

Consulting
Engineers and
Scientists

May 2, 2018 Project 1610515

Via E-mail: Little.Shauna@epa.gov

Ms. Shauna Little
Physical Scientist
USEPA New England
5 Post Office Square, Suite 100
Mail Code OEP06-1
Boston, MA 02109-3912

Dear Ms. Little:

Re: Notice of Intent

NPDES Remediation General Permit for

Alder Brook

West Roxbury Needham Reliability Project

NStar Electric Company d/b/a Eversource Energy

Needham, Massachusetts

On behalf of NStar Electric Company d/b/a Eversource Energy (Eversource), GEI Consultants, Inc. has prepared this Notice of Intent (NOI) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP), Massachusetts General Permit (MAG910000). This NOI was prepared in accordance with the general requirements of the NPDES RGP under Federal Register, Vol. 82, No. 12, dated January 19, 2017, and related guidance documentation provided by the U.S. Environmental Protection Agency (EPA). The completed NOI forms for a 50 gallon per minute (GPM) discharge and for a 200 GPM discharge are provided in Appendix A and Appendix B, respectively.

Once EPA issues an RGP authorization for this project, and before the start of work, we will apply for a Town of Needham Department of Public Works (DPW) Street Occupancy Permit.

Site Information

This NOI has been prepared for the discharge of dewatering effluent during construction of the underground portion of the Eversource West Roxbury to Needham Reliability Project (WRNRP). The WRNRP is being constructed through West Roxbury, Dedham, and Needham, Massachusetts (Fig. 1). The Needham portion of WRNRP consists of construction of a new 2.5-miles-long underground electric transmission line in Needham, Massachusetts (the Project Area).

Construction dewatering may be necessary during portions of the work to keep excavations dry. The intent of the project is to recharge groundwater within the work area. However, if this is not possible, groundwater will be discharged to specific Town of Needham storm drains which discharge to Alder Brook via an existing outfall in accordance with the requirements of the RGP

permit. Based on discussions with the Town of Needham, outfall identification numbers have not been assigned to this location.

Two NOIs are being submitted to cover two maximum flow rates of 50 GPM and 200 GPM. Eversource has assumed that the discharge rate for the project will generally be 50 GPM or less. However, Eversource is also including an NOI for 200 GPM in the event that higher dewatering rates are required due to unexpected heavy rain events.

Receiving Water Information

Alder Brook is classified as a Class B water body and is not listed as an Outstanding Resource Water. Receiving water quality data, collected by GEI on March 12, 2018 on behalf of Eversource, was used in support of this NOI. A sample from the Alder Brook, the receiving water, was collected approximately 10 feet upstream of the outfall. The results are summarized in Table 1 and the associated laboratory data report is provided in Appendix C. Receiving water temperature was obtained in the field and is noted on the effluent limitations input calculation page in Appendix A.

The seven-day-ten-year flow (7Q10) of $0.236~\rm ft^3/sec$ for the receiving water (Alder Brook) was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by the Massachusetts Department of Environmental Protection (MassDEP) on April 20, 2018. Based on this 7Q10 we have calculated the following dilution factors:

• 50 GPM: Dilution Factor of 3.12

• 200 GPM: Dilution Factor of 1.53

The StreamStats report, dilution factor calculations, and MassDEP confirmation of the 7Q10 and Dilution Factors for the 50 GPM and 200 GPM discharges are included in Appendix A and Appendix B, respectively. Effluent limits were generated using the NPDES RGP NOI Dilution Factor Calculation spreadsheet. Copies of the "EnterData" and "FreshwaterResults" tabs from the spreadsheet are provided in Appendix A. The resulting calculated effluent limits are in Table 1.

Source Water Evaluation

In October through December 2017, GEI performed a subsurface investigation to assess soil and groundwater conditions in the proposed trench alignment and at planned future excavations for subsurface structures (riser pits, manholes, etc. along the proposed. The subsurface investigation included installation of eight groundwater monitoring wells at eight boring locations (B2[MW], B4[MW], B6[MW], B11[MW], B12[MW], B13[MW], B16[MW], and B20[MW]).

Between November 9 and 20, 2017, GEI gauged the monitoring wells and developed the wells where measurable groundwater was present. GEI encountered groundwater in five of the wells (B4[MW], B6[MW], B11[MW], B16[MW], and B20[MW]). Groundwater was not encountered in the remaining wells. Between December 1 and December 5, 2017, GEI collected groundwater samples using a peristaltic pump and low-flow methods. Groundwater samples were submitted to ESS Laboratory, Inc. (ESS) of Cranston, Rhode Island to be tested for the parameters required under the NPDES RGP. In addition, the pH of the proposed influent was measured in the field to evaluate existing conditions.

Testing results indicated the presence of individual semi-volatile organic compounds (SVOCs), Group I polycyclic aromatic hydrocarbons (PAHs), Group II PAHs, total metals (arsenic,

chromium, chromium III, copper, iron, lead, and zinc), dissolved metals (iron and zinc), ammonia, chloride, and phenols. The measured pH of groundwater within the Project Area ranged from approximately 5.6 to 6.2 standard units (s.u.) which exceeds the RGP effluent limit for Massachusetts waters (6.5 to 8.3 s.u.). Laboratory testing results are summarized in Table 2 and the associated laboratory data report for these samples are provided in Appendix D.

Treatment System Information

For discharge to Alder Brook, dewatered groundwater will be treated using a mobile treatment system before being discharged to the specific catch basins and into the Town of Needham storm water drainage system. During construction, the collected water will be treated to remove suspended solids using a combination of sedimentation tank and/or bag filters. Depending on the level of treatment required and discharge flow rate, the mobile treatment system may be mounted on a mobile trailer. The mounted treatment system will generally consist of particulate filter units, and bag filters. Additional vessels for flocculation, pH adjustment, and/or granular activated carbon (GAC)/clay filters may also be needed to treat groundwater prior to discharge. Based on effluent monitoring results, the treatment system or flow rate will be modified to comply with the effluent limits. The proposed conceptual treatment system is shown in the process flow diagram in Fig. 3.

Based on the pH ranges measured in the field and iron concentrations detected in the some of the groundwater samples and, pH correction or flocculation may be needed prior to discharge to the Needham storm water system. As shown on the process flow diagram (Fig 3.), the flocculation and pH adjustment step (if needed) will be performed prior to particulate filtration and, as necessary, use of GAC/clay filters. Based on effluent monitoring results, the treatment system or flow rate will be modified to comply with the effluent limits.

Although final components for additional treatment will be determined by the operator, example product information, including Safety Data Sheets (SDSs), associated hazards, operation recommendations, and product information for pH adjustment are provided in Appendix A. These systems will be mobilized as necessary to achieve effluent limitations. If required, pH adjustment will consist of a metered sulfuric acid (70-100%) system. Product information is provided in Appendix A. Sulfuric acid will be stored in 55-gallon drums with secondary containment systems. Procedures for proper handling and spill prevention are included in the site-specific Best Management Practices Plan. The addition of sulfuric acid to reduce pH levels is an established practice for temporary construction dewatering, and is not expected to exceed applicable effluent limits, water quality standards, or alter conditions in the receiving water. Therefore, it is our opinion, that no additional testing is necessary for use of sulfuric acid or to demonstrate that use of this product will adversely affect the receiving water.

Discharge Information

We anticipate that the treatment system will generally operate with a maximum treated effluent discharge rate of 50 gallons per minute (gpm) or less. We have also included an option for a treatment system that can operate at occasional peak flows up to 200 gpm during significant precipitation events. The treated water will be discharged to any of four storm drains located immediately northeast of Alder Brook at the intersection of South Street and Dedham Avenue. The discharge area is identified on an overview map in Fig. 2. An annotated copy of a Town of Needham plan showing the storm drains (labeled as Proposed Discharge Points 1 through 4), discharge path, and ultimate discharge outfall at Alder Brook is provided in Appendix E. According to plans we reviewed from the Town of Needham on February 9, 2018, these storm

drains are part of the Town of Needham storm water drainage system that discharge to an outfall at Alder Brook located adjacent to a portion of the transmission line alignment (Fig. 2.).

Endangered Species Act Eligibility

We reviewed the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online database for the site and receiving water ("project action area"). A copy of the database report is provided in Appendix F. Based on this report, an Endangered Species (the northern long-eared bat) is present but there are no critical habitats within the Project Area. Additionally, since the Project Area is located on developed land and existing roadway, project activities are not expected to impact the northern long-eared bat.

We also reviewed the Federally Listed Endangered and Threatened Species in Massachusetts list and no species are listed for Norfolk County. A copy of this list is provided in Appendix F.

National Historic Preservation Requirements

We reviewed online records from the U.S. National Registry of Historic Places database and the Massachusetts Cultural Resource Information System (MACRIS). A map of the alignment and surrounding locations listed in the U.S. National Registry of Historic Places database is included provided in Appendix G. A list of sites in Needham in the MACRIS database is also included in Appendix G. Based on our review, the alignment is not located within a listed National Historic Place.

The point where the discharge reaches the receiving water at Alder Brook is not listed as a National Historic Place.

Coverage Under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP based on the requirements of the NPDES RGP and our evaluation of the available site-specific information. The current intent of project dewatering activities is to recharge groundwater within the proposed alignment. However, if this is not possible, it will be discharged to the nearby storm water drainage system after treatment. On behalf of Eversource, we are requesting coverage under the NPDES RGP for the discharge of treated construction dewatering effluent to the surface waters of the Alder Brook via the Town of Needham storm water drainage system.

The enclosed NOI form and supporting documentation provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services (Appendices A through G). For this project, Eversource is the owner and has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications. The operator will be determined and will direct the personnel responsible for the implementation and day-to-day operations and activities that are necessary to ensure compliance with the NPDES RGP, including operation, inspection, monitoring, and reporting.

A Best Management Practice Plan (BMPP) will be implemented during construction that includes dewatering, treatment, and discharge.

Discharge of treated water, if necessary, is scheduled to begin in June 2018, although recharge within the trench alignment is planned if possible.

May 2, 2018

Please contact me at 781.721.4114 or msabulis@geiconsultants.com or Jim Ash at 781.721.4012 or jash@geiconsultants.com if you have any questions.

Very truly yours,

GEI CONSULTANTS, INC.

Michael W. Sabulis Senior Project Manager

James R. Ash, P.E., LSP Senior Vice President

JAW/MWS:jam Attachments

c: Domenic Nicotera, Eversource Michael Zylich, Eversource

Michael Howard, Epsilon Associates

Surface Water Discharge Program, MassDEP

 $B: \label{lem:book} B: \$

Tables

Table 1. Chemical Testing Results - Alder Brook Surface Water Eversource West Roxbury - Needham Reliability Project Needham. Massachusetts

			Sample Location:	Alder Brook
			Sample Name:	
			Sample Date:	3/12/18
Analyte			Site-Specific RGP	
			Effluent	
	Method	Units	Limitations ⁽¹⁾	
Total Metals		μg/L		
Antimony	200.7		206	< 5.0
Arsenic	3113B		104	< 0.5
Cadmium	3113B		10.2	0.3
Chromium	200.7		323	< 2.0
Chromium III	200.7		323	< 10.0
Copper	200.7		242	2.3
Iron	200.7		5,000	220
Lead	3113B		160	< 2.0
Mercury	245.1		0.739	< 0.200
Nickel	200.7		1,450	< 5.0
Selenium	3113B		235.8	< 1.0
Silver	200.7		35.1	< 0.5
Zinc	200.7		420	24.2
Classical Chemistry				
Hardness	3113B	μg/L	Report	84,100
Ammonia as N	350.1	μg/L	Report	< 100
Hexavalent Chromium	3500	μg/L	323	< 10.0
Salinity	2520B	ppt	NS	0.4
Temperature	NM	°C	NS	5.83
pН	9040	S.U.	6.5-8.3	6.56

General Notes:

- 1. Effluent Limitations, where identified, are calculated using the US EPA's Dilution Factor and Effluent Limitation Calculations for Massachusetts Form (Appendix V). Effluent limits are subject to change pending EPA approval.
- 2. Analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
- 3. "<" = The analyte was not detected at a concentration above the specified laboratory reporting limit.
- 4. RGP = Remediation General Permit.
- 5. Report = No TBEL or WQBEL established but NPDES requires reporting.
- 6. NM = The laboratory data sheet did not establish a method for this analyte.
- 7. NS = No standard has been established for this analyte.
- 8. μ g/L = micrograms per liter.
- 9. ppt = Parts Per Thousand.
- 10. °C = Degrees Celsius.
- 11. S.U. = Standard Units.
- 12. Temperature was measured in the field.
- 13. Dilution factor of 5.24 used to establish effluent limits.
- 14. Values in bold exceed the site specific effluent limitations.
- 15. Temperature and pH were measured in the field.

		Sample Location: Sample Name:		B4(MW) B4(MW)	B6(MW) B6(MW)	B11(MW) B11(MW)	B16(MW) B16(MW)	B20(MW) B20(MW)
		Well So	reen Interval (ft bgs): Sample Date:	2.79-9.79 12/4/2017 &	4.79-14.79 12/1/17	3.79-9.79 12/5/17	6.79-16.79 12/1/17	19.8-29.8 12/6/17
Analyte			Site-Specific RGP Effluent Limitations ⁽¹⁾	12/5/2017				
Volatile Organic Compounds (VOCs)	Method 8260B	Units μg/L	Limitations					
Ethylbenzene	6200B	ру/с	NS	< 0.5	< 0.5	2.4	< 0.5	< 0.5
Naphthalene			NS NS	7.9	< 0.5	225	< 0.5	< 0.5
Xylene, o-			NS	< 0.5	< 0.5	5.9	< 0.5	< 0.5
Xylene, p,m			NS	< 0.5	< 0.5	6.7	< 0.5	< 0.5
Total BTEX			100	ND	ND	15.0	ND	ND
Total VOCs			NS	7.9	ND	240	ND	ND
Total Petroleum Hydrocarbons	1664	mg/L	5	< 6.41	< 6.25	< 4.72	< 4.67	< 4.67
Semi-Volatile Organic Compounds (SVOCs)	8270D	μg/L						
Acenaphthene			NS	0.89	< 0.19	10.8	< 0.19	< 0.19 G
Acenaphthylene			NS	0.72	0.50	0.69	< 0.19	< 0.19 G
Anthracene			NS (2)	0.63	0.30	0.83	< 0.19	< 0.19 G
Benzo[a]anthracene			0.0078/0.1(2)	0.35 G	0.52 G	0.09 G	< 0.05 G	< 0.05 G
Benzo[a]pyrene			0.0078/0.1 ⁽²⁾	0.26 G	0.59 G	0.07 G	< 0.05 G	< 0.05 G
Benzo[b]fluoranthene Benzo[q,h,i]perylene			0.0078/0.1 ⁽²⁾ NS	0.33 < 0.19 G	0.60 0.43 G	0.09 < 0.19 G	< 0.05 < 0.19 G	< 0.05 G < 0.19 G
Benzo[k]fluoranthene			0.0078/0.1 ⁽²⁾	0.14 G	0.43 G	< 0.19 G < 0.05 G	< 0.19 G < 0.05 G	< 0.19 G < 0.05 G
Bis(2-ethylhexyl)phthalate			0.0070/0.1	< 1.87 G	< 1.87 G	< 1.89 G	< 1.87 G	< 1.87 G
Butyl benzyl phthalate				< 2.34 G	< 2.34 G	< 2.36 G	< 1.87 G	< 2.34 G
Chrysene			0.0078/0.1 ⁽²⁾	0.40 G	0.65 G	0.10 G	< 0.05 G	< 0.05 G
Dibenz[a,h]anthracene			0.0078/0.1 ⁽²⁾	0.05 G	0.12 G	< 0.05 G	< 0.05 G	< 0.05 G
Fluoranthene			NS	1.59	0.75	0.80	< 0.19	< 0.19
Fluorene			NS	1.97	< 0.19	6.51	< 0.19	< 0.19 G
Indeno[1,2,3-cd]pyrene			0.0078/0.1(2)	0.19 G	0.43 G	0.05 G	< 0.05 G	< 0.05 G
Naphthalene			20	0.22	< 0.19	92.9	< 0.19	< 0.19 G
Phenanthrene			NS	0.35	0.41	6.87	< 0.19	< 0.19 G
Pyrene			NS	1.37 G	1.18 G	0.60 G	< 0.19 G	< 0.19 G
Total Group I PAHs			1.0	1.72 G	3.11 G	0.40 G	ND	ND
Total Group II PAHs	0044		100	7.74 G	3.57 G	120 G	ND 0.045	ND 0.045
1,2-Dibromoethane 1,4-Dioxane	8011 8270D (SIM)	μg/L	0.05 200	< 0.015 < 0.250	< 0.015 < 0.250	< 0.015 < 0.250	< 0.015 < 0.250	< 0.015
Ethanol	D3695	μg/L mg/L	Report	< 10	< 10	< 10	< 10	< 0.250 < 10
Polychlorinated Biphenyls (PCBs)	608	μg/L	Report	< 10	V 10	< 10	V 10	< 10
PCBs, Total	000	P9/-	0.000064/0.5 ⁽²⁾	ND	ND	ND	ND	ND
Total Metals		μg/L	0.00000 1/0.0					
Antimony	200.7		206	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Arsenic	3113B		104	< 5.0	< 5.0	5.3	< 5.0	< 5.0
Cadmium	3113B		10.2	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Chromium	200.7		323	10.1	5.8	< 4.0	< 4.0	< 4.0
Chromium III	200.7		323	10.1	< 10.0	< 10.0	< 10.0	< 10.0
Copper	200.7		17	10.6	29.6	< 4.0	< 4.0	< 4.0
Iron	200.7		1,826	5,080	1,020	18,300	< 20.0	70.8
Lead	3113B		6.88	15.8	5.3	< 2.0	< 2.0	< 2.0
Mercury	245.1		0.739	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200
Nickel	200.7		1,450	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Selenium	3113B		235.8	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Silver	200.7		35.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc Dissolved Metals	200.7	ua/I	420	45.8	25.2	29.8	19.2	< 10.0
Antimony	200.7	μg/L	NS	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Arsenic	3113B		NS NS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Cadmium	3113B		NS NS	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Chromium	200.7		NS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Copper	200.7		NS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Iron	200.7		NS	1,290	< 20.0	16,900	< 20.0	21.3
Lead	3113B		NS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Mercury	245.1		NS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Nickel	200.7		NS	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Selenium	3113B		NS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Silver	200.7	-	NS	< 2.0	< 2.0	< 2.0	< 1.0	< 2.0
Zinc	200.7		NS	44.2	12.9	30.1	18.3	14.6
		μg/L						
Classical Chemistry			Report	62,400	81,500	125,000	40,700	54,500
Hardness	3113B							
Hardness Ammonia as N	350.1		Report	110	< 100	180	< 100	< 100
Hardness Ammonia as N Chloride	350.1 300.0		Report Report	99,300	77,800	482,000	102,000	68,400
Hardness Ammonia as N Chloride Hexavalent Chromium	350.1 300.0 3500		Report Report 323	99,300 < 10.0 A	77,800 < 10.0 A	482,000 < 10.0 A	102,000 < 10.0 A	68,400 < 10.0 A
Hardness Ammonia as N Chloride Hexavalent Chromium Phenols	350.1 300.0 3500 420.1		Report Report 323 1,080	99,300 < 10.0 A < 100	77,800 < 10.0 A < 100	482,000 < 10.0 A < 100	102,000 < 10.0 A 105	68,400 < 10.0 A < 100
Hardness Ammonia as N Chloride Hexavalent Chromium Phenols Total Cyanide (LL)	350.1 300.0 3500 420.1 4500 LL		Report Report 323 1,080 178,000	99,300 < 10.0 A < 100 < 5.00	77,800 < 10.0 A < 100 < 5.00	482,000 < 10.0 A < 100 < 5.00	102,000 < 10.0 A 105 < 5.00	68,400 < 10.0 A < 100 < 5.00
Hardness Ammonia as N Chloride Hexavalent Chromium Phenols	350.1 300.0 3500 420.1		Report Report 323 1,080	99,300 < 10.0 A < 100	77,800 < 10.0 A < 100	482,000 < 10.0 A < 100	102,000 < 10.0 A 105	68,400 < 10.0 A < 100

General Notes:

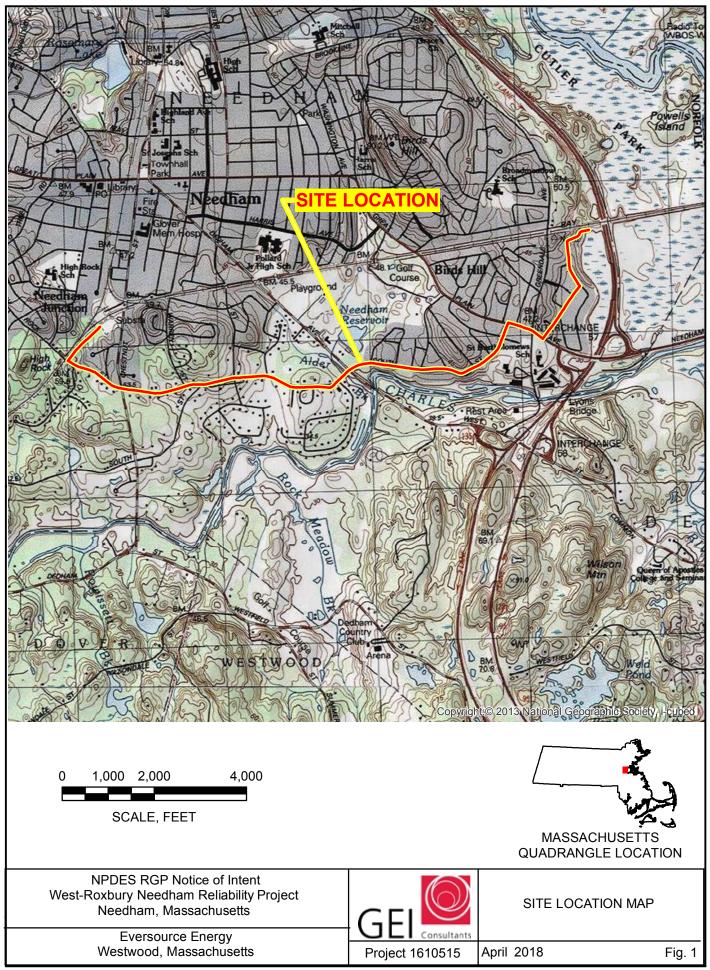
- Effluent Limitations, where identified, are calculated using the US EPA's Dilution Factor and Effluent Limitation Calculations for Massachusetts Form (Appendix V). Effluent limits are subject to change pending EPA approval.
- The second standard is the compliance level.

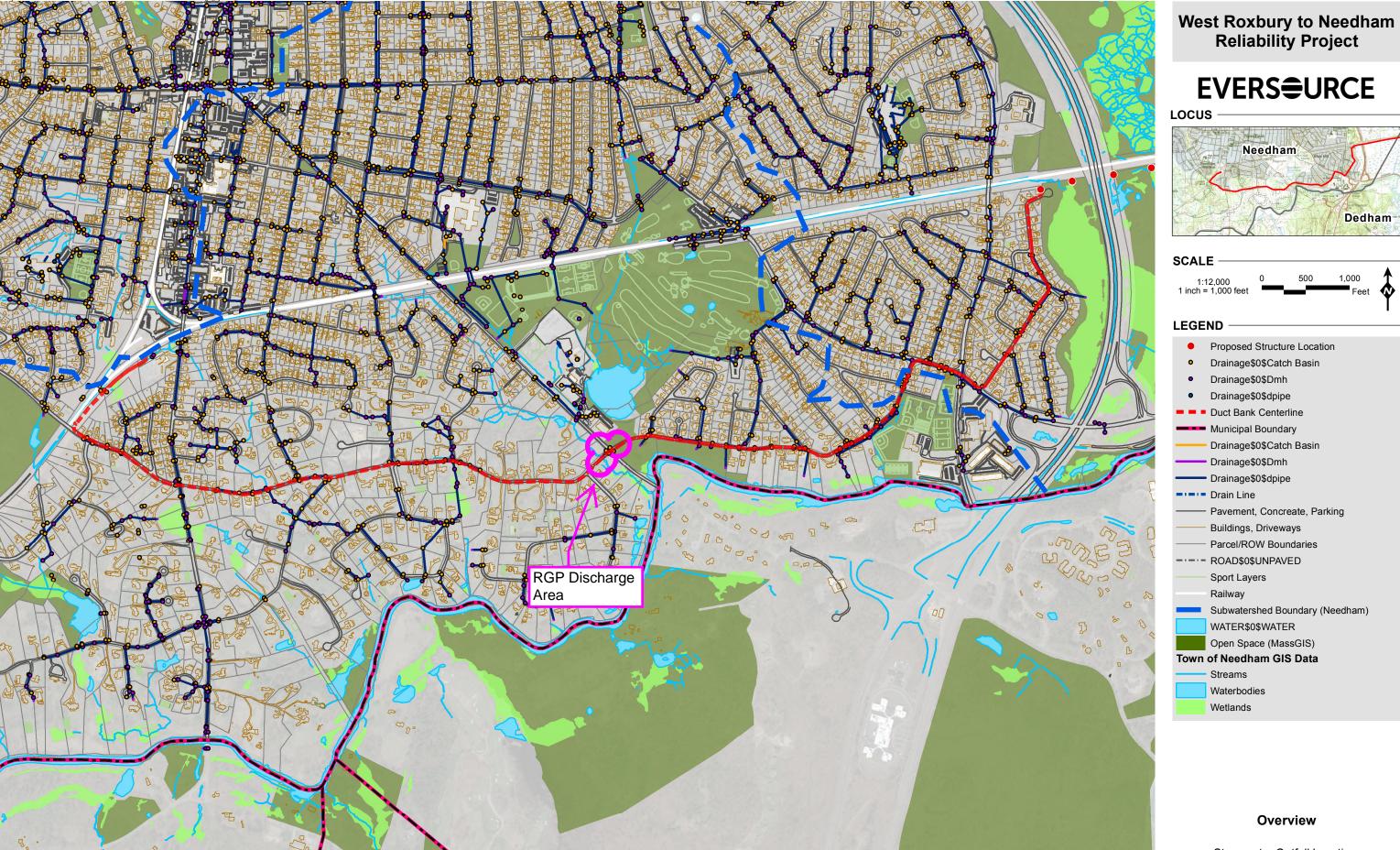
 Analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets. "a" = The analyte was not detected at a concentration above the specified laboratory reporting limit.

 RGP = Remediation General Permit.
- The second standard is the
 Analytes detected in at leas
 "<" = The analyte was not d
 RGP = Remediation Genera
 Report = No TBEL or WQB
 ND = The analyte was not d
 NS = No standard has been
 µg/L = micrograms per liter.
 mg/L = milligrams per liter.
 "C = Degrees Celsius
- Report = No TBEL or WQBEL established but NPDES requires reporting.

 ND = The analyte was not detected above the laboratory reporting limit. See the laboratory data sheets for the laboratory reporting limit.

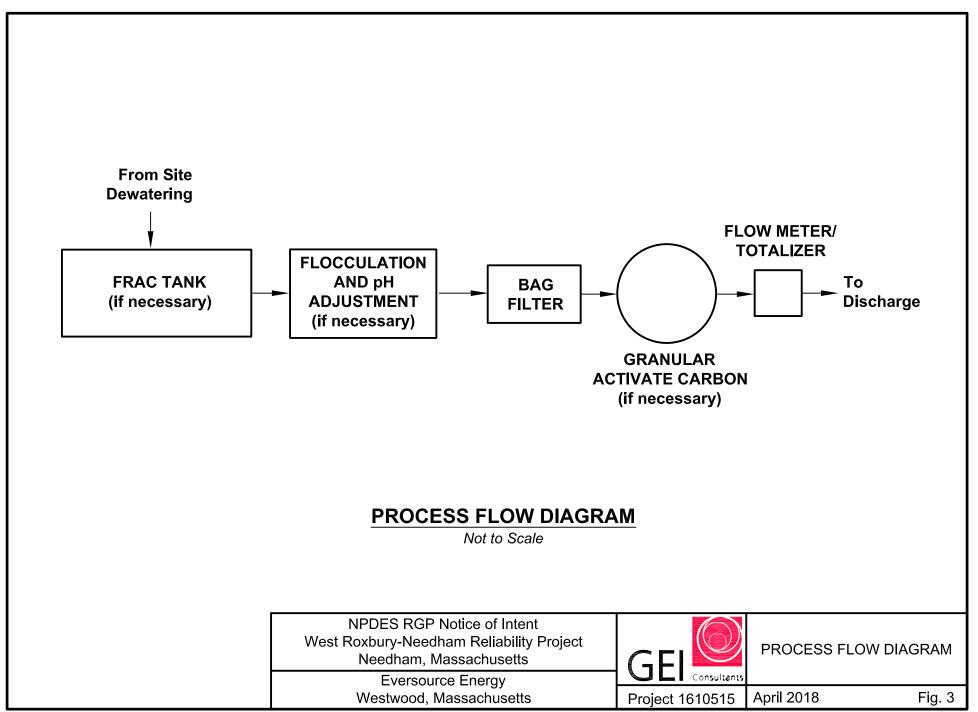
 NS = No standard has been established for this analyte.
- μ g/L = micrograms per liter.
- 11. °C = Degrees Celsius.12. S.U. = Standard Units.
- 13. BTEX = The sum of benzene, toluene, ethylbenzene, and xylenes.
- 14. Group I PAHs = The sum of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene.


 15. Group II PAHS = The sum of acenaphthylene, anthracene, benzo(g,h,i)perylene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene.


 16. Naphthalene was tested as a non-halogenated VOC and non-halogenated SVOC. Per Chemical-Specific Effluent Limitations, detected concentrations of naphthalene were compared to the standard for non-halogenated SVOCs.
- 17. Dilution factor of 5.24 used to establish effluent limitations. 18. Values in bold exceed the site specific effluent limitations.

Qualifying Notes:

- G The result is estimated due to duplicate precision outside control limits.
- The result is estimated due to holding time exceedance.


Figures		

Stormwater Outfall Locations

Appendix A

Remediation General Permit Notice of Intent – 50 gpm

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: Multiple addresses (See NOI Letter)			
West Roxbury to Needham Reliability Project - Needham Section	Street:				
	City: Needham		State: MA	Zip:	
Site owner NSTAR Electric Company d/b/a Eversource Energy	Contact Person: Michael Zylich		,		
NOTAR Electric Company d/b/a Eversource Energy	Telephone: 781.441.3804 Email: michael.zylich@evers				
	Mailing address: 247 Station Drive, SE270				
	Street:				
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private Other; if so, specify: Utility on Public Right of Way	City: Westwood		State: MA	Zip: 02090	
3. Site operator, if different than owner	Contact Person:				
Operator to be selected. NSTAR Electric Company d/b/a Eversource Energy will retain coverage as a co-permitee	Telephone:	Email:			
until the Operator is selected.	Mailing address:				
	Street:				
	City:		State:	Zip:	
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):		
	■ MA Chapter 21e; list RTN(s):	□ CERCL	.A		
NIDDEG a servicia (alcada allabata analas = DCD = DCD = CCD	RTN to be provided	□ UIC Pro	ogram		
NPDES permit is (check all that apply: KGP DGP CGP	<u> </u>		· ·		
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:		Pretreatment		

В.	Receiving	water	inf	formation:
₽.	11000111115	" acci		oi iiiatioii.

e impaired, and any State as noted in Par
cfs
in Appendix VIII?
j

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: SVOCs, PAHs, lead and copper	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1. The discharge(s) is $a(n)$ (check any that apply): \square Existing discharge \blacksquare New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
See Appendix F of NOI package.	42.268706 degrees N 71.220550 degrees W
Discharges enter the receiving water(s) via (check any that apply): □ Direct dis	scharge to the receiving water ■ Indirect discharge, if so, specify:
Town of Needham storm drains	
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	rer system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission: Prior to excavation, the Operator will obtain street of	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for opening permits from the Town of Needham
Has the operator attached a summary of any additional requirements the owner	
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: ■ less than 1:	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)
	a. If Activity Categ	ory I or II: (check all that apply)
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organic □ F. Fuels Parameters 	mpounds Organic Compounds c Compounds
☐ II – Non-Petroleum-Related Site Remediation ■ III – Contaminated Site Dewatering	■ G. Sites with Known	T, V, VI, VII or VIII: (check either G or H) ☐ H. Sites with Unknown Contamination
 □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)	and the state of t
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply

4. Influent and Effluent Characteristics

	Known	Known	or # of method (#)			In	fluent	Effluent Limitations		
Parameter	or believed absent	or believed present		Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL		
A. Inorganics										
Ammonia		~	5	350.1	100	180	145	Report mg/L		
Chloride		V	5	300.0	50,000	482,000	165900	Report μg/l		
Total Residual Chlorine	~		5	4500CL D	20.0	<20.0	0	0.2 mg/L	34	
Total Suspended Solids		~	5	2540D	5,000 and	832,000	334000	30 mg/L		
Antimony	V		5	200.7	10.0	<10.0	0	206 μg/L		
Arsenic	~		5	3113B	5.0	5.3	5.3	104 μg/L		
Cadmium	~		5	3113B	0.25	< 0.25	0	10.2 μg/L		
Chromium III	~		5	200.7	10.0	10.1	10.1	323 μg/L		
Chromium VI	~		5	3500	10.0	<10.0	0	323 μg/L		
Copper		V	5	200.7	4.0	29.6	20.1	242 μg/L	23.5	
Iron		V	5	200.7	20.0	18300	6117.7	5,000 μg/L	2652	
Lead	~		5	3113B	2.0	15.8	10.55	160 μg/L	9.57	
Mercury	V		5	245.1	0.20	< 0.20	0	0.739 μg/L		
Nickel	V		5	200.7	10.0	<10.0	0	1,450 μg/L		
Selenium	~		5	3113B	4.0	<4.0	0	235.8 μg/L		
Silver	~		5	200.7	1.0 and 2.0	<2.0	0	35.1 μg/L		
Zinc		~	5	200.7	10.0	45.8	30	420 μg/L		
Cyanide	~		5	4500LL	5.00	<5.0	0	178 mg/L		
B. Non-Halogenated VOC	s									
Total BTEX		~	5	524.2		15	15	100 μg/L		
Benzene	V		5	524.2	0.5	<0.5	0	5.0 μg/L		
1,4 Dioxane	~		5	8270D	0.250	< 0.250	0	200 μg/L		
Acetone	~		5	524.2	5.0	<5.0	0	7.97 mg/L		
Phenol		V	5	420.1	100	105	105	1,080 μg/L		

	Known	Known		_		Influent		Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride	~		5	524.2	0.3	<0.3	0	4.4 μg/L		
1,2 Dichlorobenzene	~		5	524.2	0.5	< 0.5	0	600 μg/L		
1,3 Dichlorobenzene	~		5	524.2	0.5	< 0.5	0	320 μg/L		
1,4 Dichlorobenzene	~		5	524.2	0.5	< 0.5	0	5.0 μg/L		
Total dichlorobenzene	~		5	524.2	0.5	< 0.5	0	763 μg/L in NH		
1,1 Dichloroethane	~		5	524.2	0.5	< 0.5	0	70 μg/L		
1,2 Dichloroethane	~		5	524.2	0.5	< 0.5	0	5.0 μg/L		
1,1 Dichloroethylene	~		5	524.2	0.5	< 0.5	0	3.2 μg/L		
Ethylene Dibromide	~		5	504.1	0.015	< 0.015	0	0.05 μg/L		
Methylene Chloride	~		5	524.2	0.5	<0.5	0	4.6 μg/L		
1,1,1 Trichloroethane	~		5	524.2	0.5	<0.5	0	200 μg/L		
1,1,2 Trichloroethane	~		5	524.2	0.5	<0.5	0	5.0 μg/L		
Trichloroethylene	~		5	524.2	0.5	<0.5	0	5.0 μg/L		
Tetrachloroethylene	~		5	524.2	0.5	<0.5	0	5.0 μg/L		
cis-1,2 Dichloroethylene	~		5	524.2	0.5	< 0.5	0	70 μg/L		
Vinyl Chloride	~		5	524.2	0.2	<0.2	0	2.0 μg/L		
D. Non-Halogenated SVO	~c									
Total Phthalates		·	5	625 SIM	1.87, 2.34,	<2.36	0	190 μg/L		
Diethylhexyl phthalate	~		5	625 SIM	1.87	<1.87	0	101 μg/L		
Total Group I PAHs		~	5	625 SIM	0.05	3.11	1.74	1.0 μg/L		
Benzo(a)anthracene		~	5	625 SIM	0.05	0.52	0.32	1.5	0.0118	
Benzo(a)pyrene		V	5	625 SIM	0.05	0.59	0.31	1	0.0118	
Benzo(b)fluoranthene		~	5	615 SIM	0.05	0.60	0.34	1	0.0118	
Benzo(k)fluoranthene		~	5	625 SIM	0.05	0.20	0.17	As Total PAHs	0.0118	
Chrysene		~	5	625 SIM	0.05	0.65	0.38	1	0.0118	
Dibenzo(a,h)anthracene		~	5	625 SIM	0.05	0.12	0.09	1	0.0118	
Indeno(1,2,3-cd)pyrene		~	5	625 SIM	0.05	0.43	0.22	†	0.0118	

	Known	Known				Inf	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		~	5	625 SIM	0.19	120	43.77	100 μg/L	
Naphthalene		~	5	625 SIM	0.19 and	92.9	46.56	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	V		5	608	0.09	<0.09	0	0.000064 μg/L	
Pentachlorophenol	V		5	625 SIM	0.84	< 0.84	0	1.0 μg/L	
E Essala Dansana Assar									
F. Fuels Parameters Total Petroleum Hydrocarbons	~		5	1664A	4.67, 6.41,	<4.72	0	5.0 mg/L	
Ethanol	~		5	ASTM	10	<10	0	Report mg/L	
Methyl-tert-Butyl Ether	~		5	524.2	0.5	<0.5	0	70 μg/L	
tert-Butyl Alcohol	~		5	524.2	25.0	<25.0	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		5	524.2	1.0	<1.0	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu Naphthalene	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutar 524.2	o.5 and 5.0	if so, specify:	116.45		
Hardness		~	5	3113B	165 and 999	125,000	72,820		
pH		~	6.5-8.3	Field	0 to 12	5.61	6.00		
	1	1	1	1	1	1	1	1	

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:	
Granulated activated carbon and other treatments as need to meet effluent limits.	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Prior to discharge, dewatering effluent will be routed through bag filters and other treatment as need to meet effluent requirements. See attached Figure 3.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify: Granulated activated carbon and other treatments as need to meet effluent limits.	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component: Flow meter	5 ()
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	50
Provide the average effluent flow in gpm.	25
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers ■ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine ■ Other; if so, specify:
pH conditions may be added to the treatment system if necessary to meet effluent limits
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \blacksquare Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.					
	A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: upon initiation of discharge.	emented				
	Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □			
	Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □			
	Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■	No □ NA □			
	Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □ NA □			
	Notification provided to the owner/operator of the area associated with activities covered by an additional discharge					
	permit(s). Additional discharge permit is (check one): ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes ■	No □ NA □			
	☐ Other; if so, specify:					
Sign	nature: Dat	e: ^{5/2/18}				

Print Name and Title: Michael Zylich, Sr. Environmental Scientist

Table 1. Water Quality Assessment Status for Reporting Year 2014 Alder Brook

Designated Use	Designated Use Group	Status
Aesthetic	Aesthetic Value	Not Assessed
Fish Consumption	Aquatic Life Harvesting	Not Assessed
Fish, Other Aquatic Life And Wildlife	Fish, Shellfish, And Wildlife Protection And Propagation	Impaired
Primary Contact Recreation	Recreation	Not Assessed
Secondary Contact Recreation	Recreation	Not Assessed

Causes of Impairment for Reporting Year 2014

Cause of Impairment	Cause of Impairment Group	Designated Use(s)	State TMDL Development Status
Aquatic Macroinvertebrate Bioassessments	Cause Unknown - Impaired Biota	Fish, Other Aquatic Life And Wildlife	TMDL needed
Nutrient/Eutrophication Biological Indicators	Nutrients	Fish, Other Aquatic Life And Wildlife	TMDL completed

TMDLs That Apply to this waterbody

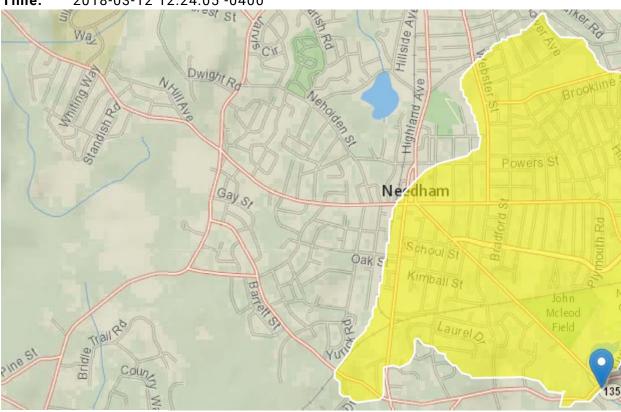
TMDL Document Name	TMDL Date	TMDL Pollutant Description	TMDL Pollutant Source Type	Cause(s) of Impairment Addressed
				Nutrient/Eutrophication Biological
				Indicators; Nutrients; Aquatic
Upper/Middle Charles River	Jun-10-2011	Phosphorus, Total	Point/Nonpoint Source	Macroinvertebrate Bioassessments

General Notes:

1. Information obtained from EPA website: https://ofmpub.epa.gov/waters10/attains_index.home on April 17, 2018

StreamStats Page 1 of 4

StreamStats Page 2 of 4


StreamStats Report

Region ID: MA

Workspace ID: MA20180312162351012000

Clicked Point (Latitude, Longitude): 42.26845, -71.22016

Time: 2018-03-12 12:24:05 -0400

The South Carolina StreamStats application is testing LiDAR-derived data and streams for delineation. This is a beta version and QA/QC is incomplete. It may calculate basin characteristics and flow statistics incorrectly. Please verify the drainage areas and flow stats carefully. Use at your own risk

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1.72	square miles

StreamStats Page 3 of 4

Parameter Code	Parameter Description	Value	Unit
DRFTPERSTR	Area of stratified drift per unit of stream length	1.04	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless
BSLDEM250	Mean basin slope computed from 1:250K DEM	1.766	percent
BSLDEM10M	Mean basin slope computed from 10 m DEM	4.292	percent
ELEV	Mean Basin Elevation	171	feet
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	1.68	percent
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	64.08	percent
FOREST	Percentage of area covered by forest	7.28	percent

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.72	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	1.766	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	1.04	square mile pe	er O	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1
Low-Flow Statistic	cs Flow Report [Statewide Low Flow W	RIR00 4135]			
PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other see report)					
Statistic	Value	Unit	PII F	Plu SE	SEp

StreamStats Page 4 of 4

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.417	ft^3/s	0.0663	2.53	49.5	49.5
7 Day 10 Year Low Flow	0.236	ft^3/s	0.0311	1.67	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Dilution Factor Calculation

Approach

The discharge dilution factor was calculated in accordance with Appendix V of the Remediation General Permit (RGP) application.

Formula **Example**

$$DF = (Qd + Qs)/Qd$$

DF = dilution factor

Qd = flow of discharge into receiving water body

Qs = estimated flow of receiving water body

Assumptions

Qs = 7Q10 in millions of gallons per day (MGD)

$$7Q10 = 0.236$$
 cubic feet per second (cfs)¹ $Qs = 0.1525$ MGD

Qd = flow of discharge into receiving water body

$$Qd = 50$$
 gallons per minute (gpm) = 0.072 MGD¹

Calculation

$$DF = (Qd + Qs)/Qd$$

$$DF = (0.072 + 0.1525)/(0.072)$$

$$DF = 3.12$$

Footnotes:

1. 7Q10 obtained from United States Geoglogic Survey (USGS) StreamStats Report dated March 12, 2018.

MWS/

 $B: Working \c VERSOURCE \c 1610515\c Epsilon\c WRNRP \c 11_NPDES\c RGP \c NOI\c Alder\c Brook \c AppA_NOI\c AppA2\c NOI\c dilution\c factor\c calculation. doc$

Sabulis, Mike

From: Vakalopoulos, Catherine (DEP) <Catherine.Vakalopoulos@MassMail.State.MA.US>

Sent: Friday, April 20, 2018 9:16 AM

To: Sabulis, Mike

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Mike,

Thanks for answering my same question for both sites.

Have a nice weekend.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Sabulis, Mike [mailto:MSabulis@geiconsultants.com]

Sent: Thursday, April 19, 2018 8:29 PM **To:** Vakalopoulos, Catherine (DEP)

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Thanks again Cathy. This is for a different segment of the same utility project. Similar to Valley Rd the 200 gpm is to support a higher dewatering in the event a large rain event occurs and a higher dewatering rate is necessary to pump out the trench.

Mike

Michael Sabulis

Senior Project Manager GEI Consultants, Inc.

T: 781.721.4114 | M: 508.633.9544

From: Vakalopoulos, Catherine (DEP) [mailto:Catherine.Vakalopoulos@MassMail.State.MA.US]

Sent: Thursday, April 19, 2018 7:05 PM

To: Sabulis, Mike < MSabulis@geiconsultants.com>

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Mike,

The calculations in your table are correct. I have the same question I had with the other location – did you add the 200 GPM in case a higher volume of dewatering is needed? Alder Brook has a segment ID of MA72-22, is Class B, is not an ORW, and has one TMDL for nutrients.

Please let me know if you have any further questions.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

From: Sabulis, Mike [mailto:MSabulis@geiconsultants.com]

Sent: Wednesday, April 18, 2018 11:48 AM

To: Vakalopoulos, Catherine (DEP)

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Cathy,

Thanks for the correction and info, we have recalculated the Dilution Factors for the following two maximum flow rates and plan to submit NOIs for each:

Maximum Discharge Rate		Alder Brook 7Q10	Dilution Factor
50 GPM	0.072 MGD	0.153 MGD	3.12
200 GPM	0.288 MGD	0.153 MGD	1.53

Could you confirm these are correct?

Thanks,

Mike

Michael Sabulis

Senior Project Manager GEI Consultants, Inc.

T: 781.721.4114 | M: 508.633.9544

From: Vakalopoulos, Catherine (DEP) [mailto:Catherine.Vakalopoulos@MassMail.State.MA.US]

Sent: Thursday, April 5, 2018 2:51 PM

To: Sabulis, Mike < MSabulis@geiconsultants.com >

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Mike,

I just want to check that the 50 gpm you provided is the design flow which is the maximum flow through the treatment system and not an average flow or what you think will be flowing through the system. We use the design flow to calculate the dilution factor.

If 50 gpm is the design flow, it doesn't matter how many hours a day you operate the system. We are interested in seeing the dilution at the time of discharge.

Using 50 gpm = 0.072 MGD and the 7Q10 is 0.236 cfs = 0.153 MGD (which is correct), DF = (0.072 + 0.153)/0.072 = 3.125

Please let me know about the design flow.

Thanks, Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

From: Sabulis, Mike [mailto:MSabulis@geiconsultants.com]

Sent: Tuesday, April 03, 2018 4:53 PM **To:** Vakalopoulos, Catherine (DEP)

Subject: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Catherine,

I writing to confirm a 7Q10 value and Dilution Factor for Alder Brook located in Needham, Massachusetts. Based on the output from StreamStats (see attached), we should be using a 7Q10 of 0.236 ft³/sec, could you confirm this is correct? Assuming a discharge rate of 50 gpm for a 12 hr. period, we have calculated a following Dilution Factor of 5.24. Could you confirm this is correct as well?

Let me know if you have any questions or if you'd like to discuss.

Thanks,

Mike

Michael Sabulis

Senior Project Manager


GEI Consultants, Inc. 400 Unicorn Park Drive | Woburn, MA 01801

T: 781.721.4114 | **M:** 508.633.9544

www.geiconsultants.com | vCard | LinkedIn | Twitter | Facebook

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
125	C_d = Enter influent hardness in mg/L CaCO ₃
84.1	C _s = Enter receiving water hardness in mg/L CaCO

Enter receiving water concentrations in the units specified

	-
6.56	pH in Standard Units
5.83	Temperature in °C
0	Ammonia in mg/L
84.1	Hardness in mg/L CaCO
0.4	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in µg/L
0.3	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
2.3	Copper in µg/L
220	Iron in μg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
24.2	Zinc in µg/L

Enter influent concentrations in the units specified

0	TRC in µg/L
0.18	Ammonia in mg/L
0	Antimony in µg/L
5.3	Arsenic in µg/L
0	Cadmium in µg/L
10.1	Chromium III in µg/L
0	Chromium VI in µg/L
29.6	Copper in µg/L
18300	Iron in μg/L
15.8	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
45.8	Zinc in µg/L
0	Cyanide in µg/L
105	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0.52	Benzo(a)anthracene in µg/L
0.59	Benzo(a)pyrene in µg/L
0.6	Benzo(b)fluoranthene in µg/L
0.2	Benzo(k)fluoranthene in μg/L
0.65	Chrysene in µg/L
0.12	Dibenzo(a,h)anthracene in μg/L
0.43	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

3.1

A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L			••	
Chloride	Report	_				
Total Residual Chlorine	=	μg/L			50	Л
	0.2	mg/L	34	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	1996	μg/L		
Arsenic	104	μg/L	31	$\mu g/L$		
Cadmium	10.2	μg/L	0.8264	μg/L		
Chromium III	323	μg/L	262.6	μg/L		
Chromium VI	323	μg/L	35.7	μg/L		
Copper	242	μg/L	23.5	μg/L		
Iron	5000		2652	μg/L μg/L		
Lead		μg/L	9.57			
	160	μg/L		μg/L		
Mercury	0.739	μg/L	2.82	μg/L		
Nickel	1450	μg/L	158.8	$\mu g/L$		
Selenium	235.8	μg/L	15.6	$\mu g/L$		
Silver	35.1	μg/L	11.2	μg/L		
Zinc	420	μg/L	313.5	μg/L		
Cyanide	178	mg/L	16.2	μg/L		μg/L
B. Non-Halogenated VOCs	1.0	mg/L	10.2	µg/⊥		μg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	935	μg/L		
C. Halogenated VOCs				_		
Carbon Tetrachloride	4.4	μg/L	5.0	μg/L		
1,2 Dichlorobenzene	600	μg/L				
1,3 Dichlorobenzene 1,4 Dichlorobenzene	320 5.0	μg/L				
Total dichlorobenzene	3.0	μg/L μg/L				
1,1 Dichloroethane	70	μg/L μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L		_		
Tetrachloroethylene	5.0	μg/L	10.3	μg/L		
cis-1,2 Dichloroethylene	70 2.0	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	6.9	μg/L		
Total Group I Polycyclic		~				
Aromatic Hydrocarbons	1.0	μg/L		ar.	0.1	σ
Benzo(a)anthracene	1.0	μg/L	0.0118	μg/L	0.1	μg/L
Benzo(a)pyrene Benzo(b)fluoranthene	1.0 1.0	μg/L ug/I	0.0118 0.0118	μg/L	0.1 0.1	μg/L
Benzo(k)fluoranthene	1.0	μg/L μg/L	0.0118	μg/L μg/L	0.1	μg/L μg/L
Chrysene	1.0	μg/L μg/L	0.0118	μg/L μg/L	0.1	μg/L μg/L
Dibenzo(a,h)anthracene	1.0	μg/L μg/L	0.0118	μg/L μg/L	0.1	μg/L μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0118	μg/L	0.1	μg/L
Total Group II Polycyclic				1.0		1.0
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064				0.5	/T
	0.000064	μg/L ug/I			0.5	μg/L
Pentachlorophenol F. Fuels Parameters	1.0	μg/L				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	62	μg/L		
				r5-2		
tert-Butyl Alcohol	120	μg/L				

sc200™ UNIVERSAL CONTROLLER

Applications

- Drinking Water
- Wastewater
- Industrial Water
- Power

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 different parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

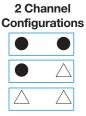
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader offers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison



Previous Models				
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transferStandardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART 7.2	Unprecedented combination of sensor breadth and digital communication options

Choose from Hach's Broad Range of Digital and Analog Sensors				
Parameter	Sensor	Digital or Analog		
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc			
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•		
Chlorine Dioxide	9185 sc	•		
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	\triangle		
Dissolved Oxygen	LDO® Model 2, 5740 sc			
Dissolved Oxygen	5500	\triangle		
Flow	U53, F53 Sensors	\triangle		
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•		
Oil in Water	FP360 sc			
Organics	UVAS sc			
Ozone	9187 sc	•		
pH/ORP	pHD	•		
pH/ORP	pHD, pH Combination, LCP	\triangle		
Phosphate	PHOSPHAX™ sc			
Sludge Level	SONATAX™ sc			
Suspended Solids	SOLITAX™ sc, TSS sc			
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc			
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	\triangle		
Ultra Pure pH/ORP	8362	\triangle		

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

Specifications*

Dimensions (H x W x

D)

(144 mm x 144 mm x 181 mm)

Display

Graphic dot matrix LCD with LED backlighting, transreflective

Display Size

1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution Weight

240 x 160 pixels 3.75 lbs. (1.70 kg)

5.7 in x 5.7 in x 7.1 in

Power Requirements

(Voltage)

100 - 240 V AC, 24 V DC

Power Requirements (Hz)

Operating **Temperature Range**

Analog Outputs

50/60 Hz

-20 to 60 °C, 0 to 95% RH non-condensing

Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, \pm 0.5% of FS over -20 °C to 60 °C

Operational Mode: measurement

or calculated value

Analog Output Functional Mode Linear, Logarithmic, Bi-linear, PID

Security Levels Mounting Configurations

2 password-protected levels Wall, pole, and panel mounting

Enclosure Rating Conduit Openings

1/2 in NPT Conduit

Relay: Operational

Mode

NEMA 4X/IP66

Primary or secondary

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT Relays

(Form C) contacts, 1200 W, 5 A

MODBUS RS232/RS485, Communication PROFIBUS DPV1, or HART 7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1 (Industrial limits)

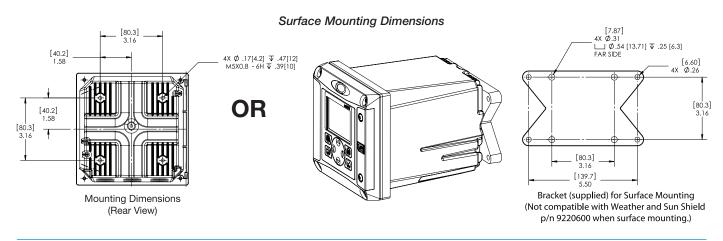
Safety

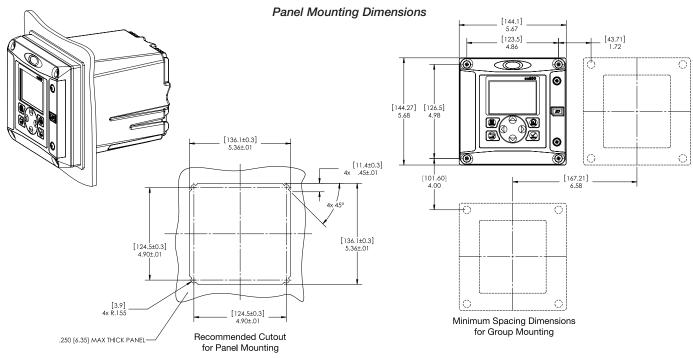
cETLus safety mark for:

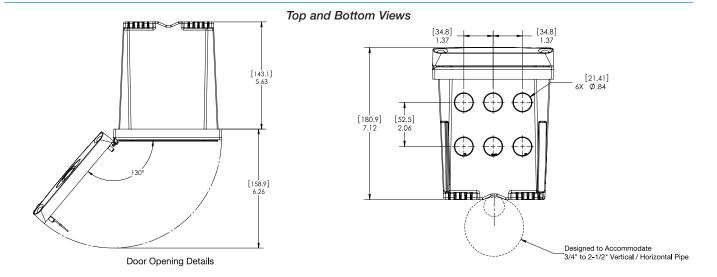
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No.

61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.

sc200™ Universal Controller 5

Dimensions

Ordering Information

sc200 for Hach Digital and Analog Sensors

LXV404.99.00552sc200 controller, 2 channels, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00202sc200 controller, 1 channel, Conductivity

LXV404.99.01552 sc200 controller, 2 channels, digital, Modbus RS232/RS485

LXV404.99.00112 sc200 controller, 2 channel, pH/DO

Note: Other Sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS, Profibus DPV1, and HART) are available. Please contact Hach Technical Support or your Hach representative.

sc200 for Ultrapure Sensors

9500.99.00602 sc200 controller, 1 channel, ultrapure conductivity

9500.99.00702 sc200 controller, 1 channel, ultrapure pH

9500.99.00662 sc200 controller, 2 channel, ultrapure conductivity

9500.99.00772 sc200 controller, 2 channel, ultrapure pH

Sensor and Communication Modules

9012900 Analog pH/ORP and DO module for GLI Sensors9013000 Analog Conductivity module for GLI Sensors

9012700 Flow module

9012800 4-20 mA Input Module

9525700 Analog pH/ORP Module for Polymetron Sensors9525800 Analog Conductivity Module for Polymetron Sensors

9013200 Modbus 232/485 Module
 9173900 Profibus DP Module
 9328100 HART Module

9334600 4-20 mA Output Module (Provides 3 additional mA Outputs)

Accessories

9220600 sc200 Weather and Sun Shield with UV Protection Screen

8809200 sc200 UV Protection Screen

9218200 SD card reader (USB) for connection to PC

9218100 4 GB SD card

HACH COMPANY World Headquarters: Loveland, Colorado USA

 United States:
 800-227-4224 tel
 970-669-2932 fax
 orders@hach.com

 Outside United States:
 970-669-3050 tel
 970-461-3939 fax
 int@hach.com

hach.com

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 1 of 7

Sulfuric Acid, 3M

SECTION 1: Identification of the substance/mixture and of the supplier

Product name : Sulfuric Acid, 3M

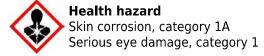
Manufacturer/Supplier Trade name:

Manufacturer/Supplier Article number: \$25899

Recommended uses of the product and uses restrictions on use:

Manufacturer Details:

AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331


Supplier Details:

Fisher Science Education 15 Jet View Drive, Rochester, NY 14624

Emergency telephone number:

SECTION 2: Hazards identification

Classification of the substance or mixture:

Corrosive to metals, category 1 skin corr./irrit. 1A Corrosive to metals. 1 Eye corr. 1

Signal word: Danger

Hazard statements:

May be corrosive to metals

Causes severe skin burns and eye damage

Causes serious eye damage

Precautionary statements:

If medical advice is needed, have product container or label at hand

Keep out of reach of children

Read label before use

Wear protective gloves/protective clothing/eye protection/face protection

Wash ... thoroughly after handling

Do not breathe dust/fume/gas/mist/vapours/spray

Keep only in original container

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

 $\hbox{IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do. } \\$

Continue rinsing

Immediately call a POISON CENTER or doctor/physician

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower Wash contaminated clothing before reuse

Effective date: 02.15.2015 Page 2 of 7

Sulfuric Acid, 3M

IF SWALLOWED: Rinse mouth, Do NOT induce vomiting Specific treatment (see ... on this label) Absorb spillage to prevent material damage Store locked up Dispose of contents/container to ...

Other Non-GHS Classification:

WHMIS

NFPA/HMIS

HMIS RATINGS (0-4)

SECTION 3: Composition/information on ingredients

Ingredients:		
CAS 7664-93-9	Sulfuric Acid, ACS	31.004 %
CAS 7732-18-5	Water	68.996 %
		Percentages are by weight

SECTION 4 : First aid measures

Description of first aid measures

After inhalation: Loosen clothing as necessary and position individual in a comfortable position. Move exposed to fresh air. Give artificial respiration if necessary. If breathing is difficult give oxygen. Get medical assistance if cough or other symptoms appear.

After skin contact: Rinse/flush exposed skin gently using soap and water for 15-20 minutes. Seek medical advice if discomfort or irritation persists.

After eye contact: Protect unexposed eye.Rinse/flush exposed eye(s) gently using water for 15-20 minutes.Remove contact lens(es) if able to do so during rinsing.Seek medical attention if irritation persists or if

After swallowing: Rinse mouth thoroughly. Do not induce vomiting. Seek medical attention if irritation, discomfort, or vomiting persists.

Most important symptoms and effects, both acute and delayed:

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 3 of 7

Sulfuric Acid, 3M

Irritation, Headache, Nausea, Shortness of breath.;

Indication of any immediate medical attention and special treatment needed:

If seeking medical attention provide SDS document to physician. Physician should treat symptomatically.

SECTION 5 : Firefighting measures

Extinguishing media

Suitable extinguishing agents: Use water, dry chemical, chemical foam, carbon dioxide, or alcohol-resistant foam

For safety reasons unsuitable extinguishing agents:

Special hazards arising from the substance or mixture:

Thermal decomposition can lead to release of irritating gases and vapors.

Advice for firefighters:

Protective equipment: Wear protective eyeware, gloves, and clothing. Refer to Section 8.Use NIOSH-approved respiratory protection/breathing apparatus.

Additional information (precautions): Avoid inhaling gases, fumes, dust, mist, vapor, and aerosols. Avoid contact with skin, eyes, and clothing.

SECTION 6: Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Ensure adequate ventilation. Ensure that air-handling systems are operational.

Environmental precautions:

Should not be released into environment. Prevent from reaching drains, sewer, or waterway.

Methods and material for containment and cleaning up:

Wear protective eyeware, gloves, and clothing. Refer to Section 8.Always obey local regulations. Containerize for disposal. Refer to Section 13.If necessary use trained response staff or contractor. Evacuate personnel to safe areas. Keep in suitable closed containers for disposal.

Reference to other sections:

SECTION 7: Handling and storage

Precautions for safe handling:

Avoid contact with skin, eyes, and clothing. Follow good hygiene procedures when handling chemical materials. Refer to Section 8. Follow proper disposal methods. Refer to Section 13. Do not eat, drink, smoke, or use personal products when handling chemical substances.

Conditions for safe storage, including any incompatibilities:

Store in a cool location. Keep away from food and beverages. Protect from freezing and physical damage. Provide ventilation for containers. Keep container tightly sealed. Store away from incompatible materials.

SECTION 8: Exposure controls/personal protection

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 4 of 7

Sulfuric Acid, 3M

Control Parameters: 7664-93-9, Sulfuric Acid, ACS, OSHA PEL: 1mg/m3

7664-93-9, Sulfuric Acid, ACS, ACGIH TLV: 1 mg/m3

Appropriate Engineering controls: Emergency eye wash fountains and safety showers should be available in

the immediate vicinity of use or handling. Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapor and mists below the applicable workplace exposure limits (Occupational

Exposure Limits-OELs) indicated above.

Respiratory protection: Not required under normal conditions of use. Where risk assessment

shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. When necessary use NIOSH approved

breathing equipment.

Protection of skin: Select glove material impermeable and resistant to the substance. Select

glove material based on rates of diffusion and degradation. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Use proper glove removal technique without touching outer surface. Avoid skin contact with used gloves. Wear

protective clothing.

Eye protection: Wear equipment for eye protection tested and approved under

appropriate government standards such as NIOSH (US) or EN 166(EU). Safety glasses or goggles are appropriate eye protection.

General hygienic measures: Perform routine housekeeping. Wash hands before breaks and at the end

of work. Avoid contact with skin, eyes, and clothing. Before wearing wash

contaminated clothing.

SECTION 9: Physical and chemical properties

Appearance (physical state,color):	Clear, colorless liquid.	Explosion limit lower: Explosion limit upper:	Not Determined Not Determined
Odor:	Odorless	Vapor pressure:	<0.00120mmHg
Odor threshold:	Not Determined	Vapor density:	Not Determined
pH-value:	< 0.03	Relative density:	Not Determined
Melting/Freezing point:	11C	Solubilities:	Miscible
Boiling point/Boiling range:	105 - 325C	Partition coefficient (n- octanol/water):	Not Determined
Flash point (closed cup):	Not Determined	Auto/Self-ignition temperature:	Not Determined
Evaporation rate:	Not Determined	Decomposition temperature:	Not Determined
Flammability (solid,gaseous):	Not Determined	Viscosity:	a. Kinematic:Not Determined b. Dynamic: Not Determined
Density : Not Determined			

SECTION 10 : Stability and reactivity

Reactivity:Nonreactive under normal conditions. **Chemical stability:**Stable under normal conditions.

Possible hazardous reactions: None under normal processing.

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 5 of 7

Sulfuric Acid, 3M

Conditions to avoid:Incompatible materials.

Incompatible materials:Organics. Metals. Chlorates. Alkalines. Carbides. Fulminates. Reducing agents. Nitrates. Acetic acid. Oxidizing agents

Hazardous decomposition products: Oxides of sulfur.

SECTION 11 : Toxicological information

Acute Toxicity:	Acute Toxicity:					
Inhalation:	510 mg/m3 2 h	Inhalation LC50 Rat				
Oral:	2140 mg/kg	Oral LD50 Rat				
Chronic Toxicity	r: No additional information.					
Corrosion Irritation: No additional information.						
Sensitization:		No additional information.				
Single Target Organ (STOT):		No additional information.				
Numerical Measures:		No additional information.				
Carcinogenicity:		No additional information.				
Mutagenicity:		No additional information.				
Reproductive To	oxicity:	No additional information.				

SECTION 12: Ecological information

Ecotoxicity

Freshwater Fish: 96 Hr LC50 Brachydanio rerio: >500 mg/L [static]

Fish: LC50 - Gambusia affinis (Mosquito fish) - 42 mg/l - 96 h

Invertebrates: EC50 - Daphnia magna (Water flea) - 29 mg/l - 24 h

Persistence and degradability: Bioaccumulative potential:

Mobility in soil:

Other adverse effects:

SECTION 13: Disposal considerations

Waste disposal recommendations:

Contact a licensed professional waste disposal service to dispose of this material. Dispose of empty containers as unused product. It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11). Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations. Ensure complete and accurate classification.

SECTION 14: Transport information

UN-Number

1830

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 6 of 7

Sulfuric Acid, 3M

UN proper shipping name

Sulfuric Acid Solution

Transport hazard class(es)

Class:

8 Corrosive substances

Packing group: II

Environmental hazard:

Transport in bulk:

Special precautions for user:

SECTION 15: Regulatory information

United States (USA)

SARA Section 311/312 (Specific toxic chemical listings):

Acute, Chronic

SARA Section 313 (Specific toxic chemical listings):

7664-93-9 Sulfuric Acid

RCRA (hazardous waste code):

None of the ingredients is listed

TSCA (Toxic Substances Control Act):

All ingredients are listed.

CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

7664-93-9 Sulfuric Acid 1000 lbs

Proposition 65 (California):

Chemicals known to cause cancer:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

Chemicals known to cause developmental toxicity:

None of the ingredients is listed

Canada

Canadian Domestic Substances List (DSL):

All ingredients are listed.

Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

Canadian NPRI Ingredient Disclosure list (limit 1%):

None of the ingredients is listed

SECTION 16: Other information

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 7 of 7

Sulfuric Acid, 3M

SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user. The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment. The information contained herein is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material. It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

GHS Full Text Phrases:

Abbreviations and acronyms:

IMDG: International Maritime Code for Dangerous Goods PNEC: Predicted No-Effect Concentration (REACH)

CFR: Code of Federal Regulations (USA)

SARA: Superfund Amendments and Reauthorization Act (USA)

RCRA: Resource Conservation and Recovery Act (USA)

TSCA: Toxic Substances Control Act (USA)

NPRI: National Pollutant Release Inventory (Canada)

DOT: US Department of Transportation IATA: International Air Transport Association

GHS: Globally Harmonized System of Classification and Labelling of Chemicals

ACGIH: American Conference of Governmental Industrial Hygienists

CAS: Chemical Abstracts Service (division of the American Chemical Society)

NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA)

WHMIS: Workplace Hazardous Materials Information System (Canada)

DNEL: Derived No-Effect Level (REACH)

Effective date: 02.15.2015 **Last updated**: 03.19.2015

Appendix B

Remediation General Permit Notice of Intent – 200 gpm

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: Multiple addresses (See NOI Letter)				
West Roxbury to Needham Reliability Project - Needham Section	Street:					
	City: Needham		State: MA	Zip:		
Site owner NSTAR Electric Company d/b/a Eversource Energy	Contact Person: Michael Zylich					
NOTAR Electric Company d/b/a Eversource Energy	Telephone: 781.441.3804	Email: mic	chael.zylich	@eversource.com		
	Mailing address: 247 Station Drive, SE270					
	Street:					
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private Other; if so, specify: Utility on Public Right of Way	City: Westwood		State: MA	Zip: 02090		
3. Site operator, if different than owner	Contact Person:					
Operator to be selected. NSTAR Electric Company d/b/a Eversource Energy will retain coverage as a co-permitee	Telephone:	Email:				
until the Operator is selected.	Mailing address:					
	Street:					
	City:		State:	Zip:		
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):			
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	■ MA Chapter 21e; list RTN(s): RTN to be provided NH Groundwater Management Permit or Groundwater Release Detection Permit:			:		

В.	Receiving	water	infor	mation:

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Clas	sification of receiving water(s):
Alder Brook	MA72-22	В	
Receiving water is (check any that apply): \square O	utstanding Resource Water □ Ocean Sanctuary □ territorial sea	□ Wild and Sceni	c River
2. Has the operator attached a location map in a	ccordance with the instructions in B, above? (check one): ■ Yes	. □ No	
Are sensitive receptors present near the site? (c If yes, specify:	heck one): □ Yes ■ No		
pollutants indicated. Also, indicate if a final TM	he State's Integrated List of Waters (i.e., CWA Section 303(d)). IDL is available for any of the indicated pollutants. For more infected Table 1 for impairment pollutants and completed TMDLs		
	(10) of the receiving water determined in accordance with the instand Appendix VI for sites located in New Hampshire.	tructions in	0.236 cfs
	calculation of water quality-based effluent limitations (WQBELs for sites in Massachusetts and Appendix VI for sites in New Ha		1.53
6. Has the operator received confirmation from If yes, indicate date confirmation received:	the appropriate State for the 7Q10and dilution factor indicated?	(check one): ■ Ye	es □ No
7. Has the operator attached a summary of rece	iving water sampling results as required in Part 4.2 of the RGP in	accordance with	the instruction in Appendix VIII?
(check one): ■ Yes □ No			
C. Source water information:			
1. Source water(s) is (check any that apply):			

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: SVOCs, PAHs, lead and copper	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
See Appendix F of NOI package.	42.268706 degrees N 71.220550 degrees W
Discharges enter the receiving water(s) via (check any that apply): □ Direct dis	scharge to the receiving water ■ Indirect discharge, if so, specify:
Town of Needham storm drains	
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	rer system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission: Prior to excavation, the Operator will obtain street of	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for opening permits from the Town of Needham
Has the operator attached a summary of any additional requirements the owner	
Provide the expected start and end dates of discharge(s) (month/year): June 2	018 to June 2019
Indicate if the discharge is expected to occur over a duration of: ■ less than 1:	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)
	a. If Activity Categ	ory I or II: (check all that apply)
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organic □ F. Fuels Parameters 	mpounds Organic Compounds c Compounds
☐ II – Non-Petroleum-Related Site Remediation ■ III – Contaminated Site Dewatering	■ G. Sites with Known	T, V, VI, VII or VIII: (check either G or H) ☐ H. Sites with Unknown Contamination
 □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)	and the state of t
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply

4. Influent and Effluent Characteristics

	Known	or or # of eved believed samples		755		In	Influent		Effluent Limitations	
Parameter	or believed absent		Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL		
A. Inorganics										
Ammonia		~	5	350.1	100	180	145	Report mg/L		
Chloride		V	5	300.0	50,000	482,000	165900	Report μg/l		
Total Residual Chlorine	~		5	4500CL D	20.0	<20.0	0	0.2 mg/L	17	
Total Suspended Solids		~	5	2540D	5,000 and	832,000	334000	30 mg/L		
Antimony	V		5	200.7	10.0	<10.0	0	206 μg/L		
Arsenic	~		5	3113B	5.0	5.3	5.3	104 μg/L		
Cadmium	~		5	3113B	0.25	< 0.25	0	10.2 μg/L		
Chromium III	~		5	200.7	10.0	10.1	10.1	323 μg/L		
Chromium VI	~		5	3500	10.0	<10.0	0	323 μg/L		
Copper		V	5	200.7	4.0	29.6	20.1	242 μg/L	14.4	
Iron		~	5	200.7	20.0	18300	6117.7	5,000 μg/L	1413	
Lead	~		5	3113B	2.0	15.8	10.55	160 μg/L	5.55	
Mercury	V		5	245.1	0.20	< 0.20	0	0.739 μg/L		
Nickel	V		5	200.7	10.0	<10.0	0	1,450 μg/L		
Selenium	~		5	3113B	4.0	<4.0	0	235.8 μg/L		
Silver	~		5	200.7	1.0 and 2.0	<2.0	0	35.1 μg/L		
Zinc		~	5	200.7	10.0	45.8	30	420 μg/L		
Cyanide	~		5	4500LL	5.00	<5.0	0	178 mg/L		
B. Non-Halogenated VOC	s									
Total BTEX		~	5	524.2		15	15	100 μg/L		
Benzene	V		5	524.2	0.5	< 0.5	0	5.0 μg/L		
1,4 Dioxane	~		5	8270D	0.250	< 0.250	0	200 μg/L		
Acetone	~		5	524.2	5.0	<5.0	0	7.97 mg/L		
Phenol		V	5	420.1	100	105	105	1,080 μg/L		

	Known	Known	_		Influent		Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		5	524.2	0.3	<0.3	0	4.4 μg/L	
1,2 Dichlorobenzene	~		5	524.2	0.5	< 0.5	0	600 μg/L	
1,3 Dichlorobenzene	~		5	524.2	0.5	<0.5	0	320 μg/L	
1,4 Dichlorobenzene	~		5	524.2	0.5	<0.5	0	5.0 μg/L	
Total dichlorobenzene	~		5	524.2	0.5	<0.5	0	763 μg/L in NH	
1,1 Dichloroethane	~		5	524.2	0.5	< 0.5	0	70 μg/L	
1,2 Dichloroethane	~		5	524.2	0.5	< 0.5	0	5.0 μg/L	
1,1 Dichloroethylene	~		5	524.2	0.5	< 0.5	0	3.2 μg/L	
Ethylene Dibromide	~		5	504.1	0.015	< 0.015	0	0.05 μg/L	
Methylene Chloride	~		5	524.2	0.5	<0.5	0	4.6 μg/L	
1,1,1 Trichloroethane	~		5	524.2	0.5	<0.5	0	200 μg/L	
1,1,2 Trichloroethane	~		5	524.2	0.5	<0.5	0	5.0 μg/L	
Trichloroethylene	~		5	524.2	0.5	<0.5	0	5.0 μg/L	
Tetrachloroethylene	~		5	524.2	0.5	<0.5	0	5.0 μg/L	
cis-1,2 Dichloroethylene	~		5	524.2	0.5	< 0.5	0	70 μg/L	
Vinyl Chloride	~		5	524.2	0.2	<0.2	0	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates		~	5	625 SIM	1.87, 2.34,	<2.36	0	190 μg/L	
Diethylhexyl phthalate	~		5	625 SIM	1.87	<1.87	0	101 μg/L	
Total Group I PAHs		~	5	625 SIM	0.05	3.11	1.74	1.0 μg/L	
Benzo(a)anthracene		~	5	625 SIM	0.05	0.52	0.32		0.0058
Benzo(a)pyrene		~	5	625 SIM	0.05	0.59	0.31		0.0058
Benzo(b)fluoranthene		~	5	615 SIM	0.05	0.60	0.34		0.0058
Benzo(k)fluoranthene		~	5	625 SIM	0.05	0.20	0.17	As Total PAHs	0.0058
Chrysene		~	5	625 SIM	0.05	0.65	0.38		0.0058
Dibenzo(a,h)anthracene		~	5	625 SIM	0.05	0.12	0.09		0.0058
Indeno(1,2,3-cd)pyrene		~	5	625 SIM	0.05	0.43	0.22	1	0.0058

	Known	Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		~	5	625 SIM	0.19	120	43.77	100 μg/L	
Naphthalene		~	5	625 SIM	0.19 and	92.9	46.56	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	V		5	608	0.09	<0.09	0	0.000064 μg/L	
Pentachlorophenol	V		5	625 SIM	0.84	< 0.84	0	1.0 μg/L	
E Essala Dansana Assar									
F. Fuels Parameters Total Petroleum Hydrocarbons	~		5	1664A	4.67, 6.41,	<4.72	0	5.0 mg/L	
Ethanol	~		5	ASTM	10	<10	0	Report mg/L	
Methyl-tert-Butyl Ether	~		5	524.2	0.5	<0.5	0	70 μg/L	
tert-Butyl Alcohol	~		5	524.2	25.0	<25.0	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		5	524.2	1.0	<1.0	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu Naphthalene	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutar 524.2	o.5 and 5.0	if so, specify:	116.45		
Hardness		~	5	3113B	165 and 999	125,000	72,820		
pH		~	6.5-8.3	Field	0 to 12	5.61	6.00		
_									
	1	1	1	1	1	1	1	1	

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:	
	ļ
Granulated activated carbon and other treatments as need to meet effluent limits.	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Prior to discharge, dewatering effluent will be routed through bag filters and other treatment as need to meet effluent requirements. See attached Figure 3.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify: Granulated activated carbon and other treatments as need to meet effluent limits.	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component: Flow meter	200
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	200
Provide the proposed maximum effluent flow in gpm.	200
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Chemical and additive miorimation
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
$\ \Box \ Algaecides/biocides \ \Box \ Antifoams \ \Box \ Coagulants \ \Box \ Corrosion/scale \ inhibitors \ \Box \ Disinfectants \ \Box \ Flocculants \ \Box \ Neutralizing \ agents \ \Box \ Oxygen \ \Box$
scavengers ■ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine ■ Other; if so, specify: pH conditions may be added to the treatment system if necessary to meet effluent limits
2. Provide the following information for each chemical/additive, using attachments, if necessary:
 a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): \square Yes \square No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supthat qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the persons directly responsible for gathering the information, the information submitted is, to the best of my known no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware to information, including the possibility of fine and imprisonment for knowing violations.	he person or p wledge and be	ersons who manage t lief, true, accurate, a	he system, or those nd complete. I have
A BMPP meeting the requirements of this general permit wil BMPP certification statement: upon initiation of discharge.	ll be imple	mented	
Notification provided to the appropriate State, including a copy of this NOI, if required.		Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if re	equested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for sit discharges, including a copy of this NOI, if requested.	te	Check one: Yes ■	No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for s discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission		Check one: Yes ■	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional disc	charge		
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \blacksquare \ RGP \ \Box \ DGP \ \Box \ CGP \ \Box \ MSGP \ \ \Box \ Individual \ NPD$	DES permit	Check one: Yes ■	No □ NA □
☐ Other; if so, specify:			
Signature:	Date	5/2/18	

Print Name and Title: Michael Zylich, Sr. Environmental Scientist

Table 1. Water Quality Assessment Status for Reporting Year 2014 Alder Brook

Designated Use	Designated Use Group	Status
Aesthetic	Aesthetic Value	Not Assessed
Fish Consumption	Aquatic Life Harvesting	Not Assessed
Fish, Other Aquatic Life And Wildlife	Fish, Shellfish, And Wildlife Protection And Propagation	Impaired
Primary Contact Recreation	Recreation	Not Assessed
Secondary Contact Recreation	Recreation	Not Assessed

Causes of Impairment for Reporting Year 2014

Cause of Impairment	Cause of Impairment Group	Designated Use(s)	State TMDL Development Status
Aquatic Macroinvertebrate Bioassessments	Cause Unknown - Impaired Biota	Fish, Other Aquatic Life And Wildlife	TMDL needed
Nutrient/Eutrophication Biological Indicators	Nutrients	Fish, Other Aquatic Life And Wildlife	TMDL completed

TMDLs That Apply to this waterbody

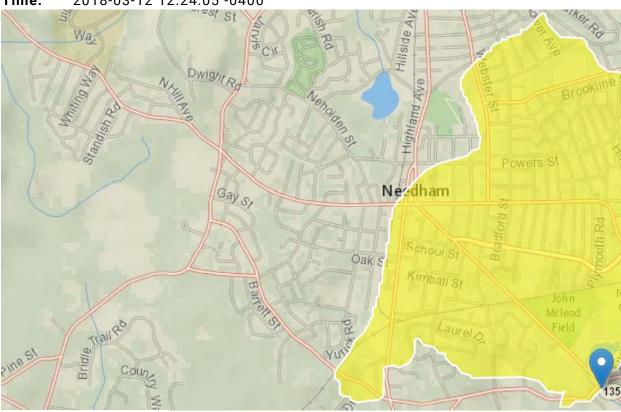
TMDL Document Name	TMDL Date	TMDL Pollutant Description	TMDL Pollutant Source Type	Cause(s) of Impairment Addressed
				Nutrient/Eutrophication Biological
				Indicators; Nutrients; Aquatic
Upper/Middle Charles River	Jun-10-2011	Phosphorus, Total	Point/Nonpoint Source	Macroinvertebrate Bioassessments

General Notes:

1. Information obtained from EPA website: https://ofmpub.epa.gov/waters10/attains_index.home on April 17, 2018

StreamStats Page 1 of 4

StreamStats Page 2 of 4


StreamStats Report

Region ID: MA

Workspace ID: MA20180312162351012000

Clicked Point (Latitude, Longitude): 42.26845, -71.22016

Time: 2018-03-12 12:24:05 -0400

The South Carolina StreamStats application is testing LiDAR-derived data and streams for delineation. This is a beta version and QA/QC is incomplete. It may calculate basin characteristics and flow statistics incorrectly. Please verify the drainage areas and flow stats carefully. Use at your own risk

Basin Characteristics

Parameter Code	Parameter Description	Value U	nit
DRNAREA	Area that drains to a point on a stream	1.72 so	quare miles

StreamStats Page 3 of 4

Parameter Code	Parameter Description	Value	Unit
DRFTPERSTR	Area of stratified drift per unit of stream length	1.04	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless
BSLDEM250	Mean basin slope computed from 1:250K DEM	1.766	percent
BSLDEM10M	Mean basin slope computed from 10 m DEM	4.292	percent
ELEV	Mean Basin Elevation	171	feet
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	1.68	percent
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	64.08	percent
FOREST	Percentage of area covered by forest	7.28	percent

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.72	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	1.766	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	1.04	square mile pe mile	er O	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1
Low-Flow Statistic	cs Flow Report [Statewide Low Flow W	RIR00 4135]			
	erval-Lower, Plu: Prediction r (other see report)	Interval-U	Jpper, SEp: Standa	ard Error of F	rediction
Statistic	Value	Unit	PII F	Plu SE	SEp

StreamStats Page 4 of 4

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.417	ft^3/s	0.0663	2.53	49.5	49.5
7 Day 10 Year Low Flow	0.236	ft^3/s	0.0311	1.67	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Dilution Factor Calculation

Approach

The discharge dilution factor was calculated in accordance with Appendix V of the Remediation General Permit (RGP) application.

Formula **Example**

$$DF = (Qd + Qs)/Qd$$

DF = dilution factor

Qd = flow of discharge into receiving water body

Qs = estimated flow of receiving water body

Assumptions

Qs = 7Q10 in millions of gallons per day (MGD)

$$7Q10 = 0.236$$
 cubic feet per second (cfs)¹ $Qs = 0.1525$ MGD

Qd = flow of discharge into receiving water body

Qd = 200 gallons per minute (gpm) = 0.288 MGD²

Calculation

$$DF = (Qd + Qs)/Qd$$

$$DF = (0.288 + 0.1525)/(0.288)$$

$$DF = 1.53$$

Footnotes:

1. 7Q10 obtained from United States Geoglogic Survey (USGS) StreamStats Report dated March 12, 2018.

MWS/

 $B: Working \c VERSOURCE \c 1610515\c Epsilon\c WRNRP \c 11_NPDES\c RGP \c NOI\c Alder\c Brook \c AppA_NOI\c AppA2\c NOI\c dilution\c factor\c calculation. doc$

Sabulis, Mike

From: Vakalopoulos, Catherine (DEP) <Catherine.Vakalopoulos@MassMail.State.MA.US>

Sent: Friday, April 20, 2018 9:16 AM

To: Sabulis, Mike

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Mike,

Thanks for answering my same question for both sites. Have a nice weekend.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Sabulis, Mike [mailto:MSabulis@geiconsultants.com]

Sent: Thursday, April 19, 2018 8:29 PM **To:** Vakalopoulos, Catherine (DEP)

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Thanks again Cathy. This is for a different segment of the same utility project. Similar to Valley Rd the 200 gpm is to support a higher dewatering in the event a large rain event occurs and a higher dewatering rate is necessary to pump out the trench.

Mike

Michael Sabulis

Senior Project Manager GEI Consultants, Inc.

T: 781.721.4114 | M: 508.633.9544

From: Vakalopoulos, Catherine (DEP) [mailto:Catherine.Vakalopoulos@MassMail.State.MA.US]

Sent: Thursday, April 19, 2018 7:05 PM

To: Sabulis, Mike < MSabulis@geiconsultants.com>

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Mike,

The calculations in your table are correct. I have the same question I had with the other location – did you add the 200 GPM in case a higher volume of dewatering is needed? Alder Brook has a segment ID of MA72-22, is Class B, is not an ORW, and has one TMDL for nutrients.

Please let me know if you have any further questions.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

From: Sabulis, Mike [mailto:MSabulis@geiconsultants.com]

Sent: Wednesday, April 18, 2018 11:48 AM

To: Vakalopoulos, Catherine (DEP)

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Cathy,

Thanks for the correction and info, we have recalculated the Dilution Factors for the following two maximum flow rates and plan to submit NOIs for each:

Maximum Discharge Rate		Alder Brook 7Q10	Dilution Factor	
50 GPM	0.072 MGD	0.153 MGD	3.12	
200 GPM	0.288 MGD	0.153 MGD	1.53	

Could you confirm these are correct?

Thanks,

Mike

Michael Sabulis

Senior Project Manager GEI Consultants, Inc.

T: 781.721.4114 | M: 508.633.9544

From: Vakalopoulos, Catherine (DEP) [mailto:Catherine.Vakalopoulos@MassMail.State.MA.US]

Sent: Thursday, April 5, 2018 2:51 PM

To: Sabulis, Mike < MSabulis@geiconsultants.com >

Subject: RE: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Mike,

I just want to check that the 50 gpm you provided is the design flow which is the maximum flow through the treatment system and not an average flow or what you think will be flowing through the system. We use the design flow to calculate the dilution factor.

If 50 gpm is the design flow, it doesn't matter how many hours a day you operate the system. We are interested in seeing the dilution at the time of discharge.

Using 50 gpm = 0.072 MGD and the 7Q10 is 0.236 cfs = 0.153 MGD (which is correct), DF = (0.072 + 0.153)/0.072 = 3.125

Please let me know about the design flow.

Thanks, Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

From: Sabulis, Mike [mailto:MSabulis@geiconsultants.com]

Sent: Tuesday, April 03, 2018 4:53 PM **To:** Vakalopoulos, Catherine (DEP)

Subject: NPDES RGP 7Q10 & Dilution Factor- Alder Brook Needham, MA

Hi Catherine,

I writing to confirm a 7Q10 value and Dilution Factor for Alder Brook located in Needham, Massachusetts. Based on the output from StreamStats (see attached), we should be using a 7Q10 of 0.236 ft³/sec, could you confirm this is correct? Assuming a discharge rate of 50 gpm for a 12 hr. period, we have calculated a following Dilution Factor of 5.24. Could you confirm this is correct as well?

Let me know if you have any questions or if you'd like to discuss.

Thanks,

Mike

Michael Sabulis Senior Project Manager

GEI Consultants, Inc. 400 Unicorn Park Drive | Woburn, MA 01801

T: 781.721.4114 | **M:** 508.633.9544

www.geiconsultants.com | vCard | LinkedIn | Twitter | Facebook

Enter number values in green boxes below

Enter values in the units specified

 $\begin{array}{c|c} & & & \\ \hline \textbf{0.1525} & \textbf{Q}_{R} = \text{Enter upstream flow in } \textbf{MGD} \\ \hline \textbf{0.288} & \textbf{Q}_{P} = \text{Enter discharge flow in } \textbf{MGD} \\ \hline \textbf{0} & \text{Downstream 7Q10} \\ \end{array}$

Enter a dilution factor, if other than zero

1.53

Enter values in the units specified

125 C_d = Enter influent hardness in mg/L CaCO₃ 84.1 C_s = Enter receiving water hardness in mg/L CaCO₃

Enter receiving water concentrations in the units specified

pH in Standard Units 5.83 Temperature in °C Ammonia in mg/L 0 Hardness in mg/L CaCO₃ 84.1 0.4 Salinity in ppt Antimony in µg/L 0 Arsenic in µg/L 0 Cadmium in µg/L 0.3 Chromium III in µg/L Chromium VI in µg/L 0 Copper in µg/L Iron in µg/L Lead in µg/L Mercury in µg/L 0 0 Nickel in µg/L Selenium in µg/L Silver in ug/L 24.2 Zinc in μg/L

Enter influent concentrations in the units specified

TRC in µg/L 0 Ammonia in mg/L 0.18 Antimony in µg/L Arsenic in µg/L Cadmium in µg/L 0 10.1 Chromium III in µg/L Chromium VI in µg/L 29.6 Copper in µg/L 18300 Iron in μg/L Lead in µg/L 15.8 Mercury in µg/L Nickel in ug/L Selenium in µg/L 0 Silver in µg/L 0 Zinc in µg/L 45.8 Cyanide in µg/L 105 Phenol in µg/L 0 Carbon Tetrachloride in µg/L Tetrachloroethylene in µg/L Total Phthalates in µg/L Diethylhexylphthalate in µg/L 0 0.52 Benzo(a)anthracene in µg/L Benzo(a)pyrene in µg/L Benzo(b)fluoranthene in µg/L 0.2 Benzo(k)fluoranthene in µg/L 0.65 Chrysene in µg/L Dibenzo(a,h)anthracene in µg/L 0.12 Indeno(1,2,3-cd)pyrene in µg/L Methyl-tert butyl ether in µg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Dilution Factor	1.5

A. Inorganics Ammonia Chloride Total Residual Chlorine Total Suspended Solids Antimony Arsenic Cadmium Chromium III	Report Report 0.2 30 206 104 10.2	mg/L	WQBEL applies i 17	if bolded μg/L	Compliance Level applies if shown	
Ammonia Chloride Total Residual Chlorine Total Suspended Solids Antimony Arsenic Cadmium	Report 0.2 30 206 104	μg/L mg/L mg/L		цφ/Ι.		
Chloride Total Residual Chlorine Total Suspended Solids Antimony Arsenic Cadmium	Report 0.2 30 206 104	μg/L mg/L mg/L		цу/Г.		
Total Residual Chlorine Total Suspended Solids Antimony Arsenic Cadmium	0.2 30 206 104	mg/L mg/L		цу/Г.		
Total Suspended Solids Antimony Arsenic Cadmium	30 206 104	mg/L	17		50	по/Т
Antimony Arsenic Cadmium	206 104	-		ro -	30	μg/L
Arsenic Cadmium	104		979	//		
Cadmium			15	μg/L		
	10.2	μg/L	0.4467	μg/L		
Chromium III		μg/L		μg/L		
CI : VII	323	μg/L	143.4	μg/L		
Chromium VI	323	μg/L	17.5	μg/L		
Copper	242	μg/L	14.4	μg/L		
Iron	5000	μg/L	1413	μg/L		
Lead	160	μg/L	5.55	μg/L		
Mercury	0.739	μg/L	1.39	μg/L		
Nickel	1450	μg/L	87.0	μg/L		
Selenium	235.8	$\mu g/L$	7.6	$\mu g/L$		
Silver	35.1	$\mu g \! / \! L$	6.9	μg/L		
Zinc	420	$\mu g/L$	187.1	μg/L		
Cyanide	178	mg/L	8.0	μg/L		$\mu g/L$
B. Non-Halogenated VOCs						
Total BTEX	100	μg/L				
Benzene 1,4 Dioxane	5.0 200	μg/L μg/L				
Acetone	7970	μg/L μg/L				
Phenol	1,080	μg/L	459	μg/L		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	μg/L	2.4	μg/L		
1,2 Dichlorobenzene 1,3 Dichlorobenzene	600 320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	$\mu g \! / \! L$				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide Methylene Chloride	0.05 4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	$\mu g \! / \! L$	5.0	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	$\mu g/L$		$\mu g/L$		
Diethylhexyl phthalate	101	μg/L	3.4	μg/L		
Total Group I Polycyclic Aromatic Hydrocarbons	1.0	/T				
Benzo(a)anthracene	1.0 1.0	μg/L μg/L	0.0058	μg/L	0.1	μg/L
Benzo(a)pyrene	1.0	μg/L μg/L	0.0058	μg/L μg/L	0.1	μg/L μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0058	μg/L	0.1	μg/L
Benzo(k)fluoranthene	1.0	$\mu g/L$	0.0058	μg/L	0.1	$\mu g/L$
Chrysene	1.0	μg/L	0.0058	μg/L	0.1	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0058	μg/L	0.1	μg/L
Indeno(1,2,3-cd)pyrene Total Group II Polycyclic	1.0	μg/L	0.0058	μg/L	0.1	μg/L
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs		-				
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	$\mu g/L$				
F. Fuels Parameters		_				
Total Petroleum Hydrocarbons	5.0 Papart	mg/L				
Ethanol Methyl-tert-Butyl Ether	Report 70	mg/L μg/L	31	μg/L		
tert-Butyl Alcohol	120	μg/L μg/L		MB/L		
tert-Amyl Methyl Ether	90	μg/L				

sc200™ UNIVERSAL CONTROLLER

Applications

- Drinking Water
- Wastewater
- Industrial Water
- Power

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 different parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

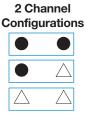
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader offers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison



	Previous I	Models		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transferStandardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART 7.2	Unprecedented combination of sensor breadth and digital communication options

Choose from Hach's	Broad Range of Digital and Analog Sensors	
Parameter	Sensor	Digital or Analog
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•
Chlorine Dioxide	9185 sc	
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	\triangle
Dissolved Oxygen	LDO® Model 2, 5740 sc	
Dissolved Oxygen	5500	\triangle
Flow	U53, F53 Sensors	\triangle
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•
Oil in Water	FP360 sc	
Organics	UVAS sc	
Ozone	9187 sc	•
pH/ORP	pHD	•
pH/ORP	pHD, pH Combination, LCP	\triangle
Phosphate	PHOSPHAX™ sc	
Sludge Level	SONATAX™ sc	
Suspended Solids	SOLITAX™ sc, TSS sc	
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	\triangle
Ultra Pure pH/ORP	8362	\triangle

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

Specifications*

Dimensions (H x W x

D)

(144 mm x 144 mm x 181 mm)

Display

Graphic dot matrix LCD with LED backlighting, transreflective

Display Size

1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution Weight

240 x 160 pixels 3.75 lbs. (1.70 kg)

5.7 in x 5.7 in x 7.1 in

Power Requirements

(Voltage)

100 - 240 V AC, 24 V DC

Power Requirements (Hz)

Operating **Temperature Range**

Analog Outputs

50/60 Hz

-20 to 60 °C, 0 to 95% RH non-condensing

Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, \pm 0.5% of FS over -20 °C to 60 °C

Operational Mode: measurement

or calculated value

Analog Output Functional Mode Linear, Logarithmic, Bi-linear, PID

Security Levels Mounting Configurations

2 password-protected levels Wall, pole, and panel mounting

Enclosure Rating Conduit Openings

1/2 in NPT Conduit

Relay: Operational

Mode

NEMA 4X/IP66

Primary or secondary

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT Relays

(Form C) contacts, 1200 W, 5 A

MODBUS RS232/RS485, Communication PROFIBUS DPV1, or HART 7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1 (Industrial limits)

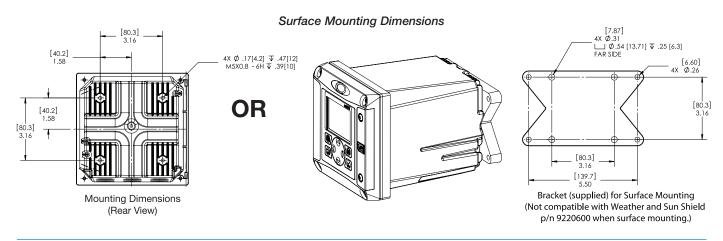
Safety

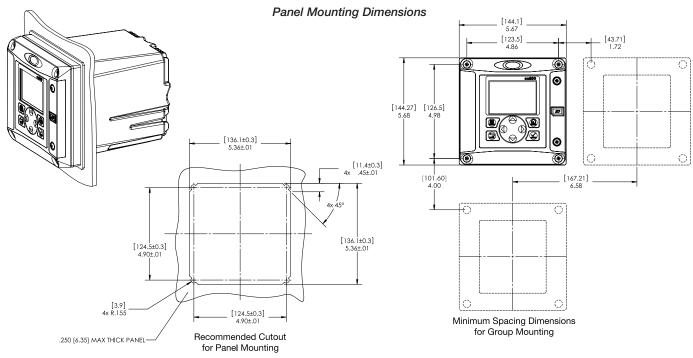
cETLus safety mark for:

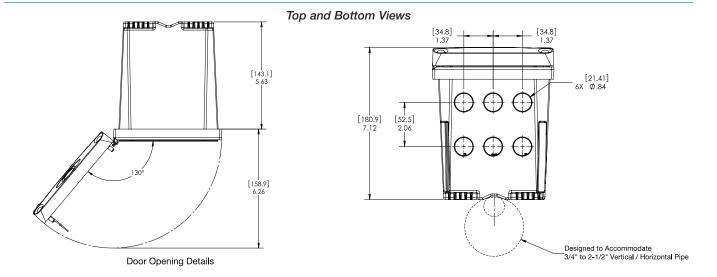
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No.

61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.

sc200™ Universal Controller 5

Dimensions

Ordering Information

sc200 for Hach Digital and Analog Sensors

LXV404.99.00552sc200 controller, 2 channels, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00202sc200 controller, 1 channel, Conductivity

LXV404.99.01552 sc200 controller, 2 channels, digital, Modbus RS232/RS485

LXV404.99.00112 sc200 controller, 2 channel, pH/DO

Note: Other Sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS, Profibus DPV1, and HART) are available. Please contact Hach Technical Support or your Hach representative.

sc200 for Ultrapure Sensors

9500.99.00602 sc200 controller, 1 channel, ultrapure conductivity

9500.99.00702 sc200 controller, 1 channel, ultrapure pH

9500.99.00662 sc200 controller, 2 channel, ultrapure conductivity

9500.99.00772 sc200 controller, 2 channel, ultrapure pH

Sensor and Communication Modules

9012900 Analog pH/ORP and DO module for GLI Sensors9013000 Analog Conductivity module for GLI Sensors

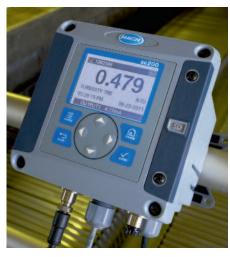
9012700 Flow module

9012800 4-20 mA Input Module

9525700 Analog pH/ORP Module for Polymetron Sensors9525800 Analog Conductivity Module for Polymetron Sensors

9013200 Modbus 232/485 Module
 9173900 Profibus DP Module
 9328100 HART Module

9334600 4-20 mA Output Module (Provides 3 additional mA Outputs)


Accessories

9220600 sc200 Weather and Sun Shield with UV Protection Screen

8809200 sc200 UV Protection Screen

9218200 SD card reader (USB) for connection to PC

9218100 4 GB SD card

HACH COMPANY World Headquarters: Loveland, Colorado USA

 United States:
 800-227-4224 tel
 970-669-2932 fax
 orders@hach.com

 Outside United States:
 970-669-3050 tel
 970-461-3939 fax
 int@hach.com

hach.com

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 1 of 7

Sulfuric Acid, 3M

SECTION 1: Identification of the substance/mixture and of the supplier

Product name : Sulfuric Acid, 3M

Manufacturer/Supplier Trade name:

Manufacturer/Supplier Article number: \$25899

Recommended uses of the product and uses restrictions on use:

Manufacturer Details:

AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331

Supplier Details:

Fisher Science Education 15 Jet View Drive, Rochester, NY 14624

Emergency telephone number:

Fisher Science Education Emergency Telephone No.: 800-535-5053

SECTION 2: Hazards identification

Classification of the substance or mixture:

Corrosive to metals, category 1 skin corr./irrit. 1A Corrosive to metals. 1 Eye corr. 1

Signal word: Danger

Hazard statements:

May be corrosive to metals

Causes severe skin burns and eye damage

Causes serious eye damage

Precautionary statements:

If medical advice is needed, have product container or label at hand

Keep out of reach of children

Read label before use

Wear protective gloves/protective clothing/eye protection/face protection

Wash ... thoroughly after handling

Do not breathe dust/fume/gas/mist/vapours/spray

Keep only in original container

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

 $\hbox{IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do. } \\$

Continue rinsing

Immediately call a POISON CENTER or doctor/physician

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower Wash contaminated clothing before reuse

Effective date: 02.15.2015 Page 2 of 7

Sulfuric Acid, 3M

IF SWALLOWED: Rinse mouth, Do NOT induce vomiting Specific treatment (see ... on this label) Absorb spillage to prevent material damage Store locked up Dispose of contents/container to ...

Other Non-GHS Classification:

WHMIS

NFPA/HMIS

HMIS RATINGS (0-4)

SECTION 3: Composition/information on ingredients

Ingredients:		
CAS 7664-93-9	Sulfuric Acid, ACS	31.004 %
CAS 7732-18-5	Water	68.996 %
		Percentages are by weight

SECTION 4 : First aid measures

Description of first aid measures

After inhalation: Loosen clothing as necessary and position individual in a comfortable position. Move exposed to fresh air. Give artificial respiration if necessary. If breathing is difficult give oxygen. Get medical assistance if cough or other symptoms appear.

After skin contact: Rinse/flush exposed skin gently using soap and water for 15-20 minutes. Seek medical advice if discomfort or irritation persists.

After eye contact: Protect unexposed eye.Rinse/flush exposed eye(s) gently using water for 15-20 minutes.Remove contact lens(es) if able to do so during rinsing.Seek medical attention if irritation persists or if

After swallowing: Rinse mouth thoroughly. Do not induce vomiting. Seek medical attention if irritation, discomfort, or vomiting persists.

Most important symptoms and effects, both acute and delayed:

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 3 of 7

Sulfuric Acid, 3M

Irritation, Headache, Nausea, Shortness of breath.;

Indication of any immediate medical attention and special treatment needed:

If seeking medical attention provide SDS document to physician. Physician should treat symptomatically.

SECTION 5 : Firefighting measures

Extinguishing media

Suitable extinguishing agents: Use water, dry chemical, chemical foam, carbon dioxide, or alcohol-resistant foam

For safety reasons unsuitable extinguishing agents:

Special hazards arising from the substance or mixture:

Thermal decomposition can lead to release of irritating gases and vapors.

Advice for firefighters:

Protective equipment: Wear protective eyeware, gloves, and clothing. Refer to Section 8.Use NIOSH-approved respiratory protection/breathing apparatus.

Additional information (precautions): Avoid inhaling gases, fumes, dust, mist, vapor, and aerosols. Avoid contact with skin, eyes, and clothing.

SECTION 6: Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Ensure adequate ventilation. Ensure that air-handling systems are operational.

Environmental precautions:

Should not be released into environment. Prevent from reaching drains, sewer, or waterway.

Methods and material for containment and cleaning up:

Wear protective eyeware, gloves, and clothing. Refer to Section 8.Always obey local regulations. Containerize for disposal. Refer to Section 13.If necessary use trained response staff or contractor. Evacuate personnel to safe areas. Keep in suitable closed containers for disposal.

Reference to other sections:

SECTION 7: Handling and storage

Precautions for safe handling:

Avoid contact with skin, eyes, and clothing. Follow good hygiene procedures when handling chemical materials. Refer to Section 8. Follow proper disposal methods. Refer to Section 13. Do not eat, drink, smoke, or use personal products when handling chemical substances.

Conditions for safe storage, including any incompatibilities:

Store in a cool location. Keep away from food and beverages. Protect from freezing and physical damage. Provide ventilation for containers. Keep container tightly sealed. Store away from incompatible materials.

SECTION 8: Exposure controls/personal protection

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 4 of 7

Sulfuric Acid, 3M

Control Parameters: 7664-93-9, Sulfuric Acid, ACS, OSHA PEL: 1mg/m3

7664-93-9, Sulfuric Acid, ACS, ACGIH TLV: 1 mg/m3

Appropriate Engineering controls: Emergency eye wash fountains and safety showers should be available in

the immediate vicinity of use or handling. Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapor and mists below the applicable workplace exposure limits (Occupational

Exposure Limits-OELs) indicated above.

Respiratory protection: Not required under normal conditions of use. Where risk assessment

shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. When necessary use NIOSH approved

breathing equipment.

Protection of skin: Select glove material impermeable and resistant to the substance. Select

glove material based on rates of diffusion and degradation. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Use proper glove removal technique without touching outer surface. Avoid skin contact with used gloves. Wear

protective clothing.

Eye protection: Wear equipment for eye protection tested and approved under

appropriate government standards such as NIOSH (US) or EN 166(EU). Safety glasses or goggles are appropriate eye protection.

General hygienic measures: Perform routine housekeeping. Wash hands before breaks and at the end

of work. Avoid contact with skin, eyes, and clothing. Before wearing wash

contaminated clothing.

SECTION 9: Physical and chemical properties

Appearance (physical state,color):	Clear, colorless liquid.	Explosion limit lower: Explosion limit upper:	Not Determined Not Determined
Odor:	Odorless	Vapor pressure:	<0.00120mmHg
Odor threshold:	Not Determined	Vapor density:	Not Determined
pH-value:	< 0.03	Relative density:	Not Determined
Melting/Freezing point:	11C	Solubilities:	Miscible
Boiling point/Boiling range:	105 - 325C	Partition coefficient (noctanol/water):	Not Determined
Flash point (closed cup):	Not Determined	Auto/Self-ignition temperature:	Not Determined
Evaporation rate:	Not Determined	Decomposition temperature:	Not Determined
Flammability (solid,gaseous):	Not Determined	Viscosity:	a. Kinematic:Not Determined b. Dynamic: Not Determined
Density : Not Determined			

SECTION 10 : Stability and reactivity

Reactivity:Nonreactive under normal conditions. **Chemical stability:**Stable under normal conditions.

Possible hazardous reactions: None under normal processing.

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 5 of 7

Sulfuric Acid, 3M

Conditions to avoid:Incompatible materials.

Incompatible materials:Organics. Metals. Chlorates. Alkalines. Carbides. Fulminates. Reducing agents. Nitrates. Acetic acid. Oxidizing agents

Hazardous decomposition products: Oxides of sulfur.

SECTION 11 : Toxicological information

Acute Toxicity:		
Inhalation:	510 mg/m3 2 h	Inhalation LC50 Rat
Oral:	2140 mg/kg	Oral LD50 Rat
Chronic Toxicity	r: No additional information.	
Corrosion Irritat	tion: No additional information.	
Sensitization:		No additional information.
Single Target O	rgan (STOT):	No additional information.
Numerical Meas	sures:	No additional information.
Carcinogenicity	:	No additional information.
Mutagenicity:		No additional information.
Reproductive To	oxicity:	No additional information.

SECTION 12: Ecological information

Ecotoxicity

Freshwater Fish: 96 Hr LC50 Brachydanio rerio: >500 mg/L [static]

Fish: LC50 - Gambusia affinis (Mosquito fish) - 42 mg/l - 96 h

Invertebrates: EC50 - Daphnia magna (Water flea) - 29 mg/l - 24 h

Persistence and degradability: Bioaccumulative potential:

Mobility in soil:

Other adverse effects:

SECTION 13: Disposal considerations

Waste disposal recommendations:

Contact a licensed professional waste disposal service to dispose of this material. Dispose of empty containers as unused product. It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11). Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations. Ensure complete and accurate classification.

SECTION 14: Transport information

UN-Number

1830

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 6 of 7

Sulfuric Acid, 3M

UN proper shipping name

Sulfuric Acid Solution

Transport hazard class(es)

Class:

8 Corrosive substances

Packing group: II

Environmental hazard:

Transport in bulk:

Special precautions for user:

SECTION 15: Regulatory information

United States (USA)

SARA Section 311/312 (Specific toxic chemical listings):

Acute, Chronic

SARA Section 313 (Specific toxic chemical listings):

7664-93-9 Sulfuric Acid

RCRA (hazardous waste code):

None of the ingredients is listed

TSCA (Toxic Substances Control Act):

All ingredients are listed.

CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

7664-93-9 Sulfuric Acid 1000 lbs

Proposition 65 (California):

Chemicals known to cause cancer:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

Chemicals known to cause developmental toxicity:

None of the ingredients is listed

Canada

Canadian Domestic Substances List (DSL):

All ingredients are listed.

Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

Canadian NPRI Ingredient Disclosure list (limit 1%):

None of the ingredients is listed

SECTION 16: Other information

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 02.15.2015 Page 7 of 7

Sulfuric Acid, 3M

SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user. The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment. The information contained herein is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material. It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

GHS Full Text Phrases:

Abbreviations and acronyms:

IMDG: International Maritime Code for Dangerous Goods PNEC: Predicted No-Effect Concentration (REACH)

CFR: Code of Federal Regulations (USA)

SARA: Superfund Amendments and Reauthorization Act (USA)

RCRA: Resource Conservation and Recovery Act (USA)

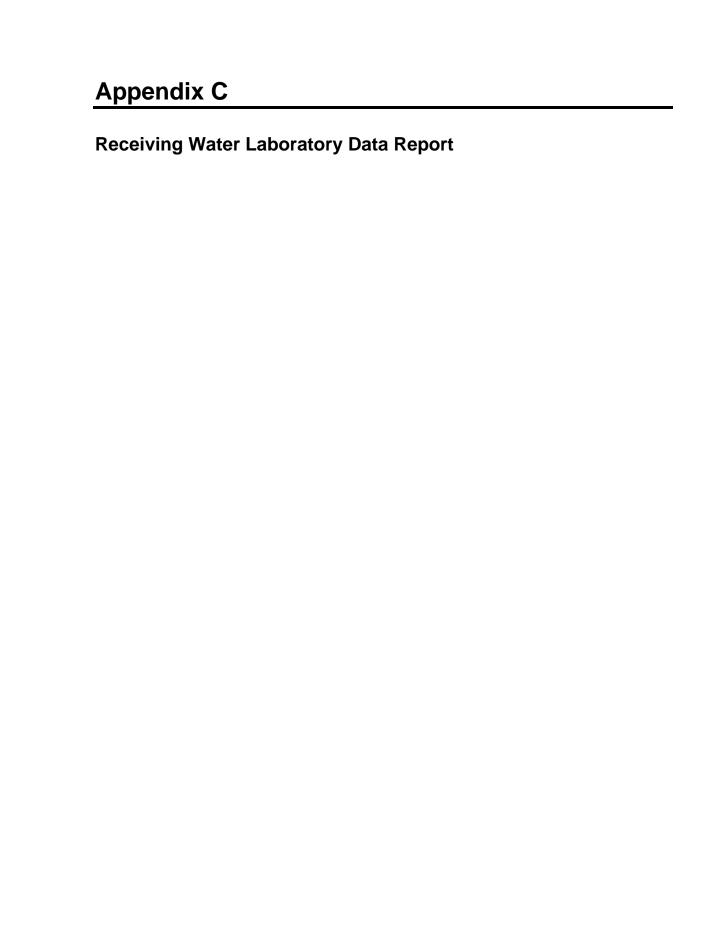
TSCA: Toxic Substances Control Act (USA)

NPRI: National Pollutant Release Inventory (Canada)

DOT: US Department of Transportation IATA: International Air Transport Association

GHS: Globally Harmonized System of Classification and Labelling of Chemicals

ACGIH: American Conference of Governmental Industrial Hygienists


CAS: Chemical Abstracts Service (division of the American Chemical Society)

NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA)

WHMIS: Workplace Hazardous Materials Information System (Canada)

DNEL: Derived No-Effect Level (REACH)

Effective date: 02.15.2015 **Last updated**: 03.19.2015

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Mike Sabulis GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Eversource WRNRP - RGP (1610515)

ESS Laboratory Work Order Number: 1803257

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:22 pm, Mar 19, 2018

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1803257

SAMPLE RECEIPT

The following samples were received on March 12, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 1803257-01

Sample Name 1610515-SW - Dedham Matrix Surface Water Analysis

200.7, 245.1, 2520B, 3113B, 350.1, 3500Cr B-2009,

9040

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1803257

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1803257

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP Client Sample ID: 1610515-SW - Dedham

Date Sampled: 03/12/18 11:15

Percent Solids: N/A

ESS Laboratory Work Order: 1803257 ESS Laboratory Sample ID: 1803257-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (5.0)		200.7		1	KJK	03/15/18 2:08	100	10	CC81432
Arsenic	ND (0.5)		3113B		1	KJK	03/16/18 23:49	100	10	CC81432
Cadmium	0.30 (0.08)		3113B		3	KJK	03/16/18 14:27	100	10	CC81432
Chromium	ND (2.0)		200.7		1	KJK	03/15/18 2:08	100	10	CC81432
Chromium III	ND (10.0)		200.7		1	JLK	03/15/18 2:08	1	1	[CALC]
Copper	2.3 (2.0)		200.7		1	KJK	03/15/18 2:08	100	10	CC81432
Hardness	84100 (82.4)		200.7		1	KJK	03/15/18 2:08	1	1	[CALC]
Iron	220 (10.0)		200.7		1	KJK	03/15/18 2:08	100	10	CC81432
Lead	ND (2.0)		200.7		1	KJK	03/15/18 2:08	100	10	CC81432
Mercury	ND (0.200)		245.1		1	MJV	03/16/18 11:46	20	40	CC81435
Nickel	ND (5.0)		200.7		1	KJK	03/15/18 2:08	100	10	CC81432
Selenium	ND (1.0)		3113B		1	KJK	03/15/18 17:57	100	10	CC81432
Silver	ND (0.5)		200.7		1	KJK	03/15/18 2:08	100	10	CC81432
Zinc	24.2 (5.0)		200.7		1	KJK	03/15/18 2:08	100	10	CC81432

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP Client Sample ID: 1610515-SW - Dedham

Date Sampled: 03/12/18 11:15

Percent Solids: N/A

ESS Laboratory Work Order: 1803257 ESS Laboratory Sample ID: 1803257-01

Sample Matrix: Surface Water

Classical Chemistry

<u>Analyte</u>	Results (MRL)	MDL Method Limit	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)	350.1	1	EEM	03/15/18 12:15	mg/L	CC81438
Hexavalent Chromium	ND (10.0)	3500Cr B-2009	1	JLK	03/12/18 19:20	ug/L	CC81241
pН	6.56 (N/A)	9040	1	CCP	03/12/18 18:00	S.U.	CC81225
pH Sample Temp	Aqueous pH measur	ed in water at 12.3					
Salinity	0.4 (0.1)	2520B	1	EEM	03/16/18 15:45	ppt	CC81615

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1803257

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
•			Total Meta						-	
Batch CC81241 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Batch CC81432 - 3005A/200.7										
Blank										
Antimony	ND	5.0	ug/L							
Arsenic	ND	0.5	ug/L							
Cadmium	ND	0.02	ug/L							
Chromium	ND	2.0	ug/L							
Chromium III	ND	2.00	ug/L							
Copper	ND	2.0	ug/L							
Hardness	ND	82.4	ug/L							
Iron	12.6	10.0	ug/L							
Lead	ND	2.0	ug/L							
Nickel	ND	5.0	ug/L							
Selenium	ND	1.0	ug/L							
Silver	ND	0.5	ug/L							
Zinc	ND	5.0	ug/L							
LCS										
Antimony	44.4	5.0	ug/L	50.00		89	85-115			
Arsenic	50.6	12.5	ug/L	50.00		101	85-115			
Cadmium	26.2	12.5	ug/L	25.00		105	85-115			
Chromium	44.2	2.0	ug/L	50.00		88	85-115			
Chromium III	44.2	2.00	ug/L							
Copper	44.7	2.0	ug/L	50.00		89	85-115			
Hardness	2930	82.4	ug/L	250.0		0.5	05.115			
Iron	216	10.0	ug/L	250.0		86	85-115			
Lead	44.7	2.0	ug/L	50.00		89	85-115			
Nickel Selenium	44.5	5.0	ug/L	50.00		89	85-115 85-115			
Selenium Silver	94.4	25.0 0.5	ug/L	100.0 25.00		94 89	85-115 85-115			
Zinc	22.2 43.6	5.0	ug/L ug/L	50.00		89 87	85-115 85-115			
LCS Dup			- 31 -							
Arsenic	50.9	12.5	ug/L	50.00		102	85-115	0.6	20	
Cadmium	26.9	12.5	ug/L	25.00		107	85-115	2	20	
Chromium III	45.1	2.00	ug/L	_3.00		-5,		-	_0	
Hardness	2950	82.4	ug/L							
Selenium	93.1	25.0	ug/L	100.0		93	85-115	1	20	
Batch CC81435 - 245.1/7470A										

185 Frances Avenue, Cranston, RI 02910-2211

Blank

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1803257

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
,	resure	11132			result	701120	Lillio	101.0	Little	Qualifici
			Total Met	als						
Batch CC81435 - 245.1/7470A										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	5.84	0.200	ug/L	6.000		97	85-115			
LCS Dup										
Mercury	5.89	0.200	ug/L	6.000		98	85-115	0.9	20	
		Cl	assical Che	mistry						
Batch CC81241 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
ıcs										
Hexavalent Chromium	0.496		mg/L	0.4998		99	90-110			
LCS Dup										
Hexavalent Chromium	0.493		mg/L	0.4998		99	90-110	0.6	20	
Batch CC81438 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.11	0.10	mg/L	0.09994		112	80-120			
LCS										
Ammonia as N	0.98	0.10	mg/L	0.9994		98	80-120			
Batch CC81615 - General Preparation										
LCS										
Salinity	1.0		ppt	1.000		97	85-115			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1803257

Notes and Definitions

Z16 Aqueous pH measured in water at 12	2.3
--	-----

°C.

U Analyte included in the analysis, but not detected

D Diluted.

F/V

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

§ Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1803257

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

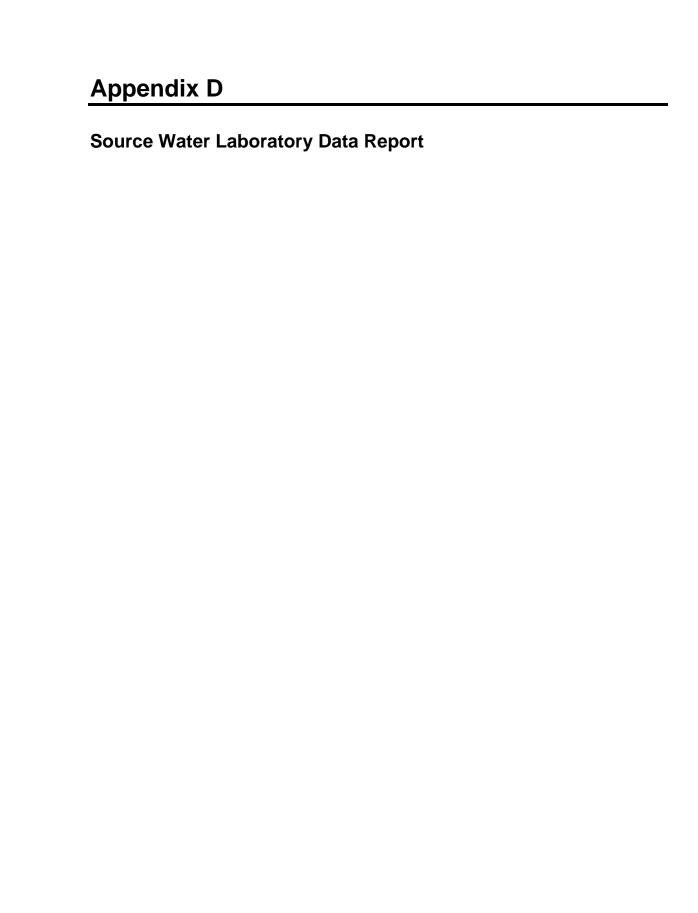
New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

Service


ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	GEI	Consultants	Inc TB/M	1M		ect ID:	1803257 3/12/2018	_
		_	00 0			eived: Date:	3/19/2018	
Shipped/De	livered Via: _	E	SS Courier			roject:		<u> </u>
1. Air bill ma	anifest prese		[No	6. Does COC ma	tch bottles?		Yes
2. Were cus	stody seals p	resent?	[No _	7. Is COC comple	ete and correct?		Yes
3. Is radiation	on count <10	0 CPM?	[Yes	8. Were samples	received intact?		Yes
4. Is a Cool		to and a dale.	[Yes	9. Were labs int	ormed about <u>sho</u>	rt holds & rushes?	Yes / No / NA
		iced with: _ I dated by clic		Yes	10. Were any ar	nalyses received ou	itside of hold time?	Yes /(No)
	ocontracting r Sample IDs: Analysis: TAT:	needed?		/(No)		received? aqueous VOAs? ol cover soil compl	etely?	Yes / (No) Yes / No Yes / No / NA
a. If metals	samples pro preserved u el VOA vials		red?	Yes / No Date: Date:	Time:		By:By:	
Sample Rec	ceiving Notes	3 :						
	re a need to	o contact Pro contact the c	lient?		Yes / No Yes / No Time:		Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	· · · · · · · · · · · · · · · · · · ·	yanide and 608 cides)
01	208204	Yes	NA	Yes	500 mL Poly - HNO3	HNO3		
01	208205	Yes	NA	Yes	250 mL Poly - HNO3 250 mL Poly - Unpres	HNO3 NP		
01 01	208206 208207	Yes Yes	NA NA	Yes Yes	250 mL Poly - Unpres	NP		
01 01	208207	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4		
01	208209	Yes	NA	Yes	250 mL Amber - Unpres	NP		
2nd Reviev Are barcod		orrect contai	ners?		Yes / No			
Completed By:		M-X-			Date & Time: 3/1-	2/18 1	721	
Reviewed By:		de			Date & Time: 3/13	7/18 I	743	
Delivered		1,		Mm.	3/18/18	-' [743_	
Ву:			-					

	aborato	•			CHAIN OF CUSTODY									ESS LAB PROJECT ID 1803257																										
	of Thielsch I			Turn Time	X	Standard F	Rush App	proved By:			_		Reporting Limits -																											
	Avenue, Crar 461-7181 I			State where	ite where samples were collected: MA NH								Discharge into: Fresh Water 🗹 Salt Water 🗆																											
, ,	aboratory.c		101-4400	Is this proj	ect for:	RGP		Electonic Format:	onic Deliverable Yes No at: Excel Access PDF Other																															
Project Manager: Mike Sabulis Company:GEI Address: 400 Unicorn Park Drive, Woburn, MA 01801						PO#1610515		Project Name: Eversource WRNI		Project Name: Eversource WRN		Project Name: Eversource WRNRI		Project Name: Eversource WRNRF		Project Name: Eversource WRNRP		Project Name: Eversource WRNR		Project Name: Eversource WRNR		Project Name: Eversource WRNR		Analysis	Analysis	als Tot		Hardness (Calculation)	I'm K	<i>\</i>			Ammonia 350.1	Tri Cr (Calc. MUST run T. Cr)	r 3500					Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sample Identif	ication	# of Containers	RGP Met		Hard	F (%)				Ammo	Tri Cr	Hex Cr		Ш																				
Sample ID	3/12/2018	Time	6	SW		1610515-SW(Valley)		Х	-	х .	X		1		Х	Х	X	-		\mp		_ 2																	
1	3/12/2018	1115	G	SW		1610515-SW(D	Dedham)		х			χX				Х	Х	х																						
	3/12/2018		6	s ₩		1610515-SW	(ROW)		X		X >	4		-	-	Х	Х	X	-		+	+	-																	
																					+	-																		
																					\perp	\perp	Ц																	
	Code: 1-NP, 2- pe: P-Poly G-G		2		H, 7-Asorbi	c Acid, 8-ZnAct, 9			4 P					2 AG					_	2 1 / AG	_	_																		
					er SW-Surfa	ce Water DW-Drink	ting Water O-Oil W	-Wipes F-Filter															_																	
Cooler Pre	esent	Yes	No	Sampled b	-																																			
	et Yes mperature: 10			2) Parame	ters in BC	DLD have Short h		PER						113E	3 and	l Hg	by	245	.1																					
Relinquished by		6	Date/Time	Received by: (S		Alalis H.Sa	Relinquished by: (Signa	ture)	31	12/18		16:	57	-	<u></u>	K		317	2/18	Commence of the last	170	280																		
Relinquished by			Date/Time	Received by: (S	Signature)		Relinquished by: (Signa	ture)		1	Date/T	ime	Received by: (Signature)																											

Please E-mail all changes to Chain of Custody in writin

Page ____of_

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Mike Sabulis GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Eversource WRNRP - RGP (1610515)

ESS Laboratory Work Order Number: 1712033

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 5:23 pm, Dec 12, 2017

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

SAMPLE RECEIPT

The following samples were received on December 01, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1712033-01	1610515-B16 MW	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM
			D3695
1712033-02	1610515-B6 MW	Ground Water	200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr
			B-2009, 4500 CN CE, 4500Cl D, 504.1, 524.2,
			ASTM D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

PROJECT NARRATIVE

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

1712033-01 Surrogate recovery(ies) above upper control limit (S+).

Pentachloroethane [2C] (153% @ 30-150%)

524.2 Volatile Organic Compounds

CL70636-BSD1 Blank Spike recovery is above upper control limit (B+).

Tertiary-butyl Alcohol (131% @ 70-130%)

625(SIM) Semi-Volatile Organic Compounds

CL70612-BS2 Blank Spike recovery is above upper control limit (B+).

2,4,6-Tribromophenol (130% @ 15-110%)

CL70612-BSD2 Relative percent difference for duplicate is outside of criteria (D+).

Benzo(a)anthracene (25% @ 20%), Benzo(a)pyrene (21% @ 20%), Benzo(g,h,i)perylene (23% @ 20%), Benzo(k)fluoranthene (28% @ 20%), bis(2-Ethylhexyl)phthalate (24% @ 20%), Butylbenzylphthalate (24% @ 20%), Chrysene (24% @ 20%), Dibenzo(a,h)Anthracene (21% @ 20%), Indeno(1,2,3-cd)Pyrene

(22% @ 20%), Pyrene (23% @ 20%)

CL70612-BSD2 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (135% @ 15-110%)

Classical Chemistry

1712033-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1712033-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Metals

1712033-02 Present in Method Blank (B).

Iron

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Dependability

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Fax: 401-461-4486

• Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	12/05/17 21:26	100	20	CL70434
Arsenic	ND (5.0)		3113B		5	KJK	12/06/17 1:49	100	20	CL70434
Cadmium	ND (0.25)		3113B		5	KJK	12/06/17 20:08	100	20	CL70434
Chromium	ND (4.0)		200.7		1	KJK	12/05/17 21:26	100	20	CL70434
Copper	ND (4.0)		200.7		1	KJK	12/06/17 17:47	100	20	CL70434
Iron	ND (20.0)		200.7		1	KJK	12/06/17 17:47	100	20	CL70434
Lead	ND (2.0)		3113B		5	KJK	12/05/17 23:29	100	20	CL70434
Mercury	ND (0.20)		245.1		1	$_{\mathrm{BJV}}$	12/05/17 14:04	20	40	CL70437
Nickel	ND (10.0)		200.7		1	KJK	12/05/17 21:26	100	20	CL70434
Selenium	ND (4.0)		3113B		5	KJK	12/06/17 23:08	100	20	CL70434
Silver	ND (1.0)		200.7		1	KJK	12/08/17 14:46	100	20	CL70731
Zinc	18.3 (10.0)		200.7		1	KJK	12/05/17 21:26	100	20	CL70434

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	12/05/17 21:38	100	20	CL70434
Arsenic	ND (5.0)		3113B		5	KJK	12/06/17 1:55	100	20	CL70434
Cadmium	ND (0.25)		3113B		5	KJK	12/06/17 20:36	100	20	CL70434
Chromium	ND (4.0)		200.7		1	KJK	12/05/17 21:38	100	20	CL70434
Chromium III	ND (10.0)		200.7		1	JLK	12/05/17 21:38	1	1	[CALC]
Copper	ND (4.0)		200.7		1	KJK	12/05/17 21:38	100	20	CL70434
Hardness	40700 (999)		200.7		10	KJK	12/06/17 16:57	1	1	[CALC]
Iron	ND (20.0)		200.7		1	KJK	12/06/17 16:57	100	20	CL70434
Lead	ND (2.0)		3113B		5	KJK	12/05/17 23:47	100	20	CL70434
Mercury	ND (0.200)		245.1		1	BJV	12/05/17 13:45	20	40	CL70437
Nickel	ND (10.0)		200.7		1	KJK	12/05/17 21:38	100	20	CL70434
Selenium	ND (4.0)		3113B		5	KJK	12/06/17 23:14	100	20	CL70434
Silver	ND (1.0)		200.7		1	KJK	12/08/17 14:42	100	20	CL70731
Zinc	19.2 (10.0)		200.7		1	KJK	12/05/17 21:38	100	20	CL70434

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
1,1,2-Trichloroethane	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
1,1-Dichloroethane	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
1,1-Dichloroethene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
1,2-Dichlorobenzene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
1,2-Dichloroethane	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
1,3-Dichlorobenzene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
1,4-Dichlorobenzene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Acetone	ND (5.0)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Benzene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Carbon Tetrachloride	ND (0.3)		524.2		1	12/06/17 19:26	C7L0083	CL70636
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Ethylbenzene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Methylene Chloride	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Naphthalene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Tetrachloroethene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Toluene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Trichloroethene	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Vinyl Chloride	ND (0.2)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Xylene O	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636
Xylene P,M	ND (0.5)		524.2		1	12/06/17 19:26	C7L0083	CL70636

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 105 % 80-1.

Surrogate: 1,2-Dichlorobenzene-d4105 %80-120Surrogate: 4-Bromofluorobenzene99 %80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 12/4/17 9:53

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	12/04/17 19:51		CL70407
Aroclor 1221	ND (0.09)		608		1	12/04/17 19:51		CL70407
Aroclor 1232	ND (0.09)		608		1	12/04/17 19:51		CL70407
Aroclor 1242	ND (0.09)		608		1	12/04/17 19:51		CL70407
Aroclor 1248	ND (0.09)		608		1	12/04/17 19:51		CL70407
Aroclor 1254	ND (0.09)		608		1	12/04/17 19:51		CL70407
Aroclor 1260	ND (0.09)		608		1	12/04/17 19:51		CL70407
Aroclor 1262	ND (0.09)		608		1	12/04/17 19:51		CL70407
Aroclor 1268	ND (0.09)		608		1	12/04/17 19:51		CL70407
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		58 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		64 %		30-150				
Surrogate: Tetrachloro-m-xylene		48 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		61 %		30-150				

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 12/6/17 14:36

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Acenaphthylene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Anthracene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Benzo(a)anthracene	ND (0.05)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Benzo(a)pyrene	ND (0.05)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Butylbenzylphthalate	ND (1.87)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Chrysene	ND (0.05)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Diethylphthalate	ND (2.34)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Dimethylphthalate	ND (2.34)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Di-n-butylphthalate	ND (2.34)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Di-n-octylphthalate	ND (2.34)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Fluoranthene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Fluorene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Naphthalene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Pentachlorophenol	ND (0.84)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Phenanthrene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612
Pyrene	ND (0.19)		625 SIM		1	12/11/17 11:43	C7L0142	CL70612

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	64 %		30-130
Surrogate: 2,4,6-Tribromophenol	110 %		15-110
Surrogate: 2-Fluorobiphenyl	71 %		30-130
Surrogate: Nitrobenzene-d5	86 %		30-130
Surrogate: p-Terphenyl-d14	82 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 12/8/17 14:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 12/11/17 8:41	Sequence C7L0142	Batch CL70747
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		53 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)	350.1		1	JLK	12/05/17 18:44	mg/L	CL70514
Chloride	102 (50.0)	300.0		100	EEM	12/04/17 14:16	mg/L	CL70419
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	12/01/17 21:39	ug/L	CL70145
Phenols	105 (100)	420.1		1	JLK	12/06/17 17:40	ug/L	CL70640
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	12/05/17 14:50	ug/L	CL70519
Total Petroleum Hydrocarbon	ND (4.67)	1664A		1	LAB	12/08/17 9:04	mg/L	CL70611
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	12/01/17 19:54	ug/L	CL70146
Total Suspended Solids	ND (5)	2540D		1	JLK	12/06/17 22:06	mg/L	CL70652

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 12/8/17 11:35

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,2-Dibromoethane	ND (0.015)		504.1		1	12/08/17 18:27		CL70822
		%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		135 %		30-150				
Surrogate: Pentachloroethane [2C]		153 %	S+	30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B16 MW

Date Sampled: 12/01/17 09:20

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 12/6/17 8:27

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC12/06/17 13:18CL70605

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW

Date Sampled: 12/01/17 13:30

Percent Solids: N/A

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Method	<u>Limit</u> <u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (10.0)	200.7	1	KJK	12/05/17 22:15	100	20	CL70434
Arsenic	ND (5.0)	3113B	5	KJK	12/06/17 2:17	100	20	CL70434
Cadmium	ND (0.25)	3113B	5	KJK	12/06/17 21:29	100	20	CL70434
Chromium	5.8 (4.0)	200.7	1	KJK	12/05/17 22:15	100	20	CL70434
Chromium III	ND (10.0)	200.7	1	JLK	12/05/17 22:15	1	1	[CALC]
Copper	29.6 (4.0)	200.7	1	KJK	12/08/17 14:50	100	20	CL70731
Hardness	81500 (999)	200.7	10	KJK	12/06/17 17:43	1	1	[CALC]
Iron	B 1020 (20.0)	200.7	1	KJK	12/06/17 17:43	100	20	CL70434
Lead	5.3 (2.0)	3113B	5	KJK	12/06/17 0:09	100	20	CL70434
Mercury	ND (0.200)	245.1	1	BJV	12/05/17 13:57	20	40	CL70437
Nickel	ND (10.0)	200.7	1	KJK	12/06/17 17:43	100	20	CL70434
Selenium	ND (4.0)	3113B	5	KJK	12/06/17 23:37	100	20	CL70434
Silver	ND (1.0)	200.7	1	KJK	12/08/17 14:50	100	20	CL70731
Zinc	25.2 (10.0)	200.7	1	KJK	12/05/17 22:15	100	20	CL70434

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW

Date Sampled: 12/01/17 13:30 Percent Solids: N/A

Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-02

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
1,1,2-Trichloroethane	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
1,1-Dichloroethane	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
1,1-Dichloroethene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
1,2-Dichlorobenzene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
1,2-Dichloroethane	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
1,3-Dichlorobenzene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
1,4-Dichlorobenzene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Acetone	ND (5.0)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Benzene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Carbon Tetrachloride	ND (0.3)		524.2		1	12/06/17 20:00	C7L0083	CL70636
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Ethylbenzene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Methylene Chloride	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Naphthalene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Tetrachloroethene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Toluene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Trichloroethene	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Vinyl Chloride	ND (0.2)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Xylene O	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636
Xylene P,M	ND (0.5)		524.2		1	12/06/17 20:00	C7L0083	CL70636

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 104 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 97 %
 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW Date Sampled: 12/01/17 13:30

Percent Solids: N/A

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-02

Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)	350.1		1	JLK	12/05/17 18:45	mg/L	CL70514
Chloride	77.8 (50.0)	300.0		100	EEM	12/04/17 14:32	mg/L	CL70419
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	12/01/17 21:39	ug/L	CL70145
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	12/05/17 14:50	ug/L	CL70519
Total Residual Chlorine	ND (20.0)	4500C1 D		1	JLK	12/01/17 19:54	ug/L	CL70146
Total Suspended Solids	136 (5)	2540D		1	JLK	12/06/17 22:06	mg/L	CL70652

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW

Date Sampled: 12/01/17 13:30

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-02

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 12/8/17 11:35

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,2-Dibromoethane	ND (0.015)		504.1		1	12/08/17 19:17		CL70822
		%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		139 %		30-150				
Surrogate: Pentachloroethane [2C]		143 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW Date Sampled: 12/01/17 13:30

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1712033 ESS Laboratory Sample ID: 1712033-02

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 12/6/17 8:27

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC12/06/17 14:07CL70605

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		[Dissolved M	etals						
atch CL70434 - 3005A/200.7										
Blank										
ntimony	ND	10.0	ug/L							
rsenic	ND	1.0	ug/L							
admium	ND	0.05	ug/L							
hromium	ND	4.0	ug/L							
opper	7.1	4.0	ug/L							
ron	22.6	20.0	ug/L							
ead	ND	0.4	ug/L							
ickel	ND	10.0	ug/L							
elenium	ND	0.8	ug/L							
nc	ND	10.0	ug/L							
CS										
ntimony	101	10.0	ug/L	100.0		101	85-115			
rsenic	102	25.0	ug/L	100.0		102	85-115			
admium	44.9	25.0	ug/L	50.00		90	80-120			
nromium	97.8	4.0	ug/L	100.0		98	80-120			
opper	101	4.0	ug/L	100.0		101	80-120			
on	427	20.0	ug/L	500.0		85	80-120			
ead	110	10.0	ug/L	100.0		110	80-120			
ickel	103	10.0	ug/L	100.0		103	85-115			
elenium	226	20.0	ug/L	200.0		113	80-120			
nc	104	10.0	ug/L	100.0		104	85-115			
CS Dup										
ntimony	100	10.0	ug/L	100.0		100	85-115	0.7	20	
rsenic	101	25.0	ug/L	100.0		101	85-115	0.9	20	
admium	45.8	25.0	ug/L	50.00		92	80-120	2	20	
hromium	97.1	4.0	ug/L	100.0		97	80-120	0.8	20	
opper	100	4.0	ug/L	100.0		100	80-120	0.8	20	
on .	424	20.0	ug/L	500.0		85	80-120	0.6	20	
ead	109	10.0	ug/L	100.0		109	80-120	1	20	
ickel	103	10.0	ug/L	100.0		103	85-115	0.8	20	
elenium	220	20.0	ug/L	200.0		110	80-120	3	20	
nc	103	10.0	ug/L	100.0		103	85-115	2	20	
atch CL70437 - 245.1/7470A	103	10.0								
lank										
ercury	ND	0.20	ug/L							
CS .		-	J,							
	5.98	0.20	ua/I	6,000		100	<u> </u>			
lercury	5.90	0.20	ug/L	6.000		100	85-115			
CS Dup										
lercury	5.93	0.20	ug/L	6.000		99	85-115	0.9	20	
atch CL70731 - 3005A/200.7										
lank										
ilver	ND	1.0	ug/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712033

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		[Dissolved M	etals						
Batch CL70731 - 3005A/200.7										
LCS										
Silver	50.7	1.0	ug/L	50.00		101	85-115			
LCS Dup										
Silver	49.5	1.0	ug/L	50.00		99	85-115	2	20	
			Total Met	als						
Batch CL70145 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Batch CL70434 - 3005A/200.7										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium	ND	4.0	ug/L							
Chromium III	ND	4.00	ug/L							
Copper	7.1	4.0	ug/L							
Hardness	ND	165	ug/L							
Iron Lead	22.6 ND	20.0 0.4	ug/L							
Nickel	ND ND	10.0	ug/L ug/L							
Selenium	ND	0.8	ug/L							
Zinc	ND	10.0	ug/L							
LCS										
Antimony	101	10.0	ug/L	100.0		101	85-115			
Arsenic	102	25.0	ug/L	100.0		102	85-115			
Cadmium	44.9	25.0	ug/L	50.00		90	85-115			
Chromium	97.8	4.0	ug/L	100.0		98	85-115			
Chromium III	97.8	4.00	ug/L							
Copper	101	4.0	ug/L	100.0		101	85-115			
Hardness	5870	165	ug/L							
Iron	427	20.0	ug/L	500.0		85	85-115			
Lead	110	10.0	ug/L	100.0		110	85-115			
Nickel	103	10.0	ug/L	100.0		103	85-115			
Selenium 	226	20.0	ug/L	200.0		113	85-115			
Zinc	104	10.0	ug/L	100.0		104	85-115			
LCS Dup										
Arsenic	101	25.0	ug/L	100.0		101	85-115	0.9	20	
Cadmium	45.8	25.0	ug/L	50.00		92	85-115	2	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712033

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
Batch CL70434 - [CALC]										
Chromium III	97.1	4.00	ug/L							
Hardness	5820	165	ug/L							
ead	109	10.0	ug/L	100.0		109	85-115	1	20	
Selenium	220	20.0	ug/L	200.0		110	85-115	3	20	
Batch CL70437 - 245.1/7470A										
Blank										
1ercury	ND	0.200	ug/L							
.cs										
Mercury	5.98	0.200	ug/L	6.000		100	85-115			
.CS Dup										
Mercury	5.93	0.200	ug/L	6.000		99	85-115	0.9	20	
Batch CL70731 - 3005A/200.7										
Blank										
Copper	ND	4.0	ug/L							
Silver	ND	1.0	ug/L							
.cs										
Copper	101	4.0	ug/L	100.0		101	85-115			
Silver	50.7	1.0	ug/L	50.00		101	85-115			
.CS Dup										
Copper	98.4	4.0	ug/L	100.0		98	85-115	3	20	·
Silver	49.5	1.0	ug/L	50.00		99	85-115	2	20	

Batch CL70636 - 524.2					
Blank					
1,1,1-Trichloroethane	ND	0.5	ug/L		
1,1,2-Trichloroethane	ND	0.5	ug/L		
1,1-Dichloroethane	ND	0.5	ug/L		
1,1-Dichloroethene	ND	0.5	ug/L		
1,2-Dichlorobenzene	ND	0.5	ug/L		
1,2-Dichloroethane	ND	0.5	ug/L		
1,3-Dichlorobenzene	ND	0.5	ug/L		
1,4-Dichlorobenzene	ND	0.5	ug/L		
Acetone	ND	5.0	ug/L		
Benzene	ND	0.5	ug/L		
Carbon Tetrachloride	ND	0.3	ug/L		
cis-1,2-Dichloroethene	ND	0.5	ug/L		
Ethylbenzene	ND	0.5	ug/L		
Methyl tert-Butyl Ether	ND	0.5	ug/L		
Methylene Chloride	ND	0.5	ug/L		
Naphthalene	ND	0.5	ug/L		
Tertiary-amyl methyl ether	ND	1.0	ug/L		
Tertiary-butyl Alcohol	ND	25.0	ug/L		
19 5 Eman 222	Avanua Cranston DI 020	10 2211	Tal: 401 461 7191	East 401 461 4496	http://www.ESSI.abaratary.com

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		524.2 Vol	atile Organi	c Compo	unds					
Batch CL70636 - 524.2										
Tetrachloroethene	ND	0.5	ug/L							
oluene	ND	0.5	ug/L							
Frichloroethene	ND	0.5	ug/L							
/inyl Chloride	ND	0.2	ug/L							
(ylene O	ND	0.5	ug/L							
(ylene P,M	ND	0.5	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	5.20		ug/L	5.000		104	80-120			
Surrogate: 4-Bromofluorobenzene	4.88		ug/L	5.000		98	80-120			
.cs										
1,1,1-Trichloroethane	10.3		ug/L	10.00		103	70-130			
1,1,2-Trichloroethane	10.1		ug/L	10.00		101	70-130			
,1-Dichloroethane	9.9		ug/L	10.00		99	70-130			
1,1-Dichloroethene	10.7		ug/L	10.00		107	70-130			
1,2-Dichlorobenzene	10.5		ug/L	10.00		105	70-130			
.,2-Dichloroethane	10.6		ug/L	10.00		106	70-130			
.,3-Dichlorobenzene	10.4		ug/L	10.00		104	70-130			
,4-Dichlorobenzene	10.3		ug/L	10.00		103	70-130			
cetone	52.7		ug/L	50.00		105	70-130			
Benzene	10.4		ug/L	10.00		104	70-130			
Carbon Tetrachloride	10.3		ug/L	10.00		103	70-130			
is-1,2-Dichloroethene	10.3		ug/L	10.00		103	70-130			
Ethylbenzene	10.2		ug/L	10.00		102	70-130			
Methyl tert-Butyl Ether	10.0		ug/L	10.00		100	70-130			
Methylene Chloride	10.4		ug/L	10.00		104	70-130			
Naphthalene	10.7		ug/L	10.00		107	70-130			
Fertiary-amyl methyl ether	10.1		ug/L	10.00		101	70-130			
Fertiary-butyl Alcohol	64.9		ug/L	50.00		130	70-130			
- etrachloroethene	7.9		ug/L	10.00		79	70-130			
Foluene	10.2		ug/L	10.00		102	70-130			
Frichloroethene	10.3		ug/L	10.00		103	70-130			
/inyl Chloride	10.3		ug/L	10.00		103	70-130			
(ylene O	10.1		ug/L	10.00		101	70-130			
(ylene P,M	20.2		ug/L	20.00		101	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.21		ug/L	5.000		104	80-120			
Surrogate: 4-Bromofluorobenzene	5.16		ug/L	5.000		103	80-120			
LCS Dup										
,1,1-Trichloroethane	10.1		ug/L	10.00		101	70-130	2	20	
,1,2-Trichloroethane	10.0		ug/L	10.00		100	70-130	1	20	
,1-Dichloroethane	9.7		ug/L	10.00		97	70-130	2	20	
,1-Dichloroethene	10.5		ug/L	10.00		105	70-130	2	20	
,2-Dichlorobenzene	10.1		ug/L	10.00		101	70-130	4	20	
,2-Dichloroethane	10.5		ug/L	10.00		105	70-130	2	20	
.,3-Dichlorobenzene	10.2		ug/L	10.00		102	70-130	1	20	
,4-Dichlorobenzene	10.2		ug/L	10.00		102	70-130	1	20	
Acetone	51.0		ug/L	50.00		102	70-130	3	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712033

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile Organic Compounds

10.00 10.00 10.00	103 100	70-130	0.8	20	
10.00			0.8	20	
	100				
10.00		70-130	3	20	
10.00	99	70-130	4	20	
10.00	100	70-130	2	20	
10.00	101	70-130	1	20	
10.00	102	70-130	3	20	
10.00	107	70-130	0.6	20	
10.00	100	70-130	2	20	
50.00	131	70-130	0.8	25	B+
10.00	78	70-130	2	20	
10.00	102	70-130	0.5	20	
10.00	102	70-130	2	20	
10.00	100	70-130	3	20	
10.00	100	70-130	0.8	20	
20.00	100	70-130	0.7	20	
5.000	101	80-120			
5.000	102	80-120			
	10.00 10.00 10.00 10.00 50.00 10.00 10.00 10.00 10.00 10.00 20.00 5.000	10.00 100 10.00 101 10.00 102 10.00 107 10.00 100 50.00 131 10.00 78 10.00 102 10.00 102 10.00 100 10.00 100 20.00 100 5.000 101	10.00 100 70-130 10.00 101 70-130 10.00 102 70-130 10.00 107 70-130 10.00 100 70-130 50.00 131 70-130 10.00 78 70-130 10.00 102 70-130 10.00 102 70-130 10.00 100 70-130 10.00 100 70-130 20.00 100 70-130 5.000 101 80-120	10.00 100 70-130 2 10.00 101 70-130 1 10.00 102 70-130 3 10.00 107 70-130 0.6 10.00 100 70-130 2 50.00 131 70-130 0.8 10.00 78 70-130 2 10.00 102 70-130 0.5 10.00 102 70-130 2 10.00 100 70-130 3 10.00 100 70-130 0.8 20.00 100 70-130 0.7 5.000 101 80-120	10.00 100 70-130 2 20 10.00 101 70-130 1 20 10.00 102 70-130 3 20 10.00 107 70-130 0.6 20 10.00 100 70-130 2 20 50.00 131 70-130 0.8 25 10.00 78 70-130 2 20 10.00 102 70-130 0.5 20 10.00 102 70-130 2 20 10.00 100 70-130 3 20 10.00 100 70-130 0.8 20 20.00 100 70-130 0.7 20 5.000 101 80-120

608 Polychlorinated Biphenyls (PCB)

Batch CL70407 - 3510C							
Blank							
Aroclor 1016	ND	0.10	ug/L				
Aroclor 1016 [2C]	ND	0.10	ug/L				
Aroclor 1221	ND	0.10	ug/L				
Aroclor 1221 [2C]	ND	0.10	ug/L				
Aroclor 1232	ND	0.10	ug/L				
Aroclor 1232 [2C]	ND	0.10	ug/L				
Aroclor 1242	ND	0.10	ug/L				
Aroclor 1242 [2C]	ND	0.10	ug/L				
Aroclor 1248	ND	0.10	ug/L				
Aroclor 1248 [2C]	ND	0.10	ug/L				
Aroclor 1254	ND	0.10	ug/L				
Aroclor 1254 [2C]	ND	0.10	ug/L				
Aroclor 1260	ND	0.10	ug/L				
Aroclor 1260 [2C]	ND	0.10	ug/L				
Aroclor 1262	ND	0.10	ug/L				
Aroclor 1262 [2C]	ND	0.10	ug/L				
Aroclor 1268	ND	0.10	ug/L				
Aroclor 1268 [2C]	ND	0.10	ug/L				
Surrogate: Decachlorobiphenyl	0.0390		ug/L	0.05000	78	30-150	
Surrogate: Decachlorobiphenyl [2C]	0.0396		ug/L	0.05000	<i>79</i>	30-150	
Surrogate: Tetrachloro-m-xylene	0.0328		ug/L	0.05000	66	30-150	
Surrogate: Tetrachloro-m-xylene [2C]	0.0373		ug/L	0.05000	<i>75</i>	30-150	
LCS							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712033

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
,		608 Polych	lorinated B	iphenvls (PCB)					
				.,						
Batch CL70407 - 3510C										
Aroclor 1016	0.91	0.10	ug/L	1.000		91	40-140			
Aroclor 1016 [2C]	1.01	0.10	ug/L	1.000		101	40-140			
Aroclor 1260	0.95	0.10	ug/L	1.000		95	40-140			
Aroclor 1260 [2C]	1.05	0.10	ug/L	1.000		105	40-140			
Surrogate: Decachlorobiphenyl	0.0477		ug/L	0.05000		95	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0485		ug/L	0.05000		97	30-150			
Surrogate: Tetrachloro-m-xylene	0.0427		ug/L	0.05000		85	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0444		ug/L	0.05000		89	30-150			
LCS Dup										
Aroclor 1016	0.94	0.10	ug/L	1.000		94	40-140	4	20	
Aroclor 1016 [2C]	1.08	0.10	ug/L	1.000		108	40-140	7	20	
Aroclor 1260	0.95	0.10	ug/L	1.000		95	40-140	0.8	20	
Aroclor 1260 [2C]	1.10	0.10	ug/L	1.000		110	40-140	4	20	
Surrogate: Decachlorobiphenyl	0.0478		ug/L	0.05000		96	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0499		ug/L	0.05000		100	30-150			
Surrogate: Tetrachloro-m-xylene	0.0417		ug/L	0.05000		83	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0445		ug/L	0.05000		89	30-150			

625(SIM) Semi-Volatile Organic Compounds

atch	CL706	12 -	35100

Blank			
Acenaphthene	ND	0.20	ug/L
Acenaphthylene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Benzo(a)anthracene	ND	0.05	ug/L
Benzo(a)pyrene	ND	0.05	ug/L
Benzo(b)fluoranthene	ND	0.05	ug/L
Benzo(g,h,i)perylene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.05	ug/L
bis(2-Ethylhexyl)phthalate	ND	2.00	ug/L
Butylbenzylphthalate	ND	2.50	ug/L
Chrysene	ND	0.05	ug/L
Dibenzo(a,h)Anthracene	ND	0.05	ug/L
Diethylphthalate	ND	2.50	ug/L
Dimethylphthalate	ND	2.50	ug/L
Di-n-butylphthalate	ND	2.50	ug/L
Di-n-octylphthalate	ND	2.50	ug/L
Fluoranthene	ND	0.20	ug/L
Fluorene	ND	0.20	ug/L
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L
Naphthalene	ND	0.20	ug/L
Pentachlorophenol	ND	0.90	ug/L
Phenanthrene	ND	0.20	ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CL70612 - 3510C									
Pyrene	ND	0.20	ug/L						
Surrogate: 1,2-Dichlorobenzene-d4	1.32		ug/L	2.500	53	30-130			
Surrogate: 2,4,6-Tribromophenol	3.40		ug/L	3.750	91	<i>15-110</i>			
Surrogate: 2-Fluorobiphenyl	1.64		ug/L	2.500	66	30-130			
Surrogate: Nitrobenzene-d5	2.03		ug/L	2.500	81	30-130			
Surrogate: p-Terphenyl-d14	2.09		ug/L	2.500	84	30-130			
LCS									
Acenaphthene	3.02	0.20	ug/L	4.000	75	40-140			
Acenaphthylene	3.04	0.20	ug/L	4.000	76	40-140			
Anthracene	3.09	0.20	ug/L	4.000	77	40-140			
Benzo(a)anthracene	2.33	0.05	ug/L	4.000	58	40-140			
Benzo(a)pyrene	2.57	0.05	ug/L	4.000	64	40-140			
Benzo(b)fluoranthene	2.64	0.05	ug/L	4.000	66	40-140			
Benzo(g,h,i)perylene	2.60	0.20	ug/L	4.000	65	40-140			
Benzo(k)fluoranthene	2.38	0.05	ug/L	4.000	59	40-140			
bis(2-Ethylhexyl)phthalate	2.90	2.00	ug/L	4.000	72	40-140			
Butylbenzylphthalate	3.06	2.50	ug/L	4.000	77	40-140			
Chrysene	2.41	0.05	ug/L	4.000	60	40-140			
Dibenzo(a,h)Anthracene	2.69	0.05	ug/L	4.000	67	40-140			
Diethylphthalate	3.53	2.50	ug/L	4.000	88	40-140			
Dimethylphthalate	3.47	2.50	ug/L	4.000	87	40-140			
Di-n-butylphthalate	3.47	2.50	ug/L	4.000	87	40-140			
Di-n-octylphthalate	3.15	2.50	ug/L	4.000	79	40-140			
Fluoranthene	3.23	0.20	ug/L	4.000	81	40-140			
Fluorene	3.25	0.20	ug/L	4.000	81	40-140			
Indeno(1,2,3-cd)Pyrene	2.70	0.05	ug/L	4.000	67	40-140			
Naphthalene	2.79	0.20	ug/L	4.000	70	40-140			
Pentachlorophenol	4.05	0.90	ug/L	4.000	101	30-130			
Phenanthrene	3.06	0.20	ug/L	4.000	76	40-140			
Pyrene	2.48	0.20	ug/L	4.000	62	40-140			
•	1.84		ug/L	2.500	<i>74</i>	30-130			
Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 2,4,6-Tribromophenol	4.88		ug/L	3.750	130	15-110			B+
Surrogate: 2-Fluorobiphenyl	2.11		ug/L	2.500	84	30-130			
Surrogate: Nitrobenzene-d5	2.48		ug/L	2.500	99	30-130			
Surrogate: p-Terphenyl-d14	1.82		ug/L	2.500	<i>73</i>	30-130			
LCS Dup									
Acenaphthene	3.04	0.20	ug/L	4.000	76	40-140	0.8	20	
Acenaphthylene	3.02	0.20	ug/L	4.000	75	40-140	0.7	20	
Anthracene	3.12	0.20	ug/L	4.000	78	40-140	1	20	
Benzo(a)anthracene	3.01	0.05	ug/L	4.000	75	40-140	25	20	D+
Benzo(a)pyrene	3.18	0.05	ug/L	4.000	79	40-140	21	20	D+
Benzo(b)fluoranthene	3.10	0.05	ug/L	4.000	78	40-140	16	20	DΤ
Benzo(g,h,i)perylene	3.28	0.03	ug/L ug/L	4.000	82	40-140	23	20	D+
Benzo(k)fluoranthene	3.16	0.20	ug/L ug/L	4.000	79	40-140	28	20	D+
					93	40-140	26	20	D+
bis(2-Ethylhexyl)phthalate	3.70	2.00	ug/L	4.000	93	40-140	Z *1	20	υ+

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
<u>, </u>		25(SIM) Sem								
Batch CL70612 - 3510C										
Butylbenzylphthalate	3.89	2.50	ug/L	4.000		97	40-140	24	20	D+
Chrysene	3.06	0.05	ug/L	4.000		77	40-140	24	20	D+
Dibenzo(a,h)Anthracene	3.34	0.05	ug/L	4.000		84	40-140	21	20	D+
Diethylphthalate	3.54	2.50	ug/L	4.000		88	40-140	0.4	20	
Dimethylphthalate	3.46	2.50	ug/L	4.000		86	40-140	0.6	20	
Di-n-butylphthalate	3.48	2.50	ug/L	4.000		87	40-140	0.1	20	
Di-n-octylphthalate	3.79	2.50	ug/L	4.000		95	40-140	19	20	
Fluoranthene	3.24	0.20	ug/L	4.000		81	40-140	0.3	20	
Fluorene	3.17	0.20	ug/L	4.000		79	40-140	2	20	
Indeno(1,2,3-cd)Pyrene	3.38	0.05	ug/L	4.000		84	40-140	22	20	D+
Naphthalene	2.79	0.20	ug/L	4.000		70	40-140	0.03	20	
Pentachlorophenol	4.06	0.90	ug/L	4.000		101	30-130	0.2	20	
Phenanthrene	3.11	0.20	ug/L	4.000		78	40-140	2	20	
Pyrene	3.13	0.20	ug/L	4.000		78	40-140	23	20	D+
	1.83		ug/L	2.500		73	30-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.08		ug/L	3.750		135	15-110			<i>S+</i>
Surrogate: 2,4,6-Tribromophenol	2.10		ug/L	2.500		84	30-130			
Currogator 2 Elugrahinhanul										
• ,							30-130			
Surrogate: Nitrobenzene-d5	2.46 2.30 8270D(SIM) S	Semi-Volatile	ug/L ug/L	2.500 2.500	s w/ Isoto	98 92	30-130 30-130 on			
Surrogate: 2-Fluorobiphenyl Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A	2.46 2.30	Semi-Volatile	ug/L ug/L	2.500 2.500	s w/ Isoto	98 92	30-130			
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14	2.46 2.30	Semi-Volatile	ug/L ug/L	2.500 2.500	s w/ Isoto	98 92	30-130			
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A	2.46 2.30	Semi-Volatile	ug/L ug/L	2.500 2.500	s w/ Isoto	98 92	30-130			
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank	2.46 2.30 8270D(SIM) S		ug/L ug/L Organic Co	2.500 2.500	s w/ Isoto	98 92	30-130			
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane	2.46 2.30 8270D(SIM) S		ug/L ug/L Organic Co	2.500 2.500 ompounds	s w/ Isoto	98 92 pe Dilutio	<i>30-130</i>			
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8	2.46 2.30 8270D(SIM) S		ug/L ug/L Organic Co	2.500 2.500 ompounds	s w/ Isoto	98 92 pe Dilutio	<i>30-130</i>			
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane	2.46 2.30 8270D(SIM) S ND 3.34	0.250	ug/L ug/L Organic Co ug/L ug/L	2.500 2.500 Ompounds 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 ON 15-115			
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8	2.46 2.30 8270D(SIM) S ND 3.34	0.250	ug/L ug/L Organic Co	2.500 2.500 pmpounds 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140			
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83	0.250	ug/L ug/L Organic Co	2.500 2.500 pmpounds 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup 1,4-Dioxane	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83	0.250	ug/L ug/L Ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.500 2.500 pmpounds 5.000 10.00 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83	0.250 0.250 0.250	ug/L ug/L Organic Co	2.500 2.500 pmpounds 5.000 10.00 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup 1,4-Dioxane Surrogate: 1,4-Dioxane-d8	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83	0.250 0.250 0.250	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.500 2.500 pmpounds 5.000 10.00 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup 1,4-Dioxane	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83	0.250 0.250 0.250	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.500 2.500 pmpounds 5.000 10.00 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 Batch CL70145 - General Preparation Blank	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83	0.250 0.250 0.250	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.500 2.500 pmpounds 5.000 10.00 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 Batch CL70145 - General Preparation Blank Hexavalent Chromium	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83	0.250 0.250 0.250	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.500 2.500 pmpounds 5.000 10.00 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 Batch CL70145 - General Preparation Blank	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83 9.06 3.22	0.250 0.250 0.250	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.500 2.500 pmpounds 5.000 10.00 5.000	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 Batch CL70145 - General Preparation Blank Hexavalent Chromium LCS Hexavalent Chromium	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83	0.250 0.250 0.250	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.500 2.500 pmpounds 5.000 10.00 5.000 mistry	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	
Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 Batch CL70747 - 3535A Blank 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 LCS Dup 1,4-Dioxane Surrogate: 1,4-Dioxane-d8 Batch CL70145 - General Preparation Blank Hexavalent Chromium LCS	2.46 2.30 8270D(SIM) S ND 3.34 9.50 3.83 9.06 3.22	0.250 0.250 0.250	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.500 2.500 pmpounds 5.000 10.00 5.000 mistry	s w/ Isoto	98 92 pe Dilutio	30-130 On 15-115 40-140 15-115	5	20	

Total Residual Chlorine

ug/L

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712033

Quality Control Data

Analyta	Result	MRL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD	Ovalifion
Analyte	Result				Result	70KEC	Limits	KPD	Limit	Qualifier
		CI	assical Che	mistry						
Batch CL70146 - General Preparation										
LCS										
Total Residual Chlorine	1.78		mg/L	1.800		99	85-115			
Batch CL70419 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.4		mg/L	2.500		97	90-110			
Batch CL70514 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.09	0.10	mg/L	0.09994		95	80-120			
LCS										
Ammonia as N	0.99	0.10	mg/L	0.9994		99	80-120			
Batch CL70519 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	20.1	5.00	ug/L	20.06		100	90-110			
LCS										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide (LL)	148	5.00	ug/L	150.4		98	90-110	0.7	20	
Batch CL70611 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5.00	mg/L							
LCS										
Total Petroleum Hydrocarbon	17.3	5.00	mg/L	19.38		89	66-114			
Batch CL70640 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	105	100	ug/L	100.0		105	80-120			
LCS										
Phenols	1020	100	ug/L	1000		102	80-120			
Batch CL70652 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	32		mg/L	34.10		94	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712033

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	504.1 1,2	2-Dibromoeth	nane / 1,2-l	Dibromo-3	3-chloropi	ropane				
Batch CL70822 - 504/8011										
Blank										
1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
Surrogate: Pentachloroethane	0.190		ug/L	0.2000		95	30-150			
Surrogate: Pentachloroethane [2C]	0.216		ug/L	0.2000		108	30-150			
LCS										
1,2-Dibromoethane	0.057	0.015	ug/L	0.08000		72	70-130			
1,2-Dibromoethane [2C]	0.082	0.015	ug/L	0.08000		102	70-130			
Surrogate: Pentachloroethane	0.0803		ug/L	0.2000		40	30-150			
Surrogate: Pentachloroethane [2C]	0.0909		ug/L	0.2000		45	30-150			
LCS										
1,2-Dibromoethane	0.152	0.015	ug/L	0.2000		76	70-130			
1,2-Dibromoethane [2C]	0.204	0.015	ug/L	0.2000		102	70-130			
Surrogate: Pentachloroethane	0.277		ug/L	0.2000		139	30-150			
Surrogate: Pentachloroethane [2C]	0.296		ug/L	0.2000		148	30-150			
		Alcol	nol Scan by	GC/FID						
Batch CL70605 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS										
Ethanol	1160	10	mg/L	1007		115	60-140			
LCS Dup										
Ethanol	1020	10	mg/L	1007		102	60-140	12	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

Notes and Definitions

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

B+ Blank Spike recovery is above upper control limit (B+).

B Present in Method Blank (B).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit

I/V Initial Volume F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712033

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GEI Consultants, Inc TB/MM		ESS Project ID: Date Received:	1712033 12/1/2017	
Shipped/Delivered Via: ESS Courier		Project Due Date: Days for Project:	12/8/2017	<u></u>
Air bill manifest present? Air No.: NA	No	6. Does COC match bottles?		Yes
2. Were custody seals present?	No	7. Is COC complete and correct	t?	Yes
3. Is radiation count <100 CPM?	Yes	8. Were samples received intac	ct?	Yes
1. 10 4 000101 1 10001111	Yes	9. Were labs informed about	short holds & rushes?	Yes/ No / NA
Temp: 2.5 lced with: lce	Yes	10. Were any analyses receive	ed outside of hold time?	Yes (No)
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:		12. Were VOAs received?a. Air bubbles in aqueous VOAb. Does methanol cover soil co		Yes / No Yes / No Yes / No / NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen:	Date:	Time:	By:	_
Sample Receiving Notes:				
14. Was there a need to contact Project Manager? a. Was there a need to contact the client?	Yes No Yes No) _	D.v.	
Who was contacted?	Date:	Time:	Ву:	
				

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	186969	Yes	No	Yes	VOA Vial - HCI	HCI	
01	186970	Yes	No	Yes	VOA Vial - HCI	HCI	
01	186971	Yes	No	Yes	VOA Vial - HCI	HCI	
01	186972	Yes	No	Yes	VOA Vial - HCI	HC1	
01	186973	Yes	No	Yes	VOA Vial - HCl	HCI	
01	186974	Yes	No	Yes	VOA Vial - HCI	HCI	
01	186975	Yes	No	Yes	VOA Vial - HCI	HCI	
01	186982	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	186983	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	186984	Yes	NA	Yes	1L Amber - Unpres	NP	
01	186985	Yes	NA	Yes	1L Amber - Unpres	NP	
01	186986	Yes	NA	Yes	1L Amber - Unpres	NP	
01	186987	Yes	NA	Yes	1L Amber - Unpres	NP	
01	186988	Yes	NA	Yes	1L Amber - Unpres	NP	
01	186989	Yes	NA	Yes	1L Amber - Unpres	NP	
01	186990	Yes	NA	Yes	1L Poly - Unpres	NP	
01	186991	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
01	186992	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
01	186993	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
01	186994	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	~ 41
01	186995	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH>12 \$ ער יביווין
01	186996	Yes	NA	Yes	250 mL Poly - Unpres	NP	
02	186962	Yes	No	Yes	VOA Vial - HCI	HCI	
02	186963	Yes	No	Yes	VOA Vial - HCI	HCI	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GE	Consultant	s, Inc TB/	мм	ESS Pr	oject ID:	1712033			
				-	Date R	teceived:	12/1/2017			
02	186964	Yes	No	Yes	VOA Vial - HCI	HCI				
02	186965	Yes	No	Yes	VOA Vial - HCl	HCI				
02	186966	Yes	No	Yes	VOA Vial - HCl	HCI				
02	186967	Yes	No	Yes	VOA Viai - HCI	HCI				
02	186968	Yes	No	Yes	VOA Vial - HCI	HCI				
02	186976	Yes	NA	Yes	1L Poly - Unpres	NP				
02	186977	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4				
02	186978	Yes	NA	Yes	500 mL Poly - HNO3	HNO3				
02	186979	Yes	NA	Yes	250 mL Poly - HNO3	HNO3		۵.	14/11	1255
02	186980	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH > 12		4101	1100
02	186981	Yes	NA	Yes	250 mL Poly - Unpres	NP				
2nd Review Are barcod	v le labels on co	orrect contai	ners?		Yes)/ No					
Completed By:		X R			_ Date & Time:	10 1755				
Reviewed	(Alle	_	A	Date & Time: 121	117 1500				
By:		1		\sim \parallel	_ Date & Time.	, <u>. v - cz</u>				
Delivered		-		# WWW	- はいし	1800				
Ву:				1√1√1						

NH Electonic Deliverable Format: Excel Format: E	The container of the co	Second S	Collected, Age Collected,	Collected Age Age	Postering Post		NH	F CUSTO			ESS LAB PROJECT ID 172033 Renorting Limits	B PRC	2 2 2 2 1;	500				
Discharge into: Fresh Water Format: Excel F	Pose	Discharge into: Fresh Water Comfaring Electronic Deliverable Commat: Excel Commat: E	Discharge into: Fresh Water Container	Picturic Collected: (3) NH Electronic Deliverable Picturic Cast Nature Saft Water Picturic Cast Nature Picturic Nature	Discharge into: Fresh Water Sait Water	Discharge into: Fresh Water Saft Water	Discharge into: Fresh Water Saft Water	Time Approved By:			Reportin	g Lim	its -					
RGP Project # 16 (OS 1 S S S S S S S S S S S S S S S S S S	Format: Excel Project # 16 (OST S Project Name: Excel Access PDF. Other Project Name: Excel Access PDF. Other Project Name: Excel Access PDF. Other Project Name: PO # Analysis Po # Ana	Property	Commat: Excel Access Acc	Format: Excel Access Ac	Flectonic Deliverable Format: Excel Form	Flectonic Deliverable Format: Excel Access PDF	Formati Excel	State where samples were collected: (A.A.) NH			discharge	into:	Fresh W	vater [1	alt Wa	iter	
Project # 16 (OSTS) Project Name: Project Name: Project Name: Project Name: Containers Sample Identification Containers A RGP VOC Long List 625-SIM A RGP SVOC List 625-SI	Project # 6 (0.00 1.00	Project Proj	Section Sect	SZDAACI, 9 SZD	1	This 6 (0.00 1 0.00	The		verab	e Access	Yes ∼ PDI	~ \	Other					
Sample Identification Containers Rep Metals Disacolved A Hardness (Calculation Containers Rep Metals Disacolved A Hex Ct 3500 A Hex Ct	C C C C C C C C C C	C C C C C C C C C C	Sandari Sand	SZuach, 9-1	Survet, 9. Sur	Sunday S	Worker 9. Warmer Warmer	Project # 16 (OST S—Project Name:	(uo				(1O.T				WIS-97	#
Sample Identification Sample Identification Sample Identification Sample Identification Containers Rep Noc Rep Noc	Sample Identification Sample Identification Sample Identification Sample Identification Containers # Keb Note 18 608 # Keb Metals # Hardness #	Sample Identification Sample Identification	1	S-ZnAct, 9- P AG F V AG F	DW-Drinking Water O-Oil W-Wipes F-Filter DW-Drinking W-Wipes F-Filter DW-Drin	The Identification Sold Containers Cont	School S	Source	s Total s Dissolved s (Calculatio	*0.00		-cr D*	lc. MUST run			Į.	C Log List 62	t juəmmo
161057575766CMWS 22 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	1610575757616CUW) 22 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	161087187-1816CUW 161087187-186CUW XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7-816 CMW > 22	7-816 CMW)	22 × × × × × × × × × × × × × × × × × ×	Stocker, 9-	Scheen S		RGP Metals RGP Metals Hardnes	Chloride 3	₽991 HGT	TRC 4500	Tri Cr (Ca			EDB 204		
- 1610sts-186CMW	- 1610975-186C220) X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	7-186CMW X X X X X X X X X X X X X X X X X X X	7-186CMW) X X X X X X X X X X X X X X X X X X X	2nAct.9- DW-Drinking Water O-Oil W-Wipes F-Filter ZnAct.9- DW-Drinking Water O-Oil W-Wipes F-Filter	Salary S	School W. Wipes F. Filter	1610875-816	*		×	X	X					1,2
			8-ZnAct, 9-	8-ZnAct, 9- 	ZnAct, 9- DW-Drinking Water O-Oil W-Wipes F-Filter	ZnAct, 9-	DW-Drinking Water O-Oil W-Wipes F-Filter Wolf et al. 1 5 2 1 1 3 - 1 3 2 1 2 1 DW-Drinking Water O-Oil W-Wipes F-Filter added Cr III. mkm 12/8/17 melude Sb, As, Cd, Cu, Fe, Pb, Ni, Se, Ag and Zn by 200.7/3113B and Hg by 245.1 PERMIT ATTACHED from the same container PERMIT ATTACHED From the same container PERMIT ATTACHED From the same container Date: Include Sb, Received by (Signature) Date: Include Sb, Received by (Signature) Date: Include Sb, Received by (Signature)	- 1610818-1860	X	X		X	×		X	X	+	+
			8-ZnAct, 9-	8-ZnAct, 9- 4 4 4 1 1 5 2 1 1 3 - 1 3 2 1 2 1 1	ZnAct, 9- 4 4 4 1 1 5 2 1 1 3 - 1 2 1 DW-Drinking Water O-Oil W-Wipes F-Filter	ZnAct, 9- 4 4 4 1 1 5 2 1 3 2 1	DW-Drinking Water O-Oil W-Wipes F-Filter Wolf											
DW-Drinking Water O-Oil W-Wipes F-Filter A 4 1 1 5 2 1 1 3 - 1 3 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 2 1 2 1 2 1 2 1 3 2 1 2 1 2 1 2 1 3 2 1 2 2	ZnAct, 9- 4 4 1 5 2 1 3 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 3 2 1 2 1 3 2 1 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 3 3 3 3 3 3 3	DW-Drinking Water O-Oil W-Wipes F-Filter Wolfe et added Cr III. mkm 12/8/17 include Sb, As, Cd, Cu, Fe, Pb, Ni, Se, Ag and Zn by 200.7/3113B and Hg by 245.1 FERMIT ATTACHED from the same container from the same container (528 Reliquished by, Signature)	DW-Drinking Water O-Oil W-Wipes F-Filter Wolf en added Cr III. mkm 12/8/17 include Sb, As, Cd, Cu, Fe, Pb, Ni, Se, Ag and Zn by 200.7/3113B and Hg by 245.1 e Short hold-time PERMIT ATTACHED from the same container f	SGV, Wolf et added Cr III. mkm 12/8/17) RGP Metals include Sb, As, Cd, Cu, Fe, Pb, Ni, Se, Ag and Zn by 200.7/3113B and Hg by 245.1 s in BOLD have Short hold-time and Cl taken from the same container and Cl taken from the same container PERMIT ATTACHED	Date/Time Received by: (Signature)			The same of the sa		Time	V		Receiv	ed by (S	ignatur			1

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Mike Sabulis GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Eversource WRNRP - RGP (1610515)

ESS Laboratory Work Order Number: 1712097

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 2:26 pm, Dec 13, 2017

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

SAMPLE RECEIPT

The following samples were received on December 05, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 1712097-01 1712097-02

Sample Name 1610515-B4 MW 1610515-B11 MW <u>Matrix</u> Ground Water Ground Water **Analysis**

200.7, 245.1, 3113B, 608, 625 SIM, 8270D SIM 1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM D3695

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

PROJECT NARRATIVE

524.2 Volatile Organic Compounds

C7L0135-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Tertiary-butyl Alcohol (40% @ 30%)

625(SIM) Semi-Volatile Organic Compounds

1712097-02 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (121% @ 15-110%)

C7L0142-CCV1 <u>Calibration required quadratic regression (Q).</u>

2,4,6-Tribromophenol (116% @ 80-120%), Pentachlorophenol (103% @ 80-120%)

C7L0163-CCV1 <u>Calibration required quadratic regression (Q).</u>

2,4,6-Tribromophenol (139% @ 80-120%), Pentachlorophenol (137% @ 80-120%)

C7L0163-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

2,4,6-Tribromophenol (39% @ 20%), Pentachlorophenol (37% @ 20%)

CL70612-BS2 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (130% @ 15-110%)

CL70612-BSD2 Relative percent difference for duplicate is outside of criteria (D+).

Benzo(a)anthracene (25% @ 20%), Benzo(a)pyrene (21% @ 20%), Benzo(g,h,i)perylene (23% @ 20%), Benzo(k)fluoranthene (28% @ 20%), bis(2-Ethylhexyl)phthalate (24% @ 20%), Butylbenzylphthalate (24% @ 20%), Chrysene (24% @ 20%), Dibenzo(a,h)Anthracene (21% @ 20%), Indeno(1,2,3-cd)Pyrene

(22% @ 20%), Pyrene (23% @ 20%)

CL70612-BSD2 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (135% @ 15-110%)

Classical Chemistry

The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

 $5030\mbox{C}$ - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW

Date Sampled: 12/05/17 09:30

Percent Solids: N/A

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	12/07/17 17:07	100	20	CL70554
Arsenic	ND (5.0)		3113B		5	KJK	12/07/17 21:28	100	20	CL70554
Cadmium	ND (0.25)		3113B		5	KJK	12/07/17 15:33	100	20	CL70554
Chromium	ND (4.0)		200.7		1	KJK	12/07/17 17:07	100	20	CL70554
Copper	ND (4.0)		200.7		1	KJK	12/07/17 17:07	100	20	CL70554
Iron	1290 (20.0)		200.7		1	KJK	12/07/17 17:07	100	20	CL70554
Lead	ND (2.0)		3113B		5	KJK	12/07/17 18:57	100	20	CL70554
Mercury	ND (0.20)		245.1		1	MJV	12/08/17 14:49	20	40	CL70557
Nickel	ND (10.0)		200.7		1	KJK	12/07/17 17:07	100	20	CL70554
Selenium	ND (4.0)		3113B		5	KJK	12/07/17 23:52	100	20	CL70554
Silver	ND (2.0)		200.7		1	KJK	12/07/17 17:07	100	20	CL70554
Zinc	44.2 (10.0)		200.7		1	KJK	12/07/17 17:07	100	20	CL70554

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW

Date Sampled: 12/05/17 09:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 12/6/17 11:02

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	12/06/17 19:52		CL70606
Aroclor 1221	ND (0.09)		608		1	12/06/17 19:52		CL70606
Aroclor 1232	ND (0.09)		608		1	12/06/17 19:52		CL70606
Aroclor 1242	ND (0.09)		608		1	12/06/17 19:52		CL70606
Aroclor 1248	ND (0.09)		608		1	12/06/17 19:52		CL70606
Aroclor 1254	ND (0.09)		608		1	12/06/17 19:52		CL70606
Aroclor 1260	ND (0.09)		608		1	12/06/17 19:52		CL70606
Aroclor 1262	ND (0.09)		608		1	12/06/17 19:52		CL70606
Aroclor 1268	ND (0.09)		608		1	12/06/17 19:52		CL70606
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		59 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		72 %		30-150				
Surrogate: Tetrachloro-m-xylene		56 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		67 %		30-150				

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW

Date Sampled: 12/05/17 09:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 12/6/17 14:36

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	0.89 (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Acenaphthylene	0.72 (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Anthracene	0.63 (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Benzo(a)anthracene	0.35 (0.05)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Benzo(a)pyrene	0.26 (0.05)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Benzo(b)fluoranthene	0.33 (0.05)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Benzo(k)fluoranthene	0.14 (0.05)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Butylbenzylphthalate	ND (2.34)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Chrysene	0.40 (0.05)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Dibenzo(a,h)Anthracene	0.05 (0.05)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Diethylphthalate	ND (2.34)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Dimethylphthalate	ND (2.34)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Di-n-butylphthalate	ND (2.34)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Di-n-octylphthalate	ND (2.34)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Fluoranthene	1.59 (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Fluorene	1.97 (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Indeno(1,2,3-cd)Pyrene	0.19 (0.05)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Naphthalene	0.22 (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Pentachlorophenol	ND (0.84)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Phenanthrene	0.35 (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612
Pyrene	1.37 (0.19)		625 SIM		1	12/11/17 23:52	C7L0163	CL70612

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	50 %		30-130
Surrogate: 2,4,6-Tribromophenol	102 %		15-110
Surrogate: 2-Fluorobiphenyl	59 %		30-130
Surrogate: Nitrobenzene-d5	62 %		30-130
Surrogate: p-Terphenyl-d14	76 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW

Date Sampled: 12/05/17 09:30

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 12/7/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	Analyzed 12/08/17 0:33	Sequence C7L0096	Batch CL70747
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		64 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1712097

Sample Matrix: Ground Water

Units: ug/L

ESS Laboratory Sample ID: 1712097-02

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A

5/17 14:00 /A

Extraction Method: 3005A/200.7

Dissolved Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	12/07/17 17:39	100	20	CL70554
Arsenic	ND (5.0)		3113B		5	KJK	12/07/17 21:51	100	20	CL70554
Cadmium	ND (0.25)		3113B		5	KJK	12/07/17 16:32	100	20	CL70554
Chromium	ND (4.0)		200.7		1	KJK	12/07/17 17:39	100	20	CL70554
Copper	ND (4.0)		200.7		1	KJK	12/07/17 17:39	100	20	CL70554
Iron	16900 (20.0)		200.7		1	KJK	12/07/17 17:39	100	20	CL70554
Lead	ND (2.0)		3113B		5	KJK	12/07/17 19:38	100	20	CL70554
Mercury	ND (0.20)		245.1		1	MJV	12/08/17 14:58	20	40	CL70557
Nickel	ND (10.0)		200.7		1	KJK	12/07/17 17:39	100	20	CL70554
Selenium	ND (4.0)		3113B		5	KJK	12/08/17 0:16	100	20	CL70554
Silver	ND (2.0)		200.7		1	KJK	12/07/17 17:39	100	20	CL70554
Zinc	30.1 (10.0)		200.7		1	KJK	12/07/17 17:39	100	20	CL70554

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	12/07/17 17:56	100	20	CL70554
Arsenic	5.3 (5.0)		3113B		5	KJK	12/07/17 22:08	100	20	CL70554
Cadmium	ND (0.25)		3113B		5	KJK	12/07/17 16:54	100	20	CL70554
Chromium	ND (4.0)		200.7		1	KJK	12/07/17 17:56	100	20	CL70554
Chromium III	ND (10.0)		200.7		1	JLK	12/07/17 17:56	1	1	[CALC]
Copper	ND (4.0)		200.7		1	KJK	12/07/17 17:56	100	20	CL70554
Hardness	125000 (165)		200.7		1	KJK	12/07/17 17:56	1	1	[CALC]
Iron	18300 (20.0)		200.7		1	KJK	12/07/17 17:56	100	20	CL70554
Lead	ND (2.0)		3113B		5	KJK	12/07/17 19:50	100	20	CL70554
Mercury	ND (0.200)		245.1		1	MJV	12/08/17 14:51	20	40	CL70557
Nickel	ND (10.0)		200.7		1	KJK	12/07/17 17:56	100	20	CL70554
Selenium	ND (4.0)		3113B		5	KJK	12/08/17 1:01	100	20	CL70554
Silver	ND (1.0)		200.7		1	KJK	12/07/17 17:56	100	20	CL70554
Zinc	29.8 (10.0)		200.7		1	KJK	12/07/17 17:56	100	20	CL70554

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-02

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
1,1,2-Trichloroethane	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
1,1-Dichloroethane	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
1,1-Dichloroethene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
1,2-Dichlorobenzene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
1,2-Dichloroethane	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
1,3-Dichlorobenzene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
1,4-Dichlorobenzene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Acetone	ND (5.0)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Benzene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Carbon Tetrachloride	ND (0.3)		524.2		1	12/07/17 16:49	C7L0109	CL70736
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Ethylbenzene	2.4 (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Methylene Chloride	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Naphthalene	225 (5.0)		524.2		10	12/08/17 12:59	C7L0109	CL70736
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Tetrachloroethene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Toluene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Trichloroethene	ND (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Vinyl Chloride	ND (0.2)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Xylene O	5.9 (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736
Xylene P,M	6.7 (0.5)		524.2		1	12/07/17 16:49	C7L0109	CL70736

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 105 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 101 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-02

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 12/6/17 11:02

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	12/08/17 10:31		CL70825
Aroclor 1221	ND (0.09)		608		1	12/08/17 10:31		CL70825
Aroclor 1232	ND (0.09)		608		1	12/08/17 10:31		CL70825
Aroclor 1242	ND (0.09)		608		1	12/08/17 10:31		CL70825
Aroclor 1248	ND (0.09)		608		1	12/08/17 10:31		CL70825
Aroclor 1254	ND (0.09)		608		1	12/08/17 10:31		CL70825
Aroclor 1260	ND (0.09)		608		1	12/08/17 10:31		CL70825
Aroclor 1262	ND (0.09)		608		1	12/08/17 10:31		CL70825
Aroclor 1268	ND (0.09)		608		1	12/08/17 10:31		CL70825
	9	6Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		72 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		83 %		30-150				
Surrogate: Tetrachloro-m-xylene		61 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		60 %		30-150				

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A Initial Volume: 1060 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 12/6/17 14:36

625(SIM) Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	10.8 (0.19)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Acenaphthylene	0.69 (0.19)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Anthracene	0.83 (0.19)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Benzo(a)anthracene	0.09 (0.05)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Benzo(a)pyrene	0.07 (0.05)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Benzo(b)fluoranthene	0.09 (0.05)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
bis(2-Ethylhexyl)phthalate	ND (1.89)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Butylbenzylphthalate	ND (2.36)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Chrysene	0.10 (0.05)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Diethylphthalate	ND (2.36)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Dimethylphthalate	ND (2.36)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Di-n-butylphthalate	ND (2.36)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Di-n-octylphthalate	ND (2.36)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Fluoranthene	0.80 (0.19)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Fluorene	6.51 (0.19)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Indeno(1,2,3-cd)Pyrene	0.05 (0.05)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Naphthalene	92.9 (1.89)		625 SIM		10	12/12/17 15:47	C7L0163	CL70612
Pentachlorophenol	ND (0.85)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Phenanthrene	6.87 (0.19)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612
Pyrene	0.60 (0.19)		625 SIM		1	12/12/17 0:42	C7L0163	CL70612

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	76 %		30-130
Surrogate: 2,4,6-Tribromophenol	121 %	S+	15-110
Surrogate: 2-Fluorobiphenyl	77 %		30-130
Surrogate: Nitrobenzene-d5	97 %		30-130
Surrogate: p-Terphenyl-d14	84 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 12/7/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 12/08/17 1:23	Sequence C7L0096	Batch CL70747
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		40 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.18 (0.10)	MDL Method 350.1	<u>Limit</u>	<u>DF</u>	Analyst JLK	Analyzed 12/11/17 17:14	Units mg/L	Batch CL70811
Chloride	482 (50.0)	300.0		100	JLK	12/08/17 18:48	mg/L	CL70846
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	12/05/17 21:34	ug/L	CL70548
Phenols	ND (100)	420.1		1	JLK	12/11/17 17:15	ug/L	CL71143
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	12/06/17 12:05	ug/L	CL70628
Total Petroleum Hydrocarbon	ND (4.72)	1664A		1	LAB	12/12/17 13:50	mg/L	CL71109
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	12/05/17 20:44	ug/L	CL70549
Total Suspended Solids	34 (5)	2540D		1	JLK	12/08/17 21:02	mg/L	CL70845

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-02

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 12/8/17 11:35

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,2-Dibromoethane	ND (0.015)		504.1		1	12/08/17 19:43		CL70822
		%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		126 %		30-150				
Surrogate: Pentachloroethane [2C]		113 %		30-150				

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B11 MW

Date Sampled: 12/05/17 14:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1712097 ESS Laboratory Sample ID: 1712097-02

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 12/6/17 8:27

Alcohol Scan by GC/FID

Analyte Results (MRL) **MDL** Method <u>Limit</u> Analyst **Sequence Batch Analyzed** ASTM D3695 CL70605 Ethanol ND (10) 12/06/17 14:52

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712097

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		ı	Dissolved M	etals						
atch CL70554 - 3005A/200.7										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium	ND	4.0	ug/L							
Copper	ND	4.0	ug/L							
iron	ND	20.0	ug/L							
_ead	ND	0.4	ug/L							
Nickel	ND	10.0	ug/L							
Selenium	ND	0.8	ug/L							
Silver	ND	2.0	ug/L							
Zinc	ND	10.0	ug/L							
LCS										
Antimony	91.2	10.0	ug/L	100.0		91	85-115			
Arsenic	87.6	25.0	ug/L	100.0		88	85-115			
Cadmium	49.8	25.0	ug/L	50.00		100	85-115			
Chromium	92.4	4.0	ug/L	100.0		92	80-120			
Copper	95.0	4.0	ug/L	100.0		95	80-120			
iron	438	20.0	ug/L	500.0		88	80-120			
Lead	92.5	10.0	ug/L	100.0		93	85-115			
Nickel	94.2	10.0	ug/L	100.0		94	85-115			
Selenium	231	20.0	ug/L	200.0		115	85-115			
Silver	43.2	4.0	ug/L	50.00		86	85-115			
linc	98.8	10.0	ug/L	100.0		99	85-115			
Batch CL70557 - 245.1/7470A										
Blank										
1ercury	ND	0.20	ug/L							
.cs										
Mercury	5.95	0.20	ug/L	6.000		99	85-115			
.CS Dup										
Mercury	5.65	0.20	ug/L	6.000		94	85-115	5	20	
			Total Meta	als						
Batch CL70548 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
	ווט	10.0	ug/ L							
-CS	MD		1.00 ft							
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							

Blank

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712097

Quality Control Data

Analyte	B P	MDI	11. 2	Spike	Source	0/ 555	%REC	non	RPD Limit	O. 115
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
Batch CL70554 - 3005A/200.7										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium	ND	4.0	ug/L							
Chromium III	ND	4.00	ug/L							
Copper	ND	4.0	ug/L							
Hardness	ND	165	ug/L							
Iron	ND	20.0	ug/L							
Lead	ND	0.4	ug/L							
Nickel	ND	10.0	ug/L							
Selenium	ND	0.8	ug/L							
Silver	ND	1.0	ug/L							
Zinc	ND	10.0	ug/L							
LCS										
Antimony	91.2	10.0	ug/L	100.0		91	85-115			
Arsenic	87.6	25.0	ug/L	100.0		88	85-115			
Cadmium	49.8	25.0	ug/L	50.00		100	85-115			
Chromium	92.4	4.0	ug/L	100.0		92	85-115			
Chromium III	92.4	4.00	ug/L							
Copper	95.0	4.0	ug/L	100.0		95	85-115			
Hardness	6040	165	ug/L							
Iron	438	20.0	ug/L	500.0		88	85-115			
Lead	92.5	10.0	ug/L	100.0		93	85-115			
Nickel	94.2	10.0	ug/L	100.0		94	85-115			
Selenium	231	20.0	ug/L	200.0		115	85-115			
Silver	43.2	2.0	ug/L	50.00		86	85-115			
Zinc	98.8	10.0	ug/L	100.0		99	85-115			
LCS Dup										
Chromium III	92.1	4.00	ug/L							
Hardness	5970	165	ug/L							
Batch CL70557 - 245.1/7470A										
Blank										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	5.95	0.200	ug/L	6.000		99	85-115			
LCS Dup										
Mercury	5.65	0.200	ug/L	6.000		94	85-115	5	20	
		524.2 Vol	atile Organi	c Compou	ınds					
Batch CL70736 - 524.2										
Blank										
1,1,1-Trichloroethane	ND	0.5	ug/L							
1 1 2 Triablereathans	ND	0.5								

ND

1,1,2-Trichloroethane

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Batch CL70736 - 524.2

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compound	S
----------------	---------	----------	---

Batcii CL/0/30 - 324.2						
1,1-Dichloroethane	ND	0.5	ug/L			
1,1-Dichloroethene	ND	0.5	ug/L			
1,2-Dichlorobenzene	ND	0.5	ug/L			
1,2-Dichloroethane	ND	0.5	ug/L			
1,3-Dichlorobenzene	ND	0.5	ug/L			
1,4-Dichlorobenzene	ND	0.5	ug/L			
Acetone	ND	5.0	ug/L			
Benzene	ND	0.5	ug/L			
Carbon Tetrachloride	ND	0.3	ug/L			
cis-1,2-Dichloroethene	ND	0.5	ug/L			
Ethylbenzene	ND	0.5	ug/L			
Methyl tert-Butyl Ether	ND	0.5	ug/L			
Methylene Chloride	ND	0.5	ug/L			
Naphthalene	ND	0.5	ug/L			
Tertiary-amyl methyl ether	ND	1.0	ug/L			
Tertiary-butyl Alcohol	ND	25.0	ug/L			
Tetrachloroethene	ND	0.5	ug/L			
Toluene	ND	0.5	ug/L			
Trichloroethene	ND	0.5	ug/L			
Vinyl Chloride	ND	0.2	ug/L			
		0.5				
Kylene O	ND	0.5	ug/L			
Kylene P,M	ND	0.5	ug/L	F 000	104	00.120
Surrogate: 1,2-Dichlorobenzene-d4	5.19 4.99		ug/L	5.000 5.000	104 100	80-120 80-120
Surrogate: 4-Bromofluorobenzene	7.33 		ug/L	3.000	100	00-120
LCS						
1,1,1-Trichloroethane	10.2		ug/L	10.00	102	70-130
1,1,2-Trichloroethane	10.1		ug/L	10.00	101	70-130
1,1-Dichloroethane	9.9					
	3.3		ug/L	10.00	99	70-130
	10.9		ug/L ug/L	10.00	99 109	70-130
1,1-Dichloroethene						
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane	10.9		ug/L	10.00	109	70-130
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane	10.9 10.4		ug/L ug/L	10.00 10.00	109 104	70-130 70-130
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene	10.9 10.4 10.5		ug/L ug/L ug/L	10.00 10.00 10.00	109 104 105	70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene	10.9 10.4 10.5 10.3		ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00	109 104 105 103	70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone	10.9 10.4 10.5 10.3 10.5		ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00	109 104 105 103 105	70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene	10.9 10.4 10.5 10.3 10.5 48.6		ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00	109 104 105 103 105 97	70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride	10.9 10.4 10.5 10.3 10.5 48.6 10.4		ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00	109 104 105 103 105 97 104	70-130 70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene	10.9 10.4 10.5 10.3 10.5 48.6 10.4 10.3		ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00 10.00	109 104 105 103 105 97 104 103	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene	10.9 10.4 10.5 10.3 10.5 48.6 10.4 10.3 10.9		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00 10.00 10.00	109 104 105 103 105 97 104 103 109	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether	10.9 10.4 10.5 10.3 10.5 48.6 10.4 10.3 10.9		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00 10.00 10.00 10.00	109 104 105 103 105 97 104 103 109	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride	10.9 10.4 10.5 10.3 10.5 48.6 10.4 10.3 10.9 10.2		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00 10.00 10.00 10.00 10.00	109 104 105 103 105 97 104 103 109 102	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene	10.9 10.4 10.5 10.3 10.5 48.6 10.4 10.3 10.9 10.2 10.6 10.4		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00 10.00 10.00 10.00 10.00 10.00	109 104 105 103 105 97 104 103 109 102 106	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichlorobenzene	10.9 10.4 10.5 10.3 10.5 48.6 10.4 10.3 10.9 10.2 10.6 10.4 10.9		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00 10.00 10.00 10.00 10.00 10.00 10.00	109 104 105 103 105 97 104 103 109 102 106 104	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130
1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetone Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene Tertiary-amyl methyl ether	10.9 10.4 10.5 10.3 10.5 48.6 10.4 10.3 10.9 10.2 10.6 10.4 10.9 10.1		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 50.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	109 104 105 103 105 97 104 103 109 102 106 104 109 101	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712097

Ouality Control Data

		Quant	Ly Cont	i Oi Da	ıta					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		524.2 Vol	atile Organi	c Compoi	unds					
Batch CL70736 - 524.2										
Trichloroethene	10.5		ug/L	10.00		105	70-130			
/inyl Chloride	10.4		ug/L	10.00		104	70-130			
(ylene O	10.1		ug/L	10.00		101	70-130			
(ylene P,M	20.3		ug/L	20.00		102	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.02		ug/L	5.000		100	80-120			
Surrogate: 4-Bromofluorobenzene	5.02		ug/L	5.000		100	80-120			
.CS Dup										-
,1,1-Trichloroethane	9.9		ug/L	10.00		99	70-130	3	20	
,1,2-Trichloroethane	10.1		ug/L	10.00		101	70-130	0.2	20	
,1-Dichloroethane	9.9		ug/L	10.00		99	70-130	0.6	20	
,1-Dichloroethene	11.0		ug/L	10.00		110	70-130	0.8	20	
,2-Dichlorobenzene	10.5		ug/L	10.00		105	70-130	1	20	
,2-Dichloroethane	10.5		ug/L	10.00		105	70-130	0.2	20	
,3-Dichlorobenzene	10.5		ug/L	10.00		105	70-130	2	20	
,4-Dichlorobenzene	10.6		ug/L	10.00		106	70-130	1	20	
cetone	53.8		ug/L	50.00		108	70-130	10	20	
Benzene	10.3		ug/L	10.00		103	70-130	2	20	
Carbon Tetrachloride	9.8		ug/L	10.00		98	70-130	4	20	
is-1,2-Dichloroethene	10.5		ug/L	10.00		105	70-130	3	20	
thylbenzene	10.2		ug/L	10.00		102	70-130	0	20	
lethyl tert-Butyl Ether	10.5		ug/L	10.00		105	70-130	0.5	20	
lethylene Chloride	10.5		ug/L	10.00		105	70-130	0.8	20	
aphthalene	11.3		ug/L	10.00		113	70-130	4	20	
ertiary-amyl methyl ether	10.2		ug/L	10.00		102	70-130	1	20	
ertiary-butyl Alcohol	62.9		ug/L	50.00		126	70-130	2	25	
etrachloroethene	7.7		ug/L	10.00		77	70-130	4	20	
oluene	10.0		ug/L	10.00		100	70-130	3	20	
richloroethene	10.4		ug/L	10.00		104	70-130	1	20	
finyl Chloride	10.3		ug/L	10.00		103	70-130	0.4	20	
ylene O	10.2		ug/L	10.00		102	70-130	2	20	
(ylene P,M	20.7		ug/L	20.00		104	70-130	2	20	

ug/L 608 Polychlorinated Biphenyls (PCB)

ug/L

5.000

5.000

102

104

80-120

80-120

atch	CL	70	60	6 -	35	:10	10

Surrogate: 1,2-Dichlorobenzene-d4

Surrogate: 4-Bromofluorobenzene

Blank			
Aroclor 1016	ND	0.10	ug/L
Aroclor 1016 [2C]	ND	0.10	ug/L
Aroclor 1221	ND	0.10	ug/L
Aroclor 1221 [2C]	ND	0.10	ug/L
Aroclor 1232	ND	0.10	ug/L
Aroclor 1232 [2C]	ND	0.10	ug/L
Aroclor 1242	ND	0.10	ug/L
Aroclor 1242 [2C]	ND	0.10	ug/L

5.11

5.22

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712097

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Allalyte	Result					70KLC	Lillius	KFD	LIIIIC	Qualifier
		608 Polych	ilorinated B	ipnenyis (PCB)					
Batch CL70606 - 3510C										
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Currentes December history	0.0384		ug/L	0.05000		77	30-150			
Surrogate: Decachlorobiphenyl	0.0438		ug/L	0.05000		88	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0311		ug/L	0.05000		62	30-150			
Surrogate: Tetrachloro-m-xylene	0.0373		ug/L	0.05000		75	30-150			
Surrogate: Tetrachloro-m-xylene [2C] LCS	0.0373			0.03000			30 130			
Aroclor 1016	0.88	0.10	ug/L	1.000		88	40-140			
						89	40-140			
Aroclor 1016 [2C]	0.89	0.10	ug/L	1.000						
Aroclor 1260	1.02	0.10	ug/L	1.000		102	40-140			
Aroclor 1260 [2C]	0.92	0.10	ug/L	1.000		92	40-140			
Surrogate: Decachlorobiphenyl	0.0501		ug/L	0.05000		100	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0533		ug/L	0.05000		107	30-150			
Surrogate: Tetrachloro-m-xylene	0.0403		ug/L	0.05000		81	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0402		ug/L	0.05000		80	30-150			
LCS Dup										
Aroclor 1016	0.98	0.10	ug/L	1.000		98	40-140	11	20	
Aroclor 1016 [2C]	1.02	0.10	ug/L	1.000		102	40-140	14	20	
Aroclor 1260	1.07	0.10	ug/L	1.000		107	40-140	5	20	
Aroclor 1260 [2C]	0.97	0.10	ug/L	1.000		97	40-140	5	20	
Surrogate: Decachlorobiphenyl	0.0488		ug/L	0.05000		98	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0496		ug/L	0.05000		99	30-150			
Surrogate: Tetrachloro-m-xylene	0.0428		ug/L	0.05000		86	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0451		ug/L	0.05000		90	30-150			
Batch CL70825 - 3510C										
Blank										
Aroclor 1016	ND	0.10	ug/L							
Aroclor 1016 [2C]	ND	0.10	ug/L							
Aroclor 1221	ND	0.10	ug/L							
Aroclor 1221 [2C]	ND	0.10	ug/L							
Aroclor 1232	ND	0.10	ug/L							
Aroclor 1232 [2C]	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1242 [2C]	ND	0.10	ug/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712097

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		608 Polych	nlorinated B	Siphenyls (PCB)		· · · ·			
Batch CL70825 - 3510C										
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0393		ug/L	0.05000		<i>79</i>	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0472		ug/L	0.05000		94	30-150			
Surrogate: Tetrachloro-m-xylene	0.0330		ug/L	0.05000		66	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0422		ug/L	0.05000		84	30-150			
LCS										
Aroclor 1016	0.95	0.10	ug/L	1.000		95	40-140			
Aroclor 1016 [2C]	0.98	0.10	ug/L	1.000		98	40-140			
Aroclor 1260	1.09	0.10	ug/L	1.000		109	40-140			
Aroclor 1260 [2C]	1.01	0.10	ug/L	1.000		101	40-140			
Surrogate: Decachlorobiphenyl	0.0521		ug/L	0.05000		104	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0574		ug/L	0.05000		115	30-150			
Surrogate: Tetrachloro-m-xylene	0.0429		ug/L	0.05000		86	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0444		ug/L	0.05000		89	30-150			
LCS Dup										
Aroclor 1016	1.05	0.10	ug/L	1.000		105	40-140	10	20	
Aroclor 1016 [2C]	1.13	0.10	ug/L	1.000		113	40-140	15	20	
Aroclor 1260	1.16	0.10	ug/L	1.000		116	40-140	7	20	
Aroclor 1260 [2C]	1.06	0.10	ug/L	1.000		106	40-140	5	20	
Surrogate: Decachlorobiphenyl	0.0542		ug/L	0.05000		108	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0575		ug/L	0.05000		115	30-150			
Surrogate: Tetrachloro-m-xylene	0.0478		ug/L	0.05000		96	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0510		ug/L	0.05000		102	30-150			
- ,	62	25(SIM) Sem	i-Volatile O	rganic Cor	mpounds					
Batch CL70612 - 3510C										
Blank										
Acenaphthene	ND	0.20	ug/L							
Acenaphthylene	ND	0.20	ug/L							
Anthracene	ND	0.20	ug/L							
Ponzo(a)anthracono	ND	0.05								

ND

ND

ND

0.05

0.05

0.05

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(a)pyrene

ug/L

ug/L

ug/L

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Batch CL70612 - 3510C

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM) Semi-Volatile	Organic Co	ompounds
------------------------	------------	----------

Benzo(g,h,i)perylene	ND	0.20	ug/L				
Benzo(k)fluoranthene	ND	0.05	ug/L				
bis(2-Ethylhexyl)phthalate	ND	2.00	ug/L				
Butylbenzylphthalate	ND	2.50	ug/L				
Chrysene	ND	0.05	ug/L				
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	ND	2.50	ug/L				
Fluoranthene	ND	0.20	ug/L				
Fluorene	ND	0.20	ug/L				
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
Naphthalene	ND	0.20	ug/L				
Pentachlorophenol	ND	0.90	ug/L				
Phenanthrene	ND	0.20	ug/L				
Pyrene	ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	1.32		ug/L	2.500	53	30-130	
Surrogate: 2,4,6-Tribromophenol	3.40		ug/L	3.750	91	<i>15-110</i>	
Surrogate: 2-Fluorobiphenyl	1.64		ug/L	2.500	66	30-130	
Surrogate: Nitrobenzene-d5	2.03		ug/L	2.500	81	30-130	
Surrogate: p-Terphenyl-d14	2.09		ug/L	2.500	84	30-130	
LCS							
Acenaphthene	3.02	0.20	ug/L	4.000	75	40-140	
Acenaphthylene	3.04	0.20	ug/L	4.000	76	40-140	
Anthracene	3.09	0.20	ug/L	4.000	77	40-140	
Benzo(a)anthracene	2.33	0.05	ug/L	4.000	58	40-140	
Benzo(a)pyrene	2.57	0.05	ug/L	4.000	64	40-140	
Benzo(b)fluoranthene	2.64	0.05	ug/L	4.000	66	40-140	
Benzo(g,h,i)perylene	2.60	0.20	ug/L	4.000	65	40-140	
Benzo(k)fluoranthene	2.38	0.05	ug/L	4.000	59	40-140	
bis(2-Ethylhexyl)phthalate	2.90	2.00	ug/L	4.000	72	40-140	
Butylbenzylphthalate	3.06	2.50	ug/L	4.000	77	40-140	
Chrysene	2.41	0.05	ug/L	4.000	60	40-140	
Chrysene Dibenzo(a,h)Anthracene	2.41 2.69	0.05 0.05	ug/L ug/L	4.000 4.000	60 67	40-140 40-140	
•							
Dibenzo(a,h)Anthracene	2.69	0.05	ug/L	4.000	67	40-140	
Dibenzo(a,h)Anthracene Diethylphthalate	2.69 3.53	0.05 2.50	ug/L ug/L	4.000 4.000	67 88	40-140 40-140	
Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate	2.69 3.53 3.47	0.05 2.50 2.50	ug/L ug/L ug/L	4.000 4.000 4.000	67 88 87	40-140 40-140 40-140	
Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate Di-n-butylphthalate	2.69 3.53 3.47 3.47	0.05 2.50 2.50 2.50	ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000	67 88 87 87	40-140 40-140 40-140 40-140	
Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate	2.69 3.53 3.47 3.47 3.15	0.05 2.50 2.50 2.50 2.50	ug/L ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000 4.000	67 88 87 87 79	40-140 40-140 40-140 40-140 40-140	
Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Fluoranthene	2.69 3.53 3.47 3.47 3.15 3.23	0.05 2.50 2.50 2.50 2.50 2.50	ug/L ug/L ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000 4.000 4.000	67 88 87 87 79 81	40-140 40-140 40-140 40-140 40-140	
Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene	2.69 3.53 3.47 3.47 3.15 3.23 3.25	0.05 2.50 2.50 2.50 2.50 0.20	ug/L ug/L ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000 4.000 4.000	67 88 87 87 79 81	40-140 40-140 40-140 40-140 40-140 40-140	
Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene Indeno(1,2,3-cd)Pyrene	2.69 3.53 3.47 3.47 3.15 3.23 3.25 2.70	0.05 2.50 2.50 2.50 2.50 0.20 0.20 0.05	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000 4.000 4.000 4.000	67 88 87 87 79 81 81	40-140 40-140 40-140 40-140 40-140 40-140 40-140	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712097

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM) Semi-Volatile Organic Compounds

Batch CL70612 - 3510C									
Pyrene	2.48	0.20	ug/L	4.000	62	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	1.84		ug/L	2.500	74	30-130			
Surrogate: 2,4,6-Tribromophenol	4.88		ug/L	3.750	130	15-110			5+
Surrogate: 2-Fluorobiphenyl	2.11		ug/L	2.500	84	30-130			
Surrogate: Nitrobenzene-d5	2.48		ug/L	2.500	99	30-130			
Surrogate: p-Terphenyl-d14	1.82		ug/L	2.500	<i>73</i>	30-130			
LCS Dup									
cenaphthene	3.04	0.20	ug/L	4.000	76	40-140	0.8	20	
cenaphthylene	3.02	0.20	ug/L	4.000	75	40-140	0.7	20	
anthracene	3.12	0.20	ug/L	4.000	78	40-140	1	20	
enzo(a)anthracene	3.01	0.05	ug/L	4.000	75	40-140	25	20	D+
enzo(a)pyrene	3.18	0.05	ug/L	4.000	79	40-140	21	20	D+
enzo(b)fluoranthene	3.10	0.05	ug/L	4.000	78	40-140	16	20	
lenzo(g,h,i)perylene	3.28	0.20	ug/L	4.000	82	40-140	23	20	D+
enzo(k)fluoranthene	3.16	0.05	ug/L	4.000	79	40-140	28	20	D+
is(2-Ethylhexyl)phthalate	3.70	2.00	ug/L	4.000	93	40-140	24	20	D+
utylbenzylphthalate	3.89	2.50	ug/L	4.000	97	40-140	24	20	D+
hrysene	3.06	0.05	ug/L	4.000	77	40-140	24	20	D+
ibenzo(a,h)Anthracene	3.34	0.05	ug/L	4.000	84	40-140	21	20	D+
eiethylphthalate	3.54	2.50	ug/L	4.000	88	40-140	0.4	20	
imethylphthalate	3.46	2.50	ug/L	4.000	86	40-140	0.6	20	
vi-n-butylphthalate	3.48	2.50	ug/L	4.000	87	40-140	0.1	20	
i-n-octylphthalate	3.79	2.50	ug/L	4.000	95	40-140	19	20	
luoranthene	3.24	0.20	ug/L	4.000	81	40-140	0.3	20	
luorene	3.17	0.20	ug/L	4.000	79	40-140	2	20	
ndeno(1,2,3-cd)Pyrene	3.38	0.05	ug/L	4.000	84	40-140	22	20	D+
laphthalene	2.79	0.20	ug/L	4.000	70	40-140	0.03	20	
Pentachlorophenol	4.06	0.90	ug/L	4.000	101	30-130	0.2	20	
henanthrene	3.11	0.20	ug/L	4.000	78	40-140	2	20	
yrene	3.13	0.20	ug/L	4.000	78	40-140	23	20	D+
Surrogate: 1,2-Dichlorobenzene-d4	1.83		ug/L	2.500	73	30-130			
Surrogate: 2,4,6-Tribromophenol	5.08		ug/L	3.750	135	15-110			S+
Surrogate: 2-Fluorobiphenyl	2.10		ug/L	2.500	84	30-130			
Surrogate: Nitrobenzene-d5	2.46		ug/L	2.500	98	30-130			
Surrogate: p-Terphenyl-d14	2.30		ug/L	2.500	92	30-130			

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Batch CL70747 - 3535A									
Blank									
1,4-Dioxane	ND	0.250	ug/L						
Surrogate: 1,4-Dioxane-d8	3.34		ug/L	5.000	67	15-115			
LCS									
1,4-Dioxane	9.50	0.250	ug/L	10.00	95	40-140			
Surrogate: 1,4-Dioxane-d8	3.83		ug/L	5.000	<i>77</i>	<i>15-115</i>			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

		Qualit	ty Cont	rol Da	ıta					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8270D(SIM)	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Dilutio	on			
Batch CL70747 - 3535A										
LCS Dup										
1,4-Dioxane	9.06	0.250	ug/L	10.00		91	40-140	5	20	
Surrogate: 1,4-Dioxane-d8	3.22		ug/L	5.000		64	15-115			
		Cl	assical Che	mistry						
Batch CL70548 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS		_								
Hexavalent Chromium	0.490		mg/L	0.4998		98	90-110			
LCS Dup										
Hexavalent Chromium	0.491		mg/L	0.4998		98	90-110	0.2	20	
Batch CL70549 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.82		mg/L	1.800		101	85-115			
Batch CL70628 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	20.1	5.00	ug/L	20.06		100	90-110			
LCS										
Total Cyanide (LL)	150	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide (LL)	148	5.00	ug/L	150.4		99	90-110	0.7	20	
Batch CL70811 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.11	0.10	mg/L	0.09994		113	80-120			
LCS										
Ammonia as N	0.94	0.10	mg/L	0.9994		94	80-120			
Batch CL70845 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	32		mg/L	34.10		94	80-120			
Batch CL70846 - General Preparation										
Plank										

Blank

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712097

Quality Control Data

				Chiles	Course		0/, DEC		חחם	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
<u> </u>			assical Che							<u> </u>
Batch CL70846 - General Preparation										
Chloride	ND	0.5	mg/L							
ıcs										
Chloride	2.4		mg/L	2.500		98	90-110			
Batch CL71109 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5.00	mg/L							
LCS										
Total Petroleum Hydrocarbon	15.1	5.00	mg/L	19.38		78	66-114			
Batch CL71143 - General Preparation										
Blank		·	·							
Phenols	ND	100	ug/L							
LCS										
Phenols	115	100	ug/L	100.0		115	80-120			
LCS										
Phenols	1000	100	ug/L	1000		100	80-120			
	504.1 1,2	2-Dibromoeth	nane / 1,2-I	Dibromo-3	3-chloropr	opane				
Batch CL70822 - 504/8011										
-										
Blank	ND	0.015	ug/L							
Blank 1,2-Dibromoethane	ND ND	0.015 0.015	ug/L ug/L							
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND		ug/L	a 2000		95	30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND 0.190		ug/L	0.2000		95 108	30-150 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND		ug/L	0.2000 0.2000		95 108	30-150 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	ND 0.190 0.216	0.015	ug/L ug/L ug/L	0.2000		108	30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND 0.190		ug/L ug/L ug/L ug/L							
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	0.190 0.216	0.015	ug/L ug/L ug/L	0.2000		<i>108</i> 72	<i>30-150</i> 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C]	0.190 0.216 0.057 0.082	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000		72 102 40	70-130 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	0.190 0.216 0.057 0.082	0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000		72 102	70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	0.190 0.216 0.057 0.082	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000		72 102 40	70-130 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	0.190 0.216 0.057 0.082 0.0803 0.0909	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000 0.2000		72 102 40 45	70-130 70-130 30-150 30-150 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	0.190 0.216 0.057 0.082 0.0803 0.0909	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000 0.2000		72 102 40 45	70-130 70-130 70-130 30-150 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane	0.190 0.216 0.057 0.082 0.0803 0.0909	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000 0.2000		72 102 40 45	70-130 70-130 30-150 30-150 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane	0.190 0.216 0.057 0.082 0.0803 0.0909	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000 0.2000 0.2000		72 102 40 45 76 102	70-130 70-130 30-150 30-150 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane [2C]	0.190 0.216 0.057 0.082 0.0803 0.0909 0.152 0.204	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000 0.2000 0.2000 0.2000 0.2000		72 102 40 45 76 102	70-130 70-130 30-150 30-150 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane 1,2-Dibromoethane	0.190 0.216 0.057 0.082 0.0803 0.0909 0.152 0.204	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000 0.2000 0.2000 0.2000 0.2000		72 102 40 45 76 102	70-130 70-130 30-150 30-150 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane	0.190 0.216 0.057 0.082 0.0803 0.0909 0.152 0.204	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000 0.2000 0.2000 0.2000 0.2000		72 102 40 45 76 102	70-130 70-130 30-150 30-150 70-130 70-130			
Batch CL70822 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane [2C] LCS 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] Surrogate: Pentachloroethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane	0.190 0.216 0.057 0.082 0.0803 0.0909 0.152 0.204	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.2000 0.2000 0.2000 0.2000 0.2000		72 102 40 45 76 102	70-130 70-130 30-150 30-150 70-130 70-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Alco	hol Scan by	GC/FID						
Batch CL70605 - No Prep										
Ethanol	1160	10	mg/L	1007		115	60-140			
LCS Dup										
Ethanol	1020	10	mg/L	1007		102	60-140	12	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

Notes and Definitions

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
Q	Calibration required quadratic regression (Q).
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL I/V Initial Volume F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712097

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GE	I Consultants	s, Inc TB/	мм			oject ID:	1712097	
Shipped/D	elivered Via:		ESS Courie	<u> </u>		Project Du	eceived: ue Date: Project:	12/5/2017 12/12/2017 5 Day	
1. Air bill m	nanifest prese	ent?		No		6. Does COC m		J Day	Yes
Air No.:		NA	- · · · ·	-					
2. Were cu	ustody seals p	oresent?		No		7. Is COC comp	olete and correct?	•	Yes
3. Is radiat	ion count <10	00 CPM?		Yes		8. Were sample	es received intact	7	Yes
	iler Present? 2.8	lced with:	Ice	Yes		9. Were labs in	nformed about <u>s</u>	hort holds & rushes	? (Yes)No/NA
	C signed and	•		Yes		10. Were any a	analyses received	outside of hold time?	Yes (No')
	bcontracting Sample IDs: Analysis: TAT:			(No)			s received? n aqueous VOAs nol cover soil con		Yes No TNA
a. If metals b. Low Lev	e samples pro s preserved u vel VOA vials ceiving Notes	pon receipt: frozen:	ved?	Yes)/ No Date: Date:		Time: Time:	<u> </u>	By:By:	<u> </u>
	nere a need to ere a need to contacted?			er? Date:_	Yes No Yes No	Time;		Ву:	
	- -								
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Containe	er Type	Preservative		(Cyanide and 608 esticides)
01	187772	Yes	NA	Yes	1L Amber	- Unpres	NP		
01	187773	Yes	NA	Yes	1L Amber		NP		
01	187774	Yes	NA	Yes	1L Amber		NP		
01	187775	Yes	NA	Yes	1L Amber		NP		1
01	187776	Yes	NA	Yes	1L Amber	•	NP	a state of	· vacto
01	187777	Yes	NA	Yes	1L Amber		NP	(h solo x	10000
101	187778	Yes -	NA	Yes	1L Amber		112304 -	AK INGLI /	le on
01	187810	Yes	NA	Yes	500 mL Po		HNO3	t	hory a-ru
02	187762	Yes	NA	Yes	1L Amber	•	NP		7 P
02	187763	Yes	NA	Yes	1L Amber	•	141		1
02	187764	Yes	NA	Yes	1L Amber	- Unpres	NP		
02	187765	Yes	NA	Yes	1L Amber	- Unpres	NP		
02	187766	Yes	NA	Yes	1L Amber	- Unpres	NP		
02	187767	Yes	NA	Yes	1L Amber		NP		
02	187768	Yes	NA	Yes	1L Amber	•	H2SO4		
02	187769	Yes	NA	Yes	250 mL Po		HNO3		

02

02

02

02

02

02

02

02

188122

188123

188124

188125

188126

188127

188128

188129

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Νo

Nο

Νo

Νo

Nο

Νo

NA

NA

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

VOA Vial - HCI

VOA Vial - HCI

VOA Vial - HCI

VOA Vial - HCI VOA Vial - HCI

VOA Vial - HCI

VOA Vial - Unpres

1L Poly - Unpres

HCI

HCI

HCI

HCI HCI

HCI

NP

NP

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GEI Consultants, Inc TB/MM			ESS Project ID: 171:					
_						Date Rece	ived:	12/5/2017	
02	188130	Yes	NA	Yes	500 mL Poly	- HNO3	HNO3		
02	188131	Yes	NA	Yes	500 mL Poly	- HNO3	HNO3		
02	188132	Yes	NA	Yes	500 mL Poly	- H2\$O4	H2SO4	_	
02	188134	Yes	NA	Yes	250 mL Poly	- NaOH	NaOH OH	712 1988	McIlaler
02	188135	Yes	NA	Yes	250 mL Poly	- Unpres	NP \	, 6 (.00	101-11 10V
02 02	189546	Yes	AU	YK	IL Anbor		HOSOI	Λ.	
	labels on corr	ect contain			Yes / No		•	4 12/3	ln
Completed By:	(XVIV	WV			Date & Time:	2517	1915	14	12/8/17 1651
Reviewed By:		K			_ Date & Time: _	12/5/17	19	3z.	/ Z 12/8/17 1648
Delivered By:			*			12/5/	n 19	132	क्रिया १८५८

Clien	ıt: <u>G</u>	El Consultar	<u>its, Inc TE</u>	3/MM	ESS	Project (D:	17120 97	
					Date	Received:	12/5/2017	
Shipped/	Delivered Via	ı:	ESS Couri	<u>er</u>	Project	Due Date:	12/12/2017	
					Days f	or Project:	5 Day	
	manifest pre			No	6. Does COC	match bottles?		Yes
2. Were o	custody seals	present?		No	7. Is COC co	mplete and correct?		Yes
3. Is radia	ation count <	100 CPM?		Yes	8. Were samp	ples received intact?		Yes
	ooler Present	? lced with:	: Ice	Yes	9. Were labs	Informed about shor	t holds & rushes?	Yes) No / NA
		→ nd dated by c		Yes	10. Were any	analyses received out	side of hold time?	Yes (No
	ubcontracting S Sample IDs Analysis TAT		Yes			As received? s in aqueous VOAs? nanol cover soil complet	ely?	Yes (Ne) Yes / No / NA
a. If metal b. Low Le	e samples pr Is preserved vel VOA vials eceiving Note		rved?	Yes)/ No Date: Date:	Time: Time:	B	y: y:	
14. Was the a. Was the Who was c	ere a need to	o contact Pro	oject Manag client?		Yes No Yes Time: _	Ву	r	
a. Was the	ere a need to contacted?	contact the	Alr	_ Date: _	Yes Nue Time:	8 ₃		
a. Was the Who was o	ere a need to contacted? Container	Proper Container	client?		Yes No	By Preservative	r: Record pH (Cy- Pestic	anide and 608
a. Was the Who was o	container	Proper Container	Alr Bubbles Present	Date: _	Yes Nue Time:		Record pH (Cy	anide and 608
a. Was the Who was o	Container ID 187772 187773	Proper Container	Alr Bubbles Present	Date: _ Sufficient Volume	Time: Container Type	Preservative NP	Record pH (Cy	anide and 608
Sample Number 01 01 01	Container ID 187772 187773 187774	Proper Container Yes Yes Yes	Alr Bubbles Present	Sufficient Volume Yes	Container Type 1L Amber - Unpres 1L Amber - Unpres	Preservative NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01	Container ID 187772 187773 187774 187775	Proper Container Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes	Time: Container Type 1L Amber - Unpres	Preservative NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01	Container ID 187772 187773 187774 187775 187776	Proper Container Yes Yes Yes	Alr Bubbles Present NA NA NA	Sufficient Volume Yes Yes Yes Yes	Container Type 1L Amber - Unpres 1L Amber - Unpres 1L Amber - Unpres 1L Amber - Unpres	Preservative NP NP NP NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01	Container ID 187772 187773 187774 187775 187776	Proper Container Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes Yes Yes	Container Type 1L Amber - Unpres	Preservative NP NP NP NP NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01	Container ID 187772 187773 187774 187775 187776	Proper Container Yes Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes	Container Type 1L Amber - Unpres	Preservative NP NP NP NP NP NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01	Container ID 187772 187773 187774 187775 187776	Proper Container Yes Yes Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes	Container Type 1L Amber - Unpres 1L Amber - H2SO4	Preservative NP NP NP NP NP NP NP NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01 01	Container ID 187772 187774 187776 187777 187778	Proper Container Yes Yes Yes Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 1L Amber - Unpres 1L Amber - H2SO4 500 mL Poly - HNO3	Preservative NP NP NP NP NP NP NP H2SO4 HNO3	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01 01	Container ID 187772 187774 187776 187777 187777 187778	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 1L Amber - Unpres	Preservative NP NP NP NP NP NP H2SO4 HNO3 NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01 01 02 02	Container ID 187772 187773 187774 187775 187777 187778 187810 187762 187763	Proper Container Yes Yes Yes Yes Yes Yes Yes Y	Alr Bubbles Present NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 1L Amber - Unpres 1L Amber - H2SO4 500 mL Poly - HNO3 1L Amber - Unpres 1L Amber - Unpres 1L Amber - Unpres	Preservative NP NP NP NP NP NP H2SO4 HNO3 NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01 01 02 02 02	Container ID 187772 187773 187774 187775 187777 187778 187810 187762 187763 187764	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Alr Bubbles Present NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 1L Amber - Unpres 1L Amber - H2SO4 500 mL Poly - HNO3 1L Amber - Unpres	Preservative NP NP NP NP NP H2SO4 HNO3 NP NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01 01 02 02 02 02 02	Container ID 187772 187773 187774 187775 187777 187778 187778 187810 187762 187763 187764 187765	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Alr Bubbles Present NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 1L Amber - Unpres	Preservative NP NP NP NP NP NP H2SO4 HNO3 NP NP NP NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01 02 02 02 02 02 02	Container ID 187772 187773 187775 187776 187777 187777 187776 187762 187763 187764 187765 187766	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Alr Bubbles Present NA NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 1L Amber - Unpres	Preservative NP NP NP NP NP H2SO4 HNO3 NP NP NP NP NP NP	Record pH (Cy	anide and 608
Sample Number 01 01 01 01 01 01 01 02 02 02 02 02	Container ID 187772 187773 187774 187775 187777 187778 187778 187810 187762 187763 187764 187765	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Alr Bubbles Present NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 1L Amber - Unpres	Preservative NP NP NP NP NP NP H2SO4 HNO3 NP NP NP NP NP	Record pH (Cy	anide and 608

02

02

02

02

02

02

02

02

02

187769

188122

188123

188124

188125

188126

188127

188128

188129

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

NA

Νo

No

No

Nο

Νo

No

NA

NA

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

250 mL Poly - HNO3

VOA Vial - HCI

VOA Vial - Unpres

1L Poly - Unpres

HNO3

HCI

HCI

HCI

HCI

HCI

HCI

NP

NP

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	GEI	Consultant	s, Inc TB/I	MM	_ ESS Proj	ect ID:	1712097	
					Date Re	ceived:	12/5/2017	
02	188130	Yes	NA	Yes	500 mL Poly - HNO3	HNO3		
02	188131	Yes	NA	Yes	500 mL Poly - HNO3	HNO3		
02	188132	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4 .1		
02	188134	Yes	NA	Yes	250 mL Poly - NaOH	NaOH OH)	12 19AR	Morilaler
02	188135	Yes	NA	Yes	250 mL Poly - Unpres	NP (<i>-</i> (100	.01-11 >01/
2nd Review Are barcode Completed By: Reviewed By: Delivered By:	labels on co	rrect contain	ners?		(Yes /) No Date & Time: 12 5 17	1915 7 1932 117 193		

	aborate			CHAIN OF CUSTODY										ESS LAB PROJECT ID (7)2097 Reporting Limits -													
	<i>of Thielsch</i> s Avenue, Cra	-		Turn Tim				tush	Approv	ed E	Ву:					1								,		_	_
) 461-7181				re samples	s were o	collected:	MANI	Н							Dis	char	ge in	to:	Fres	h W	ater		Salt	Wat	er L	
	laboratory.c			Is this pro	ject for:		~ n				lectonic										_						
r			<u> </u>				GP			FC	ormat: I	EXC6	-1_	_ A	cces	S	- P.	DF 7	4	Othe	er_	T				ī	T
C	Project Mana GET 400 Un Jounn,	_				Proje	ect #16(c ect Name: Everso		WRYR	<u>a.</u>	Analysis	Total	Dissolved	Hardness (Calculation)	.0.0c	Cyanide 4500 LL			CL D	c. MUST run T. Cr)	00	0.1	RGP VOC Long List 524	1,4-Dioxane 8270-SIM	MIS 25 COL	PCB 608	omment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sa	ample Ident	ification		Ca	# of ontainers	RGP Metals	RGP Metals Dissolved	Hardness	Chloride 300.0*		TPH 1664	TSS 2540D*	IRC 4500	Tri Cr (Calc, MUST	Hex Cr 3500	Phenol 420.	RGP VOC	1,4-Dioxar	EDB 504.1	PCB 608	
l	12-5-17	1	G	Mater	16108	15-	840	jun's)	-	7.22		X	-			X					X		X	>	X	1,
2	12-5-17	1400	G		16108					Ī	22	X	X:	メ ,	z x	×	X X X X X X X X X X X X X X X X X X X							X	. 7		
										+			4	+	_			+	\downarrow	+	\perp	-		\downarrow			
										+	-		+		+							+	+	\vdash			
										+				+		Н		+	$^{+}$	+	\dagger	\vdash	H	+	+		\vdash
									= = =																		
										\perp				~1						\perp	\perp			\perp			L
													+	_	-		-	+	+	+	\perp	H		+	+	-	\vdash
Preservation (Code: 1-NP, 2-1	HCI, 3-H2SO4	, 4-HNO3, 5-N	NaOH, 6-MeC	OH, 7-Asorbi	ic Acid, 8	-ZnAct, 9					4	4	4 1	1	5	2	1	1	3 -	1	3	2	1	2 1	1 1	+
Container Typ	e: P-Poly G-G	lass AG-Ambe	er Glass S-Ster	rile V-VOA								Р	Р	РΙ	/ P	Р	AG	Р	P	P -	Р	AG	V	AG	V A	GAG	3
	I SD-Solid D-S			Approximation of the second			DW-Drin	king Water	O-Oil W-Wi	ipes F	F-Filter																
Cooler Pre	sent	Yes _	No	Sampled b					correction per				_														
Seals Intac	t Yes	No N	A: X						d, Cu, Fe, P	b, N							113	B ar	d F	lg by	y 24	5.1					
Cooler Ten	nperature: _{	2.8		2) Parame	ters in BC RC and C					1.	PERM	ИІТ	AT	TA	CHE	ED		A									
Relinquished by:	a. Wa	poto	Date/Time	Received by: (\$	Signature	/6n	1 1185	Revidquish	ed by: (Signature)	6		12/3	1/17	and the second second	829	4	()		W				Signa		2		
Refinquished by:	(Signature)		Date/Time	Received by (Signature)		0	Relinquish	ed by: (Signature))			D	ate/Tir	ne		1	₩,		Re	ceive	d by: (Signat	ture)			

COOler #2 2.1 temp ice Black of

Please E-mail all changes to Chain of Custody in writing

Page ___ of ___

	aborate		na Ina		CHAIN OF CUSTODY Standard Rush Approved By:									ESS LAB PROJECT ID (7)2097 Reporting Limits -											
	s Avenue, Cra		_	Turn Tim					d By:													i)			_
Tel. (401) 461-7181	Fax (401)	461-4486			were coll	ected: MAN	H						ㅗ		-			esh \	Water	r U	Sal	t Wa	ter l	
www.ess	laboratory.c	com		Is this pro	ject for:				Electonic							1				_					
				<u></u>		RGI			Format:	Exc	el_	_	Acce	SS_	_ F	PDF	~	Ot	her	-	_				
C	Project Mana GET 400 Un hum,	_				Project N	1610373 Name: externce	WENRE	Analysis	als Total	RGP Metals Dissolved	Hardness (Calculation)	Ethanol ASTM D3695	Cyanide 4500 LL	54	2540D*	00-CL D*	a 350.1	Tri Cr (Calc. MUST run T. Cr)	3500	RGP VOC Long List 524	,4-Dioxane 8270-SIM	504.1	RGP SVOC Log List 625-SIM	Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Samp	le Identification		# of Containers	RGP Me	RGP Me	Hardne	Ethanc	Total C	TPH 1664	TSS 25	TRC 4500-CL	Ammonia 350.	Tri Cr (Hex Cr 3500 Phenol 420 1	RGP V	1,4-Dio	EDB 50	RGP SY	
l	12-5-17	0830	G	Mater	161087	5-6	54 CMN)	722		×	-			X					>	4	X		XX	1,2
2	12-5-17	1400	G				SIICMN		22	×	X	メ	又	×>	X	X	×	X	×	×>	××	×			
												_	_	+			_	\vdash	\dashv	_	+		_	\perp	
											Н		+	+						-	+				
											\vdash	-	+	+				\dashv	+	+	+	\vdash	\dashv	+	+
												1		+					+	+	+			-	+
												·n	,	\top					\top	\dagger		\Box			
									4:																
	Code: 1-NP, 2-1				H, 7-Asorbic	Acid, 8-Zn	Act, 9						1							1 3				1 1	
	e: P-Poly G-G									Р	Р	Р	V	P	AG	P	Р	Р	-	PA	G V	AG	V	AGA	3
				Approximation of the second			W-Drinking Wate	er O-Oil W-Wipe	es F-Filter								_								
	sent	_			y: 14						70 20						72								
Seals Intac	t Yes	No N	A: XI					Cd, Cu, Fe, Pb					•		311.	3B a	ind	Hg	by 2	245.1	l				
Cooler Ter	nperature: _{	2.8	-	,			Short hold-tim om the same o	container	PERI	VIII				ED		1									
Relinquished by	a. Wa	post	Date/Time	Received by: (S	Dung	Enfel	7 1 /w	hed by: (Signature)	/	12/	5/19	Date/	82	4	(Щ			Ved by			2		
Refinquished by	(Signature)		Date/Time	Received by (S	oignature)		Relinquis	hed by: (Signature)			ı	Date/	ıme			1			vecen	ived by	(Sign	iature)			

COOler #2 2.1 temp ice Black of

Please E-mail all changes to Chain of Custody in writing

Page ____ of ____

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Mike Sabulis GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Eversource WRNRP - RGP (1610515)
ESS Laboratory Work Order Number: 1712102

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

aurel Stoddard

Laurel Stoddard
Laboratory Director

REVIEWED

By ESS Laboratory at 5:20 pm, Dec 12, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

SAMPLE RECEIPT

The following samples were received on December 05, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Sample 1712102-01 for Total Residual Chlorine and Hexavalent Chromium was received outside of the holding time.

Lab Number	Sample Name	Matrix	Analysis
1712102-01	1610515-B4 MW	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1,
			3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D,
			504.1, 524.2, ASTM D3695
1712102-02	1610515-B6 MW	Ground Water	1664A, 200.7, 245.1, 3113B, 420.1, 608, 625 SIM,
			8270D SIM

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

PROJECT NARRATIVE

625(SIM) Semi-Volatile Organic Compounds

1712102-02 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

2,4,6-Tribromophenol (210% @ 15-110%)

C7L0142-CCV1 Calibration required quadratic regression (Q).

2,4,6-Tribromophenol (116% @ 80-120%), Pentachlorophenol (103% @ 80-120%)

C7L0164-CCV1 <u>Calibration required quadratic regression (Q).</u>

2,4,6-Tribromophenol (137% @ 80-120%), Pentachlorophenol (131% @ 80-120%)

C7L0164-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

2,4,6-Tribromophenol (37% @ 20%), Pentachlorophenol (31% @ 20%)

C7L0164-TUN1 **DDT breakdown > 20%**

CL70612-BS2 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (130% @ 15-110%)

CL70612-BSD2 Relative percent difference for duplicate is outside of criteria (D+).

Benzo(a)anthracene (25% @ 20%), Benzo(a)pyrene (21% @ 20%), Benzo(g,h,i)perylene (23% @ 20%), Benzo(k)fluoranthene (28% @ 20%), bis(2-Ethylhexyl)phthalate (24% @ 20%), Butylbenzylphthalate (24% @ 20%), Chrysene (24% @ 20%), Dibenzo(a,h)Anthracene (21% @ 20%), Indeno(1,2,3-cd)Pyrene

(22% @ 20%), Pyrene (23% @ 20%)

CL70612-BSD2 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (135% @ 15-110%)

Classical Chemistry

1712102-01 Estimated value. Sample hold times were exceeded (H).

Hexavalent Chromium

1712102-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW Date Sampled: 12/04/17 14:00

Percent Solids: N/A

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	12/07/17 18:00	100	20	CL70554
Arsenic	ND (5.0)		3113B		5	KJK	12/07/17 22:25	100	20	CL70554
Cadmium	ND (0.25)		3113B		5	KJK	12/07/17 17:00	100	20	CL70554
Chromium	10.1 (4.0)		200.7		1	KJK	12/07/17 18:00	100	20	CL70554
Chromium III	10.1 (10.0)		200.7		1	JLK	12/07/17 18:00	1	1	[CALC]
Copper	10.6 (4.0)		200.7		1	KJK	12/07/17 18:00	100	20	CL70554
Hardness	62400 (165)		200.7		1	KJK	12/07/17 18:00	1	1	[CALC]
Iron	5080 (20.0)		200.7		1	KJK	12/07/17 18:00	100	20	CL70554
Lead	15.8 (2.0)		3113B		5	KJK	12/07/17 19:55	100	20	CL70554
Mercury	ND (0.200)		245.1		1	MJV	12/08/17 15:00	20	40	CL70557
Nickel	ND (10.0)		200.7		1	KJK	12/07/17 18:00	100	20	CL70554
Selenium	ND (4.0)		3113B		5	KJK	12/08/17 1:07	100	20	CL70554
Silver	ND (1.0)		200.7		1	KJK	12/07/17 18:00	100	20	CL70554
Zinc	45.8 (10.0)		200.7		1	KJK	12/07/17 18:00	100	20	CL70554

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW Date Sampled: 12/04/17 14:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
1,1,2-Trichloroethane	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
1,1-Dichloroethane	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
1,1-Dichloroethene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
1,2-Dichlorobenzene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
1,2-Dichloroethane	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
1,3-Dichlorobenzene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
1,4-Dichlorobenzene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Acetone	ND (5.0)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Benzene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Carbon Tetrachloride	ND (0.3)		524.2		1	12/07/17 16:15	C7L0109	CL70736
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Ethylbenzene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Methylene Chloride	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Naphthalene	7.9 (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Tetrachloroethene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Toluene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Trichloroethene	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Vinyl Chloride	ND (0.2)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Xylene O	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736
Xylene P,M	ND (0.5)		524.2		1	12/07/17 16:15	C7L0109	CL70736

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 100 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 103 %
 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW Date Sampled: 12/04/17 14:00

Percent Solids: N/A

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.11 (0.10)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u>	Analyst JLK	<u>Analyzed</u> 12/11/17 17:15	Units mg/L	Batch CL70811
Chloride	99.3 (50.0)	300.0		100	JLK	12/08/17 19:05	mg/L	CL70846
Hexavalent Chromium	H ND (10.0)	3500Cr B-2009		1	JLK	12/05/17 21:34	ug/L	CL70548
Phenols	ND (100)	420.1		1	JLK	12/06/17 17:40	ug/L	CL70640
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	12/06/17 12:05	ug/L	CL70628
Total Petroleum Hydrocarbon	ND (6.41)	1664A		1	LAB	12/08/17 9:04	mg/L	CL70611
Total Residual Chlorine	ND (20.0)	4500Cl D		1	JLK	12/05/17 20:44	ug/L	CL70549
Total Suspended Solids	832 (10)	2540D		1	JLK	12/08/17 21:02	mg/L	CL70845

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW

Date Sampled: 12/04/17 14:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 12/8/17 11:35

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,2-Dibromoethane	ND (0.015)		504.1		1	12/08/17 20:33		CL70822
		%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		140 %		30-150				
Surrogate: Pentachloroethane [2C]		140 %		30-150				

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B4 MW

Date Sampled: 12/04/17 14:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 12/6/17 8:27

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC12/06/17 15:15CL70605

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW Date Sampled: 12/04/17 10:30

Percent Solids: N/A

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-02 Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	12/07/17 17:44	100	20	CL70554
Arsenic	ND (5.0)		3113B		5	KJK	12/07/17 22:03	100	20	CL70554
Cadmium	ND (0.25)		3113B		5	KJK	12/07/17 16:49	100	20	CL70554
Chromium	ND (4.0)		200.7		1	KJK	12/07/17 17:44	100	20	CL70554
Copper	ND (4.0)		200.7		1	KJK	12/07/17 17:44	100	20	CL70554
Iron	ND (20.0)		200.7		1	KJK	12/07/17 17:44	100	20	CL70554
Lead	ND (2.0)		3113B		5	KJK	12/07/17 19:43	100	20	CL70554
Mercury	ND (0.20)		245.1		1	MJV	12/08/17 15:05	20	40	CL70557
Nickel	ND (10.0)		200.7		1	KJK	12/07/17 17:44	100	20	CL70554
Selenium	ND (4.0)		3113B		5	KJK	12/08/17 0:38	100	20	CL70554
Silver	ND (2.0)		200.7		1	KJK	12/07/17 17:44	100	20	CL70554
Zinc	12.9 (10.0)		200.7		1	KJK	12/07/17 17:44	100	20	CL70554

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW

Date Sampled: 12/04/17 10:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-02

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 12/6/17 11:02

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	12/06/17 20:30		CL70606
Aroclor 1221	ND (0.09)		608		1	12/06/17 20:30		CL70606
Aroclor 1232	ND (0.09)		608		1	12/06/17 20:30		CL70606
Aroclor 1242	ND (0.09)		608		1	12/06/17 20:30		CL70606
Aroclor 1248	ND (0.09)		608		1	12/06/17 20:30		CL70606
Aroclor 1254	ND (0.09)		608		1	12/06/17 20:30		CL70606
Aroclor 1260	ND (0.09)		608		1	12/06/17 20:30		CL70606
Aroclor 1262	ND (0.09)		608		1	12/06/17 20:30		CL70606
Aroclor 1268	ND (0.09)		608		1	12/06/17 20:30		CL70606
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		65 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		<i>75 %</i>		30-150				
Surrogate: Tetrachloro-m-xylene		71 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		84 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW

Date Sampled: 12/04/17 10:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 12/6/17 14:36

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Acenaphthylene	0.50 (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Anthracene	0.30 (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Benzo(a)anthracene	0.52 (0.05)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Benzo(a)pyrene	0.59 (0.05)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Benzo(b)fluoranthene	0.60 (0.05)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Benzo(g,h,i)perylene	0.43 (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Benzo(k)fluoranthene	0.20 (0.05)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Butylbenzylphthalate	ND (2.34)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Chrysene	0.65 (0.05)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Dibenzo(a,h)Anthracene	0.12 (0.05)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Diethylphthalate	ND (2.34)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Dimethylphthalate	ND (2.34)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Di-n-butylphthalate	ND (2.34)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Di-n-octylphthalate	ND (2.34)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Fluoranthene	0.75 (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Fluorene	ND (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Indeno(1,2,3-cd)Pyrene	0.43 (0.05)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Naphthalene	ND (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Pentachlorophenol	ND (0.84)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Phenanthrene	0.41 (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
Pyrene	1.18 (0.19)		625 SIM		1	12/12/17 13:19	C7L0164	CL70612
	9/0	Recovery	Qualifier	Limits				

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	48 %		30-130
Surrogate: 2,4,6-Tribromophenol	210 %	<i>S+</i>	15-110
Surrogate: 2-Fluorobiphenyl	87 %		30-130
Surrogate: Nitrobenzene-d5	76 %		30-130
Surrogate: p-Terphenyl-d14	81 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW

Date Sampled: 12/04/17 10:30

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-02

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 12/7/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 12/08/17 2:12	Sequence C7L0096	Batch CL70747
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		30 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B6 MW Date Sampled: 12/04/17 10:30

Percent Solids: N/A

ESS Laboratory Work Order: 1712102 ESS Laboratory Sample ID: 1712102-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Phenols	ND (100)		420.1		1	JLK	12/06/17 17:40	ug/L	CL70640
Total Petroleum Hydrocarbon	ND (6.25)		1664A		1	LAB	12/08/17 9:04	mg/L	CL70611

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712102

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
ruiuryc	Nesuit				Nesuit	/UNLC	LIIIIG	Νī·D	Little	Qualifiel
		l	Dissolved M	etais						
atch CL70554 - 3005A/200.7										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium	ND	4.0	ug/L							
Copper	ND	4.0	ug/L							
iron	ND	20.0	ug/L							
Lead	ND	0.4	ug/L							
Nickel	ND	10.0	ug/L							
Selenium	ND	0.8	ug/L							
Silver	ND	2.0	ug/L							
Zinc	ND	10.0	ug/L							
LCS										
Antimony	91.2	10.0	ug/L	100.0		91	85-115			
Arsenic	87.6	25.0	ug/L	100.0		88	85-115			
Cadmium	49.8	25.0	ug/L	50.00		100	85-115			
Chromium	92.4	4.0	ug/L	100.0		92	80-120			
Copper	95.0	4.0	ug/L	100.0		95	80-120			
íron	438	20.0	ug/L	500.0		88	80-120			
_ead	92.5	10.0	ug/L	100.0		93	85-115			
Nickel	94.2	10.0	ug/L	100.0		94	85-115			
Selenium	231	20.0	ug/L	200.0		115	85-115			
Silver	43.2	4.0	ug/L	50.00		86	85-115			
Zinc	98.8	10.0	ug/L	100.0		99	85-115			
Batch CL70557 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	5.95	0.20	ug/L	6.000		99	85-115			
LCS Dup										
Mercury	5.65	0.20	ug/L	6.000		94	85-115	5	20	
			Total Meta							
			Total Meta	ais						
Batch CL70548 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
.CS Dup										
LCS Dup Chromium III	ND		ug/L							

Blank

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712102

Quality Control Data

			Spike	Source		%REC		RPD	
Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Total Meta	ls						
ND	10.0	ug/I							
	10.0	ug/ L							
01.2	10.0	ue /I	100.0		01	OF 11F			
			100.0		92	85-115			
			100.0		0.5	OF 11F			
			100.0		93	03-113			
			E00.0		00	OE 11E			
90.0	10.0	ug/L	100.0		99	03-113			
5970	165	ug/L							
ND	0.200	ug/L							
5.95	0.200	ug/L	6.000		99	85-115			
5.65	0.200	ug/L	6.000		94	85-115	5	20	
	524.2 Vol	atile Organio	Compou	unds					
ND	0.5	ug/L							
	ND N	ND 10.0 ND 1.0 ND 0.05 ND 4.0 ND 4.0 ND 4.0 ND 165 ND 20.0 ND 0.4 ND 10.0 ND 0.8 ND 10.0 ND 10.0 ND 10.0 91.2 10.0 87.6 25.0 49.8 25.0 92.4 4.0 92.4 4.00 95.0 4.0 6040 165 438 20.0 92.5 10.0 94.2 10.0 231 20.0 43.2 2.0 98.8 10.0 92.1 4.00 5970 165	ND 10.0 ug/L ND 1.0 ug/L ND 0.05 ug/L ND 4.0 ug/L ND 4.0 ug/L ND 4.0 ug/L ND 165 ug/L ND 165 ug/L ND 165 ug/L ND 0.4 ug/L ND 0.4 ug/L ND 0.8 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 10.0 ug/L S7.6 25.0 ug/L 92.4 4.0 ug/L 92.4 4.0 ug/L 92.4 4.0 ug/L 92.5 10.0 ug/L 94.2 10.0 ug/L 95.0 ug/L 94.2 10.0 ug/L 94.2 10.0 ug/L 95.0 ug/L 94.1 4.0 ug/L 95.1 4.0 ug/L 96.8 10.0 ug/L 97.1 4.0 ug/L 98.8 10.0 ug/L 98.8 10.0 ug/L	ND 10.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 0.05 ug/L ND 4.0 ug/L ND 165 ug/L ND 20.0 ug/L ND 0.4 ug/L ND 10.0 ug/L 100.0 ug/L 49.8 25.0 ug/L 50.00 49.8 25.0 ug/L 100.0 49.2 4.00 ug/L 100.0 49.2 4.00 ug/L 100.0 49.2 2.0 ug/L 50.0 20.0 23.1 20.0 ug/L 20.0 23.1 20.0 ug/L 20.0 23.1 20.0 ug/L 50.00 98.8 10.0 ug/L 50.00 98.8 10.0 ug/L 50.00 98.8 10.0 ug/L 50.00 99.1 50.00	ND 10.0 ug/L	ND	ND	ND	ND

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Batch CL70736 - 524.2

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compound	S
----------------	---------	----------	---

Batch CL/0/36 - 524.2							
1,1-Dichloroethane	ND	0.5	ug/L				
1,1-Dichloroethene	ND	0.5	ug/L				
1,2-Dichlorobenzene	ND	0.5	ug/L				
,2-Dichloroethane	ND	0.5	ug/L				
1,3-Dichlorobenzene	ND	0.5	ug/L				
,4-Dichlorobenzene	ND	0.5	ug/L				
acetone	ND	5.0	ug/L				
Benzene	ND	0.5	ug/L				
Carbon Tetrachloride	ND	0.3	ug/L				
is-1,2-Dichloroethene	ND	0.5	ug/L				
Ethylbenzene	ND	0.5	ug/L				
lethyl tert-Butyl Ether	ND	0.5	ug/L				
1ethylene Chloride	ND	0.5	ug/L				
Naphthalene	ND	0.5	ug/L				
Fertiary-amyl methyl ether	ND	1.0	ug/L				
Fertiary-butyl Alcohol	ND	25.0	ug/L				
Fetrachloroethene	ND	0.5	ug/L				
oluene	ND	0.5	ug/L				
richloroethene	ND	0.5	ug/L				
'inyl Chloride	ND	0.2	ug/L				
ylene O	ND	0.5	ug/L				
ylene P,M	ND	0.5	ug/L				
	5.19	0.5	ug/L	5.000	<i>104</i>	80-120	
Surrogate: 1,2-Dichlorobenzene-d4	4.99		ug/L	5.000	100	80-120 80-120	
Surrogate: 4-Bromofluorobenzene	7.33		ug/L	3.000	100	00-120	
.cs							
,1,1-Trichloroethane	10.2		ug/L	10.00	102	70-130	
,1,2-Trichloroethane	10.1		ug/L	10.00	101	70-130	
,1-Dichloroethane	9.9		ug/L	10.00	99	70-130	
,1-Dichloroethene	10.9		ug/L	10.00	109	70-130	
,2-Dichlorobenzene	10.4		ug/L	10.00	104	70-130	
,2-Dichloroethane	10.5		ug/L	10.00	105	70-130	
,3-Dichlorobenzene	10.3		ug/L	10.00	103	70-130	
,4-Dichlorobenzene	10.5		ug/L	10.00	105	70-130	
cetone	48.6		ug/L	50.00	97	70-130	
enzene	10.4		ug/L	10.00	104	70-130	
Carbon Tetrachloride	10.3		ug/L	10.00	103	70-130	
is-1,2-Dichloroethene	10.9		ug/L	10.00	109	70-130	
thylbenzene	10.2		ug/L	10.00	102	70-130	
lethyl tert-Butyl Ether	10.6		ug/L	10.00	106	70-130	
lethylene Chloride	10.4		ug/L	10.00	104	70-130	
laphthalene	10.9		ug/L	10.00	109	70-130	
ertiary-amyl methyl ether	10.1		ug/L	10.00	101	70-130	
ertiary-butyl Alcohol	64.2		ug/L	50.00	128	70-130	
etrachloroethene	8.1		ug/L	10.00	81	70-130	
Foluene	10.3		ug/L	10.00	103	70-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712102

Quality Control Data

		Quain	ty Cont	гоі ра	ıta					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		524.2 Vol	atile Organi	c Compo	unds					
Batch CL70736 - 524.2										
Trichloroethene	10.5		ug/L	10.00		105	70-130			
Vinyl Chloride	10.4		ug/L	10.00		104	70-130			
Xylene O	10.1		ug/L	10.00		101	70-130			
Xylene P,M	20.3		ug/L	20.00		102	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.02		ug/L	5.000		100	80-120			
Surrogate: 4-Bromofluorobenzene	5.02		ug/L	5.000		100	80-120			
LCS Dup										
1,1,1-Trichloroethane	9.9		ug/L	10.00		99	70-130	3	20	
1,1,2-Trichloroethane	10.1		ug/L	10.00		101	70-130	0.2	20	
1,1-Dichloroethane	9.9		ug/L	10.00		99	70-130	0.6	20	
1,1-Dichloroethene	11.0		ug/L	10.00		110	70-130	0.8	20	
1,2-Dichlorobenzene	10.5		ug/L	10.00		105	70-130	1	20	
1,2-Dichloroethane	10.5		ug/L	10.00		105	70-130	0.2	20	
1,3-Dichlorobenzene	10.5		ug/L	10.00		105	70-130	2	20	
1,4-Dichlorobenzene	10.6		ug/L	10.00		106	70-130	1	20	
Acetone	53.8		ug/L	50.00		108	70-130	10	20	
Benzene	10.3		ug/L	10.00		103	70-130	2	20	
Carbon Tetrachloride	9.8		ug/L	10.00		98	70-130	4	20	
cis-1,2-Dichloroethene	10.5		ug/L	10.00		105	70-130	3	20	
Ethylbenzene	10.2		ug/L	10.00		102	70-130	0	20	
Methyl tert-Butyl Ether	10.5		ug/L	10.00		105	70-130	0.5	20	
Methylene Chloride	10.5		ug/L	10.00		105	70-130	0.8	20	
Naphthalene	11.3		ug/L	10.00		113	70-130	4	20	
Tertiary-amyl methyl ether	10.2		ug/L	10.00		102	70-130	1	20	
Tertiary-butyl Alcohol	62.9		ug/L	50.00		126	70-130	2	25	
Tetrachloroethene	7.7		ug/L	10.00		77	70-130	4	20	
Toluene	10.0		ug/L	10.00		100	70-130	3	20	
Trichloroethene	10.4		ug/L	10.00		104	70-130	1	20	
Vinyl Chloride	10.3		ug/L	10.00		103	70-130	0.4	20	
Xylene O	10.2		ug/L	10.00		102	70-130	2	20	
Kylene P,M	20.7		ug/L	20.00		104	70-130	2	20	

ug/L 608 Polychlorinated Biphenyls (PCB)

ug/L

5.000

5.000

102

104

80-120

80-120

Batch	CL	70	606	-	35	10	C

Surrogate: 1,2-Dichlorobenzene-d4

Surrogate: 4-Bromofluorobenzene

Blank			
Aroclor 1016	ND	0.10	ug/L
Aroclor 1016 [2C]	ND	0.10	ug/L
Aroclor 1221	ND	0.10	ug/L
Aroclor 1221 [2C]	ND	0.10	ug/L
Aroclor 1232	ND	0.10	ug/L
Aroclor 1232 [2C]	ND	0.10	ug/L
Aroclor 1242	ND	0.10	ug/L
Aroclor 1242 [2C]	ND	0.10	ua/L

5.11

5.22

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712102

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
<u> </u>			lorinated B						-	C
Batch CL70606 - 3510C										
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
			-							
Surrogate: Decachlorobiphenyl	0.0384		ug/L	0.05000		<i>77</i>	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0438		ug/L	0.05000		88	30-150			
Surrogate: Tetrachloro-m-xylene	0.0311		ug/L	0.05000		62	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0373		ug/L	0.05000		<i>75</i>	30-150			
LCS										
Aroclor 1016	0.88	0.10	ug/L	1.000		88	40-140			
Aroclor 1016 [2C]	0.89	0.10	ug/L	1.000		89	40-140			
Aroclor 1260	1.02	0.10	ug/L	1.000		102	40-140			
Aroclor 1260 [2C]	0.92	0.10	ug/L	1.000		92	40-140			
Surrogate: Decachlorobiphenyl	0.0501		ug/L	0.05000		100	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0533		ug/L	0.05000		107	30-150			
Surrogate: Tetrachloro-m-xylene	0.0403		ug/L	0.05000		81	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0402		ug/L	0.05000		80	30-150			
LCS Dup										
Aroclor 1016	0.98	0.10	ug/L	1.000		98	40-140	11	20	
Aroclor 1016 [2C]	1.02	0.10	ug/L	1.000		102	40-140	14	20	
Aroclor 1260	1.07	0.10	ug/L	1.000		107	40-140	5	20	
Aroclor 1260 [2C]	0.97	0.10	ug/L	1.000		97	40-140	5	20	
Surrogate: Decachlorobiphenyl	0.0488		ug/L	0.05000		98	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0496		ug/L	0.05000		99	30-150			
Surrogate: Tetrachloro-m-xylene	0.0428		ug/L	0.05000		86	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0451		ug/L	0.05000		90	30-150			
, , , , , ,	62	25(SIM) Sem	i-Volatile O	rganic Cor	mpounds					
		- *		•	-					
Batch CL70612 - 3510C										
		-								

Blank			
Acenaphthene	ND	0.20	ug/L
Acenaphthylene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Benzo(a)anthracene	ND	0.05	ug/L
Benzo(a)pyrene	ND	0.05	ug/L
Benzo(b)fluoranthene	ND	0.05	ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Batch CL70612 - 3510C

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Benzo(g,h,i)perylene	ND	0.20	ug/L			
Benzo(k)fluoranthene	ND	0.05	ug/L			
bis(2-Ethylhexyl)phthalate	ND	2.00	ug/L			
Butylbenzylphthalate	ND	2.50	ug/L			
Chrysene	ND	0.05	ug/L			
Dibenzo(a,h)Anthracene	ND	0.05	ug/L			
Diethylphthalate	ND	2.50	ug/L			
Dimethylphthalate	ND	2.50	ug/L			
Di-n-butylphthalate	ND	2.50	ug/L			
Di-n-octylphthalate	ND	2.50	ug/L			
Fluoranthene	ND	0.20	ug/L			
Fluorene	ND	0.20	ug/L			
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L			
Naphthalene	ND	0.20	ug/L			
Pentachlorophenol	ND	0.90	ug/L			
Phenanthrene	ND	0.20	ug/L			
Pyrene	ND	0.20	ug/L			
Surrogate: 1,2-Dichlorobenzene-d4	1.32		ug/L	2.500	53	30-130
Surrogate: 2,4,6-Tribromophenol	3.40		ug/L	3.750	91	15-110
Surrogate: 2-Fluorobiphenyl	1.64		ug/L	2.500	66	30-130
Surrogate: Nitrobenzene-d5	2.03		ug/L	2.500	81	30-130
Surrogate: p-Terphenyl-d14	2.09		ug/L	2.500	84	30-130
LCS						
Acenaphthene	3.02	0.20	ug/L	4.000	75	40-140
Acenaphthylene	3.04	0.20	ug/L	4.000	76	40-140
Anthracene	3.09	0.20	ug/L	4.000	77	40-140
Benzo(a)anthracene	2.33	0.05	ug/L	4.000	58	40-140
Benzo(a)pyrene	2.57	0.05	ug/L	4.000	64	40-140
Benzo(b)fluoranthene	2.64	0.05	ug/L	4.000	66	40-140
Benzo(g,h,i)perylene	2.60	0.20	ug/L	4.000	65	40-140
Benzo(k)fluoranthene	2.38	0.05	ug/L	4.000	59	40-140
bis(2-Ethylhexyl)phthalate	2.90	2.00	ug/L	4.000	72	40-140
Butylbenzylphthalate	3.06	2.50	ug/L	4.000	77	40-140
Chrysene	2.41	0.05	ug/L	4.000	60	40-140
Dibenzo(a,h)Anthracene	2.69	0.05	ug/L	4.000	67	40-140
Diethylphthalate	3.53	2.50	ug/L	4.000	88	40-140
Dimethylphthalate	3.47	2.50	ug/L	4.000	87	40-140
Di-n-butylphthalate	3.47	2.50	ug/L	4.000	87	40-140
Di-n-octylphthalate	3.15	2.50	ug/L	4.000	79	40-140
Fluoranthene	3.23	0.20	ug/L	4.000	81	40-140
Fluorene	3.25	0.20	ug/L	4.000	81	40-140
Indeno(1,2,3-cd)Pyrene	2.70	0.05	ug/L	4.000	67	40-140
Naphthalene	2.79	0.20	ug/L	4.000	70	40-140
Pentachlorophenol	4.05	0.90	ug/L	4.000	101	30-130
Phenanthrene				4.000	70	40.440
Filerianuli elle	3.06	0.20	ug/L	4.000	76	40-140

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM) Semi-Volatile Organic Compounds

Batch CL70612 - 3510C									
Pyrene	2.48	0.20	ug/L	4.000	62	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	1.84		ug/L	2.500	74	30-130			
Surrogate: 2,4,6-Tribromophenol	4.88		ug/L	3.750	130	15-110			5+
Surrogate: 2-Fluorobiphenyl	2.11		ug/L	2.500	84	30-130			
Surrogate: Nitrobenzene-d5	2.48		ug/L	2.500	99	30-130			
Surrogate: p-Terphenyl-d14	1.82		ug/L	2.500	<i>73</i>	30-130			
LCS Dup									
cenaphthene	3.04	0.20	ug/L	4.000	76	40-140	0.8	20	
cenaphthylene	3.02	0.20	ug/L	4.000	75	40-140	0.7	20	
anthracene	3.12	0.20	ug/L	4.000	78	40-140	1	20	
enzo(a)anthracene	3.01	0.05	ug/L	4.000	75	40-140	25	20	D+
enzo(a)pyrene	3.18	0.05	ug/L	4.000	79	40-140	21	20	D+
enzo(b)fluoranthene	3.10	0.05	ug/L	4.000	78	40-140	16	20	
lenzo(g,h,i)perylene	3.28	0.20	ug/L	4.000	82	40-140	23	20	D+
enzo(k)fluoranthene	3.16	0.05	ug/L	4.000	79	40-140	28	20	D+
is(2-Ethylhexyl)phthalate	3.70	2.00	ug/L	4.000	93	40-140	24	20	D+
utylbenzylphthalate	3.89	2.50	ug/L	4.000	97	40-140	24	20	D+
hrysene	3.06	0.05	ug/L	4.000	77	40-140	24	20	D+
ibenzo(a,h)Anthracene	3.34	0.05	ug/L	4.000	84	40-140	21	20	D+
eiethylphthalate	3.54	2.50	ug/L	4.000	88	40-140	0.4	20	
imethylphthalate	3.46	2.50	ug/L	4.000	86	40-140	0.6	20	
i-n-butylphthalate	3.48	2.50	ug/L	4.000	87	40-140	0.1	20	
i-n-octylphthalate	3.79	2.50	ug/L	4.000	95	40-140	19	20	
luoranthene	3.24	0.20	ug/L	4.000	81	40-140	0.3	20	
luorene	3.17	0.20	ug/L	4.000	79	40-140	2	20	
ndeno(1,2,3-cd)Pyrene	3.38	0.05	ug/L	4.000	84	40-140	22	20	D+
laphthalene	2.79	0.20	ug/L	4.000	70	40-140	0.03	20	
Pentachlorophenol	4.06	0.90	ug/L	4.000	101	30-130	0.2	20	
henanthrene	3.11	0.20	ug/L	4.000	78	40-140	2	20	
yrene	3.13	0.20	ug/L	4.000	78	40-140	23	20	D+
Surrogate: 1,2-Dichlorobenzene-d4	1.83		ug/L	2.500	73	30-130			
Surrogate: 2,4,6-Tribromophenol	5.08		ug/L	3.750	135	15-110			S+
Surrogate: 2-Fluorobiphenyl	2.10		ug/L	2.500	84	30-130			
Surrogate: Nitrobenzene-d5	2.46		ug/L	2.500	98	30-130			
Surrogate: p-Terphenyl-d14	2.30		ug/L	2.500	92	30-130			

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Batch CL70747 - 3535A						
Blank						
1,4-Dioxane	ND	0.250	ug/L			
Surrogate: 1,4-Dioxane-d8	3.34		ug/L	5.000	67	15-115
LCS						
1,4-Dioxane	9.50	0.250	ug/L	10.00	95	40-140
Surrogate: 1,4-Dioxane-d8	3.83		ug/L	5.000	<i>77</i>	15-115

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712102

Quality Control Data

		Qualit	ty Cont	roi Da	ita					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8270D(SIM)	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Dilutio	on			
Batch CL70747 - 3535A										
LCS Dup										
1,4-Dioxane	9.06	0.250	ug/L	10.00		91	40-140	5	20	
Surrogate: 1,4-Dioxane-d8	3.22		ug/L	5.000		64	<i>15-115</i>			
		Cl	assical Che	mistry						
Batch CL70548 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.490		mg/L	0.4998		98	90-110			
LCS Dup										
Hexavalent Chromium	0.491		mg/L	0.4998		98	90-110	0.2	20	
Batch CL70549 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.82		mg/L	1.800		101	85-115			
Batch CL70611 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5.00	mg/L							
LCS										
Total Petroleum Hydrocarbon	17.3	5.00	mg/L	19.38		89	66-114			
Batch CL70628 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	20.1	5.00	ug/L	20.06		100	90-110			
LCS										
Total Cyanide (LL)	150	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide (LL)	148	5.00	ug/L	150.4		99	90-110	0.7	20	
Batch CL70640 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
ıcs										
Phenols	105	100	ug/L	100.0		105	80-120			
LCS										
Phenols	1020	100	ug/L	1000		102	80-120			
Batch CL70811 - NH4 Prep										

Blank

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712102

Quality Control Data

MRL Cla	Units lassical Che	Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Oualifion
Cli			Result	/UINEC	Liiillo	NID	LITTIC	
	iassicai Cne	mistry						Qualifier
Classical Chemistry Batch CL70811 - NH4 Prep								
0.10								
	mg/L							
0.10	mg/L	0.09994		113	80-120			
0.10	mg/L	0.9994		94	80-120			
5	mg/L							
	mg/L	34.10		94	80-120			
0.5	mg/L							
	mg/L	2.500		98	90-110			
2-Dibromoeth	hane / 1,2-I	Dibromo-3	-chloropr	opane				
0.015	ug/L							
	ug/L	0.2000		95	30-150			
	ug/L	0.2000		108	30-150			
0.015	ug/L	0.08000		72	70-130			
0.015	ug/L	0.08000		102	70-130			
	,/l	0.2000		40	20.150			
	ug/ L	0.2000			50 150			
0.015	ua/l	0.2000		76	70-130			
	<u> </u>							
				148	30-150			
Alcol	hol Scan by	GC/FID						
10	mg/L							
-		Alcohol Scan by	Alcohol Scan by GC/FID					

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Alco	hol Scan by	GC/FID						
Batch CL70605 - No Prep										
Ethanol	1160	10	mg/L	1007		115	60-140			
LCS Dup										
Ethanol	1020	10	mg/L	1007		102	60-140	12	30	

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

Notes and Definitions

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
Q	Calibration required quadratic regression (Q).
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual
	Chlorine is fifteen minutes.

H Estimated value. Sample hold times were exceeded (H).

DDT DDT breakdown > 20%

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference Method Detection Limit **MDL MRL** Method Reporting Limit Limit of Detection LOD LOQ Limit of Quantitation **Detection Limit** DL I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712102

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GEl Consultants, Inc TB/MM	ESS Project ID: 1712102 Date Received: 12/5/2017	_
Shipped/Delivered Via: ESS Courier	Project Due Date: 12/12/2017	
200 00010	Days for Project: 5 Day	-
1. Air bill manifest present? No NA NA	6. Does COC match bottles?	- 42/2/5/7 YOR YOU
Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 1.3 lced with: lce	9. Were labs informed about short holds & rushes?	Yes No / NA
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	Yes / No 4NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Yes No Date: Date:	Time: By:	
Sample Receiving Notes:		
COC = 1610515 - 86(MW) test Cx	Tr. Cr; did not receive souls	pl 12/5/17
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	ル ミレート Time: By:	_
	·	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	R		Cyanide and 608 ticides)
01	188087	Yes	No	Yes	VOA Vial - HCl	HC1			
01	188088	Yes	No	Yes	VOA Vial - HCI	HCI			
01	188089	Yes	No	Yes	VOA Vial - HCI	HC1			
01	188090	Yes	No	Yes	VOA Vial - HCI	HCI			
01	188091	Yes	No	Yes	VOA Vial - HCI	HC1			
01	188092	Yes	No	Yes	VOA Vial - HCI	HCI			
01	188093	Yes	No	Yes	VOA Vial - Unpres	NP			
01	188106	Yes	NA	Yes	1L Amber - H2SO4	H2SO4			
01	188107	Yes	NA	Yes	1L Amber - H2SO4	H2SO4			
01	188108	Yes	NA	Yes	1L Poly - Unpres	NP			
01	188109	Yes	NA	Yes	500 mL Poly - HNO3	HNO3			
01	188110	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	1,		1.1. m
01	188111	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	816 HB	らんつ	ndska o
01	188112	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	Y		•
01	188113	Yes	NA	Yes	250 mL Poly - Unpres	NP			
02	188094	Yes	NA	Yes	1L Amber - Unpres	NP			
02	188095	Yes	NA	Yes	1L Amber - Unpres	NP			
02	188096	Yes	NA	Yes	1L Amber - Unpres	NP			
02	188097	Yes	NA	Yes	1L Amber - Unpres	NP			
02	188098	Yes	NA	Yes	1L Amber - Unpres	NP			
02	188099	Yes	NA	Yes	1L Amber - Unpres	NP			
02	188100	Yes	NA	Yes	1L Amber - Unpres	NP			
02	188101	Yes	NA	Yes	1L Amber - Unpres	NP			
02	188102	Yes	NA	Yes	1L Amber - H2SO4	H2SO4			

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	GEI	Consultant	ts, Inc TB/i	MM	_ ESS	Project ID:	1712102	
_					Date	Received:	12/5/2017	
02	188103	Yes	NA	Yes	500 mL Poly - HNO3	HNO3		
2nd Review Are barcode		rrect contai	ners?		(Yes)No			
Completed By:		W			Date & Time: Date) RS	2	
Reviewed By:	<u> </u>	KD			Date & Time: rz <	<u> </u>	36	
Delivered Bv:			*		12	elia 2	3 50	

	aborate		7		CHAIN OF C	USTODY						ESS	LAE			CT C						
	of Thielsch s Avenue, Cra	_		Turn Tim	e Standard Ru	sh Approved	d By:						orting	g Li	mits	-			,			
) 461-7181			State whe	re samples were collected: N	MA NH						Disch	arge	into:	Fre	sh W	ater	4	Salt	Wate	er [
	laboratory.c			Is this pro	ject for:		Electonic	Del	ivera	ble			sv									
		F			RGP		Format:	Exce	1	Ac	cess		PDF	/	Otl	ner_	ug= -1					-
Company: Address: _	Project Mana GET 400 U we, W	ager: 	L. Salou Route MA	01801	Project # 1610 Project Name: EVESSOU PO #	515 LOEWRHRP	Analysis	RGP Metals Total	RGP Metals Dissolved Hardness (Calculation)	Ethanol ASTM D3695	e 300.0*	Total Cyanide 4500 LL	TSS 2540D*	TRC 4500-CL D*		In Cr (Calc. MUST run I. Cr) Hex Cr 3500	Phenol 420.1	RGP VOC Long List 524	1,4-Dioxane 8270-SIM	EDB 504.1 RGP SVOC Log List 625-SIM	80	Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix	Sample Identifi	cation	# of Containers	GP M	GP M	than	Chloride	Total Cyan	SS 2	RC 4	omm	S ×	heno	GP V	,4-Dic	GP S	CB 6	
	12-4-17						22 -	X	E 1	- 100	X	X	×	X	X	X	1	LE	- 1	11 11	(2:
1	12-4-17	1030	8	Worker	1610212-88CM	W	168	X	X	X	X	XY	C X	X	X	X	X	X	X	(\vdash	Г
à	12-4-17	1100	3	Woter	1910212-88CW	CWS	8 166		X		П		<	П	-	4	X		χ	X	X	
		1050			86			ĺ	\top			Ť	T		1		П					
											П						П		\top	\top		
			-								П		T			T	П					Г
									\top	1	П	\top	\top		\top		П	\top	\top			
							•															
																	П		\top			
											П	\top	T		\top		П		\top			
Preservation	Code: 1-NP, 2-	HCl, 3-H2SO4	, 4-HNO3, 5-N	NaOH, 6-MeC	OH, 7-Asorbic Acid, 8-ZnAct, 9			4	4 4	1	1	5	2 1	1	3	- 1	3	2	1 :	2 1	1	
Container Ty	pe: P-Poly G-G	lass AG-Ambe	er Glass S-Ste	rile V-VOA				Р	P F	, A	Р	PA	G P	Р	Р	- P	AG	V	AG 1	V AG	AG	
Matrix: S-So	I SD-Solid D-	Sludge WW-W			er SW-Surface Water DW-Drinki	ng Water O-Oil W-Wipe	s F-Filter															
Cooler Pre	sent _	Yes	No	Sampled b	by: JAW																	
Seals Intac	t Yes	No N	A: 💢		s: 1) RGP Metals include Sb								13B a	and	Hg b	y 24	5.1					
Cooler Te	mperature: 10	ce temp:	1.3		eters in BOLD have Short he RC and Cl taken from the	0.1	PERN II data on	MIT 1712	AT 2033	r AC mkr	HE) n 12	D 2/8/17	7									
Relinquished by	: (Signature) U - Wol	*	Date/Time	Received by: (S	Sample Frabe	Relinquished by: (Signature)	idge	12-		te/Time			L	y le	R	Aceive	by: (Signat	ure)			
Relinquished by	: (Signature) /		Date/Time	Received by: (S	Signature) 1 / 1/6 cs	Relinquished by: (Signature)	0	12/5	, Da	e/Time				W	W	eceWe	d by: (5	Signati	ure)	931	P	
1	1		7		Please E-mail all changes	to Chain of Custody	in writir						1	al-di-			age	-		-		

	aborate		7	CHAIN OF CUSTODY ESS LAB PROJECT ID																				
	of Thielsch s Avenue, Cra	0	0	Turn Time	e _\	Standard R	ush Approv	ed By: _						Repo	ortin	g Li	mits	-			,			
) 461-7181			State whe	re samples	were collected:	MA NH							Disch	arge	into	: Fr	esh '	Wate	r	Sa	lt Wa	iter	
	laboratory.c			Is this pro	ject for:			Electo							s_V			_						
				1		RGP		Forma	at: Ex	xcel	_	Acc	cess	_	PDI	_	Ot	her		_	Υ-	_	_	_
Company: Address:	Project Mana GET 400 U we, W	nger: M - obum	Route, MA	01801		Project # 1 6 10 Project Name: EVECSOC PO #	uce WRHIRA	Analysis		stals Total		Ethanol ASTM D3695	Chloride 300.0*	Total Cyanide 4500 LL	540D*	TRC 4500-CL D*	Ammonia 350.1	Tri Cr (Calc. MUST run T. Cr)	3500	RGP VOC Long List 524	1,4-Dioxane 8270-SIM	ш	VOC Log List 625-SIM	Comment#
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix	=	Sample Identi	fication	# of Contain		RGP Metals	Hardness	Ethan	Chlorid	Total Cyan	TSS 2540D*	RC 4	Ammor	Ti Cr	Hex Cr 3500 Phenol 420 1	3GP V	,4-Dio	EDB 504.1	RGP SVOC	200
	12-4-17							22		/			X	X	×	X	X		2	-	-		- 1	4
١	12-4-17	1030	8	Worker	16102	15-BRCM	CW,	168	1	1	X	X	X	x x	X	X	X		17	(X		X	\dagger	
à	12-4-17	1400	G	Water	16105	15-80CM	cur	816		X)				X	7		X		X	1
	,	1030		4,00	10100	66	·	0000	2/	-				- 1		\vdash	Н		1	+		\forall	1	+
										+	\dagger	\vdash		+	\dagger		П	\dashv		\dagger		\forall	+	+
			-					-	_	+	+		\Box	+	+	\vdash	\vdash	+	+	+	\vdash	\forall	,	+
								-	+	+	+	\vdash	\vdash	+	+		\vdash	+	+	+	-	\vdash	+	+
									+	+	+			+	+			+	+	+		\vdash	+	+
								-	+	+	+	\vdash		+	+		H	+	+	+	\vdash	\dashv	+	+
								-	+	+	+	\vdash	\vdash	+	+		\vdash	+	+	+	\vdash	\vdash	+	+
Preservation (Code: 1-NP 2-	HCL 3-H2SO4	4-HNO3 5-N	JaOH 6-MeC	H 7-Asorbic	c Acid, 8-ZnAct, 9			_	4 4	1		1	5 2	+		2	\dashv	1 2	12	1	2	1	+
	pe: P-Poly G-G				71, 7 7 1501010	ricid, o Ziirici, >			_	PF			Р	P A	G P		P						AG A	
							ing Water O-Oil W-Wi	pes F-Filt	er															
Cooler Pre	sent	Yes	No	Sampled b	y: 3	AW																		
Seals Intac	t Yes	No NA	A: X	COLUMN TO THE REAL PROPERTY.			b, As, Cd, Cu, Fe, F								3B	and	Hg	by 2	45.1					
	mperature: 10	ce temp:	1.3	* TSS, TI	RC and Cl	LD have Short h taken from the	same container	PI	ERM	11 /	111	AC.	HE	,										
Relinquished by	(Signature)	1	Date/Time	Received by: (S	Sample	I-ralas	Relinquished by: (Signature	FONOIS		12-5	Date -17	/Time			1	Ne	F	Aceiv	d by	(Sign	ature)			
Relinquished by:	(Signature)		Date/Time	Received by: (S	Signature)	12/5/17	Relinguished by: (Signature	ny		2/5/	Date	/Time				W	W	Rece	ed by	(Sign	ature)	19-	34	
	N		,				to Chain of Custo												Pag		1	of	-	_

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Mike Sabulis GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Eversource WRNRP - RGP (1610515)

ESS Laboratory Work Order Number: 1712196

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

REVIEWED

By ESS Laboratory at 3:38 pm, Dec 18, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1712196

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

SAMPLE RECEIPT

The following samples were received on December 07, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Sample for Total Residual Chlorine and Hexavalent Chromium was received outside of the holding time.

Lab Number 1712196-01

Sample Name 1610515-B20 MW Matrix Ground Water Analysis

1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

PROJECT NARRATIVE

524.2 Volatile Organic Compounds

C7L0135-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Tertiary-butyl Alcohol (40% @ 30%)

CL70848-BS1 Blank Spike recovery is above upper control limit (B+).

Tertiary-butyl Alcohol (137% @ 70-130%)

CL70848-BSD1 Blank Spike recovery is above upper control limit (B+).

Tertiary-butyl Alcohol (132% @ 70-130%)

625(SIM) Semi-Volatile Organic Compounds

CL71303-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Acenaphthene (35% @ 20%), Acenaphthylene (32% @ 20%), Anthracene (21% @ 20%),

Benzo(a)anthracene (55% @ 20%), Benzo(a)pyrene (52% @ 20%), Benzo(b)fluoranthene (53% @ 20%), Benzo(g,h,i)perylene (54% @ 20%), Benzo(k)fluoranthene (52% @ 20%), bis(2-Ethylhexyl)phthalate (57% @ 20%), Butylbenzylphthalate (54% @ 20%), Chrysene (56% @ 20%), Dibenzo(a,h)Anthracene (55% @ 20%), Di-n-octylphthalate (54% @ 20%), Fluorene (28% @ 20%), Indeno(1,2,3-cd)Pyrene (55%

@ 20%), Naphthalene (43% @ 20%), Phenanthrene (21% @ 20%), Pyrene (55% @ 20%)

Classical Chemistry

1712196-01 Estimated value. Sample hold times were exceeded (H).

Hexavalent Chromium

1712196-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1712196

Sample Matrix: Ground Water

Units: ug/L

ESS Laboratory Sample ID: 1712196-01

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A

7/17 11:30 A

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	BJV	12/11/17 22:50	100	20	CL70836
Arsenic	ND (5.0)		3113B		5	KJK	12/13/17 5:58	100	20	CL70836
Cadmium	ND (0.25)		3113B		5	KJK	12/12/17 21:26	100	20	CL70836
Chromium	ND (4.0)		200.7		1	BJV	12/11/17 22:50	100	20	CL70836
Copper	ND (4.0)		200.7		1	BJV	12/11/17 22:50	100	20	CL70836
Iron	21.3 (20.0)		200.7		1	BJV	12/11/17 22:50	100	20	CL70836
Lead	ND (2.0)		3113B		5	KJK	12/13/17 1:19	100	20	CL70836
Mercury	ND (0.20)		245.1		1	MJV	12/12/17 14:45	20	40	CL71134
Nickel	ND (10.0)		200.7		1	BJV	12/11/17 22:50	100	20	CL70836
Selenium	ND (4.0)		3113B		5	KJK	12/13/17 9:54	100	20	CL70836
Silver	ND (2.0)		200.7		1	BJV	12/11/17 22:50	100	20	CL70836
Zinc	14.6 (10.0)		200.7		1	KJK	12/13/17 15:36	100	20	CL70836

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A

ESS Laboratory Work Order: 1712196 ESS Laboratory Sample ID: 1712196-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	BJV	12/11/17 22:16	100	20	CL70836
Arsenic	ND (5.0)		3113B		5	KJK	12/13/17 6:04	100	20	CL70836
Cadmium	ND (0.25)		3113B		5	KJK	12/12/17 22:02	100	20	CL70836
Chromium	ND (4.0)		200.7		1	BJV	12/11/17 22:16	100	20	CL70836
Chromium III	ND (10.0)		200.7		1	JLK	12/11/17 22:16	1	1	[CALC]
Copper	ND (4.0)		200.7		1	$_{\mathrm{BJV}}$	12/11/17 22:16	100	20	CL70836
Hardness	54500 (165)		200.7		1	BJV	12/12/17 22:45	1	1	[CALC]
Iron	70.8 (20.0)		200.7		1	BJV	12/11/17 22:16	100	20	CL70836
Lead	ND (2.0)		3113B		5	KJK	12/13/17 1:25	100	20	CL70836
Mercury	ND (0.200)		245.1		1	MJV	12/12/17 14:09	20	40	CL71134
Nickel	ND (10.0)		200.7		1	BJV	12/11/17 22:16	100	20	CL70836
Selenium	ND (4.0)		3113B		5	KJK	12/13/17 10:00	100	20	CL70836
Silver	ND (1.0)		200.7		1	BJV	12/11/17 22:16	100	20	CL70836
Zinc	ND (10.0)		200.7		1	KJK	12/12/17 22:45	100	20	CL70836

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1712196 ESS Laboratory Sample ID: 1712196-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
1,1,2-Trichloroethane	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
1,1-Dichloroethane	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
1,1-Dichloroethene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
1,2-Dichlorobenzene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
1,2-Dichloroethane	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
1,3-Dichlorobenzene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
1,4-Dichlorobenzene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Acetone	ND (5.0)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Benzene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Carbon Tetrachloride	ND (0.3)		524.2		1	12/08/17 14:09	C7L0135	CL70848
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Ethylbenzene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Methylene Chloride	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Naphthalene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Tetrachloroethene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Toluene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Trichloroethene	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Vinyl Chloride	ND (0.2)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Xylene O	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848
Xylene P,M	ND (0.5)		524.2		1	12/08/17 14:09	C7L0135	CL70848

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 102 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 98 %
 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1712196 ESS Laboratory Sample ID: 1712196-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 12/8/17 9:32

608 Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	12/08/17 11:46		CL70703
Aroclor 1221	ND (0.09)		608		1	12/08/17 11:46		CL70703
Aroclor 1232	ND (0.09)		608		1	12/08/17 11:46		CL70703
Aroclor 1242	ND (0.09)		608		1	12/08/17 11:46		CL70703
Aroclor 1248	ND (0.09)		608		1	12/08/17 11:46		CL70703
Aroclor 1254	ND (0.09)		608		1	12/08/17 11:46		CL70703
Aroclor 1260	ND (0.09)		608		1	12/08/17 11:46		CL70703
Aroclor 1262	ND (0.09)		608		1	12/08/17 11:46		CL70703
Aroclor 1268	ND (0.09)		608		1	12/08/17 11:46		CL70703
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		76 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		81 %		30-150				
Surrogate: Tetrachloro-m-xylene		59 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		70 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1712196 ESS Laboratory Sample ID: 1712196-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 12/13/17 14:30

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Acenaphthylene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Anthracene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Benzo(a)anthracene	ND (0.05)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Benzo(a)pyrene	ND (0.05)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
bis(2-Ethylhexyl)phthalate	ND (1.87)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Butylbenzylphthalate	ND (2.34)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Chrysene	ND (0.05)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Diethylphthalate	ND (2.34)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Dimethylphthalate	ND (2.34)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Di-n-butylphthalate	ND (2.34)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Di-n-octylphthalate	ND (2.34)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Fluoranthene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Fluorene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Naphthalene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Pentachlorophenol	ND (0.84)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Phenanthrene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303
Pyrene	ND (0.19)		625 SIM		1	12/15/17 5:20	C7L0223	CL71303

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	51 %		30-130
Surrogate: 2,4,6-Tribromophenol	70 %		15-110
Surrogate: 2-Fluorobiphenyl	56 %		30-130
Surrogate: Nitrobenzene-d5	58 %		30-130
Surrogate: p-Terphenyl-d14	71 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1712196 ESS Laboratory Sample ID: 1712196-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 12/12/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 12/13/17 16:57	Sequence C7L0186	Batch CL71232
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		66 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A

ESS Laboratory Work Order: 1712196 ESS Laboratory Sample ID: 1712196-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)		350.1		1	JLK	12/11/17 19:34	mg/L	CL71106
Chloride	68.4 (50.0)		300.0		100	JLK	12/08/17 21:14	mg/L	CL70846
Hexavalent Chromium	H ND (10.0)		3500Cr B-2009		1	JLK	12/07/17 22:02	ug/L	CL70758
Phenols	ND (100)		420.1		1	JLK	12/11/17 17:15	ug/L	CL71143
Total Cyanide (LL)	ND (5.00)		4500 CN CE		1	EEM	12/08/17 12:30	ug/L	CL70813
Total Petroleum Hydrocarbon	ND (4.67)		1664A		1	LAB	12/12/17 13:50	mg/L	CL71109
Total Residual Chlorine	ND (20.0)		4500Cl D		1	JLK	12/07/17 21:45	ug/L	CL70759
Total Suspended Solids	ND (5)		2540D		1	EEM	12/11/17 17:20	mg/L	CL71124

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1712196 ESS Laboratory Sample ID: 1712196-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 12/8/17 11:35

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,2-Dibromoethane	ND (0.015)		504.1		1	12/08/17 20:08		CL70822
		%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		130 %		30-150				
Surrogate: Pentachloroethane [2C]		140 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

Client Sample ID: 1610515-B20 MW

Date Sampled: 12/06/17 11:30

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1712196 ESS Laboratory Sample ID: 1712196-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 12/13/17 10:25

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC12/13/17 12:02CL71321

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Dis	solved Me	tals						

Batch CL70836 - 3005A/200.7									
Blank									
Antimony	ND	10.0	ug/L						
Arsenic	ND	1.0	ug/L						
Cadmium	ND	0.05	ug/L						
Chromium	ND	4.0	ug/L						
Copper	ND	4.0	ug/L						
Iron	ND	20.0	ug/L						
Lead	ND	0.4	ug/L						
Nickel	ND	10.0	ug/L						
Selenium	ND	0.8	ug/L						
Silver	ND	2.0	ug/L						
Zinc	ND	10.0	ug/L						
LCS									
Antimony	99.6	10.0	ug/L	100.0	100	85-115			
Arsenic	115	25.0	ug/L	100.0	115	85-115			
Cadmium	53.1	25.0	ug/L	50.00	106	85-115			
Chromium	99.5	4.0	ug/L	100.0	100	80-120			
Copper	99.8	4.0	ug/L	100.0	100	80-120			
Iron	486	20.0	ug/L	500.0	97	80-120			
Lead	109	10.0	ug/L	100.0	109	85-115			
Nickel	99.2	10.0	ug/L	100.0	99	85-115			
Selenium	215	20.0	ug/L	200.0	108	85-115			
Silver	49.6	2.0	ug/L	50.00	99	85-115			
Zinc	108	10.0	ug/L	100.0	108	85-115			
LCS Dup									
Antimony	107	10.0	ug/L	100.0	107	85-115	7	20	
Chromium	99.2	4.0	ug/L	100.0	99	80-120	0.3	20	
Copper	109	4.0	ug/L	100.0	109	80-120	9	20	
Iron	511	20.0	ug/L	500.0	102	80-120	5	20	
Nickel	101	10.0	ug/L	100.0	101	85-115	2	20	
Silver	47.6	2.0	ug/L	50.00	95	85-115	4	20	
Zinc	105	10.0	ug/L	100.0	105	85-115	3	20	
Batch CL71134 - 245.1/7470A									
Blank									
Mercury	ND	0.20	ug/L						
Blank									
Mercury	ND	0.20	ug/L						
LCS									
Mercury	5.79	0.20	ug/L	6.000	96	85-115			
LCS Dup									
Mercury	5.72	0.20	ug/L	6.000	95	85-115	1	20	

Total Metals

185 Frances Avenue, Cranston, RI 02910-2211

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712196

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Met	als						
Batch CL70758 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Batch CL70836 - 3005A/200.7										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Characian	ND	0.05	ug/L							
Chromium	ND	4.0	ug/L							
Chromium III	ND	4.00	ug/L							
Copper Hardness	ND	4.0	ug/L							
	ND ND	165	ug/L							
Iron Lead	ND ND	20.0 0.4	ug/L							
Nickel	ND ND	10.0	ug/L ug/L							
Selenium	ND ND	0.8	ug/L							
Silver	ND	1.0	ug/L ug/L							
Zinc	ND	10.0	ug/L							
		10.0	~9, <u>-</u>							
LCS Antimony	108	10.0	ug/l	100.0		108	85-115			
Arsenic	115	25.0	ug/L ug/L	100.0		115	85-115			
Cadmium	53.1	25.0	ug/L	50.00		106	85-115			
Chromium	103	4.0	ug/L	100.0		103	85-115			
Chromium III	103	4.00	ug/L	100.0		103	03 113			
Copper	113	4.0	ug/L	100.0		113	85-115			
Hardness	7020	165	ug/L	100.0		115	05 115			
Iron	524	20.0	ug/L	500.0		105	85-115			
Lead	109	10.0	ug/L	100.0		109	85-115			
Nickel	104	10.0	ug/L	100.0		104	85-115			
Selenium	215	20.0	ug/L	200.0		108	85-115			
Silver	49.6	1.0	ug/L	50.00		99	85-115			
Zinc	108	10.0	ug/L	100.0		108	85-115			
LCS Dup										
Antimony	107	10.0	ug/L	100.0		107	85-115	1	20	
Chromium	99.2	4.0	ug/L	100.0		99	85-115	4	20	
Chromium III	99.2	4.00	ug/L							
Copper	109	4.0	ug/L	100.0		109	85-115	4	20	
Hardness	6800	165	ug/L							
Iron	511	20.0	ug/L	500.0		102	85-115	2	20	
Nickel	101	10.0	ug/L	100.0		101	85-115	3	20	
Silver	47.6	1.0	ug/L	50.00		95	85-115	4	20	

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712196

Quality Control Data

	- "			Spike	Source	0/ 550	%REC		RPD	- ""
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
Batch CL70836 - 3005A/200.7										
Zinc	105	10.0	ug/L	100.0		105	85-115	3	20	
Batch CL71134 - 245.1/7470A										
Blank										
Mercury	ND	0.200	ug/L							
Blank										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	5.79	0.200	ug/L	6.000		96	85-115			
LCS Dup										
Mercury	5.72	0.200	ug/L	6.000		95	85-115	1	20	

524.2 Volatile Organic Compounds

Batch CL70848 - 524.2							
Blank							
1,1,1-Trichloroethane	ND	0.5	ug/L				
1,1,2-Trichloroethane	ND	0.5	ug/L				
1,1-Dichloroethane	ND	0.5	ug/L				
1,1-Dichloroethene	ND	0.5	ug/L				
1,2-Dichlorobenzene	ND	0.5	ug/L				
1,2-Dichloroethane	ND	0.5	ug/L				
1,3-Dichlorobenzene	ND	0.5	ug/L				
1,4-Dichlorobenzene	ND	0.5	ug/L				
Acetone	ND	5.0	ug/L				
Benzene	ND	0.5	ug/L				
Carbon Tetrachloride	ND	0.3	ug/L				
cis-1,2-Dichloroethene	ND	0.5	ug/L				
Ethylbenzene	ND	0.5	ug/L				
Methyl tert-Butyl Ether	ND	0.5	ug/L				
Methylene Chloride	ND	0.5	ug/L				
Naphthalene	ND	0.5	ug/L				
Tertiary-amyl methyl ether	ND	1.0	ug/L				
Tertiary-butyl Alcohol	ND	25.0	ug/L				
Tetrachloroethene	ND	0.5	ug/L				
Toluene	ND	0.5	ug/L				
Trichloroethene	ND	0.5	ug/L				
Vinyl Chloride	ND	0.2	ug/L				
Xylene O	ND	0.5	ug/L				
Xylene P,M	ND	0.5	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	5.01		ug/L	5.000	100	80-120	
Surrogate: 4-Bromofluorobenzene	4.97		ug/L	5.000	99	80-120	
LCS							
1,1,1-Trichloroethane	10.0		ug/L	10.00	100	70-130	
1,1,2-Trichloroethane	9.9		ug/L	10.00	99	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compound	S
----------------	---------	----------	---

Batch CL70848 - 524.2								
,1-Dichloroethane	9.4	ug/L	10.00	94	70-130			
,1-Dichloroethene	10.1	ug/L	10.00	101	70-130			
,2-Dichlorobenzene	10.4	ug/L	10.00	104	70-130			
,2-Dichloroethane	10.2	ug/L	10.00	102	70-130			
,3-Dichlorobenzene	10.3	ug/L	10.00	103	70-130			
,4-Dichlorobenzene	10.4	ug/L	10.00	104	70-130			
acetone	53.9	ug/L	50.00	108	70-130			
Benzene	9.8	ug/L	10.00	98	70-130			
Carbon Tetrachloride	9.6	ug/L	10.00	96	70-130			
is-1,2-Dichloroethene	10.0	ug/L	10.00	100	70-130			
thylbenzene	9.7	ug/L	10.00	97	70-130			
ethyl tert-Butyl Ether	10.2	ug/L	10.00	102	70-130			
ethylene Chloride	10.1	ug/L	10.00	101	70-130			
aphthalene	11.0	ug/L	10.00	110	70-130			
ertiary-amyl methyl ether	9.8	ug/L	10.00	98	70-130			
ertiary-butyl Alcohol	68.6	ug/L	50.00	137	70-130			B+
etrachloroethene	7.9	ug/L	10.00	79	70-130			
bluene	9.9	ug/L	10.00	99	70-130			
richloroethene	10.1	ug/L	10.00	101	70-130			
nyl Chloride	9.8	ug/L	10.00	98	70-130			
/lene O	9.8	ug/L	10.00	98	70-130			
ylene P,M	19.6	ug/L	20.00	98	70-130			
	5.08	ug/L	5.000	102	80-120			
urrogate: 1,2-Dichlorobenzene-d4 urrogate: 4-Bromofluorobenzene	5.02	ug/L	5.000	100	80-120			
CS Dup		-						
1,1-Trichloroethane	9.5	ug/L	10.00	95	70-130	4	20	
1,2-Trichloroethane	9.6	ug/L	10.00	96	70-130	3	20	
1-Dichloroethane	9.5	ug/L	10.00	95	70-130	1	20	
1-Dichloroethene	10.3	ug/L	10.00	103	70-130	1	20	
2-Dichlorobenzene	10.0	ug/L	10.00	100	70-130	4	20	
2-Dichloroethane	10.3	ug/L	10.00	103	70-130	0.6	20	
3-Dichlorobenzene	9.9	ug/L	10.00	99	70-130	3	20	
4-Dichlorobenzene	10.1		10.00	101	70-130	3	20	
		ug/L				2	20	
cetone	53.0	ug/L	50.00	106	70-130			
enzene	9.8	ug/L	10.00	98	70-130	0.3	20	
arbon Tetrachloride	9.5	ug/L	10.00	95	70-130	1	20	
s-1,2-Dichloroethene	10.2	ug/L	10.00	102	70-130	2	20	
hylbenzene	9.8	ug/L	10.00	98	70-130	1	20	
ethyl tert-Butyl Ether	9.8	ug/L	10.00	98	70-130	4	20	
ethylene Chloride	9.7	ug/L	10.00	97	70-130	3	20	
aphthalene	10.7	ug/L	10.00	107	70-130	3	20	
ertiary-amyl methyl ether	9.4	ug/L	10.00	94	70-130	4	20	
ertiary-butyl Alcohol	66.1	ug/L	50.00	132	70-130	4	25	B+
etrachloroethene	7.7	ug/L	10.00	77	70-130	2	20	
	9.9							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712196

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		524.2 Vol	atile Organi	c Compou	unds					
Batch CL70848 - 524.2										
Trichloroethene	10.2		ug/L	10.00		102	70-130	1	20	
Vinyl Chloride	9.7		ug/L	10.00		97	70-130	0.8	20	
Xylene O	9.6		ug/L	10.00		96	70-130	2	20	
Xylene P,M	19.9		ug/L	20.00		100	70-130	2	20	
Surrogate: 1,2-Dichlorobenzene-d4	4.93		ug/L	5.000		99	80-120			
Surrogate: 4-Bromofluorobenzene	4.76		ug/L	5.000		95	80-120			
		608 Polych	lorinated B	iphenyls ((PCB)					
Batch CL70703 - 3510C										
Blank										
Aroclor 1016	ND	0.10	ug/L							
Aroclor 1016 [2C]	ND	0.10	ug/L							
Aroclor 1221	ND	0.10	ug/L							
Aroclor 1221 [2C]	ND	0.10	ug/L							
Aroclor 1232	ND	0.10	ug/L							
Aroclor 1232 [2C]	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1242 [2C]	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0313		ug/L	0.05000		63	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0349		ug/L	0.05000		70	30-150			
Surrogate: Tetrachloro-m-xylene	0.0327		ug/L	0.05000		65	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0393		ug/L	0.05000		79	30-150			
LCS										
Aroclor 1016	0.91	0.10	ug/L	1.000		91	40-140			
Aroclor 1016 [2C]	0.97	0.10	ug/L	1.000		97	40-140			
Aroclor 1260	0.93	0.10	ug/L	1.000		93	40-140			
Aroclor 1260 [2C]	0.84	0.10	ug/L	1.000		84	40-140			
Surrogate: Decachlorobiphenyl	0.0463		ug/L	0.05000		93	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0489		ug/L	0.05000		98	30-150			
Surrogate: Tetrachloro-m-xylene	0.0384		ug/L	0.05000		77	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0401		ug/L	0.05000		80	30-150			
LCS Dup										

0.76

Aroclor 1016

ug/L

0.10

40-140

1.000

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712196

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		608 Polych	lorinated B	iphenyls (PCB)					
Batch CL70703 - 3510C										
Aroclor 1016 [2C]	0.81	0.10	ug/L	1.000		81	40-140	18	20	
Aroclor 1260	0.89	0.10	ug/L	1.000		89	40-140	4	20	
Aroclor 1260 [2C]	0.81	0.10	ug/L	1.000		81	40-140	4	20	
Surrogate: Decachlorobiphenyl	0.0413		ug/L	0.05000		83	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0435		ug/L	0.05000		87	30-150			
Surrogate: Tetrachloro-m-xylene	0.0315		ug/L	0.05000		63	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0326		ug/L	0.05000		65	30-150			

625(SIM) Semi-Volatile Organic Compounds

Blank							
Acenaphthene	ND	0.20	ug/L				
Acenaphthylene	ND	0.20	ug/L				
Anthracene	ND	0.20	ug/L				
Benzo(a)anthracene	ND	0.05	ug/L				
Benzo(a)pyrene	ND	0.05	ug/L				
Benzo(b)fluoranthene	ND	0.05	ug/L				
Benzo(g,h,i)perylene	ND	0.20	ug/L				
Benzo(k)fluoranthene	ND	0.05	ug/L				
pis(2-Ethylhexyl)phthalate	ND	2.50	ug/L				
Butylbenzylphthalate	ND	2.50	ug/L				
Chrysene	ND	0.05	ug/L				
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	ND	2.50	ug/L				
Fluoranthene	ND	0.20	ug/L				
Fluorene	ND	0.20	ug/L				
ndeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
Naphthalene	ND	0.20	ug/L				
Pentachlorophenol	ND	0.90	ug/L				
Phenanthrene	ND	0.20	ug/L				
Pyrene	ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	1.26		ug/L	2.500	50	30-130	
Surrogate: 2,4,6-Tribromophenol	2.67		ug/L	3.750	71	15-110	
Surrogate: 2-Fluorobiphenyl	1.64		ug/L	2.500	66	30-130	
Surrogate: Nitrobenzene-d5	2.26		ug/L	2.500	90	30-130	
Surrogate: p-Terphenyl-d14	2.24		ug/L	2.500	90	30-130	
LCS							
Acenaphthene	2.08	0.20	ug/L	4.000	52	40-140	
Acenaphthylene	2.16	0.20	ug/L	4.000	54	40-140	
Anthracene	2.55	0.20	ug/L	4.000	64	40-140	
Benzo(a)anthracene	1.73	0.05	ug/L	4.000	43	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Batch CL71303 - 3510C

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM)) Semi-Volatile	Organic	Compound	S
----------	-----------------	---------	----------	---

Benzo(a)pyrene	1.93	0.05	ug/L	4.000	48	40-140			
Benzo(b)fluoranthene	1.94	0.05	ug/L	4.000	49	40-140			
Benzo(g,h,i)perylene	1.97	0.20	ug/L	4.000	49	40-140			
Benzo(k)fluoranthene	1.88	0.05	ug/L	4.000	47	40-140			
bis(2-Ethylhexyl)phthalate	2.24	2.50	ug/L	4.000	56	40-140			
Butylbenzylphthalate	2.19	2.50	ug/L	4.000	55	40-140			
Chrysene	1.77	0.05	ug/L	4.000	44	40-140			
Dibenzo(a,h)Anthracene	2.02	0.05	ug/L	4.000	51	40-140			
Diethylphthalate	2.77	2.50	ug/L	4.000	69	40-140			
Dimethylphthalate	2.74	2.50	ug/L	4.000	68	40-140			
Di-n-butylphthalate	2.98	2.50	ug/L	4.000	74	40-140			
Di-n-octylphthalate	2.23	2.50	ug/L	4.000	56	40-140			
Fluoranthene	2.75	0.20	ug/L	4.000	69	40-140			
Fluorene	2.35	0.20	ug/L	4.000	59	40-140			
Indeno(1,2,3-cd)Pyrene	2.01	0.05	ug/L	4.000	50	40-140			
Naphthalene	1.75	0.20	ug/L	4.000	44	40-140			
Pentachlorophenol	2.33	0.90	ug/L	4.000	58	30-130			
Phenanthrene	2.49	0.20	ug/L	4.000	62	40-140			
Pyrene	1.80	0.20	ug/L	4.000	45	40-140			
	1.06	0.20	ug/L	2.500	42	30-130			
Surrogate: 1,2-Dichlorobenzene-d4	2.50		ug/L	3.750	67	15-110			
Surrogate: 2,4,6-Tribromophenol	1.44		ug/L	2.500	57	30-130			
Surrogate: 2-Fluorobiphenyl	1.69		ug/L	2.500	67	<i>30-130</i>			
Surrogate: Nitrobenzene-d5	1.40		ug/L	2.500	56	<i>30-130</i>			
Surrogate: p-Terphenyl-d14	1.40		ug/L	2.300	30	30-130			
LCS Dup									
Acenaphthene	2.96	0.20	ug/L	4.000	74	40-140	35	20	D+
Acenaphthylene	2.98	0.20	ug/L	4.000	74	40-140	32	20	D+
Anthracene	3.14	0.20	ug/L	4.000	79	40-140	21	20	D+
Benzo(a)anthracene	3.05	0.05	ug/L	4.000	76	40-140	55	20	D+
Benzo(a)pyrene	3.28	0.05	ug/L	4.000	82	40-140	52	20	D+
Benzo(b)fluoranthene	3.34	0.05	ug/L	4.000	83	40-140	53	20	D+
Benzo(g,h,i)perylene	3.41	0.20	ug/L	4.000	85	40-140	54	20	D+
Benzo(k)fluoranthene	3.21	0.05	ug/L	4.000	80	40-140	52	20	D+
								20	D.
bis(2-Ethylhexyl)phthalate	4.04	2.50	ug/L	4.000	101	40-140	57	20	D+
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	4.04 3.82	2.50 2.50	ug/L ug/L	4.000 4.000		40-140 40-140	57 54	20	D+
					101				
Butylbenzylphthalate	3.82	2.50	ug/L	4.000	101 96	40-140	54	20	D+
Butylbenzylphthalate Chrysene	3.82 3.15	2.50 0.05	ug/L ug/L	4.000 4.000	101 96 79	40-140 40-140	54 56	20 20	D+ D+
Butylbenzylphthalate Chrysene Dibenzo(a,h)Anthracene	3.82 3.15 3.55	2.50 0.05 0.05	ug/L ug/L ug/L	4.000 4.000 4.000	101 96 79 89	40-140 40-140 40-140	54 56 55	20 20 20	D+ D+
Butylbenzylphthalate Chrysene Dibenzo(a,h)Anthracene Diethylphthalate	3.82 3.15 3.55 3.36	2.50 0.05 0.05 2.50	ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000	101 96 79 89 84	40-140 40-140 40-140 40-140	54 56 55 19	20 20 20 20	D+ D+
Butylbenzylphthalate Chrysene Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate	3.82 3.15 3.55 3.36 3.34	2.50 0.05 0.05 2.50 2.50	ug/L ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000 4.000	101 96 79 89 84 84	40-140 40-140 40-140 40-140	54 56 55 19 20	20 20 20 20 20 20	D+ D+
Butylbenzylphthalate Chrysene Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate Di-n-butylphthalate	3.82 3.15 3.55 3.36 3.34 3.53	2.50 0.05 0.05 2.50 2.50 2.50	ug/L ug/L ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000 4.000 4.000	101 96 79 89 84 84	40-140 40-140 40-140 40-140 40-140	54 56 55 19 20 17	20 20 20 20 20 20	D+ D+ D+
Butylbenzylphthalate Chrysene Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate	3.82 3.15 3.55 3.36 3.34 3.53 3.90	2.50 0.05 0.05 2.50 2.50 2.50	ug/L ug/L ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000 4.000 4.000 4.000	101 96 79 89 84 84 88	40-140 40-140 40-140 40-140 40-140 40-140	54 56 55 19 20 17 54	20 20 20 20 20 20 20 20	D+ D+ D+
Butylbenzylphthalate Chrysene Dibenzo(a,h)Anthracene Diethylphthalate Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Fluoranthene	3.82 3.15 3.55 3.36 3.34 3.53 3.90 3.17	2.50 0.05 0.05 2.50 2.50 2.50 2.50 0.20	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4.000 4.000 4.000 4.000 4.000 4.000 4.000	101 96 79 89 84 84 88 98	40-140 40-140 40-140 40-140 40-140 40-140 40-140	54 56 55 19 20 17 54	20 20 20 20 20 20 20 20 20	D+ D+ D+

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

		Qualit	ty Cont	rol Da	ıta					
Applieto	Dlk	MDI	11-4-	Spike	Source	0/ 850	%REC	DDD	RPD	Ou-liei-
Analyte	Result	MRL	Units	Level	Result .	%REC	Limits	RPD	Limit	Qualifier
	6.	25(SIM) Sem	i-Volatile O	rganic Co	mpounds					
Batch CL71303 - 3510C										
Pentachlorophenol	2.75	0.90	ug/L	4.000		69	30-130	17	20	
Phenanthrene	3.06	0.20	ug/L	4.000		77	40-140	21	20	D+
Pyrene	3.14	0.20	ug/L	4.000		79	40-140	55	20	D+
Surrogate: 1,2-Dichlorobenzene-d4	1.81		ug/L	2.500		72	30-130			
Surrogate: 2,4,6-Tribromophenol	3.09		ug/L	3.750		82	15-110			
Surrogate: 2-Fluorobiphenyl	1.96		ug/L	2.500		79	30-130			
Surrogate: Nitrobenzene-d5	2.21		ug/L	2.500		88	30-130			
Surrogate: p-Terphenyl-d14	2.41		ug/L	2.500		96	30-130			
	8270D(SIM)	Semi-Volatile	Organic Co	ompounds	s w/ Isoto	pe Diluti	on			
Batch CL71232 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	2.32		ug/L	5.000		46	15-115			
LCS										
1,4-Dioxane	10.0	0.250	ug/L	10.00		100	40-140			
Surrogate: 1,4-Dioxane-d8	3.37		ug/L	5.000		67	15-115			
			- 3,							
LCS Dup 1,4-Dioxane	9.99	0.250	ug/L	10.00		100	40-140	0.5	20	
	2.95	0.230	ug/L ug/L	5.000		59	15-115	0.5	20	
Surrogate: 1,4-Dioxane-d8	2.55	Cl	assical Che			33	15 115			
Batch CL70758 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.495		mg/L	0.4998		99	90-110			
LCS Dup										
Hexavalent Chromium	0.494		mg/L	0.4998		99	90-110	0.3	20	
Batch CL70759 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.82		mg/L	1.800		101	85-115			
Batch CL70813 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	20.2	5.00	ug/L	20.06		101	90-110			
LCS										
Total Cyanide (LL)	150	5.00	ug/L	150.4		100	90-110			
	150	5.00	49/ L	250.1		100	55 110			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP

ESS Laboratory Work Order: 1712196

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
,	- Nobalic		assical Che			70.120				- Quanto
Batch CL70813 - TCN Prep										
LCS Dup	140	F 00		150.4			00.110	2	20	
Total Cyanide (LL)	148	5.00	ug/L	150.4		98	90-110	2	20	
Batch CL70846 - General Preparation										
Blank Chloride	ND	0.5	mg/L							
			9/ =							
LCS Chloride	2.4		mg/L	2.500		98	90-110			
	2.1		1119/ 2	2.500			- JO 110			
Batch CL71106 - NH4 Prep										
Blank Ammonia as N	ND	0.10	mg/L							
		0.10	9/ =							
Ammonia as N	0.09	0.10	mg/L	0.09994		86	80-120			
LCS										
Ammonia as N	0.99	0.10	mg/L	0.9994		99	80-120			
Batch CL71109 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5.00	mg/L							
.cs										
Fotal Petroleum Hydrocarbon	15.1	5.00	mg/L	19.38		78	66-114			
Batch CL71124 - General Preparation										
Blank										
Fotal Suspended Solids	ND	5	mg/L							
.cs										
Total Suspended Solids	32		mg/L	34.10		94	80-120			
Batch CL71143 - General Preparation										
Blank										
Phenois	ND	100	ug/L							
LCS										
Phenols	115	100	ug/L	100.0		115	80-120			
LCS										
Phenols	1000	100	ug/L	1000		100	80-120			
	504.1 1,2	2-Dibromoeth	nane / 1,2-l	Dibromo-3	-chloropi	ropane				
Batch CL70822 - 504/8011										
Blank										
1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND	0.015	ug/L							
Surrogate: Pentachloroethane	0.190		ug/L	0.2000		95	30-150			
ourrogate. rentatilioroculane	0.216		ug/L	0.2000		108	30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Ethanol

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

Quality Control Data

1,2-Dibromoethane 0.152 0.015 ug/L 0.2000 76 70-130 1,2-Dibromoethane [2C] 0.204 0.015 ug/L 0.2000 102 70-130 Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID Blank Ethanol ND 10 mg/L LCS		
Sold	RPD	
CC CC CC CC CC CC CC C	Limit	Qualifier
1,2-Dibromoethane 0.057 0.015 ug/L 0.08000 72 70-130 1,2-Dibromoethane 2C] 0.082 0.015 ug/L 0.08000 102 70-130 2,2-Dibromoethane 2C] 0.0803 ug/L 0.2000 40 30-150 2,2-Dibromoethane 2C] 0.0909 ug/L 0.2000 45 30-150 3,2-Dibromoethane 2C] 0.0909 ug/L 0.2000 76 70-130 1,2-Dibromoethane 2C] 0.204 0.015 ug/L 0.2000 76 70-130 1,2-Dibromoethane 2C] 0.204 0.015 ug/L 0.2000 102 70-130 2,2-Dibromoethane 2C] 0.204 0.015 ug/L 0.2000 102 70-130 3,2-Dibromoethane 2C] 0.296 ug/L 0.2000 139 30-150 3,2-Dibromoethane 2C] 0.296 ug/L 0.2000 148 30-150 3,2-Dibromoethane 2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID 3,2-Dibromoethane 2C/FID 2.2000 2.200		
1,2-Dibromoethane 0.057 0.015 ug/L 0.08000 72 70-130 1,2-Dibromoethane [2C] 0.082 0.015 ug/L 0.08000 102 70-130 Surrogate: Pentachloroethane 0.0803 ug/L 0.2000 40 30-150 Surrogate: Pentachloroethane [2C] 0.0909 ug/L 0.2000 45 30-150 LCS 1,2-Dibromoethane [2C] 0.015 ug/L 0.2000 76 70-130 Surrogate: Pentachloroethane [2C] 0.204 0.015 ug/L 0.2000 139 30-150 Surrogate: Pentachloroethane [2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID		
1,2-Dibromoethane [2C] 0.082 0.015 ug/L 0.08000 102 70-130 Surrogate: Pentachloroethane 0.0803 ug/L 0.2000 40 30-150 Surrogate: Pentachloroethane [2C] 0.0909 ug/L 0.2000 45 30-150 LCS 1,2-Dibromoethane 0.152 0.015 ug/L 0.2000 76 70-130 1,2-Dibromoethane [2C] 0.204 0.015 ug/L 0.2000 102 70-130 Surrogate: Pentachloroethane 2C] ug/L 0.2000 102 70-130 Surrogate: Pentachloroethane 0.277 ug/L 0.2000 139 30-150 Surrogate: Pentachloroethane [2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID Batch CL71321 - No Prep Blank Ethanol ND 10 mg/L		
Surrogate: Pentachloroethane 0.0803 ug/L 0.2000 40 30-150 Surrogate: Pentachloroethane [2C] 0.0909 ug/L 0.2000 45 30-150 LCS I.2-Dibromoethane [2C] 1,2-Dibromoethane [2C] 0.015 ug/L 0.2000 76 70-130 1,2-Dibromoethane [2C] 0.204 0.015 ug/L 0.2000 102 70-130 Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID Blank Ethanol ND 10 mg/L LCS		
Surrogate: Pentachloroethane [2C] 0.0909 ug/L 0.2000 45 30-150		
LCS 1,2-Dibromoethane		
1,2-Dibromoethane 0.152 0.015 ug/L 0.2000 76 70-130 1,2-Dibromoethane [2C] 0.204 0.015 ug/L 0.2000 102 70-130 Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID Blank Ethanol ND 10 mg/L LCS		
1,2-Dibromoethane [2C] 0.204 0.015 ug/L 0.2000 102 70-130 Surrogate: Pentachloroethane 0.277 ug/L 0.2000 139 30-150 Surrogate: Pentachloroethane [2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID Blank Ethanol ND 10 mg/L		
Surrogate: Pentachloroethane 0.277 ug/L 0.2000 139 30-150 Surrogate: Pentachloroethane [2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID Blank Ethanol ND 10 mg/L LCS		
Surrogate: Pentachloroethane [2C] 0.296 ug/L 0.2000 148 30-150 Alcohol Scan by GC/FID Batch CL71321 - No Prep Blank Ethanol ND 10 mg/L		
Alcohol Scan by GC/FID Blank Ethanol ND 10 mg/L LCS		
Batch CL71321 - No Prep Blank Ethanol ND 10 mg/L LCS		
Blank Ethanol ND 10 mg/L LCS		
Ethanol ND 10 mg/L LCS		
ıcs		
Ethanol 1070 10 mg/l 1007 106 60 140		
Ethanol 1070 10 mg/L 1007 106 60-140		
LCS Dup		

mg/L

1007

965

10

60-140

10

30

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

Notes and Definitions

T	T	Analyte	included	l in the an	alveie b	out not detected
ι	J	Anaivie	inciuaed	i in the an	aivsis, r	out not detected

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

H Estimated value. Sample hold times were exceeded (H).

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

B+ Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit

DL Detection Lim I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc.

Client Project ID: Eversource WRNRP - RGP ESS Laboratory Work Order: 1712196

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

ESS Laboratory Sample and Cooler Receipt Checklist

Client	: GE	l Consultant	ts, Inc TB/N	1M			roject ID:	1712196	
						Date R	leceived:		
Shipped/D	elivered Via:		ESS Courier			Project D	ue Date:	12/14/2017	
						Days for	r Project:	5 Day	
	nanifest prese		[No		6. Does COC n	natch bottles?		Yes
2. Were cu	ustody seals p	oresent?	[No		7. Is COC comp	plete and correct?		Yes
3. Is radiat	ion count <10	00 CPM?		Yes		8. Were sample	es received intact?	•	Yes
	oler Present?	Iced with:	lce	Yes		9. Were labs in	nformed about <u>sh</u>	ort holds & rushes?	Yes No / NA
	OC signed and			Yes		10. Were any a	analyses received	outside of hold time?	Yes //No
•	bcontracting Sample IDs: Analysis: TAT:		Yes (No No			s received? in aqueous VOAs' nol cover soil com		Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u vel VOA vials	pon receipt:	ved? (Yes No Date: Date:		Time: Time:		By:	
Sample Re	ceiving Notes	s: 							
	ere a need to		oject Manage client?	r? Date:	Yes / No	_ Time:		Ву:	
Sample	Container	Proper	Air Bubbles	Sufficient				Record pH (C	yanide and 608
Number	ID	Container	Present	Volume	Contain	er Type	Preservative		icides)
01	189072	Yes	NA	Yes	VOA Vial	- Unpres	NP		
01	189073	Yes	No	Yes		al - HCI	HCI		
01	189074	Yes	No	Yes		al - HCl	HCI		
01	189075	Yes	No	Yes		al - HCi	HCI		
01	189076	Yes	No	Yes	VOA Vi		HCI		
01	189077	Yes	No	Yes		al - HCl	HCI		
01	189078	Yes				al - HCl			
			No Na	Yes			HCI		
01	189079	Yes	NA	Yes		r - H2SO4	H2SO4		
01	189080	Yes	NA	Yes		r - H2SO4	H2SO4		
01	189081	Yes	NA	Yes	1L Ambei	r - Unpres	NP		
01	189082	Yes	NA	Yeş	1L Ambei	r - Unpres	NP		
01	189083	Yes	NA	Yes	1L Ambei	r - Unpres	NP		
01	189084	Yes	NA	Yes		r - Unpres	NP		
01	189085	Yes	NA	Yes		r - Unpres	NP		
01	189086	Yes							
01			NA -	Yes		r - Unpres	NP UNGS		
U1	189087	Yes	NA	Yes	500 mL Pc	DIV - HNO3	HNO3		

500 mL Poly - HNO3

500 mL Poly - H2SO4

1L Poly - Unpres

250 mL Poly - Unpres

250 mL Poly - HNO3

250 mL Poly - NaOH

HNO3

H2SO4

NΡ

NP

MULTER EAST ELLAND HORN

01

01

01

01

01

01

189088

189089

189090

189091

189092

189093

Yes

Yes

Yes

Yes

Yes

Yes

NA

NA

NΑ

NΑ

NΑ

NΑ

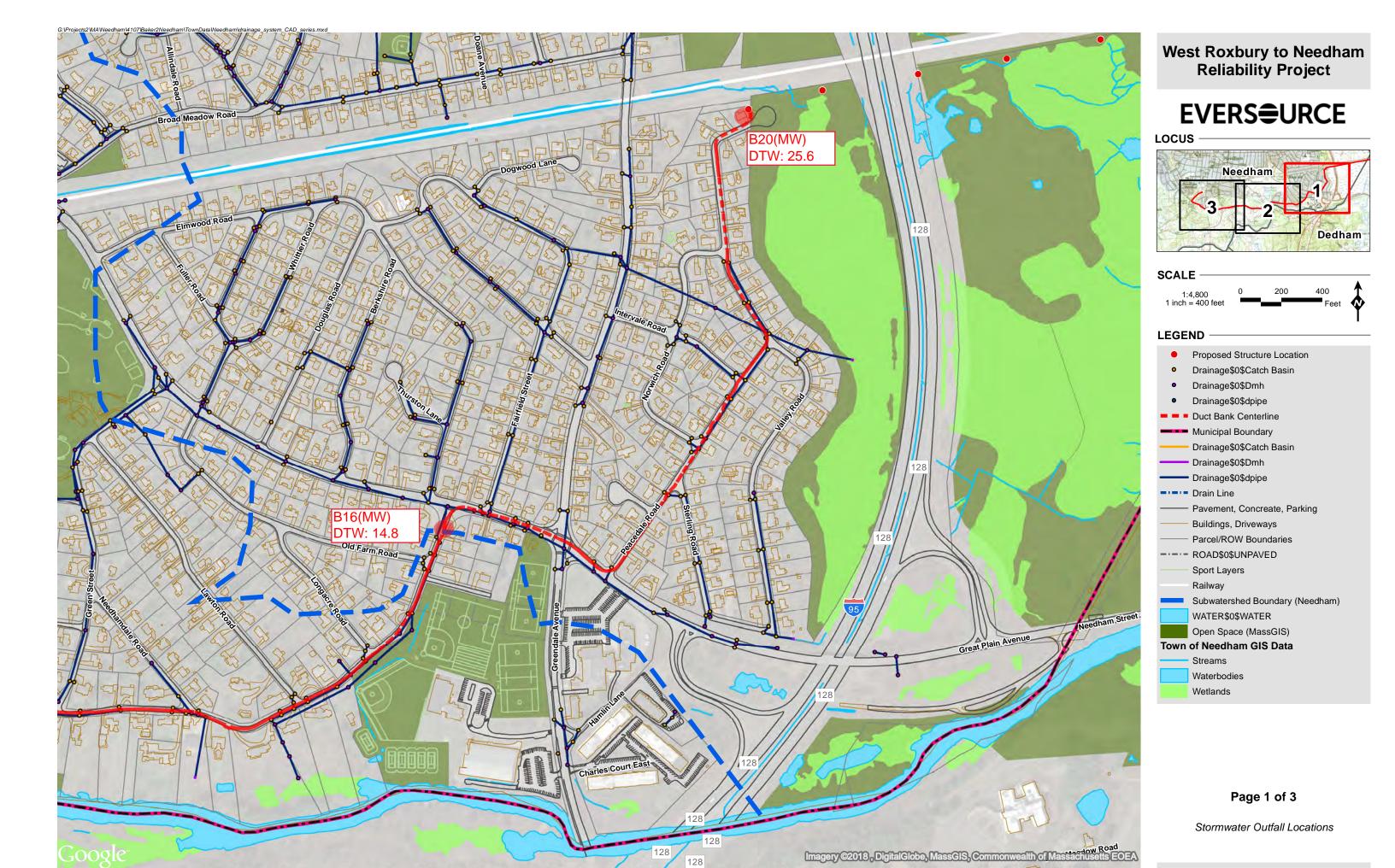
Yes

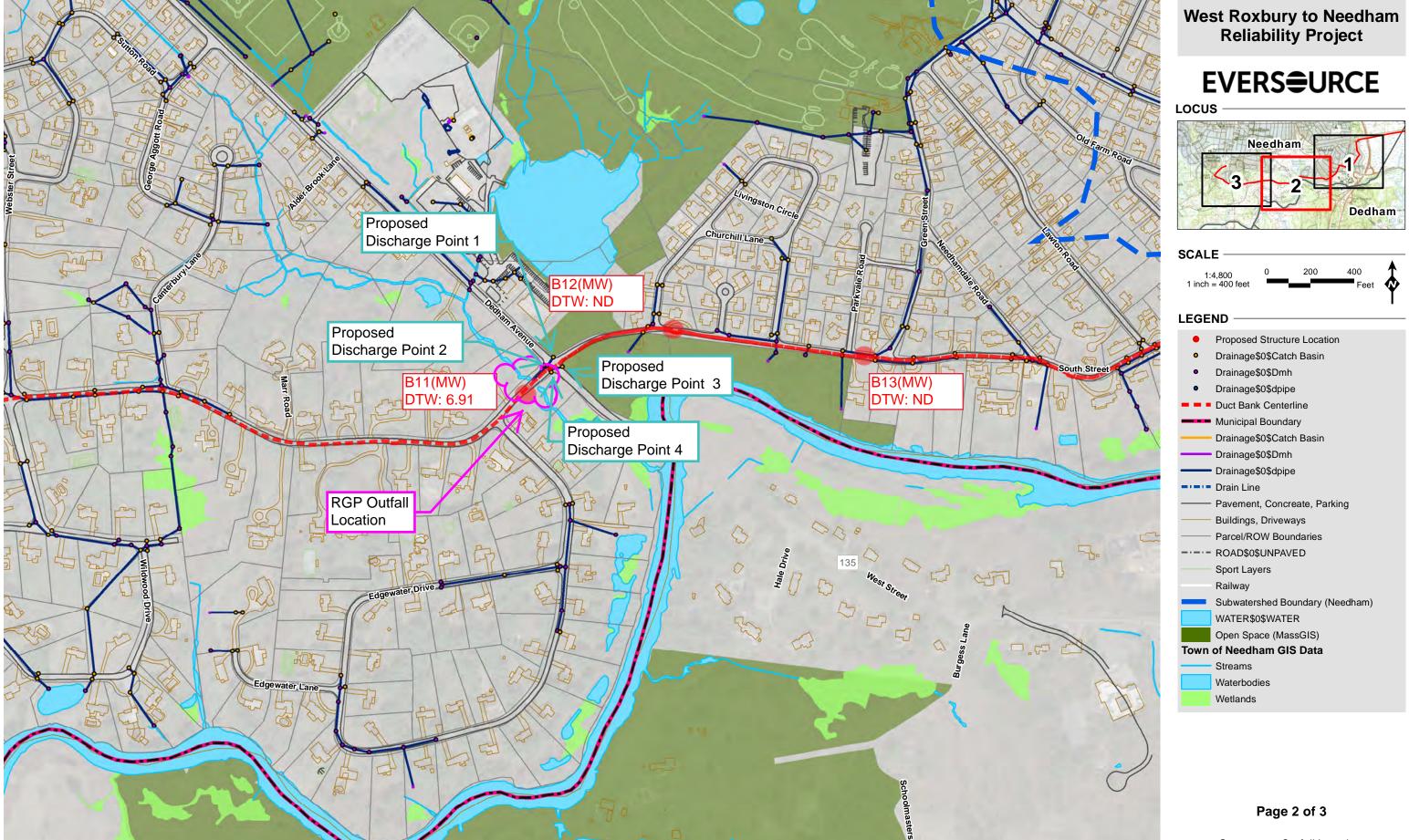
Yes

Yes

Yes

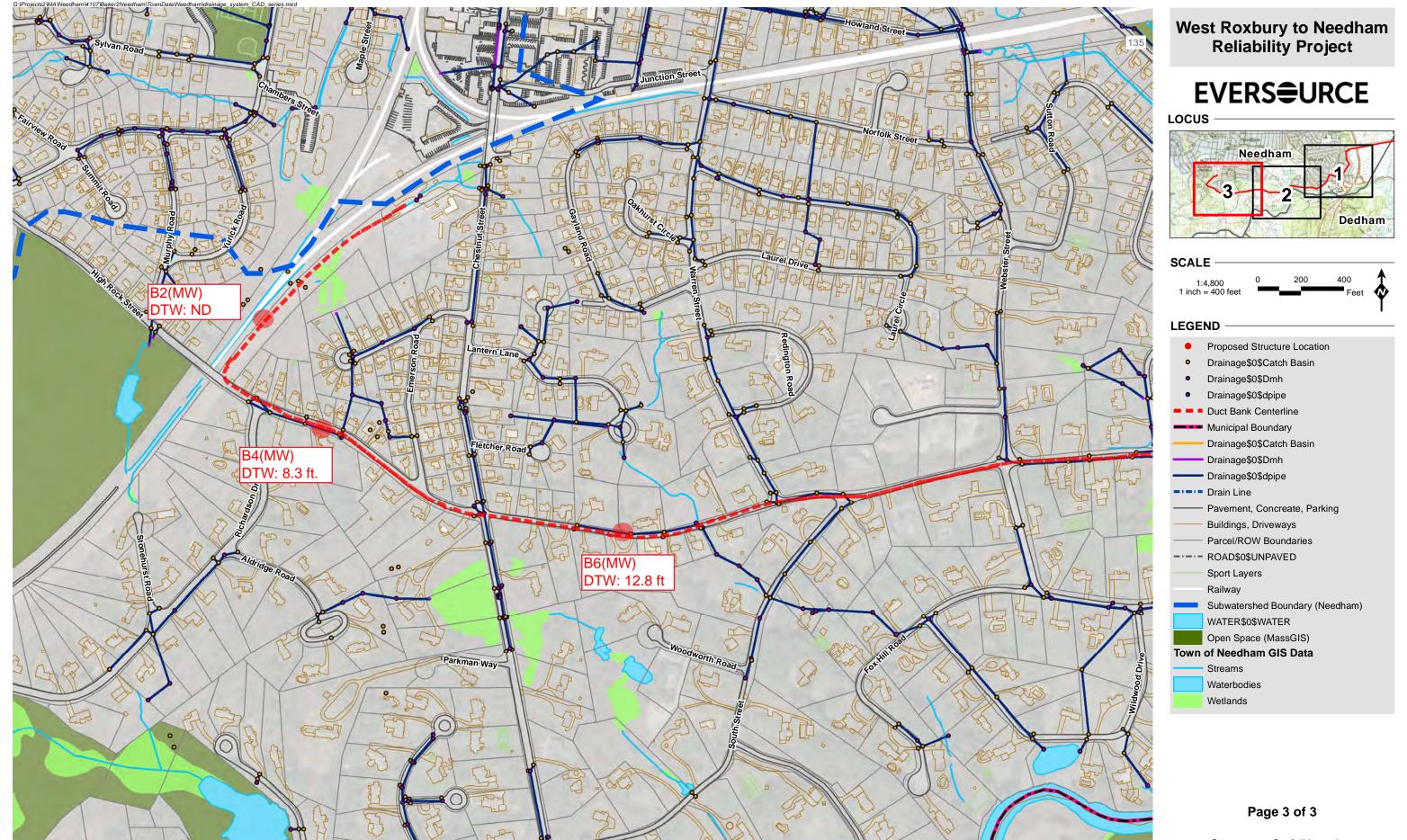
Yes

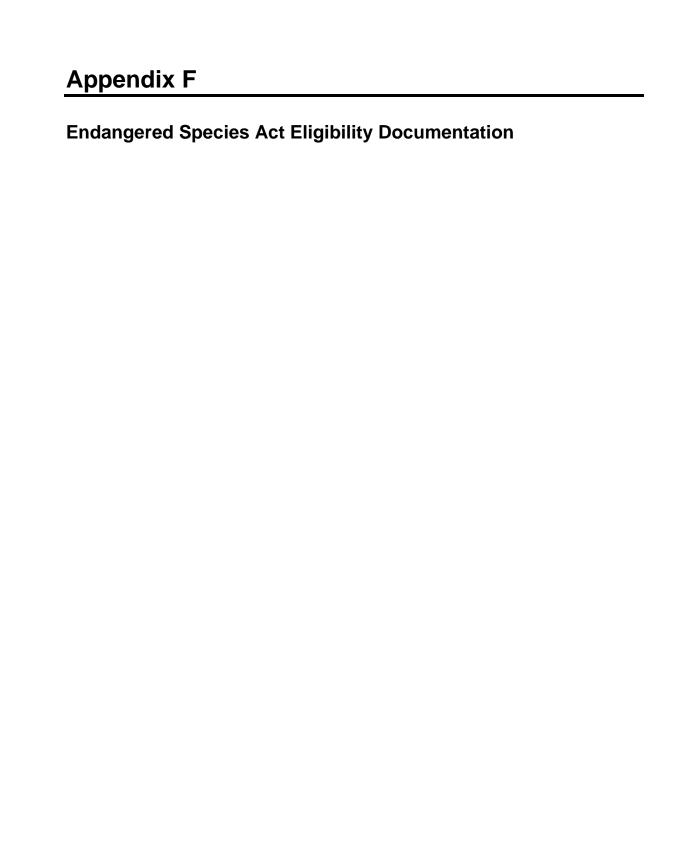

Yes


ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GEI Consultants, Inc TB/MM		ESS Project ID:	17 <u>12196</u>	
	1		Date Received:	12/7/2017	
2nd Review	1				
Are barcode la	abels on oprrect containers?	Yes No			
Completed By:	Chillian	Date & Time:	12/17 1947		
Reviewed By:		Date & Time:	12/2/17	- 	
Delivered By:	217		12/11/2	957	_

ESS Laboratory		CHAIN OF CUSTODY						ÌE	ESS I	_AB	PR	OJI ع (SI SI][][,				
Division of Thielsch Engineering, Inc.	Turn Time	e Standard Rush Approve	d By:			_	_	F	(epo	rting	g Lii	mits	-						
185 Frances Avenue, Cranston, RI 02910-2211		re samples were collected: MA NH						T	ischa	rge i	into:	Fn	esh V	later		Sal	t Wat	er [_
Tel. (401) 461-7181 Fax (401) 461-4486	Is this pro		Electonic	De	live	rab	le		Yes	1		No_							
www.esslaboratory.com	13 tina proj	RGP	Format:	Exc	el		Acc	ess_	1	PDF	V	Ot	her_						_
Project Manager: Mike So		Project # 1610575				J)	2						(S)				N O	PCB 608	
Company: GET Address: 400 Unicon Part Modern MA, 01801	Dave	Project Name: Eversource WRHRF	Analysis	l	٦	latio	369		ا اِ			ļ	Ξ		RGP VOC Long List 524	SIM	1	30.05	Comment #
total sucon MA 01801	<u>, , , , , , , , , , , , , , , , , , , </u>		4 па	<u>=</u>	solve	alcu	2	إ	502		à	-	MUST		ng Lí	3270-		200	i
Variable 1		Autrix Samble Identification A Dissolved Hardness Calculation ASTM D3695			Chloride 300.0	Total Cyanide 4500 LL TPH 1664	* 00:	TRC 4500-CL D*	Ammonia 350.	Tri Cr (Calc. MUST	20.1	SC Po	1,4-Dioxane 8270-SIM	1.1	3	. [5			
FSS Lab Date Collection Grab -G	Matrix	Sample Identification	# of	Metais	Mate	rdne	ano	oride	Total Cyar	TSS 2540D*	C 45(moni	<u>ဗ</u>	Phenol 420.1	J A	Ģ	EDB 504.1	6 8	
ESS Lab Date Collection Grab -G Sample ID Time Composite-		<u> </u>	Containers	₽ G	P.G	Нa	立	5	현	TS	÷	1	- 1	- 1	, N	4,	- 1		$\overline{}$
1 12-6-17/130 G	Water	1610515-B20CMW)	22	×	14	X	X	X	x 7	X	X	X	XY	<u> </u>	\×	X	X	<\ X	1,2
	1																		
	 		 	╁╴		-		_	\dashv	\dagger	T	\Box		十	1	\top		1	T
			 	╀	╀┈	_	H	+	\dashv	+	╁╌	\vdash		+	+	+	+	+	+
							Ш	_		_	-	\sqcup	_	\bot	+	╁-		+	+-
							'							\perp					
				╁	+	 	H	\dashv	_	\dagger	╁	\forall		十	T	+	\Box	+	Ť
			 	+	╁-	<u> </u>	┼-	\dashv	+	+	┼-	┾┈┤	\dashv		+	+	\vdash	+	+
							$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			┸	\perp	∟'		丄	\perp	\perp	\sqcup	_ _	\bot
				1														i	
	 			T	1	T	1					T		\Box	Ţ			\top	
	1	Ott 7 Acarbia Agid 9 7nAct 0	_l	4	4	4	1	1	5 2	2 1	1	3	-	1 3	3 2	1	2	1 1	十
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5 Container Type: P-Poly G-Glass AG-Amber Glass S-S				P	—	1	·		PA								V		_
Matrix: \$-\$oil \$D-\$oild D-\$ladge WW-Wastewater	GW-Groundwa	tter SW-Surface Water DW-Drinking Water O-Oil W-Wi	pes F-Filter									_							
Cooler Present Yes No	Sampled	by:																	
Seals Intact YesNo NA:	Commen	ts: 1) RGP Metals include Sb, As, Cd, Cu, Fe, P	b, Ni, Se, 1	Ag	and.	Zn	by 2	200.	7/31	13B	and	l Hg	by 2	245.	1				
Cooler Temperature: 1ce temp. 0.4	2) Param	eters in BOLD have Short hold-time	PER	MI	ТА	TΤ	AC	HE	D										
		RC and CI taken from the same container (Signature) Relinquished by (Signature) GET Fridle)	1	· · ·		e/Tim		Τ,	Ų	01	1/6	Rece	(ed)		natur	/-		
Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) / a// Relinquished by: (Signature) / a// Date/Time	GET Received by		18:01	112	171		e/Tim		+	┰		110 111	RS F			natur	3)	2	
Religioushed by: (Signarous) Date/Time 12/7/17	Tue	A(100 13/17/17 Jung/12		L	_					!	4	1111	IVV		<u> </u>	<u> </u>		30-	<u>/_</u>
Please E-mail all changes to Chain of Custody in writin Page 1 of 1									_										





Stormwater Outfall Locations

Imagery ©2018, DigitalGlobe, MassGIS, Commonwealth of Massachusetts EOEA

Stormwater Outfall Locations

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle Threatened Coastal Beaches			Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat Threatened Final 4(d) Winter- mines and caves, Summer – wide variety of forested habitats		Statewide	
	Piping Plover			Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Cons		Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
2011	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat			Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: January 29, 2018

Consultation Code: 05E1NE00-2018-SLI-0794

Event Code: 05E1NE00-2018-E-01833 Project Name: Eversource WRNRP

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0794

Event Code: 05E1NE00-2018-E-01833

Project Name: Eversource WRNRP

Project Type: TRANSMISSION LINE

Project Description: The Needham portion of the West Roxbury to Needham Reliability

Project (WRNRP) consists of construction of a new 2.5-mile-long electric

transmission line in Needham, Massachusetts.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.27237250087879N71.20301136105738W

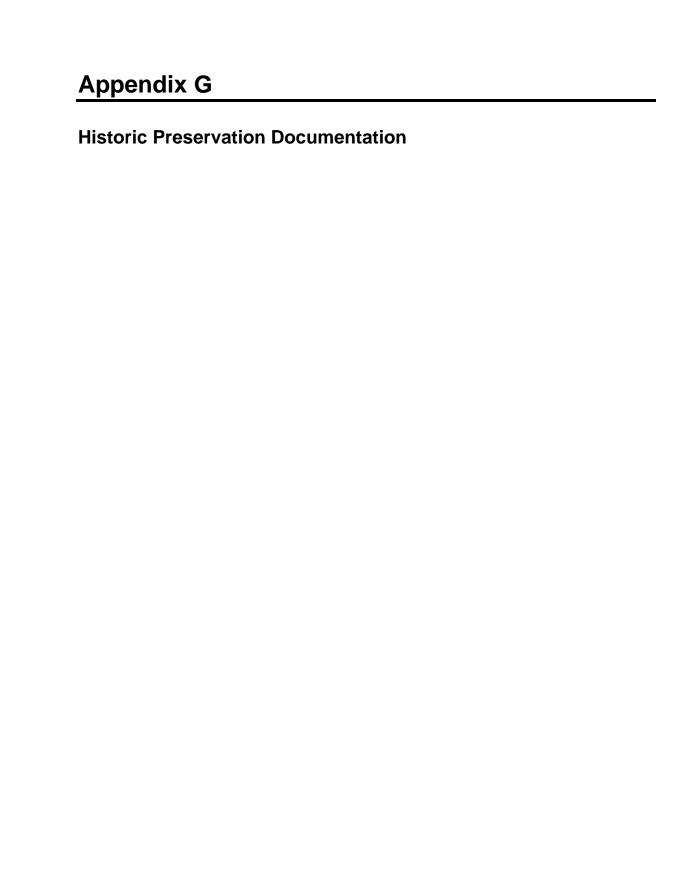
Counties: Norfolk, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME STATUS


Northern Long-eared Bat Myotis septentrionalis

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Threatened

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Needham; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

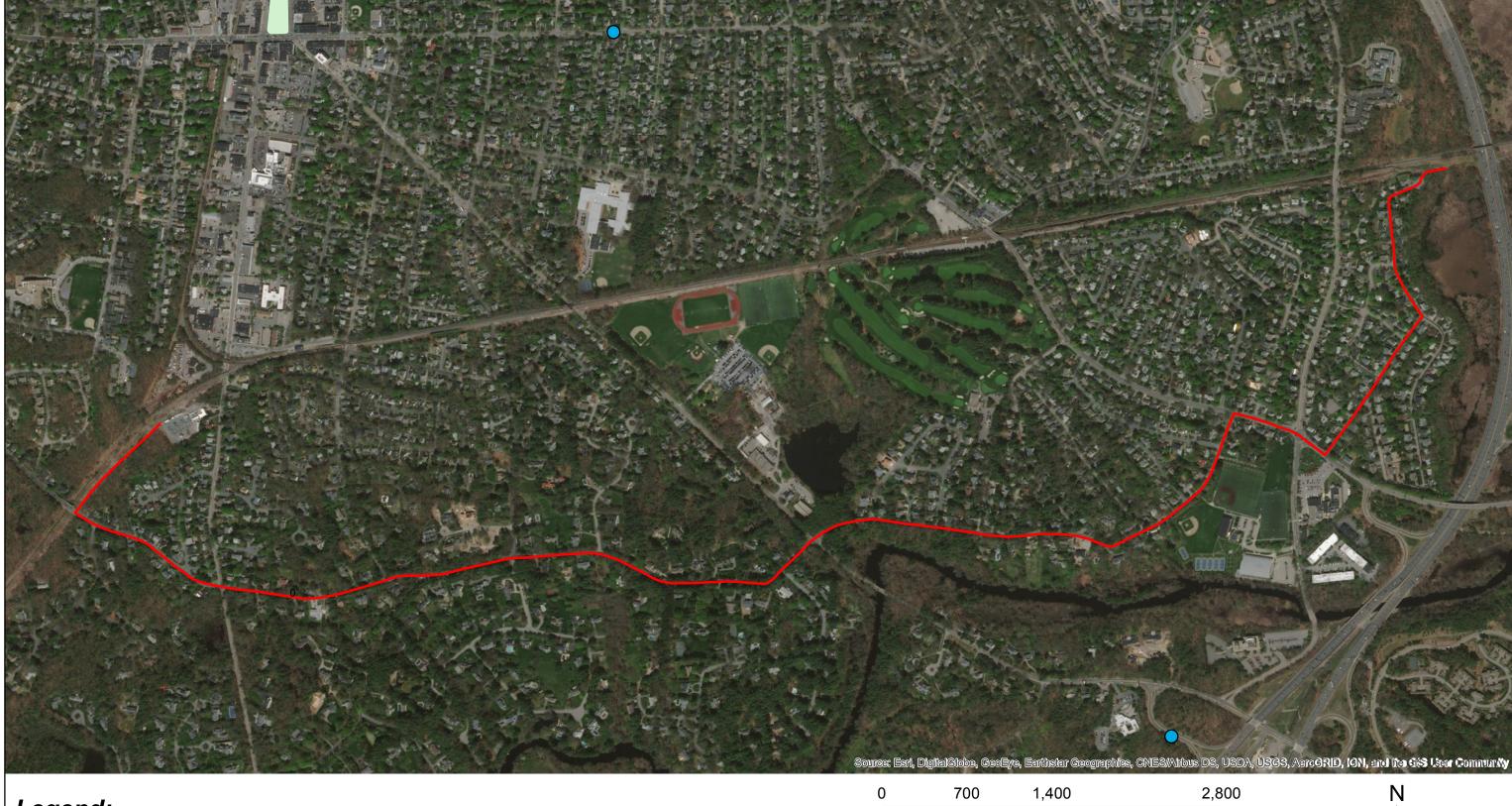
Inv. No.	Property Name	Street	Town	Year
NEE.A	Natick Research and Development Laboratories		Needham	
NEE.B	Carter, William Clothing Company		Needham	
NEE.C	McIntosh Corner Historic District		Needham	
NEE.D	Needham Town Hall Historic District		Needham	
NEE.E	Newton Multiple Resource Area - 1636-1907		Needham	
NEE.F	Sudbury Aqueduct Linear District		Needham	
NEE.G	Water Supply System of Metropolitan Boston		Needham	
NEE.H	Newton Upper Falls Historic District		Needham	
NEE.I	Needham Golf Club		Needham	
NEE.14	Bird, John House	94 Beaufort Ave	Needham	1755
NEE.907	Hemlock Gorge Reservation	Boylston St	Needham	1895
NEE.98	Stevens, Dea. George G. House	14 Bradford St	Needham	1850
NEE.99	Cutler, Sen. Leslie Bradley House	90 Burr Dr	Needham	1915
NEE.5	Fuller, Robert House	3 Burrill Ln	Needham	1707
NEE.100	Cartwright, James House	366 Cartwright Rd	Needham	1877
NEE.900	Townsend Green	Central Ave	Needham	1945
NEE.904	High Rock Forest	Central Ave	Needham	1940
NEE.911	Cook's Bridge	Central Ave	Needham	1857
NEE.918	Fisher's Bridge	Central Ave	Needham	1847
NEE.934	Central Avenue Bridge	Central Ave	Needham	1953
NEE.25	Pettee, Tyler Double House	28 Central Ave	Needham	1834
NEE.6	Alden, Silas House	259 Central Ave	Needham	1801
NEE.27	Smith, Newell House	891 Central Ave	Needham	1826
NEE.20	Mills, Davis House	945 Central Ave	Needham	1834
NEE.11	Whitney, Israel House	963 Central Ave	Needham	1830
NEE.2	Townsend House	980 Central Ave	Needham	c 1720
NEE.60	Mills, Davis Kendrick House	1001 Central Ave	Needham	1871
Tuesday, Jan	uary 30, 2018			Page 1 of 6

Inv. No.	Property Name	Street	Town	Year
NEE.26	Orr, Galen House	1019 Central Ave	Needham	1838
NEE.54	Newell, Dea. Jonathan House	1038 Central Ave	Needham	1839
NEE.62	Fuller, Ezra Jr Cole, Caroline House	1069 Central Ave	Needham	1854
NEE.8	Eaton, George E. House	1086 Central Ave	Needham	1849
NEE.74		1109 Central Ave	Needham	1955
NEE.75		1115 Central Ave	Needham	r 1955
NEE.12	Mills, Matthias House	1147 Central Ave	Needham	1834
NEE.30	Needham Upper Falls - East District Schoolhouse	1147 Central Ave	Needham	1842
NEE.52	Mills, Ezra House	1177 Central Ave	Needham	1844
NEE.95	Tolman - Gay House	1196 Central Ave	Needham	1743
NEE.33	Harmon, Cyrus House	1910 Central Ave	Needham	1850
NEE.101	Tilton - Ingols Block	91-97 Chapel St	Needham	c 1891
NEE.925	Needham Branch Railroad Bridge over Long Ditch	Charles River	Needham	1906
NEE.927	Charles River Railroad Bridge over Charles River	Charles River	Needham	r 1950
NEE.929	Charles River Railroad Bridge over Charles River	Charles River	Needham	1915
NEE.944	Echo Bridge	Charles River	Needham	1875
NEE.945	Sudbury Aqueduct	Charles River	Needham	c 1875
NEE.919	Pierce Bridge - Baker's Bridge	Charles River St	Needham	1927
NEE.15	Greenwood, Lyman House	20 Charles River St	Needham	1834
NEE.70	Fuller, Spencer House	167 Charles River St	Needham	1845
NEE.64	Morse, John Torrey III - Bradley, J. Gardner House	463 Charles River St	Needham	1906
NEE.916	Day's Bridge	Chestnut St	Needham	1922
NEE.920	Needham Branch Railroad Bridge over Chestnut St	Chestnut St	Needham	1985
NEE.921	Needham Branch Railroad Bridge over Chestnut St	Chestnut St	Needham	1985
NEE.41	Needham Fire Station	88 Chestnut St	Needham	
NEE.915	Dedham Avenue Bridge over Charles River	Dedham Ave	Needham	1910
NEE.923	Needham Branch Railroad Bridge over Dedham Avenue	Dedham Ave	Needham	1906
NEE.1	Needham First Parish Unitarian Church	23 Dedham Ave	Needham	1837
NEE.82	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.83	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.84	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.85	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.86	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.87	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
Tuesday, Jan	nuary 30, 2018			Page 2 of 6

Inv. No.	Property Name	Street	Town	Year
NEE.88	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.89	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.90	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.91	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.92	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.93	Natick Research Laboratories Family Housing	East Militia Heights	Needham	1958
NEE.102	Swallow, George A. House	143 Fair Oaks Pk	Needham	1894
NEE.103	Walker, Jean House	144 Fair Oaks Pk	Needham	1910
NEE.28	Mann, Nathaniel - Blackman, Henry House	91 Fairfield St	Needham	1738
NEE.948	Volante Farms Agricultural Fields	292 Forest St	Needham	c 1917
NEE.104	Foster, William R. House	11 Gage St	Needham	r 1900
NEE.105	Huxley, Edith A. House	24 Gage St	Needham	1889
NEE.71	Browne, Theodore L Whitney, William M. House	207-213 Garden St	Needham	1855
NEE.4	Kingsbury - Whitaker House	53 Glendoon Rd	Needham	c 1720
NEE.106	Casey, Julia House	40 Grant St	Needham	1905
NEE.902	Needham Town Pound Site	Great Plain Ave	Needham	1713
NEE.909	Needham Town Common	Great Plain Ave	Needham	1884
NEE.939	Great Plain Avenue Bridge over I-95	Great Plain Ave	Needham	1953
NEE.941	Needham Town Common Flagpole	Great Plain Ave	Needham	1912
NEE.942	Needham Town Common Memorial Wall	Great Plain Ave	Needham	1975
NEE.946	Noyes, Dr. Josiah Park	Great Plain Ave	Needham	1913
NEE.17	Walker, Mary House	146 Great Plain Ave	Needham	1836
NEE.72	Gay, George Hiram House	349 Great Plain Ave	Needham	1875
NEE.66	Bowers - Page House	613 Great Plain Ave	Needham	1887
NEE.43	Pickett, William B. House	664 Great Plain Ave	Needham	1855
NEE.18	Smith, James House	706 Great Plain Ave	Needham	c 1730
NEE.24	Needham First Baptist Church	858 Great Plain Ave	Needham	r 1865
NEE.29	Kingsbury Block	1042 Great Plain Ave	Needham	1887
NEE.107	Proctor, Edward W. House	1167 Great Plain Ave	Needham	c 1875
NEE.108	Kingsbury, Dr. Albert Dexter House	1175 Great Plain Ave	Needham	c 1873
NEE.109	Mills, Matthias House	1189 Great Plain Ave	Needham	c 1875
NEE.110	Fuller, Timothy Otis House	1197 Great Plain Ave	Needham	1876
NEE.111	Willgoose, Anthony House	1290 Great Plain Ave	Needham	1878
NEE.68	McIntosh, Francis - Greaves, Richard House	1321 Great Plain Ave	Needham	1869
NEE.53	Rimmele, Sarah House	1426 Great Plain Ave	Needham	1872
NEE.9	Kingsbury, Daniel House	1427 Great Plain Ave	Needham	1794
NEE.10	McIntosh, Nathan House	1427 Great Plain Ave	Needham	1829

Tuesday, January 30, 2018 Page 3 of 6

Inv. No.	Property Name	Street	Town	Year
NEE.3	Fuller, Ezra Jr. House	1453 Great Plain Ave	Needham	1849
NEE.77	Needham Presbyterian Church	1458 Great Plain Ave	Needham	1959
NEE.78		1461 Great Plain Ave	Needham	1971
NEE.51	Flagg, William House	1472 Great Plain Ave	Needham	1852
NEE.79		1473 Great Plain Ave	Needham	1955
NEE.80	Leonard, Thomas House	1476 Great Plain Ave	Needham	1902
NEE.81	Mills, John House	1479 Great Plain Ave	Needham	1834
NEE.112	McIntosh, Charles House	1700 Great Plain Ave	Needham	1864
NEE.113	McIntosh, Curtis House	1725 Great Plain Ave	Needham	1890
NEE.21	MacIntosh, Gideon House	1746 Great Plain Ave	Needham	1783
NEE.16	Haws, Joseph - Newell, Josiah House	1795 Great Plain Ave	Needham	1756
NEE.903	Powder House Ledge Marker	1808 Great Plain Ave	Needham	1975
NEE.114	Colburn, George Warren House	25 Green St	Needham	1846
NEE.140	Needham Golf Clubhouse	49 Green St	Needham	1923
NEE.914	Lyon's Bridge	Greendale Ave	Needham	1877
NEE.932	Greendale Avenue Bridge over MBTA	Greendale Ave	Needham	1906
NEE.115	Lee, William House	52 Greendale Ave	Needham	1869
NEE.116	Beless, James S. House	80 Greendale Ave	Needham	1830
NEE.117	Carter, William H. House	112 Greendale Ave	Needham	1881
NEE.118	Blackman, Augustus - Cassidy, William S. Jr. House	992 Greendale Ave	Needham	1814
NEE.31	Lyon, Lemuel House	1157 Greendale Ave	Needham	1827
NEE.901	Baker, William Emerson Estate	Grove St	Needham	1868
NEE.48	Dewing - Baker, William Emerson House	430 Grove St	Needham	c 1751
NEE.933	High Rock Street Bridge over Conrail	High Rock St	Needham	1916
NEE.119	Holmes, Patterson P. House	33 High Rock St	Needham	1880
NEE.19	Richards, Joseph House	73 High Rock St	Needham	1843
NEE.40	Highland Avenue School	Highland Ave	Needham	
NEE.44	Carter School	Highland Ave	Needham	c 1910
NEE.931	Highland Avenue Bridge over Route 128 Southbound	Highland Ave	Needham	1931
NEE.937	Highland Avenue Bridge over I-95 Northbound	Highland Ave	Needham	1953
NEE.943	Needham All Wars Memorial	Highland Ave	Needham	
NEE.38	Avery School	760 Highland Ave	Needham	
NEE.120	Carter, Horace A. House	790 Highland Ave	Needham	1895
NEE.57	Avery, Sarah House	797 Highland Ave	Needham	1868
NEE.35	Needham Free Public Library	1139 Highland Ave	Needham	1915
NEE.34	Grover, Emery Building	1330 Highland Ave	Needham	1898

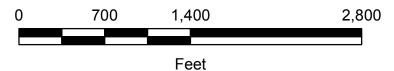

Tuesday, January 30, 2018 Page 4 of 6

Inv. No.	Property Name	Street	Town	Year
NEE.23	Needham Town Hall	1471 Highland Ave	Needham	1902
NEE.949	Cricket Field	Hillside Ave	Needham	c 1860
NEE.121	Fox, Wallace J. House	93 Hillside Ave	Needham	1869
NEE.122	Jones, Frank House	56 Howland St	Needham	c 1908
NEE.913	Kendrick's Bridge	Kendrick St	Needham	1959
NEE.938	Kendrick Street Bridge over I-95	Kendrick St	Needham	1953
NEE.63	Stedman, Florence B. House	40 Linden St	Needham	1892
NEE.36	Webster, Rev. Amos House	28 Maple St	Needham	1855
NEE.123	Crafts, Caleb House	50 Maple St	Needham	1870
NEE.124	Stedman, Florence L. House	59 Maple St	Needham	1887
NEE.58	Grover, Judge Emery House	60 Maple St	Needham	1871
NEE.125	Moseley, Herbert R. House	65-67 Maple St	Needham	1874
NEE.47	Heath, Isaiah House	74 Maple St	Needham	1873
NEE.126	Carter, William House	32 Mark Lee Rd	Needham	1903
NEE.127	Whetton, James H. House	44 Mark Lee Rd	Needham	1898
NEE.128	Bowen, Otis E Mercer, Alfred John House	28 Mercer Rd	Needham	c 1870
NEE.924	Needham Branch Railroad Bridge over Water Works	Needham Reservoir	Needham	1906
NEE.912	Needham Street Bridge	Needham St	Needham	1875
NEE.800	Needham Old Burying Ground	Nehoiden St	Needham	1711
NEE.905	1775 Battle Monument	Nehoiden St	Needham	1851
NEE.906	Needham Soldiers' Monument	Nehoiden St	Needham	1901
NEE.67	McIntosh, Michael House	170 Nehoiden St	Needham	1830
NEE.65	Greenwood, Isaac House	195 Nehoiden St	Needham	1849
NEE.46	Fuller, Amos House	220 Nehoiden St	Needham	
NEE.129	Washburn, George W. C. House	301 Nehoiden St	Needham	c 1855
NEE.130	Sutton, Jemima House	51 Norfolk St	Needham	1908
NEE.49	Rimmele Cobbler Shop	62 Noyes St	Needham	1877
NEE.76		66 Noyes St	Needham	1914
NEE.50	Howland, Dea. George - Moseley, William House	50-52 Oak St	Needham	1862
NEE.37	Holman, Louis A. House	20 Oakland Ave	Needham	1898
NEE.131	Twigg, Charles House	22-24 Pershing Rd	Needham	c 1870
NEE.61	King - McNamara House	70 Pickering St	Needham	1871
NEE.45	Barr, Thomas House	133 Pine St	Needham	1859
NEE.132	Holt, George W. House	41 Pleasant St	Needham	1884
NEE.59	Eaton, Thomas C. House	90 Prince St	Needham	1876
NEE.908	Rosemary Dam	Rosemary St	Needham	
NEE.7	Kingsbury, Jonathan House	3 Rosemary St	Needham	1779

Tuesday, January 30, 2018 Page 5 of 6

Inv. No.	Property Name	Street	Town	Year
NEE.32	Nehoiden - Revere, Paul Block	270-274 Rosemary St	Needham	1844
NEE.926	Charles River Railroad Bridge over Route 128	Rt 128	Needham	1931
NEE.935	I-95 Bridge Northbound over Charles River	Rt 128	Needham	1954
NEE.936	I-95 Bridge Southbound over Charles River	Rt 128	Needham	1954
NEE.42	Needham Police Station	99 School St	Needham	
NEE.940	Color Sweep	Seabeds Way	Needham	1983
NEE.917	Newell's Bridge - Mill Bridge - Bleachery Bridge	South St	Needham	1930
NEE.947	Charles River Village Dam	South St	Needham	
NEE.69	Lawton, William House	57 South St	Needham	1848
NEE.96	Lewis, Joshua House	178 South St	Needham	1776
NEE.97	Hagar, Joseph House	1227 South St	Needham	c 1827
NEE.55	Thorpe, Jonathan B. Silk Knitting Mill	31 Thorpe Rd	Needham	1893
NEE.930	Needham Branch Railroad Bridge over Warren Street	Warren St	Needham	1906
NEE.133	Holmes, Nahum H. House	94 Warren St	Needham	c 1894
NEE.134	Moseley, Sarah L Mills, Caroline Gay House	171 Warren St	Needham	c 1876
NEE.135	Blades, Wilbur G. House	227 Warren St	Needham	1908
NEE.136	Hodges, Mary C Deroo, Frank B. House	248 Warren St	Needham	r 1880
NEE.137	Mongovan, Joseph A. House	260 Warren St	Needham	r 1880
NEE.922	Needham Branch Railroad Bridge over Webster Street	Webster St	Needham	1905
NEE.39	Needham High School	609 Webster St	Needham	
NEE.13	Kingsbury, Lyman Edward House	686 Webster St	Needham	1852
NEE.94	Nutter, Sarah House	751 Webster St	Needham	1853
NEE.73	Kingsbury, Job N. House	1055 Webster St	Needham	1887
NEE.56	Morton, Charles B. House	1087 Webster St	Needham	1854
NEE.910	Avery, Jonathan Square	West St	Needham	1884
NEE.138	Mills, William R. House	348 West St	Needham	1860
NEE.22	Wilson, Samuel House	75 Wilson's Ln	Needham	1718
NEE.139	Minchen, John - Broadley, Frederick L. House	28 Wyoming Ave	Needham	1864

Tuesday, January 30, 2018


Legend:

—— Alignment

Cultural Resource Building

Cultural Resource District

* Map shows locations listed in the National Registry of Historic Places under the National Historic Preservation Act of 1966 (https://www.nps.gov/nr/research/data_downloads.htm)

NPDES RGP West Roxbury-Needham Reliability Project Needham, Massachusetts

> Eversource Energy Westwood, Massachusetts

National Historic Preservation Act Sites

Project 1610515 April 2018
