

NOTICE OF INTENT FOR

MASSACHUSETTS REMEDIATION GENERAL PERMIT

SHELL BRANDED GASOLINE STATION 394 PROVIDENCE HIGHWAY WESTWOOD, MA

> Prepared for: COLBEA ENTERPRISES LLC 2050 PLAINFIELD PIKE CRANSTON, RI 02921

April 29, 2018 (Revised)

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	GENERAL FACILITY INFORMATION	1
2.1 2.2 2.3	Facility Description	1
3.0	DISCHARGE INFORMATION	2
3.1 3.2.	Receiving Water Information	3
4.0	CONATAMINANT INFORMATION	4
5.0	DILUTION FACTOR	4
6.0	DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)	5
7.0	DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS	5
8.0	SUPPLEMENTAL INFORMATION	5
9.0	REDEVELOPMENT CONSTRUCTION SCHEDULE	5

FIGURES

Figure 1	Site Locus Map
Figure 2	Site Plan
Figure 3	Waterbody Assessment & TMDL Status
Figure 4	Areas of Environmental Concern
Figure 5	MassDEP Phase 1 Site Assessment Map
Figure 6	Groundwater Dewatering Installation Diagram
Figure 7	Extended Area Map with MARCIS Inventory
Figure 7A	Magnified Area Map with MARCIS Inventory

TABLES

Table 1 Summary of Groundwater Analytical Data

ATTACHMENTS

Attachment A	Notice of Intent
Attachment B	StreamStats 7Q10 Data & MassDEP Correspondence
Attachment C	Laboratory Analtyical Reports
Attachment D	Fish and Wildlife Service - New England Servies Field Office
	Correspondence

1.0 INTRODUCTION

Tg2 Solutions, LLC (Tg2) prepared Notice of Intent (NOI) for a Massachusetts Remediation General Permit (RGP) for construction dewatering at the Shell Branded gasoline station located at 394 Providence Highway, Westwood, Massachusetts on behalf of the site owner, Colbea Enterprises LLC (Colbea). This NOI is being submitted to the United State Environmental Protection Agency (USEPA) in accordance with the requirements of the Massachusetts General Permit No. MAG070000.

This NOI for a RGP is being submitted to account for site renovation activities being conducted at the facility. A portion of these activities include the dewatering of an excavation to allow for the removal and replacement of gasoline underground storage tanks (USTs). For the purpose of this NOI, the "facility" is defined as the area located within the property boundaries of 394 Providence Highway in Westwood, Massachusetts. A Site Locus Map is presented as **Figure 1**. A Site Plan is presented as **Figure 2**. A copy of the NOI is included as **Attachment A**.

2.0 GENERAL FACILITY INFORMATION

General disposal site information for which this Phase I applies includes the following:

Property Owner/Facility Operator: Thomas Breckel

Operator Colbea Enterprises LLC

2050 Plainfield Pike Cranston, RI 02920 Tel: (401) 943-0005

Owner/Facility Operator Contact: Dennis Darveau, Director of Construction

<u>Ddarveau@seasoncornermarket.com</u>

Tel: (401) 490-2209

USGS Quadrangle: Norwood, Massachusetts

Longitude, Latitude: 71° 10' 54.28" W, 42° 12' 51.23" N

(approximate)

Disposal Site Zoning: Commercial

County: Norfolk

2.1 Facility Description

The facility is a Colbea-owned, Shell-branded gasoline station located on an approximately 0.41 acre parcel at 394 Providence Highway in Westwood, Massachusetts. The Town of Westwood Assessor's Office identified the facility as Lot 082 on Map 24, zoned as commercial with the surrounding area identified as mixed commercial and industrial. A topographic map with the facility location, receiving water, and discharge point is provided in **Figure 1**. **Figure 2** provides a site plan of current developments.

2.2 Sensitive Environmental Receptors

The nearest water body to the facility is a freshwater, forested wetland located approximately 50 feet north of the facility. A tributary of Purgatory Brook is located approximately 1,000 feet to the north/northeast. Purgatory Brook is classified as an Impaired water body and Total Maximum Daily Load (TMDL) is completed. A waterbody assessment and TMDL status relative to the facility location is provided in **Figure 3**. Groundwater does not intersect surface water or wetland areas within the boundaries of the facility.

There are no surface water impoundments, or drainage ditches within 500 feet of the facility. A freshwater, forested wetland is located adjacent to the facility, approximately 50 feet north and to the east. Areas of environmental concern within the facility boundary include a non-potential drinking water source area, and a high yield aquifer. The facility is located within Interim Well Protection Area (IWPA), and a FEMA 100 year floodplain. No local, state and/or federally protected open space, or threatened or endangered species, Areas of Priority Habitats of Rare Species, Habitats of Rare Wildlife, or Certified Vernal Pools are located within 500 feet of the disposal site. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the disposal site.

2.3 National Pollutant Discharge Elimination System (NPDES) Status

A NPDES permit has not been previously applied for or granted for this discharge. Site redevelopment construction activities have not yet begun at the facility; however, they are planned for early summer 2017. The facility is not covered by an individual NPDES permit and there are no pending applications on file for any other permit with US EPA for this facility. As defined by 40 CFR Section 122.2, a new discharger means any building, structure, facility, or installation:

- A) From which there is or may be a "discharge of pollutants;"
- B) That did not commence the "discharge of pollutants" at a particular "site" prior to August 13, 1979;
- C) Which is not a "new source;" and,
- D) Which has never received a finally effected NPDES permit for discharges at that "site."

Based on groundwater and soil samples collected at the facility, this site is not considered a new discharger.

3.0 DISCHARGE INFORMATION

This NOI for a RGP is being applied for groundwater discharge necessary during site redevelopment construction activities. These activities include the raze and rebuild of the facility building, and removal and replacement of the existing USTs and associated

piping, and dispenser islands. The proposed discharge location for treated groundwater is wetland area located adjacent to the property to the east, as depicted on **Figure 2**. This wetland discharges to tributary of Purgatory Brook (freshwater). The latitude and longitude of the discharge (outfall) point are:

Latitude: 42.21412 Longitude: -71.18112

The dewatering and treatment system anticipated for this work includes a 20,000-gallon baffled setting fractionation tank, sediment bag filters, a greensand filter vessel for iron removal, and two activated carbon filter vessels for remaining contaminant removal. This system is designed to meet the required effluent limits for this permit. A diagram of the treatment system is provided on **Figure 6**.

Only one discharge point, described above, will be necessary for dewatering activities. The estimated maximum daily flow is 40 gallons per minute (gpm), with a design flow of 60 gpm. These estimations are expected to decrease once the excavation has been dewatered, and do not include surface run-off following precipitation events. The pH of onsite groundwater was measured at 7.32 (s.u.) and site activities are not anticipated to alter this pH. Discharge activities will only occur during site redevelopment, which is expected to occur between May to August 2018. The discharge point for these dewatering activities is within a wetland area located immediately adjacent to the facility to the east and north. Areas of Concern in relation to the facility are located on Figure 4. Figure 5 provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the disposal site.

If needed, modifications to the system will be made. Modifications to the system will be submitted for approval via a Notice of Change (NOC).

3.1 Receiving Water Information

The receiving water for the indirect discharge of groundwater from the facility is a wetland that drains to a tributary of Purgatory Brook (freshwater). StreamStats 4.0 was consulted and it was determined based on a location on East Branch Neponset River, that the 7Q10 is 4.6 cubic feet per second (cfs). The StreamStats Report is provided in **Attachment B**. Note, the basin delineated immediately east of the wetland adjacent to the facility did not have statistics to provide a 7Q10, therefore, the 7Q10 for the nearest tributary of Purgatory Brook with a 7Q10 was selected. Per the Waterbody Assessment and TMDL Status Map (**Figure 3**), Purgatory Brook was assigned a TMDL status of 4A – Impaired – TMDL is completed.

3.2.1 Receiving Water Classification

Based on the MassDEP Division of Water Pollution Control the discharge (outfall) point is a wetland which drains to a tributary of Purgatory Brook, which drains into the Neponset

River. Purgatory Brook is not classified; however, the Neponset River is classified as Class B:

http://www.mass.gov/eea/docs/dep/water/laws/i-thru-z/tblfig.pdf

4.0 CONATAMINANT INFORMATION

On April 4, 2018, groundwater samples were collected from on-site monitoring well RGP Well MW-13 and the outfall discharge location at the wetland located adjacent to the facility (Discharge Area). Groundwater samples collected from RGP Well MW-13 during April 2018 were submitted to ESS Laboratory, Cranston, Rhode Island (ESS) for analysis of metals, hardness, ethanol, chloride, total cyanide, total petroleum hydrocarbons (TPH), total suspended solids (TSS), total residual chlorine (TRC), ammonia, hexavalent chromium, trivalent chromium, phenol, 1,4-dioxane, ethylene dibromide, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PBCs), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME). Surface water samples from the discharge location, Discharge Area, during April 2018 were submitted to ESS for analysis of ammonia, hexavalent chromium, metals, iron, pH, hardness, and salinity.

Results from the groundwater sampling of MW-13 demonstrated concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene above technology-based effluent limitations (TBELs). No contaminants of concern were detected above Massachusetts Department of Environmental Protection (MassDEP) reportable concentrations for groundwater (RCGW-2). The facility has previously been, and is currently, a gasoline and service station, and does not use any pH neutralization or dechlorination chemicals. Based on the summarized groundwater sampling results there are potential water-quality issues in the vicinity of the discharge.

Results from the surface water sample (Discharge Area) demonstrated concentrations of iron exceeding the TBEL. **Table 1** provides a summary of detected potential contaminants of concern (pCOCs) from groundwater collected at the facility (influent) and the surface water sample. Groundwater and surface water laboratory analytical reports are provided in **Attachment C**.

5.0 DILUTION FACTOR

MassDEP was contacted on April 17, 2018 to confirm the 7Q10 flow and determine a dilution factor. Final correspondence confirming a 7Q10 flow of 4.2 cfs, and a dilution factor of zero (0) was received by MassDEP on April 18, 2018. The Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet was subsequently completed. Copies of the Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet, StreamStats Report, and MassDEP correspondence are provided in **Attachment B**.

6.0 DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)

The United States Department of the Interior Fish and Wildlife Service – New England Ecological Services Field Office was contacted regarding the determination of endangered species act eligibility (ESA). There are no endangered or candidate species and no critical habitats within the project area for this NOI. There is one threatened species, the Northern Long-eared Bat (Myotis septentrionalis), on the list for this facility. However, no critical habitat has been designated for this species. Per the U.S. Fish and Wildlife Services, the Northern Long-eared Bat hibernates in caves and mines, swarming in surrounded wooded areas in autumn, and foraging in upland forests in late spring and summer. Based on the location and scope of this work in a densely commercially developed area, it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect the Northern Long-eared Bat. Therefore, this ESA determination is FWS Criterion C. Fish and Wildlife Service – New England Service Field Office Correspondence is provided as **Attachment D**.

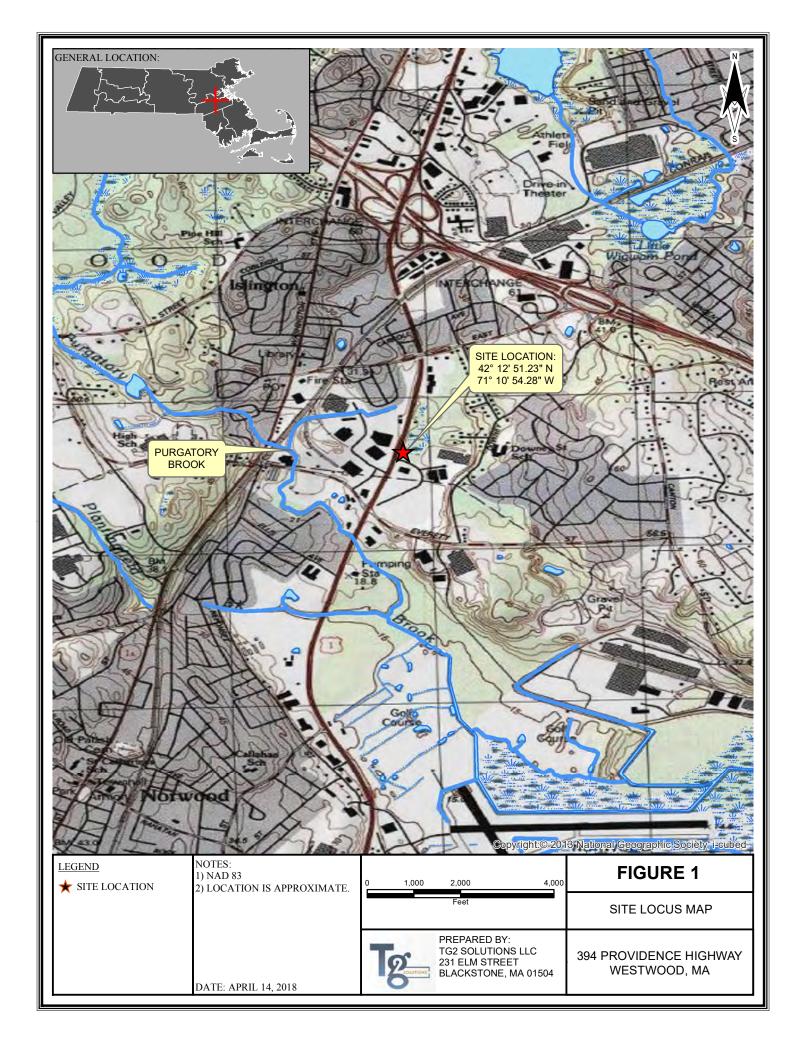
7.0 DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS

Listings of historic places within the City of Canton were obtained from the Massachusetts Cultural Resources Information System (MARCIS) online database:

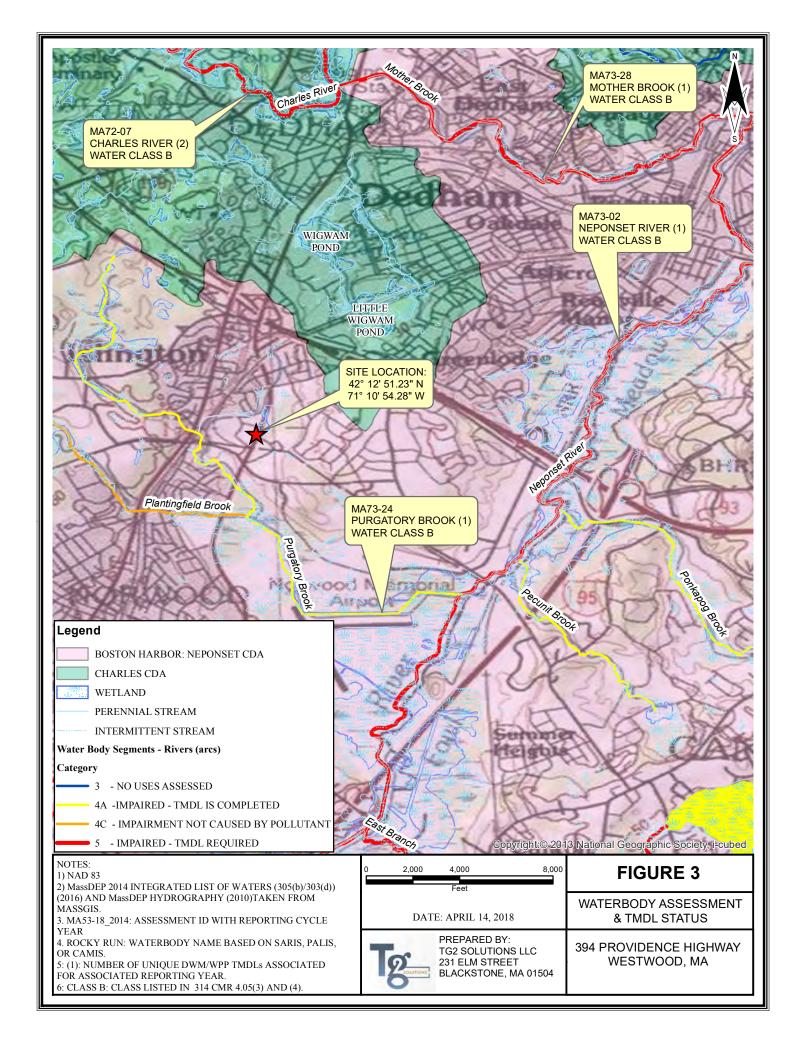
http://mhc-macris.net/Towns.aspx?Page=towns.asp

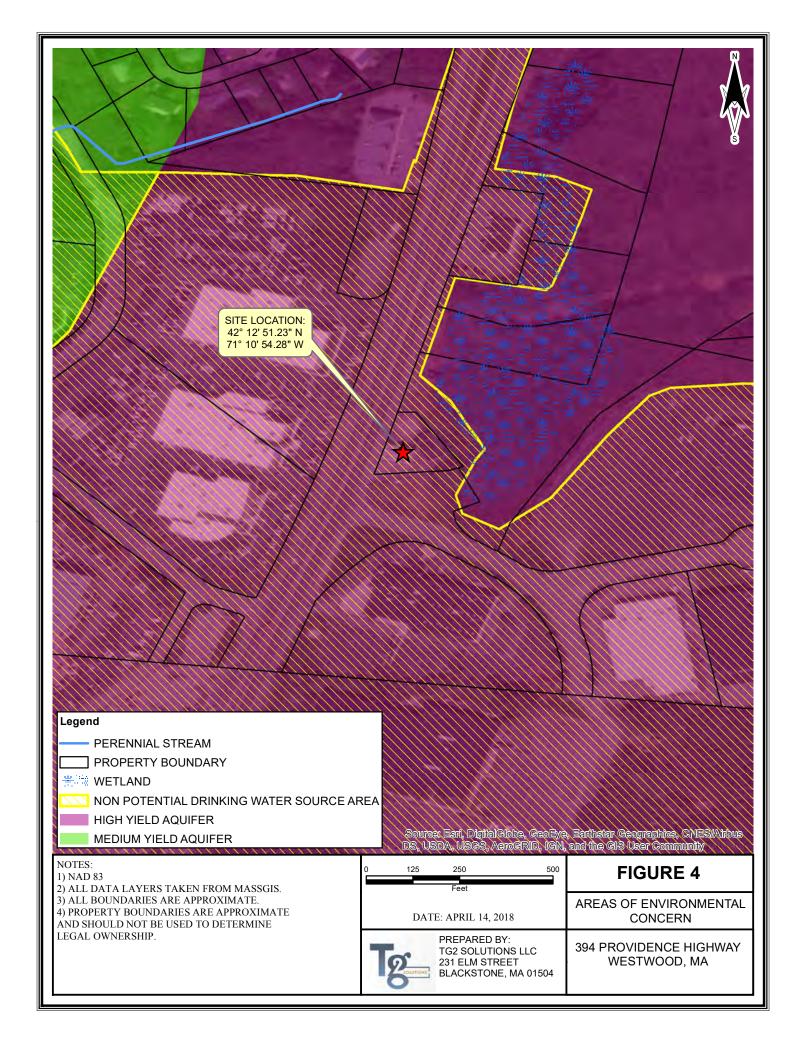
A site vicinity map showing historic places within a quarter mile of the facility is provided on **Figures 7** and **7A**. No historic places are located within 500 feet of the facility. Based on the location of historic places relative to the facility and the scope of this work, it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect any historic places.

8.0 SUPPLEMENTAL INFORMATION

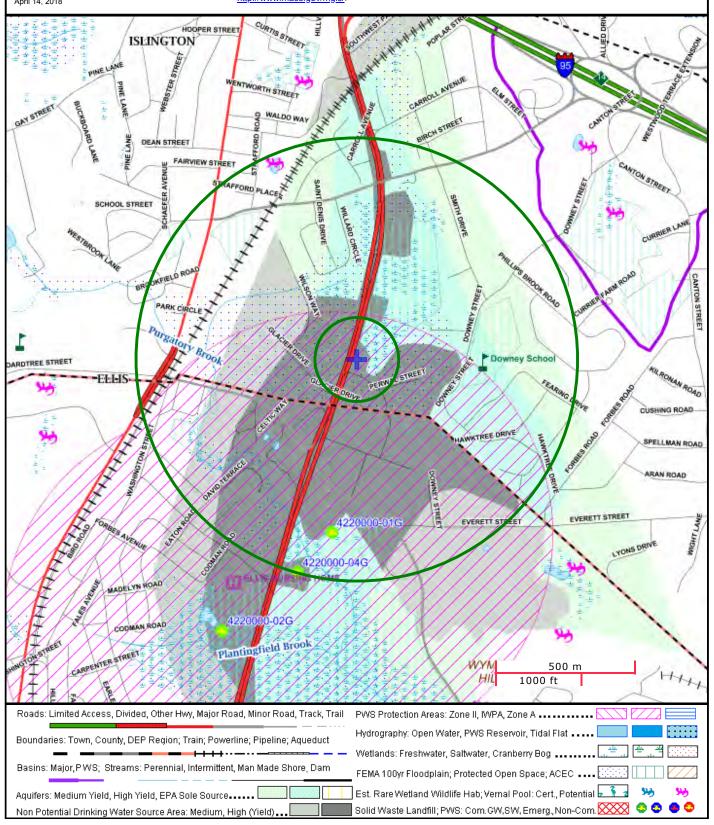

At this time no additional supplemental information is necessary to meet the requirements of the NOI for the RGP.

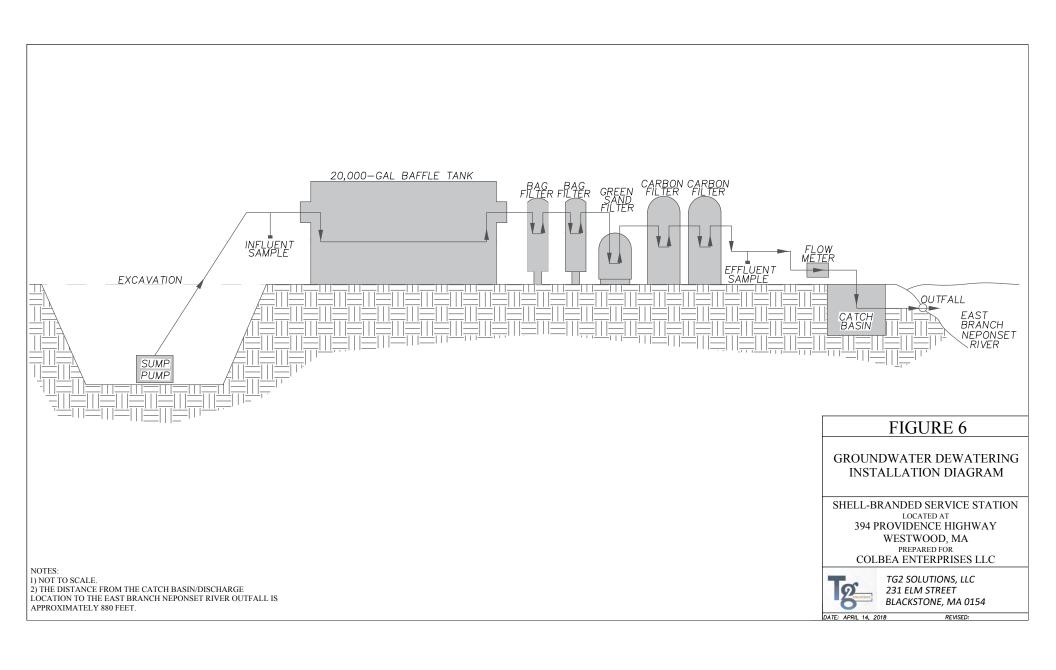
9.0 REDEVELOPMENT CONSTRUCTION SCHEDULE

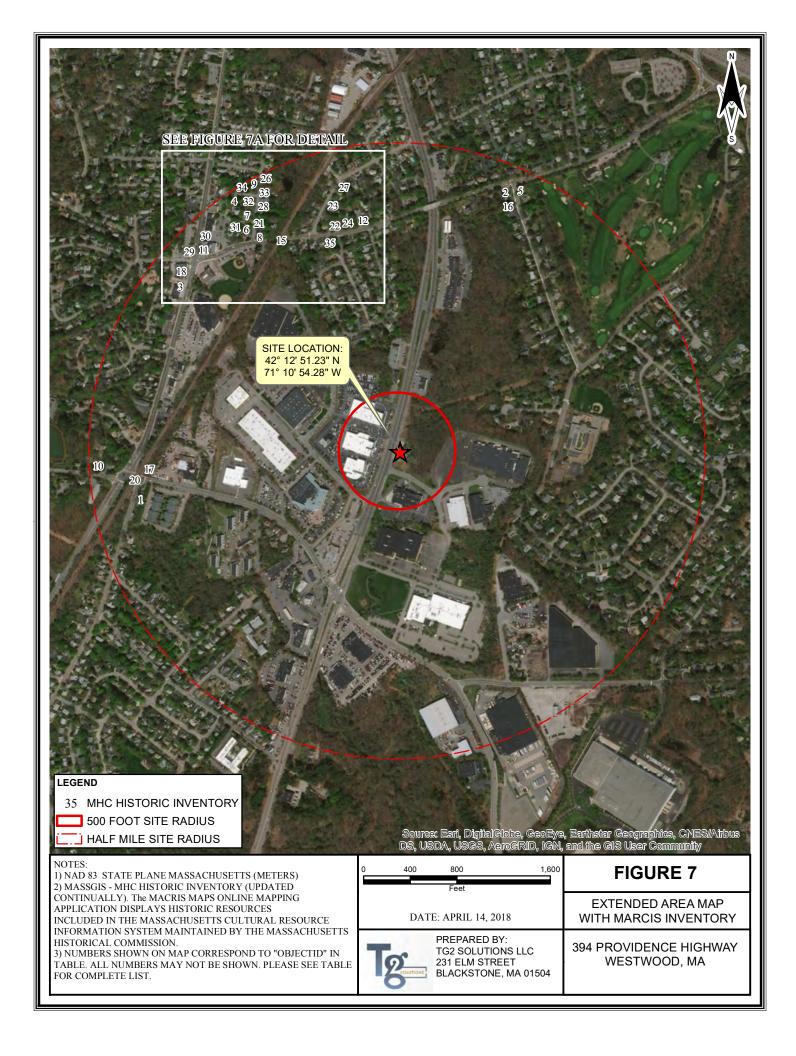

Redevelopment construction activities requiring dewatering are anticipated to begin in May 2018 and are anticipated to be complete by August 2018.



FIGURES




MassDEP - Bureau of W aste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


FIGURE 5 Phase
Site Information:
SHELL BRANDED SER VICE STATION
394 PROVIDENCE HIGHWAY WESTWOOD, MA

NAD83 UTM Meters: 4675865mN , 319913mE (Zone: 19) April 14, 2018 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: http://www.mass.gov/mgis/.

HISTORICAL COMMISSION.

3) NUMBERS SHOWN ON MAP CORRESPOND TO "OBJECTID" IN TABLE. ALL NUMBERS MAY NOT BE SHOWN. PLEASE SEE TABLE FOR COMPLETE LIST.

TG2 SOLUTIONS LLC 231 ELM STREET BLACKSTONE, MA 01504

394 PROVIDENCE HIGHWAY WESTWOOD, MA

TABLES

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL DATA Shell-Branded Station 394 Providence Highway Westwood, MA

		Arsenic (µg/L)	Cadmium (µg/L)	Copper (µg/L)	Iron (μg/L)	Lead (µg/L)	Zinc (µg/L)	Benzo(a)- anthracene (µg/L)	Benzo(a)- pyrene (µg/L)		Benzo(g,h,i)- perylene (µg/L)	Benzo(k)- fluoranthene (µg/L)		Dibenzo(a,h) Anthracene (µg/L)	Fluoran- thene (µg/L)	Indeno- (1,2,3-cd)- Pyrene (µg/L)	Phenan- threne (µg/L)	Pyrene (µg/L)	Ammonia (as N) (mg/L)	Chloride (mg/L)	Total Suspended Solids (mg/L)	Hardness (mg/L)	рН
MassDEP Reportable (Concentrations (RCGW-2)	900	4	100,000	NA	10	900	1,000	1,000	400	20	100	70	40	200	100	10,000	20	NA	NA	NA	NA	NA
Effluent Lin	mitations - TBEL	104	10.2	242	5,000	160	420	0.1°	0.1°	0.1°	100 ^b	0.1°	0.1°	0.1°	100 ^b	0.1°	100 ^b	100 ^b	Report	Report	30	NA	NA
Well ID	Sample Date																						
Discharge Area	04/04/18	1.2	0.243	4.8	6,340	8.4	161	-	-	-	-	-	-	-	-	-	-	-	0.28	-	-	77,700	5.78
RGP Well MW-13	04/04/18	0.50	2.03	2.90	2,670	<2.0	32.5	0.18	0.42	1.05	0.78	0.30	0.55	0.12	0.79	0.77	0.19	0.58	0.16	250	10	82,000	7.32

Note:

ygl. - micrograms per liter
mgl. - miligram per liter
mgl. - mi

Bold - above method detection limits
Bold & Shaded - above RCGW-2 and/or TBEL Effluent Limitations

ATTACHMENT A

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:			
Future Seasons Corner Market 394 Providence Highway	Street: 394 Providence Highway			
Westwood, MA	City: Westwood		State:	Zip: ₀₂₀₉₀
2. Site owner	Contact Person: Dennis Darveau			
Colbea Enterprises, LLC 2050 Plainfield Pike	Telephone: 401-490-2209	Email: dd	arveau@season	scornermarket.com
Cranston, RI 029210	Mailing address:	Text		
	7 Starline Way Street:			
Owner is (check one): □ Federal □ State/Tribal ☑ Private □ Other; if so, specify:	City: Cranston		State:	Zip: 02921
3. Site operator, if different than owner	Contact Person: Same as above			
Same as owner	Telephone:	Email:		
	Mailing address:			
	Street:			
	City:		State:	Zip:
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):	
	☑ MA Chapter 21e; list RTN(s): 3-0463	□ CERCL	LA	
NPDES permit is (check all that apply: ☑ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or	□ UIC Pro	•	
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:		Pretreatmen	t
2		□ CWA S	Section 404	

n	D	4	• •	4.
в.	Receiving	water	inforn	nation:

B. Receiving water information:		
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):
Neponset River via Purgatory Brook	MA73-24	Class B
Receiving water is (check any that apply): □ Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □ V	Vild and Scenic River
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): Yes	No
Are sensitive receptors present near the site? (check one): If yes, specify: Wetlands adjacent to the site	▼ Yes □ No	
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avai 4.6 of the RGP. Neponset River has one TMDL for bacteria		
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appendix		tions in 4.6 ft^3/s
5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in		
6. Has the operator received confirmation from the appropriate fyes, indicate date confirmation received:	· · · · · · · · · · · · · · · · · · ·	,
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in acc	ordance with the instruction in Appendix VIII?
(check one): ☑ Yes □ No		
C. Source water information:		
1. Source water(s) is (check any that apply):		
		I I

1. Source water(s) is (check any that apply):			
☑ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
☑ Yes □ No	□ Yes □ No		

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☑ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes ☑ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ☑ New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
The outfall/discharge location is into the wetlands located immediately adjacent to the facility (394 Providence Hwy,	42.21412, -71.18112
Westwood), which flows into a tributary of Purgatory Brook.	
Discharges enter the receiving water(s) via (check any that apply): ☑ Direct di	scharge to the receiving water Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sew	
Has notification been provided to the owner of this system? (check one): \Box Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year): May 20	018 through August 2018
Indicate if the discharge is expected to occur over a duration of: ☑ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ☑ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	c all that apply)				
	a. If Activity Categ	gory I or II: (check all that apply)				
	 ☑ A. Inorganics ☑ B. Non-Halogenated Volatile Organic Compounds ☑ C. Halogenated Volatile Organic Compounds ☑ D. Non-Halogenated Semi-Volatile Organic Compounds ☑ E. Halogenated Semi-Volatile Organic Compounds ☑ F. Fuels Parameters 					
 ☑ I – Petroleum-Related Site Remediation ☐ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
□ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	☐ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination				
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)					
□ VIII – Dredge-Related Dewatering	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4	Influent	and	Effluent	Charact	teristics

	Known	Known		Test method (#)	Detection limit (µg/l)	Infl	uent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples			Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		Х	1	350.1	0.10 mg/L	0.16	0.16	Report mg/L	
Chloride		Х	1	300.0	50,000	250,000	250,000	Report μg/l	
Total Residual Chlorine	Х		1	4500C1D	0.02	< 0.02	0	0.2 mg/L	11 ug/L
Total Suspended Solids		Х	1	2540D	5 mg/L	10	10	30 mg/L	-
Antimony	х		1	200.7	5.0	< 5.0	0	206 μg/L	_
Arsenic		Х	1	3113B	0.5	0.5	0.5	104 μg/L	_
Cadmium		Х	1	200.7	1.0	2.03	2.03	10.2 μg/L	_
Chromium III	X		1	200.7	2.0	< 2.0	0	323 μg/L	_
Chromium VI	х		1	3500Cr	10.0	< 10.0	0	323 μg/L	_
Copper		X	1	200.7	2.0	2.9	2.9	242 μg/L	_
Iron		X	1	200.7	10.0	2,670	2,670	5,000 μg/L	1,000
Lead	х		1	200.7	2.0	< 2.0	0	160 μg/L	_
Mercury	X		1	245.1	0.200	< 0.20	0	$0.739~\mu g/L$	_
Nickel	x		1	200.7	5.0	< 5.0	0	1,450 μg/L	_
Selenium	x		1	3113B	1.0	< 1.0	0	235.8 μg/L	_
Silver	х		1	200.7	0.5	< 0.5	0	35.1 μg/L	_
Zinc		X	1	200.7	5.0	32.5	32.5	420 μg/L	_
Cyanide	Х		1	4500 CN	0.005	0.005	0	178 mg/L	_
B. Non-Halogenated VOC	s								
Total BTEX	X		1	524.2	2.0 (total)	<0.5	0	100 μg/L	
Benzene	X		1	524.2	0.5	<0.5	0	5.0 μg/L	
1,4 Dioxane	х		1	8270D SIM	0.250	<0.250	0	200 μg/L	
Acetone	Х		1	524.2	0.005	< 0.005	0	7.97 mg/L	
Phenol	Х		1	420.1	100	< 100	0	1,080 μg/L	_

	Known	Known or believed present	# of samples		Detection limit (µg/l)	Influent		Effluent Limitations	
Parameter	or believed absent			Test method (#)		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	Х		1	524.2	0.3	< 0.3	0	4.4 μg/L	_
1,2 Dichlorobenzene	Х		1	524.2	0.5	< 0.5	0	600 μg/L	
1,3 Dichlorobenzene	Х		1	524.2	0.5	< 0.5	0	320 μg/L	
1,4 Dichlorobenzene	х		1	524.2	0.5	< 0.5	0	5.0 μg/L	
Total dichlorobenzene	х		1	524.2	0.5	< 0.5	0	763 μg/L in NH	
1,1 Dichloroethane	х		1	524.2	0.5	< 0.5	0	70 μg/L	
1,2 Dichloroethane	Х		1	524.2	0.5	< 0.5	0	5.0 μg/L	
1,1 Dichloroethylene	Х		1	524.2	0.5	< 0.5	0	3.2 μg/L	
Ethylene Dibromide	х		1	504.1	0.015	< 0.015	0	0.05 μg/L	
Methylene Chloride	Х		1	524.2	0.5	< 0.5	0	4.6 μg/L	
1,1,1 Trichloroethane	Х		1	524.2	0.5	< 0.5	0	200 μg/L	
1,1,2 Trichloroethane	Х		1	524.2	0.5	< 0.5	0	5.0 μg/L	
Trichloroethylene	Х		1	524.2	0.5	< 0.5	0	5.0 μg/L	
Tetrachloroethylene	Х		1	524.2	0.5	< 0.5	0	5.0 μg/L	-
cis-1,2 Dichloroethylene	Х		1	524.2	0.5	< 0.5	0	70 μg/L	
Vinyl Chloride	Х		1	524.2	0.2	< 0.2	0	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates	X		1	625 SIM	2.40	< 2.40	0	190 μg/L	-
Diethylhexyl phthalate	Х		1	625 SIM	1.92	< 1.92	0	101 μg/L	-
Total Group I PAHs		Х	1	625 SIM	0.05	3.39	3.39	1.0 μg/L	
Benzo(a)anthracene		Х	1	625 SIM	0.05	0.18	0.18		0.0038
Benzo(a)pyrene		Х	1	625 SIM	0.05	0.42	0.42		0.0038
Benzo(b)fluoranthene		Х	1	625 SIM	0.05	1.05	1.05]	0.0038
Benzo(k)fluoranthene		Х	1	625 SIM	0.05	0.30	0.30	As Total PAHs	0.0038
Chrysene		Х	1	625 SIM	0.05	0.55	0.55]	0.0038
Dibenzo(a,h)anthracene		Х	1	625 SIM	0.05	0.12	0.12		0.0038
Indeno(1,2,3-cd)pyrene		Х	1	625 SIM	0.05	0.77	0.77	1	0.0038

Parameter	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
Total Group II PAHs		Х	1	625 SIM	0.19	2.34	2.34	100 μg/L	
Naphthalene	X		1	625 SIM	0.19	< 0.19	0	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	X		1	608	0.10	< 0.10	0	0.000064 μg/L	
Pentachlorophenol	Х		1	625 SIM	0.87	< 0.87	0	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	х		1	1664A	5	< 5	0	5.0 mg/L	
Ethanol	X		1	D3695	10	< 10	0	Report mg/L	
Methyl-tert-Butyl Ether	x		1	524.2	0.5	< 0.5	0	70 μg/L	_
tert-Butyl Alcohol	х		1	524.2	25.0	< 25.0	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	х		1	524.2	1.0	< 1.0	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	S ₅₀ , addition	al pollutan	ts present);	if so, specify: 82,000 ug/L	82,000 ug/L		
pН		Х	1	Field		7.32	7.32		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ☑ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ☑ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
See NOI RGP Report Section 3.0, and Figure 6	
Identify each major treatment component (check any that apply):	
☑ Fractionation tanks□ Equalization tank □ Oil/water separator ☑ Mechanical filter ☑ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: bag filters Is use of a flow meter feasible? (check one): ☑ Yes □ No, if so, provide justification:	60 gpm
Provide the proposed maximum effluent flow in gpm.	40 gpm
Provide the average effluent flow in gpm.	< 40 gpm
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☑ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No
FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ☑ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☑ No; if yes, attach.
Does the supporting documentation include any written concurrence of infaming provided by the services. (effect one).
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☑ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☑ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Refer to the NOI RGP Report, attached. This report includes site maps, locations of the influent sample point, discharge/outfall location, water classifications, potential environmental receptors, groundwater analytical tables and laboratory analytical reports, and supporting documentation for the ESA determination and historic sites within the vicinity of the facility this NOI RGP is applicable to.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☑ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☑ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP meeting the requirements of the RGP + NOI will be developed and implemented upon initiation of discharge. BMPP certification statement: Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ☑ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes ✓ No □ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes □ No □ NA ☑ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No □ NA ☑ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): ☑ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes ☑ No □ NA □ ☐ Other; if so, specify: Signature: Date: 4-20-15 Print Name and Title: DENNIS DARVERY DIR. OF CONSTRUCTION

ATTACHMENT B

Subject: RE: 394 Providence Highway, Westwood - NOI RGP

Date: Wednesday, April 18, 2018 at 10:54:54 AM Eastern Daylight Time

From: Vakalopoulos, Catherine (DEP)

To: Leah Smith

Attachments: image001.png

Hi Leah,

You are correct in not requesting a dilution factor since this discharge will be to a wetland near the site located at 394 Providence Highway in Westwood. This wetland and the nearby tributary to Purgatory Brook do not have IDs and so on the NOI you would note that and list Purgatory Brook ID # MA73-24 as the nearest waterbody. Additional information you will need for the NOI is that this brook is Class B, not an Outstanding Resource Water, and is located in the Neponset watershed which has one TMDL for bacteria.

For the purposes of completing the NOI for coverage under the RGP, you are all set from MassDEP. The effluent limit calculations will be reviewed by EPA once submitted along with the NOI.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

 \clubsuit Please consider the environment before printing this e-mail

From: Leah Smith [mailto:lsmith@tg2solutions.com]

Sent: Tuesday, April 17, 2018 8:33 PM **To:** Vakalopoulos, Catherine (DEP) **Cc:** Jason Sherburne; Eric Simpson

Subject: 394 Providence Highway, Westwood - NOI RGP

Good evening,

I'm working on behalf of a client to complete a NOI for a RGP for redevelopment activities at 394 Providence Highway in Westwood, MA. This facility has historically been a gasoline station and will be redeveloped into another gasoline station. The RGP is for dewatering activities during redevelopment.

Attached please find the dilution factor spreadsheet and effluent limit calculations. There is no dilution factor requested for this RGP. Calculations are based on the groundwater concentrations at the facility (MW-13), the surface water samples collected from the wetlands located behind the facility, the 7Q10 from USGS, and the projected maximum daily flow.

Please note that the Streamstats data is attached, and is based on the basin delineated immediately east of wetland adjacent to the facility. The wetland adjacent to the facility did not have statics to provide a 7Q10, therefore, the 7Q10 for the nearest tributary of Purgatory Brook was selected. This provided a 7Q10 flow of 4.6 cubic feet per second (cfs). The maximum daily flow rate of the proposed treatment system is 57,600 gallons per day (gpd), which was converted to 0.0576 million gallons per day (mgd).

I've attached a table with the summary of contaminants detected in the influent sample (site groundwater) and the outfall surface water sample, and a site plan showing the proposed construction location for dewatering and outfall location.

Could you please check the 7Q10 and let me know if you require any additional information?

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

	*
\downarrow	
82000	C_d = Enter influent hardness in mg/L CaCO ₃
77700	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

↓	g
5.78	pH in Standard Units
15.12	Temperature in °C
0.28	Ammonia in mg/L
77700	Hardness in mg/L CaCO
0.8	Salinity in ppt
0	Antimony in µg/L
1.2	Arsenic in µg/L
0.243	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
4.8	Copper in µg/L
6340	Iron in μg/L
8.4	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in μg/L
161	Zinc in μg/L

Enter influent concentrations in the units specified

\downarrow	1
0	TRC in µg/L
0.16	Ammonia in mg/L
0	Antimony in µg/L
0.5	Arsenic in µg/L
2.03	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
2.9	Copper in µg/L
2670	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in μg/L
32.5	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0.18	Benzo(a)anthracene in μg/L
0.42	Benzo(a)pyrene in μg/L
1.05	Benzo(b)fluoranthene in μg/L
0.3	Benzo(k)fluoranthene in μg/L
0.55	Chrysene in μg/L
0.12	Dibenzo(a,h)anthracene in μg/L
0.77	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \frac{Q_R + Q_P}{Q_P}$$

$$Q_R = 7Q10 \text{ in MGD}$$

 Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_{r} = \frac{Q_{d}C_{d} + Q_{s}C_{s}}{Q_{r}}$$

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

 C_d = Discharge hardness in mg/L

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [ln(h)] + b_c\}$

 m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WOBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \frac{Q_{r} C_{r} - Q_{s} C_{s}}{Q_{d}}$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in μ g/L

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Upstream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor	1.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies if	bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	11	μg/L	50	μg/L
Total Suspended Solids	30	mg/L		1.0		1.0
Antimony	206	μg/L	640	μg/L		
-			10			
Arsenic	104	μg/L		μg/L		
Cadmium	10.2	μg/L	39.0130	μg/L		
Chromium III	323	μg/L	20980.6	$\mu g/L$		
Chromium VI	323	$\mu g/L$	11.4	$\mu g/L$		
Copper	242	$\mu g/L$	2881.9	μg/L		
Iron	5000	$\mu g/L$	1000	$\mu g/L$		
Lead	160	$\mu g/L$	16290.32	μg/L		
Mercury	0.739	$\mu g/L$	0.91	$\mu g/L$		
Nickel	1450	μg/L	15221.2	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	388829.5	μg/L		
Zinc	420	μg/L	35268.8	μg/L		
Cyanide	178	μg/L mg/L	5.2	μg/L μg/L		μg/L
B. Non-Halogenated VOCs	176	IIIg/L	3.2	μg/L		μg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	300	$\mu g/L$		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	$\mu g/L$	1.6	$\mu g/L$		
1,2 Dichlorobenzene	600	$\mu g/L$				
1,3 Dichlorobenzene	320	$\mu g/L$				
1,4 Dichlorobenzene	5.0	$\mu g/L$				
Total dichlorobenzene		$\mu g/L$				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6 200	μg/L				
1,1,1 Trichloroethane 1,1,2 Trichloroethane	5.0	μg/L μg/L				
Trichloroethylene	5.0	μg/L μg/L				
Tetrachloroethylene	5.0	μg/L μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70	μg/L μg/L	3.3 	MB/ 11		
Vinyl Chloride	2.0	μg/L μg/L				
D. Non-Halogenated SVOCs		L.D				
Total Phthalates	190	μg/L		$\mu g/L$		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic				. •		
Aromatic Hydrocarbons	1.0	$\mu g/L$				

Benzo(a)anthracene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	$\mu g/L$
Benzo(a)pyrene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Benzo(b)fluoranthene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Benzo(k)fluoranthene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Chrysene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	$\mu g/L$	0.1	μg/L
Indeno(1,2,3-cd)pyrene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	$\mu g/L$				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	$\mu g/L$			0.5	μg/L
Pentachlorophenol	1.0	$\mu g/L$				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	$\mu g/L$		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

I. Dilution Factor Calculation Method

A. 7Q10

No flow assumed at critical low flow for saltwater unless otherwise approved by the State

B. Dilution Factor

No dilution assumed for saltwater, unless otherwise approved by the State

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

- Step 1. Not applicable to saltwater
- Step 2. Not applicable to saltwater
- Step 3. Total recoverable water quality criteria for dissolved metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_d = \frac{Q_r C_r - Q_s C_s}{Q_d}$$

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in μ g/L

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Upstream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter is greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not detected in or not sampled in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor	0.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	7.5	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				10
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L μg/L	36			
Cadmium	10.2		8.9	μg/L		
		μg/L		μg/L		
Chromium III	323	μg/L	100.0	μg/L		
Chromium VI	323	μg/L	50	$\mu g/L$		
Copper	242	$\mu g/L$	3.7	$\mu g/L$		
Iron	5000	$\mu g/L$		$\mu g/L$		
Lead	160	$\mu g/L$	8.5	$\mu g/L$		
Mercury	0.739	$\mu g/L$	1.11	$\mu g/L$		
Nickel	1450	μg/L	8.3	μg/L		
Selenium	235.8	μg/L	71	μg/L		
Silver	35.1	μg/L	2.2	μg/L		
Zinc	420	μg/L	86	μg/L		
Cyanide	178	mg/L	1.0	μg/L μg/L		μg/L
B. Non-Halogenated VOCs	176	mg/L	1.0	μg/L		μg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7.97	mg/L				
Phenol	1,080	μg/L	300	$\mu g/L$		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4		1.6	$\mu g/L$		
1,2 Dichlorobenzene	600	$\mu g/L$				
1,3 Dichlorobenzene	320	$\mu g/L$				
1,4 Dichlorobenzene	5.0	$\mu g/L$				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6 200	μg/L				
1,1,1 Trichloroethane 1,1,2 Trichloroethane	5.0	μg/L μg/L				
Trichloroethylene	5.0	μg/L μg/L				
Tetrachloroethylene	5.0	μg/L μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70	μg/L μg/L	3.3 	MB/ L		
Vinyl Chloride	2.0	μg/L μg/L				
D. Non-Halogenated SVOCs		ro' -				
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic Aromatic Hydrocarbons	1.0	μg/L		. 0		
Aromane riyurocaroons	1.0	mb/ 12				

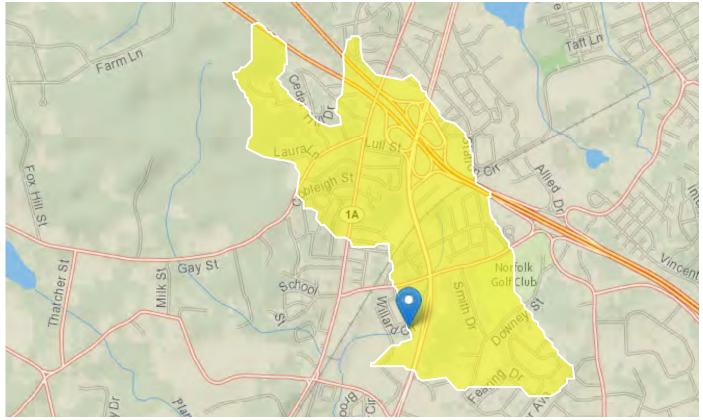
Benzo(a)anthracene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	$\mu g/L$
Benzo(a)pyrene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Benzo(b)fluoranthene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Benzo(k)fluoranthene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Chrysene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	$\mu g/L$	0.1	μg/L
Indeno(1,2,3-cd)pyrene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	$\mu g/L$				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	$\mu g/L$			0.5	μg/L
Pentachlorophenol	1.0	$\mu g/L$				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	$\mu g/L$		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

StreamStats Report

Region ID:

MA

Workspace ID:


MA20180415150608949000


Clicked Point (Latitude, Longitude):

42.21677, -71.18246

Time:

2018-04-15 11:06:24 -0400

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.93	square miles
ELEV	Mean Basin Elevation	129	feet
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	3.6	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	25.5	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless
BSLDEM250	Mean basin slope computed from 1:250K DEM	1.828	percent

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.93	square miles	0.16	512
ELEV	Mean Basin Elevation	129	feet	80.6	1948
LC06STOR	Percent Storage from NLCD2006	3.6	percent	0	32.3

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp
2 Year Peak Flood	38.7	ft^3/s	19.6	76.6	42.3
5 Year Peak Flood	64.7	ft^3/s	32.2	130	43.4
10 Year Peak Flood	85.2	ft^3/s	41.4	175	44.7
25 Year Peak Flood	115	ft^3/s	54.1	246	47.1
50 Year Peak Flood	140	ft^3/s	63.6	309	49.4
100 Year Peak Flood	167	ft^3/s	73.3	379	51.8
200 Year Peak Flood	196	ft^3/s	83.5	459	54.1
500 Year Peak Flood	238	ft^3/s	108	524	57.6

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.93	square miles	1.61	149
DRFTPERSTR	Stratified Drift per Stream Length	25.5	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1
BSLDEM250	Mean Basin Slope from 250K DEM	1.828	percent	0.32	24.6

Flow-Duration Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
50 Percent Duration	0.887	ft^3/s
60 Percent Duration	1.05	ft^3/s
70 Percent Duration	1.79	ft^3/s
75 Percent Duration	1.91	ft^3/s
80 Percent Duration	4.98	ft^3/s
85 Percent Duration	4.42	ft^3/s
90 Percent Duration	9.42	ft^3/s
95 Percent Duration	5.3	ft^3/s
98 Percent Duration	3.87	ft^3/s
99 Percent Duration	2.94	ft^3/s

Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.93	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	1.828	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	25.5	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	3.03	ft^3/s
7 Day 10 Year Low Flow	4.6	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

ATTACHMENT C

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Eric D. Simpson Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: Colbea - Westwood 394 - RGP (N/A)

ESS Laboratory Work Order Number: 1804099

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 6:40 pm, Apr 13, 2018

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804099

SAMPLE RECEIPT

The following samples were received on April 04, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 1804099-01

Sample Name Discharge Area

Matrix
Surface Water

Analysis

200.7, 200.8, 245.1, 2520B, 3113B, 350.1, 3500Cr

B-2009, 9040

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804099

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804099

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: Discharge Area Date Sampled: 04/04/18 13:00

Percent Solids: N/A

ESS Laboratory Work Order: 1804099 ESS Laboratory Sample ID: 1804099-01

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Meth	<u>od Limit DI</u>	Analys	t Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (5.0)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Arsenic	1.2 (0.5)	3113E	1	KJK	04/11/18 8:46	100	10	CD80541
Beryllium	ND (0.100)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Cadmium	0.243 (0.200)	200.8	5	NAR	04/13/18 16:49	100	10	CD80541
Chromium	ND (2.0)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Copper	4.8 (2.0)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Hardness	77700 (82.4)	200.7	1	KJK	04/06/18 15:50	1	1	[CALC]
Iron	6350 (10.0)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Lead	8.4 (2.0)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Mercury	ND (0.200)	245.1	1	MJV	04/06/18 17:02	20	40	CD80546
Nickel	ND (5.0)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Selenium	ND (1.0)	3113E	1	KJK	04/11/18 18:38	100	10	CD80541
Silver	ND (0.5)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Thallium	ND (10.0)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541
Zinc	161 (5.0)	200.7	1	KJK	04/06/18 15:50	100	10	CD80541

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: Discharge Area Date Sampled: 04/04/18 13:00

Percent Solids: N/A

ESS Laboratory Work Order: 1804099 ESS Laboratory Sample ID: 1804099-01

Sample Matrix: Surface Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method I	Limit DF	Analyst	<u>Analyzed</u>	<u>Units</u>	Batch
Ammonia as N	0.28 (0.10)	350.1	1	EEM	04/06/18 12:13	mg/L	CD80508
Hexavalent Chromium	ND (10.0)	3500Cr B-2009	1	CCP	04/04/18 19:50	ug/L	CD80427
pН	5.78 (N/A)	9040	1	CCP	04/04/18 21:14	S.U.	CD80428
pH Sample Temp	Aqueous pH measur	ed in water at 18.4 °C. (N/A)					
Salinity	0.8 (0.1)	2520B	1	JLK	04/06/18 17:47	ppt	CD80637

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

ESS Laboratory Work Order: 1804099

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Lotal	Meta	S

Batch CD80541 - 3005A/200.7									
Blank									
Antimony	ND	5.0	ug/L						
Arsenic	ND	0.5	ug/L						
Beryllium	ND	0.100	ug/L						
Cadmium	ND	0.200	ug/L						
Chromium	ND	2.0	ug/L						
Copper	ND	2.0	ug/L						
Hardness	ND	82.4	ug/L						
Iron	12.6	10.0	ug/L						
Lead	ND	2.0	ug/L						
Nickel	ND	5.0	ug/L						
Selenium	ND	1.0	ug/L						
Silver	ND	0.5	ug/L						
Thallium	ND	10.0	ug/L						
Zinc	ND	5.0	ug/L						
LCS									
Antimony	46.6	5.0	ug/L	50.00	93	85-115			
Arsenic	54.8	12.5	ug/L	50.00	110	85-115			
Beryllium	4.80	0.100	ug/L	5.000	96	85-115			
Cadmium	25.3	1.00	ug/L	25.00	101	80-120			
Chromium	48.1	2.0	ug/L	50.00	96	85-115			
Copper	51.6	2.0	ug/L	50.00	103	85-115			
Hardness	3230	82.4	ug/L						
Iron	240	10.0	ug/L	250.0	96	85-115			
Lead	49.1	2.0	ug/L	50.00	98	85-115			
Nickel	47.0	5.0	ug/L	50.00	94	85-115			
Selenium	98.8	25.0	ug/L	100.0	99	85-115			
Silver	25.2	0.5	ug/L	25.00	101	85-115			
Thallium	49.5	10.0	ug/L	50.00	99	85-115			
Zinc	48.0	5.0	ug/L	50.00	96	85-115			
LCS Dup									
Antimony	46.0	5.0	ug/L	50.00	92	85-115	1	20	
Beryllium	4.70	0.100	ug/L	5.000	94	85-115	2	20	
Cadmium	26.0	1.00	ug/L	25.00	104	80-120	3	20	
Chromium	47.3	2.0	ug/L	50.00	95	85-115	2	20	
Copper	50.0	2.0	ug/L	50.00	100	85-115	3	20	
Hardness	3200	82.4	ug/L						
Iron	239	10.0	ug/L	250.0	96	85-115	0.4	20	
Lead	48.0	2.0	ug/L	50.00	96	85-115	2	20	
Nickel	46.2	5.0	ug/L	50.00	92	85-115	2	20	
Silver	24.7	0.5	ug/L	25.00	99	85-115	2	20	
Thallium	49.2	10.0	ug/L	50.00	98	85-115	0.7	20	
Zinc	46.9	5.0	ug/L	50.00	94	85-115	2	20	

185 Frances Avenue, Cranston, RI 02910-2211

Batch CD80546 - 245.1/7470A

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804099

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Batch CD80546 - 245.1/7470A										
Blank										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	5.70	0.200	ug/L	6.000		95	85-115			
LCS Dup										
Mercury	5.64	0.200	ug/L	6.000		94	85-115	1	20	
		Cl	assical Che	mistry						
Batch CD80427 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
ıcs										
Hexavalent Chromium	0.491		mg/L	0.4998		98	90-110			
LCS Dup										
Hexavalent Chromium	0.516		mg/L	0.4998		103	90-110	5	20	
Batch CD80508 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.10	0.10	mg/L	0.09994		99	80-120			
LCS										
Ammonia as N	0.99	0.10	mg/L	0.9994		99	80-120			
Batch CD80637 - General Preparation										
LCS										
Salinity	0.9		ppt	1.000		94	85-115			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804099

Notes and Definitions

Z16	Aqueous pH measured in water at 18.4 °C.
U	Analyte included in the analysis, but not detected
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

Calculated Analyte [CALC]

SUB Subcontracted analysis; see attached report

RLReporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804099

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental | health/environmental | laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

ESS Laboratory Sample and Cooler Receipt Checklist

Clie	nt:	Tg2	TB/DS			ESS	Project ID:	1	804099	
Shipped	I/Delivered Vi	a:	ESS Cour	ier	-	Date Projec	e Received: t Due Date: for Project:	4/	/4/2018 11/2018 5 Day	
	l manifest pre			No			C match bottles?		<u> </u>	Yes
2. Were	custody seals	s present?		No]	7. Is COC co	omplete and corr	ect?		Yes
3. Is radi	ation count <	100 CPM?		Yes	<u></u>	8. Were sam	ples received int	act?		Yes
	ooler Present p: 3.8		ı: İce	Yes]	9. Were lab	s Informed abou	ut <u>short ho</u>	lds & rushes?	Yes/No/NA
	OC signed a	_		Yes]	10. Were any	y analyses recei	ved outside	of hold time?	Yes /No
	subcontracting S Sample IDs Analysis TAT	:		· /Ño	- -	 a. Air bubble 	As received? s in aqueous VC hanol cover soil (As? completely?		Yes / No Yes / No Yes / No / NA
a. If meta b. Low Le	ne samples pr ils preserved evel VOA vials ecciving Note	upon receipt s frozen;	rved? :	Yes No Date: Date:		Time: _ Time: _		Ву: Ву:		=
a. Was the	here a need to contacted?	o contact Pr contact the	oject Manag client?	er? Date:	Yes (No) Yes / No	Time:		Ву:		
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Containe	г Туре	Preservative	9	Record pH (Cyan	
01 01	214352 214353	Yes Yes	NÄ NA	Yes Yes	500 mL Poly		H2SO4			
01	214354	Yes	NA	Yes	1L Poly - (1L Poly - (Unpres Unpres	NP NP			
01 01	214355 214356	Yes Yes	NA N A	Yes Yes	500 mL Poly 500 mL Poly	/ - HNO3	HNO3 HNO3			
2nd Review Are barcode	/ ≘labels on co	лесt contain	ers?		Yes					
Completed By:		kt &			Date & Time:	ن ن با	اداره	1745		
Reviewed By:	(Mu			Date & Time:	14/4/	18	(8X		_
Delivered By:				m		4/4/15		808		_
						74			· · · · · · · · · · · · · · · · · · ·	-

Transcource information Transcource Transcource information Transcource Tran		200	0	CHAIN		COS	STOI	. YC	OF CUSTODY RECORD	RD			Laboratory:				ESS	S	
MATRIX State Sta	23 18 18 18 18 18 18 18 1	To2 Solutions					Н					Anal	ytical Inform	nation	1				
Supplementary Marker Mar	Collection Col	231 Elm Street, Blackstone MA Jason Sherburne 617-947-7702						MAT	RIX								בן בן	ab to Invoice: Tg2 Sol	ution
Discharge Area	Discharge Area		Wood, MA					Groundy Drinking Soil Surface \	ater Water Vater		. 1						i i	Iling Reference:	Solutions
Sample Custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended before a supple of bargle custody must be decommended by the	FATE 3		ollecti			ype Vpe	HCF	HO3 HO3 FoSSH				lron						Comm	ents:
SATISE CLISCOS 14418 1500 5	Farea 44418 1.00 5 20 1 1 1 1 1 1 1 1 1		1				н	Н	0	+	+	1 >	+	+	+				
Immaround information Approved By: SPECIAL QAQC or DATA Requirements: Semple Custodynust be decinented below each time samples change possession, including courier delivery. Sample Custodynust be decinented below each time samples change possession, including courier delivery.	Sample Cust of proved By: SPECIAL QAQC or DATA Requirements: Additional Information Addi			ın					*			×							
SPECIAL QA/QC or DATA Requirements: Freshwater Discharge - See attached for detection limits and method requirements. Freshwater Discharge - See attached for detection limits and method Particular Partic	Sample Custooy must be documented below each time samples of the process of the										+		-		-	Addition	al Information		
H (HIGH PRIORITY) Sample Custody must be documented below each time samples change possesion, including courier delivery. Sample Custody must be documented below each time samples thange possesion, including courier delivery. Sample Custody must be documented below each time samples thange possesion, including courier delivery. Sample Custody must be documented below each time samples thange possesion, including courier delivery. Sample Custody must be documented below each time samples thanged by the control of the samples of	H (HIGH PRIORITY) Sample Custody must be documented below each time samples change possession, including courier delivery. Sample Custody must be documented below each time samples change possession, including courier delivery. Recolved Str.	ound Information	oved By:		S	ECIAL QA	QC or D/	VQC TA Requir	aments:										
Sample Custody must be documented below each time samples change possesion, including courier delivery Recojact By Color Time 1 1 1 1 1 1 1 1 1	Sample Custody must be documented below each time samples obsession, including courier delivery. A A C C C C C C C C	5 Day RUSH (HIGH PRIORITY)		Freshw		S S	attached requirem	for detect	ion limits	and method	D								
4/4/18 1 O W 1 O M <t< td=""><td>44/18 1704 Received By: One Time: On</td><td></td><td>2:00</td><td>Date Time</td><td>so change pos</td><td>sesion, includ</td><td>ng courier d</td><td></td><td>9</td><td>Z +</td><td>M</td><td></td><td></td><td>Date Tim</td><td>7</td><td>×</td><td></td><td></td><td></td></t<>	44/18 1704 Received By: One Time: On		2:00	Date Time	so change pos	sesion, includ	ng courier d		9	Z +	M			Date Tim	7	×			
	3.0	81/h/h	0	Received 3	By:			2 Date	Thue:	5	a la	0	Pre	serve where a	٥.	9 0	SI S		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Eric D. Simpson Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: Colbea - Westwood 394 - RGP (N/A)

ESS Laboratory Work Order Number: 1804100

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 2:14 pm, Apr 16, 2018

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

SAMPLE RECEIPT

The following samples were received on April 04, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 1804100-01

Sample Name RGP Well MW-13

Matrix Ground Water **Analysis** 1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608, 625 SIM, 8270D SIM, ASTM

D3695

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

PROJECT NARRATIVE

524.2 Volatile Organic Compounds

CD80625-BS1 Blank Spike recovery is above upper control limit (B+).

Tertiary-butyl Alcohol (131% @ 70-130%)

625(SIM) Semi-Volatile Organic Compounds

1804100-01 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (118% @ 15-110%)

CD80407-BS1 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (128% @ 15-110%)

CD80407-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Acenaphthene (23% @ 20%), Acenaphthylene (24% @ 20%), Fluorene (22% @ 20%), Naphthalene (26%

(a, 20%)

CD80407-BSD1 Surrogate recovery(ies) above upper control limit (S+).

2,4,6-Tribromophenol (133% @ 15-110%)

Classical Chemistry

1804100-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

6011 - LDD/DDC1/1C1

8015C - GRO/DRO 8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

<u>Analyte</u>	Results (MRL)	MDL I	Method	<u>Limit</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	F/V	Batch
Antimony	ND (5.0)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541
Arsenic	ND (0.5)		3113B		1	KJK	04/11/18 8:52	100	10	CD80541
Cadmium	1.78 (1.00)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541
Chromium	ND (2.0)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541
Copper	ND (2.0)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541
Iron	2040 (10.0)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541
Lead	ND (2.0)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541
Mercury	ND (0.20)		245.1		1	MJV	04/06/18 17:12	20	40	CD80546
Nickel	ND (5.0)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541
Selenium	ND (1.0)		3113B		1	KJK	04/11/18 19:11	100	10	CD80541
Silver	ND (1.0)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541
Zinc	30.5 (5.0)		200.7		1	KJK	04/06/18 16:20	100	10	CD80541

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (5.0)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Arsenic	0.5 (0.5)	3113B		1	KJK	04/11/18 9:15	100	10	CD80541
Beryllium	ND (0.100)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Cadmium	2.03 (1.00)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Chromium	ND (2.0)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Chromium III	ND (10.0)	200.7		1	CCP	04/06/18 15:56	1	1	[CALC]
Copper	2.9 (2.0)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Hardness	82000 (82.4)	200.7		1	KJK	04/06/18 15:56	1	1	[CALC]
Iron	2670 (10.0)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Lead	ND (2.0)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Mercury	ND (0.200)	245.1		1	MJV	04/06/18 17:05	20	40	CD80546
Nickel	ND (5.0)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Selenium	ND (1.0)	3113B		1	KJK	04/11/18 19:17	100	10	CD80541
Silver	ND (0.5)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Thallium	ND (10.0)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541
Zinc	32.5 (5.0)	200.7		1	KJK	04/06/18 15:56	100	10	CD80541

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
1,1,2-Trichloroethane	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
1,1-Dichloroethane	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
1,1-Dichloroethene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
1,2-Dichlorobenzene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
1,2-Dichloroethane	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
1,3-Dichlorobenzene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
1,4-Dichlorobenzene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Acetone	ND (5.0)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Benzene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Carbon Tetrachloride	ND (0.3)		524.2		1	04/06/18 17:00	C8D0104	CD80625
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Ethylbenzene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Methylene Chloride	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Naphthalene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Tetrachloroethene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Toluene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Trichloroethene	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Vinyl Chloride	ND (0.2)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Xylene O	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625
Xylene P,M	ND (0.5)		524.2		1	04/06/18 17:00	C8D0104	CD80625

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 103 % 80-1

 Surrogate: 1,2-Dichlorobenzene-d4
 103 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 102 %
 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A Initial Volume: 1000 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 4/5/18 8:56

608 Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.10)		608		1	04/05/18 12:14		CD80405
Aroclor 1221	ND (0.10)		608		1	04/05/18 12:14		CD80405
Aroclor 1232	ND (0.10)		608		1	04/05/18 12:14		CD80405
Aroclor 1242	ND (0.10)		608		1	04/05/18 12:14		CD80405
Aroclor 1248	ND (0.10)		608		1	04/05/18 12:14		CD80405
Aroclor 1254	ND (0.10)		608		1	04/05/18 12:14		CD80405
Aroclor 1260	ND (0.10)		608		1	04/05/18 12:14		CD80405
Aroclor 1262	ND (0.10)		608		1	04/05/18 12:14		CD80405
Aroclor 1268	ND (0.10)		608		1	04/05/18 12:14		CD80405
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		84 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		85 %		30-150				
Surrogate: Tetrachloro-m-xvlene		02.04		20 150				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A Initial Volume: 1040 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 4/5/18 10:22

625(SIM) Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Acenaphthylene	ND (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Anthracene	ND (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Benzo(a)anthracene	0.18 (0.05)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Benzo(a)pyrene	0.42 (0.05)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Benzo(b)fluoranthene	1.05 (0.05)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Benzo(g,h,i)perylene	0.78 (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Benzo(k)fluoranthene	0.30 (0.05)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
bis(2-Ethylhexyl)phthalate	ND (1.92)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Butylbenzylphthalate	ND (2.40)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Chrysene	0.55 (0.05)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Dibenzo(a,h)Anthracene	0.12 (0.05)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Diethylphthalate	ND (2.40)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Dimethylphthalate	ND (2.40)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Di-n-butylphthalate	ND (2.40)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Di-n-octylphthalate	ND (2.40)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Fluoranthene	0.79 (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Fluorene	ND (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Indeno(1,2,3-cd)Pyrene	0.77 (0.05)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Naphthalene	ND (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Pentachlorophenol	ND (0.87)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Phenanthrene	0.19 (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
Pyrene	0.58 (0.19)		625 SIM		1	04/06/18 23:26	C8D0112	CD80407
-		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		<i>58</i> %		30-130				

Surrogate: 1,2-Dichlorobenzene-d4	58 %		30-130
Surrogate: 2,4,6-Tribromophenol	118 %	<i>S</i> +	15-110
Surrogate: 2-Fluorobiphenyl	71 %		30-130
Surrogate: Nitrobenzene-d5	91 %		30-130
Surrogate: p-Terphenyl-d14	88 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 4/9/18 19:40

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 04/10/18 14:43	Sequence C8D0158	Batch CD80925
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		11 04		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.16 (0.10)	MDL Method Lim 350.1	<u>it</u> <u>DF</u>	Analyst Analyzed EEM 04/06/18 12:14		Batch CD80508
Chloride	250 (50.0)	300.0	100	EEM 04/09/18 19:10	6 mg/L	CD80940
Hexavalent Chromium	ND (10.0)	3500Cr B-2009	1	CCP 04/04/18 19:50	ug/L	CD80427
Phenols	ND (100)	420.1	1	JLK 04/09/18 17:33	3 ug/L	CD80936
Total Cyanide (LL)	ND (5.00)	4500 CN CE	1	EEM 04/06/18 12:00	ug/L	CD80603
Total Petroleum Hydrocarbon	ND (5)	1664A	1	LAB 04/10/18 16:28	3 mg/L	CD80907
Total Residual Chlorine	ND (20.0)	4500Cl D	1	JLK 04/04/18 21:4	7 ug/L	CD80442
Total Suspended Solids	10 (5)	2540D	1	EEM 04/05/18 13:40) mg/L	CD80415

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 4/9/18 9:20

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u> 1	Analyzed 04/09/18 10:23	<u>Sequence</u>	Batch CD80820
	%,	Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		110 %		30-150				
Surrogate: Pentachloroethane [2C]		123 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Client Sample ID: RGP Well MW-13

Date Sampled: 04/04/18 11:35

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1804100 ESS Laboratory Sample ID: 1804100-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 4/9/18 9:33

Alcohol Scan by GC/FID

Results (MRL) **MDL Analyte** Method **Limit** DF Analyst Analyzed **Sequence Batch** CD80911 ASTM D3695 ZLC 04/09/18 11:59 Ethanol ND (10)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1804100

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
			Dissolved M	etals						
Batch CD80541 - 3005A/200.7										
Blank										
Antimony	ND	5.0	ug/L							
Arsenic	ND	0.5	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	2.0	ug/L							
Copper	ND	2.0	ug/L							
ron	12.6	10.0	ug/L							
ead	ND	2.0	ug/L							
lickel	ND	5.0	ug/L							
Selenium	ND	1.0	ug/L							
Silver	ND	1.0	ug/L							
Zinc	ND	5.0	ug/L							
LCS										
Antimony	46.6	5.0	ug/L	50.00		93	85-115			
Arsenic	54.8	12.5	ug/L	50.00		110	85-115			
Cadmium	23.6	1.00	ug/L	25.00		94	85-115			
Chromium	48.1	2.0	ug/L	50.00		96	85-115			
Copper	51.6	2.0	ug/L	50.00		103	85-115			
ron	240	10.0	ug/L	250.0		96	85-115			
.ead	49.1	2.0	ug/L	50.00		98	80-120			
lickel	47.0	5.0	ug/L	50.00		94	85-115			
elenium	98.8	25.0	ug/L	100.0		99	85-115			
ilver	25.2	1.0	ug/L	25.00		101	85-115			
linc	48.0	5.0	ug/L	50.00		96	85-115			
	10.0									
.CS Dup	22.1	1.00		25.00			05.115		20	
Cadmium	23.1	1.00	ug/L	25.00		93	85-115	2	20	
Blank										
Mercury	ND	0.20	ug/L							
·	110	-120	-31 -							
LCS	F 70	0.20	,/I	6.000		05	OF 11F			
Mercury	5.70	0.20	ug/L	6.000		95	85-115			
LCS Dup										
Mercury	5.64	0.20	ug/L	6.000		94	85-115	1	20	
			Total Meta	als						
Batch CD80427 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS Chromium III	ND		ua/I							
	NU		ug/L							
.CS Dup										
Chromium III	ND		ug/L							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

ESS Laboratory Work Order: 1804100

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

T . 1 . 1	N 4 - 1 -	
Total	Meta	IS

Batch CD80541 - 3005A/200.7									
Blank									
Antimony	ND	5.0	ug/L						
Arsenic	ND	0.5	ug/L						
Beryllium	ND	0.100	ug/L						
Cadmium	ND	1.00	ug/L						
Chromium	ND	2.0	ug/L						
Chromium III	ND	2.00	ug/L						
Copper	ND	2.0	ug/L						
Hardness	ND	82.4	ug/L						
ron	12.6	10.0	ug/L						
.ead	ND	2.0	ug/L						
lickel	ND	5.0	ug/L						
Selenium	ND	1.0	ug/L						
iilver	ND	0.5	ug/L						
⁻ hallium	ND	10.0	ug/L						
Zinc	ND	5.0	ug/L						
.cs			<u></u>						
ntimony	46.6	5.0	ug/L	50.00	93	85-115			
rsenic	54.8	12.5	ug/L	50.00	110	85-115			
eryllium	4.80	0.100	ug/L	5.000	96	85-115			
admium	23.6	1.00	ug/L	25.00	94	85-115			
Chromium	48.1	2.0	ug/L	50.00	96	85-115			
Chromium III	48.1	2.00	ug/L	50.00	30	05 115			
Copper	51.6	2.0	ug/L	50.00	103	85-115			
Hardness	3230	82.4	ug/L	50.00	100	05 115			
ron	240	10.0	ug/L	250.0	96	85-115			
ead	49.1	2.0	ug/L	50.00	98	85-115			
lickel	47.0	5.0	ug/L	50.00	94	85-115			
Gelenium	98.8	25.0	ug/L	100.0	99	85-115			
ilver	25.2	0.5							
Thallium	49.5	10.0	ug/L ug/L	25.00 50.00	101 99	85-115 85-115			
Zinc	49.5 48.0	5.0		50.00	99	85-115			
		J.U	ug/L	30.00		03-113			
.CS Dup		F ^	#	F0.00		05 115		20	
Antimony	46.0	5.0	ug/L	50.00	92	85-115	1	20	
Seryllium Serteriore	4.70	0.100	ug/L	5.000	94	85-115	2	20	
Cadmium	23.1	1.00	ug/L	25.00	93	85-115	2	20	
Chromium	47.3	2.0	ug/L	50.00	95	85-115	2	20	
Chromium III	47.3	2.00	ug/L	F0.00	100	05.445	2	20	
Copper	50.0	2.0	ug/L	50.00	100	85-115	3	20	
lardness	3200	82.4	ug/L	250 -		05		25	
ron	239	10.0	ug/L	250.0	96	85-115	0.4	20	
Lead	48.0	2.0	ug/L	50.00	96	85-115	2	20	
Nickel	46.2	5.0	ug/L	50.00	92	85-115	2	20	
Silver Thallium	24.7 49.2	0.5	ug/L ug/L	25.00 50.00	99 98	85-115 85-115	2 0.7		20 20

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

ESS Laboratory Work Order: 1804100 **Quality Control Data**

		Quai	ity Collti	OI Du	· Cu					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	resure		Total Metal		resuit	701120		5		- Quanton
atch CD80541 - 3005A/200.7	46.0			F0.00			05.115		20	
inc	46.9	5.0	ug/L	50.00		94	85-115	2	20	
satch CD80546 - 245.1/7470A										
lank										
lercury	ND	0.200	ug/L							
CS										
1ercury	5.70	0.200	ug/L	6.000		95	85-115			
CS Dup										
lercury	5.64	0.200	ug/L	6.000		94	85-115	1	20	
icicaly	3.01					51	03 113	-	20	
		524.2 V	olatile Organic	Compo	ınds					
atch CD80625 - 524.2										
lank										
,1,1-Trichloroethane	ND	0.5	ug/L							
1,2-Trichloroethane	ND	0.5	ug/L							
1-Dichloroethane	ND	0.5	ug/L							
1-Dichloroethene	ND	0.5	ug/L							
,2-Dichlorobenzene	ND	0.5	ug/L							
,2-Dichloroethane	ND	0.5	ug/L							
,3-Dichlorobenzene	ND	0.5	ug/L							
,4-Dichlorobenzene	ND	0.5	ug/L							
cetone	ND	5.0	ug/L							
enzene	ND	0.5	ug/L							
arbon Tetrachloride	ND	0.3	ug/L							
is-1,2-Dichloroethene	ND	0.5	ug/L							
thylbenzene	ND	0.5	ug/L							
lethyl tert-Butyl Ether	ND	0.5	ug/L							
lethylene Chloride	ND	0.5	ug/L							
aphthalene	ND	0.5	ug/L							
ertiary-amyl methyl ether	ND	1.0	ug/L							
ertiary-butyl Alcohol	ND	25.0	ug/L							
etrachloroethene	ND	0.5	ug/L							
oluene	ND	0.5	ug/L							
richloroethene	ND	0.5	ug/L							
inyl Chloride	ND	0.2	ug/L							
ylene O	ND	0.5	ug/L							
ylene P,M	ND	0.5	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	4.85		ug/L	5.000		97	80-120			
urrogate: 4-Bromofluorobenzene	5.04		ug/L	5.000		101	80-120			
cs										
,1,1-Trichloroethane	11.2		ug/L	10.00		112	70-130			
,1,2-Trichloroethane	11.0		ug/L	10.00		110	70-130			
,1-Dichloroethane	10.9		ug/L	10.00		109	70-130			
,1-Dichloroethene	11.6		ug/L	10.00		116	70-130			
2-Dichlorobenzene	11.0		ug/L	10.00		110	70-130			
	nue, Cranston, RI 029		Tel: 401-461-718		x: 401-461		http://www			

Dependability

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
, mary cc	Nesuit					/OICEC	Little	Ni D	Little	Quanne
		524.2 Vol	atile Organi	c Compol	unas					
Batch CD80625 - 524.2										
1,2-Dichloroethane	10.8		ug/L	10.00		108	70-130			
1,3-Dichlorobenzene	11.1		ug/L	10.00		111	70-130			
1,4-Dichlorobenzene	11.2		ug/L	10.00		112	70-130			
Acetone	53.4		ug/L	50.00		107	70-130			
Benzene	11.1		ug/L	10.00		111	70-130			
Carbon Tetrachloride	11.5		ug/L	10.00		115	70-130			
is-1,2-Dichloroethene	11.0		ug/L	10.00		110	70-130			
Ethylbenzene	10.8		ug/L	10.00		108	70-130			
Nethyl tert-Butyl Ether	10.7		ug/L	10.00		107	70-130			
1ethylene Chloride	10.6		ug/L	10.00		106	70-130			
Naphthalene	10.7		ug/L	10.00		107	70-130			
ertiary-amyl methyl ether	10.5		ug/L	10.00		105	70-130			
Tertiary-butyl Alcohol	65.5		ug/L	50.00		131	70-130			B+
etrachloroethene	10.5		ug/L	10.00		105	70-130			
oluene	10.8		ug/L	10.00		108	70-130			
richloroethene	11.1		ug/L	10.00		111	70-130			
inyl Chloride	10.8		ug/L	10.00		108	70-130			
ylene O	10.9		ug/L	10.00		109	70-130			
ylene P,M	21.4		ug/L	20.00		107	70-130			
urrogate: 1,2-Dichlorobenzene-d4	4.93		ug/L	5.000		99	80-120			
Surrogate: 4-Bromofluorobenzene	4.79		ug/L	5.000		96	80-120			
CS Dup										
,1,1-Trichloroethane	10.4		ug/L	10.00		104	70-130	7	20	
,1,2-Trichloroethane	10.4		ug/L	10.00		106	70-130	3	20	
,1-Dichloroethane	10.2		ug/L ug/L	10.00		100	70-130	6	20	
,1-Dichloroethene	9.9		ug/L ug/L	10.00		99	70-130	16	20	
,2-Dichlorobenzene	10.5		ug/L ug/L	10.00		105	70-130	4	20	
,2-Dichloroethane	10.5		ug/L ug/L	10.00		105	70-130	3	20	
	10.6			10.00		105	70-130	5	20	
,3-Dichlorobenzene	10.6		ug/L			106		5	20	
,4-Dichlorobenzene			ug/L	10.00			70-130 70-130			
cetone	52.9		ug/L	50.00		106	70-130 70-130	1	20	
Senzene	10.4		ug/L	10.00		104	70-130	6	20	
arbon Tetrachloride	10.6		ug/L	10.00		106	70-130	8	20	
is-1,2-Dichloroethene	10.4		ug/L	10.00		104	70-130	6	20	
thylbenzene	10.4		ug/L	10.00		104	70-130	4	20	
lethyl tert-Butyl Ether	10.6		ug/L	10.00		106	70-130	1	20	
lethylene Chloride	9.7		ug/L	10.00		97	70-130	8	20	
aphthalene	10.8		ug/L	10.00		108	70-130	0.5	20	
ertiary-amyl methyl ether	10.2		ug/L	10.00		102	70-130	2	20	
ertiary-butyl Alcohol	54.3		ug/L	50.00		109	70-130	19	25	
Fetrachloroethene	9.9		ug/L	10.00		99	70-130	6	20	
oluene	10.2		ug/L	10.00		102	70-130	6	20	
richloroethene	10.5		ug/L	10.00		105	70-130	6	20	
nyl Chloride	10.1		ug/L	10.00		101	70-130	7	20	
Vinyl Chloride Xylene O										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

ESS Laboratory Work Order: 1804100 Ouality Control Data

		~	ty Cont							
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		524.2 Vol	atile Organi	c Compou	unds					
Batch CD80625 - 524.2										
Kylene P,M	20.2		ug/L	20.00		101	70-130	6	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.04		ug/L	5.000		101	80-120			
Surrogate: 4-Bromofluorobenzene	4.97		ug/L	5.000		99	80-120			
		608 Polych	lorinated B	iphenyls ((PCB)					
Batch CD80405 - 3510C										
Blank										
Aroclor 1016	ND	0.10	ug/L							
Aroclor 1016 [2C]	ND	0.10	ug/L							
Aroclor 1221	ND	0.10	ug/L							
Aroclor 1221 [2C]	ND	0.10	ug/L							
Aroclor 1232	ND	0.10	ug/L							
Aroclor 1232 [2C]	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1242 [2C]	ND	0.10	ug/L							
Aroclor 1242 [26]	ND	0.10								
	ND ND	0.10	ug/L							
Aroclor 1248 [2C]			ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0458		ug/L	0.05000		92	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0457		ug/L	0.05000		91	30-150			
Surrogate: Tetrachloro-m-xylene	0.0261		ug/L	0.05000		<i>52</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0281		ug/L	0.05000		56	30-150			
LCS										
Aroclor 1016	0.72	0.10	ug/L	1.000		72	40-140			
Aroclor 1016 [2C]	0.74	0.10	ug/L	1.000		74	40-140			
Aroclor 1260	0.78	0.10	ug/L	1.000		78	40-140			
Aroclor 1260 [2C]	0.81	0.10	ug/L	1.000		81	40-140			
Surrogate: Decachlorobiphenyl	0.0452		ug/L	0.05000		90	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0447		ug/L	0.05000		89	30-150			
Surrogate: Tetrachloro-m-xylene	0.0298		ug/L	0.05000		60	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0294		ug/L	0.05000		59	30-150			
LCS Dup										
Aroclor 1016	0.83	0.10	ug/L	1.000		83	40-140	15	20	
Aroclor 1016 [2C]	0.86	0.10	ug/L	1.000		86	40-140	15	20	
Aroclor 1260	0.88	0.10	ug/L	1.000		88	40-140	12	20	
Aroclor 1260 [2C]	0.90	0.10	ug/L	1.000		90	40-140	11	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
,··	, coodic	608 Polych				.3.20				- Ludinici
Batch CD80405 - 3510C										
	0.0432		ug/L	0.05000		86	30-150			
Surrogate: Decachlorobiphenyl	0.0427		ug/L	0.05000		85	30-150 30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0300		ug/L ug/L	0.05000		60	30-150 30-150			
Surrogate: Tetrachloro-m-xylene	0.0291		ug/L ug/L	0.05000		58	30-150 30-150			
Surrogate: Tetrachloro-m-xylene [2C]		.5(SIM) Semi			mpounds	30	50 150			
		.5(5111) 561111	Tolucile 0	. garne cor	npounus					
Batch CD80407 - 3510C										
Blank										
Acenaphthene	ND	0.20	ug/L							
Acenaphthylene	ND	0.20	ug/L							
Anthracene	ND	0.20	ug/L							
Benzo(a)anthracene	ND	0.05	ug/L							
Benzo(a)pyrene	ND	0.05	ug/L							
Benzo(b)fluoranthene	ND	0.05	ug/L							
Benzo(g,h,i)perylene	ND	0.20	ug/L							
Benzo(k)fluoranthene	ND	0.05	ug/L							
pis(2-Ethylhexyl)phthalate	ND	2.00	ug/L							
Butylbenzylphthalate	ND	2.50	ug/L							
Chrysene	ND	0.05	ug/L							
Dibenzo(a,h)Anthracene	ND	0.05	ug/L							
Diethylphthalate	ND	2.50	ug/L							
Dimethylphthalate	ND	2.50	ug/L							
Di-n-butylphthalate	ND	2.50	ug/L							
Di-n-octylphthalate	ND	2.50	ug/L							
Fluoranthene	ND	0.20	ug/L							
Fluorene	ND	0.20	ug/L							
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L							
Naphthalene	ND	0.20	ug/L							
Pentachlorophenol	ND	0.90	ug/L							
Phenanthrene	ND	0.20	ug/L							
Pyrene	ND	0.20	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	1.56		ug/L	2.500		62	30-130			
Surrogate: 2,4,6-Tribromophenol	4.07		ug/L	3.750		108	15-110			
Surrogate: 2,Fluorobiphenyl	1.72		ug/L	2.500		69	30-130			
Surrogate: Nitrobenzene-d5	2.10		ug/L	2.500		84	30-130			
Surrogate: p-Terphenyl-d14	2.07		ug/L	2.500		83	30-130			
LCS										
Acenaphthene	2.34	0.20	ug/L	4.000		59	40-140			
Acenaphthylene	2.57	0.20	ug/L	4.000		64	40-140			
Anthracene	2.85	0.20	ug/L	4.000		71	40-140			
Benzo(a)anthracene	2.89	0.05	ug/L	4.000		72	40-140			
Benzo(a)pyrene	3.16	0.05	ug/L	4.000		79	40-140			
Benzo(b)fluoranthene	3.25	0.05	ug/L	4.000		81	40-140			
	5.25	55	3/							

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1804100

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

				Spike	Source		%REC		RPD		1
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier	

	62	25(SIM) Semi	-Volatile O	ganic Compou	nds				
satch CD80407 - 3510C									
enzo(k)fluoranthene	2.83	0.05	ug/L	4.000	71	40-140			
is(2-Ethylhexyl)phthalate	3.50	2.00	ug/L	4.000	88	40-140			
utylbenzylphthalate	3.88	2.50	ug/L	4.000	97	40-140			
nrysene	2.98	0.05	ug/L	4.000	75	40-140			
ibenzo(a,h)Anthracene	3.32	0.05	ug/L	4.000	83	40-140			
iethylphthalate	3.32	2.50	ug/L	4.000	83	40-140			
imethylphthalate	3.04	2.50	ug/L	4.000	76	40-140			
-n-butylphthalate	3.70	2.50	ug/L	4.000	92	40-140			
-n-octylphthalate	3.70	2.50	ug/L	4.000	93	40-140			
uoranthene	3.27	0.20	ug/L	4.000	82	40-140			
iorene	2.76	0.20	ug/L	4.000	69	40-140			
deno(1,2,3-cd)Pyrene	3.74	0.05	ug/L	4.000	94	40-140			
aphthalene	1.96	0.20	ug/L	4.000	49	40-140			
entachlorophenol	3.48	0.90	ug/L	4.000	87	30-130			
enanthrene	2.93	0.20	ug/L	4.000	73	40-140			
rene	3.27	0.20	ug/L	4.000	82	40-140			
urrogate: 1,2-Dichlorobenzene-d4	1.33		ug/L	2.500	53	30-130			
urrogate: 2,4,6-Tribromophenol	4.81		ug/L	3.750	128	15-110			S+
ırrogate: 2-Fluorobiphenyl	1.62		ug/L	2.500	65	30-130			
urrogate: Nitrobenzene-d5	1.87		ug/L	2.500	<i>75</i>	30-130			
urrogate: p-Terphenyl-d14	2.33		ug/L	2.500	93	30-130			
CS Dup									
enaphthene	2.96	0.20	ug/L	4.000	74	40-140	23	20	D+
enaphthylene	3.26	0.20	ug/L	4.000	82	40-140	24	20	D+
thracene	3.32	0.20	ug/L	4.000	83	40-140	15	20	
enzo(a)anthracene	3.15	0.05	ug/L	4.000	79	40-140	9	20	
enzo(a)pyrene	3.55	0.05	ug/L	4.000	89	40-140	12	20	
enzo(b)fluoranthene	3.63	0.05	ug/L	4.000	91	40-140	11	20	
nzo(g,h,i)perylene	4.25	0.20	ug/L	4.000	106	40-140	14	20	
enzo(k)fluoranthene	3.26	0.05	ug/L	4.000	82	40-140	14	20	
s(2-Ethylhexyl)phthalate	3.86	2.00	ug/L	4.000	96	40-140	10	20	
ıtylbenzylphthalate	4.31	2.50	ug/L	4.000	108	40-140	11	20	
ırysene	3.25	0.05	ug/L	4.000	81	40-140	9	20	
benzo(a,h)Anthracene	3.80	0.05	ug/L	4.000	95	40-140	13	20	
ethylphthalate	3.85	2.50	ug/L	4.000	96	40-140	15	20	
methylphthalate	3.65	2.50	ug/L	4.000	91	40-140	18	20	
-n-butylphthalate	4.15	2.50	ug/L	4.000	104	40-140	11	20	
n-octylphthalate	4.24	2.50	ug/L	4.000	106	40-140	14	20	
oranthene	3.67	0.20	ug/L	4.000	92	40-140	12	20	
orene	3.45	0.20	ug/L	4.000	86	40-140	22	20	D+
deno(1,2,3-cd)Pyrene	4.25	0.05	ug/L	4.000	106	40-140	13	20	
phthalene	2.55	0.20	ug/L	4.000	64	40-140	26	20	D+
ntachlorophenol	4.10	0.90	ug/L	4.000	102	30-130	16	20	
enanthrene	3.41	0.20	ug/L	4.000	85	40-140	15	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

				Spike	Source	a. =	%REC	B.F	RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
	62	25(SIM) Sem	i-Volatile O	rganic Coi	mpounds					
Satch CD80407 - 3510C										
Surrogate: 1,2-Dichlorobenzene-d4	1.26		ug/L	2.500		50	30-130			
Surrogate: 2,4,6-Tribromophenol	4.99		ug/L	3.750		133	15-110			S+
Surrogate: 2-Fluorobiphenyl	1.71		ug/L	2.500		68	30-130			
Surrogate: Nitrobenzene-d5	2.27		ug/L	2.500		91	30-130			
Surrogate: p-Terphenyl-d14	2.33		ug/L	2.500		93	30-130			
	8270D(SIM) S	Semi-Volatile	Organic Co	mpounds	w/ Isoto	pe Dilutio	on			
Batch CD80925 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	ND		ug/L	5.000		38	15-115			
LCS										
1,4-Dioxane	11.0	0.250	ug/L	10.00		110	40-140			
Surrogate: 1,4-Dioxane-d8	1.65		ug/L	5.000		33	<i>15-115</i>			
LCS Dup										
1,4-Dioxane	11.1	0.250	ug/L	10.00		111	40-140	1	20	
Surrogate: 1,4-Dioxane-d8	1.76		ug/L	5.000		35	15-115			
		Cl	assical Che	mistry						
Batch CD80415 - General Preparation										
Blank										
Fotal Suspended Solids	ND	5	mg/L							
LCS			<u> </u>							
Total Suspended Solids	34		mg/L	34.10		100	80-120			
	JT		mg/L	34.10		100	00-120			
Batch CD80427 - General Preparation Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.491		mg/L	0.4998		98	90-110			
LCS Dup			<u>.</u>							
Hexavalent Chromium	0.516		mg/L	0.4998		103	90-110	5	20	
Batch CD80442 - General Preparation			<u> </u>							
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	0.96		mg/L	0.9790		98	85-115			
Batch CD80508 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1804100

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		Cl	assical Che	mistry						
Batch CD80508 - NH4 Prep										
Ammonia as N	0.10	0.10	mg/L	0.09994		99	80-120			
LCS										
Ammonia as N	0.99	0.10	mg/L	0.9994		99	80-120			
Batch CD80603 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	20.2	5.00	ug/L	20.06		101	90-110			
LCS										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide (LL)	148	5.00	ug/L	150.4		98	90-110	0.7	20	
Batch CD80907 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	19	5	mg/L	19.38		98	66-114			
Batch CD80936 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	98	100	ug/L	100.0		98	80-120			
LCS										
Phenols	1010	100	ug/L	1000		101	80-120			
Batch CD80940 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.5		mg/L	2.500		99	90-110			
	504.1 1,2	2-Dibromoeth	nane / 1,2-	Dibromo-3	-chlorop	ropane				
Batch CD80820 - 504/8011										
•										
Blank 1,2-Dibromoethane	ND	0.015	ug/L							
1,2-Dibromoethane [2C]	ND ND	0.015	ug/L ug/L							
-,:- 5566.60.0 [2-6]	NU	5.515	<i>α</i> 9/ Ε							
Surrogate: Pentachloroethane	0.230		ug/L	0.2000		115	30-150			
Surrogate: Pentachloroethane [2C]	0.229		ug/L	0.2000		114	30-150			
LCS										
1,2-Dibromoethane	0.088	0.015	ug/L	0.08000		110	70-130			
1,2-Dibromoethane [2C]	0.079	0.015	ug/L	0.08000		99	70-130			

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
	504.1 1,2	-Dibromoeth	nane / 1,2-I	Dibromo-3	3-chloropi	ropane				
Batch CD80820 - 504/8011										
Surrogate: Pentachloroethane	0.0913		ug/L	0.2000		46	30-150			
Surrogate: Pentachloroethane [2C]	0.0915		ug/L	0.2000		46	30-150			
LCS										
1,2-Dibromoethane	0.200	0.015	ug/L	0.2000		100	70-130			
1,2-Dibromoethane [2C]	0.206	0.015	ug/L	0.2000		103	70-130			
Surrogate: Pentachloroethane	0.226		ug/L	0.2000		113	30-150			
Surrogate: Pentachloroethane [2C]	0.224		ug/L	0.2000		112	30-150			
		Alcol	nol Scan by	GC/FID						
Batch CD80911 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS										
Ethanol	1090	10	mg/L	1007		109	60-140			
LCS Dup										
Ethanol	1120	10	mg/L	1007		111	60-140	2	30	

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

Notes and Definitions

	Notes and Definitions
U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual
	Chlorine is fifteen minutes.
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
B+	Blank Spike recovery is above upper control limit (B+).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation Detection Limit
DL	
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.

Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Colbea - Westwood 394 - RGP ESS Laboratory Work Order: 1804100

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

ESS Laboratory	X		CHAI	N OF C	AIN OF CUSTODY			ESS	ESS LAB PROJECT ID 1804/100	ROJE 1804	A TOO	- 0				
Division of Thielsch Engineering, Inc.	gineering, Inc.	Turn Time	X	Standard Rush	sh Approved By:	ed By:		Rep	Reporting Limits	imits -		1			[
185 Frances Avenue, Cranston, RI 02910-2211	n, RI 02910-2211	State where samples		were collected: (MA)NH	IA NH			Disch	Discharge into: Fresh Water	o: Fres	h Wate	ŹĮ.	Salt	Salt Water		_
lei. (401) 401-7181 rax (401) 401-4460 www.esslaboratory.com	(401) 401-4400	Is this project for:	ect for:	RGP		Electonic Deliverable Format: Excel A	Deliverable Excel Ac	le Yes_ AccessP	PDF	No Other	15					
Project Manager: JASS	TASS STABBLE	RIE	PI	Project #						(1)	-			MIS		
Address: Calver DESTROSS			Ē	Project Name:		sisylan	- 11		*0			PSG IsiJ go	MIS-072	-628 tsiJ go	# #4014	# Juəm
VESTUSO M			ď	PO #				0.006 ət	200-CF 240D*	.036 sind	1:3500	1 420.1	oxsue 8			IIIo 2
ESS Lab Date C	Collection Grab -G Time Composite-C	Matrix		Sample Identification	cation	# of Containers	м чэя Нагdr) IstoT	_	ommA	_	_		EDB	PCB 6	
5/h		S	RGP W	WELL MY	1.13	22	XXX	X X	X	X	X	×	Q	×	X	1,2
-																
												-		-		
														-		
														+		
	1															Ī
Descentation Code: 1-NP 2-HCl 3-H28O4 4-HNO3 5-NaOH 6-McOH 7-Asorbic Acid. 8-ZnAct. 9	3-H2SO4 4-HNO3	- NaOH 6-MeO	H. 7-Asorbic Ac	id. 8-ZnAct. 9-			4 4	1 8	3 1	1 3	-	3 2	~	2 1	-	T
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	AG-Amber Glass S-S	sterile V-VOA					РРV	Ь	AG P	а	۵	AG V	AG	V AG	AG AG	
Matrix: S-Soil SD-Solid DySludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil	dge WW-Wastewater	GW-Groundwate	er SW-Surface V	Vater DW-Drink	ing Water O-Oil W-Wi	W-Wipes F-Filter									١	
Cooler Present	es No	Sampled by : CAR	WIGASON	Marsh	4						3	1				_
Seals Intack Res No NA:	No NA:		s: 1) RGP Me ters in BOLD	Comments: 1) RGP Metals include Sb, As, Cd 2) Parameters in BOLD have Short hold-time	Comments: 1) RGP Metals include Sb, As, Cd, Cu, Fe, Pb, Ni, Se, Ag and Zn by 2007/3113B and Hg by 243 PERMIT ATTACHED ULL EMMIC DELAMIT ATTACHED	b, Ni, Se, A; PERN	Se, Ag and Zn by 200.7/ PERMIT ATTACHED	200.7/3 CHED	113B an	H Bu	g by 24.	45.1 2000 1	2 -	KEBUIRMA	11. Ken	5
Relinguished by: (Signature)		Received by: (Signature)	Signature)	X , < 3.1	Reinquished by (Signature)		Y/Y/R 170	Time	N	K	T. Geeived	Received by: (Signature)		733		
Relinquished by. (Signature)	Date/Time	Received by: (Signature)	1	1	Relinquished by: (Signature)	0	Date/	le.		′	eceived	Received by (Signature)				
5			Please E-ma	il all changes	Please E-mail all changes to Chain of Custody in writin	dy in writin										

Please E-mail all changes to Chain of Custody in writing

Page ____ of ____ Page 26 of 27

		231 Elm Street, Blackstone, MA 01504	504	
00	CHAIN OF CUSTODY RECORD	ODY RECORD	Laboratory:	ESS
and the latest and th			Analytical Information	
Client 192 Solutions MA Address 231 Elm Street, Blackstone MA Contact Jason Sherbure 617-947-7702	one MA	MATRIX Wastewater		Lab to Invoice: Tg2 Solutions Lab Report to:
Project Name Colbea - Westwood 394 - RGP Address 394 Providence Highway, Westwood, MA Contact Jason Sherburne Location ID #	J. RGP Jy, Westwood, MA	2. Groundwater 3. Drinking Water 4. Soil 5. Surface Water 6. Other		Billing Reference:
Field ID / Point of Collection RGP Well 7th ~ (3)	Colection	N H CL N H C		Comments:
			Additional Information	information
X std. to Day Tumaround Information 1 10 bay RUSH (HIGH PRIORITY) 2 Day RUSH 2 10 bay RUSH	Approved By:	See attached for detection limits and method requirements. WILL BYALL REQUIRERER S	Auditorial in	TIOMBROOT
Sample Custor Relinquisydd y Sample? 2 2 2 Relindiahyd y Sample: 3	Sample Custody must be documented below each time samples charge possesion, including courser delives \(\frac{1}{2} \cdot \infty \) Dee Time: \frac{1}{2} \cdot \infty \) \frac{1}{2} \cdot \infty \infty \) \frac{1}{2} \cdot \infty	Durine delivery, Received By Received By Received By Received By Seal 9	Date Time: 4 4 18	1531 1733 3.8 ICE RC

ATTACHMENT D

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: April 15, 2018

Consultation Code: 05E1NE00-2018-SLI-1583

Event Code: 05E1NE00-2018-E-03610 Project Name: Shell-branded service station

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-1583

Event Code: 05E1NE00-2018-E-03610

Project Name: Shell-branded service station

Project Type: OIL OR GAS

Project Description: This facility has historically been an active gasoline station with

underground storage tanks (USTs) and dispenser islands. Plans to upgrade the facility, including the USTs and dispenser islands are anticipated under a National Pollutant Discharge Elimination System (NPDES). Therefore, a determination of endangered species act eligibility is

required.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.214235711658404N71.18167915548906W

Counties: Norfolk, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an
office of the National Oceanic and Atmospheric Administration within the Department of
Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.