

CH2M Boston

18 Tremont Street Suite 700 Boston, MA 02108-2307 O +1 617 523 2002 F +1 617 723 9036 www.ch2m.com

U.S. Environmental Protection Agency
Office of Ecosystem Protection
5 Post Office Square, Suite 100 (OEP06-01)
Boston, MA 02109
ATTN: EPA/OEP RGP Applications Coordinator

June 30, 2017

Subject: 2017 Remediation General Permit Notice of Intent—Former Bull HN Information Systems, Inc. Facility, Brighton, Massachusetts

To Whom It Concerns:

CH2M HILL Engineers, Inc. (CH2M) has prepared on behalf of Honeywell International Inc. this Notice of Intent (NOI) for a reapplication for coverage under the Massachusetts Remediation General Permit (RGP) for the Footer Drain (FD) system located at the corner of Guest Street and Life Street in Brighton, Massachusetts. The FD system treats groundwater from the perimeter of the basement of an adjacent building. Treated groundwater from the FD system is discharged into a municipal storm drainage system that ultimately discharges to the Charles River. Figure 1 presents the site location and discharge information map.

The FD system is currently covered under 2010 RGP permit MAG910077. On April 8, 2017, the U.S. Environmental Protection Agency published an updated permit (referred to as 2017 RGP). In accordance with the Massachusetts 2017 RGP, operators that are currently operating under the 2010 RGP must reapply for coverage by submitting an NOI. The FD system is expected to be classified as a Category VII—Collection Structure Dewatering/Remediation (Sub-category G—Sites with Known Contamination: A. Inorganics, B. Non-Halogenated Volatile Organic Compounds, and C. Halogenated Volatile Organic Compounds). The FD system's influent was sampled on May 16 and June 9, 2017, for the applicable constituents listed in Section D of the NOI in accordance with Part 4.2 of the 2017 RGP. The NOI form and associated analytical data summary, laboratory reports, and required supporting information are included with this letter and in Exhibits 1 through 6.

If you require any additional information or would like to discuss the plans for this system, please contact either of the undersigned at 617-626-7000.

Sincerely,

CH2M

cc:

Bradley Russell Grade 5-C Operator

Bradly Russell

Kyle D. Block Project Manager

Mr. Steve Coladonato, Honeywell International Inc. (Owner)

U.S. Environmental Protection Agency June 30, 2017 Page 2

Enclosures:

Footer Drain System Notice of Intent

Figure 1—Site Location and Discharge Information Map

Exhibit 1—Receiving Water Information

- A. Footer Drain System Dilution Factor Calculations
- B. State Approval of Dilution Factor Calculations
- C. Receiving Water Sampling Data Summary

Exhibit 2—Discharge Information

- A. BWSC Notification of Discharge
- B. Footer Drain System Influent Sampling Data Summary
- Exhibit 3—Footer Drain System Flow Schematic
- Exhibit 4—Endangered Species Act Supporting Information
- Exhibit 5—National Historic Preservation Act Supporting Information
- Exhibit 6—Laboratory Analytical Reports and Chain-of-Custody Forms

Footer Drain System Notice of Intent

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

11. General site into mation.						
1. Name of site:	Site address: 38 Life Street					
Former Bull HN Information Systems, Inc	Street:					
	City: Brighton		State: MA	Zip: 02135		
Site owner Honeywell International Inc.	Contact Person: Steven Coladonato					
noneywell international inc.	Telephone: 302-791-6738	ven.coladonato@honeywell.co				
	Mailing address: 6100 Philadelphia Pike	<u> </u>				
	Street:					
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Claymont		State: DE	Zip: 19703		
3. Site operator, if different than owner	Contact Person: Kyle D. Block, CH2M HILL, Inc					
Bradly Russell, Grade 5-C Operator Wastewater operator certification #2864	Telephone: 617-626-7013	Email: ky	le.block@c	h2m.com		
wastewater operator certification #2004	Mailing address:					
CH2M HILL, Inc. 18 Tremont Street, Suite 700, Boston MA 02108	Street: 18 Tremont Street, Suite 700					
Telephone: 617-523-2002	City: Boston		State: MA	Zip: 02108		
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):			
MAG910077	■ MA Chapter 21e; list RTN(s): RTN 3-00158	□ CERCL	.A			
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP		□ UIC Pro	ogram			
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	\square POTW	Pretreatment	t		
□ MSOT □ Individual NTDES permit □ Other, it so, specify.	Ground reciouse Detection I crimit.	□ CWA S	ection 404			

■ Contaminated groundwater

VIII? (check one):
■ Yes □ No

Has the operator attached a summary of influent

in accordance with the instruction in Appendix

sampling results as required in Part 4.2 of the RGP

☐ Potable water; if so, indicate

municipality or origin:

 \square Other; if so, specify:

B. Receiving water information:					
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Class	ification of receiving water(s):		
Lower Charles River	Segment MA72-38	Class B			
Receiving water is (check any that apply): □ Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □	Wild and Scenic	River		
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): Yes	l No			
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes ■ No				
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP. <i>Refer to note at the bottom of thi</i>	lable for any of the indicated pollutants. For more information				
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		ictions in	24.3 cfs		
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 1091.7					
6. Has the operator received confirmation from the approp If yes, indicate date confirmation received: June 16, 2017 (v		eck one): Yes	s □ No		
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in a	ccordance with the	ne instruction in Appendix VIII?		
(check one): ■ Yes □ No					
C. Source water information:					
1. Source water(s) is (check any that apply):					

Answer to B.3: Lower Charles River is listed on the Massachusetts Year 2014 Integrated List of Waters (CWA Sections 305(b), 314 and 303(d)). Impaired designated uses include aquatic life support and recreational use. Indicated pollutants are: unknown toxicity; priority organics; metals; nutrients; organic enrichment/low dissolved oxygen; pathogens; oil and grease; taste, odor, and color; noxious aquatic plants; and turbidity (http://www.mass.gov/eea/docs/dep/water/resources/a-thru-m/charlesp.pdf). Final TMDLs are available for phosphorous, nutrients and pathogens (http://www.mass.gov/eea/agencies/massdep/water/watersheds/total-maximum-daily-loads-tmdls.html#9).

☐ The receiving water

☐ A surface water other

so, indicate waterbody:

than the receiving water; if

☐ Contaminated surface water

Appendix VIII? (check one):

☐ Yes ■ No

Has the operator attached a summary of influent

sampling results as required in Part 4.2 of the

RGP in accordance with the instruction in

2. Source water contaminants: Volatile Organic Compounds, Chloride, Iro	n, Cop	oper, Nickel, Zinc, and Cyanide.
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in		or a source water that is a surface water other than the receiving water, potable water ther, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.		the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chl	lorine? (check one): ■ Yes □ No
D. Discharge information		
1. The discharge(s) is a(n) (check any that apply): ■ Existing discharge □ New	w disch	arge □ New source
Outfall(s):		Outfall location(s): (Latitude, Longitude)
Discharge of treated sump water from a building's footer drain (FD) syst	em.	(Latitude 42.356747, Longitude -71.147594)
Discharges enter the receiving water(s) via (check any that apply): ■ Direct di	scharge	e to the receiving water Indirect discharge, if so, specify:
N/A		
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver syst	em:
Has notification been provided to the owner of this system? (check one): ■ Ye	es 🗆 N	o
· · · · · · · · · · · · · · · · · · ·		narges? (check one): Yes No, if so, explain, with an estimated timeframe for ed within one month of notification submittal (expected by July 17, 2017).
Has the operator attached a summary of any additional requirements the owner		
Provide the expected start and end dates of discharge(s) (month/year): April 8,	, 2017	to April 8, 2022
Indicate if the discharge is expected to occur over a duration of: ☐ less than 1	2 mont	ths ■ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above?	(check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)			
	a. If Activity Categ	ory I or II: (check all that apply)			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation ■ VII – Collection Structure Dewatering/Remediation 	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
		T, V, VI, VII or VIII: (check either G or H) □ H. Sites with Unknown Contamination			
	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

Known or believed present	# of samples	Test method (#) NA E300.0	Detection limit (μg/l) NA 350	Daily maximum (µg/l)	Daily average (µg/l)	TBEL Report mg/L	WQBEI
✓	1	E300.0				Report mg/L	
✓	1	E300.0				Report mg/L	
√	ļ		350	1 220 000			
	0		550	1,320,000	NA	Report µg/l	
		NA	NA	NA	NA	0.2 mg/L	NA
	0	NA	NA	NA	NA	30 mg/L	NA
	0	NA	NA	NA	NA	206 μg/L	NA
	0	NA	NA	NA	NA	104 μg/L	NA
	0	NA	NA	NA	NA	10.2 μg/L	NA
	0	NA	NA	NA	NA	323 μg/L	NA
	0	NA	NA	NA	NA	323 μg/L	NA
✓	1	E200.8	0.14	2.3	NA	242 μg/L	NA
✓	1	E200.8	2.0	188	NA	5,000 μg/L	NA
	0	NA	NA	NA	NA	160 μg/L	NA
	0	NA	NA	NA	NA	0.739 μg/L	NA
√	1	E200.8	0.11	19.3	NA	1,450 μg/L	NA
	0	NA	NA	NA	NA	235.8 μg/L	NA
	0	NA	NA	NA	NA	35.1 μg/L	NA
✓	1	E200.8	1.2	7.7	NA	420 μg/L	NA
✓	1	334.5	0.0047mg/L	0.13 mg/L	NA	178 mg/L	NA
	· /	0 0 1 1 0 0 0 1 0 0	0 NA 0 NA 1 E200.8 ✓ 1 E200.8 0 NA 0 NA 0 NA 0 NA ✓ 1 E200.8 ✓ 1 E200.8 ✓ 1 E200.8 ✓ 1 E200.8	0 NA NA 0 NA NA 1 E200.8 0.14 ✓ 1 E200.8 2.0 0 NA NA 0 NA NA ✓ 1 E200.8 0.11 ✓ 1 E200.8 0.11 ✓ 1 E200.8 0.11 ✓ 1 E200.8 1.2	0 NA NA NA 0 NA NA NA 1 E200.8 0.14 2.3 ✓ 1 E200.8 2.0 188 0 NA NA NA 0 NA NA NA ✓ 1 E200.8 0.11 19.3 O NA NA NA NA ✓ 1 E200.8 0.11 19.3 ✓ 1 E200.8 1.2 7.7	0 NA NA NA NA NA 0 NA NA NA NA 1 E200.8 0.14 2.3 NA ✓ 1 E200.8 2.0 188 NA 0 NA NA NA NA NA 0 NA NA NA NA 1 E200.8 0.11 19.3 NA 0 NA NA NA NA NA ✓ 1 E200.8 1.2 7.7 NA	0 NA

	Known Know		Known			Influent		Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride	✓		0	NA	NA	NA	NA	4.4 μg/L	NA	
1,2 Dichlorobenzene	✓		0	NA	NA	NA	NA	600 μg/L		
1,3 Dichlorobenzene	✓		0	NA	NA	NA	NA	320 μg/L		
1,4 Dichlorobenzene	✓		0	NA	NA	NA	NA	5.0 μg/L		
Total dichlorobenzene	✓		0	NA	NA	NA	NA	763 μg/L in NH		
1,1 Dichloroethane		✓	1	E624	0.32	27.4	NA	70 μg/L		
1,2 Dichloroethane		✓	1	E624	0.32	0.51	NA	5.0 μg/L		
1,1 Dichloroethylene		✓	1	E624	0.57	5.1	NA	3.2 μg/L		
Ethylene Dibromide	✓		0	NA	NA	NA	NA	0.05 μg/L		
Methylene Chloride	✓		0	NA	NA	NA	NA	4.6 μg/L		
1,1,1 Trichloroethane		✓	1	E624	0.36	2.4	NA	200 μg/L		
1,1,2 Trichloroethane	✓		0	NA	NA	NA	NA	5.0 μg/L		
Trichloroethylene		✓	1	E624	0.24	18.8	NA	5.0 μg/L		
Tetrachloroethylene	✓		0	NA	NA	NA	NA	5.0 μg/L	NA	
cis-1,2 Dichloroethylene		✓	1	E624	0.54	81.5	NA	70 μg/L		
Vinyl Chloride	✓		0	NA	NA	NA	NA	2.0 μg/L		
D. Non-Halogenated SVO	¬s									
Total Phthalates	✓		0	NA	NA	NA	NA	190 μg/L	NA	
Diethylhexyl phthalate	✓		0	NA	NA	NA	NA	101 μg/L	NA	
Total Group I PAHs	√		0	NA	NA	NA	NA	1.0 μg/L		
Benzo(a)anthracene	✓		0	NA	NA	NA	NA	1.0	NA	
Benzo(a)pyrene	√		0	NA	NA	NA	NA	1	NA	
Benzo(b)fluoranthene	✓		0	NA	NA	NA	NA	1	NA	
Benzo(k)fluoranthene	✓		0	NA	NA	NA	NA	As Total PAHs	NA	
Chrysene	√		0	NA	NA	NA	NA	1	NA	
Dibenzo(a,h)anthracene	√		0	NA	NA	NA	NA	1	NA	
Indeno(1,2,3-cd)pyrene	1		0	NA	NA	NA	NA	=	NA	

	Known Known Tast Baseline		In	fluent	Effluent Li	mitations			
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	✓		0	NA	NA	NA	NA	100 μg/L	
Naphthalene	✓		0	NA	NA	NA	NA	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		0	NA	NA	NA	NA	0.000064 μg/L	
Pentachlorophenol	✓		0	NA	NA	NA	NA	1.0 μg/L	
F. Fuels Parameters	·		•	•		•	•		•
Total Petroleum Hydrocarbons	✓		0	NA	NA	NA	NA	5.0 mg/L	
Ethanol	✓		0	NA	NA	NA	NA	Report mg/L	
Methyl-tert-Butyl Ether	✓		0	NA	NA	NA	NA	70 μg/L	NA
tert-Butyl Alcohol	✓		0	NA	NA	NA	NA	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		0	NA	NA	NA	NA	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	C50, additio	nal pollutan	its present);	if so, specify:			
рН	✓		1	E4500-H+		7.87 SU	NA		NA
Temperature	✓		1	E2550B-2 ₊	0.1 C	21.1 C	NA		NA
Hardness	✓		1	SM2340C	2.5 mg/L	683 mg/L	NA		NA

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
■ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. The treatment system consists of one sump pump, a bag filter, two liquid GAC tanks, and two ion exchange resin tanks, which include a pre-filter. Following treatment, the groundwater is discharged to a stormwater catch basin at the site, which subsequently discharges to the Charles River.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks■ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter ■ Other; if so, specify: Two liquid GAC tanks and two ion exchange resin tanks.	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: System operated on batch basis only and dependent upon weekly volume accumulated within footer drain sump. Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	10
Provide the proposed maximum effluent flow in gpm.	10
Provide the average effluent flow in gpm.	6
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	N/A
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information This Section does not apply
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
None
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive;b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): □ Yes □ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Exhibit 4 contains the corresponding supporting documentation.
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
The existing permitted discharge involves activities and BMPs which do not require construction activities. The treatment system is established and contained in a building, hence determination on whether historic properties were affected was made through visual inspection. Exhibit 5 contains the pertinent summary statement.
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Figure 1 - Site Location and Discharge Information Map. Exhibits: 1 - Receiving Water Information, 2 - Discharge Information, 3 - Footer Drain System Flow Schematic, 4 - Endangered Species Act Supporting Information, 5 - National Historic Preservation Act Supporting Information, and 6 - Laboratory Analytical Reports and Chains of Custody
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
A BMPP in the form of several site documents (Operation and Maintenance, Health and Safety, Waste Management, Sa currently retained on-site and and updated annually by CH2M HILL, Inc, in accordance with good engineering practices a BMPP certification statement: are being adhered to, all inspection and maintenance activities are being conducted, results are recorded, and records a of the BMPP have been developed and are currently being implemented without deviation.	and the 2017 RGP, Parts 2.5.1 and 2.5.2. All provisions
Notification provided to the appropriate State, including a copy of this NOI, if required. This is a site regulated under the MCP, hence State notification is not required as per Appendix IV of the RGP.	Check one: Yes □ No ■
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □ NA □
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No ■ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \blacksquare RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	Check one: Yes ■ No □ NA □
Signature: Brodly Russell Date	e: ^{06/30/2017}
Print Name and Title: Bradley Russell/Operator (on behalf of Honeywell International, Inc./Owner)	

Figure 1
Site Location and Discharge Information
Map

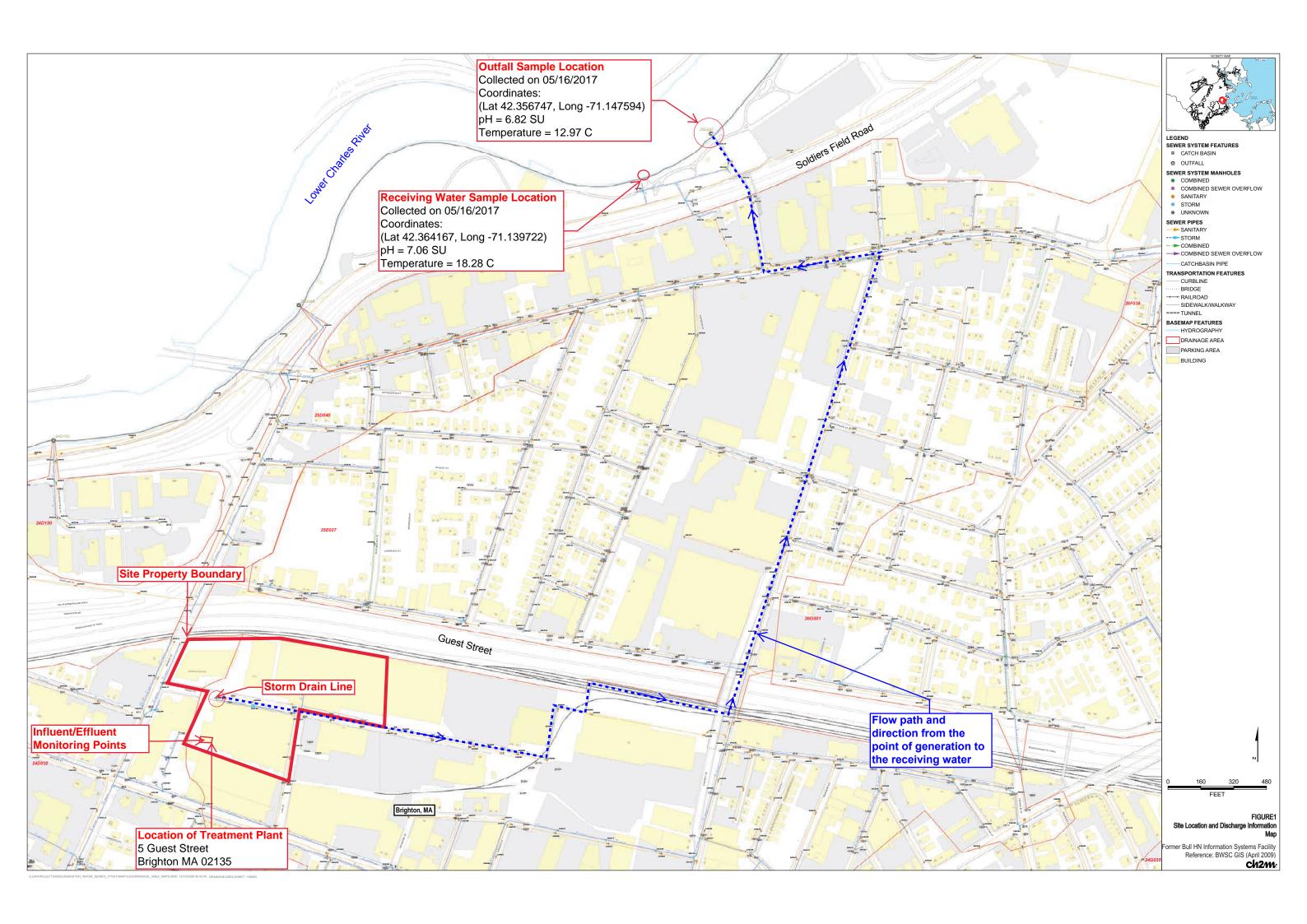


Exhibit 1 Receiving Water Information

Exhibit 1A Footer Drain System Dilution Factor Calculations

Footer Drain System - Dilution Factor Calculations

$$DF = (Qd + Qs)/Qd$$

Where:

DF = Dilution Factor

Qd = Discharge flow equal to design flow or 1 million gallons per day (MGD)

Qs = Receiving water 7Q10 flow where, 7Q10 is the minimum flow for 7 consecutive days with a recurrence interval of 10 years (MGD)

The receiving water for the FD system is the Lower Charles River via storm drain.

The Charles River 7Q10 Flow is based on information obtained from USGS stream stats website and using the approximate location of the Outfall into the Charles River (Outfall #25E037):

7Q10 = 24.3 CFS (http://streamstats.usgs.gov)

1.0 GPM = 0.002228 CFS

FD system effluent maximum flow based on treatment system design:

10 gallons per minute (GPM) = 0.0223 CFS

1 CFS = 0.646316889697 MGD (US gallons)

Qd = 0.0223 CFS*0.646 MGD/CFS = 0.01441 MGD **Qs** = 24.3 CFS* 0.646 MGD/CFS = 15.7055 MGD

Footer Drain System DF

- = (0.01441 MGD + 15.7055 MGD) / 0.01441 MGD
- = 15.7199/0.01441

DF = 1091.7

		TBEL
Inorganic Parameters in the FD System	May 16, 2017 Influent Concentration (μg/L)	with DF Applied (μg/L)
Ammonia	NA	
Chloride	1,320,000	
Total Residual Chlorine	NA	200
Total Suspended Solids	NA	30,000
Antimony	NA	206
Arsenic	NA	104
Cadmium	NA	10.2
Chromium III	NA	323
Chromium VI	NA	323
Copper	2.3	242
Iron	188	5,000
Lead	NA	160
Mercury	NA	0.739
Nickel	19.3	1,450
Selenium	NA	235.8
Silver	NA	35.1
Zinc	7.7	420
Cyanide*	130	178,000

Notes:

The FD system is expected to be classified as a Category VII - Collection Structure Dewatering/Remediation (Sub-category G – Sites with known contamination: A. Inorganics, B. Non-Halogenated Volatile Organic Compounds, and C. Halogenated Volatile Organic Compounds).

Water Quality Based Effluent Limits do not apply per the DF calculations spreadsheet.

No exceedances of the respective effluent limits were identified after the DF has been applied.

NA = Not Analyzed. Parameter known or believed absent, and not required to be analyzed for according to Activity Category sampling requirements in 2017 RGP.

ND = Not detected above the laboratory method detection limit

TBEL = Technology Based Effluent Limit

μg/L: micrograms/ liters

^{*}Cyanide was analyzed as Weak Dissociable Cyanide instead of Total Cyanide in the May 16 sample. Influent was re-sampled on June 9, 2017 and analyzed for Total Cyanide. In both instances, results were detected above the laboratory minimum detection limit.

StreamStats 4.0 Page 1 of 1

StreamStats Report - Former Bull HN Information Systems Facility

Region ID:

MA

Workspace ID:

MA20170403123524504000

Clicked Point (Latitude, Longitude):

42.36539, -71.13845

Time:

2017-04-03 14:35:50 -0400

Drainage area corresponds to approximate location of discharge outfall

Basin Characteristic	S		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	279	square miles
DRFTPERSTR	Area of stratified drift per unit of stream length	0.23	square mile per mile
MAREGION	Region of Massachusetts O for Eastern 1 for Western	0	dimensionless
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.342	percent

Low-Flow Statistics Parameters [100 Percent (279 square miles) Statewide Low Flow WRIR00 4135]						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	279	square miles	1.61	149	
DRFTPERSTR	Stratified Drift per Stream Length	0.23	square mile per mile	0	1.29	
BSLDEM250	Mean Basin Slope from 250K DEM	2.342	percent	0.32	24.6	
MAREGION	Massachusetts Region	0	dimensionless	0	1	

Low-Flow Statistics Disclaimers [100 Percent (279 square miles) Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [100 Percent (279 square miles) Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	48.9	ft^3/s
7 Day 10 Year Low Flow	24.3	ft^3/s

Low-Flow Statistics Citations

Flow Statistics Ungaged Site Report

Date: Mon Apr 3, 2017 3:34:01 PM GMT-4

Study Area: Massachusetts

NAD 1983 Latitude: 42.3655 (42 21 56) NAD 1983 Longitude: -71.1382 (-71 08 18)

Drainage Area: 279 mi2

Low Flows Basin Characteristics							
100% Statewide Low Flow WRIR00 4135 (279 mi2)							
Darameter	Value	Regression Equation Valid Range					
Parameter	value	Min	Max				
Drainage Area (square miles)	279 (above max value 149)	1.61	149				
Mean Basin Slope from 250K DEM (percent)	2.342	0.32	24.6				
Stratified Drift per Stream Length (square mile per mile)	0.23	0	1.29				
Massachusetts Region (dimensionless)	0	0	1				

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Probability of Perennial Flow Basin Characteristics								
100% Perennial Flow Probability (279 mi2)								
Parameter	Regression Equation Valid Range							
Parameter	Value	Min	Max					
Drainage Area (square miles)	279 (above max value 1.99)	0.01	1.99					
Percent Underlain By Sand And Gravel (percent)	47.20	0	100					
Percent Forest (percent)	42.61	0	100					
Massachusetts Region (dimensionless)	0	0	1					

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

	Low Flows Statistics							
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Pre	ediction Interval		
Statistic	value	Offic	Prediction Error (percent)	Equivalent years of record	Min	Max		
D50	298	ft3/s						
D60	246	ft3/s						
D70	169	ft3/s						
D75	138	ft3/s						
D80	108	ft3/s						
D85	86.8	ft3/s						
D90	67.7	ft3/s						
D95	45.7	ft3/s						
D98	30.5	ft3/s						
D99	25.3	ft3/s						
M7D2Y	48.9	ft3/s						
AUGD50	93	ft3/s						
M7D10Y	24.3	ft3/s						

http://pubs.usgs.gov/wri/wri004135/ (http://pubs.usgs.gov/wri/wri004135/)

Ries_ K.G._ III_ 2000_ Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135_ 81 p.

Probability of Perennial Flow Statistics						
Statistic Value Unit Standard Error (percent) Equivalent years of record				90-Percent Pro	ediction Interval	
Statistic	value	Ullit	Standard Error (percent)	Equivalent years or record	Min	Max
PROBPEREN	1	dim				

http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

Bent_ G.C._ and Steeves_ P.A._ 2006_ A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006-5031_ 107 p.

Accessibility Privacy **Policies and Notices FOIA** U.S. Department of the Interior | U.S. Geological Survey

URL: http://streamstatsags.cr.usgs.gov/v3_beta/FTreport.htm
Page Contact Information: StreamStats Help

Page Last Modified: 08/09/2016 14:34:10 (Web1)

Streamstats Status News

Enter number values in green boxes below

Enter values in the units specified

\downarrow	
15.706	$Q_R = Enter upstream flow in MGI$
0.014	Q_P = Enter discharge flow in MGI
15.7	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
683	C_d = Enter influent hardness in mg/L CaCO ₃
66.3	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	
7.06	pH in Standard Units
18.28	Temperature in °C
0	Ammonia in mg/L
66.3	Hardness in mg/L CaCO
0	Salinity in ppt
0.3	Antimony in μg/L
0.5	Arsenic in µg/L
0	Cadmium in µg/L
0.6	Chromium III in µg/L
0.093	Chromium VI in µg/L
3	Copper in µg/L
620	Iron in μg/L
2.1	Lead in µg/L
0	Mercury in μg/L
0.9	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
9.1	Zinc in µg/L

Enter influent concentrations in the units specified

\downarrow	
0	TRC in µg/L
0	Ammonia in mg/L
0	Antimony in µg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
2.3	Copper in µg/L
188	Iron in μg/L
0	Lead in µg/L
0	Mercury in μg/L
19.3	Nickel in µg/L
0	Selenium in μg/L
0	Silver in µg/L
7.7	Zinc in µg/L
130	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: critical low flow equal to the 7Q10; enter alternate low flow if approved by the State Saltwater (estuarine and marine): enter critical low flow if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Optional entry for Q_r ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \underline{Q_R + Q_P}$$

 Q_P

 $Q_R = 7Q10$ in MGD

 Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r} \label{eq:cross}$$

 C_r = Downstream hardness in mg/L

Q_d = Discharge flow in MGD

C_d = Discharge hardness in mg/L

 Q_s = Upstream flow (7Q10) in MGD

C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [ln(h)] + b_c\}$

m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_d = \frac{Q_r C_r - Q_s C_s}{Q_d}$$

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 $C_d = WQBEL \ in \ \mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 Q_{r}

 C_r = Downstream concentration in μ g/L

Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 $C_s = \text{Upstream}$ (receiving water) concentration in $\mu g/L$

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor 1091.7

Dilution Factor	1091.7				~	
A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	11997	μg/L		μg/L
Total Suspended Solids	30	mg/L		, 0		
Antimony	206	μg/L	697695	μg/L		
Arsenic	104	μg/L	10361	μg/L μg/L		
Cadmium	10.2	μg/L μg/L	0.2010	μg/L μg/L		
Chromium III	323		66994.0			
Chromium VI		μg/L	12369.7	μg/L		
	323	μg/L		μg/L		
Copper	242	μg/L	3947.3	μg/L		
Iron	5000	μg/L	414451	μg/L		
Lead	160	μg/L	1.91	μg/L		
Mercury	0.739	μg/L	988.01	μg/L		
Nickel	1450	$\mu g/L$	39523.2	μ g/L		
Selenium	235.8	μg/L	5453.3	μg/L		
Silver	35.1	μg/L	2068.8	μg/L		
Zinc	420	μg/L	83064.4	μg/L		
Cyanide	178	mg/L	5671.4	μg/L		μg/L
B. Non-Halogenated VOCs	2.0		00/11.	r8-2		r8,2
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	327198	μg/L		
C. Halogenated VOCs	4.4	/▼	1745 1	/1		
Carbon Tetrachloride 1,2 Dichlorobenzene	4.4	μg/L	1745.1	μg/L		
1,3 Dichlorobenzene	600 320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	$\mu g/L$				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L	2500.2	= /T		
Tetrachloroethylene	5.0 70	μg/L	3599.2	μg/L		
cis-1,2 Dichloroethylene Vinyl Chloride	2.0	μg/L μg/L				
v myr Cmoriac	4. U	μg/L				

D. Non-Halogenated SVOCs

Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2399.5	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	4.1445	μg/L		$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	4.1445	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	4.1445	μg/L		$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	4.1445	μg/L		μg/L
Chrysene	1.0	μg/L	4.1445	μg/L		$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	4.1445	μg/L		$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	4.1445	μg/L		$\mu g/L$
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	ца/І			0.5	ца/І
Dontochlouomhonol	1.0	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters	7 0	7				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	21813	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	$\mu g/L$				

Exhibit 1B
State Approval of Dilution Factor
Calculations

From: Vakalopoulos, Catherine (DEP)

To: <u>Vidal, Maria/BOS</u>

Cc: <u>Greenberg, Matthew/BOS</u>

Subject: RE: Request for Approval of Dilution Factor Calculations [EXTERNAL]

Date: Friday, June 16, 2017 12:03:55 PM

Hi Maria,

I've checked over the calculations for both systems. The Charles River 7Q10 of 15.7055 MGD, footer drain system discharge dilution factor of 1090.7, and migration control system discharge dilution factor of 364.6 are all correct. You are all set from me. Shauna Little at EPA is the one who will review the calculated WQBELs as she prepares the EPA authorization.

Have a nice weekend.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

📥 Please consider the environment before printing this e-mail

From: Vidal, Maria/BOS [mailto:Maria.Vidal@ch2m.com]

Sent: Thursday, June 15, 2017 4:33 PM To: Vakalopoulos, Catherine (DEP) Cc: Greenberg, Matthew/BOS

Subject: Request for Approval of Dilution Factor Calculations

Dear Ms. Vakalopoulos,

CH2M is managing a the Former Bull HN Facility site in Brighton, MA. We are applying for renewed coverage to discharge remediation-related groundwater from two groundwater extraction and treatment systems under the 2017 NPDES Remediation General Permit (RGP) for MA through a Notice of Intent (NOI). Please review the attached dilution factor calculations for these two systems, the Migration Control (MC) system and Footer Drain (FD) system, located at the corner of Guest Street and Life Street in Brighton, Massachusetts. The MC system treats groundwater from two extraction wells, and the FD system treats groundwater from a perimeter drain within the basement of an adjacent building. Treated groundwater is discharged into a BWSC storm drainage system that ultimately discharges to the Charles River.

As required by the 2017 RGP, prior to completing the NOI requirements, the Massachusetts Department of Environmental Protection must confirm the critical low flow (7Q10) of the receiving water, dilution factor (DF), other appropriate hydrologic conditions, or to confirm site-specific limiting factors, including additional water quality-based effluent limitations (WQBELs). As a result, we are contacting you to request this confirmation and review.

We have included all the information we used to determine the DF for each system, and populated the calculations spreadsheet included within Appendix V of the RGP with the respective influent and receiving water sample results.

Please let me know if you have any questions or require additional information.

Thanks,

Maria Vidal, M.S. Environmental Engineer D 617 626 7073 M 978 427 1801

CH2M

18 Tremont Street, Suite 700
Boston, MA 02108
www.ch2m.com | LinkedIn | Twitter | Facebook

Exhibit 1C Receiving Water Sampling Data Summary $Operator: Bradly\ Russell/CH2M\ HILL,\ Inc.\ -\ email:\ Bradley. Russell@ch2m.com\ -\ Telephone:\ 617-523-2002\ \square$

Former Bull HN Information Systems, Inc

RGP Permit # - MAG910077

Influent/Effluent Sampling Location: Footer Drain System located at 5 Guest Street, Brighton MA

Outfall Effluent Sampling Location: Charles River Outfall. Coordinates (Latitude 42.356747, Longitude -71.147594)

Enter Activity Category								I	
\									
Category VII—									
Collection Structure									
Dewatering /		Effluent	Influent pH	Effluent pH	WE		Influent Temp	Effluent Temp	
Remediation		Flow			(Category	/ I & II)	иниси тетр		
(Sub-category G [A, B									
and C])									
Check units	\rightarrow	MGD	SU	SU	LC_{50} (%)	NOEC	°C	°C	
Enter test method \rightarrow		BMP	EPA4500- H+ B-2000	EPA4500- H+ B-2000			EPA2550 B-2000	EPA2550 B-2000	
Enter permit limit	\rightarrow								
Min		0.0144	7.87	6.82	0	0	21.1	12.97	
Max		0.0144	7.87	6.82	0	0	21.1	12.97	
Avg		0.0144	7.87	6.82	#DIV/0!	#DIV/0!	21.1	12.97	
# of measurements		1	1	1	0	0	1	1	
Enter sample date		Enter result	ts; paramete	rs that are no	ot applicable of	an be left b	lank		
\downarrow		\downarrow							
6/5/2017		0.0144	7.87	6.82			21.1	12.97	

See separate worksheet for receiving water

See separate worksheets for each contamination type
Enter additional parameters, if necessary

 $Operator: Bradly Russell/CH2M \ HILL, Inc. - email: Bradley. Russell@ch2m.com - Telephone: 617-523-2002 \\ \square$

Former Bull HN Information Systems, Inc

RGP Permit # - MAG910077

Lower Charles River

Segment MA72-38 - Receiving Water Sample Coordinates: (Latitude 42.364167, Longitude -71.139722)

18.28 ND

0.3

0.5

ND

0.60

Enter Activity Category

\downarrow																			
Category VII—																			
Collection Structure																			
Dewatering /		pН	Temp	Ammonio	Antimony	Arconio	Codmium	Chromium III	Chromium VI	Connor	Iron	Lead	Mercury	Nickel	Selenium	Silver	Zinc	Hardness	Salinity
Remediation		рп	remp	Allillollia	Anumony	Aiseilic	Caumum	Cinoninum III	Cilionilum VI	Соррег	поп	Leau	Mercury	Nickei	Selemum	Silvei	ZIIIC	(Freshwater)	(Saltwater)
(Sub-category G [A, B																			
and C])																			
Check units	\rightarrow	SU	°C	mg/L	$\mu g/L$	$\mu g/L$	$\mu g/L$	μg/L	μg/L	μg/L	$\mu g/L$	mg/L							
Enter test method	\rightarrow	EPA4500- H+ B-2000	EPA2550 B-2000	SM4500NH 3-G	EPA200.8	EPA200.8	EPA200.8	SW6010/7196	EPA218.7	E200.8	E200.8	EPA200.8	EPA245.1	EPA200.8	EPA200.8	EPA200.8	EPA200.8	SM2340C	
Enter permit limit	\rightarrow																		
Min	ı	7.06	18.28	0	0.3	0.5	0	0.6	0.093	3	620	2.1	0	0.9	0	0	9.1	66.3	
Max		7.06	18.28	0	0.3	0.5	0	0.6	0.093	3	620	2.1	0	0.9	0	0	9.1	66.3	
Avg	ŗ	7.06	18.28	#DIV/0!	0.3	0.5	#DIV/0!	0.6	0.093	3	620	2.1	#DIV/0!	0.9	#DIV/0!	#DIV/0!	9.1	66.3	
# of measurements	S	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Enter sample date	Enter results; parameters that are not applicable can be left blank																		

0.093

3.0

620

2.1

ND

0.90

ND

ND

9.1

66.3

ND = Not detected above method detection limit

 \downarrow

5/16/2017

 \downarrow

7.06

Exhibit 2 Discharge Information

Exhibit 2A BWSC Notification of Discharge

CH2M Boston

18 Tremont Street Suite 700 Boston, MA 02108-2307 O +1 617 523 2002 F +1 617 723 9036 www.ch2m.com

John Sullivan
Chief Engineer
Boston Water and Sewer Commission
980 Harrison Ave.
Boston, MA 02119

June 16, 2017

Subject: 2017 Remediation General Permit Notice of Intent—Request for Authorization to Discharge, Former Bull HN Information Systems, Inc. Facility, Brighton, Massachusetts

Dear Mr. Sullivan:

CH2M HILL Engineers, Inc. (CH2M), has prepared on behalf of Honeywell International Inc. this request for authorization to discharge to the Boston Water and Sewer Commission (BWSC) storm sewer system from the former Bull HN Information Systems facility, located at the corner of Guest Street and Life Street in Brighton, Massachusetts (site). Permission to discharge to the BWSC storm sewer system is a requirement of U.S. Environmental Protection Agency (USEPA) under the National Pollutant Discharge Elimination System (NPDES) Massachusetts Remediation General Permit (RGP) for two separate groundwater extraction and treatment systems (called Migration Control [MC] and Footer Drain [FD] respectively). The effluent from these two systems flows to a storm drainage system that discharges to the Charles River (via outfall No. 25E037) in accordance with 2010 RGP authorization numbers MAG910076 for the MC system and MAG910077 for the FD system. Exhibit 1 presents the site location and discharge information map.

A release condition was initially reported to Massachusetts Department of Environmental Protection (MassDEP) in 1986 (Release Tracking Number 3-00158) for the detection of volatile organic compounds (VOCs) in groundwater at the site, including 1,1,1-trichloroethane (1,1,1-TCA), trichloroethene (TCE), and their respective daughter products. The site was transitioned to the Massachusetts Contingency Plan (MCP) in 1991. To address the release condition, the MC and FD systems were installed in 1996 and 1999, respectively. Based on the average flow rates over the last 5 years, the average discharge volumes of 12,000 gallons per day for the MC system, and 145,000 gallons per year for the FD system.

Monthly samples are collected from the influent and effluent of both the MC and FD systems, in accordance with the RGP. Exhibit 3 summarizes typical influent and effluent parameter concentrations observed over the past 2 years for the MC and FD systems.

On April 8, 2017, USEPA published an updated RGP for discharges in Massachusetts, requiring reapplication for coverage. In accordance with Section 3.4., Part 7.b of the 2017 RGP, the operator (CH2M) must provide certification that notifications were given to the respective municipal or non-municipal storm sewer system. CH2M, on behalf of Honeywell International Inc., hereby requests for authorization to continue to discharge to BWSC's storm sewer system. Exhibit 4 includes the 2017 RGP Notices of Intent for the MC and FD systems to be submitted as part of the re-application.

John Sullivan June 16, 2017 Page 2

Sincerely,

CH2M

Kyle D. Block Project Manager

cc: Mr. Steve Coladonato, Honeywell International Inc. (Owner)

Enclosures:

Exhibit 1—Site Location and Discharge Information Map

Exhibit 2—Migration Control and Footer Drain Systems Flow Schematics

Exhibit 3—Summary of Sampling Information

Exhibit 4a—Draft Migration Control Notice of Intent

Exhibit 4b—Draft Footer Drain Notice of Intent

From: <u>Greenberg, Matthew/BOS</u>

To: <u>Vidal, Maria/BOS</u>

Subject: FW: Remediation General Permit for CH2M Site in Brighton, MA [EXTERNAL]

Date: Wednesday, June 21, 2017 9:53:37 AM

From: Schofield, Amy M [mailto:SchofieldAM@BWSC.ORG]

Sent: Wednesday, June 21, 2017 9:42 AM

To: Greenberg, Matthew/BOS < Matthew. Greenberg@CH2M.com>

Cc: Omobono, Tony/BOS <Tony.Omobono@ch2m.com>; Block, Kyle/BOS <Kyle.Block@CH2M.com>; Coladonato, Steve <Steven.Coladonato@Honeywell.com>; Jewell, Charlie S <JewellC@BWSC.ORG> **Subject:** RE: Remediation

General Permit for CH2M Site in Brighton, MA [EXTERNAL]

This is an interesting thing. EPA asks whether the applicant has requested approval for the discharge and then asks whether approval was received. Its not clear whether municipal approval is required in order for EPA to approve your application. I don't see how EPA can require municipal approval as a condition of their approval.... But I am not a lawyer.

In any event it makes sense to me that since you asked formal approval (and likely others will) we should respond in writing. We have a meeting tomorrow to discuss internally. If the others agree I expect you should see something from us within the next two weeks. But, that being said I would leave your application as is with approval expected by July 17, just in case there is any hold up. I will know more tomorrow.

From: Greenberg, Matthew/BOS [mailto:Matthew.Greenberg@CH2M.com]

Sent: Tuesday, June 20, 2017 1:43 PM

To: Schofield, Amy M

Cc: Omobono, Tony/BOS; Block, Kyle/BOS; Coladonato, Steve

Subject: RE: Remediation General Permit for CH2M Site in Brighton, MA

Hi Amy,

This is no problem. Attached is the Dewatering Discharge Permit Application you requested. Would you happen to have an estimated timeframe within which you would let us know whether or not we would require your approval? We need an estimate for our final NOI submittal.

Thank you and please let me know if you need additional information.

Matthew Greenberg

CH2M

D 1 617-626-7030

From: Schofield, Amy M [mailto:SchofieldAM@BWSC.ORG]

Sent: Monday, June 19, 2017 3:50 PM

To: Greenberg, Matthew/BOS < Matthew. Greenberg@CH2M.com>

Cc: Omobono, Tony/BOS <Tony.Omobono@ch2m.com>; Block, Kyle/BOS <Kyle.Block@CH2M.com>; Coladonato,

Steve <Steven.Coladonato@Honeywell.com>

Subject: RE: Remediation General Permit for CH2M Site in Brighton, MA [EXTERNAL]

Matt, John told me that you spoke this morning and you are all set. But we want to formalize this a little more. Would you fill out the attached "Dewatering Discharge Permit Application"? And we would like a better mapcloser up of the discharge location. Attached is a map from our GIS. No need to include meter information-there will not be a charge for this discharge at this time-although I couldn't say that there wouldn't be some day in the future.

You can send the dewatering application back to me. you don't need to resubmit the NOI since we already have it.

I think we may send back a letter of approval but we are still discussing internally. In the future this will be handled by Matt Tuttle. His contact info is on the form.

From: Greenberg, Matthew/BOS [mailto:Matthew.Greenberg@CH2M.com]

Sent: Monday, June 19, 2017 10:50 AM

To: Sullivan, John P

Cc: Schofield, Amy M; Omobono, Tony/BOS; Block, Kyle/BOS; Coladonato, Steve

Subject: RE: Remediation General Permit for CH2M Site in Brighton, MA

Dear Mr. Sullivan,

Thank you for taking time to speak with me this morning. Per our conversation, the Boston Water and Sewer Commission has no concerns related to Honeywell's continued discharge at the former Bull HN Information Systems facility and no further follow up is needed. We will continue to perform the treatment system effluent monitoring and compliance per USEPA Remediation General Permit requirements. Please let me know if you have additional guestions at any time.

Matthew Greenberg

CH2M

D 1 617-626-7030

From: Sullivan, John P [mailto:SullivanJP@BWSC.ORG]

Sent: Friday, June 16, 2017 12:33 PM

To: Greenberg, Matthew/BOS < <u>Matthew.Greenberg@CH2M.com</u>> **Cc:** Schofield, Amy M < SchofieldAM@BWSC.ORG>; Omobono, Tony/BOS

<Tony.Omobono@ch2m.com>; Block, Kyle/BOS <Kyle.Block@CH2M.com>; Coladonato, Steve

<Steven.Coladonato@Honeywell.com>

Subject: RE: Remediation General Permit for CH2M Site in Brighton, MA [EXTERNAL]

It seems that the requirement is that you notify us of your intent.

Are you looking for a response/acknowledgement/permission from us?...IF so, do you have a draft of what you are expecting from us?

John P. Sullivan, P.E.
Chief Engineer
Boston Water and Sewer Commission
sullivanjp@bwsc.org

617-989-7444

From: Greenberg, Matthew/BOS [mailto:Matthew.Greenberg@CH2M.com]

Sent: Friday, June 16, 2017 10:48 AM

To: Sullivan, John P

Cc: Schofield, Amy M; Omobono, Tony/BOS; Block, Kyle/BOS; Coladonato, Steve

Subject: Remediation General Permit for CH2M Site in Brighton, MA

Dear Mr. Sullivan:

CH2M Hill is preparing an application from the USEPA to continue groundwater treatment and discharge at the former Bull HN Information Systems facility, located at the corner of Guest Street and Life Street in Brighton, Massachusetts. As part of this application, USEPA requires that a request be made to the site's

respective municipal storm sewer management entity, in this case Boston Water and Sewer Commission. See attached for the related letter request and backup information.

A hard copy of this submittal will be forthcoming.

Please feel free to let us know if you have questions at any time. Thank you.

Matthew Greenberg

Hydrogeologist **D** 1 617-626-7030 **F** 215-640-9564

CH2M

18 Tremont Street Suite 700 Boston, MA 02108 www.ch2m.com

Exhibit 2B Footer Drain System Influent Sampling Data Summary

 $Operator: Bradly\ Russell/CH2M\ HILL,\ Inc.\ -\ email:\ Bradley. Russell@ch2m.com\ -\ Telephone:\ 617-523-2002\ \square$

Former Bull HN Information Systems, Inc

RGP Permit # - MAG910077

Influent/Effluent Sampling Location: Footer Drain System located at 5 Guest Street, Brighton MA

Outfall Effluent Sampling Location: Charles River Outfall. Coordinates (Latitude 42.356747, Longitude -71.147594)

Enter Activity Category								I
\								
Category VII—								
Collection Structure								
Dewatering /		Effluent	Influent	Effluent	WE		Influent Temp	Effluent Temp
Remediation		Flow	pН	pН	(Category	/ I & II)	иниси тетр	Emacine remp
(Sub-category G [A, B								
and C])								
Check units	\rightarrow	MGD	SU	SU	LC_{50} (%)	NOEC	°C	°C
Enter test method	\rightarrow	BMP	EPA4500- H+ B-2000	EPA4500- H+ B-2000			EPA2550 B-2000	EPA2550 B-2000
Enter permit limit	\rightarrow							
Min		0.0144	7.87	6.82	0	0	21.1	12.97
Max		0.0144	7.87	6.82	0	0	21.1	12.97
Avg		0.0144	7.87	6.82	#DIV/0!	#DIV/0!	21.1	12.97
# of measurements		1	1	1	0	0	1	1
Enter sample date		Enter result	ts; paramete	rs that are no	ot applicable of	an be left b	lank	
\downarrow		\downarrow						
6/5/2017		0.0144	7.87	6.82			21.1	12.97

See separate worksheet for receiving water

See separate worksheets for each contamination type
Enter additional parameters, if necessary

 $Operator: Bradly Russell/CH2M \ HILL, Inc. - email: Bradley. Russell@ch2m.com - Telephone: 617-523-2002 \\ \square$

Former Bull HN Information Systems, Inc

RGP Permit # - MAG910077

Lower Charles River

Segment MA72-38 - Receiving Water Sample Coordinates: (Latitude 42.364167, Longitude -71.139722)

18.28 ND

0.3

0.5

ND

0.60

Enter Activity Category

\downarrow																			
Category VII—																			
Collection Structure																			
Dewatering /		pН	Temp	Ammonio	Antimony	Arconio	Codmium	Chromium III	Chromium VI	Copper	Iron	Lead	Mercury	Nickel	Selenium	Silver	Zinc	Hardness	Salinity
Remediation		рп	remp	Allillollia	Anumony	Aiseilic	Caumum	Cinoninum III	Cilionilum VI	Соррег	поп	Leau	Mercury	Nickei	Selemum	Silvei	ZIIIC	(Freshwater)	(Saltwater)
(Sub-category G [A, B																			
and C])	_																		
Check units	\rightarrow	SU	°C	mg/L	$\mu g/L$	$\mu g/L$	$\mu g/L$	μg/L	μg/L	μg/L	$\mu g/L$	mg/L							
Enter test method	\rightarrow	EPA4500- H+ B-2000	EPA2550 B-2000	SM4500NH 3-G	EPA200.8	EPA200.8	EPA200.8	SW6010/7196	EPA218.7	E200.8	E200.8	EPA200.8	EPA245.1	EPA200.8	EPA200.8	EPA200.8	EPA200.8	SM2340C	
Enter permit limit	\rightarrow																		
Min		7.06	18.28	0	0.3	0.5	0	0.6	0.093	3	620	2.1	0	0.9	0	0	9.1	66.3	
Max		7.06	18.28	0	0.3	0.5	0	0.6	0.093	3	620	2.1	0	0.9	0	0	9.1	66.3	
Avg		7.06	18.28	#DIV/0!	0.3	0.5	#DIV/0!	0.6	0.093	3	620	2.1	#DIV/0!	0.9	#DIV/0!	#DIV/0!	9.1	66.3	
# of measurements		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Enter sample date		Enter result	ts; parameters th	at are not ap	oplicable ca	n be left bla	ank												

0.093

3.0

620

2.1

ND

0.90

ND

ND

9.1

66.3

ND = Not detected above method detection limit

 \downarrow

5/16/2017

 \downarrow

7.06

Enter treatment type applicable to these contaminants

Adsorption/Absorption, Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption, and Ion Exchange.

Enter Activity Category																																					
Category VII— Collection Structure Dewatering / Remediation (Sub-category G [A, B and C])]	Influent Ammonia	Effluent Ammonia	Influent Chloride	Effluent Chloride	Influent TRC	Effluent TRC	Influent TSS	Effluent TSS	Influent Antimony	Effluent Antimony		Effluent Arsenic	Influent Cadmium	Effluent Cadmium	Influent Chromium III	Effluent Chromium III	Influent Chromium VI	Effluent Chromium VI	Influent Copper		Influent Iron	Effluent Iron		Effluent Lead				Effluent Nickel	Influent Selenium	Effluent Selenium		Effluent Silver	Influent Zinc	Effluent Zinc	Influent Cyanide	
Check units	\rightarrow	mg/L	mg/L	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	mg/L	mg/L	$\mu g/L$	$\mu g/L$	μg/L	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	μg/L	$\mu g/L$	$\mu g/L$	μg/L	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	μg/L	$\mu g/L$	$\mu g/L$	\mug/L	$\mu g/L$
Enter test method	→ SM-	I4500NH3-G		EPA300.0		SM4500Cl- F		SM2540D		EPA200.8		EPA200.8		EPA200.8		SW6010/7196		EPA218.7		EPA200.8		EPA200.8		EPA200.8		EPA245.1		EPA200.8		EPA200.8		EPA200.8		EPA200.8		EPA334.5	
Enter permit limit	\rightarrow																																				
Min		0	0	1320000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.3	0	188	0	0	0	0	0	19.3	0	0	0	0	0	7.7	0	130	0
Max		0	0	1320000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.3	0	188	0	0	0	0	0	19.3	0	0	0	0	0	7.7	0	180	0
Avg	#	#DIV/0!	#DIV/0!	1320000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	2.3	#DIV/0!	188	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	19.3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	7.7	#DIV/0!	155	#DIV/0!
# of measurements		1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
Enter sample date	Ente	er results; p	arameters tha	at are not appl	icable can be	left blank																															
\		\downarrow																																			
5/16/2017	NA			1320000		NA		NA		NA		NA		NA		NA		NA		2.3		188		NA		NA		19.3		NA		NA		7.7		180	
6/8/2017																																				130	

ND = Not detected above method detection limit

NA = Not Applicable due to Activity Category

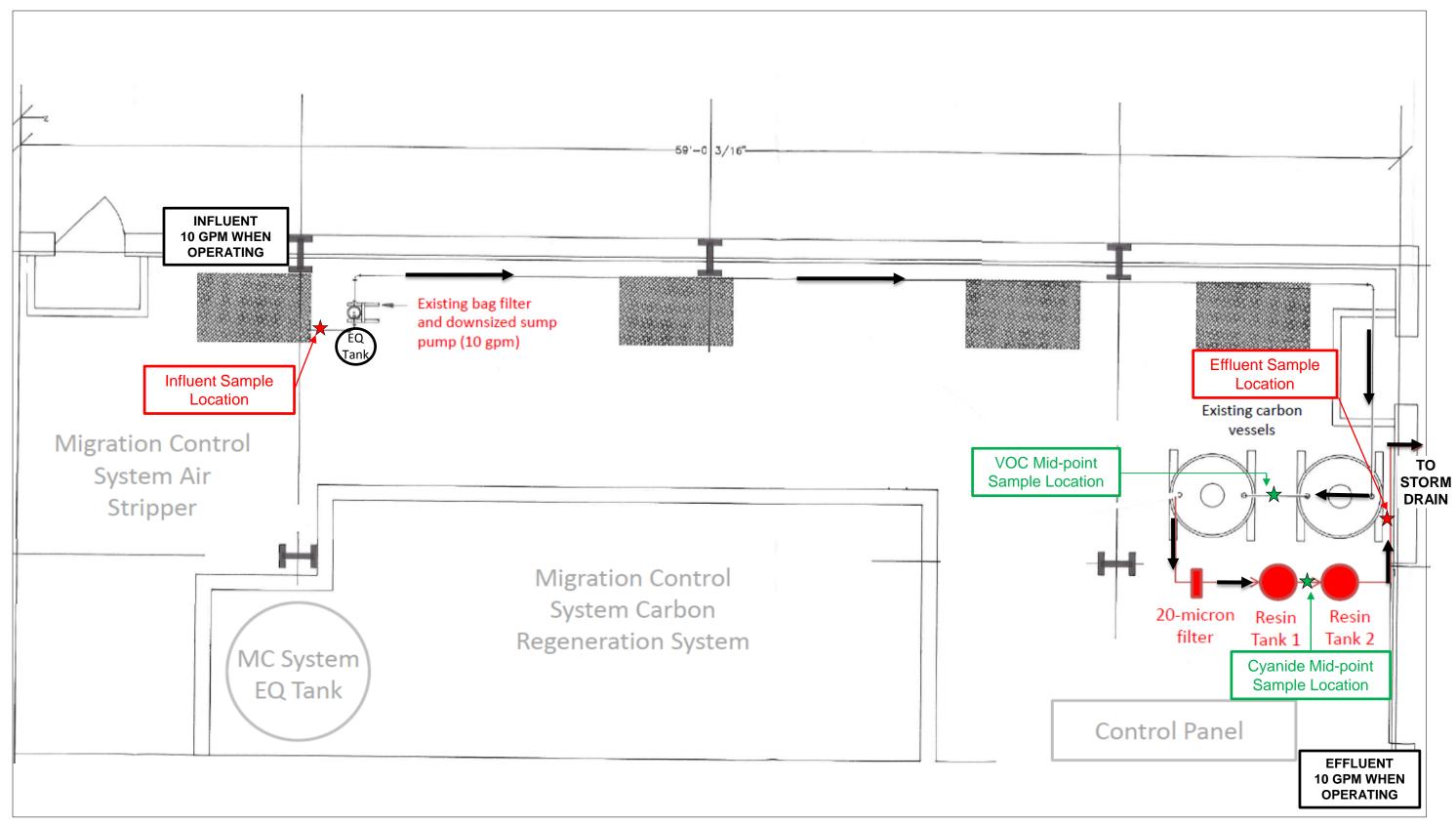
Enter treatment type applicable to these contaminants ψ

Adsorption/Absorption, Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption, and Ion Exchange.

Enter Activity Category										
Category VII— Collection Structure Dewatering / Remediation (Sub-category G [A, B and C])	Influent Total BTEX	Effluent Total BTEX	Influent Benzene	Effluent Benzene	Influent 1,4 Dioxane	Effluent 1,4 Dioxane	Influent Acetone	Effluent Acetone	Influent Phenol	Effluent Phenol
Check units -	→ µg/L	$\mu g\!/\!L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g \! / \! L$	$\mu g/L$	$\mu g/L$	$\mu g/L$	$\mu g/L$
Enter test method	→ EPA624		EPA624		EPA624		EPA524.2		EPA625	
Enter permit limit	→									
Min	0	0	0	0	29.1	0	0	0	0	0
Max	0	0	0	0	29.1	0	0	0	0	0
Avg	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	29.1	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
# of measurements	0	0	0	0	1	0	0	0	0	0
Enter sample date	Enter resul	ts; paramete	rs that are n	ot applicabl	le can be left bl	ank				
\downarrow	\downarrow									
5/16/2017	NA		NA		29.1		NA		NA	

ND = Not detected above method detection limit NA = Not Applicable due to Activity Category

Enter treatment type applicable to these contaminants


Adsorption/Absorption, Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption, and Ion Exchange.

Enter Activity Category																																
\downarrow																																
Category VII— Collection Structure Dewatering / Remediation (Sub-category G [A, B and C])	Influent Carbon Tetrachloride	Effluent Carbon Tetrachloride		Effluent 1,2 DCB		Effluent 1,3 DCB			Influent Total DCBs	Effluent Total DCBs		Effluent 1,1 DCA		Effluent 1,2 DCA			Influent EDB		Influent Methylene Chloride	Effluent Methylene Chloride	Influent 1,1,1 TCA	Effluent 1,1,1 TCA	Influent 1,1,2 TCA	Effluent 1,1,2 TCA		Effluent TCE	Influent PCE	Effluent PCE	Influent cis-1,2 DCE	Effluent cis-1,2 DCE	Vinyl	Effluent Vinyl Chloride
Check units Enter test method Enter permit limit	→ μg/L → EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L SW846-8011	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L	μg/L EPA624	μg/L
Min	0	0	0	0	0	0	0	0	0	0	27.4	0	0.51	0	5.1	0	0	0	0	0	2.4	0	0	0	18.8	0	0	0	81.5	0	0	0
Max	0	0	0	0	0	0	0	0	0	0	27.4	0	0.51	0	5.1	0	0	0	0	0	2.4	0	0	0	18.8	0	0	0	81.5	0	0	0
Avg	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	27.4	#DIV/0!	0.51	#DIV/0!	5.1	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	2.4	#DIV/0!	#DIV/0!	#DIV/0!	18.8	#DIV/0!	#DIV/0!	#DIV/0!	81.5	#DIV/0!	#DIV/0!	#DIV/0!
# of measurements	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
Enter sample date	Enter re	sults; parameter	s that are no	t applicable	can be left l	blank																										
↓ 5/16/2017	↓ NA		NA		NA		NA		NA		27.4		0.51		5.1		NA		NA		2.4		NA		18.8		NA		81.5	1	NA	

ND = Not detected above method detection limit

NA = Not Applicable due to Activity Category

Exhibit 3 Footer Drain System Flow Schematic

Note: Storm drain discharges to Charles River via stormwater outfall.

Footer Drain System Flow Schematic
Former Bull HN Information Systems Facility

Exhibit 4
Endangered Species Act Supporting
Information

 From:
 Holt, Emily (FWE)

 To:
 Essuman, Ama/BOS

 Cc:
 Greenberg, Matthew/BOS

Subject: RE: Confirmation for no listed Endangered Species at Brighton site [EXTERNAL]

Date: Wednesday, March 01, 2017 2:18:29 PM

Ama,

I have reviewed the submitted location map and determined that this site **does not occur within Estimated**Habitat of Rare Wildlife or Priority Habitat of State-listed Rare Species as indicated in

the *Massachusetts Natural Heritage Atlas* (13th Edition). Therefore, the project is not required to be reviewed for compliance with the rare wildlife species section of the Massachusetts Wetlands Protection Act Regulations (310 CMR 10.37, 10.59 & 10.58(4)(b)) or the MA Endangered Species Act Regulations (321 CMR 10.18).

Best,

Emily Holt

Endangered Species Review Assistant
Natural Heritage & Endangered Species Program
Massachusetts Division of Fisheries & Wildlife
1 Rabbit Hill Road, Westborough, MA 01581
p: (508) 389-6385 | f: (508) 389-7890
mass.gov/nhesp

From: Ama.Essuman@ch2m.com [mailto:Ama.Essuman@ch2m.com]

Sent: Thursday, February 16, 2017 2:15 PM

To: Holt, Emily (FWE)

Cc: Matthew.Greenberg@CH2M.com

Subject: Confirmation for no listed Endangered Species at Brighton site

Hi Emily,

Good afternoon! My name is Ama Essuman and I am reaching out to you on the behalf of Matt Greenberg at CH2M. We are preparing documentation for our Notice of Intent under the upcoming NPDES Remediation General Permit. We want to confirm that there are no listed endangered species in the area of our site location at 38-40 Life Street in Brighton, MA. The location is shown in the attached figure.

Thank you in advance for your help, and let me know if you need any additional information.

Ama Essuman

Ama Essuman

Geologist/Environmental Engineer

D 1 617 626 7075 M 1 347 551 5816 UPCOMING PTO from 2/24 to 2/28 CH2M 18 Tremont Street, Suite 700

18 Tremont Street, Suite 700 Boston, MA 02108

www.ch2m.com | LinkedIn | Twitter | Facebook

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 22, 2016

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2016)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

Exhibit 5 National Historic Preservation Act Supporting Information

H. National Historic Preservation Act eligibility determination

NOI Section H – Historic Property Determination Rationale

This brief narrative summarizes the assessment of the presence of historic properties affected by the discharge and discharge-related activities referenced in this Notice of Intent, associated with the Bull HN Information Systems, Inc. facility, located in Brighton, Massachusetts. This summary has been prepared to provide rationale that the established treatment system, contained in a facility constructed in the timeframe between 1999 and 2001, is not adversely affecting any historic properties. A visual inspection was performed to confirm this, and a search of the National Register of Historic Places revealed no historic properties at the site address. This status was confirmed previously in the 2010 Remediation General Permit Notice of Intent.

Exhibit 6 Laboratory Analytical Reports and Chain-of-Custody Forms

New Jersey

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION,

SGS

e-Hardcopy 2.0
Automated Report

Reissue #2

06/27/17

Technical Report for

VERIFICATION, TESTING AND CERTIFICATION COMPANY.

Honeywell International Inc. OMM work

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

R35116

SGS Accutest Job Number: JC43459

Sampling Date: 05/16/17

CH2M

18 Tremont Street Boston, MA 02108

HTS-RES-LAB@Honeywell.com; kyle.block@ch2m_com; matthew.greenberg@ch2m.com; ama.essuman@ch2m.com;

ATTN: Kyle Block

Total number of pages in report: 84

TNI FORATORA

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Maney 4. Cole
Nancy Cole
Laboratory Director

Client Service contact: Rocus Peters 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

June 15, 2017

Mr. Kyle Block CH2M 18 Tremont Street Boston, MA 02108

Re: SGS Accutest -Dayton, Jobs # JC44930, JC43459, and JC42600 - Reissue

Dear Mr. Block,

The final report for SGS Accutest jobs number JC44930, JC43459, and JC42600 have edited to reflect corrections to the data package. These edits have been incorporated into the revised report attached.

Specifically, the MDL (Method Detention Limit) has been added to the lab result pages per the request of Matt Greenberg.

Moving forward, all reports for this site / project wil have this type of reporting.

Please contact me at (732) 355-4551 if I can be of further assistance in this matter.

Sincerely,

Marty Vitanza

Sr. Project Manager

SGS Accutest

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, **TESTING AND CERTIFICATION COMPANY.**

SGS Accutest

Mid-Atlantic 2235 US Highway 130 Dayton, NJ 08810, USA t+1 (0)732 329 0200 www.sgs.com

June 27, 2017

Mr. Kyle Block CH2M 18 Tremont Street Boston, MA 02108

Re: SGS Accutest –Dayton, Jobs # JC43459– Reissues #2

Dear Mr. Block,

The final reports for SGS Accutest job number JC43459 has edited to reflect corrections to the data package. These edits have been incorporated into the revised report attached.

Specifically, the Cyanide's Method Detention Limits have been evaluated and adjusted for samples JC43459-2R and -3R to meet client's requirement. The attached revised report incorporates these revisions.

Please contact me at (732) 329-0200 if I can be of further assistance in this matter.

Sincerely

SGS Accutest

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, **TESTING AND CERTIFICATION COMPANY.**

> Mid-Atlantic 2235 US Highway 130 Dayton, NJ 08810, USA t+1 (0)732 329 0200 www.sgs.com Member of the SGS Group (SGS SA)

Sections:

-1-

Table of Contents

Section 1: Sample Summary	
Section 2: Case Narrative/Conformance Summary	6
Section 3: Summary of Hits	
Section 4: Sample Results	
4.1: JC43459-1: REC WATER-051617	12
4.2: JC43459-2: INF-RECERT-051617-FD	
4.3: JC43459-2R: INF-RECERT-051617-FD	17
4.4: JC43459-3: INF-RECERT-051617-MC	18
4.5: JC43459-3R: INF-RECERT-051617-MC	24
Section 5: Misc. Forms	25
5.1: Certification Exceptions	26
5.2: Chain of Custody	27
Section 6: GC/MS Volatiles - QC Data Summaries	34
6.1: Method Blank Summary	35
6.2: Blank Spike Summary	37
6.3: Matrix Spike Summary	
6.4: Duplicate Summary	41
6.5: Instrument Performance Checks (BFB)	43
6.6: Surrogate Recovery Summaries	48
Section 7: GC/MS Semi-volatiles - QC Data Summaries	50
7.1: Method Blank Summary	51
7.2: Blank Spike Summary	53
7.3: Matrix Spike/Matrix Spike Duplicate Summary	54
7.4: Instrument Performance Checks (DFTPP)	55
7.5: Surrogate Recovery Summaries	
Section 8: GC Volatiles - QC Data Summaries	65
8.1: Method Blank Summary	
8.2: Blank Spike/Blank Spike Duplicate Summary	
8.3: Matrix Spike Summary	
8.4: Duplicate Summary	69
8.5: Surrogate Recovery Summaries	70
Section 9: Metals Analysis - QC Data Summaries	
9.1: Prep QC MP863: Sb,As,Cd,Cr,Cu,Fe,Pb,Ni,Se,Ag,Zn	
9.2: Prep QC MP951: Hg	
Section 10: General Chemistry - QC Data Summaries	
10.1: Method Blank and Spike Results Summary	
10.2: Duplicate Results Summary	
10.3: Matrix Spike Results Summary	
10.4: Matrix Spike Duplicate Results Summary	

Sample Summary

Honeywell International Inc. OMM work

Job No: JC43459

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA Project No: R35116

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JC43459-1	05/16/17	12:17 AE/TB	305/17/17	AQ	Water	REC WATER-051617
JC43459-2	05/16/17	11:33 AE/TB	305/17/17	AQ	Influent	INF-RECERT-051617-FD
JC43459-2R	05/16/17	11:33 AE/TB	305/17/17	AQ	Influent	INF-RECERT-051617-FD
JC43459-3	05/16/17	11:01 AE/TB	305/17/17	AQ	Influent	INF-RECERT-051617-MC
JC43459-3R	05/16/17	11:01 AE/TB	305/17/17	AQ	Influent	INF-RECERT-051617-MC

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Honeywell International Inc. OMM work Job No JC43459

Site: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA Report Date 6/9/2017 11:06:20 AM

On 05/17/2017, 3 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS Accutest at a maximum corrected temperature of 3.3 C. Samples were intact and chemically preserved, unless noted below. A SGS Accutest Job Number of JC43459 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Please refer to certification exceptions summary for additional certification information.

Volatiles by GCMS By Method EPA 524.2 REV 4.1

Matrix: AQ Batch ID: V1B5221

- All samples were analyzed within the recommended method holding time.
- Sample(s) JC43812-5MS, JC43812-6DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JC43459-3: Diluted due to high concentration of non-target compound.

Volatiles by GCMS By Method EPA 624

Matrix: AQ Batch ID: VT9219

- All samples were analyzed within the recommended method holding time.
- Sample(s) JC44121-3DUP, JC44121-4MS, JC44121-3DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC44121-3DUP have surrogates outside control limits. Probable cause due to matrix interference.
- JC44121-4MS: (pH=5) Sample is not acid preserved per method/client criteria. Sample analyzed within 3 days holding time as required for acrolein and acrylonitrile. Other compounds within 7 days as required by the method.
- JC44121-3DUP: (pH=5) Sample is not acid preserved per method/client criteria. Sample analyzed within 3 days holding time as required for acrolein and acrylonitrile. Other compounds within 7 days as required by the method.
- JC44121-3DUP for Dibromofluoromethane (S): Outside control limits due to matrix interference.

Extractables by GCMS By Method EPA 625

Matrix: AO Batch ID: OP3046

- All samples were extracted within the recommended method holding time.
- Sample(s) JC43417-1MS, JC43417-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Volatiles by GC By Method SW846-8011

Matrix: AQ Batch ID: OP2993

- All samples were extracted within the recommended method holding time.
- Sample(s) JC43542-1MS, JC43563-5DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

SGS 6 of 84

Metals By Method EPA 200.8

Matrix: AQ Batch ID: MP863

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC43590-1MS, JC43590-1MSD were used as the QC samples for metals.

Metals By Method EPA 245.1

Matrix: AQ Batch ID: MP951

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC43417-1MS, JC43417-1MSD were used as the QC samples for metals.

Wet Chemistry By Method EPA 218.7

Matrix: AO Batch ID: GP5594

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC43459-1DUP, JC43459-1MS were used as the QC samples for Chromium, Hexavalent.
- JC43459-1 for Chromium, Hexavalent: Method EPA 218.7 is not a certified method for non-potable water samples.Received at pH < 8 (6.61). Adjusted to pH >8 prior to analysis within 24 h from collection time.
- JC43459-3 for Chromium, Hexavalent: Method EPA 218.7 is not a certified method for non-potable water samples.Received at pH < 8 (6.37). Adjusted to pH > 8 prior to analysis within 24 h from collection time.

Wet Chemistry By Method EPA 300/SW846 9056A

Matrix: AQ Batch ID: GP5540

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC43444-1DUP, JC43444-1MS were used as the QC samples for Chloride.

Wet Chemistry By Method EPA 335.4/LACHAT

Matrix: AQ Batch ID: GP5834

- All method blanks for this batch meet method specific criteria.
- Sample(s) JC44479-7ADUP, JC44479-7AMS were used as the QC samples for Cyanide.
- The following samples were prepared outside of holding time for method EPA 335.4/LACHAT: JC43459-2R, JC43459-3R Analysis done out of holding time.

Wet Chemistry By Method SM2340 C-11

Matrix: AQ Batch ID: GN64392

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC43591-1DUP, JC43591-1MS were used as the QC samples for Hardness, Total as CaCO3.

Friday, June 09, 2017 Page 2 of 3

Wet Chemistry By Method SM2540 D-11

Matrix: AQ Batch ID: GN64357

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC43472-2DUP were used as the QC samples for Solids, Total Suspended.
- JC43459-3 for Solids, Total Suspended: Reported sample aliquot obtained from filtration of 960 mL of sample. Volume was reduced from 1 liter due to limited volume.

Wet Chemistry By Method SM4500CL F-11

Matrix: AQ

Batch ID: GN63850

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC42307-1QDUP were used as the QC samples for Total Residual Chlorine.
- JC43459-3 for Total Residual Chlorine: Field analysis required. Received out of hold time and analyzed by request.

Wet Chemistry By Method SM4500CN I-2011

Matrix: AO

Batch ID: GP5475

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC43604-1DUP, JC43604-1MS were used as the QC samples for Weak Acid Dissociable Cn.
- Matrix Spike Recovery(s) for Weak Acid Dissociable Cn are outside control limits. Spike recovery indicates possible matrix interference.
- RPD(s) for Duplicate for Weak Acid Dissociable Cn are outside control limits for sample GP5475-D1. RPD acceptable due to low duplicate and sample concentrations.

Wet Chemistry By Method SM4500NH3 H-11LACHAT

Matrix: AQ

Batch ID: GP5527

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC43618-1DUP, JC43618-1MS, JC43618-1MSD were used as the QC samples for Nitrogen, Ammonia.

Wet Chemistry By Method SW846 6010/7196A M

Matrix: AQ

Batch ID: R163554

- The data for SW846 6010/7196A M meets quality control requirements.
- JC43459-3 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AO

Batch ID: R163555

- The data for SW846 6010/7196A M meets quality control requirements.
- JC43459-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

SGS Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS Accutest is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS Accutest indicated via signature on the report cover

Friday, June 09, 2017 Page 3 of 3

Summary of Hits Job Number: JC43459

Account: Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Collected: 05/16/17

Arsenic 0.5 Chromium 0.6 Copper 3.0 Iron 620 Lead 2.1 Nickel 0.9 Zinc 9.1 Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	30 B 50 B 59 B 0 I 90 B 1	2.0 1.0 4.0 4.0 50 0.50 4.0 10 0.025 0.0040 4.0	0.26 0.034 0.10 0.14 2.0 0.011 0.11 1.2 0.014 0.00011 2.5	ug/l ug/l ug/l	EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 218.7
Arsenic 0.5 Chromium 0.6 Copper 3.0 Iron 620 Lead 2.1 Nickel 0.9 Zinc 9.1 Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	50 B 59 B 0 B 0 I 90 B 1 B 0903 00060 B	1.0 4.0 4.0 50 0.50 4.0 10 0.025 0.0040	0.034 0.10 0.14 2.0 0.011 0.11 1.2 0.014 0.00011	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 218.7
Arsenic 0.5 Chromium 0.6 Copper 3.0 Iron 620 Lead 2.1 Nickel 0.9 Zinc 9.1 Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	59 B 0 B 0 1 90 B 1 B 0903 00060 B	4.0 4.0 50 0.50 4.0 10 0.025 0.0040	0.10 0.14 2.0 0.011 0.11 1.2 0.014 0.00011	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 218.7
Copper 3.0 Iron 620 Lead 2.1 Nickel 0.9 Zinc 9.1 Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	0 B 0 0 1 P00 B 1 B 1 B 1 B 1 D00060 B	4.0 50 0.50 4.0 10 0.025 0.0040	0.14 2.0 0.011 0.11 1.2 0.014 0.00011	ug/l ug/l ug/l ug/l ug/l ug/l mg/l	EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 218.7
Iron 620 Lead 2.1 Nickel 0.9 Zinc 9.1 Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethane 5.1 1,1-Dichloroethane 5.1 1,2-Dichloroethane 5.1 1,1-Dichloroethane 5.1 1,2-Dichloroethane 5.1 1,1-Dichloroethane 5.1	0 1 1 90 B 1 B 993 900060 B	50 0.50 4.0 10 0.025 0.0040	2.0 0.011 0.11 1.2 0.014 0.00011	ug/l ug/l ug/l ug/l ug/l mg/l	EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 218.7
Lead 2.1 Nickel 0.9 Zinc 9.1 Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	1 90 B 1 B 993 900060 B	0.50 4.0 10 0.025 0.0040	0.011 0.11 1.2 0.014 0.00011	ug/l ug/l ug/l ug/l ug/l	EPA 200.8 EPA 200.8 EPA 200.8 EPA 218.7
Nickel 0.9 Zinc 9.1 Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	90 B 1 B 093 00060 B	4.0 10 0.025 0.0040	0.11 1.2 0.014 0.00011	ug/l ug/l ug/l mg/l	EPA 200.8 EPA 200.8 EPA 218.7
Zinc 9.1 Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	1 B 093 00060 B	10 0.025 0.0040	1.2 0.014 0.00011	ug/l ug/l mg/l	EPA 200.8 EPA 218.7
Chromium, Hexavalent a 0.0 Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	093 00060 B .3	0.025 0.0040	0.014 0.00011	ug/l ug/l mg/l	EPA 218.7
Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	00060 B .3	0.0040	0.00011	ug/l mg/l	
Chromium, Trivalent b 0.0 Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	.3			mg/l	
Hardness, Total as CaCO3 66. JC43459-2 INF-RECERT-051617 1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.		4.0			SW846 6010/7196A M
1,1-Dichloroethane 27. 1,2-Dichloroethane 0.5 1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	7-FD			1115/1	SM2340 C-11
1,2-Dichloroethane0.51,1-Dichloroethene5.1cis-1,2-Dichloroethene81.					
1,2-Dichloroethane0.51,1-Dichloroethene5.1cis-1,2-Dichloroethene81.	.4	1.0	0.32	ug/l	EPA 624
1,1-Dichloroethene 5.1 cis-1,2-Dichloroethene 81.	51 J	1.0	0.32	-	EPA 624
cis-1,2-Dichloroethene 81.		1.0	0.57	ug/l	EPA 624
		1.0	0.54	ug/l	EPA 624
1,4-Dioxane 29.	.1 J	130	27	ug/l	EPA 624
1,1,1-Trichloroethane 2.4		1.0	0.36	-	EPA 624
Trichloroethene 18.		1.0	0.24	ug/l	EPA 624
Copper 2.3		4.0	0.14	-	EPA 200.8
Iron 188		50	2.0	ug/l	EPA 200.8
Nickel 19.		4.0	0.11	ug/l	EPA 200.8
Zinc 7.7		10	1.2	ug/l	EPA 200.8
Chloride 132		10	0.35	mg/l	EPA 300/SW846 9056A
Hardness, Total as CaCO3 683		4.0	2.5	mg/l	SM2340 C-11
· · · · · · · · · · · · · · · · · · ·)44	0.010	0.0067	mg/l	SM4500CN I-2011
JC43459-2R INF-RECERT-051617		0.010	0.0007	mg r	51113000111 2011
		0.010	0.0062	/1	ED 1 225 4/1 4 CH 1 E
Cyanide ^c 0.1	18	0.010	0.0063	mg/l	EPA 335.4/LACHAT
JC43459-3 INF-RECERT-051617	7-MC				
1,1-Dichloroethane 34.	.1	5.0	1.6	ug/l	EPA 624
1,1-Dichloroethene 149	9	5.0	2.9	ug/l	EPA 624
cis-1,2-Dichloroethene 17.	.9	5.0	2.7	ug/l	EPA 624
Tetrachloroethene 6.3	3	5.0	4.1	ug/l	EPA 624
1,1,1-Trichloroethane 926	6	5.0	1.8	ug/l	EPA 624
Trichloroethene 756	6	5.0	1.2	ug/l	EPA 624
Arsenic 0.0	085 B	1.0	0.034	ug/l	EPA 200.8
Chromium 1.7	7 D	4.0	0.10	ug/l	EPA 200.8

Summary of Hits Job Number: JC43459

Account: Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Collected: 05/16/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Copper	8.3	4.0	0.14	ug/l	EPA 200.8
Iron	32.0 B	50	2.0	ug/l	EPA 200.8
Lead	0.051 B	0.50	0.011	ug/l	EPA 200.8
Nickel	20.8	4.0	0.11	ug/l	EPA 200.8
Selenium	0.53 B	1.0	0.12	ug/l	EPA 200.8
Silver	0.12 B	2.0	0.041	ug/l	EPA 200.8
Zinc	4.5 B	10	1.2	ug/l	EPA 200.8
Chloride	737	8.0	0.28	mg/l	EPA 300/SW846 9056A
Chromium, Hexavalent ^d	0.54	0.025	0.014	ug/l	EPA 218.7
Chromium, Trivalent ^b	0.0012 B	0.0040	0.00011	mg/l	SW846 6010/7196A M
Hardness, Total as CaCO3	449	4.0	2.5	mg/l	SM2340 C-11
Solids, Total Suspended ^e	0.94 B	4.0	0.57	mg/l	SM2540 D-11
Total Residual Chlorine f	0.090 B	0.10	0.036	mg/l	SM4500CL F-11
Weak Acid Dissociable Cn	0.0080 B	0.010	0.0067	mg/l	SM4500CN I-2011

JC43459-3R INF-RECERT-051617-MC

No hits reported in this sample.

- (a) Method EPA 218.7 is not a certified method for non-potable water samples. Received at pH < 8 (6.61). Adjusted to pH > 8 prior to analysis within 24 h from collection time.
- (b) Calculated as: (Chromium) (Chromium, Hexavalent)
- (c) Analysis done out of holding time. Instrument specific MDL shown.
- (d) Method EPA 218.7 is not a certified method for non-potable water samples. Received at pH < 8 (6.37). Adjusted to pH > 8 prior to analysis within 24 h from collection time.
- (e) Reported sample aliquot obtained from filtration of 960 mL of sample. Volume was reduced from 1 liter due to limited volume.
- (f) Field analysis required. Received out of hold time and analyzed by request.

Section 4

Sample Results	
Report of Analysis	
report of Timerysis	

Report of Analysis

Client Sample ID: REC WATER-051617

 Lab Sample ID:
 JC43459-1
 Date Sampled:
 05/16/17

 Matrix:
 AQ - Water
 Date Received:
 05/17/17

 Percent Solids:
 n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	0.30 B	2.0	0.26	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Arsenic	0.50 B	1.0	0.034	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Cadmium	0.12 U	0.50	0.12	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Chromium	0.69 B	4.0	0.10	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Copper	3.0 B	4.0	0.14	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Iron	620	50	2.0	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Lead	2.1	0.50	0.011	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Mercury	0.055 U	0.20	0.055	ug/l	1	05/22/17	05/22/17 JPM	EPA 245.1 ²	EPA 245.1 ⁴
Nickel	0.90 B	4.0	0.11	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Selenium	0.12 U	1.0	0.12	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Silver	0.041 U	2.0	0.041	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Zinc	9.1 B	10	1.2	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³

Instrument QC Batch: MA42075
 Instrument QC Batch: MA42078

(3) Prep QC Batch: MP863(4) Prep QC Batch: MP951

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

Client Sample ID: REC WATER-051617

 Lab Sample ID:
 JC43459-1
 Date Sampled:
 05/16/17

 Matrix:
 AQ - Water
 Date Received:
 05/17/17

 Percent Solids:
 n/a

r creent bon

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent ^a	0.093	0.025	0.014	ug/l	1	05/25/17 17:31 TT EPA 218.7
Chromium, Trivalent ^b	0.00060 B	0.0040	0.00011	mg/l	1	05/25/17 17:31 TT SW846 6010/7196A M
Hardness, Total as CaCO3	66.3	4.0	2.5	mg/l	1	05/19/17 10:33 MP SM2340 C-11
Nitrogen, Ammonia	0.14 U	0.20	0.14	mg/l	1	05/23/17 15:26 BM SM4500NH3 H-11LACHAT

⁽a) Method EPA 218.7 is not a certified method for non-potable water samples. Received at pH < 8 (6.61). Adjusted to pH > 8 prior to analysis within 24 h from collection time.

RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

⁽b) Calculated as: (Chromium) - (Chromium, Hexavalent)

Report of Analysis

Client Sample ID: INF-RECERT-051617-FD

Lab Sample ID: JC43459-2 **Date Sampled:** 05/16/17 Matrix: AQ - Influent **Date Received:** 05/17/17 Method: EPA 624 **Percent Solids:** n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	T224425.D	1	05/26/17 14:54	SC	n/a	n/a	VT9219
Dun #2							

Purge Volume Run #1 5.0 mlRun #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-34-3 107-06-2 75-35-4 156-59-2	1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene	27.4 0.51 5.1 81.5	1.0 1.0 1.0 1.0	0.32 0.32 0.57 0.54	ug/l ug/l ug/l ug/l	J
123-91-1 71-55-6 79-01-6	1,4-Dioxane 1,1,1-Trichloroethane Trichloroethene	29.1 2.4 18.8	130 1.0 1.0	27 0.36 0.24	ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
17060-07-0 2037-26-5 460-00-4 1868-53-7	1,2-Dichloroethane-D4 (SUR) Toluene-D8 (SUR) 4-Bromofluorobenzene (SUR) Dibromofluoromethane (S)	117% 92% 110% 118%		72-12 78-1 74-1 79-12	19% 15%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: INF-RECERT-051617-FD

Lab Sample ID:JC43459-2Date Sampled:05/16/17Matrix:AQ - InfluentDate Received:05/17/17Percent Solids:n/a

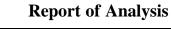
Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

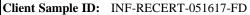
Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Copper	2.3 B	4.0	0.14	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ²
Iron	188	50	2.0	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ²
Nickel	19.3	4.0	0.11	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ²
Zinc	7.7 B	10	1.2	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ²

(1) Instrument QC Batch: MA42075

MDL = Method Detection Limit


(2) Prep QC Batch: MP863


RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Lab Sample ID:JC43459-2Date Sampled:05/16/17Matrix:AQ - InfluentDate Received:05/17/17Percent Solids:n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chloride	1320	10	0.35	mg/l	5	05/24/17 12:06 TG EPA 300/SW846 9056A
Hardness, Total as CaCO3	683	4.0	2.5	mg/l	1	05/19/17 10:33 MP SM2340 C-11
Weak Acid Dissociable Cn	0.044	0.010	0.0067	mg/l	1	05/22/17 13:28 BM SM4500CN I-2011

RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: INF-RECERT-051617-FD

Lab Sample ID: JC43459-2R **Date Sampled:** 05/16/17 Matrix: **Date Received:** 05/17/17 AQ - Influent Percent Solids: n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Cyanide ^a	0.18	0.010	0.0063	mg/l	1	06/07/17 17:17 BM EPA 335.4/LACHAT

(a) Analysis done out of holding time. Instrument specific MDL shown.

RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

ACCUTEST

MDL = Method Detection Limit

Report of Analysis

Client Sample ID: INF-RECERT-051617-MC

Lab Sample ID: JC43459-3 **Date Sampled:** 05/16/17 Matrix: AQ - Influent **Date Received:** 05/17/17 Method: EPA 624 Percent Solids: n/a

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA **Project:**

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 T224426.D 5 05/26/17 15:24 SC VT9219 n/an/aRun #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	5.0	1.2	ug/l	
56-23-5	Carbon tetrachloride	ND	5.0	1.6	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.0	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.2	ug/l	
75-34-3	1,1-Dichloroethane	34.1	5.0	1.6	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	1.6	ug/l	
75-35-4	1,1-Dichloroethene	149	5.0	2.9	ug/l	
156-59-2	cis-1,2-Dichloroethene	17.9	5.0	2.7	ug/l	
123-91-1	1,4-Dioxane	ND	630	140	ug/l	
100-41-4	Ethylbenzene	ND	5.0	1.1	ug/l	
75-09-2	Methylene chloride	ND	5.0	2.7	ug/l	
127-18-4	Tetrachloroethene	6.3	5.0	4.1	ug/l	
108-88-3	Toluene	ND	5.0	1.2	ug/l	
71-55-6	1,1,1-Trichloroethane	926	5.0	1.8	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.7	ug/l	
79-01-6	Trichloroethene	756	5.0	1.2	ug/l	
75-01-4	Vinyl chloride	ND	5.0	1.4	ug/l	
1330-20-7	Xylenes (total)	ND	5.0	0.98	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4 (SUR)	116%		72-12	25%	
2037-26-5	Toluene-D8 (SUR)	91%		78-1	19%	
460-00-4	4-Bromofluorobenzene (SUR)	110%		74-1	15%	
1868-53-7	Dibromofluoromethane (S)	119%		79-12	20%	

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

- 4

Page 1 of 1

Report of Analysis

Client Sample ID: INF-RECERT-051617-MC

 Lab Sample ID:
 JC43459-3
 Date Sampled:
 05/16/17

 Matrix:
 AQ - Influent
 Date Received:
 05/17/17

 Method:
 EPA 524.2 REV 4.1
 Percent Solids:
 n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 1B109720.D 2 05/27/17 16:11 BK n/a n/a V1B5221

Run #2

Purge Volume Run #1 5.0 ml

Run #2

CAS No. Compound MDL Units Result RLQ 67-64-1 7.6 Acetone ND 10 ug/1 CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 2199-69-1 70-130% 1,2-Dichlorobenzene-d4 95% 460-00-4 4-Bromofluorobenzene 83% 70-130%

(a) Diluted due to high concentration of non-target compound.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: INF-RECERT-051617-MC

 Lab Sample ID:
 JC43459-3
 Date Sampled:
 05/16/17

 Matrix:
 AQ - Influent
 Date Received:
 05/17/17

 Method:
 EPA 625
 EPA 625
 Percent Solids:
 n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 2P70109.D
 1
 05/24/17 12:35
 FW
 05/22/17
 OP3046
 E2P3092

Run #2

Run #1 900 ml 1.0 ml
Run #2

CAS No. Compound RLMDL Units Result Q 108-95-2 Phenol ND 2.2 0.44 ug/1 CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 367-12-4 2-Fluorophenol 45% 10-110% 4165-62-2 Phenol-d5 33% 10-110% 118-79-6 2,4,6-Tribromophenol 112% 35-147%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: INF-RECERT-051617-MC

Lab Sample ID: JC43459-3 Date Sampled: 05/16/17 Matrix: AQ - Influent Date Received: 05/17/17 Method: SW846-8011 SW846 8011 **Percent Solids:** n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** 05/24/17 17:49 VDT Run #1 7G22291.D 1 05/19/17 OP2993 G7G795

Run #2

Final Volume Initial Volume Run #1 2.0 ml 36 ml Run #2

CAS No. Compound RLMDL Units Result Q 106-93-4 1,2-Dibromoethane ND 0.019 0.0059 ug/1 CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 3017-95-6 2-Bromo-1-chloropropane 84% 20-144% 3017-95-6 2-Bromo-1-chloropropane 80% 20-144%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit B = Indicates analyte found in associated method blank E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: INF-RECERT-051617-MC

Lab Sample ID: JC43459-3 **Date Sampled:** 05/16/17 Matrix: AQ - Influent **Date Received:** 05/17/17 Percent Solids: n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	0.26 U	2.0	0.26	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Arsenic	0.085 B	1.0	0.034	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Cadmium	0.12 U	0.50	0.12	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Chromium	1.7 B	4.0	0.10	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Copper	8.3	4.0	0.14	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Iron	32.0 B	50	2.0	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Lead	0.051 B	0.50	0.011	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Mercury	0.055 U	0.20	0.055	ug/l	1	05/22/17	05/22/17 JРМ	EPA 245.1 ²	EPA 245.1 ⁴
Nickel	20.8	4.0	0.11	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Selenium	0.53 B	1.0	0.12	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³
Silver	0.12 B	2.0	0.041	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 1	EPA 200.8 ³
Zinc	4.5 B	10	1.2	ug/l	1	05/19/17	05/20/17 MA	EPA 200.8 ¹	EPA 200.8 ³

(1) Instrument QC Batch: MA42075 (2) Instrument QC Batch: MA42078

(3) Prep QC Batch: MP863 (4) Prep QC Batch: MP951

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

ACCUTEST

Report of Analysis

Client Sample ID: INF-RECERT-051617-MC

Lab Sample ID:JC43459-3Date Sampled:05/16/17Matrix:AQ - InfluentDate Received:05/17/17Percent Solids:n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chloride	737	8.0	0.28	mg/l	4	05/24/17 12:30 TG EPA 300/SW846 9056A
Chromium, Hexavalent ^a	0.54	0.025	0.014	ug/l	1	05/25/17 17:45 TT EPA 218.7
Chromium, Trivalent ^b	0.0012 B	0.0040	0.00011	mg/l	1	05/25/17 17:45 TT SW846 6010/7196A M
Hardness, Total as CaCO3	449	4.0	2.5	mg/l	1	05/19/17 10:33 MP SM2340 C-11
Nitrogen, Ammonia	0.14 U	0.20	0.14	mg/l	1	05/23/17 15:27 BM SM4500NH3 H-11LACHAT
Solids, Total Suspended ^c	0.94 B	4.0	0.57	mg/l	1	05/18/17 18:35 TZWSM2540 D-11
Total Residual Chlorine d	0.090 B	0.10	0.036	mg/l	1	05/17/17 16:52 SA SM4500CL F-11
Weak Acid Dissociable Cn	0.0080 B	0.010	0.0067	mg/l	1	05/22/17 13:29 BM SM4500CN I-2011

- (a) Method EPA 218.7 is not a certified method for non-potable water samples. Received at pH < 8 (6.37). Adjusted to pH > 8 prior to analysis within 24 h from collection time.
- (b) Calculated as: (Chromium) (Chromium, Hexavalent)
- (c) Reported sample aliquot obtained from filtration of 960 mL of sample. Volume was reduced from 1 liter due to limited volume.
- (d) Field analysis required. Received out of hold time and analyzed by request.

RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Page 1 of 1

Report of Analysis

Client Sample ID: INF-RECERT-051617-MC

Lab Sample ID:JC43459-3RDate Sampled:05/16/17Matrix:AQ - InfluentDate Received:05/17/17Percent Solids:n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Cyanide ^a	0.0063 U	0.010	0.0063	mg/l	1	06/07/17 17:18 BM EPA 335.4/LACHAT

(a) Analysis done out of holding time. Instrument specific MDL shown.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit

B = Indicates a result > = MDL but < RL

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody

Parameter Certification Exceptions

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

The following parameters included in this report are exceptions to NELAC certification.

The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status
Chromium, Hexavalent Chromium, Trivalent Weak Acid Dissociable Cn	18540-29-9	EPA 218.7 SW846 6010/7196A M SM4500CN I-2011	AQ AQ AQ	Accutest is not certified for this parameter. ^a Accutest is not certified for this parameter. ^b Accutest is not certified for this parameter. ^b

- (a) Analyte is certified with NJDEP for this reference method for DW only. Lab cert for AQ matrix for this analyte not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ.
- (b) Lab cert for analyte not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

Certification exceptions shown are based on the New Jersey DEP certifications. Applicability in other states may vary. Please contact your laboratory representative if additional information is required for a specific regulatory program.

CHAIN OF CUSTODY

	COC				СПАІ				I U	וע												PA	IGE	1	<u>ار ار</u>	<u>3</u>
	SGS	ACCL	JTEST		2235 F		, Daytor	n, NJ 088						F	ED-EX	Tracking	75	/6	239	Ö	Bottle 0	Order Cor	ntrol#			
	1				TEL. 732-32		rax: /		499/34	180				s	GS Acc	cutest Pr	oject#	LNIMH	OMM735	31	SGS A	cutest Jo	J.	04	34	159
	Client / Reporting Information	n			Project	Informa										Rea	ueste	d Ana	lvsis (see 1	EST (ODE	sheet)	-		Matrix Codes
Compar	ny Name		Project Name:					ATTI MENTAL PROPERTY AND ADDRESS OF THE PARTY											ľ	T	T	T	T	T		
	CH2M Hill		Honeywell Br	ighton #37558																			1			DW - Drinking Water GW - Ground Water
Street A			Street	igittoit not ooc																1						WW - Water
	18 Tremont St		Guest St					on (if diffe	erent fi	om R	eport t	o)			ļ			ĺ							- 1	SW - Surface Water SO - Soil
City	State	Zip	City		State	Compan	y Name																			SL- Sludge SED-Sediment
Project (02108 E-mail	Brighton Project #		MA	Street Ac	idross							_												OI - Oil
	thew Greenberg	C-stidii	693091			Curcos, a	Jul 000										2								.	LIQ - Other Liquid AIR - Air
Phone #		Fax#	Client Purchase	Order#		City			S	tate			Zip	-			atio									SOL - Other Solid WP - Wipe
617	-626-7030					1											20	218.7							- 1	FB-Field Blank
Sample	(s) Name(s)	Phone #	Project Manager		***	Attention	:								4500	ω.	8		-							EB-Equipment Blank RB- Rinse Blank
	Ama Essuman/ Tim Bakey		Matthew	Greenberg												00	=	>	245.1	1,0						TB-Trip Blank
sgs					Collection	т			\vdash	Numbe	r of pres	erved E	3ottles ய	T	onis	*S	i ii	Ē	ury.	less					-	
Accutest Sample #	Field ID / Point of Collection		MEOH/DI Vial#	Date	_	Sampled	Matrix	# of bottles	12 PG	HN03	H2SO4	DI Wate	MEOH	14,23	Ammonia	Metals* 200.8	Chromium III (calculation)	Chromium VI,	Mercury,	Hardness						
ownthe #	Fleid ID / Point of Collection		MEURIDI VIAI #	Date	Time	by	Matrix	 	Ĭ	Ī	Ϊž	₫	2 6	-dir							-	<u> </u>		\perp		LAB USE ONLY
1	REC WATER-051617	*************************		5/16/17	1217	AE/TB	ww	3	Ш	1	1	Ш		1	Х	Χ	Х	X	Х	X						E42
																										G-55
										П		П	T	П												GIUTZ
									\vdash			H		Ħ							 	-			\dashv	V993
						-			\vdash	+	\vdash	\vdash	+	++						-	-	-	-	-	-+	1997
									-	+	-	\vdash	+-	\vdash						<u> </u>	-					
										\perp		Ш														
																						l				
											g-	П		П							T					
									\Box		\top	П	\top	\vdash						1	ľ –				\neg	
									\vdash	+	\vdash	+	+	+					-	-	-	-	-	\vdash	\dashv	
						-			\vdash	+	-	H	+	\vdash	-					-	-		-		\dashv	
									Ш			Ш	_	Ш												
																						l				
	Turnaround Time (Business day	rs)									Inforn			- 8									al Instru			
	X Std. 10 Business Days		Approved By (SGS	Accutest PM): / Date:		1		ial "A" (L ial "B" (L			<u> </u>			ategor ategor	-				ude Ar :nium,				Cadmiu	m, Cop	per, Irc	on, Lead,
	5 Day RUSH	INITI	AL ASESSN	IENT 34	~	,		Level 3+4		,	-		te Fon		уБ		THICKE	i, dele	mum,	Silver	, and z	IIIC				
i	3 Day RUSH				terifficación (1 = 1	J Reduc	ed				EDI	D For	mat _												
	2 Day RUSH	LABE	L VERIFICA	TION 5	-		Commerc	ial "C"				Oth	er		_											
	1 Day RUSH							of Known																		
	other gency & Rush T/A data available VIA La	hlink				1		Results Or sults + QC						IC Sun	nmary		Com	do ir:	onte-					A 1 A!	. 1 . 1	
Eille	goney or rush tim uata avallable VIA La	IDIN IIV	Sar	nple Custody mu	st be docum									includ	ing c	ourier	delive	rv.				upon	receip	ot in the	Labo	oratory
	uished by Sampler:	Date Time:		Received By:	7 -,	1			Reling			~ /	7	, .				Date Ti	717	NO	Receive	ed By:	11/	/ /		
1		5/16/17	1300	1 well	one				2		نها	05	10	hel	7			5/10	117	V "V	2	البر		nd	1	
Relino	uished by Sampler:	Date Time:	. Cideo	Received By:	1 0				Reling	uished	By:	1	-					Date Ti	ne: /	200-21	Receive	ed By:	_			

2.00c FP

JC43459: Chain of Custody Page 1 of 7

SGS	
Santa Santa	_

CHAIN OF CUSTODY SGS Accutest - Dayton 2235 Route 130, Dayton, NJ 08810

PAG	E_2	OF <u>3</u>
-----	-----	-------------

	909	ACCI	JTEST		2235		cutest - E 0, Dayto	Dayton m, NJ 08	810					FED-E	X Trackii	ng#				Bottle	Order C	entrol #			
-			11 (may 40)		TEL. 732-32				3499/3	8480				SGS A	ccutest F	roject#	HWINJ	OMM73	531	SGS A	ccutest,	lob#	1.0	7 1 1	
	Client / Reporting Information				Droine	t Inform	accutest,	com	NO.	66000	Carrier .	0.00000		Ø1 86-550	650-200	9503-00-07		Tenana dan	National Co.	2500000		JC		3 76 3	5 7
-			Project Name:		Frojeci	LIHOTHI	auon							64 65522	Re	queste	ed Ana	lysis	(see	TEST	CODE	sheet)		T	Matrix Codes
Comp	any Name																-								DW - Drinking Wate
Street	CH2M Hill Address		Honeywell B Street	righton #37558	<u> </u>	100000000											624								GW - Ground Water
Jones			1			802/002/002								2		1 .									WW - Water SW - Surface Water
City	18 Tremont St	Zip	Guest St		State		Informati ny Name	on (if diff	erent 1	from F	Repor	t to)		_	9	1 8	12							1	SO - Soil
1		•	1		MA	Compa	ly Ivaille) 2		1								SL- Sludge SED-Sediment
	oston MA t Contact	02108 E-mail	Brighton Project #		WIA	Street A	ddroce							_	fig		io							1	OI - Oil
1		C-man				Suberr	duiess								Sec		section)								LIQ - Other Liquid AIR - Air
Phone	atthew Greenberg	Fax#	693091 Client Purchase			City				State			Zip	4	nts		ts								SOL - Other Solid
1	7-626-7030		Cherit i di chase	Order #		10.0,			,	Juio			Lip		comments section) 200.8		comments								WP - Wipe FB-Field Blank
	7-626-7030 er(s) Name(s)	Phone #	Project Manager	r		Attention	n'				-			4 .	6	4500CN	Į į								EB-Equipment Blank
-	Ama Essuman/ Tim Bakey			Greenberg		, monitor								300.0	9	1 8	0								RB- Rinse Blank
-	Ama Essumani Tim Bakey		Wattrew	Greenberg	Collection		T	Т	т	Numb	er of p	reserved	Rottles	- E	(See		Se	SS							TB-Trip Blank
sgs					T		1		1	+ 5	T	1 10	끮	Chloride,	Metals* (Cyanide,	VOCs*,(See	Hardness							
Accutes Sample			MEOH/DI Vial #	Date	Time	Sampled by	Metrix	# of bottles		FNO3	H2SO,	NONE DI Wat	MEOH	1 운	feta	yaı	8	arc							
				Date		Luy .	, , , , , , , , , , , , , , , ,		+-+	건된고	II	Z O	2 0	-	-	-		-	-	-	_				LAB USE ONLY
1_1_	INF-RECERT-051617-FD			5/16/17	1133	AE/TB	ww	6	3	1 1		1 2		X	X	X	X	X							
									П	T		(NE				1									
				1		-	 		++	+	+		++	+	-	+	├		+	-	-	-			
-			 	-					\vdash	+	+		++	-	-		L		_		_				
								1																	
											П	П	\top												
								 	††	+	\vdash	+	+	+	 	 		-	-	 	-	-	-		
-			-	 	 	 			+	+-	\vdash	+	+	-	-	-			-	ļ	<u> </u>		-		
										\perp	Ш				l		1								
	*								11											I					
									++	+	H	+	++	+	 	-	-		 	-	+	 	-		
-						 		-	\vdash	-	H	+	++	-		_			ļ	<u> </u>	-		_		
-									Ш			$\perp \perp$	\perp												
						1			+	+	\vdash	++	++	+	 					 	+	-	-	-	
	Turnaround Time (Business days)			L				Data	Doline	orable	Info	rmation		4500000		National Section				L		<u> </u>			l
			Annroyed By ISGS	Accutest PM): / Date:			Commerc	ial "A" (L			: IIIIUI		ASP Cate	30000000		*NAO+c	ls are	Cana				al Instru	ctions		
	X Std. 10 Business Days			roomest injer bate.				cial "B" (L			L	want.	ASP Cate										4 4 70		E, cis-1,2-DCE
	5 Day RUSH					hannand		Level 3+		-,	-		te Forms				,4, dio		JA, 1,2	-DCA	, 1, 1-L	ICE, I,	1,1-10	A, IC	=, CIS-1,2-DCE
	3 Day RUSH					hammed	NJ Reduc		.,		ř		D Forma				, 1, 010	AUTO							
	2 Day RUSH						Commerc	ial "C"			Ē	= our													
	1 Day RUSH						NJ Data	of Known	Qual	ity Pro	otocol	Report	ting												
	other		***************************************			Commer	cial "A" =	Results Or	nly, Co	mmer	cial "B	r = Resi	ults + QC	Summar	y										
Em	ergency & Rush T/A data available VIA Labli	nk				NJ Red	uced = Re	sults + QC	Sumn	nary +	Partia	al Raw d	lata			Sam	ole inv	entor	y is ve	erified	upon	recein	t in th	e Lab	oratory
2-1	nquished by Sampler:		Sai	mple Custody mi	ust be docum	ented be	elow eac	h time sa				osses	sion, inc	luding (courier	delive	ry.								
1	ниманео му затріет:	Date Time:	1 300	Received By:	Under 1	01			Relino	uished	By:	9%,	lul	21			Date Tin		400	Receiv	ed By:	1	72	11	1217
Reti	nquished by Sampler:	Date Time:		Received By:	() = 0 =	1			-				Ne	7			116	.// /	0 -1	2	2-2-	-	~~	ke	1
3	ngarana ay sampier.	Pare Inne:		3	Long	~			Relino	quished	i By:	6	のロー				Date Tir	ney O	حدال	Receive	ed By:	7			
	quished by:	Date Time:		Received By:	\	-			Custo	dy Sea	1#			Intact		Preserv	ed where		ble	14	4,	On Ice	-	Cooler	T
5				5					"					Not inta		. 100010		ppmt-s				On Ice		Cooler	remp.

JC43459: Chain of Custody

Page 2 of 7

SGS	
ANNE ANNE AND	

	ccc				CH.	AIN			S.	ľO	D)	¥										PA	GE	<u>3</u> C)F_3	3_		
	SGS	AC	CUTES	ST.	2235		ccutest - 30, Day		8810)					FED-EX	Tracking) #				Bottle O	rder Con	trol#					
		ruo	OUIL	JE	TEL. 732-	329-0200	FAX:	732-329)				SGS Ac	cutest Pr	oject#	HWINJ	OMM7353	1	SGS Ac	cutest Jo	b#	5,	4'	7 5.	8 6	
	Client / Reporting Informati	on			DI-	No. of Concession	v.accutes	t.com					20000							600000			,	<u>J c</u>	- 4	5 Y	37	·
	· ·	Oil	Project Name:		Proje	ct Infon	nation									Req	ueste	d Ana	ysis (see 1	ESIC	ODE	sheet)	Т	Γ	T	Τ,	Matrix Codes
Compan																		27										DW - Drinking Water
Street A	CH2M Hill ddress		Honeywell B	righton #375	58				extra St	(889)								62			ш							GW - Ground Water WW - Water
	18 Tremont St		Guest St			Billing I	nformatio	n (if diffe	rent	rom R	epor	t to)			1	8.0	80	F)#8									W.	SW - Surface Water SO - Soil
City	State	Zip	City		State	Compan	y Name								1	section) 200.8					G and						3	SL- Sludge SED-Sediment
Bos Project 0		02108 E-mail	Brighton		MA	Street A	drone									tjou		(noi			S						0	OI - Oil
	thew Greenberg	E-maii	Project # 693091			Street At	Juless									sec		sect			4500CI		5				cetone	LIQ - Other Liquid AIR - Air
Phone #		Fax#	Client Purchase	Order#		City				State			Zip		1	ents		suts			rine		atio				4	SOL - Other Solid WP - Wipe
	626-7030													1		comments	z	amr.			윉		alcn	218.7			11	FB-Field Blank EB-Equipment Blank
	(s) Name(s)	Phone #	Project Manager			Attention	ľ							5	0.0	8	4500CN	8		4500	la l	۵	3		5.1		1108	RB- Rinse Blank
	Ama Essuman/ Tim Bakey		Matthew	Greenberg	Collection				_	Numbe	er of n	resena	ed Bottl	7	300.	(See	45	See	SS.		sidt	2540 [Ē	Ē	, 245.	625		TB-Trip Blank
sgs					T				П	. 9	I.	j	П	1	Chloride,	Metals* (Cyanide,	VOCs*, (See comments section)	Hardness	Ammonia,	Total Residual Chlorine,		Chromium III (calculation)	Chromium VI,	Mercury,	Phenol,	EDB,	
Accufest Sample #	Field ID / Point of Collection	1	MEOH/DI Visi#	Date	Time	Sampled by	Matrix	# of bottles	호	N N N	HZSO	NONE	MEOH		등	Me	Š	Š	Har	Am	Tota	TSS,	횽	흥	Mer	Phe	H	LAB USE ONLY
1	INF-RECERT-051617-MC			5/16/17	1101	AE/TB	ww	18	A	11	1	7	\Box	2	X	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	X	YEL	
-					1101	1		1.9	-	1	Н	+	+	7 0	-	-										1	N.P.	
					_	-			\vdash	+	Н	+	+	+	╁──		<u> </u>						-					
					+				Н	+-	\vdash	+	+	+	-									-				
				-					Н	+	\vdash	+	+	+	ļ	ļ										ļ		
									Н	_	Ш	4	\perp	_	-													
									Ш		Ш	\perp	Ш	\perp														
									П	Т	П	T	П	T														
								***************************************	П	T	П	T	П	T														
					1			~	П	\top	\Box	\top	$\dagger \dagger$	\top	 													
					_				H	+	Н	+	+	+	 												\vdash	
					-				\vdash	+	Н	+	+	+	-	-					-			-		-		
	Turnaround Time (Business da	ıvs)						Data	Deliv	erable	Info	rmati	on.		1000020						Com	ments	/ Specis	al Instruc	tions			
			Approved By (SGS	Accutest PM): / Da	te:		Commerc				Γ	-		Categ	ory A	_	*Meta	ls are	Antimo	ny, Ai	_			opper,		ead, N	lickel,	
	X Std. 10 Business Days						Commerc			2)	Ē	_		-	gory B	AE	-	s, Se	~~				A	-				
	☐ 5 Day RUSH ☐ 3 Day RUSH						FULLT1 (NJ Reduc		1)				State F	orms ormat										1,1-DC				
	Z Day RUSH						Commerc				L		Other_	Otiliat		_								,4-DCB				
Ī	1 Day RUSH						NJ Data	of Known	Qua	ity Pro	toco	l Rep	orting			a#								pleas				,4 Dioxane
-	other					l	cial "A" = f							FQC S	iummary	′ `				1			Mart	Y Vr	10020	V,		,
Emer	gency & Rush T/A data available VIA L	.ablink	Sam	ple Custody m	ust be doc		ced = Res							sion. i	ncludir	na com	Samp	ole inv	enton	is ve	rified	upon	receip	t in the	Labo	ratory	<u>'</u>	
Relinq	uished by Sampler:	Date Time:	1 11 -	Received By:	1 -	hall	/		Relin	quished		N.	7	TI	,	.J u		Date Tig	ne;		Receive	d By:	V 600	11	1. 0	/		
1		5/11/1	F 1200	1 Wil	X O	rue	_		2		W	WX.	Ch	e (5/10	107		2		WL	X CO	e CH	\subseteq		
Relinq 3	uished by Sampler:	Date Time:		Received By: 3	Roman	-			Relin 4	quished	By:	æ	no	20				Date Tin	713	300	Receive 4	d By:	De	-				
	uished by:	Date Time:	***************************************	Received By:	• •				Custo	dy Sea	#			Ó	Intact		Preserv	ed where	applica	ole			On Ice				Cooler	Temp.
5		L		5										Ц	Not intac	t .							10					

JC43459: Chain of Custody Page 3 of 7

SGS Accutest Sample Receipt Summary

Job Number: JC43459	Client:	CH2M Hill	Project: Honeywell B	righton
Date / Time Received: 5/17/2017	7 8:00:00 AM	Delivery Method:	FedEx Airbill #'s: 72737516	32390
Cooler Temps (Raw Measured) °C Cooler Temps (Corrected) °C				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media:	3. COC Pre 4. Smpl Dates 7 or N		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT:	Y or N
4. No. Coolers:	1		All containers accounted for: Condition of sample:	✓ ⊔ Intact
Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N N/A V
Comments 1) -1,-3: XCR218.7 rec'd t	unpreserved.			

SM089-02 Rev. Date 12/1/16

JC43459: Chain of Custody

Page 4 of 7

Responded to by: MV Response Date: 5/18

Response:

Proceed Add comment: "Lab footnote the final data on this that it was preserved within 24 hours of collection on receipt in the lab"

5.2

JC43459: Chain of Custody Page 5 of 7

Requested Date:	5/30/2017	Received Date:	5/17/2017
Account Name:	Honeywell International Inc. OMM	Due Date:	5/31/2017
Project Description:	Project Description: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Bri Deliverable:	Deliverable:	COMMBN
CSR:	Rocus.Peters	TAT (Days):	4

Change: Add for CRMS Sample #: JC43459-1,3

Dept:

4 TAT Date/Time: 5/30/2017 4:45:19 PM Above Changes Per: Eugenia Casino To Client: This Change Order is confirmation of the revisions, previously discussed with the SGS Accutest Client Service Representative.

JC43459: Chain of Custody Page 6 of 7

To Client: This Change Order is confirmation of the revisions, previously discussed with the SGS Accutest Client Service Representative.

Date/Time: 6/6/2017 4:39:38 PM

Requested Date:	6/6/2017	Received Date:	5/17/2017
Account Name:	Honeywell International Inc. OMM	Due Date:	5/31/2017
Project Description:	Project Description: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Bri Deliverable:	Deliverable:	COMMBN
CSR:	martyv	TAT (Days):	2

Sample #:	Sample #: JC43459-2, 3	Sample #: JC43459-2, 3 Change:	
Dept:		Relog for CN. Lab to use unpreserved source. Add NaOH+ preservative prior to analyses	ive

0

JC43459: Chain of Custody

Page 7 of 7

Above Changes Per: Marie Vidal

Section 6

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Surrogate Recovery Summaries

Job Number: JC43459

Method Blank Summary

HWINJOMM Honeywell International Inc. OMM work Account:

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA **Project:**

Sample V1B5221-MB	File ID 1B109716.D	DF 1	Analyzed 05/27/17	By BK	Prep Date n/a	Prep Batch n/a	Analytical Batch V1B5221

The QC reported here applies to the following samples:

Method: EPA 524.2 REV 4.1

CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	5.0	3.8	ug/l		
CAS No.	Surrogate Recoveries		Limits				
2199-69-1	1,2-Dichlorobenzene-d4	99%	70-1309	%			
460-00-4	4-Bromofluorobenzene	85%	70-1309	%			
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est	. Conc.	Units	Q
	Total TIC Volatile			0		110/1	

Method Blank Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample VT9219-MB	File ID T224415.D	DF 1	Analyzed 05/26/17	By SC	Prep Date n/a	Prep Batch n/a	Analytical Batch VT9219

The QC reported here applies to the following samples:

JC43459-2, JC43459-3

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.23	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.31	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.21	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.24	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.32	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.32	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.57	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.54	ug/l
123-91-1	1,4-Dioxane	ND	130	27	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.21	ug/l
75-09-2	Methylene chloride	ND	1.0	0.55	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.82	ug/l
108-88-3	Toluene	ND	1.0	0.24	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.36	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.35	ug/l
79-01-6	Trichloroethene	ND	1.0	0.24	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.29	ug/l
1330-20-7	Xylenes (total)	ND	1.0	0.20	ug/l

CAS No.	Surrogate Recoveries		Limits
17060-07-0	1,2-Dichloroethane-D4 (SUR)	110%	72-125%
2037-26-5	Toluene-D8 (SUR)	92%	78-119%
460-00-4	4-Bromofluorobenzene (SUR)	110%	74-115%
1868-53-7	Dibromofluoromethane (S)	115%	79-120%

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
	system artifact system artifact system artifact system artifact	3.83 3.98 4.09 4.73	41 210 140 4.1	ug/l ug/l ug/l ug/l	J J J
	Total TIC, Volatile		0	ug/l	

Method: EPA 524.2 REV 4.1

Blank Spike Summary Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA **Project:**

Sample V1B5221-BS	File ID 1B109717.D	DF 1	Analyzed 05/27/17	By BK	Prep Date n/a	Prep Batch n/a	Analytical Batch V1B5221

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l		BSP %	Limits
67-64-1	Acetone	20	22.2	111	70-130

CAS No.	Surrogate Recoveries	BSP	Limits
2199-69-1	1,2-Dichlorobenzene-d4	105%	70-130%
460-00-4	4-Bromofluorobenzene	91%	70-130%

^{* =} Outside of Control Limits.

Method: EPA 624

Blank Spike Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample VT9219-BS	File ID T224416.D	DF 1	Analyzed 05/26/17	By SC	Prep Date n/a	Prep Batch n/a	Analytical Batch VT9219

The QC reported here applies to the following samples:

JC43459-2, JC43459-3

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
71-43-2	Benzene	20	18.4	92	78-122
56-23-5	Carbon tetrachloride	20	22.1	111	71-138
95-50-1	1,2-Dichlorobenzene	20	20.3	102	78-120
541-73-1	1,3-Dichlorobenzene	20	20.8	104	76-119
106-46-7	1,4-Dichlorobenzene	20	20.6	103	77-118
75-34-3	1,1-Dichloroethane	20	20.5	103	75-129
107-06-2	1,2-Dichloroethane	20	19.9	100	76-132
75-35-4	1,1-Dichloroethene	20	16.7	84	57-128
156-59-2	cis-1,2-Dichloroethene	20	19.2	96	73-124
123-91-1	1,4-Dioxane	500	544	109	56-139
100-41-4	Ethylbenzene	20	19.3	97	77-120
75-09-2	Methylene chloride	20	19.1	96	68-122
127-18-4	Tetrachloroethene	20	17.4	87	61-152
108-88-3	Toluene	20	17.7	89	78-121
71-55-6	1,1,1-Trichloroethane	20	20.4	102	72-131
79-00-5	1,1,2-Trichloroethane	20	17.4	87	78-124
79-01-6	Trichloroethene	20	19.5	98	78-123
75-01-4	Vinyl chloride	20	16.6	83	57-134
1330-20-7	Xylenes (total)	60	56.9	95	79-122

CAS No.	Surrogate Recoveries	BSP	Limits
	1,2-Dichloroethane-D4 (SUR)	110% 91%	72-125% 78-119%
	Toluene-D8 (SUR) 4-Bromofluorobenzene (SUR)	107%	78-119% 74-115%
1868-53-7	Dibromofluoromethane (S)	115%	79-120%

^{* =} Outside of Control Limits.

6.3.

Page 1 of 1

Method: EPA 524.2 REV 4.1

Matrix Spike Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample JC43812-5MS	File ID 1B109722.D	DF	Analyzed 05/27/17	By BK	Prep Date	Prep Batch n/a	Analytical Batch V1B5221
JC43812-5	1B109718.D	1	05/27/17	BK	n/a	n/a	V1B5221

The QC reported here applies to the following samples:

CAS No.	Compound	JC43812-5 ug/l Q	Spike ug/l	MS ug/l	MS %	Limits
67-64-1	Acetone	ND	20	21.6	108	41-142
CAS No.	Surrogate Recoveries	MS	JC43812	-5 Lim	its	
2199-69-1 460-00-4	1,2-Dichlorobenzene-d4 4-Bromofluorobenzene	103% 91%	100% 86%	70-1 70-1	30% 30%	

^{* =} Outside of Control Limits.

Method: EPA 624

Matrix Spike Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample JC44121-4MS ^a JC44121-4 ^a	File ID T224428.D T224418.D	DF 1	Analyzed 05/26/17 05/26/17	By SC SC	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VT9219 VT9219

The QC reported here applies to the following samples:

JC43459-2, JC43459-3

		JC44121-4	Spike	MS	MS	
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	Limits
71-43-2	Benzene	ND	20	22.1	111	47-140
56-23-5	Carbon tetrachloride	ND	20	26.8	134	43-155
95-50-1	1,2-Dichlorobenzene	ND	20	20.6	103	67-130
541-73-1	1,3-Dichlorobenzene	ND	20	21.2	106	65-131
106-46-7	1,4-Dichlorobenzene	ND	20	20.9	105	65-128
75-34-3	1,1-Dichloroethane	ND	20	23.8	119	58-137
107-06-2	1,2-Dichloroethane	ND	20	22.5	113	63-144
75-35-4	1,1-Dichloroethene	ND	20	22.1	111	32-139
156-59-2	cis-1,2-Dichloroethene	ND	20	22.4	112	53-138
123-91-1	1,4-Dioxane	ND	500	587	117	45-147
100-41-4	Ethylbenzene	ND	20	21.1	106	45-141
75-09-2	Methylene chloride	ND	20	22.2	111	58-129
127-18-4	Tetrachloroethene	ND	20	20.6	103	49-145
108-88-3	Toluene	ND	20	20.1	101	52-139
71-55-6	1,1,1-Trichloroethane	ND	20	24.4	122	44-148
79-00-5	1,1,2-Trichloroethane	ND	20	18.4	92	71-131
79-01-6	Trichloroethene	ND	20	23.1	116	48-143
75-01-4	Vinyl chloride	ND	20	21.0	105	31-158
1330-20-7	Xylenes (total)	ND	60	62.3	104	46-144

CAS No.	Surrogate Recoveries	MS	JC44121-4	Limits
17060-07-0	1,2-Dichloroethane-D4 (SUR)	113%	113%	72-125%
2037-26-5	Toluene-D8 (SUR)	93%	93%	78-119%
460-00-4	4-Bromofluorobenzene (SUR)	104%	106%	74-115%
1868-53-7	Dibromofluoromethane (S)	114%	114%	79-120%

⁽a) (pH= 5) Sample is not acid preserved per method/client criteria. Sample analyzed within 3 days holding time as required for acrolein and acrylonitrile. Other compounds within 7 days as required by the method.

^{* =} Outside of Control Limits.

Method: EPA 524.2 REV 4.1

Duplicate Summary Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
JC43812-6DUP	1B109723.D	1	05/27/17	BK	n/a	n/a	V1B5221
JC43812-6	1B109719.D	1	05/27/17	BK	n/a	n/a	V1B5221

The QC reported here applies to the following samples:

CAS No.	Compound	JC43812-6 ug/l Q	DUP ug/l Q	RPD Limits
67-64-1	Acetone	ND	ND	nc 10
CAS No.	Surrogate Recoveries	DUP	JC43812-6	Limits
2199-69-1 460-00-4	1,2-Dichlorobenzene-d4 4-Bromofluorobenzene	100% 82%	100% 84%	70-130% 70-130%

^{* =} Outside of Control Limits.

Method: EPA 624

Duplicate Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
JC44121-3DUP ^a	T224429.D	1	05/26/17	SC	n/a	n/a	VT9219
JC44121-3 a	T224419.D	1	05/26/17	SC	n/a	n/a	VT9219

The QC reported here applies to the following samples:

JC43459-2, JC43459-3

		JC44121-3	DUP		
CAS No.	Compound	ug/l Q	ug/l Q	RPD	Limits
71 42 2	T)	NID	ND		10
71-43-2	Benzene	ND	ND	nc	10
56-23-5	Carbon tetrachloride	ND	ND	nc	10
95-50-1	1,2-Dichlorobenzene	ND	ND	nc	10
541-73-1	1,3-Dichlorobenzene	ND	ND	nc	10
106-46-7	1,4-Dichlorobenzene	ND	ND	nc	10
75-34-3	1,1-Dichloroethane	ND	ND	nc	10
107-06-2	1,2-Dichloroethane	ND	ND	nc	10
75-35-4	1,1-Dichloroethene	ND	ND	nc	10
156-59-2	cis-1,2-Dichloroethene	ND	ND	nc	10
123-91-1	1,4-Dioxane	ND	ND	nc	10
100-41-4	Ethylbenzene	ND	ND	nc	12
75-09-2	Methylene chloride	ND	ND	nc	10
127-18-4	Tetrachloroethene	ND	ND	nc	10
108-88-3	Toluene	ND	ND	nc	17
71-55-6	1, 1, 1-Trichloroethane	ND	ND	nc	10
79-00-5	1,1,2-Trichloroethane	ND	ND	nc	10
79-01-6	Trichloroethene	ND	ND	nc	10
75-01-4	Vinyl chloride	ND	ND	nc	10
1330-20-7	Xylenes (total)	ND	ND	nc	14
CAS No.	Surrogate Recoveries	DUP	JC44121-3	Limits	
17060-07-0	1,2-Dichloroethane-D4 (SUR)	111%	114%	72-1259	%
2037-26-5	Toluene-D8 (SUR)	93%	92%	78-1199	%
460-00-4	4-Bromofluorobenzene (SUR)	106%	110%	74-1159	%
1868-53-7	Dibromofluoromethane (S)	122% * b	115%	79-1209	%
	(-)				

⁽a) (pH= 5) Sample is not acid preserved per method/client criteria. Sample analyzed within 3 days holding time as required for acrolein and acrylonitrile. Other compounds within 7 days as required by the method.

⁽b) Outside control limits due to matrix interference.

^{* =} Outside of Control Limits.

Instrument Performance Check (BFB)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 V1B5213-BFB
 Injection Date:
 05/22/17

 Lab File ID:
 1B109560.D
 Injection Time:
 10:47

Instrument ID: GCMS1B

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	14.99 - 40.0% of mass 95	4058	20.8	Pass
75	30.0 - 80.0% of mass 95	10186	52.3	Pass
95	Base peak, 100% relative abundance	19493	100.0	Pass
96	5.0 - 9.0% of mass 95	1430	7.34	Pass
173	Less than 2.0% of mass 174	0	0.00 (0.0	0) ^a Pass
174	50.0 - 120.0% of mass 95	15890	81.5	Pass
175	5.0 - 9.0% of mass 174	1209	6.20 (7.6	1) ^a Pass
176	95.0 - 101.0% of mass 174	15615	80.1 (98.	3) ^a Pass
177	5.0 - 9.0% of mass 176	1028	5.27 (6.5	8) b Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
V1B5213-IC5213	1B109561.D	05/22/17	11:22	00:35	Initial cal 0.2
V1B5213-IC5213	1B109564.D	05/22/17	12:57	02:10	Initial cal 2
V1B5213-IC5213	1B109565.D	05/22/17	13:28	02:41	Initial cal 5
V1B5213-ICC5213	1B109566.D	05/22/17	13:59	03:12	Initial cal 10
V1B5213-IC5213	1B109567.D	05/22/17	14:31	03:44	Initial cal 20
V1B5213-IC5213	1B109568.D	05/22/17	15:02	04:15	Initial cal 40
V1B5213-IC5213	1B109569.D	05/22/17	15:33	04:46	Initial cal 80
V1B5213-IC5213	1B109572.D	05/22/17	17:07	06:20	Initial cal 0.5
V1B5213-IC5213	1B109573.D	05/22/17	17:39	06:52	Initial cal 1
V1B5213-ICV5213	1B109574.D	05/22/17	18:11	07:24	Initial cal verification 10

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 V1B5221-BFB
 Injection Date:
 05/27/17

 Lab File ID:
 1B109714.D
 Injection Time:
 12:28

Instrument ID: GCMS1B

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance		Pass/Fail	
50	14.99 - 40.0% of mass 95	2385	20.0		Pass	
75	30.0 - 80.0% of mass 95	6162	51.6		Pass	
95	Base peak, 100% relative abundance	11951	100.0		Pass	
96	5.0 - 9.0% of mass 95	789	6.60		Pass	
173	Less than 2.0% of mass 174	0	0.00	(0.00) a	Pass	
174	50.0 - 120.0% of mass 95	10396	87.0		Pass	
175	5.0 - 9.0% of mass 174	744	6.23	(7.16) a	Pass	
176	95.0 - 101.0% of mass 174	10073	84.3	(96.9) a	Pass	
177	5.0 - 9.0% of mass 176	665	5.56	(6.60) b	Pass	

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
1		·	·	•	•
V1B5221-CC5213	1B109715.D	05/27/17	13:07	00:39	Continuing cal 5
V1B5221-MB	1B109716.D	05/27/17	13:39	01:11	Method Blank
V1B5221-BS	1B109717.D	05/27/17	14:24	01:56	Blank Spike
JC43812-5	1B109718.D	05/27/17	15:08	02:40	(used for QC only; not part of job JC43459)
JC43812-6	1B109719.D	05/27/17	15:40	03:12	(used for QC only; not part of job JC43459)
JC43459-3	1B109720.D	05/27/17	16:11	03:43	INF-RECERT-051617-MC
JC43812-5MS	1B109722.D	05/27/17	17:14	04:46	Matrix Spike
JC43812-6DUP	1B109723.D	05/27/17	17:46	05:18	Duplicate
ZZZZZZ	1B109724.D	05/27/17	18:17	05:49	(unrelated sample)
ZZZZZZ	1B109725.D	05/27/17	18:49	06:21	(unrelated sample)
ZZZZZZ	1B109726.D	05/27/17	19:20	06:52	(unrelated sample)
ZZZZZZ	1B109727.D	05/27/17	19:51	07:23	(unrelated sample)
ZZZZZZ	1B109728.D	05/27/17	20:23	07:55	(unrelated sample)
ZZZZZZ	1B109729.D	05/27/17	20:54	08:26	(unrelated sample)
ZZZZZZ	1B109730.D	05/27/17	21:26	08:58	(unrelated sample)
ZZZZZZ	1B109731.D	05/27/17	21:58	09:30	(unrelated sample)
ZZZZZZ	1B109732.D	05/27/17	22:29	10:01	(unrelated sample)
ZZZZZZ	1B109733.D	05/27/17	23:00	10:32	(unrelated sample)

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 VT9203-BFB
 Injection Date:
 05/12/17

 Lab File ID:
 T224057.D
 Injection Time:
 11:37

Instrument ID: GCMST

m/e	Ion Abundance Criteria	Raw Abundance	% Relati		Pass/Fail
50	15.0 - 40.0% of mass 95	15280	16.1		Pass
75	30.0 - 60.0% of mass 95	42650	45.0		Pass
95	Base peak, 100% relative abundance	94833	100.0		Pass
96	5.0 - 9.0% of mass 95	6748	7.12		Pass
173	Less than 2.0% of mass 174	0	0.00	(0.00) a	Pass
174	50.0 - 120.0% of mass 95	78634	82.9		Pass
175	5.0 - 9.0% of mass 174	5782	6.10	(7.35) a	Pass
176	95.0 - 101.0% of mass 174	76386	80.5	(97.1) a	Pass
177	5.0 - 9.0% of mass 176	5129	5.41	(6.71) b	Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VT9203-IC9203	T224058.D	05/12/17	12:25	00:48	Initial cal 0.5
VT9203-IC9203	T224059.D	05/12/17	13:10	01:33	Initial cal 0.2
VT9203-IC9203	T224060.D	05/12/17	13:40	02:03	Initial cal 1.0
VT9203-IC9203	T224061.D	05/12/17	14:10	02:33	Initial cal 2.0
VT9203-IC9203	T224062.D	05/12/17	14:40	03:03	Initial cal 5.0
VT9203-ICC9203	T224063.D	05/12/17	15:11	03:34	Initial cal 20
VT9203-IC9203	T224064.D	05/12/17	15:41	04:04	Initial cal 50
VT9203-IC9203	T224065.D	05/12/17	16:11	04:34	Initial cal 100
VT9203-IC9203	T224066.D	05/12/17	16:41	05:04	Initial cal 200
VT9203-ICV9203	T224069.D	05/12/17	18:11	06:34	Initial cal verification 20
VT9203-ICV9203	T224070.D	05/12/17	18:41	07:04	Initial cal verification 20

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 VT9219-BFB
 Injection Date:
 05/26/17

 Lab File ID:
 T224413.D
 Injection Time:
 08:33

Instrument ID: GCMST

m/e	Ion Abundance Criteria	Raw Abundance	% Relat Abunda		Pass/Fail
50	15.0 - 40.0% of mass 95	19447	18.5		Pass
75	30.0 - 60.0% of mass 95	50456	48.0		Pass
95	Base peak, 100% relative abundance	105107	100.0		Pass
96	5.0 - 9.0% of mass 95	7277	6.92		Pass
173	Less than 2.0% of mass 174	862	0.82	$(0.95)^{a}$	Pass
174	50.0 - 120.0% of mass 95	90853	86.4		Pass
175	5.0 - 9.0% of mass 174	7342	6.99	$(8.08)^{a}$	Pass
176	95.0 - 101.0% of mass 174	86437	82.2	(95.1) a	Pass
177	5.0 - 9.0% of mass 176	5863	5.58	(6.78) b	Pass

⁽a) Value is % of mass 174

Lab	Lab File ID	Date	Time Analyzed	Hours	Client Sample ID
Sample ID	riie ID	Analyzed	Allaryzeu	Lapsed	Sample 1D
VT9219-CC9203	T224414.D	05/26/17	09:03	00:30	Continuing cal 20
VT9219-MB	T224415.D	05/26/17	09:44	01:11	Method Blank
VT9219-BS	T224416.D	05/26/17	10:14	01:41	Blank Spike
ZZZZZZ	T224417.D	05/26/17	10:54	02:21	(unrelated sample)
JC44121-4	T224418.D	05/26/17	11:24	02:51	(used for QC only; not part of job JC43459)
JC44121-3	T224419.D	05/26/17	11:54	03:21	(used for QC only; not part of job JC43459)
ZZZZZZ	T224420.D	05/26/17	12:24	03:51	(unrelated sample)
ZZZZZZ	T224421.D	05/26/17	12:54	04:21	(unrelated sample)
ZZZZZZ	T224422.D	05/26/17	13:24	04:51	(unrelated sample)
ZZZZZZ	T224423.D	05/26/17	13:54	05:21	(unrelated sample)
ZZZZZZ	T224424.D	05/26/17	14:24	05:51	(unrelated sample)
JC43459-2	T224425.D	05/26/17	14:54	06:21	INF-RECERT-051617-FD
JC43459-3	T224426.D	05/26/17	15:24	06:51	INF-RECERT-051617-MC
ZZZZZZ	T224427.D	05/26/17	15:54	07:21	(unrelated sample)
JC44121-4MS	T224428.D	05/26/17	16:25	07:52	Matrix Spike
JC44121-3DUP	T224429.D	05/26/17	16:55	08:22	Duplicate
ZZZZZZ	T224429A.D	05/26/17	17:25	08:52	(unrelated sample)
ZZZZZZ	T224430.D	05/26/17	17:55	09:22	(unrelated sample)
ZZZZZZ	T224431.D	05/26/17	18:25	09:52	(unrelated sample)
ZZZZZZ	T224432.D	05/26/17	18:55	10:22	(unrelated sample)
ZZZZZZ	T224433.D	05/26/17	19:25	10:52	(unrelated sample)
ZZZZZZ	T224434.D	05/26/17	19:55	11:22	(unrelated sample)
ZZZZZZ	T224435.D	05/26/17	20:25	11:52	(unrelated sample)
ZZZZZZ	T224436.D	05/26/17	20:56	12:23	(unrelated sample)

⁽b) Value is % of mass 176

Page 2 of 2

Instrument Performance Check (BFB)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 VT9219-BFB
 Injection Date:
 05/26/17

 Lab File ID:
 T224413.D
 Injection Time:
 08:33

Instrument ID: GCMST

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
ZZZZZZ	T224438.D	05/26/17	21:26	12:53	(unrelated sample)
VT9220-MB	T224440.D	05/26/17	22:26	13:53	Method Blank
VT9220-BS	T224441.D	05/26/17	22:56	14:23	Blank Spike
JC44029-1MS	T224442.D	05/26/17	23:25	14:52	Matrix Spike
JC44029-1MSD	T224443.D	05/26/17	23:55	15:22	Matrix Spike Duplicate
ZZZZZZ	T224445.D	05/27/17	00:56	16:23	(unrelated sample)
ZZZZZZ	T224446.D	05/27/17	01:25	16:52	(unrelated sample)
JC44029-1	T224447.D	05/27/17	01:56	17:23	(used for QC only; not part of job JC43459)
ZZZZZZ	T224448.D	05/27/17	02:26	17:53	(unrelated sample)
ZZZZZZ	T224449.D	05/27/17	02:56	18:23	(unrelated sample)
ZZZZZZ	T224451.D	05/27/17	03:56	19:23	(unrelated sample)
ZZZZZZ	T224452.D	05/27/17	04:26	19:53	(unrelated sample)
ZZZZZZ	T224454.D	05/27/17	05:27	20:54	(unrelated sample)
ZZZZZZ	T224455.D	05/27/17	05:57	21:24	(unrelated sample)
ZZZZZZ	T224456.D	05/27/17	06:27	21:54	(unrelated sample)

Volatile Surrogate Recovery Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Method: EPA 624 Matrix: AQ

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1	S2	S3	S4
JC43459-2	T224425.D	117	92	110	118
JC43459-3	T224426.D	116	91	110	119
JC44121-3DUP	T224429.D	111	93	106	122* a
JC44121-4MS	T224428.D	113	93	104	114
VT9219-BS	T224416.D	110	91	107	115
VT9219-MB	T224415.D	110	92	110	115

Surrogate Recovery Compounds Limits

S1 = 1,2-Dichloroethane-D4 (SUR) 72-125% S2 = Toluene-D8 (SUR)78-119% S3 = 4-Bromofluorobenzene (SUR) 74-115% S4 = Dibromofluoromethane (S)79-120%

(a) Outside control limits due to matrix interference.

Volatile Surrogate Recovery Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Method: EPA 524.2 REV 4.1 Matrix: AQ

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1	S2
JC43459-3	1B109720.D	95	83
JC43812-5MS	1B109722.D	103	91
JC43812-6DUP	1B109723.D	100	82
V1B5221-BS	1B109717.D	105	91
V1B5221-MB	1B109716.D	99	85

Surrogate Recovery Compounds Limits

S1 = 1,2-Dichlorobenzene-d4 70-130% **S2** = 4-Bromofluorobenzene 70-130%

Section 7

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (DFTPP)
- Surrogate Recovery Summaries

7.1.1

Method Blank Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample OP3046-MB1	File ID 2P70106.D	DF 1	Analyzed 05/24/17	By FW	Prep Date 05/22/17	Prep Batch OP3046	Analytical Batch E2P3092

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
108-95-2	Phenol	ND	2.0	0.39	ug/l

CAS No.	Surrogate Recoveries		Limits
367-12-4	2-Fluorophenol	43%	10-110%
4165-62-2	Phenol-d5	30%	10-110%
118-79-6	2,4,6-Tribromophenol	111%	35-147%
4165-60-0	Nitrobenzene-d5	74%	32-132%
321-60-8	2-Fluorobiphenyl	78%	40-117%
1718-51-0	Terphenyl-d14	102%	33-126%

7.1.2

Method Blank Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample OP3046-MB1	File ID P114319.D	DF 1	Analyzed 05/30/17	By RL	Prep Date 05/22/17	Prep Batch OP3046	Analytical Batch EP5101

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
108-95-2	Phenol	ND	2.0	0.39	ug/l

CAS No.	Surrogate Recoveries		Limits
367-12-4	2-Fluorophenol	47%	10-110%
4165-62-2	Phenol-d5	30%	10-110%
118-79-6	2,4,6-Tribromophenol	95%	35-147%
4165-60-0	Nitrobenzene-d5	79%	32-132%
321-60-8	2-Fluorobiphenyl	77%	40-117%
1718-51-0	Terphenyl-d14	91%	33-126%

Blank Spike Summary Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA **Project:**

Sample OP3046-BS1	File ID 2P70107.D	DF 1	Analyzed 05/24/17	By FW	Prep Date 05/22/17	Prep Batch OP3046	Analytical Batch E2P3092

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
108-95-2	Phenol	50	16.5	33	20-110

Surrogate Recoveries	BSP	Limits
2-Fluorophenol	51%	10-110%
Phenol-d5	36%	10-110%
2,4,6-Tribromophenol	102%	35-147%
Nitrobenzene-d5	70%	32-132%
2-Fluorobiphenyl	80%	40-117%
Terphenyl-d14	103%	33-126%
	2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	2-Fluorophenol 51% Phenol-d5 36% 2,4,6-Tribromophenol 102% Nitrobenzene-d5 70% 2-Fluorobiphenyl 80%

^{* =} Outside of Control Limits.

Method: EPA 625

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
P114328.D	1	05/30/17	RL	05/22/17	OP3046	EP5101
P114329.D	1	05/30/17	RL	05/22/17	OP3046	EP5101
P114327.D	1	05/30/17	RL	05/22/17	OP3046	EP5101
	P114328.D P114329.D	P114328.D 1 P114329.D 1	P114328.D 1 05/30/17 P114329.D 1 05/30/17	P114328.D 1 05/30/17 RL P114329.D 1 05/30/17 RL	P114328.D 1 05/30/17 RL 05/22/17 P114329.D 1 05/30/17 RL 05/22/17	P114328.D 1 05/30/17 RL 05/22/17 OP3046 P114329.D 1 05/30/17 RL 05/22/17 OP3046

The QC reported here applies to the following samples:

CAS No.	Compound	JC43417-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
108-95-2	Phenol	ND	100	39.9	40	100	44.8	45	12	10-110/27
CAS No.	Surrogate Recoveries	MS	MSD	JC4	3417-1	Limits				
367-12-4	2-Fluorophenol	58%	65%	47%	, D	10-110%	ó			
4165-62-2	Phenol-d5	38%	45%	31%	, D	10-110%	ó			
118-79-6	2,4,6-Tribromophenol	99%	98%	92%	ó	35-147%	ó			
4165-60-0	Nitrobenzene-d5	74%	76%	80%	, o	32-132%	ó			
321-60-8	2-Fluorobiphenyl	79%	81%	83%	, D	40-117%	ó			
1718-51-0	Terphenyl-d14	97%	98%	62%	, o	33-126%	ó			

^{* =} Outside of Control Limits.

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 E2P3068-DFTPP
 Injection Date:
 05/08/17

 Lab File ID:
 2P69555.D
 Injection Time:
 22:15

Instrument ID: GCMS2P

m/e	Ion Abundance Criteria	Raw Abundance	% Relat		Pass/Fail
51	30.0 - 60.0% of mass 198	96993	50.9		Pass
68	Less than 2.0% of mass 69	1773	0.93	(1.76) a	Pass
69	Mass 69 relative abundance	100925	53.0		Pass
70	Less than 2.0% of mass 69	202	0.11	$(0.20)^{a}$	Pass
127	40.0 - 60.0% of mass 198	104931	55.1		Pass
197	Less than 1.0% of mass 198	0	0.00		Pass
198	Base peak, 100% relative abundance	190501	100.0		Pass
199	5.0 - 9.0% of mass 198	13143	6.90		Pass
275	10.0 - 30.0% of mass 198	50696	26.6		Pass
365	1.0 - 100.0% of mass 198	6475	3.40		Pass
441	Present, but less than mass 443	18471	9.70	(78.4) ^b	Pass
442	40.0 - 100.0% of mass 198	117699	61.8	,	Pass
443	17.0 - 23.0% of mass 442	23550	12.4	(20.0) ^c	Pass

⁽a) Value is % of mass 69

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
E2P3068-IC3068	2P69556.D	05/08/17	22:29	00:14	Initial cal 100
E2P3068-IC3068	2P69557.D	05/08/17	22:51	00:36	Initial cal 80
E2P3068-ICC3068	2P69558.D	05/08/17	23:13	00:58	Initial cal 50
E2P3068-IC3068	2P69559.D	05/08/17	23:35	01:20	Initial cal 25
E2P3068-IC3068	2P69560.D	05/08/17	23:57	01:42	Initial cal 10
E2P3068-IC3068	2P69561.D	05/09/17	00:18	02:03	Initial cal 5
E2P3068-IC3068	2P69562.D	05/09/17	00:40	02:25	Initial cal 2
E2P3068-IC3068	2P69563.D	05/09/17	01:02	02:47	Initial cal 1
E2P3068-ICV3068	2P69564.D	05/09/17	01:24	03:09	Initial cal verification 50
E2P3068-ICV3068	2P69565.D	05/09/17	01:45	03:30	Initial cal verification 50
E2P3068-ICV3068	2P69566.D	05/09/17	02:07	03:52	Initial cal verification 50
E2P3068-ICV3068	2P69567.D	05/09/17	02:29	04:14	Initial cal verification 50
E2P3068-ICV3068	2P69568.D	05/09/17	02:50	04:35	Initial cal verification 50
E2P3068-ICV3068	2P69569.D	05/09/17	03:12	04:57	Initial cal verification 50

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample: E2P3071-DFTPP **Injection Date:** 05/10/17 Lab File ID: **Injection Time:** 01:17 2P69612.D

Instrument ID: GCMS2P

m/e	Ion Abundance Criteria	Raw Abundance	% Relat		Pass/Fail
51	30.0 - 60.0% of mass 198	52200	46.2		Pass
68	Less than 2.0% of mass 69	606	0.54	$(1.05)^{a}$	Pass
69	Mass 69 relative abundance	57980	51.4		Pass
70	Less than 2.0% of mass 69	242	0.21	$(0.42)^{a}$	Pass
127	40.0 - 60.0% of mass 198	62167	55.1		Pass
197	Less than 1.0% of mass 198	0	0.00		Pass
198	Base peak, 100% relative abundance	112867	100.0		Pass
199	5.0 - 9.0% of mass 198	7659	6.79		Pass
275	10.0 - 30.0% of mass 198	30040	26.6		Pass
365	1.0 - 100.0% of mass 198	3920	3.47		Pass
441	Present, but less than mass 443	10859	9.62	(76.0) b	Pass
442	40.0 - 100.0% of mass 198	71157	63.0		Pass
443	17.0 - 23.0% of mass 442	14297	12.7	(20.1) ^c	Pass

⁽a) Value is % of mass 69

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
E2P3071-IC3071	2P69613.D	05/10/17	01:30	00:13	Initial cal 100
E2P3071-IC3071	2P69614.D	05/10/17	01:52	00:35	Initial cal 80
E2P3071-ICC3071	2P69615.D	05/10/17	02:14	00:57	Initial cal 50
E2P3071-IC3071	2P69616.D	05/10/17	02:36	01:19	Initial cal 25
E2P3071-IC3071	2P69617.D	05/10/17	02:57	01:40	Initial cal 10
E2P3071-IC3071	2P69618.D	05/10/17	03:19	02:02	Initial cal 5
E2P3071-IC3071	2P69619.D	05/10/17	03:41	02:24	Initial cal 2
E2P3071-IC3071	2P69620.D	05/10/17	04:02	02:45	Initial cal 1
E2P3071-ICV3071	2P69621.D	05/10/17	04:24	03:07	Initial cal verification 50
E2P3071-ICV3071	2P69622.D	05/10/17	04:46	03:29	Initial cal verification 50
E2P3071-ICV3071	2P69623.D	05/10/17	05:07	03:50	Initial cal verification 50
E2P3071-ICV3071	2P69624.D	05/10/17	05:29	04:12	Initial cal verification 50

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 E2P3092-DFTPP
 Injection Date:
 05/24/17

 Lab File ID:
 2P70101.D
 Injection Time:
 09:24

Instrument ID: GCMS2P

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance		Pass/Fail	
51	30.0 - 60.0% of mass 198	83049	40.5		Pass	
68	Less than 2.0% of mass 69	492	0.24	$(0.53)^{a}$	Pass	
69	Mass 69 relative abundance	93021	45.4		Pass	
70	Less than 2.0% of mass 69	301	0.15	$(0.32)^{a}$	Pass	
127	40.0 - 60.0% of mass 198	100976	49.3		Pass	
197	Less than 1.0% of mass 198	0	0.00		Pass	
198	Base peak, 100% relative abundance	204821	100.0		Pass	
199	5.0 - 9.0% of mass 198	14484	7.07		Pass	
275	10.0 - 30.0% of mass 198	54931	26.8		Pass	
365	1.0 - 100.0% of mass 198	6087	2.97		Pass	
441	Present, but less than mass 443	27317	13.3	(78.8) ^b	Pass	
442	40.0 - 100.0% of mass 198	178632	87.2		Pass	
443	17.0 - 23.0% of mass 442	34667	16.9	(19.4) ^c	Pass	

⁽a) Value is % of mass 69

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
E2P3092-CC3068	2P70102.D	05/24/17	09:33	00:09	Continuing cal 50
E2P3092-CC3071	2P70103.D	05/24/17	09:56	00:32	Continuing cal 50
E2P3092-CC3068	2P70105.D	05/24/17	10:43	01:19	Continuing cal 5
OP3046-MB1	2P70106.D	05/24/17	11:05	01:41	Method Blank
OP3046-BS1	2P70107.D	05/24/17	11:28	02:04	Blank Spike
ZZZZZZ	2P70115.D	05/24/17	11:50	02:26	(unrelated sample)
ZZZZZZ	2P70108.D	05/24/17	12:12	02:48	(unrelated sample)
JC43459-3	2P70109.D	05/24/17	12:35	03:11	INF-RECERT-051617-MC
OP3013-MB1	2P70116A.D	05/24/17	12:57	03:33	Method Blank
ZZZZZZ	2P70117.D	05/24/17	13:19	03:55	(unrelated sample)
ZZZZZZ	2P70118.D	05/24/17	14:04	04:40	(unrelated sample)
ZZZZZZ	2P70113.D	05/24/17	15:11	05:47	(unrelated sample)
ZZZZZZ	2P70114.D	05/24/17	15:34	06:10	(unrelated sample)
ZZZZZZ	2P70119.D	05/24/17	15:56	06:32	(unrelated sample)
ZZZZZZ	2P70120.D	05/24/17	16:19	06:55	(unrelated sample)
ZZZZZZ	2P70121.D	05/24/17	16:41	07:17	(unrelated sample)
ZZZZZZ	2P70122.D	05/24/17	17:04	07:40	(unrelated sample)
ZZZZZZ	2P70123.D	05/24/17	17:26	08:02	(unrelated sample)
ZZZZZZ	2P70124.D	05/24/17	17:49	08:25	(unrelated sample)

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Page 2 of 2

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 E2P3092-DFTPP
 Injection Date:
 05/24/17

 Lab File ID:
 2P70101.D
 Injection Time:
 09:24

Instrument ID: GCMS2P

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
ZZZZZZ	2P70125.D	05/24/17	18:11	08:47	(unrelated sample)
ZZZZZZ	2P70126.D	05/24/17	18:34	09:10	(unrelated sample)
ZZZZZZ	2P70127.D	05/24/17	18:56	09:32	(unrelated sample)
ZZZZZZ	2P70128.D	05/24/17	19:19	09:55	(unrelated sample)
ZZZZZZ	2P70129.D	05/24/17	19:41	10:17	(unrelated sample)
ZZZZZZ	2P70130.D	05/24/17	20:04	10:40	(unrelated sample)
ZZZZZZ	2P70131.D	05/24/17	20:26	11:02	(unrelated sample)
ZZZZZZ	2P70132.D	05/24/17	20:49	11:25	(unrelated sample)

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 EP5078-DFTPP
 Injection Date:
 05/12/17

 Lab File ID:
 P113755.D
 Injection Time:
 09:56

Instrument ID: GCMSP

m/e	Ion Abundance Criteria	Raw Abundance	% Relati		Pass/Fail
51	30.0 - 60.0% of mass 198	6713	35.1		Pass
68	Less than 2.0% of mass 69	0	0.00	$(0.00)^{a}$	Pass
69	Mass 69 relative abundance	8140	42.6		Pass
70	Less than 2.0% of mass 69	0	0.00	$(0.00)^{a}$	Pass
127	40.0 - 60.0% of mass 198	8537	44.6		Pass
197	Less than 1.0% of mass 198	0	0.00		Pass
198	Base peak, 100% relative abundance	19126	100.0		Pass
199	5.0 - 9.0% of mass 198	1277	6.68		Pass
275	10.0 - 30.0% of mass 198	5236	27.4		Pass
365	1.0 - 100.0% of mass 198	670	3.50		Pass
441	Present, but less than mass 443	2023	10.6	(83.7) b	Pass
442	40.0 - 100.0% of mass 198	12565	65.7	,	Pass
443	17.0 - 23.0% of mass 442	2417	12.6	(19.2) ^c	Pass

⁽a) Value is % of mass 69

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
EP5078-IC5078	P113756.D	05/12/17	10:36	00:40	Initial cal 2
EP5078-IC5078	P113757.D	05/12/17	11:05	01:09	Initial cal 1
EP5078-IC5078	P113758.D	05/12/17	11:34	01:38	Initial cal 100
EP5078-ICC5078	P113759.D	05/12/17	12:04	02:08	Initial cal 50
EP5078-IC5078	P113760.D	05/12/17	12:33	02:37	Initial cal 80
EP5078-IC5078	P113761.D	05/12/17	13:01	03:05	Initial cal 25
EP5078-IC5078	P113762.D	05/12/17	13:31	03:35	Initial cal 10
EP5078-IC5078	P113763.D	05/12/17	14:00	04:04	Initial cal 5

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 EP5079-DFTPP
 Injection Date:
 05/12/17

 Lab File ID:
 P113764.D
 Injection Time:
 14:24

Instrument ID: GCMSP

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abunda		Pass/Fail
51	30.0 - 60.0% of mass 198	6979	35.1		Pass
68	Less than 2.0% of mass 69	0	0.00	$(0.00)^{a}$	Pass
69	Mass 69 relative abundance	9052	45.5		Pass
70	Less than 2.0% of mass 69	0	0.00	$(0.00)^{a}$	Pass
127	40.0 - 60.0% of mass 198	8959	45.0		Pass
197	Less than 1.0% of mass 198	0	0.00		Pass
198	Base peak, 100% relative abundance	19894	100.0		Pass
199	5.0 - 9.0% of mass 198	1374	6.91		Pass
275	10.0 - 30.0% of mass 198	5277	26.5		Pass
365	1.0 - 100.0% of mass 198	660	3.32		Pass
441	Present, but less than mass 443	1996	10.0	(87.9) ^b	Pass
442	40.0 - 100.0% of mass 198	11722	58.9		Pass
443	17.0 - 23.0% of mass 442	2270	11.4	(19.4) ^c	Pass

⁽a) Value is % of mass 69

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
EP5079-IC5079	P113765.D	05/12/17	14:44	00:20	Initial cal 100
EP5079-IC5079	P113766.D	05/12/17	15:13	00:49	Initial cal 80
EP5079-ICC5079	P113767.D	05/12/17	15:42	01:18	Initial cal 50
EP5079-IC5079	P113768.D	05/12/17	16:11	01:47	Initial cal 25
EP5079-IC5079	P113769.D	05/12/17	16:40	02:16	Initial cal 10
EP5079-IC5079	P113770.D	05/12/17	17:09	02:45	Initial cal 5
EP5079-IC5079	P113771.D	05/12/17	17:38	03:14	Initial cal 2
EP5079-IC5079	P113772.D	05/12/17	18:07	03:43	Initial cal 1
EP5079-ICV5078	P113773.D	05/12/17	18:37	04:13	Initial cal verification 50
EP5079-ICV5078	P113774.D	05/12/17	19:06	04:42	Initial cal verification 50
EP5079-ICV5079	P113775A.D	05/12/17	19:35	05:11	Initial cal verification 50
EP5079-ICV5078	P113775.D	05/12/17	19:35	05:11	Initial cal verification 50
EP5079-ICV5079	P113776A.D	05/12/17	20:04	05:40	Initial cal verification 50
EP5079-ICV5078	P113776.D	05/12/17	20:04	05:40	Initial cal verification 50
EP5079-ICV5078	P113777.D	05/12/17	20:33	06:09	Initial cal verification 50
EP5079-ICV5079	P113778A.D	05/12/17	21:58	07:34	Initial cal verification 50
EP5079-ICV5078	P113778AA.D	05/12/17	21:58	07:34	Initial cal verification 50
EP5079-ICV5079	P113779.D	05/12/17	22:27	08:03	Initial cal verification 50

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 EP5080-DFTPP
 Injection Date:
 05/12/17

 Lab File ID:
 P113780.D
 Injection Time:
 22:51

Instrument ID: GCMSP

m/e	Ion Abundance Criteria	Raw Abundance	% Relat Abunda		Pass/Fail
51	30.0 - 60.0% of mass 198	6346	31.2		Pass
68	Less than 2.0% of mass 69	0	0.00	$(0.00)^{a}$	Pass
69	Mass 69 relative abundance	8276	40.7		Pass
70	Less than 2.0% of mass 69	0	0.00	$(0.00)^{a}$	Pass
127	40.0 - 60.0% of mass 198	8733	43.0		Pass
197	Less than 1.0% of mass 198	0	0.00		Pass
198	Base peak, 100% relative abundance	20322	100.0		Pass
199	5.0 - 9.0% of mass 198	1353	6.66		Pass
275	10.0 - 30.0% of mass 198	5517	27.1		Pass
365	1.0 - 100.0% of mass 198	644	3.17		Pass
441	Present, but less than mass 443	2262	11.1	(88.8) b	Pass
442	40.0 - 100.0% of mass 198	13227	65.1	,	Pass
443	17.0 - 23.0% of mass 442	2548	12.5	(19.3) ^c	Pass

⁽a) Value is % of mass 69

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
EP5080-IC5080	P113781.D	05/12/17	23:03	00:12	Initial cal 100
EP5080-IC5080	P113782.D	05/12/17	23:32	00:41	Initial cal 80
EP5080-ICC5080	P113783.D	05/13/17	00:01	01:10	Initial cal 50
EP5080-IC5080	P113784.D	05/13/17	00:30	01:39	Initial cal 25
EP5080-IC5080	P113785.D	05/13/17	00:59	02:08	Initial cal 10
EP5080-IC5080	P113786.D	05/13/17	01:27	02:36	Initial cal 5
EP5080-IC5080	P113787.D	05/13/17	01:56	03:05	Initial cal 2
EP5080-IC5080	P113788.D	05/13/17	02:25	03:34	Initial cal 1
EP5080-ICV5080	P113789.D	05/13/17	02:54	04:03	Initial cal verification 50
EP5080-ICV5078	P113789A.D	05/13/17	02:54	04:03	Initial cal verification 50
EP5080-ICV5080	P113790.D	05/13/17	03:23	04:32	Initial cal verification 50
EP5080-ICV5080	P113791.D	05/13/17	03:51	05:00	Initial cal verification 50
EP5080-ICV5080	P113792.D	05/13/17	04:20	05:29	Initial cal verification 50
EP5080-ICV5078	P113792A.D	05/13/17	04:20	05:29	Initial cal verification 50

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 EP5101-DFTPP
 Injection Date:
 05/30/17

 Lab File ID:
 P114313.D
 Injection Time:
 09:42

Instrument ID: GCMSP

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abunda		Pass/Fail
51	30.0 - 60.0% of mass 198	7377	31.4		Pass
68	Less than 2.0% of mass 69	0	0.00	$(0.00)^{a}$	Pass
69	Mass 69 relative abundance	9615	40.9		Pass
70	Less than 2.0% of mass 69	0	0.00	$(0.00)^{a}$	Pass
127	40.0 - 60.0% of mass 198	10169	43.3		Pass
197	Less than 1.0% of mass 198	0	0.00		Pass
198	Base peak, 100% relative abundance	23499	100.0		Pass
199	5.0 - 9.0% of mass 198	1480	6.30		Pass
275	10.0 - 30.0% of mass 198	6440	27.4		Pass
365	1.0 - 100.0% of mass 198	821	3.49		Pass
441	Present, but less than mass 443	2593	11.0	(81.4) b	Pass
442	40.0 - 100.0% of mass 198	16131	68.6	, ,	Pass
443	17.0 - 23.0% of mass 442	3186	13.6	(19.8) ^c	Pass

⁽a) Value is % of mass 69

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
EP5101-CC5078	P114315.D	05/30/17	10:25	00:43	Continuing cal 50
EP5101-CC5079	P114316.D	05/30/17	10:54	01:12	Continuing cal 50
EP5101-CC5080	P114317.D	05/30/17	11:33	01:51	Continuing cal 50
EP5101-CC5078	P114318.D	05/30/17	12:03	02:21	Continuing cal 5
OP3046-MB1	P114319.D	05/30/17	12:38	02:56	Method Blank
OP3046-BS13	P114320.D	05/30/17	13:07	03:25	Blank Spike
OP3184-MB1	P114321.D	05/30/17	13:36	03:54	Method Blank
ZZZZZZ	P114323.D	05/30/17	14:34	04:52	(unrelated sample)
ZZZZZZ	P114324.D	05/30/17	15:03	05:21	(unrelated sample)
ZZZZZZ	P114326.D	05/30/17	16:01	06:19	(unrelated sample)
JC43417-1	P114327.D	05/30/17	16:30	06:48	(used for QC only; not part of job JC43459)
OP3046-MS	P114328.D	05/30/17	16:59	07:17	Matrix Spike
OP3046-MSD	P114329.D	05/30/17	17:28	07:46	Matrix Spike Duplicate
OP3184-MS	P114330.D	05/30/17	17:58	08:16	Matrix Spike
OP3184-MSD	P114331.D	05/30/17	18:27	08:45	Matrix Spike Duplicate
JC43783-8	P114332.D	05/30/17	18:56	09:14	(used for QC only; not part of job JC43459)
ZZZZZZ	P114333.D	05/30/17	19:25	09:43	(unrelated sample)
ZZZZZZ	P114334.D	05/30/17	19:54	10:12	(unrelated sample)
ZZZZZZ	P114335.D	05/30/17	20:23	10:41	(unrelated sample)
					-

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Page 2 of 2

Instrument Performance Check (DFTPP)

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

 Sample:
 EP5101-DFTPP
 Injection Date:
 05/30/17

 Lab File ID:
 P114313.D
 Injection Time:
 09:42

Instrument ID: GCMSP

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
ZZZZZZ	P114336.D	05/30/17	20:53	11:11	(unrelated sample)

Semivolatile Surrogate Recovery Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Method: EPA 625 Matrix: AQ

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1	S2	S3
JC43459-3	2P70109.D	45	33	112
OP3046-BS1	2P70107.D	51	36	102
OP3046-MB1	2P70106.D	43	30	111
OP3046-MB1	P114319.D	47	30	95
OP3046-MS	P114328.D	58	38	99
OP3046-MSD	P114329.D	65	45	98

Surrogate Recovery Limits Compounds

S1 = 2-Fluorophenol 10-110% S2 = Phenol-d510-110% S3 = 2,4,6-Tribromophenol 35-147%

Section 8

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Method: SW846-8011

٥.٦.٦

α

Method Blank Summary

3017-95-6 2-Bromo-1-chloropropane

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample OP2993-MB1	File ID 7G22234.D	DF 1	Analyzed 05/23/17	By VDT	Prep Date 05/19/17	Prep Batch OP2993	Analytical Batch G7G794

20-144%

The QC reported here applies to the following samples:

JC43459-3

CAS No.	Compound	Result	RL	MDL	Units	Q
106-93-4	1,2-Dibromoethane	ND	0.020	0.0061	ug/l	
CAS No.	Surrogate Recoveries		Limits			
3017-95-6	2-Bromo-1-chloropropane	89%	20-144	%		

79%

0.

Page 1 of 1

Method: SW846-8011

Blank Spike/Blank Spike Duplicate Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample OP2993-BS1 OP2993-BSD	File ID 7G22235.D 7G22236.D	DF 1 1	Analyzed 05/23/17 05/23/17	By VDT VDT	Prep Date 05/19/17 05/20/17	Prep Batch OP2993 OP2993	Analytical Batch G7G794 G7G794

The QC reported here applies to the following samples:

JC43459-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
106-93-4	1,2-Dibromoethane	0.5	0.39	78	0.40	80	3	60-140/32

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
3017-95-6	2-Bromo-1-chloropropane	97%	92%	20-144%
3017-95-6	2-Bromo-1-chloropropane	81%	76%	20-144%

^{* =} Outside of Control Limits.

Method: SW846-8011

Matrix Spike Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample OP2993-MS JC43542-1	File ID 7G22237.D 7G22239.D	DF 1	Analyzed 05/23/17 05/23/17	By VDT VDT	Prep Date 05/19/17 05/19/17	Prep Batch OP2993 OP2993	Analytical Batch G7G794 G7G794

The QC reported here applies to the following samples:

JC43459-3

CAS No.	Compound	JC43542-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Limits
106-93-4	1,2-Dibromoethane	ND	0.5	0.35	70	60-140
CAS No.	Surrogate Recoveries	MS	JC43542	-1 Lim	its	
	2-Bromo-1-chloropropane 2-Bromo-1-chloropropane	71% 60%	62% 55%	20-1 20-1		

^{* =} Outside of Control Limits.

Method: SW846-8011

Duplicate Summary Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA **Project:**

Sample OP2993-DUP JC43563-5	File ID 7G22238.D 7G22240.D	DF 1 1	Analyzed 05/23/17 05/23/17	By VDT VDT	Prep Date 05/20/17 05/19/17	Prep Batch OP2993 OP2993	Analytical Batch G7G794 G7G794

The QC reported here applies to the following samples:

JC43459-3

CAS No.	Compound	JC43563-5 ug/l Q	DUP ug/l Q	RPD Limits
106-93-4	1,2-Dibromoethane	ND	ND	nc 30
CAS No.	Surrogate Recoveries	DUP	JC43563-5	Limits
	2-Bromo-1-chloropropane 2-Bromo-1-chloropropane	79% 68%	75% 66%	20-144% 20-144%

^{* =} Outside of Control Limits.

Volatile Surrogate Recovery Summary

Job Number: JC43459

Account: HWINJOMM Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Method: SW846-8011 Matrix: AQ

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1 ^a	S1 b
JC43459-3	7G22291.D	84	80
OP2993-BS1	7G22235.D	97	81
OP2993-BSD	7G22236.D	92	76
OP2993-DUP	7G22238.D	79	68
OP2993-MB1	7G22234.D	89	79
OP2993-MS	7G22237.D	71	60

Surrogate Recovery Compounds Limits

S1 = 2-Bromo-1-chloropropane 20-144%

(a) Recovery from GC signal #2

(b) Recovery from GC signal #1

Section 9

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JC43459

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

QC Batch ID: MP863 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

05/19/17

Metal	RL	IDL	MDL	MB raw	final
Aluminum	50	.19	1.3		
Antimony	2.0	.062	.26	0.014	<2.0
Arsenic	1.0	.0096	.034	0.0089	<1.0
Barium	1.0	.0023	.028		
Beryllium	0.50	.0026	.013		
Boron	50	.53			
Cadmium	0.50	.003	.12	0.0067	<0.50
Calcium	250	1.4	3.7		
Chromium	4.0	.016	.1	0.020	<4.0
Cobalt	0.50	.002	.018		
Copper	4.0	.016	.14	0.095	<4.0
Iron	50	.13	2	1.4	<50
Lead	0.50	.0043	.011	0.011	<0.50
Magnesium	250	.14	3.6		
Manganese	1.0	.011	.095		
Molybdenum	1.0	.021	.23		
Nickel	4.0	.017	.11	0.018	<4.0
Potassium	250	1.5	8.8		
Selenium	1.0	.011	.12	0.0047	<1.0
Silver	2.0	.0044	.041	0.0042	<2.0
Sodium	250	.89	2.5		
Strontium	5.0	.004	.015		
Thallium	0.50	.002	.013		
Tin	5.0	.038	.38		
Titanium	1.0	.022	.56		
Vanadium	4.0	.015	.2		
Zinc	10	.06	1.2	0.68	<10

Associated samples MP863: JC43459-1, JC43459-2, JC43459-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JC43459 Account: HWINJOMM - Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

QC Batch ID: MP863 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

05/19/17 Prep Date:

Flep Date.				03/19/17			
Metal	JC43590- Origina		Spikelot MPX200.8		QC Limits		
Aluminum	anr						
Antimony	0.066	98.0	100	97.9	70-130		
Arsenic	0.41	88.2	100	87.8	70-130		
Barium	anr						
Beryllium							
Boron							
Cadmium	0.0065	88.8	100	88.8	70-130		
Calcium							
Chromium	0.16	91.4	100	91.2	70-130		
Cobalt							
Copper	0.43	81.1	100	80.7	70-130		
Iron	2750	4520	2000	88.5	70-130		
Lead	0.040	101	100	101.0	70-130		
Magnesium							
Manganese	anr						
Molybdenum							
Nickel	7.7	91.2	100	83.5	70-130		
Potassium							
Selenium	0.065	193	200	96.5	70-130		
Silver	0.0095	74.8	76.5	97.8	70-130		
Sodium							
Strontium							
Thallium							
Tin							
Titanium							
Vanadium							
Zinc	2.2	79.8	100	77.6	70-130		

Associated samples MP863: JC43459-1, JC43459-2, JC43459-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JC43459

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

QC Batch ID: MP863 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

05/19/17

Metal	JC43590 Origina		Spikelot MPX200.8		MSD RPD	QC Limit
Aluminum	anr					
Antimony	0.066	98.9	100	98.8	0.9	10
Arsenic	0.41	88.2	100	87.8	0.0	10
Barium	anr					
Beryllium						
Boron						
Cadmium	0.0065	89.7	100	89.7	1.0	10
Calcium						
Chromium	0.16	93.0	100	92.8	1.7	10
Cobalt						
Copper	0.43	82.3	100	81.9	1.5	11
Iron	2750	4520	2000	88.5	0.0	10
Lead	0.040	101	100	101.0	0.0	10
Magnesium						
Manganese	anr					
Molybdenum						
Nickel	7.7	92.4	100	84.7	1.3	10
Potassium						
Selenium	0.065	191	200	95.5	1.0	10
Silver	0.0095	75.1	76.5	98.2	0.4	10
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc	2.2	81.0	100	78.8	1.5	10

Associated samples MP863: JC43459-1, JC43459-2, JC43459-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

٠. I. ن

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JC43459
Account: HWINJOMM - Honeywell International Inc. OMM work

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

QC Batch ID: MP863 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 05/19/17

BSP Result			QC Limits
anr			
98.0	100	98.0	85-115
93.1	100	93.1	85-115
anr			
93.0	100	93.0	85-115
94.3	100	94.3	85-115
91.9	100	91.9	85-115
1960	2000	98.0	85-115
96.5	100	96.5	85-115
anr			
94.1	100	94.1	85-115
199	200	99.5	85-115
79.2	76.5	103.5	85-115
93.7	100	93.7	85-115
	Result anr 98.0 93.1 anr 93.0 94.3 91.9 1960 96.5 anr 94.1 199 79.2	Result MPX200.8 anr 98.0 100 93.1 100 anr 93.0 100 94.3 100 91.9 100 1960 2000 96.5 100 anr 94.1 100 199 200 79.2 76.5	BSP Result MPX200.8 % Rec anr 98.0 100 98.0 93.1 100 93.1 anr 93.0 100 94.3 91.9 100 91.9 1960 2000 98.0 96.5 100 96.5 anr 94.1 100 94.1 199 200 99.5 79.2 76.5 103.5

Associated samples MP863: JC43459-1, JC43459-2, JC43459-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JC43459

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

QC Batch ID: MP951 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

05/22/17

Associated samples MP951: JC43459-1, JC43459-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\begin{tabular}{ll} \end{tabular}$

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JC43459

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

QC Batch ID: MP951 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

05/22/17 Prep Date:

Associated samples MP951: JC43459-1, JC43459-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JC43459

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

QC Batch ID: MP951 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

05/22/17

Metal	JC43417- Original		Spikelot HGPW3	% Rec	MSD RPD	QC Limit
Mercury	0.0	2.1	2	105.0	4.7	19

Associated samples MP951: JC43459-1, JC43459-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

9.2.3

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JC43459

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

QC Batch ID: MP951 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 05/22/17

Associated samples MP951: JC43459-1, JC43459-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\begin{tabular}{ll} \end{tabular}$

(anr) Analyte not requested

Section 10

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC43459 Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chloride	GP5540/GN64641	2.0	0.0	mg/l	80	82.4	103.0	90-110%
Chromium, Hexavalent	GP5594/GN64734	0.025	0.0	ug/l	1	1.05	105.0	85-115%
Cyanide	GP5834/GN65291	0.010	0.0	mg/l	0.0833	0.0800	96.0	90-110%
Cyanide	GP5834/GN65291	0.010	0.0	mg/l	0.0833	0.0845	101.4	90-110%
Hardness, Total as CaCO3	GN64392	4.0	0.0	mg/l	80	80.0	100.0	80-120%
Hardness, Total as CaCO3	GN64392			mg/l	160	158	98.8	80-120%
Hardness, Total as CaCO3	GN64392			mg/l	160	158	98.8	80-120%
Nitrogen, Ammonia	GP5527/GN64585	0.20	0.0	mg/l	1	1.02	102.0	80-120%
Solids, Total Suspended	GN64357	4.0	0.0	mg/l				
Sulfate	GP5540/GN64641	10	0.0	mg/l	80	82.3	102.9	90-110%
Total Residual Chlorine	GN63850	0.10	0.0	mg/l	1.0	0.96	96.0	90-110%
Weak Acid Dissociable Cn	GP5475/GN64522	0.010	0.0	mg/l	0.0833	0.0926	111.2	80-120%

Associated Samples:

Batch GP5475: JC43459-2, JC43459-3 Batch GP5527: JC43459-1, JC43459-3 Batch GP5540: JC43459-2, JC43459-3 Batch GP5594: JC43459-1, JC43459-3 Batch GP5834: JC43459-2R, JC43459-3R

Batch GN63850: JC43459-3

Batch GN64357: JC43459-3 Batch GN64392: JC43459-1, JC43459-2, JC43459-3

(*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC43459

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chloride	GP5540/GN64575	JC43444-1	mg/l	389	389	0.0	0-20%
Chromium, Hexavalent	GP5594/GN64734	JC43459-1	ug/l	0.093	0.095	2.1	0-15%
Cyanide	GP5834/GN65291	JC44479-7A	mg/l	0.0	0.0	0.0	0-32%
Hardness, Total as CaCO3	GN64392	JC43591-1	mg/l	921	926	0.5	0-10%
Nitrogen, Ammonia	GP5527/GN64585	JC43618-1	mg/l	0.0	0.0	0.0	0-33%
Solids, Total Suspended	GN64357	JC43472-2	mg/l	3860	3780	2.1	0-17%
Sulfate	GP5540/GN64575	JC43444-1	mg/l	24.3	24.4	0.4	0-20%
Total Residual Chlorine	GN63850	JC42307-10	mq/l	0.036 U	0.040	0.0	0-49%
Weak Acid Dissociable Cn	GP5475/GN64723	JC43604-1	mg/l	0.0	0.0	200.0*(a)	0-24%

Associated Samples:

Batch GP5475: JC43459-2, JC43459-3 Batch GP5527: JC43459-1, JC43459-3 Batch GP5540: JC43459-2, JC43459-3 Batch GP5594: JC43459-1, JC43459-3 Batch GP5834: JC43459-2R, JC43459-3R

Batch GN63850: JC43459-3 Batch GN64357: JC43459-3

Batch GN64392: JC43459-1, JC43459-2, JC43459-3

(*) Outside of QC limits

(a) RPD acceptable due to low duplicate and sample concentrations.

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC43459

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chloride	GP5540/GN64575	JC43444-1	mg/l	389	80	459	87.5	80-120%
Chromium, Hexavalent	GP5594/GN64734	JC43459-1	ug/l	0.093	1	0.99	89.7	85-115%
Cyanide	GP5834/GN65291	JC44479-7A	mg/l	0.0	0.0833	0.081	97.2	90-110%
Hardness, Total as CaCO3	GN64392	JC43591-1	mq/l	921	160	1100	111.9	67-130%
Nitrogen, Ammonia	GP5527/GN64585	JC43618-1	mg/l	0.0	1	1.1	110.0	75-131%
Sulfate	GP5540/GN64575	JC43444-1	mg/l	24.3	80	105	100.9	80-120%
Weak Acid Dissociable Cn	GP5475/GN64723	JC43604-1	ma/l	0.0	0.0833	0.015	18.0N(a)	49-121%

Associated Samples:

Batch GP5475: JC43459-2, JC43459-3 Batch GP5527: JC43459-1, JC43459-3 Batch GP5540: JC43459-2, JC43459-3 Batch GP5594: JC43459-1, JC43459-3 Batch GP5834: JC43459-2R, JC43459-3R

Batch GN64392: JC43459-1, JC43459-2, JC43459-3

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Spike recovery indicates possible matrix interference.

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC43459 Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Nitrogen, Ammonia	GP5527/GN64585	JC43618-1	mg/l	0.0	1	1.0	9.5	14%

Associated Samples:

Batch GP5527: JC43459-1, JC43459-3

- (*) Outside of QC limits
 (N) Matrix Spike Rec. outside of QC limits

Reissue #2 06/23/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

Honeywell International Inc. OMM work

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

SGS Accutest Job Number: JC44930

Sampling Date: 06/08/17

Report to:

CH2M

18 Tremont Street Boston, MA 02108

HTS-RES-LAB@Honeywell.com; kyle.block@ch2m.com; matthew.greenberg@ch2m.com; ama.essuman@ch2m.com;

ATTN: Kyle Block

Total number of pages in report: 18

TNI TABORATORY

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Maney +. Cole
Nancy Cole
Laboratory Director

Client Service contact: Rocus Peters 732-329-0200

New Jersey • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499 • http://www.accutest.com

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

June 23, 2017

Mr. Kyle Block CH2M 18 Tremont Street Boston, MA 02108

Re: SGS Accutest –Dayton, Jobs # JC44699 and JC44930 – Reissues #2

Dear Mr. Block,

The final reports for SGS Accutest jobs number JC44699 and JC44930 have edited to reflect corrections to the data package. These edits have been incorporated into the revised report attached.

Specifically, the revisions of Method Detention Limits for Cyanide have been made for JC44699 and JC44930. The attached revised report incorporates these revisions.

SGS Accutest apologizes for this occurrence and for any inconvenience this situation may have caused. Please contact me at (732) 329-0200 if I can be of further assistance in this matter.

Sincerely

SGS Accutest

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

Mid-Atlantic 2235 US Highway 130 Dayton, NJ 08810, USA **t** +1 (0)732 329 0200 www.sgs.com

Member of the SGS Group (SGS SA)

June 15, 2017

Mr. Kyle Block CH2M 18 Tremont Street Boston, MA 02108

Re: SGS Accutest -Dayton, Jobs # JC44930, JC43459, and JC42600 - Reissue

Dear Mr. Block,

The final report for SGS Accutest jobs number JC44930, JC43459, and JC42600 have edited to reflect corrections to the data package. These edits have been incorporated into the revised report attached.

Specifically, the MDL (Method Detention Limit) has been added to the lab result pages per the request of Matt Greenberg.

Moving forward, all reports for this site / project wil have this type of reporting.

Please contact me at (732) 355-4551 if I can be of further assistance in this matter.

Sincerely,

Marty Vitanza

Sr. Project Manager

SGS Accutest

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, **TESTING AND CERTIFICATION COMPANY.**

SGS Accutest

Mid-Atlantic 2235 US Highway 130 Dayton, NJ 08810, USA t+1 (0)732 329 0200 www.sgs.com

Sections:

Table of Contents

-1-

Section 1: Sample Summary	5
Section 2: Case Narrative/Conformance Summary	6
Section 3: Summary of Hits	7
Section 4: Sample Results	8
4.1: JC44930-1: RECERT-060817-FD	9
4.2: JC44930-2: RECERT-060817-MC	10
Section 5: Misc. Forms	11
5.1: Chain of Custody	12
Section 6: General Chemistry - QC Data Summaries	15
6.1: Method Blank and Spike Results Summary	16
6.2: Duplicate Results Summary	17
6.3: Matrix Spike Results Summary	18

Sample Summary

Honeywell International Inc. OMM work

Job No: JC44930

CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Sample	Collected		Matr	ix	Client					
Number	Date	Time By	Received	Code	Type	Sample ID				
JC44930-1	06/08/17	07:11 TB	06/08/17	AQ	Water	RECERT-060817-FD				
JC44930-2	06/08/17	07:55 TB	06/08/17	AQ	Water	RECERT-060817-MC				

SGS 5 of 18

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Honeywell International Inc. OMM work Job No JC44930

Site: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA Report Date 6/15/2017 9:23:44 AM

On 06/08/2017, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS Accutest at a maximum corrected temperature of 5.3 C. Samples were intact and chemically preserved, unless noted below. A SGS Accutest Job Number of JC44930 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Wet Chemistry By Method EPA 335.4/LACHAT

Matrix: AQ Batch ID: GP5928

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC44699-4DUP, JC44699-4MS were used as the QC samples for Cyanide.

SGS Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS Accutest is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS Accutest indicated via signature on the report cover

Summary of Hits Job Number: JC44930

Account: Honeywell International Inc. OMM work

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Collected: 06/08/17

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	RL MDL Units		Method
JC44930-1	RECERT-060817-	·FD				
Cyanide ^a		0.13	0.010	0.0047	mg/l	EPA 335.4/LACHAT

JC44930-2 RECERT-060817-MC

No hits reported in this sample.

(a) Reported with instrument specific MDL.

SGS 7 of 18
ACCUTEST

Section 4

 Lab Sample ID:
 JC44930-1
 Date Sampled:
 06/08/17

 Matrix:
 AQ - Water
 Date Received:
 06/08/17

 Percent Solids:
 n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

General Chemistry

RL = Reporting Limit

MDL = Method Detection Limit

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Cyanide ^a	0.13	0.010	0.0047	mg/l	1	06/14/17 11:10 BM EPA 335.4/LACHAT

Report of Analysis

(a) Reported with instrument specific MDL.

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: RECERT-060817-MC

 Lab Sample ID:
 JC44930-2
 Date Sampled:
 06/08/17

 Matrix:
 AQ - Water
 Date Received:
 06/08/17

 Percent Solids:
 n/a

Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Cyanide ^a	0.0047 U	0.010	0.0047	mg/l	1	06/14/17 11:14 BM EPA 335.4/LACHAT

(a) Reported with instrument specific MDL.

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Section 5

Custody D	ocuments and Other Forms
·	
Includes the	following where applicable:

	WW		
SGS	A	001	E refer i

CHAIN OF CUSTODY

C	oc#	37558	-06	081.	t,		,
				PAC	SE	OF	
					Austr		

SGS ACCU	TEST	50 D'Angelo	Drive/495 Tec			New Engla		Maribo	orough	, MA 01	752	FED-EX Tracking # Bottle Order Co				der Contr	ol#				٦			
ACCC	LUI		TEL		6200 FA	XX: 508-48 st.com	1-7753					SGS Acc	utest Quote	# #	6 -	5404		SGS Acci	itest Job	# T	-41	— . u °	730	1
Client / Reporting Information			Proj	ect Info	rmatio	n							Reque	sted	Anal	/sis (s	ee TE	STCC	DE sh				Matrix Codes	
Company Name CH2M Street Address	Project Name		Brig	hto	7	Ħ	37	55	58	7													W - Drinking Wal W - Ground Wat	
18 Tremont St	(T)	est.	<u>St</u>			ormation	(If dif	ferent	from	Report	to)	7.5										5	WW - Water W - Surface Water SO - Soil	er l
Boston MA 02108	City: Br	i ghtor	K.MA		iny Name							333			100								SL- Sludge SED-Sediment	
Project Contact E-mail Math (ricen berg	Project#	13091		Street .	Address							,,	.										OI - Oil LIQ - Other Liquio AIR - Air	
Phone # 617-626 ~ 7000 Family	Client PO#	00,		City			Sta	ite	- 7	Zip		ف											SOL - Other Solid WP - Wipe	1
Sampler(s) Name(s) Phone #	Project Manager	utt breen	hare	Attentio	on:		PO#					윙										E	FB-Fleld Blank 3- Equipment Bla RB- Rinse Blank	
Tim Bakey 617.943.69	70 1	Collection	neig				No	ımber o	f preser	ved Bott	les	`š											TB-Trip Blank	
SGS Accorded Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	HCI	HN03	NONE	DI Water MEOH	ENCORE Bisulfata	Cyanide	-										.AB USE ONL	
1 Recent :060817-FD		06/08/2017		tra		1	X	++	\perp	\perp		X		_					_		\downarrow	4	<u></u>	4
2 Recent 060817-MC		1	0755	TA	W		X	\vdash	+	+	+	Х	+	+	-		-	-	-		+	+	627	A
								\Box	\dagger	$\dashv \dashv$				+							44 146	Ť	-	+
						INITIAI	- ASE	SSK	IF NIT	2	7/11			_								_		4
						LABEL					nz.	+		+		-			-		-	+		-
								147	TIG	V /	19		\dashv	\dashv					\dashv		+	+		-
					25652000		Delive		lu e									usto I P		Instru				
Turnaround Time (Business days) Std. 10 Business Days	Approved By (SGS	Accutest PM): / Date:		bound		ial "A" (L ial "B" (L	evel 1)	rabie		NYASE	Categ	-		B	ÞL	Re				,	ext	7	batt	k
Std. 5 Business Days (By Contract only) 5 Day RUSH				(managed)	ULLT1 (Level 3+4	-)			State F				۲					CC.	ACCI	TEST			
3 Day EMERGENCY 2 Day EMERGENCY				-	MA MCP	Con	nmercia			Other		-						3	M/	ACC! ARLB!	OR	61	317	
1 Day EMERGENCY						Commen					ary													7
Emergency & Rush T/A data available VIA Lablink	Sai	nple Custody mu	ıst be docum	ented be	low eac	h time sa				sessio	on, incl	luding c	ourier d	eliver	у.									
1 Polinquispeous Sampler: Date Time	7 11:00	Received By:	ell	_0?	ull	2	Relinqu 2	ished B	~ ~//	00	lu	<u>e</u>		6	Jate ()	71	412	Received 2	us.	De	he	<		
Relinquished by Sampler: 7	17	Received By: F	EDX			_	Relinqu 4	ished B	y: /-	-77)+				G/9	11700	960	Received	i By:	02				
Relinquished by: Date Time:		Received By:					Custod	y Seal #				0,	Intact Pr	eserve	d when	applicat	ole			On Ice	C	ooler 7	emp., 4	0
Line																/9/1	7							mad

JC44930: Chain of Custody

Page 1 of 3

5.1

5

SGS Accutest Sample Receipt Summary

			Project:							
Date / Time Received: 6/8/2017 11:00	:00 AM 00:	Delivery Method:	Airbill #'s:							
Cooler Temps (Raw Measured) °C: Co	, ,									
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	Gun Bag)		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y or N ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ or N ✓ or N ✓ or N ✓ intact						
Quality Control Preservation Y or 1. Trip Blank present / cooler: □ 2. Trip Blank listed on COC: □ 3. Samples preserved properly: ✓ 4. VOCs headspace free: □	N/A		Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N						
Comments			•							

SM089-02 Rev. Date 12/1/16

JC44930: Chain of Custody

Page 2 of 3

To Client: This Change Order is confirmation of the revisions, previously discussed with the SGS Accutest Client Service Representative.

Date/Time: 6/12/2017 5:15:50 PM

Ama

Above Changes Per:

Requested Date:	6/12/2017	Received Date:	6/8/2017
Account Name:	Honeywell International Inc. OMM	Due Date:	6/22/2017
Project Description:	Project Description: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Bri Deliverable:	Deliverable:	COMMBN
CSR:	martyv	TAT (Days):	2

 Sample #:
 JC44930-1, 2
 Change:

 Dept:
 Change to 5 day. Due 6/15

TAT: 5

JC44930: Chain of Custody

Page 3 of 3

Section 6

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC44930 Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Cyanide	GP5928/GN65587	0.010	0.0	mg/l	0.0833	0.0860	103.2	90-110%
Cyanide	GP5928/GN65650	0.010		mg/l	0.0833	0.0780	93.6	90-110%

Associated Samples:

Batch GP5928: JC44930-1, JC44930-2 (*) Outside of QC limits

SGS ACCUTEST

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC44930
Account: HWINJOMM - Honeywell International Inc. OMM work
Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Cyanide	GP5928/GN65489	JC44699-4	mg/l	0.0047 U	0.0	0.0	0-32%

Associated Samples: Batch GP5928: JC44930-1, JC44930-2 (*) Outside of QC limits

SGS 17 of 18
ACCUTEST

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC44930

Account: HWINJOMM - Honeywell International Inc. OMM work Project: CHMHLMAB: 37558-Brighton, 38-40 Life Street, Brighton, MA

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Cyanide	GP5928/GN65489	JC44699-4	mg/l	0.0047 U	0.0833	0.087	104.4	90-110%

Associated Samples:

Batch GP5928: JC44930-1, JC44930-2

- (*) Outside of QC limits
 (N) Matrix Spike Rec. outside of QC limits

ACCUTEST