

Engineering Services

NOTICE OF INTENT FOR COVERAGE UNDER REMEDIATION GENERAL PERMIT MAG910000

FORMER HATHAWAY MOTORS

4 & 16 NORTH MAIN STREET WHITINSVILLE (NORTHBRIDGE), MASSACHUSETTS

FEBRUARY 23, 2018

PREPARED FOR:

MR. TAREK YATIM, CEO YATCO ENERGY 4 MOUNT ROYAL AVENUE, SUITE 370 MARLBOROUGH, MA 01752

PREPARED BY:

CMG Environmental, Inc. CMG ID 2017-235

PREPARERS' CERTIFICATION

The undersigned employees of CMG Environmental, Inc. (CMG) prepared and reviewed this report. Please direct any requests for additional information regarding the content of this document to these individuals.

C. Ryan Goad

Hydrogeologist

Benson R. Gould, LSP, LEP

Licensed Site Professional #9923

February 23,2018
Date

TABLE OF CONTENTS

SECTION	PAGE
1.0 Introduction	1
1.1 Purpose & Background	
1.2 SITE LOCATION & IDENTIFICATION	2
1.3 NOTIFYING PARTY/PARTY SEEKING COVERAGE/ETC	2
2.0 Pre-Discharge Characterization	2
2.1 SITE GROUNDWATER CHARACTERIZATION	2
2.2 RECEIVING WATER BODY CHARACTERIZATION	3
3.0 DISCHARGE TREATMENT	5
3.1 TREATMENT SYSTEM PARAMETERS & DESIGN	5
3.2 MONITORING REQUIREMENTS	5
4.0 Endangered Species & Historic Properties	6
4.1 ENDANGERED OR THREATENED SPECIES AND HABITAT	6
4.2 HISTORIC PROPERTIES	7
Figures	
Figure 1 – Site Location	
Figure 2 – Site Plan	
Figure 3 – Treatment System Diagram	
ATTACHMENTS	
Attachment A – RGP Notice of Intent & Supporting Laboratory Data	
Attachment B – StreamStats Report for Arcade Pond Outfall Attachment C – Water Quality-Based Effluent Limit Calculations	
Attachment D – Water Treatment Media Information	
Attachment E – USFWS Endangered Species Consultation Documentation	
Attachment F – Historic Properties Information	

1.0 Introduction

CMG Environmental, Inc. (CMG) has prepared the attached Notice of Intent (NOI) for the National Pollutant Discharge Elimination System (NPDES) General Permit for Remediation Activity Discharges (RGP) for the Commonwealth of Massachusetts (MAG910000) and State of New Hampshire (NHG910000). **Attachment A** provides a copy of the NOI.

1.1 Purpose & Background

1.1.1 PURPOSE OF SUBMITTAL

The purpose of this submittal is to obtain authorization to temporarily discharge treated groundwater extracted during underground storage tank (UST) installation activities at 4 & 16 North Main Street in the Whitinsville section of Northbridge, Massachusetts (the 'Site'). Figure 1 (Site Location Map) depicts the Site in relation to streets and other topographic features.

1.1.2 HISTORICAL & ENVIRONMENTAL BACKGROUND

The Site formerly operated as Hathaway Motors, an automobile dealership with on-Site service. The Site is a location of extensive 'urban fill' placement, with coal ash & clinker, bricks, and other debris present in overburden. The Site also formerly utilized two 5,000-gallon gasoline USTs for fuel storage. Former owners installed these USTs in 1967 and removed them in 1988. CMG has limited information about these USTs, but the Site contractor has not yet identified evidence of a significant petroleum release from those tanks.

The Site adjoins 355 Main Street (south of the Site across Main Street), which was formerly part of the extensive Whitin Machine Works properties in Northbridge. The 355 Main Street parcel was Whitin's disposal location for coal combustion and foundry wastes, with extensive use of coal combustion waste as fill in the vicinity (including at the subject Site). Whitin's main industrial operation abutted the 355 Main Street parcel to the east.

The current Site owner (HTK7 Whitinsville, LLC) purchased the Site in early 2017 and planned to redevelop it into a gasoline filling station and convenience store. Yatco Energy (planned Site operator) contracted CMG to dispose of Site soil deemed structurally unsuitable for the planned construction.

In December 2017 CMG collected a composite sample of in-situ soil from the Site for disposal characterization. We observed a concentration of benzo(a)pyrene just above its 2 mg/Kg RCS-1 reportable concentration in the MCP (a 120-day notification requirement per 310 CMR 40.0315). The Massachusetts Department of Environmental Protection (DEP) assigned Release Tracking Number (RTN) **2-20434** to identify the Site release. Site redevelopment contractor LaMountain Brothers, Inc. (LBI) of Oxford, Massachusetts planned to remove approximately 2,000 cubic yards of unsuitable material from the Site, which necessitated release notification and disposal of the soil under a Release Abatement Measure Plan.

CMG notes that impacts thus far identified at the Site are consistent with historic fill and therefore constitute anthropomorphic background per the MCP. Excavation at the Site is not intended to remediate urban fill impacts, but to remove unsuitable fill material. The planned excavation dewatering that is the subject of this NOI is likewise not intended to remediate a known release to groundwater. However, the potential for impacts to Site groundwater requires registration under the RGP rather than the dewatering general permit.

1.2 SITE LOCATION & IDENTIFICATION

The Site is located at 4 & 16 North Main Street, Whitinsville MA 01588. It is on the northeasterly corner of the intersection of North Main and Main Streets, with North Main Street forming its western boundary, Main Street its southern boundary, and Arcade Street its eastern boundary. Northbridge Assessor's Map 6A identifies the Property as Lot 29 (#4 North Main) and Lot 48 (#16 North Main), which consists of a total of 0.94 acres (approximately 41,000 square feet) of land.

The Site center is at 42°06'45" north latitude (42.11258°N), 71°40'44" west longitude (71.67899°W). The UTM (Universal Transverse Mercator) coordinates in the middle of the Site are 4,665,750 meters north and 278,516 meters east in Zone 19. Figure 2 (Site Plan) depicts Site boundaries.

1.3 Party Seeking Coverage

Name: Yatco Energy

Address: 4 Mount Royal Avenue

Marlborough, MA 01752

Contact: Mr. Tarek Yatim, Chief Executive Officer

(508) 786-5670 ext. 104

2.0 Pre-Discharge Characterization

2.1 SITE GROUNDWATER CHARACTERIZATION

CMG collected samples of Site groundwater on January 24 & February 2, 2018. We note that there were no monitoring wells on-Site, and we collected the samples via lowering a pail into groundwater entering an open excavation. This resulted in high turbidity and suspended solids that likely contributed to metals concentrations we observed in the samples. We anticipate installation of gravel-packed dewatering wells and use of a fractionation (frac) tank for settling will greatly reduce suspended solids prior to planned flow-through treatment units.

CMG submitted the sample collected on January 24, 2018 to Eurofins Spectrum Analytical, Inc. (Spectrum) of Agawam, Massachusetts (a state-certified and NELAC-accredited environmental laboratory) for analysis of the following parameters:

- Volatile organic compounds (VOCs) by EPA Method 8260C;
- Semivolatile organic compounds (SVOCs) by EPA Method 8270D (full list);
- Total silver, arsenic, barium, cadmium, chromium, copper, iron, nickel, lead, antimony, selenium & zinc by EPA Method 6010C;
- Total mercury by EPA Method 245.1/7470A;
- Chloride by EPA Method 300.0;
- Total dissolved solids by Standard Method 18-22 2540C;
- Total suspended solids by Standard Method 2540D (11); and
- Ammonia as nitrogen by EPA Method 350.1.

We submitted the February 2, 2018 sample to Spectrum for analysis of the following:

- Polynuclear aromatic hydrocarbons (PAHs) by Modified EPA Method 625;
- SVOCs (full) by EPA Method 625;

- Polychlorinated biphenyls (PCBs) by EPA Method 608;
- Total petroleum hydrocarbons by EPA Method 8100 Modified;
- Total cyanide by EPA Method 335.4/9012B;
- Total antimony by EPA Method 200.8;
- Total iron & zinc by EPA Method 6010C;
- Total arsenic, cadmium, chromium, copper, selenium, lead, nickel & silver by EPA Method 6020B; and
- Total mercury by EPA Method 7470A.

CMG requested Spectrum meet the reporting limits specified for RGP discharges for the February 2, 2018 samples.

CMG recorded the results of our analyses (using the higher of two concentrations for duplicate analyses) in the NOI in **Attachment A**, which also includes laboratory certificates of analyses (following the NOI).

2.2 RECEIVING WATER BODY CHARACTERIZATION

The receiving water body for this discharge is Arcade Pond, a manmade impoundment located east of the Site across Arcade Street. The pond reportedly covers combustion waste from Whitin Machine Works. This water body receives input from a drainage area north of Main Street and discharges via a concrete outflow structure/weir along the northerly side of Main Street further east of the Site. From its discharge location, water flows via buried drainage pipes to an outfall on the Mumford River bank on the 355 Main Street parcel to the south.

2.2.1 WATER QUALITY

CMG collected a sample of Arcade Pond's outflow on February 2, 2018 (one of the few places not frozen on that date) and submitted it to Spectrum for analysis of the following:

- pH by ASTM D 1293-99B;
- Total antimony by EPA Method 200.8-5.4;
- Total iron by EPA Method 200.7;
- Total hardness (as CaCO₃);
- Ammonia as nitrogen by EPA Method 350.1;
- Total zinc by EPA Method 6010C;
- Total arsenic, cadmium, chromium, copper, lead, selenium, nickel & silver by EPA Method 6020B; and
- Total mercury by EPA Method 7470A.

The table below summarizes the results of surface water quality monitoring.

RECEIVING WATER BODY QUALITY SAMPLE 'AP OUTFALL' (Lab ID SC43704-01)

PARAMETER	RESULT	PARAMETER	RESULT
рН	6.51 S.U.	Copper	BRL<0.025 mg/L
Hardness	24.9 mg/L CaCO₃	Iron	0.337 mg/L
Ammonia as N	0.27 mg/L	Lead	BRL<0.0020 mg/L
Total N	Metals:	Mercury	BRL<0.002 mg/L
Antimony	BRL<0.0050 mg/L	Nickel	BRL<0.0025 mg/L
Arsenic	BRL<0.0050 mg/L	Selenium	BRL<0.010 mg/L
Cadmium	BRL<0.0010 mg/L	Silver	BRL<0.0010 mg/L
Chromium	BRL<0.010 mg/L	Zinc	0.010 mg/L

BRL = BELOW LABORATORY REPORTING LIMIT

2.2.2 OUTFALL LOCATION & FLOW

CMG plans to discharge to an on-Site catchbasin that discharges to Arcade Pond at approximately 42°06'46" north latitude, 71°40'42" west longitude (42.11278°N, 71.67833°W) based on Northbridge Department of Public Works records. However, CMG could not locate this outfall. Arcade Pond's outfall location is 42°06'45" north latitude, 71°40'34" west longitude (42.11250°N, 71.67611°W).

CMG used the USGS StreamStats online application (https://streamstats.usgs.gov/ss) to determine low-flow characteristics for Arcade Pond it its outfall. CMG determined the following:

- Arcade Pond's outfall drains an area of 0.55 square miles (352 acres);
- The August 50% duration flow is 0.115 ft³/s (52 gallons per minute, gpm; 0.075 million gallons per day, MGD), and
- The 7-day, 10-year low flow (7Q10) is $0.0189 \text{ ft}^3/\text{s}$ (~8.5 gpm, 0.012 MGD).

Attachment B provides the StreamStats report CMG created for the Site.

2.2.3 MASSACHUSETTS DILUTION FACTOR & WATER QUALITY-BASED EFFLUENT LIMITATIONS CMG used the 7Q10 flow from StreamStats to determine the dilution factor for the planned Site discharge. CMG estimates the planned discharge to be approximately 50 gpm (0.072 MGD). RGP Appendix V, Section I.B., provides an equation for calculating dilution factor as:

$$\frac{Q_{s} + Q_{d}}{Q_{d}}$$

Where: $Q_s = 7Q10$ in MGD

Q_d = (Permitted) discharge flow in MGD

Using this equation, CMG determined a dilution factor of 1.2 (to 2 significant figures).

CMG used the EPA-provided spreadsheet for calculating Water Quality-Based Effluent Limitations (WQBELs) for the RGP at https://www3.epa.gov/region1/npdes/remediation/MALimitsBook.xlsx to determine appropriate effluent limits. **Attachment C** provides a copy of the calculated freshwater

effluent limits for the Site. CMG entered WQBELs where applicable on the NOI, in accordance with the results of our calculation.

CMG notes the 0.0044 μ g/L WQBELs calculated for Group I polycyclic (polynuclear) aromatic hydrocarbons (PAHs) are an order of magnitude below our laboratory's detection limit using modified EPA Method 625 (SIM) and are thus not practical to achieve. The achievable laboratory detection limit is **0.050** μ g/L.

3.0 DISCHARGE TREATMENT

3.1 Treatment System Parameters & Design

LBI will prepare a drain sump with a perforated pipe dewatering well. They will wrap the pipe with filter fabric and backfill the sump with stone. The stone and filter fabric will provide the first measure of filtration. Water pumped from the well will then pass through the following additional treatment:

- Applied Polymer Systems APS 700 Series Floc Logs® polyacramide sediment and turbidity control applicator logs (see the photograph in **Attachment D**);
- A 21,000-gallon fractionation (frac) tank to allow settling of solids by loss of velocity and the action of the floc logs;
- An 50 gallon-per-minute (gpm) pump connected after the frac tank will discharge water through the rest of the system;
- After the pump, water will pass through two 1 μm bag filters connected in parallel to capture additional suspended solids;
- Two 1,000-pound granular activated carbon reaction vessels connected in series to remove organic contaminants; and
- Two vessels containing approximately 60 cubic feet of Evoqua Water Technologies C-211 cation resin to remove dissolved metals.

Flow will pass through a flow meter totalizer after treatment to record discharge rate and overall volume, and will discharge to an on-Site catchbasin. The Site catchbasin discharges to the municipal separate storm sewer system beneath Main Street, with ultimate discharge to Arcade Pond east of the Site.

Figure 2 depicts discharge flow path and Figure 3 provides a treatment system diagram for the Site discharge. **Attachment D** provides information about the floc logs and cation exchange resin planned for use at the Site.

3.2 Monitoring Requirements

3.2.1 RGP MONITORING REQUIREMENTS

CMG will prepare and implement a Best Management Practices Plan (BMPP) prior to initiating the discharge. We will perform monitoring in accordance with Section 4.0 and Appendix IV of the RGP. The anticipated discharge duration is approximately 7 days (possibly less), and thus constitutes a "short-term discharge" subject to Section 4.4 of the RGP. We will perform monitoring either in accordance with Section 4.4.2 ("Short-Term Discharges Other than Those from

Dewatering of Pipelines and Tanks"). We anticipate Section 4.4.2.b. (discharges lasting 7 days or less) will apply.

If the discharge runs longer than anticipated, we will continue monitoring in accordance with Section 4.4.2.c.

CMG will prepare Discharge Monitoring Reports for electronic submittal to EPA Region 1 in accordance with Section 4.6.1.b. (NetDMR submittal is not required for this discharge).

3.2.2 MCP MONITORING REQUIREMENTS

As an M.G.L. c. 21E 'disposal site,' the requirements of 310 CMR 40.0040 ("Management Procedures for Remedial Wastewater and Remedial Additives") apply to the Site discharge. CMG and LBI will construct the on-Site treatment works in a manner adequate to protect health, safety, public welfare, and the environment, and in compliance with M.G.L. c. 21E and the MCP. Furthermore, 40.0041(9) mandates a Grade 2 or higher Wastewater Treatment Plan Operator be engaged to ensure the proper operation and maintenance of the treatment works.

CMG will inspect the discharge treatment system in accordance with 40.0041(6)(b) and document these activities within a treatment log containing the following information:

- The name and affiliation of the person performing the inspection;
- The date and time of the inspection;
- The total volume of remedial wastewater treated since the previous inspection;
- The average flow rate of the system at the time of the inspection;
- The total volume of any non-aqueous phase oil or hazardous materials recovered since the previous inspection (neither CMG nor LBI has observed any at the Site);
- A description of any maintenance activities performed during the inspection or to be scheduled as a result of the inspection; and
- A description of any problems or potential problems observed during the inspection.

CMG will maintain this treatment log in the planned on-Site treatment system container.

4.0 Endangered Species & Historic Properties

4.1 ENDANGERED OR THREATENED SPECIES AND HABITAT

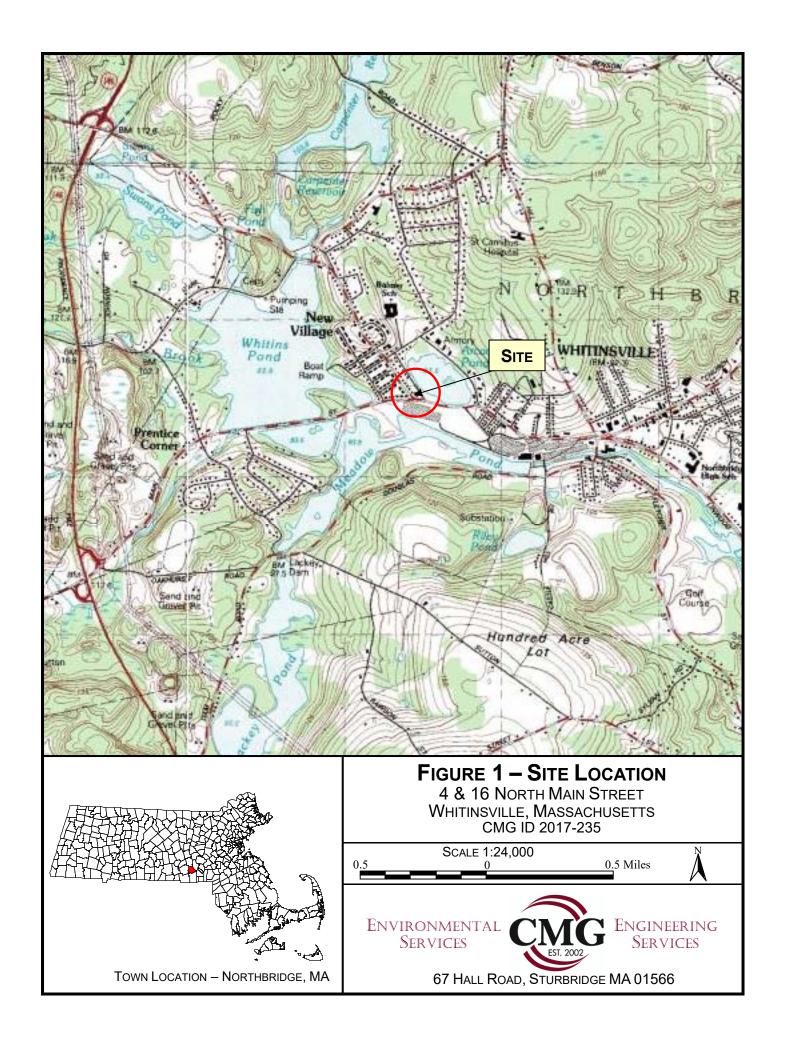
CMG consulted the U.S. Fish & Wildlife Service's Information, Planning and Conservation System (IPaC) at http://ecos.fws.gov/ipac to determine if protected species are present in the 'action area' of the discharge. We included the entirety of Arcade Pond and the portion of the Mumford River between Arcade Pond's outfall and the downstream dam historically used to provide water power for Whitin Machine Works. **Attachment E** provides a copy of the IPaC printout.

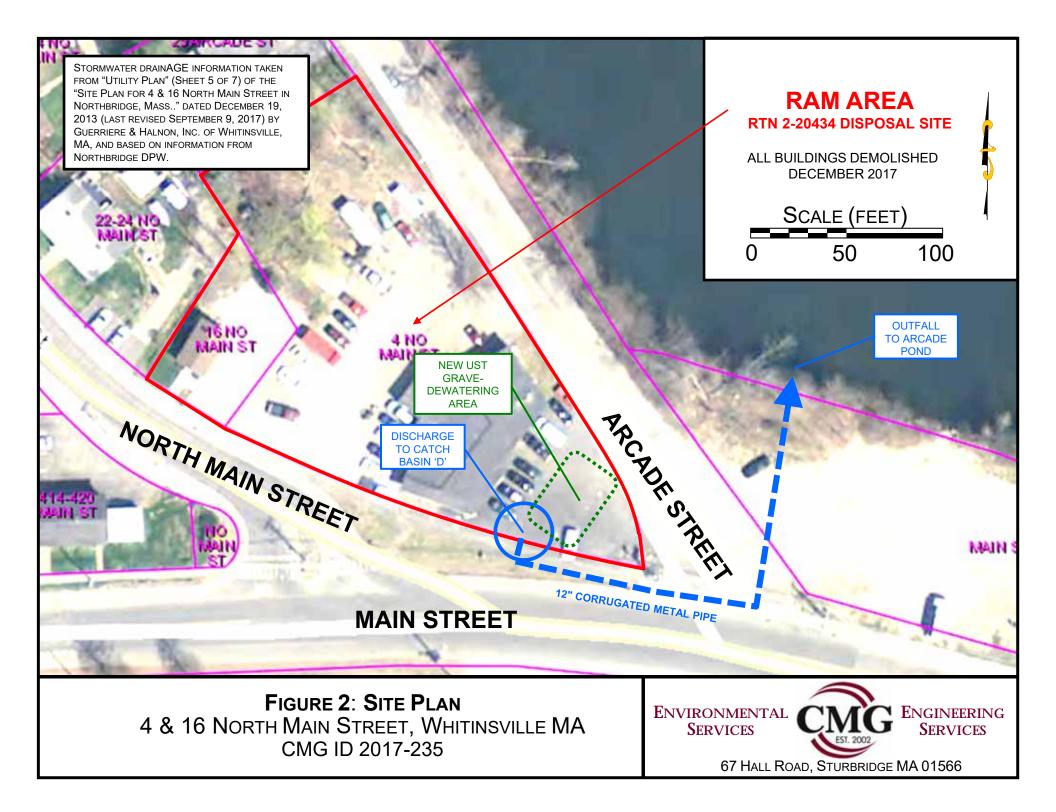
There is no 'critical habitat' in the planned discharge area. The only listing for the Site vicinity is the threatened Northern long-eared bat due to population decline from white nose syndrome. This bat utilizes trees during summer months and hibernates in caves or mines during wintertime (i.e., at present). CMG expects these bats are currently within their hibernacula. Furthermore, the

discharge will not involve tree removal thus if some bats did emerge the subject discharge would not likely affect them.

The USFWS New England Field Office's "Endangered Species Consultation" procedures (https://www.fws.gov/newengland/EndangeredSpec-Consultation_Project_Review.htm) provide a step-by-step guide to determining whether or not an activity is likely to affect protected species. A printout of this page is included in **Attachment E**. Since the discharge will not affect either bat hibernacula or tree habitat (i.e., it is limited to surface water), then no protected species are present within the "action area."

CMG reviewed several RGP NOI submittals available on EPA's website, and observed correspondence between USFWS and consultants indicating RGP discharges will not likely affect the Northern long-eared bat. CMG queried New England FWS personnel regarding the bat, but have not yet received a reply. Nonetheless, we opine the subject discharge meets the requirements of FWS Criterion A based upon our review.


The subject discharge does not occur in one of the fisheries or potential habitats listed in the RGP or its appendices and is unlikely to affect marine species


4.2 HISTORIC PROPERTIES

CMG reviewed the Massachusetts Historical Commisssion's 'Massachusetts Cultural Resource Information System' (MACRIS) webpage (http://mhc-macris.net) to identify nearby historic properties. MACRIS listed the nearby Whitinsville Historic District (including the former Whitin Machine Works and worker housing) as a historically significant property. However, the entries were all buildings and not within either Arcade Pond or the Mumford River. CMG therefore concludes Criterion A applies to this discharge with respect to historic properties. **Attachment F** provides information about the Whitinsville Historic District listing.

FIGURES

FIGURE 1 – SITE LOCATION $FIGURE \ 2 - SITE \ PLAN$ FIGURE 3 – TREATMENT SYSTEM DIAGRAM

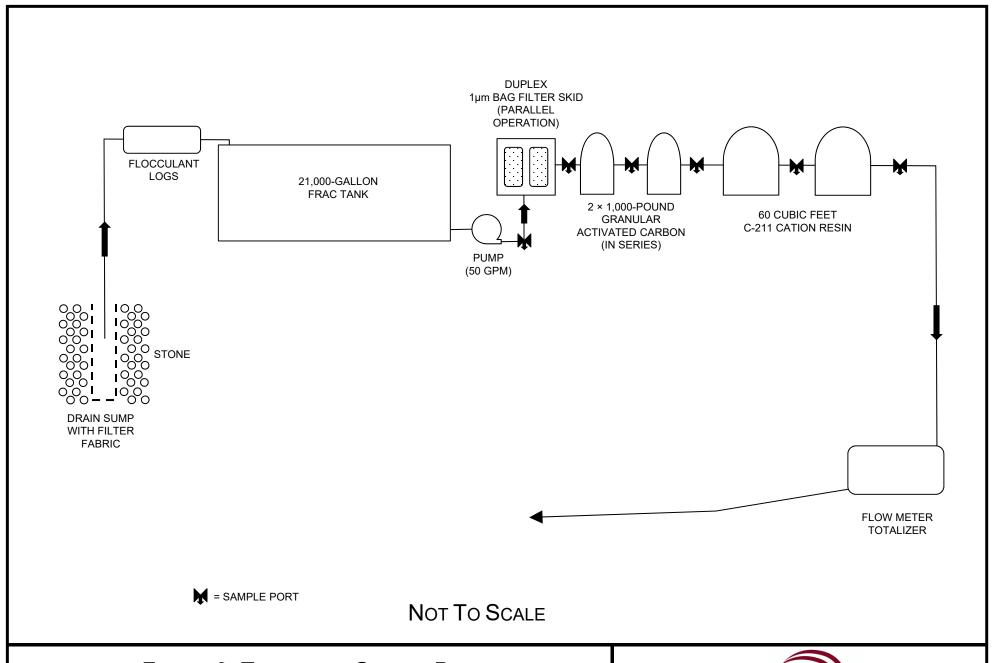


FIGURE 3: TREATMENT SYSTEM DIAGRAM
4 & 16 NORTH MAIN STREET, WHITINSVILLE MA
CMG ID 2017-235

ATTACHMENT A

RGP NOTICE OF INTENT & SUPPORTING LABORATORY DATA

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone: Email:						
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	.A				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment□ CWA Section 404					
		⊔ CWAS	ection 404				

В.	Receiving	water	information:
1. N	ame of receiv	ing wate	er(s):

1. Name of receiving water(s):	(s): Classific	cation of receiving water(s):					
Receiving water is (check any that apply): □ Outstar	ding Resource Water □ Ocean Sanctuary □ territor	 rial sea □ Wild and Scenic Ri	iver				
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No					
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No						
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.							
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		the instructions in					
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s							
6. Has the operator received confirmation from the application of the application	-						
(check one): □ Yes □ No							
C. Source water information:							
1. Source water(s) is (check any that apply):							
☐ Contaminated groundwater	☐ Contaminated groundwater ☐ Contaminated surface water ☐ The receiving water ☐ Potable water; if so, independent municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other					
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:				
□ Yes □ No	□ Yes □ No						

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Inf	luent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 µg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 µg/L	
Lead								160 μg/L	
Mercury								0.739 µg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs			•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known				Infl	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene									
Benzo(a)pyrene									
Benzo(b)fluoranthene] [
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								7	
Dibenzo(a,h)anthracene] [
Indeno(1,2,3-cd)pyrene									

*These PAH limits are an order of magnitude below the lab's detection limit of 0.050 ug/L via Method 625 SIM, and are thus infeasible to achieve.

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
Trovide the average erritaint now in gpin.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.						
A BMPP meeting the requirements of this general permit will be prepared by the certification statement: initiating the discharge.	ared and implemented prior to					
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □ No ■					
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Ycs ■ No □					
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □ NA □					
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Ycs □ No ■ NA □					
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (oheck one): RGP DGP CGP MSGP Individual NPDES permit Other; if so, specify:	Check one: Yes □ No □ NA ■					
Signature: Date	te: 03/09/2018					
Print Name and Title: Tarek Yatim CFO Yatco Energy						

☑	Final Report
	Revised Report

Report Date: 31-Jan-18 17:08

Laboratory Report SC43470

CMG Environmental, Inc. 67 Hall Road Sturbridge, MA 01566 Attn: Jerry Clark

Project: 4+16 N. Main - Northbridge, MA

Project #: 2017-235

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Jawn & Woscik

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 36 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC43470

Project: 4+16 N. Main - Northbridge, MA

Project Number: 2017-235

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC43470-01GWGround Water24-Jan-18 14:4525-Jan-18 14:23

31-Jan-18 17:08 Page 2 of 36

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Eur	rofins Spectrum Analytic	al, Inc.	Project #: 2017-2	35	
Proje	roject Location: 4+16 N. Main - Northbridge, MA RTN:					
This	form provides cer	rtifications for the follow	ving data set:	SC43470-01		
Matr	ices: Ground Wa	nter				
CAM	Protocol					
/	260 VOC AM II A	✓ 7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A
/	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative response	s to questions A through	F are required for P resu		
A				cribed on the Chain of Cu repared/analyzed within m		Yes ✓ No
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? ✓ Yes		✓ Yes No			
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?				✓ Yes No	
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?				✓ Yes No	
E	a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? Yes No					
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to questions A through E)? Yes No					
		Responses to que	stions G, H and I below a	are required for P resump	tive Certainty'status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Yes ✓ No				Yes ✓ No	
		at achieve Presumptive Cer n 310 CMR 40. 1056 (2)(k)		sarily meet the data usability	v and representativeness	
Н	Were all QC perf	formance standards speci	fied in the CAM protocol	l(s) achieved?		Yes ✓ No
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)? Yes ✓			Yes ✓ No		
All ne	gative responses are	e addressed in a case narra	tive on the cover page of th	is report.		
	0	• •	01 0 0	pon my personal inquiry of v knowledge and belief, accu	those responsible for obtaining and complete.	ng the
					Caun & Waisile	Woscik

Dawn E. Wojcik Laboratory Director Date: 1/31/2018

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 2.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 245.1/7470A

Spikes:

1801218-MS1 Source: SC43470-01

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Mercury

1801218-MSD1 Source: SC43470-01

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Mercury

Duplicates:

1801218-DUP1 Source: SC43470-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Mercury

Samples:

SC43470-01 GW

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Mercury

SW846 6010C

Spikes:

SW846 6010C

Spikes:

1801307-MS1 Source: SC43470-01

Due to dilution factor, recovery is unmeasurable

Antimony

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

1801307-MSD1 Source: SC43470-01

Due to dilution factor, recovery is unmeasurable

Antimony

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

1801307-PS1 Source: SC43470-01

Due to dilution factor, recovery is unmeasurable

Antimony

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Barium

Duplicates:

1801307-DUP1 Source: SC43470-01

The Reporting Limit has been raised to account for matrix interference.

Antimony

Arsenic

Barium

Cadmium

Chromium

Copper

Iron Lead

Nickel

Selenium

Silver

Zinc

Samples:

SC43470-01 GW

SW846 6010C

Samples:

SC43470-01 GW

The Reporting Limit has been raised to account for matrix interference.

Antimony

Arsenic

Barium

Cadmium

Chromium

Copper

Iron

Lead

Nickel

Selenium

Silver

Zinc

SW846 8260C

Calibration:

1801070

Analyte quantified by quadratic equation type calibration.

1,1,1,2-Tetrachloroethane

1,2-Dibromo-3-chloropropane

1,4-Dioxane

Bromodichloromethane

Bromoform

Carbon tetrachloride

Dibromochloromethane

Naphthalene

trans-1,3-Dichloropropene

This affected the following samples:

1801230-BLK1

1801230-BS1

1801230-BSD1

GW

S816062-ICV1

S816296-CCV1

Laboratory Control Samples:

1801230 BS/BSD

1,1,1,2-Tetrachloroethane percent recoveries (136/127) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GW

1,2-Dibromo-3-chloropropane percent recoveries (131/128) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GW

2,2-Dichloropropane percent recoveries (131/124) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GW

SW846 8260C

Laboratory Control Samples:

1801230 BS/BSD

Bromoform percent recoveries (154/147) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GW

Carbon tetrachloride percent recoveries (138/127) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GW

Dibromochloromethane percent recoveries (144/132) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GW

Tert-Butanol / butyl alcohol percent recoveries (113/137) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

GW

Samples:

S816296-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2,2-Dichloropropane (23.9%) Ethanol (24.1%)

Tert-Butanol / butyl alcohol (37.3%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1,2-Tetrachloroethane (27.2%) 1,2-Dibromo-3-chloropropane (27.8%) 1,4-Dioxane (26.1%) Bromoform (47.0%) Carbon tetrachloride (26.9%) Dibromochloromethane (32.4%)

This affected the following samples:

1801230-BLK1 1801230-BS1 1801230-BSD1 GW

SW846 8270D

Calibration:

1801047

SW846 8270D

Calibration:

1801047

Analyte quantified by quadratic equation type calibration.

- 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 3-Nitroaniline
- 4,6-Dinitro-2-methylphenol
- 4-Nitrophenol

Benzidine

Benzoic acid

Carbazole

Pentachlorophenol

This affected the following samples:

1801200-BLK1

1801200-BS1

1801200-BSD1

GW

S815859-ICV1

S816340-CCV1

Laboratory Control Samples:

1801200 BS/BSD

1,2,4,5-Tetrachlorobenzene percent recoveries (35/44) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

1,2,4-Trichlorobenzene percent recoveries (35/45) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

1,2-Dichlorobenzene percent recoveries (32/41) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

1,3-Dichlorobenzene percent recoveries (30/39) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

1,4-Dichlorobenzene percent recoveries (31/40) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

1-Methylnaphthalene percent recoveries (36/46) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

Aniline percent recoveries (40/39) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

SW846 8270D

Laboratory Control Samples:

1801200 BS/BSD

Bis(2-chloroethoxy)methane percent recoveries (33/41) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

Bis(2-chloroethyl)ether percent recoveries (32/40) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

Bis(2-chloroisopropyl)ether percent recoveries (32/40) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

Hexachlorobutadiene percent recoveries (30/39) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

Hexachloroethane percent recoveries (32/40) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

Naphthalene percent recoveries (32/41) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

N-Nitrosodimethylamine percent recoveries (31/34) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

Phenol percent recoveries (20/23) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

Pyridine percent recoveries (28/28) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

GW

1801200 BSD

- 1,2,4,5-Tetrachlorobenzene RPD 26% (20%) is outside individual acceptance criteria.
- 1,2,4-Trichlorobenzene RPD 27% (20%) is outside individual acceptance criteria.
- 1,2-Dichlorobenzene RPD 26% (20%) is outside individual acceptance criteria.
- 1,3-Dichlorobenzene RPD 26% (20%) is outside individual acceptance criteria.
- 1,4-Dichlorobenzene RPD 26% (20%) is outside individual acceptance criteria.
- 1-Methylnaphthalene RPD 27% (20%) is outside individual acceptance criteria.
- 2,4,5-Trichlorophenol RPD 25% (20%) is outside individual acceptance criteria.

SW846 8270D

Laboratory Control Samples:

1801200 BSD

- 2,4,6-Trichlorophenol RPD 25% (20%) is outside individual acceptance criteria.
- 2,4-Dichlorophenol RPD 21% (20%) is outside individual acceptance criteria.
- 2,4-Dimethylphenol RPD 27% (20%) is outside individual acceptance criteria.
- 2,4-Dinitrophenol RPD 24% (20%) is outside individual acceptance criteria.
- 2,4-Dinitrotoluene RPD 22% (20%) is outside individual acceptance criteria.
- 2,6-Dinitrotoluene RPD 24% (20%) is outside individual acceptance criteria.
- 2-Chloronaphthalene RPD 26% (20%) is outside individual acceptance criteria.
- 2-Methylnaphthalene RPD 23% (20%) is outside individual acceptance criteria.
- 2-Nitroaniline RPD 25% (20%) is outside individual acceptance criteria.
- 2-Nitrophenol RPD 24% (20%) is outside individual acceptance criteria.
- 3,3'-Dichlorobenzidine RPD 23% (20%) is outside individual acceptance criteria.
- 4,6-Dinitro-2-methylphenol RPD 23% (20%) is outside individual acceptance criteria.
- 4-Bromophenyl phenyl ether RPD 23% (20%) is outside individual acceptance criteria.
- 4-Chloro-3-methylphenol RPD 23% (20%) is outside individual acceptance criteria.
- 4-Chlorophenyl phenyl ether RPD 27% (20%) is outside individual acceptance criteria.
- 4-Nitroaniline RPD 24% (20%) is outside individual acceptance criteria.

Acenaphthene RPD 25% (20%) is outside individual acceptance criteria.

Acenaphthylene RPD 28% (20%) is outside individual acceptance criteria.

Anthracene RPD 25% (20%) is outside individual acceptance criteria.

Azobenzene/Diphenyldiazene RPD 31% (20%) is outside individual acceptance criteria.

Benzidine RPD 48% (20%) is outside individual acceptance criteria.

Bis(2-chloroethoxy)methane RPD 24% (20%) is outside individual acceptance criteria.

Bis(2-chloroethyl)ether RPD 22% (20%) is outside individual acceptance criteria.

Bis(2-chloroisopropyl)ether RPD 22% (20%) is outside individual acceptance criteria.

This laboratory report is not valid without an authorized signature on the cover page.

SW846 8270D

Laboratory Control Samples:

1801200 BSD

Carbazole RPD 24% (20%) is outside individual acceptance criteria.

Dibenzofuran RPD 26% (20%) is outside individual acceptance criteria.

Diethyl phthalate RPD 25% (20%) is outside individual acceptance criteria.

Dimethyl phthalate RPD 27% (20%) is outside individual acceptance criteria.

Di-n-butyl phthalate RPD 23% (20%) is outside individual acceptance criteria.

Fluoranthene RPD 24% (20%) is outside individual acceptance criteria.

Fluorene RPD 27% (20%) is outside individual acceptance criteria.

Hexachlorobenzene RPD 21% (20%) is outside individual acceptance criteria.

Hexachlorobutadiene RPD 27% (20%) is outside individual acceptance criteria.

Hexachlorocyclopentadiene RPD 32% (20%) is outside individual acceptance criteria.

Hexachloroethane RPD 24% (20%) is outside individual acceptance criteria.

Isophorone RPD 24% (20%) is outside individual acceptance criteria.

Naphthalene RPD 27% (20%) is outside individual acceptance criteria.

Nitrobenzene RPD 24% (20%) is outside individual acceptance criteria.

N-Nitrosodi-n-propylamine RPD 22% (20%) is outside individual acceptance criteria.

N-Nitrosodiphenylamine RPD 25% (20%) is outside individual acceptance criteria.

Pentachloronitrobenzene RPD 23% (20%) is outside individual acceptance criteria.

Pentachlorophenol RPD 27% (20%) is outside individual acceptance criteria.

Phenanthrene RPD 25% (20%) is outside individual acceptance criteria.

1801200-BSD1

SW846 8270D

Laboratory Control Samples:

1801200-BSD1

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

- 1,2,4,5-Tetrachlorobenzene
- 1,2,4-Trichlorobenzene
- 1,2-Dichlorobenzene
- 1,4-Dichlorobenzene
- 1-Methylnaphthalene
- 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol
- 2,4-Dichlorophenol
- 2,4-Dimethylphenol
- 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Chloronaphthalene
- 2-Methylnaphthalene 2-Nitroaniline
- 2-Nitrophenol
- 3,3'-Dichlorobenzidine
- 4,6-Dinitro-2-methylphenol
- 4-Bromophenyl phenyl ether
- 4-Chloro-3-methylphenol
- 4-Chlorophenyl phenyl ether
- 4-Nitroaniline

Acenaphthene

Acenaphthylene

Anthracene

Azobenzene/Diphenyldiazene

Benzidine

Bis(2-chloroethoxy)methane

Bis(2-chloroethyl)ether

Bis(2-chloroisopropyl)ether

Carbazole

Dibenzofuran

Diethyl phthalate

Dimethyl phthalate

Di-n-butyl phthalate

Fluoranthene

Fluorene

Hexachlorobenzene

Hexachlorocyclopentadiene

Hexachloroethane

Isophorone

Naphthalene

Nitrobenzene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Pentachloronitrobenzene

Pentachlorophenol

Phenanthrene

Samples:

S816340-CCV1

SW846 8270D

Samples:

S816340-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

2,4-Dinitrophenol (32.3%) 4,6-Dinitro-2-methylphenol (28.4%) Carbazole (-21.0%)

This affected the following samples:

1801200-BLK1 1801200-BS1 1801200-BSD1 GW

SC43470-01

GW

Data for this analyte may be biased low based on QC spike recoveries.

1,2,4,5-Tetrachlorobenzene

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1-Methylnaphthalene

Bis(2-chloroethoxy)methane

Bis(2-chloroethyl)ether

Bis(2-chloroisopropyl)ether

Hexachlorobutadiene

Hexachloroethane

Naphthalene

N-Nitrosodimethylamine

Phenol

Pyridine

Sample Acceptance Check Form

CMG Environmental, Inc.

Were samples received within method-specific holding times?

Client:

Project:	4+16 N. Main - Northbridge, MA / 2017-235			
Work Order:	SC43470			
Sample(s) received on:	1/25/2018			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		<u>Yes</u>	No	N/A
Were custody sea	als present?	ᆜ		Щ
Were custody sea	als intact?		Ш	✓
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples re	frigerated upon transfer to laboratory representative?	\checkmark		
Were sample cor	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	✓		
Were samples ac	companied by a Chain of Custody document?	\checkmark		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?		V	
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		

Summary of Hits

Lab ID: SC43470-01

Client ID: GW

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Ammonia as Nitrogen	0.82		0.05	mg/l	E350.1
Mercury	0.0299	GS1,	D0.00100	mg/l	EPA 245.1/7470A
Chloride	98.8	D	5.00	mg/l	EPA 300.0
Total Dissolved Solids	1190		5	mg/l	SM18-22 2540C
Total Suspended Solids	394		5.0	mg/l	SM2540D (11)
Arsenic	1.80	D, RO	01 0.400	mg/l	SW846 6010C
Barium	10.0	D, RO	01 0.500	mg/l	SW846 6010C
Chromium	2.50	D, RO	01 0.500	mg/l	SW846 6010C
Copper	6.08	R01,	D 0.500	mg/l	SW846 6010C
Iron	2420	R01,	D 1.50	mg/l	SW846 6010C
Lead	22.0	R01,	D 0.750	mg/l	SW846 6010C
Nickel	1.78	R01,	D 0.500	mg/l	SW846 6010C
Zinc	23.7	R01,	D 0.500	mg/l	SW846 6010C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Client Project # 2017-235

Matrix Ground Water Collection Date/Time 24-Jan-18 14:45 Received 25-Jan-18

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>											
98-82-8	Isopropylbenzene	< 1.00		μg/l	1.00	0.36	1	SW846 8260C	29-Jan-18	29-Jan-18	GMA	1801230	
99-87-6	4-Isopropyltoluene	< 1.00		μg/l	1.00	0.28	1	"	"	"	"	"	
1634-04-4	Methyl tert-butyl ether	< 1.00		μg/l	1.00	0.24	1	"	"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00		μg/l	2.00	0.52	1	"	"	"	"	· ·	
75-09-2	Methylene chloride	< 2.00		μg/l	2.00	0.66	1	"	"	"	"	"	
91-20-3	Naphthalene	< 1.00		μg/l	1.00	0.35	1	"	"	"	ıı	"	
103-65-1	n-Propylbenzene	< 1.00		μg/l	1.00	0.34	1	"	"	"	"	"	
100-42-5	Styrene	< 1.00		μg/l	1.00	0.40	1	"	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	< 1.00		μg/l	1.00	0.38	1	"	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50	0.33	1	"	"	"	"	"	
127-18-4	Tetrachloroethene	< 1.00		μg/l	1.00	0.57	1	"	"	"	"	"	
108-88-3	Toluene	< 1.00		μg/l	1.00	0.30	1	"	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	< 1.00		μg/l	1.00	0.38	1	"	"	"	ıı	"	
120-82-1	1,2,4-Trichlorobenzene	< 1.00		μg/l	1.00	0.38	1	"	"	"	ıı	"	
108-70-3	1,3,5-Trichlorobenzene	< 1.00		μg/l	1.00	0.30	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.00		μg/l	1.00	0.51	1	"	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 1.00		μg/l	1.00	0.33	1		"	"	"	"	
79-01-6	Trichloroethene	< 1.00		μg/l	1.00	0.50	1	"	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00	0.49	1	u	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	< 1.00		μg/l	1.00	0.29	1	"	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00	0.36	1	"	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00	0.43	1	"	"	"	"	"	
75-01-4	Vinyl chloride	< 1.00		μg/l	1.00	0.47	1	"	"	"	"	"	
179601-23-1	m,p-Xylene	< 2.00		μg/l	2.00	0.38	1	"	"	"	"	"	
95-47-6	o-Xylene	< 1.00		μg/l	1.00	0.28	1	"	"	"	"	"	
109-99-9	Tetrahydrofuran	< 2.00		μg/l	2.00	1.06	1	"	"	"	"	"	
60-29-7	Ethyl ether	< 1.00		μg/l	1.00	0.37	1	"	"	"	"	"	
994-05-8	Tert-amyl methyl ether	< 1.00		μg/l	1.00	0.49	1	"	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 1.00		μg/l	1.00	0.33	1	"	"	"	"	"	
108-20-3	Di-isopropyl ether	< 1.00		μg/l	1.00	0.29	1	"	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	5.90	1	"	"	"	"	"	
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	11.4	1	"	"	"	"	"	
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.00		μg/l	5.00	0.82	1	u	"	"	"	"	
64-17-5	Ethanol	< 200		μg/l	200	30.9	1	n .	II .	"	"	"	
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	108			70-13	0 %		II .	"	"	"	"	
2037-26-5	Toluene-d8	100			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	100			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	106			70-13	0 %		u	"	"	"	"	
	ile Organic Compounds by C	JCMS											
	tile Organic Compounds by method SW846 3510C												
83-32-9	Acenaphthene	< 5.10		μg/l	5.10	0.705	1	SW846 8270D	29-Jan-18	30-Jan-18	MSL	1801200	

Client Project # 2017-235

Matrix Ground Water Collection Date/Time 24-Jan-18 14:45 Received 25-Jan-18

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
	tile Organic Compounds												
208-96-8	Acenaphthylene	< 5.10		μg/l	5.10	0.697	1	SW846 8270D	29-Jan-18	30-Jan-18	MSL	1801200	
62-53-3	Aniline	< 5.10		μg/l	5.10	1.81	1	11	"	"	"	"	
120-12-7	Anthracene	< 5.10		μg/l	5.10	0.620	1	"	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiaz ene	< 5.10		μg/l	5.10	0.763	1	n .	"	n	II	II.	
92-87-5	Benzidine	< 5.10		μg/l	5.10	1.17	1	"	"	"	"	"	
56-55-3	Benzo (a) anthracene	< 5.10		μg/l	5.10	0.547	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	< 5.10		μg/l	5.10	0.573	1	"	"	"	"	"	
205-99-2	Benzo (b) fluoranthene	< 5.10		μg/l	5.10	0.446	1	"	"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 5.10		μg/l	5.10	0.541	1	"	"	"	"	"	
207-08-9	Benzo (k) fluoranthene	< 5.10		μg/l	5.10	0.490	1	"	"	"	"	"	
65-85-0	Benzoic acid	< 5.10		μg/l	5.10	0.538	1	"	"	"	"	"	
100-51-6	Benzyl alcohol	< 5.10		μg/l	5.10	0.796	1	"	"	"	"	"	
111-91-1	Bis(2-chloroethoxy)metha ne	< 5.10	BsL	μg/l	5.10	0.680	1	"	"	"	"	"	
111-44-4	Bis(2-chloroethyl)ether	< 5.10	BsL	μg/l	5.10	0.749	1	"	"	"	"	"	
108-60-1	Bis(2-chloroisopropyl)ethe r	< 5.10	BsL	μg/l	5.10	0.794	1	"	"	"	"	"	
117-81-7	Bis(2-ethylhexyl)phthalate	< 5.10		μg/l	5.10	0.651	1	"	"	"	"	"	
101-55-3	4-Bromophenyl phenyl ether	< 5.10		μg/l	5.10	0.614	1	"	"	"	"	"	
85-68-7	Butyl benzyl phthalate	< 5.10		μg/l	5.10	0.447	1	"	"	"	"	"	
86-74-8	Carbazole	< 5.10		μg/l	5.10	1.59	1	"	"	"	"	"	
59-50-7	4-Chloro-3-methylphenol	< 5.10		μg/l	5.10	0.511	1	"	"	n n	"	"	
106-47-8	4-Chloroaniline	< 5.10		μg/l	5.10	1.14	1	"	"	"	"	"	
91-58-7	2-Chloronaphthalene	< 5.10		μg/l	5.10	0.602	1	"	"	n n	"	"	
95-57-8	2-Chlorophenol	< 5.10		μg/l	5.10	0.763	1	"	"	"	"	"	
7005-72-3	4-Chlorophenyl phenyl ether	< 5.10		μg/l	5.10	0.615	1	"	"	"	"	"	
218-01-9	Chrysene	< 5.10		μg/l	5.10	0.543	1	"	"	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	< 5.10		μg/l	5.10	0.459	1	"	"	"	"	"	
132-64-9	Dibenzofuran	< 5.10		μg/l	5.10	0.755	1	"	"	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 5.10	BsL	μg/l	5.10	0.573	1	"	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	< 5.10	BsL	μg/l	5.10	0.660	1	"	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	< 5.10	BsL	μg/l	5.10	0.627	1	"	"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	< 5.10		μg/l	5.10	2.03	1	"	"	"	"	"	
120-83-2	2,4-Dichlorophenol	< 5.10		μg/l	5.10	0.541	1	"	"	"	"	"	
84-66-2	Diethyl phthalate	< 5.10		μg/l	5.10	0.636	1	"	"	"	"	"	
131-11-3	Dimethyl phthalate	< 5.10		μg/l	5.10	0.773	1	"	"	"	"	"	
105-67-9	2,4-Dimethylphenol	< 5.10		μg/l	5.10	0.666	1	"	"	"	"	"	
84-74-2	Di-n-butyl phthalate	< 5.10		μg/l	5.10	0.466	1	"	"	"	"	"	
534-52-1	4,6-Dinitro-2-methylphenol	< 5.10		μg/l	5.10	0.326	1	"	"	"	"	"	
51-28-5	2,4-Dinitrophenol	< 5.10		μg/l	5.10	0.572	1	"	"	"	"	"	
121-14-2	2,4-Dinitrotoluene	< 5.10		μg/l	5.10	0.687	1	"	"	"	"	"	
606-20-2	2,6-Dinitrotoluene	< 5.10		μg/l	5.10	0.605	1	"	"	"	"	"	
117-84-0	Di-n-octyl phthalate	< 5.10		μg/l	5.10	0.414	1	"	"	"	"	"	
206-44-0	Fluoranthene	< 5.10		μg/l	5.10	0.651	1	"	"	"	"	"	

Sample Identification

Sample Id GW SC43470-	lentification				<u>Project #</u> 7-235		<u>Matrix</u> Ground Wa		ection Date			<u>ceived</u> Jan-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	als by EPA 6000/7000 by method SW846												
7440-22-4	Silver	< 0.500	D, R01	mg/l	0.500	0.0620	50	SW846 6010C	30-Jan-18	31-Jan-18	SJR/TBC	1801307	
7440-38-2	Arsenic	1.80	D, R01	mg/l	0.400	0.138	50	"	"	u	"	"	
7440-39-3	Barium	10.0	D, R01	mg/l	0.500	0.0695	50	"	"		"	"	
7440-43-9	Cadmium	< 0.250	D, R01	mg/l	0.250	0.0353	50	"	"	"	"	"	
7440-47-3	Chromium	2.50	D, R01	mg/l	0.500	0.0925	50	"	"	"	"	"	
7440-50-8	Copper	6.08	R01, D	mg/l	0.500	0.230	50	"	"	"	"	"	
7439-89-6	Iron	2,420	R01, D	mg/l	1.50	0.446	50	"	"	"	"	"	
7440-02-0	Nickel	1.78	R01, D	mg/l	0.500	0.0865	50	"	"	"	"	"	
7439-92-1	Lead	22.0	R01, D	mg/l	0.750	0.620	50		"	"	"	"	
7440-36-0	Antimony	< 0.600	R01, D	mg/l	0.600	0.160	50		"	"	"	"	
7782-49-2	Selenium	< 1.50	R01, D	mg/l	1.50	0.415	50	"	"	"	"	"	

Total Metals by EPA 200 Series Methods 7439-97-6 Mercury 0.0299

General Cl	hemistry Parameters												
16887-00-6	Chloride	98.8	D	mg/l	5.00	0.497	5	EPA 300.0	29-Jan-18	30-Jan-18	ABW	1801253	Χ
	Total Dissolved Solids	1,190		mg/l	5	3	1	SM18-22 2540C	27-Jan-18	30-Jan-18	CMB	1801186	X
	Total Suspended Solids	394		mg/l	5.0	2.2	1	SM2540D (11)	27-Jan-18	30-Jan-18	CMB	1801187	Χ

0.00100 0.00065

0.500

mg/l

mg/l

0.158

50

5

EPA

245.1/7470A

30-Jan-18 31-Jan-18 ABW 1801218 X

R01, D

GS1,

D,HTA

23.7

Subcontracted Analyses

Zinc

7440-66-6

Prepared by method 418021

Analysis pe	erformed by Phoenix Enviro	nmental Labs, Inc. * - MACT	007					
7664-41-7	Ammonia as Nitrogen	0.82	mg/l	0.05	0.05	1	E350.1	24-Jan-18 30-Jan-18 M-CT007 418021A 14:45 11:47

31-Jan-18 17:08 Page 20 of 36

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	1 lag	Omis	KDL	Level	Kesuit	/UNEC	Limits	KID	LIIIII
SW846 8260C										
Batch 1801230 - SW846 5030 Water MS										
Blank (1801230-BLK1)					Pre	epared & Ar	nalyzed: 29-	<u>Jan-18</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00		μg/l	1.00						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.50		μg/l	0.50						
Benzene	< 1.00		μg/l	1.00						
Bromobenzene	< 1.00		μg/l	1.00						
Bromochloromethane	< 1.00		μg/l	1.00						
Bromodichloromethane	< 0.50		μg/l	0.50						
Bromoform	< 1.00		μg/l	1.00						
Bromomethane	< 2.00		μg/l	2.00						
2-Butanone (MEK)	< 2.00		μg/l	2.00						
n-Butylbenzene	< 1.00		μg/l	1.00						
sec-Butylbenzene	< 1.00		μg/l	1.00						
tert-Butylbenzene	< 1.00		μg/l	1.00						
Carbon disulfide	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		μg/l	1.00						
Chlorobenzene	< 1.00		μg/l 	1.00						
Chloroethane	< 2.00		μg/l	2.00						
Chloroform	< 1.00		μg/l	1.00						
Chloromethane	< 2.00		μg/l	2.00						
2-Chlorotoluene	< 1.00		μg/l 	1.00						
4-Chlorotoluene	< 1.00		μg/l	1.00						
1,2-Dibromo-3-chloropropane	< 2.00		μg/l	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		μg/l 	0.50						
Dibromomethane	< 1.00		μg/l	1.00						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		μg/l	1.00						
1,4-Dichlorobenzene	< 1.00		μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		μg/l	1.00						
1,1-Dichloroethene	< 1.00		μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		μg/l	1.00						
trans-1,2-Dichloroethene	< 1.00		μg/l	1.00						
1,2-Dichloropropane 1,3-Dichloropropane	< 1.00 < 1.00		μg/l	1.00 1.00						
			μg/l							
2,2-Dichloropropane	< 1.00 < 1.00		μg/l	1.00 1.00						
1,1-Dichloropropene	< 0.50		μg/l	0.50						
cis-1,3-Dichloropropene	< 0.50 < 0.50		μg/l							
trans-1,3-Dichloropropene Ethylbenzene	< 0.50 < 1.00		μg/l	0.50 1.00						
Etnylbenzene Hexachlorobutadiene	< 0.50		μg/l	0.50						
2-Hexanone (MBK)	< 0.50 < 2.00		μg/l μg/l	2.00						
Isopropylbenzene	< 1.00		μg/l μg/l	1.00						
4-Isopropyltoluene	< 1.00		μg/l μg/l	1.00						
Methyl tert-butyl ether	< 1.00		μg/l μg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 2.00		μg/l μg/l	2.00						
Methylene chloride	< 2.00		μg/l	2.00						
Naphthalene	< 1.00		μg/l μg/l	1.00						
n-Propylbenzene	< 1.00		μg/l μg/l	1.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1801230 - SW846 5030 Water MS										
Blank (1801230-BLK1)					Pre	epared & Ai	nalyzed: 29-	Jan-18		
Styrene	< 1.00		μg/l	1.00			-	<u></u>		
1,1,1,2-Tetrachloroethane	< 1.00		μg/l	1.00						
1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50						
Tetrachloroethene	< 1.00		μg/l	1.00						
Toluene	< 1.00		μg/l	1.00						
1,2,3-Trichlorobenzene	< 1.00		μg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00		μg/l	1.00						
1,3,5-Trichlorobenzene	< 1.00		μg/l	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l	1.00						
1,1,2-Trichloroethane	< 1.00		μg/l	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
1,2,3-Trichloropropane	< 1.00		μg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00						
Vinyl chloride	< 1.00		μg/l	1.00						
m,p-Xylene	< 2.00		μg/l	2.00						
o-Xylene	< 1.00		μg/l	1.00						
Tetrahydrofuran	< 2.00		μg/l	2.00						
Ethyl ether	< 1.00		μg/l	1.00						
Tert-amyl methyl ether	< 1.00		μg/l	1.00						
Ethyl tert-butyl ether	< 1.00		μg/l	1.00						
Di-isopropyl ether	< 1.00		μg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.00		μg/l	5.00						
Ethanol	< 200		μg/l	200						
							400	70.100		
Surrogate: 4-Bromofluorobenzene	54.6		μg/l		50.0		109	70-130		
Surrogate: Toluene-d8	50.9		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.1		μg/l 		50.0		102	70-130		
Surrogate: Dibromofluoromethane	52.7		μg/l		50.0		105	70-130		
LCS (1801230-BS1)						epared & A	nalyzed: 29-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.4		μg/l		20.0		102	70-130		
Acetone	20.6		μg/l		20.0		103	70-130		
Acrylonitrile	18.3		μg/l		20.0		91	70-130		
Benzene	20.6		μg/l		20.0		103	70-130		
Bromobenzene	22.9		μg/l		20.0		114	70-130		
Bromochloromethane	23.4		μg/l		20.0		117	70-130		
Bromodichloromethane	24.7		μg/l		20.0		123	70-130		
Bromoform	30.7	QC2	μg/l		20.0		154	70-130		
Bromomethane	22.3		μg/l		20.0		111	70-130		
2-Butanone (MEK)	19.3		μg/l		20.0		96	70-130		
n-Butylbenzene	21.4		μg/l		20.0		107	70-130		
sec-Butylbenzene	22.3		μg/l		20.0		112	70-130		
tert-Butylbenzene	21.9		μg/l		20.0		110	70-130		
Carbon disulfide	20.2		μg/l		20.0		101	70-130		
Carbon tetrachloride	27.6	QM9	μg/l		20.0		138	70-130		
Chlorobenzene	21.5		μg/l		20.0		108	70-130		
Chloroethane	20.2		μg/l		20.0		101	70-130		
Chloroform	21.8		μg/l		20.0		109	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1801230 - SW846 5030 Water MS										
LCS (1801230-BS1)					Pre	epared & Ar	nalyzed: 29-	Jan-18		
Chloromethane	17.9		μg/l		20.0	•	89	70-130		
2-Chlorotoluene	21.0		μg/l		20.0		105	70-130		
4-Chlorotoluene	21.5		μg/l		20.0		107	70-130		
1,2-Dibromo-3-chloropropane	26.2	QM9	μg/l		20.0		131	70-130		
Dibromochloromethane	28.8	QC2	μg/l		20.0		144	70-130		
1,2-Dibromoethane (EDB)	24.2		μg/l		20.0		121	70-130		
Dibromomethane	22.9		μg/l		20.0		114	70-130		
1,2-Dichlorobenzene	22.2		μg/l		20.0		111	70-130		
1,3-Dichlorobenzene	22.2		μg/l		20.0		111	70-130		
1,4-Dichlorobenzene	20.9		μg/l		20.0		104	70-130		
Dichlorodifluoromethane (Freon12)	20.7		μg/l		20.0		104	70-130		
1,1-Dichloroethane	21.7		μg/l		20.0		108	70-130		
1,2-Dichloroethane	22.7		μg/l		20.0		114	70-130		
1,1-Dichloroethene	19.5		μg/l		20.0		97	70-130		
cis-1,2-Dichloroethene	22.0		μg/l		20.0		110	70-130		
trans-1,2-Dichloroethene	20.3		μg/l		20.0		102	70-130		
1,2-Dichloropropane	20.8		μg/l		20.0		104	70-130		
1,3-Dichloropropane	21.6		μg/l		20.0		108	70-130		
2,2-Dichloropropane	26.3	QM9	μg/l		20.0		131	70-130		
1,1-Dichloropropene	20.9	QIVIO	μg/l		20.0		105	70-130		
cis-1,3-Dichloropropene	24.9				20.0		125	70-130		
trans-1,3-Dichloropropene	24.5		μg/l μg/l		20.0		122	70-130		
Ethylbenzene	21.6				20.0		108	70-130		
Hexachlorobutadiene			μg/l		20.0		113			
	22.7		μg/l					70-130		
2-Hexanone (MBK)	20.6		μg/l		20.0		103	70-130		
Isopropyltelyana	21.1		μg/l		20.0		105	70-130		
4-Isopropyltoluene	21.4		μg/l		20.0		107	70-130		
Methyl Country and (MIDIC)	23.5		μg/l		20.0		118	70-130		
4-Methyl-2-pentanone (MIBK)	20.8		μg/l		20.0		104	70-130		
Methylene chloride	21.0		μg/l		20.0		105	70-130		
Naphthalene	20.6		μg/l		20.0		103	70-130		
n-Propylbenzene	21.9		μg/l		20.0		109	70-130		
Styrene	21.6	0140	μg/l		20.0		108	70-130		
1,1,1,2-Tetrachloroethane	27.2	QM9	μg/l 		20.0		136	70-130		
1,1,2,2-Tetrachloroethane	22.7		μg/l		20.0		114	70-130		
Tetrachloroethene	21.7		μg/l		20.0		109	70-130		
Toluene	21.3		μg/l		20.0		106	70-130		
1,2,3-Trichlorobenzene	23.2		μg/l		20.0		116	70-130		
1,2,4-Trichlorobenzene	22.9		μg/l		20.0		114	70-130		
1,3,5-Trichlorobenzene	22.7		μg/l 		20.0		113	70-130		
1,1,1-Trichloroethane	24.2		μg/l		20.0		121	70-130		
1,1,2-Trichloroethane	22.5		μg/l 		20.0		113	70-130		
Trichloroethene	21.7		μg/l		20.0		109	70-130		
Trichlorofluoromethane (Freon 11)	22.1		μg/l		20.0		110	70-130		
1,2,3-Trichloropropane	21.6		μg/l		20.0		108	70-130		
1,2,4-Trimethylbenzene	22.3		μg/l		20.0		112	70-130		
1,3,5-Trimethylbenzene	22.6		μg/l		20.0		113	70-130		
Vinyl chloride	18.9		μg/l		20.0		95	70-130		
m,p-Xylene	21.8		μg/l		20.0		109	70-130		
o-Xylene	21.8		μg/l		20.0		109	70-130		

	D 1	E.	T T	*DDI	Spike	Source	0/BEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 1801230 - SW846 5030 Water MS										
LCS (1801230-BS1)					Pre	epared & Ar	nalyzed: 29-	Jan-18		
Tetrahydrofuran	19.2		μg/l		20.0		96	70-130		
Ethyl ether	20.0		μg/l		20.0		100	70-130		
Tert-amyl methyl ether	20.8		μg/l		20.0		104	70-130		
Ethyl tert-butyl ether	22.0		μg/l		20.0		110	70-130		
Di-isopropyl ether	20.9		μg/l		20.0		105	70-130		
Tert-Butanol / butyl alcohol	226		μg/l		200		113	70-130		
1,4-Dioxane	243		μg/l		200		122	70-130		
trans-1,4-Dichloro-2-butene	22.1		μg/l		20.0		110	70-130		
Ethanol	405		μg/l		400		101	70-130		
Surrogate: 4-Bromofluorobenzene	51.8		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.5		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.2		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	52.5		μg/l		50.0		105	70-130		
LCS Dup (1801230-BSD1)					Pre	enared & Ar	nalyzed: 29-	.Jan-18		
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.3		μg/l		20.0	,	97	70-130	5	20
Acetone	21.2		μg/l		20.0		106	70-130	3	20
Acrylonitrile	18.3		μg/l		20.0		92	70-130	0.3	20
Benzene	19.2		μg/l		20.0		96	70-130	7	20
Bromobenzene	21.5		μg/l		20.0		108	70-130	6	20
Bromochloromethane	21.8		μg/l		20.0		109	70-130	7	20
Bromodichloromethane	23.3		μg/l		20.0		117	70-130	6	20
Bromoform	29.4	QC2			20.0		147	70-130	4	20
Bromomethane	22.8	QOL	μg/l		20.0		114	70-130	2	20
2-Butanone (MEK)	20.6		μg/l		20.0		103	70-130	6	20
n-Butylbenzene	20.6		μg/l		20.0		103	70-130	5	20
•	20.3		μg/l		20.0		105	70-130		20
sec-Butylbenzene			μg/l				105	70-130 70-130	6	20
tert-Butylbenzene	21.0		μg/l		20.0				4	
Carbon disulfide	18.2		μg/l		20.0		91	70-130	10	20 20
Carbon tetrachloride	25.4		μg/l		20.0		127	70-130	8	
Chlorobenzene	19.9		μg/l		20.0		100	70-130	8	20
Chloroethane	18.5		μg/l "		20.0		93	70-130	9	20
Chloroform	20.6		μg/l 		20.0		103	70-130	6	20
Chloromethane	16.9		μg/l		20.0		84	70-130	6	20
2-Chlorotoluene	20.0		μg/l "		20.0		100	70-130	5	20
4-Chlorotoluene	19.8		μg/l "		20.0		99	70-130	8	20
1,2-Dibromo-3-chloropropane	25.6		μg/l		20.0		128	70-130	3	20
Dibromochloromethane	26.5	QC2	μg/l "		20.0		132	70-130	8	20
1,2-Dibromoethane (EDB)	23.5		μg/l		20.0		118	70-130	3	20
Dibromomethane	22.0		μg/l		20.0		110	70-130	4	20
1,2-Dichlorobenzene	20.7		μg/l		20.0		103	70-130	7	20
1,3-Dichlorobenzene	20.6		μg/l		20.0		103	70-130	8	20
1,4-Dichlorobenzene	19.8		μg/l		20.0		99	70-130	5	20
Dichlorodifluoromethane (Freon12)	18.8		μg/l		20.0		94	70-130	10	20
1,1-Dichloroethane	19.9		μg/l		20.0		100	70-130	9	20
1,2-Dichloroethane	20.9		μg/l		20.0		104	70-130	8	20
1,1-Dichloroethene	18.2		μg/l		20.0		91	70-130	7	20
cis-1,2-Dichloroethene	20.5		μg/l		20.0		103	70-130	7	20
trans-1,2-Dichloroethene	19.5		μg/l		20.0		97	70-130	4	20
1,2-Dichloropropane	19.9		μg/l		20.0		100	70-130	5	20
1,3-Dichloropropane	21.1		μg/l		20.0		106	70-130	2	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
<u> </u>	TODAIT	- 1.118			Level	resure	, vieze	Emmo		
<u>W846 8260C</u>										
atch 1801230 - SW846 5030 Water MS					Dec	norod 0 Ar	alumadi 20	lan 10		
LCS Dup (1801230-BSD1)	04.0					epareu & Ar	nalyzed: 29-		0	20
2,2-Dichloropropane	24.8		μg/l		20.0		124	70-130	6	20
1,1-Dichloropropene	19.2		μg/l		20.0		96	70-130	8	20
cis-1,3-Dichloropropene	23.3		μg/l		20.0		116	70-130	7	20
trans-1,3-Dichloropropene	23.3		μg/l		20.0		117	70-130	5	20
Ethylbenzene	20.0		μg/l		20.0		100	70-130	8	20
Hexachlorobutadiene	21.6		μg/l		20.0		108	70-130	5	20
2-Hexanone (MBK)	21.3		μg/l		20.0		106	70-130	3	20
Isopropylbenzene	19.7		μg/l		20.0		98	70-130	7	20
4-Isopropyltoluene	20.5		μg/l		20.0		103	70-130	4	20
Methyl tert-butyl ether	20.8		μg/l		20.0		104	70-130	12	20
4-Methyl-2-pentanone (MIBK)	20.7		μg/l		20.0		104	70-130	0.3	20
Methylene chloride	19.4		μg/l		20.0		97	70-130	8	20
Naphthalene	20.4		μg/l		20.0		102	70-130	1	20
n-Propylbenzene	20.2		μg/l		20.0		101	70-130	8	20
Styrene	20.4		μg/l		20.0		102	70-130	6	20
1,1,1,2-Tetrachloroethane	25.4		μg/l		20.0		127	70-130	7	20
1,1,2,2-Tetrachloroethane	22.2		μg/l		20.0		111	70-130	2	20
Tetrachloroethene	20.1		μg/l		20.0		101	70-130	8	20
Toluene	19.8		μg/l		20.0		99	70-130	7	20
1,2,3-Trichlorobenzene	23.6		μg/l		20.0		118	70-130	2	20
1,2,4-Trichlorobenzene	23.0		μg/l		20.0		115	70-130	0.7	20
1,3,5-Trichlorobenzene	21.9		μg/l		20.0		109	70-130	3	20
1,1,1-Trichloroethane	22.6		μg/l		20.0		113	70-130	7	20
1,1,2-Trichloroethane	21.8		μg/l		20.0		109	70-130	3	20
Trichloroethene	19.9		μg/l		20.0		100	70-130	9	20
Trichlorofluoromethane (Freon 11)	20.2		μg/l		20.0		101	70-130	9	20
1,2,3-Trichloropropane	20.7		μg/l		20.0		104	70-130	4	20
1,2,4-Trimethylbenzene	20.8		μg/l		20.0		104	70-130	7	20
1,3,5-Trimethylbenzene	21.0		μg/l		20.0		105	70-130	7	20
Vinyl chloride	17.1		μg/l		20.0		86	70-130	10	20
m,p-Xylene	19.9		μg/l		20.0		99	70-130	9	20
o-Xylene	19.9		μg/l		20.0		99	70-130	9	20
Tetrahydrofuran	20.6		μg/l		20.0		103	70-130	7	20
Ethyl ether	19.9		μg/l		20.0		100	70-130	0.3	20
Tert-amyl methyl ether	20.0		μg/l		20.0		100	70-130	4	20
Ethyl tert-butyl ether	20.6		μg/l		20.0		103	70-130	6	20
Di-isopropyl ether	20.1		μg/l		20.0		101	70-130	4	20
Tert-Butanol / butyl alcohol	275	QM9	μg/l		200		137	70-130	19	20
1,4-Dioxane	252		μg/l		200		126	70-130	4	20
trans-1,4-Dichloro-2-butene	20.5		μg/l		20.0		102	70-130	7	20
Ethanol	496		μg/l		400		124	70-130	20	20
Surrogate: 4-Bromofluorobenzene	52.2		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.4		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.1		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	53.2		μg/l		50.0		106	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 1801200 - SW846 3510C										
Blank (1801200-BLK1)					Pre	epared: 29-	Jan-18 Ana	alyzed: 30-J	an-18	
Acenaphthene	< 5.00		μg/l	5.00						
Acenaphthylene	< 5.00		μg/l	5.00						
Aniline	< 5.00		μg/l	5.00						
Anthracene	< 5.00		μg/l	5.00						
Azobenzene/Diphenyldiazene	< 5.00		μg/l	5.00						
Benzidine	< 5.00		μg/l	5.00						
Benzo (a) anthracene	< 5.00		μg/l	5.00						
Benzo (a) pyrene	< 5.00		μg/l	5.00						
Benzo (b) fluoranthene	< 5.00		μg/l	5.00						
Benzo (g,h,i) perylene	< 5.00		μg/l	5.00						
Benzo (k) fluoranthene	< 5.00		μg/l	5.00						
Benzoic acid	< 5.00		μg/l	5.00						
Benzyl alcohol	< 5.00		μg/l	5.00						
Bis(2-chloroethoxy)methane	< 5.00		μg/l	5.00						
Bis(2-chloroethyl)ether	< 5.00		μg/l	5.00						
Bis(2-chloroisopropyl)ether	< 5.00		μg/l	5.00						
Bis(2-ethylhexyl)phthalate	< 5.00		μg/l	5.00						
4-Bromophenyl phenyl ether	< 5.00		μg/l	5.00						
Butyl benzyl phthalate	< 5.00		μg/l	5.00						
Carbazole	< 5.00		μg/l	5.00						
4-Chloro-3-methylphenol	< 5.00		μg/l	5.00						
4-Chloroaniline	< 5.00		μg/l	5.00						
2-Chloronaphthalene	< 5.00		μg/l	5.00						
2-Chlorophenol	< 5.00		μg/l	5.00						
4-Chlorophenyl phenyl ether	< 5.00		μg/l	5.00						
Chrysene	< 5.00		μg/l	5.00						
Dibenzo (a,h) anthracene	< 5.00			5.00						
Dibenzofuran	< 5.00		μg/l μg/l	5.00						
1,2-Dichlorobenzene	< 5.00			5.00						
1,3-Dichlorobenzene	< 5.00		μg/l	5.00						
			μg/l							
1,4-Dichlorobenzene	< 5.00 < 5.00		μg/l	5.00						
3,3'-Dichlorobenzidine			μg/l	5.00						
2,4-Dichlorophenol	< 5.00		μg/l	5.00						
Diethyl phthalate	< 5.00		μg/l	5.00						
Dimethyl phthalate 2,4-Dimethylphenol	< 5.00 < 5.00		μg/l	5.00						
			μg/l	5.00						
Di-n-butyl phthalate	< 5.00		μg/l	5.00						
4,6-Dinitro-2-methylphenol	< 5.00		μg/l	5.00						
2,4-Dinitrophenol	< 5.00		μg/l	5.00						
2,4-Dinitrotoluene	< 5.00		μg/l	5.00						
2,6-Dinitrotoluene	< 5.00		μg/l	5.00						
Di-n-octyl phthalate	< 5.00		μg/l	5.00						
Fluoranthene	< 5.00		μg/l	5.00						
Fluorene	< 5.00		μg/l	5.00						
Hexachlorobenzene	< 5.00		μg/l 	5.00						
Hexachlorobutadiene	< 5.00		μg/l 	5.00						
Hexachlorocyclopentadiene	< 5.00		μg/l	5.00						
Hexachloroethane	< 5.00		μg/l	5.00						
Indeno (1,2,3-cd) pyrene	< 5.00		μg/l	5.00						
Isophorone	< 5.00		μg/l	5.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8270D										
Batch 1801200 - SW846 3510C										
Blank (1801200-BLK1)					Pre	epared: 29-	Jan-18 Ana	alyzed: 30-J	an-18	
2-Methylnaphthalene	< 5.00		μg/l	5.00						
2-Methylphenol	< 5.00		μg/l	5.00						
3 & 4-Methylphenol	< 10.0		μg/l	10.0						
Naphthalene	< 5.00		μg/l	5.00						
2-Nitroaniline	< 5.00		μg/l	5.00						
3-Nitroaniline	< 5.00		μg/l	5.00						
4-Nitroaniline	< 5.00		μg/l	5.00						
Nitrobenzene	< 5.00		μg/l	5.00						
2-Nitrophenol	< 5.00		μg/l	5.00						
4-Nitrophenol	< 20.0		μg/l	20.0						
N-Nitrosodimethylamine	< 5.00		μg/l	5.00						
N-Nitrosodi-n-propylamine	< 5.00		μg/l	5.00						
N-Nitrosodiphenylamine	< 5.00		μg/l	5.00						
Pentachlorophenol	< 20.0		μg/l	20.0						
Phenanthrene	< 5.00		μg/l	5.00						
Phenol	< 5.00		μg/l	5.00						
Pyrene	< 5.00		μg/l	5.00						
Pyridine	< 5.00		μg/l	5.00						
1,2,4-Trichlorobenzene	< 5.00		μg/l	5.00						
1-Methylnaphthalene	< 5.00		μg/l	5.00						
2,4,5-Trichlorophenol	< 5.00		μg/l	5.00						
2,4,6-Trichlorophenol	< 5.00		μg/l	5.00						
Pentachloronitrobenzene	< 5.00		μg/l	5.00						
1,2,4,5-Tetrachlorobenzene	< 5.00		μg/l	5.00						
Surrogate: 2-Fluorobiphenyl	24.9		μg/l		50.0		50	30-130		
Surrogate: 2-Fluorophenol	20.2		μg/l		50.0		40	15-110		
Surrogate: Nitrobenzene-d5	26.5		μg/l		50.0		53	30-130		
Surrogate: Phenol-d5	13.5		μg/l		50.0		27	15-110		
Surrogate: Terphenyl-dl4	40.7		μg/l		50.0		81	30-130		
Surrogate: 2,4,6-Tribromophenol	32.9		μg/l		50.0		66	15-110		
LCS (1801200-BS1)					Pre	epared: 29-	Jan-18 Ana	alyzed: 30-J	an-18	
Acenaphthene	21.3		μg/l	5.05	50.5		42	40-140		
Acenaphthylene	20.8		μg/l	5.05	50.5		41	40-140		
Aniline	20.1		μg/l	5.05	50.5		40	40-140		
Anthracene	23.5		μg/l	5.05	50.5		46	40-140		
Azobenzene/Diphenyldiazene	21.8		μg/l	5.05	50.5		43	40-140		
Benzidine	20.4		μg/l	5.05	50.5		40	40-140		
Benzo (a) anthracene	26.9		μg/l	5.05	50.5		53	40-140		
Benzo (a) pyrene	29.7		μg/l	5.05	50.5		59	40-140		
Benzo (b) fluoranthene	32.4		μg/l	5.05	50.5		64	40-140		
Benzo (g,h,i) perylene	29.6		μg/l	5.05	50.5		59	40-140		
Benzo (k) fluoranthene	28.9		μg/l	5.05	50.5		57	40-140		
Benzoic acid	15.8		μg/l	5.05	50.5		31	30-130		
Benzyl alcohol	24.1		μg/l	5.05	50.5		48	40-140		
Bis(2-chloroethoxy)methane	16.4		μg/l	5.05	50.5		33	40-140		
Bis(2-chloroethyl)ether	16.4		μg/l	5.05	50.5		32	40-140		
Bis(2-chloroisopropyl)ether	16.3		μg/l	5.05	50.5		32	40-140		
Bis(2-ethylhexyl)phthalate	27.7		μg/l	5.05	50.5		55	40-140		
4-Bromophenyl phenyl ether	22.6		μg/l	5.05	50.5		45	40-140		
Butyl benzyl phthalate	25.2		μg/l	5.05	50.5		50	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8270D										
Batch 1801200 - SW846 3510C										
LCS (1801200-BS1)					Pre	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
Carbazole	37.6		μg/l	5.05	50.5		74	40-140		
4-Chloro-3-methylphenol	23.6		μg/l	5.05	50.5		47	30-130		
4-Chloroaniline	30.3		μg/l	5.05	50.5		60	40-140		
2-Chloronaphthalene	23.0		μg/l	5.05	50.5		46	40-140		
2-Chlorophenol	18.6		μg/l	5.05	50.5		37	30-130		
4-Chlorophenyl phenyl ether	20.9		μg/l	5.05	50.5		41	40-140		
Chrysene	25.6		μg/l	5.05	50.5		51	40-140		
Dibenzo (a,h) anthracene	31.0		μg/l	5.05	50.5		61	40-140		
Dibenzofuran	24.4		μg/l	5.05	50.5		48	40-140		
1,2-Dichlorobenzene	16.2		μg/l	5.05	50.5		32	40-140		
1,3-Dichlorobenzene	15.3		μg/l	5.05	50.5		30	40-140		
1,4-Dichlorobenzene	15.6		μg/l	5.05	50.5		31	40-140		
3,3´-Dichlorobenzidine	31.7		μg/l	5.05	50.5		63	40-140		
2,4-Dichlorophenol	20.6		μg/l	5.05	50.5		41	30-130		
Diethyl phthalate	22.3		μg/l	5.05	50.5		44	40-140		
Dimethyl phthalate	20.6		μg/l	5.05	50.5		41	40-140		
2,4-Dimethylphenol	18.6		μg/l	5.05	50.5		37	30-130		
Di-n-butyl phthalate	23.4		μg/l	5.05	50.5		46	40-140		
4,6-Dinitro-2-methylphenol	32.5		μg/l	5.05	50.5		64	30-130		
2,4-Dinitrophenol	28.8		μg/l	5.05	50.5		57	30-130		
2,4-Dinitrophenol	33.8		μg/l	5.05	50.5		67	40-140		
2,6-Dinitrotoluene	32.2		μg/l	5.05	50.5		64	40-140		
Di-n-octyl phthalate	29.9		μg/l	5.05	50.5		59	40-140		
Fluoranthene	24.1			5.05	50.5		48	40-140		
Fluorene	24.1		μg/l	5.05	50.5		40 42	40-140		
Hexachlorobenzene			μg/l							
	29.3		μg/l	5.05	50.5		58	40-140		
Hexachlorobutadiene	15.1		μg/l	5.05	50.5		30	40-140		
Hexachlorocyclopentadiene	20.5		μg/l	5.05	50.5		41	40-140		
Hexachloroethane	16.0		μg/l	5.05	50.5		32	40-140		
Indeno (1,2,3-cd) pyrene	30.8		μg/l	5.05	50.5		61	40-140		
Isophorone	20.4		μg/l	5.05	50.5		40	40-140		
2-Methylnaphthalene	22.2		μg/l	5.05	50.5		44	40-140		
2-Methylphenol	19.8		μg/l	5.05	50.5		39	30-130		
3 & 4-Methylphenol	19.1		μg/l	10.1	50.5		38	30-130		
Naphthalene	16.0		μg/l	5.05	50.5		32	40-140		
2-Nitroaniline	25.2		μg/l	5.05	50.5		50	40-140		
3-Nitroaniline	41.1		μg/l 	5.05	50.5		81	40-140		
4-Nitroaniline	39.2		μg/l	5.05	50.5		78	40-140		
Nitrobenzene	23.7		μg/l	5.05	50.5		47	40-140		
2-Nitrophenol	20.4		μg/l	5.05	50.5		40	30-130		
4-Nitrophenol	15.4		μg/l	20.2	50.5		30	30-130		
N-Nitrosodimethylamine	15.6		μg/l	5.05	50.5		31	40-140		
N-Nitrosodi-n-propylamine	21.2		μg/l	5.05	50.5		42	40-140		
N-Nitrosodiphenylamine	25.9		μg/l	5.05	50.5		51	40-140		
Pentachlorophenol	22.5		μg/l	20.2	50.5		45	30-130		
Phenanthrene	23.1		μg/l	5.05	50.5		46	40-140		
Phenol	9.96		μg/l	5.05	50.5		20	30-130		
Pyrene	25.2		μg/l	5.05	50.5		50	40-140		
Pyridine	13.9		μg/l	5.05	50.5		28	40-140		
1,2,4-Trichlorobenzene	17.6		μg/l	5.05	50.5		35	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 1801200 - SW846 3510C										
LCS (1801200-BS1)					Pre	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
1-Methylnaphthalene	18.1		μg/l	5.05	50.5	,	36	40-140		
2,4,5-Trichlorophenol	24.2		μg/l	5.05	50.5		48	30-130		
2,4,6-Trichlorophenol	21.9		μg/l	5.05	50.5		43	30-130		
Pentachloronitrobenzene	25.8		μg/l	5.05	50.5		51	40-140		
1,2,4,5-Tetrachlorobenzene	17.5		μg/l	5.05	50.5		35	40-140		
Surrogate: 2-Fluorobiphenyl	18.2		μg/l		50.5		36	30-130		
Surrogate: 2-Fluorophenol	13.3		μg/l		50.5		26	15-110		
Surrogate: Nitrobenzene-d5	19.3		μg/l		50.5		38	30-130		
Surrogate: Phenol-d5	9.72		μg/l		50.5		19	15-110		
Surrogate: Terphenyl-dl4	27.8		μg/l		50.5		55	30-130		
Surrogate: 2,4,6-Tribromophenol	24.7		μg/l		50.5		49	15-110		
LCS Dup (1801200-BSD1)	24.7		ру/			enared: 20.		alyzed: 30-Ja	an_18	
Acenaphthene	27.4	QR9	μg/l	5.10	51.0	-paica. 20-	54	40-140	25	20
Acenaphthylene	27.4 27.5	QR9	μg/l μg/l	5.10	51.0		54 54	40-140	25 28	20
Aniline	27.5	QM9	μg/l μg/l	5.10	51.0		39	40-140	0.4	20
		QR9								
Anthracene	30.1	QR9	μg/l	5.10	51.0		59 50	40-140	25	20
Azobenzene/Diphenyldiazene	29.9	QR9	μg/l	5.10	51.0		59	40-140	31	20
Benzidine	33.3	QN9	μg/l	5.10	51.0		65	40-140	48	20
Benzo (a) anthracene	31.9		μg/l	5.10	51.0		63	40-140	17	20
Benzo (a) pyrene	34.8		μg/l	5.10	51.0		68	40-140	16	20
Benzo (b) fluoranthene	38.7		μg/l 	5.10	51.0		76	40-140	18	20
Benzo (g,h,i) perylene	33.8		μg/l 	5.10	51.0		66	40-140	13	20
Benzo (k) fluoranthene	31.9		μg/l	5.10	51.0		63	40-140	10	20
Benzoic acid	17.7		μg/l	5.10	51.0		35	30-130	11	20
Benzyl alcohol	27.4		μg/l	5.10	51.0		54	40-140	13	20
Bis(2-chloroethoxy)methane	21.0	QR9	μg/l	5.10	51.0		41	40-140	24	20
Bis(2-chloroethyl)ether	20.4	QR9	μg/l	5.10	51.0		40	40-140	22	20
Bis(2-chloroisopropyl)ether	20.3	QR9	μg/l	5.10	51.0		40	40-140	22	20
Bis(2-ethylhexyl)phthalate	31.4		μg/l	5.10	51.0		62	40-140	12	20
4-Bromophenyl phenyl ether	28.5	QR9	μg/l	5.10	51.0		56	40-140	23	20
Butyl benzyl phthalate	30.5		μg/l	5.10	51.0		60	40-140	19	20
Carbazole	48.0	QR9	μg/l	5.10	51.0		94	40-140	24	20
4-Chloro-3-methylphenol	29.8	QR9	μg/l	5.10	51.0		58	30-130	23	20
4-Chloroaniline	30.7		μg/l	5.10	51.0		60	40-140	1	20
2-Chloronaphthalene	29.9	QR9	μg/l	5.10	51.0		59	40-140	26	20
2-Chlorophenol	22.1		μg/l	5.10	51.0		43	30-130	17	20
4-Chlorophenyl phenyl ether	27.6	QR9	μg/l	5.10	51.0		54	40-140	27	20
Chrysene	29.7		μg/l	5.10	51.0		58	40-140	15	20
Dibenzo (a,h) anthracene	36.0		μg/l	5.10	51.0		71	40-140	15	20
Dibenzofuran	31.6	QR9	μg/l	5.10	51.0		62	40-140	26	20
1,2-Dichlorobenzene	21.1	QR9	μg/l	5.10	51.0		41	40-140	26	20
1,3-Dichlorobenzene	19.9		μg/l	5.10	51.0		39	40-140	26	20
1,4-Dichlorobenzene	20.4	QR9	μg/l	5.10	51.0		40	40-140	26	20
3,3'-Dichlorobenzidine	39.8	QR9	μg/l	5.10	51.0		78	40-140	23	20
2,4-Dichlorophenol	25.4	QR9	μg/l	5.10	51.0		50	30-130	21	20
Diethyl phthalate	28.5	QR9	μg/l	5.10	51.0		56	40-140	25	20
Dimethyl phthalate	27.0	QR9	μg/l	5.10	51.0		53	40-140	27	20
2,4-Dimethylphenol	24.4	QR9	μg/l	5.10	51.0		48	30-130	27	20
Di-n-butyl phthalate	29.4	QR9	μg/l	5.10	51.0		58	40-140	23	20
4,6-Dinitro-2-methylphenol	40.8	QR9	μg/l	5.10	51.0		80	30-130	23	20

Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
Trosurr	1 146		102	Level	resurt	7,412.6	Ziiiits		
				Pre	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
36.6	QR9	μg/l	5.10	51.0		72	30-130	24	20
42.0	QR9	μg/l	5.10	51.0		82	40-140	22	20
40.7	QR9	μg/l	5.10	51.0		80	40-140	24	20
33.9		μg/l	5.10	51.0		66	40-140	13	20
30.7	QR9	μg/l	5.10	51.0		60	40-140	24	20
28.2	QR9	μg/l	5.10	51.0		55	40-140	27	20
36.0	QR9	μg/l	5.10	51.0		71	40-140	21	20
19.8		μg/l	5.10	51.0		39	40-140	27	20
28.3	QR9	μg/l	5.10	51.0		55	40-140	32	20
20.3	QR9	μg/l	5.10	51.0		40	40-140	24	20
35.0		μg/l	5.10	51.0		69	40-140	13	20
25.8	QR9	μg/l	5.10	51.0		51	40-140	24	20
27.9	QR9	μg/l	5.10	51.0		55	40-140	23	20
23.4		μg/l	5.10	51.0		46	30-130	17	20
23.1		μg/l	10.2	51.0		45	30-130	19	20
21.0	QR9	μg/l	5.10	51.0		41	40-140	27	20
32.6	QR9	μg/l	5.10	51.0		64	40-140	25	20
45.2		μg/l	5.10	51.0		89	40-140	9	20
49.8	QR9		5.10	51.0		98	40-140	24	20
30.3	QR9		5.10	51.0		59	40-140	24	20
26.1	QR9		5.10	51.0		51	30-130	24	20
18.8			20.4	51.0		37	30-130	20	20
17.1				51.0		34	40-140	9	20
	QR9			51.0		52	40-140	22	20
	QR9								20
	QR9								20
									20
									20
									20
									20
	OR9								20
									20
									20
									20
									20
									20
	QNS		J. 1U					20	20
33.3		μg/l		51.0		65	30-130		
_	42.0 40.7 33.9 30.7 28.2 36.0 19.8 28.3 20.3 35.0 25.8 27.9 23.4 23.1 21.0 32.6 45.2 49.8 30.3	36.6 QR9 42.0 QR9 40.7 QR9 33.9 30.7 QR9 28.2 QR9 36.0 QR9 19.8 28.3 QR9 20.3 QR9 35.0 25.8 QR9 27.9 QR9 23.4 23.1 21.0 QR9 32.6 QR9 45.2 49.8 QR9 30.3 QR9 30.3 QR9 30.3 QR9 26.1 QR9 18.8 17.1 26.5 QR9 33.4 QR9 29.4 QR9 29.4 QR9 29.6 QR9 11.8 30.9 14.5 23.1 QR9 23.7 QR9 31.1 QR9 23.7 QR9 31.1 QR9 23.7 QR9 31.1 QR9 24.4 15.7 25.1 11.7	36.6 QR9 µg/l 42.0 QR9 µg/l 40.7 QR9 µg/l 33.9 µg/l 30.7 QR9 µg/l 28.2 QR9 µg/l 19.8 µg/l 28.3 QR9 µg/l 20.3 QR9 µg/l 25.8 QR9 µg/l 27.9 QR9 µg/l 23.4 µg/l 21.0 QR9 µg/l 23.1 µg/l 21.0 QR9 µg/l 32.6 QR9 µg/l 45.2 µg/l 45.2 µg/l 49.8 QR9 µg/l 30.3 QR9 µg/l 11.8 µg/l 26.1 QR9 µg/l 26.1 QR9 µg/l 26.1 QR9 µg/l 17.1 µg/l 26.5 QR9 µg/l 33.4 QR9 µg/l 29.4 QR9 µg/l 29.6 QR9 µg/l 29.6 QR9 µg/l 21.8 µg/l 22.7 QR9 µg/l 22.7 QR9 µg/l 24.4 µg/l 25.1 QR9 µg/l 22.7 QR9 µg/l 24.4 µg/l 25.1 QR9 µg/l 22.7 QR9 µg/l 24.4 µg/l 25.1 QR9 µg/l 24.4 µg/l 25.1 QR9 µg/l 24.4 µg/l 25.1 µg/l	36.6 QR9 µg/l 5.10 42.0 QR9 µg/l 5.10 40.7 QR9 µg/l 5.10 33.9 µg/l 5.10 30.7 QR9 µg/l 5.10 28.2 QR9 µg/l 5.10 28.3 QR9 µg/l 5.10 28.3 QR9 µg/l 5.10 20.3 QR9 µg/l 5.10 25.8 QR9 µg/l 5.10 27.9 QR9 µg/l 5.10 23.4 µg/l 5.10 23.1 µg/l 5.10 32.6 QR9 µg/l 5.10 49.8 QR9 µg/l 5.10 49.8 QR9 µg/l 5.10 49.8 QR9 µg/l 5.10 30.3 QR9 µg/l 5.10 21.0 QR9 µg/l 5.10 22.1 µg/l 5.10 23.1 µg/l 5.10 24.2 µg/l 5.10 25.1 QR9 µg/l 5.10 26.1 QR9 µg/l 5.10 27.9 QR9 µg/l 5.10 28.1 QR9 µg/l 5.10 29.4 QR9 µg/l 5.10 29.4 QR9 µg/l 5.10 29.4 QR9 µg/l 5.10 29.4 QR9 µg/l 5.10 21.8 µg/l 5.10 23.1 QR9 µg/l 5.10 23.1 QR9 µg/l 5.10 23.1 QR9 µg/l 5.10 24.4 QR9 µg/l 5.10 25.7 QR9 µg/l 5.10 26.1 QR9 µg/l 5.10 26.1 QR9 µg/l 5.10 27.9 QR9 µg/l 5.10 28.1 QR9 µg/l 5.10 28.4 QR9 µg/l 5.10 28.5 QR9 µg/l 5.10 28.6 QR9 µg/l 5.10 28.7 QR9 µg/l 5.10	Result Flag Units *RDL Level	Result Flag Units *RDL Level Result	Result Flag Units *RDL Level Result %REC Prepared: 29-Jan-18 An 36.6 QR9 µg/l 5.10 51.0 72 42.0 QR9 µg/l 5.10 51.0 82 40.7 QR9 µg/l 5.10 51.0 80 33.9 µg/l 5.10 51.0 66 30.7 QR9 µg/l 5.10 51.0 66 28.2 QR9 µg/l 5.10 51.0 55 36.0 QR9 µg/l 5.10 51.0 39 28.3 QR9 µg/l 5.10 51.0 39 28.3 QR9 µg/l 5.10 51.0 39 25.8 QR9 µg/l 5.10 51.0 40 35.0 µg/l 5.10 51.0 46 27.9 QR9 µg/l 5.10 51.0 45 27.9 QR9	Result Flag Units *RDL Level Result %REC Limits	Result Flag Units *RDL Level Result %REC Limits RPD

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 6010C										
atch 1801307 - SW846 3005A										
Blank (1801307-BLK1)					Pre	epared: 30-	Jan-18 An	alyzed: 31-Ja	n-18	
Iron	< 0.0150		mg/l	0.0150						
Zinc	< 0.0050		mg/l	0.0050						
Selenium	< 0.0150		mg/l	0.0150						
Antimony	< 0.0060		mg/l	0.0060						
Lead	< 0.0075		mg/l	0.0075						
Nickel	< 0.0050		mg/l	0.0050						
Chromium	< 0.0050		mg/l	0.0050						
Cadmium	< 0.0025		mg/l	0.0025						
Barium	< 0.0050		mg/l	0.0050						
Silver	< 0.0050		mg/l	0.0050						
Copper	< 0.0050		mg/l	0.0050						
Arsenic	< 0.0040		mg/l	0.0040						
LCS (1801307-BS1)					Pre	epared: 30-	Jan-18 An	alyzed: 31-Ja	n-18	
Iron	1.35		mg/l	0.0150	1.25		108	85-115		
Zinc	1.27		mg/l	0.0050	1.25		102	85-115		
Selenium	1.39		mg/l	0.0150	1.25		111	85-115		
Antimony	1.29		mg/l	0.0060	1.25		103	85-115		
Lead	1.29		mg/l	0.0075	1.25		103	85-115		
Nickel	1.26		mg/l	0.0050	1.25		101	85-115		
Chromium	1.24		mg/l	0.0050	1.25		99	85-115		
Cadmium	1.23		mg/l	0.0025	1.25		99	85-115		
Barium	1.36		mg/l	0.0050	1.25		109	85-115		
Arsenic	1.29		mg/l	0.0040	1.25		103	85-115		
Silver	1.16		mg/l	0.0050	1.25		93	85-115		
Copper	1.36		mg/l	0.0050	1.25		109	85-115		
LCS Dup (1801307-BSD1)					Pre	epared: 30-	Jan-18 An	alyzed: 31-Ja	n-18	
Iron	1.35		mg/l	0.0150	1.25		108	85-115	0.1	20
Cadmium	1.23		mg/l	0.0025	1.25		99	85-115	0.07	20
Zinc	1.27		mg/l	0.0050	1.25		102	85-115	0.04	20
Arsenic	1.28		mg/l	0.0040	1.25		103	85-115	0.5	20
Selenium	1.37		mg/l	0.0150	1.25		110	85-115	1	20
Antimony	1.29		mg/l	0.0060	1.25		103	85-115	0.3	20
Lead	1.28		mg/l	0.0075	1.25		103	85-115	0.2	20
Nickel	1.26		mg/l	0.0050	1.25		101	85-115	0.3	20
Copper	1.35		mg/l	0.0050	1.25		108	85-115	0.5	20
Chromium	1.24		mg/l	0.0050	1.25		99	85-115	0.04	20
Barium	1.36		mg/l	0.0050	1.25		109	85-115	0.07	20
Silver	1.16		mg/l	0.0050	1.25		93	85-115	0.1	20
Duplicate (1801307-DUP1)			Source: So	C43470-01	Pre	epared: 30-	Jan-18 An	alyzed: 31-Ja	an-18	
Iron	2460	R01, D	mg/l	1.50		2420			2	20
Antimony	< 0.600	R01, D	mg/l	0.600		BRL				20
Selenium	< 1.50	R01, D	mg/l	1.50		BRL				20
Cadmium	0.137	J,R01, D	mg/l	0.250		0.141			3	20
Silver	< 0.500	R01, D	mg/l	0.500		BRL				20
Arsenic	1.72	R01, D	mg/l	0.400		1.80			5	20
Zinc	23.8	R01, D	mg/l	0.500		23.7			0.4	20
Barium	10.3	R01, D	mg/l	0.500		10.0			3	20
Lead	21.9	R01, D	mg/l	0.750		22.0			0.5	20
Chromium	2.51	R01, D	mg/l	0.500		2.50			0.2	20
Copper	6.08	R01, D	mg/l	0.500		6.08			0	20

Total Metals by EPA 6000/7000 Series Methods - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
•										
W846 6010C										
atch 1801307 - SW846 3005A					_					
<u>Duplicate (1801307-DUP1)</u>		D04 D	Source: SO		Pre		Jan-18 An	alyzed: 31-Ja		
Nickel	1.80	R01, D	mg/l	0.500		1.78			8.0	20
Matrix Spike (1801307-MS1)			Source: SO					alyzed: 31-Ja	<u>an-18</u>	
Iron	2450	QM2, D	mg/l	1.50	2.50	2420	1040	75-125		
Cadmium	2.54	D	mg/l	0.250	2.50	0.141	96	75-125		
Lead	24.4	D	mg/l	0.750	2.50	22.0	98	75-125		
Nickel	4.26	D 73 D	mg/l	0.500	2.50	1.78	99	75-125		
Antimony	< 0.600	Z-2, D	mg/l	0.600	2.50	BRL	<1	75-125		
Zinc	26.6	D D	mg/l	0.500	2.50	23.7	115	75-125		
Conner	4.90 8.62	D	mg/l mg/l	0.500 0.500	2.50 2.50	2.50 6.08	96 101	75-125 75-125		
Copper Arsenic	8.62 4.28	D	mg/l	0.400	2.50	1.80	99	75-125 75-125		
Silver	4.26 2.27	D	mg/l	0.500	2.50	BRL	99 91	75-125 75-125		
Selenium	2.36	D	mg/l	1.50	2.50	BRL	94	75-125 75-125		
Barium	13.0	D	mg/l	0.500	2.50	10.0	117	75-125 75-125		
	13.0		Source: SO					alyzed: 31-Ja	an 10	
Matrix Spike Dup (1801307-MSD1) Iron	2430	QM2, D	mg/l	1.50	2.50	2420	300	75-125	0.8	20
Arsenic	4.04	D D	mg/l	0.400	2.50	1.80	90	75-125 75-125	6	20
Selenium	2.44	D	mg/l	1.50	2.50	BRL	98	75-125 75-125	4	20
Antimony	< 0.600	Z-2, D	mg/l	0.600	2.50	BRL	<1	75-125	7	20
Lead	24.4	D	mg/l	0.750	2.50	22.0	96	75-125	0.2	20
Nickel	4.14	D	mg/l	0.500	2.50	1.78	94	75-125	3	20
Copper	8.61	D	mg/l	0.500	2.50	6.08	101	75-125	0.1	20
Chromium	4.94	D	mg/l	0.500	2.50	2.50	97	75-125	0.7	20
Barium	13.1	D	mg/l	0.500	2.50	10.0	123	75-125	1	20
Zinc	26.8	D	mg/l	0.500	2.50	23.7	123	75-125	0.8	20
Silver	2.30	D	mg/l	0.500	2.50	BRL	92	75-125	1	20
Cadmium	2.51	D	mg/l	0.250	2.50	0.141	95	75-125	1	20
Post Spike (1801307-PS1)			Source: SO	C43470-01	Pre	epared: 30-	Jan-18 An	alyzed: 31-Ja	an-18	
Iron	2490	QM2, D	mg/l	1.50	2.50	2420	2760	80-120		
Cadmium	2.51	D	mg/l	0.250	2.50	0.141	95	80-120		
Copper	8.66	D	mg/l	0.500	2.50	6.08	103	80-120		
Nickel	4.19	D	mg/l	0.500	2.50	1.78	96	80-120		
Lead	24.4	D	mg/l	0.750	2.50	22.0	99	80-120		
Antimony	0.415	Z-2, D	mg/l	0.600	2.50	BRL	17	80-120		
Selenium	2.76	D	mg/l	1.50	2.50	BRL	111	80-120		
Chromium	4.96	D	mg/l	0.500	2.50	2.50	98	80-120		
Zinc	26.2	D	mg/l	0.500	2.50	23.7	98	80-120		
Barium	13.4	QM4X, D	mg/l	0.500	2.50	10.0	133	80-120		
Silver	2.30	D	mg/l	0.500	2.50	BRL	92	80-120		
Arsenic	4.29	D	mg/l	0.400	2.50	1.80	100	80-120		

Total Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 245.1/7470A										
Batch 1801218 - EPA200/SW7000 Series										
Blank (1801218-BLK1)					<u>Pre</u>	epared: 30-	Jan-18 Ar	nalyzed: 31-Ja	an-18	
Mercury	< 0.00020		mg/l	0.00020						
LCS (1801218-BS1)					<u>Pre</u>	epared: 30-	Jan-18 Ar	nalyzed: 31-Ja	an-18	
Mercury	0.00451		mg/l	0.00020	0.00500		90	85-115		
<u>Duplicate (1801218-DUP1)</u>			Source: S	C43470-01	<u>Pre</u>	epared: 30-	Jan-18 Ar	nalyzed: 31-Ja	an-18	
Mercury	0.0306	GS1, D	mg/l	0.00100		0.0299			2	20
Matrix Spike (1801218-MS1)			Source: S	C43470-01	<u>Pre</u>	epared: 30-	Jan-18 Ar	nalyzed: 31-Ja	an-18	
Mercury	0.0308	QM4X, D	mg/l	0.00100	0.00500	0.0299	17	80-120		
Matrix Spike Dup (1801218-MSD1)			Source: S	C43470-01	<u>Pre</u>	epared: 30-	Jan-18 Ar	nalyzed: 31-Ja	an-18	
Mercury	0.0290	QM4X, D	mg/l	0.00100	0.00500	0.0299	-19	80-120	6	20

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 300.0										
Batch 1801253 - General Preparation										
Blank (1801253-BLK1)					Pro	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
Chloride	< 1.00		mg/l	1.00						
LCS (1801253-BS1)					Pro	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
Chloride	19.2		mg/l	1.00	20.0		96	90-110		
Reference (1801253-SRM1)					Pro	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
Chloride	24.0		mg/l	1.00	25.0		96	90-110		
<u>SM18-22 2540C</u>										
Batch 1801186 - General Preparation										
Blank (1801186-BLK1)					Pr	epared: 27-	Jan-18 An	alyzed: 30-Ja	an-18	
Total Dissolved Solids	< 5		mg/l	5						
LCS (1801186-BS1)					Pre	epared: 27-	Jan-18 An	alyzed: 30-Ja	an-18	
Total Dissolved Solids	1020		mg/l	10	1000		102	90-110		
<u>Duplicate (1801186-DUP1)</u>			Source: SC	243470-01	Pre	epared: 27-	Jan-18 An	alyzed: 30-Ja	an-18	
Total Dissolved Solids	1190		mg/l	5		1190			0.3	5
SM2540D (11)										
Batch 1801187 - General Preparation										
Blank (1801187-BLK1)					Pro	epared: 27-	Jan-18 An	alyzed: 30-Ja	an-18	
Total Suspended Solids	< 0.5		mg/l	0.5						
LCS (1801187-BS1)					Pro	epared: 27-	Jan-18 An	alyzed: 30-Ja	an-18	
Total Suspended Solids	94.0		mg/l	10.0	100		94	90-110		

Subcontracted Analyses - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
E350.1										
Batch 418021A - 418021										
BLK (BZ81139-BLK)					Pre	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
Ammonia as Nitrogen	< 0.05		mg/l	0.05				-		
<u>DUP (BZ81139-DUP)</u>			Source: BZ	<u> 281139</u>	Pre	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
Ammonia as Nitrogen	0.27		mg/l	0.05				-	7.1	20
LCS (BZ81139-LCS)					Pre	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
Ammonia as Nitrogen	3.500		mg/l	0.05	3.74		93.6	90-110		20
MS (BZ81139-MS)			Source: BZ	281139	Pre	epared: 29-	Jan-18 An	alyzed: 30-Ja	an-18	
Ammonia as Nitrogen	2.280		mg/l	0.05	2		99.7	90-110	·	20

Notes and Definitions

BsL Data for this analyte may be biased low based on QC spike recoveries. D Data reported from a dilution GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample. QM2 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample. QM4X The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits. QR9 RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery. R01 The Reporting Limit has been raised to account for matrix interference. Z-2 Due to dilution factor, recovery is unmeasurable dry Sample results reported on a dry weight basis

Not Reported NR

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

HTA In accordance with 40 CFR 136.3, preserve samples within 15 minutes of collection. Samples not preserved in the field within 15 minutes of collection are not within method requirements.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

Surrogate: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Continuing Calibration Verification: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

31-Jan-18 17:08 Page 36 of 36

	eurofins
-	Culoillis

CHAIN OF CUSTODY RECORD

, Special Hand	lling	;:	
atandard TAT - 7 to 10 busi	iness	days /	
Rush TAT - Date Needed:	1	130/18	

12110

	iuiii Allaiyticai			Page		of	_	-								Min. 2	24-hr no	tifica	o laboratory approval ation needed for rushe after 30 days unless of	es
REPORTO: CMG ENIRONIUS	WAL INC.	Invoice To	o:	CON	4F	(Project		20'		_			
STURNINGE MA	015/11		-								'		Site Na		41					
							118						Locatio	n:	NUM	441	SRI	06	F -	State:
Telephone #: 774-24 - 0501 Project Mgr: 1. (1.05 ML)		P.O No	.:			Q	uote #:						Sample				-			
F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 7=CH3OH 8=NaHSO ₄ 9=Deionized Water	3=H ₂ SO ₄ 4=HNO ₃ 10=H ₃ PO ₄	5=NaOH 6	=Ascorbi		i				,		Li	st Pres	ervati	ve Cod	e belov	w:				porting Notes: larges may appply
DW=Drinking Water GW=Groundwater	SW=Surface Water	ww=Waste Wat	ter			Co	ontain	ers					Ana	lysis	2				MA DEP MCP CAM	Report? Yes No
O=Oil SO=Soil SL=Sludge A=Inde	loor/Ambient Air SG=	Soil Gas								,	(0)				3		Y 3	pa	CT DPH RCP Report? Standard	7 ☐ Yes ☐ No
	=	X3=			slis	lass	SS		3		8270		1	2	7	· 4	100	rinat	bqa*	
					4 Via	oer G	ır Gla	3/	5 E			,			M	Ž	RI	chilo	_ASP A* _N3 Reduced*	☐ASP B*
G= Grab	C=Comp		Type	Matrix	# of VOA Vials	of Amber Glass	of Clear Glass	1	ANT	8560	SVOC	3	S	RCRA	200	ANMIONIA	CHLOR	Check if chlorinated	☐ Tier II*	☐∏er IV*
Lab ID: Sample ID:	Date:	Time:		7	_	\\\^{2}\cap \	*	/Iô	2				1		1	Q	0	Ch		porting standards:
434700W2 GW	1/24/1	14:45	C	5W	3/	Ί,	$\perp \! \! /$	3/	X	Х	X	X	X	×	X	X	X			**
					4	\mathcal{L}		/											10	*1
									- 35			3								
							- 24													
							- 1	E									1			
							0													
TO CONTRACT CONTRACT	,		\Box							\dashv		\neg	\neg							
			T		\neg		-			\dashv	\neg	\dashv			\dashv					,
			\Box		\neg			8		_			1000		\dashv					
A Relinquished by:	Recei	ved by:	Die Park	250	Date:	Shirt I	N. O.	Time:	(C.20)	Temp	°C	\Box	DD for	mat:						
Data Dac 9213 Ales				NAME OF STREET	ASSESSMENT OF THE PARTY OF THE			Observed				Distance CAN CAN								
				1/26						J. Corection F						יית			i citi u	214
										0							£.			
									6	ocrected	7 1	Condition	on upor	n recen	ot: C	Custody	Seals:	T	Present In	tact 🔲 Broken
1									1	RIPS		☐ An	bient	☐ Ice	d A	Refri	genited		DI VOA Frozen	Soil Jar Frozen
	1									THE RESERVE AND ADDRESS.	THE R. P. LEWIS CO., LANSING	PERSONAL PROPERTY.	N. Company of the last	STREET, SQUARE, SQUARE,	CONTRACTOR OF THE PARTY OF	CONTRACTOR D	The Real Property lies	THE RESERVE	THE RESERVE THE PROPERTY OF THE PARTY OF THE	CONTRACTOR OF STREET PARTY OF STREET

Batch Summary

1801186 1801307-BSD1 1801307-DUP1 **General Chemistry Parameters** 1801307-MS1 1801186-BLK1 1801307-MSD1 1801186-BS1 1801307-PS1 1801186-DUP1 SC43470-01 (GW) SC43470-01 (GW) 418021A **1801187** Subcontracted Analyses **General Chemistry Parameters** BZ81139-BLK 1801187-BLK1 BZ81139-DUP 1801187-BS1 BZ81139-LCS SC43470-01 (GW) BZ81139-MS SC43470-01 (GW)

1801200

Semivolatile Organic Compounds by GCMS

1801200-BLK1 1801200-BS1 1801200-BSD1 SC43470-01 (GW)

1801218

Total Metals by EPA 200 Series Methods

1801218-BLK1 1801218-BS1 1801218-DUP1 1801218-MS1 1801218-MSD1 SC43470-01 (GW)

1801230

Volatile Organic Compounds

1801230-BLK1 1801230-BS1 1801230-BSD1 SC43470-01 (GW)

1801233

Total Metals by EPA 200/6000 Series Methods

SC43470-01 (GW)

1801253

General Chemistry Parameters

1801253-BLK1 1801253-BS1 1801253-SRM1 SC43470-01 (GW)

1801307

Total Metals by EPA 6000/7000 Series Methods

1801307-BLK1 1801307-BS1

S815859

Semivolatile Organic Compounds by GCMS

S815859-CAL1 S815859-CAL2 S815859-CAL3 S815859-CAL4 S815859-CAL5 S815859-CAL6 S815859-CAL7 S815859-CAL8 S815859-CAL9 S815859-CALA S815859-ICV1 S815859-LCV1 S815859-LCV2 S815859-TUN1

S816062

Volatile Organic Compounds

S816062-CAL1 S816062-CAL2 S816062-CAL3 S816062-CAL4 S816062-CAL5 S816062-CAL6 S816062-CAL7 S816062-CAL8 S816062-CAL9 S816062-ICV1 S816062-LCV1 S816062-LCV2 S816062-TUN1

S816296

<u>Volatile Organic Compounds</u> S816296-CCV1

S816296-TUN1

S816340

Semivolatile Organic Compounds by GCMS

S816340-CCV1

S816340-TUN1

V	Final Report
	Revised Report

Report Date: 13-Feb-18 15:53

Laboratory Report SC43702

CMG Environmental, Inc. 67 Hall Road Sturbridge, MA 01566 Attn: Jerry Clark

Project: 4+16 N. Main - Northbridge, MA

Project #: 2017-235

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Jawn & Woscik

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 20 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC43702

Project: 4+16 N. Main - Northbridge, MA

Project Number: 2017-235

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC43702-014NMGWGround Water02-Feb-18 10:4005-Feb-18 16:40

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 625

Calibration:

1801047

Analyte quantified by quadratic equation type calibration.

- 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 4,6-Dinitro-2-methylphenol
- 4-Nitrophenol
- Benzidine

Pentachlorophenol

This affected the following samples:

1801761-BLK1

1801761-BS1

1801761-BSD1

4NMGW

S815859-ICV1

S816687-CCV1

S816732-CCV1

Laboratory Control Samples:

1801761 BS/BSD

Fluorene percent recoveries (58/64) are outside individual acceptance criteria (59-121), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

4NMGW

1801761 BSD

Benzidine RPD 44% (20%) is outside individual acceptance criteria.

1801761-BSD1

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

Benzidine

Samples:

S816687-CCV1

EPA 625

Samples:

S816687-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

```
3,3'-Dichlorobenzidine (22.5%)
Bis(2-chloroisopropyl)ether (27.5%)
Butyl benzyl phthalate (32.1%)
Di-n-octyl phthalate (42.1%)
```

N-Nitrosodimethylamine (24.8%)

Pyrene (27.3%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

```
2,4-Dinitrophenol (31.8%)
4,6-Dinitro-2-methylphenol (30.6%)
```

This affected the following samples:

```
1801761-BLK1
1801761-BS1
1801761-BSD1
```

S816732-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

```
Bis(2-chloroisopropyl)ether (29.0%)
Bis(2-ethylhexyl)phthalate (22.9%)
Di-n-octyl phthalate (21.3%)
Nitrobenzene (20.2%)
N-Nitrosodimethylamine (38.9%)
```

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

```
2,4-Dinitrophenol (22.7%)
4,6-Dinitro-2-methylphenol (21.5%)
```

This affected the following samples:

4NMGW

Mod. EPA 625

Samples:

S816728-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

```
Naphthalene (30.5%)
```

This affected the following samples:

4NMGW

Sample Acceptance Check Form

CMG Environmental, Inc.

Client:

Project	t:	4+16 N. Main - Northbridge, MA / 2017-235			
Work (Order:	SC43702			
Sample	e(s) received on:	2/5/2018			
The fo	llowing outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
			<u>Yes</u>	<u>No</u>	<u>N/A</u>
	Were custody sea	als present?		\checkmark	
	Were custody sea			✓	
	Were samples re	\checkmark			
	Were samples re	frigerated upon transfer to laboratory representative?	\checkmark		
	Were sample cor	ntainers received intact?	\checkmark		
		operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\overline{V}		
	Were samples ac	companied by a Chain of Custody document?	\checkmark		
	include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
	Did sample conta	ainer labels agree with Chain of Custody document?	\checkmark		
	Were samples re	ceived within method-specific holding times?	\checkmark		

Summary of Hits

Lab ID: SC43702-01

Client ID: 4NMGW Result **Parameter** Flag **Reporting Limit** Units **Analytical Method** 0.220 1-Methylnaphthalene 0.050 $\mu g/l$ Mod. EPA 625 Acenaphthene 2.90 0.050 Mod. EPA 625 $\mu g/l$ Acenaphthylene 0.206 0.050 $\mu g/l$ Mod. EPA 625 Anthracene 0.491 0.050 $\mu g/l$ Mod. EPA 625 Benzo (a) anthracene 0.707 0.050 Mod. EPA 625 $\mu g/l$ 0.502 0.050 Mod. EPA 625 Benzo (a) pyrene $\mu g/l$ 0.050 Benzo (b) fluoranthene 0.447 $\mu g/l$ Mod. EPA 625 Benzo (g,h,i) perylene 0.247 0.050 $\mu g/l$ Mod. EPA 625 Benzo (k) fluoranthene 0.412 0.050 $\mu g/l$ Mod. EPA 625 Chrysene 0.692 0.050 $\mu g/l$ Mod. EPA 625 Dibenzo (a,h) anthracene 0.086 0.050 $\mu g/l$ Mod. EPA 625 Fluoranthene 3.31 0.050 $\mu g/l$ Mod. EPA 625 4.02 0.050 Mod. EPA 625 Fluorene $\mu g/l$ Indeno (1,2,3-cd) pyrene 0.294 0.050 Mod. EPA 625 $\mu g/l$ 0.050 Phenanthrene 3.89 $\mu g/l$ Mod. EPA 625 Pyrene 2.38 0.050 $\mu g/l$ Mod. EPA 625 60.3 0.010 SW6010C Iron mg/lZinc 0.385 0.002 SW6010C mg/l0.0168 Arsenic 0.0050 mg/l SW6020B Chromium 0.044 0.010 SW6020B mg/l0.058 0.025 SW6020B Copper mg/lLead 0.586 0.0040 mg/lSW6020B Nickel 0.0367 0.0050 mg/l SW6020B Other Oil Calculated as 0.2 SW846 8100Mod. mg/l

0.2

0.2

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

3.6

3.6

Total Petroleum Hydrocarbons

Unidentified

SW846 8100Mod.

SW846 8100Mod.

mg/l

mg/l

Sample Identification 4NMGW SC43702-01				<u>Client P</u> 2017	<u>roject #</u> -235		<u>Matrix</u> Ground Wa		ection Date 2-Feb-18 10		Received 05-Feb-18		
CAS No.	Analyte(s)	Result Fl	ag l	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
PAHs by	SIM												
83-32-9	Acenaphthene	2.90		μg/l	0.050	0.030	1	Mod. EPA 625	07-Feb-18	12-Feb-18	MSL	1801761	
208-96-8	Acenaphthylene	0.206		μg/l	0.050	0.032	1	"	"	"	"	"	
90-12-0	1-Methylnaphthalene	0.220		μg/l	0.050	0.024	1	"	"	"	"	"	
120-12-7	Anthracene	0.491		μg/l	0.050	0.026	1	"	"	"	"	"	
56-55-3	Benzo (a) anthracene	0.707		μg/l	0.050	0.024	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	0.502		μg/l	0.050	0.036	1	"	"	"	"	"	
205-99-2	Benzo (b) fluoranthene	0.447		μg/l	0.050	0.035	1	"	"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	0.247		μg/l	0.050	0.027	1	"	"	"	"	"	
207-08-9	Benzo (k) fluoranthene	0.412		μg/l	0.050	0.028	1	"	"	n n	"	"	
218-01-9	Chrysene	0.692		μg/l	0.050	0.023	1	"	"	n n	"	"	
53-70-3	Dibenzo (a,h) anthracene	0.086		μg/l	0.050	0.026	1	"	"	n n	"	"	
206-44-0	Fluoranthene	3.31		μg/l	0.050	0.020	1	"	"	n n	"	"	
86-73-7	Fluorene	4.02		μg/l	0.050	0.030	1	"	"	"	"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	0.294		μg/l	0.050	0.022	1	"	"	"	"	"	
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.023	1	"	"	"	"	"	
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"	"	
85-01-8	Phenanthrene	3.89		μg/l	0.050	0.026	1	"	"	"	"	"	
129-00-0	Pyrene	2.38		μg/l	0.050	0.022	1	"	"	"	"	"	
Surrogate	recoveries:												
-	Denzo (e) pyrene-d12	54			30-13	0 %			"	"	"		
	tile Organic Compounds												
83-32-9	Acenaphthene	< 4.72		μg/l	4.72	0.652	1	EPA 625	"	12-Feb-18	MSL		Х
208-96-8	Acenaphthylene	< 4.72		μg/l	4.72	0.644	1	"	"	"	"	"	Х
120-12-7	Anthracene	< 4.72		μg/l	4.72	0.574	1		"	"	"	"	Х
92-87-5	Benzidine	< 9.43		μg/l	9.43	1.08	1		"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 4.72		μg/l	4.72	0.506	1		"	"	"		Х
50-32-8	Benzo (a) pyrene	< 4.72		μg/l	4.72	0.530	1	"	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	< 4.72		μg/l	4.72	0.412	1				"		Х
191-24-2	Benzo (g,h,i) perylene	< 4.72		μg/l	4.72	0.500	1				"		Х
207-08-9	Benzo (k) fluoranthene	< 4.72		μg/l	4.72	0.453	1				"		Х
111-91-1	Bis(2-chloroethoxy)metha	< 4.72		μg/l	4.72	0.628	1	"	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	< 4.72		μg/l	4.72	0.692	1		"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ethe	< 4.72		μg/l	4.72	0.734	1	"	"	"	"	"	X
117-81-7	Bis(2-ethylhexyl)phthalate	< 4.72		μg/l	4.72	0.602	1	"	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	< 4.72		μg/l	4.72	0.568	1	"	п	u	"	"	X
85-68-7	Butyl benzyl phthalate	< 4.72		μg/l	4.72	0.413	1	u u	"	"	"	"	Χ
59-50-7	4-Chloro-3-methylphenol	< 4.72		μg/l	4.72	0.473	1	· ·	"	"	"	"	Х
91-58-7	2-Chloronaphthalene	< 4.72		μg/l	4.72	0.557	1	"	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 4.72		μg/l	4.72	0.706	1	"	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 4.72		μg/l	4.72	0.569	1	п	"	"	"	"	Х
218-01-9	Chrysene	< 4.72		μg/l	4.72	0.502	1	"	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 4.72		μg/l	4.72	0.425	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 4.72		μg/l	4.72	0.530	1	"	"	"		"	Х

0.0972

1

EPA 608

10-Feb-18 12-Feb-18

AM

1801762 X

30-130 %

15-110 %

0.187

μg/l

1718-51-0

118-79-6

12674-11-2

Terphenyl-dl4

Aroclor-1016

Polychlorinated Biphenyls

2,4,6-Tribromophenol

Semivolatile Organic Compounds by GC

62

50

< 0.187

-	<u>lentification</u>			Client	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
4NMGW					7-235		Ground Wa		2-Feb-18 10			Feb-18	
SC43702-													
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Ce
emivolati	ile Organic Compounds by C	GC											
olychlori	nated Biphenyls												
1104-28-2	Aroclor-1221	< 0.187		μg/l	0.187	0.107	1	EPA 608	10-Feb-18	12-Feb-18	AM	1801762	: :
1141-16-5	Aroclor-1232	< 0.187		μg/l	0.187	0.104	1	"	"	"	"	"	
3469-21-9	Aroclor-1242	< 0.187		μg/l	0.187	0.100	1	"	"	"	"	"	2
2672-29-6	Aroclor-1248	< 0.187		μg/l	0.187	0.127	1		"	"	"	"	
1097-69-1	Aroclor-1254	< 0.187		μg/l	0.187	0.108	1	"	"	"	"	"	2
1096-82-5	Aroclor-1260	< 0.187		μg/l	0.187	0.0795	1	·	"	"	"	"	2
7324-23-5	Aroclor-1262	< 0.187		μg/l	0.187	0.0837	1	"	"	"	"	"	
1100-14-4	Aroclor-1268	< 0.187		μg/l	0.187	0.0855	1	·	"	"	"	"	
urrogate i	recoveries:												
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		"	"	"	"	"	
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	"	"	"	"	
051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %			"	"	"		
051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		"	"	"	"	"	
xtractab	le Petroleum Hydrocarbons												
	nting by GC												
	by method SW846 3510C			_									
006-61-9	Gasoline	< 0.2		mg/l	0.2	0.2	1	SW846 8100Mod.	05-Feb-18	06-Feb-18	DJS	1801596	
3476-30-2	Fuel Oil #2	< 0.2		mg/l	0.2	0.2	1	"	"	"	"	"	
3476-31-3	Fuel Oil #4	< 0.2		mg/l	0.2	0.2	1	"	"	"	"	"	
3553-00-4	Fuel Oil #6	< 0.2		mg/l	0.2	0.2	1		"	"	"	"	
109800000	Motor Oil	< 0.2		mg/l	0.2	0.2	1		"	"	"	"	
032-32-4	Ligroin	< 0.2		mg/l	0.2	0.2	1		"	"	"	"	
00100000	Aviation Fuel	< 0.2		mg/l	0.2	0.2	1		"	"	"	"	
	Hydraulic Oil	< 0.2		mg/l	0.2	0.2	1		"	"	"	"	
	Dielectric Fluid	< 0.2		mg/l	0.2	0.2	1	"	"	"	"	"	
	Unidentified	3.6		mg/l	0.2	0.2	1	"	"	"	"	"	
	Other Oil	Calculated as		mg/l	0.2	0.2	1	"	"	"	"	"	
	Total Petroleum Hydrocarbons	3.6		mg/l	0.2	0.2	1	"	"	"	u	"	
Surrogate i	recoveries:												
386-33-2	1-Chlorooctadecane	120			40-14	10 %			"	"	"		
General C	hemistry Parameters												
7-12-5	Cyanide (total)	< 0.00500		mg/l	0.00500	0.00474	1	EPA 335.4 / SW846 9012B	06-Feb-18	06-Feb-18	RLT	1801712	>
ubcontra	cted Analyses												
nalysis pe	erformed by Phoenix Environ	nental Labs, Inc. *	- MACTO	007									
440-36-0	Antimony	< 0.0050		mg/l	0.0050	0.0050	5	200.8-5.4	06-Feb-18	07-Feb-18 13:55	M-CT007	'418964A	
	acted Analyses by method 418943-									10.00			
	erformed by Phoenix Environs	nontal Lahe Inc *	- MACTO	007									
1 <i>naiysis pe</i> 439-89-6	erformea by Phoenix Environi Iron	60.3	- MACI	mg/l	0.010	0.010	1	SW6010C		07-Feb-18	M_CTOO7	7.4180/3^	
.55 55-0	ii Oli	30.3		mg/I	0.010	0.010	1	34400100		00:46	01007	TIOOTOM	
440-66-6	Zinc	0.385		mg/l	0.002	0.002	1	m .	"	"		"	

Sample Id 4NMGW SC43702				<u>Client Project #</u> 2017-235		<u>Matrix</u> Ground Wa		Collection Date/Time tter 02-Feb-18 10:40			Received 05-Feb-18		
CAS No.	Analyte(s)	Result	Flag Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Subcontra	acted Analyses												
Subcontra	acted Analyses												
Prepared	by method 418964	<u>l-</u>											
Analysis pe	erformed by Phoenix	Environmental Labs, Inc. *	* - MACT007										
7440-38-2	Arsenic	0.0168	mg/l	0.0050	0.0050	5	SW6020B	06-Feb-18	07-Feb-18 13:55	M-CT007	418964E	}	
7440-43-9	Cadmium	< 0.0010	mg/l	0.0010	0.0010	5	"	"		"	"		
7440-47-3	Chromium	0.044	mg/l	0.010	0.010	5	"	"	"	"	"		
7440-50-8	Copper	0.058	mg/l	0.025	0.025	5	"	"	"	"	"		
7782-49-2	Selenium	< 0.010	mg/l	0.010	0.010	5	"	"	"	"	"		
7439-92-1	Lead	0.586	mg/l	0.0040	0.0040	10	"	"	07-Feb-18 15:24	n .	"		
7440-02-0	Nickel	0.0367	mg/l	0.0050	0.0050	10	"	"	"	"	"		
7440-22-4	Silver	< 0.0020	mg/l	0.0020	0.0020	10	"	"	"	"	"		
Prepared	by method 419000	<u>)-</u>											
Analysis pe	erformed by Phoenix	Environmental Labs, Inc. *	- MACT007										
7439-97-6	Mercury	< 0.0002	mg/l	0.0002	0.0002	1	SW7470A	07-Feb-18	07-Feb-18 11:56	M-CT007	419000A		

13-Feb-18 15:53 Page 10 of 20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
PA 625										
atch 1801761 - SW846 3510C										
Blank (1801761-BLK1)					Pre	epared: 07-	Feb-18 An	alyzed: 08-F	eb-18	
Acenaphthene	< 5.10		μg/l	5.10					<u></u>	
Acenaphthylene	< 5.10		μg/l	5.10						
Anthracene	< 5.10		μg/l	5.10						
Benzidine	< 10.2		μg/l	10.2						
Benzo (a) anthracene	< 5.10		μg/l	5.10						
Benzo (a) pyrene	< 5.10		μg/l	5.10						
Benzo (b) fluoranthene	< 5.10		μg/l	5.10						
Benzo (g,h,i) perylene	< 5.10		μg/l	5.10						
Benzo (k) fluoranthene	< 5.10		μg/l	5.10						
Bis(2-chloroethoxy)methane	< 5.10		μg/l	5.10						
Bis(2-chloroethyl)ether	< 5.10		μg/l	5.10						
Bis(2-chloroisopropyl)ether	< 5.10		μg/l	5.10						
Bis(2-ethylhexyl)phthalate	< 5.10		μg/l	5.10						
4-Bromophenyl phenyl ether	< 5.10		μg/l	5.10						
Butyl benzyl phthalate	< 5.10		μg/l	5.10						
4-Chloro-3-methylphenol	< 5.10		μg/l	5.10						
2-Chloronaphthalene	< 5.10		μg/l	5.10						
2-Chlorophenol	< 5.10		μg/l	5.10						
4-Chlorophenyl phenyl ether	< 5.10		μg/l	5.10						
Chrysene	< 5.10		μg/l	5.10						
Dibenzo (a,h) anthracene	< 5.10		μg/l	5.10						
1,2-Dichlorobenzene	< 5.10		μg/l	5.10						
1,3-Dichlorobenzene	< 5.10		μg/l	5.10						
1,4-Dichlorobenzene	< 5.10		μg/l	5.10						
3,3´-Dichlorobenzidine	< 5.10		μg/l	5.10						
2,4-Dichlorophenol	< 5.10		μg/l	5.10						
Diethyl phthalate	< 5.10		μg/l	5.10						
Dimethyl phthalate	< 5.10		μg/l	5.10						
2,4-Dimethylphenol	< 5.10		μg/l	5.10						
Di-n-butyl phthalate	< 5.10		μg/l	5.10						
4,6-Dinitro-2-methylphenol	< 5.10		μg/l	5.10						
2,4-Dinitrophenol	< 5.10		μg/l	5.10						
2,4-Dinitrotoluene	< 5.10		μg/l	5.10						
2,6-Dinitrotoluene	< 5.10		μg/l	5.10						
Di-n-octyl phthalate	< 5.10		μg/l	5.10						
Fluoranthene	< 5.10		μg/l	5.10						
Fluorene	< 5.10		μg/l	5.10						
Hexachlorobenzene	< 5.10		μg/l	5.10						
Hexachlorobutadiene	< 5.10		μg/l	5.10						
Hexachlorocyclopentadiene	< 5.10		μg/l	5.10						
Hexachloroethane	< 5.10		μg/l	5.10						
Indeno (1,2,3-cd) pyrene	< 5.10		μg/l	5.10						
Isophorone	< 5.10		μg/l	5.10						
Naphthalene	< 5.10		μg/l	5.10						
Nitrobenzene	< 5.10		μg/l	5.10						
2-Nitrophenol	< 5.10		μg/l	5.10						
4-Nitrophenol	< 5.10		μg/l	5.10						
N-Nitrosodimethylamine	< 5.10		μg/l	5.10						
N-Nitrosodi-n-propylamine	< 5.10		μg/l	5.10						
N-Nitrosodiphenylamine	< 5.10		μg/l	5.10						

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
CPA 625										
Batch 1801761 - SW846 3510C										
Blank (1801761-BLK1)					Pre	enared: 07-	Feh-18 An	alyzed: 08-F	eh-18	
Pentachlorophenol	< 5.10		μg/l	5.10		<i>.</i>		,	00 10	
Phenanthrene	< 5.10		μg/l	5.10						
Phenol	< 5.10		μg/l	5.10						
Pyrene	< 5.10		μg/l	5.10						
1,2,4-Trichlorobenzene	< 5.10		μg/l	5.10						
2,4,6-Trichlorophenol	< 5.10		μg/l	5.10						
·								/		
Surrogate: 2-Fluorobiphenyl	24.0		μg/l		51.0		47	30-130		
Surrogate: 2-Fluorophenol	18.5		μg/l		51.0		36	15-110		
Surrogate: Nitrobenzene-d5	30.0		μg/l		51.0		59	30-130		
Surrogate: Phenol-d5	13.2		μg/l		51.0		26	15-110		
Surrogate: Terphenyl-dl4	33.4		μg/l		51.0		66	30-130		
Surrogate: 2,4,6-Tribromophenol	31.6		μg/l		51.0		62	15-110		
LCS (1801761-BS1)						epared: 07-		alyzed: 08-F	eb-18	
Acenaphthene	30.9		μg/l	5.10	51.0		61	47-145		
Acenaphthylene	30.7		μg/l	5.10	51.0		60	33-145		
Anthracene	32.5		μg/l	5.10	51.0		64	27-133		
Benzidine	24.8		μg/l	10.2	51.0		49	40-140		
Benzo (a) anthracene	34.0		μg/l	5.10	51.0		67	33-143		
Benzo (a) pyrene	36.9		μg/l	5.10	51.0		72	17-163		
Benzo (b) fluoranthene	41.2		μg/l	5.10	51.0		81	24-159		
Benzo (g,h,i) perylene	35.5		μg/l	5.10	51.0		70	1-219		
Benzo (k) fluoranthene	33.2		μg/l	5.10	51.0		65	11-162		
Bis(2-chloroethoxy)methane	25.9		μg/l	5.10	51.0		51	33-184		
Bis(2-chloroethyl)ether	27.9		μg/l	5.10	51.0		55	12-158		
Bis(2-chloroisopropyl)ether	31.7		μg/l	5.10	51.0		62	36-166		
Bis(2-ethylhexyl)phthalate	37.5		μg/l	5.10	51.0		74	8-158		
4-Bromophenyl phenyl ether	28.7		μg/l	5.10	51.0		56	53-127		
Butyl benzyl phthalate	36.0		μg/l	5.10	51.0		71	1-152		
4-Chloro-3-methylphenol	32.2		μg/l	5.10	51.0		63	22-147		
2-Chloronaphthalene	35.1		μg/l	5.10	51.0		69	60-118		
2-Chlorophenol	28.8		μg/l	5.10	51.0		57	23-134		
4-Chlorophenyl phenyl ether	28.8		μg/l	5.10	51.0		56	25-158		
Chrysene	32.2		μg/l	5.10	51.0		63	17-168		
Dibenzo (a,h) anthracene	37.2		μg/l	5.10	51.0		73	1-227		
1,2-Dichlorobenzene	32.7		μg/l	5.10	51.0		64	32-129		
1,3-Dichlorobenzene	31.2		μg/l	5.10	51.0		61	1-172		
1,4-Dichlorobenzene	32.0		μg/l	5.10	51.0		63	20-124		
3,3'-Dichlorobenzidine	47.3		μg/l	5.10	51.0		93	1-262		
2,4-Dichlorophenol	28.4		μg/l	5.10	51.0		56	39-135		
Diethyl phthalate	31.3		μg/l	5.10	51.0		61	1-114		
Dimethyl phthalate	28.7		μg/l	5.10	51.0		56	1-112		
2,4-Dimethylphenol	27.6		μg/l	5.10	51.0		54	32-119		
Di-n-butyl phthalate	32.7		μg/l	5.10	51.0		64	1-118		
4,6-Dinitro-2-methylphenol	41.2		μg/l	5.10	51.0		81	1-181		
2,4-Dinitrophenol	31.8		μg/l	5.10	51.0		62	1-191		
2,4-Dinitrotoluene	44.0		μg/l	5.10	51.0		86	39-139		
2,6-Dinitrotoluene	42.9		μg/l	5.10	51.0		84	50-158		
Di-n-octyl phthalate	41.2		μg/l	5.10	51.0		81	4-146		
Fluoranthene	31.3		μg/l	5.10	51.0		61	26-137		
Fluorene	29.6	QC2	μg/l	5.10	51.0		58	59-121		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 625										
Batch 1801761 - SW846 3510C										
LCS (1801761-BS1)					Pre	epared: 07-	Feb-18 An	alyzed: 08-F	eb-18	
Hexachlorobenzene	33.9		μg/l	5.10	51.0	•	66	1-152		
Hexachlorobutadiene	25.8		μg/l	5.10	51.0		51	24-116		
Hexachlorocyclopentadiene	35.2		μg/l	5.10	51.0		69	40-140		
Hexachloroethane	34.6		μg/l	5.10	51.0		68	40-113		
Indeno (1,2,3-cd) pyrene	37.0		μg/l	5.10	51.0		72	1-171		
Isophorone	30.6		μg/l	5.10	51.0		60	21-196		
Naphthalene	27.8		μg/l	5.10	51.0		55	21-133		
Nitrobenzene	41.8		μg/l	5.10	51.0		82	35-180		
2-Nitrophenol	32.3		μg/l	5.10	51.0		63	29-182		
4-Nitrophenol	20.7		μg/l	5.10	51.0		41	1-132		
N-Nitrosodimethylamine	30.9		μg/l	5.10	51.0		61	40-140		
N-Nitrosodi-n-propylamine	33.6		μg/l	5.10 5.10	51.0 51.0		66 60	1-230 40-140		
N-Nitrosodiphenylamine	35.4 25.0		μg/l	5.10	51.0 51.0		69 49	40-140 14-176		
Pentachlorophenol			μg/l	5.10						
Phenanthrene	31.0		μg/l	5.10	51.0		61	54-120		
Phenol	14.5		μg/l "	5.10	51.0		28	5-112		
Pyrene	34.2		μg/l 	5.10	51.0		67	52-115		
1,2,4-Trichlorobenzene	31.2		μg/l	5.10	51.0		61	44-142		
2,4,6-Trichlorophenol	29.1		μg/l	5.10	51.0		57	37-144		
Surrogate: 2-Fluorobiphenyl	27.1		μg/l		51.0		53	30-130		
Surrogate: 2-Fluorophenol	20.3		μg/l		51.0		40	15-110		
Surrogate: Nitrobenzene-d5	32.7		μg/l		51.0		64	30-130		
Surrogate: Phenol-d5	13.9		μg/l		51.0		27	15-110		
Surrogate: Terphenyl-dl4	33.9		μg/l		51.0		66	30-130		
Surrogate: 2,4,6-Tribromophenol	29.8		μg/l		51.0		58	15-110		
LCS Dup (1801761-BSD1)					Pre	epared: 07-	Feb-18 An	alyzed: 08-F	eb-18	
Acenaphthene	34.4		μg/l	5.10	51.0		68	47-145	11	20
Acenaphthylene	34.2		μg/l	5.10	51.0		67	33-145	11	20
Anthracene	36.2		μg/l	5.10	51.0		71	27-133	11	20
Benzidine	38.8	QR9	μg/l	10.2	51.0		76	40-140	44	20
Benzo (a) anthracene	36.7		μg/l	5.10	51.0		72	33-143	7	20
Benzo (a) pyrene	39.6		μg/l	5.10	51.0		78	17-163	7	20
Benzo (b) fluoranthene	42.0		μg/l	5.10	51.0		82	24-159	2	20
Benzo (g,h,i) perylene	38.8		μg/l	5.10	51.0		76	1-219	9	20
Benzo (k) fluoranthene	38.7		μg/l	5.10	51.0		76	11-162	15	20
Bis(2-chloroethoxy)methane	28.2		μg/l	5.10	51.0		55	33-184	8	20
Bis(2-chloroethyl)ether	31.1		μg/l	5.10	51.0		61	12-158	11	20
Bis(2-chloroisopropyl)ether	34.8		μg/l	5.10	51.0		68	36-166	9	20
Bis(2-ethylhexyl)phthalate	37.6		μg/l	5.10	51.0		74	8-158	0.05	20
4-Bromophenyl phenyl ether	32.6		μg/l	5.10	51.0		64	53-127	13	20
	36.8			5.10	51.0		72	1-152	2	20
Butyl benzyl phthalate			μg/l							
4-Chloro-3-methylphenol	34.6		μg/l	5.10 5.10	51.0 51.0		68 77	22-147	7 11	20
2-Chloronaphthalene	39.2		μg/l	5.10 5.10	51.0 51.0		77 62	60-118	11	20 20
2-Chlorophenol	31.6		μg/l	5.10	51.0		62	23-134	9	
4-Chlorophenyl phenyl ether	32.3		μg/l	5.10	51.0		63	25-158	12	20
Chrysene	35.5		μg/l	5.10	51.0		70	17-168	10	20
Dibenzo (a,h) anthracene	40.9		μg/l "	5.10	51.0		80	1-227	9	20
1,2-Dichlorobenzene	36.7		μg/l "	5.10	51.0		72	32-129	12	20
1,3-Dichlorobenzene	35.2		μg/l	5.10	51.0		69	1-172	12	20
1,4-Dichlorobenzene	35.6		μg/l	5.10	51.0		70	20-124	11	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
EPA 625										
Batch 1801761 - SW846 3510C										
LCS Dup (1801761-BSD1)					Pre	epared: 07-	Feb-18 An	alyzed: 08-F	eb-18	
3,3'-Dichlorobenzidine	55.4		μg/l	5.10	51.0		109	1-262	16	20
2,4-Dichlorophenol	32.1		μg/l	5.10	51.0		63	39-135	12	20
Diethyl phthalate	34.4		μg/l	5.10	51.0		67	1-114	10	20
Dimethyl phthalate	32.1		μg/l	5.10	51.0		63	1-112	11	20
2,4-Dimethylphenol	31.2		μg/l	5.10	51.0		61	32-119	12	20
Di-n-butyl phthalate	36.6		μg/l	5.10	51.0		72	1-118	11	20
4,6-Dinitro-2-methylphenol	45.4		μg/l	5.10	51.0		89	1-181	10	20
2,4-Dinitrophenol	36.0		μg/l	5.10	51.0		71	1-191	13	20
2,4-Dinitrotoluene	48.3		μg/l	5.10	51.0		95	39-139	9	20
2,6-Dinitrotoluene	46.9		μg/l	5.10	51.0		92	50-158	9	20
Di-n-octyl phthalate	40.0		μg/l	5.10	51.0		78	4-146	3	20
Fluoranthene	35.0		μg/l	5.10	51.0		69	26-137	11	20
Fluorene	32.8		μg/l	5.10	51.0		64	59-121	10	20
Hexachlorobenzene	38.3		μg/l	5.10	51.0		75	1-152	12	20
Hexachlorobutadiene	30.1		μg/l	5.10	51.0		59	24-116	15	20
Hexachlorocyclopentadiene	40.2		μg/l	5.10	51.0		79	40-140	13	20
Hexachloroethane	37.9		μg/l	5.10	51.0		74	40-113	9	20
Indeno (1,2,3-cd) pyrene	39.2		μg/l	5.10	51.0		77	1-171	6	20
Isophorone	33.7		μg/l	5.10	51.0		66	21-196	10	20
Naphthalene	31.3		μg/l	5.10	51.0		61	21-133	12	20
Nitrobenzene	45.8		μg/l	5.10	51.0		90	35-180	9	20
2-Nitrophenol	36.5		μg/l	5.10	51.0		72	29-182	12	20
4-Nitrophenol	21.9		μg/l	5.10	51.0		43	1-132	5	20
N-Nitrosodimethylamine	28.3		μg/l	5.10	51.0		55	40-140	9	20
N-Nitrosodi-n-propylamine	36.7		μg/l	5.10	51.0		72	1-230	9	20
N-Nitrosodiphenylamine	39.4		μg/l	5.10	51.0		77	40-140	11	20
Pentachlorophenol	28.5		μg/l	5.10	51.0		56	14-176	13	20
Phenanthrene	34.3		μg/l	5.10	51.0		67	54-120	10	20
Phenol	14.9		μg/l	5.10	51.0		29	5-112	3	20
Pyrene	28.5		μg/l	5.10	51.0		56	52-115	18	20
1,2,4-Trichlorobenzene	35.6		μg/l	5.10	51.0		70	44-142	13	20
2,4,6-Trichlorophenol	32.5		μg/l	5.10	51.0		64	37-144	11	20
Surrogate: 2-Fluorobiphenyl	30.3		μg/l		51.0		59	30-130		
Surrogate: 2-Fluorophenol	21.0		μg/l		51.0		41	15-110		
Surrogate: Nitrobenzene-d5	36.6		μg/l		51.0		72	30-130		
Surrogate: Phenol-d5	14.3		μg/l		51.0		28	15-110		
Surrogate: Terphenyl-dl4	28.6		μg/l		51.0		56	30-130		
Surrogate: 2,4,6-Tribromophenol	33.8		μg/l		51.0		66	15-110		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
PA 608										
atch 1801762 - SW846 3510C										
Blank (1801762-BLK1)					Pre	epared: 10-	Feb-18 An	alyzed: 12-F	eb-18	
Aroclor-1016	< 0.204		μg/l	0.204				-		
Aroclor-1016 [2C]	< 0.204		μg/l	0.204						
Aroclor-1221	< 0.204		μg/l	0.204						
Aroclor-1221 [2C]	< 0.204		μg/l	0.204						
Aroclor-1232	< 0.204		μg/l	0.204						
Aroclor-1232 [2C]	< 0.204		μg/l	0.204						
Aroclor-1242	< 0.204		μg/l	0.204						
Aroclor-1242 [2C]	< 0.204		μg/l	0.204						
Aroclor-1248	< 0.204		μg/l	0.204						
Aroclor-1248 [2C]	< 0.204		μg/l	0.204						
Aroclor-1254	< 0.204		μg/l	0.204						
Aroclor-1254 [2C]	< 0.204		μg/l	0.204						
Aroclor-1260	< 0.204		μg/l	0.204						
Aroclor-1260 [2C]	< 0.204		μg/l	0.204						
Aroclor-1262	< 0.204		μg/l	0.204						
Aroclor-1262 [2C]	< 0.204		μg/l	0.204						
Aroclor-1268	< 0.204		μg/l	0.204						
Aroclor-1268 [2C]	< 0.204		μg/l	0.204						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.153		μg/l		0.204		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.133		μg/l		0.204		65	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.214		μg/l		0.204		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.204		μg/l		0.204		100	30-150		
LCS (1801762-BS1)					Pre	epared: 10-	Feb-18 An	alyzed: 12-F	eb-18	
Aroclor-1016	1.99		μg/l	0.204	2.55		78	50-114		
Aroclor-1016 [2C]	1.89		μg/l	0.204	2.55		74	50-114		
Aroclor-1260	2.10		μg/l	0.204	2.55		82	40-127		
Aroclor-1260 [2C]	1.99		μg/l	0.204	2.55		78	40-127		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.122		μg/l		0.204		60	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.112		μg/l		0.204		55	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.184		μg/l		0.204		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.173		μg/l		0.204		85	30-150		
LCS Dup (1801762-BSD1)					Pre	epared: 10-	Feb-18 An	alyzed: 12-F	eb-18	
Aroclor-1016	2.10		μg/l	0.200	2.50		84	50-114	5	20
Aroclor-1016 [2C]	2.12		μg/l	0.200	2.50		85	50-114	12	20
Aroclor-1260	2.26		μg/l	0.200	2.50		90	40-127	7	20
Aroclor-1260 [2C]	2.29		μg/l	0.200	2.50		92	40-127	14	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.140		μg/l		0.200		70	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.130		μg/l		0.200		65	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.210		μg/l		0.200		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.210		μg/l		0.200		105	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8100Mod.										
Batch 1801596 - SW846 3510C										
Blank (1801596-BLK1)					Pre	epared: 05-	Feb-18 An	alyzed: 06-F	eb-18	
Gasoline	< 0.2		mg/l	0.2						
Fuel Oil #2	< 0.2		mg/l	0.2						
Fuel Oil #4	< 0.2		mg/l	0.2						
Fuel Oil #6	< 0.2		mg/l	0.2						
Motor Oil	< 0.2		mg/l	0.2						
Ligroin	< 0.2		mg/l	0.2						
Aviation Fuel	< 0.2		mg/l	0.2						
Hydraulic Oil	< 0.2		mg/l	0.2						
Dielectric Fluid	< 0.2		mg/l	0.2						
Unidentified	< 0.2		mg/l	0.2						
Other Oil	< 0.2		mg/l	0.2						
Total Petroleum Hydrocarbons	< 0.2		mg/l	0.2						
Surrogate: 1-Chlorooctadecane	0.0322		mg/l		0.0510		63	40-140		
LCS (1801596-BS2)					Pre	epared: 05-	Feb-18 An	alyzed: 06-F	eb-18	
Fuel Oil #2	2.9		mg/l	0.2	4.04		72	40-140		
Surrogate: 1-Chlorooctadecane	0.0492		mg/l		0.0505		97	40-140		
LCS Dup (1801596-BSD2)					Pre	epared: 05-	Feb-18 An	alyzed: 06-F	eb-18	
Fuel Oil #2	2.8		mg/l	0.2	2.02		140	40-140	3	30
Surrogate: 1-Chlorooctadecane	0.0495		mg/l		0.0505		98	40-140		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Alialyte(s)	Kesuit	riag	Ollits	KDL	Level	Resuit	70KEC	Lillits	KI D	LIIIII
EPA 335.4 / SW846 9012B										
Batch 1801712 - General Preparation										
Blank (1801712-BLK1)					Pre	epared & A	nalyzed: 06-	-Feb-18		
Cyanide (total)	< 0.00500		mg/l	0.00500						
Blank (1801712-BLK2)					Pre	epared & A	nalyzed: 06-	-Feb-18		
Cyanide (total)	< 0.00500		mg/l	0.00500						
LCS (1801712-BS1)					Pre	epared & A	nalyzed: 06-	-Feb-18		
Cyanide (total)	0.254		mg/l	0.00500	0.250		102	90-110		
LCS (1801712-BS2)					Pre	epared & A	nalyzed: 06-	-Feb-18		
Cyanide (total)	0.251		mg/l	0.00500	0.250		100	90-110		
Reference (1801712-SRM1)					Pre	epared & A	nalyzed: 06-	-Feb-18		
Cyanide (total)	0.264		mg/l	0.00500	0.324		81	76-123		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
00.8-5.4										
Batch 418964A - 418964-20										
BLK (BZ84827-BLK)					Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Arsenic	< 0.0025		mg/l	0.0025				-		
Silver	< 0.0025		mg/l	0.0025				-		
Cadmium	< 0.0005		mg/l	0.0005				-		
Chromium	< 0.010		mg/l	0.010				-		
Copper	< 0.025		mg/l	0.025				-		
Lead	< 0.0025		mg/l	0.0025				-		
Selenium	< 0.005		mg/l	0.005				-		
Nickel	< 0.0050		mg/l	0.0050				-		
Antimony	< 0.0020		mg/l	0.0020				-		
DUP (BZ84827-DUP)			Source: BZ	<u> 184827</u>	Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Nickel	< 0.0050		mg/l	0.0050				-	NC	20
Arsenic	< 0.0025		mg/l	0.0025				-	NC	20
Cadmium	< 0.0005		mg/l	0.0005				-	NC	20
Chromium	< 0.010		mg/l	0.010				-	NC	20
Copper	< 0.025		mg/l	0.025				-	NC	20
Lead	< 0.0025		mg/l	0.0025				-	NC	20
Selenium	< 0.005		mg/l	0.005				-	NC	20
Silver	< 0.0025		mg/l	0.0025				-	NC	20
Antimony	< 0.0020		mg/l	0.0020				-	NC	20
LCS (BZ84827-LCS)					Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Arsenic	0.0483		mg/l	0.0025	0.05		96.6	75-125		20
Cadmium	0.0511		mg/l	0.0005	0.05		102	75-125		20
Chromium	0.0517		mg/l	0.010	0.05		103	75-125		20
Copper	0.0505		mg/l	0.025	0.05		101	75-125		20
Lead	0.0489		mg/l	0.0025	0.05		97.8	75-125		20
Selenium	0.0513		mg/l	0.005	0.05		103	75-125		20
Nickel	0.0526		mg/l	0.0050	0.05		105	75-125		20
Silver	0.0497		mg/l	0.0025	0.05		99.4	75-125		20
Antimony	0.0539		mg/l	0.0020	0.05		108	75-125		20
MS (BZ84827-MS)			Source: BZ	<u> 184827</u>	Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Copper	0.0532		mg/l	0.025	0.05		98.6	75-125		20
Silver	0.0491		mg/l	0.0025	0.05		98.2	75-125		20
Nickel	0.0489		mg/l	0.0050	0.05		95.8	75-125		20
Lead	0.0485		mg/l	0.0025	0.05		95.6	75-125		20
Chromium	0.0495		mg/l	0.010	0.05		96.2	75-125		20
Cadmium	0.0495		mg/l	0.0005	0.05		99.0	75-125		20
Arsenic	0.0479		mg/l	0.0025	0.05		97.0	75-125		20
Selenium	0.0501		mg/l	0.005	0.05		100	75-125		20
Antimony	0.0532		mg/l	0.0020	0.05		106	75-125		20
W6020B										
atch 418964B - 418964-					_		.			
BLK (BZ84827-BLK)				0.0000	Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Antimony	< 0.0020		mg/l	0.0020				-		
Silver	< 0.0025		mg/l	0.0025				-		
Arsenic	< 0.0025		mg/l	0.0025				-		
Cadmium	< 0.0005		mg/l	0.0005				-		
Chromium	< 0.010		mg/l	0.010				-		
Copper	< 0.025		mg/l	0.025				-		
Lead	< 0.0025		mg/l	0.0025				-		

Cadmium	nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
But 18964B - 18964B 1896	W6020B										
Nickel	ntch 418964B - 418964-										
Nickel	BLK (BZ84827-BLK)					Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Antimony	<u> </u>	< 0.0050		mg/l	0.0050				-		
Antimony	DUP (BZ84827-DUP)			Source: B	Z84827	Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Cadmium	<u> </u>	< 0.0020							-	NC	20
Copper	Cadmium	< 0.0005		-	0.0005				-	NC	20
Copper	Chromium	< 0.010		-	0.010				_	NC	20
Lead	Copper	< 0.025		-	0.025				_	NC	20
Selenium	Lead	< 0.0025		mg/l	0.0025				_	NC	20
Nickel	Selenium	< 0.005		-	0.005				_	NC	20
Silver	Nickel	< 0.0050		-	0.0050				_	NC	20
Arsenic	Silver	< 0.0025		-	0.0025				_	NC	20
CS (BZ84827-LCS)	Arsenic	< 0.0025		-	0.0025				_	NC	20
Antimony 0.0539 mg/l 0.0020 0.05 108 75-125 Selenium 0.0513 mg/l 0.005 0.05 103 75-125 Nickel 0.0526 mg/l 0.0050 0.05 103 75-125 Nickel 0.0526 mg/l 0.0050 0.05 103 75-125 Lead 0.0489 mg/l 0.0025 0.05 97.8 75-125 Chromium 0.0517 mg/l 0.010 0.05 103 75-125 Cadmium 0.0511 mg/l 0.0005 0.05 102 75-125 Arsenic 0.0483 mg/l 0.0025 0.05 96.6 75-125 Arsenic 0.0483 mg/l 0.0025 0.05 96.6 75-125 Silver 0.0497 mg/l 0.0025 0.05 99.4 75-125 MS (BZ84827-MS) Antimony 0.0532 mg/l 0.0020 0.05 106 75-125 Silver 0.0491 mg/l 0.0020 0.05 99.4 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Selenium 0.0498 mg/l 0.0025 0.05 98.2 75-125 Selenium 0.0501 mg/l 0.0025 0.05 98.2 75-125 Copper 0.0532 mg/l 0.005 0.05 98.2 75-125 Copper 0.0583 mg/l 0.005 0.05 98.6 75-125 Selenium 0.0495 mg/l 0.0050 0.05 98.8 75-125 Cadmium 0.0501 mg/l 0.005 0.05 98.8 75-125 Cadmium 0.0501 mg/l 0.005 0.05 99.0 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 Copper 0.0532 mg/l 0.0025 0.05 99.0 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 Copper 0.0528827-BLK) Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 0.0025 86.9 75-125	LCS (BZ84827-LCS)			Ü		Pre	enared: 06-	Feb-18 An	alvzed: 07-F	eb-18	
Selentum 0.0513 mg/l 0.005 0.05 103 75-125 Nickel 0.0526 mg/l 0.0050 0.05 105 75-125 Lead 0.0489 mg/l 0.0025 0.05 97.8 75-125 Chromium 0.0517 mg/l 0.010 0.05 103 75-125 Cadmium 0.0511 mg/l 0.0005 0.05 102 75-125 Arsenic 0.0483 mg/l 0.0025 0.05 96.6 75-125 Copper 0.0505 mg/l 0.025 0.05 96.6 75-125 Silver 0.0497 mg/l 0.0025 0.05 99.4 75-125 Silver 0.0497 mg/l 0.0025 0.05 99.4 75-125 MS (BZ84827-MS) Source: BZ84827 Prepared: 0.6-Feb-18 Analyzed: 0.7-Feb-18 Antimony 0.0532 mg/l 0.0020 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Nickel 0.0489 mg/l 0.0025 0.05 98.2 75-125 Selenium 0.0501 mg/l 0.0025 0.05 98.8 75-125 Selenium 0.0502 mg/l 0.0025 0.05 98.6 75-125 Copper 0.0532 mg/l 0.0025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 99.0 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 DEBLK (BZ84827-BLK) Prepared & Analyzed: 0.7-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 0.7-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 0.7-Feb-18 Mercury < 0.0002 mg/l 0.0002 0.0025 0.05 0.05 0.05 0.05 Prepared & Analyzed: 0.7-Feb-18 Mercury < 0.0002 mg/l 0.0002 0.0025 0.0025 0.05 0.05 0.05 Prepared & Analyzed: 0.7-Feb-18 Mercury < 0.0002 mg/l 0.0002 0.0025 0.0025 0.05 0.05 Prepared & Analyzed: 0.7-Feb-18 Mercury < 0.0002 mg/l 0.0002 0.0025 0.0025 0	·	0.0539		ma/l	0.0020					<u> </u>	20
Nickel 0.0526 mg/l 0.0050 0.05 105 75-125 Lead 0.0489 mg/l 0.0025 0.05 97.8 75-125 Chromium 0.0517 mg/l 0.010 0.05 103 75-125 Cadmium 0.0511 mg/l 0.0005 0.05 102 75-125 Arsenic 0.0483 mg/l 0.0025 0.05 96.6 75-125 Copper 0.0505 mg/l 0.0025 0.05 96.6 75-125 Silver 0.0497 mg/l 0.0025 0.05 96.6 75-125 Silver 0.0497 mg/l 0.0025 0.05 96.6 75-125 MS (BZ84827-MS) Source: BZ84827 Prepared: 06-Feb-18 Analyzed: 07-Feb-18 Antimony 0.0532 mg/l 0.0020 0.05 96.2 75-125 Chromium 0.0495 mg/l 0.0025 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 96.2 75-125 Chromium 0.0495 mg/l 0.0025 0.05 96.2 75-125 Silver 0.0489 mg/l 0.0025 0.05 96.8 75-125 Copper 0.0532 mg/l 0.0025 0.05 96.8 75-125 Copper 0.0532 mg/l 0.0025 0.05 96.6 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 96.6 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 Cadmium 0.0496 mg/l 0.0025 0.05 99.0 75-125 Cadmium 0.0496 mg/l 0.0025 0.05 99.0 75-125 CESWY-470A Cadmium 0.0496 mg/l 0.0025 0.05 99.0 75-125 Cadmium 0.0496 mg/l 0.0025 0.05 99.0 75				-							20
Lead 0.0489 mg/l 0.0025 0.05 97.8 75-125 Chromium 0.0517 mg/l 0.010 0.05 103 75-125 Cadmium 0.0511 mg/l 0.0005 0.05 102 75-125 Arsenic 0.0483 mg/l 0.025 0.05 96.6 75-125 Copper 0.0505 mg/l 0.025 0.05 101 75-125 Silver 0.0497 mg/l 0.0025 0.05 101 75-125 MS (BZ84827-MS) Source: BZ84827 Prepared: 06-Feb-18 Analyzed: 07-Feb-1 Antimony 0.0532 mg/l 0.0020 0.05 106 75-125 Mickel 0.0495 mg/l 0.005 96.2 75-125 Silver 0.0491 mg/l 0.005 0.05 98.2 75-125 Nickel 0.0493 mg/l 0.005 0.05 98.2 75-125 Selenium 0.0532 mg/l				_							20
Chromium 0.0517 mg/l 0.010 0.05 103 75-125 Cadmium 0.0511 mg/l 0.0005 0.05 102 75-125 Arsenic 0.0483 mg/l 0.0025 0.05 96.6 75-125 Copper 0.0505 mg/l 0.025 0.05 101 75-125 Silver 0.0497 mg/l 0.0025 0.05 99.4 75-125 MS (BZ84827-MS) Source: BZ84827 Prepared: 06-Feb-18 Analyzed: 07-Feb-7 Antimony 0.532 mg/l 0.0020 0.05 106 75-125 Antimony 0.0495 mg/l 0.010 0.05 106 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Silver 0.0491 mg/l 0.005 0.05 98.2 75-125 Silver 0.0489 mg/l 0.005 0.05 98.6 75-125 Selenium 0.0501 mg/l 0.00				-							20
Cadmium 0.0511 mg/l 0.0005 0.05 102 75-125 Arsenic 0.0483 mg/l 0.0025 0.05 96.6 75-125 Copper 0.0505 mg/l 0.025 0.05 101 75-125 Silver 0.0497 mg/l 0.0025 0.05 99.4 75-125 MS (BZ84827-MS) Source: BZ84827 Prepared: 06-Feb-18 Analyzed: 07-Feb-1 Antimony 0.0532 mg/l 0.0020 0.05 106 75-125 Chromium 0.0495 mg/l 0.010 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Silver 0.0489 mg/l 0.0050 0.05 98.2 75-125 Selenium 0.0501 mg/l 0.005 0.05 98.6 75-125 Copper 0.0532 mg/l 0.0025 0.05 98.6 75-125 Cadmium 0.0479 mg/				_							20
Arsenic 0.0483 mg/l 0.0025 0.05 96.6 75-125 Copper 0.0505 mg/l 0.025 0.05 101 75-125 Silver 0.0497 mg/l 0.0025 0.05 99.4 75-125 MS (BZ84827-MS) Source: BZ84827 Prepared: 06-Feb-18 Analyzed: 07-Feb-18 Antimony 0.0532 mg/l 0.0020 0.05 106 75-125 Chromium 0.0495 mg/l 0.010 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Nickel 0.0489 mg/l 0.005 0.05 95.8 75-125 Selenium 0.0501 mg/l 0.005 0.05 95.8 75-125 Copper 0.0532 mg/l 0.005 0.05 95.8 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 98.6 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 99.0 75-125 Lead 0.0479 mg/l 0.0025 0.05 97.0 75-125 SW7470A Batch 419000A - 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 0.0025 86.9 75-125				•							20
Copper 0.0505 mg/l 0.025 0.05 101 75-125 Silver 0.0497 mg/l 0.0025 0.05 99.4 75-125 MS (BZ84827-MS) Source: BZ84827 Prepared: 06-Feb-18 Analyzed: 07-Feb-1 Antimony 0.0532 mg/l 0.0020 0.05 96.2 75-125 Chromium 0.0495 mg/l 0.010 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Nickel 0.0489 mg/l 0.0050 0.05 98.2 75-125 Selenium 0.0501 mg/l 0.005 0.05 98.8 75-125 Copper 0.0532 mg/l 0.005 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0005 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 95.6 75-125 SW7470A Batch 419000A - 419				_							20
Silver 0.0497 mg/l 0.0025 0.05 99.4 75-125 MS (BZ84827-MS) Source: BZ848Z7 Prepared: 06-Feb-18 Analyzed: 07-Feb-12 Antimony 0.0532 mg/l 0.0020 0.05 106 75-125 Chromium 0.0495 mg/l 0.010 0.05 96.2 75-125 Silver 0.0491 mg/l 0.005 0.05 98.2 75-125 Nickel 0.0489 mg/l 0.0050 0.05 95.8 75-125 Selenium 0.0501 mg/l 0.005 0.05 95.8 75-125 Copper 0.0532 mg/l 0.005 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.005 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 95.6 75-125 SW7470A Batch 419000A - 419000- strain strain mg/l 0.0002 0.05 95.6 75-125 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td></t<>				-							20
MS (BZ84827-MS) Source: BZ84827 Prepared: 06-Feb-18 Analyzed: 07-Feb-78 Antimony 0.0532 mg/l 0.0020 0.05 106 75-125 0.05 0.	• •			-							20
Antimony 0.0532 mg/l 0.0020 0.05 106 75-125 Chromium 0.0495 mg/l 0.010 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Nickel 0.0489 mg/l 0.0050 0.05 95.8 75-125 Selenium 0.0501 mg/l 0.005 0.05 100 75-125 Copper 0.0532 mg/l 0.025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0025 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 97.0 75-125 Sw7470A Batch 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002				ū			enared: 06-			eh-18	
Chromium 0.0495 mg/l 0.010 0.05 96.2 75-125 Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Nickel 0.0489 mg/l 0.0050 0.05 95.8 75-125 Selenium 0.0501 mg/l 0.005 0.05 100 75-125 Copper 0.0532 mg/l 0.025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0005 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 97.0 75-125 SW7470A Batch 419000A - 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002		0.0532					sparou. oo			00 10	20
Silver 0.0491 mg/l 0.0025 0.05 98.2 75-125 Nickel 0.0489 mg/l 0.0050 0.05 95.8 75-125 Selenium 0.0501 mg/l 0.005 0.05 100 75-125 Copper 0.0532 mg/l 0.025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0005 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 97.0 75-125 SW7470A Batch 419000A - 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Repared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Repared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Repared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Repared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 0.0025 86.9 75-125				-							20
Nickel 0.0489 mg/l 0.0050 0.05 95.8 75-125 Selenium 0.0501 mg/l 0.005 0.05 100 75-125 Copper 0.0532 mg/l 0.025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0005 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 95.6 75-125 SW7470A Batch 419000A - 419000- Batch 419000A - 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002				-							20
Selenium 0.0501 mg/l 0.005 0.05 100 75-125 Copper 0.0532 mg/l 0.025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0005 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 95.6 75-125 SW7470A Batch 419000A - 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002				-							20
Copper 0.0532 mg/l 0.025 0.05 98.6 75-125 Cadmium 0.0495 mg/l 0.0005 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 95.6 75-125 SW7470A Batch 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002				-							20
Cadmium 0.0495 mg/l 0.0005 0.05 99.0 75-125 Arsenic 0.0479 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 95.6 75-125 SW7470A Batch 419000A - 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002				-							20
Arsenic 0.0479 mg/l 0.0025 0.05 97.0 75-125 Lead 0.0485 mg/l 0.0025 0.05 95.6 75-125 SW7470A Batch 419000A - 419000- BLK (BZ84827-BLK) Mercury <0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury 0.0002 mg/l 0.0002 0.0025 86.9 75-125	• •			_							20
Lead 0.0485 mg/l 0.0025 0.05 95.6 75-125 SW7470A Batch 419000A - 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 0.0025 86.9 75-125				-							20
SW7470A Batch 419000A - 419000- BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 LCS (BZ84827-LCS) Prepared & Analyzed: 07-Feb-18 Mercury 0.0022 mg/l 0.0002 0.0025 86.9 75-125	Lead			•				95.6			20
BLK (BZ84827-BLK) Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 DUP (BZ84827-DUP) Source: BZ84827 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 Prepared & Analyzed: 07-Feb-18 Mercury mg/l 0.0002 0.0025 86.9 75-125	W7470A										
Mercury < 0.0002 mg/l 0.0002 - DUP (BZ84827-DUP) Source: BZ84827 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002 mg/l 0.0002 - LCS (BZ84827-LCS) Prepared & Analyzed: 07-Feb-18 Mercury 0.0022 mg/l 0.0002 0.0025 86.9 75-125	ntch 419000A - 419000-										
Mercury < 0.0002 mg/l 0.0002 - DUP (BZ84827-DUP) Source: BZ84827 Prepared & Analyzed: 07-Feb-18 Mercury < 0.0002	BLK (BZ84827-BLK)					Pre	epared & Ar	nalyzed: 07-	-Feb-18		
Mercury < 0.0002 mg/l 0.0002 - LCS (BZ84827-LCS) Prepared & Analyzed: 07-Feb-18 Mercury 0.0022 mg/l 0.0002 0.0025 86.9 75-125	Mercury	< 0.0002		mg/l	0.0002		•	•	-		
Mercury < 0.0002 mg/l 0.0002 - LCS (BZ84827-LCS) Prepared & Analyzed: 07-Feb-18 Mercury 0.0022 mg/l 0.0002 0.0025 86.9 75-125	-			_		Pre	epared & Ar	nalyzed: 07-	-Feb-18		
LCS (BZ84827-LCS) Prepared & Analyzed: 07-Feb-18 Mercury 0.0022 mg/l 0.0025 86.9 75-125	·	< 0.0002								NC	30
Mercury 0.0022 mg/l 0.0002 0.0025 86.9 75-125	•			3		Pre	epared & Ar	nalvzed: 07.	-Feb-18	-	
,	·	0 0022		ma/l	0 0002			-			30
1913 (D∠04021 -1913) 3001CE: D∠04021 FTEPAREU & ARIANYZEU. U7-FED-10	-	0.0022		_			anarad & Ar				00
Mercury 0.0020 mg/l 0.0025 81.5 75-125	·	0.0020					spareu & Al	-			30

Notes and Definitions

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QR9 RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

[2C] Indicates concentration was reported from the secondary, confirmation column.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

& eurofins	Spectrum Analytical	CHAIN OF CUSTOI	DY RECORD		01-1.
Report To: CME GNI POLICE 67 HALL POLICE STUCKED	26NAENTAL,INC DOG, MA OISGO	Invoice To: SAMS	Project No Site Name Location:	40 16NA	- 1
Telephone #: 774-2	41-0901 LARK	P.O No.: Quote #	Sampler(s)		builty
F=Field Filtered 1=Na ₂ S2O ₃ 7=CH3OH 8=NaHSO ₄ 9=De	1000 (1000 1000 1000 1000 1000 1000 100	5=NaOH 6=Ascorbic Acid =12=	List Preservative	Code below:	QA/QC Reporting Notes: * additional charges may appply

Telephone #: Project Mgr:	774-241-0901 DELARK		P.O No	o.:		*	. (Quote #						Sample	(s):		GOA		
F=Field Filtered 7=CH3OH 8=N	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ S NaHSO ₄ 9=Deionized Water 10=H ₃ P		5=NaOH	6=Ascor						1		Li	st Pres	ervativ	e Cod	e below			QA/QC Reporting Notes:
								5			2	4	5	-					* additional charges may appply
DW=Drinking Wa	ater GW=Groundwater SW=5	Surface Water W	/W=Waste Wa	ter		18	C	ontain	iers	TWO IS	18		D	Anal	ysis	dr.	514		MA DEP MCP CAM Report? Yes N
O=Oil SO=So						Vials	r Glass	of Clear Glass	0		2008	TOTALABOUS	PACCYANIO	. 809	SIM	912129		Check if chlorinated	CT DPH RCP Report? Yes
	G= Grab	C=Compsit	te	be	rix.	ofVOA	of Amber	lear	of Plastic		18401	43	S.	200	8	S		k if c	NJ Reduced* NJ Full*
Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	√Jo#	/ Jo #	# of C	# of F		F	123	to	P.B.	3	e		Chec	Other: State-specific reporting standards:
13702-01	4NM GW	26/18	1040	G	GW		6		4	7.	X	X	X	X	X				RL'S PER ATTACHE
		1011							,										LIST (FW FOR
																			FRESHWATER)
																			BTOTALSH, AS, Cd, C
SEPHAN							pi.												Cu.Fc. Pb.Ha.N:
															1				Se Ga 70
																			34 3) 41
																			200.8
		1										1							perclient rey
														Sec.	4				ZISLIBE
Reli	inquished by:	Receive	d by:			Date:	if		Time:		Tem	p °C		EDD for	mat:				
C	100	ADE	K		2-		18	-	010		Observed O. Corecction		X	E-mail t	0:	5	vad	Q	chgenv.con

					- per client rey 2/5/18e
Relinquished by:	Received by:	Date:	Time:	Temp °C	EDD format:
CRIS	DE	2-5-18	1010	O.8	* E-mail to: ravad @ chyenv.com
051	1alli	215/18	1640	Corecction Factor	
				0.8	Condition upon receipt: Custody Seals:
				IR ID#	☐ Ambient ☐ Iced

Special Handling:

Additional Resource for Selecting Sufficiently Sensitive Test Methods for RGP Notice of Intent (NOI) Sampling Requirements¹

Table 1: Parameters, Required Minimum Levels (MLs), and Common Test Methods²

Parameter ML Must Be :	Example 2 Requirements Commonly Used Test Method(s) from 40 C.F.R. Part 136 that Generally Achieves the ML Noted SM 4500 B and D; 350.1 SM 4110 B; 300.0
. Inorganics	
mmonia 0.1 mg/L	SM 4110 R: 300 0
hloride 230 mg/L	SIVI TITO D, 500.0
otal Residual Chlorine 50 µg/L	SM 4500-Cl G and E
otal Suspended Solids 30 mg/L	SM 2540 D
ntimony 206 μg/L	200.8 and 200.9
rsenic FW= 10 μg/L SW= 36 μg/L	[1]
admium $FW=0.25~\mu g/C$ $SW=8.8~\mu g/L~in$ $SW=9.3~\mu g/L~in$	MA 200.8 in F W
hromium III $FW = 74 \mu g/L \\ SW = 100 \mu g/L$	
hromium VI $FW= 11 \mu g/L \\ SW= 50 \mu g/L$	218.6
opper $FW=9 \mu g/L$ $SW=3.1 \mu g/I$	200.8 and 200.9
FW = 1,000 μ g	
ead $FW= 2.5 \mu g/I$ $SW= 8.1 \mu g/I$	L 200 8 and 200 9
fercury $FW = 0.77 \mu g/SW = 0.739 \mu g$	/L 245 1 245 7 and 1631F
FW= 52 μ g/I SW= 8.2 μ g/I	200 8 and 200 9
elenium , $FW=5.0 \mu g/I$ $SW=71 \mu g/I$	
ilver $FW= 3.2 \mu g/I$ $SW= 1.9 \mu g/I$	700 X
FW= 120 μ g/s SW= 81 μ g/I	700 / 9nd 700 x
Eyanide $FW = 5.2 \mu g/S$ $SW = 5.0 \mu g/S$	5 VI 4300-CN
. Non-Halogenated Volatile Organic Compounds	
Total BTEX 3 100 μ g/L (sum individual ML	0/4 900 10/48
enzene 5.0 μg/L	624 and 1624B
,4 Dioxane 50 μg/L	SIM
cetone 7.97 mg/L	524.2
henol 300 μg/L	420.1 and 420.4

	Requ	irements
Parameter	ML Must Be ≤	Commonly Used Test Method(s) from 40 C.F.R. Part 136 that Generally Achieves the ML Noted
. Halogenated Volatile Organic Compounds		
arbon Tetrachloride	1.6 μg/L in MA 4.4 μg/L in NH	624
2 Dichlorobenzene	600 μg/L	624
3 Dichlorobenzene	320 μg/L	624
4 Dichlorobenzene	5.0 μg/L	624
otal Dichlorobenzene ⁴	Not required in MA 763 μg/L in NH (sum of individual MLs)	624
1 Dichloroethane	70 μg/L	624
2 Dichloroethane	5.0 μg/L	624
1 Dichloroethylene	3.2 μg/L	624
thylene Dibromide	0.05 μg/L	SIM
Iethylene Chloride	4.6 μg/L	624
1,1 Trichloroethane	200 μg/L	624
1,2 Trichloroethane	5.0 μg/L	624
richloroethylene	5.0 μg/L	624
etrachloroethylene	3.3 μg/L in MA 5.0 μg/L in NH	624
s-1,2 Dichloroethylene	70 μg/L	624
inyl Chloride	2.0 μg/L	624
. Non-Halogenated Semi-Volatile Organic ompounds	, \	
otal Phthalates ⁵	$190 \mu g/L$ in MA FW = 3.0 μg/L in NH SW = 3.4 μg/L in NH	625 and 1625B in MA 625 in NH
iethylhexyl Phthalate	2.2 μg/L in MA	625 in MA
1)	5.9 μg/L in NH	625 and 1625B in NH
otal Group I Polycyclic Aromatic Hydrocarbons ⁶	1.0 μg/L (sum of individual MLs)	SIM
enzo(a)anthracene	0.1 μg/L	SIM
enzo(a)pyrene	0.1 μg/L	SIM
enzo(b)fluoranthene	0.1 μg/L	SIM
enzo(k)fluoranthene	0.1 μg/L	SIM
hrysene	0.1 μg/L	SIM
ibenzo(a,h)anthracene	0.1 μg/L	SIM
ndeno(1,2,3-cd)pyrene	0.1 μg/L	SIM
otal Group II Polycyclic Aromatic Hydrocarbons ⁷	100 μg/L (sum of individual MLs)	625
laphthalene	20 μg/L	625

	Req	uirements
Parameter	ML Must Be ≤	Commonly Used Test Method(s) from 40 C.F.R. Part 136 that Generally Achieves the ML Noted
Halogenated Semi-Volatile Organic Compounds		
otal Polychlorinated Biphenyls ⁸	0.5 μg/L	608
ntachlorophenol ⁹	1.0 μg/L	625
Fuels Parameters		
otal Petroleum Hydrocarbons	5.0 mg/L	1664A and B
hanol	0.4 mg/L	1666/1671/D3695
ethyl-tert-Butyl Ether	20 μg/L in MA 70 μg/L in NH	SIM
rt-Butyl Alcohol	120 μg/L in MA 40 μg/L in NH	1666
rt-Amyl Methyl Ether	90 μg/L in MA 140 μg/L in NH	624

Table 1 Footnotes:

¹ The minimum levels specified in this table will satisfy the sufficiently sensitive test method requirements for the purposes of sample analysis used to prepare a Notice of Intent (NOI) for coverage under the Remediation General Permit. Where less sensitive minimum levels (MLs) may be used upon authorization to discharge, these MLs will be noted in the written authorization to discharge for an individual site.

² The following abbreviations are used in Table 1, above:

a mg/L = milligrams per liter

 $^{^{}b}$ µg/L = micrograms per liter

^c FW = freshwater

d SW = saltwater

^e SM = standard method

^d SIM = selected ion monitoring

³ Total BTEX is the sum of: benzene (CAS No. 71432); toluene (CAS No. 108883); ethylbenzene (CAS No. 100-41-4); and (m,p,o) xylenes (CAS Nos. 108-88-3, 106-42-3, 95-47-6, and 1330-20-7).

⁴ Total dichlorobenzene is the sum of: 1,2 dichlorobenzene (CAS No. 95-50-1); 1,3 dichlorobenzene (CAS No. 541-73-1); and 1,4 dichlorobenzene (CAS No. 106-46-7).

⁵ Total Phthalates is the sum of: diethylhexyl phthalate (CAS No. 117-81-7); butyl benzyl phthalate (CAS No. 85-68-7); di-n-butyl phthalate (CAS No. 84-74-2); diethyl phthalate (CAS No. 84-66-2); dimethyl phthalate (CAS No. 131-11-3); di-n-octyl phthalate (CAS No. 117-84-0). For the diethylhexyl phthalate in NH, EPA anticipates that the applicable ML will be revised to 2.2 μg/L, once incorporated into the RGP for sites in New Hampshire.

- PIPAHs is the sum of: benzo(a)anthracene (CAS No. 56-55-3); benzo(a)-32-8); benzo(b)fluoranthene (CAS No. 205-99-2); benzo(k)fluoranthenerysene (CAS No. 218-01); dibenzo(a,h)anthracene (CAS No. 53-70-3); -cd)pyrene (CAS No. 193-39-5).
- p II PAHs is the sum of: acenaphthene (CAS No. 83-32-9); acenaphthyle 8); anthracene (CAS No. 120-12-7); benzo(g,h,i)perylene (CAS No. 191-(CAS No. 206-44-0); fluorene (CAS No. 86-73-7); naphthalene (CAS Norene (CAS No. 85-01-8); pyrene (CAS No. 129-00-0).
- is the sum of the following aroclors: PCB-1016, PCB-1221, PCB-1232, PCB-1254, and PCB-1260.
- r analysis of pentachlorophenol must be as close to 1.0 μ g/L as possible, μ g/L.

Batch Summary

1801596

Extractable Petroleum Hydrocarbons

1801596-BLK1 1801596-BS2 1801596-BSD2

SC43702-01 (4NMGW)

1801712

General Chemistry Parameters

1801712-BLK1 1801712-BLK2 1801712-BS1 1801712-BS2 1801712-SRM1

SC43702-01 (4NMGW)

1801761

Semivolatile Organic Compounds by GCMS

1801761-BLK1 1801761-BS1 1801761-BSD1

SC43702-01 (4NMGW)

1801762

Semivolatile Organic Compounds by GC

1801762-BLK1 1801762-BS1 1801762-BSD1

SC43702-01 (4NMGW)

418943A

Subcontracted Analyses

BZ84786-BLK BZ84786-DUP BZ84786-LCS BZ84786-MS

SC43702-01 (4NMGW)

418964A

Subcontracted Analyses

BZ84827-BLK BZ84827-DUP BZ84827-LCS BZ84827-MS

SC43702-01 (4NMGW)

418964B

Subcontracted Analyses

BZ84827-BLK BZ84827-DUP BZ84827-LCS BZ84827-MS SC43702-01 (4NMGW)

419000A

Subcontracted Analyses

BZ84827-BLK BZ84827-DUP BZ84827-LCS BZ84827-MS

SC43702-01 (4NMGW)

S602716

Extractable Petroleum Hydrocarbons

S602716-CAL9 S602716-CALA S602716-CALB S602716-CALC S602716-CALD S602716-CALE S602716-CALF S602716-CALG S602716-CALH S602716-CALI S602716-CALJ S602716-CALK S602716-CALL S602716-CALM S602716-ICV2 S602716-LCV2

S711062

Semivolatile Organic Compounds by GCMS

S711062-CAL1 S711062-CAL2 S711062-CAL3 S711062-CAL4 S711062-CAL5 S711062-CAL6 S711062-CAL7 S711062-CAL9 S711062-ICV1 S711062-ICV1 S711062-ICV1 S711062-ICV2 S711062-ICV2

S815859

Semivolatile Organic Compounds by GCMS

S815859-CAL1 S815859-CAL2 S815859-CAL3

S815859-CAL4

S815859-CAL5

S815859-CAL6

S815859-CAL7

S815859-CAL8 S815859-CAL9

S815859-CALA

S815859-ICV1

S815859-LCV1

S815859-LCV2

5015057 EC 12

S815859-TUN1

S816480

Semivolatile Organic Compounds by GC

S816480-CAL1

S816480-CAL2

S816480-CAL3

S816480-CAL4

S816480-CAL5

S816480-CAL6

S816480-CAL7

S816480-CAL8

S816480-CAL9

S816480-CALA

S816480-CALB

S816480-CALC

S816480-CALD

S816480-CALE

S816480-CALF

S816480-CALG

S816480-CALH

S816480-CALI

S816480-CALJ

S816480-CALK

S816480-CALL

S816480-CALM

S816480-CALN

S816480-CALO

S816480-CALP

S816480-CALQ

S816480-CALR

S816480-CALS

S816480-CALT

S816480-CALU

S816480-ICV2

S816480-ICV3

S816480-ICV4

S816480-ICV5

S816480-ICV6

S816480-LCV1

S816480-LCV2

S816480-LCV3

S816480-LCV4

S816480-LCV5

S816480-LCV6

S816543

Extractable Petroleum Hydrocarbons

S816543-CCV1

S816543-CCV3

S816543-CCV5

S816687

Semivolatile Organic Compounds by GCMS

S816687-CCV1

S816687-TUN1

S816728

Semivolatile Organic Compounds by GCMS

S816728-CCV1

S816728-TUN1

S816732

Semivolatile Organic Compounds by GCMS

S816732-CCV1

S816732-TUN1

S816753

Semivolatile Organic Compounds by GC

S816753-CCV1

S816753-CCV2

S816753-IBL1

S816753-IBL2

\mathbf{Q}	Final Report
	Revised Report

Report Date: 07-Feb-18 16:41

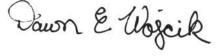
Laboratory Report SC43704

CMG Environmental, Inc. 67 Hall Road Sturbridge, MA 01566 Attn: Jerry Clark

Project: 4+16 N. Main - Northbridge, MA

Project #: 2017-235

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.


All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 11 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC43704

Project: 4+16 N. Main - Northbridge, MA

Project Number: 2017-235

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC43704-01AP OutfallSurface Water02-Feb-18 11:3005-Feb-18 16:40

07-Feb-18 16:41 Page 2 of 11

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

E350.1

BZ84710-MS

This parameter is outside laboratory ms/msd specified recovery limits.

Ammonia as Nitrogen

SW6010C

Samples:

SC43704-01 AP Outfall

Present in blank, no bias suspected.

Calcium

Sample Acceptance Check Form

CMG Environmental, Inc.

Client:

Project:	4+16 N. Main - Northbridge, MA / 2017-235			
Work Order:	SC43704			
Sample(s) received on:	2/5/2018			
The following outlines t	he condition of samples for the attached Chain of Custody upon receipt.			
		Yes	No	<u>N/A</u>
Were custody se	vals present?		\checkmark	
Were custody se	als intact?			\checkmark
Were samples re	exceived at a temperature of $\leq 6^{\circ}$ C?	✓		
Were samples re	efrigerated upon transfer to laboratory representative?	✓		
Were sample co	ntainers received intact?	\checkmark		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	V		
Were samples a	ecompanied by a Chain of Custody document?	✓		
include sample	Custody document include proper, full, and complete documentation, which shall ID, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	V		
Did sample con	tainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	eceived within method-specific holding times?	✓		

Summary of Hits

Lab ID: SC43704-01

Client ID: AP Outfall

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hardness (CaCO3)	24.9		0.1	mg/l	E200.7
Iron	0.337		0.010	mg/l	E200.7
Ammonia as Nitrogen	0.27		0.05	mg/l	E350.1
Calcium	7.46	Q1	0.010	mg/l	SW6010C
Magnesium	1.52		0.010	mg/l	SW6010C
Zinc	0.010		0.002	mg/l	SW6010C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

AP Outfa SC43704-				<u>Client P</u> 2017			Matrix Surface Wa	· · · · · · · · · · · · · · · · · · ·	lection Date 2-Feb-18 11			ceived Feb-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
General C	Themistry Parameters												
	рН	6.51	рН	pH Units			1	ASTM D 1293-99B	05-Feb-18 17:30	07-Feb-18 13:11	CMB	1801685	5 X
Subcontra	acted Analyses												
Analysis pe	erformed by Phoenix Enviro	onmental Labs, 1	nc. * - MAC	T007									
7440-36-0	Antimony	< 0.0050		mg/l	0.0050	0.0050	5	200.8-5.4	06-Feb-18	07-Feb-18 13:25	M-CT007	'418964 <i>F</i>	A
Subcontra	acted Analyses												
Analysis pe	erformed by Phoenix Enviro	onmental Labs, 1	nc. * - MAC	T007									
7439-89-6	Iron	0.337		mg/l	0.010	0.010	1	E200.7	"	07-Feb-18 00:43	M-CT007	′418943 <i>F</i>	A
	Hardness (CaCO3)	24.9		mg/l	0.1	0.1	1	"	"	07-Feb-18 15:42	"	"	
Prepared	by method 418950												
Analysis pe	erformed by Phoenix Enviro	onmental Labs, 1	nc. * - MAC	T007									
7664-41-7	Ammonia as Nitrogen	0.27		mg/l	0.05	0.05	1	E350.1	"	07-Feb-18 10:47	M-CT007	'418950 <i>F</i>	A
	acted Analyses by method 418943-												
Analysis pe	erformed by Phoenix Enviro	onmental Labs, 1	nc. * - MAC	T007									
7440-70-2	Calcium	7.46	Q1	mg/l	0.010	0.010	1	SW6010C	"	07-Feb-18 00:43	M-CT007	′418943E	3
7439-95-4	Magnesium	1.52		mg/l	0.010	0.010	1	п	"	"	"	"	
7440-66-6	Zinc	0.010		mg/l	0.002	0.002	1	н	"	"	"	"	
	acted Analyses by method 418964-												
Analysis pe	erformed by Phoenix Enviro	onmental Labs, 1	nc. * - MAC	T007									
7440-38-2	Arsenic	< 0.0050		mg/l	0.0050	0.0050	5	SW6020B	"	07-Feb-18 13:25	M-CT007	'418964E	3
7440-43-9	Cadmium	< 0.0010		mg/l	0.0010	0.0010	5	"	"		"	"	
7440-47-3	Chromium	< 0.010		mg/l	0.010	0.010	5	"	"	"	"	"	
7440-50-8	Copper	< 0.025		mg/l	0.025	0.025	5	"	"	"	"	"	
7439-92-1	Lead	< 0.0020		mg/l	0.0020	0.0020	5	"	"	"	"	"	
7782-49-2	Selenium	< 0.010		mg/l	0.010	0.010	5	"	"	"	"	"	
7440-02-0	Nickel	< 0.0025		mg/l	0.0025	0.0025	5	ıı	"	07-Feb-18 15:19	"	"	
7440-22-4	Silver by method 419000-	< 0.0010		mg/l	0.0010	0.0010	5	"	"	"	"	"	

0.0002 0.0002

1

SW7470A

07-Feb-18 07-Feb-18 M-CT007 419000A 11:54

07-Feb-18 16:41 Page 6 of 11

mg/l

Analysis performed by Phoenix Environmental Labs, Inc. * - MACT007

< 0.0002

7439-97-6 Mercury

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ASTM D 1293-99B										
Batch 1801685 - General Preparation										
<u>Duplicate (1801685-DUP1)</u>			Source: SC	43704-01	Pre	epared: 05-	Feb-18 A	Analyzed: 07-Fe	eb-18	
рН	6.51		pH Units			6.51			0	5
Reference (1801685-SRM1)					Pre	epared: 05-	Feb-18 A	Analyzed: 07-Fe	eb-18	
pH	6.02		pH Units		6.00		100	97.5-102. 5		
Reference (1801685-SRM2)					Pre	epared: 05-	Feb-18 A	Analyzed: 07-Fe	eb-18	
рН	6.02		pH Units		6.00		100	97.5-102. 5		

Analyte(s)	Result	Flag Uni	ts *RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
200.8-5.4									
Batch 418964A - 418964-20									
BLK (BZ84827-BLK)				Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Copper	< 0.025	mg	/I 0.025				-		
Nickel	< 0.0050	mg	/I 0.0050				-		
Lead	< 0.0025	mg	/I 0.0025				-		
Silver	< 0.0025	mg	/I 0.0025				-		
Chromium	< 0.010	mg	/I 0.010				-		
Cadmium	< 0.0005	mg	/I 0.0005				-		
Arsenic	< 0.0025	mg	/I 0.0025				-		
Selenium	< 0.005	mg	/I 0.005				-		
Antimony	< 0.0020	mg	/I 0.0020				-		
DUP (BZ84827-DUP)		Source	e: SC43704-01	Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Lead	< 0.0025	mg			,		-	NC	20
Silver	< 0.0025	mg					_	NC	20
Nickel	< 0.0050	mg					_	NC	20
Selenium	< 0.005	mg					_	NC	20
Copper	< 0.025	mg					_	NC	20
Chromium	< 0.010	mg					_	NC	20
Cadmium	< 0.0005	mg					_	NC	20
Arsenic	< 0.0025	mg					_	NC	20
Antimony	< 0.0020	mg			BRL		_	NC	20
LCS (BZ84827-LCS)		3		Pre		Feh-18 ∆n	alyzed: 07-F		
Chromium	0.0517	mg	/I 0.010	0.05	spareu. 00-	103	75-125	<u>CD-10</u>	20
Silver	0.0497	mg		0.05		99.4	75-125 75-125		20
Nickel	0.0526	mg		0.05		105	75-125 75-125		20
Selenium	0.0513	mg		0.05		103	75-125 75-125		20
Lead	0.0489	mg		0.05		97.8	75-125		20
Cadmium	0.0511	mg		0.05		102	75-125		20
Arsenic	0.0483	mg		0.05		96.6	75-125 75-125		20
Copper	0.0505	mg		0.05		101	75-125		20
Antimony	0.0539	mg		0.05		108	75-125		20
•	0.0559	_			naradi 06		nalyzed: 07-F	ob 10	20
MS (BZ84827-MS)	0.0490	'	e: SC43704-01		epared. 06-			<u>en-10</u>	20
Nickel	0.0489	mg		0.05		95.8	75-125		20
Silver	0.0491	mg		0.05		98.2	75-125		20
Selenium	0.0501	mg		0.05		100	75-125		20
Lead	0.0485	mg		0.05		95.6	75-125		20
Chromium	0.0495	mg		0.05		96.2	75-125		20
Cadmium	0.0495	mg		0.05		99.0	75-125		20
Arsenic	0.0479	mg		0.05		97.0	75-125 75-125		20
Copper	0.0532	mg		0.05	DDI	98.6	75-125		20
Antimony	0.0532	mg	/I 0.0020	0.05	BRL	106	75-125		20
<u>200.7</u>									
atch 418943A - 418943									
BLK (BZ84786-BLK)				Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Lead	< 0.002	mg	/I 0.002				-		
Calcium	0.015	mg	/I 0.010				-		
Magnesium	< 0.010	mg	/I 0.010				-		
Zinc	< 0.002	mg	/I 0.002				-		
Iron	< 0.010	mg	/I 0.010				-		
DUP (BZ84786-DUP)		Source	e: BZ84786	Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Calcium	66.2	mg		<u>. 10</u>				0.3	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E200.7										
Batch 418943A - 418943										
DUP (BZ84786-DUP)			Source: BZ	<u> 284786</u>	Pre	pared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Lead	< 0.002		mg/l	0.002				-	NC	20
Magnesium	22.1		mg/l	0.010				-	0.9	20
Zinc	0.055		mg/l	0.002				-	1.8	20
Iron	0.033		mg/l	0.010				-	NC	20
LCS (BZ84786-LCS)					Pre	pared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Magnesium	0.9800		mg/l	0.010	1		98.0	75-125		20
Calcium	1.018		mg/l	0.010	1		102	75-125		20
Zinc	0.9523		mg/l	0.002	1		95.2	75-125		20
Lead	1.881		mg/l	0.002	2		94.1	75-125		20
Iron	0.9710		mg/l	0.010	1		97.1	75-125		20
MS (BZ84786-MS)			Source: BZ	<u> 284786</u>	<u>Pre</u>	pared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Zinc	1.024		mg/l	0.002	1		97.0	75-125		20
Calcium	64.90		mg/l	0.010	1		NC	75-125		20
Lead	1.841		mg/l	0.002	2		92.1	75-125		20
Magnesium	22.19		mg/l	0.010	1		NC	75-125		20
Iron	1.004		mg/l	0.010	1		97.1	75-125		20
E350.1										
Batch 418950A - 418950										
BLK (BZ84710-BLK)					Pre	nared: 06-	Feb-18 An	alyzed: 07-F	eh-18	
Ammonia as Nitrogen	< 0.05		mg/l	0.05	<u> </u>	pa. 0a. 00		-	00 10	
DUP (BZ84710-DUP)	0.00		Source: BZ		Dro	nared: 06-l	Feh-18 Δn	alyzed: 07-F	ah_18	
Ammonia as Nitrogen	0.11		mg/l	0.05	110	pared. 00-	I CD-10 AII		NC	20
-	0.11		mg/i	0.00	Dro	narad: 06	Eah 10 An	alvzad: 07 E		20
LCS (BZ84710-LCS) Ammonia as Nitrogen	3.450		mg/l	0.05	3.74	pareu. 00-	92.2	alyzed: 07-F 90-110	<u>eb-10</u>	20
-	3.430		-			narad: 06		alyzed: 07-F	oh 10	20
MS (BZ84710-MS)	1.840	m	Source: BZ	0.05	2	pareu. 00-	85.9	90-110	<u>eb-16</u>	20
Ammonia as Nitrogen	1.040		mg/l	0.05	2		65.9	90-110		20
<u>SW6020B</u>										
Batch 418964B - 418964-										
BLK (BZ84827-BLK)					Pre	pared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Antimony	< 0.0020		mg/l	0.0020				-		
Lead	< 0.0025		mg/l	0.0025				-		
Silver	< 0.0025		mg/l	0.0025				-		
Nickel	< 0.0050		mg/l	0.0050				-		
Selenium	< 0.005		mg/l	0.005				-		
Copper	< 0.025		mg/l	0.025				-		
Chromium	< 0.010		mg/l	0.010				-		
Arsenic	< 0.0025		mg/l	0.0025				-		
Cadmium	< 0.0005		mg/l	0.0005				-		
<u>DUP (BZ84827-DUP)</u>			Source: SC	243704-01	<u>Pre</u>	pared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Antimony	< 0.0020		mg/l	0.0020				-	NC	20
Copper	< 0.025		mg/l	0.025		BRL		-	NC	20
Nickel	< 0.0050		mg/l	0.0050		BRL		-	NC	20
Silver	< 0.0025		mg/l	0.0025		BRL		-	NC	20
Lead	< 0.0025		mg/l	0.0025		BRL		-	NC	20
Cadmium	< 0.0005		mg/l	0.0005		BRL		-	NC	20
Arsenic	< 0.0025		mg/l	0.0025		BRL		-	NC	20
Selenium	< 0.005		mg/l	0.005		BRL		-	NC	20
Chromium	< 0.010		mg/l	0.010		BRL		-	NC	20
LCS (BZ84827-LCS)					Pre	nared: 06-	Feh-18 An	alyzed: 07-F	oh₋18	

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW6020B										
Batch 418964B - 418964-										
LCS (BZ84827-LCS)					Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Antimony	0.0539		mg/l	0.0020	0.05		108	75-125		20
Silver	0.0497		mg/l	0.0025	0.05		99.4	75-125		20
Arsenic	0.0483		mg/l	0.0025	0.05		96.6	75-125		20
Cadmium	0.0511		mg/l	0.0005	0.05		102	75-125		20
Chromium	0.0517		mg/l	0.010	0.05		103	75-125		20
Copper	0.0505		mg/l	0.025	0.05		101	75-125		20
Lead	0.0489		mg/l	0.0025	0.05		97.8	75-125		20
Selenium	0.0513		mg/l	0.005	0.05		103	75-125		20
Nickel	0.0526		mg/l	0.0050	0.05		105	75-125		20
MS (BZ84827-MS)		Sc	ource: SC	243704-01	Pre	epared: 06-	Feb-18 An	alyzed: 07-F	eb-18	
Antimony	0.0532		mg/l	0.0020	0.05		106	75-125		20
Cadmium	0.0495		mg/l	0.0005	0.05	BRL	99.0	75-125		20
Chromium	0.0495		mg/l	0.010	0.05	BRL	96.2	75-125		20
Copper	0.0532		mg/l	0.025	0.05	BRL	98.6	75-125		20
Lead	0.0485		mg/l	0.0025	0.05	BRL	95.6	75-125		20
Selenium	0.0501		mg/l	0.005	0.05	BRL	100	75-125		20
Nickel	0.0489		mg/l	0.0050	0.05	BRL	95.8	75-125		20
Silver	0.0491		mg/l	0.0025	0.05	BRL	98.2	75-125		20
Arsenic	0.0479		mg/l	0.0025	0.05	BRL	97.0	75-125		20
<u>SW7470A</u>										
Batch 419000A - 419000-										
BLK (BZ84827-BLK)					Pre	epared & Ar	nalyzed: 07-	-Feb-18		
Mercury	< 0.0002		mg/l	0.0002				-		
DUP (BZ84827-DUP)		Sc	ource: S0	243704-01	Pre	epared & Ar	nalyzed: 07-	-Feb-18		
Mercury	< 0.0002	_	mg/l	0.0002		BRL	-	-	NC	30
LCS (BZ84827-LCS)			-		Pre	epared & Ar	nalyzed: 07-	-Feb-18		
Mercury	0.0022		mg/l	0.0002	0.0025		86.9	75-125		30
MS (BZ84827-MS)		Sc	•	243704-01	Pre	epared & Ar	nalyzed: 07-	-Feb-18		
Mercury	0.0020	<u>50</u>	mg/l	0.0002	0.0025	BRL	81.5	75-125		30
Moroary	0.0020		mg/i	0.0002	3.0020	DIKE	01.0	10 120		00

Notes and Definitions

m This parameter is outside laboratory ms/msd specified recovery limits.

Q1 Present in blank, no bias suspected.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis.

Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

07-Feb-18 16:41 Page 11 of 11

💸 eurofins

CHAIN OF C

E	
Y	
	-
	jo
-	-

Page

Spectrum Analytical

.: 0	
andlir	9/1 // //
18 H	Salar Health
Speci	0.0000000000000000000000000000000000000

☐ Standard TAT-7 to 10 business days

2181十月日 All TATS subject to Inhoratory approval

Min. 24-hr notification needed for rushes

Samples disposed after 30 days unless otherwise instruged. ングでもころ

Report To: Chr CM/1 CON MENTALINE 67 HAVE RO CTIO BRID TE MAD 8/5	Invoice To:	SWO.	Project No:	4017-235 4016 NR
Tolephone #: TAPAILO Troject Mgr:	701	Oace #:	Locution: Sampler(s):	WHITINS WILLE (NOCTHRONDS) IN MA R. GUAD
F=Field Filtered 1=Na ₂ S2O ₃ 2=HCi 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₂ PO ₄	3=H ₃ SO ₄ 4=HNO ₅ 5=NaOH 6=Ascorbic Acid 10=H ₃ PO ₂ 11= 12=	bic Acid	List Preservative Code below:	
			1 1 00 2	1
rinking Water GW=Groundwater	ate.	Cantainers	sissipuly Signature Signat	MA DEP MCP CAM Rep CT DPB RCP Report
V=Oil SO=Soil SL=Slidge A=Indool X1=	A=indoor/Ambient Air Ste-Soil Gas X2= X3=	sselO	2000) COS) STATE	Standard No QC Doar No SP Na
G= Grab	C=Compsite		WOY 151-	☐N Reduced*
Lab ID: Sample ID:	Date: Time:	1614 / 10 # 4 10 #	Ho wy	Other: State-specific reporting flindards:
3 TOUR OUTFALL	3/2/18 1130 SAV	SN D	×	D RTS PORTERIA
	465			FOR ME
				1 TOTA, Sb. AS, Cd., Cr.
				O CU, Fe Pb, Ha,
				Wise, Ag, En
				a sacies
				000017515
	X			
Relinquished by:	Received by:	Date: Time:	Je dwo J	
CRG	200	0101 2-5-2	O. 8 E-mail to:	ravala con envicon
Dir	(De	H5/18 164	O Company Record	
			Condition upon receipt:	pt: Cuspdy Seals:
			IRSSs Ambient The	Seitle-Foren

Additional Resource for Selecting Sufficiently Sensitive Test Methods for RGP Notice of Intent (NOI) Sampling Requirements¹

Table 1: Parameters, Required Minimum Levels (MLs), and Common Test Methods²

Table 1. I arameters, Required Minimun		uirements
Parameter	ML Must Be ≤	Commonly Used Test Method(s) from 40 C.F.R. Part 136 that Generally Achieves the ML Noted
A. Inorganics		
Ammonia	0.1 mg/L	SM 4500 B and D; 350.1
Chloride	230 mg/L	SM 4110 B; 300.0
Total Residual Chlorine	50 μg/L	SM 4500-Cl G and E
Total Suspended Solids	30 mg/L	SM 2540 D
Antimony	206 μg/L	200.8 and 200.9
Arsenic	$FW=10 \mu g/L$ $SW=36 \mu g/L$	200.8 and 200.9 in FW 200.7, 200.8 and 200.9 in SW
Cadmium	FW= 0.25 μg/L SW= 8.8 μg/L in MA SW= 9.3 μg/L in NH	200.8 in FW 200.8 and 200.9 in SW
Chromium III	FW= 74 μg/L SW= 100 μg/L	200.7, 200.8 and 200.9
Chromium VI	$FW=11 \mu g/L$ $SW=50 \mu g/L$	218.6
Copper	$FW=9 \mu g/L$ $SW=3.1 \mu g/L$	200.8 and 200.9
Iron	$FW = 1,000 \mu g/L$	200.7 and 200.8
Lead	FW= $2.5 \mu g/L$ SW= $8.1 \mu g/L$	200.8 and 200.9
Mercury	FW= 0.77 μg/L SW= 0.739 μg/L	245.1, 245.7 and 1631E
Nickel	$FW=52 \mu g/L$ $SW=8.2 \mu g/L$	200.8 and 200.9
Selenium	FW= 5.0 μg/L SW= 71 μg/L	200.8 and 200.9 in FW 200.7, 200.8 and 200.9 in SW
Silver	FW= 3.2 μg/L SW= 1.9 μg/L	200.8
Zinc	FW= 120 μg/L SW= 81 μg/L	200.7 and 200.8
Cyanide	$FW = 5.2 \mu g/L$ SW = 5.0 \mu g/L	* SM 4500-CN
B. Non-Halogenated Volatile Organic Compounds	120	
Total BTEX ³	100 μg/L (sum of individual MLs)	624 and 1624B
Benzene	5.0 μg/L	624 and 1624B
1,4 Dioxane	50 μg/L	SIM
Acetone	7.97 mg/L	524.2
Phenol	300 μg/L	420.1 and 420.4

Batch Summary

<u>1801685</u>

General Chemistry Parameters

1801685-DUP1

1801685-SRM1

1801685-SRM2

SC43704-01 (AP Outfall)

418943A

Subcontracted Analyses

BZ84786-BLK

BZ84786-DUP

BZ84786-LCS

BZ84786-MS

SC43704-01 (AP Outfall)

418943B

Subcontracted Analyses

BZ84786-BLK

BZ84786-DUP

BZ84786-LCS

BZ84786-MS

SC43704-01 (AP Outfall)

418950A

Subcontracted Analyses

BZ84710-BLK

BZ84710-DUP

BZ84710-LCS

BZ84710-MS

SC43704-01 (AP Outfall)

418964A

Subcontracted Analyses

BZ84827-BLK

BZ84827-DUP

BZ84827-LCS

BZ84827-MS

SC43704-01 (AP Outfall)

418964B

Subcontracted Analyses

BZ84827-BLK

BZ84827-DUP

BZ84827-LCS

BZ84827-MS

SC43704-01 (AP Outfall)

419000A

Subcontracted Analyses

BZ84827-BLK

BZ84827-DUP

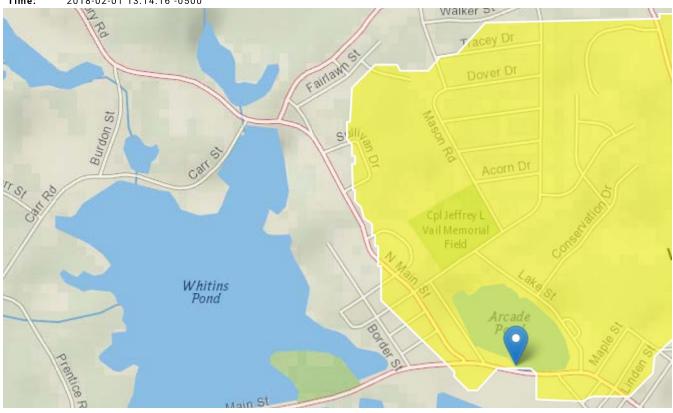
BZ84827-LCS

BZ84827-MS

SC43704-01 (AP Outfall)

ATTACHMENT B

STREAMSTATS REPORT FOR ARCADE POND OUTFALL


StreamStats Report for Arcade Pond Outfall

Region ID: MA

Workspace ID: MA20180201181401357000

Clicked Point (Latitude, Longitude): 42.11220, -71.67708

Time: 2018-02-01 13:14:16 -0500

Whitinsville, MA - Arcade Pond at its discharge point (flow south to Mumford River)

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.55	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	3.216	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.22	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code Parameter Name Value Units Min Limit Max Limit

1 of 3

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.55	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	3.216	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.22	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0455	ft^3/s
7 Day 10 Year Low Flow	0.0189	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

August Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.55	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	3.216	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.22	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

August Flow-Duration Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

August Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
August 50 Percent Duration	0.115	ft^3/s

August Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water

2 of 3 2/1/2018, 1:17 PM

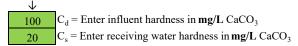
Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

3 of 3

ATTACHMENT C

WATER QUALITY-BASED EFFLUENT LIMIT CALCULATIONS

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0.012	Q_R = Enter upstream flow in MGD
0.072	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	
6.51	pH in Standard Units
5	Temperature in ^o C
0.27	Ammonia in mg/L
25	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in μg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
0	Copper in µg/L
337	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
10	Zinc in μg/L
	•

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

Enter influent concentrations in the units specified

TRC in µg/L
Ammonia in mg/L
Antimony in μg/L
Arsenic in μg/L
Cadmium in μg/L
Chromium III in µg/L
Chromium VI in μg/L
Copper in μg/L
Iron in μg/L
Lead in μg/L
Mercury in μg/L
Nickel in μg/L
Selenium in μg/L
Silver in μg/L
Zinc in μg/L
Cyanide in µg/L
Phenol in μg/L
Carbon Tetrachloride in µg/L
Tetrachloroethylene inμg/L
Total Phthalates in μg/L
Diethylhexylphthalate in µg/L
Benzo(a)anthracene in μg/L
Benzo(a)pyrene in μg/L
Benzo(b)fluoranthene in μg/L
Benzo(k)fluoranthene in μg/L
Chrysene in µg/L
Dibenzo(a,h)anthracene in μg/L
Indeno(1,2,3-cd)pyrene in μg/L
Methyl-tert butyl ether in μg/L

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \underline{Q_R + Q_P}$$

 Q_P

 $Q_R = 7Q10$ in MGD

 Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

 $C_d = Discharge hardness in mg/L$

 $Q_s = Upstream flow (7Q10) in MGD$

C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [\ln(h)] + b_c\}$

m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L

dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

$$Q_{d}$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_{r} = \underline{Q_{d}C_{d} + Q_{s}C}$$

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 $C_s = Upstream$ (receiving water) concentration in $\mu g/L$

 $Q_r = Downstream receiving water flow in MGD$

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

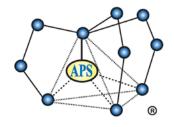
AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor

A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	13	μg/L	50	μg/L
Total Suspended Solids	30	mg/L		P 8 -		r-6-
Antimony	206	μg/L	747	μg/L		
Arsenic	104	μg/L μg/L	12	μg/L μg/L		
Cadmium	10.2	μg/L μg/L	0.2886	μg/L μg/L		
Chromium III			91.0			
Chromium VI	323	μg/L		μg/L		
	323	μg/L	13.3	μg/L		
Copper	242	μg/L	9.8	μg/L		
Iron	5000	μg/L	1111	μg/L		
Lead	160	$\mu g/L$	3.18	$\mu g/L$		
Mercury	0.739	$\mu g/L$	1.06	$\mu g/L$		
Nickel	1450	$\mu g/L$	54.9	$\mu g/L$		
Selenium	235.8	μg/L	5.8	μg/L		
Silver	35.1	μg/L	3.6	μg/L		
Zinc	420	μg/L	124.5	μg/L		
Cyanide	178	mg/L	6.1	μg/L		μg/L
B. Non-Halogenated VOCs		υ		1.0		
Total BTEX	100	$\mu g/L$				
Benzene	5.0	$\mu g/L$				
1,4 Dioxane	200	$\mu g/L$				
Acetone	7970	$\mu g/L$				
Phenol	1,080	μg/L	350	μg/L		
C. Halogenated VOCs	4.4	/T	1.0	/T		
Carbon Tetrachloride	4.4 600	μg/L	1.9	μg/L		
1,2 Dichlorobenzene1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	$\mu g/L$				
Ethylene Dibromide	0.05	$\mu g/L$				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L	2.0	/ T		
Tetrachloroethylene	5.0 70	μg/L	3.9	μg/L		
cis-1,2 Dichloroethylene Vinyl Chloride	2.0	μg/L μg/L				
v myi Cinoriae	2.0	μg/L				


1.2

D. Non-Halogenated SVOCs

Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.6	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0044	μg/L	0.1	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0044	μg/L	0.1	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0044	μg/L	0.1	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0044	μg/L	0.1	$\mu g/L$
Chrysene	1.0	μg/L	0.0044	μg/L	0.1	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0044	μg/L	0.1	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	$\mu g/L$	0.0044	μg/L	0.1	$\mu g/L$
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	$\mu g/L$				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L μg/L			0.5	μg/L
F. Fuels Parameters	1.0	μg/L				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L mg/L				
Methyl-tert-Butyl Ether	70	mg/L μg/L	23	μg/L		
tert-Butyl Alcohol	120			μg/L		
tert-Amyl Methyl Ether	90	μg/L				
tert-Amyr Methyr Ether	90	μg/L				

ATTACHMENT D

WATER TREATMENT MEDIA INFORMATION

Applied Polymer Systems

519 Industrial Drive, Woodstock, GA 30189

www.siltstop.com

Phone: 678-494-5998 Toll-free: 866-200-9868 Fax: 678-494-5298

APS 700 Series Floc Logs®

Polyacrylamide Sediment and Turbidity Control Applicator Logs

APS 700 Series Floc Logs are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Applied Polymer Systems, Inc. or your local distributor for free testing and site-specific application information.

Primary Applications

- Mine tailings and waste pile ditches
- Stormwater drainage from construction and building sites
- Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- Dredging operations as a flocculent

Features and Benefits

- Removes solubilized soils and clay from water
- Prevents colloidal solutions in water within ditch systems
- · Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

Specifications / Compliances

- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (*D. magna* or *O. mykiss*)
- 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

Packaging

APS 700 Series Floc Logs are packaged in boxes of four (4)

Technical Information

Appearance - semi-solid block Biodegradable internal coconut skeleton Percent Moisture - 40% maximum pH 0.5% Solution - 6-8 Shelf Life – up to 5 years when stored out of UV rays

Applied Polymer Systems

519 Industrial Drive, Woodstock, GA 30189

www.siltstop.com

Phone: 678-494-5998 Toll-free: 866-200-9868 Fax: 678-494-5298

Placement

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

Directions for Use

(Water and Floc Log Mixing is Very Important!)

APS 700 Series Floc Logs should be placed within the upper quarter to half of a *stabilized* ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

APS 700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.

Cleanup:

Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.

Precautions / Limitations

- APS 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will
 result and if water is necessary, use pressure washer.
- APS Floc Log will remain viable for up to 5 years when stored out of UV rays.
- APS 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.
- For product information, treatment system design assistance, or performance issues, contact Applied Polymer Systems.

SECTION 1: PRODUCT AND COMPANY INFORMATION						
PRODUCT TYPE:	Ion Exchange resin, Strong a	Ion Exchange resin, Strong acid cation				
PRODUCT NAME:	C-211 family, including C-211, C-211 XRR, C-211 UPS, C-211 C, C-211 PSMB, and C-211PSMBC					
COMPANY ID:	Evoqua Water Technologies LLC 181 Thorn Hill Drive, Warrendale, PA 15086					
TELEPHONE NUMBER:	INFORMATION: CORPORATE 866.926.8420					
	MEDICAL EMERGENCY: CHEMTREC 800.424.9300					
	TRANSPORTATION EMERGENCY: CHEMTREC 800.42					
DATE PREPARED:	May 8, 2015 REVIS	SION: 0				

SECTION 2: HAZARD(S) IDENTIFICATION						
HMIS RATINGS		NFPA RATINGS	GUIDE			
HEALTH 1			4 – EXTREME/SEVERE			
FLAMMABILITY 1			3 – HIGH/SERIOUS 2 – MODERATE 1 - SLIGHT			
PHYSICAL HAZARD 0			0 – MINIMUM W – WATER REACTIVE			
PERSONAL PROTECTION	E		OX - OXIDIZER			
PICTOGRAM		SIGNAL WORD	HAZARD STATEMENT			
		Warning	Causes serious eye irritation.			
PRECAUTIONARY STATE	MEN.	T(S)				
PREVENTION		Wear eye protection/ face protection.				
RESPONSE		IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER or doctor/ physician.				
STORAGE	STORAGE		Not applicable.			
OTHER HAZARDS						
NONE						

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS						
PERCENT BY WEIGHT COMMON NAME CAS NO. IMPURITIES						
	(Ingredient / Component)					
35-65%	Sulfonated polymer of styrene, ethylstyrene and divinylbenzene in	69011-22-9	NONE			

	the sodium form		
35-65%	Water	7732-18-5	NONE

NECESSARY FIRST AID INSTRUC	TIONS
INHALATION FIRST AID	Remove victim to fresh air and keep at rest in a position comfortable for breathing. Get medical attention if symptoms occur.
SKIN CONTACT FIRST AID	Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Get medical attention if symptoms occur.
EYE CONTACT FIRST AID	No known significant effects or critical hazards.
INGESTION FIRST AID:	Wash out mouth with water. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Do not induce vomiting unless directed to do so by medical personnel. Get medical attention if symptoms occur.
DESCRIPTION OF MOST IMPORTA	ANT SYMPTOMS
No specific data	
RECOMMENDATIONS FOR IMME	DIATE MEDICAL CARE

SECTION 5: FIRE-FIGHTING MEASURES		
SUITABLE EXTINGUISHING MEDIA	Water spray (fog), foam or dry chemical.	
UNSUITABLE EXTINGUISHING MEDIA	None known.	
SPECIFIC HAZARDS	No specific fire or explosion hazard. Decomposition products may include the following: carbon dioxide, carbon monoxide, metal oxide/oxides	
PERSONAL PROTECTIVE EQUIPMENT	Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.	

SECTION 6: ACCIDENTAL RELEASE MEASURES		
PERSONAL PRECAUTIONS, PROTECTIVE EQUIPMENT AND EMERGENCY PROCEDURES		
PERSONAL PRECAUTIONS	No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. Put on appropriate personal protective equipment. Hazard of slipping on spilled product.	
ENVIRONMENTAL PRECAUTIONS	Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).	

Resin C-211 Family Date 5/8/15 Rev: 0 Pages 2 of 6

CONTAINMENT AND CLEAN-UP	Move containers from spill area. Vacuum or sweep up material and place in a designated, labeled waste container. Dispose of via a licensed waste disposal contractor. Note: see Section 1 for emergency contact information and Section 13 for waste disposal. Prevent entry into sewers, water courses, basements or confined areas.
OTHER INFORMATION	NONE

SECTION 7: HANDLING AND STORAGE		
PRECAUTIONS FOR SAFE HANDLING	Remove contaminated clothing and protective equipment before entering eating areas. Workers should wash hands and face before eating, drinking and smoking. Put on appropriate personal protection equipment. Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed.	
CONDITIONS FOR SAFE STORAGE	Store between the following temperatures: -20 to 40°C (-4 to 104°F). Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination. Empty containers or liners may retain some product residues. It is recommended to store ion exchange resins at temperatures above the freezing point of water. If the resin should become frozen, the resin should not be mechanically handled and should be left to thaw out gradually at ambient temperature. It must be completely thawed before handling or use. No attempt should be made to accelerate the thawing process.	

SECTION 8: EXPOSURE CONTROLS	S/PERSONAL PR	OTECTION	
ENGINEERING CONTROLS	Good general ventilation should be sufficient to control worker exposure to airborne contaminants.		
RESPIRATORY PROTECTION	Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.		
SKIN PROTECTION	Wear suitable protective clothing and gloves. Suitable protective footwear.		
EYE/FACE PROTECTION	If contact with product is possible, wear safety glasses with side shields.		
EXPOSURE LIMITS/GUIDELINES	No exposure limit value known.		
	RESULT	OSHA 8 HR mg/m ³	ACGIH TLV 8 HR mg/m ³
PARTICULATES NOT OTHERWISE REGULATED (PNOR)	N/A		
PARTICULATES NOT OTHERWISE CLASSIFIED (PNOC)	N/A		

Resin C-211 Family Date 5/8/15 Rev: 0 Pages 3 of 6

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES			
COLOR	Brown	MOLECULAR WEIGHT	Not available.
ODOR	Translucent	ODOR THERSHOLD	Odorless
pH VALUE	Not Available	VAPOR PRESSURE	Not available.
MELTING POINT	>204 °C (1013 hPa)	VAPOR DENSITY	Not available.
FREEZING POINT	Not available.	RELATIVE DENSITY	600 to 700 kg/m ³
INITIAL BOILING POINT	Not available.	SOLUBILITY	Insoluble in the following
			materials: cold water
FLASHPOINT	Not available.	PARTITION COEFFICEINT	Not available.
EVAPORATION RATE	Not available.	AUTO IGNITION TEMP.	>500°C (>932°F)
FLAMMABILITY	Not available.	DECOMP. TEMP.	Not available.
UEL	Not available.	VISCOSITY	Not available.
LEL	Not available.		

SECTION 10: STABILITY AND REACTIVITY		
REACTIVIVITY	No specific test data related to reactivity available for this product or its ingredients.	
CHEMICAL STABILITY	The product is stable.	
POSSIBILITY OF HAZARDOUS REACTIONS	Under normal conditions of storage and use, hazardous reactions will not occur.	
CONDITIONS TO AVOID	No specific data.	
HAZAROUS DECOMPOSITION PRODUCTS	Under normal conditions of storage and use, hazardous decomposition products should not be produced.	

SECTION 11: TOXICOLO	GICAL INFOR	RMATION
INHALATION	ACUTE	No specific data.
	CHRONIC	No specific data.
SKIN	ACUTE	No specific data.
	CHRONIC	No specific data.
EYE	ACUTE	No specific data.
INGESTION	ACUTE	No specific data.
	CHRONIC	No specific data.
LD50		>5000 mg/kg Oral (rat)
LC50		Not applicable.
ACUTE TOXICITY ESTIMAT	E	Not available.
CARCINOGENICITY/MUTAGENICITY		No known significant effects or critical hazards.
REPRODUCTIVE EFFECTS		No known significant effects or critical hazards.
NEUROTOXICITY		No known significant effects or critical hazards.
OTHER EFFECTS		No known significant effects or critical hazards.
TARGET ORGANS		No known significant effects or critical hazards.

SECTION 12: ECOLOGICAL INFORMATION

The material, in its original state, is not harmful to the environment

SECTION 13: DISPOSAL CONSIDERATIONS

Resin C-211 Family Date 5/8/15 Rev: 0 Pages 4 of 6

SPILL/LEAK PROCEDURES	Isolate spill area to prevent falls as material can be a slipping hazard. Avoid contact with eyes and skin. Material is heavier than water and has limited water solubility. It will collect on the lowest surface.
CLEANUP	Clean up floor area. Sweep up. Avoid generation of dust.
REGULATORY REQUIREMENTS	If discarded in its purchased form, this product would not be a hazardous waste either by listing or by characteristic. However, under RCRA, it is the responsibility of the product user to determine at the time of disposal, whether a material containing the product or derived from the product should be classified as a hazardous waste. (40 CFR 261.20-24)
DISPOSAL	The generation of waste should be avoided or minimized wherever possible. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. This material and its container must be disposed of in a safe way. Empty containers or liners may retain some product residues. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Waste disposal should be in accordance with existing federal state, provincial and or local environmental controls laws.

LAND – DOT	UN/NA IDENTIFICATION NUMBER:	Not regulated.
	UN-PROPER SHIPPING NAME:	Not regulated.
	TRANSPORT HAZARD CLASS:	Not regulated.
	PACKING GROUP:	Not regulated.
	MARINE POLLUTANT:	Not regulated.
	HAZARD CLASS:	Not regulated.
WATER - IMO/IMDG	UN/NA IDENTIFICATION NUMBER:	Not regulated.
	UN-PROPER SHIPPING NAME:	Not regulated.
	TRANSPORT HAZARD CLASS:	Not regulated.
	PACKING GROUP:	Not regulated.
	MARINE POLLUTANT:	Not regulated.
AIR - ICAO/IATA	UN/NA IDENTIFICATION NUMBER:	Not regulated.
	UN-PROPER SHIPPING NAME:	Not regulated.
For product quantities	TRANSPORT HAZARD CLASS:	Not regulated.
less than 0.5 Kg	PACKING GROUP:	Not regulated.
	MARINE POLLUTANT:	Not regulated.

SECTION 15: REGULATO	SECTION 15: REGULATORY INFORMATION		
OSHA	NONE		
OSHA	NONE		
CAA	NONE		
CERCLA	NONE		
SARA	NONE		
SARA HAZARD CATEGORIES 311/312	Not applicable		
TSCA	NONE		

Resin C-211 Family Date 5/8/15 Rev: 0 Pages 5 of 6

SECTION 16: OTHER INFORMATION				
DISCLAIMER:	The information contained herein is based on data considered accurate. However, no warranty is expressed or implied regarding the accuracy of these data or the results to be obtained from the user thereof. It is the buyer's responsibility to ensure that its activities comply with federal, state, provincial and local laws.			
REVISION INDICATOR:	Revision 0: (This SDS replaces the former MSDS for this product pursuant to OSHA 1910.1200(g) Appendix D. The MSDS for this product should be considered obsolete).			

Resin C-211 Family Date 5/8/15 Rev: 0 Pages 6 of 6

ATTACHMENT E

USFWS ENDANGERED SPECIES CONSULTATION DOCUMENTATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: February 01, 2018

Consultation Code: 05E1NE00-2018-SLI-0834

Event Code: 05E1NE00-2018-E-01928 Project Name: Remediation General Permit

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0834

Event Code: 05E1NE00-2018-E-01928

Project Name: Remediation General Permit

Project Type: WATER QUALITY MODIFICATION

Project Description: Construction dewatering discharge from contaminated site to Arcade Pond

(which discharges to Mumford River). Discharge will be treated per the

RGP.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.11149947931605N71.6748515146477W

Counties: Worcester, MA

Threatened

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

No critical habitat has been designated for this species.

Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

New England Field Office

Conserving the Nature of New England

Friday, February 16, 2018

ENDANGERED SPECIES

Overview
Consultation
N.E. Listed Species
Species Under Review
Recovery Activities
Habitat Conservation
Images
Biological Opinions

PARTNERS FOR FISH & WILDLIFE

Overview
Restoration Initiatives
Species & Habitats of
Special Concern
Accomplishments
How to Participate
Habitat Restoration
Links

ENVIRONMENTAL CONTAMINANTS

Overview BTAG NRDAR Special Studies Oil Spills

FEDERAL ACTIVITIES

Overview
Federal Projects &
Permits
Wetland Permits
FERC_ Hydropower
Projects
River Flow Protection
Wind Energy Projects

OUTREACH

NH Envirothon Kids Corner Let's Go Outside

Staff Directory

Our Location

HOME

Endangered Species Reviews/Consultations

Endangered Species Consultation Project Review for Projects with Federal Involvement (authorizing, funding or carrying out the project)

The following information is designed to assist applicants or project sponsors in determining whether a federally-listed, proposed and/or candidate species may occur within the proposed project area and whether it is appropriate to contact our office for additional coordination or consultation. We encourage you to print out all materials used in the analyses of effects on listed, proposed or candidate species for your records or submission to the appropriate federal agency or our office.

Step 1. - Determine whether any listed, proposed, or candidate species (T/E species) are likely to occur within the proposed project action area based on location of the proposed project:

A. Choose your state list below and review for Towns in which federally-listed species occur:

Connecticut - 12 species (29 KB)
Massachusetts - 14 species (41 KB)
New Hampshire - 13 species (31 KB)
Rhode Island - 8 species (22 KB)
Vermont - 10 species (25 KB)

B. You should contact your state Natural Heritage Program or Endangered Species Program (see list below) for additional information on federally and state-listed species:

Rhode Island Natural Heritage Program
Connecticut Endangered Species Program
Massachusetts Natural Heritage and Endangered Species Program
Vermont Non-Game and Natural Heritage
New Hampshire Fish and Game's Non-game and Endangered Wildlife Program
New Hampshire Natural Heritage Bureau's Home Page

Please note that these agencies provide information on known occurrences; this information does not replace field surveys, especially for plants, as most project sites have not been previously surveyed specifically for listed species.

C. If the project falls within a Town where the endangered dwarf wedgemussel is known to occur, check the appropriate map to determine whether your project is in the vicinity of its known range.

Massachusetts - Connecticut River Watershed (912 KB)
New Hampshire/Vermont - Connecticut River Watershed
Upper Connecticut River (872 KB)
Middle Connecticut River (1.07 MB)
Lower Connecticut River (1.56 MB)
New Hampshire - Ashuelot River Watershed (886 KB)
Connecticut - Connecticut River Watershed (2.04 MB)

- D. If the project falls within a Town where the endangered northern red-bellied cooter is known to occur, or if the project occurs in Plymouth County, Massachusetts, check the map to determine whether your project is in the vicinity of its known range or critical habitat. NRBC MAP (59 KB)
- E. If a proposed project occurs in a Town with no known listed, proposed or candidate species present, no further coordination with the Service is needed. You may download a "no species present" letter (158 KB) stating "no species are known to occur in the project area".
- F. If the proposed project occurs in a Town with known occurrences of T/E species, proceed to Step 2.

Step 2. - Determine whether any listed or proposed New England Species are likely to occur within the proposed project area by comparing the habitat present within the proposed project action area with habitat that is suitable for the species.

- A. Review the information we have provided on the species list information from the appropriate state agency, and any other sources of information available to you to determine types of habitat the species use. A description of suitable habitat for New England's federally-listed species may be found in **New England Species**' profiles and fact sheets.
- B. Determine whether your proposed project action area has any potential for listed species habitat (e.g., are suitable roost trees present? Indiana bats; are wetlands present? bog turtles or Northeastern bulrush; will project affect a waterway? dwarf wedgemussel). After this initial coarse review, determine whether any more detailed surveys may be appropriate (e.g., survey for dwarf wedgemussels).
- C. If your state Natural Heritage Program or Endangered Species Program does not identify any listed species for the proposed project AND there is no potential habitat for any listed species within the action area, no further coordination

- with the Service is required. You may download a "no species present" letter (158 KB) stating "no species are known to occur in the project area".
- D. If you have identified that potential listed species habitat is present although the species has not been documented from that specific location, further coordination with our office is recommended. Please send the results of your assessment including any habitat surveys to:

Supervisor U.S. Fish and Wildlife Service 70 Commercial St., Suite 300 Concord, NH 03301

Include in your letter:

A detailed description of the proposed project, including approximate proposed project construction schedule and project activities (e.g., land clearing, utilities, stormwater management). Site plans are often helpful in our evaluation process.

- A description of the natural characteristics of the property and surrounding area (e.g., forested areas, freshwater wetlands, open waters, and soils). Photographs are often helpful in assessing the habitat. Additionally, please include a description of surrounding land use (residential, agricultural, or commercial).
- The location of the above referenced property and extent of any project related activities or discharges clearly
 indicated on a copy of a USGS 7.5 Minute Topographic Quadrangle (Quad) with the name of the Quad(s) and
 latitude/longitude clearly labeled.
- A description of conservation measures to avoid or minimize impacts to listed species.

Why does this matter?- In a case where no habitat is present, a quick and easy determination can be made that further coordination is not necessary. In a case where habitat is present, but you believe that the project activities will not impact listed species, it is important to coordinate with us to ensure that all project activities and all potential effects (direct and indirect) have been considered.

(Please allow 30 days following our receipt of your request for processing.)

Step 3. - Based on the results of the habitat survey and a description of the proposed project (including information as to whether any potential habitat may be directly or indirectly affected), the involved Federal agency may determine:

- The proposed project will result in no effect to any T/E species and no further coordination or consultation with the Service is required;
- Additional information (e.g., surveys) is required to determine whether any T/E species are likely to occur within the
 proposed project area; or
- The proposed project "may affect" a T/E species and consultation with the Service is required.

Files in PDF format will require Acrobat Reader to access the content. If you do not have a copy, please select the link [or click the image] to take you to the Adobe website where you can download a free copy. Get Adobe Acrobat Reader

Last updated: March 3, 2014

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 8, 2018

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2018)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact David Simmons of this office at 603-227-6425 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

ATTACHMENT F

HISTORIC PROPERTIES INFORMATION

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Northbridge; Place: Whitinsville; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
NBD.A	Whitinsville Historic District		Northbridge	
NBD.E	East Streetscape		Northbridge	
NBD.F	Fletcher Streetscape 1		Northbridge	
NBD.G	Fletcher Streetscape 2		Northbridge	
NBD.H	Forest Streetscape		Northbridge	
NBD.I	Grove Streetscape		Northbridge	
NBD.J	Linwood Avenue Streetscape 1		Northbridge	
NBD.K	Linwood Avenue Streetscape 2		Northbridge	
NBD.L	Lower High Streetscape		Northbridge	
NBD.M	Main Streetscape		Northbridge	
NBD.N	Maple Streetscape		Northbridge	
NBD.O	Pleasant Streetscape		Northbridge	
NBD.310		12 Baton Ave	Northbridge	
NBD.308		2 Briggs St	Northbridge	
NBD.307		5 Briggs St	Northbridge	
NBD.227		6-8 Briggs St	Northbridge	
NBD.221		Brook St	Northbridge	
NBD.235		Brook St	Northbridge	
NBD.216		2 Brook St	Northbridge	
NBD.234		5 Brook St	Northbridge	
NBD.217		10 Brook St	Northbridge	
NBD.233		11 Brook St	Northbridge	
NBD.218		12 Brook St	Northbridge	
NBD.219		16 Brook St	Northbridge	
NBD.232		17-21 Brook St	Northbridge	
NBD.220		20-22 Brook St	Northbridge	
NBD.231		25 Brook St	Northbridge	
Thursday, Fe	bruary 1, 2018			Page 1 of 11

Inv. No.	Property Name	Street	Town	Year
NBD.224		26 Brook St	Northbridge	
NBD.230		27-29 Brook St	Northbridge	
NBD.222		28 Brook St	Northbridge	
NBD.229		31-33 Brook St	Northbridge	
NBD.223		32-34 Brook St	Northbridge	
NBD.369		34 Brook St	Northbridge	
NBD.228		35 Brook St	Northbridge	
NBD.225		38 Brook St	Northbridge	
NBD.185		Castle Hill Rd	Northbridge	
NBD.184		182 Castle Hill Rd	Northbridge	
NBD.183		188 Castle Hill Rd	Northbridge	
NBD.182		192 Castle Hill Rd	Northbridge	
NBD.181		196 Castle Hill Rd	Northbridge	
NBD.336		3 Chestnut St	Northbridge	
NBD.337		7 Chestnut St	Northbridge	
NBD.1	Whitin, John Crane House	10 Chestnut St	Northbridge	r 1840
NBD.338		13 Chestnut St	Northbridge	
NBD.9	Whitinsville Savings Bank	Church St	Northbridge	1905
NBD.10	Village Congregational Church, The	Church St	Northbridge	1898
NBD.11	Whitinsville Social Library	Church St	Northbridge	c 1912
NBD.311	Pythian Building	Church St	Northbridge	
NBD.900	Northbridge Civil War Monument	Church St	Northbridge	1905
NBD.901	Northfield World War I Memorial Bench	Church St	Northbridge	c 1922
NBD.905	Town Common	Church St	Northbridge	
NBD.937	Dreams of Tomorrow Sculpture	Church St	Northbridge	1988
NBD.939	Casey, David P. Medal of Honor Monument	Church St	Northbridge	
NBD.2	Whitin House	31 Church St	Northbridge	c 1841
NBD.406	U. S. Post Office - Whitinsville Branch	44 Church St	Northbridge	1938
NBD.4	Pythian Building	76-82 Church St	Northbridge	r 1927
NBD.3	Whitin House	81 Church St	Northbridge	r 1875
NBD.5	Trowbridge, Charles House	107-109 Church St	Northbridge	c 1880
NBD.226		110-112 Church St	Northbridge	
NBD.6	Pollock, Susan House	151 Church St	Northbridge	c 1850
NBD.7	Fisher, John S. House	174 Church St	Northbridge	c 1880
NBD.8	Blanchard, G. M. House	229 Church St	Northbridge	c 1865
NBD.370		374-376 Church St	Northbridge	
NBD.377		374-376 Church St	Northbridge	
NBD.371		382-384 Church St	Northbridge	

Thursday, February 1, 2018 Page 2 of 11

Inv. No.	Property Name	Street	Town	Year
NBD.372		390-392 Church St	Northbridge	
NBD.373		402-404 Church St	Northbridge	
NBD.374		406-408 Church St	Northbridge	
NBD.375		414-416 Church St	Northbridge	
NBD.376		420-422 Church St	Northbridge	
NBD.19	United Presbyterian Church	Cottage St	Northbridge	1914
NBD.312		3 Cottage St	Northbridge	
NBD.12		24 Cottage St	Northbridge	c 1870
NBD.193		24 Cottage St	Northbridge	
NBD.191		28 Cottage St	Northbridge	
NBD.192		30 Cottage St	Northbridge	
NBD.190		32-34 Cottage St	Northbridge	
NBD.13	Whitin Mill Workers Housing	40-42 Cottage St	Northbridge	c 1820
NBD.14	Richard Malmgren Memorial Hall	48 Cottage St	Northbridge	r 1897
NBD.15	Lackey, Eugene House	63-65 Cottage St	Northbridge	c 1870
NBD.16		67-69 Cottage St	Northbridge	r 1872
NBD.17		74-76 Cottage St	Northbridge	c 1845
NBD.18	Rexford, H. House	106-108 Cottage St	Northbridge	1879
NBD.23	Clarke School	Cross St	Northbridge	1878
NBD.24	Saint Patrick's Catholic Church	Cross St	Northbridge	1898
NBD.204	Cross Street School	Cross St	Northbridge	
NBD.20	Adams, Earnst A. Art Studio	20 Cross St	Northbridge	c 1915
NBD.21		37 Cross St	Northbridge	r 1845
NBD.169		39-41 Cross St	Northbridge	c 1890
NBD.22	Whitin, Dr. N. D. House	43 Cross St	Northbridge	c 1850
NBD.389		51 Cross St	Northbridge	
NBD.26	Whitinsville Old Cotton Mill	Douglas Rd	Northbridge	c 1845
NBD.25	Whitinsville Mill and Forge	64 Douglas Rd	Northbridge	c 1826
NBD.257	St. Patrick's Church	East St	Northbridge	
NBD.236		14 East St	Northbridge	
NBD.258		17 East St	Northbridge	
NBD.368		18 East St	Northbridge	
NBD.67	Whitin Mill Workers Housing	21-23 East St	Northbridge	c 1875
NBD.237		24 East St	Northbridge	
NBD.68	Whitin Mill Workers Housing	25-27 East St	Northbridge	c 1850
NBD.285		26 East St	Northbridge	
NBD.238		28 East St	Northbridge	
NBD.69	Whitin Mill Workers Housing	29-31 East St	Northbridge	c 1850
Thursday, Fe	bruary 1, 2018			Page 3 of 11

nv. No.	Property Name	Street	Town	Year
NBD.309		30 East St	Northbridge	
NBD.70	Whitin Mill Workers Housing	33 East St	Northbridge	c 1850
NBD.239		34 East St	Northbridge	
IBD.240		36-38 East St	Northbridge	
IBD.28		42-44 East St	Northbridge	c 1850
IBD.259		45-47 East St	Northbridge	
IBD.241		52 East St	Northbridge	
IBD.260		53 East St	Northbridge	
IBD.242		62 East St	Northbridge	
IBD.243		64 East St	Northbridge	
IBD.244		68 East St	Northbridge	
IBD.245		70 East St	Northbridge	
IBD.261		77 East St	Northbridge	
BD.246		78 East St	Northbridge	
BD.247		80 East St	Northbridge	
BD.248		84 East St	Northbridge	
BD.262		87 East St	Northbridge	
BD.249		88 East St	Northbridge	
BD.250		90-92 East St	Northbridge	
BD.251		94 East St	Northbridge	
BD.252		106 East St	Northbridge	
BD.253		108 East St	Northbridge	
BD.263		109-111 East St	Northbridge	
BD.264		113 East St	Northbridge	
BD.254		114 East St	Northbridge	
BD.265		117-119 East St	Northbridge	
BD.255		118 East St	Northbridge	
BD.256		122 East St	Northbridge	
BD.266		123 East St	Northbridge	
BD.305		123 East St	Northbridge	
BD.267		147 East St	Northbridge	
BD.268		151 East St	Northbridge	
BD.269		161 East St	Northbridge	
BD.270		165-171 East St	Northbridge	
IBD.271		179 East St	Northbridge	
IBD.31	Whitin Estate Gray Barn	Elm Pl	Northbridge	c 1890
BD.30	Fletcher, Col. James	1 Elm Pl	Northbridge	c 1770
BD.194		2 Elm Pl	Northbridge	

Thursday, February 1, 2018 Page 4 of 11

Inv. No.	Property Name	Street	Town	Year
NBD.354		1A Elm St	Northbridge	
NBD.355		1 Elm St	Northbridge	
NBD.366		4 Elm St	Northbridge	
NBD.356		5 Elm St	Northbridge	
NBD.365		6 Elm St	Northbridge	
NBD.364		8 Elm St	Northbridge	
NBD.357		9-11 Elm St	Northbridge	
NBD.358		13-19 Elm St	Northbridge	
NBD.29	Whitin Mill Workers Housing	14-20 Elm St	Northbridge	c 1850
NBD.363		26 Elm St	Northbridge	
NBD.362		32-34 Elm St	Northbridge	
NBD.361		38 Elm St	Northbridge	
NBD.360		40-44 Elm St	Northbridge	
NBD.359		41 Elm St	Northbridge	
NBD.32	Whitin Mill Workers Housing	4-6 Fletcher St	Northbridge	c 1885
NBD.33	Whitin Mill Workers Housing	8-10 Fletcher St	Northbridge	c 1885
NBD.71	Whitin Mill Workers Housing	18-20 Fletcher St	Northbridge	r 1828
NBD.74	Whitin Mill Workers Housing	19-21 Fletcher St	Northbridge	c 1850
NBD.72	Whitin Mill Workers Housing	28 Fletcher St	Northbridge	r 1828
NBD.84	Whitin Mill Workers Housing	29 Fletcher St	Northbridge	c 1850
NBD.73	Whitin Mill Workers Housing	38 Fletcher St	Northbridge	r 1828
NBD.34	Whitin Mill Boarding House	42-48 Fletcher St	Northbridge	c 1845
NBD.75	Whitin Mill Workers Housing	45-47 Fletcher St	Northbridge	c 1850
NBD.76	Whitin Mill Workers Housing	52 Fletcher St	Northbridge	c 1880
NBD.83	Whitin Mill Workers Housing	53 Fletcher St	Northbridge	c 1950
NBD.77	Whitin Mill Workers Housing	59-63 Fletcher St	Northbridge	c 1850
NBD.79	Whitin Mill Workers Housing	62-64 Fletcher St	Northbridge	c 1880
NBD.80	Whitin Mill Workers Housing	70 Fletcher St	Northbridge	c 1830
NBD.78	Whitin Mill Workers Housing	71 Fletcher St	Northbridge	c 1850
NBD.81	Whitin Mill Workers Housing	76 Fletcher St	Northbridge	c 1830
NBD.82	Whitin Mill Workers Housing	83 Fletcher St	Northbridge	c 1840
NBD.35	Fletcher, Samuel Homestead	90-98 Fletcher St	Northbridge	r 1840
NBD.36	Whitin Mill Workers Housing	106 Fletcher St	Northbridge	c 1850
NBD.37	Whitin Mill Workers Housing	120 Fletcher St	Northbridge	c 1840
NBD.38	Whitin, Paul House	456 Fletcher St	Northbridge	c 1790
NBD.94	Whitin Mill Workers Housing	2-4 Forest St	Northbridge	r 1850
NBD.85	Whitin Mill Workers Housing	3-5 Forest St	Northbridge	r 1850
NBD.95	Whitin Mill Workers Housing	6-8 Forest St	Northbridge	r 1850
	Whitin Mill Workers Housing	6-8 Forest St	Northbridge	r 1850

Thursday, February 1, 2018 Page 5 of 11

lnv. No.	Property Name	Street	Town	Year
NBD.86	Whitin Mill Workers Housing	7-9 Forest St	Northbridge	r 1850
NBD.96	Whitin Mill Workers Housing	10-12 Forest St	Northbridge	r 1850
NBD.87	Whitin Mill Workers Housing	11-13 Forest St	Northbridge	r 1850
NBD.97	Whitin Mill Workers Housing	14-16 Forest St	Northbridge	r 1850
NBD.88	Whitin Mill Workers Housing	15-17 Forest St	Northbridge	r 1850
NBD.98	Whitin Mill Workers Housing	18-20 Forest St	Northbridge	r 1850
NBD.89	Whitin Mill Workers Housing	19-21 Forest St	Northbridge	r 1850
NBD.99	Whitin Mill Workers Housing	22-24 Forest St	Northbridge	r 1850
NBD.90	Whitin Mill Workers Housing	23-25 Forest St	Northbridge	r 1850
NBD.100	Whitin Mill Workers Housing	26-30 Forest St	Northbridge	r 1850
NBD.91	Whitin Mill Workers Housing	27-29 Forest St	Northbridge	r 1850
NBD.101	Whitin Mill Workers Housing	30-32 Forest St	Northbridge	r 1850
NBD.92	Whitin Mill Workers Housing	31-33 Forest St	Northbridge	r 1850
NBD.102	Whitin Mill Workers Housing	34-36 Forest St	Northbridge	r 1850
NBD.93	Whitin Mill Workers Housing	35-37 Forest St	Northbridge	r 1850
NBD.104	Whitin Mill Workers Housing	1-3 Grove St	Northbridge	r 1850
NBD.105	Whitin Mill Workers Housing	5 Grove St	Northbridge	r 1850
NBD.106	Whitin Mill Workers Housing	11 Grove St	Northbridge	r 1850
NBD.107	Whitin Mill Workers Housing	15-17 Grove St	Northbridge	r 1850
NBD.339		2 High St	Northbridge	
NBD.123	Whitin Mill Workers Housing	6 High St	Northbridge	c 1864
IBD.334		66 High St	Northbridge	
IBD.333		68 High St	Northbridge	
NBD.332		76 High St	Northbridge	
NBD.331		80-82 High St	Northbridge	
IBD.330		90 High St	Northbridge	
NBD.42	Aldrich School	Hill St	Northbridge	c 1890
NBD.323	Whitinsville Retirement Society	Hill St	Northbridge	
IBD.40	Taft, Gustavus House	24 Hill St	Northbridge	c 1875
NBD.43	Lasell, Chester Whitin House	46 Hill St	Northbridge	c 1875
IBD.313		56 Hill St	Northbridge	
IBD.39	Remington, G. C. House	62 Hill St	Northbridge	c 1845
IBD.315		76 Hill St	Northbridge	
IBD.316		76 Hill St	Northbridge	
NBD.314		120 Hill St	Northbridge	
NBD.317		120 Hill St	Northbridge	
NBD.324		125 Hill St	Northbridge	
NBD.325		125 Hill St	Northbridge	

Thursday, February 1, 2018 Page 6 of 11

Inv. No.	Property Name	Street	Town	Year
NBD.326		125 Hill St	Northbridge	
NBD.322		195 Hill St	Northbridge	
NBD.321		205 Hill St	Northbridge	
NBD.320		213 Hill St	Northbridge	
NBD.319		221 Hill St	Northbridge	
NBD.318		229-231 Hill St	Northbridge	
NBD.41	Lasell, Josiah House	255 Hill St	Northbridge	r 1905
NBD.335		578 Hill St	Northbridge	
NBD.298		7 Johnson Ave	Northbridge	
NBD.299		11 Johnson Ave	Northbridge	
NBD.306		12 Johnson Ave	Northbridge	
NBD.186		36-40 Johnson Ave	Northbridge	
NBD.304		36 Johnson Ave	Northbridge	
NBD.300		39 Johnson Ave	Northbridge	
NBD.301		42 Johnson Ave	Northbridge	
NBD.188		2 Lake St	Northbridge	
NBD.189		3 Lake St	Northbridge	
NBD.302		34 Leland Hill Rd	Northbridge	
NBD.277		2-8 Leland Rd	Northbridge	
NBD.278		5 Leland Rd	Northbridge	
NBD.279		9-11 Leland Rd	Northbridge	
NBD.276		10-12 Leland Rd	Northbridge	
NBD.280		13-15 Leland Rd	Northbridge	
NBD.275		14 Leland Rd	Northbridge	
NBD.281		17-19 Leland Rd	Northbridge	
NBD.274		20 Leland Rd	Northbridge	
NBD.282		21 Leland Rd	Northbridge	
NBD.273		22-24 Leland Rd	Northbridge	
NBD.272		26 Leland Rd	Northbridge	
NBD.283		27 Leland Rd	Northbridge	
NBD.284		37 Leland Rd	Northbridge	
NBD.128	Whitin Mill Workers Housing	1 Linden St	Northbridge	c 1847
NBD.343	ŭ	5-7 Linden St	Northbridge	
NBD.342		9 Linden St	Northbridge	
NBD.344		10-12 Linden St	Northbridge	
NBD.341		13 Linden St	Northbridge	
NBD.345		14 Linden St	Northbridge	
			- 3 -	

Thursday, February 1, 2018 Page 7 of 11

NBD.346 NBD.908				
NBD.908		16 Linden St	Northbridge	
	Whitinsville World War II Memorial	Linwood Ave	Northbridge	
NBD.111	Whitin Mill Workers Housing	24-26 Linwood Ave	Northbridge	c 1850
NBD.112	Whitin Mill Workers Housing	30-32 Linwood Ave	Northbridge	c 1850
NBD.427	Trinity Episcopal Church	33 Linwood Ave	Northbridge	1929
NBD.113	Whitin Mill Workers Housing	42-44 Linwood Ave	Northbridge	c 1850
NBD.44	Whitin, Charles E. House	43 Linwood Ave	Northbridge	c 1870
NBD.45	Dudley, Paul Whitin House	49-51 Linwood Ave	Northbridge	c 1845
NBD.50	United Methodist Church	61 Linwood Ave	Northbridge	1911
NBD.46	Whitin Mill Workers Housing	66 Linwood Ave	Northbridge	r 1895
NBD.203	Methodist Rectory	71 Linwood Ave	Northbridge	
NBD.47	Whitin, Paul Senior Homestead	72-76 Linwood Ave	Northbridge	c 1800
NBD.202		77 Linwood Ave	Northbridge	
NBD.48	Old Methodist Hall	84-88 Linwood Ave	Northbridge	c 1845
NBD.52	Whitin, Arthur F. House	87 Linwood Ave	Northbridge	c 1875
NBD.195		92 Linwood Ave	Northbridge	
NBD.49	Whitinsville Hotel	108 Linwood Ave	Northbridge	c 1875
NBD.196		110 Linwood Ave	Northbridge	
NBD.108	Smith, B. L. M. House	121 Linwood Ave	Northbridge	c 1890
NBD.109	Brown, Rebbeca House	131 Linwood Ave	Northbridge	c 1890
NBD.197		134 Linwood Ave	Northbridge	
NBD.199		144 Linwood Ave	Northbridge	
NBD.110	Balcoum, Dr. House	145 Linwood Ave	Northbridge	c 1890
NBD.201		147 Linwood Ave	Northbridge	
NBD.51	Northbridge High School	171 Linwood Ave	Northbridge	1906
NBD.200		172 Linwood Ave	Northbridge	
NBD.122	Whitin Mill Workers Housing	7-17 Lower High St	Northbridge	c 1860
NBD.114	Whitin Mill Workers Housing	8-14 Lower High St	Northbridge	c 1864
NBD.115	Whitin Mill Workers Housing	16-22 Lower High St	Northbridge	c 1864
NBD.121	Whitin Mill Workers Housing	19 Lower High St	Northbridge	c 1840
NBD.116	Whitin Mill Workers Housing	24-30 Lower High St	Northbridge	c 1864
NBD.117	Whitin Mill Workers Housing	32-38 Lower High St	Northbridge	c 1864
NBD.118	Whitin Mill Workers Housing	40-46 Lower High St	Northbridge	c 1864
NBD.119	Whitin Mill Workers Housing	48-52 Lower High St	Northbridge	c 1864
NBD.120	Whitin Mill Workers Housing	60-62 Lower High St	Northbridge	c 1845
NBD.53	Whitin Machine Works Factory	Main St	Northbridge	1847
NBD.328	Northbridge Fire Department	Main St	Northbridge	
NBD.936	Northbridge Vietnam War Monument	Main St	Northbridge	

Thursday, February 1, 2018 Page 8 of 11

Inv. No.	Property Name	Street	Town	Year
NBD.938	Northbridge Contingent In The Nations Monument	Main St	Northbridge	1955
NBD.27	Northbridge Town Hall	7 Main St	Northbridge	1872
NBD.329	Whitin Community Gym	60 Main St	Northbridge	
NBD.103	Whitin Mill Workers Housing	128-132 Main St	Northbridge	r 1850
NBD.124	Whitin Mill Workers Housing	190 Main St	Northbridge	c 1864
NBD.125	Whitin Mill Workers Housing	202 Main St	Northbridge	c 1847
NBD.327		205 Main St	Northbridge	
NBD.126	Whitin Mill Workers Housing	208 Main St	Northbridge	c 1847
NBD.151	Whitin Mill Workers Housing	211-213 Main St	Northbridge	c 1889
NBD.127	Whitin Mill Workers Housing	216 Main St	Northbridge	c 1847
NBD.129	Whitin Mill Workers Housing	223-225 Main St	Northbridge	c 1864
NBD.150	Whitin Mill Workers Housing	223-225 Main St	Northbridge	c 1889
NBD.149	Whitin Mill Workers Housing	231-233 Main St	Northbridge	c 1889
NBD.146	Whitin Mill Workers Housing	240-242 Main St	Northbridge	c 1889
NBD.148	Whitin Mill Workers Housing	243-245 Main St	Northbridge	c 1889
NBD.145	Whitin Mill Workers Housing	252-254 Main St	Northbridge	c 1889
NBD.147	Whitin Mill Workers Housing	253-255 Main St	Northbridge	c 1889
NBD.144	Whitin Mill Workers Housing	258-260 Main St	Northbridge	c 1889
NBD.187		270 Main St	Northbridge	
NBD.137	Whitin Mill Workers Housing	1-3 Maple St	Northbridge	c 1889
NBD.136	Whitin Mill Workers Housing	2-4 Maple St	Northbridge	c 1889
NBD.138	Whitin Mill Workers Housing	5-7 Maple St	Northbridge	c 1889
NBD.135	Whitin Mill Workers Housing	6-8 Maple St	Northbridge	c 1889
NBD.139	Whitin Mill Workers Housing	9-11 Maple St	Northbridge	c 1889
NBD.134	Whitin Mill Workers Housing	10-12 Maple St	Northbridge	c 1889
NBD.140	Whitin Mill Workers Housing	13-15 Maple St	Northbridge	c 1889
NBD.133	Whitin Mill Workers Housing	14-16 Maple St	Northbridge	c 1889
NBD.141	Whitin Mill Workers Housing	17-19 Maple St	Northbridge	c 1889
NBD.132	Whitin Mill Workers Housing	18-20 Maple St	Northbridge	c 1889
NBD.142	Whitin Mill Workers Housing	21-23 Maple St	Northbridge	c 1889
NBD.131	Whitin Mill Workers Housing	22-24 Maple St	Northbridge	c 1889
NBD.143	Whitin Mill Workers Housing	25-27 Maple St	Northbridge	c 1889
NBD.130	Whitin Mill Workers Housing	26-28 Maple St	Northbridge	c 1889
NBD.348		108 North Main St	Northbridge	
NBD.152	Whitin Mill Workers Housing	1-3 Oak St	Northbridge	c 1889
NBD.158	Whitin Mill Workers Housing	2-4 Oak St	Northbridge	c 1889
NBD.153	Whitin Mill Workers Housing	5-7 Oak St	Northbridge	c 1889

Thursday, February 1, 2018 Page 9 of 11

Inv. No.	Property Name	Street	Town	Year
NBD.157	Whitin Mill Workers Housing	6-8 Oak St	Northbridge	c 1889
NBD.154	Whitin Mill Workers Housing	9-11 Oak St	Northbridge	c 1889
NBD.156	Whitin Mill Workers Housing	10-12 Oak St	Northbridge	c 1889
NBD.155	Whitin Mill Workers Housing	14-16 Oak St	Northbridge	c 1889
NBD.54	Taft - Whitin House	28 Pine St	Northbridge	r 1800
NBD.55	Whitin House	31-33 Pine St	Northbridge	c 1875
NBD.168	Christian Reform Church	Pleasant St	Northbridge	1929
NBD.205		6 Pleasant St	Northbridge	
NBD.170		10 Pleasant St	Northbridge	c 1890
NBD.171		16 Pleasant St	Northbridge	
NBD.172		20 Pleasant St	Northbridge	c 1890
NBD.167		21 Pleasant St	Northbridge	c 1890
NBD.166		25-27 Pleasant St	Northbridge	c 1890
NBD.173		28 Pleasant St	Northbridge	c 1890
NBD.165		33 Pleasant St	Northbridge	c 1890
NBD.164		37-39 Pleasant St	Northbridge	c 1890
NBD.56	Whitin, Charles P. House	27 Prospect St	Northbridge	c 1875
NBD.57	Brown, R. K. House	39 Prospect St	Northbridge	c 1885
NBD.58		50 Prospect St	Northbridge	c 1895
NBD.59	Prentice, Luke House	62 Prospect St	Northbridge	c 1880
NBD.60	Sproat, R. S. House	73 Prospect St	Northbridge	1876
NBD.61	Crichton, James House	74 Prospect St	Northbridge	c 1870
NBD.62	Prentice, Jerome V. House	9 Spring St	Northbridge	c 1900
NBD.379		1 Summit St	Northbridge	
NBD.378		2 Summit St	Northbridge	
NBD.381		3 Summit St	Northbridge	
NBD.380		4 Summit St	Northbridge	
NBD.382		5-7 Summit St	Northbridge	
NBD.383		9-11 Summit St	Northbridge	
NBD.384		10 Summit St	Northbridge	
NBD.386		13-15 Summit St	Northbridge	
NBD.385		18 Summit St	Northbridge	
NBD.388		19 Summit St	Northbridge	
NBD.387		24 Summit St	Northbridge	
NBD.353		10-16 Water St	Northbridge	
NBD.352		18 Water St	Northbridge	
NBD.351		22-28 Water St	Northbridge	
NBD.350		30-32 Water St	Northbridge	
Thursday F	phruon, 1, 2019			Page 10 of 11

Thursday, February 1, 2018 Page 10 of 11

Inv. No.	Property Name	Street	Town	Year
NBD.349		36 Water St	Northbridge	
NBD.347		82 Water St	Northbridge	
NBD.159	Whitin Mill Workers Housing	1-3 West St	Northbridge	c 1889
NBD.162	Whitin Mill Workers Housing	2-4 West St	Northbridge	c 1889
NBD.160	Whitin Mill Workers Housing	5-7 West St	Northbridge	c 1889
NBD.163	Whitin Mill Workers Housing	6-8 West St	Northbridge	c 1889
NBD.161	Whitin Mill Workers Housing	9-11 West St	Northbridge	c 1889
NBD.63	Whitin Machine Works Workers Housing	10-12 Whitin Ave	Northbridge	c 1850
NBD.64	Whitin Machine Works Worker Housing	14-16 Whitin Ave	Northbridge	c 1850
NBD.65	Whitin, Charles E. Carriage House	22 Whitin Ave	Northbridge	c 1855
NBD.215	Northbridge Junior - Senior High School Annex	Willow St	Northbridge	
NBD.206		9 Willow St	Northbridge	
NBD.207		15 Willow St	Northbridge	
NBD.214		16 Willow St	Northbridge	
NBD.208		19-21 Willow St	Northbridge	
NBD.213		20 Willow St	Northbridge	
NBD.66	McAllister, J. House	23-25 Willow St	Northbridge	c 1900
NBD.212		24 Willow St	Northbridge	
NBD.211		28 Willow St	Northbridge	
NBD.198		29 Willow St	Northbridge	
NBD.209		31 Willow St	Northbridge	
NBD.210		33 Willow St	Northbridge	
NBD.293		1-3 Woodland St	Northbridge	
NBD.292		4 Woodland St	Northbridge	
NBD.294		5-7 Woodland St	Northbridge	
NBD.291		8 Woodland St	Northbridge	
NBD.295		9 Woodland St	Northbridge	
NBD.290		10 Woodland St	Northbridge	
NBD.289		12-14 Woodland St	Northbridge	
NBD.296		15-17 Woodland St	Northbridge	
NBD.288		18 Woodland St	Northbridge	
NBD.287		22 Woodland St	Northbridge	
NBD.297		23 Woodland St	Northbridge	
NBD.286		24 Woodland St	Northbridge	

Thursday, February 1, 2018 Page 11 of 11

Massachusetts Cultural Resource Information System

Scanned Record Cover Page

Inventory No: NBD.A

Historic Name: Whitinsville Historic District

Common Name:

Address:

City/Town:

Northbridge

Digital Photo Not Yet Available

Village/Neighborhood: Local No:

Year Constructed:

Architect(s):

Architectural Style(s):

Use(s): Workers Housing

Archaeology, Historic; Architecture; Community Planning;

Significance: Economics; Engineering; Industry; Invention; Social

History

Whitinsville

Area(s):

Designation(s): Nat'l Register District (04/09/1983)

Building Materials(s):

The Massachusetts Historical Commission (MHC) has converted this paper record to digital format as part of ongoing projects to scan records of the Inventory of Historic Assets of the Commonwealth and National Register of Historic Places nominations for Massachusetts. Efforts are ongoing and not all inventory or National Register records related to this resource may be available in digital format at this time.

The MACRIS database and scanned files are highly dynamic; new information is added daily and both database records and related scanned files may be updated as new information is incorporated into MHC files. Users should note that there may be a considerable lag time between the receipt of new or updated records by MHC and the appearance of related information in MACRIS. Users should also note that not all source materials for the MACRIS database are made available as scanned images. Users may consult the records, files and maps available in MHC's public research area at its offices at the State Archives Building, 220 Morrissey Boulevard, Boston, open M-F, 9-5.

Users of this digital material acknowledge that they have read and understood the MACRIS Information and Disclaimer (http://mhc-macris.net/macrisdisclaimer.htm)

Data available via the MACRIS web interface, and associated scanned files are for information purposes only. THE ACT OF CHECKING THIS DATABASE AND ASSOCIATED SCANNED FILES DOES NOT SUBSTITUTE FOR COMPLIANCE WITH APPLICABLE LOCAL, STATE OR FEDERAL LAWS AND REGULATIONS. IF YOU ARE REPRESENTING A DEVELOPER AND/OR A PROPOSED PROJECT THAT WILL REQUIRE A PERMIT, LICENSE OR FUNDING FROM ANY STATE OR FEDERAL AGENCY YOU MUST SUBMIT A PROJECT NOTIFICATION FORM TO MHC FOR MHC'S REVIEW AND COMMENT. You can obtain a copy of a PNF through the MHC web site (www.sec.state.ma.us/mhc) under the subject heading "MHC Forms."

Commonwealth of Massachusetts
Massachusetts Historical Commission
220 Morrissey Boulevard, Boston, Massachusetts 02125
www.sec.state.ma.us/mhc

This file was accessed on: Thursday, February 1, 2018 at 9:32: AM

FORM A - AREA SURVEY	Form numbers in this area Area no.
MASSACHUSETTS HISTORICAL COMMISSION Office of the Secretary, State House, Boston	1-75,900-1 A
	1. TOWN NORTH BRIDGE NOD. A
	Name of area (if any) WHITINSVILLE
. Photo (3x3" or 3x5")	Historic Dudniel
Staple to left side of form Photo number	3. General date or period
	4. Is area uniform (explain):
	in style?
	in condition?
	in type of ownership?
	in use?
Map. Use space below to draw a general map properties for which individual reports are componding numbers. Show street names (includi Indicate with an "x" existing houses not invent	mpleted on Forms B thru F, using corres- ing route numbers, if any) and indicate north.
properties for which individual reports are componding numbers. Show street names (includi Indicate with an "x" existing houses not invent	mpleted on Forms B thru F, using corresing route numbers, if any) and indicate north. toried on Form B.
properties for which individual reports are componding numbers. Show street names (including Indicate with an "x" existing houses not inventionable to the street name of the street nam	mpleted on Forms B thru F, using corresing route numbers, if any) and indicate north. toried on Form B.
properties for which individual reports are componding numbers. Show street names (includi Indicate with an 'x" existing houses not invent to the street of	mpleted on Forms B thru F, using corresing route numbers, if any) and indicate north. toried on Form B.

7. Historical data. Explain the historical/architectural importance of this area.

8. Bibliography and/or references such as local histories, deeds, assessor's records, early maps, etc.

Introduction

The architectural skeleton of Whitinsville reflects the frame of a once thriving paternalistic industrial community which was based on the textile and textile machine industry.

The demographic orientation of the village is reminiscent of bygone days when small self sufficient industrial communities were commonplace. Much of the architecture and demography has been left undisturbed from the way it was left by the Whitin family.

The Whitin community centered itself around the Whitin Machine Works and the Whitinsville Cotton Mills. Both industries got their start in the little brick mill in 1826 when Paul Whitin Sr. and his sons initiated textiles in the mill. The old brick mill still stands today, well intact.

In 1831, Paul Whitin Sr., after whom Whitinsville is named, died leaving the business to his wife, Betsy, and sons. Paul Sr's original homestead, built in 1800, today stands on Linwood Avenue where it was moved from the site of the present town hall.

As the Whitin industry grew, new facilities had to be built.

In 1845, sons of Charles P. had the granite Whitin Cotton mill built across the street for the sole purpose of textile production. In 1847, John C. Whitin built Shop number 1 of what is now the present Whitin Machine Works to hold his expanding textile machine business. Both shops remained under the name Paul Whitin and Sons. These two factories still stand intact today.

It was mainly these two factories that the whole town was based upon. To house the growing population, the whitins had built for the workers the many tenement houses which stand today as a reminder of the past when Whitin industries flourished. Most of the tenements were within walking distance of the mills as in most industrial communities. For upper echelon employees larger single dwelling homes were built and streets separated from the tenement homes.

In yet another area, were the Whitin mansions for family members themselves. One can distinguish this in the survey.

The Whitin family took care of the entire needs of the community. The Castle Hill farm was purchased to supply the farm and dairy needs of the workers. Schools were built to educate the village children. Churches, of many denominations, were built to satisfy the religeous needs of the community. Social and civic organizations were started and housed by the Whitins. Police and fire departments were financed by the Whitins for community protection. Recreational areas were established for community enjoyment.

Even though parts of the village were not tied in with the Whitin family, they also were in some way reached by the benefits from the Whitins.

As one brouses through this survey of the town's architectural history, one can gain an appreciation for what once was. The architectural skeleton remains even though the inner workings have all changed.

Kenneth Warchol