

Wannalancit Mills 650 Suffolk St., Suite 200 Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.trcsolutions.com

TRC Project Number: 276390

August 1, 2018

Ms. Shauna Little Environmental Protection Agency Office of Environmental Stewardship (OES) Water Technical Unit 5 Post Office Square, Suite 100 (OES4-SMR) Boston, MA 02109-3912

Re: Eversource Station 385 Upgrades and Voltage Regulator Installation Project

Notice of Intent (NOI) for Coverage under the Remediation General Permit (RGP) for Massachusetts Discharge of Treated Groundwater to Boston Harbor, Boston, Massachusetts

Dear Ms. Little:

On behalf of NSTAR Electric Company d/b/a Eversource Energy (Eversource), TRC Environmental Corporation (TRC) has prepared the attached National Pollutant Discharge Elimination System (NPDES) Notice of Intent (NOI) (Attachment A) for coverage under the Remediation General Permit (RGP) for management of groundwater during substation upgrades which include installation of a new voltage regulator and replacement of substation perimeter fencing at Eversource Station No. 385 located along K Street in South Boston, Massachusetts (the Site). This submittal is a request to discharge treated groundwater generated during Project construction activities to the Boston Harbor, either through catch basin discharge to Outfall 078 or direct discharge to the harbor via the shoreline.

A Site Plan and a MassDEP Priority Resources Map are provided as Figures 1 and 2 in Attachment B. Excavation dewatering and discharge of treated groundwater are expected to begin in October 2018 and continue intermittently through December 2020, depending on field conditions.

Project Background

The proposed work at the Site is being performed to install a new voltage regulator, replace the existing chain link fence with an upgraded barrier fence, and design, permit, and construct a Boston Harborwalk connection as mitigation under a Chapter 91 Waterways License amendment. The new voltage regulator is being installed at the property adjacent to the Site which Eversource owns and is expanding substation infrastructure into as part of this project.

Property uses near the Site are predominantly residential to the south with commercial and industrial properties to the east. The Boston Inner Harbor (the Reserved Channel) is located to the north and west of the Site.

Massachusetts Contingency Plan Applicability

Several existing Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) Disposal Sites are present at the Site. Below is a summary of Release Tracking Numbers (RTNs) associated with the Site.

RTN 3-119

On February 11, 1986, the 2-inch-diameter feed line connecting the oil storage tank to pipe-type cable (PTC) Line No. 483-525 was uncovered and a leak was discovered. A 40-foot section of the PTC was replaced. Boston Edison estimated that 3,500 gallons of cable oil were released. Approximately 646 cubic yards of oil-impacted soil were removed and shipped off-site. Approximately 3,000 gallons of cable oil were removed from two recovery wells. A Class C Response Action Outcome (RAO) was filed for the release in August 1998.

RTN 3-14127

On August 17, 1996, a valve connected to cable oil pumping equipment malfunctioned which reportedly released approximately 1,900 gallons of cable oil within the northernmost pump house. Response actions were conducted under an Immediate Response Actions (IRA) and included the following:

- Repairing the broken equipment;
- Removing oil from the pump house;
- Steam cleaning the pump house walls and floor;
- Placement of petroleum absorbent material around the pump house;
- Excavating approximately six cubic yards of contaminated soil; and
- Conducting Non-Aqueous Phase Liquid (NAPL) recovery in nearby well MW-2.

Detections of total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) were observed in soil in the excavation sidewalls and, to a lesser extent, nearby soil. Two groundwater monitoring wells were installed. A Class A-2 RAO was filed for the release in December 2002.

RTN 3-14464

In November 1996, several feet of NAPL was observed in an existing groundwater monitoring well which was reported to the MassDEP and RTN 3-14464 was issued. The NAPL was tested and reportedly comprised a "mixture of diesel, No. 2 oil and a lesser component of weathered cable oil." The NAPL thickness varied from 1.76 feet to 4.95 feet. Chemical analyses of the NAPL performed later as part of a Phase II study identified it as No. 4 and No. 6 fuel oil.

In August 1999, a RAM Plan was submitted which included the manual recovery of NAPL in well MW-3. Oil absorbent socks were used to recover product. An 8-inch diameter recovery well (RW-1) was installed in October 2001.

In December 2002, Clean Harbors Environmental Services, Incorporated (CHES) excavated approximately 25 cubic yards of impacted soil which was shipped off-site under a RAM. Excavation endpoint samples indicated that site closure was attainable and a Class A-2 RAO was filed for the release in January 2003.

Results of 2017 Soil and Groundwater Pre-Characterization

In July 2017, drilling work was conducted at the Site to evaluate geotechnical and environmental soil quality and groundwater conditions. Soil borings were advanced around the perimeter of the Site in the proposed location of the replacement fence and in the parcel adjacent to the northwest of the Site where the new voltage regulator is proposed, as shown on Figure 1 in Attachment B.

TRC was on-site periodically during the work to collect soil samples for laboratory chemical analyses to pre-characterize soil conditions in the proposed work areas in advance of construction. The pre-characterization investigation identified historic fill material as defined in 310 CMR 40.0006 and MassDEP's May 2016 *Historic Fill / Anthropogenic Background Public Comment DRAFT Technical Update* in soil throughout the Site (brick/concrete debris, coal ash, cinders, slag, etc.). As such, the PAH and metals concentrations detected in soil during the investigation were attributed to coal/ash in the soil/fill at the Site and were thus exempt from MCP reporting per 310 CMR 40.0317(9). No MCP reporting obligations were identified for soil or groundwater in the proposed construction areas at the Site during the pre-characterization investigation.

Groundwater Characterization

During geotechnical drilling activities on July 13, 2017, a temporary 2-inch diameter PVC groundwater monitoring well (TMW-1) was installed in boring B15 in the proposed voltage regulator area (Figure 1 in Attachment B). The well was screened from 10 to 25 feet below grade¹. TRC utilized a submersible pump to develop the well until a minimum of three well volumes were removed and the purge water had low turbidity.

The groundwater sample was submitted to Con-Test Analytical Laboratory in East Longmeadow, Massachusetts (Con-Test) for analysis of Environmental Protection Agency (EPA) RGP parameters. A summary of the groundwater sampling results and the supporting laboratory analytical report are provided as Table 1 in Attachment C and Attachment D, respectively. Laboratory analytical results were compared to the RGP Technology Based Effluent Limitations (TBELs) and Water Quality Based Effluent Limitations (WQBELs). The WQBELs were calculated in accordance with Appendix V of the RGP, for sites in Massachusetts discharging to saltwater surface water bodies.

Constituents of concern identified in the groundwater samples include the PAHs benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene, as well as the metal copper. Con-Test performed the analysis of PAHs via SW-846 Method 8270 selective ion monitoring (SIM) as the best method to achieve a high-resolution analysis. Attached within Appendix A is a letter from Con-Test describing the similarity between the 8270 and 625 methods. Regarding the Group I PAHs, EPA previously told Con-Test during a phone call in April 2017 that the 8270 PAH-SIM method was an acceptable substitute for 625 PAH SIM if the reporting limits were better (lower). As such, we are requesting that these data be considered acceptable citing Part 4.1.5 of the RGP for the NOI. Future analyses to pre-characterize Group I PAHs in groundwater for the RGP program will be conducted via 625 SIM. Also, the reporting limits achieved for select volatile organic compounds (VOCs) (i.e. carbon tetrachloride) or semi-volatile organic compounds (SVOCs) (i.e. hexachlorobenzene) were not sufficiently sensitive and it is understood that these compounds will be incorporated into the monitoring program using numeric WQBELs.

¹ A screen length of 15 feet was utilized due to anticipated tidal fluctuations in the groundwater table.

Receiving Water Classification

The Boston Inner Harbor is listed on the Massachusetts 303(d) list as an impaired water body with the qualifier CSO (combined sewer overflows). Water impairment affects the following designated uses: fish consumption (PCB in fish tissue and other), affected fish, other aquatic life and wildlife (dissolved oxygen), primary contact recreation (enterococcus), secondary contact recreation (enterococcus), and shellfish harvesting (fecal coliform).

On August 2, 2017, TRC collected a surface water sample (SW-1) from Boston Harbor near the proposed voltage regulator location to provide data to calculate effluent limitations needed for this NOI. The surface water sample was submitted to Con-Test for analysis of ammonia and salinity. In addition, pH and temperature were measured in the field by TRC during sampling. The location of sample SW-1 is shown on Figure 1 in Attachment B. Laboratory analytical results are summarized in Table 2 in Attachment C.

Discharge of treated effluent from the construction dewatering treatment system will be in compliance with the effluent limitations contained in the RGP.

Treatment Systems

Eversource anticipates the dewatering system will be required to operate periodically from October 2018 through December 2020. A treatment system currently staged at the Site and operated by CHES will be used for treating groundwater under this RGP. The discharge rate (i.e. Design Flow) for the treatment system is 75 gallons per minute (GPM); a schematic of the treatment system is attached as Figure 3 in Appendix B. Dewatered groundwater will be treated by the treatment system before being discharged either directly to Boston Inner Harbor or to an on-site catch basin that conveys storm water to the drainage system managed by the City of Boston, which eventually discharges to the Boston Inner Harbor via Outfall 078. Permits to use the municipal storm water system will be obtained from the Boston Water and Sewer Commission prior to initiating discharge activities. A Design Flow treatment system discharge rate of 75 GPM (i.e. 0.108 million gallons per day [MGD]) was used to evaluate the applicable RGP discharge standards.

The proposed treatment system will consist of up to three 18,000 to 21,000-gallon settling tanks, a particulate skid, two organo-clay vessels, a bone-charcoal vessel, a granular activated carbon vessel, and three ion exchange resin vessels. Free-phase petroleum observed on the water of the settling tanks, if any, will be removed using a vactor truck and disposed off-site. Sample ports will be installed prior to and following treatment. A flow totalizer will be placed on the effluent end of the discharge. Based on effluent monitoring results, the treatment system or flow rate may be modified to comply with the effluent limits. Discharge of treated effluent from the construction dewatering treatment system will be in compliance with the effluent limitations contained in the RGP.

A Best Management Practices Plan (BMPP) for the groundwater extraction and treatment system satisfying the requirements of Section 2.5 of the RGP will be available at the Site prior to initiating dewatering activities. Letters from the US Fish and Wildlife Service are provided in Attachment E and the results of the Massachusetts Cultural Resources Database Search Results are included in Attachment F (no historic properties are present).

Owner and Operator

Owner

NSTAR Electric Company d/b/a Eversource Energy Matthew Waldrip 247 Station Drive, SE 270 Westwood, MA 02090

Operator

Clean Harbors Environmental Services Contact: Robert Paul 609 Pleasant Street Weymouth, MA 02189

The proposed treatment system has been designed to reduce contaminants of concern to below the applicable effluent limits. Effluent compliance monitoring will be conducted in compliance with the RGP. Additionally, the flow rate and pH and temperature levels will be monitored in the field and recorded.

Your assistance in processing this application is greatly appreciated. If you have any questions or would like additional information please feel free to contact me at (603) 263-9381 or via email at moliveira@trcsolutions.com.

Sincerely,

TRC Environmental Corporation

Matthew Oliveira, LSP, CHMM

Project Manager

cc: Matthew Waldrip, Eversource Cathy Vakalopoulos, MassDEP

Attachments:

Attachment A – RGP NOI Form and Calculation Spreadsheet

Attachment B – Figures

Figure 1 - Site Plan

Figure 2 - MassDEP Priority Resources Map

Figure 3 - Groundwater Process Flow Diagram

Attachment C – Tables

Table 1 - Summary of Groundwater Analytical Results – July 2017

Table 2 - Summary of Surface Water Analytical Results – August 2017

Attachment D – Laboratory Analytical Reports

Attachment E – Letter from US Fish and Wildlife Service

Attachment F – Massachusetts Cultural Resources Database Search Results

ATTACHMENT A

NOI FORM AND CALCULATION SPREADSHEET

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: K street					
Eversource Station No. 385	Street:					
	City: South Boston		State: MA	Zip:		
2. Site owner	Contact Person: Mr. Matthew Waldrip					
Eversource Energy	Telephone: Email:					
	Mailing address: 247 Station Drive, SE270					
	Street:		,			
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City: Westwood State: MA Zip: 02090			Zip: 02090		
3. Site operator, if different than owner	Contact Person: Edwin Robert Paul, Jr.					
Clean Harbors Environmental Services	Telephone: 800-645-8265 Email: paulb@cleanharbors.com					
	Mailing address:					
	Mailing address: 609 Pleasant Street Street:					
	609 Pleasant Street		State: MA	Zip: 02189		
4. NPDES permit number assigned by EPA:	Street: 609 Pleasant Street	(check all th		Zip: 02189		
4. NPDES permit number assigned by EPA:	Street: 609 Pleasant Street City: Weymouth	(check all th	at apply):	Zip: 02189		
	Street: City: Weymouth 5. Other regulatory program(s) that apply to the site MA Chapter 21e; list RTN(s): 3-34233		at apply): .A	Zip: 02189		
4. NPDES permit number assigned by EPA: NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Street: City: Weymouth 5. Other regulatory program(s) that apply to the site MA Chapter 21e; list RTN(s):	☐ CERCL	at apply): .A			

Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP

in accordance with the instruction in Appendix

VIII? (check one):

■ Yes □ No

 \square Other; if so, specify:

B. Receiving water information:						
1. Name of receiving water(s):	Waterbody identification of receiving water(s): Classi	fication of receiving water(s):			
Boston Inner Harbor	MA 70-02	SB (CS	SO)			
Receiving water is (check any that apply): □ Outstan	ding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic	River			
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one):	: ■ Yes □ No				
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes ■ No					
3. Indicate if the receiving water(s) is listed in the State pollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP. Fish consumption (PCBs in tissue)/E	s available for any of the indicated pollutants. For m	nore information, contact th	e appropriate State as noted in Part			
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.					
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for si			None			
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: No dilution	1 1	cated? (check one): ☐ Yes	■ No			
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	e instruction in Appendix VIII?			
(check one): ■ Yes □ No						
C. Source water information:						
1. Source water(s) is (check any that apply):						
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:			

Has the operator attached a summary of influent

sampling results as required in Part 4.2 of the

RGP in accordance with the instruction in

Appendix VIII? (check one):

□ Yes □ No

☐ A surface water other

so, indicate waterbody:

than the receiving water; if

2. Source water contaminants: Turbidity, PAHs, and Copper	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ■ No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
BWSC Outfall #078 and direct discharge to surface water adjacent to pa	Lat: 42.338437 Long: -71.039960
Discharges enter the receiving water(s) via (check any that apply): ■ Direct dis	scharge to the receiving water □ Indirect discharge, if so, specify:
Treated groundwater will be transported to via truck to outfall BOS 078	for direct discharge.
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	es No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No
Provide the expected start and end dates of discharge(s) (month/year): Octobe	er 2018 - December 2020
Indicate if the discharge is expected to occur over a duration of: ☐ less than 1	2 months ■ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known		7 5. 4		Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	1	4500-NH3	.075	.075	.075	Report mg/L	
Chloride		✓	1	300.0	400	16100	16100	Report µg/l	
Total Residual Chlorine	✓		1	4500-CL	0.020	0	0	0.2 mg/L	
Total Suspended Solids		✓	1	2540D	5.0	34	34	30 mg/L	
Antimony			1	EPA 200.8	5.0	0	0	206 μg/L	
Arsenic		✓	1	EPA 200.8	10	20	20	104 μg/L	
Cadmium	✓		1	EPA 200.8	1.0	0	0	10.2 μg/L	
Chromium III	✓		1	EPA 200.8	10	0	0	323 μg/L	
Chromium VI	✓		1	EPA 200.8	4.0	0	0	323 μg/L	
Copper		✓	1	EPA 200.8	10	130	130	242 μg/L	
Iron		✓	1	EPA 200.7	0.05	600	600	5,000 μg/L	
Lead	✓		1	EPA 200.8	10	0	0	160 μg/L	
Mercury	✓		1	EPA 245.1	0.1	0	0	0.739 μg/L	
Nickel	✓		1	EPA 200.8	50	0	0	1,450 μg/L	
Selenium		✓	1	EPA 200.8	50	57	57	235.8 μg/L	
Silver	✓		1	EPA 200.8	1.0	0	0	35.1 μg/L	
Zinc	✓		1	EPA 200.8	200	0	0	420 μg/L	
Cyanide	✓		1	4500-CN	0.005	0	0	178 mg/L	
B. Non-Halogenated VOC	s					,		,	
Total BTEX			1	EPA 624	0			100 μg/L	
Benzene	✓		1	EPA 624	1.0	0	0	5.0 μg/L	
1,4 Dioxane	✓		1	EPA 624	50	0	0	200 μg/L	
Acetone	✓		1	EPA 624	50	0	0	7.97 mg/L	
Phenol	✓		1	EPA 625	10	0	0	1,080 μg/L	

	Known	Known		_		In	fluent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		1	EPA 624	2.0	0	0	4.4 μg/L	
1,2 Dichlorobenzene	1		1	EPA 624	2.0	0	0	600 μg/L	
1,3 Dichlorobenzene	1		1	EPA 624	2.0	0	0	320 μg/L	
1,4 Dichlorobenzene	1		1	EPA 624	2.0	0	0	5.0 μg/L	
Total dichlorobenzene			1		0			763 μg/L in NH	
1,1 Dichloroethane	✓		1	EPA 624	2.0	0	0	70 μg/L	
1,2 Dichloroethane	✓		1	EPA 624	1.0	0	0	5.0 μg/L	
1,1 Dichloroethylene	✓		1	EPA 624	2.0	0	0	3.2 μg/L	
Ethylene Dibromide	✓		1	EPA 504.1	0.023	0	0	0.05 μg/L	
Methylene Chloride	✓		1	EPA 624	5.0	0	0	4.6 μg/L	
1,1,1 Trichloroethane	1		1	EPA 624	2.0	0	0	200 μg/L	
1,1,2 Trichloroethane	1		1	EPA 624	2.0	0	0	5.0 μg/L	
Trichloroethylene	✓		1	EPA 624	2.0	0	0	5.0 μg/L	
Tetrachloroethylene	1		1	EPA 624	2.0	0	0	5.0 μg/L	
cis-1,2 Dichloroethylene	1		1	EPA 624	1.0	0	0	70 μg/L	
Vinyl Chloride	✓		1	EPA 624	2.0	0	0	2.0 μg/L	
D. Non-Halogenated SVO	Ts.								
Total Phthalates					0.67			190 μg/L	
Diethylhexyl phthalate		√	1	8270D	0.1	0.67	0.67	101 μg/L	
Total Group I PAHs					0.65			1.0 μg/L	
Benzo(a)anthracene		√	1	8270D	0.05	0.19	0.19	1.0	
Benzo(a)pyrene		√	1	8270D	0.1	0.21	0.21		
Benzo(b)fluoranthene		√	1	8270D	0.05	0.25	0.25		
Benzo(k)fluoranthene	✓		1	8270D	0.2	0.0	0.0	As Total PAHs	
Chrysene	√		1	8270D	0.2	0.0	0.0		
Dibenzo(a,h)anthracene			1	8270D	0.2	0.0	0.0		
Indeno(1,2,3-cd)pyrene			1	8270D	0.2	0.0	0.0	†	

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	✓				0.0			100 μg/L	
Naphthalene	✓		1	EPA 625	5.0	0	0	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		1	608	0.1	0	0	0.000064 μg/L	
Pentachlorophenol	✓		1	8270D	1.0	0	0	1.0 μg/L	
F. Fuels Parameters Total Petroleum		1			1	I	1		
Hydrocarbons	✓				1.4			5.0 mg/L	
Ethanol	✓		1	1671A	2.0	0	0	Report mg/L	
Methyl-tert-Butyl Ether	✓		1	EPA 624	2.0	0	0	70 μg/L	
tert-Butyl Alcohol	✓		1	EPA 624	20	0	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		1	EPA 624	0.5	0	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	C50, addition	nal pollutar	nts present);	if so, specify:			
Temperature		✓			16.8 Deg C				
		1	1	1		<u> </u>			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. The proposed treatment system will consist of approximately three 18,000 to 21,000 gallon settling (frac) tanks, a particulate skid, one organo clay vessel, one bone charge one granular activated carbon vessel. Free phase petroleum observed on the water of the settling tanks will be removed using a vactor truck and disposed off site. Sample installed prior to and following treatment. A flow totalizer will be placed on the effluent end of the discharge.	oal vessel and ports will be
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter ■ Other; if so, specify: Organo Clay Vessel and Bone Charcoal Vessel	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Bag Filters Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	75
Provide the proposed maximum effluent flow in gpm.	75
Provide the average effluent flow in gpm.	20
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	N/A
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
scavengers \square pri conditioners \square Bioremediai agents, including inicrobes \square Chiorine of chemicals containing chiorine \square Other, it so, specify.
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:
7 (/ 1 / 1 /


■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ■ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage to elief, true, accurate, a	the system, or those nd complete. I have
A BMPP meeting the requirements of this general permit will be deverged by the statement: initiation of discharge.	eloped and impler	mented upon
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □	No □ NA ■
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No □ NA ■
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes □	No □ NA ■
☐ Other; if so, specify:		
Signature: Da	te: ^{7/31/18}	
Print Name and Title: Matthew Waldrip, Senior Environmental Engineer		

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
4800	C_d = Enter influent hardness in mg/L CaCO ₃
0	C _s = Enter receiving water hardness in mg/L CaCO ₂

Enter receiving water concentrations in the units specified

\downarrow	_
6.97	pH in Standard Units
22.2	Temperature in °C
235	Ammonia in mg/L
0	Hardness in mg/L CaCC
293.1	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
	•

Enter influent concentrations in the units specified

\downarrow	
0	TRC in μg/L
0.075	Ammonia in mg/L
0	Antimony in μg/L
20	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
130	Copper in µg/L
600	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
57	Selenium in μg/L
0	Silver in µg/L
0	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate inμg/L
0.19	Benzo(a)anthracene in μg/L
0.21	Benzo(a)pyrene in μg/L
0.25	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in μg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether inμg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salimity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum

if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Dilution Factor	0.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	if bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	7.5	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	36	μg/L		
Cadmium	10.2	μg/L	8.9	μg/L		
Chromium III	323	μg/L	100.0	μg/L		
Chromium VI	323	μg/L	50	μg/L		
Copper	242	μg/L	3.7	μg/L		
Iron	5000	μg/L		μg/L		
Lead	160	μg/L	8.5	μg/L		
Mercury	0.739	μg/L	1.11	μg/L		
Nickel	1450	μg/L	8.3	μg/L		
Selenium	235.8	μg/L μg/L	71	μg/L μg/L		
Silver	35.1	μg/L μg/L	2.2	μg/L μg/L		
Zinc	420	μg/L μg/L	86	μg/L μg/L		
Cyanide	178	μg/L mg/L	1.0			ug/I
B. Non-Halogenated VOCs	170	mg/L	1.0	μg/L		μg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7.97	mg/L				
Phenol	1,080	$\mu g/L$	300	μg/L		
C. Halogenated VOCs			1.6	/=		
Carbon Tetrachloride	4.4	/T	1.6	μg/L		
1,2 Dichlorobenzene1,3 Dichlorobenzene	600 320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	$\mu g/L$				
Ethylene Dibromide	0.05	$\mu g/L$				
Methylene Chloride	4.6	$\mu g/L$				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L	2.2	, /т		
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene Vinyl Chloride	70 2.0	μg/L μg/L				
v myr Chloride	2.0	μg/L				

D. Non-Halogenated SVOCs

190	μg/L		μg/L		
101	μg/L	2.2	μg/L		
1.0	μg/L				
1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
1.0	μg/L	0.0038	μg/L		$\mu g/L$
1.0	μg/L	0.0038	μg/L		$\mu g/L$
1.0	μg/L	0.0038	μg/L		$\mu g/L$
1.0	μg/L	0.0038	μg/L		$\mu g/L$
100	μg/L				
20	μg/L				
0.000064	μg/L			0.5	$\mu g/L$
1.0	μg/L				
5.0	mg/L				
Report	mg/L				
70	μg/L	20	μg/L		
120	μg/L				
90	$\mu g/L$				
	101 1.0 1.0 1.0 1.0 1.0 1.0 1.0	101 μg/L 1.0 μg/L 20 μg/L 20 μg/L 70 μg/L 120 μg/L	101 μg/L 2.2 1.0 μg/L 1.0 μg/L 0.0038 1.0 μg/L 20 μg/L 0.000064 μg/L 1.0 μg/L 5.0 mg/L Report mg/L 70 μg/L 20 120 μg/L	101 μg/L 2.2 μg/L 1.0 μg/L 1.0 μg/L 0.0038 μg/L 1.0 μg/L 20 μg/L 0.000064 μg/L 20 μg/L 5.0 mg/L 70 μg/L 20 μg/L 120 μg/L	101 μg/L 2.2 μg/L 1.0 μg/L 1.0 μg/L 0.0038 μg/L 0.1 1.0 μg/L 0.0038 μg/L 0.1 1.0 μg/L 0.0038 μg/L 0.1 1.0 μg/L 0.0038 μg/L 1.0 μg/L 0.000064 μg/L 5.0 μg/L 70 μg/L 70 μg/L 20 μg/L 120 μg/L

April 25, 2018

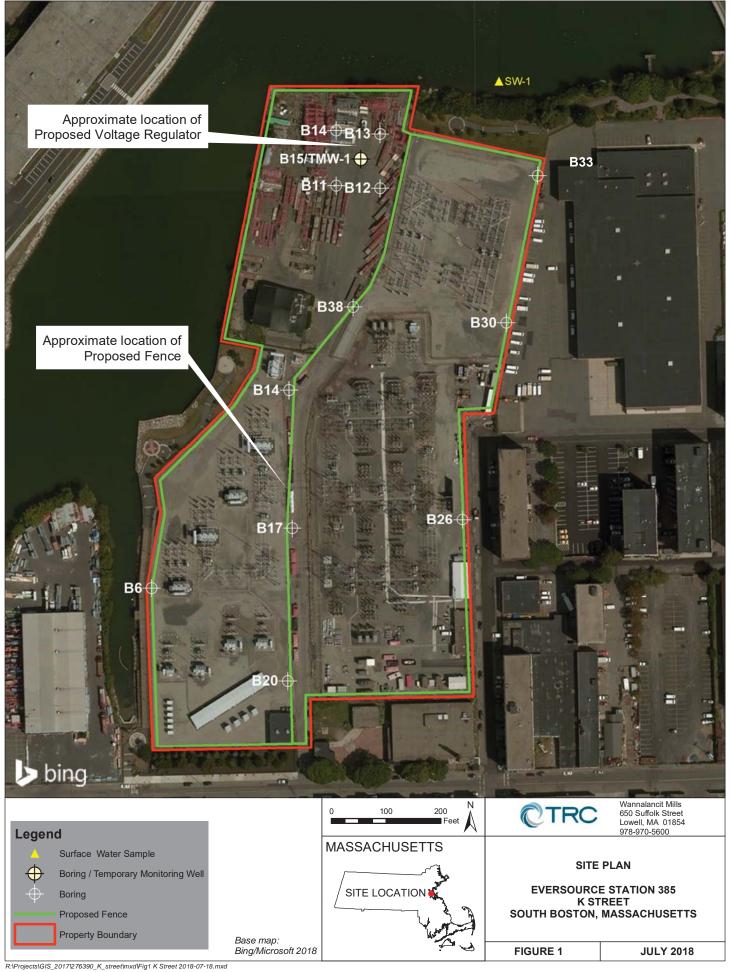
Ms. Elizabeth Denly 650 Suffolk Street Lowell, MA 01852

Dear Ms. Denly,

The laboratory is capable of running EPA 625 by GCMS_SIM to achieve the lower reporting limits requested by RGP Sites. The method parameters and instrument specifications are identical to analyzing samples by EPA 8270D GCMS_SIM. The reported compounds are assessed to EPA 8270D Sim criteria which is tighter than the EPA 625 criteria, in addition there is no stated quality control criteria for EPA 625 sim analysis.

In the future, final reports will state method EPA 625 sim versus EPA 8270D Sim. Reported client data would not change. Let us know if you have any questions.

Sincerely,


Francis Derose

Con-Test Analytical Laboratory Manager

fderose@contestlabs.com

ATTACHMENT B FIGURES

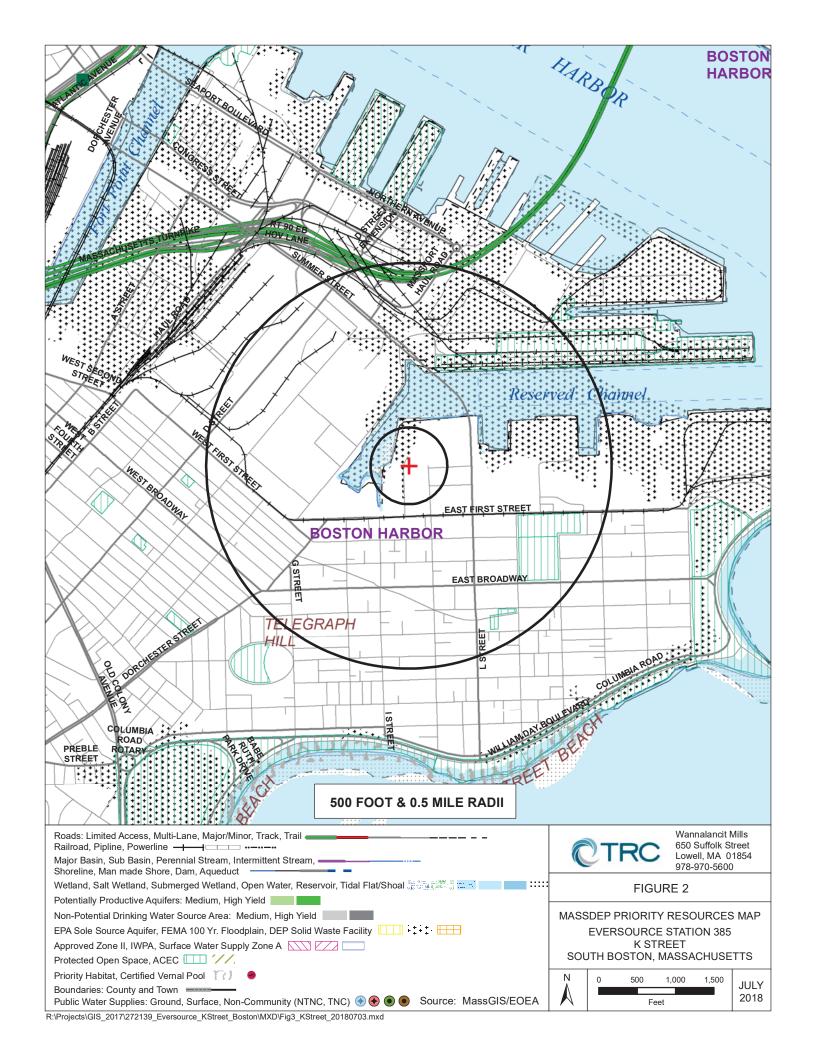
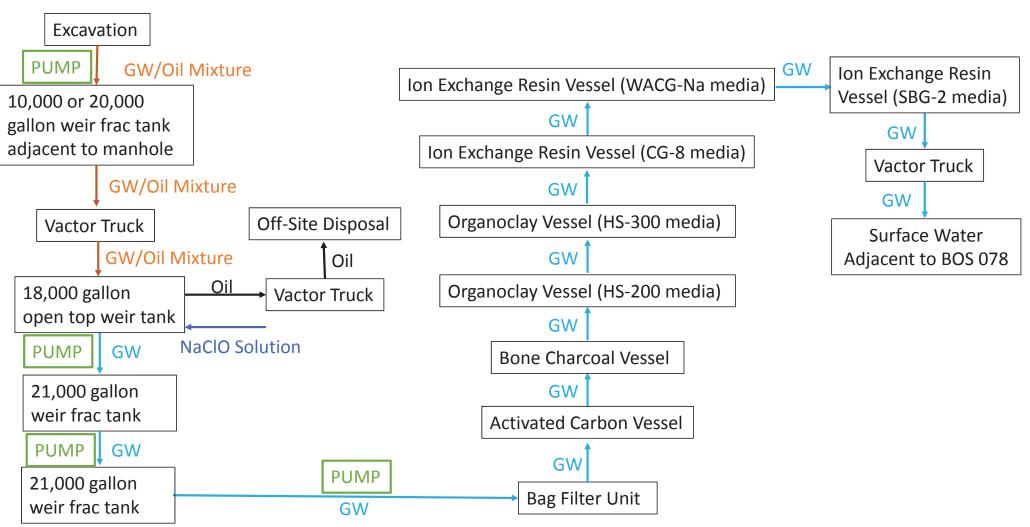



FIGURE 3

EVERSOURCE SOUTH BOSTON - GROUNDWATER PROCESS FLOW DIAGRAM

ATTACHMENT C TABLES

Table 1 Summary of Groundwater Analytical Results -- July 2017 Eversource - Station 385 Improvements Project South Boston, Massachusetts

Analysis	Analyte				Sample ID:	TMW-1
					Sample Date:	7/26/2017
				Acceptance		
		RGP for	Saltwater	Criteria	RC	
		TBEL	WQBEL ²	Global Cycle^^	GW-2	
VOCs	1			Cycle		
(ug/L)	Acetone	7,970	7,970	NS	50,000	50 U
	tert-Amyl Methyl Ether (TAME)	<u>90</u>	90	NS	NS	0.50 U
	Benzene	<u>5</u>	5	NS	1,000	1.0 U
	tert-Butyl Alcohol (TBA) Carbon Tetrachloride	120	120	NS	NS 2	20 U 2.0 U
	1,2-Dichlorobenzene	$\frac{4.4}{600}$	1.6 600	NS NS	2,000	2.0 C
	1,3-Dichlorobenzene	320	320	NS	6,000	2.0 U
	1,4-Dichlorobenzene	5	5	NS	60	2.0 U
	1,2-Dichloroethane	5 70	5	NS	5	2.0 U
	cis-1,2-Dichloroethylene		70	NS	20	1.0 U
	1,1-Dichloroethane	<u>70</u>	70	NS	2,000	2.0 U
	1,1-Dichloroethylene 1,4-Dioxane	$\frac{3.2}{200}$	3.2 200	NS NS	80 6,000	2.0 U 50 U
	Ethylbenzene	NS NS	NS	NS	5,000	0.31 J
	Methyl tert-Butyl Ether (MTBE)	70	20	NS	50,000	2.0 U
	Methylene Chloride	4.6	4.6	NS	2,000	5.0 U
	Tetrachloroethylene	<u>5</u>	3.3	NS	50	2.0 U
	Toluene 1,1,1-Trichloroethane	NS 200	NS 200	NS NS	40,000 4,000	0.17 J 2.0 U
	1,1,2-Trichloroethane	<u> 5</u>	5	NS NS	900	2.0 U
	Trichloroethylene	5	5	NS	5	2.0 U
	Vinyl Chloride	<u>5</u> <u>2</u>	2	NS	2	2.0 U
	m+p Xylene	NS	NS	NS	NS	0.44 J
	o-Xylene	NS	NS	NS	NS	0.20 J
	Xylenes (total) 1,2-Dibromoethane (EDB)	NS 0.05	NS 0.05	NS NS	3,000	0.64 J 0.023 U
	BTEX	$\frac{0.05}{100}$	NS	NS NS	N/A	0.023 U 0.95 J
SVOCs						
(ug/L)	Benzo(a)anthracene	1	0.038	NS	1,000	0.19
	Benzo(a)pyrene	1	0.038	NS	500	0.21
	Benzo(b)fluoranthene Benzo(k)fluoranthene	1	0.038 0.038	NS NS	400 100	0.25 0.20 U
	` '	<u>1</u> 1	0.038	NS	70	
	Chrysene Dibenz(a,h)anthracene	1 1				0.20 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene	1 1 1	0.038 0.038 0.038	NS NS NS	70 40 100	0.20 U 0.20 U 0.20 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs	1 1 1 1	0.038 0.038 0.038 NS	NS NS NS NS	70 40 100 N/A	0.20 U 0.20 U 0.20 U 0.65
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene	1 1 1 1 NS	0.038 0.038 0.038 NS NS	NS NS NS NS	70 40 100 N/A 10,000	0.20 U 0.20 U 0.20 U 0.65 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene	1 1 1 1 NS NS	0.038 0.038 0.038 NS NS	NS NS NS NS NS	70 40 100 N/A 10,000 40	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene	1 1 1 1 NS	0.038 0.038 0.038 NS NS	NS NS NS NS	70 40 100 N/A 10,000	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene	1 1 1 1 NS NS NS NS NS NS	0.038 0.038 0.038 NS NS NS NS NS	NS	70 40 100 N/A 10,000 40 30 20 200	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U 5.0 U 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene	1 1 1 1 NS NS NS NS NS NS NS	0.038 0.038 0.038 NS NS NS NS NS NS	NS	70 40 100 N/A 10,000 40 30 20 200 40	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene	1 1 1 1 NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS NS NS NS NS NS NS NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthene Actenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene	1 1 1 1 NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS NS NS NS NS NS NS NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000	0.20 U 0.20 U 0.20 U 0.65 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS NS NS NS NS NS NS NS NS NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20	0.20 U 0.20 U 0.20 U 0.65 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthene Actenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene	1 1 1 1 NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS NS NS NS NS NS NS NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000	0.20 U 0.20 U 0.20 U 0.65 5.0 U 7.0 U 7.0 U 7.0 U 7.0 U 7.0 U 7.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS NS NS NS NS NS NS NS NS NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 7.0
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS NS NS NS NS NS NS NS NS NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000	0.20 L 0.20 L 0.65 5.0 L 5.0 L
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS	0.20 U 0.20 U 0.20 U 0.65 5.0 U 10 U 10 U 10 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroethyl)ether	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30	0.20 L 0.20 L 0.20 L 0.65 5.0 L 10 L 10 L 10 L 10 L
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroisopropyl)ether	1 1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30 100	0.20 U 0.20 U 0.20 U 0.65 5.0 U
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroethyl)ether	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30	0.20 L 0.20 L 0.20 L 0.65 5.0 L 5.0 L 5.0 L 5.0 L 5.0 L 10 L 10 L 10 L 10 L 10 L
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthene Actoral Group I PAHs Acenaphthene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroisopropyl)ether Bis(2-chloroisopropyl)ether 2-Chlorophenol 4-Chlorophenol	1 1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30 100 100,000 7,000 NS	0.20
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroisopropyl)ether Bis(2-chloroaphthalene 2-Chlorophenol 4-Chlorophenol 4-Chlorophenylphenylether Di-n-butylphthalate	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30 100 100,000 7,000 NS 5,000	0.20
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroethyl)ether Bis(2-chloroethyl)ether 2-Chlorophenol 4-Chlorophenol 4-Chlorophenol 4-Chlorophenylphenylether Di-n-butylphthalate 1,3-Dichlorobenzene	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30 100 100,000 NS 5,000 6,000	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 10 U 1
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroethyl)ether Bis(2-chloroethyl)ether Bis(2-chlorophenol 4-Chlorophenol 4-Chlorophenylphenylether Di-n-butylphthalate 1,3-Dichlorobenzene 1,4-Dichlorobenzene	1 1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30 100 100,000 7,000 NS 5,000 6,000 60	0.20
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroisopropyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenol 4-Chlorophenylphenylether Di-n-butylphthalate 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30 100 100,000 7,000 NS 5,000 6,000 60 2,000	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 10 U 1
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Total Group I PAHs Acenaphthene Acenaphthylene Anthracene Benzo(g,h,i)perylene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Total Group II PAHs Benzidine 4-Bromophenylphenylether Butylbenzylphthalate 4-Chloro-3-methylphenol Bis(2-chloroethyl)ether Bis(2-chloroethyl)ether Bis(2-chlorophenol 4-Chlorophenol 4-Chlorophenylphenylether Di-n-butylphthalate 1,3-Dichlorobenzene 1,4-Dichlorobenzene	1 1 1 1 1 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.038 0.038 0.038 0.038 NS	NS N	70 40 100 N/A 10,000 40 30 20 200 40 700 10,000 20 N/A NS 10,000 10,000 NS 30 100 100,000 7,000 NS 5,000 6,000 60	0.20 U 0.20 U 0.20 U 0.65 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 10 U 1

Table 1 Summary of Groundwater Analytical Results -- July 2017 Eversource - Station 385 Improvements Project South Boston, Massachusetts

Analysis	Analyte				Sample ID:	TMW-1
				Acceptance	Sample Date:	7/26/2017
		RGP for	Saltwater ¹	Criteria	RC	
				Global	†	
		TBEL	WQBEL ²	Cycle^^	GW-2	
	2,4-Dimethylphenol	NS	NS	NS	40,000	10 U
	Dimethylphthalate	NS	NS	NS	50,000	10 U
	4,6-Dinitro-2-methylphenol	NS	NS	NS	NS	10 U
	2,4-Dinitrophenol	NS	NS	NS	20,000	10 U
	2,4-Dinitrotoluene 2,6-Dinitrotoluene	NS NS	NS NS	NS NS	20,000 10,000	10 U 10 U
	Di-n-octylphthalate	NS	NS NS	NS	100,000	10 U
	1,2-Diphenylhydrazine (as Azobenzene)	NS	NS	NS	5,000	10 U
	Bis(2-Ethylhexyl)phthalate	<u>101</u>	2.2	NS	50,000	0.67 J
	Hexachlorobenzene	NS	NS	NS	1	10 U
	Hexachlorobutadiene	NS	NS	NS	50	10 U
	Hexachlorocyclopentadiene	NS	NS	NS	NS	10 U
	Hexachloroethane	NS	NS	NS	100	10 U
	Isophorone Nitrobenzene	NS NS	NS NS	NS NS	10,000 50,000	10 U 10 U
	2-Nitrophenol	NS NS	NS NS	NS NS	10,000	10 U
	4-Nitrophenol	NS	NS NS	NS NS	10,000	10 U
	N-Nitrosodimethylamine	NS	NS	NS	NS	10 U
	N-Nitrosodi-n-propylamine	NS	NS	NS	NS	10 U
	N-Nitrosodiphenylamine	NS	NS	NS	NS	10 U
	2-Methylnaphthalene	NS	NS	NS	2,000	5.0 U
	2-Methylphenol	NS	NS	NS	50,000	10 U
	Phenol	1,080	1,080	NS	2,000	10 U
	3/4-Methylphenol Pentachlorophenol	NS 1	NS 1	NS NS	50,000 200	10 U 1.0 U
	1,2,4-Trichlorobenzene	1 NS	NS	NS NS	200	5.0 U
	2,4,6-Trichlorophenol	NS	NS	NS	500	10 U
	Total Phthalates	190	NS	NS	N/A	0.67 J
	Total VOCs/SVOCs	NS	NS	< 30,000	N/A	3.08 J
PCBs						
(ug/L)	Aroclor-1016	NS	NS	NS	NS	0.10 U
	Aroclor-1221	NS	NS	NS	NS	0.10 U
	Aroclor-1232	NS	NS	NS	NS	0.10 U
	Aroclor-1242 Aroclor-1248	NS	NS	NS	NS	0.10 U
	Aroclor-1248 Aroclor-1254	NS NS	NS NS	NS NS	NS NS	0.10 U 0.10 U
	Aroclor-1260	NS	NS	NS	NS NS	0.10 U
	Total PCBs	0.000064	NS	NS	5	0.10 U^
Metals, to	ital	1				
(ug/L)	Antimony	206	640	NS	8,000	5.0 U
	Arsenic	104	36	NS	900	20
	Cadmium	<u>10.2</u>	8.9	NS	4	1.0 U
	Chromium	NS	NS	NS	300	100 U
	Chromium (III)	323	100	NS	600	10 U
	Chromium (VI) Copper	323 242	50 3.7	NS NS	300 100,000	4 U 130
	Iron	5,000	5,000	NS NS	NS	600
	Lead	160	8.5	NS	10	10 U
	Mercury	0.739	1.11	NS	20	0.1 U
	Nickel	1,450	8.3	NS	200	50 U
	Selenium	<u>235.8</u>	71	NS	100	57
	Silver	<u>35.1</u>	2.2	NS	7	1.0 U
3.6	Zinc	<u>420</u>	86	NS	900	200 U
Metals, d		200	640	NIC	0.000	£0. TT
(ug/L)	Arsonia	206 104	640	NS NS	8,000	5.0 U
	Arsenic Cadmium	104 10.2	36 8.9	NS NS	900 4	25 1.0 U
	Chromium	NS NS	NS	NS NS	300	50 U
	Chromium (III)	323	100	NS	600	10 U
	Chromium (VI)	323	50	NS	300	4 U
	Copper	242	3.7	NS	100,000	50
	Iron	5,000	5,000	NS	NS	50 U

Table 1

Summary of Groundwater Analytical Results -- July 2017 Eversource - Station 385 Improvements Project South Boston, Massachusetts

Analysis	Analyte				Sample ID:	TMW-1
					Sample Date:	7/26/2017
				Acceptance		
		RGP for S	Saltwater ¹	Criteria	RC	
		TBEL	WQBEL ²	Global	GW-2	
		IDEL	WQBEL	Cycle^^	G W-2	
	Lead	<u>160</u>	8.5	NS	10	4.5
	Mercury	0.739	1.11	NS	20	0.1 U
	Nickel	<u>1,450</u>	8.3	NS	200	25 U
	Selenium	<u>235.8</u>	71	NS	100	69
	Silver	<u>35.1</u>	2.2	NS	7	1.0 U
	Zinc	<u>420</u>	86	NS	900	100 U
General C	Chemistry					
(mg/L)	Chloride	NS	NS	NS	N/A	16,100
(mg/L)	Chlorine, Residual	0.2	0.0075	NS	N/A	0.020 U^
(mg/L)	Hardness	NS	NS	NS	N/A	4,800
(mg/L)	Total Suspended Solids	30 <u>5</u> NS	30	< 1,000	N/A	34
(mg/L)	Total Petroleum Hydrocarbons (SGT-HEM)	<u>5</u>	5	NS	N/A	1.4 U
(mg/L)	Ammonia as N		NS	NS	N/A	0.075
(mg/L)	Cyanide	<u>178</u>	0.001	NS	30	0.005 U
(mg/L)	Ethanol	NS	NS	NS	N/A	2.0 U
(su)	pH	<u>6.5-8.3</u>	6.5-8.3	6.5-12.5	N/A	6.86
(deg. C)	Temperature	NS	NS	NS	N/A	16.8
					Classification:	A

Notes:

mg/L - milligrams per liter.

su - Standard unit.

ug/L - micrograms per liter.

J - Estimated value.

N/A - Not applicable/available.

ND - Not detected.

NS - No criteria exist for this analyte.

U - Analyte was not detected at specified quantitation limit.

Values in **bold** indicate the analyte was detected.

Values shown in bold and shaded black exceed the applicable bolded and underlined RGP Effluent Limits.

^ - Quantitation limit value exceeds the applicable RGP Effluent Limits (bolded and underlined).

^^ - Acceptance criteria for Global Cycle, a wastewater treatment and reuse/recycling facility located in Raynham, MA.

RGP - EPA Remediation General Permit, Effluent Limits.

TBEL - Technology-Based Effluent Limitation.

WQBEL - Water Quality-Based Effluent Limitation.

VOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable concentration.

The above standards apply to discharge to freshwater receiving waters. The RGP and DGP contain separate discharge standards for discharges to saltwater receiving waters.

¹ RGP for Freshwater standards are an average monthly discharge limitation in Massachusetts only.

² The WQBEL standards are shown with any dilution factors (DFs) applied. The DFs are determined during the permit application process and are dependent upon the flow rate and water hardness of the receiving body. Once DFs are applied to the WQBEL, the more stringent of the two standards (TBEL or adjusted WQBEL) will apply.

Groundwater Classification Categories

Type A Groundwater - Non-Hazardous Beneficial Reuse: Groundwater/wastewater that is characterized as non-hazardous waste and non-TSCA regulated (PCBs < 0.5 parts per billion [ppb]) and is acceptable for beneficial reuse/recycling at a properly licensed facility, per 40 CFR 761.79 (b)(l)(ii).

Type B Groundwater - Non-Hazardous Wastewater Treatment Facility: Groundwater/wastewater that is characterized as non-hazardous waste and non-TSCA regulated (PCBs < 0.5 ppb) and is acceptable at a properly licensed wastewater treatment facility, per 40 CFR 761.79 (b)(l)(ii).

Type C Groundwater - Non-Hazardous Groundwater Treatment and Discharge: Groundwater that is characterized as non-hazardous waste and non-TSCA regulated (PCBs < 0.5 ppb) and is acceptable for on-site or off-site discharge under EPA RGP or Construction Dewatering Permit, per 40 CFR 761.79 (b)(I)(ii).

Table 2
Summary of Surface Water Analytical Results -- August 2017
Eversource - Station 385 Improvements Project
South Boston, Massachusetts

Analysis	Sample ID:	SW-1
	Sample Date:	8/2/2017
	Analyte	
General C		
(ug/L)	Ammonia as N	235
(ppt)	Salinity	29.1
(su)	рН	6.97
(deg. F)	Temperature	72

Notes:

deg. F - degree Fahrenheit.

ppt - Parts per thousand.

su - Standard unit.

ug/L - micrograms per liter.

Values in **bold** indicate the analyte was detected.

ATTACHMENT D LABORATORY ANALYTICAL REPORTS

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

August 18, 2017

Matthew Waldrip NSTAR Electric & Gas Corporation One NSTAR Way, SUM SE-250 Westwood, MA 02090-9230

Project Location: South Boston, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 17G1143

Enclosed are results of analyses for samples received by the laboratory on July 26, 2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

James M. Georgantas Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
17G1143-01	8
Sample Preparation Information	21
QC Data	24
Volatile Organic Compounds by GC/MS	24
B183391	24
Semivolatile Organic Compounds by GC/MS	26
B182991	26
Semivolatile Organic Compounds by - GC/MS	27
B182991	27
Polychlorinated Biphenyls By GC/ECD	31
B183062	31
Metals Analyses (Total)	32
B182719	32
B182896	32
B182983	32
Metals Analyses (Dissolved)	34
B182947	34
B182948	35
B183147	35
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	36
B182614	36
B182626	36

Table of Contents (continued)

B182652	36
B182664	37
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)	38
B184046	38
Drinking Water Organics EPA 504.1	39
B183230	39
EPA 300.0	40
1713429	40
Flag/Qualifier Summary	41
Certifications	42
Chain of Custody/Sample Receipt	47

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

NSTAR Electric & Gas Corporation One NSTAR Way, SUM SE-250 Westwood, MA 02090-9230 ATTN: Matthew Waldrip

REPORT DATE: 8/18/2017

PURCHASE ORDER NUMBER: 64454 Release 1

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 17G1143

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Boston, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
TMW-1	17G1143-01	Ground Water	orani da dabena 1101.	EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	NY11393/MA-MAI138/M A1110
				EPA 504.1	
				EPA 608	
				EPA 624	
				EPA 625	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				SW-846 7196A	
				SW-846 8015C	NH NELAC 2539/ MA M-MA014/CT PH-0494 +others
				SW-846 8270D	
				Tri Chrome Calc.	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 08-18-17: Due to a lab error a "B" qualifier was added to the hardness result on sample 17G1143-01. The report has been revised to remove the "B" qualifier.

For method 8270, only a select list of analytes were requested and reported.

EPA 200.8

Qualifications:

DL-15

Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.

Analyte & Samples(s) Qualified:

17G1143-01[TMW-1]

Antimony

17G1143-01[TMW-1], B182947-DUP1

Arsenic

17G1143-01[TMW-1], B182947-DUP1

Cadmium

17G1143-01[TMW-1], B182947-DUP1

Chromium

17G1143-01[TMW-1], B182947-DUP1

Copper

17G1143-01[TMW-1], B182947-DUP1

17G1143-01[TMW-1], B182947-DUP1

17G1143-01[TMW-1], B182947-DUP1

Selenium

17G1143-01[TMW-1], B182947-DUP1

Silver

17G1143-01[TMW-1], B182947-DUP1

17G1143-01[TMW-1], B182947-DUP1

EPA 608

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

Aroclor-1016

B183062-BS1, B183062-BSD1

EPA 625

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

2-Chloronaphthalene

17G1143-01[TMW-1], B182991-BLK1, B182991-BS1, B182991-BSD1

17G1143-01[TMW-1], B182991-BLK1, B182991-BS1, B182991-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method

specified criteria. Analyte & Samples(s) Qualified:

Benzidine

17G1143-01[TMW-1], B182991-BLK1, B182991-BS1, B182991-BSD1

V-05

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Benzidine

17G1143-01[TMW-1], B182991-BLK1, B182991-BS1, B182991-BSD1

V-19

Initial calibration did not meet method specifications. Compound was calibrated using linear regression with correlation coefficient <0.99. Reduced precision and accuracy may be associated with reported result. Analyte & Samples(s) Qualified:

Hexachlorocyclopentadiene

17G1143-01[TMW-1], B182991-BLK1, B182991-BS1, B182991-BSD1

V-20

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

4-Nitrophenol

17G1143-01[TMW-1], B182991-BLK1, B182991-BS1, B182991-BSD1

Di-n-octylphthalate

B182991-BLK1, B182991-BS1, B182991-BSD1

Hexachloroethane

17G1143-01[TMW-1]

N-Nitrosodimethylamine

17G1143-01[TMW-1], B182991-BLK1, B182991-BS1, B182991-BSD1

N-Nitrosodi-n-propylamine

17G1143-01[TMW-1]

wc-Chloride-300.0

Qualifications:

GS1

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Analyte & Samples(s) Qualified:

17G1143-01[TMW-1]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Project Manager

Lua Warrengton

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017
Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Volatile Organic Compo	unds by GC/MS
------------------------	---------------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	4.9	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.11	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
Benzene	ND	1.0	0.12	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
tert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
1,3-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
cis-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
1,4-Dioxane	ND	50	26	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
Ethylbenzene	0.31	2.0	0.13	μg/L	1	J	EPA 624	8/4/17	8/5/17 14:05	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
Tetrachloroethylene	ND	2.0	0.27	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
Toluene	0.17	1.0	0.17	μg/L	1	J	EPA 624	8/4/17	8/5/17 14:05	CMR
1,1,1-Trichloroethane	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
1,1,2-Trichloroethane	ND	2.0	0.24	$\mu g/L$	1		EPA 624	8/4/17	8/5/17 14:05	CMR
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	8/4/17	8/5/17 14:05	CMR
m+p Xylene	0.44	2.0	0.26	μg/L	1	J	EPA 624	8/4/17	8/5/17 14:05	CMR
o-Xylene	0.20	2.0	0.13	$\mu g/L$	1	J	EPA 624	8/4/17	8/5/17 14:05	CMR
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		98.3		70-130					8/5/17 14:05	
Toluene-d8		99.6		70-130					8/5/17 14:05	
4-Bromofluorobenzene		99.9		70-130					8/5/17 14:05	

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017

Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

	Semivolatile	Organic	Compounds	by GC/MS
--	--------------	---------	-----------	----------

			Semire	mane organic et	ompounds by	GC/MB				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene	0.19	0.050	0.050	$\mu g/L$	1		SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Benzo(a)pyrene	0.21	0.10	0.10	$\mu g/L$	1		SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Benzo(b)fluoranthene	0.25	0.050	0.050	$\mu g/L$	1		SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Benzo(k) fluoranthene	ND	0.20	0.20	$\mu g/L$	1		SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Bis(2-Ethylhexyl)phthalate	0.67	1.0	0.10	$\mu g/L$	1	J	SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Chrysene	ND	0.20	0.20	$\mu g/L$	1		SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Dibenz(a,h)anthracene	ND	0.20	0.20	$\mu g/L$	1		SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Indeno(1,2,3-cd)pyrene	ND	0.20	0.20	$\mu g/L$	1		SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Pentachlorophenol	ND	1.0	0.34	$\mu g/L$	1		SW-846 8270D	8/1/17	8/3/17 21:25	CJM
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
2-Fluorophenol		60.4		15-110					8/3/17 21:25	
Phenol-d6		41.8		15-110					8/3/17 21:25	
Nitrobenzene-d5		89.4		30-130					8/3/17 21:25	
2-Fluorobiphenyl		82.0		30-130					8/3/17 21:25	
2,4,6-Tribromophenol		98.9		15-110					8/3/17 21:25	
p-Terphenyl-d14		74.1		30-130					8/3/17 21:25	

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017

Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

		1	Semivolatile Organic C	ompounds by	y - GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	5.0	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Acenaphthylene	ND	5.0	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Anthracene	ND	5.0	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Benzidine	ND	20	$\mu g/L$	1	V-04, V-05, L-04	EPA 625	8/1/17	8/3/17 9:01	BGL
Benzo(g,h,i)perylene	ND	5.0	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
4-Bromophenylphenylether	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Butylbenzylphthalate	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
4-Chloro-3-methylphenol	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Bis(2-chloroethyl)ether	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2-Chloronaphthalene	ND	10	$\mu g/L$	1	L-04	EPA 625	8/1/17	8/3/17 9:01	BGL
2-Chlorophenol	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
4-Chlorophenylphenylether	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Di-n-butylphthalate	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
1,3-Dichlorobenzene	ND	5.0	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
1,4-Dichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
1,2-Dichlorobenzene	ND	5.0	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
3,3-Dichlorobenzidine	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2,4-Dichlorophenol	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Diethylphthalate	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2,4-Dimethylphenol	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Dimethylphthalate	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2,4-Dinitrophenol	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2,4-Dinitrotoluene	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2,6-Dinitrotoluene	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Di-n-octylphthalate	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Fluoranthene	ND	5.0	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Fluorene	ND	5.0	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Hexachlorobenzene	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Hexachlorobutadiene	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Hexachlorocyclopentadiene	ND	10	μg/L	1	V-19	EPA 625	8/1/17	8/3/17 9:01	BGL
Hexachloroethane	ND	10	μg/L	1	V-20	EPA 625	8/1/17	8/3/17 9:01	BGL
Isophorone	ND	10	μg/L	1	, 20	EPA 625	8/1/17	8/3/17 9:01	BGL
Naphthalene	ND	5.0	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Nitrobenzene	ND	10	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2-Nitrophenol	ND	10	μg/L μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
4-Nitrophenol	ND ND	10	μg/L μg/L	1	V-20	EPA 625	8/1/17	8/3/17 9:01	BGL
N-Nitrosodimethylamine	ND ND	10	μg/L μg/L	1	V-20 V-20	EPA 625	8/1/17	8/3/17 9:01	BGL
N-Nitrosodiphenylamine	ND ND	10	μg/L μg/L	1	v -20	EPA 625	8/1/17	8/3/17 9:01	BGL
N-Nitrosodi-n-propylamine	ND ND	10		1	V-20	EPA 625	8/1/17	8/3/17 9:01	BGL
2-Methylnaphthalene			μg/L		v -∠U				
2-ivioutymaphinatene	ND	5.0	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL

Page 10 of 48

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017
Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Semivolatile	Organic Co	ompounds by	- GC/MS
--------------	------------	-------------	---------

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Phenanthrene	ND	5.0	μg/L	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2-Methylphenol	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Phenol	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
3/4-Methylphenol	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Pyrene	ND	5.0	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
1,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
2,4,6-Trichlorophenol	ND	10	$\mu g/L$	1		EPA 625	8/1/17	8/3/17 9:01	BGL
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
2-Fluorophenol		55.9	15-110					8/3/17 9:01	
Phenol-d6		40.6	15-110					8/3/17 9:01	
Nitrobenzene-d5		92.7	30-130					8/3/17 9:01	
2-Fluorobiphenyl		89.0	30-130					8/3/17 9:01	
2,4,6-Tribromophenol		92.3	15-110					8/3/17 9:01	
p-Terphenyl-d14		92.2	30-130					8/3/17 9:01	

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017
Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Dolyahlaninatad	Dinhanvla	D	CC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.10	0.057	μg/L	1		EPA 608	8/1/17	8/3/17 21:20	KAL
Aroclor-1221 [1]	ND	0.10	0.062	$\mu g/L$	1		EPA 608	8/1/17	8/3/17 21:20	KAL
Aroclor-1232 [1]	ND	0.10	0.038	$\mu g/L$	1		EPA 608	8/1/17	8/3/17 21:20	KAL
Aroclor-1242 [1]	ND	0.10	0.054	$\mu g/L$	1		EPA 608	8/1/17	8/3/17 21:20	KAL
Aroclor-1248 [1]	ND	0.10	0.064	$\mu g/L$	1		EPA 608	8/1/17	8/3/17 21:20	KAL
Aroclor-1254 [1]	ND	0.10	0.071	$\mu g/L$	1		EPA 608	8/1/17	8/3/17 21:20	KAL
Aroclor-1260 [1]	ND	0.10	0.073	$\mu g/L$	1		EPA 608	8/1/17	8/3/17 21:20	KAL
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
Decachlorobiphenyl [1]		80.6		30-150					8/3/17 21:20	
Decachlorobiphenyl [2]		75.0		30-150					8/3/17 21:20	
Tetrachloro-m-xylene [1]		84.2		30-150					8/3/17 21:20	
Tetrachloro-m-xylene [2]		89.9		30-150					8/3/17 21:20	

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017
Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Sample Flags: DL-15

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	5.0		$\mu g/L$	5		EPA 200.8	8/1/17	8/4/17 4:50	MJH
Arsenic	20	10		$\mu g/L$	10		EPA 200.8	8/1/17	8/4/17 4:46	MJH
Cadmium	ND	1.0		$\mu g/L$	5		EPA 200.8	8/1/17	8/4/17 4:50	MJH
Chromium	ND	100		$\mu g/L$	10		EPA 200.8	8/1/17	8/4/17 4:46	MJH
Chromium, Trivalent	ND	0.010		mg/L	1		Tri Chrome Calc.	8/1/17	8/11/17 14:59	MJH
Copper	130	10		$\mu g/L$	10		EPA 200.8	8/1/17	8/4/17 4:46	MJH
Iron	0.60	0.050		mg/L	1		EPA 200.7	8/1/17	8/4/17 15:03	QNW
Lead	ND	10		$\mu g/L$	20		EPA 200.8	8/1/17	8/4/17 4:54	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	7/27/17	8/1/17 8:53	TJK
Nickel	ND	50		$\mu g/L$	10		EPA 200.8	8/1/17	8/4/17 4:46	MJH
Selenium	57	50	21	$\mu g/L$	10		EPA 200.8	8/1/17	8/4/17 4:46	MJH
Silver	ND	1.0		$\mu g/L$	5		EPA 200.8	8/1/17	8/4/17 4:50	MJH
Zinc	ND	200		$\mu g/L$	10		EPA 200.8	8/1/17	8/4/17 4:46	MJH
Hardness	4800			mg/L	5		EPA 200.7	8/1/17	8/8/17 13:10	QNW

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017

Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

Amaluta	Dlt-	RL	DI	II:4-	D!I4!	FI/O1	Madhad	Date	Date/Time	A Iv4
Analyte	Results	KL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	5.0		$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD
Arsenic	25	5.0		$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD
Cadmium	ND	1.0		$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD
Chromium	ND	50		$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD
Chromium, Trivalent	ND	0.010		mg/L	1		Tri Chrome Calc.	7/31/17	8/14/17 15:05	MJH
Copper	50	5.0		$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD
Iron	ND	0.050		mg/L	1		EPA 200.7	7/31/17	8/5/17 14:38	QNW
Lead	4.5	2.5		$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/2/17 4:49	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	8/2/17	8/3/17 10:23	TJK
Nickel	ND	25		$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD
Selenium	69	25	11	$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD
Silver	ND	1.0		$\mu g/L$	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD
Zinc	ND	100		μg/L	5	DL-15	EPA 200.8	7/31/17	8/1/17 14:40	WSD

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017
Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chlorine, Residual	ND	0.020	mg/L	1		SM21-22 4500 CL G	7/26/17	7/26/17 20:25	DJM
Hexavalent Chromium	ND	0.0040	mg/L	1		SM21-22 3500 Cr B	7/26/17	7/26/17 21:20	DJM
Total Suspended Solids	34	5.0	mg/L	1		SM21-22 2540D	7/27/17	7/27/17 13:00	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L	1		EPA 1664B	7/27/17	7/27/17 10:10	LL

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017
Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexavalent Chromium	ND	0.0040	mg/L	1		SW-846 7196A	7/26/17	7/26/17 21:20	DJM

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017
Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.023	$\mu g/L$	1		EPA 504.1	8/3/17	8/3/17 13:32	PJG
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
1,3-Dibromopropane (1)		106	70-130					8/3/17 13:32	

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017

Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.075	0.075	mg/L	1		SM19-22 4500 NH3 C		8/1/17 0:26	AAL
Cyanide		ND	0.005	mg/L	1		SM21-22 4500 CN E		7/28/17 14:27	AAL

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017
Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

EPA 300.0

								Date	Date/Time Analyzed		
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Chloride		16100	400	mg/l	400	GS1	wc-Chloride-300.0	8/3/17	8/4/17 16:24	LNB	

Project Location: South Boston, MA Sample Description: Work Order: 17G1143

Date Received: 7/26/2017

Field Sample #: TMW-1

Sampled: 7/26/2017 08:00

Sample ID: 17G1143-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ethanol		ND	2000	ug/L	1		1671A		7/31/17 10:43	TAL

Sample Extraction Data

EPA	16641
-----	-------

EPA 1664B					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
17G1143-01 [TMW-1]	B182652	1000		07/27/17	
Prep Method: EPA 200.7-EPA 200.7					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B182896	50.0	50.0	08/01/17	
Prep Method: EPA 200.7 Dissolved-EPA 200.7					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B182948	50.0	50.0	07/31/17	
Prep Method: EPA 200.7-EPA 200.7					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B183095	50.0	50.0	08/01/17	
Prep Method: EPA 200.8 Dissolved-EPA 200.8					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B182947	50.0	50.0	07/31/17	
Prep Method: EPA 200.8-EPA 200.8					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B182983	50.0	50.0	08/01/17	
17G1143-01 [TMW-1]	B182983	50.0	50.0	08/01/17	
Prep Method: EPA 245.1-EPA 245.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01RE1 [TMW-1]	B182719	6.00	6.00	07/27/17	
Prep Method: EPA 245.1-EPA 245.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B183147	6.00	6.00	08/02/17	
Prep Method: EPA 504 water-EPA 504.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B183230	30.8	35.0	08/03/17	

Sample Extraction Data

Prep Method:	SW-846	3510C-EPA	608
--------------	--------	-----------	-----

17G1143-01 [TMW-1]

Prep Method: SW-846 3510C-EPA 608					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B183062	1000	5.00	08/01/17	
Prep Method: SW-846 5035-EPA 624					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B183391	5	5.00	08/04/17	
Prep Method: SW-846 3510C-EPA 625					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B182991	1000	1.00	08/01/17	
SM21-22 2540D					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
17G1143-01 [TMW-1]	B182664	100		07/27/17	
SM21-22 3500 Cr B					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B182626	50.0	50.0	07/26/17	
SM21-22 4500 CL G					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B182614	100	100	07/26/17	
SW-846 7196A					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B184046	50.0	50.0	07/26/17	
Prep Method: SW-846 3510C-SW-846 8270D					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17G1143-01 [TMW-1]	B182991	1000	1.00	08/01/17	
Prep Method: SW-846 3005A-Tri Chrome Calc.					
Lab Number [Field ID]	Batch	Initial [mL]		Date	

B182984

1.00

08/01/17

Sample Extraction Data

Prep Method: EPA 200.8 Dissolved-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
17G1143-01 [TMW-1]	B183935	1.00	07/31/17

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B183391 - SW-846 5035										
Blank (B183391-BLK1)				Prepared: 08	3/04/17 Anal	yzed: 08/05/	17			
Acetone	ND	50	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							
Carbon Tetrachloride	ND	2.0	$\mu g/L$							
1,2-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,4-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,2-Dichloroethane	ND	2.0	$\mu g/L$							
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
,1-Dichloroethane	ND	2.0	$\mu \text{g/L}$							
1,1-Dichloroethylene	ND	2.0	$\mu \text{g/L}$							
1,4-Dioxane	ND	50	$\mu g \! / \! L$							
Ethylbenzene	ND	2.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu g/L$							
Methylene Chloride	ND	5.0	$\mu \text{g/L}$							
Tetrachloroethylene	ND	2.0	$\mu g/L$							
Toluene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	2.0	$\mu \text{g/L}$							
1,1,2-Trichloroethane	ND	2.0	$\mu \text{g/L}$							
Trichloroethylene	ND	2.0	$\mu \text{g/L}$							
Vinyl Chloride	ND	2.0	μg/L							
n+p Xylene	0.48	2.0	$\mu g/L$							J
o-Xylene	0.18	2.0	μg/L							J
Surrogate: 1,2-Dichloroethane-d4	24.1		μg/L	25.0		96.2	70-130			
Surrogate: Toluene-d8	25.0		$\mu g/L$	25.0		100	70-130			
Surrogate: 4-Bromofluorobenzene	25.2		$\mu g/L$	25.0		101	70-130			
LCS (B183391-BS1)				Prepared: 08	3/04/17 Anal	yzed: 08/05/	17			
Acetone	94.5	50	$\mu \text{g/L}$	100		94.5	70-160			
ert-Amyl Methyl Ether (TAME)	9.60	0.50	$\mu g/L$	10.0		96.0	70-130			
Benzene	9.43	1.0	μg/L	10.0		94.3	37-151			
ert-Butyl Alcohol (TBA)	91.2	20	$\mu g/L$	100		91.2	40-160			
Carbon Tetrachloride	10.4	2.0	$\mu g/L$	10.0		104	70-140			
,2-Dichlorobenzene	9.69	2.0	$\mu g/L$	10.0		96.9	18-190			
,3-Dichlorobenzene	10.1	2.0	$\mu g/L$	10.0		101	59-156			
1,4-Dichlorobenzene	9.76	2.0	$\mu g/L$	10.0		97.6	18-190			
,2-Dichloroethane	9.86	2.0	$\mu g/L$	10.0		98.6	49-155			
cis-1,2-Dichloroethylene	8.97	1.0	$\mu g/L$	10.0		89.7	70-130			
,1-Dichloroethane	10.0	2.0	$\mu g/L$	10.0		100	59-155			
,1-Dichloroethylene	9.80	2.0	μg/L	10.0		98.0	20-234			
,4-Dioxane	112	50	μg/L	100		112	40-130			
Ethylbenzene	10.0	2.0	$\mu g/L$	10.0		100	37-162			
Methyl tert-Butyl Ether (MTBE)	9.68	2.0	$\mu g/L$	10.0		96.8	70-130			
Methylene Chloride	9.43	5.0	$\mu g/L$	10.0		94.3	50-221			
Γetrachloroethylene	10.8	2.0	$\mu g/L$	10.0		108	64-148			
Γoluene	9.71	1.0	$\mu g/L$	10.0		97.1	47-150			
,1,1-Trichloroethane	9.71	2.0	$\mu g/L$	10.0		97.1	52-162			
1,1,2-Trichloroethane	9.50	2.0	$\mu g/L$	10.0		95.0	52-150			
Γrichloroethylene	9.57	2.0	$\mu g/L$	10.0		95.7	71-157			
Vinyl Chloride	7.78	2.0	$\mu g/L$	10.0		77.8	20-251			
m+p Xylene	20.3	2.0	μg/L	20.0		102	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B183391 - SW-846 5035							
LCS (B183391-BS1)				Prepared: 08/04	1/17 Analyzed: 08/05/1	7	
o-Xylene	10.1	2.0	μg/L	10.0	101	70-130	

97.7

Surrogate: 1,2-Dichloroethane-d4 24.4 $\mu g/L$ 25.0 70-130 Surrogate: Toluene-d8 24.9 25.0 99.5 70-130 $\mu g/L$ Surrogate: 4-Bromofluorobenzene 25.1 101 70-130 25.0 $\mu g/L$

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182991 - SW-846 3510C										
Blank (B182991-BLK1)				Prepared: 08	/01/17 Anal	yzed: 08/03/	17			
Benzo(a)anthracene	ND	0.050	$\mu g/L$							
Benzo(a)pyrene	ND	0.10	$\mu \text{g}/L$							
Benzo(b)fluoranthene	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene	ND	0.20	$\mu \text{g}/L$							
Bis(2-Ethylhexyl)phthalate	0.35	1.0	$\mu g/L$							J
Chrysene	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene	ND	0.20	$\mu g/L$							
Indeno(1,2,3-cd)pyrene	ND	0.20	$\mu g/L$							
Pentachlorophenol	ND	1.0	$\mu g/L$							
Surrogate: 2-Fluorophenol	90.2		μg/L	200		45.1	15-110			
Surrogate: Phenol-d6	64.0		μg/L	200		32.0	15-110			
Surrogate: Nitrobenzene-d5	71.3		μg/L	100		71.3	30-130			
Surrogate: 2-Fluorobiphenyl	66.1		μg/L	100		66.1	30-130			
Surrogate: 2,4,6-Tribromophenol	146		μg/L	200		72.9	15-110			
Surrogate: p-Terphenyl-d14	56.7		μg/L	100		56.7	30-130			
LCS (B182991-BS1)				Prepared: 08	/01/17 Anal	yzed: 08/03/	17			
Benzo(a)anthracene	73.1	1.2	μg/L	100		73.1	40-140			
Benzo(a)pyrene	78.2	2.5	μg/L	100		78.2	40-140			
Benzo(b)fluoranthene	77.0	1.2	μg/L	100		77.0	40-140			
Benzo(k)fluoranthene	74.8	5.0	μg/L	100		74.8	40-140			
Bis(2-Ethylhexyl)phthalate	74.8	25	μg/L	100		70.2	40-140			
Chrysene		5.0	μg/L μg/L	100		72.4	40-140			
Dibenz(a,h)anthracene	72.4	5.0	μg/L μg/L	100		75.8				
Indeno(1,2,3-cd)pyrene	75.8	5.0	μg/L μg/L	100		76.5	40-140 40-140			
Pentachlorophenol	76.5	25	μg/L μg/L	100		67.6	30-130			
	67.6									
Surrogate: 2-Fluorophenol	88.8		μg/L	200		44.4	15-110			
Surrogate: Phenol-d6	63.8		μg/L	200		31.9	15-110			
Surrogate: Nitrobenzene-d5	73.9		μg/L	100		73.9	30-130			
Surrogate: 2-Fluorobiphenyl	77.3		μg/L	100		77.3	30-130			
Surrogate: 2,4,6-Tribromophenol	143		μg/L	200		71.7	15-110			
Surrogate: p-Terphenyl-d14	58.7		μg/L	100		58.7	30-130			
LCS Dup (B182991-BSD1)				Prepared: 08	/01/17 Anal	yzed: 08/03/	17			
Benzo(a)anthracene	80.4	1.2	$\mu g/L$	100		80.4	40-140	9.45	20	
Benzo(a)pyrene	86.2	2.5	$\mu g/L$	100		86.2	40-140	9.82	20	
Benzo(b)fluoranthene	85.2	1.2	$\mu g/L$	100		85.2	40-140	10.2	20	
Benzo(k)fluoranthene	82.5	5.0	$\mu \text{g/L}$	100		82.5	40-140	9.82	20	
Bis(2-Ethylhexyl)phthalate	78.0	25	μg/L	100		78.0	40-140	10.5	20	
Chrysene	79.5	5.0	$\mu g \! / \! L$	100		79.5	40-140	9.32	20	
Dibenz(a,h)anthracene	83.6	5.0	$\mu \text{g/L}$	100		83.6	40-140	9.88	20	
Indeno(1,2,3-cd)pyrene	84.4	5.0	$\mu g \! / \! L$	100		84.4	40-140	9.82	50	
Pentachlorophenol	77.7	25	$\mu g/L$	100		77.7	30-130	14.0	50	
Surrogate: 2-Fluorophenol	109		μg/L	200		54.4	15-110			
Surrogate: Phenol-d6	76.3		μg/L	200		38.2	15-110			
Surrogate: Nitrobenzene-d5	81.2		μg/L	100		81.2	30-130			
Surrogate: 2-Fluorobiphenyl	84.4		μg/L	100		84.4	30-130			
Surrogate: 2,4,6-Tribromophenol	159		μg/L	200		79.3	15-110			
Surrogate: p-Terphenyl-d14	65.8		μg/L	100		65.8	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182991 - SW-846 3510C										
Blank (B182991-BLK1)				Prepared: 08	3/01/17 Analy	yzed: 08/02/1	7			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	$\mu g/L$							
Anthracene	ND	5.0	$\mu g/L$							
Benzidine	ND	20	$\mu g/L$							L-04, V-04, V-05
Benzo(g,h,i)perylene	ND	5.0	μg/L							
4-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	μg/L							
4-Chloro-3-methylphenol	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	μg/L							÷ -
2-Chloronaphthalene	ND	10	μg/L							L-04
2-Chlorophenol 4 Chlorophenylphenylether	ND	10	μg/L μg/I							
4-Chlorophenylphenylether Di-n-butylphthalate	ND	10 10	μg/L μg/L							
1,3-Dichlorobenzene	ND ND	5.0	μg/L μg/L							
1,3-Dichlorobenzene	ND ND	5.0	μg/L μg/L							
1,4-Dichlorobenzene	ND ND	5.0	μg/L μg/L							
3,3-Dichlorobenzidine	ND ND	10	μg/L μg/L							
2,4-Dichlorophenol	ND ND	10	μg/L μg/L							
Diethylphthalate	ND ND	10	μg/L μg/L							
2,4-Dimethylphenol	ND ND	10	μg/L μg/L							
Dimethylphthalate	ND ND	10	μg/L μg/L							
4,6-Dinitro-2-methylphenol	ND ND	10	μg/L μg/L							
2,4-Dinitrophenol	ND ND	10	μg/L μg/L							
2,4-Dinitrotoluene	ND ND	10	μg/L μg/L							
2,6-Dinitrotoluene	ND ND	10	μg/L μg/L							
Di-n-octylphthalate	ND ND	10	μg/L μg/L							V-20
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	μg/L							. =.4
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L							
Fluoranthene	ND	5.0	μg/L							
Fluorene	ND	5.0	μg/L							
Hexachlorobenzene	ND	10	μg/L							
Hexachlorobutadiene	ND	10	μg/L							
Hexachlorocyclopentadiene	ND	10	μg/L							V-19
Hexachloroethane	ND	10	$\mu g/L$							
Isophorone	ND	10	$\mu g/L$							
Naphthalene	ND	5.0	$\mu g/L$							
Nitrobenzene	ND	10	$\mu g/L$							
2-Nitrophenol	ND	10	$\mu g/L$							
4-Nitrophenol	ND	10	$\mu g/L$							V-20
N-Nitrosodimethylamine	ND	10	μg/L							V-20
N-Nitrosodiphenylamine	ND	10	μg/L							
N-Nitrosodi-n-propylamine	ND	10	μg/L							
2-Methylnaphthalene	ND	5.0	μg/L							
Phenanthrene	ND	5.0	μg/L							
2-Methylphenol	ND	10	μg/L							
Phenol 2/4 Mathylphanol	ND	10	μg/L							
3/4-Methylphenol	ND	10	μg/L							
Pyrene	ND	5.0	μg/L							
1,2,4-Trichlorobenzene	ND	5.0	μg/L							
2,4,6-Trichlorophenol	ND	10	μg/L							
Surrogate: 2-Fluorophenol	101		$\mu g/L$	200		50.4	15-110			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182991 - SW-846 3510C										
Blank (B182991-BLK1)				Prepared: 08	3/01/17 Analy	yzed: 08/02/	17			
Surrogate: Phenol-d6	67.7		μg/L	200		33.8	15-110			
Surrogate: Nitrobenzene-d5	82.5		$\mu g/L$	100		82.5	30-130			
Surrogate: 2-Fluorobiphenyl	75.6		$\mu g/L$	100		75.6	30-130			
Surrogate: 2,4,6-Tribromophenol	146		$\mu g/L$	200		72.9	15-110			
Surrogate: p-Terphenyl-d14	78.2		$\mu g/L$	100		78.2	30-130			
LCS (B182991-BS1)				Prepared: 08	3/01/17 Anal	yzed: 08/02/	17			
Acenaphthene	58.3	5.0	$\mu g/L$	100		58.3	47-145			
Acenaphthylene	54.7	5.0	$\mu \text{g/L}$	100		54.7	33-145			
Anthracene	58.0	5.0	$\mu \text{g/L}$	100		58.0	27-133			
Benzidine	8.49	20	$\mu g\!/\!L$	100		8.49 *	40-140			L-04, V-04, V-05
Benzo(g,h,i)perylene	58.0	5.0	$\mu \text{g/L}$	100		58.0	1-219			
4-Bromophenylphenylether	58.3	10	$\mu g/L$	100		58.3	53-127			
Butylbenzylphthalate	60.7	10	$\mu g/L$	100		60.7	1-152			
4-Chloro-3-methylphenol	64.7	10	$\mu \text{g/L}$	100		64.7	22-147			
Bis(2-chloroethyl)ether	59.6	10	$\mu \text{g/L}$	100		59.6	12-158			
Bis(2-chloroisopropyl)ether	48.1	10	$\mu \text{g/L}$	100		48.1	36-166			
2-Chloronaphthalene	51.4	10	$\mu g \! / \! L$	100		51.4 *	60-118			L-04
2-Chlorophenol	53.7	10	$\mu g/L$	100		53.7	23-134			
4-Chlorophenylphenylether	59.6	10	$\mu g/L$	100		59.6	25-158			
Di-n-butylphthalate	60.9	10	$\mu g/L$	100		60.9	1-118			
1,3-Dichlorobenzene	53.1	5.0	μg/L	100		53.1	1-172			
1,4-Dichlorobenzene	53.9	5.0	μg/L	100		53.9	20-124			
1,2-Dichlorobenzene	53.2	5.0	$\mu g/L$	100		53.2	32-129			
3,3-Dichlorobenzidine	55.7	10	μg/L	100		55.7	1-262			
2,4-Dichlorophenol	57.4	10	μg/L	100		57.4	39-135			
Diethylphthalate	64.6	10	μg/L	100		64.6	1-114			
2,4-Dimethylphenol	50.9	10	μg/L	100		50.9	32-119			
Dimethylphthalate	60.7	10	μg/L	100		60.7	1-112			
4,6-Dinitro-2-methylphenol	62.8	10	μg/L	100		62.8	1-181			
2,4-Dinitrophenol	62.4	10	μg/L	100		62.4	1-191			
2,4-Dinitrotoluene	59.9	10	μg/L	100		59.9	39-139			
2,6-Dinitrotoluene	58.7	10	μg/L	100		58.7	50-158			
Di-n-octylphthalate	72.4	10	μg/L	100		72.4	4-146			V-20
1,2-Diphenylhydrazine (as Azobenzene)	61.0	10	μg/L	100		61.0	40-140			. ==
Bis(2-Ethylhexyl)phthalate	58.2	10	μg/L	100		58.2	8-158			
Fluoranthene	56.9	5.0	μg/L	100		56.9	26-137			
Fluorene	59.2	5.0	μg/L	100		59.2	59-121			
Hexachlorobenzene	53.1	10	μg/L	100		53.1	1-152			
Hexachlorobutadiene	61.3	10	μg/L	100		61.3	24-116			
Hexachlorocyclopentadiene	55.9	10	μg/L	100		55.9	40-140			V-19
Hexachloroethane	62.2	10	μg/L	100		62.2	40-113			
Isophorone	57.1	10	μg/L	100		57.1	21-196			
Naphthalene	55.4	5.0	μg/L	100		55.4	21-133			
Nitrobenzene	56.8	10	μg/L	100		56.8	35-180			
2-Nitrophenol	53.0	10	μg/L	100		53.0	29-182			
4-Nitrophenol	42.7	10	μg/L	100		42.7	1-132			V-20
N-Nitrosodimethylamine	52.9	10	μg/L	100		52.9	40-140			V-20 V-20
N-Nitrosodimenylamine	73.8	10	μg/L μg/L	100		73.8	40-140			v -4U
N-Nitrosodi-n-propylamine		10	μg/L μg/L	100		62.2	1-230			
2-Methylnaphthalene	62.2	5.0	μg/L μg/L	100			40-140			
Phenanthrene	60.8 58.1	5.0	μg/L μg/L	100		60.8 58.1	54-120			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182991 - SW-846 3510C										
LCS (B182991-BS1)				Prepared: 08	3/01/17 Anal	yzed: 08/02/	17			
2-Methylphenol	47.9	10	μg/L	100		47.9	30-130			
Phenol	27.4	10	$\mu \text{g/L}$	100		27.4	5-112			
3/4-Methylphenol	49.8	10	$\mu g/L$	100		49.8	30-130			
Pyrene	56.1	5.0	$\mu g/L$	100		56.1	52-115			
1,2,4-Trichlorobenzene	52.4	5.0	μg/L	100		52.4	44-142			
2,4,6-Trichlorophenol	54.1	10	$\mu g/L$	100		54.1	37-144			
Surrogate: 2-Fluorophenol	75.0		μg/L	200		37.5	15-110			
Surrogate: Phenol-d6	53.3		$\mu g/L$	200		26.6	15-110			
Surrogate: Nitrobenzene-d5	62.8		$\mu g/L$	100		62.8	30-130			
Surrogate: 2-Fluorobiphenyl	61.5		$\mu g/L$	100		61.5	30-130			
Surrogate: 2,4,6-Tribromophenol	130		$\mu g/L$	200		65.2	15-110			
Surrogate: p-Terphenyl-d14	59.1		$\mu g/L$	100		59.1	30-130			
LCS Dup (B182991-BSD1)				Prepared: 08	3/01/17 Anal	yzed: 08/02/	17			
Acenaphthene	62.6	5.0	μg/L	100		62.6	47-145	7.06		
Acenaphthylene	59.3	5.0	μg/L	100		59.3	33-145	8.12		
Anthracene	64.3	5.0	μg/L	100		64.3	27-133	10.3		
Benzidine	10.1	20	μg/L	100		10.1 *		17.0		V-04, V-05, L-04
Benzo(g,h,i)perylene	65.5	5.0	μg/L	100		65.5	1-219	12.2		, , , , , , , ,
4-Bromophenylphenylether	66.0	10	μg/L	100		66.0	53-127	12.4		
Butylbenzylphthalate	66.4	10	μg/L	100		66.4	1-152	9.03		
4-Chloro-3-methylphenol	74.6	10	μg/L	100		74.6	22-147	14.2		
Bis(2-chloroethyl)ether	66.5	10	μg/L μg/L	100		66.5	12-158	11.0		
Bis(2-chloroisopropyl)ether	54.2	10	μg/L μg/L	100		54.2	36-166	12.0		
2-Chloronaphthalene	54.7	10	μg/L μg/L	100		54.7 *		6.29		L-04
2-Chlorophenol		10	μg/L μg/L	100		60.6	23-134	12.1		L-04
4-Chlorophenylphenylether	60.6 65.8	10	μg/L μg/L	100		65.8	25-154	9.90		
Di-n-butylphthalate	67.7	10	μg/L μg/L	100		67.7	1-118	10.6		
1,3-Dichlorobenzene		5.0	μg/L μg/L	100		61.2	1-118	14.1		
1,4-Dichlorobenzene	61.2	5.0	μg/L μg/L	100		61.0	20-124	12.4		
1,2-Dichlorobenzene	61.0	5.0	μg/L μg/L	100		61.4	32-129	14.4		
3,3-Dichlorobenzidine	61.4	10	μg/L μg/L							
2,4-Dichlorophenol	57.2	10	μg/L μg/L	100 100		57.2 64.2	1-262 39-135	2.75 11.1		
Diethylphthalate	64.2	10	μg/L μg/L	100		71.0	1-114	9.38		
2,4-Dimethylphenol	71.0	10	μg/L μg/L							
Dimethylphthalate	61.0	10		100		61.0	32-119	18.1		
4,6-Dinitro-2-methylphenol	66.1	10	μg/L μg/L	100		66.1	1-112	8.50		
2,4-Dinitro-2-methylphenol	68.9	10	μg/L μg/L	100		68.9	1-181	9.31		
	73.6	10		100		73.6	1-191	16.4		
2,4-Dinitrotoluene 2,6-Dinitrotoluene	66.4		μg/L μg/I	100		66.4	39-139	10.2		
	64.0	10	μg/L	100		64.0	50-158	8.71		W 20
Di-n-octylphthalate	81.6	10 10	μg/L μg/I	100		81.6	4-146	12.0		V-20
1,2-Diphenylhydrazine (as Azobenzene) Bis(2-Ethylhexyl)phthalate	68.9	10	μg/L μg/I	100		68.9	40-140	12.2		
Fluoranthene	62.9		μg/L μg/I	100		62.9	8-158	7.88		
Fluorantnene Fluorene	65.2	5.0	μg/L μg/I	100		65.2	26-137	13.6		
	64.3	5.0	μg/L	100		64.3	59-121	8.32		
Hexachlorobenzene Hexachlorobytodiona	60.9	10	μg/L	100		60.9	1-152	13.7		
Hexachlorobutadiene	69.6	10	μg/L	100		69.6	24-116	12.7		17.10
Hexachlorocyclopentadiene	59.1	10	μg/L	100		59.1	40-140	5.63		V-19
Hexachloroethane	72.0	10	μg/L	100		72.0	40-113	14.6		
Isophorone	65.7	10	μg/L	100		65.7	21-196	14.1		
Naphthalene	63.4	5.0	μg/L	100		63.4	21-133	13.6		
Nitrobenzene	65.4	10	$\mu g/L$	100		65.4	35-180	13.9		

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B182991 - SW-846 3510C										
LCS Dup (B182991-BSD1)				Prepared: 08	3/01/17 Anal	yzed: 08/02/	17			
2-Nitrophenol	62.0	10	μg/L	100		62.0	29-182	15.7		
4-Nitrophenol	42.6	10	$\mu g/L$	100		42.6	1-132	0.141		V-20
N-Nitrosodimethylamine	63.7	10	$\mu g/L$	100		63.7	40-140	18.6		V-20
N-Nitrosodiphenylamine	79.9	10	$\mu \text{g/L}$	100		79.9	40-140	7.99		
N-Nitrosodi-n-propylamine	69.0	10	$\mu g/L$	100		69.0	1-230	10.4		
2-Methylnaphthalene	67.4	5.0	$\mu g/L$	100		67.4	40-140	10.2	20	
Phenanthrene	65.2	5.0	$\mu g/L$	100		65.2	54-120	11.5		
2-Methylphenol	53.7	10	$\mu \text{g}/L$	100		53.7	30-130	11.5	20	
Phenol	32.4	10	$\mu g/L$	100		32.4	5-112	16.9		
3/4-Methylphenol	55.6	10	$\mu \text{g}/L$	100		55.6	30-130	11.1	20	
Pyrene	61.3	5.0	$\mu g/L$	100		61.3	52-115	8.90		
1,2,4-Trichlorobenzene	61.0	5.0	$\mu \text{g}/L$	100		61.0	44-142	15.1		
2,4,6-Trichlorophenol	60.6	10	$\mu g/L$	100		60.6	37-144	11.3		
Surrogate: 2-Fluorophenol	86.8		μg/L	200		43.4	15-110			
Surrogate: Phenol-d6	62.5		$\mu g/L$	200		31.2	15-110			
Surrogate: Nitrobenzene-d5	72.2		$\mu g/L$	100		72.2	30-130			
Surrogate: 2-Fluorobiphenyl	64.5		μg/L	100		64.5	30-130			
Surrogate: 2,4,6-Tribromophenol	142		$\mu g/L$	200		71.1	15-110			
Surrogate: p-Terphenyl-d14	63.3		$\mu g/L$	100		63.3	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B183062 - SW-846 3510C										
Blank (B183062-BLK1)				Prepared: 08	3/01/17 Anal	yzed: 08/04/	17			
Aroclor-1016	ND	0.040	μg/L							
Aroclor-1016 [2C]	ND	0.040	$\mu \text{g/L}$							
Aroclor-1221	ND	0.040	$\mu \text{g/L}$							
Aroclor-1221 [2C]	ND	0.040	$\mu \text{g/L}$							
Aroclor-1232	ND	0.040	$\mu \text{g/L}$							
Aroclor-1232 [2C]	ND	0.040	$\mu \text{g/L}$							
Aroclor-1242	ND	0.040	$\mu \text{g/L}$							
Aroclor-1242 [2C]	ND	0.040	$\mu \text{g/L}$							
Aroclor-1248	ND	0.040	$\mu \text{g/L}$							
Aroclor-1248 [2C]	ND	0.040	$\mu \text{g/L}$							
Aroclor-1254	ND	0.040	$\mu \text{g/L}$							
Aroclor-1254 [2C]	ND	0.040	$\mu \text{g/L}$							
Aroclor-1260	ND	0.040	$\mu \text{g/L}$							
Aroclor-1260 [2C]	ND	0.040	$\mu g/L$							
Surrogate: Decachlorobiphenyl	1.20		μg/L	2.00		59.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.41		$\mu g/L$	2.00		70.7	30-150			
Surrogate: Tetrachloro-m-xylene	1.14		$\mu g/L$	2.00		56.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.44		$\mu g/L$	2.00		71.9	30-150			
LCS (B183062-BS1)				Prepared: 08	3/01/17 Anal	yzed: 08/03/	17			
Aroclor-1016	0.61	0.20	μg/L	0.500		122 *	50-114			L-02
Aroclor-1016 [2C]	0.54	0.20	$\mu g \! / \! L$	0.500		108	50-114			
Aroclor-1260	0.53	0.20	$\mu g \! / \! L$	0.500		106	8-127			
Aroclor-1260 [2C]	0.47	0.20	$\mu \text{g/L}$	0.500		94.4	8-127			
Surrogate: Decachlorobiphenyl	2.01		μg/L	2.00		101	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.84		$\mu g/L$	2.00		92.1	30-150			
Surrogate: Tetrachloro-m-xylene	1.74		$\mu g/L$	2.00		86.8	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.75		$\mu g/L$	2.00		87.7	30-150			
LCS Dup (B183062-BSD1)				Prepared: 08	3/01/17 Anal	yzed: 08/03/	17			
Aroclor-1016	0.60	0.20	μg/L	0.500		120 *	50-114	1.43		L-02
Aroclor-1016 [2C]	0.55	0.20	$\mu g/L$	0.500		110	50-114	1.74		
Aroclor-1260	0.53	0.20	$\mu g/L$	0.500		107	8-127	0.478		
Aroclor-1260 [2C]	0.48	0.20	$\mu g/L$	0.500		95.8	8-127	1.50		
Surrogate: Decachlorobiphenyl	2.02		μg/L	2.00		101	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.83		μg/L	2.00		91.5	30-150			
Surrogate: Tetrachloro-m-xylene	1.77		μg/L	2.00		88.7	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.81		μg/L	2.00		90.6	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182719 - EPA 245.1		-		<u> </u>						
Blank (B182719-BLK1)				Prepared: 07	1/27/17 Anal	yzed: 08/01/	17			
Mercury	ND	0.00010	mg/L							
LCS (B182719-BS1)				Prepared: 07	1/27/17 Anal	vzed: 08/01/	17			
Mercury	0.00228	0.00010	mg/L	0.00200	,., / / / / / / / / / / / / / / / / / /	114	85-115			
LCC D (D104710 BCD1)				D 1. 07	//27/17 A1	d. 00/01/	17			
LCS Dup (B182719-BSD1) Mercury	0.00217	0.00010	mg/L	0.00200	1/27/17 Anal	109	85-115	5.04	20	
ivicioury	0.00217	0.00010	mg/L	0.00200		109	63-113	3.04	20	
Batch B182896 - EPA 200.7										
Blank (B182896-BLK1)				Prepared: 08	3/01/17 Anal	yzed: 08/04/	17			
Iron	ND	0.050	mg/L							
LCS (B182896-BS1)				Prepared: 08	3/01/17 Anal	yzed: 08/04/	17			
Iron	2.08	0.050	mg/L	2.00		104	85-115			
LCS Dup (B182896-BSD1)				Prepared: 08	3/01/17 Anal	vzed: 08/04/	17			
Iron	2.09	0.050	mg/L	2.00		105	85-115	0.559	20	
Batch B182983 - EPA 200.8										
Blank (B182983-BLK1)				Prepared: 08	3/01/17 Anal	yzed: 08/04/	17			
Antimony	ND	1.0	μg/L							
Arsenic	ND	1.0	μg/L							
Cadmium	ND	0.20	μg/L							
Chromium	ND	10	μg/L							
Copper	ND	1.0	μg/L							
Lead Nickel	ND	0.50	μg/L							
Selenium	ND	5.0 5.0	μg/L μg/I							
Silver	ND	0.20	μg/L μg/I							
Zinc	ND ND	20	μg/L μg/L							
LCS (B182983-BS1)				Prepared: 08	8/01/17 Anal	vzed: 08/04/	17			
Antimony	516	10	μg/L	500		103	85-115			
Arsenic	513	10	μg/L	500		103	85-115			
Cadmium	511	2.0	μg/L	500		102	85-115			
				500		104	85-115			
Chromium	518	100	μg/L	500		104	05-115			
	518	100 10	μg/L μg/L	500		104	85-115			
Copper	518 506		$\mu g/L$							
Copper Lead	518 506 516	10	μg/L μg/L	500		101	85-115			
Copper Lead Nickel	518 506 516 502	10 5.0	$\mu g/L$	500 500		101 103	85-115 85-115 85-115			
Chromium Copper Lead Nickel Selenium Silver	518 506 516	10 5.0 50	μg/L μg/L μg/L	500 500 500		101 103 100	85-115 85-115			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182983 - EPA 200.8										
LCS Dup (B182983-BSD1)				Prepared: 08	3/01/17 Anal	yzed: 08/04/	17			
Antimony	534	10	μg/L	500		107	85-115	3.50	20	
Arsenic	534	10	$\mu g/L$	500		107	85-115	4.03	20	
Cadmium	528	2.0	$\mu g/L$	500		106	85-115	3.23	20	
Chromium	531	100	$\mu g/L$	500		106	85-115	2.50	20	
Copper	518	10	$\mu g/L$	500		104	85-115	2.35	20	
Lead	530	5.0	$\mu g/L$	500		106	85-115	2.79	20	
Nickel	521	50	$\mu g/L$	500		104	85-115	3.65	20	
Selenium	541	50	$\mu g/L$	500		108	85-115	4.21	20	
Silver	530	2.0	$\mu g/L$	500		106	85-115	3.56	20	
Zinc	542	200	$\mu g/L$	500		108	85-115	2.39	20	

QUALITY CONTROL

Metals Analyses (Dissolved) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182947 - EPA 200.8 Dissolved										
Blank (B182947-BLK1)				Prepared: 07	7/31/17 Anal	yzed: 08/01/	17			
Antimony	ND	1.0	μg/L							
arsenic	ND	1.0	$\mu g/L$							
Cadmium	ND	0.20	$\mu g/L$							
Phromium	ND	10	$\mu g/L$							
opper	ND	1.0	$\mu g/L$							
ead	ND	0.50	$\mu g/L$							
ickel	ND	5.0	$\mu g/L$							
elenium	ND	5.0	μg/L							
lver	ND	0.20	μg/L							
nc	ND	20	$\mu \text{g/L}$							
CS (B182947-BS1)				Prepared: 07	7/31/17 Anal	vzed: 08/01/	17			
ntimony	525	10	μg/L	500	/ 11101	105	85-115			
rsenic	518	10	μg/L μg/L	500		103	85-115			
admium	511	2.0	μg/L μg/L	500		102	85-115			
nromium	525	100	μg/L	500		105	85-115			
opper	514	10	μg/L	500		103	85-115			
ead	530	5.0	μg/L μg/L	500		106	85-115			
ckel	517	50	μg/L μg/L	500		103	85-115			
lenium		50	μg/L μg/L	500		99.7	85-115			
lver	498	2.0	μg/L μg/L	500		107	85-115			
nc	533 503	200	μg/L μg/L	500		107	85-115			
	303		r-6							
CS Dup (B182947-BSD1)		10	а/Т		7/31/17 Anal			1.16	20	
ntimony rsenic	531	10	μg/L	500		106	85-115	1.16	20	
	522		μg/L	500		104	85-115	0.647	20	
admium	516	2.0	μg/L	500		103	85-115	1.06	20	
nromium	526	100	μg/L	500		105	85-115	0.224	20	
opper	514	10	μg/L	500		103	85-115	0.0733	20	
ead	532	5.0	μg/L	500		106	85-115	0.282	20	
ickel elenium	510	50	μg/L	500		102	85-115	1.30	20	
	502	50	μg/L	500		100	85-115	0.699	20	
ilver inc	536	2.0 200	μg/L	500		107	85-115	0.641	20	
inc	500	200	μg/L	500		100	85-115	0.502	20	
uplicate (B182947-DUP1)		rce: 17G1143-		Prepared: 07	7/31/17 Anal	yzed: 08/01/	17			
ntimony	ND	5.0	μg/L		ND			NC	20	DL-15
rsenic	25.1	5.0	μg/L		25.4			1.29	20	DL-15
admium	ND	1.0	μg/L		ND			NC	20	DL-15
hromium	ND	50	μg/L		ND			NC	20	DL-15
opper	44.8	5.0	μg/L		50.2			11.5	20	DL-15
ead	ND	2.5	$\mu g \! / \! L$		4.51			NC	20	DL-15
ickel	ND	25	$\mu g\!/\!L$		ND			NC	20	DL-15
elenium	71.4	25	$\mu g \! / \! L$		68.7	,		3.75	20	DL-15
ilver	ND	1.0	$\mu g\!/\!L$		ND)		NC	20	DL-15
inc	ND	100	μg/L		ND)		NC	20	DL-15

QUALITY CONTROL

Metals Analyses (Dissolved) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182947 - EPA 200.8 Dissolved										
Matrix Spike (B182947-MS1)	Sou	rce: 17G1143-	-01	Prepared: 07	7/31/17 Analy	zed: 08/01/	17			
Antimony	508	10	μg/L	500	ND	102	70-130			
Arsenic	522	10	$\mu g/L$	500	25.4	99.2	70-130			
Cadmium	417	2.0	$\mu g \! / \! L$	500	ND	83.4	70-130			
Chromium	557	100	$\mu g/L$	500	ND	111	70-130			
Copper	528	10	$\mu g/L$	500	50.2	95.5	70-130			
Lead	584	5.0	$\mu g/L$	500	4.51	116	70-130			
Nickel	503	50	$\mu g/L$	500	10.6	98.5	70-130			
Selenium	503	50	$\mu g/L$	500	68.7	86.9	70-130			
Silver	435	2.0	$\mu g/L$	500	ND	87.0	70-130			
Zinc	390	200	$\mu g/L$	500	ND	77.9	70-130			
Batch B182948 - EPA 200.7 Dissolved										
Blank (B182948-BLK1)				Prepared: 07	7/31/17 Analy	zed: 08/05/	17			
Iron	ND	0.050	mg/L							
LCS (B182948-BS1)				Prepared: 07	7/31/17 Analy	zed: 08/05/	17			
Iron	0.514	0.050	mg/L	0.500		103	85-115			
LCS Dup (B182948-BSD1)				Prepared: 07	7/31/17 Analy	zed: 08/05/	17			
Iron	0.526	0.050	mg/L	0.500		105	85-115	2.28	20	
Duplicate (B182948-DUP1)	Sou	rce: 17G1143-	-01	Prepared: 07	7/31/17 Analy	zed: 08/05/	17			
Iron	ND	0.050	mg/L		ND			NC	20	
Matrix Spike (B182948-MS1)	Sou	rce: 17G1143-	-01	Prepared: 07	7/31/17 Analy	zed: 08/05/	17			
Iron	0.533	0.050	mg/L	0.500	ND	107	70-130			
Batch B183147 - EPA 245.1										
Blank (B183147-BLK1)				Prepared: 08	3/02/17 Analy	zed: 08/03/	17			
Mercury	ND	0.00010	mg/L	·		<u> </u>		<u> </u>		<u></u>
LCS (B183147-BS1)				Prepared: 08	3/02/17 Analy	zed: 08/03/	17			
Mercury	0.00170	0.00010	mg/L	0.00200		85.2	85-115			
LCS Dup (B183147-BSD1)				Prepared: 08	3/02/17 Analy	zed: 08/03/	17			
Mercury	0.00191	0.00010	mg/L	0.00200		95.7	85-115	11.6	20	

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)\ -\ Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Result	Limit	Units	Level	ixesuit	/UKEC	Limits	KI D	Liiiit	TNOICS
Batch B182614 - SM21-22 4500 CL G										
Blank (B182614-BLK1)				Prepared &	Analyzed: 07	//26/17				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B182614-BS1)				Prepared &	Analyzed: 07	//26/17				
Chlorine, Residual	1.3	0.020	mg/L	1.20		111	82.5-130			
LCS Dup (B182614-BSD1)				Prepared &	Analyzed: 07	//26/17				
Chlorine, Residual	1.3	0.020	mg/L	1.20		112	82.5-130	0.609	6.2	
Duplicate (B182614-DUP1)	Sou	rce: 17G1143-	01	Prepared &	Analyzed: 07	//26/17				
Chlorine, Residual	ND	0.020	mg/L		NE)		NC	44.8	
Matrix Spike (B182614-MS1)	Sou	rce: 17G1143-	01	Prepared &	Analyzed: 07	//26/17				
Chlorine, Residual	1.1	0.020	mg/L	5.00	NE	22.5	10-182			
Batch B182626 - SM21-22 3500 Cr B										
Blank (B182626-BLK1)				Prepared &	Analyzed: 07	//26/17				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B182626-BS1)				Prepared &	Analyzed: 07	//26/17				
Hexavalent Chromium	0.092	0.0040	mg/L	0.100		91.8	86.6-115			
LCS Dup (B182626-BSD1)				Prepared &	Analyzed: 07	//26/17				
Hexavalent Chromium	0.089	0.0040	mg/L	0.100		89.5	86.6-115	2.58	6.61	
Duplicate (B182626-DUP1)	Sou	rce: 17G1143-	01	Prepared &	Analyzed: 07	//26/17				
Hexavalent Chromium	ND	0.0040	mg/L		NE)		NC	20	
Matrix Spike (B182626-MS1)	Sou	rce: 17G1143-	01	Prepared &	Analyzed: 07	//26/17				
Hexavalent Chromium	0.094	0.0040	mg/L	0.100	NE	94.2	23.5-142			
Matrix Spike Dup (B182626-MSD1)	Sou	rce: 17G1143-	01	Prepared &	Analyzed: 07	//26/17				
Hexavalent Chromium	0.092	0.0040	mg/L	0.100	NE	91.8	23.5-142	2.51	7.59	
Batch B182652 - EPA 1664B										
Blank (B182652-BLK1)				Prepared &	Analyzed: 07	//27/17				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L	-						
LCS (B182652-BS1)				Prepared &	Analyzed: 07	//27/17				
Silica Gel Treated HEM (SGT-HEM)	10		mg/L	10.0		101	64-132			

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)-Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B182652 - EPA 1664B										
Matrix Spike (B182652-MS1)	Sour	Prepared & Analyzed: 07/27/17								
Silica Gel Treated HEM (SGT-HEM)	110	14	mg/L	100	NE	108	64-132			
Batch B182664 - SM21-22 2540D										
Blank (B182664-BLK1)	Prepared & Analyzed: 07/27/17									
Total Suspended Solids	ND	2.5	mg/L							
LCS (B182664-BS1)				Prepared &	Analyzed: 07	//27/17				
Total Suspended Solids	204	20	mg/L	200		102	66.7-117			

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Dissolved)-Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B184046 - SW-846 7196A										
Blank (B184046-BLK1)		Prepared & Analyzed: 07/26/17								
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B184046-BS1)	Prepared & Analyzed: 07/26/17									
Hexavalent Chromium	0.092	0.0040	mg/L	0.100		91.8	80-120			
LCS Dup (B184046-BSD1)			Prepared & Analyzed: 07/26/17							
Hexavalent Chromium	0.089	0.0040	mg/L	0.100		89.5	80-120	2.58	20	
Duplicate (B184046-DUP1)	Sour	Prepared &	/26/17							
Hexavalent Chromium	ND	0.0040	mg/L		ND	1		NC	20	
Matrix Spike (B184046-MS1)	Sour	Prepared & Analyzed: 07/26/17								
Hexavalent Chromium	0.094	0.0040	mg/L	0.100	ND	94.2	75-125			
Matrix Spike Dup (B184046-MSD1)	Source: 17G1143-01			Prepared & Analyzed: 07/26/17						
Hexavalent Chromium	0.092	0.0040	mg/L	0.100	ND	91.8	75-125	2.51	20	

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B183230 - EPA 504 water										
Blank (B183230-BLK1)				Prepared &	Analyzed: 08	/03/17				
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
Surrogate: 1,3-Dibromopropane	1.06		μg/L	1.04		102	70-130			
LCS (B183230-BS1)				Prepared &	Analyzed: 08	/03/17				
1,2-Dibromoethane (EDB)	0.171	0.021	μg/L	0.182		94.3	70-130			
Surrogate: 1,3-Dibromopropane	1.07		μg/L	1.04		103	70-130			
LCS Dup (B183230-BSD1)				Prepared &	Analyzed: 08	/03/17				
1,2-Dibromoethane (EDB)	0.194	0.023	μg/L	0.199		97.1	70-130	12.2		
Surrogate: 1,3-Dibromopropane	1.21		μg/L	1.14		106	70-130			

QUALITY CONTROL

EPA 300.0 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1713429 - General Preparation										
Blank (1713429-BLK1)				Prepared: 08	/03/17 Anal	yzed: 08/04/1	17			
Chloride	BRL	1.00	mg/l				-			
LCS (1713429-BS1)				Prepared: 08	/03/17 Anal	yzed: 08/04/1	17			
Chloride	20.7	1.00	mg/l	20.0		104	90-110			
Reference (1713429-SRM1)	Prepared: 08/03/17 Analyzed: 08/04/17									
Chloride	25.2	1.00	mg/l	25.0		101	90-110			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit
DL	Method Detection Limit
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
DL-15	Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.
GS1	Sample dilution required for high concentration of target analytes to be within the instrument calibration range.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.
V-19	Initial calibration did not meet method specifications. Compound was calibrated using linear regression with correlation coefficient <0.99. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

EPA 624 in Water

Analyte	Certifications	
EPA 200.7 in Water		
Iron	CT,MA,NH,NY,RI,NC,ME,VA	
Iron	CT,MA,NH,NY,RI,NC,ME,VA	
Hardness	CT,MA,NH,NY,RI,VA	
EPA 200.8 in Water		
Antimony	CT,MA,NH,NY,RI,NC,ME,VA	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA	
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA	
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA	
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA	
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA	
Copper	CT,MA,NH,NY,RI,NC,ME,VA	
Copper	CT,MA,NH,NY,RI,NC,ME,VA	
Lead	CT,MA,NH,NY,RI,NC,ME,VA	
Lead	CT,MA,NH,NY,RI,NC,ME,VA	
Nickel	CT,MA,NH,NY,RI,NC,ME,VA	
Nickel	CT,MA,NH,NY,RI,NC,ME,VA	
Selenium	CT,MA,NH,NY,RI,NC,ME,VA	
Selenium	CT,MA,NH,NY,RI,NC,ME,VA	
Silver	CT,MA,NH,NY,RI,NC,ME,VA	
Silver	CT,MA,NH,NY,RI,NC,ME,VA	
Zinc	CT,MA,NH,RI,NY,NC,ME,VA	
Zinc	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 245.1 in Water		
Mercury	CT,MA,NH,RI,NY,NC,ME,VA	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA	
EPA 300.0 in Water		
Chloride	NC,NY,MA,VA,ME,NH,CT,RI	
EPA 608 in Water		
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
11100101-1200 [20]	C 1 31711 33 711131 7 1 311131 7 3171L/3 7 1 1	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 624 in Water	
Acetone	NH,NY
Benzene	CT,MA,NH,NY,RI,NC,ME,VA
Carbon Tetrachloride	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Ethylbenzene	CT,MA,NH,NY,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NH,NY,NC
Methylene Chloride	CT,MA,NH,NY,RI,NC,ME,VA
Naphthalene	NC
Tetrachloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Toluene	CT,MA,NH,NY,RI,NC,ME,VA
1,2,4-Trichlorobenzene	NC
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Trichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Vinyl Chloride	CT,MA,NH,NY,RI,NC,ME,VA
m+p Xylene	CT,MA,NH,NY,RI,NC,VA
o-Xylene	CT,MA,NH,NY,RI,NC,VA
EPA 625 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(a)anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(a)pyrene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(b)fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(k)fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Chrysene	CT,MA,NH,NY,NC,RI,ME,VA
Dibenz(a,h)anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 625 in Water	
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine (as Azobenzene)	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA
Indeno(1,2,3-cd)pyrene	CT,MA,NH,NY,NC,RI,ME,VA
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodiphenylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
Pentachlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene 2 Mathylphonal	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol Phenol	NY,NC
3/4-Methylphenol	CT,MA,NH,NY,NC,RI,ME,VA NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC
SM21-22 4500 CL G in Water	
Chlorine, Residual	CT,MA,RI,ME

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SM21-22 4500 CN E in Water	
Cyanide	CT,MA,NH,NY,RI,NC,ME,VA
SW-846 7196A in Water	
Hexavalent Chromium	CT,NH,NY,NC,ME,VA
SW-846 8015C in Water	
Ethanol	NY
SW-846 8270D in Water	
Acenaphthene	CT,NY,NC,ME,NH,VA,NJ
Acenaphthylene	CT,NY,NC,ME,NH,VA,NJ
Anthracene	CT,NY,NC,ME,NH,VA,NJ
Benzidine	CT,NY,NC,ME,NH,VA,NJ
Benzo(a)anthracene	CT,NY,NC,ME,NH,VA,NJ
Benzo(a)pyrene	CT,NY,NC,ME,NH,VA,NJ
Benzo(b)fluoranthene	CT,NY,NC,ME,NH,VA,NJ
Benzo(g,h,i)perylene	CT,NY,NC,ME,NH,VA,NJ
Benzo(k)fluoranthene	CT,NY,NC,ME,NH,VA,NJ
Bis(2-chloroethyl)ether	CT,NY,NC,ME,NH,VA,NJ
Bis(2-chloroisopropyl)ether	CT,NY,NC,ME,NH,VA,NJ
Bis(2-Ethylhexyl)phthalate	CT,NY,NC,ME,NH,VA,NJ
4-Bromophenylphenylether	CT,NY,NC,ME,NH,VA,NJ
Butylbenzylphthalate	CT,NY,NC,ME,NH,VA,NJ
4-Chloro-3-methylphenol	CT,NY,NC,ME,NH,VA,NJ
2-Chloronaphthalene	CT,NY,NC,ME,NH,VA,NJ
2-Chlorophenol	CT,NY,NC,ME,NH,VA,NJ
4-Chlorophenylphenylether	CT,NY,NC,ME,NH,VA,NJ
Chrysene	CT,NY,NC,ME,NH,VA,NJ
Dibenz(a,h)anthracene	CT,NY,NC,ME,NH,VA,NJ
Di-n-butylphthalate	CT,NY,NC,ME,NH,VA,NJ
1,2-Dichlorobenzene	CT,NY,NC,ME,NH,VA,NJ
1,3-Dichlorobenzene	CT,NY,NC,ME,NH,VA,NJ
1,4-Dichlorobenzene	CT,NY,NC,ME,NH,VA,NJ
3,3-Dichlorobenzidine	CT,NY,NC,ME,NH,VA,NJ
2,4-Dichlorophenol	CT,NY,NC,ME,NH,VA,NJ
Diethylphthalate	CT,NY,NC,ME,NH,VA,NJ
2,4-Dimethylphenol	CT,NY,NC,ME,NH,VA,NJ
Dimethylphthalate	CT,NY,NC,ME,NH,VA,NJ
4,6-Dinitro-2-methylphenol	CT,NY,NC,ME,NH,VA,NJ
2,4-Dinitrophenol	CT,NY,NC,ME,NH,VA,NJ
2,4-Dinitrotoluene	CT,NY,NC,ME,NH,VA,NJ
2,6-Dinitrotoluene	CT,NY,NC,ME,NH,VA,NJ
Di-n-octylphthalate	CT,NY,NC,ME,NH,VA,NJ
1,2-Diphenylhydrazine (as Azobenzene)	NY,NC,ME
Fluoranthene	CT,NY,NC,ME,NH,VA,NJ
Fluorene	NY,NC,ME,NH,VA,NJ
Hexachlorobenzene	CT,NY,NC,ME,NH,VA,NJ
Hexachlorobutadiene	CT,NY,NC,ME,NH,VA,NJ
Hexachlorocyclopentadiene	CT,NY,NC,ME,NH,VA,NJ

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270D in Water		
Hexachloroethane	CT,NY,NC,ME,NH,VA,NJ	
Indeno(1,2,3-cd)pyrene	CT,NY,NC,ME,NH,VA,NJ	
Isophorone	CT,NY,NC,ME,NH,VA,NJ	
2-Methylnaphthalene	CT,NY,NC,ME,NH,VA,NJ	
2-Methylphenol	CT,NY,NC,NH,VA,NJ	
3/4-Methylphenol	CT,NY,NC,NH,VA,NJ	
Naphthalene	CT,NY,NC,ME,NH,VA,NJ	
Nitrobenzene	CT,NY,NC,ME,NH,VA,NJ	
2-Nitrophenol	CT,NY,NC,ME,NH,VA,NJ	
4-Nitrophenol	CT,NY,NC,ME,NH,VA,NJ	
N-Nitrosodimethylamine	CT,NY,NC,ME,NH,VA,NJ	
N-Nitrosodiphenylamine	CT,NY,NC,ME,NH,VA,NJ	
N-Nitrosodi-n-propylamine	CT,NY,NC,ME,NH,VA,NJ	
Pentachlorophenol	CT,NY,NC,ME,NH,VA,NJ	
Phenanthrene	CT,NY,NC,ME,NH,VA,NJ	
Phenol	CT,NY,NC,ME,NH,VA,NJ	
Pyrene	CT,NY,NC,ME,NH,VA,NJ	
1,2,4-Trichlorobenzene	CT,NY,NC,ME,NH,VA,NJ	
2,4,6-Trichlorophenol	CT,NY,NC,ME,NH,VA,NJ	
2-Fluorophenol	NC,VA	
Phenol-d6	VA	
Nitrobenzene-d5	VA	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2018
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2018
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2018
RI	Rhode Island Department of Health	LAO00112	12/30/2017
NC	North Carolina Div. of Water Quality	652	12/31/2017
NJ	New Jersey DEP	MA007 NELAP	06/30/2018
FL	Florida Department of Health	E871027 NELAP	06/30/2018
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2018
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2017
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2017
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2018
NC-DW	North Carolina Department of Health	25703	07/31/2018

		_	
Tab	le of	$C \cap D$	itent
Iau	וכ טו	COL	псп

Orthophosphale Samples Field Filtered 6/8/3 2 Preservation Codes: X = Sodium Hydroxide DW = Drinking Water B = Sodium Bisulfate GW = Ground Water S = Summa Canister MW = Waste Water ³ Container Codes; 0 = Other (please 0 = Other (please 0 = Other (please Dissolved Metals S = Sulfuric Acid A = Amber Glass 2 Preservation Code Matrix Codes: T = Tedlar Bag N = Nitric Acid Field Filtered O Lab to Filter S = Soil/Solid M = Methanol O Lab to Filter 3 Container Code ST = Sterile ö T = Sodium Thiosulfate SL = Studge P = Plastic # of Containers G = Glass e Iced H = HCL V = Vial define) define) A = Air define) Hardness via 290 Pardie 2 0 × Please use the following codes to indicate possible sample concentration within the Conc A TSS via SM2540D × × Total Residual Chlorine via SM4500 NELAC and AlHA-LAP, LLC Accredited QUESTIONS ON THIS CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME Chloride via 300.0 H - High; M - Medium; L - Low; C - Clean; U - Unknown TURNAROUND TIME (BUSINESS DAYS) STARTS AT 9:00 AM THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE MCP Analytical Certification Form Required 0 × S 0024M2 siv sinommA RCP Analysis Certification Form Required East Longmeadow, MA 01028 Program Information Ethanol × > REQUESTED × EDB via 504.1 MA State DW Form Required Code column above: PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT Þ × Total Cyanide via SM4500 Q Hexavalent Chromium via SM3500 ANALYSIS N ٥. RGP List Metals (total and aq) PWSID # 7 4 PCBs via 608 00 . 4 ГРН (SGT) & ТРН (SGT-HEM) via 1664 1 S × 3 SVOCs via 625/PAHs via 625-SIM CANNOT START UNTIL ALL QUESTIONS HAVE BEEN ANSWERED. M > I × VOCS VIA 624 k <RCGW-1, <EPA Region 1 RGP criteria S G Michael. Zvlich@eversource.com moliveira@trcsolutions.com, edenly@trcsolutions.com, Detection Limit Requirements $\overline{\Sigma}$ Requested Turnaround Time "Matrix Code Rush-Approval Required Enhanced Data Package Required: 8€ 5 days 10-Day Data Delivery 3-Day 4-Day PDF [J] EXCEL Grab × Comments: RLs must meet EPA RGP Appendix VII limits. VOC list to include Tert-butyl alcohol. RGP RGP Metals include antimony, arsenic, cadmium, chromium (III), chromium (VI), copper, iron, lead, Composite SVOCs to include pentachlorophenol, DEH phthalate, total phthalates, and total phenol. GISKey Email To: Date/Time 8,00 ormat: Other: Other: 7-Day 1-Day 2-Day 7/26/17 Beginning Date/Time t One NSTAR Way, Westwood, MA 02090 mercury, nichel, selenium, silver, and zinc. Other: NSTAR/Eversource - Monthly Billing NSTAR/Eversource - Monthly Billing Station 385 Improvements Email: info@contestlabs.com 02134800 and 02106160 South Boston, MA Matthew Waldrip 587 (13 R. 781-866-1014 64454-1 Client Sample 10 / Description Date/fime: 7-36-1713 Date/Time: NANK T126 117 C1 172 Date/Time: Date/Time: Date/Time: Date Time: 1-3W L 1717 وو CON-LEST Relinquished by (bignature) Ad by (signature) nquished by (signature) ewed by: (signedare) ceifed by: (signature) (signature) Purchase Order Numbi Invoice Recipient: Company Name: Project Location: Project Manager: Work Order# Project Number: Project Name: Con-Test Sampled By: Address: Phone: Page 47 of 48

39 Spruce Street

1791143 Phone: 413-525-2332

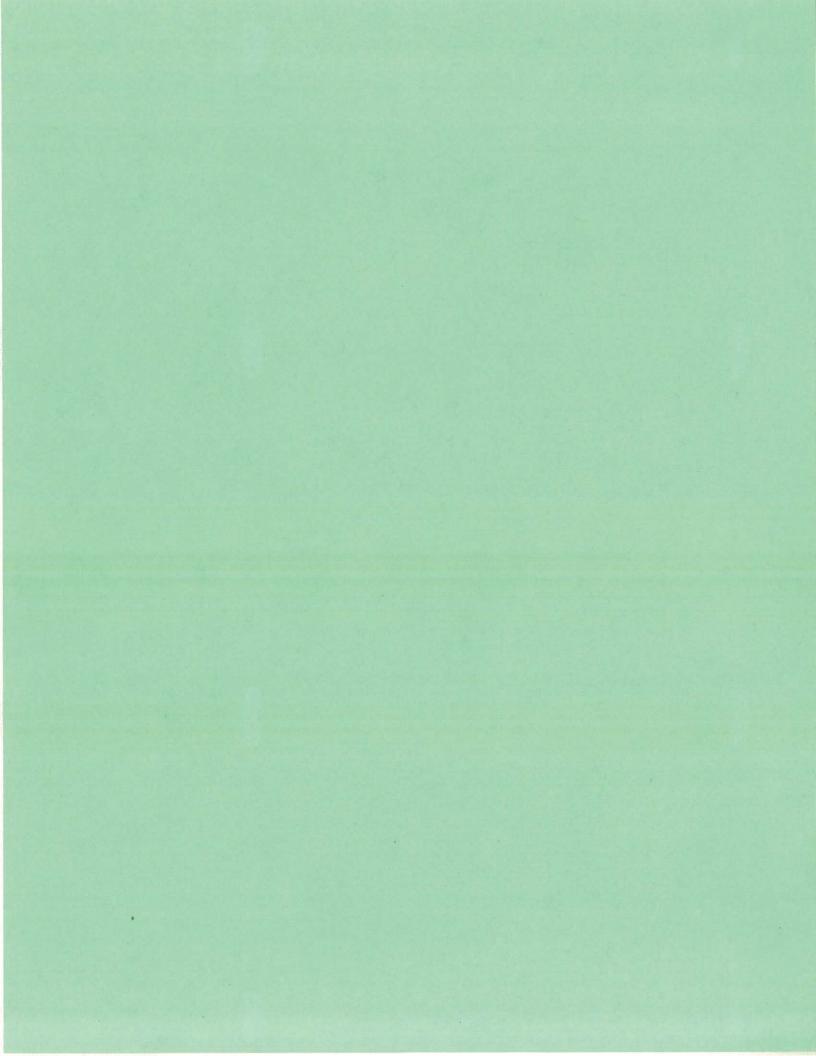
CHAIN OF CUSTODY RECORD

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405

www.contestlabs.com



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	/	VStar							
Receiv	ed By	2W		Date	7/26	רו/	Time	1830	
How were t		In Cooler	T	No Cooler	1	On Ice	7	No Ice	
recei	ved?	Direct from Sam	oling	To a constitution of the		- Ambient	WHAT TO THE TOTAL THE TOTAL TO THE TOTAL TOT	Melted Ice	
Were sam	nlee within		By Gun #			Actual Ten	1p - 4.4	5	
Temperatu	***	+	By Blank #	-		Actual Ten			•
ACT THE SERVICE AND ADDRESS AN	Custody S	eal Intact?	WA	Wer	re Sample	s Tampered		7-	
	s COC Relin		7		COLUMN PROPERTY OF THE PROPERTY OF	ree With Sa		4	-
Are the	ere broken/l	eaking/loose caps	on any sam		F	_			· ·
Is COC in ir				Were sam	ples recei	ived within h	olding time?	T	
Did COC i		Client		Analysis			ler Name	1	
pertinent In		Project	T	ID's	<u> </u>	_ Collection	Dates/Time:	s_T	-
		d out and legible?	<u></u>						
Are there La		?	NA			s notified?			•
Are there Ru Are there Sh			MA			s notified?			•
s there eno		.2			wno wa	s notified?	David	٧	,
	1.0 	ere applicable?			MS/MSD?	NA		1	
Proper Medi		150 to 15	_			samples red	- guirod2	NA	
Nere trip bla					On COC?		quii eu :		
		proper pH?		Acid	T		- Base		
/ials	#			_		*			
						-44			
	The second secon	Containers: 1 Liter Amb.	#	1 Liter F	Plastic	#	16.0	z Amh	#
Jnp-	3 & 7	1 Liter Amb. 500 mL Amb.	10	1 Liter F 500 mL I				z Amb. mb/Clear	#
Jnp- HCL-	_3	1 Liter Amb.			Plastic	2	8oz Ar	z Amb. mb/Clear mb/Clear	#
Jnp- HCL- Meoh- Bisulfate-	_3	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria		500 mL l	Plastic Plastic	7	8oz Ar 4oz Ar	nb/Clear	#
Jnp- HCL- Meoh- Bisulfate- DI-	_3	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		500 mL l 250 mL l Flashp Other 0	Plastic Plastic point Blass	7	8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear	#
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	_3	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		500 mL I 250 mL I Flashp Other 0 Plastic	Plastic Plastic point Plass Bag	7	8oz Ar 4oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear	#
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	_3	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		500 mL l 250 mL l Flashp Other 0	Plastic Plastic point Plass Bag	7	8oz Ar 4oz Ar 2oz Ar En	mb/Clear mb/Clear mb/Clear	#
Jnp- HCL- Meoh- Bisulfate- DI- Fhiosulfate- Sulfuric-	3 & 7	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate	10	500 mL I 250 mL I Flashp Other 0 Plastic	Plastic Plastic point Plass Bag ck	2 5	8oz Ar 4oz Ar 2oz Ar En	mb/Clear mb/Clear mb/Clear	#
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-	_3	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers:		500 mL l 250 mL l Flashp Other O Plastic Ziplo Unused M	Plastic Plastic point Plass Bag ck	7	8oz Ar 4oz Ar 2oz Ar En Frozen:	mb/Clear mb/Clear mb/Clear mb/Clear icore	#
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- /ials Jnp-	3 & 7	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb.	10	500 mL I 250 mL I Flashp Other O Plastic Ziplo Unused M	Plastic Plastic point Plass Bag pock Plastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen:	mb/Clear mb/Clear mb/Clear mb/Clear ncore	
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- //als Jnp- HCL-	3 & 7	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	10	500 mL I 250 mL I Flashp Other O Plastic Ziplo Unused M 1 Liter P 500 mL I	Plastic Plastic point Plass Bag pck ledia Plastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen:	mb/Clear mb/Clear mb/Clear dcore z Amb. mb/Clear	
Jnp- HCL- Meoh- Bisulfate- DI- Fhiosulfate- Sulfuric- /ials Jnp- HCL- Meoh-	3 & 7	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	10	500 mL I 250 mL I Flashp Other O Plastic Ziplo Unused M 1 Liter P 500 mL I 250 mL I	Plastic Plastic Coint Class Bag Ck Ledia Plastic Clastic Clastic Clastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen: 16 oz 8oz Ar 4oz Ar	mb/Clear mb/Clear mb/Clear dcore z Amb. mb/Clear mb/Clear	
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric- /ials Jnp- HCL- Meoh- Bisulfate-	3 & 7	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	10	500 mL I 250 mL I Flashp Other C Plastic Ziplo Unused M 1 Liter P 500 mL I 250 mL I Flashp	Plastic Plastic Coint Class Bag Ck Clastic Plastic Clastic Clastic Coint	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen: 16 o: 8oz Ar 4oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear	
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- /ials Jnp- HCL- Meoh- Bisulfate- DI-	3 & 7	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	10	500 mL I 250 mL I Flashp Other O Plastic Ziplo Unused M 1 Liter P 500 mL I 250 mL F Flashp Other O	Plastic Plastic Plastic Plasts Bag Plastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen: 16 o: 8oz Ar 4oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear dcore z Amb. mb/Clear mb/Clear	
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- //ials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	3 & 7	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	10	500 mL I 250 mL I Flashp Other C Plastic Ziplo Unused M 1 Liter P 500 mL I 250 mL I Flashp	Plastic Plastic Plasts Bag Plastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen: 16 o: 8oz Ar 4oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear	
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- //als Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	*	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	10	500 mL I 250 mL I Flashp Other G Plastic Ziplo Unused M 1 Liter P 500 mL I 250 mL I Flashp Other G Plastic	Plastic Plastic Plasts Bag Plastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen: 16 o: 8oz Ar 4oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear	
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- //als Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	*	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	10	500 mL I 250 mL I Flashp Other G Plastic Ziplo Unused M 1 Liter P 500 mL I 250 mL I Flashp Other G Plastic	Plastic Plastic Plasts Bag Plastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen: 16 o: 8oz Ar 4oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear	
Jnp- HCL- Meoh- Bisulfate-	*	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	10	500 mL I 250 mL I Flashp Other G Plastic Ziplo Unused M 1 Liter P 500 mL I 250 mL I Flashp Other G Plastic	Plastic Plastic Plasts Bag Plastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen: 16 o: 8oz Ar 4oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear	
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- //als Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	*	1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	10	500 mL I 250 mL I Flashp Other G Plastic Ziplo Unused M 1 Liter P 500 mL I 250 mL I Flashp Other G Plastic	Plastic Plastic Plasts Bag Plastic	2 5	8oz Ar 4oz Ar 2oz Ar En Frozen: 16 o: 8oz Ar 4oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear	

August 9, 2017

Matthew Waldrip NSTAR Electric & Gas Corporation One NSTAR Way, SUM SE-250 Westwood, MA 02090-9230

Project Location: South Boston, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 17H0120

Enclosed are results of analyses for samples received by the laboratory on August 2, 2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

James M. Georgantas Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
17H0120-01	5
QC Data	7
SM 2520 (01)	7
1713654	7
Flag/Qualifier Summary	8
Certifications	9
Chain of Custody/Sample Receipt	10

NSTAR Electric & Gas Corporation One NSTAR Way, SUM SE-250 Westwood, MA 02090-9230

ATTN: Matthew Waldrip

REPORT DATE: 8/9/2017

PURCHASE ORDER NUMBER: 64454 Release 1

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 17H0120

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Boston, MA

 FIELD SAMPLE #
 LAB ID:
 MATRIX
 SAMPLE DESCRIPTION
 TEST
 SUB LAB

 SW-1
 17H0120-01
 Surface Water
 SM19-22 4500 NH3 C
 MA M-MA-086/CT PH-0574/NY11148

 SM2520B
 NY11393/MA-MAI138/M A1110

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Sample Description: Work Order: 17H0120

Project Location: South Boston, MA
Date Received: 8/2/2017
Field Sample #: SW-1

Sampled: 8/2/2017 13:00

Sample ID: 17H0120-01
Sample Matrix: Surface Water

SM 2520 (01)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Salinity		29.1	1.00	ppt (1000)	1		wc-Salinity-SM2520	8/8/17	8/8/17 17:27	BD

Project Location: South Boston, MA Sample Description: Work Order: 17H0120

Date Received: 8/2/2017
Field Sample #: SW-1

Sampled: 8/2/2017 13:00

Sample ID: 17H0120-01
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time		
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Ammonia as N		0.235	0.075	mg/L	1		SM19-22 4500 NH3 C		8/3/17 0:00	AA	

QUALITY CONTROL

SM 2520 (01) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1713654 - General Preparation										
Duplicate (1713654-DUP1)	Source	Source: 17H0120-01 Prepared & Analyzed: 08/08/17								
Salinity	28.6	1.00	ppt (1000)		29.1		-	2	10	
Reference (1713654-SRM1)				Prepared &	Analyzed: 08	/08/17				
Salinity	10.2	1.00	ppt (1000)	10.0		102	90-110			
Reference (1713654-SRM2)				Prepared &	Analyzed: 08	/08/17				
Salinity	10.1	1.00	ppt (1000)	10.0		101	90-110			

FLAG/QUALIFIER SUMMARY

	*	QC result	is outside	of established	limits
--	---	-----------	------------	----------------	--------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit

DL Method Detection Limit

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM19-22 4500 NH3 C in Water

Ammonia as N

NY,MA,CT,RI,VA,NC,ME

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2018
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2018
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2018
RI	Rhode Island Department of Health	LAO00112	12/30/2017
NC	North Carolina Div. of Water Quality	652	12/31/2017
NJ	New Jersey DEP	MA007 NELAP	06/30/2018
FL	Florida Department of Health	E871027 NELAP	06/30/2018
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2018
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2017
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2017
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2018
NC-DW	North Carolina Department of Health	25703	07/31/2018

QUESTIONS ON THIS CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME

CANNOT START UNTIL ALL QUESTIONS HAVE BEEN ANSWERED.

Date/Time:

ed by: (signature)

10 of 11

PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT

7H012c

Phone: 413-525-2332

CON-KESK

http://www.contestlabs.com CHAIN OF CUSTODY RECORD

East Longmeadow, MA 01028 39 Spruce Street

0.1

Octoborophase Samples T = Sodium Thiosulfate O = Other (please ² Preservation Codes: X = Sodium Hydroxide B = Sodium Bisulfate DW = Drinking Water GW = Ground Water WW = Waste Water SL = Sludge O = Other (please S = Summa Canister ³ Container Codes: T = Tedlar Bag O = Other (please S = Sulfuric Acid A = Amber Glass G = Glass Dissolved Metals Matrix Codes: Preservation Code H = HCL M = Methanol N = Nitric Acid O Field Filtered O Field Filtered A = Air S = Soil/Solid O Lab to Filter O Lab to Filter Container Code ST = Sterile # of Containers P = Plastic define)_ define) V = Vial define) | = |ced Please use the following codes to indicate possible sample concentration within the Conc NELAC and AIHA-LAP, LLC Accredited H - High; M - Medium; L - Low; C - Clean; U - Unknown TURNAROUND TIME (BUSINESS DAYS) STARTS AT 9:00 AM THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE MCP Analytical Certification Form Required RCP Analysis Certification Form Required Program Information ANALYSIS REQUESTED MA State DW Form Required Code column above: # QISMd 000 Cin Satinity × M 0 <RCGW-1, <EPA Region 1 RGP & DGP criteria OOCAM2 biv sinommA Conc moliveira@trcsolutions.com, pzhou@trcsolutions.com, [3] Matrix Code NS Enhanced Data Package Required: 5 days roval Regui 10-Day 3-Day EXCEL 4-Day Grab Comments: RLs must meet EPA RGP Appendix VII limits, VOC list to include Tert-butyl alcohol. RGP RGP Metałs include antimony, arsenic, cadmium, chromium (III), chromium (VI), copper, iron, tead, Composite SVOCs to include pentachlorophenol, DEH phthalate, total phthalates, and total phenol. PDF [] GISKey Email To: Ending S Date/Time ormat: Other: Other: 7-Day -Day -Day Beginning Date/Time 11/20 mercury, nichel, selenium, silver, and zinc. Other One NSTAR Way, Westwood, MA 02090 NSTAR/Eversource - Monthly Billing NSTAR/Eversource - Monthly Billing 900 Station 385 Improvements Email: info@contestlabs.com 30 1515 N/V 02134800 and 02106160 South Boston, MA Matthew Waldrip Client Sample ID / Description 781-866-1014 64454-1 Date/Time: の位が Fax: 413-525-6405 Date/Time: sate/Time: Date/Time: 35 2 (signature ished by: (signature) (s/gnature Purchase Order Numbe invoice Recipient: Con-Test Work Order# Company, Names Project Location: Project Manager; Project Number: Relinquished by: States Mante 0 sampled By: 4ddress: Phone: Page

ATTACHMENT E

LETTER FROM US FISH & WILDLIFE SERVICE

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

July 09, 2018

In Reply Refer To:

Consultation Code: 05E1NE00-2018-SLI-2312

Event Code: 05E1NE00-2018-E-05399

Project Name: Substation Improvements - K Street, Boston, MA

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-2312

Event Code: 05E1NE00-2018-E-05399

Project Name: Substation Improvements - K Street, Boston, MA

Project Type: DEVELOPMENT

Project Description: Discharge to Reserved Channel either directly or indirectly via municipal

storm sewer associated with contaminated site dewatering from substation

improvement project.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.34034649737799N71.0396248662459W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

ATTACHMENT F

MASSACHUSETTS CULTURAL RESOURCES DATABASE SEARCH RESULTS

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Street Name: East First;

Inv. No.	Property Name	Street	Town	Year
BOS.12994		East First St	Boston	r 1950
BOS.12991		564 East First St	Boston	1919
BOS.12992	Grueby Faience Company Work Shop	566 East First St	Boston	c 1899
BOS.12993		570 East First St	Boston	r 1920
BOS.6752	Condit Electrical Company Building	603-609 East First St	Boston	1915
BOS.6753	Boston Elevated Railway South Boston Power Station	696 East First St	Boston	1911
BOS.6754	Walworth Radiator Manufacturing Company Warehouse	881 East First St	Boston	1904

Friday, June 1, 2018