

August 13, 2018

USEPA NPDES Program RGP NOI Processing 5 Post Office Square, Suite 100 Boston, Massachusetts 02109 - 3912

RE: Notice of Intent
NPDES Remediation General Permit
HEEC Land Cable Project
Deer Island, Massachusetts
Lightship Project. No. 500.98.12

To Whom It May Concern:

On behalf of Harbor Electric Energy Company, a wholly owned subsidiary of NSTAR Electric Company d/b/a Eversource Energy ("HEEC"), Lightship Engineering, LLC ("Lightship Engineering") has prepared this Notice of Intent ("NOI") for coverage under the National Pollutant Discharge Elimination System ("NPDES") Remediation General Permit ("RGP") for Massachusetts and New Hampshire, dated April 2017 (the "NPDES RGP"). The completed NOI form is provided at Attachment A. This NOI is associated with proposed construction dewatering activities at Deer Island, Massachusetts. A Site Locus Map is provided at Figure 1, Attachment B.

Background and Regulatory Information

HEEC is currently installing a new electric cable to service the Massachusetts Water Resources Authority ("MWRA") Deer Island Wastewater Treatment Plant. This new cable will replace the existing cable currently servicing Deer Island. The new cable route begins at the K Street substation in South Boston where the existing groundwater treatment system is located. The cable crosses eastward through Massachusetts Port Authority ("Massport") Conley Terminal, enters Boston Harbor at the east end of Conley Terminal, and crosses Boston Harbor eventually making landfall at Deer Island. This electric line will be the primary electric supply line to Deer Island. This electric cable facilitates the operations of the Deer Island plant to remove human, household, business, and industrial pollutants from wastewater that originates in homes and businesses in 43 greater Boston communities. It is the second largest treatment plant in the United States. The new electric line includes the installation of one manhole on Deer Island that will likely require dewatering for approximately one to two months. To meet the aggressive project schedule required by state and federal agencies, the Deer Island portion of this work (including manhole installation) needs to commence in September 2018.

USEPA August 13, 2018 Page 2 of 5

A release of oil and/or hazardous materials ("OHM") occurred at the Site as a result of the historic operations a military base and wastewater treatment plant that is the subject of the Commonwealth of Massachusetts Department of Environmental Protection ("MassDEP") Release Tracking Number ("RTN") 3-1283. The historic releases of OHM that occurred at the Site, included petroleum related compounds, volatile organic compounds, polynuclear aromatic compounds and select metals. Response actions reportedly resulted in a level of No Significant Risk as defined by the Massachusetts Contingency Plan ("MCP"), 310 CMR 40.0000, with the implementation of an Activity and Use Limitation ("AUL") to restrict the Site to non-residential use that prohibits the cultivation of crops for consumptive purposes.

Construction Details

Based on information provided by HEEC, a transition manhole will be installed on Deer Island at the location indicated on Figure 2, Attachment B. The transition manhole is where the submarine cable connects to the land portion of the new electric line. Installation of the transition manhole and subsequent conduit installation (submarine and land portion) will require dewatering to support construction activities. Construction groundwater dewatering and stormwater will be collected and treated with an on-Site wastewater treatment system and discharged to Boston Harbor via one or more catch basins at the locations indicated on Figure 2, Attachment B.

Owner and Operator Information

HEEC is the owner of the proposed electrical conduit, the MWRA operates the Site and Clean Harbors Environmental Services ("CHES") will operate the wastewater treatment system, with compliance sampling and reporting conducted by Lightship Engineering. Contact information for all parties is set forth below.

HEEC - Owner of Proposed Electrical Conduit

HEEC

247 Station Drive, SE 2122 Westwood, Massachusetts 02090 Contact: Matthew Waldrip

781-441-8247

Matthew. Waldrip@Eversource.com

USEPA August 13, 2018 Page 3 of 5

MWRA - Site Operator

Massachusetts Water Resources Authority 190 Tafts Avenue Winthrop, Massachusetts 02152 Contact: Richard Adams Manager, Engineering Services 617-242-6000 Richard.Adams@MWRA.com

CHES - Wastewater Treatment System Operator

Clean Harbors Environmental Services 609 Pleasant Street Weymouth, Massachusetts 02189 Contact: Robert Paul Field Service Specialist 781-803-4100 PaulB@CleanHarbors.com

Lightship Engineering – Compliance Sampling and Reporting

Lightship Engineering, LLC 39 Industrial Park Road, Unit C Plymouth, Massachusetts 02360 Contact: Kevin Paradise Senior Project Manager 617-594-5094 KParadise@LightshipEngineering.com

Receiving Water Quality

On August 1, 2018, Lightship Engineering collected a surface water sample (LE-SW-1) from the receiving water body (Boston Harbor) at the location indicated on Figure 2, Attachment B. Consistent with the NPDES RGP, the receiving water sample (LE-SW-1) was collected and submitted to a Commonwealth of Massachusetts certified analytical laboratory for salinity, ammonia and select total metals analyses. The results of the receiving water sampling are set forth in Table 1, Attachment C and a copy of the laboratory analytical data package is provided at Attachment D. In addition, the surface water was field screened for pH (7.95 S.U.) and temperature (21.6 degrees Celsius).

USEPA August 13, 2018 Page 4 of 5

Source Water Information

As set forth above, source water will be a combination of construction groundwater dewatering and stormwater. On May 2, 2018, Lightship Engineering advanced soil boring LE-SB8 at the location of the proposed transition manhole at the location indicated on Figure 2, Attachment B. The soil boring was advanced to approximately 20 feet below grade using direct push drilling Methodology consistent with MassDEP's *Standard References for Monitoring Wells* ("Standard References"). Prior to advancing the soil borings, the soil boring was precleared up to five feet below grade with an air-knife and vacuum truck.

Soil boring LE-SB8 was completed as temporary groundwater monitoring well LE-TMW6 with 10 feet of 0.010-inch slot screen PVC set to bisect the groundwater table, consistent with Standard References. Prior to sampling, five well volumes of groundwater were purged from the temporary groundwater monitoring well using the low flow purging methodology, consistent with Standard References. A groundwater sample was collected from the temporary groundwater monitoring well LE-TMW6 and submitted to a Commonwealth of Massachusetts certified analytical laboratory for analytical parameters consistent with the NPDES RGP. Consistent with Standard References, the groundwater samples collected for volatile organic compounds analysis was collected with a dedicated, disposable polyethylene bailer. The source water results were compared to the NPDES RGP effluent limitations, the results are set forth in Table 1, Attachment C. A copy of the laboratory analytical data package is provided at Attachment D.

Discharge and Treatment System Information

Construction dewatering activities are expected to commence in September 2018 and last approximately one to two months. Based on discussions with HEEC, Lightship Engineering anticipates treatment and discharge at up to 200 gallons per minute ("gpm"). The treated water will be discharged to one or more catch basins at the locations indicated on Figure 2, Attachment B. Lightship Engineering provided CHES with the results of the source water sampling set forth above. CHES specified a wastewater treatment system designed to meet the effluent limits set forth in the NPDES RGP. The proposed wastewater treatment system designed by CHES is provided at Attachment E.

Endangered Species Act Eligibility

Lightship Engineering reviewed the United States Fish and Wildlife Service ("FWS") Information, Planning, and Conservation ("IPAC") online database for the Site and receiving water (the "project action area"). Based on the IPAC report, there are no critical habitats in the

USEPA August 13, 2018 Page 5 of 5

project action area and the listed species (Northern Long Eared Bat and Red Knot) do not have a critical habitat designated. A copy of the IPAC report is provided at Attachment F.

The proposed effluent discharge is to near-shore marine waters in Massachusetts (Massachusetts Bay – Boston Harbor). Based on a review of USEPA and National Marine Fisheries Service ("NMFS"), the project action area meets FWS Criterion A (*i.e.* – no listed species or critical habitats are within the project action area) therefore the project will have no effect or are not likely to adversely affect listed species or habitats under jurisdiction of the NMFS.

National Historic Preservation Requirements

Based on a review of the Massachusetts Cultural Resource Information System ("MACRIS") and online records from the United States National Register of Historic Places database, the Site and surrounding area are not listed as a National Historic Place. A copy of the MACRIS report is provided at Attachment G.

Coverage Under the NPDES RGP

Based on the information set forth in this NOI submittal the proposed discharge is eligible for coverage under the NPDES RGP and Lightship Engineering is requesting coverage under the NPDES RGP on behalf of HEEC to discharge treated waters to Boston Harbor.

If you have any questions or comments, please call Kevin Paradise or Michael Pierdinock at (508) 830-3344, extensions 150 and 110, respectively.

Very truly yours,

Lightship Engineering, LLC

Kevin Paradise, EIT Senior Project Manager

Attachments

Michael J. Pierdinock, LSP, CHMM Principal

ATTACHMENT A

NOTICE OF INTENT

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: Deer Island						
HEEC Land Cable, Deer Island, Massachusetts	Street:						
	City: Boston		State: MA	Zip:			
2. Site owner	Contact Person: Richard Adams						
Massachusetts Water Resources Authority 190 Tafts Avenue	Telephone: 617-242-6000	Email: Ric	hard.Adam	s@MWRA.com			
Winthrop, Massachusetts 02152	Mailing address: 190 Tafts Aveune						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private Other; if so, specify: Municipal	City: Winthrop		State: MA	Zip: 02152			
3. Site operator, if different than owner	Contact Person: Robert Paul						
Clean Harbors Environmental Services	Telephone: 781-803-4100 Email: PaulB@CleanHarbors.com						
609 Pleasant Street	Mailing address:						
Weymouth, Massachusetts 02189	Street: 609 Pleasant Street						
	City: Weymouth		State: MA	Zip: 02189			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	■ MA Chapter 21e; list RTN(s):	□ CERCL	LA				
NIDDES a socialis (short all that and a ROD II DOD II COD	RTN 3-1283	☐ UIC Program					
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Resease Detection Fermit.	☐ CWA Section 404					

Waterbody identification of receiving water(s):	Classi	fication of receiving water(s):							
MA 70-02	SB (CSO)								
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ■ Yes □ No Are sensitive receptors present near the site? (check one): □ Yes ■ No If yes, specify:									
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Boston Harbor is on SILW and indicated pollutants are excess bacteria and nutrients.									
	tions in	Not Applicable							
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.									
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ☐ Yes ■ No If yes, indicate date confirmation received: Not Applicable - No Dilution Factor Requested 7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII?									
(check one): ■ Yes □ No									
	Resource Water Ocean Sanctuary territorial sea Water Sea Ocean Territorial sea Territorial sea	Resource Water Ocean Sanctuary territorial sea Wild and Scenic with the instructions in B, above? (check one): Yes No Integrated List of Waters (i.e., CWA Section 303(d)). Include which designable for any of the indicated pollutants. For more information, contact the pollutants are excess bacteria and nutrients. Treceiving water determined in accordance with the instructions in dix VI for sites located in New Hampshire. of water quality-based effluent limitations (WQBELs) determined in Massachusetts and Appendix VI for sites in New Hampshire. riate State for the 7Q10and dilution factor indicated? (check one): Yes No Dilution Factor Requested							

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: Total Metals and Turbidity (Total Suspende	d Solids)
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in the RGP? (check one): □ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance with the instructions in Appendix VIII? (check one): □ Yes ■ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1. The discharge(s) is $a(n)$ (check any that apply): \square Existing discharge \blacksquare New	w discharge □ New source
Outfall(s): Outfall 01	Outfall location(s): (Latitude, Longitude) Lat = 42.352427 Long = -70.965124
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water Indirect discharge, if so, specify:
Treated water will be discharged to one or more catch basins that discl	harge to Outfall 01.
■ A private storm sewer system □ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es □ No
Has the operator has received permission from the owner to use such system for obtaining permission: Approval pending from MWRA	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	
Provide the expected start and end dates of discharge(s) (month/year): Septer	mber 2018 - December 2018
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Categ	a. If Activity Category I or II: (check all that apply)				
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
☐ II – Non-Petroleum-Related Site Remediation ■ III – Contaminated Site Dewatering	b. If Activity Category III, IV	7, V, VI, VII or VIII: (check either G or H)				
 □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ F. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known	or # of ieved samples	7 50 /	Detection limit (µg/l)	Influent		Effluent Lin	nitations
Parameter bel	or believed absent			s Test method (#)		Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	1	121,4500N	24	43	43	Report mg/L	
Chloride		✓	1	EPA 300.0	500,000	16,000,000	16,000,000	Report μg/l	
Total Residual Chlorine	✓			SM21-22		ND	ND	0.2 mg/L	
Total Suspended Solids		✓	1	SM21-22	500	7,200	7,200	30 mg/L	
Antimony	✓		1	EPA 200.8	5.0	ND	ND	206 μg/L	
Arsenic		✓	1	EPA 200.8	10	28	28	104 μg/L	
Cadmium	✓		1	EPA 200.8	1.0	ND	ND	10.2 μg/L	
Chromium III	✓		1	Tri +	NA	ND	ND	323 μg/L	
Chromium VI	✓		1	SM21-22	4	ND	ND	323 μg/L	
Copper		✓	1	EPA 200.8	10	72	72	242 μg/L	
Iron		✓	1	EPA 200.7	50	180	180	5,000 μg/L	
Lead	✓		1	EPA 200.8	5.0	ND	ND	160 μg/L	
Mercury	✓		1	EPA 245.1	0.1	ND	ND	0.739 μg/L	
Nickel	✓		1	EPA 200.8	50	ND	ND	1,450 μg/L	
Selenium		✓	1	EPA 200.8	21	89	89	235.8 μg/L	
Silver	✓		1	EPA 200.8	1.0	ND	ND	35.1 μg/L	
Zinc	✓		1	EPA 200.8		ND	ND	420 μg/L	
Cyanide	✓		1	121,4500C	1	ND	ND	178 mg/L	
B. Non-Halogenated VOC	's							-	
Total BTEX	✓		1	NA	NA	ND	ND	100 μg/L	
Benzene	✓		1	EPA 624	1.0	ND	ND	5.0 μg/L	
1,4 Dioxane	✓		1	EPA 624	50	ND	ND	200 μg/L	
Acetone	✓		1	EPA 624	50	ND	ND	7.97 mg/L	
Phenol	✓		1	EPA 625.1	10	ND	ND	1,080 μg/L	

	Known	Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		1	EPA 624	2.0	ND	ND	4.4 μg/L	
1,2 Dichlorobenzene	✓		1	EPA 624	2.0	ND	ND	600 μg/L	
1,3 Dichlorobenzene	✓		1	EPA 624	2.0	ND	ND	320 μg/L	
1,4 Dichlorobenzene	✓		1	EPA 624	2.0	ND	ND	5.0 μg/L	
Total dichlorobenzene			1	NA	NA	ND	ND	763 μg/L in NH	
1,1 Dichloroethane	✓		1	EPA 624	2.0	ND	ND	70 μg/L	
1,2 Dichloroethane			1	NA	NA	ND	ND	5.0 μg/L	
1,1 Dichloroethylene	✓		1	EPA 624	2.0	ND	ND	3.2 μg/L	
Ethylene Dibromide			1	EPA 504.1	0.01	ND	ND	0.05 μg/L	
Methylene Chloride	✓		1	EPA 624	5.0	ND	ND	4.6 μg/L	
1,1,1 Trichloroethane	✓		1	EPA 624	2.0	ND	ND	200 μg/L	
1,1,2 Trichloroethane	✓		1	EPA 624	2.0	ND	ND	5.0 μg/L	
Trichloroethylene	✓		1	EPA 624	2.0	ND	ND	5.0 μg/L	
Tetrachloroethylene	✓		1	EPA 624	2.0	ND	ND	5.0 μg/L	
cis-1,2 Dichloroethylene	✓		1	EPA 624	1.0	ND	ND	70 μg/L	
Vinyl Chloride	✓		1	EPA 624	2.0	ND	ND	2.0 μg/L	
D. Non-Halogenated SVOC	Ts.								
Total Phthalates	✓		1	NA	NA	ND	ND	190 μg/L	
Diethylhexyl phthalate	✓		1	NA	NA	ND	ND	101 μg/L	
Total Group I PAHs	√		1	NA	NA	ND	ND	1.0 μg/L	
Benzo(a)anthracene	✓		1	EPA 625	0.051	ND	ND	1.0	
Benzo(a)pyrene	√		1	EPA 625	0.10	ND	ND		
Benzo(b)fluoranthene	✓		1	EPA 625	0.051	ND	ND	1	
Benzo(k)fluoranthene	✓		1	EPA 625	0.20	ND	ND	As Total PAHs	
Chrysene	✓		1	EPA 625	0.20	ND	ND		
Dibenzo(a,h)anthracene	✓		1	EPA 625	0.20	ND	ND		
Indeno(1,2,3-cd)pyrene	1		1	EPA 625	0.20	ND	ND	┪	

	Known	Known			Influent		Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	✓		1	NA	NA	ND	ND	100 μg/L	
Naphthalene	✓		1	EPA 625.1	5.0	ND	ND	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		1	EPA 608.3	0.1	ND	ND	0.000064 μg/L	
Pentachlorophenol	✓		1	EPA 625.1	10	ND	ND	1.0 μg/L	
E E . l. D									
F. Fuels Parameters Total Petroleum Hydrocarbons	✓		1	EPA +	1,600	ND	ND	5.0 mg/L	
Ethanol	√		1	1671A	2000	ND	ND	Report mg/L	
Methyl-tert-Butyl Ether	✓		1	EPA 624	2.0	ND	ND	70 μg/L	
tert-Butyl Alcohol	✓		1	EPA 624	20	ND	ND	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		1	EPA 624	0.50	ND	ND	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	C50, addition	nal pollutar	nts present);	if so, specify:			
	1			1					

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Refer to Attachment E of the Notice of Intent submittal.	
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter ■ Other; if so, specify: _{Two resin beds} .	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	Г
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Bag Filters Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	200
Provide the proposed maximum effluent flow in gpm.	200
Provide the average effluent flow in gpm.	100
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	N/A
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

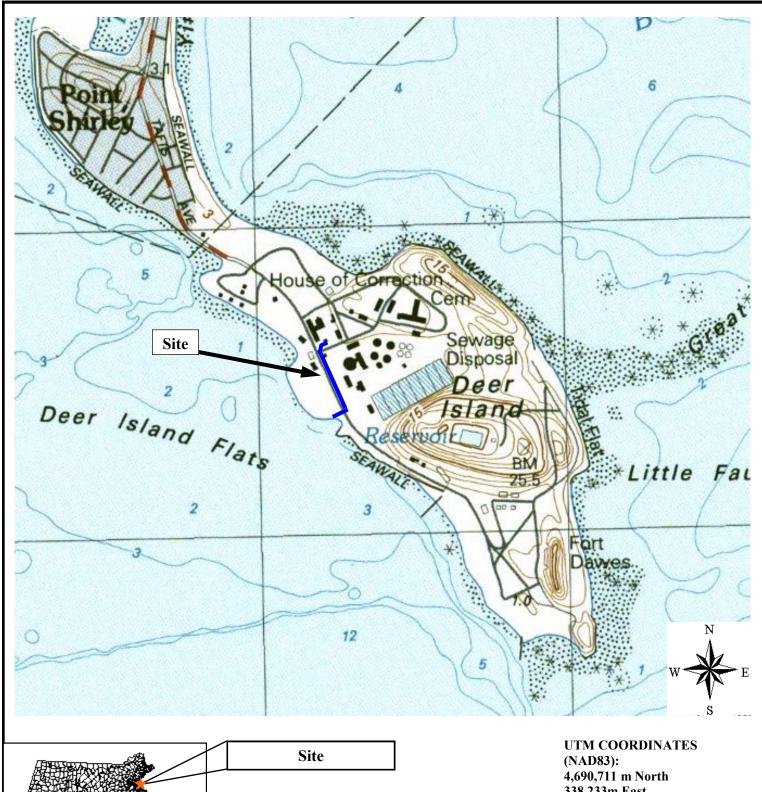
F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) ■ the operator □ EPA □ Other; if so, specify:
The time determination has made of the operation in the operation in the operation

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.
Does the supporting documentation include any written concurrence of finding provided by the Services? (check one).
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ■ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.									
A BMPP meeting the requirements of this general permit will be de BMPP certification statement: initiation of discharge	veloped and implemented upon								
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □								
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □								
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □ NA □								
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA □								
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge									
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permi □ Other; if so, specify:	t Check one: Yes □ No □ NA ■								
ignature:	Date: 8/13/2018								


Print Name and Title: Matthew Waldrip, Senior Specialist, Environmental Licensing & Permitting

ATTACHMENT B

FIGURES

Figure 1 Site Locus Map

Figure 2 Site Map

338,233m East

SCALE: 1 inch ~ 1,000 feet

<u>PR</u>	<u>EPA</u>	кн	D I	FOR	

Eversource Energy 247 Station Avenue Westwood, Massachusetts 02090

Source: MassGIS Online Data Viewer

PROJECT

HEEC Land Cable Project Deer Island, Massachusetts

FIGURE 1 Site Locus Map

ATTACHMENT C

TABLE 1 – SOURCE AND RECEIVING WATER ANALYTICAL SUMMARY TABLE

Table 1 **Source and Receiving Water Analytical Summary Table HEEC Land Cable** Deer Island, Massachusetts

 $(\mu g/L)$

				Total Metals																				
Sample ID.	Date Sampled	Sample Location	Antimony	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Mercury	Nickel	Selenium	Silver	Zinc	1,2-Dibromoethane	Ethanol	Chlorine, Residual	Hexavalent Chromium	Total Suspended Solids	Oil & Grease	Ammonia as N	Salinity (ppt)	Cyanide	Chloride
								•			Source	e Water												
LE-TMW6	5/1/2018	Deer Island	BRL<5.0	28	BRL<1.0	BRL<100	72	180	BRL<5.0	BRL<0.0001	BRL<50	89	BRL<1.0	BRL<200	BRL<0.01	BRL<2,000	BRL<20	BRL<4.0	7,200	BRL<1,600	43	NA	BRL<5	16,000,000
											Receiv	ing Water												
LE-SW-1	8/2/2018	Boston Harbor - Adjacent to Deer Island	BRL<5.0	61	BRL<2.5	17	110	4.5	11	BRL<0.0001	BRL<25	210	BRL<2.5	BRL<50	NA	NA	NA	NA	NA	NA	BRL<300	29.7	NA	NA
									NPDES Gen	eral Permit For	Remediation	Activity Discl	narges; Effect	ive April 8, 20	17									
Technology-Base	d Effluent Limitati	on	206	104	10.2	323	242	5,000	160	0.739	1,450	235.8	35.1	420	0.05	NS	200	323	30,000	5,000	NS	NA	178,000	NS
Water Quality-Ba	ased Effluent Limit	ation (Saltwater)	640	36	8.8	100	3.1	NS	8.1	0.94	8.2	71	1.9	81	0.05	NS	8	50	30,000	5,000	NS	NA	1.0	NS

LE-TMW6 - groundwater sample. LE-SW-1 - surface water sample.

NA - Not Analyzed/Applicable

 $\mu g/L - microgram per liter. \\ ppt - parts per thousand. \\ BRL<5 indicates concentration, if any, is below reporting limit for analyte (reporting limit = 5). \\$

PCBs - Polychlorinated Biphenyls.

SVOCs - Semi-Volatile Organic Compounds.

VOCs - Volatile Organic Compounds.

ATTACHMENT D

LABORATORY ANALYTICAL DATA PACKAGES

May 7, 2018

Kevin Paradise Lightship Engineering, LLC 39 Industrial Park Road Plymouth, MA 02360

Project Location: Winthrop Client Job Number: Project Number: 500.98.12

Laboratory Work Order Number: 18E0051

Emily Snyd

Enclosed are results of analyses for samples received by the laboratory on May 1, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Emily E. Snyder Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
18E0051-01	8
Sample Preparation Information	18
QC Data	20
Volatile Organic Compounds by GC/MS	20
B202347	20
Semivolatile Organic Compounds by GC/MS	22
B202342	22
Semivolatile Organic Compounds by - GC/MS	23
B202261	23
B202466	26
Polychlorinated Biphenyls By GC/ECD	30
B202327	30
Metals Analyses (Total)	31
B202350	31
B202352	31
B202371	32
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	33
B202315	33
B202316	33
B202335	33
B202337	34
B202492	34

Table of Contents (continued)

Dual Column RPD Report	35
Flag/Qualifier Summary	37
Certifications	38
Chain of Custody/Sample Receipt	42

Lightship Engineering, LLC 39 Industrial Park Road Plymouth, MA 02360 ATTN: Kevin Paradise

REPORT DATE: 5/7/2018

PURCHASE ORDER NUMBER: 64454 Release 1

PROJECT NUMBER: 500.98.12

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18E0051

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Winthrop

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
LE-TMW6	18E0051-01	Ground Water		121,4500CN-CE	MA M-MA-086/CT PH-0574/NY11148
				121,4500NH3-BH	MA M-MA-086/CT PH-0574/NY11148
				1671A	NY NELAP 10026/ MA M-NY044 +others
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 504.1	MA M-RI010/CT PH-0740/NY11673/+ Additional
				EPA 608.3	
				EPA 624	
				EPA 625	
				EPA 625.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				SW-846 8015C	NY NELAP 10026/ MA M-NY044 +others
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 200.8

Qualifications:

DL-15

Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.

Analyte & Samples(s) Qualified:

Antimony

18E0051-01[LE-TMW6]

Arsenic

18E0051-01[LE-TMW6]

Cadmium

18E0051-01[LE-TMW6]

Chromium

18E0051-01[LE-TMW6]

Copper

18E0051-01[LE-TMW6]

Lead

18E0051-01[LE-TMW6]

Nickel

18E0051-01[LE-TMW6]

Selenium

18E0051-01[LE-TMW6]

Silver

18E0051-01[LE-TMW6]

Zinc

18E0051-01[LE-TMW6]

EPA 300.0

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Chloride

B202492-MS1

EPA 625

Qualifications:

S-07

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.

Analyte & Samples(s) Qualified:

2,4,6-Tribromophenol

18E0051-01[LE-TMW6], B202342-BLK1, B202342-BS1

V-06

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

Pentachlorophenol (SIM)

18E0051-01[LE-TMW6], B202342-BLK1, B202342-BS1, B202342-BSD1

EPA 625.1

Qualifications:

В

Analyte is found in the associated laboratory blank as well as in the sample.

Analyte & Samples(s) Qualified:

Isophorone

B202261-BS1, B202261-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Benzidine

B202466-BS1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

Benzidine

18E0051-01RE1[LE-TMW6], B202466-BLK1, B202466-BS1, B202466-BSD1

V-05

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

Benzidine

18E0051-01RE1[LE-TMW6], B202466-BLK1, B202466-BS1, B202466-BSD1

Hexachlorocyclopentadiene

18E0051-01RE1[LE-TMW6], B202466-BLK1, B202466-BS1, B202466-BSD1

V-19

Initial calibration did not meet method specifications. Compound was calibrated using linear regression with correlation coefficient <0.99. Reported result is estimated.

Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

B202261-BLK1, B202261-BS1, B202261-BSD1, B202466-BLK1, B202466-BS1, B202466-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Project Manager

Jua Webshirsten

Sample Description: Work Order: 18E0051

Project Location: Winthrop
Date Received: 5/1/2018
Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Volatile	Organic	Compounds by	GC/MS
----------	---------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	1.7	μg/L	1	1 mg/ Qum	EPA 624	5/2/18	5/2/18 10:24	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.28	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Benzene	ND	1.0	0.34	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
tert-Butyl Alcohol (TBA)	ND	20	2.9	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Carbon Tetrachloride	ND	2.0	0.39	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,2-Dichlorobenzene	ND	2.0	0.31	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,3-Dichlorobenzene	ND	2.0	0.33	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,4-Dichlorobenzene	ND	2.0	0.39	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,2-Dichloroethane	ND	2.0	0.28	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
cis-1,2-Dichloroethylene	ND	1.0	0.39	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,1-Dichloroethane	ND	2.0	0.33	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,1-Dichloroethylene	ND	2.0	0.25	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,4-Dioxane	ND	50	26	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Ethylbenzene	ND	2.0	0.37	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Methylene Chloride	ND	5.0	0.42	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Tetrachloroethylene	ND	2.0	0.32	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Toluene	ND	1.0	0.35	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,1,1-Trichloroethane	ND	2.0	0.25	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
1,1,2-Trichloroethane	ND	2.0	0.22	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Trichloroethylene	ND	2.0	0.41	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Vinyl Chloride	ND	2.0	0.30	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
m+p Xylene	ND	2.0	0.65	μg/L	1		EPA 624	5/2/18	5/2/18 10:24	EEH
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624	5/2/18	5/2/18 10:24	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		86.6		70-130					5/2/18 10:24	

% Recovery	Recovery Limits	Flag/Qual	
86.6	70-130		5/2/18 10:24
97.3	70-130		5/2/18 10:24
94.4	70-130		5/2/18 10:24
	86.6 97.3	86.6 70-130 97.3 70-130	86.6 70-130 97.3 70-130

Project Location: Winthrop Sample Description: Work Order: 18E0051

Date Received: 5/1/2018

Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Semivolatile Organi	ic Compounds by GC/MS
---------------------	-----------------------

			8						
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
-			Units	Dilution	riag/Quai			•	Analyst
Benzo(a)anthracene (SIM)	ND	0.051	μg/L	1		EPA 625	5/1/18	5/2/18 14:18	IMR
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$	1		EPA 625	5/1/18	5/2/18 14:18	IMR
Benzo(b)fluoranthene (SIM)	ND	0.051	$\mu g/L$	1		EPA 625	5/1/18	5/2/18 14:18	IMR
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$	1		EPA 625	5/1/18	5/2/18 14:18	IMR
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$	1		EPA 625	5/1/18	5/2/18 14:18	IMR
Chrysene (SIM)	ND	0.20	$\mu g/L$	1		EPA 625	5/1/18	5/2/18 14:18	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.20	$\mu g/L$	1		EPA 625	5/1/18	5/2/18 14:18	IMR
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.20	$\mu g/L$	1		EPA 625	5/1/18	5/2/18 14:18	IMR
Pentachlorophenol (SIM)	ND	1.0	μg/L	1	V-06	EPA 625	5/1/18	5/2/18 14:18	IMR
Surrogates		% Recovery	Recovery Limits	,	Flag/Qual				-
2-Fluorophenol		57.2	15-110					5/2/18 14:18	
Phenol-d6		58.6	15-110					5/2/18 14:18	
Nitrobenzene-d5		84.7	30-130					5/2/18 14:18	
2-Fluorobiphenyl		74.0	30-130					5/2/18 14:18	
2,4,6-Tribromophenol		132 *	15-110		S-07			5/2/18 14:18	
p-Terphenyl-d14		69.4	30-130					5/2/18 14:18	

Project Location: Winthrop Sample Description: Work Order: 18E0051

Date Received: 5/1/2018

Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Semivolatile	Organic	Compounds	bv -	GC/MS
--------------	---------	-----------	------	-------

		1	Semivolatile Organic C	ompounds by	- GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	5.0	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Acenaphthylene	ND	5.0	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Anthracene	ND	5.0	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Benzidine	ND	20	$\mu g/L$	1	V-04, V-05	EPA 625.1	5/3/18	5/4/18 13:30	BGL
Benzo(g,h,i)perylene	ND	5.0	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
4-Bromophenylphenylether	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Butylbenzylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
4-Chloro-3-methylphenol	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Bis(2-chloroethyl)ether	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2-Chloronaphthalene	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2-Chlorophenol	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
4-Chlorophenylphenylether	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Di-n-butylphthalate	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
1,3-Dichlorobenzene	ND	5.0	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
1,4-Dichlorobenzene	ND	5.0	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
1,2-Dichlorobenzene	ND	5.0	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
3,3-Dichlorobenzidine	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2,4-Dichlorophenol	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Diethylphthalate	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2,4-Dimethylphenol	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Dimethylphthalate	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2,4-Dinitrophenol	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2,4-Dinitrotoluene	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2,6-Dinitrotoluene	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Di-n-octylphthalate	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Fluoranthene	ND	5.0	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Fluorene	ND	5.0	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Hexachlorobenzene	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Hexachlorobutadiene	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Hexachlorocyclopentadiene	ND	10	μg/L	1	V-05	EPA 625.1	5/3/18	5/4/18 13:30	BGL
Hexachloroethane	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Isophorone	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Naphthalene	ND	5.0	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Nitrobenzene	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2-Nitrophenol	ND	10	μg/L μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
4-Nitrophenol	ND	10	μg/L μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
N-Nitrosodimethylamine	ND ND	10	μg/L μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
N-Nitrosodiphenylamine	ND	10	μg/L μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
N-Nitrosodi-n-propylamine	ND ND	10		1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Pentachlorophenol			μg/L μg/I						
т спастогорисног	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL

Page 10 of 43

Project Location: Winthrop Sample Description: Work Order: 18E0051

Date Received: 5/1/2018

Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Comivolatile	Organia	Compounds	by - GC/MS	
Semivolatile	Organic	Compounds	DV - GC/VIS	

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylnaphthalene	ND	5.0	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Phenanthrene	ND	5.0	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2-Methylphenol	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Phenol	ND	10	μg/L	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
3/4-Methylphenol	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Pyrene	ND	5.0	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
1,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
2,4,6-Trichlorophenol	ND	10	$\mu g/L$	1		EPA 625.1	5/3/18	5/4/18 13:30	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		63.9	15-110					5/4/18 13:30	
Phenol-d6		48.2	15-110					5/4/18 13:30	
Nitrobenzene-d5		80.8	30-130					5/4/18 13:30	
2-Fluorobiphenyl		69.3	30-130					5/4/18 13:30	
2,4,6-Tribromophenol		76.3	15-110					5/4/18 13:30	
p-Terphenyl-d14		84.5	30-130					5/4/18 13:30	

Project Location: Winthrop Sample Description: Work Order: 18E0051

Date Received: 5/1/2018

Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.10	0.092	μg/L	1		EPA 608.3	5/2/18	5/2/18 17:22	JMB
Aroclor-1221 [1]	ND	0.10	0.080	$\mu g/L$	1		EPA 608.3	5/2/18	5/2/18 17:22	JMB
Aroclor-1232 [1]	ND	0.10	0.10	$\mu g/L$	1		EPA 608.3	5/2/18	5/2/18 17:22	JMB
Aroclor-1242 [1]	ND	0.10	0.086	$\mu g/L$	1		EPA 608.3	5/2/18	5/2/18 17:22	JMB
Aroclor-1248 [1]	ND	0.10	0.095	$\mu g/L$	1		EPA 608.3	5/2/18	5/2/18 17:22	JMB
Aroclor-1254 [1]	ND	0.10	0.052	$\mu g/L$	1		EPA 608.3	5/2/18	5/2/18 17:22	JMB
Aroclor-1260 [1]	ND	0.10	0.098	$\mu g/L$	1		EPA 608.3	5/2/18	5/2/18 17:22	JMB
Surrogates		% Reco	very	Recovery Limits	i	Flag/Qual				
Decachlorobiphenyl [1]		88.8		30-150					5/2/18 17:22	
Decachlorobiphenyl [2]		93.8		30-150					5/2/18 17:22	
Tetrachloro-m-xylene [1]		73.4		30-150					5/2/18 17:22	
Tetrachloro-m-xylene [2]		79.6		30-150					5/2/18 17:22	

Sample Description: Work Order: 18E0051

Date Received: 5/1/2018

Field Sample #: LE-TMW6

Project Location: Winthrop

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time		
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Antimony	ND	5.0		μg/L	5	DL-15	EPA 200.8	5/2/18	5/3/18 9:24	МЈН	
Arsenic	28	10		$\mu g/L$	10	DL-15	EPA 200.8	5/2/18	5/3/18 9:30	MJH	
Cadmium	ND	1.0		$\mu g/L$	5	DL-15	EPA 200.8	5/2/18	5/3/18 9:24	MJH	
Chromium	ND	100		$\mu g/L$	10	DL-15	EPA 200.8	5/2/18	5/3/18 9:30	MJH	
Chromium, Trivalent	0.0			mg/L	1		Tri Chrome Calc.	5/2/18	5/3/18 9:45	MJH	
Copper	72	10		$\mu g/L$	10	DL-15	EPA 200.8	5/2/18	5/3/18 9:30	MJH	
Iron	0.18	0.050		mg/L	1		EPA 200.7	5/2/18	5/3/18 11:50	QNW	
Lead	ND	5.0		$\mu g/L$	10	DL-15	EPA 200.8	5/2/18	5/3/18 9:30	MJH	
Mercury	ND	0.00010		mg/L	1		EPA 245.1	5/2/18	5/3/18 11:06	EJB	
Nickel	ND	50		μg/L	10	DL-15	EPA 200.8	5/2/18	5/3/18 9:30	MJH	
Selenium	89	50	21	$\mu g/L$	10	DL-15	EPA 200.8	5/2/18	5/3/18 9:30	МЈН	
Silver	ND	1.0		μg/L	5	DL-15	EPA 200.8	5/2/18	5/3/18 9:24	МЈН	
Zinc	ND	200		μg/L	10	DL-15	EPA 200.8	5/2/18	5/3/18 9:30	MJH	

Project Location: Winthrop Sample Description: Work Order: 18E0051

Date Received: 5/1/2018

Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	16000	500		mg/L	500		EPA 300.0	5/2/18	5/2/18 15:22	IS
Chlorine, Residual	ND	0.020		mg/L	1		SM21-22 4500 CL G	5/1/18	5/1/18 22:02	LED
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	5/1/18	5/1/18 21:18	LED
Total Suspended Solids	7.2	0.50		mg/L	1		SM21-22 2540D	5/2/18	5/2/18 13:45	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.6		mg/L	1		EPA 1664B	5/2/18	5/2/18 9:55	LL

Project Location: Winthrop Sample Description: Work Order: 18E0051

Date Received: 5/1/2018

Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB)	ND	0.01	μg/L	1		EPA 504.1		5/4/18 0:00	NET
1,2-Dibromoethane (EDB) [2C]	ND	0.01	μg/L	1		EPA 504.1		5/4/18 0:00	NET

Sample Description: Work Order: 18E0051

Project Location: Winthrop
Date Received: 5/1/2018
Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ethanol		ND	2000	500	ug/L	1		1671A		5/3/18 0:00	T.A.

Project Location: Winthrop Sample Description: Work Order: 18E0051

Date Received: 5/1/2018

Field Sample #: LE-TMW6

Sampled: 5/1/2018 12:45

Sample ID: 18E0051-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.043	0.075	0.024	mg/L	1		121,4500NH3-BH		5/3/18 0:00	ALP
Cyanide		ND	0.005	0.001	mg/L	1		121,4500CN-CE		5/3/18 0:00	ALP

Sample Extraction Data

PA		

18E0051-01RE1 [LE-TMW6]

E1A 1004B					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
18E0051-01 [LE-TMW6]	B202335	900		05/02/18	
Prep Method: EPA 200.7-EPA 200.7					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E0051-01 [LE-TMW6]	B202350	50.0	50.0	05/02/18	
Prep Method: EPA 200.8-EPA 200.8					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E0051-01 [LE-TMW6]	B202352	50.0	50.0	05/02/18	
Prep Method: EPA 245.1-EPA 245.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E0051-01 [LE-TMW6]	B202371	6.00	6.00	05/02/18	
Prep Method: EPA 300.0-EPA 300.0					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E0051-01RE1 [LE-TMW6]	B202492	10.0	10.0	05/02/18	
Prep Method: SW-846 3510C-EPA 608.3					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E0051-01 [LE-TMW6]	B202327	1000	5.00	05/02/18	
Prep Method: SW-846 5030B-EPA 624					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E0051-01 [LE-TMW6]	B202347	5	5.00	05/02/18	
Prep Method: SW-846 3510C-EPA 625					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18E0051-01 [LE-TMW6]	B202342	980	1.00	05/01/18	
Prep Method: SW-846 3510C-EPA 625.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	

B202466

1000

1.00

05/03/18

Sample Extraction Data

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
18E0051-01 [LE-TMW6]	B202337	1000	05/02/18
SM21-22 3500 Cr R			

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18E0051-01 [LE-TMW6]	B202315	50.0	50.0	05/01/18

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18E0051-01 [LE-TMW6]	B202316	100	100	05/01/18

Prep Method: SW-846 3005A-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
18E0051-01 [LE-TMW6]	B202362	1.00	05/02/18

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202347 - SW-846 5030B										
Blank (B202347-BLK1)				Prepared & A	Analyzed: 05	/02/18				
Acetone	ND	50	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20	$\mu \text{g/L}$							
Carbon Tetrachloride	ND	2.0	$\mu \text{g/L}$							
1,2-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,4-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,2-Dichloroethane	ND	2.0	$\mu g/L$							
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
1,1-Dichloroethane	ND	2.0	$\mu g/L$							
1,1-Dichloroethylene	ND	2.0	$\mu g/L$							
,4-Dioxane	ND	50	μg/L							
Ethylbenzene	ND	2.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	μg/L							
Methylene Chloride	ND	5.0	μg/L							
Tetrachloroethylene	ND	2.0	μg/L							
Toluene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	2.0	μg/L							
,1,2-Trichloroethane	ND	2.0	μg/L							
richloroethylene	ND	2.0	μg/L							
Vinyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	2.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	21.1		$\mu g/L$	25.0		84.4	70-130			
Surrogate: Toluene-d8	24.4		$\mu g/L$	25.0		97.6	70-130			
Surrogate: 4-Bromofluorobenzene	23.6		$\mu g/L$	25.0		94.4	70-130			
LCS (B202347-BS1)				Prepared & A	Analyzed: 05					
Acetone	144	50	μg/L	200		71.8	70-160			
ert-Amyl Methyl Ether (TAME)	17.6	0.50	μg/L	20.0		88.1	70-130			
Benzene	18.2	1.0	μg/L	20.0		91.1	65-135			
ert-Butyl Alcohol (TBA)	160	20	μg/L	200		79.9	40-160			
Carbon Tetrachloride	17.6	2.0	μg/L	20.0		88.2	70-130			
,2-Dichlorobenzene	20.7	2.0	μg/L	20.0		104	65-135			
,3-Dichlorobenzene	21.8	2.0	μg/L	20.0		109	70-130			
,4-Dichlorobenzene	20.6	2.0	μg/L	20.0		103	65-135			
,2-Dichloroethane	15.2	2.0	μg/L	20.0		75.8	70-130			
tis-1,2-Dichloroethylene	18.4	1.0	μg/L	20.0		91.9	70-130			
,1-Dichloroethane	17.7	2.0	μg/L	20.0		88.7	70-130			
,1-Dichloroethylene	15.9	2.0	μg/L	20.0		79.6	50-150			
,4-Dioxane	189	50	μg/L	200		94.6	40-130			
Cthylbenzene Aethyl test Dutyl Ether (MTDE)	21.0	2.0	μg/L	20.0		105	60-140			
Methyl tert-Butyl Ether (MTBE)	17.6	2.0	μg/L	20.0		88.0	70-130			
Methylene Chloride	17.3	5.0	μg/L	20.0		86.5	60-140			
Tetrachloroethylene	20.9	2.0	μg/L	20.0		105	70-130			
Toluene	18.8	1.0	μg/L	20.0		94.2	70-130			
,1,1-Trichloroethane	17.0	2.0	μg/L	20.0		85.2	70-130			
,1,2-Trichloroethane	19.7	2.0	μg/L	20.0		98.4	70-130			
Frichloroethylene	19.6	2.0	μg/L	20.0		98.2	65-135			
Vinyl Chloride	9.28	2.0	μg/L	20.0		46.4	5-195			
n+p Xylene	41.7	2.0	μg/L	40.0		104	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B202347 - SW-846 5030B							
LCS (B202347-BS1)				Prepared & Analy	yzed: 05/02/18		
o-Xylene	20.4	2.0	μg/L	20.0	102	70-130	
Surrogate: 1,2-Dichloroethane-d4	21.0		μg/L	25.0	83.8	70-130	
Surrogate: Toluene-d8	24.1		$\mu g/L$	25.0	96.5	70-130	
Surrogate: 4-Bromofluorobenzene	23.9		$\mu g/L$	25.0	95.5	70-130	

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202342 - SW-846 3510C										
Blank (B202342-BLK1)				Prepared: 05	6/01/18 Anal	yzed: 05/02/1	18			
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.20	μg/L							
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.20	μg/L							
Pentachlorophenol (SIM)	ND	1.0	μg/L							V-06
Surrogate: 2-Fluorophenol	122		μg/L	200		60.8	15-110			
Surrogate: Phenol-d6	113		μg/L	200		56.6	15-110			
Surrogate: Nitrobenzene-d5	78.3		μg/L	100		78.3	30-130			
Surrogate: 2-Fluorobiphenyl	71.0		μg/L	101		70.3	30-130			
Surrogate: 2,4,6-Tribromophenol	223		μg/L	200		111 *	15-110			S-07
Surrogate: p-Terphenyl-d14	64.7		μg/L	101		64.1	30-130			
LCS (B202342-BS1)				Prepared: 05	5/01/18 Anal	vzed: 05/02/1	18			
Benzo(a)anthracene (SIM)	44.0	1.2	μg/L	50.0	, , , , , , , , , , , , , , , , , , , ,	88.0	40-140			
Benzo(a)pyrene (SIM)	46.5	2.5	μg/L	50.0		93.0	40-140			
Benzo(b)fluoranthene (SIM)	46.6	1.2	μg/L	50.0		93.2	40-140			
Benzo(k)fluoranthene (SIM)		5.0	μg/L μg/L	50.0		90.9	40-140			
Bis(2-ethylhexyl)phthalate (SIM)	45.4	25	μg/L μg/L	50.0		74.8	40-140			
Chrysene (SIM)	37.4	5.0	μg/L μg/L	50.0		86.2	40-140			
Dibenz(a,h)anthracene (SIM)	43.1	5.0	μg/L μg/L	50.0		97.3	40-140			
Indeno(1,2,3-cd)pyrene (SIM)	48.6	5.0	μg/L μg/L	50.0		97.3	40-140			
Pentachlorophenol (SIM)	46.8	25	μg/L μg/L	50.0		93.7 111	40-140			V-06
	55.5									V-00
Surrogate: 2-Fluorophenol	116		μg/L	200		57.9	15-110			
Surrogate: Phenol-d6	89.9		μg/L	200		45.0	15-110			
Surrogate: Nitrobenzene-d5	88.6		μg/L	100		88.6	30-130			
Surrogate: 2-Fluorobiphenyl	84.3		μg/L	101		83.4	30-130			a
Surrogate: 2,4,6-Tribromophenol	225		μg/L	200		112 *	15-110			S-07
Surrogate: p-Terphenyl-d14	70.2		μg/L	101		69.6	30-130			
LCS Dup (B202342-BSD1)				Prepared: 05	5/01/18 Anal	yzed: 05/02/1	18			
Benzo(a)anthracene (SIM)	40.3	1.2	$\mu g \! / \! L$	50.0		80.6	40-140	8.83	20	
Benzo(a)pyrene (SIM)	42.8	2.5	μg/L	50.0		85.6	40-140	8.17	20	
Benzo(b)fluoranthene (SIM)	43.3	1.2	μg/L	50.0		86.6	40-140	7.45	20	
Benzo(k)fluoranthene (SIM)	42.9	5.0	μg/L	50.0		85.8	40-140	5.77	20	
Bis(2-ethylhexyl)phthalate (SIM)	34.9	25	μg/L	50.0		69.8	40-140	6.92	20	
Chrysene (SIM)	39.9	5.0	$\mu g/L$	50.0		79.8	40-140	7.77	20	
Dibenz(a,h)anthracene (SIM)	44.8	5.0	$\mu g/L$	50.0		89.6	40-140	8.30	20	
Indeno(1,2,3-cd)pyrene (SIM)	43.0	5.0	$\mu \text{g/L}$	50.0		86.0	40-140	8.63	20	
Pentachlorophenol (SIM)	45.8	25	μg/L	50.0		91.6	40-140	19.2	20	V-06
Surrogate: 2-Fluorophenol	84.2		μg/L	200		42.1	15-110			
Surrogate: Phenol-d6	107		$\mu g/L$	200		53.4	15-110			
Surrogate: Nitrobenzene-d5	83.1		$\mu g/L$	100		83.1	30-130			
Surrogate: 2-Fluorobiphenyl	76.7		$\mu g/L$	101		75.9	30-130			
Surrogate: 2,4,6-Tribromophenol	194		μg/L	200		96.9	15-110			
Surrogate: p-Terphenyl-d14	68.0		μg/L	101		67.3	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202261 - SW-846 3510C										
Blank (B202261-BLK1)				Prepared: 05	5/01/18 Analy	yzed: 05/02/1	8			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	$\mu g\!/\!L$							
Anthracene	ND	5.0	$\mu g\!/\!L$							
Benzidine	ND	20	$\mu \text{g/L}$							
Benzo(g,h,i)perylene	ND	5.0	$\mu g/L$							
4-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	μg/L							
4-Chloro-3-methylphenol	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	μg/L							
2-Chloronaphthalene	ND	10	μg/L							
2-Chlorophenol	ND	10	μg/L							
4-Chlorophenylphenylether	ND	10	μg/L							
Di-n-butylphthalate	ND	10	μg/L							
1,3-Dichlorobenzene	ND	5.0	μg/L							
1,4-Dichlorobenzene	ND	5.0	μg/L							
1,2-Dichlorobenzene 3,3-Dichlorobenzidine	ND	5.0	μg/L							
	ND	10	μg/L							
2,4-Dichlorophenol Diethylphthalate	ND	10	μg/L							
2,4-Dimethylphenol	ND	10 10	μg/L							
Dimethylphthalate	ND	10	μg/L μg/L							
4,6-Dinitro-2-methylphenol	ND	10	μg/L μg/L							
2,4-Dinitrophenol	ND ND	10	μg/L μg/L							V-19
2,4-Dinitrotoluene	ND ND	10	μg/L μg/L							V-19
2,6-Dinitrotoluene	ND ND	10	μg/L							
Di-n-octylphthalate	ND ND	10	μg/L							
1,2-Diphenylhydrazine (as Azobenzene)	ND ND	10	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L							
Fluoranthene	ND	5.0	μg/L							
Fluorene	ND	5.0	μg/L							
Hexachlorobenzene	ND	10	μg/L							
Hexachlorobutadiene	ND	10	μg/L							
Hexachlorocyclopentadiene	ND	10	μg/L							
Hexachloroethane	ND	10	$\mu g/L$							
Isophorone	15	10	μg/L							
Naphthalene	ND	5.0	$\mu g/L$							
Nitrobenzene	ND	10	$\mu g\!/\!L$							
2-Nitrophenol	ND	10	$\mu g/L$							
4-Nitrophenol	ND	10	$\mu g/L$							
N-Nitrosodimethylamine	ND	10	$\mu g/L$							
N-Nitrosodiphenylamine	ND	10	$\mu \text{g/L}$							
N-Nitrosodi-n-propylamine	ND	10	$\mu \text{g/L}$							
Pentachlorophenol	ND	10	μg/L							
2-Methylnaphthalene	ND	5.0	$\mu g/L$							
Phenanthrene	ND	5.0	$\mu g/L$							
2-Methylphenol	ND	10	μg/L							
Phenol	ND	10	μg/L							
3/4-Methylphenol	ND	10	μg/L							
Pyrene	ND	5.0	μg/L							
1,2,4-Trichlorobenzene	ND	5.0	μg/L							
2,4,6-Trichlorophenol	ND	10	μg/L							

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Semivolatile Organic Compounds by - GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%KEC Limits	RPD	Limit	Notes
Satch B202261 - SW-846 3510C										
Blank (B202261-BLK1)				Prepared: 05	5/01/18 Analy	zed: 05/02/1	8			
urrogate: 2-Fluorophenol	125		$\mu g/L$	200		62.7	15-110			
urrogate: Phenol-d6	103		$\mu g/L$	200		51.3	15-110			
urrogate: Nitrobenzene-d5	79.5		μg/L	100		79.5	30-130			
urrogate: 2-Fluorobiphenyl	64.8		μg/L	101		64.1	30-130			
urrogate: 2,4,6-Tribromophenol	155		μg/L	200		77.7	15-110			
urrogate: p-Terphenyl-d14	96.4		μg/L	101		95.4	30-130			
CS (B202261-BS1)					5/01/18 Analy					
cenaphthene	31.9	5.0	μg/L	50.0		63.8	47-145			
cenaphthylene nthracene	32.6	5.0	μg/L μα/Ι	50.0		65.1	33-145			
enzidine	36.0	5.0 20	μg/L μg/L	50.0 50.0		72.1	27-133			
enziaine enzo(g,h,i)perylene	17.0	5.0	μg/L μg/L	50.0		34.0 * 75.0	40-140			
Bromophenylphenylether	37.5 36.4	10	μg/L μg/L	50.0		73.0 72.7	10-219 53-127			
atylbenzylphthalate	36.4	10	μg/L μg/L	50.0		74.1	10-152			
Chloro-3-methylphenol	37.1 39.4	10	μg/L μg/L	50.0		78.7	22-147			
is(2-chloroethyl)ether	39.4 39.5	10	μg/L μg/L	50.0		78.9	12-158			
is(2-chloroisopropyl)ether	39.5 42.6	10	μg/L μg/L	50.0		85.1	36-166			
Chloronaphthalene	30.8	10	μg/L μg/L	50.0		61.6	60-120			
Chlorophenol	36.0	10	μg/L μg/L	50.0		72.0	23-134			
Chlorophenylphenylether	34.8	10	μg/L	50.0		69.7	25-154			
i-n-butylphthalate	36.4	10	μg/L μg/L	50.0		72.7	10-120			
3-Dichlorobenzene	31.7	5.0	μg/L	50.0		63.4	10-120			
4-Dichlorobenzene	31.4	5.0	μg/L	50.0		62.8	20-124			
2-Dichlorobenzene	32.8	5.0	μg/L	50.0		65.5	32-129			
3-Dichlorobenzidine	38.3	10	μg/L	50.0		76.7	10-262			
4-Dichlorophenol	38.0	10	μg/L	50.0		76.0	39-135			
iethylphthalate	34.7	10	μg/L	50.0		69.3	10-120			
4-Dimethylphenol	38.2	10	μg/L	50.0		76.5	32-120			
imethylphthalate	36.4	10	μg/L	50.0		72.8	10-120			
6-Dinitro-2-methylphenol	32.4	10	μg/L	50.0		64.8	10-181			
4-Dinitrophenol	31.5	10	μg/L	50.0		63.0	10-191			V-19
4-Dinitrotoluene	34.2	10	μg/L	50.0		68.4	39-139			
6-Dinitrotoluene	36.1	10	μg/L	50.0		72.1	50-158			
i-n-octylphthalate	35.6	10	μg/L	50.0		71.2	4-146			
2-Diphenylhydrazine (as Azobenzene)	38.2	10	μg/L	50.0		76.4	40-140			
is(2-Ethylhexyl)phthalate	36.2	10	μg/L	50.0		72.4	8-158			
uoranthene	36.5	5.0	μg/L	50.0		73.0	26-137			
uorene	34.1	5.0	$\mu g/L$	50.0		68.1	59-121			
exachlorobenzene	35.5	10	$\mu g/L$	50.0		71.0	10-152			
exachlorobutadiene	34.9	10	$\mu g/L$	50.0		69.9	24-120			
exachlorocyclopentadiene	23.9	10	$\mu \text{g/L}$	50.0		47.8	40-140			
exachloroethane	33.0	10	$\mu \text{g/L}$	50.0		66.1	40-120			
pphorone	54.0	10	$\mu \text{g/L}$	50.0		108	21-196			В
aphthalene	36.7	5.0	$\mu \text{g/L}$	50.0		73.4	21-133			
trobenzene	37.6	10	$\mu g/L$	50.0		75.2	35-180			
Nitrophenol	35.9	10	$\mu \text{g/L}$	50.0		71.8	29-182			
Nitrophenol	25.5	10	$\mu \text{g/L}$	50.0		50.9	10-132			
-Nitrosodimethylamine	32.7	10	$\mu g/L$	50.0		65.4	40-140			
-Nitrosodiphenylamine	43.8	10	$\mu \text{g/L}$	50.0		87.5	40-140			
-Nitrosodi-n-propylamine	39.7	10	$\mu g \! / \! L$	50.0		79.3	10-230			
entachlorophenol	30.1	10	$\mu g/L$	50.0		60.2	14-176			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202261 - SW-846 3510C										
LCS (B202261-BS1)				Prepared: 05	/01/18 Analy	zed: 05/02/1	8			
2-Methylnaphthalene	40.0	5.0	μg/L	50.0		80.0	40-140			
Phenanthrene	36.8	5.0	$\mu g/L$	50.0		73.6	54-120			
2-Methylphenol	32.6	10	$\mu g/L$	50.0		65.3	40-140			
Phenol	25.3	10	μg/L	50.0		50.5	5-120			
3/4-Methylphenol	38.9	10	$\mu \text{g/L}$	50.0		77.8	40-140			
Pyrene	36.0	5.0	$\mu \text{g/L}$	50.0		72.0	52-120			
1,2,4-Trichlorobenzene	34.4	5.0	μg/L	50.0		68.8	44-142			
2,4,6-Trichlorophenol	34.2	10	μg/L	50.0		68.5	37-144			
Surrogate: 2-Fluorophenol	127		μg/L	200		63.6	15-110			
Surrogate: Phenol-d6	107		μg/L	200		53.4	15-110			
Surrogate: Nitrobenzene-d5	77.1		μg/L	100		77.1	30-130			
Surrogate: 2-Fluorobiphenyl	64.1		μg/L	101		63.5	30-130			
Surrogate: 2,4,6-Tribromophenol	155		μg/L	200		77.7	15-110			
Surrogate: p-Terphenyl-d14	85.7		μg/L	101		84.9	30-130			
LCS Dup (B202261-BSD1)				-	/01/18 Analy					
Acenaphthene	28.3	5.0	$\mu g \! / \! L$	50.0		56.6	47-145	11.9	48	
Acenaphthylene	29.2	5.0	μg/L	50.0		58.4	33-145	10.9	74	
Anthracene	32.0	5.0	μg/L	50.0		64.0	27-133	11.8	66	
Benzidine	24.3	20	μg/L	50.0		48.6	40-140	35.2		
Benzo(g,h,i)perylene	32.8	5.0	μg/L	50.0		65.5	10-219	13.4	97	
-Bromophenylphenylether	32.2	10	μg/L	50.0		64.5	53-127	12.0	43	
Butylbenzylphthalate	32.6	10	μg/L	50.0		65.1	10-152	12.9	60	
I-Chloro-3-methylphenol	35.1	10	μg/L	50.0		70.1	22-147	11.6	73	
Bis(2-chloroethyl)ether	32.2	10	μg/L	50.0		64.3	12-158	20.4	108	
Bis(2-chloroisopropyl)ether	36.1	10	μg/L	50.0		72.1	36-166	16.5	76	
2-Chloronaphthalene	27.8	10	μg/L	50.0		55.6 *	60-120	10.1	24	
2-Chlorophenol	31.1	10	μg/L	50.0		62.2	23-134	14.6	61	
4-Chlorophenylphenylether	30.5	10	μg/L	50.0		61.0	25-158	13.3	61	
Di-n-butylphthalate	32.5	10	μg/L	50.0		65.0	10-120	11.2	47	
1,3-Dichlorobenzene	27.0	5.0	μg/L	50.0		54.0	10-172	16.0		
1,4-Dichlorobenzene	27.6	5.0	μg/L	50.0		55.2	20-124	12.8		
1,2-Dichlorobenzene 3,3-Dichlorobenzidine	28.3	5.0 10	μg/L μg/L	50.0		56.6	32-129	14.6	100	
2,4-Dichlorophenol	32.6	10	μg/L μg/L	50.0		65.1	10-262	16.3	108	
Diethylphthalate	34.0	10	μg/L μg/L	50.0 50.0		67.9 62.1	39-135 10-120	11.2	50 100	
2,4-Dimethylphenol	31.0	10	μg/L μg/L	50.0		67.5		11.1	58	
Dimethylphthalate	33.8	10	μg/L μg/L	50.0		64.8	32-120 10-120	12.5 11.6	58 183	
Jimethylphthalate 4,6-Dinitro-2-methylphenol	32.4	10	μg/L μg/L	50.0		58.4	10-120	10.5	203	
2,4-Dinitrophenol	29.2	10	μg/L μg/L	50.0		58.4	10-181	8.26	132	V-19
2,4-Dinitrophenor	29.0 31.2	10	μg/L μg/L	50.0		62.3	39-139	9.36	42	v-19
2,6-Dinitrotoluene	31.2	10	μg/L μg/L	50.0		65.5	50-158	9.68	48	
Di-n-octylphthalate	30.8	10	μg/L	50.0		61.5	4-146	14.6	69	
1,2-Diphenylhydrazine (as Azobenzene)	33.8	10	μg/L	50.0		67.5	40-140	12.3	0,	
Bis(2-Ethylhexyl)phthalate	31.5	10	μg/L	50.0		63.1	8-158	13.7	82	
Fluoranthene	33.1	5.0	μg/L	50.0		66.1	26-137	9.95	66	
Fluorene	30.5	5.0	μg/L	50.0		61.0	59-121	11.1	38	
Hexachlorobenzene	31.9	10	μg/L	50.0		63.7	10-152	10.8	55	
Hexachlorobutadiene	31.0	10	μg/L	50.0		61.9	24-120	12.1	62	
Hexachlorocyclopentadiene	21.6	10	μg/L	50.0		43.2	40-140	10.1		
Hexachloroethane	29.2	10	μg/L	50.0		58.4	40-120	12.3	52	
Isophorone	49.2	10	μg/L	50.0		98.3	21-196	9.50	93	В

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202261 - SW-846 3510C										
LCS Dup (B202261-BSD1)				Prepared: 05	5/01/18 Analy	zed: 05/02/1	18			
Naphthalene	32.6	5.0	$\mu g\!/\!L$	50.0		65.2	21-133	11.9	65	
Nitrobenzene	33.0	10	μg/L	50.0		66.0	35-180	13.0	62	
2-Nitrophenol	32.2	10	μg/L	50.0		64.4	29-182	10.9	55	
l-Nitrophenol	22.9	10	μg/L	50.0		45.8	10-132	10.5	131	
N-Nitrosodimethylamine	29.6	10	μg/L	50.0		59.1	40-140	10.1		
N-Nitrosodiphenylamine	38.5	10	$\mu g\!/\!L$	50.0		77.0	40-140	12.8		
N-Nitrosodi-n-propylamine	34.0	10	μg/L	50.0		68.0	10-230	15.4	87	
entachlorophenol	25.5	10	μg/L	50.0		51.0	14-176	16.6	86	
-Methylnaphthalene	34.9	5.0	μg/L	50.0		69.8	40-140	13.5	30	
Phenanthrene	32.5	5.0	μg/L	50.0		65.0	54-120	12.4	39	
-Methylphenol	29.1	10	μg/L	50.0		58.2	40-140	11.4	30	
henol	21.6	10	μg/L	50.0		43.2	5-120	15.6	64	
/4-Methylphenol	32.8	10	$\mu g \! / \! L$	50.0		65.6	40-140	16.9	30	
yrene	31.6	5.0	$\mu g/L$	50.0		63.3	52-120	12.9	49	
,2,4-Trichlorobenzene	30.2	5.0	$\mu g/L$	50.0		60.4	44-142	13.1	50	
,4,6-Trichlorophenol	30.5	10	μg/L	50.0		61.0	37-144	11.5	58	
urrogate: 2-Fluorophenol	108		μg/L	200		54.2	15-110			
urrogate: Phenol-d6	89.8		μg/L	200		44.9	15-110			
urrogate: Nitrobenzene-d5	68.5		μg/L	100		68.5	30-130			
urrogate: 2-Fluorobiphenyl	57.4		$\mu g/L$	101		56.8	30-130			
urrogate: 2,4,6-Tribromophenol	136		μg/L	200		68.1	15-110			
urrogate: p-Terphenyl-d14	73.9		$\mu g/L$	101		73.2	30-130			
Batch B202466 - SW-846 3510C										
Blank (B202466-BLK1)				Prepared: 05	5/03/18 Analy:	zed: 05/04/1	18			
Acenaphthene	ND	5.0	μg/L							
cenaphthylene	ND	5.0	$\mu g/L$							
Anthracene	ND	5.0	μg/L							
Benzidine	ND	20	$\mu g/L$							V-04, V-05
Benzo(g,h,i)perylene	ND	5.0	μg/L							
-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	μg/L							
-Chloro-3-methylphenol	ND	10	$\mu g\!/\!L$							
sis(2-chloroethyl)ether	ND	10	$\mu g\!/\!L$							
Bis(2-chloroisopropyl)ether	ND	10	$\mu g\!/\!L$							
-Chloronaphthalene	ND	10	μg/L							
-Chlorophenol	ND	10	$\mu g/L$							
-Chlorophenylphenylether	ND	10	$\mu g/L$							
Di-n-butylphthalate	ND	10	$\mu g/L$							
,3-Dichlorobenzene	ND	5.0	$\mu g/L$							
,4-Dichlorobenzene	ND	5.0	μg/L							
,2-Dichlorobenzene	ND	5.0	$\mu g/L$							
,3-Dichlorobenzidine	ND	10	$\mu g/L$							
,4-Dichlorophenol	ND	10	μg/L							
Diethylphthalate	ND	10	μg/L							
4-Dimethylphenol	ND	10	μg/L							
rimethylphthalate	ND	10	μg/L							
,6-Dinitro-2-methylphenol	ND	10	μg/L							
,4-Dinitrophenol	ND	10	μg/L							V-19
,4-Dinitrotoluene	ND	10	μg/L							. •/
2,6-Dinitrotoluene	ND	10	μg/L							
Di-n-octylphthalate	ND ND	10	μg/L							
	110		. 0						F	Page 26
										<u> </u>

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B202466 - SW-846 3510C										
Blank (B202466-BLK1)				Prepared: 05	5/03/18 Anal	yzed: 05/04/1	8			
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10	$\mu g\!/\!L$							
Fluoranthene	ND	5.0	$\mu g\!/\!L$							
Fluorene	ND	5.0	$\mu g\!/\!L$							
Hexachlorobenzene	ND	10	$\mu g/L$							
Hexachlorobutadiene	ND	10	$\mu g/L$							
Hexachlorocyclopentadiene	ND	10	$\mu g/L$							V-05
Hexachloroethane	ND	10	$\mu g/L$							
Isophorone	ND	10	$\mu g/L$							
Naphthalene	ND	5.0	μg/L							
Nitrobenzene	ND	10	$\mu g/L$							
2-Nitrophenol	ND	10	μg/L							
4-Nitrophenol	ND	10	μg/L							
N-Nitrosodimethylamine	ND	10	μg/L							
N-Nitrosodiphenylamine	ND	10	μg/L							
N-Nitrosodi-n-propylamine	ND	10	μg/L							
Pentachlorophenol	ND	10	μg/L							
2-Methylnaphthalene	ND	5.0	μg/L							
Phenanthrene	ND	5.0	μg/L							
2-Methylphenol	ND	10	μg/L							
Phenol	ND	10	μg/L							
3/4-Methylphenol	ND	10	μg/L							
Pyrene	ND	5.0	μg/L							
1,2,4-Trichlorobenzene	ND	5.0	μg/L							
2,4,6-Trichlorophenol	ND	10	μg/L			= 0 -				
Surrogate: 2-Fluorophenol	158		μg/L	200		79.0	15-110			
Surrogate: Phenol-d6	121		μg/L	200		60.6	15-110			
Surrogate: Nitrobenzene-d5	98.1		μg/L	100		98.1	30-130			
Surrogate: 2-Fluorobiphenyl	77.4		μg/L	101		76.7	30-130			
Surrogate: 2,4,6-Tribromophenol Surrogate: p-Terphenyl-d14	183 121		μg/L	200 101		91.6 120	15-110 30-130			
	121		μg/L							
LCS (B202466-BS1)		5.0	/T		5/03/18 Anal					
Acenaphthene Acenaphthylene	34.4	5.0 5.0	μg/L μα/Ι	50.0		68.9	47-145			
* *	35.2		μg/L	50.0		70.3	33-145			
Anthracene	39.1	5.0 20	μg/L μg/I	50.0		78.1	27-133			VALUE TO
Benzidine Benzo(a h.)perulene	16.4		μg/L μα/Ι	50.0		32.7 *	40-140			V-04, V-05, L-07
Benzo(g,h,i)perylene	35.3	5.0	μg/L μα/Ι	50.0		70.7	10-219			
4-Bromophenylphenylether	39.2	10	μg/L μα/Ι	50.0		78.5	53-127			
Butylbenzylphthalate 4-Chloro-3-methylphenol	42.7	10	μg/L μα/Ι	50.0		85.4	10-152			
Bis(2-chloroethyl)ether	42.7	10 10	μg/L μg/L	50.0 50.0		85.4 85.4	22-147 12-158			
Bis(2-chloroisopropyl)ether	42.7	10	μg/L μg/L	50.0		85.4 92.7	36-166			
2-Chloronaphthalene	46.3	10	μg/L μg/L	50.0		66.5	60-120			
2-Chlorophenol	33.3	10								
4-Chlorophenylphenylether	40.3	10	μg/L μg/L	50.0 50.0		80.5	23-134 25-158			
pi-n-butylphthalate	36.7	10	μg/L μg/L	50.0		73.4	25-158 10-120			
J.3-Dichlorobenzene	40.6	5.0		50.0		81.3	10-120			
1,4-Dichlorobenzene	35.6	5.0	μg/L μg/L	50.0		71.3 71.1				
1,2-Dichlorobenzene	35.6	5.0					20-124			
3,3-Dichlorobenzidine	36.8	10	μg/L μg/I	50.0		73.6	32-129			
2,4-Dichlorophenol	44.9	10	μg/L μα/Ι	50.0		89.8	10-262			
.,т-ыстогориспог	41.3	10	μg/L	50.0		82.6	39-135			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202466 - SW-846 3510C										
LCS (B202466-BS1)				Prepared: 05	5/03/18 Analy	zed: 05/04/	18			
Diethylphthalate	37.4	10	μg/L	50.0		74.8	10-120			
2,4-Dimethylphenol	38.4	10	$\mu g/L$	50.0		76.8	32-120			
Dimethylphthalate	39.6	10	$\mu g/L$	50.0		79.2	10-120			
,6-Dinitro-2-methylphenol	34.5	10	$\mu g/L$	50.0		69.1	10-181			
2,4-Dinitrophenol	32.9	10	$\mu \text{g/L}$	50.0		65.8	10-191			V-19
,4-Dinitrotoluene	36.9	10	$\mu g\!/\!L$	50.0		73.8	39-139			
,6-Dinitrotoluene	39.6	10	μg/L	50.0		79.3	50-158			
Di-n-octylphthalate	43.6	10	μg/L	50.0		87.3	4-146			
,2-Diphenylhydrazine (as Azobenzene)	43.1	10	μg/L	50.0		86.2	40-140			
Bis(2-Ethylhexyl)phthalate	41.9	10	μg/L	50.0		83.7	8-158			
luoranthene	39.7	5.0	μg/L	50.0		79.3	26-137			
Fluorene	36.3	5.0	μg/L	50.0		72.6	59-121			
Hexachlorobenzene	38.1	10	μg/L	50.0		76.2	10-152			
Iexachlorobutadiene	37.5	10	μg/L	50.0		75.0	24-120			***
Hexachlorocyclopentadiene	21.2	10	μg/L	50.0		42.3	40-140			V-05
Jexachloroethane	37.5	10	μg/L	50.0		75.1	40-120			
Sophorone	43.4	10 5.0	μg/L	50.0		86.7	21-196			
Vaphthalene Litrobenzene	40.2	5.0	μg/L μα/Ι	50.0		80.4	21-133			
Vitrobenzene -Nitrophenol	41.9	10 10	μg/L μg/L	50.0		83.8	35-180			
-Nitrophenol	41.1	10	μg/L μg/L	50.0 50.0		82.2 56.6	29-182 10-132			
I-Nitrosodimethylamine	28.3	10	μg/L μg/L	50.0		75.0	40-140			
I-Nitrosodiphenylamine	37.5	10	μg/L μg/L	50.0		91.9	40-140			
I-Nitrosodi-n-propylamine	46.0 43.2	10	μg/L μg/L	50.0		86.4	10-230			
entachlorophenol	31.7	10	μg/L μg/L	50.0		63.4	14-176			
-Methylnaphthalene	42.6	5.0	μg/L	50.0		85.1	40-140			
Phenanthrene	39.9	5.0	μg/L	50.0		79.7	54-120			
-Methylphenol	36.7	10	μg/L	50.0		73.4	40-140			
Phenol	28.6	10	μg/L	50.0		57.2	5-120			
/4-Methylphenol	42.8	10	μg/L	50.0		85.5	40-140			
Pyrene	39.6	5.0	μg/L	50.0		79.1	52-120			
,2,4-Trichlorobenzene	37.6	5.0	μg/L	50.0		75.2	44-142			
,4,6-Trichlorophenol	38.5	10	μg/L	50.0		76.9	37-144			
Surrogate: 2-Fluorophenol	145		μg/L	200		72.5	15-110			
Surrogate: Phenol-d6	118		μg/L μg/L	200		58.9	15-110			
Surrogate: Nitrobenzene-d5	86.6		μg/L	100		86.6	30-130			
surrogate: 2-Fluorobiphenyl	70.8		μg/L	101		70.1	30-130			
Surrogate: 2,4,6-Tribromophenol	156		μg/L	200		77.8	15-110			
urrogate: p-Terphenyl-d14	93.7		$\mu g/L$	101		92.7	30-130			
.CS Dup (B202466-BSD1)				Prepared: 05	5/03/18 Analy	zed: 05/04/	18			
Acenaphthene	32.9	5.0	μg/L	50.0		65.8	47-145	4.57	48	
acenaphthylene	33.7	5.0	$\mu g/L$	50.0		67.4	33-145	4.18	74	
Anthracene	37.8	5.0	$\mu \text{g/L}$	50.0		75.6	27-133	3.28	66	
Benzidine	26.4	20	$\mu \text{g/L}$	50.0		52.9	40-140	47.1		V-04, V-05
Benzo(g,h,i)perylene	34.3	5.0	$\mu \text{g/L}$	50.0		68.5	10-219	3.07	97	
-Bromophenylphenylether	38.1	10	$\mu \text{g/L}$	50.0		76.3	53-127	2.84	43	
Butylbenzylphthalate	41.9	10	$\mu \text{g/L}$	50.0		83.8	10-152	1.89	60	
-Chloro-3-methylphenol	41.5	10	$\mu \text{g}/L$	50.0		83.0	22-147	2.95	73	
Bis(2-chloroethyl)ether	43.1	10	$\mu \text{g}/L$	50.0		86.2	12-158	0.932	108	
Bis(2-chloroisopropyl)ether	47.2	10	$\mu \text{g}/L$	50.0		94.4	36-166	1.82	76	
-Chloronaphthalene	31.2	10	μg/L	50.0		62.3	60-120	6.49	24	

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B202466 - SW-846 3510C										
CS Dup (B202466-BSD1)				Prepared: 05	5/03/18 Analy	zed: 05/04/1	8			
-Chlorophenol	40.4	10	$\mu g/L$	50.0		80.9	23-134	0.446	61	
-Chlorophenylphenylether	35.2	10	$\mu g/L$	50.0		70.4	25-158	4.09	61	
9i-n-butylphthalate	39.5	10	$\mu g/L$	50.0		79.1	10-120	2.77	47	
,3-Dichlorobenzene	36.1	5.0	$\mu g/L$	50.0		72.2	10-172	1.25		
4-Dichlorobenzene	35.6	5.0	$\mu g/L$	50.0		71.2	20-124	0.0562		
2-Dichlorobenzene	37.0	5.0	$\mu g/L$	50.0		73.9	32-129	0.407		
3-Dichlorobenzidine	42.3	10	μg/L	50.0		84.6	10-262	6.03	108	
4-Dichlorophenol	40.3	10	$\mu g/L$	50.0		80.5	39-135	2.57	50	
ethylphthalate	36.2	10	μ g/L	50.0		72.3	10-120	3.34	100	
4-Dimethylphenol	41.2	10	μ g/L	50.0		82.3	32-120	6.91	58	
imethylphthalate	37.9	10	$\mu g/L$	50.0		75.9	10-120	4.23	183	
6-Dinitro-2-methylphenol	34.0	10	$\mu g/L$	50.0		68.1	10-181	1.43	203	
4-Dinitrophenol	32.3	10	$\mu \text{g}/L$	50.0		64.5	10-191	1.93	132	V-19
4-Dinitrotoluene	35.4	10	$\mu g/L$	50.0		70.9	39-139	4.04	42	
6-Dinitrotoluene	37.8	10	$\mu g/L$	50.0		75.6	50-158	4.75	48	
-n-octylphthalate	42.2	10	μ g/L	50.0		84.3	4-146	3.45	69	
2-Diphenylhydrazine (as Azobenzene)	41.9	10	μ g/L	50.0		83.8	40-140	2.89		
s(2-Ethylhexyl)phthalate	40.6	10	$\mu \text{g/L}$	50.0		81.2	8-158	3.13	82	
uoranthene	38.0	5.0	$\mu g/L$	50.0		76.1	26-137	4.22	66	
uorene	34.7	5.0	$\mu g/L$	50.0		69.4	59-121	4.39	38	
exachlorobenzene	37.4	10	$\mu g/L$	50.0		74.8	10-152	1.83	55	
exachlorobutadiene	36.6	10	μg/L	50.0		73.2	24-120	2.54	62	
exachlorocyclopentadiene	21.6	10	μg/L	50.0		43.2	40-140	1.97		V-05
exachloroethane	38.0	10	μ g/L	50.0		76.0	40-120	1.27	52	
pphorone	42.2	10	μ g/L	50.0		84.3	21-196	2.81	93	
aphthalene	39.6	5.0	μ g/L	50.0		79.2	21-133	1.50	65	
trobenzene	40.8	10	μ g/L	50.0		81.7	35-180	2.61	62	
Nitrophenol	39.8	10	$\mu \text{g/L}$	50.0		79.6	29-182	3.29	55	
Nitrophenol	27.2	10	$\mu \text{g/L}$	50.0		54.4	10-132	4.11	131	
Nitrosodimethylamine	37.8	10	μ g/L	50.0		75.6	40-140	0.824		
-Nitrosodiphenylamine	45.2	10	$\mu g/L$	50.0		90.3	40-140	1.80		
-Nitrosodi-n-propylamine	43.2	10	$\mu g/L$	50.0		86.3	10-230	0.0232	87	
entachlorophenol	31.8	10	$\mu g/L$	50.0		63.7	14-176	0.504	86	
Methylnaphthalene	40.7	5.0	$\mu g/L$	50.0		81.5	40-140	4.37	30	
nenanthrene	38.2	5.0	$\mu g/L$	50.0		76.4	54-120	4.30	39	
Methylphenol	36.3	10	$\mu g/L$	50.0		72.6	40-140	1.15	30	
nenol	28.4	10	$\mu g/L$	50.0		56.8	5-120	0.631	64	
4-Methylphenol	41.5	10	$\mu g/L$	50.0		83.0	40-140	2.94	30	
rrene	38.8	5.0	$\mu g/L$	50.0		77.5	52-120	1.99	49	
2,4-Trichlorobenzene	36.5	5.0	$\mu g/L$	50.0		73.0	44-142	2.89	50	
4,6-Trichlorophenol	36.4	10	μg/L	50.0		72.8	37-144	5.56	58	
urrogate: 2-Fluorophenol	144		μg/L	200		72.2	15-110			
arrogate: Phenol-d6	116		μg/L	200		57.9	15-110			
arrogate: Nitrobenzene-d5	84.5		μg/L	100		84.5	30-130			
urrogate: 2-Fluorobiphenyl	67.0		μg/L	101		66.3	30-130			
nrrogate: 2,4,6-Tribromophenol	149		μg/L	200		74.6	15-110			
urrogate: p-Terphenyl-d14	89.6		μg/L	101		88.8	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Prepared & Analyzed: 05/02/18	Notes
Aroclor-1016 ND 0.10 μg/L Aroclor-1016 [2C] ND 0.10 μg/L Aroclor-1221 ND 0.10 μg/L Aroclor-1231 [2C] ND 0.10 μg/L Aroclor-1232 [2C] ND 0.10 μg/L Aroclor-1242 [2C] ND 0.10 μg/L Aroclor-1242 [2C] ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18 <th></th>	
Aroclor-1016 [2C] ND 0.10 µg/L Aroclor-1221 [2C] ND 0.10 µg/L Aroclor-1232 ND 0.10 µg/L Aroclor-1232 [2C] ND 0.10 µg/L Aroclor-1232 [2C] ND 0.10 µg/L Aroclor-1232 [2C] ND 0.10 µg/L Aroclor-1242 [2C] ND 0.10 µg/L Aroclor-1242 [2C] ND 0.10 µg/L Aroclor-1248 [2C] ND 0.10 µg/L Aroclor-1248 [2C] ND 0.10 µg/L Aroclor-1254 [2C] ND 0.10 µg/L Aroclor-1254 [2C] ND 0.10 µg/L Aroclor-1260 ND 0.10 µg/L Aroclor-1260 ND 0.10 µg/L Aroclor-1260 [2C] ND 0.10 µg/L Aroclor-1260 [2C] ND 0.10 µg/L Aroclor-1260 [2C] ND 0.10 µg/L Surrogate: Decachlorobiphenyl [2C] 2.08 µg/L 2.00 99.5 30-150 Surrogate: Tetrachloro-m-xylene 1.64 µg/L 2.00 87.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 µg/L 2.00 87.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 µg/L 2.00 87.3 30-150 Aroclor-1268 Analyzed: 05/02/18	
Aroclor-1221 ND	
Aroclor-1221 [2C] ND 0.10 μg/L Aroclor-1232 ND 0.10 μg/L Aroclor-1232 [2C] ND 0.10 μg/L Aroclor-1242 ND 0.10 μg/L Aroclor-1242 [2C] ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1260 ND 0.10 μg/L Aroclor-1260 ND 0.10 μg/L Aroclor-1260 [2C]	
Aroclor-1232 ND 0.10 μg/L Aroclor-1232 [2C] ND 0.10 μg/L Aroclor-1242 ND 0.10 μg/L Aroclor-1242 [2C] ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Aroclor-1232 [2C] ND 0.10 μg/L Aroclor-1242 ND 0.10 μg/L Aroclor-1242 [2C] ND 0.10 μg/L Aroclor-1248 ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1254 ND 0.10 μg/L Aroclor-1254 (2C] ND 0.10 μg/L Aroclor-1254 (2C] ND 0.10 μg/L Aroclor-1260 ND 0.10 μg/L Aroclor-1260 (2C] ND 0.10 μg/L Aroclor-1260 ECC ND 0.10 μg/L Aroclor-1260 ECC ND 0.10 μg/L Aroclor-1260 ECC ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl [2C] 2.08 μg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150	
Aroclor-1242 ND 0.10 μg/L Aroclor-1242 [2C] ND 0.10 μg/L Aroclor-1248 ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1254 ND 0.10 μg/L Aroclor-1254 ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1260 ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 87.3 30-150 Surrogate: Tetrachloro-m-xylene 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Aroclor-1242 [2C] ND 0.10 μg/L Aroclor-1248 ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1254 (2C] ND 0.10 μg/L Aroclor-1254 (2C] ND 0.10 μg/L Aroclor-1254 (2C] ND 0.10 μg/L Aroclor-1260 (2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Aroclor-1248 ND 0.10 μg/L Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1254 ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1260 ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl [2C] 2.08 μg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Aroclor-1248 [2C] ND 0.10 μg/L Aroclor-1254 ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1260 ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl [2C] 2.08 μg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Aroclor-1254 ND 0.10 μg/L Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1260 ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl [2C] 2.08 μg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Aroclor-1254 [2C] ND 0.10 μg/L Aroclor-1260 ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl [2C] 2.08 μg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Aroclor-1260 ND 0.10 μg/L Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl [2C] 2.08 μg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Aroclor-1260 [2C] ND 0.10 μg/L Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl [2C] 2.08 μg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Surrogate: Decachlorobiphenyl 1.99 μg/L 2.00 99.5 30-150 Surrogate: Decachlorobiphenyl [2C] 2.08 μg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Surrogate: Decachlorobiphenyl [2C] 2.08 µg/L 2.00 104 30-150 Surrogate: Tetrachloro-m-xylene 1.64 µg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 µg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Surrogate: Tetrachloro-m-xylene 1.64 μg/L 2.00 81.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
Surrogate: Tetrachloro-m-xylene [2C] 1.75 μg/L 2.00 87.3 30-150 LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
LCS (B202327-BS1) Prepared & Analyzed: 05/02/18	
1 1 1016	
Aroclor-1016 0.46 0.20 $\mu g/L$ 0.500 91.9 $50-140$	
Aroclor-1016 [2C] 0.47 0.20 $\mu g/L$ 0.500 95.0 $50-140$	
Aroclor-1260 0.43 0.20 μg/L 0.500 86.3 8-140	
Aroclor-1260 [2C] 0.45 0.20 $\mu g/L$ 0.500 89.7 $8-140$	
Surrogate: Decachlorobiphenyl 1.93 µg/L 2.00 96.3 30-150	
Surrogate: Decachlorobiphenyl [2C] 1.99 μg/L 2.00 99.5 30-150	
Surrogate: Tetrachloro-m-xylene 1.57 µg/L 2.00 78.6 $30-150$	
Surrogate: Tetrachloro-m-xylene [2C] 1.66 μ g/L 2.00 83.0 $30-150$	
LCS Dup (B202327-BSD1) Prepared & Analyzed: 05/02/18	
Aroclor-1016 0.45 0.20 μg/L 0.500 89.5 50-140 2.63	
Aroclor-1016 [2C] 0.48 0.20 µg/L 0.500 96.2 50-140 1.23	
Aroclor-1260 0.43 0.20 µg/L 0.500 86.0 8-140 0.251	
Aroclor-1260 [2C] 0.45 0.20 µg/L 0.500 89.8 8-140 0.0802	
Surrogate: Decachlorobiphenyl 1.92 µg/L 2.00 96.0 30-150	
Surrogate: Decachlorobiphenyl [2C] 2.00 µg/L 2.00 99.9 30-150	
Surrogate: Tetrachloro-m-xylene 1.58 µg/L 2.00 79.0 $30-150$	
Surrogate: Tetrachloro-m-xylene [2C] 1.68 µg/L 2.00 84.0 $30-150$	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202350 - EPA 200.7										
Blank (B202350-BLK1)				Prepared: 05	/02/18 Anal	yzed: 05/03/	18			
Iron	ND	0.050	mg/L							
LCS (B202350-BS1)				Prepared: 05	/02/18 Anal	vzed: 05/03/	18			
Iron	4.22	0.050	mg/L	4.00	, 02, 10 111141	106	85-115			
					100110 1 1					
LCS Dup (B202350-BSD1)		0.050	/T	Prepared: 05	/02/18 Anal	•		2.62	•	
Iron	4.07	0.050	mg/L	4.00		102	85-115	3.63	20	
Batch B202352 - EPA 200.8										
Blank (B202352-BLK1)				Prepared: 05	/02/18 Anal	yzed: 05/03/	18			
Antimony	ND	1.0	μg/L							
Arsenic	ND	1.0	$\mu \text{g/L}$							
Cadmium	ND	0.20	$\mu g/L$							
Chromium	ND	10	$\mu g/L$							
Copper	ND	1.0	$\mu \text{g/L}$							
Lead	ND	0.50	$\mu \text{g/L}$							
Nickel	ND	5.0	$\mu \text{g/L}$							
Selenium	ND	5.0	$\mu g/L$							
Silver	ND	0.20	$\mu g/L$							
Zine	ND	20	$\mu g/L$							
LCS (B202352-BS1)				Prepared: 05	/02/18 Anal	yzed: 05/03/	18			
Antimony	515	10	μg/L	500		103	85-115			
Arsenic	507	10	μg/L	500		101	85-115			
Cadmium	516	2.0	μg/L	500		103	85-115			
Chromium	507	100	μg/L	500		101	85-115			
Copper	997	10	μg/L	1000		99.7	85-115			
Lead	505	5.0	$\mu g/L$	500		101	85-115			
Nickel	506	50	μg/L	500		101	85-115			
Selenium	499	50	μg/L	500		99.7	85-115			
Silver	495	2.0	μg/L	500		98.9	85-115			
Zinc	1030	200	μg/L	1000		103	85-115			
LCS Dup (B202352-BSD1)				Prepared: 05	/02/18 Anal	yzed: 05/03/	18			
Antimony	524	10	μg/L	500		105	85-115	1.77	20	
Arsenic	521	10	μg/L	500		104	85-115	2.56	20	
Cadmium	525	2.0	μg/L	500		105	85-115	1.67	20	
Chromium	519	100	μg/L	500		104	85-115	2.34	20	
Copper	1020	10	μg/L	1000		102	85-115	2.51	20	
Lead	509	5.0	μg/L	500		102	85-115	0.815	20	
Nickel	518	50	μg/L	500		104	85-115	2.34	20	
· · · · · · · · · · · · · · · · · · ·	2.10		μg/L	500		104	85-115	4.25	20	
	520	50	μg/L	300						
Selenium Silver	520 502	2.0	μg/L μg/L	500		100	85-115	1.53	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202371 - EPA 245.1										
Blank (B202371-BLK1)				Prepared: 05	/02/18 Analy	yzed: 05/03/1	8			
Mercury	ND	0.00010	mg/L							
LCS (B202371-BS1)				Prepared: 05	/02/18 Analy	yzed: 05/03/1	8			
Mercury	0.00175	0.00010	mg/L	0.00200		87.4	85-115			
LCS Dup (B202371-BSD1)				Prepared: 05	/02/18 Analy	yzed: 05/03/1	8			
Mercury	0.00178	0.00010	mg/L	0.00200		88.8	85-115	1.59	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
	resuit	Limit	Cinto	Level	Result	/UKLC	Lilling	KI D	Limit	110103
Batch B202315 - SM21-22 3500 Cr B Blank (B202315-BLK1)				Prepared & A	Analyzad: 05	/01/18				
Hexavalent Chromium	ND	0.0040	mg/L	1 repared & 7	Anaryzed. 03	/01/16				
	ND		3							
LCS (B202315-BS1)		0.0040	/T	Prepared & A	Analyzed: 05					
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		110	83.2-114			
LCS Dup (B202315-BSD1)				Prepared & A	Analyzed: 05	/01/18				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		109	83.2-114	1.45	7.51	
Duplicate (B202315-DUP1)	Sou	rce: 18E0051-	01	Prepared & A	Analyzed: 05	/01/18				
Hexavalent Chromium	ND	0.0040	mg/L		ND)		NC	56.3	
Matrix Spike (B202315-MS1)	Sou	rce: 18E0051-	01	Prepared & A	Analyzed: 05	/01/18				
Hexavalent Chromium	0.099	0.0040	mg/L	0.100	ND	99.1	10.8-151			
Batch B202316 - SM21-22 4500 CL G										
Blank (B202316-BLK1)				Prepared & A	Analyzed: 05	/01/18				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B202316-BS1)				Prepared & A	Analyzed: 05	/01/18				
Chlorine, Residual	1.2	0.020	mg/L	1.34		86.4	76-135			
LCS Dup (B202316-BSD1)				Prepared & A	Analyzed: 05	/01/18				
Chlorine, Residual	1.2	0.020	mg/L	1.34		87.3	76-135	1.03	7.41	
Duplicate (B202316-DUP1)	Sou	rce: 18E0051-	01	Prepared & A	Analyzed: 05	/01/18				
Chlorine, Residual	ND	0.020	mg/L		ND)		NC	35.9	
Matrix Spike (B202316-MS1)	Sou	rce: 18E0051-	01	Prepared & A	Analyzed: 05	/01/18				
Chlorine, Residual	0.99	0.020	mg/L	1.00	ND	98.8	10-185			
Batch B202335 - EPA 1664B										
Blank (B202335-BLK1)				Prepared & A	Analyzed: 05	/02/18				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B202335-BS1)				Prepared & A	Analyzed: 05	/02/18				
Silica Gel Treated HEM (SGT-HEM)	8.4		mg/L	10.0		84.0	64-132			
Duplicate (B202335-DUP1)	Sou	rce: 18E0051-	01	Prepared & A	Analyzed: 05	/02/18				
	,	1.6								

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B202335 - EPA 1664B										
Matrix Spike (B202335-MS1)	Sour	ce: 18E0051-	01	Prepared & A	Analyzed: 05/	02/18				
Silica Gel Treated HEM (SGT-HEM)	67	14	mg/L	100	ND	67.0	64-132			
Batch B202337 - SM21-22 2540D										
Blank (B202337-BLK1)				Prepared & A	Analyzed: 05/	02/18				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B202337-BS1)				Prepared & A	Analyzed: 05/	02/18				
Total Suspended Solids	174	10	mg/L	200		87.0	64.3-117			
Batch B202492 - EPA 300.0										
Blank (B202492-BLK1)				Prepared & A	Analyzed: 05/	02/18				
Chloride	ND	1.0	mg/L							
LCS (B202492-BS1)				Prepared & A	Analyzed: 05/	02/18				
Chloride	5.2	1.0	mg/L	5.00		104	90-110			
LCS Dup (B202492-BSD1)				Prepared & A	Analyzed: 05/	02/18				
Chloride	5.3	1.0	mg/L	5.00		106	90-110	2.50	20	
Duplicate (B202492-DUP1)	Sour	ce: 18E0051-	01RE1	Prepared & A	Analyzed: 05/	02/18				
Chloride	16000	500	mg/L		16000			0.202	20	
Matrix Spike (B202492-MS1)	Sour	ce: 18E0051-	01RE1	Prepared & A	Analyzed: 05/	02/18				
Chloride	17000	500	mg/L	2500	16000	31.7 *	80-120			MS-07

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA 608.3

Lab Sample ID:	B202327-BS1		Date(s) Analyzed:	05/02/2018	05/02/2	018
Instrument ID (1):	ECD10	_	Instrument ID (2):	ECD10		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WI	RT WINDOW CONCENTRATION		%RPD
7110/12112	OOL	111	FROM	TO	OONOLIVITUUTOIV)
Aroclor-1016	1	0.000	0.000	0.000	0.46	
	2	0.000	0.000	0.000	0.47	2.2
Aroclor-1260	1	0.000	0.000	0.000	0.43	
	2	0.000	0.000	0.000	0.45	4.6

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA 608.3

Lab Sample ID:	B202327-BSD1		Date(s) Analyzed:	05/02/2018	05/02/20	18
Instrument ID (1):	ECD10	-	Instrument ID (2):	ECD10		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	RT WINDOW CONCENTRATION		%RPD
7.1.0.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.45	
	2	0.000	0.000	0.000	0.48	6.5
Aroclor-1260	1	0.000	0.000	0.000	0.43	
	2	0.000	0.000	0.000	0.45	4.6

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
'	•
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
В	Analyte is found in the associated laboratory blank as well as in the sample.
DL-15	Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
S-07	One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
V-06	Continuing calibration did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.
V-19	Initial calibration did not meet method specifications. Compound was calibrated using linear regression with correlation coefficient <0.99. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

1,1,1-Trichloroethane

Analyte	Certifications	
EPA 200.7 in Water		
Iron	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 200.8 in Water	C1,1111,111,111,11C,111L, 7/1	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA	
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA	
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA	
Copper	CT,MA,NH,NY,RI,NC,ME,VA	
Lead	CT,MA,NH,NY,RI,NC,ME,VA	
Nickel	CT,MA,NH,NY,RI,NC,ME,VA	
Selenium	CT,MA,NH,NY,RI,NC,ME,VA	
Silver	CT,MA,NH,NY,RI,NC,ME,VA	
Zinc	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 245.1 in Water		
Mercury	CT,MA,NH,RI,NY,NC,ME,VA	
EPA 300.0 in Water		
Chloride	NC,NY,MA,VA,ME,NH,CT,RI	
EPA 608.3 in Water		
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 624 in Water		
Benzene	MA,ME,VA	
Carbon Tetrachloride	MA,ME,VA	
1,2-Dichlorobenzene	MA,ME,VA	
1,3-Dichlorobenzene	MA,ME,VA	
1,4-Dichlorobenzene	MA,ME,VA	
1,2-Dichloroethane	MA,ME,VA	
1,1-Dichloroethane	MA,ME,VA	
1,1-Dichloroethylene	MA,ME,VA	
Ethylbenzene	MA,ME,VA	
Methylene Chloride	MA,ME,VA	
Tetrachloroethylene	MA,ME,VA	
Toluene	MA,ME,VA	

MA,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Isophorone

Certified Analyses included in this Report	
Analyte	Certifications
EPA 624 in Water	
1,1,2-Trichloroethane	MA,ME,VA
Trichloroethylene	MA,ME,VA
Vinyl Chloride	MA,ME,VA
m+p Xylene	MA,VA
o-Xylene	MA,VA
EPA 625 in Water	
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 625.1 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine (as Azobenzene)	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA

CT,MA,NH,NY,NC,RI,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 625.1 in Water	•
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodiphenylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
Pentachlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC
SM21-22 4500 CL G in Water	
Chlorine, Residual	CT,MA,RI,ME
SM21-22 4500 CN E in Water	
Cyanide	CT,MA,NH,NY,RI,NC,ME,VA
SW-846 8015C in Water	
Ethanol	NY

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2018
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2018
FL	Florida Department of Health	E871027 NELAP	06/30/2018
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2018
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2018
NC-DW	North Carolina Department of Health	25703	07/31/2018

Table of Contents B = Sodium Bisulfate X = Sodium Hydroxide T = Sodium 2 Preservation Codes: DW = Drinking Water S = Summa Canister GW = Ground Water WW = Waste Water 3 Container Codes A = Amber Glass T = Tedlar Bag O = Other (please 0 = Other (please 0 = Other (please Non Soxhlet S = Sulfuric Acid PCB ONLY H = HCL M = Methanol N = Nitric Acid Soxhlet Preservation Code O Field Filtered Matrix Codes O Field Filtered O Lab to Filter P = Plastic ST = Sterile O Lab to Filter 3 Container Code SL = Sludge SOL = Solid Thiosulfate # of Containers G = Glass V = Vial define) <u>"</u> define) S = Soil A = Air define) Please use the following codes to indicate possible sample concentration Chromatogram own.compostiate.com AIHA-LAP, LLC East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown within the Conc Code column above: 39 Spruce Street Other WRTA CT RCP Required MA MCP Required MCF Certification Form Reguired MWRA RCP Costification Form Require School MA State DW Required MBIA Special Requirements 888 Email Kerradise@lightship Phone: 413-525-2332 8 C OST http://www.contesttabs.com SE USE Matrix Municipality Brownfield DWSID 10-Day EXCEL 8 3-Day 4-Day CLP Like Data Pkg Required Composite PDF BIN to Eversource Att = Note Waldwin $\Box \mathbf{y}$ Government 以 () Ending Date/Time Due Date: ormat: Fax To# Federal Other: 2-Day 1-Day abalad Ashta Od Project Entity Beginning Date/Time zerease Madrio TWINEEN VA Email: info@contestlabs.com Date/Time: | | S Date/Time: SIII & Date/Time: Client Sample ID / Description Date/Time: Fax: 413-525-6405 Date/Time:)ate/Time: RODO FE MAR F-TND6 a/ttd/in 2 KADANSE Inclustrial Park 8-1-5 508-830-334H GAN IIV Invoice Recipient: FUPNSOIAYCE Winthrop といろ Con-Test Quote Name/Number: CON-KESK" nquished by: (signature) Relinquished by: (signature) eived by: (signature) eived by: (signature) Work Order# Con-Test Project Location: Project Manager: Project Number: Sampled By: Comments: Address: Phone; Page 42 of 43

Doc # 381 Rev 1_03242017

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

	ed By	E 50		Date	5-1-18		Time	18:45	
How were th	ne samples	In Cooler	-	No Cooler		On Ice	T	No Ice	
receiv	ved?	Direct from Samp	lina	•	***************************************	- Ambient		 Melted Ice	
		Direct from Camp	By Gun #	$E \wedge h$	-	Actual Tem	p- 7.8		
Were sam		F		<u> </u>	-				
Temperatu			By Blank #			Actual Tem	**************************************	0.00	
	Custody Se	,	MA		•	s Tampered		<u>NA</u>	
	COC Relin	•	<u> </u>		s Chain Ag	ree With Sa	mpies ?		
		eaking/loose caps	on any sam		<u></u>	_ to a contract the fact that the	minima matana a O	-	
Is COC in in	-	······································	~		mpies rece		olding time?		
Did COC i		Client	<u> </u>	Analysis ID's		-	er Name Dates/Time	<u> </u>	
pertinent In		Project		ID \$		_ Conection	Dates/Time	s <u> </u>	
•		out and legible?	<u></u>	•	\	a matifical?			
Are there La		•	<u> </u>			s notified?	10 P 1 11	://	
Are there Ru			<u> </u>			s notified?	Bre Lu		
Are there Sh			<u> </u>		wno wa	s notified?	Like		
is there eno	_		<u>-</u>		MS/MSD?	, -			
	•	ere applicable?				samples red	- nuirod?	C	
Proper Medi		•			On COC?		quired :	<i>_</i>	
Were trip bla		,	<u>حب</u>	Acid	busy.		- Base	PHZIZ	
·		proper pH?	<u> </u>	Aciu			Dase		
Vials	#	Containers:	#	4 1 21	DL #	#	40-	_ A b	#
lnn		1 Liter Amb.	8	1 Liter	Plastic	1	160	z Amb.	
		COO 1 A 1	······································	E00	D3 12 -		O A	/Ol	
HCL-	11	500 mL Amb.			Plastic	2		mb/Clear	
HCL- Meoh-	11	250 mL Amb.		250 ml	_ Plastic	2 2	4oz A	mb/Clear	
HCL- Meoh- Bisulfate-		250 mL Amb. Col./Bacteria		250 ml Flast	Plastic		4oz A 2oz A	mb/Clear mb/Clear	***************************************
HCL- Meoh- Bisulfate- DI-	11	250 mL Amb. Col./Bacteria Other Plastic		250 ml Flast Other	Plastic point Glass		4oz A 2oz A Er	mb/Clear	· · · · · · · · · · · · · · · · · · ·
HCL- Meoh- Bisulfate- DI- Thiosulfate-		250 mL Amb. Col./Bacteria Other Plastic SOC Kit		250 ml Flast Other Plast	Plastic point Glass ic Bag		4oz A 2oz A	mb/Clear mb/Clear	
HCL- Meoh- Bisulfate- DI- Thiosulfate-		250 mL Amb. Col./Bacteria Other Plastic		250 ml Flash Other Plast Zip	Plastic point Glass ic Bag lock		4oz A 2oz A Er	mb/Clear mb/Clear	
Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-		250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate	#	250 ml Flast Other Plast	Plastic point Glass ic Bag lock	3	4oz A 2oz A Er	mb/Clear mb/Clear	#
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers:	#	250 ml Flast Other Plast Zip Unused	Plastic npoint Glass ic Bag lock Media		4oz Al 2oz A Er Frozen:	mb/Clear mb/Clear ncore	#
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp-		250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb.	#	250 ml Flash Other Plast Zip Unused	Plastic npoint Glass ic Bag lock Media Plastic	3	4oz Al 2oz Al Er Frozen:	mb/Clear mb/Clear ncore	#
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL-		250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	#	250 ml Flash Other Plast Zip Unused 1 Liter 500 ml	Plastic npoint Glass ic Bag lock Media Plastic Plastic	3	4oz A 2oz A Er Frozen:	mb/Clear mb/Clear ncore oz Amb. mb/Clear	*
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh-		250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	# 1	250 ml Flash Other Plast Zip Unused 1 Liter 500 ml 250 ml	Plastic npoint Glass ic Bag lock Media Plastic Plastic Plastic	3	4oz Al 2oz Al Er Frozen: 16 o 8oz Al 4oz Al	mb/Clear mb/Clear ncore	*
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate-		250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	#	250 ml Flash Other Plast Zip Unused 1 Liter 500 ml 250 ml	Plastic npoint Glass ic Bag lock Media Plastic Plastic	3	4oz Al 2oz Al Er Frozen: 16 o 8oz Al 4oz Al 2oz Al	mb/Clear mb/Clear ncore oz Amb. mb/Clear mb/Clear	#
HCL- Meoh- Bisulfate- DI- Thiosulfate-		250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	#	250 ml Flasi Other Plast Zip Unused 1 Liter 500 ml 250 ml Flasi Other	Plastic Class Clas	3	4oz Al 2oz Al Er Frozen: 16 o 8oz Al 4oz Al 2oz Al	mb/Clear mb/Clear ncore oz Amb. mb/Clear mb/Clear mb/Clear	#
HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI-		250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	***************************************	250 ml Flash Other Plast Zip Unused 1 Liter 500 ml 250 ml Flash Other Plast	Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic	3	4oz A 2oz A Er Frozen: 16 o 8oz A 4oz A 2oz A	mb/Clear mb/Clear ncore oz Amb. mb/Clear mb/Clear mb/Clear	#

August 6, 2018

Kevin Paradise Lightship Engineering, LLC 39 Industrial Park Road Plymouth, MA 02360

Project Location: 500.98.12 Client Job Number: Project Number: 500.98.12

Laboratory Work Order Number: 18H0054

Emily Snyd

Enclosed are results of analyses for samples received by the laboratory on August 1, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Emily E. Snyder Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
18H0054-01	5
Sample Preparation Information	8
QC Data	9
Metals Analyses (Total)	9
B209351	9
B209352	9
B209362	10
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	11
B209219	11
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	12
'[none]'	12
Flag/Qualifier Summary	13
Certifications	14
Chain of Custody/Sample Receipt	15

Lightship Engineering, LLC 39 Industrial Park Road Plymouth, MA 02360 ATTN: Kevin Paradise

REPORT DATE: 8/6/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 500.98.12

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18H0054

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 500.98.12

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
LE-SW-1	18H0054-01	Surface Water		SM19-22 4500 NH3 C	
				SM2520B	NY11393/MA-MAI138/M A1110
				SW-846 6010D	
				SW-846 6020B	
				SW-846 7470A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISON: 8/6/18 Results have been updated to include 6020 analysis.

SW-846 6010D

Qualifications:

В

Analyte is found in the associated laboratory blank as well as in the sample.

Analyte & Samples(s) Qualified:

Iron

18H0054-01[LE-SW-1], B209351-BS1, B209351-BSD1

B-07

Data is not affected by elevated level in laboratory blank since sample result is >10x level found in the blank.

Analyte & Samples(s) Qualified:

Iron

18H0054-01[LE-SW-1], B209351-BLK1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

5

5

 $\mu g/L$

 $\mu g/L$

Work Order: 18H0054 Sample Description:

Project Location: 500.98.12 Date Received: 8/1/2018 Field Sample #: LE-SW-1

Sampled: 8/1/2018 09:10

ND

ND

2.5

50

Sample ID: 18H0054-01 Sample Matrix: Surface Water

Antimony

Arsenic

Cadmium

Chromium

Copper

Iron

Lead

Mercury

Nickel

Silver

Zinc

Selenium

		Metals Analy	ses (Total)					
						Date	Date/Time	
Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
ND	5.0	$\mu g/L$	5		SW-846 6020B	8/2/18	8/3/18 12:11	WSD
61	2.0	$\mu g/L$	5		SW-846 6020B	8/2/18	8/3/18 12:11	WSD
ND	2.5	$\mu g/L$	5		SW-846 6020B	8/2/18	8/3/18 12:11	WSD
17	5.0	$\mu g/L$	5		SW-846 6020B	8/2/18	8/3/18 12:11	WSD
110	25	$\mu g/L$	5		SW-846 6020B	8/2/18	8/3/18 12:11	WSD
4.5	0.050	mg/L	1	B-07, B	SW-846 6010D	8/2/18	8/3/18 14:43	WSD
11	5.0	$\mu g/L$	5		SW-846 6020B	8/2/18	8/3/18 12:11	WSD
ND	0.00010	mg/L	1		SW-846 7470A	8/2/18	8/3/18 10:42	EJB
ND	25	μg/L	5		SW-846 6020B	8/2/18	8/3/18 12:11	WSD
210	25	μg/L	5		SW-846 6020B	8/2/18	8/3/18 12:11	WSD

SW-846 6020B

SW-846 6020B

8/2/18

8/2/18

8/3/18 12:11

8/3/18 12:11

WSD

WSD

Project Location: 500.98.12 Sample Description: Work Order: 18H0054

Date Received: 8/1/2018

Field Sample #: LE-SW-1

Sampled: 8/1/2018 09:10

Sample ID: 18H0054-01
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	ND	0.30	mg/L	1		SM19-22 4500 NH3 C	8/1/18	8/2/18 13:49	EC

Sample Description: Work Order: 18H0054

Project Location: 500.98.12 Date Received: 8/1/2018 **Field Sample #: LE-SW-1**

Sampled: 8/1/2018 09:10

Sample ID: 18H0054-01
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Salinity		29.7	1	ppt (1000)	1		SM2520B		8/2/18 0:00	Eurfi

Sample Extraction Data

SM19-22 4500 NH3 C

18H0054-01 [LE-SW-1]

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date					
18H0054-01 [LE-SW-1]	B209219	100	100	08/01/18					
Prep Method: SW-846 3005A-SW-846 6010D									
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date					
18H0054-01 [LE-SW-1]	B209351	50.0	50.0	08/02/18					
Prep Method: SW-846 3005A-SW-846 6020B									
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date					
18H0054-01 [LE-SW-1]	B209352	50.0	50.0	08/02/18					
Prep Method: SW-846 7470A Prep-SW-846 7470A	Prep Method: SW-846 7470A Prep-SW-846 7470A								
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date					

6.00

6.00

08/02/18

B209362

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209351 - SW-846 3005A										
Blank (B209351-BLK1)				Prepared: 08	3/02/18 Anal	yzed: 08/03/	18			
Iron	0.069	0.050	mg/L							B-07
LCS (B209351-BS1)				Prepared: 08	3/02/18 Anal	yzed: 08/03/	18			
Iron	4.09	0.050	mg/L	4.00		102	80-120			В
LCS Dup (B209351-BSD1)				Prepared: 08	3/02/18 Anal	vzed: 08/03/	18			
Iron	4.06	0.050	mg/L	4.00		102	80-120	0.696	20	В
Batch B209352 - SW-846 3005A										
Blank (B209352-BLK1)				Prepared: 08	3/02/18 Anal	vzed: 08/03/	18			
Antimony	ND	5.0	μg/L			, 50,057	-			
Arsenic	ND	2.0	μg/L							
Cadmium	ND	2.5	μg/L							
Chromium	ND	5.0	μg/L							
Copper	ND	25	μg/L							
Lead	ND	5.0	$\mu g/L$							
Nickel	ND	25	$\mu g/L$							
Selenium	ND	25	$\mu g/L$							
Silver	ND	2.5	$\mu g/L$							
Zine	ND	50	$\mu g/L$							
LCS (B209352-BS1)				Prepared: 08	3/02/18 Anal	yzed: 08/03/	18			
Antimony	497	10	μg/L	500		99.4	80-120			
Arsenic	517	4.0	$\mu \text{g/L}$	500		103	80-120			
Cadmium	517	5.0	$\mu \text{g/L}$	500		103	80-120			
Chromium	511	10	$\mu g\!/\!L$	500		102	80-120			
Copper	999	50	$\mu g\!/\!L$	1000		99.9	80-120			
Lead	507	10	$\mu g\!/\!L$	500		101	80-120			
Nickel	507	50	$\mu \text{g}/L$	500		101	80-120			
Selenium	526	50	$\mu \text{g}/L$	500		105	80-120			
Silver	475	5.0	$\mu \text{g/L}$	500		95.1	80-120			
Zinc	1060	100	$\mu g/L$	1000		106	80-120			
LCS Dup (B209352-BSD1)				Prepared: 08	3/02/18 Anal	yzed: 08/03/	18			
Antimony	500	10	$\mu \text{g/L}$	500		99.9	80-120	0.519	20	
Arsenic	518	4.0	$\mu \text{g/L}$	500		104	80-120	0.132	20	
Cadmium	520	5.0	$\mu \text{g/L}$	500		104	80-120	0.531	20	
Chromium	515	10	$\mu \text{g/L}$	500		103	80-120	0.666	20	
Copper	1010	50	$\mu \text{g/L}$	1000		101	80-120	0.924	20	
Lead	507	10	$\mu \text{g/L}$	500		101	80-120	0.0383	20	
Nickel	510	50	$\mu \text{g/L}$	500		102	80-120	0.454	20	
Selenium	524	50	$\mu \text{g/L}$	500		105	80-120	0.452	20	
Silver	483	5.0	$\mu \text{g/L}$	500		96.7	80-120	1.69	20	
Zinc	1070	100	μg/L	1000		107	80-120	0.850	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209362 - SW-846 7470A Prep										
Blank (B209362-BLK1)	Prepared: 08/02/18 Analyzed: 08/03/18									
Mercury	ND	0.00010	mg/L							
LCS (B209362-BS1)				Prepared: 08	/02/18 Anal	yzed: 08/03/1	8			
Mercury	0.00197	0.00010	mg/L	0.00200		98.5	80-120			
LCS Dup (B209362-BSD1)	LCS Dup (B209362-BSD1) Prepared: 08/02/18 Analyzed: 08/03/18									
Mercury	0.00196	0.00010	mg/L	0.00200		98.2	80-120	0.321	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209219 - SM19-22 4500 NH3 C										
Blank (B209219-BLK1)				Prepared: 08	3/01/18 Anal	yzed: 08/02/	18			
Ammonia as N	ND	0.30	mg/L							
LCS (B209219-BS1)				Prepared: 08	3/01/18 Anal	yzed: 08/02/	18			
Ammonia as N	4.8	0.30	mg/L	5.00		95.2	81.5-113			
LCS Dup (B209219-BSD1)	LCS Dup (B209219-BSD1) Prepared: 08/01/18 Analyzed: 08/02/18									
Ammonia as N	5.0	0.30	mg/L	5.00		101	81.5-113	5.71	11.4	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch '[none]' - SM2520B										
BLK (BATCH-BLK1 (Water))				Prepared & A	Analyzed:					
Salinity	ND	0.1	ppt				0-0		0	
BS (BATCH-BS1 (Water))				Prepared & A	Analyzed:					
Salinity	ND	0.1	ppt				-			
DUP (BATCH-DUP1 (Water))				Prepared & A	Analyzed:					
Salinity	ND	0.1	ppt				0-0			
MS (BATCH-MS1 (Water))				Prepared & A	Analyzed:					
Salinity	ND	0.1	ppt				-			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
В	Analyte is found in the associated laboratory blank as well as in the sample.
B-07	Data is not affected by elevated level in laboratory blank since sample result is >10x level found in the blank.

CERTIFICATIONS

Certified Analyses included in this Report

Mercury

Analyte	Certifications	
SM19-22 4500 NH3 C in Water		
Ammonia as N	NY,MA,CT,RI,VA,NC,ME	
SW-846 6010D in Water		
Iron	CT,NH,NY,ME,VA,NC	
SW-846 6020B in Water		
Antimony	CT,NH,NY,ME,VA,NC	
Arsenic	CT,NH,NY,ME,VA,NC	
Cadmium	CT,NH,NY,RI,ME,VA,NC	
Chromium	CT,NH,NY,ME,VA,NC	
Copper	CT,NH,NY,ME,VA,NC	
Lead	CT,NH,NY,ME,VA,NC	
Nickel	CT,NH,NY,ME,VA,NC	
Selenium	CT,NH,NY,ME,VA,NC	
Silver	CT,NH,NY,ME,VA,NC	
Zinc	CT,NH,NY,ME,VA,NC	
SW-846 7470A in Water		
Mercury	CT,NH,NY,NC,ME,VA	
SW-846 7471B in Soil		

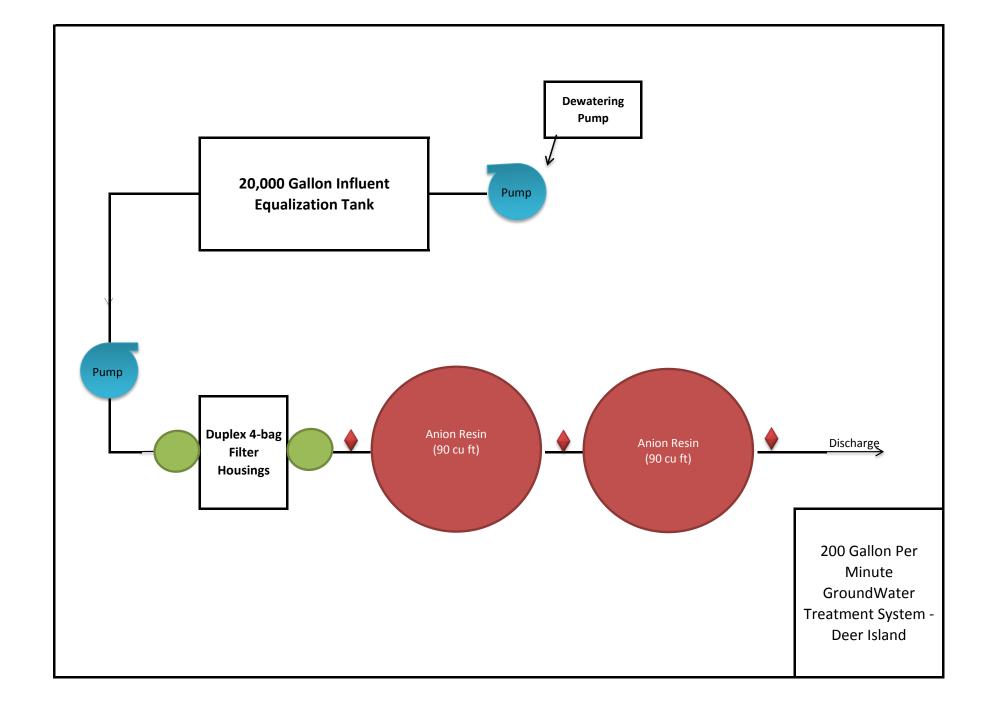
The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code Description Number Expires AIHA AIHA-LAP, LLC - ISO17025:2005 100033 03/1/2020 MA Massachusetts DEP M-MA100 06/30/2019 CTConnecticut Department of Publilc Health PH-0567 09/30/2019 10899 NELAP NY New York State Department of Health 04/1/2019 NH-S New Hampshire Environmental Lab 2516 NELAP 02/5/2019 RI Rhode Island Department of Health LAO00112 12/30/2018 North Carolina Div. of Water Quality 652 12/31/2018 NC New Jersey DEP MA007 NELAP 06/30/2019 NJ E871027 NELAP 06/30/2019 FL Florida Department of Health VT Vermont Department of Health Lead Laboratory LL015036 07/30/2019 2011028 ME State of Maine 06/9/2019 VA Commonwealth of Virginia 460217 12/14/2018 NH-P New Hampshire Environmental Lab 2557 NELAP 09/6/2018 VT-DW Vermont Department of Health Drinking Water VT-255716 06/12/2019 NC-DW North Carolina Department of Health 25703 07/31/2019

CT,NH,NY,NC,ME,VA

ece.

define) 2 Preservation Codes: GW = Ground Water DW = Drinking Water = Sodium Hydroxide 3 = Sodium Bisulfate WW = Waste Water SL = Sludge SOL = Solid O = Other (please S = Summa Canister Preservation Code ³ Container Codes 0 = Other (please O Field Filtered Orthophiesener O Field Filtered = Sulfuric Acid 0 = Other (please O Lab to Filter **Matrix** Codes A = Amber Glass G = Glass Container Code O Lab to Filter H = HCL M = Methanoi N = Nitric Acid Non Soxhlet ö PCB ONLY # of Containers F = Tedlar Bag Soxhlet = Sodium ST = Sterile hiosulfate P = Plastic S = Soil A = Air define) V = Vial define) Please use the following codes to indicate possible sample concentration 39 Spruce Street East Longmeadow, MA 01028 Chromatogram Mil. All and Allia. Ap. 11.0 Accredition Warm.contestiabs.com AIHA-LAP,LLC H - High; M - Medium; L - Low; C - Clean; U - Unknown ANALYSIS REQUESTED HON N: within the Conc Code column above Other Doc # 381 Rev 1_03242017 WRTA MA MCP Required CT RCP Required MCP Certification Form Required RCP Certification Form Required <u>:163</u> MA State DW Required MWRA School MBTA Special Requirements 2 8 8 8 Email To: Karad. Ce. 1. 94454: p. http://www.contestlabs.com CHAIN OF CUSTODY RECORD Matrix Code 10-Day Municipality 3-Day 4-Day EXCEL Brownfield CLP Like Data Pkg Required: Grab PWSID # PDF Ending Date/Time Jue Date: ormat: Government 3/1/18/09/10 7-Day Other: -Day 2-Day Federal | 8 H 0 0 S Y City Project Entity Email: info@contestlabs.com bte/Time:/5~2 18 Star 8/1/8/82 h Client Sample 10 / Description Date/Time: Fax: 413-525-6405 Pack Dood Date/Time: Date/Time: 39 Endustral 08-8-30 Project Number: 500.98 Con-Test Quote Name/Number: Project Manager: Kevin COD-KS EES Relinquisher Dy Signature led by: (signature) Con-Test Work Order# 12/1/2/1/2 ∹(signature) by: (signature) 0 Invoice Recipient: Project Location; Sampled By: Address: Received by: Phone: Comments 15 of 16


Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client <u> </u>		***		43				
Received By	E50		Date	8-1-18	····	Time	18:30	
How were the samples	In Cooler	_T	No Cooler		On Ice		No Ice	
received?	Direct from Samplin	ıg			Ambient		Melted Ice	
	*	- 3y Gun #	ク		Actual Tem	p - 2 · 0		
Were samples within		y Blank #			Actual Tem			
Temperature? 2-6°C		-		re Samples			NA	
Was Custody S		<u> </u>		•	-		77.77	
Was COC Relinquished? T Does Chain Agree With Samples? Are there broken/leaking/loose caps on any samples? F								
		i any sam	More sen	nples receiv	od within h	oldina time?	, T	
Is COC in ink/ Legible?	Client		Analysis	•		er Name		
Did COC include all		<u> </u>	ID's			Dates/Time	25	
pertinent Information?		~ _	- 103		Odilodion	Datoortiin	~	
Are Sample labels fille		<u>;</u>	-	Who was	notified?			
Are there Lab to Filters'	<u></u>	<u> </u>			notified?	Lore, En	* 100	r
Are there Rushes?	_	<u> </u>	•		notified?	- VV-, C II		
Are there Short Holds?		<u> </u>		WIIO Was	Hounea?			
Is there enough Volume				MS/MSD?	F			
Is there Headspace wh	· ·	<u></u>		-	samples red	- ruired?	E	
Proper Media/Containe	*****	<u> </u>	-	On COC?	F	full cu :		
Were trip blanks receiv	-	<u> </u>	- Acid	PHLZ	<u> </u>	Base		
Do all samples have the	e proper pH?		Aciu	7702		Dase		
Vials #	Containers:	#			#	40	A 1-	#
Unp-	1 Liter Amb.		1	Plastic	<u> </u>		oz Amb.	
HCL-	500 mL Amb.			. Plastic	<u>t</u>	1	Amb/Clear Amb/Clear	
Meoh-	250 mL Amb.			. Plastic			Amb/Clear	
Bisulfate-	Col./Bacteria			point Glass			ncore	
DI-	Other Plastic SOC Kit			c Bag		Frozen:	-110010	
Thiosulfate-	Perchlorate		~ 	lock		1 102011.		
Sulfuric-	1 ercinorate							
			Unused	Media				#
Vials #	Containers:	#	4 1 9	DI4'-	#	16	oz Amb.	*
Unp-	1 Liter Amb.			Plastic			Amb/Clear	
HCL-	500 mL Amb.			Plastic Plastic			Amb/Clear	
Meoh-	250 mL Amb. Col./Bacteria			npoint			Amb/Clear	
Bisulfate- DI-	Other Plastic			Glass			ncore	
Thiosulfate-	SOC Kit			ic Bag		Frozen:		
Sulfuric-	Perchlorate			lock		-		
Comments:	1 0 0 1 0 1		1 ==:\b					
Commence.								

ATTACHMENT E

PROPOSED GROUNDWATER/SURFACE WATER TREATMENT SYSTEM

ATTACHMENT F

UNITED STATES FISH AND WILDLIFE SERVICE INFORMATION, PLANNING, AND CONSERVATION ON LINE DATABASE

• Listed Species or Critical Habitats

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: August 10, 2018

Consultation Code: 05E1NE00-2018-SLI-2681

Event Code: 05E1NE00-2018-E-06282 Project Name: Deer Island Dewatering

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-2681

Event Code: 05E1NE00-2018-E-06282

Project Name: Deer Island Dewatering

Project Type: TRANSMISSION LINE

Project Description: Construction Dewatering associated with installation of new electrical

conduit. Project expected to commence in September 2018 and last

approximately one to two months.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.35308917733749N70.96452331620699W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 2 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat *Myotis septentrionalis*

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

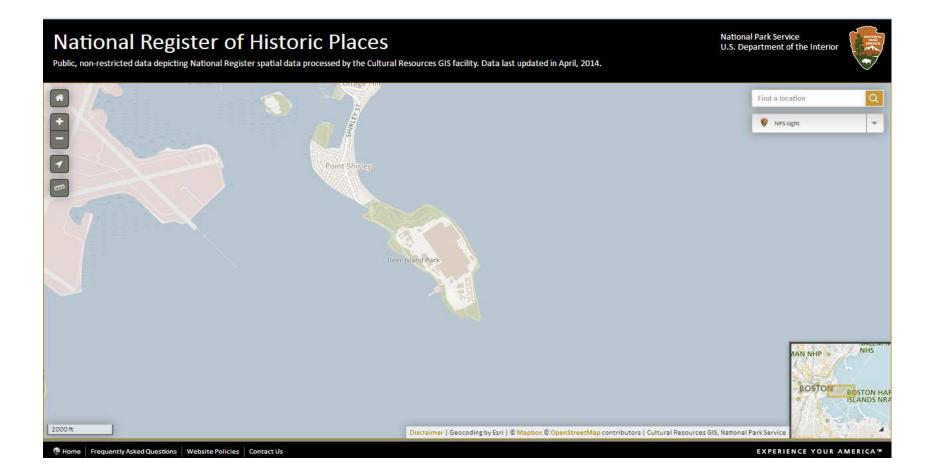
Birds

NAME STATUS

Red Knot Calidris canutus rufa

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/1864


Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

ATTACHMENT G

UNITED STATES NATIONAL REGISTER OF HISTORIC PLACES AND MASSACHUSETTS CULTURAL RESOURCE INFORMATION SYSTEM ONLINE DATABASE

- National Historic Place
- Massachusetts Cultural Resource Information System Online Database

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston, Winthrop; Street Name: Taft; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.6319		6 Taft St	Boston	1908
BOS.6320		8 Taft St	Boston	1908
BOS.6321		10 Taft St	Boston	1908
BOS.6322		12 Taft St	Boston	1908
BOS.6323		14 Taft St	Boston	1908
BOS.6324		16 Taft St	Boston	1908
BOS.6325		18 Taft St	Boston	1908
BOS.6326		20 Taft St	Boston	1908
BOS.6327		22 Taft St	Boston	1908
BOS.6328		24 Taft St	Boston	1908
BOS.6329		26 Taft St	Boston	1908
BOS.6330		28 Taft St	Boston	1908
BOS.6331		30 Taft St	Boston	1908

Friday, August 10, 2018 Page 1 of 1