July 6, 2017

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109 NPDES.Generalpermits@epa.gov

Subject:

NPDES General Permit for Remediation Activity Discharges in Massachusetts

Textron, Inc. - Former Gorham Silver Company

NPDES Permit No. MAG910022

To Whom it May Concern:

Enclosed for your review and approval is a Notice of Intent ("NOI") form and supporting materials requesting continued permit coverage under the NPDES General Permit for Remediation Activity Discharges in Massachusetts ("RGP") for the Textron Inc. - Former Gorham Silver Company facility site in Mansfield, Massachusetts. Remediation system discharges from the site are currently covered under the previous RGP under permit No. MAG910022.

Attached to this correspondence, please find the aforementioned NOI, mapping depicting the Project's existing facilities and treatment system, influent and receiving water sampling results, as well as Endangered Species Act and National Historic Preservation Act documentation. Please feel free to contact me at 401-457-2635 or gsimpson@textron.com should you have any questions regarding this submittal.

Thank you for your continued attention to this Project.

Sincerely,

Greg Simpson

Site Remediation Engineer

Textron, Inc.

gsimpson@textron.com

cc.

Shauna Little, USEPA, little.shauna@epa.gov
Shelley Puleo, USEPA, puleo.shelley@epa.gov
Rick Alves, Town of Mansfield, ralves@mansfieldma.com
Melissa Cannon, AECOM, Melissa.Cannon@aecom.com

Enclosures

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:	l					
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City: State: Zip:						
3. Site operator, if different than owner	Contact Person:						
	Telephone: Email:						
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ				
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP			ogram				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	□ NH Groundwater Management Permit or	☐ POTW Pretreatment					
L MISSI L Marriada M DES permit L Suici, ii so. seccir.	Groundwater Release Detection Permit:	□ CWA S					

В.	Receiving	water	information:	
----	-----------	-------	--------------	--

1. Name of receiving water(s):	waterbody identification of receiving water(waterbody identification of receiving water(s):						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River								
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No						
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No							
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.								
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		the instructions in						
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s								
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	No					
7. Has the operator attached a summary of receiving (check one): ☐ Yes ☐ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?					
C. Source water information:								
1. Source water(s) is (check any that apply):								
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:					
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other						
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:					
□ Yes □ No	□ Yes □ No							

2. Source water contaminants:					
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance				
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No				
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No				
D. Discharge information					
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source				
Outfall(s):	Outfall location(s): (Latitude, Longitude)				
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:				
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system:					
Has notification been provided to the owner of this system? (check one): □ Yes □ No					
Has the operator has received permission from the owner to use such system for discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for obtaining permission:					
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ☐ No					
Provide the expected start and end dates of discharge(s) (month/year):					
Indicate if the discharge is expected to occur over a duration of: □ less than 12 months □ 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ☐ Yes ☐ No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Inf	luent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 µg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 µg/L	
Lead								160 μg/L	
Mercury								0.739 µg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs			•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known			Infl	luent	Effluent Limitations		
Parameter or # of Test Detection method limit	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL					
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
Total Group II PAHs								100 μg/L		
Naphthalene								20 μg/L		
E. Halogenated SVOCs										
Total PCBs								0.000064 µg/L		
Pentachlorophenol								1.0 μg/L		
	1			•						
F. Fuels Parameters Total Petroleum	<u> </u>	1	1	1		1 1				
Hydrocarbons								5.0 mg/L		
Ethanol								Report mg/L		
Methyl-tert-Butyl Ether								70 μg/L		
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:				

E. Treatment system information

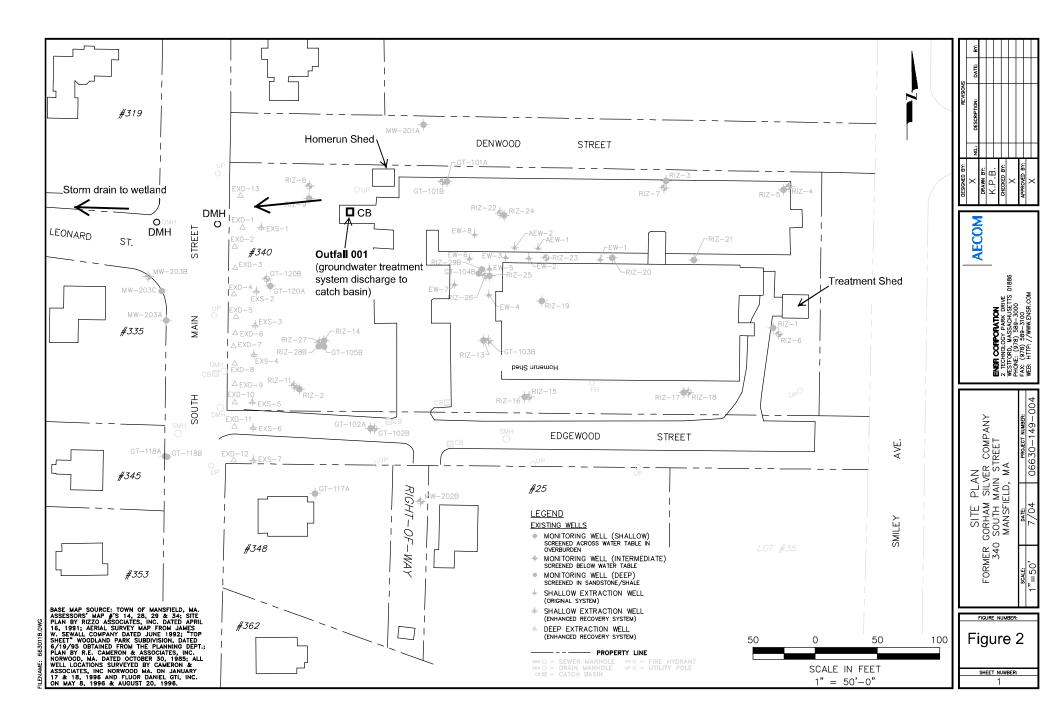
1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
Trovide the average erritaint now in gpin.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

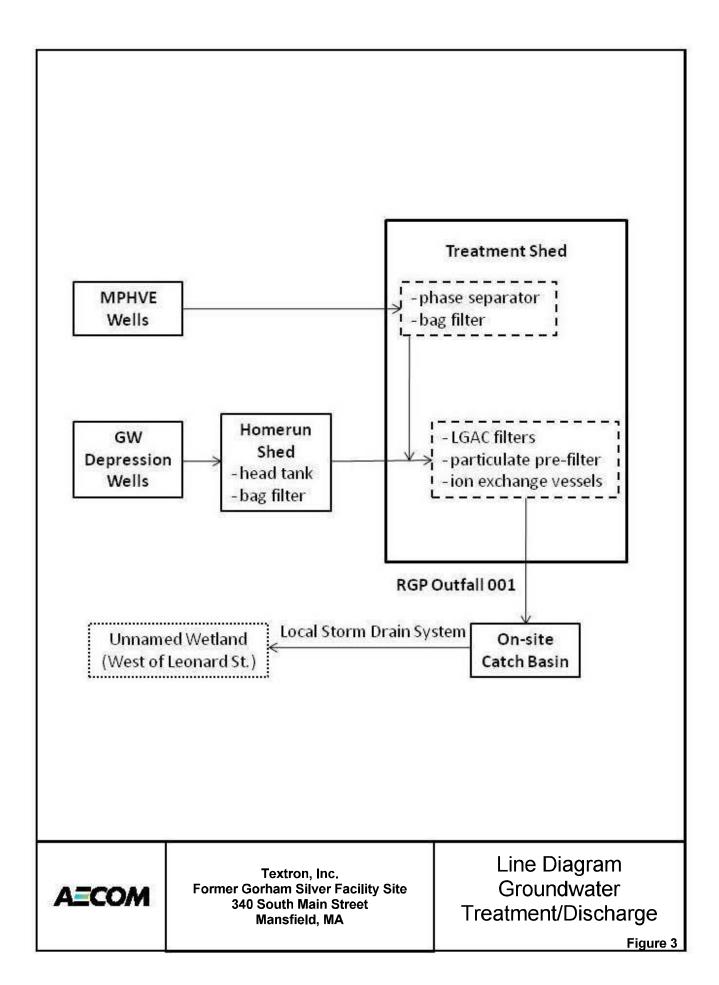
F. Chemical and additive information

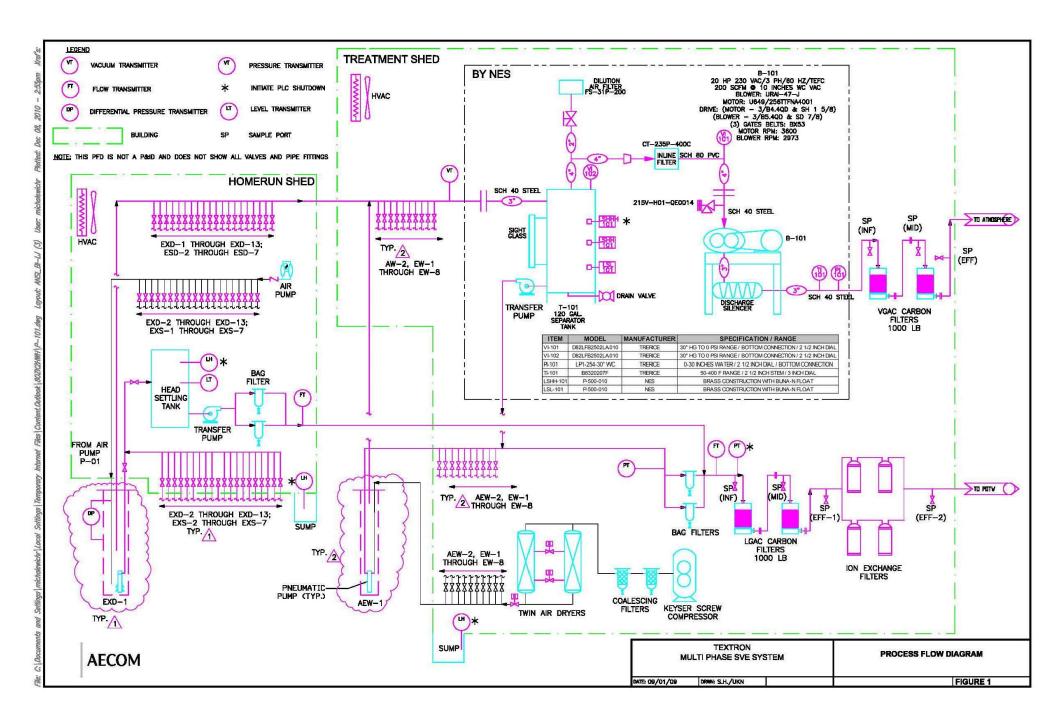
r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J.	Certification	requirement


I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or p persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	ersons who manage i lief, true, accurate, a	the system, or those nd complete. I have
The site's Operations, Monitoring, & Management (OM&M) Plan has been update BMPP certification statement: General Permit. Thus a BMPP meeting the requirements of the General Permit h		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No ■
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes	No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes	No 🗆 NA 🗆
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □ NA ■
Signature: Date	1/25/20	18
Print Name and Title: Green Simpson, Site Remediation Engineer	r	


ATTACHMENT 1 U.S.G.S. SITE LOCATION MAP



ATTACHMENT 2

LINE DIAGRAMS

ATTACHMENT 3

INFLUENT AND RECEIVING WATER SAMPLING RESULTS

V	Final Report
	Revised Report

Report Date: 28-Jun-17 16:07

Laboratory Report SC35970

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Melissa Cannon

Project: Textron - Mansfield, MA

Project #: 60537294

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Jawn & Woscik

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 15 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC35970

Project: Textron - Mansfield, MA

Project Number: 60537294

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC35970-01	Source	Surface Water	16-Jun-17 11:30	16-Jun-17 18:25
SC35970-02	Receiving	Ground Water	16-Jun-17 12:00	16-Jun-17 18:25
SC35970-03	TB	Ground Water	16-Jun-17 11:00	16-Jun-17 18:25

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 3.2 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 200.7

Samples:

SC35970-01 Source

MRL raised to correlate to batch QC reporting limits.

Iron

Magnesium

SC35970-02 Receiving

MRL raised to correlate to batch QC reporting limits.

Iron

Magnesium

EPA 300.0

Samples:

SC35970-01 Source

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Chloride

SM4500-Cl-G (11)

Samples:

SC35970-01 Source

Elevated Reporting Limits due to limited sample volume.

Total Residual Chlorine

Sample Acceptance Check Form

Client: AECOM Environment - Chelmsford, MA

Project: Textron - Mansfield, MA / 60537294

Work Order: SC35970

Sample(s) received on: 6/16/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>yes</u>	<u>No</u>	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	✓		
Were samples cooled on ice upon transfer to laboratory representative?	✓		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	√		
Were samples accompanied by a Chain of Custody document?	✓		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
Did sample container labels agree with Chain of Custody document?	✓		
Were samples received within method-specific holding times?	\checkmark	П	

Summary of Hits

Lab ID: SC35970-01

Client ID: Source

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Ammonia as Nitrogen	0.15		0.05	mg/L	E350.1
Calcium	17.2		0.100	mg/l	EPA 200.7
Iron	0.853	R06	0.0400	mg/l	EPA 200.7
Magnesium	3.04	R06	0.0500	mg/l	EPA 200.7
Zinc	0.0083		0.0050	mg/l	EPA 200.7
Chloride	155	D, GS	\$16.00	mg/l	EPA 300.0
Hardness	55.5		0.456	mg/l CaCO3	SM 2340B (11)
Total Suspended Solids	2.3		0.5	mg/l	SM2540D (11)
Total Residual Chlorine	0.144	D, R0	02 0.040	mg/l	SM4500-Cl-G (11)

Lab ID: SC35970-02

Client ID: Receiving

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Ammonia as Nitrogen	0.13		0.05	mg/L	E350.1
Calcium	36.5		0.100	mg/l	EPA 200.7
Iron	0.758	R06	0.0400	mg/l	EPA 200.7
Magnesium	8.27	R06	0.0500	mg/l	EPA 200.7
Nickel	0.0146		0.0050	mg/l	EPA 200.7
Zinc	0.0542		0.0050	mg/l	EPA 200.7
Hardness	125		0.456	mg/l CaCO3	SM 2340B (11)

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Source SC35970-	entification 01			<u>Client I</u> 6053		:	Matrix Surface W		ection Date 5-Jun-17 11			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile Or	ganic Compounds												
Volatile Or	ganic Halocarbons by S	W846_											
<u>8260</u>													
	by method SW846 5030				4.0			014/0.40.00000	40 1 47	00 1 17	0111	1710010	
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l 	1.0	0.3	1	SW846 8260C	19-Jun-17	20-Jun-17	GMA 	1710216	
127-18-4	Tetrachloroethene	< 1.0		μg/l "	1.0	0.6	1	"				"	
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.5	1						
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	99			70-13	0 %		"	"	"		"	
2037-26-5	Toluene-d8	101			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	107			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	103			70-13	0 %		"	"	"	ıı	"	
	ols by EPA 200/6000 Series by method General Prep												
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	16-Jun-17		AAW	1710137	
Total Meta	als by EPA 200 Series Meth												
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0035	1	EPA 200.7	22-Jun-17	23-Jun-17	tbc	1710452	. X
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0028	1	"	"	"	"	"	Х
7440-70-2	Calcium	17.2		mg/l	0.100	0.0340	1	"	"	"	ıı	"	Х
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0004	1	"	"	"	ıı	"	Х
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0019	1	"	"	"	ıı	"	Х
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0029	1	"	"	"		"	Х
7439-89-6	Iron	0.853	R06	mg/l	0.0400	0.0100	1	"	"	26-Jun-17	"	"	Х
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00013	1	EPA 245.1/7470A	"	22-Jun-17	JLC	1710453	X
7439-95-4	Magnesium	3.04	R06	mg/l	0.0500	0.0074	1	EPA 200.7	"	23-Jun-17	tbc	1710452	X
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0010	1	"	"	"	ıı	"	Х
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0034	1	"	"	26-Jun-17	"	"	Χ
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0026	1	"	"	23-Jun-17	"	"	Х
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0072	1	"	"	"	"		Х
7440-66-6	Zinc	0.0083		mg/l	0.0050	0.0027	1	"	"	"	"	"	Х
	hemistry Parameters by method EPA 200 Serie	<u>es</u>											
16065-83-1	Trivalent Chromium	< 0.0100		mg/l	0.0100	0.0053	1	Calculation	22-Jun-17	23-Jun-17	tbc	1710452	:
	Hardness	55.5	HD	mg/l CaCO3	0.456	0.115	1	SM 2340B (11)	"	"	tbc	[CALC]	
7782-50-5	Total Residual Chlorine	0.144	D, R02,CIH T	mg/l	0.040	0.011	2	SM4500-CI-G (11)	28-Jun-17 11:22	28-Jun-17 12:32	RLT	1710917	Х
16887-00-6	Chloride	155	D, GS1	mg/l	6.00	0.538	6	EPA 300.0	20-Jun-17	21-Jun-17	LNB	1710326	X
18540-29-9	Hexavalent Chromium	< 0.005	•	mg/l	0.005	0.002	1	SM3500-Cr-B (11)/7196A	16-Jun-17 19:39		RLT	1710148	
	рН	5.94	pН	pH Units			1	ASTM D 1293-99B	16-Jun-17 19:00		BD	1710139	Х
	Total Suspended Solids	2.3		mg/l	0.5	0.2	1	SM2540D (11)		23-Jun-17	СМВ	1710294	v

Analysis performed by Phoenix Environmental Labs, Inc. * - MACT007

Source SC35970-	dentification -01				<u>Project #</u> 37294		Matrix Surface W		ection Date/Time i-Jun-17 11:30	Received 16-Jun-17
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared Analyzed	Analyst Batch Cert.
	acted Analyses by method 391221-SWS	9010C/								
Analysis pe	erformed by Phoenix Envir	onmental Labs, Ir	ac. * - MACT00	07						
57-12-5	Total Cyanide	< 0.010		mg/L	0.010	0.010	1	SW9010C/SW9 012B	23-Jun-17 26-Jun-17 13:59	MACT0 391221A
	octed Analyses by method 390559									
Analysis pe	erformed by Phoenix Envir	onmental Labs, Ir	nc. * - MACT00	07						
7664-41-7	Ammonia as Nitrogen	0.15		mg/L	0.05	0.05	1	E350.1	20-Jun-17	MACT0 390559A

10:41

28-Jun-17 16:07 Page 7 of 15

Receiving SC35970					Project # 7294	(<u>Matrix</u> Ground Wa		ection Date -Jun-17 12		-	<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	als by EPA 200/6000 Series by method General Prep												
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	16-Jun-17		AAW	1710137	
Total Met	als by EPA 200 Series Meth	nods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0035	1	EPA 200.7	22-Jun-17	23-Jun-17	tbc	1710452	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0028	1	"	"	"	"	"	Χ
7440-70-2	Calcium	36.5		mg/l	0.100	0.0340	1	"	"	"	"	"	X
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0004	1	"	"	"	"	"	X
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0019	1	"	"	"	"	"	X
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0029	1	"	"	"	"		Х
7439-89-6	Iron	0.758	R06	mg/l	0.0400	0.0100	1	"	"	26-Jun-17	"		Х
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00013	1	EPA 245.1/7470A	"	22-Jun-17	JLC	1710453	Х
7439-95-4	Magnesium	8.27	R06	mg/l	0.0500	0.0074	1	EPA 200.7	"	23-Jun-17	tbc	1710452	X
7440-02-0	Nickel	0.0146		mg/l	0.0050	0.0010	1	"	"	"	"	"	X
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0034	1	"	"	26-Jun-17	"	"	X
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0026	1	"	"	23-Jun-17	"	"	X
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0072	1	"	"	"	"		Х
7440-66-6	Zinc	0.0542		mg/l	0.0050	0.0027	1	"	"	"	"		Х
	Chemistry Parameters by method EPA 200 Serie	<u>es</u>											
16065-83-1	Trivalent Chromium	< 0.0100		mg/l	0.0100	0.0053	1	Calculation	22-Jun-17	23-Jun-17	tbc	1710452	
	Hardness	125	HD	mg/l CaCO3	0.456	0.115	1	SM 2340B (11)	"	"	tbc	[CALC]	
18540-29-9	Hexavalent Chromium	< 0.005		mg/l	0.005	0.002	1	SM3500-Cr-B (11)/7196A	16-Jun-17 19:39	17-Jun-17 08:59	RLT	1710148	

Subcontracted Analyses

рΗ

Prepared by method 390559

Analysis performed by Phoenix Environmental Labs, Inc. * - MACT007

6.07

рΗ

pH Units

7664-41-7 Ammonia as Nitrogen 0.13 mg/L 0.05 0.05 1 E350.1 20-Jun-17 MACT0 390559A 10:42

19:00

16-Jun-17 16-Jun-17

ASTM D

1293-99B

19:15

BD 1710139 X

28-Jun-17 16:07 Page 8 of 15

Sample Id TB SC35970-	dentification -03				Project # 7294		<u>Matrix</u> Ground W		ection Date 5-Jun-17 11			<u>eceived</u> -Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
8260	rganic Halocarbons by Si by method SW846 5030												
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.3	1	SW846 8260C	19-Jun-17	20-Jun-17	GMA	1710216	j
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1	"	"	"	"	"	
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.5	1	"	"	"	"	"	
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	97			70-13	80 %		"	"	"	"	"	
2037-26-5	Toluene-d8	101			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	102			70-13	80 %		"	"	"			

28-Jun-17 16:07 Page 9 of 15

Volatile Organic Compounds - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
atch 1710216 - SW846 5030 Water MS										
Blank (1710216-BLK1)					Pre	epared: 19-	Jun-17 Ana	alyzed: 20-Ju	<u>ın-17</u>	
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
Tetrachloroethene	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	49.0		μg/l		50.0		98	70-130		
Surrogate: Toluene-d8	49.9		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.0		μg/l		50.0		106	70-130		
Surrogate: Dibromofluoromethane	50.4		μg/l		50.0		101	70-130		
LCS (1710216-BS1)					Pre	epared & Ar	nalyzed: 19-	Jun-17		
cis-1,2-Dichloroethene	19.0		μg/l		20.0		95	70-130		
Tetrachloroethene	19.7		μg/l		20.0		99	70-130		
Trichloroethene	19.0		μg/l		20.0		95	70-130		
Surrogate: 4-Bromofluorobenzene	50.8		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	49.5		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.7		μg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	50.8		μg/l		50.0		102	70-130		
LCS Dup (1710216-BSD1)					Pre	epared & Ar	nalyzed: 19-	Jun-17		
cis-1,2-Dichloroethene	19.5		μg/l		20.0		97	70-130	2	20
Tetrachloroethene	19.6		μg/l		20.0		98	70-130	0.3	20
Trichloroethene	18.6		μg/l		20.0		93	70-130	2	20
Surrogate: 4-Bromofluorobenzene	51.3		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	49.6		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.5		μg/l		50.0		105	70-130		
Surrogate: Dibromofluoromethane	50.9		μg/l		50.0		102	70-130		

Total Metals by EPA 200 Series Methods - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
EPA 200.7										
Batch 1710452 - EPA 200 Series										
Blank (1710452-BLK1)					Pre	epared: 22-	Jun-17 An	alyzed: 23-J	un-17	
Antimony	< 0.0060		mg/l	0.0060						
Selenium	< 0.0150		mg/l	0.0150						
Iron	< 0.0400		mg/l	0.0400						
Zinc	< 0.0050		mg/l	0.0050						
Silver	< 0.0050		mg/l	0.0050						
Nickel	< 0.0050		mg/l	0.0050						
Lead	< 0.0075		mg/l	0.0075						
Arsenic	< 0.0040		mg/l	0.0040						
Calcium	< 0.100		mg/l	0.100						
Cadmium	< 0.0025		mg/l	0.0025						
Chromium	< 0.0050		mg/l	0.0050						
Magnesium	< 0.0500		mg/l	0.0500						
Copper	< 0.0050		mg/l	0.0050						
LCS (1710452-BS1)					Pre	epared: 22-	Jun-17 An	alyzed: 23-J	un-17	
Antimony	1.21		mg/l	0.0060	1.25		97	85-115		
Selenium	1.32		mg/l	0.0150	1.25		106	85-115		
Iron	1.30		mg/l	0.0400	1.25		104	85-115		
Nickel	1.30		mg/l	0.0050	1.25		104	85-115		
Zinc	1.35		mg/l	0.0050	1.25		108	85-115		
Silver	1.35		mg/l	0.0050	1.25		108	85-115		
Arsenic	1.30		mg/l	0.0040	1.25		104	85-115		
Calcium	6.72		mg/l	0.100	6.25		108	85-115		
Cadmium	1.23		mg/l	0.0025	1.25		98	85-115		
Chromium	1.38		mg/l	0.0050	1.25		110	85-115		
Magnesium	1.33		mg/l	0.0500	1.25		106	85-115		
Copper	1.39		mg/l	0.0050	1.25		111	85-115		
Lead	1.33		mg/l	0.0075	1.25		106	85-115		
EPA 245.1/7470A										
Batch 1710453 - EPA200/SW7000 Series										
Blank (1710453-BLK1)					Pre	epared & Ar	nalyzed: 22-	Jun-17		
Mercury	< 0.00020		mg/l	0.00020						
LCS (1710453-BS1)					Pre	epared & Ar	nalyzed: 22-	Jun-17		
Mercury	0.00434		mg/l	0.00020	0.00500		87	85-115		
<u>Duplicate (1710453-DUP1)</u>			Source: So			epared & Ar	nalyzed: 22-			
Mercury	< 0.00020		mg/l	0.00020	<u>. 10</u>	BRL	,			20
Matrix Spike (1710453-MS1)	2.00020		Source: So		Dra		nalyzed: 22-	. lun-17		
Mercury	0.00459		mg/l	0.00020	0.00500	BRL	92	80-120		

General Chemistry Parameters - Quality Control

Source: \$C35970-02	Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	ASTM D 1293-99B										
Prepared & Analyzed 16-Jun-17 17-Jun-17 17-Jun	Batch 1710139 - General Preparation										
Propage of & Analyzed: 16-Jun-17 Propage of & Analyzed: 17-Jun-17 Propage of & A				Source: SC	35970-02	Pre	epared & Ar	nalyzed: 16	5-Jun-17		
PH 6.01 PH Units 6.00 99 97.5-102 5 5 5 5 5 5 5 5 5		6.09		pH Units			6.07			0.3	5
PH 1.00 PH 1.00 PH Properted & Annahyzed: 16-Jun-17 Properted & Annahyzed: 16-Jun-17 Properted & Annahyzed: 16-Jun-17 Properted & Annahyzed: 17-Jun-17 Properted & Annahyzed: 20-Jun-17 Properted & Annahyze	Reference (1710139-SRM1)					Pre	epared & Ar	nalyzed: 16	-Jun-17		
Propertied & Annabyzed: 16-Jun-17 Propertied & Annabyzed: 16-Jun-17 Propertied & Annabyzed: 17-Jun-17 Propertied & Annabyzed: 18-Jun-17 Annabyzed: 17-Jun-17 Propertied & Annabyzed: 18-Jun-17 Prop	<u> </u>	5.96		pH Units		6.00		99			
Property Property	Reference (1710139-SRM2)					Pre	epared & Ar	nalyzed: 16			
Barch 1710326 - General Preparation	pH	6.01		pH Units		6.00		100			
State 1710326 - General Preparation State 1710294 - General Preparation Gene	EPA 300.0								5		
Chloride	Batch 1710326 - General Preparation										
Prepared & Analyzed: 20-Jun-17 Chloride	Blank (1710326-BLK1)					Pre	epared & Ar	nalyzed: 20)-Jun-17		
Chloride	Chloride	< 1.00		mg/l	1.00						
Chloride	LCS (1710326-BS1)					Pre	epared & Ar	nalyzed: 20)-Jun-17		
Prepared & Analyzed: 20_Jun-17.	<u> </u>	19.6		mg/l	1.00		•	-			
Chloride 24.8 mg/l 1.00 25.0 99 90-110	Reference (1710326-SRM1)			Ü		Pre	epared & Ar	nalvzed: 20)-Jun-17		
Black 1710294 - General Preparation Black 1710294 - General Preparation 1710294 - Ge	<u></u>	24.8		mg/l	1.00		<i>y</i>				
Prepared: 20-Jun-17 Analyzed: 23-Jun-17 Total Suspended Solids S	SM2540D (11)										
Total Suspended Solids	Batch 1710294 - General Preparation										
CS (1710294-BS1) Prepared: 20-Jun-17 Analyzed: 23-Jun-17 Total Suspended Solids 90.0 mg/l 10.0 10.0 90 90-110 SM3500-Cr-B (11)/7196A Blank (1710148-BLK1) Prepared: 16-Jun-17 Analyzed: 17-Jun-17 Hexavalent Chromium 0.052 mg/l 0.005 mg/l 0.005 Hexavalent Chromium 0.052 mg/l 0.005 mg/l 0.005 Hexavalent Chromium 0.052 mg/l 0.005 mg/l 0.005 Hexavalent Chromium 0.052 mg/l 0.005 mg/l 0.005 mg/l 0.005 Hexavalent Chromium 0.052 mg/l 0.005 mg/l 0.005 mg/l 0.005 Hexavalent Chromium 0.055 mg/l 0.005 mg/l 0.005 mg/l 0.005 Hexavalent Chromium 0.045 mg/l 0.005 mg/l 0.005 mg/l 0.005 Hexavalent Chromium 0.045 mg/l 0.005 mg/l 0.005 mg/l 0.005 Matrix Spike (1710148-MSD1) mg/l 0.005 mg/l 0.005 mg/l 0.005 mg/l 0.005 Hexavalent Chromium 0.044 mg/l 0.005 mg/l 0.005 mg/l 0.005 mg/l mg/l mg/l 0.005 mg/l mg/l mg/l 0.005 mg/l mg/l mg/l 0.005 mg/l mg/l mg/l mg/l 0.005 mg/l mg/	Blank (1710294-BLK1)					Pre	epared: 20-	Jun-17 Ar	nalyzed: 23-J	un-17	
Total Suspended Solids 90.0 mg/l 10.0 10.0 90 90-110	Total Suspended Solids	< 0.5		mg/l	0.5						
Total Suspended Solids 90.0 mg/l 10.0 10.0 90 90-110	LCS (1710294-BS1)					Pre	epared: 20-	Jun-17 Ar	nalyzed: 23-J	un-17	
Blank (1710148 - General Preparation	<u> </u>	90.0		mg/l	10.0				-		
Blank (1710148-BLK1)	SM3500-Cr-B (11)/7196A										
Hexavalent Chromium	Batch 1710148 - General Preparation										
	Blank (1710148-BLK1)					Pre	epared: 16-	Jun-17 Ar	nalyzed: 17-J	un-17	
Hexavalent Chromium 0.052 mg/l 0.005 0.0500 104 90-111 Duplicate (1710148-DUP1) Source: SC35970-01 Prepared: 16-Jun-17 Analyzed: 17-Jun-17 Analyzed: 1	Hexavalent Chromium	< 0.005		mg/l	0.005						
Duplicate (1710148-DUP1) Source: SC35970-01 Prepared: 16-Jun-17 Analyzed: 17-Jun-17 Hexavalent Chromium < 0.005	LCS (1710148-BS1)					Pre	epared: 16-	Jun-17 Ar	nalyzed: 17-J	un-17	
Hexavalent Chromium	Hexavalent Chromium	0.052		mg/l	0.005	0.0500		104	90-111		
Matrix Spike (1710148-MS1)	<u>Duplicate (1710148-DUP1)</u>			Source: SC	35970-01	Pre	epared: 16-	Jun-17 Ar	nalyzed: 17-J	un-17	
Hexavalent Chromium	Hexavalent Chromium	< 0.005		mg/l	0.005		BRL				20
Matrix Spike Dup (1710148-MSD1) Source: SC35970-01 Prepared: 16-Jun-17 Analyzed: 17-Jun-17	Matrix Spike (1710148-MS1)			Source: SC	35970-01	Pre	epared: 16-	Jun-17 Ar	nalyzed: 17-J	un-17	
Hexavalent Chromium 0.044 mg/l 0.005 0.0500 BRL 88 85-115 1 20	Hexavalent Chromium	0.045		mg/l	0.005	0.0500	BRL	89	85-115		
Hexavalent Chromium 0.044 mg/l 0.005 0.0500 BRL 88 85-115 1 20	Matrix Spike Dup (1710148-MSD1)			Source: SC	35970-01	Pre	epared: 16-	Jun-17 Ar	nalyzed: 17-J	un-17	
Hexavalent Chromium 0.027 mg/l 0.005 0.0250 108 85-115		0.044				0.0500	BRL	88	85-115	 1	20
Hexavalent Chromium 0.027 mg/l 0.005 0.0250 108 85-115	Reference (1710148-SRM1)					Pre	epared: 16-	Jun-17 Ar	nalyzed: 17-J	un-17	
Batch 1710917 - General Preparation Blank (1710917-BLK1) Prepared & Analyzed: 28-Jun-17 Total Residual Chlorine < 0.020	Hexavalent Chromium	0.027		mg/l	0.005	0.0250		108	85-115		
Blank (1710917-BLK1) Prepared & Analyzed: 28-Jun-17 Total Residual Chlorine < 0.020	SM4500-Cl-G (11)										
Total Residual Chlorine < 0.020 mg/l 0.020 LCS (1710917-BS1) Prepared & Analyzed: 28-Jun-17 Total Residual Chlorine 0.049 mg/l 0.020 0.0500 98 90-110 Reference (1710917-SRM1) Prepared & Analyzed: 28-Jun-17	Batch 1710917 - General Preparation										
LCS (1710917-BS1) Prepared & Analyzed: 28-Jun-17 Total Residual Chlorine 0.049 mg/l 0.020 0.0500 98 90-110 Reference (1710917-SRM1) Prepared & Analyzed: 28-Jun-17		< 0.000		ma/l	0.000	Pre	epared & Ar	nalyzed: 28	3-Jun-17		
Total Residual Chlorine 0.049 mg/l 0.020 0.0500 98 90-110 Reference (1710917-SRM1) Prepared & Analyzed: 28-Jun-17		~ U.U2U		mg/i	0.020	-			1 lun 47		
Reference (1710917-SRM1) Prepared & Analyzed: 28-Jun-17	<u> </u>	0.010			0.000		epared & Ar				
		0.049		mg/I	0.020						
Iotal Residual Chlorine 0.108 mg/l 0.020 0.105 103 85-115	·						epared & Ar				
	iotal Residual Chlorine	0.108		mg/l	0.020	0.105		103	85-115		

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW9010C/SW9012B										
Batch 391221A - 391221-SW9010C/										
BLK (BY44735-BLK)					Pre	epared: 23-	Jun-17 An	alyzed: 26-Jı	un-17	
Total Cyanide	< 0.01		mg/L	0.01				-		
DUP (BY44735-DUP)			Source: BY	<u> 44735</u>	Pre	epared: 23-	Jun-17 An	alyzed: 26-Jı	un-17	
Total Cyanide	< 0.01		mg/L	0.01				-	NC	30
LCS (BY44735-LCS)					Pre	epared: 23-	Jun-17 An	alyzed: 26-Jı	<u>un-17</u>	
Total Cyanide	0.4600		mg/L	0.01	0.4855		94.7	90-110		30
MS (BY44735-MS)			Source: BY	<u> 44735</u>	Pre	epared: 23-	Jun-17 An	alyzed: 26-Jı	un-17	
Total Cyanide	0.1980		mg/L	0.01)00000298	31	99.0	90-110		30

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>E350.1</u>										
Batch 390559A - 390559										
BLK (BY40933-BLK)					Pre	epared: 19-	Jun-17 Ana	alyzed: 20-Ju	un-17	
Ammonia as Nitrogen	< 0.05		mg/L	0.05				-		
DUP (BY40933-DUP)			Source: BY	<u> 40933</u>	Pre	epared: 19-	Jun-17 Ana	alyzed: 20-Ju	<u>un-17</u>	
Ammonia as Nitrogen	53.3		mg/L	0.50				-	0.4	20
LCS (BY40933-LCS)					Pre	epared: 19-	Jun-17 Ana	alyzed: 20-Ju	<u>un-17</u>	
Ammonia as Nitrogen	3.450		mg/L	0.05	3.74		92.2	90-110		20
MS (BY40933-MS)			Source: BY	<u> 40933</u>	Pre	epared: 19-	Jun-17 Ana	alyzed: 20-Ju	un-17	
Ammonia as Nitrogen	71.10		mg/L	0.05	20		90.0	90-110		20

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

R02 Elevated Reporting Limits due to limited sample volume.

R06 MRL raised to correlate to batch QC reporting limits.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding

time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are

considered out of hold time at the time of sample receipt.

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as

soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

HD Total Hardness is a calculation based on the reported values of Ca and Mg.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

eurofins

CHAIN OF CITCHODY BECORD

★ Standard TAT - 7 to 10 business days

Special Handling:

	U
Spectrum Analytical	
Page of	CHAIN OF CUSIOUS RECORD
All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless other	Rush TAT - Date Needed:

			5=NaOH 6=Ascorbic Acid	E=Eield Eiltered 1=Na-S2O, 2=HCl 3=H-SO, 4=HNO, 5=NaOH 6=Ascorbic Acid	F=Field Filtered
		Quote #: 5047	P.O No.:	melissa Cannon	Project Mgr:
Floyd Button	Sampler(s):	1		9.78-400-1213	Telephone #:
Mansfield state MA	Location:				
16X 11 C1	Site Name:			CHELMSFORD MA	
1 +1				250 APOLLO DRIVE	
60537294	Project No:		Invoice To:	AECOM	Report To:

	OK THE DE	B X ME	Relinquished by:				1. 3.3. 18,	1 02 Receiving	(359700) Source	Lab ID: Sample ID:	G= Grab	X1=X2=	O=Oil SO=Soil SL=Sludge A=Indo	DW =Drinking Water GW=Groundwater		F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Detonized Water 10=H ₃ PO ₄	**************************************
6/16		Dashale 1	Received by:				6/16/17 1100 G 6M	6/16/17 1200 G 6W	6/16/17 1130 G SW		C=Compsite	X3=	A=Indoor/Ambient Air SG=Soil Gas	SW=Surface Water WW=Waste Water		3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 10=H ₃ PO ₄ 11= 12=	
6/16/17 18:25	10/10/1635	6-16-17 12:52 3	Date: Time: 1				v 2	W	S	# of # of # of	VOA Ambe Clear	r Glas Glass	S	Containers	2	cid	
Condition upon receipt: Custody Seals:	Corection Factor	E-mail to:	Temp °C					×× §	* * * * * * * * * * * * * * * * * * *	An To	MMO: HARD TAL Lorid PH WAVA O Toll Chil	RESIDENTS	PA sa Chro	naly	3 4 5	List Preservative Code below:	
s: Present Intact Broken			anon la aecon, com					□ metals. *	See e-mail for specific	601	Ther II*	chlori		MA DEP MCP CAM Report? Yes No	CHARLES CONTROL CONTROL OF THE CONTR	QA/QC Reporting Notes: * additional charges may approve	

0	
Secretary of the last of the l	
0	
-	
SCHOOL II	
-	

Report To: _

	Ω
	~ /
-	11
	W
-	5
	_0'
-	ت
	C
1	1

melissa Cannon	8121-004-878	CHELMSFORD, MA	250 APOLLO DRIVE	AECOM	Spectrum Analytical	ofins		
P.O No.: Quote #: 5047				Invoice To:	Page of 1	CHAIN OF CUSTODY RECORD		
	Sampler(s):		Site Name	Project No:				\
	ton	March Holling MA	Text(o)	60537294	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed.	Rush TAT - Date Needed:	■ Standard TAT - 7 to 10 business days	Special Handling:

# Filered 1=Na,S2O ₃ 2=HCl 3=H ₃ SO ₄ 4=HNO ₃ 5-NaOH 6-Ascorbic Acid OH 8=NaHSO ₄ 9-Deionized Water 10=H ₃ PO ₄ ## of Containers ## of Clear Glass ##	Received by: Rece	Received by: Received by: Press										2/3		-		0=0il	DW	<u> </u>	F=F
### A=HNO, \$=NaOH 6=Ascorbic Acid ### Ascorbic Acid #### Ascorbic Acid #### Comparise C=Compsite	### Containers ### Containers ### of Clear Glass #### of Clear Glass ##################################	# Cantainers Cantainers Cantainers Containers	Bose	3 HE	Relinqui					7	- 07	140665	Lab ID:	G= (X1=		=Drinking Water	HOUH &=Nahou	ield Filtered 1=
### A=HNO, \$=NaOH 6=Ascorbic Acid ### Ascorbic Acid #### Ascorbic Acid #### Comparise C=Compsite	### Containers ### Containers ### of Clear Glass #### of Clear Glass ##################################	# Candidate Water	De	A GEN	shed by:					18	Receiving	Source	Sample ID:	Grab	X2:		GW=Groundwater	9-Defonized water	Na ₂ S2O ₃ 2 =HCl
# Of Clear Glass 12	S=NaOH 6=Assorbic Acid List Preservative Code 12	WW=Waste Water Ww=Waste Water Time: Time: Time: Time: Total cyanide List Preservative Code below: Anniystic Anni		a Daw	Re					6/16/	6/16/	6/16/1	Date	C=Co			SW=Surface Water	10-n3r-04	
Ascorbic Acid 12	Ascorbic Acid 12= Containers Containers	Asorbic Acid Date: Date: Time: Time: Time: Date: Time: Time: Time: Date: Time: Time: Time: Time: Date: Time: Ti	M	60 Alec	ceived by:									mpsite	X3=	G=Soil Gas	WW=Waste Water	1.1.—	5=NaOH
# of Amber Glass # of Clear Glass # of Plastic Time: W # of Plastic	# of Amber Glass # of Clear Glass # of Clear Glass # of Plastic W S # of Plastic W S W S # of Plastic W S	# of Amber Glass # of Clear Glass # of Clear Glass # of Plastic Z W H S Preservative Code below: Ammonia as N HARDNESS, TOTAL METALS	~ 	6-16	Dat			5, F		Coples		30	Ma	ıtrix	Vials		ı	1.4	Ascorbic Acid
Conception Factor Conception Factor Conception Factor Ammonia as N HARDNESS, HARDNESS,	Email to: List Preservative Code	HARDNESS, TOTAL METALS EDD format: Mel SSA, Cohloside EPASOD Chloside EPASOD Chloside EPASOD Chlosine Total residual Chlosine Total residual Chlosine Total residual Chlosine Total residual Chlosine	10 (6)	17 12:52							W	N	# of	Clear	Glass	S	Containers		i,
	ail to:	ail to: We	Correction Factor							×	×	メメ				is N	v.	8	List P

Elie Makhoul

From:

Burton, Floyd <Floyd.Burton@aecom.com>

Sent:

Monday, June 19, 2017 9:04 AM

To:

Elie Makhoul

Cc:

Cannon, Melissa

Subject:

RE: Heads up

Here is what we need to analyze the samples for:

Source water sample:

- -pH
- -temperature
- -hardness
- -Ammonia
- -Chloride
- -Total Residual Chlorine
- -TSS
- -Antimony
- -Arsenic
- -Cadmium
- -Chromium III
- -Chromium VI
- -Copper
- -Iron
- -Lead
- -Mercury-
- -Nickel
- -Selenium
- -Silver
- -Zinc
- -Cyanide
- -PCE
- -TCE
- -cis-1,2-DCE

Receiving water sample:

- -temperature
- -hardness
- -ammonia
- -total recoverable antimony
- -total recoverable arsenic
- -total recoverable cadmium
- -total recoverable chromium III
- -total recoverable chromium VI
- -total recoverable copper
- -total recoverable iron
- -total recoverable lead
- -total recoverable mercury

- -total recoverable nickel
- -total recoverable selenium
- -total recoverable silver
- -total recoverable zinc

Any other questions, please reach out to the PM- Melissa Cannon @ 978-400-1213

From: Elie Makhoul [mailto:ElieMakhoul@eurofinsUS.com]

Sent: Friday, June 16, 2017 6:13 PM

To: Burton, Floyd

Cc: Kimberly Laplante; SpectrumSample@EurofinsUS.com

Subject: RE: Heads up

Hi Flovd.

We haven't received the list of analyses for the Textron samples. Could you please send is to us on Monday morning? Thank you and have a nice weekend.

Elie,

From: Kimberly Laplante

Sent: Friday, June 16, 2017 12:01 PM

To: !US38_Spectrum_Sample

Subject: Heads up

Hi. Just letting you know that Floyd Burton from Aecom is going to be emailing you the analysis list for the Textron samples he is sending in today. The list of analyses was too large to write on the COC, so he is emailing instead. Must be a quarterly sampling for the NPDES permit. This is associated with quote 5049.

Thanks, Kim

Notify us here to report this email as spam.

Batch Summary

[CALC]

General Chemistry Parameters

SC35970-01 (Source) SC35970-02 (Receiving)

<u>1710137</u>

Total Metals by EPA 200/6000 Series Methods

SC35970-01 (Source) SC35970-02 (Receiving)

1710139

General Chemistry Parameters

1710139-DUP1 1710139-SRM1 1710139-SRM2 SC35970-01 (Source) SC35970-02 (Receiving)

1710148

General Chemistry Parameters

1710148-BLK1 1710148-BS1 1710148-DUP1 1710148-MS1 1710148-MSD1 1710148-SRM1 SC35970-01 (Source) SC35970-02 (Receiving)

<u>1710216</u>

Volatile Organic Compounds

1710216-BLK1 1710216-BS1 1710216-BSD1 SC35970-01 (Source) SC35970-03 (TB)

<u>1710294</u>

General Chemistry Parameters

1710294-BLK1 1710294-BS1 SC35970-01 (Source)

<u>1710326</u>

General Chemistry Parameters

1710326-BLK1 1710326-BS1 1710326-SRM1 SC35970-01 (Source)

1710452

Total Metals by EPA 200 Series Methods

1710452-BLK1 1710452-BS1 SC35970-01 (Source) SC35970-01 (Source) SC35970-02 (Receiving) SC35970-02 (Receiving)

1710453

Total Metals by EPA 200 Series Methods

1710453-BLK1 1710453-BS1 1710453-DUP1 1710453-MS1 SC35970-01 (Source) SC35970-02 (Receiving)

1710917

General Chemistry Parameters

1710917-BLK1 1710917-BS1 1710917-SRM1 SC35970-01 (Source)

390559A

Subcontracted Analyses

BY40933-BLK BY40933-DUP BY40933-LCS BY40933-MS SC35970-01 (Source) SC35970-02 (Receiving)

391221A

Subcontracted Analyses

BY44735-BLK BY44735-DUP BY44735-LCS BY44735-MS SC35970-01 (Source)

S705492

Volatile Organic Compounds

S705492-CAL1

S705492-CAL2

S705492-CAL3

S705492-CAL4

S705492-CAL5

S705492-CAL6

S705492-CAL7

S705492-CAL8

S705492-CAL9

5700.72 0.12

S705492-ICV1

S705492-LCV1

S705492-LCV2

S705492-LCV3

S705492-TUN1

S705541

Volatile Organic Compounds

S705541-CCV1

S705541-TUN1

V	Final Report
	Revised Report

Report Date: 09-Jun-17 14:52

Laboratory Report SC35221

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Melissa Cannon

Project: Textron - Mansfield, MA

Project #: 60537294

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Rebecca Merz Quality Services Manager

Rebease Mery

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 26 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC35221

Project: Textron - Mansfield, MA

Project Number: 60537294

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC35221-01	INF	Ground Water	25-May-17 15:30	30-May-17 15:45
SC35221-02	MID	Ground Water	25-May-17 15:15	30-May-17 15:45
SC35221-03	EFF	Ground Water	25-May-17 15:00	30-May-17 15:45
SC35221-04	TB	Ground Water	25-May-17 14:30	30-May-17 15:45

09-Jun-17 14:52 Page 2 of 26

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 1.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 200.7

Duplicates:

1709062-DUP1 Source: SC35221-01

MRL raised to correlate to batch QC reporting limits.

Iron

Samples:

SC35221-01 *INF*

MRL raised to correlate to batch QC reporting limits.

Iron

SC35221-03 *EFF*

MRL raised to correlate to batch QC reporting limits.

Iron

EPA 300.0

Duplicates:

1709037-DUP1 Source: SC35221-03

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Chloride

Samples:

SC35221-01 *INF*

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Chloride

SC35221-03 *EFF*

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Chloride

SW846 8260C

Calibration:

1705025

SW846 8260C

Calibration:

1705025

Analyte quantified by quadratic equation type calibration.

Bromodichloromethane

Bromoform

Carbon tetrachloride

cis-1,3-Dichloropropene

Dibromochloromethane

trans-1,3-Dichloropropene

This affected the following samples:

1709262-BLK1

1709262-BS1

1709262-BSD1

1709320-BLK1

1709320-BS1

1709320-BSD1

1709424-BLK1

1709424-BS1

1709424-BSD1

EFF

INF

MID

S704674-ICV1

S705041-CCV1

S705081-CCV1

S705115-CCV1

TΒ

S704674-ICV1

Analyte percent recovery is outside individual acceptance criteria (80-120).

Acetone (124%)

This affected the following samples:

1709262-BLK1

1709262-BS1

1709262-BSD1

1709320-BLK1

1709320-BS1

1709320-BSD1

1709424-BLK1

1709424-BS1

1709424-BSD1

EFF

INF

MID S705041-CCV1

S705081-CCV1

S705115-CCV1

Blanks:

TΒ

1709262-BLK1

This compound is a common laboratory contaminant.

Chloromethane

SW846 8260C

Blanks:

1709320-BLK1

This compound is a common laboratory contaminant.

Acetone

Chloromethane

1709424-BLK1

This compound is a common laboratory contaminant.

Acetone

Chloromethane

Samples:

SC35221-01

INF

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC35221-01RE1

INF

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC35221-04

TB

This compound is a common laboratory contaminant.

Acetone

Chloromethane

SW846 8270D SIM

Calibration:

1704025

Analyte quantified by quadratic equation type calibration.

Benzo (e) pyrene-d12

Pentachlorophenol

This affected the following samples:

1709046-BLK2

1709046-BS2

1709046-BSD2

EFF

INF

S703654-ICV1

S705228-CCV1

Samples:

S705228-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Benzo (k) fluoranthene (21.0%)

This affected the following samples:

1709046-BLK2

1709046-BS2

1709046-BSD2

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	Textron - Mansfield, MA / 60537294
Work Order:	SC35221
Sample(s) received on:	5/30/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>Yes</u>	<u>No</u>	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			\checkmark
Were samples received at a temperature of $\leq 6^{\circ}$ C?	✓		
Were samples refrigerated upon transfer to laboratory representative?	✓		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	√		
Were samples accompanied by a Chain of Custody document?	✓		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
Did sample container labels agree with Chain of Custody document?	✓		
Were samples received within method-specific holding times?	\checkmark	П	

Summary of Hits

Client ID:

INF

Lab ID: SC35221-01

Parameter	Result	Flag Reporting Limit	Units	Analytical Method
Iron	1.76	R06 0.0400	mg/l	EPA 200.7
Zinc	0.0489	0.0050	mg/l	EPA 200.7
Chloride	151	GS1, D6.00	mg/l	EPA 300.0
Tetrachloroethene	7730	D, E 50.0	μg/l	SW846 8260C
Trichloroethene	414	D 50.0	μg/l	SW846 8260C
Lab ID: SC35221-01RE1		Client ID: INF		
Parameter	Result	Flag Reporting Limit	Units	Analytical Method
Tetrachloroethene	7830	D 200	μg/l	SW846 8260C
Trichloroethene	410	D 200	$\mu g/l$	SW846 8260C
Lab ID: SC35221-03		Client ID: EFF		
Parameter	Result	Flag Reporting Limit	Units	Analytical Method
Chloride	125	GS1, D3.00	mg/l	EPA 300.0

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

INF SC35221-	lentification				Project # 7294		<u>Matrix</u> Ground Wa		ection Date -May-17 15			<u>cceived</u> May-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Ceri
Volatile Or	rganic Compounds												
	rganic Compounds by SW		GS1										
<u>Prepared 1</u> 67-64-1	by method SW846 5030 V Acetone	< 500	D	ua/l	500	40.2	50	SW846 8260C	05- lun-17	06-Jun-17	GMA	1709262	,
75-27-4	Bromodichloromethane	< 25.0	D	μg/l μg/l	25.0	20.8	50	"	"	"	UIVIA "	"	
75-25-2	Bromoform	< 50.0	D	μg/l	50.0	21.2	50			,,	"	"	
74-83-9	Bromomethane	< 100	D	μg/l	100	44.8	50			,,	"	"	
56-23-5	Carbon tetrachloride	< 50.0	D	μg/l	50.0	21.8	50		"	"	"	"	
108-90-7	Chlorobenzene	< 50.0	D	μg/l	50.0	12.4	50		"	"	"	"	
75-00-3	Chloroethane	< 100	D	μg/l	100	29.4	50	"			"		
67-66-3	Chloroform	< 50.0	D	μg/l	50.0	16.3	50	"	"		"		
74-87-3	Chloromethane	< 100	D		100	18.4	50	"	"		"		
124-48-1	Dibromochloromethane	< 25.0	D	μg/l μg/l	25.0	15.8	50	"	"	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 50.0	D	μg/l	50.0	13.8	50	"	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	< 50.0	D	μg/l	50.0	15.7	50	"	,,	"	"		
106-46-7	1,3-Dichlorobenzene	< 50.0	D	μg/l μg/l	50.0	13.6	50	"	,,	"	"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 100	D	μg/l	100	29.2	50	n	"	"	"	"	
75-34-3	1,1-Dichloroethane	< 50.0	D	μg/l	50.0	16.2	50	"	"	"	"	"	
107-06-2	1,2-Dichloroethane	< 50.0	D	μg/l	50.0	13.8	50	"	"	"	"	"	
75-35-4	1,1-Dichloroethene	< 50.0	D	μg/l	50.0	34.6	50	"	"	"	"	"	
156-59-2	cis-1,2-Dichloroethene	< 50.0	D	μg/l	50.0	16.4	50	"	"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	< 50.0	D	μg/l	50.0	18.8	50	"	n n	"	"	"	
78-87-5	1,2-Dichloropropane	< 50.0	D	μg/l	50.0	14.6	50	"	"	"	"	"	
10061-01-5	cis-1,3-Dichloropropene	< 25.0	D	μg/l	25.0	18.0	50	"	"	"	"		
10061-02-6	trans-1,3-Dichloropropene	< 25.0	D	μg/l	25.0	17.4	50	"	"	"	"		
75-09-2	Methylene chloride	< 100	D	μg/l	100	33.0	50	"	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 25.0	D	μg/l	25.0	16.5	50	"	"	"	"	"	
127-18-4	Tetrachloroethene	7,730	D, E	μg/l	50.0	28.5	50	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 50.0	D	μg/l	50.0	25.4	50	"	n n	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 50.0	D	μg/l	50.0	16.5	50	"	n n	"	"	"	
79-01-6	Trichloroethene	414	D	μg/l	50.0	24.8	50	"	n n	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 50.0	D	μg/l	50.0	24.4	50	"	"	u	"	"	
75-01-4	Vinyl chloride	< 50.0	D	μg/l	50.0	23.6	50	"	"	"	"	"	
123-91-1	1,4-Dioxane	< 1000	D	μg/l	1000	570	50	"	"	"	"	"	
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	92			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	102			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	107			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	107			70-13	0 %		"	"	"	"	"	
by SW846	sis of Volatile Organic Com 8 8260 by method SW846 5030 V		GS1										
67-64-1	Acetone	< 2000	D	μg/l	2000	161	200	SW846 8260C	06-Jun-17	07-Jun-17	GMA	1709320	į
75-27-4	Bromodichloromethane	< 100	D	μg/l	100	83.4	200	"	"	"	"	"	
75-25-2	Bromoform	< 200	D	μg/l	200	85.0	200	"	"	"		"	
74-83-9	Bromomethane	< 400	D	μg/l	400	179	200	"	"	"	"	"	
55 5	Signification	< 200	٦	μул	200	87.4	200				,,		

INF SC35221-	lentification -01				Project # 7294		<u>Matrix</u> Ground W		ection Date -May-17 15			<u>ceived</u> May-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cei
Volatile O	rganic Compounds												
Re-analys	sis of Volatile Organic Com	pounds	GS1										
<u>108-90-7</u>	Chlorobenzene	< 200	D	μg/l	200	49.8	200	SW846 8260C	06_ lun_17	07-Jun-17	GMA	1709320	1
75-00-3	Chloroethane	< 400	D	μg/l	400	118	200	"	"	"	"	"	
67-66-3	Chloroform	< 200	D	μg/l	200	65.2	200		"		"		
74-87-3	Chloromethane	< 400	D	μg/l	400	73.6	200		"	,,	"	"	
124-48-1	Dibromochloromethane	< 100	D	μg/l	100	63.4	200		"	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 200	D	μg/l	200	55.4	200		"	"	"	"	
541-73-1	1,3-Dichlorobenzene	< 200	D	μg/l	200	62.8	200		"		"		
06-46-7	1,4-Dichlorobenzene	< 200	D	μg/l	200	54.4	200		"		"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 400	D	μg/l	400	117	200	"	"	"	u	"	
' 5-34-3	1,1-Dichloroethane	< 200	D	μg/l	200	64.6	200	"	"	"	"	"	
07-06-2	1,2-Dichloroethane	< 200	D	μg/l	200	55.4	200	ıı .	"	"	"		
5-35-4	1,1-Dichloroethene	< 200	D	μg/l	200	139	200	ıı .	"	"	"		
56-59-2	cis-1,2-Dichloroethene	< 200	D	μg/l	200	65.4	200		"	"		"	
56-60-5	trans-1,2-Dichloroethene	< 200	D	μg/l	200	75.4	200	"	"		"		
8-87-5	1,2-Dichloropropane	< 200	D	μg/l	200	58.4	200		"	"		"	
0061-01-5	cis-1,3-Dichloropropene	< 100	D	μg/l	100	71.8	200		"	"		"	
0061-02-6	trans-1,3-Dichloropropene	< 100	D	μg/l	100	69.4	200				"		
5-09-2	Methylene chloride	< 400	D	μg/l	400	132	200		"	"		"	
9-34-5	1,1,2,2-Tetrachloroethane	< 100	D	μg/l	100	66.0	200		"	"	"	"	
27-18-4	Tetrachloroethene	7,830	D	μg/l	200	114	200				"		
1-55-6	1,1,1-Trichloroethane	< 200	D	μg/l	200	102	200	"	"		"		
9-00-5	1,1,2-Trichloroethane	< 200	D	μg/l	200	66.0	200	"	"	"	"		
9-01-6	Trichloroethene	410	D	μg/l	200	99.4	200				"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 200	D	μg/l	200	97.4	200	"	"	"	"	"	
5-01-4	Vinyl chloride	< 200	D	μg/l	200	94.4	200	"	"	"	"	"	
23-91-1	1,4-Dioxane	< 4000	D	μg/l	4000	2280	200	"	"	"	"	"	
Surrogate i	recoveries:												
160-00-4	4-Bromofluorobenzene	92			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	103			70-13	0 %		"	"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %		"	"	"	"		
868-53-7	Dibromofluoromethane	105			70-13	0 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by (GCMS											
Phthalates Prepared	<u>s</u> by method SW846 3510C												
17-81-7	Bis(2-ethylhexyl)phthalate	< 0.952		μg/l	0.952	0.608	1	SW846 8270D	01-Jun-17	02-Jun-17	MSL	1709046	i
5-68-7	Butyl benzyl phthalate	< 0.952		μg/l	0.952	0.417	1	"	"	"	"	"	
4-66-2	Diethyl phthalate	< 0.952		μg/l	0.952	0.593	1	"	"	"	"	"	
31-11-3	Dimethyl phthalate	< 0.952		μg/l	0.952	0.722	1		"	"	"	"	
4-74-2	Di-n-butyl phthalate	< 0.952		μg/l	0.952	0.435	1		"	"	"	"	
17-84-0	Di-n-octyl phthalate	< 0.952		μg/l	0.952	0.387	1	"	"	"	"	"	
Surrogate i	recoveries:												
21-60-8	2-Fluorobiphenyl	50			30-13	0 %		"	"	"	"	"	
718-51-0	Terphenyl-dl4	57			30-13								

Sample Id INF SC35221-	entification 01				<u>Project #</u> 37294		<u>Matrix</u> Ground W		ection Date -May-17 15			eceived May-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by	y GCMS											
SVOCs by	<u>′ SIM</u>												
87-86-5	Pentachlorophenol	< 0.952		μg/l	0.952	0.223	1	SW846 8270D SIM	01-Jun-17	09-Jun-17	MSL	1709046	
Surrogate r	ecoveries:												
205440-82-0	Benzo (e) pyrene-d12	66			30-13	80 %		"	"	"	"	"	
93951-73-6	2-Chlorophenol-d4	37			15-11	0 %		"	"	"	"	"	
	ls by EPA 200/6000 Series by method General Prep												
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	31-May-1 7		BK	1709028	
Total Meta	ls by EPA 200 Series Met	hods											
7439-89-6	Iron	1.76	R06	mg/l	0.0400	0.0100	1	EPA 200.7	01-Jun-17	02-Jun-17	TBC	1709062	Χ
7440-66-6	Zinc	0.0489		mg/l	0.0050	0.0027	1	"	"	"	"	"	Χ
General C	hemistry Parameters												
16887-00-6	Chloride	151	GS1, D	mg/l	6.00	0.538	6	EPA 300.0	31-May-1 7	01-Jun-17	CAW	1709037	X

09-Jun-17 14:52 Page 10 of 26

78-87-5

10061-01-5

10061-02-6

75-09-2

79-34-5

127-18-4

71-55-6

79-00-5

79-01-6

75-69-4

75-01-4

123-91-1

460-00-4

2037-26-5

17060-07-0

1868-53-7

Surrogate recoveries:

1,2-Dichloropropane

Methylene chloride

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

4-Bromofluorobenzene

1,2-Dichloroethane-d4

Dibromofluoromethane

Trichloroethene

(Freon 11)

Vinyl chloride

1,4-Dioxane

Toluene-d8

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

< 1.00

< 0.50

< 0.50

< 2.00

< 0.50

< 1.00

< 1.00

< 1.00

< 1.00

< 1.00

< 1.00

< 20.0

92

102

107

104

μg/l

1.00

0.50

0.50

2.00

0.50

1.00

1.00

1.00

1.00

1.00

1.00

20.0

70-130 %

70-130 %

70-130 %

70-130 %

0.29

0.36

0.35

0.66

0.33

0.57

0.51

0.33

0.50

0.49

0.47

11.4

1

1

1

1

1

1

1

1

1

1

1

1

09-Jun-17 14:52 Page 11 of 26

EFF	lentification			Client 1	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
SC35221-	03			6053	37294		Ground W	ater 25	-May-17 1:	5:00	30-	May-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by	y GCMS											
Phthalate	<u>s</u>												
84-74-2	Di-n-butyl phthalate	< 0.952		μg/l	0.952	0.435	1	SW846 8270D	01-Jun-17	02-Jun-17	MSL	1709046	
117-84-0	Di-n-octyl phthalate	< 0.952		μg/l	0.952	0.387	1	n .	"	"	"	"	
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	41			30-13	80 %		"	"	"	"		
1718-51-0	Terphenyl-dl4	54			30-13	80 %		"	"	"	"		
SVOCs by	<u>y SIM</u>												
87-86-5	Pentachlorophenol	< 0.952		μg/l	0.952	0.223	1	SW846 8270D SIM	"	09-Jun-17	MSL	"	
Surrogate i	ecoveries:												
205440-82-0	Benzo (e) pyrene-d12	64			30-13	80 %		"	u u	"	"	"	
93951-73-6	2-Chlorophenol-d4	33			15-11	0 %		"	"	"	"	"	
	als by EPA 200/6000 Series by method General Prep												
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	31-May-1 7		BK	1709028	
Total Meta	als by EPA 200 Series Met	hods											
7439-89-6	Iron	< 0.0400	R06	mg/l	0.0400	0.0100	1	EPA 200.7	01-Jun-17	02-Jun-17	TBC	1709062	Χ
7440-66-6	Zinc	< 0.0050		mg/l	0.0050	0.0027	1	"	"	"	"	"	Χ
General C	hemistry Parameters												
16887-00-6	Chloride	125	GS1, D	mg/l	3.00	0.269	3	EPA 300.0	31-May-1	01-Jun-17	CAW	1709037	Χ

09-Jun-17 14:52 Page 13 of 26

Client Project # 60537294

Matrix Ground Water Collection Date/Time 25-May-17 14:30 Received 30-May-17

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	<u>C</u>
Volatile Or	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
67-64-1	Acetone	< 10.0	O01	μg/l	10.0	0.80	1	SW846 8260C	05-Jun-17	06-Jun-17	GMA	1709262	
75-27-4	Bromodichloromethane	< 0.50		μg/l	0.50	0.42	1	"	"	"	"	"	
75-25-2	Bromoform	< 1.00		μg/l	1.00	0.42	1		"			"	
74-83-9	Bromomethane	< 2.00		μg/l	2.00	0.90	1		"			"	
6-23-5	Carbon tetrachloride	< 1.00		μg/l	1.00	0.44	1		"	"	"	"	
08-90-7	Chlorobenzene	< 1.00		μg/l	1.00	0.25	1		"	"	"	"	
5-00-3	Chloroethane	< 2.00		μg/l	2.00	0.59	1		"	"	"	"	
7-66-3	Chloroform	< 1.00		μg/l	1.00	0.33	1		"	"	"	"	
4-87-3	Chloromethane	< 2.00	O01	μg/l	2.00	0.37	1		"	"	"	"	
24-48-1	Dibromochloromethane	< 0.50		μg/l	0.50	0.32	1		"	"	"	"	
5-50-1	1,2-Dichlorobenzene	< 1.00		μg/l	1.00	0.28	1	"	"		"	"	
41-73-1	1,3-Dichlorobenzene	< 1.00		μg/l	1.00	0.31	1		"	"	"	"	
06-46-7	1,4-Dichlorobenzene	< 1.00		μg/l	1.00	0.27	1	"	"		"	"	
5-71-8	Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00	0.58	1	"	u	"	"	"	
5-34-3	1,1-Dichloroethane	< 1.00		μg/l	1.00	0.32	1	"	"	"	"	"	
07-06-2	1,2-Dichloroethane	< 1.00		μg/l	1.00	0.28	1	"	"	"	"	"	
5-35-4	1,1-Dichloroethene	< 1.00		μg/l	1.00	0.69	1	"	"	"	"	"	
56-59-2	cis-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.33	1		"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	< 1.00		μg/l	1.00	0.38	1	"	"	"	"	"	
8-87-5	1,2-Dichloropropane	< 1.00		μg/l	1.00	0.29	1		"	"	"	"	
0061-01-5	cis-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.36	1		"	"	"	"	
0061-02-6	trans-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.35	1	"	"	"	"	"	
5-09-2	Methylene chloride	< 2.00		μg/l	2.00	0.66	1		"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50	0.33	1	"	"	"	"	"	
27-18-4	Tetrachloroethene	< 1.00		μg/l	1.00	0.57	1		"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.00		μg/l	1.00	0.51	1		"	"	"	"	
9-00-5	1,1,2-Trichloroethane	< 1.00		μg/l	1.00	0.33	1		"	"	"	"	
9-01-6	Trichloroethene	< 1.00		μg/l	1.00	0.50	1	"	"		"	"	
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00	0.49	1	"	"	"	"	"	
5-01-4	Vinyl chloride	< 1.00		μg/l	1.00	0.47	1	"	"	"	"	"	
23-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	11.4	1	"	"	"	"	"	
urrogate r	recoveries:												
160-00-4	4-Bromofluorobenzene	93			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	102			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	104			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	103			70-13	0 %		"	"	"		"	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1709262 - SW846 5030 Water MS										
Blank (1709262-BLK1)					Pre	epared & Ar	nalyzed: 05-	Jun-17		
Acetone	< 10.0		μg/l	10.0		•				
Bromodichloromethane	< 0.50		μg/l	0.50						
Bromoform	< 1.00		μg/l	1.00						
Bromomethane	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		μg/l	1.00						
Chlorobenzene	< 1.00		μg/l	1.00						
Chloroethane	< 2.00		μg/l	2.00						
Chloroform	< 1.00		μg/l	1.00						
Chloromethane	< 2.00	O01	μg/l	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		μg/l	1.00						
1,4-Dichlorobenzene	< 1.00		μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		μg/l	1.00						
1,1-Dichloroethene	< 1.00		μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		μg/l	1.00						
trans-1,2-Dichloroethene	< 1.00		μg/l	1.00						
1,2-Dichloropropane	< 1.00			1.00						
cis-1,3-Dichloropropene	< 0.50		μg/l μg/l	0.50						
trans-1,3-Dichloropropene	< 0.50			0.50						
Methylene chloride	< 2.00		μg/l μg/l	2.00						
1,1,2,2-Tetrachloroethane	< 0.50			0.50						
Tetrachloroethene	< 1.00		µg/l	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l	1.00						
1,1,2-Trichloroethane	< 1.00		µg/l	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
	< 1.00		µg/l							
Trichlorofluoromethane (Freon 11)			μg/l	1.00						
Vinyl chloride 1,4-Dioxane	< 1.00 < 20.0		μg/l μg/l	1.00 20.0						
Surrogate: 4-Bromofluorobenzene	47.1			20.0	50.0		04	70-130		
			μg/l		50.0		94			
Surrogate: Toluene-d8	51.2		μg/l		50.0		102	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	51.4 51.1		μg/l		50.0		103 102	70-130 70-130		
•	51.1		μg/l		50.0					
LCS (1709262-BS1)	22.0					epareu & Ar	nalyzed: 05-			
Acetone	23.9		μg/l		20.0		120	70-130		
Bromodichloromethane	18.9		μg/l		20.0		95	70-130		
Bromoform	18.6		μg/l		20.0		93	70-130		
Bromomethane	19.2		μg/l		20.0		96	70-130		
Carbon tetrachloride	19.0		μg/l		20.0		95 101	70-130		
Chlorobenzene	20.2		μg/l		20.0		101	70-130		
Chloroethane	20.9		μg/l		20.0		104	70-130		
Chloroform	17.8		μg/l		20.0		89	70-130		
Chloromethane	21.9		μg/l "		20.0		109	70-130		
Dibromochloromethane	19.1		μg/l "		20.0		96	70-130		
1,2-Dichlorobenzene	20.1		μg/l "		20.0		101	70-130		
1,3-Dichlorobenzene	20.8		μg/l "		20.0		104	70-130		
1,4-Dichlorobenzene	18.7		μg/l		20.0		94	70-130		
Dichlorodifluoromethane (Freon12)	19.4		μg/l		20.0		97	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1709262 - SW846 5030 Water MS										
LCS (1709262-BS1)					Pre	epared & Ar	nalyzed: 05-	Jun-17		
1,1-Dichloroethane	21.4		μg/l		20.0		107	70-130		
1,2-Dichloroethane	20.2		μg/l		20.0		101	70-130		
1,1-Dichloroethene	21.4		μg/l		20.0		107	70-130		
cis-1,2-Dichloroethene	17.4		μg/l		20.0		87	70-130		
trans-1,2-Dichloroethene	20.8		μg/l		20.0		104	70-130		
1,2-Dichloropropane	20.3		μg/l		20.0		101	70-130		
cis-1,3-Dichloropropene	19.5		μg/l		20.0		97	70-130		
trans-1,3-Dichloropropene	19.8		μg/l		20.0		99	70-130		
Methylene chloride	21.0		μg/l		20.0		105	70-130		
1,1,2,2-Tetrachloroethane	21.0		μg/l		20.0		105	70-130		
Tetrachloroethene					20.0		95	70-130		
	19.0		μg/l							
1,1,1-Trichloroethane	20.8		μg/l		20.0		104	70-130		
1,1,2-Trichloroethane	21.1		μg/l		20.0		106	70-130		
Trichloroethene	19.4		μg/l		20.0		97	70-130		
Trichlorofluoromethane (Freon 11)	21.0		μg/l		20.0		105	70-130		
Vinyl chloride	20.4		μg/l		20.0		102	70-130		
1,4-Dioxane	186		μg/l		200		93	70-130		
Surrogate: 4-Bromofluorobenzene	52.0		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.4		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.2		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	51.3		μg/l		50.0		103	70-130		
LCS Dup (1709262-BSD1)					Pre	enared: 05-	Jun-17 An:	alyzed: 06-Ju	ın-17	
Acetone	23.7		μg/l		20.0	, p a. o a. o o	119	70-130	0.8	20
Bromodichloromethane	18.6		μg/l		20.0		93	70-130	2	20
Bromoform	18.4		μg/l		20.0		92	70-130	1	20
Bromomethane	18.4		μg/l		20.0		92	70-130	4	20
Carbon tetrachloride	18.0				20.0		90	70-130	5	20
Chlorobenzene	19.4		μg/l				97	70-130		20
			μg/l		20.0				4	
Chloroethane	20.5		μg/l		20.0		102	70-130	2	20
Chloroform	17.4		μg/l 		20.0		87	70-130	2	20
Chloromethane	21.2		μg/l		20.0		106	70-130	3	20
Dibromochloromethane	18.8		μg/l		20.0		94	70-130	1	20
1,2-Dichlorobenzene	19.6		μg/l		20.0		98	70-130	3	20
1,3-Dichlorobenzene	20.2		μg/l		20.0		101	70-130	3	20
1,4-Dichlorobenzene	18.2		μg/l		20.0		91	70-130	3	20
Dichlorodifluoromethane (Freon12)	18.2		μg/l		20.0		91	70-130	6	20
1,1-Dichloroethane	20.4		μg/l		20.0		102	70-130	5	20
1,2-Dichloroethane	19.8		μg/l		20.0		99	70-130	2	20
1,1-Dichloroethene	20.9		μg/l		20.0		104	70-130	2	20
cis-1,2-Dichloroethene	16.8		μg/l		20.0		84	70-130	3	20
trans-1,2-Dichloroethene	20.2		μg/l		20.0		101	70-130	3	20
1,2-Dichloropropane	19.6		μg/l		20.0		98	70-130	3	20
cis-1,3-Dichloropropene	18.6		μg/l		20.0		93	70-130	5	20
trans-1,3-Dichloropropene	19.0		μg/l		20.0		95	70-130	4	20
Methylene chloride	20.6		μg/l		20.0		103	70-130	2	20
1,1,2,2-Tetrachloroethane	20.7		μg/l		20.0		103	70-130	2	20
Tetrachloroethene	18.5		μg/l		20.0		93	70-130	3	20
1,1,1-Trichloroethane	20.2		μg/l		20.0		101	70-130	3	20
1,1,2-Trichloroethane	20.7		μg/l		20.0		104	70-130	2	20
Trichloroethene	18.8		μg/l		20.0		94	70-130	3	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1709262 - SW846 5030 Water MS										
LCS Dup (1709262-BSD1)					Pre	epared: 05-	Jun-17 An	alyzed: 06-Ju	ın-17	
Trichlorofluoromethane (Freon 11)	19.9		μg/l		20.0		100	70-130	5	20
Vinyl chloride	19.5		μg/l		20.0		98	70-130	5	20
1,4-Dioxane	188		μg/l		200		94	70-130	1	20
Surrogate: 4-Bromofluorobenzene	51.6		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	51.5		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.8		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	51.0		μg/l		50.0		102	70-130		
Batch 1709320 - SW846 5030 Water MS	00		F9.		00.0			70 700		
					Dec	anarad O A	achtach 06	lun 17		
Blank (1709320-BLK1)	< 10.0	O01	//	10.0	Pre	epared & Ar	nalyzed: 06-	Jun-17_		
Acetone		001	μg/l	10.0						
Bromodichloromethane Bromoform	< 0.50		μg/l	0.50						
Bromonethane	< 1.00		μg/l	1.00						
Carbon tetrachloride	< 2.00 < 1.00		μg/l	2.00 1.00						
			μg/l							
Chlorosthana	< 1.00		μg/l	1.00						
Chloroform	< 2.00		µg/l	2.00						
Chloromothono	< 1.00 < 2.00	O01	μg/l	1.00						
Chloromethane		001	μg/l	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		μg/l	1.00						
1,4-Dichlorobenzene	< 1.00		μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		μg/l	1.00						
1,1-Dichloroethene	< 1.00		μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		μg/l	1.00						
trans-1,2-Dichloroethene	< 1.00		μg/l	1.00						
1,2-Dichloropropane	< 1.00		μg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		μg/l	0.50						
trans-1,3-Dichloropropene	< 0.50		μg/l 	0.50						
Methylene chloride	< 2.00		μg/l	2.00						
1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50						
Tetrachloroethene	< 1.00		μg/l "	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l 	1.00						
1,1,2-Trichloroethane	< 1.00		μg/l 	1.00						
Trichloroethene	< 1.00		μg/l 	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
Vinyl chloride	< 1.00		μg/l	1.00						
1,4-Dioxane	< 20.0		μg/l	20.0						
Surrogate: 4-Bromofluorobenzene	46.2		μg/l		50.0		92	70-130		
Surrogate: Toluene-d8	51.4		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	53.1		μg/l		50.0		106	70-130		
Surrogate: Dibromofluoromethane	52.4		μg/l		50.0		105	70-130		
LCS (1709320-BS1)					Pre	epared & Ar	nalyzed: 06-	<u>Jun-17</u>		
Acetone	18.6		μg/l		20.0		93	70-130		
Bromodichloromethane	18.9		μg/l		20.0		95	70-130		
Bromoform	18.1		μg/l		20.0		90	70-130		
Bromomethane	21.1		μg/l		20.0		106	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
atch 1709320 - SW846 5030 Water MS										
LCS (1709320-BS1)					Pre	epared & Ar	nalyzed: 06-	Jun-17		
Carbon tetrachloride	19.4		μg/l		20.0		97	70-130		
Chlorobenzene	20.0		μg/l		20.0		100	70-130		
Chloroethane	21.6		μg/l		20.0		108	70-130		
Chloroform	17.9		μg/l		20.0		89	70-130		
Chloromethane	21.1		μg/l		20.0		106	70-130		
Dibromochloromethane	18.8		μg/l		20.0		94	70-130		
1,2-Dichlorobenzene	19.1		μg/l		20.0		96	70-130		
1,3-Dichlorobenzene	20.7		μg/l		20.0		104	70-130		
1,4-Dichlorobenzene	18.1		μg/l		20.0		91	70-130		
Dichlorodifluoromethane (Freon12)	18.5		μg/l		20.0		92	70-130		
1,1-Dichloroethane	21.7		μg/l		20.0		108	70-130		
1,2-Dichloroethane	19.5		μg/l		20.0		98	70-130		
1,1-Dichloroethene	22.4		μg/l		20.0		112	70-130		
cis-1,2-Dichloroethene	17.1		μg/l		20.0		86	70-130		
trans-1,2-Dichloroethene	21.6				20.0		108	70-130		
•	19.8		µg/l		20.0		99	70-130		
1,2-Dichloropropane			μg/l		20.0		99	70-130		
cis-1,3-Dichloropropene	18.2		μg/l							
trans-1,3-Dichloropropene	17.7		μg/l		20.0		88	70-130		
Methylene chloride	21.4		μg/l		20.0		107	70-130		
1,1,2,2-Tetrachloroethane	20.3		μg/l		20.0		101	70-130		
Tetrachloroethene	19.4		μg/l "		20.0		97	70-130		
1,1,1-Trichloroethane	20.3		μg/l "		20.0		102	70-130		
1,1,2-Trichloroethane	20.7		μg/l 		20.0		103	70-130		
Trichloroethene	19.5		μg/l		20.0		98	70-130		
Trichlorofluoromethane (Freon 11)	21.9		μg/l 		20.0		110	70-130		
Vinyl chloride	21.3		μg/l		20.0		107	70-130		
1,4-Dioxane	165		μg/l		200		82	70-130		
Surrogate: 4-Bromofluorobenzene	51.9		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.5		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.8		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	51.2		μg/l		50.0		102	70-130		
LCS Dup (1709320-BSD1)					Pre	epared & Ar	nalyzed: 06-	Jun-17		
Acetone	16.7		μg/l		20.0		83	70-130	11	20
Bromodichloromethane	17.7		μg/l		20.0		88	70-130	7	20
Bromoform	17.0		μg/l		20.0		85	70-130	6	20
Bromomethane	20.8		μg/l		20.0		104	70-130	2	20
Carbon tetrachloride	18.3		μg/l		20.0		92	70-130	6	20
Chlorobenzene	19.2		μg/l		20.0		96	70-130	4	20
Chloroethane	20.5		μg/l		20.0		103	70-130	5	20
Chloroform	17.0		μg/l		20.0		85	70-130	5	20
Chloromethane	20.6		μg/l		20.0		103	70-130	3	20
Dibromochloromethane	18.1		μg/l		20.0		90	70-130	4	20
1,2-Dichlorobenzene	19.0		μg/l		20.0		95	70-130	0.9	20
1,3-Dichlorobenzene	19.9		μg/l		20.0		99	70-130	4	20
1,4-Dichlorobenzene	18.0		μg/l		20.0		90	70-130	0.6	20
Dichlorodifluoromethane (Freon12)	17.6		μg/l		20.0		88	70-130	5	20
1,1-Dichloroethane	20.8				20.0		104	70-130	4	20
	20.8 19.3		μg/l		20.0		96	70-130 70-130	1	20
1,2-Dichloroethane	19.3 20.6		μg/l μg/l		20.0		103	70-130 70-130	8	20
1,1-Dichloroethene										

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	resurt	1 146	Cinto	RDL	Level	Result	, urtile	Limits	Tu D	Dillit
SW846 8260C										
Batch 1709320 - SW846 5030 Water MS					_					
LCS Dup (1709320-BSD1)						epared & A	nalyzed: 06-		_	
trans-1,2-Dichloroethene	20.6		μg/l		20.0		103	70-130	5	20
1,2-Dichloropropane	19.0		μg/l		20.0		95	70-130	4	20
cis-1,3-Dichloropropene	17.6		μg/l		20.0		88	70-130	4	20
trans-1,3-Dichloropropene	17.2		μg/l		20.0		86	70-130	3	20
Methylene chloride	20.6		μg/l		20.0		103	70-130	3	20
1,1,2,2-Tetrachloroethane	19.8		μg/l		20.0		99	70-130	2	20
Tetrachloroethene	19.2		μg/l		20.0		96	70-130	1	20
1,1,1-Trichloroethane	19.4		μg/l		20.0		97	70-130	5	20
1,1,2-Trichloroethane	20.0		μg/l		20.0		100	70-130	4	20
Trichloroethene	18.6		μg/l		20.0		93	70-130	5	20
Trichlorofluoromethane (Freon 11)	20.8		μg/l		20.0		104	70-130	5	20
Vinyl chloride	20.3		μg/l		20.0		101	70-130	5	20
1,4-Dioxane	174		μg/l		200		87	70-130	5	20
Surrogate: 4-Bromofluorobenzene	51.9		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.1		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.5		μg/l		50.0		97	70-130		
Surrogate: Dibromofluoromethane	51.3		μg/l		50.0		103	70-130		
Batch 1709424 - SW846 5030 Water MS										
Blank (1709424-BLK1)					Pro	epared & A	nalyzed: 07-	<u>-Jun-17</u>		
Acetone	< 10.0	O01	μg/l	10.0						
Bromodichloromethane	< 0.50		μg/l	0.50						
Bromoform	< 1.00		μg/l	1.00						
Bromomethane	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		μg/l	1.00						
Chlorobenzene	< 1.00		μg/l	1.00						
Chloroethane	< 2.00		μg/l	2.00						
Chloroform	< 1.00		μg/l	1.00						
Chloromethane	< 2.00	O01	μg/l	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		μg/l	1.00						
1,4-Dichlorobenzene	< 1.00		μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		μg/l	1.00						
1,1-Dichloroethene	< 1.00		μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		μg/l	1.00						
trans-1,2-Dichloroethene	< 1.00		μg/l	1.00						
1,2-Dichloropropane	< 1.00		μg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		μg/l	0.50						
trans-1,3-Dichloropropene	< 0.50		μg/l	0.50						
Methylene chloride	< 2.00		μg/l	2.00						
1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50						
Tetrachloroethene	< 1.00		μg/l	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l	1.00						
1,1,2-Trichloroethane	< 1.00		μg/l	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
Vinyl chloride	< 1.00		μg/l	1.00						
1,4-Dioxane	< 20.0		μg/l	20.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8260C										
atch 1709424 - SW846 5030 Water MS										
Blank (1709424-BLK1)					Pre	epared & Ar	nalyzed: 07-	Jun-17		
Surrogate: 4-Bromofluorobenzene	45.9		μg/l		50.0		92	70-130		
Surrogate: Toluene-d8	51.6		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.8		μg/l		50.0		106	70-130		
Surrogate: Dibromofluoromethane	53.7		μg/l		50.0		107	70-130		
LCS (1709424-BS1)					Pre	epared & Ar	nalyzed: 07-	Jun-17		
Acetone	20.0		μg/l		20.0		100	70-130		
Bromodichloromethane	19.9		μg/l		20.0		100	70-130		
Bromoform	19.4		μg/l		20.0		97	70-130		
Bromomethane	22.9		μg/l		20.0		114	70-130		
Carbon tetrachloride	20.0		μg/l		20.0		100	70-130		
Chlorobenzene	20.9		μg/l		20.0		104	70-130		
Chloroethane	22.7		μg/l		20.0		113	70-130		
Chloroform	18.7		μg/l		20.0		94	70-130		
Chloromethane	21.8		μg/l		20.0		109	70-130		
Dibromochloromethane	19.9		μg/l		20.0		99	70-130		
1,2-Dichlorobenzene	20.0		μg/l		20.0		100	70-130		
1,3-Dichlorobenzene	21.9		μg/l		20.0		110	70-130		
1,4-Dichlorobenzene	18.9		μg/l		20.0		95	70-130		
Dichlorodifluoromethane (Freon12)	19.2		μg/l		20.0		96	70-130		
1,1-Dichloroethane	22.7		μg/l		20.0		114	70-130		
1,2-Dichloroethane	20.6		μg/l		20.0		103	70-130		
1,1-Dichloroethene	22.8		μg/l		20.0		114	70-130		
cis-1,2-Dichloroethene	17.5		μg/l		20.0		87	70-130		
trans-1,2-Dichloroethene	22.7		μg/l		20.0		113	70-130		
1,2-Dichloropropane	20.8		μg/l		20.0		104	70-130		
cis-1,3-Dichloropropene	19.3		μg/l		20.0		97	70-130		
trans-1,3-Dichloropropene	19.2		μg/l		20.0		96	70-130		
Methylene chloride	22.6		μg/l		20.0		113	70-130		
1,1,2,2-Tetrachloroethane	21.7		μg/l		20.0		108	70-130		
Tetrachloroethene	19.6		μg/l		20.0		98	70-130		
1,1,1-Trichloroethane	20.7				20.0		104	70-130		
1,1,2-Trichloroethane	21.7		μg/l		20.0		108	70-130		
Trichloroethene	21.7		μg/l		20.0		100	70-130 70-130		
Trichlorofluoromethane (Freon 11)	20.2		μg/l μg/l		20.0		112	70-130 70-130		
Vinyl chloride	22.4				20.0		111	70-130 70-130		
1.4-Dioxane	22.2 174		µg/l		20.0		87	70-130 70-130		
<u>'</u>			μg/l 							
Surrogate: 4-Bromofluorobenzene	52.9		μg/l		50.0		106	70-130		
Surrogate: Toluene-d8	51.5		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.9		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	51.2		μg/l		50.0		102	70-130		
LCS Dup (1709424-BSD1)					Pre	epared & Ar	nalyzed: 07-	Jun-17		
Acetone	21.9		μg/l		20.0		109	70-130	9	20
Bromodichloromethane	19.7		μg/l		20.0		98	70-130	1	20
Bromoform	19.6		μg/l		20.0		98	70-130	0.9	20
Bromomethane	23.3		μg/l		20.0		117	70-130	2	20
Carbon tetrachloride	20.1		μg/l		20.0		100	70-130	0.3	20
Chlorobenzene	20.8		μg/l		20.0		104	70-130	0.1	20
Chloroethane	22.7		μg/l		20.0		114	70-130	0.09	20
Chloroform	18.4		μg/l		20.0		92	70-130	2	20
Chloromethane	23.2		μg/l		20.0		116	70-130	7	20

analyte(s)	Result	Flag Un	ts *RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C									
Satch 1709424 - SW846 5030 Water MS									
LCS Dup (1709424-BSD1)				Pre	epared & Ar	nalyzed: 07-	-Jun-17		
Dibromochloromethane	20.1	μg	/I	20.0		100	70-130	1	20
1,2-Dichlorobenzene	20.8	μς	/I	20.0		104	70-130	4	20
1,3-Dichlorobenzene	21.9	μg	/I	20.0		110	70-130	0.05	20
1,4-Dichlorobenzene	19.6	μς	/I	20.0		98	70-130	3	20
Dichlorodifluoromethane (Freon12)	19.9	μς	/I	20.0		100	70-130	3	20
1,1-Dichloroethane	22.8	μς	/I	20.0		114	70-130	0.1	20
1,2-Dichloroethane	20.8	μς	/I	20.0		104	70-130	0.6	20
1,1-Dichloroethene	23.5	μς	/I	20.0		117	70-130	3	20
cis-1,2-Dichloroethene	17.8	μς	/I	20.0		89	70-130	2	20
trans-1,2-Dichloroethene	22.8	μς	/I	20.0		114	70-130	0.7	20
1,2-Dichloropropane	20.5	μς	/I	20.0		103	70-130	1	20
cis-1,3-Dichloropropene	19.5	μς	/I	20.0		97	70-130	0.9	20
trans-1,3-Dichloropropene	19.5	μς	/I	20.0		97	70-130	1	20
Methylene chloride	22.9	μς	/I	20.0		114	70-130	1	20
1,1,2,2-Tetrachloroethane	22.1	μς	/I	20.0		110	70-130	2	20
Tetrachloroethene	20.5	μς	/I	20.0		103	70-130	4	20
1,1,1-Trichloroethane	21.3	μς	/I	20.0		106	70-130	3	20
1,1,2-Trichloroethane	21.9	μς	/I	20.0		110	70-130	1	20
Trichloroethene	19.8	μς	/I	20.0		99	70-130	2	20
Trichlorofluoromethane (Freon 11)	23.1	μς	/I	20.0		115	70-130	3	20
Vinyl chloride	22.4	μς	/I	20.0		112	70-130	8.0	20
1,4-Dioxane	178	μς	/I	200		89	70-130	2	20
Surrogate: 4-Bromofluorobenzene	52.5	μς	/I	50.0		105	70-130	· ·	
Surrogate: Toluene-d8	51.4	μg	/I	50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.8	μg	/I	50.0		98	70-130		
Surrogate: Dibromofluoromethane	50.9	μο	/I	50.0		102	70-130		

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 1709046 - SW846 3510C										
Blank (1709046-BLK1)					Pre	epared & Ai	nalyzed: 01-	Jun-17		
Bis(2-ethylhexyl)phthalate	< 1.00		μg/l	1.00	·					
Butyl benzyl phthalate	< 1.00		μg/l	1.00						
Diethyl phthalate	< 1.00		μg/l	1.00						
Dimethyl phthalate	< 1.00		μg/l	1.00						
Di-n-butyl phthalate	< 1.00		μg/l	1.00						
Di-n-octyl phthalate	< 1.00		μg/l	1.00						
Surrogate: 2-Fluorobiphenyl	30.4		μg/l		50.0		61	30-130		
Surrogate: Terphenyl-dl4	32.5		μg/l		50.0		65	30-130		
LCS (1709046-BS1)					Pre	epared & Ai	nalyzed: 01-	Jun-17		
Bis(2-ethylhexyl)phthalate	25.3		μg/l	1.00	50.0	•	51	40-140		
Butyl benzyl phthalate	25.9		μg/l	1.00	50.0		52	40-140		
Diethyl phthalate	26.0		μg/l	1.00	50.0		52	40-140		
Dimethyl phthalate	26.0		μg/l	1.00	50.0		52	40-140		
Di-n-butyl phthalate	25.2		μg/l	1.00	50.0		50	40-140		
Di-n-octyl phthalate	24.1		μg/l	1.00	50.0		48	40-140		
Surrogate: 2-Fluorobiphenyl	30.4 29.9		μg/l		50.0 50.0		61 60	30-130 30-130		
Surrogate: Terphenyl-dl4	29.9		μg/l							
LCS Dup (1709046-BSD1)						epared & Ai	nalyzed: 01-			
Bis(2-ethylhexyl)phthalate	25.3		μg/l	1.00	50.0		51	40-140	0.04	20
Butyl benzyl phthalate	23.6		μg/l	1.00	50.0		47	40-140	9	20
Diethyl phthalate	25.5		μg/l	1.00	50.0		51	40-140	2	20
Dimethyl phthalate	24.7		μg/l	1.00	50.0		49	40-140	5	20
Di-n-butyl phthalate	25.4		μg/l	1.00	50.0		51	40-140	1	20
Di-n-octyl phthalate	22.3		μg/l	1.00	50.0		45	40-140	8	20
Surrogate: 2-Fluorobiphenyl	28.9		μg/l		50.0		58	30-130		
Surrogate: Terphenyl-dl4	27.8		μg/l		50.0		56	30-130		
W846 8270D SIM										
atch 1709046 - SW846 3510C										
Blank (1709046-BLK2)					Pre	epared: 01-	Jun-17 An	alyzed: 09-Ju	<u>un-17</u>	
Acenaphthene	< 0.050		μg/l	0.050						
Acenaphthylene	< 0.050		μg/l	0.050						
1-Methylnaphthalene	< 0.050		μg/l	0.050						
Anthracene	< 0.050		μg/l	0.050						
Benzo (a) anthracene	< 0.050		μg/l	0.050						
Benzo (a) pyrene	< 0.050		μg/l	0.050						
Benzo (b) fluoranthene	< 0.050		μg/l	0.050						
Benzo (g,h,i) perylene	< 0.050		μg/l	0.050						
Benzo (k) fluoranthene	< 0.050		μg/l	0.050						
Chrysene	< 0.050		μg/l	0.050						
Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050						
Fluoranthene	< 0.050		μg/l	0.050						
Fluorene	< 0.050		μg/l	0.050						
	< 0.050			0.050						
Indeno (1,2,3-cd) pyrene	< 0.050 < 0.050		μg/l							
2-Methylnaphthalene			μg/l	0.050						
Naphthalene	< 0.050		μg/l	0.050						
Pentachlorophenol	< 1.00		μg/l	1.00						
Phenanthrene	< 0.050		μg/l	0.050						
Pyrene	< 0.050		μg/l	0.050						
Surrogate: Benzo (e) pyrene-d12	0.760		μg/l		1.00		76	30-130		

Semivolatile Organic Compounds by GCMS - Quality Control

					Spike	Source		%REC		RPI
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
W846 8270D SIM										
atch 1709046 - SW846 3510C										
LCS (1709046-BS2)					Pre	epared: 01-	Jun-17 An	alyzed: 09-Ju	un-17	
Acenaphthene	0.931		μg/l	0.050	1.00		93	40-140		
Acenaphthylene	0.890		μg/l	0.050	1.00		89	40-140		
1-Methylnaphthalene	0.936		μg/l	0.050	1.00		94	40-140		
Anthracene	0.680		μg/l	0.050	1.00		68	40-140		
Benzo (a) anthracene	0.783		μg/l	0.050	1.00		78	40-140		
Benzo (a) pyrene	0.780		μg/l	0.050	1.00		78	40-140		
Benzo (b) fluoranthene	0.790		μg/l	0.050	1.00		79	40-140		
Benzo (g,h,i) perylene	0.779		μg/l	0.050	1.00		78	40-140		
Benzo (k) fluoranthene	0.858		μg/l	0.050	1.00		86	40-140		
Chrysene	0.733		μg/l	0.050	1.00		73	40-140		
Dibenzo (a,h) anthracene	0.882		μg/l	0.050	1.00		88	40-140		
Fluoranthene	0.761		μg/l	0.050	1.00		76	40-140		
Fluorene	0.832		μg/l	0.050	1.00		83	40-140		
Indeno (1,2,3-cd) pyrene	0.834		μg/l	0.050	1.00		83	40-140		
2-Methylnaphthalene	1.11		μg/l	0.050	1.00		111	40-140		
Naphthalene	0.867		μg/l	0.050	1.00		87	40-140		
Pentachlorophenol	1.03		μg/l	1.00	1.00		103	40-140		
Phenanthrene	0.760		μg/l	0.050	1.00		76	40-140		
Pyrene	0.852		μg/l	0.050	1.00		85	40-140		
Surrogate: Benzo (e) pyrene-d12	0.900		μg/l		1.00		90	30-130		
LCS Dup (1709046-BSD2)			1-3			enared: 01-		alyzed: 09-Jı	ın-17	
Acenaphthene	0.684	QR2	μg/l	0.050	1.00	, pa. 0 a. 0 i	68	40-140	31	20
Acenaphthylene	0.689	QR2	μg/l	0.050	1.00		69	40-140	25	20
1-Methylnaphthalene	0.719	QR2	μg/l	0.050	1.00		72	40-140	26	20
Anthracene	0.570		μg/l	0.050	1.00		57	40-140	18	20
Benzo (a) anthracene	0.662		μg/l	0.050	1.00		66	40-140	17	20
Benzo (a) pyrene	0.614	QR2	μg/l	0.050	1.00		61	40-140	24	20
Benzo (b) fluoranthene	0.632	QR2	μg/l	0.050	1.00		63	40-140	22	20
Benzo (g,h,i) perylene	0.586	QR2	μg/l	0.050	1.00		59	40-140	28	20
· ·· · · · ·	0.669	QR2		0.050	1.00		67	40-140	25	20
Benzo (k) fluoranthene	0.634	QILL	μg/l	0.050	1.00		63	40-140	14	20
Chrysene Dibenzo (a,h) anthracene	0.672	QR2	μg/l μg/l	0.050	1.00		67	40-140	27	20
Fluoranthene	0.622	QIL		0.050	1.00		62	40-140	20	20
Fluorene	0.622	QR2	μg/l μg/l	0.050	1.00		68	40-140	21	20
Indeno (1,2,3-cd) pyrene	0.627	QR2		0.050	1.00		63	40-140	28	20
2-Methylnaphthalene		QR2	μg/l	0.050	1.00		83	40-140	20 29	20
Naphthalene	0.832	QR2	μg/l							
'	0.669	QIΛZ	μg/l	0.050	1.00		67 86	40-140	26 18	20
Pentachlorophenol	0.860	QR2	μg/l	1.00	1.00		86 62	40-140	18	20
Phenanthrene	0.618		μg/l	0.050	1.00		62 65	40-140	21	20
Pyrene	0.649	QR2	μg/l	0.050	1.00		65	40-140	27	20

Total Metals by EPA 200 Series Methods - Quality Control

Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
				Pre	epared: 01-	Jun-17 An	alyzed: 02-J	un-17	
< 0.0400		mg/l	0.0400						
< 0.0050		mg/l	0.0050						
				Pre	epared: 01-	Jun-17 An	alyzed: 02-J	<u>un-17</u>	
1.34		mg/l	0.0400	1.25		107	85-115		
1.31		mg/l	0.0050	1.25		105	85-115		
		Source: S	C35221-01	Pre	epared: 01-	Jun-17 An	alyzed: 02-J	un-17	
1.76	R06	mg/l	0.0400		1.76			0.3	20
0.0464		mg/l	0.0050		0.0489			5	20
		Source: S	C35221-01	Pre	epared: 01-	Jun-17 An	alyzed: 02-J	un-17	
3.08		mg/l	0.0400	1.25	1.76	106	70-130		
1.34		mg/l	0.0050	1.25	0.0489	103	70-130		
		Source: S	C35221-01	Pre	epared: 01-	Jun-17 An	alyzed: 02-J	<u>un-17</u>	
3.16		mg/l	0.0400	1.25	1.76	112	85-115		
1.34		mg/l	0.0050	1.25	0.0489	104	85-115		
	< 0.0400 < 0.0050 1.34 1.31 1.76 0.0464 3.08 1.34	< 0.0400 < 0.0050 1.34 1.31 1.76 R06 0.0464 3.08 1.34	 < 0.0400 mg/l < 0.0050 mg/l 1.34 mg/l 1.31 mg/l Source: St 1.76 R06 mg/l 0.0464 mg/l Source: St 3.08 mg/l 1.34 mg/l Source: St 3.16 mg/l 	 < 0.0400 mg/l 0.0400 < 0.0050 mg/l 0.0050 1.34 mg/l 0.0400 1.31 mg/l 0.0050 Source: SC35221-01 1.76 R06 mg/l 0.0400 0.0464 mg/l 0.0050 Source: SC35221-01 3.08 mg/l 0.0400 1.34 mg/l 0.0050 Source: SC35221-01 3.16 mg/l 0.0400 	Result Flag Units *RDL Level	Result Flag Units *RDL Level Result Prepared: 01- < 0.0400	Result Flag Units *RDL Level Result %REC	Result Flag Units *RDL Level Result %REC Limits	Result Flag Units *RDL Level Result %REC Limits RPD

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Allaryte(s)	Resuit	riag	Units	·KDL	Level	Resuit	70KEC	Limits	KPD	Limit
EPA 300.0										
Batch 1709037 - General Preparation										
Blank (1709037-BLK1)					<u>Pre</u>	epared: 31-	May-17 Ar	nalyzed: 01-J	<u>un-17</u>	
Chloride	< 1.00		mg/l	1.00						
LCS (1709037-BS1)					Pre	epared: 31-	May-17 Ar	nalyzed: 01-J	<u>un-17</u>	
Chloride	20.9		mg/l	1.00	20.0		104	90-110		
<u>Duplicate (1709037-DUP1)</u>			Source: SC	C35221-03	<u>Pre</u>	pared: 31-	May-17 Ar	nalyzed: 01-J	<u>un-17</u>	
Chloride	129	GS1, D	mg/l	3.00		125			3	20
Matrix Spike (1709037-MS1)			Source: SC	C35221-03	<u>Pre</u>	pared: 31-	May-17 Ar	nalyzed: 01-J	<u>un-17</u>	
Chloride	150		mg/l	2.94	23.5	125	107	90-110		
Matrix Spike Dup (1709037-MSD1)			Source: SC	C35221-03	Pre	epared: 31-	May-17 Ar	nalyzed: 01-J	<u>un-17</u>	
Chloride	150		mg/l	2.94	23.5	125	108	90-110	0.1	20
Reference (1709037-SRM1)					Pre	epared: 31-	May-17 Ar	nalyzed: 01-J	<u>un-17</u>	
Chloride	25.9		mg/l	1.00	25.0		103	90-110		

Notes and Definitions

D Data reported from a dilution

E This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

O01 This compound is a common laboratory contaminant.

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the

QC batch were accepted based on percent recoveries and completeness of QC data.

R06 MRL raised to correlate to batch QC reporting limits.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

09-Jun-17 14:52 Page 26 of 26

Speci	
ecia	1
На	X
ndli	1
og .	3
0.0	N
	22
	-

CHAIN OF CUSTODY RECORD

☐ Rush TAT - Date Needed:

🔀 Standard TAT - 7 to 10 business days

	Spectrum Analytical	Page of	of		All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed.
Report To:	AECOM	Invoice To:		Project No:	60537294
	250 APOLLO DRIVE			C'L N	" lostran
	CHELMS FORD MA			SIC Name.	
Telephone #:	MELISSA CANDON			Sampler(s):	Floyd But State: Pil
Project Mgr:	978-400-1213	P.O No.:	Quote #: 5047	1	,
F=Field Filtered	F=Field Filtered 1=Na ₂ S2O ₂ 2=HCl 3=H ₂ SO ₂ 4=HNO ₂ 5=NaOH 6=Ascorbic Acid	5=NaOH 6=Ascorbic Acid			

Refrigerated DI VOA Frozen Soil Iar Frozen	Ambient Iced	JR JD#							
Custody Seals: Present Intact Broken	Condition upon receipt: Cus	() () () () () () () () () ()		2					
6		Corection Factor	1545	CIMERS	S	5		220	0
	E-mail to:	Observed	1315	30-17	V	1	9	that the	77
Melissa Cannon @ RECOMICOM	EDD format: Mal.ss	Temp °C	Time:	Date:		l by:	Received by:	Relinquished by:	Relinqu
	7				- 1				
200.7	5								
□ EPA: 2008				378	in the second				
- regulard for Metals						1			
100 Detection limits						1			
and 14 Diskane				1			,		
- * Please report acetone		×		2	G 60	1430	5/25/17	15	T - C4
meet 1ppb.	X	X	2	3 2		1500		EFF	7 8
and Phthalates need to		X		3	-191	1515	, ,	MID	1 - CZ
Detection limits for PCP	X	×	2	3	G GW	1530	5/25/17	INF	10-12258
	CI	8. F	# of	_		Time:	Date:	Sample ID:	Lab ID:
ck if	hlo	26 e/	Plasti	VOA Ambe	ype	CD.	C=Compsite	G= Grab	G=
	hthal ride losep	Voc O Zn hthal		Vials er Glas			X3=	X2=	X1=
Standard No QC	?	.5	36E-1	S		il Gas	nbient Air SG=Soil Gas	SL=Sludge A=Indoor/Ambient Air	0=0il S0 =Soil
MA DEP MCP CAM Report? Yes No	Anal		Containers	Co		ww=Waste Water	SW=Surface Water W	GW=Groundwater SW:	DW =Drinking Water
additional charges may apply		2 4			P. Carrier of the Control of the Con				
QA/QC Reporting Notes:	List Preservative Code below:	1	1		12=	NaOH	4-HNO ₃	F=Field Filtered $I=Na_2SZO_3$ $Z=HCI$ $S=H_2SO_4$ 7=CH3OH $8=NaHSO_4$ 9=Deionized Water $10=H_3PO_4$	7=CH3OH 8=NaH
				4	A combin Acid		A-UNIO	3-UCI	

Batch Summary

1709028

Total Metals by EPA 200/6000 Series Methods

SC35221-01 (INF) SC35221-03 (EFF)

<u>1709037</u>

General Chemistry Parameters

1709037-BLK1 1709037-BS1 1709037-DUP1 1709037-MS1 1709037-MSD1 1709037-SRM1 SC35221-01 (INF) SC35221-03 (EFF)

<u>1709046</u>

Semivolatile Organic Compounds by GCMS

1709046-BLK1 1709046-BLK2 1709046-BS1 1709046-BSD1 1709046-BSD2 SC35221-01 (INF) SC35221-03 (EFF)

1709062

Total Metals by EPA 200 Series Methods

1709062-BLK1 1709062-BS1 1709062-DUP1 1709062-MS1 1709062-PS1 SC35221-01 (INF) SC35221-03 (EFF)

<u>1709262</u>

Volatile Organic Compounds

1709262-BLK1 1709262-BS1 1709262-BSD1 SC35221-01 (INF) SC35221-03 (EFF) SC35221-04 (TB)

1709320

Volatile Organic Compounds

1709320-BLK1 1709320-BS1 1709320-BSD1 SC35221-01RE1 (INF)

1709424

Volatile Organic Compounds

1709424-BLK1 1709424-BS1 1709424-BSD1 SC35221-02 (MID)

S703654

S703654-CAL1

Semivolatile Organic Compounds by GCMS

\$703654-CAL2 \$703654-CAL3 \$703654-CAL4 \$703654-CAL5 \$703654-CAL6 \$703654-CAL7 \$703654-CAL8 \$703654-CAL9 \$703654-CALA \$703654-CALB \$703654-CALB \$703654-LCV1 \$703654-LCV1 \$703654-LCV2 \$703654-TUN1

S704674

Volatile Organic Compounds

S704674-CAL1 S704674-CAL2 S704674-CAL3 S704674-CAL4 S704674-CAL5 S704674-CAL6 S704674-CAL7 S704674-CAL8 S704674-CAL9 S704674-ICV1 S704674-ICV1 S704674-LCV2 S704674-LCV3 S704674-TUN1

S704839

Semivolatile Organic Compounds by GCMS

S704839-CAL1

S704839-CAL2

S704839-CAL3

S704839-CAL4

S704839-CAL5

S704839-CAL6

570.057 CIL

S704839-CAL7

S704839-CAL8

S704839-CAL9

S704839-CALA

S704839-ICV1

S704839-LCV1

S704839-LCV2

S704839-TUN1

S704986

Semivolatile Organic Compounds by GCMS

S704986-CCV1

S704986-TUN1

S705041

Volatile Organic Compounds

S705041-CCV1

S705041-TUN1

S705054

Semivolatile Organic Compounds by GCMS

S705054-CCV1

S705054-TUN1

S705081

Volatile Organic Compounds

S705081-CCV1

S705081-TUN1

S705115

Volatile Organic Compounds

S705115-CCV1

S705115-TUN1

S705228

Semivolatile Organic Compounds by GCMS

S705228-CCV1

S705228-TUN1

TEXTRON

ATTACHMENT 4 DOCUMENTATION OF ESA ELIGIBILITY

Documentation of Results of Endangered Species Act Eligibility Determination

An endangered species consultation per the U.S. Fish and Wildlife Service ("USFWS") New England Field Office ECOS IPaC webpage identified one species which may be present in the area of the Project. The Northern long-eared bat (*Myotis septentrionalis*) was identified. No critical habitat has been designated for this threatened species. According to USFWS, the bats spend winter hibernating in caves and mines, and roost during the summer underneath bark, in cavities or in crevices of both live trees and snags. The bats emerge at dusk to feed on insects in the understory of forested areas. A review of the Massachusetts Natural Heritage and Endangered Species Program ("NHESP") Northern Long-eared Bat Locations mapping, last updated November 2016, confirmed that the Project is not near any known hibernacula or maternity roost trees. The project is located within a densely developed area and does not require the removal of any trees or other vegetation. Therefore, Textron has determined that the proposed dewatering activities will have no effect on the Northern long-eared bat, and the discharges are eligible for coverage under Criterion C. USFWS correspondence and NHESP mapping is attached.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

June 15, 2017

In Reply Refer To:

Consultation Code: 05E1NE00-2017-SLI-1889

Event Code: 05E1NE00-2017-E-04125

Project Name: Textron, Inc., former Gorham Silver Company Facility Site

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2017-SLI-1889

Event Code: 05E1NE00-2017-E-04125

Project Name: Textron, Inc., former Gorham Silver Company Facility Site

Project Type: Superfund Site Remediation

Project Description: Multi-phase high-vacuum extraction (MHPVE) system installed to treat

VOC contaminated groundwater (GW). GW routed to GW treatment system and discharged to local storm drainage system, which ultimately

discharges to a wetland located west of the site.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.01358292723763N71.21245371519097W

Counties: Bristol, MA

Endangered Species Act Species

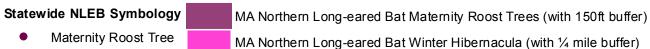
There is a total of 1 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

Event Code: 05E1NE00-2017-E-04125

Mammals

NAME STATUS

Northern Long-eared Bat (Myotis septentrionalis) Threatened


No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

There are no critical habitats within your project area.

Textron, Inc. - Former Gorham Silver Company

Hibernaculum

Wat Northern Edity-Cared Bat White Findernacula (With 74 Hine Banet)

Sources: Esri, HERE, DeLome, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

TEXTRON

ATTACHMENT 5 DOCUMENTATION OF NHPA ELIGIBILITY

Documentation of Results of National Historic Preservation Act Eligibility Determination

A review of the National Register of Historic Places ("NRHP") database identified four properties registered in the NRHP in Mansfield, none of which are located within 0.25 miles of the Project. A review of the Massachusetts Cultural Resource Information System ("MACRIS") Database identified two historic properties within 0.25 miles of the Project in Mansfield. These properties are identified in the table below. The sites, the Allen Micah House and the Allen Micah Inn, are located approximately 720 feet (0.14 miles) south of the Project. None of the NRHP or MACRIS properties are in the vicinity of the Textron site, the discharge location, or the receiving water. Therefore, the proposed dewatering activities do not have the potential to cause effects on historic properties, and the discharges are eligible for coverage under Criterion A. A copy of the MARCIS report and a map showing the historic places in Mansfield is attached.

Historic Properties Located Within 0.25 miles of the Textron – Former Gorham Silver Site

Site Name	Address	Year	Distance from Project (direction)
Allen, Micah House	395 South Main St., Mansfield, MA	c. 1790	720 feet (south)
Allen, Micah Inn	396 South Main St., Mansfield, MA	1800	775 feet (south)

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Mansfield; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
MNF.A	East Mansfield Village		Mansfield	
MNF.B	North Reservoir Prehistoric District		Mansfield	
MNF.C	Spring Brook Cemetery		Mansfield	
MNF.D	Lowney Chocolate Factory		Mansfield	
MNF.910	School Street Site		Mansfield	
MNF.170	Mystic Club	Balcom St	Mansfield	c 1902
MNF.30	Berry, John School	40 Balcom St	Mansfield	1915
MNF.31	Packard, Martin House	180 Balcom St	Mansfield	r 1860
MNF.169	Shaw, Marshall House	253 Branch St	Mansfield	c 1797
MNF.26	Goward, Israel House	480 Branch St	Mansfield	1772
MNF.168	Lane, Margaret House	38 Central St	Mansfield	c 1831
MNF.167	Cobb, Frank M. House	50 Central St	Mansfield	c 1894
MNF.166	Babbitt, George - Cox, Alfred T. House	57 Central St	Mansfield	c 1870
MNF.165	Codding, S. Chester House	71 Central St	Mansfield	c 1850
MNF.164	Greene, James House	90-92 Central St	Mansfield	c 1840
MNF.163	Shepard, George - Grant, Ira L. House	108 Central St	Mansfield	c 1843
MNF.162	Grover, Simeon House	176 Central St	Mansfield	c 1789
MNF.192	Skinner, Charles - Billings, Willard House	Chauncy St	Mansfield	c 1810
MNF.194	Cleveland Twist Drill Bay State Plant	75 Chauncy St	Mansfield	r 1905
MNF.92	Paine, Nelson House	200 Chauncy St	Mansfield	1810
MNF.85	Davis, William G. House	3 Cherry St	Mansfield	c 1800
MNF.161	Saint Mary's Roman Catholic Church	22 Church St	Mansfield	1914
MNF.160	Saint Mary's Roman Catholic Church Rectory	23 Church St	Mansfield	c 1895
MNF.915	Spring Brook Cemetery - Coral Street Gate	Coral St	Mansfield	1964
MNF.159	Bessom, Betsey Cobb House	16 Coral St	Mansfield	c 1875
MNF.158	Bessom, Betsey Cobb House	18 Coral St	Mansfield	c 1875
MNF.157	Boston and Providence Railroad Freight Shed	County St	Mansfield	c 1883
Wednesday,	June 21, 2017			Page 1 of 7

ıv. No.	Property Name	Street	Town	Year
INF.190	Mansfield Railroad Station	Crocker St	Mansfield	c 1910
INF.156	Spaulding School	58 Crocker St	Mansfield	c 1905
INF.155		24 Dean St	Mansfield	c 1875
1NF.154	Green, Roland Elemenatary School	31 Dean St	Mansfield	1924
INF.153	Perry, Dr. Frederick House	81 Dean St	Mansfield	c 1880
INF.800	Leonard, Ephraim Family Burial Ground	East St	Mansfield	1740
NF.10	Lovell, Samuel Crocker House	23 East St	Mansfield	1894
NF.8	Billings, Dr. Benjamin House	31 East St	Mansfield	1775
NF.28	Pratt, Amasa House	450 East St	Mansfield	1830
NF.84	Newland, Jacob House	575 East St	Mansfield	1762
NF.73	Keith, A. House	710 East St	Mansfield	c 1831
NF.29	Clap, Maj. Elkanah House	754 East St	Mansfield	1770
NF.83	Flint, Benjamin K. House	801 East St	Mansfield	1870
NF.77	Burt, Frederick W. House	890 East St	Mansfield	c 1851
NF.74	Snow, N. House	928 East St	Mansfield	c 1858
NF.75	Burt, Frederick A. House	962 East St	Mansfield	c 1858
NF.24	Day, Capt. Charles House	974 East St	Mansfield	1802
NF.82	East Mansfield Methodist Church	1001 East St	Mansfield	1842
NF.76	East Mansfield Methodist Church Parsonage	1012 East St	Mansfield	c 1842
NF.152		25 Eddy St	Mansfield	c 1914
NF.911	Elm Street Bridge over Amtrak	Elm St	Mansfield	1937
NF.32	Paul, Enoch House	131 Elm St	Mansfield	r 1855
NF.33	Skinner, Thomas House	517 Elm St	Mansfield	r 1750
NF.34	Grover, C. House	666 Elm St	Mansfield	
NF.151	Wilbur, D. House	175 Essex St	Mansfield	c 1831
NF.9	Chilson Iron Foundry	Foundry St	Mansfield	1855
NF.150	White, Hiram House	240 Franklin St	Mansfield	c 1851
NF.149	White, Simeon House	263 Franklin St	Mansfield	c 1831
NF.148	Dunham, William House	334 Franklin St	Mansfield	c 1784
NF.147	Fuller House	369 Franklin St	Mansfield	c 1871
NF.146	Sweeting - Copeland - Fuller House	440 Franklin St	Mansfield	c 1766
NF.801	Mansfield Furnace Cemetery	440 Franklin St	Mansfield	
NF.145	White, Caroline House	200 Fruit St	Mansfield	c 1875
NF.144	Dean, Darwin House	255 Fruit St	Mansfield	c 1825
NF.143	Wood, William House	358 Fruit St	Mansfield	c 1887
NF.142	Lovell House	432 Fruit St	Mansfield	c 1790
NF.72	Fuller, Jonathan House	986 Fuller St	Mansfield	c 1831
NF.141		15 Fulton St	Mansfield	c 1896

Wednesday, June 21, 2017 Page 2 of 7

nv. No.	Property Name	Street	Town	Year
MNF.140	Fulton and Morin Knife Factory Boarding House	27 Fulton St	Mansfield	c 1844
/NF.70	George, Thomas M. House	48 George St	Mansfield	1858
/NF.906	Old Colony Railroad Bridge #119	Gilbert St	Mansfield	1892
ЛNF.35	Balcom, Alonzo House	100 Gilbert St	Mansfield	c 1860
MNF.17	Hodges, Elijah House	150 Gilbert St	Mansfield	r 1750
MNF.36	Sweet, Otis Jr. House	270 Gilbert St	Mansfield	c 1851
/NF.22	Sweet, Benjamin House	330 Gilbert St	Mansfield	1811
/NF.38	Pitman, James House	380 Gilbert St	Mansfield	c 1851
/NF.139	Hall, Charles - Elkanah House	50 Hall St	Mansfield	r 1850
/INF.4	White, Nicholas III House	87 Hall St	Mansfield	r 1765
/INF.903	High Street Bridge over Rumford River	High St	Mansfield	1932
/INF.138	Babcock Shoe Shop	147 High St	Mansfield	c 1850
/INF.137		23 Horace St	Mansfield	c 1875
/INF.39	Williams, John House	5 Jewell St	Mansfield	c 1788
/INF.40	Richardson, Eben House	97 Jewell St	Mansfield	c 1797
/INF.136	Fisher, Daniel Jr. House	Judy's Ln	Mansfield	c 1820
/INF.135	Rogers, Joanna E. House	3 Linden St	Mansfield	c 1897
/INF.134	Mansfield Water Pumping Station	Maple St	Mansfield	1888
/INF.133	Snow, J. C. House	7 Mill St	Mansfield	c 1851
/INF.132		21 Mill St	Mansfield	c 1851
/INF.131	Quigle, Elias House	29 Mill St	Mansfield	c 1851
/INF.130		44 Mill St	Mansfield	c 1851
INF.129	Hartwell School	71 Mill St	Mansfield	1881
/NF.12	Lovell's Hall	4 North Main St	Mansfield	c 1870
1NF.78	Robinson, W. and W. L. Store	5 North Main St	Mansfield	c 1895
/INF.128	Mansfield Baptist Church	50 North Main St	Mansfield	1838
/INF.127	Harden, David E. House	55 North Main St	Mansfield	c 1850
/NF.95	Allen, Dr. William G. House	70 North Main St	Mansfield	1869
/NF.191	U. S. Post Office - Mansfield Main Branch	140 North Main St	Mansfield	1937
/NF.80		179 North Main St	Mansfield	c 1855
/NF.71	Stearns, W. L. Store	262 North Main St	Mansfield	c 1871
/NF.79	Mansfield Fire Station	291 North Main St	Mansfield	1930
1NF.126	Macomber House	536 North Main St	Mansfield	c 1880
1NF.125	Dunham, W. D. House	647 North Main St	Mansfield	c 1860
1NF.802	Happy Hollow Cemetery	Oak St	Mansfield	1776
1NF.124	Mansfield District #8 Schoolhouse	44 Oak St	Mansfield	c 1855
/INF.41	Hodges, John House	49 Oak St	Mansfield	c 1780
/INF.123	Shields, Patrick House	71 Oakland St	Mansfield	1885

Wednesday, June 21, 2017

Inv. No.	Property Name	Street	Town	Year
MNF.122	Shields, Caroline and Helen E. House	91 Oakland St	Mansfield	
MNF.121	Jackson, Lawrence House	97 Oakland St	Mansfield	c 1895
MNF.2	O'Rourke, Patrick House	104 Oakland St	Mansfield	1846
MNF.120	Lowney, Walter M. Chocolate Factory - Building 1	150 Oakland St	Mansfield	1903
MNF.197	Lowney, Walter M. Chocolate Factory - Building 2	150 Oakland St	Mansfield	1910
MNF.198	Lowney, Walter M. Chocolate Factory - Building 3	150 Oakland St	Mansfield	1942
MNF.199	Lowney, Walter M. Chocolate Factory - Building 4	150 Oakland St	Mansfield	1983
MNF.200	Lowney, Walter M. Chocolate Factory - Building 5	150 Oakland St	Mansfield	1987
MNF.201	Lowney, Walter M. Chocolate Factory Pump House	150 Oakland St	Mansfield	1995
MNF.202	Lowney, Walter M. Chocolate Factory Sewage Test Hs	150 Oakland St	Mansfield	c 1970
MNF.934	Lowney, Walter M. Chocolate Factory Reservoir	150 Oakland St	Mansfield	c 1975
MNF.119	Kingman, Henry W. House	477 Oakland St	Mansfield	c 1851
MNF.45	Harden, Amasa House	15 Old Elm St	Mansfield	c 1835
MNF.118	Grover, Jacob House	55 Old Elm St	Mansfield	c 1800
MNF.46	Harden, Alfred House	95 Old Elm St	Mansfield	1835
MNF.47	Grover, Hosea House	177 Old Elm St	Mansfield	1803
MNF.48		191-193 Old Elm St	Mansfield	c 1851
MNF.117	Grover, Ephraim Jr. House	223 Old Elm St	Mansfield	c 1750
MNF.19	Harding House	400 Old School St	Mansfield	c 1795
MNF.116	West Mansfield First Christian Church	11 Otis St	Mansfield	c 1921
MNF.42	Sweet, Benjamin F. House	263 Otis St	Mansfield	c 1872
MNF.43	Richardson Shuttle Irons Shop	330 Otis St	Mansfield	1923
MNF.44	Sweet, Henry E. House	355 Otis St	Mansfield	1862
MNF.1	Soldiers' Memorial Library Building	Park Row	Mansfield	c 1901
MNF.115	Mansfield High School	Park Row	Mansfield	c 1911
MNF.114	Hallett, Capt. Charles House	51 Park St	Mansfield	c 1858
MNF.907	Route 140 Bridge over Rumford River	Rt 140	Mansfield	1928
MNF.7	Card, Simon W. Mill	Rumford Ave	Mansfield	1900
MNF.86	Copeland, Jennie House	53 Rumford Ave	Mansfield	c 1906
MNF.113		69 Rumford Ave	Mansfield	
MNF.112	Dinsmore, Otis F. House	79 Rumford Ave	Mansfield	1890
MNF.87	Fox, Thomas J. House	80 Rumford Ave	Mansfield	c 1888
MNF.111	Paine, Edward - Harrington, Lewis House	86 Rumford Ave	Mansfield	c 1875
MNF.88	Mansfield Universalist Church	96 Rumford Ave	Mansfield	c 1889
MNF.89	Paine, Jahlin House	102 Rumford Ave	Mansfield	c 1890
MNF.90	Bragg, George House	111 Rumford Ave	Mansfield	c 1875

Wednesday, June 21, 2017 Page 4 of 7

Inv. No.	Property Name	Street	Town	Year
MNF.91	Paine, Frederick House	122 Rumford Ave	Mansfield	1871
MNF.110	Vernon, Joseph I. House	141 Rumford Ave	Mansfield	c 1885
MNF.109	Cobb, Stella House	151 Rumford Ave	Mansfield	c 1910
MNF.108	Smith, Jane M. House	157 Rumford Ave	Mansfield	c 1887
MNF.905	Boston and Providence Railroad Bridge #25.09	Rumford River	Mansfield	1954
MNF.15	Mackenzie and Winslow Grain Store	1 Samoset Ave	Mansfield	c 1918
MNF.908	School Street Bridge over PC Railroad	School St	Mansfield	1936
MNF.107	Sheperd, Capt. Schuyler House	229 School St	Mansfield	c 1831
MNF.49	Paine, Rufus Jinks House	243 School St	Mansfield	c 1878
MNF.106	Bailey, George P. House	279 School St	Mansfield	c 1890
MNF.105	Stearns - White House	280 School St	Mansfield	r 1750
MNF.14	Skinner, Apollos House	430 School St	Mansfield	c 1803
MNF.13	Glory Farm, Old	440 School St	Mansfield	c 1736
ЛNF.901	Doughboy World War I Monument	5 South Main St	Mansfield	1937
MNF.104		18-22 South Main St	Mansfield	c 1879
MNF.11	Mansfield Temperance Hall	36 South Main St	Mansfield	1853
MNF.94		39 South Main St	Mansfield	c 1895
ЛNF.21	Allen, Micah House	395 South Main St	Mansfield	c 1790
/NF.23	Allen, Micah Inn	396 South Main St	Mansfield	1800
/INF.103	Hall, Herman House	600 South Main St	Mansfield	c 1831
MNF.102	Parker, Betsy House	605 South Main St	Mansfield	c 1851
/INF.50	Brintnell, Samuel House	91 South St	Mansfield	c 1745
/INF.5	Spring Brook Cemetery - Card Memorial Chapel	Spring St	Mansfield	1898
/INF.195	Spring Brook Cemetery Receiving Vault	Spring St	Mansfield	1889
MNF.196	Spring Brook Cemetery Maintenance Garage - Office	Spring St	Mansfield	1988
MNF.803	Spring Brook Cemetery	Spring St	Mansfield	c 1790
MNF.912	Spring Brook Cemetery West Entrance	Spring St	Mansfield	c 1860
MNF.913	Spring Brook Cemetery East Entrance and Gate	Spring St	Mansfield	c 1860
ЛNF.914	Spring Brook Cemetery Stone Wall	Spring St	Mansfield	c 1860
MNF.916	Spring Brook Cemetery - Allen Mausoleum	Spring St	Mansfield	c 1912
/INF.917	Spring Brook Cemetery - Granite Sign	Spring St	Mansfield	1998
/INF.918	Spring Brook Cemetery - Dean Family Marker	Spring St	Mansfield	
ЛNF.919	Spring Brook Cemetery - Allen, Samuel Marker	Spring St	Mansfield	
/NF.920	Spring Brook Cemetery - Tolman, Betsy Marker	Spring St	Mansfield	
MNF.921	Spring Brook Cemetery - Mowry, George Monument	Spring St	Mansfield	
MNF.922	Spring Brook Cemetery - Wilcox, George Monument	Spring St	Mansfield	

Wednesday, June 21, 2017 Page 5 of 7

nv. No.	Property Name	Street	Town	Year
MNF.923	Spring Brook Cemetery - Rogers, John Monument	Spring St	Mansfield	
MNF.924	Spring Brook Cemetery - Chilson, Gardner Monument	Spring St	Mansfield	
/NF.925	Spring Brook Cemetery - Harding, David Monument	Spring St	Mansfield	
/INF.926	Spring Brook Cemetery - Hunnewell, Wm. Monument	Spring St	Mansfield	
/NF.927	Spring Brook Cemetery - King, Andrew Monument	Spring St	Mansfield	
INF.928	Spring Brook Cemetery - Booth, Charles Monument	Spring St	Mansfield	
MNF.929	Spring Brook Cemetery - Card Family Monument	Spring St	Mansfield	
MNF.930	Spring Brook Cemetery - Cobb, Anson Monument	Spring St	Mansfield	
/NF.931	Spring Brook Cemetery - Frost, Charles Monument	Spring St	Mansfield	
/NF.932	Spring Brook Cemetery - Unknown Soldiers Monument	Spring St	Mansfield	1913
1NF.933	Spring Brook Cemetery - Manuel Markers	Spring St	Mansfield	
1NF.101	Holmes, Rufus T. House	24 Spring St	Mansfield	c 1850
/NF.100		46 Spring St	Mansfield	1804
/NF.99	Mansfield Cotton Manufacturing Co. Worker Housing	56 Spring St	Mansfield	1811
/INF.54	Kingman and Hodges Jewelry Factory	68 Spring St	Mansfield	1870
1NF.193	Kingman and Hodges Factory	68 Spring St	Mansfield	1896
1NF.55	Shepard, Seth C. House	207 Spring St	Mansfield	
1NF.27	Mud House	82 Stearns Ave	Mansfield	1855
INF.98	Stearns, Isaac House	98 Stearns Ave	Mansfield	c 1831
INF.18	Spaulding, Dolliver House	10 Thomas St	Mansfield	1880
1NF.97	Billings Building	18 Thomas St	Mansfield	1921
1NF.51	Mansfield House	23 Thomas St	Mansfield	c 1850
1NF.96	Grover, David B. House	31 Tremont St	Mansfield	c 1858
1NF.52	Skinner House	143 Tremont St	Mansfield	c 1801
INF.53	Mansfield District #6 Schoolhouse	151 Tremont St	Mansfield	1852
INF.16	Knap, Maj. Moses House	197 Tremont St	Mansfield	1763
INF.93		53-55 Union St	Mansfield	c 1875
1NF.189		53-55 Union St	Mansfield	c 1875
INF.188	Cobb, Justin L. House	54 Union St	Mansfield	c 1898
1NF.81	Sherman, Elbridge House	100 Union St	Mansfield	c 1900
/INF.187	LeBarron, Phineas House	105 Union St	Mansfield	c 1875

Wednesday, June 21, 2017 Page 6 of 7

nv. No.	Property Name	Street	Town	Year
MNF.186		110 Union St	Mansfield	c 1875
MNF.185	Evans, Frank J. House	126 Union St	Mansfield	c 1885
/NF.904	Boston and Providence Railroad Bridge #28.43	Wading River	Mansfield	c 1835
/NF.25	Copeland, Moses House	2 Ware St	Mansfield	c 1775
/NF.184	Belcher, Robert House	750 Ware St	Mansfield	c 1858
/NF.183	White, John House	776 Ware St	Mansfield	c 1800
/NF.902	West Church Street Bridge over Rumford River	West Church St	Mansfield	c 1920
/NF.182	Orthodox Congregational Church	17 West St	Mansfield	1838
/INF.6	Thunder Castle	31 West St	Mansfield	c 1831
/NF.56	MacMoran, Robert House	37 West St	Mansfield	1851
/NF.181	Perry, Dr. William F House	78 West St	Mansfield	c 1858
/INF.57	Church of the New Jerusalem	98-100 West St	Mansfield	1871
/INF.58	Gilbert, David House	131 West St	Mansfield	1818
/NF.59	Briggs, Alson House	136 West St	Mansfield	c 1850
/INF.60	Widow Paine House	331 West St	Mansfield	1765
/NF.20	White, Matthew House	971 West St	Mansfield	1710
1NF.61	Grover, George House	1101 West St	Mansfield	
1NF.62		1381 West St	Mansfield	
1NF.63		1551 West St	Mansfield	
1NF.64	Wetherell, Benjamin House	1650 West St	Mansfield	c 1805
1NF.65	Skinner, Joseph House	1766 West St	Mansfield	
1NF.66	Briggs, Solomon House	1818 West St	Mansfield	c 1872
1NF.909	Williams Street Bridge over Wading River	Williams St	Mansfield	1930
1NF.67	Grover, Thomas House	45 Williams St	Mansfield	r 1765
1NF.68	Sawyer, Benjamin F. House	76 Williams St	Mansfield	c 1870
1NF.69	Williams, Rufus House	340 Williams St	Mansfield	r 1840
1NF.900	Cobbler's Corner Boundary Marker	Willow St	Mansfield	1640
1NF.180	White, William House	52 Willow St	Mansfield	c 1854
1NF.179	Farrington, David R. House	92 Willow St	Mansfield	c 1887
1NF.178	Skinner House	106 Willow St	Mansfield	c 1871
NF.177	Williams House	117 Willow St	Mansfield	c 1854
INF.176	Cobb, Terrill, House	216 Willow St	Mansfield	c 1820
1NF.175	Cobb, James W. House	242 Willow St	Mansfield	c 1868
INF.174	Harris, J. House	269 Willow St	Mansfield	c 1831
1NF.173		285 Willow St	Mansfield	c 1850
NF.3	Fisher - Richardson House	354 Willow St	Mansfield	1743
NF.172	Cobb, Salmon House	83 Winter St	Mansfield	c 1797
/NF.171	Austin, George M. House	155 Winter St	Mansfield	

Wednesday, June 21, 2017 Page 7 of 7

TEXTRON

ATTACHMENT 6

MARCH 27, 2015 AUTHORIZATION LETTER, #MAG910022

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1

5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

MAR 2 7 2015

Greg Simpson Site Remediation Engineer Textron Inc. 40 Westminster St. Providence RI, 02903

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Textron Inc., former Gorham Silver Site located at 340 South Main Street, Mansfield, MA 02048, Bristol County; Authorization # MAG910022

Dear Mr. Simpson:

Based on the review of your Notice of Intent (NOI) submittal on behalf of Textron Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to discharge limitations based on a dilution factor range (DFR). Because of the limited dilution at the wetland location where the effluent is discharged, EPA determined that the DFR for each parameter is in the one and five (1-5) range. (See

the RGP Appendix IV for Massachusetts facilities) Therefore, the limit for zinc of 66.6 ug/L, and iron of 1,000 ug/L, are required to achieve permit compliance at your site.

This EPA general permit and authorization to discharge will expire on September 9, 2015. You have reported this project will terminate also on September 9, 2015. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Mulma Murphy
Thelma Murphy, Chief

Storm Water and Construction

Permits Section

Enclosure

cc: Robert Kubit, MassDEP

Lee Azinheira, Town of Mansfield PWD

Luis A. Ferreira, AECOM