

March 5, 2018

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912 ATTN: Remediation General Permit NOI Processing

Re: Notice of Intent for Coverage Under EPA's 2016 Remediation General Permit 600-1000 Iron Horse Park, Billerica, MA

CDW Project # 1559.00

To Whom It May Concern:

CDW Consultants, Inc. (CDW) is submitting this Notice of Intent (NOI) on behalf of the Massachusetts Bay Transportation Authority (MBTA) for coverage under the United States Environmental Protection Agency's (EPA's) 2016 Remediation General Permit (RGP) under EPA's National Pollutants Discharge Elimination System (NPDES) program. The RGP is required for contaminated site dewatering during construction activities for development of a new operations control center building at the above-referenced site.

Iron Horse Park is a former railyard Boston & Maine Railroad developed in the early 1900s. Contamination from a long history of industrial activities at Iron Horse Park resulted in its designation as a Superfund Site by the United States Environmental Protection Agency (EPA) in September 1984. The Iron Horse Park Operations Control Center (IHPOCC) project at Iron Horse Park in Billerica, Massachusetts, involves the construction of a new control center building and parking lot to house and support the Massachusetts Bay Transportation Authority (MBTA) and Pan Am Railways, Inc. (Pan Am) train dispatching operations. The project site (Site) is shown on the attached Figures 1 and 3 and covers portions of three MBTA-owned parcels at Iron Horse Park. It is our understanding that a series of rails crossed the northwest portion of the project site until sometime in the mid-1950s to early 1960s, at which point the rails were removed and the site was used to store lumber. This portion of the site is now vacant and will be utilized for the new IHPOCC site. Though multiple contaminants have been identified across the Iron Horse Park site, including four separate Operable Units (OUs) covering seven Areas of Concern (AOCs), the project area is not located within any AOC. The dewatering is occurring during excavations for the building foundations and utilities.

CDW collected two samples of the potential influent from on-Site monitoring wells representing worst-case conditions on September 21, 2017 for VOCs, total and dissolved metals, polychlorinated biphenyls (PCBs), total petroleum hydrocarbons (TPH), total phenols, chloride, total cyanide, total suspended solids (TSS), total residual chlorine (TRC), trivalent chromium, hexavalent chromium, 1,4-dioxane, ammonia, ethanol, hardness, pH,, reactivity, and semi-volatile organic compounds (SVOCs). Our proposed groundwater treatment system for this project consists of a fractionation tank(s), bag filter(s) to remove suspended solids, carbon treatment units, and a cartridge filter before discharging to the drainage system that leads to an outfall at the Unnamed Brook. Dewatering may be intermittent as needed, and may not be conducted at all locations during construction.

In addition to the NOI application form, we have attached:

- Figure 1: Discharge Location and Receiving Water
- Figure 2: Example Water Treatment System Schematic
- Figure 3: Natural Heritage Atlas and ACEC Map
- Figure 4: Priority Resource Areas Map
- Documentation of the Results of the ESA Eligibility Determination
- Endangered Species Act Documentation
- Documentation of the Results of the NHPA Eligibility Determination
- Massachusetts Cultural Resource Information Report and Documents
- WQBEL Calculations
- ESS Laboratory Analytical Data Reports

Please call if you have any questions.

Very truly yours,

CDW CONSULTANTS, INC.

Lars Andresen

Assistant Project Manager

William J. Betters, PG, LSP

Director of Environmental Services

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Site address: 600-1000 Iron Horse Park					
Street:					
City: Billerica		State: MA	^{Zip:} 01862		
Contact Person: Holly Palmgren					
Telephone: 617-222-1580	Email: HP	almgren@r	nbta.com		
Mailing address: 10 Park Plaza, Suite 6720					
Street:					
City: Boston		State: MA	Zip: 02116-3974		
Contact Person:					
Telephone:	Email:				
Mailing address:					
Street:					
City:		State:	Zip:		
5. Other regulatory program(s) that apply to the site	(check all th	at apply):			
☐ MA Chapter 21e; list RTN(s):	A MADO	51787323			
☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	□ POTW	Pretreatment	t		
	Street: City: Billerica Contact Person: Holly Palmgren Telephone: 617-222-1580 Mailing address: 10 Park Plaza, Suite 6720 Street: City: Boston Contact Person: Telephone: Mailing address: Street: City: Other regulatory program(s) that apply to the site of the MA Chapter 21e; list RTN(s): NH Groundwater Management Permit or	Street: City: Billerica Contact Person: Holly Palmgren Telephone: 617-222-1580 Email: HP Mailing address: 10 Park Plaza, Suite 6720 Street: City: Boston Contact Person: Telephone: Email: Mailing address: Street: City: 5. Other regulatory program(s) that apply to the site (check all the mailing address) and the contact person: I mailing address: Street: City: I mailing address: City: City: City: I mailing address: City: City: City: I mailing address: City: City:	Street: City: Billerica Contact Person: Holly Palmgren Telephone: 617-222-1580 Mailing address: 10 Park Plaza, Suite 6720 Street: City: Boston Contact Person: Telephone: Mailing address: State: MA Contact Person: Telephone: Mailing address: Street: City: State: State: State: Other regulatory program(s) that apply to the site (check all that apply): MA Chapter 21e; list RTN(s): MA Groundwater Management Permit or POTW Pretreatment POTW Pretreatment		

В.	Receiving	water	inf	formation:
₽.	11000111115	" acci		oi iiiatioii.

B. Receiving water information.								
1. Name of receiving water(s):	Waterbody identification of receiving water((s): Classifi	cation of receiving water(s):					
Content Brook	MA83-09	Class	s B					
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River								
2. Has the operator attached a location map in accorda	ance with the instructions in B, above? (check one):	: ■ Yes □ No						
Are sensitive receptors present near the site? (check of If yes, specify: Wetlands and a Potential Vernal Pool	ne): ■ Yes □ No							
3. Indicate if the receiving water(s) is listed in the Sta pollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP. NA								
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and Ap		the instructions in	1.3 MGD					
5. Indicate the requested dilution factor for the calcula accordance with the instructions in Appendix V for si			1					
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: June 26, 20	18							
7. Has the operator attached a summary of receiving v	vater sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?					
(check one): ■ Yes □ No								
C. Source water information:								
1. Source water(s) is (check any that apply):								
■ Contaminated groundwater □ Contaminated surface water □ The receiving water □ Potable water; if so, indimunicipality or origin:								
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other						
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:					
■ Yes □ No	□ Yes □ No							

2. Source water contaminants: Volatile Organic Compounds, Arsenic, Leac	1
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Outfall 1 (treatment system effluent port to existing private stormwater o location)	utfall 42.582311, -71.263787
Outfall 2 (possible 2nd treatment system effluent port to same outfall location as Outfall 1)	
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water Indirect discharge, if so, specify:
Discharge enters Unnamed Brook at existing private stormwater outfall	, then flows through wetlands and the Middlesex Canal to Content Brook
■ A private storm sewer system □ A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sew	•
Has notification been provided to the owner of this system? (check one): ■ Ye	
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No
Provide the expected start and end dates of discharge(s) (month/year): 08/201	8 - 08/2020
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months ■ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
☐ I – Petroleum-Related Site Remediation	b If Activity Category III IV	V, V, VI, VII or VIII: (check either G or H)			
 □ II – Non-Petroleum-Related Site Remediation ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks 	G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

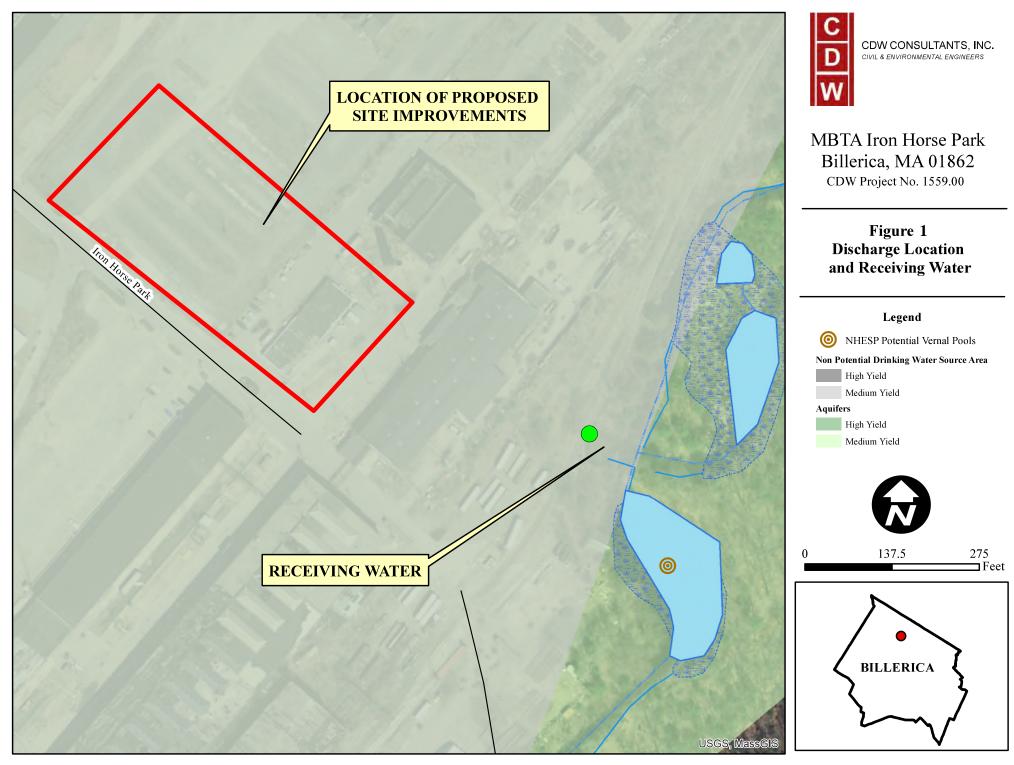
	Known	Known		_		In	fluent	Effluent L	imitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		√	2	350.1	0.10	0.36	0.325	Report mg/L	
Chloride		✓	2	300.0	50000	79800	68000	Report µg/l	
Total Residual Chlorine	✓		2	4500Cl D	0.02	< 0.02	0	0.2 mg/L	11
Total Suspended Solids		✓	2	2540D	5	5	2.5	30 mg/L	
Antimony	✓		2	200.7	20.0	<20	0	206 μg/L	640
Arsenic		✓	2	3113B	5	<5	0	104 μg/L	10
Cadmium	✓		2	3113B	0.05	< 0.05	0	10.2 μg/L	0.1629
Chromium III	✓		2	200.7	10.0	<10	0	323 μg/L	49.2
Chromium VI	✓		2	3500Cr	10.0	<10	0	323 µg/L	11.4
Copper	✓		2	200.7	4	<4	0	242 μg/L	5.2
Iron		✓	2	200.7	20	6540	4155	5,000 μg/L	1000
Lead	✓		2	3113B	1	<1	0	160 μg/L	1.33
Mercury	✓		2	245.1	0.2	<0.2	0	0.739 μg/L	0.91
Nickel	✓		2	200.7	10	<10	0	1,450 μg/L	29.2
Selenium	✓		2	3113B	2	<2	0	235.8 μg/L	5.0
Silver	✓		2	200.7	1	<1	0	35.1 μg/L	1.2
Zinc		✓	2	200.7	10	49.4	42.6	420 μg/L	67.0
Cyanide	✓		2	4500 CN	5	<5	0	178 mg/L	5.2
B. Non-Halogenated VOCs									
Total BTEX	✓		2	524.2	0.5	2.2	1.1	100 μg/L	
Benzene		✓	2	524.2	0.5	<0.5	0	5.0 μg/L	
1,4 Dioxane	✓		2		0.250	3.74	2.28	200 μg/L	
Acetone		✓	2	524.2	0.005	< 0.005	0	7.97 mg/L	
Phenol		✓	2	420.1	100	<100	0	1,080 µg/L	300

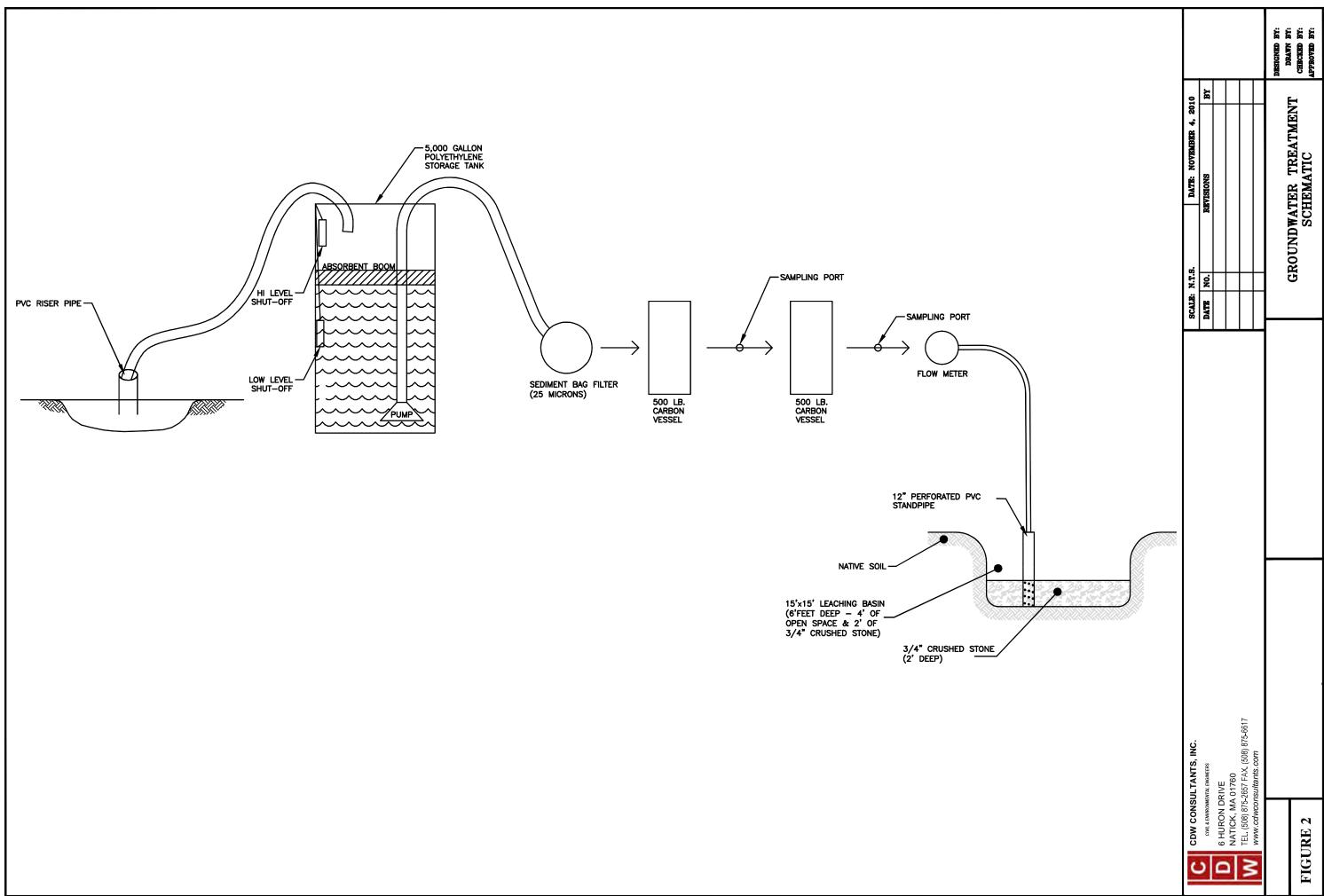
	Known	Known		_		In	fluent	Effluent Li	mitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	imit Daily	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride	√		2	524.2	0.3	<0.3	0	4.4 μg/L	1.6	
1,2 Dichlorobenzene	✓		2	524.2	0.5	<0.5	0	600 μg/L		
1,3 Dichlorobenzene	✓		2	524.2	0.5	<0.5	0	320 μg/L		
1,4 Dichlorobenzene	✓		2	524.2	0.5	<0.5	0	5.0 μg/L		
Total dichlorobenzene	✓		2	524.2	0.5	<0.5	0	763 µg/L in NH		
1,1 Dichloroethane		✓	2	524.2	0.5	37	19.55	70 μg/L		
1,2 Dichloroethane	✓		2	524.2	0.5	< 0.5	0	5.0 μg/L		
1,1 Dichloroethylene		✓	2	524.2	0.5	3.4	1.7	3.2 μg/L		
Ethylene Dibromide	✓							0.05 μg/L		
Methylene Chloride	✓		2	524.2	0.5	<0.5	0	4.6 μg/L		
1,1,1 Trichloroethane		✓	2	524.2	0.5	46.6	23.3	200 μg/L		
1,1,2 Trichloroethane	✓		2	524.2	0.5	<0.5	0	5.0 μg/L		
Trichloroethylene		✓	2	524.2	0.5	13.1	6.55	5.0 μg/L		
Tetrachloroethylene		✓	2	524.2	0.5	11.3	5.65	5.0 μg/L	3.3	
cis-1,2 Dichloroethylene		✓	2	524.2	0.5	69.8	35.65	70 μg/L		
Vinyl Chloride		✓	2	524.2	0.5	6.2	3.1	2.0 μg/L		
D. Non-Halogenated SVO	~c									
Total Phthalates	<u>√</u>		2	625 SIM	2.34	<2.34	0	190 μg/L		
Diethylhexyl phthalate	✓		2	625 SIM	0.93	< 0.93	0	101 μg/L	2.2	
Total Group I PAHs	√		2	625 SIM	0.05	< 0.05	0	1.0 µg/L		
Benzo(a)anthracene	✓		2	625 SIM	0.05	< 0.05	0	1.5	0.0038	
Benzo(a)pyrene	✓		2	625 SIM	0.05	< 0.05	0	1	0.0038	
Benzo(b)fluoranthene	✓		2	625 SIM	0.05	< 0.05	0	1	0.0038	
Benzo(k)fluoranthene	✓		2	625 SIM	0.05	< 0.05	0	As Total PAHs	0.0038	
Chrysene	✓		2	625 SIM	0.05	< 0.05	0	1	0.0038	
Dibenzo(a,h)anthracene	✓		2	625 SIM	0.05	< 0.05	0	1	0.0038	
Indeno(1,2,3-cd)pyrene	✓		2	625 SIM	0.05	< 0.05	0	1	0.0038	

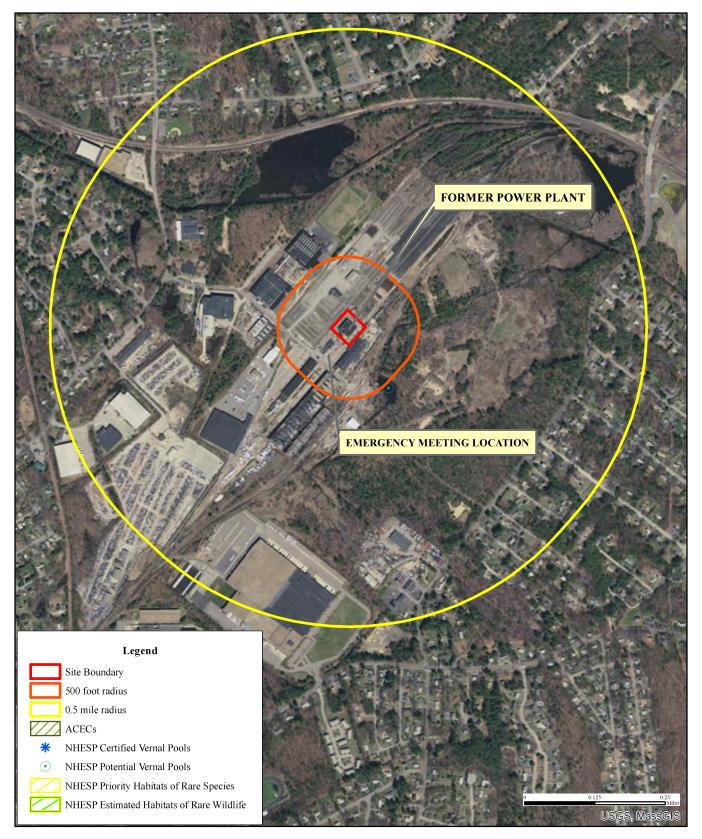
	Known	Known				Int	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	✓		2	625 SIM	0.05	< 0.05	0	100 μg/L	
Naphthalene	✓		2	625 SIM	0.19	<0.19	0	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		2	608	0.09	<0.09	0	0.000064 μg/L	
Pentachlorophenol	✓		2	625 SIM	0.84	<0.84	0	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	✓		2	1664A	5	<5	0	5.0 mg/L	
Ethanol	✓		2	ASTM #	10	<10	0	Report mg/L	
Methyl-tert-Butyl Ether	✓		2	524.2	0.5	<0.5	0	70 μg/L	20
tert-Butyl Alcohol	✓		2	524.2	25	<25	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		2	524.2	1	<l< td=""><td>0</td><td>90 μg/L in MA 140 μg/L in NH</td><td></td></l<>	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutar 9040	nts present);	if so, specify:	6.25	Ī	<u> </u>
Hardness			2	200.7	165	76400	63400		
Tharaness				200.7	100	70.00			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbo	n Adsorption
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
System will comprise of a storage tank, sediment bag filter(s), carbon vessel(s), and flow meter. A sample schematic is attached. Multiple systems may be	running in parallel.
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component: Carbon filtration vessel	50/50
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	30,30
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	100
The first the average entire he is a significant and the significa	100
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

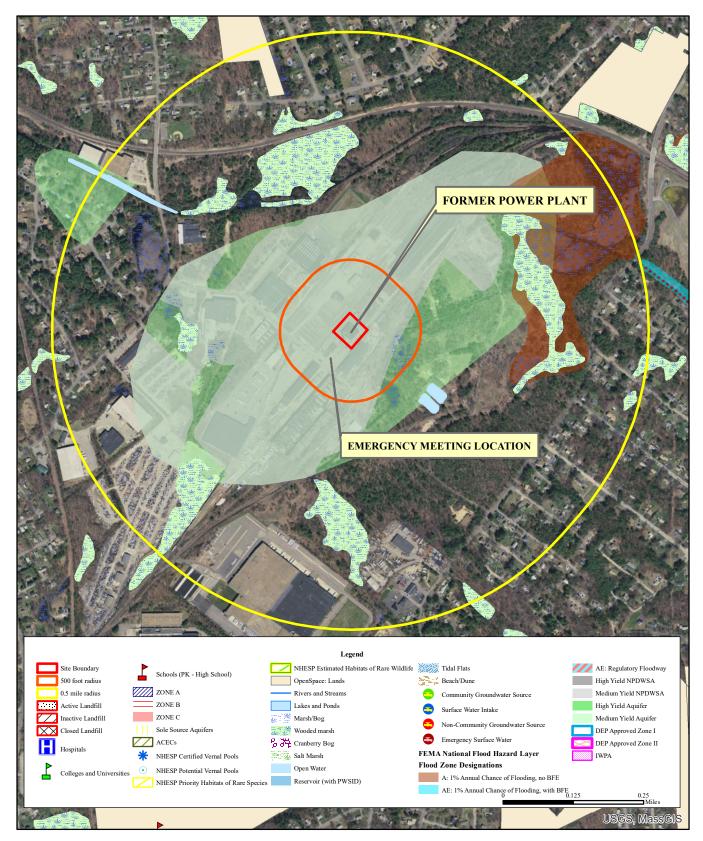

F. Chemical and additive information


1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers \square pH conditioners \square Bioremedial agents, including microbes \square Chlorine or chemicals containing chlorine \square Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☐ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
■ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) ■ the operator □ EPA □ Other; if so, specify:


□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☐ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
■ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP meeting the requirements of this general permit will be developed and implemented upon BMPP certification statement: initiation of discharge. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes No 🗆 Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes □ No □ NA ■ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No □ NA ■ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): ☐ RGP ☐ DGP ☐ CGP ☐ MSGP ☐ Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify: Signature: Date: Print Name and Title:


CDW CONSULTANTS, INC.

FORMER POWER PLANT IRON HORSE PARK BILLERICA, MA

Figure 3 - Natural Hertiage Atlas and ACEC Map

SOURCE: MASSGIS SCALE:1 inch = 901 feet Page 16 of 91

CDW CONSULTANTS, INC.

FORMER POWER PLANT IRON HORSE PARK BILLERICA, MA

Figure 4 - Resource Areas Map

SOURCE: MASSGIS SCALE: 1 inch = 901 feet Page 17 of 91

Documentation of the Results of the ESA Eligibility Determination:

Using Appendix I and information in Appendix II of the NPDES RGP, the Iron Horse Park Operations Control Center (IHPOCC), Billerica project is eligible for coverage under this general permit under FWS Criterion C. The IHPOCC, Billerica project is located in North Billerica in Middlesex County.

CDW consulted the Federally Listed Endangered and Threated Species in Massachusetts List Updated 2/5/2016 available on the U.S. Fish & Wildlife Service New England Field Office webpage and an Endangered Species Consultation per the attached instructions which were provided on U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage was conducted for the Site:

- The Northern Long-eared Bat was listed as "Threatened" statewide in Massachusetts and may occur within the boundary of the project area.
- No designated critical habitats were listed in Middlesex County.

The habitat for the Northern Long-eared Bat is described as mines and caves in winter and a wide variety of forested habitats in summer. There are no critical habitats within the project area. No mines or caves are located within or near the project area. The dewatering project will be intermittent and located near an industrial area with active railways and frequent large truck traffic. Based on this evaluation, the Northern Long-eared Bat is not likely to be affected by the proposed water discharges or discharge related activities. Therefore, there is likely to be "no effect" on the listed species within the project area.

Copies of the Federally Listed Endangered and Threated Species in Massachusetts List Updated 2/5/2016 and Endangered Species Consultation Consistency Letter from the U.S. Fish & Wildlife Service New England Field Office ECOS are attached.

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire Northern Long- eared Bat		Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

Updated 02/05/2016

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

IN MASSACHUSETTS								
COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS				
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester				
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury				
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns				
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick				
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately				
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley				
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley				
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton				
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick				
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton				
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				
	Piping Plover	Threatened	Coastal Beaches	Nantucket				
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket				
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket				
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns				
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke	
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop	
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat Threatened Final 4(d) Rule Winter- mines and caves, Summer – w variety of forested habitats		Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster	
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

¹Migratory only, scattered along the coast in small numbers

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

November 16, 2017

In Reply Refer To:

Consultation Code: 05E1NE00-2018-SLI-0398

Event Code: 05E1NE00-2018-E-00897

Project Name: IHPOCC

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0398

Event Code: 05E1NE00-2018-E-00897

Project Name: IHPOCC

Project Type: ** OTHER **

Project Description: Dewatering project of water to existing drainage outfall under NPDES

RGP.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.58276039679727N71.26557242518038W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species.

Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Page 26 of 91

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

IPaC Record Locator: 424-10273900 November 16, 2017

Subject: Consistency letter for the 'IHPOCC' project under the December 15, 2016 FHWA,

FRA, FTA Programmatic Biological Opinion for Transportation Projects within the

Range of the Indiana Bat and Northern Long-eared Bat.

To whom it may concern:

The U.S. Fish and Wildlife Service (Service) has received your request dated to verify that the **IHPOCC** (Proposed Action) may rely on the December 15, 2016 FHWA, FRA, FTA Programmatic Biological Opinion for Transportation Projects within the Range of the Indiana Bat and Northern Long-eared Bat (PBO) to satisfy requirements under Section 7(a)(2) of the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 *et seq.*). Based on the information you provided (Project Description repeated below), the Proposed Action will have <u>no effect</u> on the endangered Indiana bat (*Myotis sodalis*) or the threatened Northern long-eared bat (*Myotis septentrionalis*). If the Proposed Action is not modified, **no consultation is required for these two species.**

If the Proposed Action may affect any other federally-listed or proposed species or designated critical habitat, additional consultation between the lead Federal action agency and this Office is required. Please advise the lead Federal action agency for the Proposed Action accordingly.

Project Description

The following project name and description was collected in IPaC as part of the endangered species review process.

Name

IHPOCC

Description

Dewatering project of water to existing drainage outfall under NPDES RGP.

Page 28 of 91

Determination Key Result

Based on your answers provided, this project will have no effect on the endangered Indiana bat and/or the threatened Northern long-eared bat. No consultation with the U.S. Fish and Wildlife Service pursuant to Section 7(a)(2) of the Endangered Species Act of 1973 (ESA) (87 Stat. 884, as amended 16 U.S.C. 1531 *et seq.*) is required for these two species.

Qualification Interview

1. Is the project within the range of the Indiana bat^[1]?

[1] See Indiana bat species profile

Automatically answered

No

2. Is the project within the range of the Northern long-eared bat^[1] (NLEB)?

[1] See Northern long-eared bat species profile

Automatically answered

Yes

3. Which Federal Agency is the lead for the action?

C) Federal Transit Administration (FTA)

4. Are *all* project activities limited to non-construction activities only? (examples of non-construction activities include: bridge/abandoned structure assessments, property inspections, planning and technical studies, property sales, property easements, and equipment purchases)

No

5. Are *all* project activities completely within the existing road/rail surface^[1] (e.g., road line painting)?

[1] Road surface is defined as the driving surface and shoulders (may be pavement, gravel, etc.) and rail surface is defined as the edge of the rail ballast.

No

6. Are *all* project activites limited to the maintenance of the surrounding landscape at existing facilities (e.g., rest areas, stormwater detention basins)?

No

7. Are *all* project activities limited to wetland or stream protection activities associated with compensatory wetland mitigation?

No

8. Will the project raise the road profile **above the tree canopy** within 1,000 feet of known summer habitat (based on documented roosts and/or captures)?

No

9.	Does the project include percussives or other activities (not including the removal of trees)
	that will increase noise levels above existing traffic/background levels?
	No

- 10. Is there any suitable summer habitat^[1] for Indiana Bat or NLEB within the project area? (includes any trees suitable for maternity, roosting, foraging, or travelling habitat)
 - [1] See the Service's <u>summer survey guidance</u> for our current definitions of suitable habitat.

No

11. Does the project include any ground disturbing activities?

No

12. Is the project located within a karst area?

No

- 13. Will the project include any type of activity that could impact a **known** hibernaculum^[1], or impact a karst feature (e.g., sinkhole, losing stream, or spring) that could result in effects to a **known** hibernaculum?
 - [1] For the purpose of this consultation, a hibernaculum is a site, most often a cave or mine, where bats hibernate during the winter (see suitable habitat), but could also include bridges and structures if bats are found to be hibernating there during the winter.

No

- 14. Does the project include any activities **within** 0.5 miles of an Indiana bat and/or NLEB hibernaculum^[1]?
 - [1] For the purpose of this consultation, a hibernaculum is a site, most often a cave or mine, where bats hibernate during the winter (see suitable habitat), but could also include bridges and structures if bats are found to be hibernating there during the winter.

No

15. Does the project include any activities **greater than** 300 feet from existing road/rail surfaces?

No

16. Does the project include slash pile burning?

No

17. Does the project include any bridge removal and/or replacement activities? *No*

18. Does the project include any bridge maintenance activities (e.g., any bridge repair, retrofit, maintenance, and/or rehabilitation work)?

No

19. Does the project include the removal and/or replacement of any structures other than a bridge? (e.g., rest areas, offices, sheds, outbuildings, barns, parking garages, etc.) *No*

20. Does the project include maintenance activities of any structures other than a bridge? (e.g., rest areas, offices, sheds, outbuildings, barns, parking garages, etc.)

No

21. Will the project involve the use of **temporary** lighting during the construction/maintenance activities?

No.

IVO

22. Will the project install new (or replace existing) **permanent** lighting? *No*

Determination Key Description: FHWA, FRA, FTA Programmatic Consultation For Transportation Projects Affecting NLEB Or Indiana Bat

This key was last updated in IPaC on April 03, 2017. Keys are subject to periodic revision.

This decision key is intended for projects/activities funded or authorized by the Federal Highway Administration (FHWA), Federal Railroad Administration (FRA), and/or Federal Transit Administration (FTA), which require consultation with the U.S. Fish and Wildlife Service (Service) under Section 7 of the Endangered Species Act (ESA) for the endangered **Indiana bat** (*Myotis sodalis*) and the threatened **Northern long-eared bat** (NLEB) (*Myotis septentrionalis*).

This decision key should <u>only</u> be used to verify project applicability with the Service's <u>revised</u> programmatic biological opinion for transportation projects dated December 15, 2016. The programmatic biological opinion covers limited transportation activities that may affect either bat species, and addresses situations that are both likely and not likely to adversely affect either bat species. This decision key will assist in identifying the effect of a specific project/activity and applicability of the programmatic consultation. The programmatic biological opinion is <u>not</u> intended to cover all types of transportation actions. Activities outside the scope of the programmatic biological opinion, or that may affect ESA-listed species other than the Indiana bat or NLEB, or any designated critical habitat, may require additional ESA Section 7 consultation.

Page 33 of 91

U.S. Fish & Wildlife Service Contact List

Determination key office contact information

Assistant Director-Ecological Services 5275 Leesburg Pike, Ms: Es Falls Church, VA 22041-3803 (703) 358-2171

Offices with jurisdiction over project area

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Documentation of the National Historic Preservation Act Eligibility Determination:

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database showed four buildings near the project area came up in the database.

The four buildings are all listed as part of the form Boston and Maine Railroad Property and include to Shop Complex (BIL.299), Equipment Storage Shed (BIL.300), Maintenance Shop (BIL.301), and Power Plant (BIL.302). These buildings are listed as constructed around 1912 and have been inventories, but not assigned a specific designation. Based on the proximity of these buildings to the discharge areas, the discharge is eligible for coverage under Criterion B: Historic Properties are prese, but discharges and discharge related activities do not have the potential to cause effects on historic properties. Supporting information is included.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Billerica; Place: North Billerica;

Inv. No.	Property Name	Street	Town	Year			
BIL.E	Billerica Mills Historic District		Billerica				
BIL.K	Middlesex Canal		Billerica				
BIL.O	Billerica Mills Historic District		Billerica				
BIL.P	Middlesex Canal Area		Billerica				
BIL.T	Middlesex Canal Historic and Archaeological	Billerica					
BIL.314		95 Boston Post Rd	Billerica	c 1960			
BIL.130	Stearns, Joseph House	179 Boston Rd	Billerica	c 1825			
BIL.131	Stearns, Sarah House	186 Boston Rd	Billerica	c 1848			
BIL.132	Billerica Town Water Supply Pumping Station	250 Boston Rd	Billerica	1898			
BIL.927	Kohlrausch Playground	Colson St	Billerica	1913			
BIL.244		12 Colson St	Billerica				
BIL.256		16 Colson St	Billerica	c 1920			
BIL.243	North Billerica Baptist Church Parsonage	17 Colson St	Billerica	c 1925			
BIL.257		18-20 Colson St	Billerica				
BIL.242		19 Colson St	Billerica	r 1955			
BIL.241	Talbot Woolen Mills Worker Housing	21-23 Colson St	Billerica	c 1888			
BIL.258		22-24 Colson St	Billerica				
BIL.240	Kohlrausch House	25-27 Colson St	Billerica	c 1886			
BIL.239		29 Colson St	Billerica	c 1954			
BIL.259	Kohlrausch House	30 Colson St	Billerica	1901			
BIL.260		32 Colson St	Billerica	1920			
BIL.98	Farmer, Oliver II House	34 Colson St	Billerica	1803			
BIL.261	Colson Barn	36 Colson St	Billerica	c 1803			
BIL.262		40-42 Colson St	Billerica				
BIL.263		44 Colson St	Billerica	c 1915			
BIL.90	McCurdy, John House	Elm St	Billerica	1847			
BIL.96	North Billerica Baptist Church	Elm St	Billerica	1869			
Thursday, N	Thursday, November 16, 2017 Page 1 of						

Inv. No.	Property Name	Street	Town	Year
BIL.99	Wilson, Daniel House	Elm St	Billerica	1848
BIL.92	Canal Block, The	1-7 Elm St	Billerica	c 1835
BIL.95	Dix, Capt. Joel House	2 Elm St	Billerica	1815
BIL.94	Mears Tavern	12 Elm St	Billerica	c 1814
BIL.93	Talbot, C. P. Textile Mill Housing	18 Elm St	Billerica	c 1889
BIL.88	Talbot, C. P. Mill Worker Housing	19-21 Elm St	Billerica	r 1870
BIL.87	Talbot, C. P. Mill Worker Housing	23-25 Elm St	Billerica	r 1870
BIL.251	Talbot Textile Mill Worker Housing	24 Elm St	Billerica	c 1874
BIL.254	Talbot Textile Mills Worker Housing	27-29 Elm St	Billerica	r 1865
BIL.97	Talbot Mill Worker Housing	33-35 Elm St	Billerica	c 1860
BIL.252	Talbot Textile Mill Worker Housing	34-36 Elm St	Billerica	c 1892
BIL.253	Talbot Textile Mill Worker Housing	37 Elm St	Billerica	c 1887
BIL.89	Mixer, John House	596 Elm St	Billerica	1827
BIL.78	Faulkner Kindergarten	Faulkner St	Billerica	1826
BIL.267		Faulkner St	Billerica	c 1930
BIL.317		Faulkner St	Billerica	c 1890
BIL.900	Middlesex Canal Dam and Locks	Faulkner St	Billerica	c 1828
BIL.935	Faulkner Street Bridge over Concord River	Faulkner St	Billerica	1910
BIL.79	Faulkner, James R. House	1 Faulkner St	Billerica	1859
BIL.77	Faulkner, J. R. Mills	71 Faulkner St	Billerica	1840
BIL.299	Boston and Maine Railroad Billerica Shop Complex	High St	Billerica	c 1912
BIL.300	Boston and Maine Railroad Equipment Storage Shed	High St	Billerica	c 1912
BIL.301	Boston and Maine Railroad Maintenance Shop	High St	Billerica	c 1912
BIL.302	Boston and Maine Railroad Power Plant	High St	Billerica	c 1912
BIL.918	High Street Bridge over B & M Railroad	High St	Billerica	r 1915
BIL.292	Barker House	44 High St	Billerica	c 1801
BIL.291	Danforth, Benjamin House	65 High St	Billerica	c 1750
BIL.318		96 High St	Billerica	c 1985
BIL.319		200R High St	Billerica	c 1962
BIL.947	Middlesex Canal Stone Culvert	Holt St	Billerica	c 1802
BIL.278		2-4 Letchworth Ave	Billerica	
BIL.279	Faulkner Manufacturing Company Worker Housing	6-8 Letchworth Ave	Billerica	r 1880
BIL.280	Faulkner Manufacturing Company Worker Housing	10-12 Letchworth Ave	Billerica	r 1880
BIL.946	Middlesex Canal Culvert	Lowell St	Billerica	c 1802
BIL.948	Middlesex Canal - Concord River Sluiceway	Lowell St	Billerica	c 1802
Thursday, No	vember 16, 2017			Page 2 of 5

Inv. No.	Property Name	Street	Town	Year
BIL.949	Middlesex Canal - Red Lock Basin Retaining Wall	Lowell St	Billerica	c 1802
BIL.950	Middlesex Canal - Red Lock Basin	Lowell St	Billerica	c 1802
BIL.86	Talbot, C. P. Mill Worker Housing	1-3 Lowell St	Billerica	r 1870
BIL.264	Talbot Textile Mill Worker Housing	2-4 Lowell St	Billerica	r 1865
BIL.265	Talbot Textile Mill Worker Housing	5-7 Lowell St	Billerica	r 1865
BIL.313	Father Matthew Hall	6 Lowell St	Billerica	1886
BIL.81	Talbot, C. P. Mill Worker Housing	8 Lowell St	Billerica	r 1870
BIL.83	Talbot, C. P. Mill Worker Housing	9-11 Lowell St	Billerica	r 1870
BIL.82	Talbot, C. P. Mill Worker Housing	13-15 Lowell St	Billerica	r 1870
BIL.266		17 Lowell St	Billerica	c 1963
BIL.316	Billerica Fire Station	21 Lowell St	Billerica	c 1950
BIL.268		2-4 Mason Ave	Billerica	c 1925
BIL.277	Faulkner, William E. House	3 Mason Ave	Billerica	c 1826
BIL.269		6-8 Mason Ave	Billerica	
BIL.929	Middlesex Canal	Middlesex Canal	Billerica	c 1802
BIL.951	Middlesex Canal - Guard Lock	Middlesex Canal	Billerica	c 1802
BIL.953	Middlesex Canal Floating Towpath Peninsula	Middlesex Canal	Billerica	c 1802
BIL.954	Middlesex Canal Culvert	Middlesex Canal	Billerica	c 1802
BIL.920	Lowell Railroad Bridge (Milepost #21.72)	Mount Pleasant St	Billerica	1929
BIL.284	Whittemore, James House	16 Mount Pleasant St	Billerica	c 1865
BIL.285	Stott, James House	20 Mount Pleasant St	Billerica	c 1811
BIL.286	Talbot, Joseph Feree House	32 Mount Pleasant St	Billerica	1893
BIL.287	Clark, Frederick S. House	36 Mount Pleasant St	Billerica	c 1874
BIL.288	Rogers, Calvin House	37 Mount Pleasant St	Billerica	c 1860
BIL.290	Gould, Joseph D. House	43 Mount Pleasant St	Billerica	c 1880
BIL.289	Billerica Baptist Church Parsonage	47 Mount Pleasant St	Billerica	c 1870
BIL.80	Talbot Mills	10 Old Elm St	Billerica	1857
BIL.91	Bussey, Isaiah House	22 Old Elm St	Billerica	c 1830
BIL.925	Fordway Bridge	Pollard St	Billerica	1912
BIL.917	Pond Street Bridge over B & M Railroad	Pond St	Billerica	1834
BIL.923	Rangeway Road Bridge over Route 3	Rangeway Rd	Billerica	1953
BIL.274	Talbot Woolen Mills Worker Housing	3-7 Rogers Ct	Billerica	r 1865
BIL.273	Talbot Woolen Mills Worker Housing	4-6 Rogers Ct	Billerica	r 1865
BIL.270		10 Rogers St	Billerica	
BIL.271	Faulkner Manufacturing Company Worker Housing	14-16 Rogers St	Billerica	r 1880
BIL.128	Rogers, William House - Toothaker Tavern	18 Rogers St	Billerica	c 1807

Thursday, November 16, 2017 Page 3 of 5

Inv. No.	Property Name	Street	Town	Year
BIL.272	Salter House	29 Rogers St	Billerica	c 1850
BIL.283		31 Rogers St	Billerica	
BIL.282	Boston and Maine Railroad Depot	Ruggles St	Billerica	
BIL.275		3 Ruggles St	Billerica	c 1852
BIL.281		6 Station St	Billerica	1982
BIL.276		11 Station St	Billerica	r 1880
BIL.231	Saint Andrews Roman Catholic Church	Talbot Ave	Billerica	c 1915
BIL.232	Saint Andrews Roman Catholic Rectory	Talbot Ave	Billerica	c 1915
BIL.233	Talbot School	Talbot Ave	Billerica	1902
BIL.928	Talbot Avenue Oval Park	Talbot Ave	Billerica	1903
BIL.255	Talbot Textile Mills Worker Housing	2-4 Talbot Ave	Billerica	1899
BIL.220	Talbot Woolen Mills Worker Housing	6-8 Talbot Ave	Billerica	1899
BIL.238		7 Talbot Ave	Billerica	c 1970
BIL.221	Talbot Woolen Mills Worker Housing	10-12 Talbot Ave	Billerica	1899
BIL.222	Talbot Woolen Mills Worker Housing	14-16 Talbot Ave	Billerica	1902
BIL.223	Talbot Woolen Mills Worker Housing	18-20 Talbot Ave	Billerica	1902
BIL.237		21 Talbot Ave	Billerica	
BIL.224	Talbot Woolen Mills Worker Housing	22-24 Talbot Ave	Billerica	1899
BIL.236		23 Talbot Ave	Billerica	
BIL.235		25 Talbot Ave	Billerica	
BIL.225	Talbot Woolen Mills Worker Housing	26-28 Talbot Ave	Billerica	1902
BIL.234		29 Talbot Ave	Billerica	
BIL.226	Talbot Woolen Mills Worker Housing	30-32 Talbot Ave	Billerica	1902
BIL.227	Talbot Woolen Mills Worker Housing	34-36 Talbot Ave	Billerica	1899
BIL.228	Talbot Woolen Mills Worker Housing	38-40 Talbot Ave	Billerica	1899
BIL.229		42 Talbot Ave	Billerica	
BIL.230		44 Talbot Ave	Billerica	
BIL.914	Town Farm Lane Bridge over B & M Railroad	Town Farm Ln	Billerica	r 1915
BIL.250		1-3 Wilson St	Billerica	c 1880
BIL.107	Talbot Textile Mill Worker Housing	4-6 Wilson St	Billerica	c 1885
BIL.103	Talbot Textile Mill Worker Housing	5-7 Wilson St	Billerica	r 1870
BIL.108	Talbot Textile Mill Worker Housing	8-10 Wilson St	Billerica	r 1880
BIL.104	Talbot Textile Mill Worker Housing	9-11 Wilson St	Billerica	r 1870
BIL.109	Talbot Textile Mill Worker Housing	12-14 Wilson St	Billerica	r 1880
BIL.105	Talbot Textile Mill Worker Housing	13-15 Wilson St	Billerica	r 1870
BIL.119	Talbot Textile Mill Worker Housing	15-25 Wilson St	Billerica	c 1865
BIL.110	North Billerica Market	16-18 Wilson St	Billerica	c 1885
BIL.106	Talbot Textile Mill Worker Housing	17-19 Wilson St	Billerica	r 1870
Thursday, No	vember 16, 2017			Page 4 of 5

Inv. No.	Property Name	Street	Town	Year
BIL.111	Talbot Textile Mills Worker Housing	20-22 Wilson St	Billerica	c 1890
BIL.247		21-23 Wilson St	Billerica	c 1860
BIL.112	Talbot Textile Mills Worker Housing	24-26 Wilson St	Billerica	c 1870
BIL.246		25-27 Wilson St	Billerica	c 1860
BIL.113	Talbot Textile Mills Worker Housing	28-28 1/2 Wilson St	Billerica	
BIL.102	Talbot Textile Mill Worker Housing	29-31 Wilson St	Billerica	r 1870
BIL.214		30-32 Wilson St	Billerica	r 1890
BIL.101	Talbot Textile Mill Worker Housing	33-35 Wilson St	Billerica	r 1870
BIL.114	Gannon, Lawrence B. House	34 Wilson St	Billerica	c 1880
BIL.215		38-40 Wilson St	Billerica	c 1860
BIL.219	Talbot Woolen Mills Worker Housing	41-43 Wilson St	Billerica	c 1875
BIL.118	Salter, Joseph House	42 Wilson St	Billerica	1846
BIL.120	Talbot Textile Mill Worker Housing	44-46 Wilson St	Billerica	c 1865
BIL.218	Talbot Woolen Mills Worker Housing	45-47 Wilson St	Billerica	1885
BIL.121	Talbot Textile Mill Worker Housing	48-50 Wilson St	Billerica	c 1865
BIL.217	Talbot Woolen Mills Worker Housing	49-51 Wilson St	Billerica	1885
BIL.122	Talbot Textile Mill Worker Housing	52-54 Wilson St	Billerica	c 1868
BIL.216	Talbot Woolen Mills Worker Housing	53-55 Wilson St	Billerica	c 1892
BIL.123	Talbot Textile Mills Worker Housing	56-58 Wilson St	Billerica	r 1860
BIL.124	Talbot Textile Mills Worker Housing	60-62 Wilson St	Billerica	r 1860
BIL.125	Mill Worker Housing	64-66 Wilson St	Billerica	r 1860
BIL.126	Talbot Textile Mills Worker Housing	68-78 Wilson St	Billerica	r 1885
BIL.127	Talbot Textile Mills Worker Housing	80-90 Wilson St	Billerica	c 1890

Thursday, November 16, 2017 Page 5 of 5

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No:

Historic Name: Boston and Maine Railroad Billerica Shop Complex

Common Name: Boston and Maine Systems Office Building

Address: High St

City/Town: Billerica Village/Neighborhood: North Billerica

Local No: 780 Year Constructed: C 1912

Architect(s):

Architectural Style(s): No style

Use(s): **Business Office**

Significance: Architecture; Transportation

Area(s):

Designation(s):

Wall: Brick; Steel; Stone, Cut **Building Material(s):** Foundation: Concrete Unspecified

New Search

Previous

MHC Home

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

BIL.300 **Inventory No:**

Historic Name: Boston and Maine Railroad Equipment Storage Shed

Common Name:

Address: High St

City/Town: Billerica Village/Neighborhood: North Billerica

Local No: 781 Year Constructed: C 1912

Architect(s):

Architectural Style(s): Not researched Use(s): Warehouse

Significance: Architecture; Transportation

Area(s):

Designation(s):

Roof: Metal, Undetermined **Building Material(s):**

Wall: Concrete Unspecified; Wood; Metal, Undetermined

New Search

Previous

MHC Home

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No:

Historic Name: Boston and Maine Railroad Maintenance Shop

Common Name:

Address: High St

City/Town: Billerica

Village/Neighborhood: North Billerica

Local No: 782

Year Constructed: C 1912

Architect(s): Johnson, Dwight P. and Company

Architectural Style(s): Not researched

Blacksmith Shop; Business Office; Other Transportation Use(s):

Significance: Architecture; Industry; Transportation

Area(s):

Designation(s):

Building Material(s): Wall: Brick; Wood

New Search

Previous

MHC Home

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No:

Historic Name: Boston and Maine Railroad Power Plant

Common Name:

Address: High St

City/Town: Billerica Village/Neighborhood: North Billerica

Local No: 783 Year Constructed: C 1912

Architect(s):

Architectural Style(s): Not researched Use(s): Power House

Significance: Architecture; Engineering; Transportation

Area(s):

Designation(s):

Building Material(s): Wall: Brick; Metal, Undetermined

New Search

Previous

MHC Home

Dilution Factor	1.0				Compliance Level	
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	11	μg/L	50	μg/L
Total Suspended Solids	30	mg/L		10		10
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	10	μg/L		
Cadmium	10.2	μg/L μg/L	0.1629	μg/L μg/L		
Chromium III	323	μg/L μg/L	49.2	μg/L μg/L		
Chromium VI	323		11.4			
Copper	242	μg/L	5.2	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead		μg/L	1.33	μg/L		
	160	μg/L		μg/L		
Mercury	0.739	μg/L	0.91	μg/L		
Nickel	1450	μg/L	29.2	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	1.2	μg/L		
Zinc	420	μg/L	67.0	μg/L		
Cyanide	178	mg/L	5.2	μg/L		μg/L
B. Non-Halogenated VOCs	100	/T				
Total BTEX Benzene	100 5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	300	$\mu g/L$		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	μg/L	1.6	μg/L		
1,2 Dichlorobenzene1,3 Dichlorobenzene	600 320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	$\mu g/L$				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride 1,1,1 Trichloroethane	4.6 200	μg/L μg/L				
1,1,2 Trichloroethane	5.0	μg/L μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	3.3	$\mu g/L$		
cis-1,2 Dichloroethylene	70	$\mu g/L$				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic		, -				
Aromatic Hydrocarbons	1.0	$\mu g/L$				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(a)pyrene Benzo(b)fluoranthene	1.0 1.0	μg/L	0.0038 0.0038	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L μg/L	0.0038	μg/L μg/L		μg/L μg/L
Chrysene	1.0	μg/L	0.0038	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	$\mu g/L$	0.0038	$\mu g/L$		$\mu g/L$
Total Group II Polycyclic	400	_				
Aromatic Hydrocarbons	100	μg/L				
Naphthalene E. Halogenated SVOCs	20	μg/L				
Total Polychlorinated Biphenyls	0.000064	~			2.5	~
	0.000064	μg/L			0.5	μg/L
Pentachlorophenol F. Fuels Parameters	1.0	μg/L				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	$\mu g/L$		
tert-Butyl Alcohol	120	$\mu g/L$				
tert-Amyl Methyl Ether	90	μg/L				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Lars Andresen CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760

RE: Iron Horse Park - RGP (1559)

ESS Laboratory Work Order Number: 1709632

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED**

By ESS Laboratory at 4:24 pm, Sep 29, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1709632

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

SAMPLE RECEIPT

The following samples were received on September 21, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1709632-01	CDW-G1	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, 9040,
			ASTM D3695
1709632-02	CDW-B1	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, 9040,
			ASTM D3695
1709632-03	SW-OF1	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, 9040,
			ASTM D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

PROJECT NARRATIVE

608 Polychlorinated Biphenyls (PCB)

CI72203-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Aroclor 1016 (37% @ 20%), Aroclor 1016 [2C] (34% @ 20%), Aroclor 1260 (34% @ 20%), Aroclor

1260 [2C] (32% @ 20%)

625(SIM) Semi-Volatile Organic Compounds

C7I0424-CCV1 <u>Calibration required quadratic regression (Q).</u>

Pentachlorophenol (96% @ 80-120%)

C7I0424-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

2,4,6-Tribromophenol (58% @ 20%), Diethylphthalate (59% @ 20%), Di-n-octylphthalate (24% @ 20%)

CI72605-BLK2 <u>Continuing Calibration %Diff/Drift is above control limit (CD+).</u>

2,4,6-Tribromophenol (44% @ 20%)

CI72605-BS2 Blank Spike recovery is above upper control limit (B+).

2,4,6-Tribromophenol (138% @ 15-110%)

CI72605-BSD2 Blank Spike recovery is above upper control limit (B+).

2,4,6-Tribromophenol (159% @ 15-110%)

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

C7I0436-TUN1 **<u>DDT breakdown > 20%</u>**

CI72649-BSD1 Blank Spike recovery is above upper control limit (B+).

1,4-Dioxane (157% @ 40-140%)

CI72649-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

1,4-Dioxane (23% @ 20%)

Classical Chemistry

1709632-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1709632-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1709632-03 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (20.0)		200.7		1	KJK	09/27/17 5:01	100	20	CI72503
Arsenic	22.9 (5.0)		3113B		5	KJK	09/28/17 19:34	100	20	CI72503
Cadmium	ND (0.05)		3113B		1	KJK	09/27/17 18:05	100	20	CI72503
Chromium	ND (4.0)		200.7		1	KJK	09/27/17 5:01	100	20	CI72503
Copper	ND (4.0)		200.7		1	KJK	09/27/17 5:01	100	20	CI72503
Iron	6540 (20.0)		200.7		1	KJK	09/27/17 5:01	100	20	CI72503
Lead	ND (1.0)		3113B		1	KJK	09/28/17 4:32	100	20	CI72503
Mercury	ND (0.20)		245.1		1	MJV	09/25/17 21:18	20	40	CI72533
Nickel	ND (10.0)		200.7		1	KJK	09/28/17 16:49	100	20	CI72503
Selenium	ND (2.0)		3113B		1	KJK	09/28/17 11:31	100	20	CI72503
Silver	ND (2.0)		200.7		1	KJK	09/27/17 5:01	100	20	CI72503
Zinc	49.4 (10.0)		200.7		1	KJK	09/27/17 16:26	100	20	CI72503

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Me	hod <u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (20.0)	200	1.7	1	KJK	09/27/17 4:40	100	20	CI72503
Arsenic	24.2 (5.0)	311	3B	5	KJK	09/28/17 18:31	100	20	CI72503
Cadmium	ND (0.05)	311	3B	1	KJK	09/27/17 16:27	100	20	CI72503
Chromium	ND (4.0)	200	1.7	1	KJK	09/27/17 4:40	100	20	CI72503
Chromium III	ND (10.0)	200).7	1	JLK	09/27/17 4:40	1	1	[CALC]
Copper	ND (4.0)	200).7	1	KJK	09/27/17 4:40	100	20	CI72503
Hardness	50400 (165)	200).7	1	KJK	09/27/17 4:40	1	1	[CALC]
Iron	6580 (20.0)	200).7	1	KJK	09/27/17 4:40	100	20	CI72503
Lead	ND (1.0)	311	3B	1	KJK	09/28/17 1:35	100	20	CI72503
Mercury	ND (0.200)	245	.1	1	MJV	09/25/17 21:25	20	40	CI72533
Nickel	ND (10.0)	200).7	1	KJK	09/28/17 16:15	100	20	CI72503
Selenium	ND (2.0)	311	3B	1	KJK	09/28/17 10:45	100	20	CI72503
Silver	ND (1.0)	200).7	1	KJK	09/27/17 4:40	100	20	CI72503
Zinc	46.5 (10.0)	200).7	1	KJK	09/27/17 16:05	100	20	CI72503

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
1,1-Dichloroethane	2.1 (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
1,1-Dichloroethene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
1,2-Dichloroethane	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Acetone	ND (5.0)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Benzene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Carbon Tetrachloride	ND (0.3)		524.2		1	09/25/17 18:06	C7I0403	CI72545
cis-1,2-Dichloroethene	1.5 (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Ethylbenzene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Methylene Chloride	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Naphthalene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Tetrachloroethene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Toluene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Trichloroethene	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Vinyl Chloride	ND (0.2)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Xylene O	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545
Xylene P,M	ND (0.5)		524.2		1	09/25/17 18:06	C7I0403	CI72545

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 97 % 80-1.

 Surrogate: 1,2-Dichlorobenzene-d4
 97 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 101 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 9/22/17 11:17

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND(0.09)		608		1	09/22/17 23:53		CI72203
Aroclor 1221	ND (0.09)		608		1	09/22/17 23:53		CI72203
Aroclor 1232	ND (0.09)		608		1	09/22/17 23:53		CI72203
Aroclor 1242	ND (0.09)		608		1	09/22/17 23:53		CI72203
Aroclor 1248	ND (0.09)		608		1	09/22/17 23:53		CI72203
Aroclor 1254	ND (0.09)		608		1	09/22/17 23:53		CI72203
Aroclor 1260	ND (0.09)		608		1	09/22/17 23:53		CI72203
Aroclor 1262	ND (0.09)		608		1	09/22/17 23:53		CI72203
Aroclor 1268	ND (0.09)		608		1	09/22/17 23:53		CI72203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		81 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		89 %		30-150				
Surrogate: Tetrachloro-m-xylene		78 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		79 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/26/17 14:07

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Acenaphthylene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Anthracene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Benzo(a)anthracene	ND (0.05)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Benzo(a)pyrene	ND (0.05)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
bis(2-Ethylhexyl)phthalate	ND (0.93)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Chrysene	ND (0.05)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Diethylphthalate	ND (2.34)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Dimethylphthalate	ND (2.34)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Fluoranthene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Fluorene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Naphthalene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Pentachlorophenol	ND (0.84)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Phenanthrene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605
Pyrene	ND (0.19)		625 SIM		1	09/27/17 2:37	C7I0424	CI72605

	Miccovery	Qualifici	LIIIICS
Surrogate: 1,2-Dichlorobenzene-d4	47 %		30-130
Surrogate: 2,4,6-Tribromophenol	106 %		15-110
Surrogate: 2-Fluorobiphenyl	59 %		30-130
Surrogate: Nitrobenzene-d5	74 %		30-130
Surrogate: p-Terphenyl-d14	84 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/26/17 21:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.819 (0.250)	MDL	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 09/27/17 17:08	Sequence C7I0436	Batch CI72649
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		19 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.36 (0.10)	MDL Method 1 350.1	Limit DF	Analyst EEM	Analyzed 09/26/17 15:10	Units mg/L	Batch CI72553
Chloride	79.8 (50.0)	300.0	100	EEM (09/27/17 15:53	mg/L	CI72720
Hexavalent Chromium	ND (10.0)	3500Cr B-2009	1	JLK (09/21/17 22:48	ug/L	CI72135
pН	6.08 (N/A)	9040	1	JLK (09/21/17 23:30	S.U.	CI72154
pH Sample Temp	Aqueous pH measure	d in water at 14.2 °C. (N/A)					
Phenols	ND (100)	420.1	1	JLK (09/26/17 18:55	ug/L	CI72628
Total Cyanide (LL)	ND (5.00)	4500 CN CE	1	JLK (09/26/17 16:54	ug/L	CI72627
Total Petroleum Hydrocarbon	ND (5)	1664A	1	LAB	09/26/17 14:00	mg/L	CI72221
Total Residual Chlorine	ND (20.0)	4500Cl D	1	JLK (09/21/17 23:06	ug/L	CI72152
Total Suspended Solids	ND (5)	2540D	1	JLK (09/26/17 21:02	mg/L	CI72629

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 9/26/17 12:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1.2-Dibromoethane	Results (MRL) ND (0.015)	MDL	Method 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/27/17 0:07	Sequence	Batch CI72622
1,2-Diotomochiane					1	03/27/17 0.07		
	9	%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		108 %		30-150				
Surrogate: Pentachloroethane [2C]		117 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-G1 Date Sampled: 09/21/17 11:10

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/28/17 9:04

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/28/17 11:44C172805

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A

9/21/17 14:05 N/A ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (20.0)		200.7		1	KJK	09/27/17 5:17	100	20	CI72503
Arsenic	20.7 (5.0)		3113B		5	KJK	09/28/17 19:51	100	20	CI72503
Cadmium	ND (0.05)		3113B		1	KJK	09/27/17 18:11	100	20	CI72503
Chromium	ND (4.0)		200.7		1	KJK	09/27/17 5:17	100	20	CI72503
Copper	ND (4.0)		200.7		1	KJK	09/27/17 5:17	100	20	CI72503
Iron	1770 (20.0)		200.7		1	KJK	09/27/17 5:17	100	20	CI72503
Lead	ND (1.0)		3113B		1	KJK	09/28/17 4:38	100	20	CI72503
Mercury	ND (0.20)		245.1		1	MJV	09/25/17 21:20	20	40	CI72533
Nickel	ND (10.0)		200.7		1	KJK	09/28/17 16:53	100	20	CI72503
Selenium	ND (2.0)		3113B		1	KJK	09/28/17 11:37	100	20	CI72503
Silver	ND (2.0)		200.7		1	KJK	09/27/17 5:17	100	20	CI72503
Zinc	35.8 (10.0)		200.7		1	KJK	09/27/17 16:30	100	20	CI72503

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (20.0)		200.7		1	KJK	09/27/17 4:44	100	20	CI72503
Arsenic	21.7 (5.0)		3113B		5	KJK	09/28/17 18:49	100	20	CI72503
Cadmium	ND (0.05)		3113B		1	KJK	09/27/17 16:34	100	20	CI72503
Chromium	ND (4.0)		200.7		1	KJK	09/27/17 4:44	100	20	CI72503
Chromium III	ND (10.0)		200.7		1	JLK	09/27/17 4:44	1	1	[CALC]
Copper	ND (4.0)		200.7		1	KJK	09/27/17 4:44	100	20	CI72503
Hardness	76400 (165)		200.7		1	KJK	09/27/17 4:44	1	1	[CALC]
Iron	1890 (20.0)		200.7		1	KJK	09/27/17 4:44	100	20	CI72503
Lead	ND (1.0)		3113B		1	KJK	09/28/17 1:52	100	20	CI72503
Mercury	ND (0.200)		245.1		1	MJV	09/25/17 21:28	20	40	CI72533
Nickel	ND (10.0)		200.7		1	KJK	09/28/17 16:20	100	20	CI72503
Selenium	ND (2.0)		3113B		1	KJK	09/28/17 10:51	100	20	CI72503
Silver	ND (1.0)		200.7		1	KJK	09/27/17 4:44	100	20	CI72503
Zinc	21.5 (10.0)		200.7		1	KJK	09/27/17 16:09	100	20	CI72503

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

Surrogate: 1,2-Dichlorobenzene-d4

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL Method L	<u>imit</u> <u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	46.6 (5.0)	524.2	10	09/26/17 13:32	C7I0403	CI72545
1,1,2-Trichloroethane	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
1,1-Dichloroethane	37.0 (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
1,1-Dichloroethene	3.4 (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
1,2-Dichlorobenzene	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
1,2-Dichloroethane	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
1,3-Dichlorobenzene	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
1,4-Dichlorobenzene	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Acetone	ND (5.0)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Benzene	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Carbon Tetrachloride	ND (0.3)	524.2	1	09/25/17 18:41	C7I0403	CI72545
cis-1,2-Dichloroethene	69.8 (5.0)	524.2	10	09/26/17 13:32	C7I0403	CI72545
Ethylbenzene	2.2 (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Methyl tert-Butyl Ether	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Methylene Chloride	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Naphthalene	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Tertiary-amyl methyl ether	ND (1.0)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Tertiary-butyl Alcohol	ND (25.0)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Tetrachloroethene	11.3 (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Toluene	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Trichloroethene	13.1 (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Vinyl Chloride	6.2 (0.2)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Xylene O	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545
Xylene P,M	ND (0.5)	524.2	1	09/25/17 18:41	C7I0403	CI72545

%Recovery Qualifier Limits

Surrogate: 4-Bromofluorobenzene 99 % 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

80-120

http://www.ESSLaboratory.com

94 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 9/22/17 11:17

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/23/17 0:12		CI72203
Aroclor 1221	ND (0.09)		608		1	09/23/17 0:12		CI72203
Aroclor 1232	ND (0.09)		608		1	09/23/17 0:12		CI72203
Aroclor 1242	ND (0.09)		608		1	09/23/17 0:12		CI72203
Aroclor 1248	ND (0.09)		608		1	09/23/17 0:12		CI72203
Aroclor 1254	ND (0.09)		608		1	09/23/17 0:12		CI72203
Aroclor 1260	ND (0.09)		608		1	09/23/17 0:12		CI72203
Aroclor 1262	ND (0.09)		608		1	09/23/17 0:12		CI72203
Aroclor 1268	ND (0.09)		608		1	09/23/17 0:12		CI72203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		76 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		83 %		30-150				
Surrogate: Tetrachloro-m-xylene		60 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		71 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/26/17 14:07

625(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) ND (0.19)	<u>MDL</u>	Method 625 SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/27/17 3:25	Sequence C7I0424	Batch CI72605
Acenaphthylene	ND (0.19)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Anthracene	ND (0.19)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Benzo(a)anthracene	ND (0.05)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Benzo(a)pyrene	ND (0.05)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
bis(2-Ethylhexyl)phthalate	ND (0.93)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Chrysene	ND (0.05)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Diethylphthalate	ND (2.34)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Dimethylphthalate	ND (2.34)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Fluoranthene	ND (0.19)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Fluorene	ND (0.19)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Naphthalene	ND (0.19)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Pentachlorophenol	ND (0.84)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Phenanthrene	ND (0.19)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605
Pyrene	ND (0.19)		625 SIM		1	09/27/17 3:25	C7I0424	CI72605

	70Kecovery	Quaimei	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	51 %		30-130
Surrogate: 2,4,6-Tribromophenol	105 %		15-110
Surrogate: 2-Fluorobiphenyl	65 %		30-130
Surrogate: Nitrobenzene-d5	66 %		30-130
Surrogate: p-Terphenyl-d14	82 %		30-130

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/26/17 21:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 3.74 (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/27/17 17:43	Sequence C7I0436	Batch CI72649
	9/	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		<i>35 %</i>		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>Units</u>	Batch
Ammonia as N	0.29 (0.10)	350.1		1	EEM	09/26/17 15:23	mg/L	CI72553
Chloride	56.2 (50.0)	300.0		100	EEM	09/27/17 16:09	mg/L	CI72720
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	09/21/17 22:48	ug/L	CI72135
pН	6.42 (N/A)	9040		1	JLK	09/21/17 23:30	S.U.	CI72154
pH Sample Temp	Aqueous pH measured	I in water at 13.4 °C. (N/A)						
Phenols	ND (100)	420.1		1	JLK	09/26/17 18:55	ug/L	CI72628
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	JLK	09/26/17 16:54	ug/L	CI72627
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/27/17 13:49	mg/L	CI72624
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	09/21/17 23:06	ug/L	CI72152
Total Suspended Solids	5 (5)	2540D		1	JLK	09/26/17 21:02	mg/L	CI72629

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 9/26/17 12:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	<u>Results (MRL)</u> ND (0.015)	<u>MDL</u>	<u>Method</u> 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 09/27/17 0:32	Sequence	<u>Batch</u> CI72622
	9/	6Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		112 %		30-150				
Surrogate: Pentachloroethane [2C]		111 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: CDW-B1 Date Sampled: 09/21/17 14:05

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-02

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/28/17 9:04

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/28/17 12:29C172805

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (20.0)		200.7		1	KJK	09/27/17 5:22	100	20	CI72503
Arsenic	ND (1.0)		3113B		1	KJK	09/28/17 19:56	100	20	CI72503
Cadmium	0.07 (0.05)		3113B		1	KJK	09/27/17 18:17	100	20	CI72503
Chromium	ND (4.0)		200.7		1	KJK	09/27/17 5:22	100	20	CI72503
Copper	ND (4.0)		200.7		1	KJK	09/27/17 5:22	100	20	CI72503
Iron	303 (20.0)		200.7		1	KJK	09/27/17 5:22	100	20	CI72503
Lead	ND (1.0)		3113B		1	KJK	09/28/17 5:07	100	20	CI72503
Mercury	ND (0.20)		245.1		1	MJV	09/25/17 21:23	20	40	CI72533
Nickel	ND (10.0)		200.7		1	KJK	09/28/17 16:57	100	20	CI72503
Selenium	ND (2.0)		3113B		1	KJK	09/28/17 11:42	100	20	CI72503
Silver	ND (2.0)		200.7		1	KJK	09/27/17 5:22	100	20	CI72503
Zinc	17.0 (10.0)		200.7		1	KJK	09/27/17 17:50	100	20	CI72503

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (20.0)		200.7		1	KJK	09/27/17 4:48	100	20	CI72503
Arsenic	2.4 (1.0)		3113B		1	KJK	09/28/17 18:54	100	20	CI72503
Cadmium	0.68 (0.25)		3113B		5	KJK	09/27/17 17:14	100	20	CI72503
Chromium	ND (4.0)		200.7		1	KJK	09/27/17 4:48	100	20	CI72503
Chromium III	ND (10.0)		200.7		1	JLK	09/27/17 4:48	1	1	[CALC]
Copper	49.2 (4.0)		200.7		1	KJK	09/27/17 4:48	100	20	CI72503
Hardness	91100 (165)		200.7		1	KJK	09/27/17 4:48	1	1	[CALC]
Iron	4900 (20.0)		200.7		1	KJK	09/27/17 4:48	100	20	CI72503
Lead	129 (4.0)		200.7		1	KJK	09/27/17 16:13	100	20	CI72503
Mercury	ND (0.200)		245.1		1	MJV	09/25/17 21:30	20	40	CI72533
Nickel	ND (10.0)		200.7		1	KJK	09/28/17 16:36	100	20	CI72503
Selenium	ND (2.0)		3113B		1	KJK	09/28/17 10:57	100	20	CI72503
Silver	ND (1.0)		200.7		1	KJK	09/27/17 4:48	100	20	CI72503
Zinc	109 (10.0)		200.7		1	KJK	09/27/17 16:13	100	20	CI72503

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

Surrogate: 1,2-Dichlorobenzene-d4

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

1,1,1-Trichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C710403 C172545 1,1,2-Trichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C710403 C172545 1,1-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C710403 C172545 1,1-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C710403 C172545 1,2-Dichlorobenzene ND (0.5) 524.2 1 09/25/17 19:15 C710403 C172545 1,2-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C710403 C172545 1,2-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C710403 C172545	Analyte	Results (MRL)	MDL Method	<u>Limit</u> <u>DF</u>	Analyzed	Sequence	Batch
1,1-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545 1,1-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545 1,2-Dichlorobenzene ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545 1,2-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545	1,1,1-Trichloroethane		524.2	· · · · · · · · · · · · · · · · · · ·	09/25/17 19:15		CI72545
1,1-Dichloroethene ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545 1,2-Dichlorobenzene ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545 1,2-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545 1,2-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545	1,1,2-Trichloroethane	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
1,2-Dichlorobenzene ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545 1,2-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545	1,1-Dichloroethane	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
1,2-Dichloroethane ND (0.5) 524.2 1 09/25/17 19:15 C7I0403 CI72545	1,1-Dichloroethene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
,	1,2-Dichlorobenzene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
40.00	1,2-Dichloroethane	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
1,5-Dichlorobenzene ND (0.5) 524.2 I 09/25/17 19:15 C710403 C172545	1,3-Dichlorobenzene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
1,4-Dichlorobenzene ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	1,4-Dichlorobenzene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Acetone ND (5.0) 524.2 1 09/25/17 19:15 C710403 CI72545	Acetone	ND (5.0)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Benzene ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Benzene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Carbon Tetrachloride ND (0.3) 524.2 1 09/25/17 19:15 C710403 CI72545	Carbon Tetrachloride	ND (0.3)	524.2	1	09/25/17 19:15	C7I0403	CI72545
cis-1,2-Dichloroethene ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	cis-1,2-Dichloroethene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Ethylbenzene ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Ethylbenzene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Methyl tert-Butyl Ether ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Methyl tert-Butyl Ether	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Methylene Chloride ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Methylene Chloride	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Naphthalene ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Naphthalene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Tertiary-amyl methyl ether ND (1.0) 524.2 1 09/25/17 19:15 C710403 CI72545	Tertiary-amyl methyl ether	ND (1.0)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Tertiary-butyl Alcohol ND (25.0) 524.2 1 09/25/17 19:15 C710403 CI72545	Tertiary-butyl Alcohol	ND (25.0)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Tetrachloroethene ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Tetrachloroethene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Toluene ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Toluene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Trichloroethene ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Trichloroethene	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Vinyl Chloride ND (0.2) 524.2 1 09/25/17 19:15 C710403 CI72545	Vinyl Chloride	ND (0.2)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Xylene O ND (0.5) 524.2 1 09/25/17 19:15 C710403 C172545	Xylene O	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545
Xylene P,M ND (0.5) 524.2 1 09/25/17 19:15 C710403 CI72545	Xylene P,M	ND (0.5)	524.2	1	09/25/17 19:15	C7I0403	CI72545

%Recovery Qualifier Limits

Surrogate: 4-Bromofluorobenzene 103 % 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

80-120

http://www.ESSLaboratory.com

98 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 9/22/17 11:17

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	09/23/17 0:31		CI72203
Aroclor 1221	ND (0.09)		608		1	09/23/17 0:31		CI72203
Aroclor 1232	ND (0.09)		608		1	09/23/17 0:31		CI72203
Aroclor 1242	ND (0.09)		608		1	09/23/17 0:31		CI72203
Aroclor 1248	ND (0.09)		608		1	09/23/17 0:31		CI72203
Aroclor 1254	ND (0.09)		608		1	09/23/17 0:31		CI72203
Aroclor 1260	ND (0.09)		608		1	09/23/17 0:31		CI72203
Aroclor 1262	ND (0.09)		608		1	09/23/17 0:31		CI72203
Aroclor 1268	ND (0.09)		608		1	09/23/17 0:31		CI72203
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		75 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		69 %		30-150				
Surrogate: Tetrachloro-m-xylene		61 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		46 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/26/17 14:07

625(SIM) Semi-Volatile Organic Compounds

Analyte		MDL_	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Acenaphthylene	ND (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Anthracene	ND (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Benzo(a)anthracene	0.28 (0.05)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Benzo(a)pyrene	0.30 (0.05)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Benzo(b)fluoranthene	0.51 (0.05)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Benzo(g,h,i)perylene	0.25 (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Benzo(k)fluoranthene	0.18 (0.05)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
bis(2-Ethylhexyl)phthalate	ND (0.93)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Butylbenzylphthalate	ND (2.34)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Chrysene	0.36 (0.05)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Dibenzo(a,h)Anthracene	0.07 (0.05)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Diethylphthalate	ND (2.34)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Dimethylphthalate	ND (2.34)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Di-n-butylphthalate	ND (2.34)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Di-n-octylphthalate	ND (2.34)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Fluoranthene	0.64 (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Fluorene	ND (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Indeno(1,2,3-cd)Pyrene	0.30 (0.05)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Naphthalene	ND (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Pentachlorophenol	ND (0.84)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Phenanthrene	0.20 (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605
Pyrene	0.54 (0.19)		625 SIM		1	09/27/17 4:13	C7I0424	CI72605

	MECOVERY	Quaimei	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	54 %		30-130
Surrogate: 2,4,6-Tribromophenol	104 %		15-110
Surrogate: 2-Fluorobiphenyl	66 %		30-130
Surrogate: Nitrobenzene-d5	78 %		30-130
Surrogate: p-Terphenyl-d14	82 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/26/17 21:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	MDL	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 09/27/17 18:18	Sequence C7I0436	Batch CI72649
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		41 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.23 (0.10)	MDL	Method 350.1	<u>Limit</u>	<u>DF</u>	Analyst EEM	Analyzed 09/26/17 15:24	Units mg/L	Batch CI72553
Chloride	236 (50.0)		300.0		100	EEM	09/27/17 16:25	mg/L	CI72720
Hexavalent Chromium	ND (10.0)		3500Cr B-2009		1	JLK	09/21/17 22:48	ug/L	CI72135
рН	6.48 (N/A)		9040		1	JLK	09/21/17 23:30	S.U.	CI72154
pH Sample Temp	Aqueous pH measured	l in water a	nt 14.9 °C. (N/A)						
Phenols	ND (100)		420.1		1	JLK	09/26/17 18:55	ug/L	CI72628
Total Cyanide (LL)	ND (5.00)		4500 CN CE		1	JLK	09/26/17 16:54	ug/L	CI72627
Total Petroleum Hydrocarbon	ND (5)		1664A		1	LAB	09/27/17 13:49	mg/L	CI72624
Total Residual Chlorine	ND (20.0)		4500Cl D		1	JLK	09/21/17 23:06	ug/L	CI72152
Total Suspended Solids	42 (5)		2540D		1	JLK	09/26/17 21:02	mg/L	CI72629

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 9/26/17 12:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	<u>Method</u> 504.1	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 09/27/17 0:57	<u>Sequence</u>	Batch CI72622
	90	6Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		112 %		30-150				
Surrogate: Pentachloroethane [2C]		119 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Client Sample ID: SW-OF1 Date Sampled: 09/21/17 14:45

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1709632 ESS Laboratory Sample ID: 1709632-03

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/28/17 9:04

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/28/17 13:15CI72805

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

				Cuili-	Co		0/ DEC		DDD	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Allalyte	Result				NESUIL	FOREC	LIIIIIG	עלט	LIIIIL	Qualifier
		[Dissolved Mo	etals						
Batch CI72503 - 3005A/200.7										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium	ND	4.0	ug/L							
Copper	ND	4.0	ug/L							
Iron	ND	20.0	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	10.0	ug/L							
Selenium	ND	2.0	ug/L							
Silver	ND	2.0	ug/L							
Zinc	ND	10.0	ug/L							
LCS										
Antimony	101	10.0	ug/L	100.0		101	85-115			
Arsenic	89.1	25.0	ug/L	100.0		89	85-115			
Cadmium	46.1	25.0	ug/L	50.00		92	80-120			
Chromium	92.1	4.0	ug/L	100.0		92	80-120			
Copper	93.2	4.0	ug/L	100.0		93	80-120			
Iron	438	20.0	ug/L	500.0		88	80-120			
Lead	106	25.0	ug/L	100.0		106	80-120			
Nickel	98.7	10.0	ug/L	100.0		99	85-115			
Selenium	200	50.0	ug/L	200.0		100	80-120			
Silver	46.5	2.0	ug/L	50.00		93	85-115			
Zinc	96.7	10.0	ug/L	100.0		97	85-115			
LCS Dup										
Arsenic	99.7	25.0	ug/L	100.0		100	85-115	11	20	
Batch CI72533 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
LCS				· ·	· ·				· ·	
Mercury	6.24	0.20	ug/L	6.000		104	85-115			
LCS Dup										
Mercury	6.28	0.20	ug/L	6.000		105	85-115	0.7	20	
			Total Meta	als						
Batch CI72135 - [CALC]										
Blank Chromium III	ND	10.0	11 m							
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND	10.0	ug/L							
LCS Dup										
Chromium III	ND	10.0	ug/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

Quality Control Data

Batch CI72503 - 3005A/200.7										
			Total Meta	als						
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier

Blank							
Antimony	ND	10.0	ug/L				
Arsenic	ND	1.0	ug/L				
Cadmium	ND	0.05	ug/L				
Chromium	ND	4.0	ug/L				
Chromium III	ND	4.00	ug/L				
Copper	ND	2.0	ug/L				
Hardness	ND	165	ug/L				
Iron	ND	20.0	ug/L				
Lead	ND	1.0	ug/L				
Lead	ND	4.0	ug/L				
Nickel	ND	10.0	ug/L				
Selenium	ND	2.0	ug/L				
Silver	ND	1.0	ug/L				
Zinc	ND	10.0	ug/L				
LCS							
Antimony	101	10.0	ug/L	100.0	101	85-115	
Arsenic	89.1	25.0	ug/L	100.0	89	85-115	
Cadmium	46.1	25.0	ug/L	50.00	92	85-115	
Chromium	92.1	4.0	ug/L	100.0	92	85-115	
Chromium III	92.1	4.00	ug/L				
Copper	93.2	2.0	ug/L	100.0	93	85-115	
Hardness	6050	165	ug/L				
Iron	438	20.0	ug/L	500.0	88	85-115	
Lead	95.0	4.0	ug/L	100.0	95	85-115	
Lead	106	25.0	ug/L	100.0	106	85-115	
Nickel	98.7	10.0	ug/L	100.0	99	85-115	
Selenium	200	50.0	ug/L	200.0	100	85-115	
Silver	46.5	1.0	ug/L	50.00	93	85-115	
Zinc	96.7	10.0	ug/L	100.0	97	85-115	
LCS Dup							
Chromium III	97.2	4.00	ug/L				
Hardness	6420	165	ug/L				
Batch CI72533 - 245.1/7470A							
Blank							
Mercury	ND	0.200	ug/L				
LCS							
Mercury	6.24	0.200	ug/L	6.000	104	85-115	
LCC Dum							

Batch CI72533 - 245.1/7470A									
Blank									
Mercury	ND	0.200	ug/L						
LCS									
Mercury	6.24	0.200	ug/L	6.000	104	85-115			
LCS Dup									
Mercury	6.28	0.200	ug/L	6.000	105	85-115	0.7	20	

524.2 Volatile Organic Compounds

Batch CI72545 - 524.2

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Batch CI72545 - 524.2

ESS Laboratory Work Order: 1709632

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile Organic Cor	npounds
----------------------------	---------

Batch C1/2545 - 524.2							
Blank							
1,1,1-Trichloroethane	ND	0.5	ug/L				
1,1,2-Trichloroethane	ND	0.5	ug/L				
1,1-Dichloroethane	ND	0.5	ug/L				
1,1-Dichloroethene	ND	0.5	ug/L				
1,2-Dichlorobenzene	ND	0.5	ug/L				
1,2-Dichloroethane	ND	0.5	ug/L				
1,3-Dichlorobenzene	ND	0.5	ug/L				
1,4-Dichlorobenzene	ND	0.5	ug/L				
Acetone	ND	5.0	ug/L				
Benzene	ND	0.5	ug/L				
Carbon Tetrachloride	ND	0.3	ug/L				
cis-1,2-Dichloroethene	ND	0.5	ug/L				
Ethylbenzene	ND	0.5	ug/L				
Methyl tert-Butyl Ether	ND	0.5	ug/L				
Methylene Chloride	ND	0.5	ug/L				
Naphthalene	ND	0.5	ug/L				
Tertiary-amyl methyl ether	ND	1.0	ug/L				
Tertiary-butyl Alcohol	ND	25.0	ug/L				
Tetrachloroethene	ND	0.5	ug/L				
Toluene	ND	0.5	ug/L				
Trichloroethene	ND	0.5	ug/L				
Vinyl Chloride	ND	0.2	ug/L				
Xylene O	ND	0.5	ug/L				
Xylene P,M	ND	0.5	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	4.99		ug/L	5.000	100	80-120	
Surrogate: 4-Bromofluorobenzene	5.22		ug/L	5.000	104	80-120	
LCS							
1,1,1-Trichloroethane	8.7		ug/L	10.00	87	70-130	
1,1,2-Trichloroethane	9.9		ug/L	10.00	99	70-130	
1,1-Dichloroethane	9.7		ug/L	10.00	97	70-130	
1,1-Dichloroethene	10.1		ug/L	10.00	101	70-130	
1,2-Dichlorobenzene	9.2		ug/L	10.00	92	70-130	
1,2-Dichloroethane	9.0		ug/L	10.00	90	70-130	
1,3-Dichlorobenzene	9.2		ug/L	10.00	92	70-130	
1,4-Dichlorobenzene	9.3		ug/L	10.00	93	70-130	
Acetone	40.4		ug/L	50.00	81	70-130	
Benzene	9.5		ug/L	10.00	95	70-130	
Carbon Tetrachloride	8.6		ug/L	10.00	86	70-130	
cis-1,2-Dichloroethene	9.5		ug/L	10.00	95	70-130	
Ethylbenzene	9.1		ug/L	10.00	91	70-130	
Methyl tert-Butyl Ether	9.0		ug/L	10.00	90	70-130	
Methylene Chloride	10.0		ug/L	10.00	100	70-130	
Naphthalene	9.5		ug/L	10.00	95	70-130	
Tertiary-amyl methyl ether	9.5		ug/L	10.00	95	70-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		524.2 Vol	atile Organi	c Compoi	ınds					

	522	i.2 volatile Organic	compounds	i				
Batch CI72545 - 524.2								
Tertiary-butyl Alcohol	51.3	ug/L	50.00	103	70-130			
Tetrachloroethene	9.1	ug/L	10.00	91	70-130			
Toluene	9.0	ug/L	10.00	90	70-130			
Trichloroethene	9.5	ug/L	10.00	95	70-130			
Vinyl Chloride	9.2	ug/L	10.00	92	70-130			
Xylene O	9.2	ug/L	10.00	92	70-130			
Xylene P,M	18.1	ug/L	20.00	90	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	4.76	ug/L	5.000	95	80-120			
Surrogate: 4-Bromofluorobenzene	4.91	ug/L	5.000	98	80-120			
LCS Dup								
1,1,1-Trichloroethane	8.3	ug/L	10.00	83	70-130	4	20	
1,1,2-Trichloroethane	9.5	ug/L	10.00	95	70-130	5	20	
1,1-Dichloroethane	9.5	ug/L	10.00	95	70-130	2	20	
1,1-Dichloroethene	9.9	ug/L	10.00	99	70-130	2	20	
1,2-Dichlorobenzene	9.1	ug/L	10.00	91	70-130	0.9	20	
1,2-Dichloroethane	8.9	ug/L	10.00	89	70-130	2	20	
1,3-Dichlorobenzene	9.1	ug/L	10.00	91	70-130	0.7	20	
1,4-Dichlorobenzene	9.1	ug/L	10.00	91	70-130	2	20	
Acetone	41.3	ug/L	50.00	83	70-130	2	20	
Benzene	9.5	ug/L	10.00	95	70-130	0.6	20	
Carbon Tetrachloride	8.4	ug/L	10.00	84	70-130	3	20	
cis-1,2-Dichloroethene	9.4	ug/L	10.00	94	70-130	1	20	
Ethylbenzene	9.0	ug/L	10.00	90	70-130	2	20	
Methyl tert-Butyl Ether	9.2	ug/L	10.00	92	70-130	2	20	
Methylene Chloride	9.7	ug/L	10.00	97	70-130	3	20	
Naphthalene	9.1	ug/L	10.00	91	70-130	5	20	
Tertiary-amyl methyl ether	9.4	ug/L	10.00	94	70-130	1	20	
Tertiary-butyl Alcohol	49.1	ug/L	50.00	98	70-130	4	25	
Tetrachloroethene	8.9	ug/L	10.00	89	70-130	2	20	
Toluene	9.1	ug/L	10.00	91	70-130	0.8	20	
Trichloroethene	9.3	ug/L	10.00	93	70-130	3	20	
Vinyl Chloride	8.6	ug/L	10.00	86	70-130	6	20	
Xylene O	9.0	ug/L	10.00	90	70-130	3	20	
Xylene P,M	17.9	ug/L	20.00	89	70-130	0.9	20	
Surrogate: 1,2-Dichlorobenzene-d4	4.90	ug/L	5.000	98	80-120			
Surrogate: 4-Bromofluorobenzene	4.94	ug/L	5.000	99	80-120			

608 Polychlorinated Biphenyls (PCB)

Batch CI72203 - 351	10C				
Blank					
Aroclor 1016	ND	0.10	ug/L		
Aroclor 1016 [2C]	ND	0.10	ug/L		
Aroclor 1221	ND	0.10	ug/L		
Aroclor 1221 [2C]	ND	0.10	ug/L		
Aroclor 1232	ND	0.10	ug/L		
	185 Frances Avenue, Cranston, RI	02910-2211	Tel: 401-461-7181	Fax: 401-461-4486	http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		608 Polych	lorinated E	Biphenyls (PCB)					
Batch CI72203 - 3510C										
Aroclor 1232 [2C]	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1242 [2C]	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
roclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0469		ug/L	0.05000		94	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0469		ug/L	0.05000		94	30-150			
Surrogate: Tetrachloro-m-xylene	0.0309		ug/L	0.05000		62	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0344		ug/L	0.05000		69	30-150			
.cs										
Aroclor 1016	0.68	0.10	ug/L	1.000		68	40-140			
Aroclor 1016 [2C]	0.70	0.10	ug/L	1.000		70	40-140			
Aroclor 1260	0.71	0.10	ug/L	1.000		71	40-140			
Aroclor 1260 [2C]	0.69	0.10	ug/L	1.000		69	40-140			
	0.05	0.10					10 110			
Surrogate: Decachlorobiphenyl	0.0415		ug/L	0.05000		83	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0415		ug/L	0.05000		83	30-150			
Surrogate: Tetrachloro-m-xylene	0.0288		ug/L	0.05000		58	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0288		ug/L	0.05000		58	30-150			
.CS Dup										
roclor 1016	0.98	0.10	ug/L	1.000		98	40-140	37	20	D+
Aroclor 1016 [2C]	0.98	0.10	ug/L	1.000		98	40-140	34	20	D+
Aroclor 1260	1.01	0.10	ug/L	1.000		101	40-140	34	20	D+
Aroclor 1260 [2C]	0.96	0.10	ug/L	1.000		96	40-140	32	20	D+
Surrogate: Decachlorobiphenyl	0.0527		ug/L	0.05000		105	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0501		ug/L	0.05000		100	30-150			
	0.0393		ug/L	0.05000		<i>79</i>	30-150			
Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C]	0.0382		ug/L	0.05000		76	30-150			
umogate. Tetrachioro-in-xylene [2C]		25(SIM) Sem			npounds					
		-								
Batch CI72605 - 3510C										
Slank Negraphthone	ND	0.20	,/I							
Acenaphthene	ND	0.20	ug/L							
Acenaphthylene	ND	0.20	ug/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Batch CI72605 - 3510C

ESS Laboratory Work Order: 1709632

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM)) Semi-Volatile	Organic	Compound	S
----------	-----------------	---------	----------	---

Benzo(a)anthracene	ND	0.05	ug/L				
Benzo(a)pyrene	ND	0.05	ug/L				
Benzo(b)fluoranthene	ND	0.05	ug/L				
Benzo(g,h,i)perylene	ND	0.20	ug/L				
Benzo(k)fluoranthene	ND	0.05	ug/L				
bis(2-Ethylhexyl)phthalate	ND	2.50	ug/L				
Butylbenzylphthalate	ND	2.50	ug/L				
Chrysene	ND	0.05	ug/L				
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	ND	2.50	ug/L				
Fluoranthene	ND	0.20	ug/L				
Fluorene	ND	0.20	ug/L				
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
Naphthalene	ND	0.03					
Pentachlorophenol	ND ND	0.20	ug/L				
			ug/L				
Phenanthrene	ND	0.20	ug/L				
Pyrene	ND	0.20	ug/L	2.522		20.420	
Surrogate: 1,2-Dichlorobenzene-d4	1.69		ug/L	2.500	68	30-130	60 :
Surrogate: 2,4,6-Tribromophenol	5.42		ug/L	3.750	144	15-110	CD+
Surrogate: 2-Fluorobiphenyl	2.00		ug/L	2.500	80	30-130	
Surrogate: Nitrobenzene-d5	2.62		ug/L	2.500	105	30-130	
Surrogate: p-Terphenyl-d14	2.55		ug/L	2.500	102	30-130	
LCS							
Acenaphthene	2.91	0.20	ug/L	4.000	73	40-140	
Acenaphthylene	3.08	0.20	ug/L	4.000	77	40-140	
Anthracene	3.12	0.20	ug/L	4.000	78	40-140	
Benzo(a)anthracene	2.94	0.05	ug/L	4.000	73	40-140	
Benzo(a)pyrene	3.28	0.05	ug/L	4.000	82	40-140	
Benzo(b)fluoranthene	3.46	0.05	ug/L	4.000	87	40-140	
Benzo(g,h,i)perylene	3.51	0.20	ug/L	4.000	88	40-140	
Benzo(k)fluoranthene	3.20	0.05	ug/L	4.000	80	40-140	
bis(2-Ethylhexyl)phthalate	3.70	2.50	ug/L	4.000	93	40-140	
Butylbenzylphthalate	3.79	2.50	ug/L	4.000	95	40-140	
Chrysene	2.97	0.05	ug/L	4.000	74	40-140	
Dibenzo(a,h)Anthracene	3.68	0.05	ug/L	4.000	92	40-140	
Diethylphthalate	3.84	2.50	ug/L	4.000	96	40-140	
Dimethylphthalate	3.37	2.50	ug/L	4.000	84	40-140	
Di-n-butylphthalate	4.77	2.50	ug/L	4.000	119	40-140	
Di-n-octylphthalate	3.96	2.50	ug/L	4.000	99	40-140	
Fluoranthene	3.19	0.20	ug/L	4.000	80	40-140	
Fluorene	3.04	0.20	ug/L	4.000	76	40-140	
Indeno(1,2,3-cd)Pyrene	3.78	0.05	ug/L	4.000	94	40-140	
			· 31 —				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

Quality Control Data

l				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	62	25(SIM) Sem	i-Volatile O	rganic Co	mpounds					
Batch CI72605 - 3510C										
Naphthalene	2.47	0.20	ug/L	4.000		62	40-140			
Pentachlorophenol	3.60	0.90	ug/L	4.000		90	30-130			
Phenanthrene	3.12	0.20	ug/L	4.000		78	40-140			
Pyrene	2.91	0.20	ug/L	4.000		73	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	1.74		ug/L	2.500		69	30-130			
Surrogate: 2,4,6-Tribromophenol	5.16		ug/L	3.750		138	15-110			B+
Surrogate: 2-Fluorobiphenyl	2.07		ug/L	2.500		83	30-130			
Surrogate: Nitrobenzene-d5	2.37		ug/L	2.500		95	30-130			
Surrogate: p-Terphenyl-d14	2.45		ug/L	2.500		98	30-130			
.CS Dup										
cenaphthene	3.29	0.20	ug/L	4.000		82	40-140	12	20	
cenaphthylene	3.46	0.20	ug/L	4.000		86	40-140	12	20	
nthracene	3.57	0.20	ug/L	4.000		89	40-140	13	20	
enzo(a)anthracene	3.35	0.05	ug/L	4.000		84	40-140	13	20	
enzo(a)pyrene	3.68	0.05	ug/L	4.000		92	40-140	11	20	
enzo(b)fluoranthene	4.01	0.05	ug/L	4.000		100	40-140	15	20	
lenzo(g,h,i)perylene	3.87	0.20	ug/L	4.000		97	40-140	10	20	
enzo(k)fluoranthene	3.44	0.05	ug/L	4.000		86	40-140	7	20	
is(2-Ethylhexyl)phthalate	4.19	2.50	ug/L	4.000		105	40-140	12	20	
Sutylbenzylphthalate	4.30	2.50	ug/L	4.000		107	40-140	13	20	
Chrysene	3.44	0.05	ug/L	4.000		86	40-140	14	20	
Dibenzo(a,h)Anthracene	4.04	0.05	ug/L	4.000		101	40-140	9	20	
Diethylphthalate	4.29	2.50	ug/L	4.000		107	40-140	11	20	
Dimethylphthalate	3.82	2.50	ug/L	4.000		95	40-140	13	20	
oi-n-butylphthalate	5.19	2.50	ug/L	4.000		130	40-140	8	20	
oi-n-octylphthalate	4.43	2.50	ug/L	4.000		111	40-140	11	20	
luoranthene	3.57	0.20	ug/L	4.000		89	40-140	11	20	
luorene	3.45	0.20	ug/L	4.000		86	40-140	13	20	
ndeno(1,2,3-cd)Pyrene	4.10	0.05	ug/L	4.000		103	40-140	8	20	
laphthalene	2.83	0.20	ug/L	4.000		71	40-140	13	20	
entachlorophenol	3.89	0.90	ug/L	4.000		97	30-130	8	20	
henanthrene	3.49	0.20	ug/L	4.000		87	40-140	11	20	
yrene	3.33	0.20	ug/L	4.000		83	40-140	13	20	
Surrogate: 1,2-Dichlorobenzene-d4	1.67		ug/L	2.500		67	30-130			
urrogate: 2,4,6-Tribromophenol	5.96		ug/L	3.750		159	15-110			B+
- · · · · · · · · · · · · · · · · · · ·										

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

ug/L

ug/L

2.500

2.500

2.500

Batch CI72649 - 3535A						
Blank						
1,4-Dioxane	ND	0.250	ug/L			
Surrogate: 1,4-Dioxane-d8	3.14		ug/L	5.000	63	15-115
LCS						

185 Frances Avenue, Cranston, RI 02910-2211

Surrogate: 2-Fluorobiphenyl

Surrogate: Nitrobenzene-d5

Surrogate: p-Terphenyl-d14

2.03

2.38

2.46

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486

◆ Service

http://www.ESSLaboratory.com

30-130

30-130

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8270D(SIM) S	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Dilutio	on			
Batch CI72649 - 3535A										
1,4-Dioxane	12.5	0.250	ug/L	10.00		125	40-140			
Surrogate: 1,4-Dioxane-d8	2.25		ug/L	5.000		45	15-115			
LCS Dup										
1,4-Dioxane	15.7	0.250	ug/L	10.00		157	40-140	23	20	B+, D+
Surrogate: 1,4-Dioxane-d8	2.24		ug/L	5.000		45	15-115			
		Cl	assical Che	mistry						
Batch CI72135 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	493	10.0	ug/L	499.8		99	90-110			
LCS Dup										
Hexavalent Chromium	491	10.0	ug/L	499.8		98	90-110	0.3	20	
Batch CI72152 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.80		mg/L	1.800		100	85-115			
Batch CI72221 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		71	66-114			
Batch CI72553 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.10	0.10	mg/L	0.09994		104	80-120			
LCS										
Ammonia as N	0.95	0.10	mg/L	0.9994		95	80-120			
Batch CI72624 - NH4 Prep										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		74	66-114			
Batch CI72627 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		Cla	assical Che	mistry						
Batch CI72627 - TCN Prep										
Total Cyanide (LL)	20.1	5.00	ug/L	20.06		100	90-110			
LCS										
Total Cyanide (LL)	150	5.00	ug/L	150.4		100	90-110			
LCS Dup										
Fotal Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110	0.7	20	
Batch CI72628 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	92	100	ug/L	100.0		92	80-120			
LCS										
Phenols	1010	100	ug/L	1000		101	80-120			
Batch CI72629 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	34		mg/L	34.10		100	80-120			
Batch CI72720 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.4		mg/L	2.500		97	90-110			
	504.1 1,2	2-Dibromoeth	ane / 1,2-I	Dibromo-3	-chloropr	opane				
Batch CI72622 - 504/8011										
Blank										
1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
	0.166		ua/I	0.2000		83	30-150			
Surrogate: Pentachloroethane	0.174		ug/L ug/L	0.2000		87	<i>30-150</i>			
Surrogato: Pentachloroethane [20]	'		-3/-							
· · · · · · · · · · · · · · · · · · ·				0.00000		124	70-130			
LCS	0.099	0.015	ua/l				. 5 150			
1,2-Dibromoethane	0.099 0.090	0.015 0.015	ug/L ug/L	0.08000 0.08000		112	70-130			
LCS 1,2-Dibromoethane							70-130			
LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C]	0.090 0.0886		ug/L ug/L	0.08000		112	30-150			
LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	0.090		ug/L	0.08000		112				
LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	0.090 0.0886 0.0920	0.015	ug/L ug/L ug/L	0.08000 0.08000 0.08000		112 111 115	30-150 30-150			
LCS 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	0.090 0.0886 0.0920 0.217	0.015	ug/L ug/L ug/L ug/L	0.08000 0.08000 0.08000 0.2000		112 111 115	30-150 30-150 70-130			
LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	0.090 0.0886 0.0920	0.015	ug/L ug/L ug/L	0.08000 0.08000 0.08000		112 111 115	30-150 30-150			

Page 85 of 91

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS Laboratory Work Order: 1709632

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	504.1 1,2	:-Dibromoet	hane / 1,2-l	Dibromo-3	3-chloropi	ropane				
Batch CI72622 - 504/8011										
Surrogate: Pentachloroethane [2C]	0.225		ug/L	0.2000		112	30-150			
		Alco	hol Scan by	/ GC/FID						
Batch CI72805 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
ıcs										
Ethanol	1030	10	mg/L	1007		103	60-140			
LCS Dup										
Ethanol	1090	10	ma/L	1007		108	60-140	6	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

Calculated Analyte

Reporting Limit

Estimated Detection Limit

Subcontracted analysis; see attached report

[CALC] SUB

RL

EDL

ESS Laboratory Work Order: 1709632

Notes and Definitions

	Notes and Definitions
Z16b	Aqueous pH measured in water at 14.9 °C.
Z16a	Aqueous pH measured in water at 14.2 °C.
Z16	Aqueous pH measured in water at 13.4 °C.
U	Analyte included in the analysis, but not detected
Q	Calibration required quadratic regression (Q).
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual
	Chlorine is fifteen minutes.
DDT	DDT breakdown > 20%
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
B+	Blank Spike recovery is above upper control limit (B+).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation Detection Limit
DL I/V	Initial Volume
F/V	Final Volume
Ş	Subcontracted analysis; see attached report
î	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1709632

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Iron Horse Park - RGP

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

ESS Laboratory Sample and Cooler Receipt Checklist

Client:CDW Consultants, Inc TB/ML	ESS Project ID: 1709632 Date Received: 9/21/2017	
Shipped/Delivered Via:ESS Courier	Project Due Date: 9/28/2017 Days for Project: 5 Day	<u> </u>
Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	Yes / No / NA
Temp: 2.4 Iced with: Ice 5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No
5. Was does signed and calculate of strain.		
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	Were VOAs received? Air bubbles in aqueous VOAs? Does methanol cover soil completely?	Yes / No Yes / No / NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Yes Yes No Date: Date:	Time: By:	<u> </u>
Sample Receiving Notes:		
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:		

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Reco	Record pH (Cyanide and 608 Pesticides)						
01	166285	Yes	No	Yes	VOA Vial - HCI	HCI								
01	166286	Yes	No	Yes	VOA Vial - HCI	HCI								
01	166287	Yes	No	Yes	VOA Vial - HCI	HCI								
01	166288	Yes	No	Yes	VOA Vial - Unpres	NP								
01	166289	Yes	No	Yes	VOA Vial - HCI	HCI								
01	166290	Yes	No	Yes	VOA Vial - HCl	HCI								
01	166291	Yes	No	Yes	VOA Vial - HCI	HCI								
01	166296	Yes	NA	Yes	1L Amber - H2SO4	H2SO4								
01	166297	Yes	NA	Yes	1L Amber - H2SO4	H2SO4								
01	166310	Yes	NA	Yes	1L Amber - Unpres	NP								
01	166311	Yes	NA	Yes	1L Amber - Unpres	NP								
01	166312	Yes	NΑ	Yes	1L Amber - Unpres	NP								
01	166313	Yes	NA	Yes	1L Amber - Unpres	NP								
01	166314	Yes	NA	Yes	1L Amber - Unpres	NP								
01	166315	Yes	NA	Yes	1L Amber - Unpres	NP								
01	166318	Yes	NA	Yes	1L Poly - Unpres	NP								
01	166321	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4								
01	166324	Yes	NA	Yes	250 mL Poly - Unpres	NP								
01	166331	Yes	NA	Yes	500 mL Poly - HNO3	HNO3								
01	166332	Yes	NA	Yes	500 mL Poly - HNO3	HNO3								
01	166333	Yes	NA	Yes	500 mL Poly - HNO3	HNO3								
01	166336	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	SI< 49	233 5217	4					
02	166278	Yes	No	Yes	VOA Vial - HCI	HCI	•	, , ,						
02	166279	Yes	No	Yes	VOA Vial - HCI	HCI								

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	CDV	V Consultar	nts, Inc TB	/ML	ESS Pr	170963							
					Date R	eceived:	9/21/20	9/21/2017					
02	166280	Yes	No	Yes	VOA Vial - HCI	HCI							
02	166281	Yes	No	Yes	VOA Vial - Unpres	NP							
02	166282	Yes	Yes	Yes	VOA Vial - HCI	HCI							
02	166283	Yes	Yes	Yes	VOA Vial - HCI	HCI							
02	166284	Yes	No	Yes	VOA Vial - HCl	HCI							
02	166294	Yes	NA	Yes	1L Amber - H2SO4	H2SO4							
02	166295	Yes	NA	Yes	1L Amber - H2SO4	H2SO4							
02	166304	Yes	NA	Yes	1L Amber - Unpres	NP							
02	166305	Yes	NA	Yes	1L Amber - Unpres	NP							
02	166306	Yes	NA	Yes	1L Amber - Unpres	NP							
02	166307	Yes	NA	Yes	1L Amber - Unpres	NP							
02	166308	Yes	NA	Yes	1L Amber - Unpres	NP							
02	166309	Yes	NA	Yes	1L Amber - Unpres	NP							
02	166317	Yes	NA	Yes	1L Poly - Unpres	NP							
02	166320	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4							
02	166323	Yes	NA	Yes	250 mL Poly - Unpres	NP							
02	166328	Yes	NA	Yes	500 mL Poly - HNO3	HNO3							
02	166329	Yes	NA	Yes	500 mL Poly - HNO3	HNO3							
02	166330	Yes	NA	Yes	500 mL Poly - HNO3	HNO3							
02	166335	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	SIC 49	2233	9/21/17	ac			
03	166271	Yes	Yes	Yes	VOA Vial - HCI	HCI			,				
03	166272	Yes	No	Yes	VOA Vial - HCI	HCI							
03	166273	Yes	No	Yes	VOA Vial - HCI	HCI							
03	166274	Yes	No	Yes	VOA Vial - Unpres	NP							
03	166275	Yes	No	Yes	VOA Vial - HCI	HCI							
03	166276	Yes	Yes	Yes	VOA Vial - HCI	HCI							
03	166277	Yes	Yes	Yes	VOA Vial - HCI	HCI							
03	166292	Yes	NA	Yes	1L Amber - H2SO4	H2SO4							
03	166293	Yes	NA	Yes	1L Amber - H2SO4	H2SO4							
03	166298	Yes	NA	Yes	1L Amber - Unpres	NP							
03	166299	Yes	NA	Yes	1L Amber - Unpres	NP							
03	166300	Yes	NA	Yes	1L Amber - Unpres	NP							
03	166301	Yes	NA	Yes	1L Amber - Unpres	NP							
03	166302	Yes	NA	Yes	1L Amber - Unpres	NP							
03	166303	Yes	NA	Yes	1L Amber - Unpres	NP							
03	166316	Yes	NA	Yes	1L Poly - Unpres	NP							
03	166319	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4							
03	166322	Yes	NA	Yes	250 mL Poly - Unpres	NP							
03	166325	Yes	NA	Yes	500 mL Poly - HNO3	HNO3							
03	166326	Yes	NA	Yes	500 mL Poly - HNO3	HNO3							
03	166327	Yes	NA	Yes	500 mL Poly - HNO3	HNO3			1. 1				
03	166334	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	DH >15	29.33	5/21/17	ec			

2nd Review
Are barcode labels on correct containers?

Completed
By:
Reviewed
By:
Delivered
By:
Delivered
By:

ESS L	.aborator	V ·		(CHAIN OF (วเมระก	NDV	Essia			1.										
Division of Thielsch Engineen::g, Inc.				Turn Time	5-Day		————	ESS La				100	<u>م</u> ا 1ُ	<u>32</u>							
		ranston RI 029	110	Regulatory State		Rush	<u> </u>	Report		110	DE	7	R	12P							
Tel. (401) 461-7181 Fax (401) 461-4486				Is this project for any of the following?:				ESS Lab # 1709 632 Reporting Limits NPDES RGP Electonic Quinit Checker Distandard Excel													
	aboratory.com		·	OCT RCP ØMA MCP ØRGP					Deliverables ☐Other (Please Specify →)												
CDV	Consulta Rif	mpany Name		155 Project #	Iron Horse	Project N	lame					T			7	T		П	\neg	T_{-}	\Box
La	OSWA CI	ntact Person		6 Huron C) (ive Addre			<u>.s</u>							=	;				2	
City				State		de	PO#	Analysis						D'OXANE	1	1 0	-			, T-	7
				N	01760°					۵		بجار	Netal)	بخ	625	0	52H	5	\supset	10 J	욁
20	Felephone Nu	7657	FAX	Number	Landlehn	Email Add	Conjultants, Con		186	9,	ي الح	1664 1664	<	3	مات	M i	10	2	~	취호	
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix	200000000		mple ID	J		َ إِنْ	Chanide Ammabis	HOT	1		취홍	PCS	MUC	Shy nol	Haraness	<u>S</u>	10 A
1	9/81/17	11:10	GW	AQ	CDW-6	Γ -			$ \gamma $	1	<u> </u>	14-	1	<u>~ ~</u>	, 1	y	$\sqcup \downarrow$		-1	귀루	20-
		14:05		170	 	<u> </u>			`	\	<u> </u>	1	Ľ	2 7	<u>, 3</u>	2	3	Ш	4	110	1
2			 	 } -	CDW-B1			 ·	(1		\perp'		2 3	2	2	3	1	1	1 1	$ \cdot _{\infty}$
3	<u> </u>	19:45	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	SW-OF	<u>,</u>				1 1	· {	1	1	2 3	2	2	3	7	T	11	1
											†-				+	1		\dashv	+	+	+-
										-+	+	+		- -	+-	╁┵	\dashv	\dashv			┼
						 ·		_	-		-	+			4		-		_		\downarrow
	 .			 		<u> </u>					_							_		_	
								ı						İ	1						
											T				1		\neg	\top	+	+	+
L						 ,	·			+	+-	-		-	+-		\dashv	\dashv	+	+	+
-						:	_			+	+-				4	$\vdash \vdash$	\rightarrow	\dashv	-	—	\perp
Col	ntainer Type:	AC-Air Casset	I Ite AG-Amber Glas	S R-ROD Bottle	C-Cubitainer G - 6	Glass O-C	When D.D.I. G.O.			<u>, , </u>	\perp_{λ}		,		'				\bot		
Conta	iner Volume:	1-100 mL 2	-2.5 gal 3-250 mL				Other P-Poly S-Steri z 9-4 oz 10-8 oz		_		11	A6		AC AC		A6 /	<u> 161</u>	16 1	2 A	16 P	
Preser	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M		B-ZnAce, Nat	OH 9-NH4CI 10-DI H2O	11-Other*	0	$\frac{3}{1} \frac{3}{5}$		6	7	6 7		6		+ 1		3	
							er of Containers per S			<u> </u>	<u> 3</u>	13	4	<u>) 3</u>	+	1	Ø	<u>'</u>	4 3	3 4	↓
		Laporator	y Use Only	Sampled by :	Paul Bo		diripie.	<u>i</u>		<u> </u>	1 1						Щ-			1_	
Cooler	Present:	\mathcal{A}			Comments:	19(4) 100	Please spe	cify "Other	r" pre	serva	five a	nd co	ntain	ore tw	oe in	thic					
· Seals	Intact:	NA			Occi	11 14	ىرى كارىد	P. 11.		00.14		ilia co	iivaiii	ers tyl)es III	uns	space	e			
Cooler Te	emperature:	\sim	°C		0:370	vey no	etall = field	- Litte	LG9												
A Re	linquished by:	(Signature, Da	te & Time)	Received By: (Signature, Date &	Time)	Relinquished By:	(Signature	Dafa	&i Tim	W D	1 -		ceive	t Bur (Ciana		Doto	0 7%		
few 1	Parlare	9/21/1	7		व्याधिष	100	(3-10-10-1	10	75 "	70	7	1/6	SCEIVE	1 Dy. (-igna	iture,	Date	GC HIN	пе)		
		(Signature, Da		Received Russ	ne 1/21/17 then, 9/h, /n								<i>ڪ</i> اچ								
		, 3		rycceived/by. (orginature, Date &	rine)	Relinquished By:	(Signature _c	ate	&/Tim	e)		Re	eceive	1 By: (Signa	iture,	Date	& Tin	ne)	
	 -																				