/18/17 11:05	ug/L	CG71817
Total Petroleum Hydrocarbon	ND (5)	1664A		1	CRR	07/19/17 15:05	mg/L	CG71740
Total Residual Chlorine	ND (20.0)	4500C1 D		1	JLK	07/13/17 21:46	ug/L	CG71353
Total Suspended Solids	27600 (100)	2540D		1	EEM	07/14/17 14:30	mg/L	CG71317

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-3

Date Sampled: 07/13/17 11:40

Percent Solids: N/A Initial Volume: 35

Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 7/14/17 11:30

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL)	MDL	Method 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 07/14/17 15:08	Sequence	Batch CG71426
1,2-Diolomoemane	ND (0.015)		304.1		1	0//14/1/ 13:08		
	9	%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		125 %		30-150				
Surrogate: Pentachloroethane [2C]		116 %		30-150				

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-3

Date Sampled: 07/13/17 11:40

Percent Solids: N/A Initial Volume: 1

Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 7/19/17 10:04

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC07/19/1711:58CG71915

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-17 Date Sampled: 07/13/17 13:50

Percent Solids: N/A

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL Met	hod <u>Limit</u> <u>D</u>	F Analys	t Analyzed	<u>I/V</u>	<u>F/V</u>	Batch
Antimony	ND (10.0)	200.	7	KJK	07/15/17 16:04	100	20	CG71436
Arsenic	1.9 (1.0)	3113	B 1	KJK	07/19/17 5:43	100	20	CG71436
Cadmium	0.42 (0.15)	3113	В 3	KJK	07/18/17 17:26	100	20	CG71436
Chromium	16.7 (4.0)	200.	7 1	KJK	07/15/17 16:04	100	20	CG71436
Chromium III	16.7 (10.0)	200.	7	JLK	07/15/17 16:04	1	1	[CALC]
Copper	27.0 (4.0)	200.	7	KJK	07/15/17 16:04	100	20	CG71436
Hardness	259000 (165)	200.	7	KJK	07/15/17 16:04	1	1	[CALC]
Iron	9260 (20.0)	200.	7	KJK	07/15/17 16:04	100	20	CG71436
Lead	4.6 (1.0)	3113	В 1	KJK	07/19/17 0:44	100	20	CG71436
Mercury	ND (0.200)	245.	1 1	MJV	07/17/17 20:05	20	40	CG71438
Nickel	11.1 (10.0)	200.	7	KJK	07/15/17 16:04	100	20	CG71436
Selenium	ND (2.0)	3113	В 1	KJK	07/19/17 9:00	100	20	CG71436
Silver	ND (1.0)	200.	7	KJK	07/15/17 16:04	100	20	CG71436
Zinc	174 (10.0)	200.	7	KJK	07/15/17 16:04	100	20	CG71436

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-17 Date Sampled: 07/13/17 13:50

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-02

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
1,1,2-Trichloroethane	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
1,1-Dichloroethane	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
1,1-Dichloroethene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
1,2-Dichlorobenzene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
1,2-Dichloroethane	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
1,3-Dichlorobenzene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
1,4-Dichlorobenzene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Acetone	24.6 (5.0)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Benzene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Carbon Tetrachloride	ND (0.3)		524.2		1	07/14/17 13:27	C7G0199	CG71431
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Ethylbenzene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Methylene Chloride	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Naphthalene	1.1 (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Tetrachloroethene	1.4 (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Toluene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Trichloroethene	ND (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Vinyl Chloride	ND (0.2)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Xylene O	0.7 (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431
Xylene P,M	1.3 (0.5)		524.2		1	07/14/17 13:27	C7G0199	CG71431

%Recovery Qualifier Limits Surrogate: 1,2-Dichlorobenzene-d4 106 % 80-120

Surrogate: 4-Bromofluorobenzene

101 %

80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-17 Date Sampled: 07/13/17 13:50

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-02

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 7/14/17 11:05

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	07/14/17 19:25		CG71414
Aroclor 1221	ND (0.09)		608		1	07/14/17 19:25		CG71414
Aroclor 1232	ND (0.09)		608		1	07/14/17 19:25		CG71414
Aroclor 1242	ND (0.09)		608		1	07/14/17 19:25		CG71414
Aroclor 1248	ND (0.09)		608		1	07/14/17 19:25		CG71414
Aroclor 1254	ND (0.09)		608		1	07/14/17 19:25		CG71414
Aroclor 1260	0.10 (0.09)		608		1	07/14/17 19:25		CG71414
Aroclor 1262	ND (0.09)		608		1	07/14/17 19:25		CG71414
Aroclor 1268	ND (0.09)		608		1	07/14/17 19:25		CG71414
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		51 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		54 %		30-150				
Surrogate: Tetrachloro-m-xylene		85 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		95 %		30-150				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-17 Date Sampled: 07/13/17 13:50

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 7/18/17 13:45

625(SIM) Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	0.26 (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Acenaphthylene	ND (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Anthracene	ND (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Benzo(a)anthracene	0.10 (0.05)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Benzo(a)pyrene	0.09 (0.05)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Benzo(b)fluoranthene	0.11 (0.05)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
bis(2-Ethylhexyl)phthalate	B 8.31 (2.34)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Butylbenzylphthalate	ND (2.34)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Chrysene	0.12 (0.05)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Diethylphthalate	ND (2.34)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Dimethylphthalate	ND (2.34)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Di-n-butylphthalate	ND (2.34)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Di-n-octylphthalate	ND (2.34)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Fluoranthene	0.31 (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Fluorene	ND (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Indeno(1,2,3-cd)Pyrene	0.06 (0.05)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Naphthalene	0.37 (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Pentachlorophenol	ND (0.84)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Phenanthrene	0.48 (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808
Pyrene	0.39 (0.19)		625 SIM		1	07/18/17 20:28	C7G0249	CG71808

	MECOVERY	Qualifici	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	30 %		30-130
Surrogate: 2,4,6-Tribromophenol	61 %		15-110
Surrogate: 2-Fluorobiphenyl	46 %		30-130
Surrogate: Nitrobenzene-d5	51 %		30-130
Surrogate: p-Terphenyl-d14	58 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-17 Date Sampled: 07/13/17 13:50

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 7/14/17 16:30

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.950 (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 07/17/17 17:17	Sequence C7G0223	Batch CG71356
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		<i>36</i> %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-17 Date Sampled: 07/13/17 13:50

Percent Solids: N/A

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)		<u>imit</u> <u>DF</u>	Analys		<u>Units</u>	Batch
Ammonia as N	0.77 (0.10)	350.1	1	EEM	07/18/17 14:47	mg/L	CG71705
Chloride	399 (50.0)	300.0	100	JLK	07/17/17 20:38	mg/L	CG71735
Hexavalent Chromium	ND (10.0)	3500Cr B-2009	1	JLK	07/13/17 22:16	ug/L	CG71352
Phenols	ND (100)	420.1	1	EEM	07/19/17 14:45	ug/L	CG71920
Total Cyanide (LL)	ND (5.00)	4500 CN CE	1	EEM	07/18/17 11:05	ug/L	CG71817
Total Petroleum Hydrocarbon	ND (5)	1664A	1	CRR	07/19/17 15:05	mg/L	CG71740
Total Residual Chlorine	ND (20.0)	4500C1 D	1	JLK	07/13/17 21:46	ug/L	CG71353
Total Suspended Solids	474 (10)	2540D	1	EEM	07/14/17 14:30	mg/L	CG71317

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-17 Date Sampled: 07/13/17 13:50

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 7/14/17 11:30

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	<u>Results (MRL)</u> ND (0.015)	MDL	Method 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 07/14/17 16:08	Sequence	Batch CG71426
1,2-Diolomochane		%Recovery	Oualifier	Limits	1	07/14/17 10:00		
Surrogate: Pentachloroethane	,	75 %	Quamici	30-150				
Surrogate: Pentachloroethane [2C]		72 %		30-150				

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP

Client Sample ID: B-17 Date Sampled: 07/13/17 13:50

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1707259 ESS Laboratory Sample ID: 1707259-02

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 7/19/17 10:04

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC07/19/1712:44CG71915

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

185 Frances Avenue, Cranston, RI 02910-2211

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Met	als						
Batch CG71352 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
P-1-1-0071426 20074										
Batch CG71436 - 3005A										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium Chromium III	ND ND	4.00 4.00	ug/L							
Copper	ND ND	4.00	ug/L ug/L							
Hardness	ND	165	ug/L ug/L							
Iron	ND ND	20.0	ug/L ug/L							
Lead	ND ND	1.0	ug/L ug/L							
Nickel	ND	10.0	ug/L							
Selenium	ND	2.0	ug/L							
Silver	ND	1.0	ug/L							
Zinc	ND	10.0	ug/L							
LCS			<u> </u>							
Antimony	99.1	10.0	ug/L	100.0		99	85-115			
Arsenic	98.8	25.0	ug/L	100.0		99	85-115			
Cadmium	49.8	25.0	ug/L	50.00		100	85-115			
Chromium	100	4.0	ug/L	100.0		100	85-115			
Chromium III	100	4.00	ug/L							
Copper	106	4.0	ug/L	100.0		106	85-115			
Hardness	6520	165	ug/L							
Iron	475	20.0	ug/L	500.0		95	85-115			
Lead	111	25.0	ug/L	100.0		111	85-115			
Nickel	102	10.0	ug/L	100.0		102	85-115			
Selenium	217	50.0	ug/L	200.0		109	85-115			
Silver	46.6	1.0	ug/L	50.00		93	85-115			
Zinc	103	10.0	ug/L	100.0		103	85-115			
LCS Dup										
Antimony	107	10.0	ug/L	100.0		107	85-115	7	20	
Arsenic	96.2	25.0	ug/L	100.0		96	85-115	3	20	
Cadmium	55.3	25.0	ug/L	50.00		111	85-115	10	20	
Chromium	108	4.0	ug/L	100.0		108	85-115	7	20	
Chromium III	108	4.00	ug/L							
Copper	114	4.0	ug/L	100.0		114	85-115	7	20	
Hardness	6960	165	ug/L							
Iron	513	20.0	ug/L	500.0		103	85-115	8	20	

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

	<u>.</u>			Spike	Source	0/5	%REC	DF -	RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
Batch CG71436 - 3005A										
_ead	107	25.0	ug/L	100.0		107	85-115	4	20	
Nickel	109	10.0	ug/L	100.0		109	85-115	7	20	
Selenium	226	50.0	ug/L	200.0		113	85-115	4	20	
Silver	48.2	1.0	ug/L	50.00		96	85-115	3	20	
linc	105	10.0	ug/L	100.0		105	85-115	2	20	
Batch CG71438 - 245.1/7470A										
Blank										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	6.42	0.200	ug/L	6.000		107	85-115			
LCS Dup										
Mercury	6.30	0.200	ug/L	6.000		105	85-115	2	20	
		524.2 Vola	atile Organi	c Compo	unds					
D-1-1- CC74424										
Batch CG71431 - 524.2										
,1,1-Trichloroethane	ND	0.5	ug/L							
1,1,2-Trichloroethane	ND	0.5	ug/L							
,1-Dichloroethane	ND	0.5	ug/L							
1,1-Dichloroethene	ND	0.5	ug/L							
1,2-Dichlorobenzene	ND	0.5	ug/L							
1,2-Dichloroethane	ND	0.5	ug/L							
1,3-Dichlorobenzene	ND	0.5	ug/L							
1,4-Dichlorobenzene	ND	0.5	ug/L							
Acetone	ND	5.0	ug/L							
Benzene	ND	0.5	ug/L							
Carbon Tetrachloride	ND	0.3	ug/L							
cis-1,2-Dichloroethene	ND	0.5	ug/L							
Ethylbenzene	ND	0.5	ug/L							
Methyl tert-Butyl Ether	ND	0.5	ug/L							
Methylene Chloride	ND	0.5	ug/L							
Naphthalene		0.5								
Fertiary-amyl methyl ether	ND ND	1.0	ug/L ug/L							
Fertiary-butyl Alcohol	ND	25.0	ug/L							
Fetrachloroethene	ND	0.5	ug/L							
Foluene	ND	0.5	ug/L							
Frichloroethene	ND	0.5	ug/L							
/inyl Chloride	ND ND	0.3	ug/L							
(ylene O	ND ND	0.5	ug/L							
kylene P,M	ND ND	0.5	ug/L ug/L							
	5.10	0.5	ug/L	5.000		102	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.02		ug/L	5.000		100	80-120			

10.6

LCS

1,1,1-Trichloroethane

70-130

10.00

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Batch CG71431 - 524.2

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compound	S
----------------	---------	----------	---

Batch CG/1431 - 524.2								
1,1,2-Trichloroethane	10.2	ug/L	10.00	102	70-130			
1,1-Dichloroethane	10.0	ug/L	10.00	100	70-130			
1,1-Dichloroethene	11.0	ug/L	10.00	110	70-130			
1,2-Dichlorobenzene	10.3	ug/L	10.00	103	70-130			
1,2-Dichloroethane	10.4	ug/L	10.00	104	70-130			
,3-Dichlorobenzene	10.3	ug/L	10.00	103	70-130			
,4-Dichlorobenzene	10.5	ug/L	10.00	105	70-130			
Acetone	48.1	ug/L	50.00	96	70-130			
Benzene	10.3	ug/L	10.00	103	70-130			
Carbon Tetrachloride	10.9	ug/L	10.00	109	70-130			
cis-1,2-Dichloroethene	10.5	ug/L	10.00	105	70-130			
Ethylbenzene	10.3	ug/L	10.00	103	70-130			
/ Nethyl tert-Butyl Ether	10.3	ug/L	10.00	103	70-130			
Methylene Chloride	9.1	ug/L	10.00	91	70-130			
Naphthalene	10.5	ug/L	10.00	105	70-130			
Fertiary-amyl methyl ether	9.9	ug/L	10.00	99	70-130			
Fertiary-butyl Alcohol	58.8	ug/L	50.00	118	70-130			
Fetrachloroethene	10.6	ug/L	10.00	106	70-130			
oluene	10.5	ug/L	10.00	105	70-130			
richloroethene	10.6	ug/L	10.00	106	70-130			
/inyl Chloride	10.3	ug/L	10.00	103	70-130			
ylene O	10.1	ug/L	10.00	101	70-130			
(ylene P,M	20.4	ug/L	20.00	102	70-130			
	5.05	ug/L	5.000	101	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	4.84	ug/L	5.000	97	80-120			
Surrogate: 4-Bromofluorobenzene	1.01	ug/L	5.000		00 120			
.CS Dup	0.5	//	10.00	05	70.120	12	20	
,1,1-Trichloroethane	9.5	ug/L	10.00	95	70-130	12	20	
,1,2-Trichloroethane	10.1	ug/L	10.00	101	70-130	1	20	
,1-Dichloroethane	10.2	ug/L	10.00	102	70-130	2	20	
.,1-Dichloroethene	20.1	ug/L	10.00	201	70-130	59	20	B+, D+
,2-Dichlorobenzene	9.1	ug/L	10.00	91	70-130	12	20	
1,2-Dichloroethane	9.8	ug/L	10.00	98	70-130	6	20	
.,3-Dichlorobenzene	9.3	ug/L	10.00	93	70-130	10	20	
,4-Dichlorobenzene	9.5	ug/L	10.00	95	70-130	10	20	
acetone	49.0	ug/L	50.00	98	70-130	2	20	
Benzene	10.4	ug/L	10.00	104	70-130	1	20	
Carbon Tetrachloride	9.3	ug/L	10.00	93	70-130	16	20	
is-1,2-Dichloroethene	9.8	ug/L	10.00	98	70-130	7	20	
thylbenzene	9.9	ug/L	10.00	99	70-130	4	20	
Methyl tert-Butyl Ether	9.8	ug/L	10.00	98	70-130	5	20	
1ethylene Chloride	10.5	ug/L	10.00	105	70-130	14	20	
laphthalene	8.6	ug/L	10.00	86	70-130	20	20	
ertiary-amyl methyl ether	9.1	ug/L	10.00	91	70-130	8	20	
Fertiary-butyl Alcohol	81.7	ug/L	50.00	163	70-130	33	25	B+, D+
Fetrachloroethene	9.6	ug/L	10.00	96	70-130	10	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		524.2 Vola	atile Organi	c Compo	unds					
Batch CG71431 - 524.2										
Toluene	9.7		ug/L	10.00		97	70-130	8	20	
Trichloroethene	10.3		ug/L	10.00		103	70-130	3	20	
Vinyl Chloride	9.8		ug/L	10.00		98	70-130	5	20	
Xylene O	9.4		ug/L	10.00		94	70-130	7	20	
Xylene P,M	18.6		ug/L	20.00		93	70-130	9	20	
Surrogate: 1,2-Dichlorobenzene-d4	4.47		ug/L	5.000		89	80-120			
Surrogate: 4-Bromofluorobenzene	4.99		ug/L	5.000		100	80-120			
		608 Polych	lorinated B	iphenyls ((PCB)					
Batch CG71414 - 3510C										
Blank										
Aroclor 1016	ND	0.10	ug/L							
Aroclor 1016 [2C]	ND	0.10	ug/L							
Aroclor 1221	ND	0.10	ug/L							
Aroclor 1221 [2C]	ND	0.10	ug/L							
Aroclor 1232	ND	0.10	ug/L							
Aroclor 1232 [2C]	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1242 [2C]	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0351		ug/L	0.05000		70	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0366		ug/L	0.05000		73	30-150			
Surrogate: Tetrachloro-m-xylene	0.0268		ug/L	0.05000		<i>54</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0310		ug/L	0.05000		62	30-150			
LCS										
Aroclor 1016	0.86	0.10	ug/L	1.000		86	40-140			
Aroclor 1016 [2C]	0.90	0.10	ug/L	1.000		90	40-140			
Aroclor 1260	0.87	0.10	ug/L	1.000		87	40-140			
Aroclor 1260 [2C]	0.83	0.10	ug/L	1.000		83	40-140			
Surrogate: Decachlorobiphenyl	0.0415		ug/L	0.05000		83	<i>30-150</i>			
Surrogate: Decachlorobiphenyl [2C]	0.0419		ug/L	0.05000		84	30-150			
Surrogate: Tetrachloro-m-xylene	0.0355		ug/L	0.05000		<i>71</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0359		ug/L	0.05000		72	<i>30-150</i>			

LCS Dup

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Surrogate: Tetrachloro-m-xylene [2C]

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		608 Polych	lorinated B	iphenyls ((PCB)					
Batch CG71414 - 3510C										
Aroclor 1016	1.02	0.10	ug/L	1.000		102	40-140	16	20	
Aroclor 1016 [2C]	1.05	0.10	ug/L	1.000		105	40-140	16	20	
Aroclor 1260	0.91	0.10	ug/L	1.000		91	40-140	4	20	
Aroclor 1260 [2C]	0.88	0.10	ug/L	1.000		88	40-140	6	20	
Surrogate: Decachlorobiphenyl	0.0449		ug/L	0.05000		90	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0465		ug/L	0.05000		93	30-150			
Surrogate: Tetrachloro-m-xylene	0.0355		ug/L	0.05000		71	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0365		ug/L	0.05000		<i>73</i>	30-150			

625(SIM) Semi-Volatile Organic Compounds

Blank							
Acenaphthene	ND	0.20	ug/L				
Acenaphthylene	ND	0.20	ug/L				
Anthracene	ND	0.20	ug/L				
Benzo(a)anthracene	ND	0.05	ug/L				
Benzo(a)pyrene	ND	0.05	ug/L				
Benzo(b)fluoranthene	ND	0.05	ug/L				
Benzo(g,h,i)perylene	ND	0.20	ug/L				
Benzo(k)fluoranthene	ND	0.05	ug/L				
bis(2-Ethylhexyl)phthalate	3.08	2.50	ug/L				
Butylbenzylphthalate	ND	2.50	ug/L				
Chrysene	ND	0.05	ug/L				
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	ND	2.50	ug/L				
Fluoranthene	ND	0.20	ug/L				
Fluorene	ND	0.20	ug/L				
indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
Naphthalene	ND	0.20	ug/L				
Pentachlorophenol	ND	0.90	ug/L				
Phenanthrene	ND	0.20	ug/L				
Pyrene	ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	1.01		ug/L	2.500	40	30-130	
Surrogate: 2,4,6-Tribromophenol	3.41		ug/L	3.750	91	15-110	
Surrogate: 2-Fluorobiphenyl	1.47		ug/L	2.500	59	30-130	
Surrogate: Nitrobenzene-d5	1.72		ug/L	2.500	69	30-130	
Surrogate: p-Terphenyl-d14	1.76		ug/L	2.500	70	30-130	
LCS							
Acenaphthene	2.73	0.20	ug/L	2.500	109	40-140	
Acenaphthylene	2.69	0.20	ug/L	2.500	108	40-140	
Anthracene	2.90	0.20	ug/L	2.500	116	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Batch CG71808 - 3510C

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

023(3111) 3CIIII VOIGUIC OLIGUIUC COLLIDOGLIG	625(SIN	1) Semi-Volatile	Organic	Compounds
---	---------	------------------	---------	-----------

Jatch Cd/1000 - 3310C									
Benzo(a)anthracene	3.02	0.05	ug/L	2.500	121	40-140			
Benzo(a)pyrene	3.50	0.05	ug/L	2.500	140	40-140			
Benzo(b)fluoranthene	3.45	0.05	ug/L	2.500	138	40-140			
Benzo(g,h,i)perylene	2.98	0.20	ug/L	2.500	119	40-140			
Benzo(k)fluoranthene	3.54	0.05	ug/L	2.500	142	40-140			B+
pis(2-Ethylhexyl)phthalate	6.70	2.50	ug/L	2.500	268	40-140			B+
Butylbenzylphthalate	3.45	2.50	ug/L	2.500	138	40-140			
Chrysene	3.14	0.05	ug/L	2.500	126	40-140			
Dibenzo(a,h)Anthracene	2.97	0.05	ug/L	2.500	119	40-140			
Diethylphthalate	2.94	2.50	ug/L	2.500	118	40-140			
Dimethylphthalate	3.28	2.50	ug/L	2.500	131	40-140			
Di-n-butylphthalate	3.40	2.50	ug/L	2.500	136	40-140			
Di-n-octylphthalate	3.77	2.50	ug/L	2.500	151	40-140			B+
luoranthene	3.11	0.20	ug/L	2.500	125	40-140			Di
Fluorene	3.05	0.20	ug/L	2.500	123	40-140			
indeno(1,2,3-cd)Pyrene	3.09	0.20		2.500	124	40-140			
Naphthalene	2.24	0.05	ug/L	2.500	89	40-140			
Pentachlorophenol			ug/L		114	30-130			
·	2.85	0.90	ug/L	2.500					
Phenanthrene	2.81	0.20	ug/L	2.500	112	40-140			В.
Pyrene	3.60	0.20	ug/L	2.500	144	40-140			B+
Surrogate: 1,2-Dichlorobenzene-d4	0.902		ug/L	2.500	36	30-130			
Surrogate: 2,4,6-Tribromophenol	3.26		ug/L	3.750	87	15-110			
Surrogate: 2-Fluorobiphenyl	1.39		ug/L	2.500	56	30-130			
Surrogate: Nitrobenzene-d5	1.45		ug/L	2.500	58	30-130			
Surrogate: p-Terphenyl-d14	1.61		ug/L	2.500	64	30-130			
.CS Dup									
Acenaphthene	2.81	0.20	ug/L	2.500	113	40-140	3	20	
cenaphthylene	2.81	0.20	ug/L	2.500	112	40-140	4	20	
Anthracene	3.15	0.20	ug/L	2.500	126	40-140	8	20	
Benzo(a)anthracene	3.12	0.05	ug/L	2.500	125	40-140	3	20	
Benzo(a)pyrene	3.74	0.05	ug/L	2.500	150	40-140	7	20	B+
Benzo(b)fluoranthene	3.69	0.05	ug/L	2.500	148	40-140	7	20	B+
Benzo(g,h,i)perylene	3.07	0.20	ug/L	2.500	123	40-140	3	20	
Benzo(k)fluoranthene	3.86	0.05	ug/L	2.500	154	40-140	8	20	B+
ois(2-Ethylhexyl)phthalate	6.09	2.50	ug/L	2.500	244	40-140	10	20	B+
Butylbenzylphthalate	3.54	2.50	ug/L	2.500	142	40-140	3	20	B+
Chrysene	3.29	0.05	ug/L	2.500	131	40-140	5	20	
Dibenzo(a,h)Anthracene	3.02	0.05	ug/L	2.500	121	40-140	2	20	
Diethylphthalate	3.04	2.50	ug/L	2.500	122	40-140	3	20	
Dimethylphthalate	3.39	2.50	ug/L	2.500	136	40-140	3	20	
					153	40-140	11	20	B+
	3.81	2.50	ug/L	2.500	133	10 1 10			
Di-n-butylphthalate	3.81	2.50 2.50		2.500	159	40-140	5	20	B+
oi-n-butylphthalate oi-n-octylphthalate	3.81 3.97	2.50	ug/L	2.500			5	20	
oi-n-butylphthalate Oi-n-octylphthalate Iluoranthene Iluorene	3.81				159	40-140			

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

		Quant	ty Cont	гог ра	lla					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	67	25(SIM) Sem	i-Volatile O	rganic Co	mpounds					
Batch CG71808 - 3510C										
Naphthalene	2.34	0.20	ug/L	2.500		94	40-140	5	20	
Pentachlorophenol	3.11	0.90	ug/L	2.500		124	30-130	9	20	
Phenanthrene	2.99	0.20	ug/L	2.500		120	40-140	6	20	
Pyrene	3.64	0.20	ug/L	2.500		146	40-140	1	20	B+
Surrogate: 1,2-Dichlorobenzene-d4	1.10		ug/L	2.500		44	30-130			
Surrogate: 2,4,6-Tribromophenol	3.60		ug/L	3.750		96	15-110			
Surrogate: 2-Fluorobiphenyl	1.57		ug/L	2.500		63	30-130			
Surrogate: Nitrobenzene-d5	1.58		ug/L	2.500		63	30-130			
Surrogate: p-Terphenyl-d14	1.55		ug/L	2.500		62	30-130			
	8270D(SIM)	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Dilutio	on			
Batch CG71356 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	ND		ug/L	5.000		38	<i>15-115</i>			
LCS										
1,4-Dioxane	12.0	0.250	ug/L	10.00		120	40-140			
Surrogate: 1,4-Dioxane-d8	1.85		ug/L	5.000		<i>37</i>	15-115			
LCS Dup										
1,4-Dioxane	10.9	0.250	ug/L	10.00		109	40-140	10	20	
	1.70	0.230	ug/L	5.000		34	15-115	10	20	
Surrogate: 1,4-Dioxane-d8	1.70	Cl	assical Che			31	15 115			
Batch CG71317 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	44	<u> </u>	mg/L	43.50		101	80-120	<u></u>	<u></u>	
Batch CG71352 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.494		mg/L	0.4998		99	90-110			
LCS Dup			-							
Hexavalent Chromium	0.493		mg/L	0.4998		99	90-110	0.2	20	
Batch CG71353 - General Preparation	U.473		mg/L	0.1770			JU 110	0.2		
·										
Blank Total Pecidual Chlorina	AIP	30.0	//							
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.80		mg/L	1.800		100	85-115			
Batch CG71705 - NH4 Prep										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Cla	assical Che	mistry						
Batch CG71705 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.11	0.10	mg/L	0.09994		112	80-120			
.cs										
Ammonia as N	0.92	0.10	mg/L	0.9994		92	80-120			
Batch CG71735 - NH4 Prep										
Blank										
Chloride	ND	0.5	mg/L							
LCS										-
Chloride	2.6		mg/L	2.500		103	90-110			
Batch CG71740 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	13	5	mg/L	19.38		69	66-114			
Batch CG71817 - TCN Prep										
Blank										
Fotal Cyanide (LL)	ND	5.00	ug/L							
.cs										
Total Cyanide (LL)	20.0	5.00	ug/L	20.06		100	90-110			
LCS										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide (LL)	148	5.00	ug/L	150.4		98	90-110	0.6	20	
Batch CG71920 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
			~g, L							
LCS Phenols	102	100	ug/L	100.0		102	80-120			
	102	100		100.0		102	50 120			
Phenols	958	100	ug/L	1000		96	80-120			
- · · -		2-Dibromoeth			-chlorop		30 120			
Batch CG71426 - 504/8011										
Blank										
1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
Currentes Boutachlarooth	0.298	<u> </u>	ug/L	0.2000		149	30-150			
Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	0.248		ug/L	0.2000		173 124	<i>30-150</i>			
			· 31 =							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Ethanol

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	504.1 1,2	2-Dibromoeth	nane / 1,2-	Dibromo-3	3-chloropi	ropane				
Batch CG71426 - 504/8011										
LCS										
1,2-Dibromoethane	0.070	0.015	ug/L	0.08000		88	70-130			
1,2-Dibromoethane [2C]	0.064	0.015	ug/L	0.08000		80	70-130			
Surrogate: Pentachloroethane	0.0877		ug/L	0.2000		44	30-150			
Surrogate: Pentachloroethane [2C]	0.0783		ug/L	0.2000		39	30-150			
ıcs										
1,2-Dibromoethane	0.219	0.015	ug/L	0.2000		110	70-130			
1,2-Dibromoethane [2C]	0.212	0.015	ug/L	0.2000		106	70-130			
Surrogate: Pentachloroethane	0.290		ug/L	0.2000		145	30-150			
Surrogate: Pentachloroethane [2C]	0.242		ug/L	0.2000		121	30-150			
		Alco	hol Scan by	/ GC/FID						
Batch CG71915 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS										
Ethanol	1270	10	mg/L	1000		127	60-140			
LCS Dup										

1060

10

Dependability

Fax: 401-461-4486

Service

1000

106

60-140

18

30

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

Notes and Definitions

X5	Due to high sediment content vials were composited
U	Analyte included in the analysis, but not detected
S-	Surrogate recovery(ies) below lower control limit (S-).

HTThe maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

DDT DDT breakdown > 20%

Relative percent difference for duplicate is outside of criteria (D+). D+

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

B+Blank Spike recovery is above upper control limit (B+).

В Present in Method Blank (B).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

Sample results reported on a dry weight basis dry

Relative Percent Difference **RPD** MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DLI/V Initial Volume

F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery [CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL **Estimated Detection Limit**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Station 250/Mystic Charlestown Eversource RGP ESS Laboratory Work Order: 1707259

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: Tigh	ne & Bond - KPB/TB/MM		ESS Project ID:		
Shipped/Delivered Via:	ESS Courier		Date Received: Project Due Date: Days for Project:		
Air bill manifest presen Air No.:		No	6. Does COC match bottles?		Yes
2. Were custody seals pre	esent?	No	7. Is COC complete and corr	rect?	Yes
3. Is radiation count <100	CPM?	'es	8. Were samples received in	tact?	Yes
4. Is a Cooler Present?		'es	9. Were labs informed abo	out short holds & rushes?	Yes / No / NA
Temp: 2.8 5. Was COC signed and of		'es	10. Were any analyses rece	eived outside of hold time?	Yes (No
					
11. Any Subcontracting ne ESS Sample IDs: Analysis: TAT:	eeded? Yes /No		Were VOAs received? Air bubbles in aqueous V Does methanol cover soil		Yes / No Yes / No / NA Yes / No / NA
Are the samples propose. If metals preserved upo Low Level VOA vials from	on receipt:) No Date: Date:	Time:	By:	<u> </u>
Sample Receiving Notes: $COC = B15$	Lebel = 817	HC 7/13/1	7		
14. Was there a need to co a. Was there a need to co Who was contacted?	, ,	Yes / No Yes / No Date:		Ву:	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	148177	Yes	NA	Yes	1L Poly - Unpres	NP	
01	148179	Yes	NA	Yes	250 mL Poly - Unpres	NP	W 7/13/17 1830
01	148181	Yes	NA	Yes	250 mL Poly - NaOH	NaOH DH 712	W 7/13/17 1830
01	148183	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	•
01	148185	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	148187	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
01	148194	Yes	NA	Yes	1L Amber - Unpres	NP	
01	148195	Yes	NA	Yes	1L Amber - Unpres	NP	
01	148196	Yes	NA	Yes	1L Amber - Unpres	NP	
01	148197	Yes	NA	Yes	1L Amber - Unpres	NP	
01	148198	Yes	NA	Yes	1L Amber - Unpres	NP	
01	148199	Yes	NA	Yes	1L Amber - Unpres	NP	
01	148201	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
01	148203	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	148207	Yes	No	Yes	VOA Vial - HCI	HCI	
01	148208	Yes	No	Yes	VOA Vial - HCI	HCI	
01	148209	Yes	No	Yes	VOA Vial - HCI	HCI	
01	148211	Yes	NA	Yes	VOA Vial - Unpres	NP	
01	148215	Yes	No	Yes	VOA Vial - HCI	HCI	
01	148216	Yes	No	Yes	VOA Vial - HCI	HCI	
01	148217	Yes	No	Yes	VOA Vial - HCI	HCI	
02	148176	Yes	NA	Yes	1L Poly - Unpres	NP	(-1212 1830
02	148178	Yes	NA	Yes	250 mL Poly - Unpres	NP OUT 13	V 7/13/17 1830
02	148180	Yes	NA	Yes	250 mL Poly - NaOH	NaOH PH /IL	· · ·

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	Tig	he & Bond	- KPB/TB/N	IM		oject ID:	1707259
						teceived:	7/13/2017
02	148182	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
02	148184	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
02	148186	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
02	148188	Yes	NA	Yes	1L Amber - Unpres	NP	
02	148189	Yes	NA	Yes	1L Amber - Unpres	NP	
02	148190	Yes	NA	Yes	1L Amber - Unpres	NP	
02	148191	Yes	NA	Yes	1L Amber - Unpres	NP	
02	148192	Yes	NA	Yes	1L Amber - Unpres	NP	
02	148193	Yes	NA	Yes	1L Amber - Unpres	NP	
02	148200	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
02	148202	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
02	148204	Yes	No	Yes	VOA Vial - HCI	HCI	
02	148205	Yes	No	Yes	VOA Vial - HCI	HCI	
02	148206	Yes	No	Yes	VOA Vial - HCI	HCI	
02	148210	Yes	NA	Yes	VOA Vial - Unpres	NP	
02	148212	Yes	No	Yes	VOA Vial - HCI	HCI	
02	148213	Yes	No	Yes	VOA Vial - HCI	HCI	
02	148214	Yes	No	Yes	VOA Vial - HCI	HCI	
Review							
barcode	labels on co	rrect contain	19757P		Yes / Mo	,	_
mpleted By:			-0			17 18	330
viewed By:		No. X	ffer	1	Date & Time: 7/13//	7 19	7/0
livered By:			1/5		3/17 1913	•	

	SS Laboratory CHAIN OF CUSTODY Prision of Thielsch Engineering, Inc. Turn Time Standard Rush Approx													ESS LAB PROJECT ID 1707259											
	•	•	O.	Turn Tim	e 🗡	_Standard	Rush	Approve	ed By:					Re	epor	ting	Lim	its -	-						
	Avenue, Cra			State whe	re samples	were collected	i: MA)NH							1			RG	Р							
) 461-7181		401-4480	Is this pro	ject for:				Electonic	De	live	rabl	e	٠,	Yes	X	N	О				_			
www.essi	laboratory.c	om			-	RGP			Format:	Exc	el_X	L /	Acce		_ P	DF_		Oth	er_						
I	Project Mana	iger: <u>M; k</u>	e Mar	tin		Project #											Т	[3	\Box			M		Γ
Company: Address:	Tighe. I Univ West in	k Bond versity cod, M	Ave 1 02	<u>55</u> 9	 	Project Name: Station 250 N Eversource F PO #	•	estown	Analysis	itals Total	itals Dissolved	Hardness (Calculation)	Ethanol ASTM D3695	yanide 4500 LL	TPH 1664	40D*	TRC 4500-CL D*	<u>ا</u>	Hex Cr 3500	420.1	RGP VOC Long List 524	xane 8270-SIM	04.1 VOC Log List 625-SIN	אטט בעש בופו עביי	Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sample Idei	ntification		# of Containers	RGP Me	RGP Me	Hardn	Ethan	Total Cys	TPH 16	TSS 2540D*	TRC 4	S C F	- S X Y Y Y	Phenol 420.1	RGP V	1,4-Dioxane	EDB 54	PCB 608	
	7/13/17	11:40	G	GW	B-3				\$8.2\			又	×	٧,٧	X	X	イ		××		×		×у		1,2
2_	7/13/17	1350	G	6	B+5	B-17			21	X		X	×,	۷ ,	4	×	×.	× ;	x x	۲ ۲	×	У	A	×Þ	\downarrow
						_																			
																	\top	1			П				
																		T			П				T
																		T	\top	П		T		T	T
																		\top	\top	Τ		T	\top	T	T
															\dagger		1	\top		Τ	П		\top	\top	T
						-						1			T	П	T	T		T			\top	T	T
Preservation	Code: 1-NP, 2-	HCI, 3-H2SO4	I, 4-HNO3, 5-1	NaOH, 6-Me0	OH, 7-Asorbic	Acid, 8-ZnAct, 9)		<u> </u>	4	4	4	1	1 5	2	1	1	3	- 1	3	2	1	2 /	1 1	T
Container Ty	pe: P-Poly G-G	lass/AG-Amb	er Glass S-Ste	rile V-VOA						Р	Р	Р	VI	P	AG	Р	P 1	P ·	- P	AG	V	AG	VA	GAG	3
			Vastewater G	W-Groundwat	ter SW-Surfac	e Water DW-Dri	inking Water	O-Oil W-Wip	es F-Filter																
Cooler Present Ves No Sampled by : APC added project name									per MEM a	and	upda	atec	dI k	oer A	٩PC	. mk	m 7/	14/	17						
Seals Intact YesNo NA: Comments: 1) RGP Metals include Sb, As, Cd, Cu, Fe,															200	.9 ar	d H	g by	y 24:	5.1					
Cooler Te	mperature:	2-8 "The	لتضو -	,		LD have Shor			PER	Μľ	ΓΑ	ΓTΑ	ACH	ED			1								
Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) 7/13/17							d by: (Stanature)		7	ا چ).	alg	Time 77	45		1	1	R ·	tecejve	ару: (Signat	(a.fr)	29			
Relinquished by	(Signature)		Date/Time	Received by: (Signature)		Relinquishe	d by: (Signature)	· · · · · · · · · · · · · · · · · · ·	Γ		Date/							eceive						
					Please E-r	n of Custoc	ly in writi	ı				1													

Page ____ of ____

ESS Laboratory Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211				CHAIN OF CUSTODY								E	ESS LAB PROJECT ID 1707259												
				Turn Time Standard Rush Approved By:							Reporting Limits -														
	•			State whe	re samples	were collec	cted: MA)	NH	<u> </u>																
Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com				Is this project for: RGP					Electonic Deliverable						Yes	X	1	No							_
									Format:	Format: Excel X Access															
	Project Mana	iger: M; k	e Mar	tin		Project #												Т	ઈ	\Box	П	П	Ξ		П
Company: Tighe & Band						Project Nan	me:	·is				Ē	92			Ш			ш <u>Т</u> . (4	i	5.50	3	
Company: Tighe & Bond Address: 1 University Ave Westwood, MA 02										B	(Calculation	D36	=					2		ist 5%	SIM	Loo List 625-SIM	2	Ę	
	Westin	00d, M	A 02	559					Analysis	豆	3805	Salc	Σ	9 3			٥	<u>- </u>	Ş		ng L	270	5	2	E
						PO#				tals To	tals Die)) sse	A PS	9 300.0°	8	40D•	12-00:	ia 350	Salc. r 3500	420.1) 2 2	хале	1.70	808	Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sample	Identification		# of Containers	GP Me	GP Me	Hardness	Ethanol ASTM D3695	Chloride	TPH 1664	TSS 2540D*	TRC 4500-CL D*	Ammonia :	Tri Cr (Calc. MUST Hex Cr 3500	Phenol 420.1	RGP VOC Long List 524	1,4-Dioxane 8270-SIM	EDB 504.1 RGP SVOC I	PCB 60	l
)	~~ ~	1		Î	12 2				\$8.2\	_		又	_		4 X		_	_	××	_	1	_			1,3
7/13/17 11:40 6			GW				_	, ,	1	Н		H	\rightarrow	1	\vdash	\Box	4	+	\vdash	门	\dashv	7	+	μ.	
2_	7/13/17	1350	G	6	B-15				21	X		X	X	¥	XX	×	×	×	x x	(X	×	×	<u> </u>	<u> </u>	₹
					_																				
-								_					H	\top		T	口	十	十	+			\top	\top	T
				<u> </u>						╁	H		\vdash	+	╫	\vdash	\vdash	十	+	╫	${f H}$	\dashv	+	十	╁
										╀	H		$\vdash \vdash$	-	+	\vdash	$\vdash \vdash$	\dashv	+	┼-'	$\vdash \vdash$	\dashv	+	+	╀
								···		L			Щ	\perp	\perp	\perp	Ш	\dashv	\bot	┷	Ц		\bot	丄	L
																	Ш							\perp	
				·														T		T	П	T	T	\top	Г
						-							П	+	\dagger	\top		1		T	\Box		+	\top	T
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-Zi						Acid, 8-ZnA	.ct, 9		1 -	4	4	4	1	1 :	5 2	1		3	- 1	3	2	1	2 1	1 1	t
Container Ty	pe: P-Poly G-G	ilass/ AG-Amb	er Glass S-Ste										abla					Р		AG	_	$\overline{}$		GAG	_
Matrix: S-So	il SD-Solid D-	Sjødge WW-V	Wastewater G	W-Groundwat	er SW-Surfac	e Water DW	-Drinking Wa	ater O-Oil W-Wi	ipes F-Filter																
Cooler Present Yes No				Sampled by : APC																					
Seals Intact YesNo NA: 🗶				Comment	Comments: 1) RGP Metals include Sb, As, Cd, Cu, Fe, Pb, Ni, Se, Ag and Zn by 200.7/200.9 and Hg by 245.1																				
Cooler Temperature: 2-8 "Free 6"				B '	2) Parameters in BOLD have Short hold-time PERMIT ATTACHI * TSS, TRC and Cl taken from the same container									HED)			7							
Relinquished by: (Signature) Date/Time				Received to (Signature) Received to (Signature) Relinquished by: (Signature)				7-12-Pate/Time					7uK	Received by: (Signature)											
Relinquished by: (Signature) Date/Time			Received by: (Signature) Relinquished by:			ished by: (Signature)						لسي	Received by: (Signature)												
			1	<u> </u>	D1 -			hata at C		L					\mathscr{H}	_									
					Please E-n	nail all cha	anges to C	hain of Custo	ay in writi	1				-											

Page ____ of ____

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Michael Martin Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Woburn to Mystic - RGP (N-998-11)

ESS Laboratory Work Order Number: 1711482

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 2:25 pm, Nov 20, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

SAMPLE RECEIPT

The following samples were received on November 15, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1711482-01	Mystic at Winter	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-02	Mystic	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-03	Mystic Crossing	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-04	Aberjona	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-05	Winter Pond	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-06	Mystic at Boston Inner	Surface Water	200.7, 2520B, 3113B, 350.1, 3500Cr B-2009, 9040
1711482-07	Mystic at Laydown	Surface Water	200.7, 3113B, 350.1, 3500Cr B-2009, 9040

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

PROJECT NARRATIVE

Total Metals

1711482-06 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Cadmium, Copper, Nickel

1711482-07 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Cadmium, Copper, Nickel

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

ooorb resticide.

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Page 4 of 25

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP Client Sample ID: Mystic at Boston Inner

Date Sampled: 11/15/17 11:30

Extraction Method: 3005A/200.7

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-06

Sample Matrix: Surface Water

Units: ug/L

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	I/V	F/V	Batch
Arsenic	ND (5.0)		3113B		10	KJK	11/19/17 4:59	100	10	CK71531
Cadmium	EL ND (10.0)		200.7		10	KJK	11/16/17 15:24	100	10	CK71531
Chromium	ND (20.0)		200.7		10	KJK	11/16/17 15:24	100	10	CK71531
Chromium III	ND (20.0)		200.7		10	JLK	11/16/17 15:24	1	1	[CALC]
Copper	EL ND (10.0)		200.7		10	KJK	11/16/17 15:24	100	10	CK71531
Iron	ND (100)		200.7		10	KJK	11/16/17 15:24	100	10	CK71531
Lead	ND (2.0)		3113B		10	KJK	11/17/17 21:31	100	10	CK71531
Nickel	EL ND (20.0)		200.7		10	KJK	11/16/17 15:24	100	10	CK71531
Zinc	ND (50.0)		200.7		10	KJK	11/16/17 15:24	100	10	CK71531

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP Client Sample ID: Mystic at Boston Inner

Date Sampled: 11/15/17 11:30

Percent Solids: N/A

ESS Laboratory Work Order: 1711482 ESS Laboratory Sample ID: 1711482-06

Sample Matrix: Surface Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	0.43 (0.10)	350.1		1	EEM	11/17/17 14:51	mg/L	CK71613
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	11/15/17 20:47	ug/L	CK71546
pH	7.75 (N/A)	9040		1	BCA	11/15/17 21:40	S.U.	CK71549
pH Sample Temp	Aqueous pH measured	l in water at 17.2 °C. (N/A)						
Salinity	14.9 (0.1)	2520B		1	JLK	11/16/17 17:10	ppt	CK71644

The Microbiology Division of Thielsch Engineering, Inc.

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Analyte

Chromium III

Client Project ID: Woburn to Mystic - RGP

Result

MRL

ESS Laboratory Work Order: 1711482

%REC

%REC

Limits

RPD

Quality Control Data

Units

Spike

Level

Source

Result

			Total Met	als					
Batch CK71531 - 3005A/200.7									
Blank									
Arsenic	ND	0.5	ug/L						
Cadmium	ND	1.00	ug/L						
Chromium	ND	2.0	ug/L						
Chromium III	ND	2.00	ug/L						
Copper	ND	1.0	ug/L						
lardness	ND	82.4	ug/L						
ron	ND	10.0	ug/L						
ead	ND	0.2	ug/L						
ead	ND	2.0	ug/L						
ickel	ND	2.0	ug/L						
ilver	ND	0.5	ug/L						
inc	ND	5.0	ug/L						
cs									
rsenic	44.8	12.5	ug/L	50.00	90	85-115			
admium	23.6	1.00	ug/L	25.00	94	85-115			
hromium	48.9	2.0	ug/L	50.00	98	85-115			
hromium III	48.9	2.00	ug/L						
opper	52.4	1.0	ug/L	50.00	105	85-115			
ardness	3260	82.4	ug/L						
on	239	10.0	ug/L	250.0	96	85-115			
ead	45.3	5.0	ug/L	50.00	91	85-115			
ead	49.7	2.0	ug/L	50.00	99	85-115			
ickel	48.8	2.0	ug/L	50.00	98	85-115			
ilver	26.1	0.5	ug/L	25.00	104	85-115			
inc	51.7	5.0	ug/L	50.00	103	85-115			
CS Dup									
rsenic	48.5	12.5	ug/L	50.00	97	85-115	8	20	
admium	23.4	1.00	ug/L	25.00	94	85-115	0.7	20	
hromium	48.7	2.0	ug/L ug/L	50.00	9 4 97	85-115 85-115	0.7	20	
hromium III	48.7	2.00	ug/L ug/L	50.00	21	05.113	т.	20	
opper	52.0	1.0	ug/L ug/L	50.00	104	85-115	0.8	20	
ardness	3210	82.4	ug/L ug/L	50.00	107	05.113	0.0	20	
on	237	10.0	ug/L ug/L	250.0	95	85-115	0.8	20	
on ead	47.5	5.0	ug/L ug/L	50.00	95 95	85-115	5	20	
ead	49.8	2.0	ug/L ug/L	50.00	100	85-115	0.02	20	
ickel	48.2	2.0	ug/L ug/L	50.00	96	85-115	1	20	
lver	26.0	0.5	ug/L ug/L	25.00	104	85-115 85-115	0.2	20	
inc	53.8	5.0	ug/L ug/L	50.00	104	85-115	4	20	
	55.6	3.0	ug/L	30.00	100	03-113	4	20	
atch CK71546 - [CALC]									
lank									
hromium III	ND	10.0	ug/L						

ND

ug/L

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Salinity

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

Quality Control Data

		- Euro								
				Spike	Source		%REC	_	RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Batch CK71546 - [CALC]										
LCS Dup										
Chromium III	ND		ug/L							
		Cl	assical Che	mistry						
Batch CK71546 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.503		mg/L	0.4998		101	90-110			
LCS Dup										
Hexavalent Chromium	0.516		mg/L	0.4998		103	90-110	3	20	
Batch CK71613 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.08	0.10	mg/L	0.09994		81	80-120			
ıcs										
Ammonia as N	1.02	0.10	mg/L	0.9994		102	80-120			
Batch CK71644 - General Preparation										
LCS										

ppt

1.000

1.0

85-115

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

[CALC]

SUB

RL

EDL

Calculated Analyte

Reporting Limit

Estimated Detection Limit

Subcontracted analysis; see attached report

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

Notes and Definitions

	Notes and Definitions
Z16d	Aqueous pH measured in water at 17.7 °C.
Z16c	Aqueous pH measured in water at 17.6 °C.
Z16b	Aqueous pH measured in water at 17.4 °C.
Z16a	Aqueous pH measured in water at 17.2 °C.
Z16	Aqueous pH measured in water at 17.1 °C.
U	Analyte included in the analysis, but not detected
EL	Elevated Method Reporting Limits due to sample matrix (EL).
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation Detection Limit
DL I/V	Initial Volume
F/V	Final Volume
	Subcontracted analysis; see attached report
§ 1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
	•

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Woburn to Mystic - RGP ESS Laboratory Work Order: 1711482

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client: Tighe & Bond - KPB/TB/MM	ESS Project ID: 1711482 Date Received: 11/15/2017	
Shipped/Delivered Via: ESS Courier	Project Due Date: 11/17/2017 Days for Project: 2 Day	<u></u>
Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	Yes No / NA
Temp: 0.4 Iced with: Ice 5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No)
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / No Yes / No Yes / No / NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Date: Date:	Time: By: Time: By:	<u> </u>
Sample Receiving Notes:		
11. 1740 thore a flood to contact i rejust manager.	es (No es / No Time: By:	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	182550	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
01	182557	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
01	182570	Yes	NA	Yes	250 mL Poly - Unpres	NP	
01	182571	Yes	NA	Yes	250 mL Poly - Unpres	NP	
01	182578	Yes	NA	Yes	250 mL Amber - Unpres	NP	
02	182549	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
02	182556	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
02	182568	Yes	ΝA	Yes	250 mL Poly - Unpres	NP	
02	182569	Yes	NA	Yes	250 mL Poly - Unpres	NP	
02	182577	Yes	NA	Yes	250 mL Amber - Unpres	NP	
03	182548	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
03	182555	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
03	182566	Yes	NA	Yes	250 mL Poly - Unpres	NP	
03	182567	Yes	NA	Yes	250 mL Poly - Unpres	NP	
03	182576	Yes	NA	Yes	250 mL Amber - Unpres	NP	
04	182547	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
04	182554	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
04	182564	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	182565	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	182575	Yes	NA	Yes	250 mL Amber - Unpres	NP	
05	182546	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
05	182553	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
05	182562	Yes	NA	Yes	250 mL Poly - Unpres	NP	
05	182563	Yes	NA	Yes	250 mL Poly - Unpres	NP	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tig	he & Bond	 KPB/TB/MI 	VI	ESS Pr	oject ID:	1711482
					Date R	eceived:	11/15/2017
05	182574	Yes	NA	Yes	250 mL Amber - Unpres	NP	
06	182545	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
06	182552	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
06	182560	Yes	NA	Yes	250 mL Poly - Unpres	NΡ	
06	182561	Yes	NA	Yes	250 mL Poly - Unpres	NΡ	
06	182573	Yes	NA	Yes	250 mL Amber - Unpres	NP	
07	182544	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
07	182551	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
07	182558	Yes	NA	Yes	250 mL Poly - Unpres	NP	
07	182559	Yes	NA	Yes	250 mL Poly - Unpres	NP	
07	182572	Yes	NΑ	Yes	250 mL Amber - Unpres	NP	
		1					
nd Review		//			\sim		
	labels on so	rect contair	ners?		(Yes)/No		
Da. oodo		11.1			, ,		
ompleted	-	1 <i>///u // /</i>			1. 1	0	
By:		<i> ¶ </i>			Date & Time: 1///5//	ו 190 ר	
Reviewed		- 100 / -					_
By:	<i>\rangle</i> 1		4		Date & Time: 11/15	ودهد دا	•
Delivered		10	<u>, </u>		<u> </u>	1	
By:		$\sqrt{\lambda}$	*		n le	(17 3es	9
-,-				_		1	

ESS L	aborator	у		C	ΟY	ESS La	ıb#		-	111	183)										
	f Thielsch Eng	5		Turn Time	5-Day	Rush	2-Day	Report	ina		-	/ [(100	7		a de la composición dela composición de la composición dela composición de la compos						
185 Franc	es Avenue, Ci	ranston RI 029	10	Regulatory State				Limit							(GW-	1					
		x (401) 461-44	86	Is thi	is project for any o	of the follow	wing?:	Electo	nic	☑ Lin	nit Che	ecker				 ☑ Sta	andard	Exce	el .			
www.essla	aboratory.com			OCT RCP	20,77,720		RGP	Delivera	bles	☑ Ot	ner (P	ease Sp	ecify -) pdf								
		mpany Name ghe & Bond		Project # N-998-11		Project Na Mystic to Wo																
		ntact Person		14-950-11	Addres		bum	, so	1													
		Dean Bebis			1 University			lysi														
	City Westwood	4	3	tate MA	Zip Cod 02090		PO#	Analysis														
-	elephone Nu			Number		Email Addr	ess	_ `							=							
	(508) 654-04	T				bis@tighebo				ess		2	. <u>.</u>	ium	niu	5			_			- 1
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix		Sam	nple ID		Hd	Hardness	Cr+6	NH4 Salinity	Arsenic	Cadmium	Chromium III	Copper	Iron	Lead	Nickel	Silver	Zinc	
01	11-15-17	10:00	Grab	Surface Water			X	X	Х	X	X		X	X	Х	X	X		X			
02	11-15-17	10:30	Grab	Surface Water			×	Х	Х	X	X	X	X	X	Х	X	X		X			
03	11-15-17	9:30	Grab	Surface Water			X	Х	Х	X	X	X	Х	X	Х	X	Х		X			
04	11-15-17	9:00	Grab	Surface Water			X	Х	Х	X	X	X	X	X	X	X	X	X	X			
05	11-15-17	8:30	Grab	Surface Water			X	Х	Х	X	×	Х	X	Х	Х	X	Х	Х	X			
06	11-15-17	11:30	Grab	Surface Water			×		Х	X X	×	Х	X	X	Х	X	Х		X			
07	11-15-17	11:00	Grab	Surface Water		Mystic a	t Laydown		X	Х	Х	X	×	X	X	X	Х	X	Х		X	
												F										
Co	ntainer Type:	AC-Air Casset	tte AG-Amber Gla	ss B-BOD Bottle (C-Cubitainer G - G	Glass O-Ot	ther P-Poly S	S-Sterile V-Vial					4									
			-2.5 gal 3-250 m					oz 11-Other*												7		
Prese	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	ethanol 7-Na2S2O3	8-ZnAce, NaO)H 9-NH4CI 10-I	DI H2O 11-Other*				3 1	Î I									
						Number	r of Containers	per Sample:														
		Laborator	y Use Only		Sampled by :	Colleen B	Brothers															
Coole	Present:	V	1/6		Comments:		Please	specify "Othe	r" pr	eser	ativ	e and	conta	iners	s type	es in	this	spa	ce			
	s Intact:		1		1.00																	
Cooler T	emperature:	0.47	°C /	1	Eversource Pricing		1							1								
Re	linquished by:	(Signature, Da		Time)	Relinquishe	d By: (Signature	e, Dat	e & 7	ime)	6.		Rece	ived	Ву: (Signa	ature	, Da	te &	Time)			
	WEB 10	thur	11-15-17	5/17 10	6:00	Di	15/2	1	7:0	0	4		M	W	V	ules	de	7	18	5		
Re	Relinquished by: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished							d By: /Signature	e, Dat	e & T	ime)			Rece	ived	Ву: (Signa	ature	, Da	te &	Time)	
				,			,						1									