

## NOTICE OF INTENT FOR

## MASSACHUSETTS REMEDIATION GENERAL PERMIT

SHELL-BRANDED GASOLINE STATION 237 Washington Street ATTLEBORO, MA

> Prepared for: COLBEA ENTERPRISES LLC 2050 PLAINFIELD PIKE CRANSTON, RI 02921

August 10, 2018

#### **TABLE OF CONTENTS**

| 1.0               | INTRODUCTION                                                          |
|-------------------|-----------------------------------------------------------------------|
| 2.0               | GENERAL FACILITY INFORMATION                                          |
| 2.1<br>2.2<br>2.3 | Facility Description                                                  |
| 3.0               | DISCHARGE INFORMATION                                                 |
| 3.1<br>3.2        | Receiving Water Information                                           |
| 4.0               | CONATAMINANT INFORMATION                                              |
| 5.0               | DILUTION FACTOR                                                       |
| 6.0               | DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)             |
| 7.0               | DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS |
| 8.0               | SUPPLEMENTAL INFORMATION                                              |
| 9.0               | REDEVELOPMENT CONSTRUCTION SCHEDULE                                   |

#### **FIGURES**

| Figure 1 | Site Locus Map                              |
|----------|---------------------------------------------|
| Figure 2 | Site Plan                                   |
| Figure 3 | Waterbody Assessment & TMDL Status          |
| Figure 4 | Areas of Environmental Concern              |
| Figure 5 | MassDEP Phase 1 Site Assessment Map         |
| Figure 6 | Groundwater Dewatering Installation Diagram |
| Figure 7 | Extended Area Map with MARCIS Inventory     |
|          |                                             |

#### **TABLES**

Table 1 Summary of Water Monitoring Data

#### **ATTACHMENTS**

| Attachment A | Notice of Intent                                             |  |  |  |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Attachment B | StreamStats 7Q10 Data & MassDEP Correspondence               |  |  |  |  |  |  |  |  |  |
| Attachment C | Laboratory Analtyical Reports                                |  |  |  |  |  |  |  |  |  |
| Attachment D | Fish and Wildlife Service - New England Servies Field Office |  |  |  |  |  |  |  |  |  |
|              | Correspondence                                               |  |  |  |  |  |  |  |  |  |

#### 1.0 INTRODUCTION

Tg2 Solutions, LLC (Tg2) prepared Notice of Intent (NOI) for a Massachusetts Remediation General Permit (RGP) for construction dewatering at the Shell-Branded gasoline station located at 237 Washington Street, Attleboro, Massachusetts on behalf of the site owner, Colbea Enterprises LLC (Colbea). This NOI is being submitted to the United State Environmental Protection Agency (USEPA) in accordance with the requirements of the Massachusetts General Permit No. MAG070000.

This NOI for a RGP is being submitted to account for site renovation activities being conducted at the facility. A portion of these activities include the dewatering of an excavation to allow for the removal and replacement of gasoline underground storage tanks (USTs). For the purpose of this NOI, the "facility" is defined as the area located within the property boundaries of 237 Washington Street, Attleboro, Massachusetts. A Site Locus Map is presented as **Figure 1**. A Site Plan is presented as **Figure 2**. A copy of the NOI is included as **Attachment A**.

#### 2.0 GENERAL FACILITY INFORMATION

General disposal site information for which this Phase I applies includes the following:

Property Owner/Facility Operator: Thomas Breckel

Operator Colbea Enterprises LLC

2050 Plainfield Pike Cranston, RI 02920 Tel: (401) 943-0005

Owner/Facility Operator Contact: Dennis Darveau, Director of Construction

<u>Ddarveau@seasoncornermarket.com</u>

Tel: (401) 490-2209

USGS Quadrangle: Attleboro, Massachusetts

Longitude, Latitude: 71° 21' 32.3994" W, 41° 55' 12.5472" N

(approximate)

Disposal Site Zoning: General Business

County: Bristol

#### 2.1 Facility Description

The facility is a Colbea-owned, Shell-branded gasoline station located on an approximately one-acre parcel at 237 Washington Street in Attleboro, Massachusetts. MassGIS Oliver listed the map parcel ID as 14\_73\_E, zoned general business with the surrounding area identified as mixed business and residential. A topographic map with the facility location, receiving water, and discharge point is provided in **Figure 1**. **Figure 2** provides a site plan of current developments.

#### 2.2 Sensitive Environmental Receptors

The nearest water body to the facility is an unnamed stream which flows into Lake Como located approximately 2,000 feet to the north of the facility. Lake Como is classified as an Impaired water body and Total Maximum Daily Load (TMDL) is required. A waterbody assessment and TMDL status relative to the facility location is provided in **Figure 3**. Groundwater does not intersect surface water or wetland areas within the boundaries of the facility.

There are no surface water impoundments, or drainage ditches within 500 feet of the facility. The site is not located within 500 feet of a potentially productive aquifer, public water supplies, zone II areas, interim wellhead protection areas, designated wetlands, zone A areas, areas of critical environmental concern, sole source aquifers, sole source aquifers, fish habitats, habitats of species of special concern, threatened or endangered concern, or protected open space. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.

#### 2.3 National Pollutant Discharge Elimination System (NPDES) Status

A NPDES permit has not been previously applied for or granted for this discharge. Site redevelopment construction activities have not yet begun at the facility; however, they are planned for late summer 2018. The facility is not covered by an individual NPDES permit and there are no pending applications on file for any other permit with US EPA for this facility. As defined by 40 CFR Section 122.2, a new discharger means any building, structure, facility, or installation:

- A) From which there is or may be a "discharge of pollutants;"
- B) That did not commence the "discharge of pollutants" at a particular "site" prior to August 13, 1979;
- C) Which is not a "new source;" and,
- D) Which has never received a finally effected NPDES permit for discharges at that "site."

Based on groundwater samples collected at the facility, this site is not considered a new discharger.

#### 3.0 DISCHARGE INFORMATION

This NOI for an RGP is being applied for groundwater discharge necessary during site redevelopment construction activities. These activities include the raze and rebuild of the facility building, and removal and replacement of the existing USTs and associated piping, and dispenser islands. The proposed discharge location for treated groundwater is a catch basin located adjacent to the site to the south off of Highland Avenue, which discharges to an outlet of Lake Como, as depicted on **Figure 2**. The latitude and longitude of the discharge and outfall points are:

#### Catch Basin Discharge Point:

Latitude: 41.919752 Longitude: -71.359245

#### Outfall (Lake Como) Point:

Latitude: 41.926192 Longitude: -71.354997

The dewatering and treatment system anticipated for this work includes a 20,000-gallon baffled setting fractionation tank, sediment bag filters, a greensand filter vessel for iron removal, and two activated carbon filter vessels for remaining contaminant removal. This system is designed to meet the required effluent limits for this permit. A diagram of the treatment system is provided on **Figure 6**.

Only one discharge point, described above, will be necessary for dewatering activities. The estimated maximum daily flow is 40 gallons per minute (gpm), with a design flow of 60 gpm. These estimations are expected to decrease once the excavation has been dewatered, and do not include surface run-off following precipitation events. The pH of onsite groundwater was measured at 7.15 (s.u.) and site activities are not anticipated to alter this pH. Discharge activities will only occur during site redevelopment, which is expected to occur between August and October 2018. The discharge point for these dewatering activities is a catch basin located immediate adjacent to the site to the south off of Highland Avenue. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the disposal site.

If needed, modifications to the system will be made. Modifications to the system will be submitted for approval via a Notice of Change (NOC).

#### 3.1 Receiving Water Information

The receiving water for the discharge of groundwater from the facility is a catch basin located adjacent to the site to the south. StreamStats 4.0 was consulted and it was determined that the closest water body with a 7Q10 is Lake Como. The 7Q10 for the Lake Como basin is 0.00452 cubic feet per second (cfs). The StreamStats Report is provided in **Attachment B**. Note, the nearest stream identified on StreamStats, did not have statistics for a 7Q10, therefore, the 7Q10 for the nearest waterbody with 7Q10 was selected, Lake Como. MassDEP was consulted to verify the 7Q10, and the outfall location appears to be at the outlet of Lake Como, which flows to an unnamed stream, eventually flowing to Sevenmile River. As documented in the MassDEP correspondence, also provided in Attachment B, a 7Q10 does not exist for the outfall location. Per the Waterbody Assessment and TMDL Status Map (**Figure 3**), Lake Como and Sevenmile River were assigned a TMDL status of 5 – Impaired – TMDL required.

#### 3.2 Receiving Water Classification

Based on the MassDEP Division of Water Pollution Control the discharge (outfall) point is a catch basin which drains to the outlet of Lake Como, which flows to an unnamed stream. The unnamed stream flows to another unnamed stream and then into the Sevenmile River. Lake Como is not classified; however, the Sevenmile River is classified as Class B:

http://www.mass.gov/eea/docs/dep/water/laws/i-thru-z/tblfig.pdf

#### 4.0 CONATAMINANT INFORMATION

On July 18, 2018, groundwater samples were collected from on-site monitoring well RGP Well MW-A and the outfall discharge location at Lake Como. Groundwater samples collected from RGP Well MW-A during July 2018 were submitted to ESS Laboratory, Cranston, Rhode Island (ESS) for analysis of metals, hardness, ethanol, chloride, total cyanide, total petroleum hydrocarbons (TPH), total suspended solids (TSS), total residual chlorine (TRC), ammonia, hexavalent chromium, trivalent chromium, phenol, 1,4-dioxane, ethylene dibromide, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PBCs), tert-butyl alcohol (TBA), and tertamyl methyl ether (TAME). Surface water samples from the discharge location, Discharge Area, during July 2018 were submitted to ESS for analysis of ammonia, hexavalent chromium, metals, iron, pH, hardness, and salinity.

Results from the groundwater sampling of MW-A demonstrated concentrations of benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, and total suspended solids above technology-based effluent limitations (TBELs). No contaminants of concern were detected above Massachusetts Department of Environmental Protection (MassDEP) reportable concentrations for groundwater (RCGW-2). The facility has previously been, and is currently, a gasoline and service station, and does not use any pH neutralization or dechlorination chemicals. Based on the summarized groundwater sampling results there are potential water-quality issues in the vicinity of the discharge.

Results from the surface water sample (Lake Como Outfall - Receiving Water) did not demonstrate any constituents exceeding the TBEL. **Table 1** provides a summary of detected potential contaminants of concern (pCOCs) from groundwater collected at the facility (influent) and the surface water sample (effluent). Groundwater and surface water laboratory analytical reports are provided in **Attachment C**.

#### 5.0 DILUTION FACTOR

MassDEP was contacted on July 30, 2018 to confirm the 7Q10 flow and determine a dilution factor. Final correspondence documented that a 7Q10 flow does not exist at the outfall location, and a dilution factor of 1.0 was received by MassDEP on July 31, 2018. The Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet was subsequently completed. Copies of the Dilution Factor and Effluent Limitation

Calculations fillable electronic spreadsheet, StreamStats Report, and MassDEP correspondence are provided in **Attachment B**.

#### 6.0 DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)

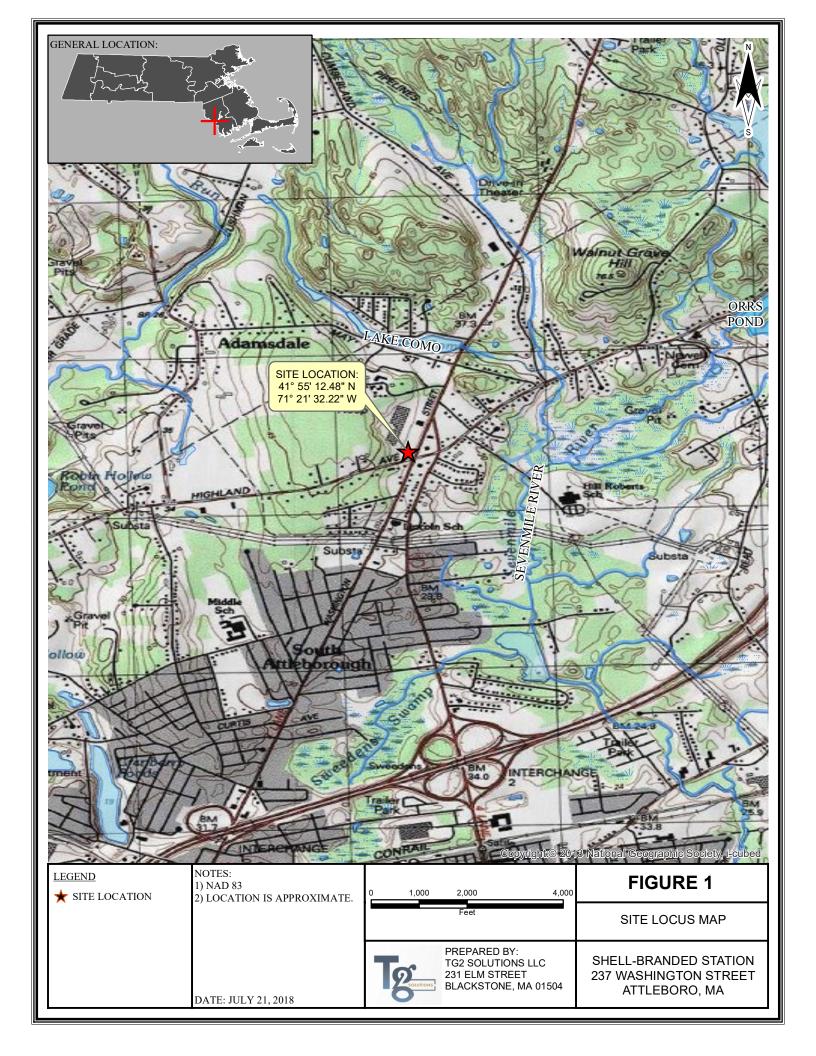
The United States Department of the Interior Fish and Wildlife Service – New England Ecological Services Field Office was contacted regarding the determination of endangered species act eligibility (ESA). There are no endangered or candidate species and no critical habitats within the project area for this NOI. There is one threatened species, the Northern Long-eared Bat (Myotis septentrionalis), on the list for this facility. However, no critical habitat has been designated for this species. Per the U.S. Fish and Wildlife Services, the Northern Long-eared Bat hibernates in caves and mines, swarming in surrounded wooded areas in autumn, and foraging in upland forests in late spring and summer. Based on the location and scope of this work, which is in a commercially developed area and includes redevelopment of the current gasoline facility into a new gasoline facility, it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect the Northern Long-eared Bat. Therefore, this ESA determination is FWS Criterion C. Fish and Wildlife Service – New England Service Field Office Correspondence is provided as **Attachment D**.

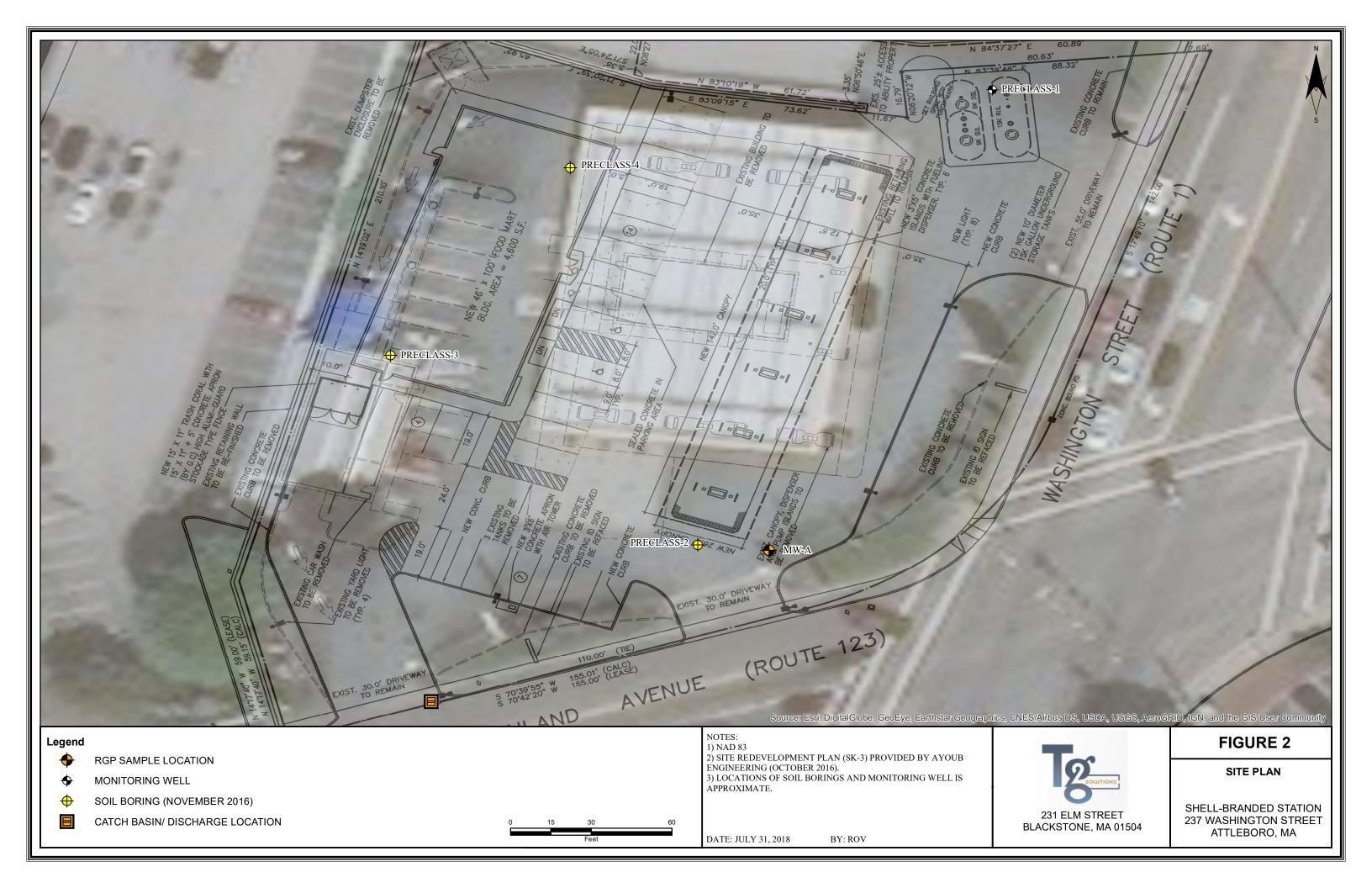
## 7.0 DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS

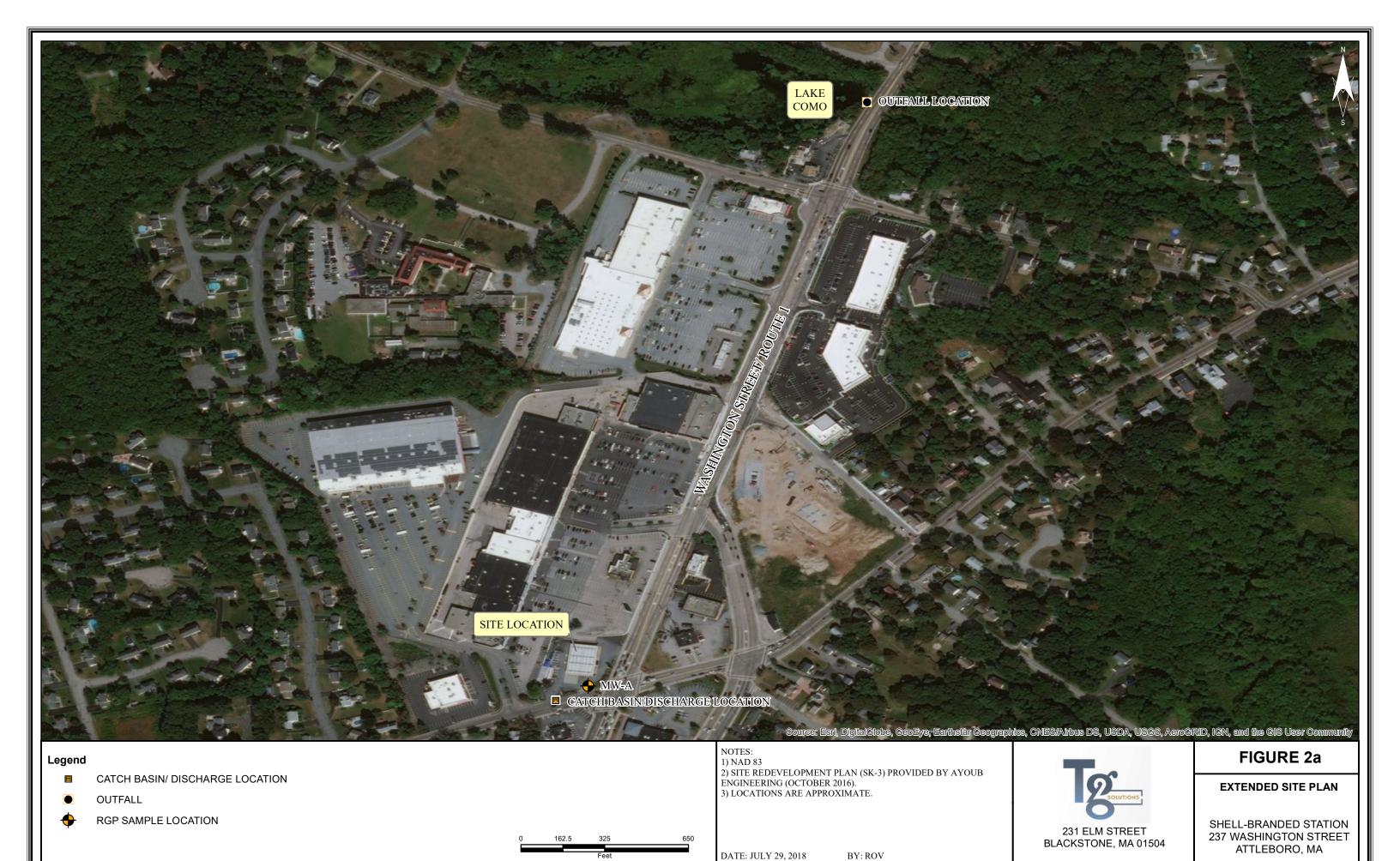
Listings of historic places within the City of Attleboro were obtained from the Massachusetts Cultural Resources Information System (MARCIS) online database:

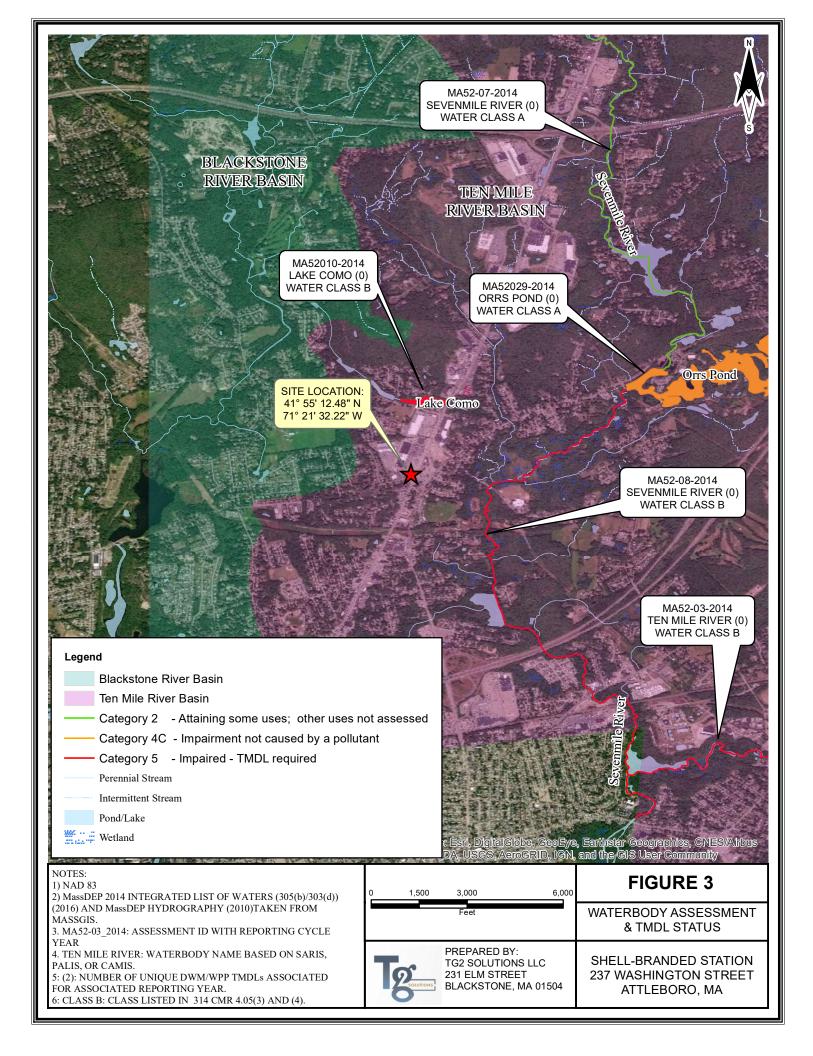
#### http://mhc-macris.net/Towns.aspx?Page=towns.asp

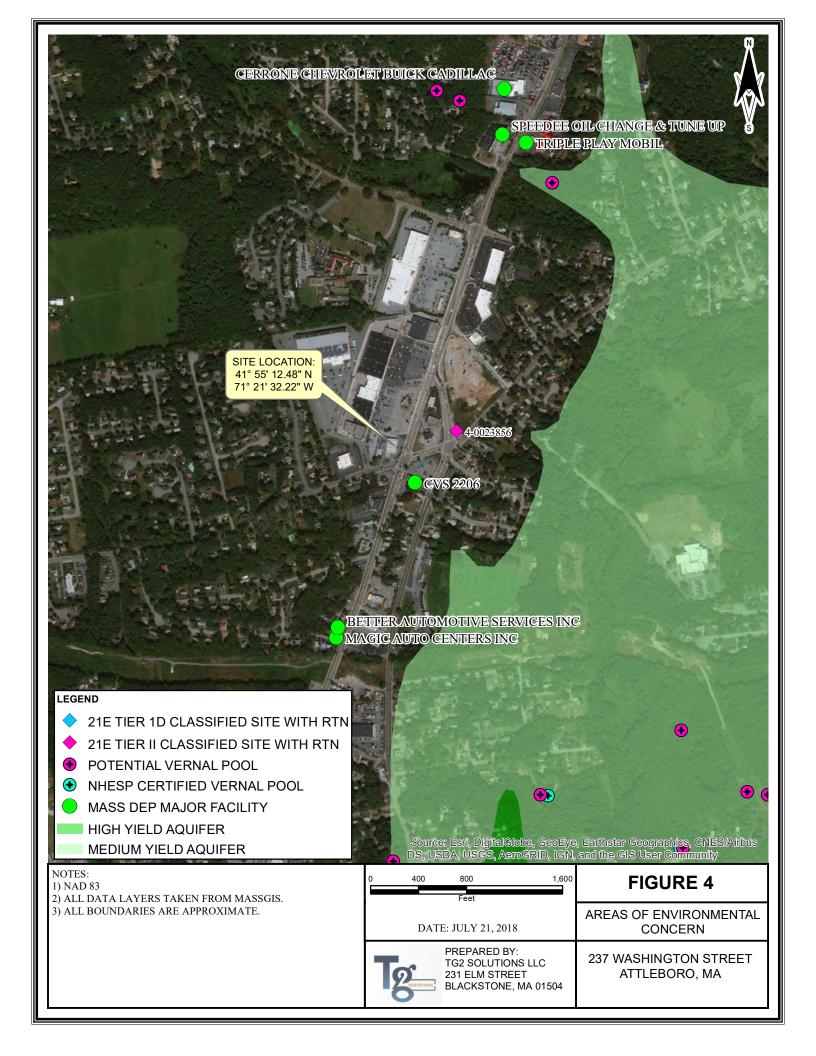
A site vicinity map showing historic places within a 500 feet and a half mile radius of the facility is provided on **Figures 7**. No historic places are located within 500 feet of the facility. Based on the location of historic places relative to the facility and the scope of this work, it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect any historic places.


#### 8.0 SUPPLEMENTAL INFORMATION


At this time no additional supplemental information is necessary to meet the requirements of the NOI for the RGP.


#### 9.0 REDEVELOPMENT CONSTRUCTION SCHEDULE


Redevelopment construction activities requiring dewatering are anticipated to begin in August 2018 and are anticipated to be complete by October 2018.


**FIGURES** 



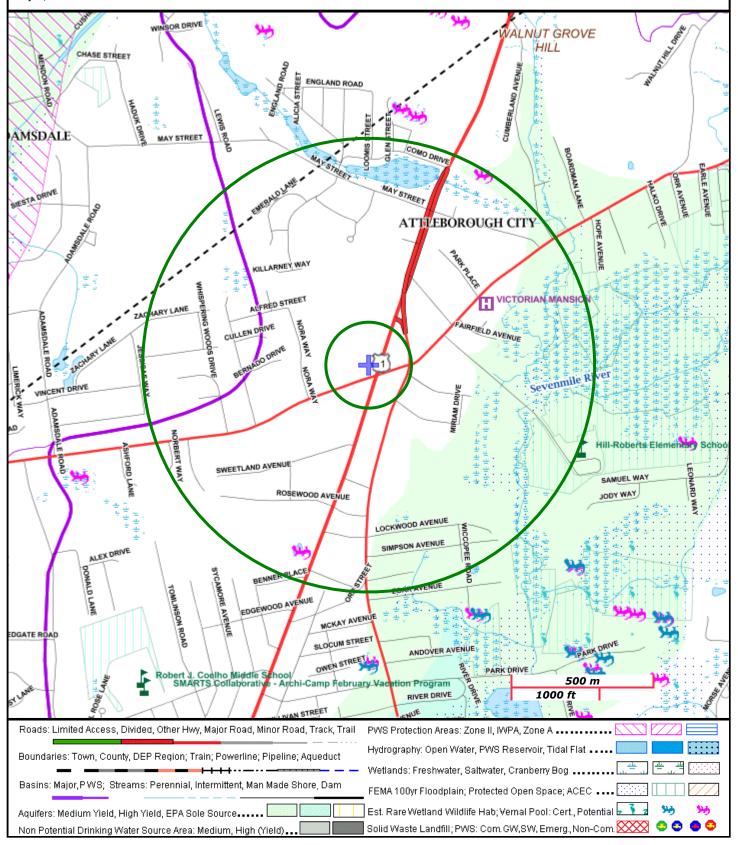


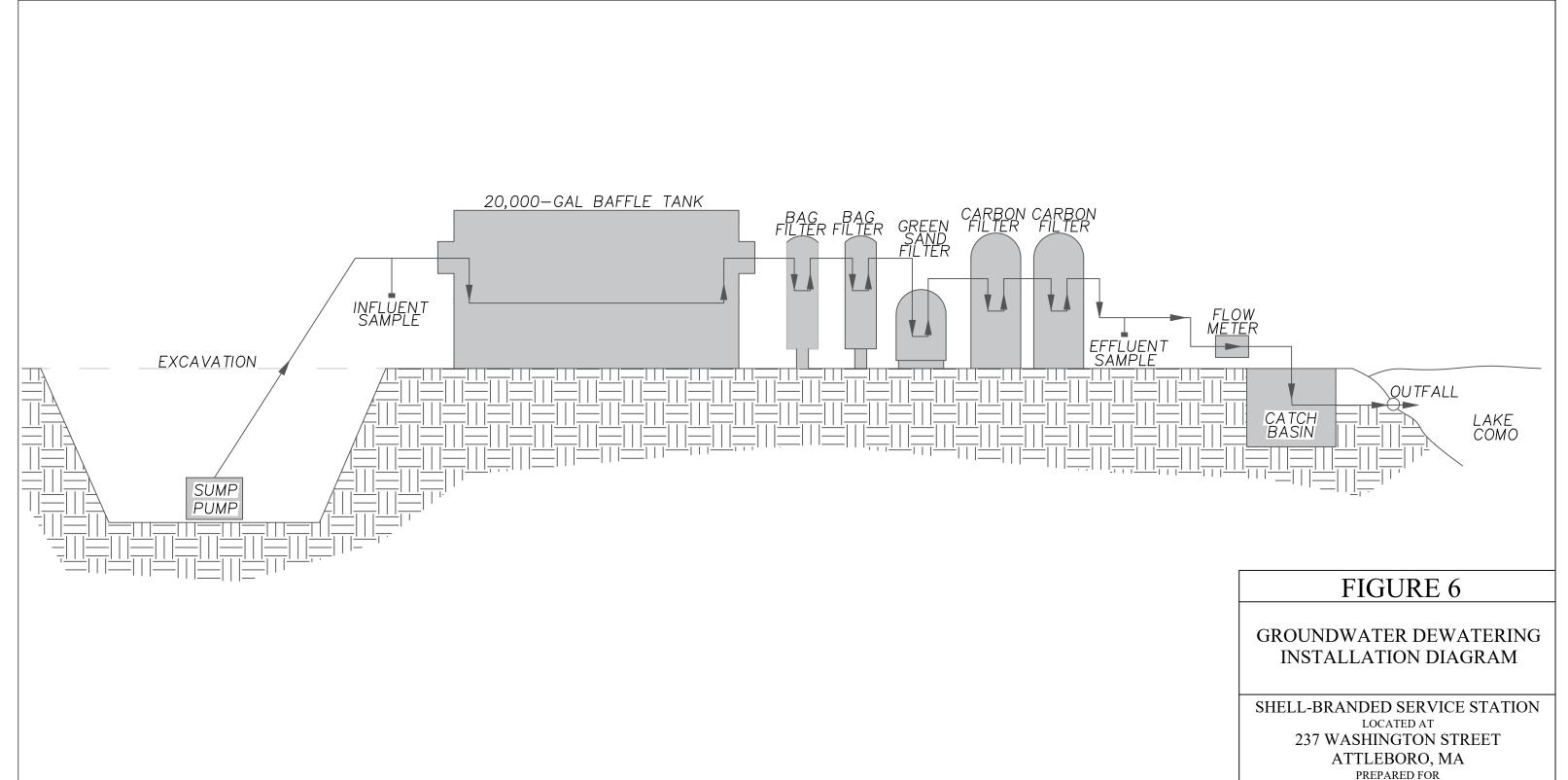






## **MassDEP - Bureau of Waste Site Cleanup**


FIGURE 5 Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information: SHELL BRANDED SERVICE STATION 237 WASHINGTON STREET ATTLEBORO, MA

NAD83 UTM Meters: 4643601mN , 304389mE (Zone: 19) July 21, 2018 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

http://www.mass.gov/mgis/.



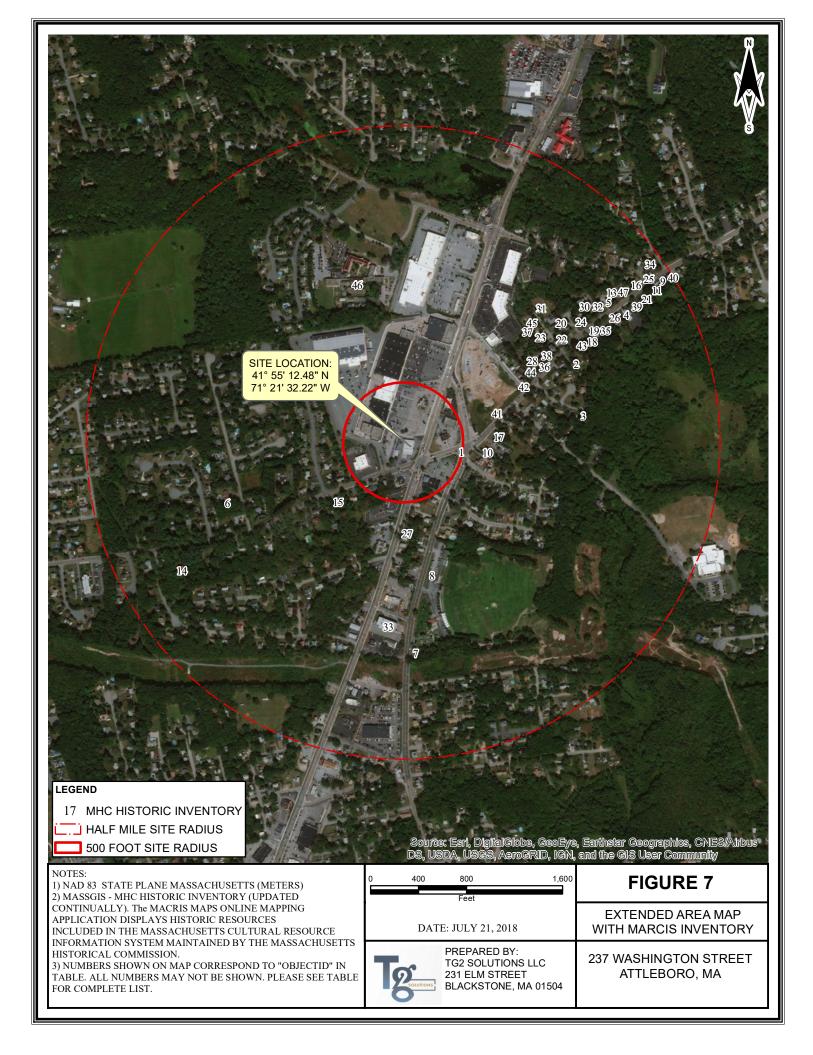




#### NOTES:

1) NOT TO SCALE.

2) THE DISTANCE FROM THE CATCH BASIN/DISCHARGE LOCATION TO THE LAKE COMO OUTFALL IS APPROXIMATELY 2492 FEET.


COLBEA ENTERPRISES LLC



TG2 SOLUTIONS, LLC 231 ELM STREET BLACKSTONE, MA 0154

DATE: JULY 21, 2018

REVISED:





**TABLES** 

# TABLE 1 SUMMARY OF WATER MONITORING DATA Shell-Branded Service Station 237 Washington Street Attleboro, Massachusetts

|                                 |                         | Copper<br>(µg/L) | lron<br>(μg/L) | Zinc<br>(μg/L) | Benzo(a)-<br>anthracene<br>(µg/L) | Benzo(a)-<br>pyrene<br>(µg/L) | Benzo(b)-<br>fluoranthene<br>(µg/L) | Benzo(g,h,i)-<br>perylene<br>(μg/L) | Benzo(k)-<br>fluoranthene<br>(µg/L) | Chrysene<br>(µg/L) | Dibenzo(a,h ) Anthracene (µg/L) | Fluoran-<br>thene<br>(µg/L) | Indeno-<br>(1,2,3-cd)-<br>Pyrene<br>(µg/L) | Pyrene<br>(μg/L) | Tetrachloro-<br>ethene<br>(µg/L) | Chloride<br>(mg/L) | Total<br>Suspended<br>Solids<br>(mg/L) | Hardness<br>(mg/L) | рН   |
|---------------------------------|-------------------------|------------------|----------------|----------------|-----------------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------|---------------------------------|-----------------------------|--------------------------------------------|------------------|----------------------------------|--------------------|----------------------------------------|--------------------|------|
| MassDEP Reportable (            | Concentrations (RCGW-2) | 100,000          | NA             | 900            | 1,000                             | 1,000                         | 400                                 | 20                                  | 100                                 | 70                 | 40                              | 200                         | 100                                        | 20               | 50                               | NA                 | NA                                     | NA                 | NA   |
| Effluent Lin                    | nitations - TBEL        | 242              | 5,000          | 420            | 0.1°                              | 0.1°                          | 0.1°                                | 100 <sup>b</sup>                    | 0.1°                                | 0.1°               | 0.1°                            | 100 <sup>b</sup>            | 0.1°                                       | 100 <sup>b</sup> | 3.3                              | Report             | 30                                     | NA                 | NA   |
| Well ID                         | Sample Date             |                  |                |                |                                   |                               |                                     |                                     |                                     |                    |                                 |                             |                                            |                  |                                  |                    |                                        |                    |      |
| Effluent - Lake Como<br>Outfall | 07/18/18                | <5               | 61             | 10             | -                                 | -                             | -                                   | -                                   | -                                   | -                  | -                               | -                           | -                                          | -                | -                                | -                  | -                                      | 70,100             | 7.30 |
| RGP Well MW-A                   | 07/18/18                | 5.7              | 103            | 28.6           | 0.11                              | 0.24                          | 0.48                                | 0.41                                | 0.18                                | 0.26               | 0.08                            | 0.40                        | 0.33                                       | 0.28             | 0.7                              | 276                | 40                                     | 131                | 7.15 |

Note:

yg.(1 - micrograms per liter
mgs.L. militgram per liter
MassiBP - Massochusetts Department of Environmental Protection

No. - not available Department of Environmental Protection

No. - not available

BBL - Technology-Based Bluent Limitations

- - - not sample

- - India (Group I PAHs is the sum of: acenophthere, acenophthere, acenophthere, and indexed, between the compliance level for each individual PAH is 0.1 µg/L.

- Total Group I PAHs is the sum of: acenophthere, acenophthere, and indexed, between the compliance level for Group I PAHs is 100 µg/L.

**Bold** - above method detection limits **Bold & Shaded** - above RCGW-2 and/or TBEL Effluent Limitations



ATTACHMENT A

### II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

#### A. General site information:

| 1. Name of site:                                                                  | Site address:                                                               |                   |             |      |  |  |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|-------------|------|--|--|--|--|
|                                                                                   | Street:                                                                     |                   |             |      |  |  |  |  |
|                                                                                   | City:                                                                       |                   | State:      | Zip: |  |  |  |  |
| 2. Site owner                                                                     | Contact Person:                                                             |                   |             |      |  |  |  |  |
|                                                                                   | Telephone:                                                                  | Email:            |             |      |  |  |  |  |
|                                                                                   | Mailing address:                                                            | •                 |             |      |  |  |  |  |
|                                                                                   | Street:                                                                     |                   |             |      |  |  |  |  |
| Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify: | City: State: Zip:                                                           |                   |             |      |  |  |  |  |
| 3. Site operator, if different than owner                                         | Contact Person:                                                             |                   |             |      |  |  |  |  |
|                                                                                   | Telephone:                                                                  | Email:            |             |      |  |  |  |  |
|                                                                                   | Mailing address:                                                            |                   |             |      |  |  |  |  |
|                                                                                   | Street:                                                                     |                   |             |      |  |  |  |  |
|                                                                                   | City:                                                                       |                   | State:      | Zip: |  |  |  |  |
| 4. NPDES permit number assigned by EPA:                                           | 5. Other regulatory program(s) that apply to the site                       | (check all th     | at apply):  |      |  |  |  |  |
|                                                                                   | ☐ MA Chapter 21e; list RTN(s):                                              | □ CERCI           | LA.         |      |  |  |  |  |
| NPDES permit is (check all that apply: □ RGP □ DGP □ CGP                          | NII Crown dwater Management Dermit er                                       | □ UIC Pro         | •           |      |  |  |  |  |
| ☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:                         | ☐ NH Groundwater Management Permit or Groundwater Release Detection Permit: |                   | Pretreatmen | t    |  |  |  |  |
|                                                                                   |                                                                             | ☐ CWA Section 404 |             |      |  |  |  |  |

□ Yes □ No

|   | B. Receiving water information:                                                                                    |                                                                                                    |                               |                                                          |
|---|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------|
| Γ | 1. Name of receiving water(s):                                                                                     | Waterbody identification of receiving water(                                                       | (s): Classific                | ation of receiving water(s):                             |
|   |                                                                                                                    |                                                                                                    |                               |                                                          |
| - |                                                                                                                    |                                                                                                    |                               |                                                          |
|   | Receiving water is (check any that apply): □ Outstan                                                               | ding Resource Water   Ocean Sanctuary   territor                                                   | rial sea □ Wild and Scenic Ri | ver                                                      |
|   | 2. Has the operator attached a location map in accord                                                              | ance with the instructions in B, above? (check one)                                                | : □ Yes □ No                  |                                                          |
|   | Are sensitive receptors present near the site? (check of                                                           | one): □ Yes □ No                                                                                   |                               |                                                          |
| L | If yes, specify:                                                                                                   |                                                                                                    |                               |                                                          |
|   | 3. Indicate if the receiving water(s) is listed in the Sta pollutants indicated. Also, indicate if a final TMDL is |                                                                                                    |                               |                                                          |
| L | 4.6 of the RGP.                                                                                                    |                                                                                                    |                               |                                                          |
|   | 4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A           | f the receiving water determined in accordance with ppendix VI for sites located in New Hampshire. | the instructions in           |                                                          |
|   | 5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s      |                                                                                                    |                               |                                                          |
|   | 6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:                 | oppropriate State for the 7Q10and dilution factor indi                                             | cated? (check one): ☐ Yes ☐   | No                                                       |
|   | 7. Has the operator attached a summary of receiving                                                                | water sampling results as required in Part 4.2 of the                                              | RGP in accordance with the i  | nstruction in Appendix VIII?                             |
|   | (check one): □ Yes □ No                                                                                            |                                                                                                    |                               |                                                          |
|   | C. Source water information:                                                                                       |                                                                                                    |                               |                                                          |
|   | 1. Source water(s) is (check any that apply):                                                                      |                                                                                                    |                               |                                                          |
|   | ☐ Contaminated groundwater                                                                                         | ☐ Contaminated surface water                                                                       | ☐ The receiving water         | ☐ Potable water; if so, indicate municipality or origin: |
|   | Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP                | Has the operator attached a summary of influent sampling results as required in Part 4.2 of the    | ☐ A surface water other       |                                                          |
|   | in accordance with the instruction in Appendix VIII? (check one):                                                  | than the receiving water; if so, indicate waterbody:                                               | ☐ Other; if so, specify:      |                                                          |

□ Yes □ No

| 2. Source water contaminants:                                                                                                                                    |                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in             | b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance |  |  |  |  |  |  |  |  |  |
| the RGP? (check one):   Yes   No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII. | with the instructions in Appendix VIII? (check one): □ Yes □ No                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 3. Has the source water been previously chlorinated or otherwise contains resid                                                                                  | dual chlorine? (check one): □ Yes □ No                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| D. Discharge information                                                                                                                                         |                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 1. The discharge(s) is $a(n)$ (check any that apply): $\Box$ Existing discharge $\Box$ New                                                                       | w discharge □ New source                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| Outfall(s):                                                                                                                                                      | Outfall location(s): (Latitude, Longitude)                                                                                                                                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                  |                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                  |                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Discharges enter the receiving water(s) via (check any that apply): □ Direct di                                                                                  | ischarge to the receiving water □ Indirect discharge, if so, specify:                                                                                                              |  |  |  |  |  |  |  |  |  |
| ☐ A private storm sewer system ☐ A municipal storm sewer system                                                                                                  |                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| If the discharge enters the receiving water via a private or municipal storm sew                                                                                 | •                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Has notification been provided to the owner of this system? (check one): $\Box$ Ye                                                                               |                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Has the operator has received permission from the owner to use such system for obtaining permission:                                                             | or discharges? (check one): □ Yes □ No, if so, explain, with an estimated timeframe for                                                                                            |  |  |  |  |  |  |  |  |  |
| Has the operator attached a summary of any additional requirements the owner                                                                                     | Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ☐ No                                                 |  |  |  |  |  |  |  |  |  |
| Provide the expected start and end dates of discharge(s) (month/year):                                                                                           |                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Indicate if the discharge is expected to occur over a duration of: □ less than 12 months □ 12 months or more □ is an emergency discharge                         |                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Has the operator attached a site plan in accordance with the instructions in D, a                                                                                | above? (check one): □ Yes □ No                                                                                                                                                     |  |  |  |  |  |  |  |  |  |

| 2. Activity Category: (check all that apply)                                                                                                                                                                                                                                                            | 3. Contamination Type Category: (check all that apply)                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                         | a. If Activity Category I or II: (check all that apply)                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                               |  |  |  |  |
| □ I – Petroleum-Related Site Remediation                                                                                                                                                                                                                                                                | <ul> <li>□ A. Inorganics</li> <li>□ B. Non-Halogenated Volatile Organi</li> <li>□ C. Halogenated Volatile Organic Cor</li> <li>□ D. Non-Halogenated Semi-Volatile Organi</li> <li>□ E. Halogenated Semi-Volatile Organi</li> <li>□ F. Fuels Parameters</li> </ul>                                                                                                                                             | mpounds  Organic Compounds                                                                                                                    |  |  |  |  |
| ☐ II – Non-Petroleum-Related Site Remediation                                                                                                                                                                                                                                                           | b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |  |  |  |  |
| <ul> <li>□ III – Contaminated Site Dewatering</li> <li>□ IV – Dewatering of Pipelines and Tanks</li> <li>□ V – Aquifer Pump Testing</li> <li>□ VI – Well Development/Rehabilitation</li> <li>□ VII – Collection Structure Dewatering/Remediation</li> <li>□ VIII – Dredge-Related Dewatering</li> </ul> | ☐ G. Sites with Known Contamination  c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)  ☐ A. Inorganics ☐ B. Non-Halogenated Volatile Organic Compounds ☐ C. Halogenated Volatile Organic Compounds ☐ D. Non-Halogenated Semi-Volatile Organic Compounds ☐ D. Halogenated Semi-Volatile Organic Compounds ☐ E. Halogenated Semi-Volatile Organic Compounds ☐ F. Fuels Parameters | ☐ H. Sites with Unknown Contamination  d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply |  |  |  |  |

#### 4. Influent and Effluent Characteristics

|                         | Known                    | Known                     |                 | <b>75</b> 0 4         | <b>T</b>                     | Infl                       | uent                       | Effluent Lii | mitations |
|-------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|--------------|-----------|
| Parameter               | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(μg/l) | Daily<br>average<br>(µg/l) | TBEL         | WQBEL     |
| A. Inorganics           |                          |                           |                 |                       |                              |                            |                            |              |           |
| Ammonia                 |                          |                           |                 |                       |                              |                            |                            | Report mg/L  |           |
| Chloride                |                          |                           |                 |                       |                              |                            |                            | Report μg/l  |           |
| Total Residual Chlorine |                          |                           |                 |                       |                              |                            |                            | 0.2 mg/L     |           |
| Total Suspended Solids  |                          |                           |                 |                       |                              |                            |                            | 30 mg/L      |           |
| Antimony                |                          |                           |                 |                       |                              |                            |                            | 206 μg/L     |           |
| Arsenic                 |                          |                           |                 |                       |                              |                            |                            | 104 μg/L     |           |
| Cadmium                 |                          |                           |                 |                       |                              |                            |                            | 10.2 μg/L    |           |
| Chromium III            |                          |                           |                 |                       |                              |                            |                            | 323 μg/L     |           |
| Chromium VI             |                          |                           |                 |                       |                              |                            |                            | 323 μg/L     |           |
| Copper                  |                          |                           |                 |                       |                              |                            |                            | 242 μg/L     |           |
| Iron                    |                          |                           |                 |                       |                              |                            |                            | 5,000 μg/L   |           |
| Lead                    |                          |                           |                 |                       |                              |                            |                            | 160 μg/L     |           |
| Mercury                 |                          |                           |                 |                       |                              |                            |                            | 0.739 μg/L   |           |
| Nickel                  |                          |                           |                 |                       |                              |                            |                            | 1,450 μg/L   |           |
| Selenium                |                          |                           |                 |                       |                              |                            |                            | 235.8 μg/L   |           |
| Silver                  |                          |                           |                 |                       |                              |                            |                            | 35.1 μg/L    |           |
| Zinc                    |                          |                           |                 |                       |                              |                            |                            | 420 μg/L     |           |
| Cyanide                 |                          |                           |                 |                       |                              |                            |                            | 178 mg/L     |           |
| B. Non-Halogenated VOCs | 8                        |                           | •               |                       |                              |                            |                            |              |           |
| Total BTEX              |                          |                           |                 |                       |                              |                            |                            | 100 μg/L     |           |
| Benzene                 |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L     |           |
| 1,4 Dioxane             |                          |                           |                 |                       |                              |                            |                            | 200 μg/L     |           |
| Acetone                 |                          |                           |                 |                       |                              |                            |                            | 7.97 mg/L    |           |
| Phenol                  |                          |                           |                 | _                     |                              |                            |                            | 1,080 μg/L   |           |

|                          | Known                    | Known                     |                 |                       |                              | Infl                       | uent                       | Effluent Lin   | nitations |
|--------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------|-----------|
| Parameter                | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL           | WQBEL     |
| C. Halogenated VOCs      |                          |                           |                 |                       |                              |                            |                            |                |           |
| Carbon Tetrachloride     |                          |                           |                 |                       |                              |                            |                            | 4.4 μg/L       |           |
| 1,2 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 600 μg/L       |           |
| 1,3 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 320 μg/L       |           |
| 1,4 Dichlorobenzene      |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L       |           |
| Total dichlorobenzene    |                          |                           |                 |                       |                              |                            |                            | 763 μg/L in NH |           |
| 1,1 Dichloroethane       |                          |                           |                 |                       |                              |                            |                            | 70 μg/L        |           |
| 1,2 Dichloroethane       |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L       |           |
| 1,1 Dichloroethylene     |                          |                           |                 |                       |                              |                            |                            | 3.2 μg/L       |           |
| Ethylene Dibromide       |                          |                           |                 |                       |                              |                            |                            | 0.05 μg/L      |           |
| Methylene Chloride       |                          |                           |                 |                       |                              |                            |                            | 4.6 μg/L       |           |
| 1,1,1 Trichloroethane    |                          |                           |                 |                       |                              |                            |                            | 200 μg/L       |           |
| 1,1,2 Trichloroethane    |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L       |           |
| Trichloroethylene        |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L       |           |
| Tetrachloroethylene      |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L       |           |
| cis-1,2 Dichloroethylene |                          |                           |                 |                       |                              |                            |                            | 70 μg/L        |           |
| Vinyl Chloride           |                          |                           |                 |                       |                              |                            |                            | 2.0 μg/L       |           |
| D. Non-Halogenated SVO   | Te.                      |                           |                 |                       |                              |                            |                            |                |           |
| Total Phthalates         |                          |                           |                 |                       |                              |                            |                            | 190 μg/L       |           |
| Diethylhexyl phthalate   |                          |                           |                 |                       |                              |                            |                            | 101 μg/L       |           |
| Total Group I PAHs       |                          |                           |                 |                       |                              |                            |                            | 1.0 μg/L       |           |
| Benzo(a)anthracene       |                          |                           |                 |                       |                              |                            |                            | 1.5            |           |
| Benzo(a)pyrene           |                          |                           |                 |                       |                              |                            |                            | 7              |           |
| Benzo(b)fluoranthene     |                          |                           |                 |                       |                              |                            |                            |                |           |
| Benzo(k)fluoranthene     |                          |                           |                 |                       |                              |                            |                            | As Total PAHs  |           |
| Chrysene                 |                          |                           |                 |                       |                              |                            |                            | 7              |           |
| Dibenzo(a,h)anthracene   |                          |                           |                 |                       |                              |                            |                            | 1              |           |
| Indeno(1,2,3-cd)pyrene   |                          |                           |                 |                       |                              |                            |                            | 7              |           |

|                                     | Known                    | Known                     |                 |                       |                              | Inf                        | luent                      | Effluent Lin                    | nitations |
|-------------------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|---------------------------------|-----------|
| Parameter                           | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                            | WQBEL     |
| Total Group II PAHs                 |                          |                           |                 |                       |                              |                            |                            | 100 μg/L                        |           |
| Naphthalene                         |                          |                           |                 |                       |                              |                            |                            | 20 μg/L                         |           |
| E. Halogenated SVOCs                |                          |                           |                 |                       |                              |                            |                            |                                 |           |
| Total PCBs                          |                          |                           |                 |                       |                              |                            |                            | 0.000064 μg/L                   |           |
| Pentachlorophenol                   |                          |                           |                 |                       |                              |                            |                            | 1.0 μg/L                        |           |
|                                     | -                        | 1                         | •               | •                     | •                            |                            |                            |                                 |           |
| F. Fuels Parameters Total Petroleum |                          | 1                         | 1               |                       |                              | 1                          |                            |                                 |           |
| Hydrocarbons                        |                          |                           |                 |                       |                              |                            |                            | 5.0 mg/L                        |           |
| Ethanol                             |                          |                           |                 |                       |                              |                            |                            | Report mg/L                     |           |
| Methyl-tert-Butyl Ether             |                          |                           |                 |                       |                              |                            |                            | 70 μg/L                         |           |
| tert-Butyl Alcohol                  |                          |                           |                 |                       |                              |                            |                            | 120 μg/L in MA<br>40 μg/L in NH |           |
| tert-Amyl Methyl Ether              |                          |                           |                 |                       |                              |                            |                            | 90 μg/L in MA<br>140 μg/L in NH |           |
| Other (i.e., pH, temperatur         | re, hardness,            | salinity, LC              | 50, addition    | al pollutan           | its present);                | if so, specify:            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           | ]               |                       |                              |                            |                            |                                 |           |

### E. Treatment system information

| 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)                            |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| □ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption |  |  |  |  |  |  |  |  |
| ☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:                                    |  |  |  |  |  |  |  |  |
|                                                                                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                             |  |  |  |  |  |  |  |  |
| 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.           |  |  |  |  |  |  |  |  |
|                                                                                                                                             |  |  |  |  |  |  |  |  |
| Identify each major treatment component (check any that apply):                                                                             |  |  |  |  |  |  |  |  |
| □ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter                                           |  |  |  |  |  |  |  |  |
|                                                                                                                                             |  |  |  |  |  |  |  |  |
| ☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:                                                             |  |  |  |  |  |  |  |  |
| Indicate if either of the following will occur (check any that apply):                                                                      |  |  |  |  |  |  |  |  |
| □ Chlorination □ De-chlorination                                                                                                            |  |  |  |  |  |  |  |  |
|                                                                                                                                             |  |  |  |  |  |  |  |  |
| 3. Provide the <b>design flow capacity</b> in gallons per minute (gpm) of the most limiting component.                                      |  |  |  |  |  |  |  |  |
| Indicate the most limiting component:                                                                                                       |  |  |  |  |  |  |  |  |
| Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:                                                     |  |  |  |  |  |  |  |  |
| Provide the proposed maximum effluent flow in gpm.                                                                                          |  |  |  |  |  |  |  |  |
|                                                                                                                                             |  |  |  |  |  |  |  |  |
| Provide the average effluent flow in gpm.                                                                                                   |  |  |  |  |  |  |  |  |
| If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:                                      |  |  |  |  |  |  |  |  |
| 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No                   |  |  |  |  |  |  |  |  |

#### F. Chemical and additive information

| 1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| □ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 Dec. 11. de Cille in in Computing Computer Computer (Computer Computer Co |
| 2. Provide the following information for each chemical/additive, using attachments, if necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a. Product name, chemical formula, and manufacturer of the chemical/additive;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| b. Purpose or use of the chemical/additive or remedial agent;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1. If available, the vehicle's reported aquatic toxicity (NOALL and/of Leso in percent for aquatic organism(s)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| with the instructions in F, above? (check one): $\square$ Yes $\square$ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (check one): ☐ Yes ☐ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| G. Endangered Species Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| □ <b>FWS Criterion A</b> : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| □ <b>FWS Criterion B</b> : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| □ <b>FWS Criterion C</b> : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FWS. This determination was made by: (check one) $\square$ the operator $\square$ EPA $\square$ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| □ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No                                                                                                                                                                                                                          |  |  |  |  |  |
| 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No                                                                                                                                                              |  |  |  |  |  |
| Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): $\square$ Yes $\square$ No; if yes, attach.                                                                                                                                                                |  |  |  |  |  |
| H. National Historic Preservation Act eligibility determination                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                         |  |  |  |  |  |
| □ <b>Criterion A</b> : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.                                                                                                                                     |  |  |  |  |  |
| ☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.                                                                                                                                                                 |  |  |  |  |  |
| ☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.                                                                                                                                    |  |  |  |  |  |
| 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): □ Yes □ No                                                                                                                                                                             |  |  |  |  |  |
| Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or                                                                                                                                                           |  |  |  |  |  |
| other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): $\Box$ Yes $\Box$ No                                                                                                                                            |  |  |  |  |  |
| I. Supplemental information                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.                                                                                                                                                                                                     |  |  |  |  |  |
| Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No                                                                                                                                                                          |  |  |  |  |  |
| Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No                                                                                                                                                                                                 |  |  |  |  |  |

### J. Certification requirement

| I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. |                  |           |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--|--|--|--|
| BMPP certification statement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |           |  |  |  |  |
| Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Check one: Yes □ | No □      |  |  |  |  |
| Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check one: Yes □ | No □      |  |  |  |  |
| Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check one: Yes □ | No □ NA □ |  |  |  |  |
| Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Check one: Yes □ | No □ NA □ |  |  |  |  |
| Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check one: Yes □ | No □ NA □ |  |  |  |  |
| Signature: Ea DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | te:              |           |  |  |  |  |
| Print Name and Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |           |  |  |  |  |



ATTACHMENT B

#### Enter number values in green boxes below

Enter values in the units specified

| $\downarrow$ |                                              |
|--------------|----------------------------------------------|
| 0.00452      | $Q_R$ = Enter upstream flow in <b>MGD</b>    |
| 0.0864       | Q <sub>P</sub> = Enter discharge flow in MGD |
| 1            | Downstream 7Q10                              |

Enter a dilution factor, if other than zero



Enter values in the units specified

| $\downarrow$ |                                                                           |
|--------------|---------------------------------------------------------------------------|
| 131          | $C_d$ = Enter influent hardness in <b>mg/L</b> CaCO <sub>3</sub>          |
| 70100        | C <sub>s</sub> = Enter receiving water hardness in mg/L CaCO <sub>3</sub> |

Enter receiving water concentrations in the units specified

| <b>↓</b> |                                    |
|----------|------------------------------------|
| 7.3      | pH in Standard Units               |
| 21.2     | Temperature in °C                  |
| 0        | Ammonia in mg/L                    |
| 70100    | Hardness in mg/L CaCO <sub>3</sub> |
| 0.2      | Salinity in ppt                    |
| 0        | Antimony in μg/L                   |
| 0        | Arsenic in μg/L                    |
| 0        | Cadmium in µg/L                    |
| 0        | Chromium III in µg/L               |
| 0        | Chromium VI in µg/L                |
| 0        | Copper in µg/L                     |
| 61       | Iron in μg/L                       |
| 0        | Lead in μg/L                       |
| 0        | Mercury in μg/L                    |
| 0        | Nickel in μg/L                     |
| 0        | Selenium in µg/L                   |
| 0        | Silver in μg/L                     |
| 10       | Zine in μg/L                       |
|          | =                                  |

Enter influent concentrations in the units specified

```
TRC in µg/L
         Ammonia in mg/L
 0
        Antimony in µg/L
        Arsenic in μg/L
        Cadmium in µg/L
         Chromium III in µg/L
         Chromium VI in µg/L
        Copper in µg/L
        Iron in µg/L
103
        Lead in μg/L
 0
         Mercury in μg/L
         Nickel in μg/L
 0
         Selenium in µg/L
         Silver in µg/L
        Zinc in µg/L
28.6
         Cyanide in µg/L
        Phenol in µg/L
        Carbon Tetrachloride in µg/L
         Tetrachloroethylene in μg/L
        Total Phthalates in µg/L
         Diethylhexylphthalate in μg/L
0.11
        Benzo(a)anthracene in µg/L
        Benzo(a)pyrene in μg/L
0.24
        Benzo(b)fluoranthene in µg/L
0.18
        Benzo(k)fluoranthene in μg/L
         Chrysene in µg/L
0.26
        Dibenzo(a,h)anthracene in μg/L
0.08
        Indeno(1,2,3-cd)pyrene in µg/L
0.33
        Methyl-tert butyl ether in μg/L
```

#### Notes:

Freshwater:  $Q_R$  equal to the 7Q10; enter alternate  $Q_R$  if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter  $Q_R$  if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for  $Q_R$ ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater  $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$  Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

#### **I. Dilution Factor Calculation Method**

#### A. 7010

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

#### **B.** Dilution Factor

Calculated as follows:

$$Df = O_R + O_R$$

 $Q_R = 7Q10$  in MGD

 $Q_p$  = Discharge flow, in MGD

#### **II. Effluent Limitation Calculation Method**

#### A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 $C_r$  = Downstream hardness in mg/L

 $Q_d$  = Discharge flow in MGD

 $C_d$  = Discharge hardness in mg/L

 $Q_s = \text{Upstream flow (7Q10) in MGD}$ 

 $C_s$  = Upstream (receiving water) hardness in mg/L

 $Q_r$  = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria =  $\exp\{m_c [ln(h)] + b_c\}$ 

m<sub>c</sub> = Pollutant-specific coefficient (m<sub>a</sub> for silver)

 $b_c$  = Pollutant-specific coefficient ( $b_a$  for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in 
$$\mu$$
g/L = dissolved WQC in  $\mu$ g/L dissolved to total recoverable factor

#### **B.** Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_d = \underline{Q_r C_r - Q_s C_s}$$

 $C_r$  = Water quality criterion in  $\mu$ g/L

Q<sub>d</sub> = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$ 

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s = U$ stream (receiving water) concentration in  $\mu g/L$ 

 $Q_r$  = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 $C_r$  = Water quality criterion in  $\mu$ g/L

 $Q_d$  = Discharge flow in MGD

 $Q_r$  = Downstream receiving water flow in MGD

#### C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_{r} = \overline{Q_{d}C_{d} + Q_{c}C_{c}}$$

Q

 $C_r$  = Downstream concentration in  $\mu$ g/L

 $Q_d$  = Discharge flow in MGD

 $C_d$  = Influent concentration in  $\mu$ g/L

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s$  = Upstream (receiving water) concentration in  $\mu$ g/L

 $Q_r$  = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

#### AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

#### AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor 1.1

| Dilution Factor                                     | 1.1                    |              |                         |           |                                   |           |
|-----------------------------------------------------|------------------------|--------------|-------------------------|-----------|-----------------------------------|-----------|
| A. Inorganics                                       | TBEL applies if bolded |              | WQBEL applies if bolded |           | Compliance Level applies if shown |           |
| Ammonia                                             | Report                 | mg/L         |                         |           |                                   |           |
| Chloride                                            | Report                 | μg/L         |                         |           |                                   |           |
| Total Residual Chlorine                             | 0.2                    | mg/L         | 127                     | $\mu g/L$ |                                   | $\mu g/L$ |
| Total Suspended Solids                              | 30                     | mg/L         |                         |           |                                   |           |
| Antimony                                            | 206                    | $\mu g/L$    | 7407                    | $\mu g/L$ |                                   |           |
| Arsenic                                             | 104                    | $\mu g/L$    | 116                     | $\mu g/L$ |                                   |           |
| Cadmium                                             | 10.2                   | $\mu g/L$    | 7.5549                  | $\mu g/L$ |                                   |           |
| Chromium III                                        | 323                    | $\mu g/L$    | 2639.8                  | $\mu g/L$ |                                   |           |
| Chromium VI                                         | 323                    | $\mu g/L$    | 132.3                   | $\mu g/L$ |                                   |           |
| Copper                                              | 242                    | $\mu g/L$    | 298.1                   | $\mu g/L$ |                                   |           |
| Iron                                                | 5000                   | $\mu g/L$    | 11571                   | $\mu g/L$ |                                   |           |
| Lead                                                | 160                    | $\mu g/L$    | 167.16                  | $\mu g/L$ |                                   |           |
| Mercury                                             | 0.739                  | $\mu g/L$    | 10.48                   | $\mu g/L$ |                                   |           |
| Nickel                                              | 1450                   | $\mu g/L$    | 1649.9                  | $\mu g/L$ |                                   |           |
| Selenium                                            | 235.8                  | $\mu g/L$    | 57.9                    | $\mu g/L$ |                                   |           |
| Silver                                              | 35.1                   | $\mu g/L$    | 338.2                   | $\mu g/L$ |                                   |           |
| Zinc                                                | 420                    | $\mu g/L$    | 3795.2                  | $\mu g/L$ |                                   |           |
| Cyanide                                             | 178                    | mg/L         | 60.2                    | $\mu g/L$ |                                   | $\mu g/L$ |
| B. Non-Halogenated VOCs                             |                        |              |                         |           |                                   |           |
| Total BTEX                                          | 100                    | μg/L         |                         |           |                                   |           |
| Benzene                                             | 5.0                    | μg/L         |                         |           |                                   |           |
| 1,4 Dioxane                                         | 200<br>7970            | μg/L<br>μg/L |                         |           |                                   |           |
| Acetone<br>Phenol                                   | 1,080                  | μg/L<br>μg/L | 3472                    | μg/L      |                                   |           |
| C. Halogenated VOCs                                 | 1,000                  | PB/ 2        | 3.,2                    | FB/ 2     |                                   |           |
| Carbon Tetrachloride                                | 4.4                    | $\mu g/L$    | 18.5                    | $\mu g/L$ |                                   |           |
| 1,2 Dichlorobenzene                                 | 600                    | $\mu g/L$    |                         |           |                                   |           |
| 1,3 Dichlorobenzene                                 | 320                    | μg/L         |                         |           |                                   |           |
| 1,4 Dichlorobenzene                                 | 5.0                    | μg/L         |                         |           |                                   |           |
| Total dichlorobenzene                               | <br>70                 | μg/L<br>μg/L |                         |           |                                   |           |
| 1,1 Dichloroethane 1,2 Dichloroethane               | 5.0                    | μg/L<br>μg/L |                         |           |                                   |           |
| 1,1 Dichloroethylene                                | 3.2                    | μg/L<br>μg/L |                         |           |                                   |           |
| Ethylene Dibromide                                  | 0.05                   | μg/L         |                         |           |                                   |           |
| Methylene Chloride                                  | 4.6                    | $\mu g/L$    |                         |           |                                   |           |
| 1,1,1 Trichloroethane                               | 200                    | μg/L         |                         |           |                                   |           |
| 1,1,2 Trichloroethane                               | 5.0                    | μg/L         |                         |           |                                   |           |
| Trichloroethylene Tetrachloroethylene               | 5.0<br>5.0             | μg/L<br>μg/L | 38.2                    | μg/L      |                                   |           |
| cis-1,2 Dichloroethylene                            | 70                     | μg/L<br>μg/L |                         | μg/L      |                                   |           |
| Vinyl Chloride                                      | 2.0                    | μg/L         |                         |           |                                   |           |
| D. Non-Halogenated SVOCs                            |                        |              |                         |           |                                   |           |
| Total Phthalates                                    | 190                    | $\mu g/L$    |                         | $\mu g/L$ |                                   |           |
| Diethylhexyl phthalate                              | 101                    | μg/L         | 25.5                    | $\mu g/L$ |                                   |           |
| Total Group I Polycyclic                            | 1.0                    | μg/L         |                         |           |                                   |           |
| Aromatic Hydrocarbons Benzo(a)anthracene            | 1.0                    | μg/L<br>μg/L | 0.0440                  | μg/L      | 0.1                               | μg/L      |
| Benzo(a)pyrene                                      | 1.0                    | μg/L         | 0.0440                  | μg/L      | 0.1                               | μg/L      |
| Benzo(b)fluoranthene                                | 1.0                    | μg/L         | 0.0440                  | μg/L      | 0.1                               | μg/L      |
| Benzo(k)fluoranthene                                | 1.0                    | $\mu g/L$    | 0.0440                  | $\mu g/L$ | 0.1                               | $\mu g/L$ |
| Chrysene                                            | 1.0                    | μg/L         | 0.0440                  | μg/L      | 0.1                               | μg/L      |
| Dibenzo(a,h)anthracene                              | 1.0                    | μg/L         | 0.0440                  | μg/L      | 0.1                               | μg/L      |
| Indeno(1,2,3-cd)pyrene<br>Total Group II Polycyclic | 1.0                    | μg/L         | 0.0440                  | μg/L      | 0.1                               | μg/L      |
| Aromatic Hydrocarbons                               | 100                    | μg/L         |                         |           |                                   |           |
| Naphthalene                                         | 20                     | μg/L         |                         |           |                                   |           |
| E. Halogenated SVOCs                                |                        |              |                         |           |                                   |           |
| Total Polychlorinated Biphenyls                     | 0.000064               | μg/L         |                         |           | 0.5                               | $\mu g/L$ |
| Pentachlorophenol                                   | 1.0                    | $\mu g/L$    |                         |           |                                   |           |
| F. Fuels Parameters                                 | 5.0                    | ma/I         |                         |           |                                   |           |
| Total Petroleum Hydrocarbons<br>Ethanol             | S.0<br>Report          | mg/L<br>mg/L |                         |           |                                   |           |
| Methyl-tert-Butyl Ether                             | 70                     | μg/L         | 231                     | μg/L      |                                   |           |
| tert-Butyl Alcohol                                  | 120                    | μg/L<br>μg/L |                         |           |                                   |           |
| tert-Amyl Methyl Ether                              | 90                     | μg/L         |                         |           |                                   |           |
|                                                     |                        |              |                         |           |                                   |           |

#### I. Dilution Factor Calculation Method

#### A. 7Q10

No flow assumed at critical low flow for saltwater unless otherwise approved by the State

#### **B. Dilution Factor**

No dilution assumed for saltwater, unless otherwise approved by the State

#### II. Effluent Limitation Calculation Method

#### A. Calculate Water Quality Criterion:

- Step 1. Not applicable to saltwater
- Step 2. Not applicable to saltwater
- Step 3. Total recoverable water quality criteria for dissolved metals, calculated as follows:

WQC in 
$$\mu$$
g/L = 
$$\frac{\text{dissolved WQC in }\mu$$
g/L 
$$\frac{\text{dissolved to total recoverable factor}}{\text{dissolved to total recoverable factor}}$$

#### B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

 $Q_d$ 

 $C_r$  = Water quality criterion in  $\mu g/L$ 

Q<sub>d</sub> = Discharge flow in MGD

 $C_d$  = WQBEL in  $\mu$ g/L

 $Q_s$  = Upstream flow (7Q10) in MGD

 $C_s$  = Ustream (receiving water) concentration in  $\mu$ g/L

Q<sub>r</sub> = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 $C_r$  = Water quality criterion in  $\mu$ g/L

 $Q_d$  = Discharge flow in MGD

 $Q_r$  = Downstream receiving water flow in MGD

#### C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{O_d C_d + O_s C_s}$$

 $Q_r$ 

 $C_r$  = Downstream concentration in  $\mu$ g/L

Q<sub>d</sub> = Discharge flow in MGD

 $C_d$  = Influent concentration in  $\mu$ g/L

 $Q_s$  = Upstream flow (7Q10) in MGD

C<sub>s</sub> = Upstream (receiving water) concentration in μg/L

Q<sub>r</sub> = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter is greater than the WQC calculated for that parameter in accordance with II.A, above

### AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not detected in or not sampled in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

#### AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

**Dilution Factor** 1.0

| Dilution Factor                                   | 1.0             |              |                  |              |                                   |              |
|---------------------------------------------------|-----------------|--------------|------------------|--------------|-----------------------------------|--------------|
| A. Inorganics                                     | TBEL applies if | bolded       | WQBEL applies i  | f bolded     | Compliance Level applies if shown |              |
| Ammonia                                           | Report          | mg/L         |                  |              | applies if shown                  |              |
| Chloride                                          | Report          | μg/L         |                  |              |                                   |              |
| Total Residual Chlorine                           | 0.2             | mg/L         | 86.8             | μg/L         |                                   | μg/L         |
| Total Suspended Solids                            | 30              | mg/L         |                  | PB/ 2        |                                   | FB/ 2        |
| Antimony                                          | 206             | μg/L         | 7407             | μg/L         |                                   |              |
| Arsenic                                           | 104             | μg/L         | 417              | μg/L         |                                   |              |
| Cadmium                                           | 10.2            | μg/L         | 102.5            | μg/L         |                                   |              |
| Chromium III                                      | 323             | μg/L         | 1157.4           | μg/L         |                                   |              |
| Chromium VI                                       | 323             | μg/L         | 583              | μg/L         |                                   |              |
| Copper                                            | 242             | μg/L         | 43.2             | μg/L         |                                   |              |
| Iron                                              | 5000            | μg/L         |                  | μg/L         |                                   |              |
| Lead                                              | 160             | μg/L         | 98.6             | μg/L         |                                   |              |
| Mercury                                           | 0.739           | μg/L         | 12.80            | μg/L         |                                   |              |
| Nickel                                            | 1450            | μg/L         | 95.9             | μg/L         |                                   |              |
| Selenium                                          | 235.8           | μg/L         | 823              | μg/L         |                                   |              |
| Silver                                            | 35.1            | μg/L         | 25.9             | μg/L         |                                   |              |
| Zinc                                              | 420             | μg/L         | 990              | μg/L         |                                   |              |
| Cyanide                                           | 178             | mg/L         | 11.6             | μg/L         |                                   | μg/L         |
| B. Non-Halogenated VOCs                           |                 | J            |                  |              |                                   |              |
| Total BTEX                                        | 100             | $\mu g/L$    |                  |              |                                   |              |
| Benzene                                           | 5.0             | μg/L         |                  |              |                                   |              |
| 1,4 Dioxane                                       | 200             | μg/L         |                  |              |                                   |              |
| Acetone                                           | 7.97<br>1,080   | mg/L<br>μg/L | 3472             | μg/L         |                                   |              |
| Phenol C. Halogenated VOCs                        | 1,000           | μg/L         | 3472             | μg/L         |                                   |              |
| Carbon Tetrachloride                              | 4.4             |              | 18.5             | μg/L         |                                   |              |
| 1,2 Dichlorobenzene                               | 600             | $\mu g/L$    |                  |              |                                   |              |
| 1,3 Dichlorobenzene                               | 320             | $\mu g/L$    |                  |              |                                   |              |
| 1,4 Dichlorobenzene                               | 5.0             | μg/L         |                  |              |                                   |              |
| Total dichlorobenzene                             | <br>70          | μg/L<br>μg/L |                  |              |                                   |              |
| 1,1 Dichloroethane 1,2 Dichloroethane             | 5.0             | μg/L<br>μg/L |                  |              |                                   |              |
| 1,1 Dichloroethylene                              | 3.2             | μg/L<br>μg/L |                  |              |                                   |              |
| Ethylene Dibromide                                | 0.05            | μg/L         |                  |              |                                   |              |
| Methylene Chloride                                | 4.6             | $\mu g/L$    |                  |              |                                   |              |
| 1,1,1 Trichloroethane                             | 200             | μg/L         |                  |              |                                   |              |
| 1,1,2 Trichloroethane                             | 5.0             | μg/L         |                  |              |                                   |              |
| Trichloroethylene Tetrachloroethylene             | 5.0<br>5.0      | μg/L<br>μg/L | 38.2             | μg/L         |                                   |              |
| cis-1,2 Dichloroethylene                          | 70              | μg/L<br>μg/L | 36.2             | μg/L         |                                   |              |
| Vinyl Chloride                                    | 2.0             | μg/L         |                  |              |                                   |              |
| D. Non-Halogenated SVOCs                          |                 |              |                  |              |                                   |              |
| Total Phthalates                                  | 190             | $\mu g/L$    |                  | $\mu g/L$    |                                   |              |
| Diethylhexyl phthalate                            | 101             | μg/L         | 25.5             | μg/L         |                                   |              |
| Total Group I Polycyclic<br>Aromatic Hydrocarbons | 1.0             | μg/L         |                  |              |                                   |              |
| Benzo(a)anthracene                                | 1.0             | μg/L         | 0.0440           | μg/L         | 0.1                               | μg/L         |
| Benzo(a)pyrene                                    | 1.0             | μg/L         | 0.0440           | μg/L         | 0.1                               | μg/L         |
| Benzo(b)fluoranthene                              | 1.0             | $\mu g/L$    | 0.0440           | $\mu g/L$    | 0.1                               | $\mu g/L$    |
| Benzo(k)fluoranthene                              | 1.0             | μg/L         | 0.0440           | μg/L         | 0.1                               | μg/L         |
| Chrysene                                          | 1.0             | μg/L         | 0.0440           | μg/L         | 0.1                               | μg/L         |
| Dibenzo(a,h)anthracene<br>Indeno(1,2,3-cd)pyrene  | 1.0<br>1.0      | μg/L<br>μg/L | 0.0440<br>0.0440 | μg/L<br>μg/L | 0.1<br>0.1                        | μg/L<br>μg/L |
| Total Group II Polycyclic                         | 1.0             | μg/L         | 0.0440           | μg/L         | 0.1                               | μg/L         |
| Aromatic Hydrocarbons                             | 100             | $\mu g/L$    |                  |              |                                   |              |
| Naphthalene                                       | 20              | $\mu g/L$    |                  |              |                                   |              |
| E. Halogenated SVOCs                              | 0.000064        | 77           |                  |              | 0.5                               | 7            |
| Total Polychlorinated Biphenyls                   | 0.000064<br>1.0 | μg/L<br>μα/Ι |                  |              | 0.5                               | μg/L         |
| Pentachlorophenol F. Fuels Parameters             | 1.0             | μg/L         |                  |              |                                   |              |
| Total Petroleum Hydrocarbons                      | 5.0             | mg/L         |                  |              |                                   |              |
| Ethanol                                           | Report          | mg/L         |                  |              |                                   |              |
| Methyl-tert-Butyl Ether                           | 70              | μg/L         | 231              | $\mu g/L$    |                                   |              |
| tert-Butyl Alcohol                                | 120             | μg/L         |                  |              |                                   |              |
| tert-Amyl Methyl Ether                            | 90              | μg/L         |                  |              |                                   |              |
|                                                   |                 |              |                  |              |                                   |              |

Subject: RE: 237 Washington Street, Attleboro - EPA RGP

Tuesday, July 31, 2018 at 2:47:00 PM Eastern Daylight Time

From: Vakalopoulos, Catherine (DEP)

To: Leah Smith

#### Hi Leah,

The outfall appears to be at the outlet of Lake Como which flows to an unnamed stream. In GIS it looks like this stream is low-lying with wetlands. Since this is the receiving water, this is where the 7Q10 should be calculated. The reason why StreamStats isn't working for you is because the drainage area is very small and it's possible the stream goes dry during certain times of the year. Therefore, there is no dilution at this site (DF = 1).

For the permit limit calculation spreadsheet, even though the treatment system operates only 8 hours a day, you should convert to MGD without taking this into account because we want to know the worst case scenario, i.e. when 60 gpm is being discharged in order to be protective of the environment. So (60 gpm x 60  $\times$  24)/1 mil = 0.0864 MGD. The same would be the case if you were calculating a dilution factor.

Here is the WQ information you will need when filling out the NOI:

This unnamed stream flows into another unnamed stream and then to the Seven Mile River which is in the Ten Mile Watershed. The water bodies from Lake Como to the Seven Mile River are not Outstanding Resource Waters. The Seven Mile River has a segment ID of MA52-08 and is classified as Class B. There are no TMDLs for this river and to see the impairments, go to:

https://www.mass.gov/files/documents/2016/08/sa/14list2 0.pdf and look up "MA52-08". I just checked and it's impaired for fecal coliform.

In addition to submitting the NOI to EPA, if this is not currently an MCP site, you will also have to apply with the state (submit same NOI to me, fill out a transmittal form, and submit a \$500 fee unless exempt). Instructions are located here: <a href="https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent">https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</a>.

Please let me know if you have any additional questions.

### Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

**From:** Leah Smith [mailto:lsmith@tg2solutions.com]

**Sent:** Monday, July 30, 2018 6:28 PM **To:** Vakalopoulos, Catherine (DEP) Cc: Jason Sherburne; Eric Simpson

Subject: 237 Washington Street, Attleboro - EPA RGP

Good evening,

I'm working on behalf of a client to complete a NOI for a RGP for redevelopment activities at 237 Washington Street in Attleboro, MA. This facility has historically been a gasoline station and will be redeveloped into another gasoline station. The RGP is for dewatering activities during redevelopment.

Attached please find the dilution factor spreadsheet and effluent limit calculations. A dilution factor of 1.2 is being requested for this RGP. Calculations are based on the groundwater concentrations at the facility (MW-

A), the surface water samples collected from Lake Como, the 7Q10 from USGS, and the projected maximum daily flow. The discharge location is a catch basin located adjacent to the site to the south off Highland Avenue, which discharges to Lake Como – see Figure 2A.

Please note that the Streamstats data is attached, and is based on the basin delineated north of the facility where Lake Como is located. There is a small stream identified on Streamstats to the east, however it did not have a 7Q10, therefore, the 7Q10 for Lake Como was selected. This provided a 7Q10 flow of 0.00452 cubic feet per second (cfs). The discharge flow was calculated based on the design flow: (60 gpm x 60 mph x 8 hpd) / 1 million = 0.0288 mgd.

I've attached a table with the summary of contaminants detected in the influent sample (site groundwater) and the outfall surface water sample, and a site plan showing the proposed construction location for dewatering and outfall location.

Could you please check the 7Q10 and dilution factor? Please let me know if you require any additional information.

Thank you for your help,

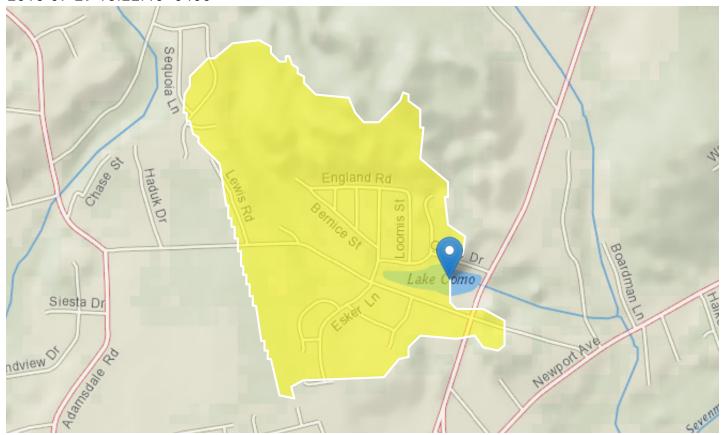
Leah Smith

# **StreamStats Report**

Region ID:

MA

Workspace ID:


MA20180729172231194000

Clicked Point (Latitude, Longitude):

41.92624, -71.35715

Time:

2018-07-29 13:22:45 -0400



### **Basin Characteristics**

| Parameter<br>Code | Parameter Description                                  | Value  | Unit                    |
|-------------------|--------------------------------------------------------|--------|-------------------------|
| DRNAREA           | Area that drains to a point on a stream                | 0.27   | square miles            |
| BSLDEM250         | Mean basin slope computed from 1:250K DEM              | 3.047  | percent                 |
| DRFTPERSTR        | Area of stratified drift per unit of stream length     | 0.0973 | square mile per<br>mile |
| MAREGION          | Region of Massachusetts 0 for Eastern 1 for<br>Western | 0      | dimensionless           |

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value  | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|--------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 0.27   | square miles            | 1.61         | 149          |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 3.047  | percent                 | 0.32         | 24.6         |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | 0.0973 | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0      | dimensionless           | 0            | 1            |

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

| Statistic              | Value   | Unit   |
|------------------------|---------|--------|
| 7 Day 2 Year Low Flow  | 0.0133  | ft^3/s |
| 7 Day 10 Year Low Flow | 0.00452 | ft^3/s |

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or

implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.2.1



### ATTACHMENT C



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Jason Sherburne Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: Attleboro 237-RGP (N/A)

ESS Laboratory Work Order Number: 1807406

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 5:28 pm, Jul 25, 2018

### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807406

### SAMPLE RECEIPT

The following samples were received on July 18, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

**Lab Number** 1807406-01

Sample Name Receiving Water Matrix Surface Water **Analysis** 

200.7, 245.1, 2520B, 350.1, 3500Cr B-2009, 4500

H+B

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807406

**PROJECT NARRATIVE** 

Classical Chemistry
1807406-01

No other observations noted.

**End of Project Narrative.** 

### DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.





The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807406

### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 04-2.1 - VPH

**Prep Methods** 

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP Client Sample ID: Receiving Water Date Sampled: 07/18/18 11:00

Percent Solids: N/A

1 11 1

ESS Laboratory Work Order: 1807406 ESS Laboratory Sample ID: 1807406-01

Sample Matrix: Surface Water

Units: mg/L

Extraction Method: 3005A/200.7

### **Total Metals**

| <b>Analyte</b> | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | <b>Analyst</b> | <b>Analyzed</b> | I/V | F/V | <b>Batch</b> |
|----------------|----------------------|------------|--------|--------------|-----------|----------------|-----------------|-----|-----|--------------|
| Antimony       | ND (0.005)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Arsenic        | ND (0.005)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Beryllium      | ND (0.0001)          |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Cadmium        | ND (0.0010)          |            | 200.7  |              | 1         | KJK            | 07/20/18 16:03  | 100 | 10  | CG81836      |
| Chromium       | ND (0.002)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Copper         | ND (0.002)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Hardness       | <b>70100</b> (82.4)  |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 1   | 1   | [CALC]       |
| Iron           | <b>0.061</b> (0.010) |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Lead           | ND (0.002)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Mercury        | ND (0.00020)         |            | 245.1  |              | 1         | MJV            | 07/20/18 14:35  | 20  | 40  | CG81942      |
| Nickel         | ND (0.005)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Selenium       | ND (0.005)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Silver         | ND (0.001)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Thallium       | ND (0.010)           |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |
| Zinc           | <b>0.010</b> (0.005) |            | 200.7  |              | 1         | KJK            | 07/20/18 3:28   | 100 | 10  | CG81836      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP Client Sample ID: Receiving Water Date Sampled: 07/18/18 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1807406 ESS Laboratory Sample ID: 1807406-01

Sample Matrix: Surface Water

### **Classical Chemistry**

| <b>Analyte</b>      | Results (MRL)       | MDL Method 1               | <u>Limit</u> <u>DF</u> | Analyst | <b>Analyzed</b> | <u>Units</u> | Batch   |
|---------------------|---------------------|----------------------------|------------------------|---------|-----------------|--------------|---------|
| Ammonia as N        | ND (0.10)           | 350.1                      | 1                      | JLK     | 07/20/18 18:57  | mg/L         | CG81903 |
| Hexavalent Chromium | ND (10.0)           | 3500Cr B-2009              | 1                      | CCP     | 07/18/18 16:55  | ug/L         | CG81826 |
| pН                  | 7.30 (N/A)          | 4500 H+ B                  | 1                      | JLK     | 07/18/18 17:34  | S.U.         | CG81823 |
| pH Sample Temp      | Aqueous pH measured | in water at 21.2 °C. (N/A) |                        |         |                 |              |         |
| Salinity            | <b>0.2</b> (0.1)    | 2520B                      | 1                      | JLK     | 07/20/18 16:39  | ppt          | CG82041 |

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807406

### **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

#### **Total Metals**

| Batch CG81836 - 3005A/200.7 |         |         |             |          |     |        |     |    |  |
|-----------------------------|---------|---------|-------------|----------|-----|--------|-----|----|--|
| Blank                       |         |         |             |          |     |        |     |    |  |
| Antimony                    | ND      | 0.005   | mg/L        |          |     |        |     |    |  |
| Arsenic                     | ND      | 0.005   | mg/L        |          |     |        |     |    |  |
| Beryllium                   | ND      | 0.0001  | mg/L        |          |     |        |     |    |  |
| Cadmium                     | ND      | 0.0020  | mg/L        |          |     |        |     |    |  |
| Chromium                    | ND      | 0.002   | mg/L        |          |     |        |     |    |  |
| Copper                      | ND      | 0.002   | mg/L        |          |     |        |     |    |  |
| Hardness                    | ND      | 82.4    | ug/L        |          |     |        |     |    |  |
| Iron                        | ND      | 0.010   | mg/L        |          |     |        |     |    |  |
| Lead                        | ND      | 0.002   | mg/L        |          |     |        |     |    |  |
| Nickel                      | ND      | 0.005   | mg/L        |          |     |        |     |    |  |
| Selenium                    | ND      | 0.005   | mg/L        |          |     |        |     |    |  |
| Silver                      | ND      | 0.001   | mg/L        |          |     |        |     |    |  |
| Thallium                    | ND      | 0.010   | mg/L        |          |     |        |     |    |  |
| Zinc                        | ND      | 0.005   | mg/L        |          |     |        |     |    |  |
| LCS                         |         |         |             |          |     |        |     |    |  |
| Antimony                    | 0.045   | 0.005   | mg/L        | 0.05015  | 90  | 85-115 |     |    |  |
| Arsenic                     | 0.046   | 0.005   | mg/L        | 0.05000  | 92  | 85-115 |     |    |  |
| Beryllium                   | 0.0046  | 0.0001  | mg/L        | 0.005000 | 92  | 85-115 |     |    |  |
| Cadmium                     | 0.0234  | 0.0020  | mg/L        | 0.02502  | 94  | 85-115 |     |    |  |
| Chromium                    | 0.047   | 0.002   | mg/L        | 0.05000  | 93  | 85-115 |     |    |  |
| Copper                      | 0.050   | 0.002   | mg/L        | 0.05000  | 99  | 85-115 |     |    |  |
| Hardness                    | 3130    | 82.4    | ug/L        |          |     |        |     |    |  |
| Iron                        | 0.236   | 0.010   | mg/L        | 0.2501   | 94  | 85-115 |     |    |  |
| Lead                        | 0.047   | 0.002   | mg/L        | 0.05000  | 95  | 85-115 |     |    |  |
| Nickel                      | 0.047   | 0.005   | mg/L        | 0.05000  | 93  | 85-115 |     |    |  |
| Selenium                    | 0.086   | 0.005   | mg/L        | 0.09995  | 86  | 85-115 |     |    |  |
| Silver                      | 0.024   | 0.001   | mg/L        | 0.02498  | 95  | 85-115 |     |    |  |
| Thallium                    | 0.047   | 0.010   | mg/L        | 0.05005  | 95  | 85-115 |     |    |  |
| Zinc                        | 0.047   | 0.005   | mg/L        | 0.05000  | 94  | 85-115 |     |    |  |
| LCS Dup                     |         |         |             |          |     |        |     |    |  |
| Hardness                    | 2870    | 82.4    | ug/L        |          |     |        |     |    |  |
| Batch CG81942 - 245.1/7470A |         |         |             |          |     |        |     |    |  |
| Blank                       |         |         |             |          |     |        |     |    |  |
| Mercury                     | ND      | 0.00020 | mg/L        |          |     |        |     |    |  |
| LCS                         |         |         |             |          |     |        |     |    |  |
| Mercury                     | 0.00655 | 0.00020 | mg/L        | 0.006000 | 109 | 85-115 |     |    |  |
| LCS Dup                     |         |         | <u></u>     |          |     |        |     |    |  |
| Mercury                     | 0.00651 | 0.00020 | mg/L        | 0.006000 | 109 | 85-115 | 0.5 | 20 |  |
|                             | 0.00031 |         | assical Che |          | 103 | 03 113 | 0.5 | 20 |  |

Classical Chemistry

Batch CG81826 - General Preparation

Blank



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807406

### **Quality Control Data**

| Analyte                             | Result | MRL  | Units       | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|-------------------------------------|--------|------|-------------|----------------|------------------|-------|----------------|-----|--------------|-----------|
|                                     |        |      | assical Che |                |                  | ,,,,, |                |     |              |           |
|                                     |        |      |             |                |                  |       |                |     |              |           |
| Batch CG81826 - General Preparation |        |      |             |                |                  |       |                |     |              |           |
| Hexavalent Chromium                 | ND     | 10.0 | ug/L        |                |                  |       |                |     |              |           |
| LCS                                 |        |      |             |                |                  |       |                |     |              |           |
| Hexavalent Chromium                 | 0.499  |      | mg/L        | 0.4998         |                  | 100   | 90-110         |     |              |           |
| LCS Dup                             |        |      |             |                |                  |       |                |     |              |           |
| Hexavalent Chromium                 | 0.502  |      | mg/L        | 0.4998         |                  | 100   | 90-110         | 0.6 | 20           |           |
| Batch CG81903 - NH4 Prep            |        |      |             |                |                  |       |                |     |              |           |
| Blank                               |        |      |             |                |                  |       |                |     |              |           |
| Ammonia as N                        | ND     | 0.10 | mg/L        |                |                  |       |                |     |              |           |
| ıcs                                 |        |      |             |                |                  |       |                |     |              |           |
| Ammonia as N                        | 0.11   | 0.10 | mg/L        | 0.09994        |                  | 108   | 80-120         |     |              |           |
| ıcs                                 |        |      |             |                |                  |       |                |     |              |           |
| Ammonia as N                        | 1.06   | 0.10 | mg/L        | 0.9994         |                  | 106   | 80-120         |     |              |           |
| Batch CG82041 - General Preparation |        |      |             |                |                  |       |                |     |              |           |
| LCS                                 |        |      |             |                |                  |       |                |     |              |           |
| Salinity                            | 0.9    |      | ppt         | 1.000          |                  | 94    | 85-115         |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807406

#### **Notes and Definitions**

| Z16 | Aqueous pH measured in water at 21.2 °C.           |
|-----|----------------------------------------------------|
| U   | Analyte included in the analysis, but not detected |

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D Diluted.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit Limit of Detection LOD Limit of Quantitation LOQ **Detection Limit** DL I/V Initial Volume F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807406

### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

# **ESS Laboratory Sample and Cooler Receipt Checklist**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |                                              |                                             | ESS Project ID: _                                                                                                                   | 1807406_                                  |                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tg2 TB/D                                                                                                                                                                                                                                                                                                                       | s                                            |                                             | Date Received:                                                                                                                      | 7/18/2018                                 |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |                                              |                                             | Project Due Date: _                                                                                                                 |                                           |                                          |
| nned/Delivered V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /ia:ESS                                                                                                                                                                                                                                                                                                                        | Courier                                      |                                             | Days for Project:                                                                                                                   |                                           |                                          |
| pped 2 direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                |                                              |                                             | Days for 1 rejeen _                                                                                                                 |                                           |                                          |
| Air bill manifest pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | resent?                                                                                                                                                                                                                                                                                                                        |                                              | No                                          | 6. Does COC match bott                                                                                                              | les?                                      | No                                       |
| Air No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                |                                              | No _                                        | 7. Is COC complete and                                                                                                              | correct?                                  | Yes                                      |
| Were custody sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | als present:                                                                                                                                                                                                                                                                                                                   |                                              |                                             | 8. Were samples receive                                                                                                             | ed intact?                                | Yes                                      |
| Is radiation count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t <100 CPM?                                                                                                                                                                                                                                                                                                                    |                                              | Yes                                         |                                                                                                                                     | about <u>short holds &amp; ru</u>         | ushes? (Yes/ No / NA                     |
| Is a Cooler Prese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ent?<br>lced with:                                                                                                                                                                                                                                                                                                             |                                              | Yes                                         |                                                                                                                                     | received outside of hold                  | 173                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d and dated by clien                                                                                                                                                                                                                                                                                                           | ,                                            | Yes                                         |                                                                                                                                     |                                           |                                          |
| . Any Subcontrac<br>ESS Sample<br>Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IDs:<br>lysis:                                                                                                                                                                                                                                                                                                                 | Yes /(N                                      |                                             | 12. Were VOAs receive<br>a. Air bubbles in aqueo<br>b. Does methanol cove                                                           | us VOAs?                                  | Yes / No<br>Yes / No<br>Yes / No / N     |
| 3 Are the sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAT:es properly preserverved upon receipt:                                                                                                                                                                                                                                                                                     | 7                                            | es / No                                     | Time:                                                                                                                               | By:<br>By:                                |                                          |
| ample Receiving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Notes:                                                                                                                                                                                                                                                                                                                         |                                              |                                             | •                                                                                                                                   | 1                                         |                                          |
| OC collec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion date = 6                                                                                                                                                                                                                                                                                                                  | /18 ; La                                     | bels = 7                                    | /18 N 7 S                                                                                                                           | [&                                        |                                          |
| COC collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | need to contact Projeed to contact the cl                                                                                                                                                                                                                                                                                      | ect Manager                                  |                                             | /18                                                                                                                                 | By:                                       |                                          |
| 14. Was there a re<br>Who was contacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | need to contact Projeed to contact the cl                                                                                                                                                                                                                                                                                      | ect Manager<br>ient?                         | ?                                           | Yes / No<br>Yes / No<br>Time:                                                                                                       |                                           | ecord pH (Cyanide and 608<br>Pesticides) |
| 14. Was there a re<br>Who was contacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | need to contact Projeed to contact the cl                                                                                                                                                                                                                                                                                      | ect Manager<br>ient?  Air  Bubbles           | ?<br>Date: _                                | Yes / No<br>Yes / No<br>Time:                                                                                                       | reservative Re                            | ecord pH (Cyanide and 608                |
| 14. Was there a na. Was there a na. Who was contacted.  Sample Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | need to contact Projeed to contact the cled?  ntainer Proper ID Container                                                                                                                                                                                                                                                      | ect Manager<br>ient?  Air  Bubbles  Present  | ?  Date: _  Sufficient Volume               | Yes No Yes / No Time: Container Type                                                                                                | reservative Re                            | ecord pH (Cyanide and 608                |
| 14. Was there a na. Was there a na. Who was contacted.  Sample Connumber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | need to contact Projeed to contact the cled?  Intainer Proper ID Container  17754 Yes                                                                                                                                                                                                                                          | ect Manager<br>ient?  Air Bubbles Present NA | ? Date: _ Sufficient Volume Yes             | Yes / No Yes / No Time:  Container Type  P  1L Amber - Unpres                                                                       | reservative Re                            | ecord pH (Cyanide and 608                |
| Sample Con<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | need to contact Project to contact the cleed?  Intainer Proper Container  ID Container  IT754 Yes  IT755 Yes                                                                                                                                                                                                                   | Air Bubbles Present NA NA                    | ? Date: _ Sufficient Volume Yes Yes         | Container Type  1L Amber - Unpres 1L Amber - Unpres 500 ml. Poly - H2SO4                                                            | reservative Re<br>NP<br>NP<br>NP<br>H2SO4 | ecord pH (Cyanide and 608                |
| Sample Con<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | need to contact Project to contact the cled?  Intainer Proper Container  ID Container  IT754 Yes  IT7755 Yes  IT7756 Yes                                                                                                                                                                                                       | Air Bubbles Present NA NA NA                 | ? Date: _ Sufficient Volume Yes Yes Yes Yes | Container Type  L Amber - Unpres L Amber - Unpres Soo mL Poly - H2SO4 500 mL Poly - HNO3                                            | reservative  NP NP NP H2SO4 HNO3          | ecord pH (Cyanide and 608                |
| Sample Con<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | need to contact Project to contact the cleed?  Intainer Proper Container  ID Container  IT Yes  IT Yes | Air Bubbles Present NA NA NA                 | ? Date: _ Sufficient Volume Yes Yes         | Container Type  1L Amber - Unpres 1L Amber - Unpres 500 ml. Poly - H2SO4                                                            | reservative Re<br>NP<br>NP<br>NP<br>H2SO4 | ecord pH (Cyanide and 608                |
| Sample Con<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | need to contact Project to contact the cled?  Intainer Proper Container  ID Container  IT754 Yes  IT7755 Yes  IT7756 Yes                                                                                                                                                                                                       | Air Bubbles Present NA NA NA                 | Pate:                                       | Container Type  L Amber - Unpres L Amber - Unpres Soo mL Poly - H2SO4 500 mL Poly - HNO3                                            | reservative  NP NP NP H2SO4 HNO3          | ecord pH (Cyanide and 608                |
| Sample Con<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | need to contact Project to contact the cleed?  Intainer Proper Container  ID Container  IT Yes  IT Yes | Air Bubbles Present NA NA NA                 | Pate:                                       | Container Type  L Amber - Unpres L Amber - Unpres Soo mL Poly - H2SO4 500 mL Poly - HNO3                                            | reservative  NP NP NP H2SO4 HNO3          | ecord pH (Cyanide and 608                |
| Sample Con<br>Number  01 24 01 24 01 24 01 24 01 24 01 24 01 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | need to contact Project to contact the cled?  Intainer Proper Container  ID Container  IT754 Yes  IT7755 Yes  IT7756 Yes  IT7757 Yes  IT7758 Yes  IT7758 Yes                                                                                                                                                                   | Air Bubbles Present NA NA NA NA NA NA        | Pate:                                       | Container Type  L Amber - Unpres L Amber - Unpres Soo mL Poly - H2SO4 500 mL Poly - HNO3                                            | reservative  NP NP NP H2SO4 HNO3          | ecord pH (Cyanide and 608                |
| Sample Con<br>Number  01 24 01 24 01 24 01 24 01 24 01 24 01 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | need to contact Project to contact the cleed?  Intainer Proper Container  ID Container  IT754 Yes  IT755 Yes  IT756 Yes  IT757 Yes  IT757 Yes  IT758 Yes                                                                                                                                                                       | Air Bubbles Present NA NA NA NA NA NA        | Pate:                                       | Container Type  L Amber - Unpres L Amber - Unpres On ML Poly - H2SO4 500 mL Poly - HNO3 500 mL Poly - HNO3                          | reservative  NP NP H2SO4 HNO3 HNO3        | ecord pH (Cyanide and 608                |
| Sample Con<br>Number  O1 24 O1 24 O1 24 O1 24 O1 24 Condition of the part of the | need to contact Project to contact the cled?  Intainer Proper Container  ID Container  IT754 Yes  IT7755 Yes  IT7756 Yes  IT7757 Yes  IT7758 Yes  IT7758 Yes                                                                                                                                                                   | Air Bubbles Present NA NA NA NA NA NA        | Pate:                                       | Container Type  L Amber - Unpres L Amber - Unpres On ML Poly - H2SO4 500 mL Poly - HNO3 500 mL Poly - HNO3                          | reservative Re NP NP H2SO4 HNO3 HNO3      | ecord pH (Cyanide and 608                |
| Sample Con Number  01 24 01 24 01 24 01 24 01 24 01 24 01 24 01 24 Condition of the conditi   | need to contact Project to contact the cled?  Intainer Proper Container  ID Container  IT754 Yes  IT7755 Yes  IT7756 Yes  IT7757 Yes  IT7758 Yes  IT7758 Yes                                                                                                                                                                   | Air Bubbles Present NA NA NA NA NA NA        | Pate:                                       | Container Type  L Amber - Unpres L Amber - Unpres Soo mL Poly - H2SO4 Soo mL Poly - HNO3 Soo mL Poly - HNO3                         | reservative  NP NP H2SO4 HNO3 HNO3        | ecord pH (Cyanide and 608                |
| Sample Con<br>Number  O1 24 O1 24 O1 24 O1 24 O1 24 Con Review  Are all necessar  Completed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | need to contact Project to contact the cled?  Intainer Proper Container  ID Container  IT754 Yes  IT7755 Yes  IT7756 Yes  IT7757 Yes  IT7758 Yes  IT7758 Yes                                                                                                                                                                   | Air Bubbles Present NA NA NA NA NA NA        | Pate:                                       | Container Type  L Amber - Unpres L Amber - Unpres Soo mL Poly - H2SO4 Soo mL Poly - HNO3 Soo mL Poly - HNO3  Yes / No  Pate & Time: | reservative Re NP NP H2SO4 HNO3 HNO3      | ecord pH (Cyanide and 608                |

|                              |                                                           |              |              |               |             |              |             |          |                |          |          |          |        |        |       |       |         |           |             |        |                  | 10,        |                                  |
|------------------------------|-----------------------------------------------------------|--------------|--------------|---------------|-------------|--------------|-------------|----------|----------------|----------|----------|----------|--------|--------|-------|-------|---------|-----------|-------------|--------|------------------|------------|----------------------------------|
|                              |                                                           |              |              |               |             |              |             | 231      | Elm S          | Stree    | et, Bla  | acks     | stone, | MA     | 01504 | 1     |         |           |             |        |                  |            |                                  |
| Too                          |                                                           |              | 10000        | 2727020 2020  |             |              |             |          |                |          |          |          |        |        |       |       |         |           |             |        |                  |            |                                  |
| TOLUT                        | IONS                                                      |              | CI           | HAIN          | OF          | CL           | JST         | UL       | Υ              | R        | =0       | Ur       | (D     |        |       | Labo  | oratory | r:        |             |        |                  |            | ESS                              |
|                              |                                                           |              |              |               |             |              |             | _        |                |          |          |          |        |        |       |       |         | formation |             |        |                  | pol .      |                                  |
| Client                       | Tg2 Solutions                                             |              |              |               |             |              |             | -        |                |          |          | 7        | T      |        |       | Airei | yacan i |           |             |        |                  |            |                                  |
| Address<br>Contact           | 231 Elm Street, Blackstone<br>Jason Sherburne             | MA           |              |               |             |              |             | 7        | MA             | ATF      | RIX      | -        | ľ      | ALC    |       |       |         |           |             |        |                  |            | Lab to Invoice:<br>Tg2 Solutions |
| Phone #                      | 617-947-7702                                              |              |              |               |             |              |             |          |                |          |          | - 1      | 7      | 3      | 0     |       | 1       |           |             |        |                  |            | Lab Report to:                   |
|                              |                                                           |              |              |               |             |              |             |          | Waste          |          |          |          | 0      |        | 350   |       |         |           |             |        |                  |            | sherburne@tg2solutions.com       |
| Project Name                 | ATTLEBORS ?                                               | 237          |              |               |             |              |             | 3.       | Groui<br>Drink |          |          | 1        | (80,   | 5      |       |       |         |           |             |        |                  |            | Billing Reference:               |
| Address<br>Contact           | Jason Sherburne                                           |              |              |               |             |              |             |          | Soil<br>Surfa  | ce Wa    | ater     |          | +      | W      | C     | 1     |         | 5         |             |        |                  |            |                                  |
| Location ID #<br>Description |                                                           |              |              |               |             |              |             |          | Other          |          | _        |          | 2      | NO     | 7     | J     |         | 7         |             |        |                  |            |                                  |
| Description                  |                                                           | Colle        | ection       |               | #           | of bottles   |             | -        | Pres           | serva    | tion     |          | -      | 5      | To    | X     |         | 5         |             |        |                  |            |                                  |
|                              |                                                           | 0010         |              | Matrix        |             | Туре         |             | I        | 3              | 40       | E   5    | 9        | 0      | 0      | 5     | W W   | Na      | N         |             |        |                  |            | Comments:                        |
|                              | A Delet of Collection                                     | Date         | Time         |               | Glass       | Plastic      | VOA's       | HG N     |                | _        | Other    | None     | 0      | 7      | 4     |       | 7       | ×         |             | -      | +                | _          | Confidence.                      |
| Field ID                     | Point of Collection  NO WATER                             | 6/18         | 11:00        | 5             | 2           | 3            |             |          | X              | X        | +        | X        | X      | ×      | 7     | ×     | ×       | 7         |             |        |                  |            |                                  |
| CCOLIN                       |                                                           | 7/18         | /18*         |               |             |              |             | +        | +              | $\vdash$ | +        | $\vdash$ |        |        |       |       |         |           |             |        |                  | _          |                                  |
|                              |                                                           |              |              |               |             |              |             |          |                |          |          |          |        |        |       |       |         |           | -           | _      | +                | _          |                                  |
|                              |                                                           |              |              |               |             |              |             | -        | -              | $\vdash$ | _        |          | -      |        |       |       |         |           | _           |        |                  |            |                                  |
|                              |                                                           |              |              |               | -           |              |             | +        | +              |          | +        |          |        |        |       |       |         |           |             |        |                  | _          |                                  |
|                              |                                                           |              | -            |               |             |              |             |          |                |          |          |          |        |        |       |       | -       | -         | _           | -      |                  |            |                                  |
|                              |                                                           |              |              |               |             |              |             | $\vdash$ | +              |          |          |          |        |        |       |       |         |           |             |        |                  |            |                                  |
|                              |                                                           |              |              |               |             |              |             |          | _              |          | -        | -        | -      |        |       |       |         |           |             |        | Additions        | al Informa | ition                            |
|                              | Tumaround Information                                     |              |              |               |             |              |             | QA       | VQC            | _        |          |          |        |        |       |       |         |           |             |        |                  | -          |                                  |
| [V] est 10.0                 |                                                           | Approved By  | V:           |               |             | SPECIAL      | QAQC        | or DA    | ATA R          | equire   | ments    | :        |        |        |       | 0-    | P       | RE        | RAI         | 7      | APP              | LICE       | الماريخ                          |
| 7 Day R                      | Day Turnaround                                            |              |              | 1             | 114         | 67           | MIL         |          | DE             | 24       | 15       |          |        |        |       | KC    | 7       | 1         |             |        | Elizabeth Social |            |                                  |
| 7 Day R                      | rush                                                      |              |              | ]             | 011         |              |             | RTA      | 20             | in       | -11E     | 157      | 1      |        |       |       |         |           |             |        |                  |            |                                  |
| 5 Da                         | Day Tumaround<br>RUSH<br>BAY RUSH (HIGH PRIORITY)<br>RUSH |              |              | D             | EE          | 700          | 7           |          |                |          |          |          |        |        |       |       |         |           |             |        |                  |            |                                  |
| 3 Day R                      | RUSH                                                      |              |              | -             |             |              |             |          |                |          |          |          |        |        |       |       |         |           |             |        |                  |            |                                  |
| 2 Day R                      | RUSH                                                      |              |              |               |             |              |             |          |                |          |          |          |        |        |       |       |         |           |             |        |                  |            |                                  |
| 1 Day F                      | RUSH                                                      |              |              |               |             |              |             |          |                |          |          |          |        |        |       |       |         |           |             |        |                  |            |                                  |
|                              | Sample Custody                                            | must be docu | mented below | each time sar | mples chang | e possesion, | including o | ourier d | elivery.       | Page     | TVEDBy:  | 10       |        |        |       |       |         |           | Date Time:  | 181    | 181              | 22         | 0                                |
| Reliperative by              | Sampler: 7 (G                                             |              |              | Date 1        | îme:        |              |             |          |                | 1 /      | ived By: | -        | And    | $\sim$ |       |       |         |           | Date Time:  | 15     | 2/17             |            | 30                               |
| Reilnessigner W              | Sampler:                                                  |              |              | Date 1        | 18          | 8            | 30          | 8        |                | 2        | ~        |          | KZ     | Seal#  |       |       |         |           | where appli | icable | x (ro            | On log     | 2.8 ICERCTOMP                    |
| 2 Relinquished by            | y Sampler:                                                | Date Time:   |              | Recei         | ed By:      |              |             |          |                | Date     | Time:    |          |        | 2681.8 |       |       |         |           |             |        |                  | M          | 2.10                             |

|                                                        |                   |              |              |             |              |           |         |          |             |          |               |       |        |       |      |           |          |               | 18     | 5074      | 106          |           |                              |               |
|--------------------------------------------------------|-------------------|--------------|--------------|-------------|--------------|-----------|---------|----------|-------------|----------|---------------|-------|--------|-------|------|-----------|----------|---------------|--------|-----------|--------------|-----------|------------------------------|---------------|
|                                                        |                   |              |              |             |              |           | 231     | Elm      | Stre        | et, l    | Black         | stone | , MA   | 01504 | 4    |           |          |               |        |           |              |           |                              |               |
| To                                                     |                   | 01           | 1010         | . 0         | - CL         |           |         |          |             |          |               |       |        |       |      |           |          |               |        |           |              |           |                              |               |
| SOLUTIONS                                              |                   | Ci           | HAIN         | I OF        | - 00         | 100       | OL      | , ,      | 1 (         | _ (      | ,             | (D    |        |       | Labo | oratory   | : _      |               |        |           |              | ESS       |                              |               |
| Client Tg2 Solutions                                   |                   |              |              |             |              |           |         |          |             |          | _             |       |        |       | Anal | ytical Ir | formatio | n             | T      | T         |              | 1         |                              |               |
| Address 231 Elm Street, Blacks Contact Jason Sherburne | tone MA           |              |              |             |              |           |         | M        | ATI         | RI)      | <             |       | 7      | `     |      |           |          |               |        |           |              | Lab to li | nvoice:<br>Tg2 Sol           | utions        |
| Phone # 617-947-7702                                   |                   |              |              |             |              |           | 二.      |          | tewate      |          |               | 7     | 3      | 50.1  |      |           |          |               |        |           |              | Lab Re    | port to:                     | solutions.com |
| Project Name ATTLE BORS                                | 732               |              |              |             |              |           | 2.      | Gro      | undwa       | ater     |               | RO    | 9      | 35    |      |           |          |               |        |           |              | Billing R | isherburne@tg2<br>Reference: | solutions.com |
| Address                                                | C/T               |              |              |             |              |           | 4.      | Soil     |             |          |               | )     | N      | C     | 1    |           | 2        |               |        |           |              |           |                              |               |
| Contact Jason Sherburne Location ID # Description      |                   |              |              |             |              |           |         | Oth      | ace W<br>er | ater     | _             | 2 +   | DAL    | 7     | 5    |           | 7:17     |               |        |           |              |           |                              |               |
| Description                                            | Colle             | ection       |              | #           | of bottles   |           |         | Pr       | eserva      | ation    |               | -     | 0      | Mo    | X    |           | 7        |               |        |           |              |           |                              |               |
|                                                        |                   |              | Matrix       |             | Туре         |           | HCL     | HN03     | H2So4       | MEOH     | Other         | 99    | 2      | A     | T    | Z         | Sex      |               |        |           |              |           | Comr                         | nents:        |
| Field ID / Point of Collection  RECEIVING WATER        | Date<br>6/18      | Time         | 5            | Glass       | Plastic 3    | VOA's     | HCI     | _        | i k         | Σ        | 0 Z           | X     | ×      | >     | ×    | ×         | X        |               |        |           |              |           |                              |               |
| RECEIVING WATER                                        | 0/10              | 11.00        |              |             |              |           |         | +        | +           | +        | +             | -     |        |       |      |           |          |               |        |           |              |           |                              |               |
|                                                        |                   |              |              |             |              |           | 口       | 1        | $\Box$      | 1        |               |       |        |       |      |           | -        | -             |        |           |              |           |                              |               |
|                                                        |                   |              |              |             |              |           |         |          |             |          |               |       |        |       |      |           |          |               |        |           |              | -         |                              |               |
|                                                        |                   |              |              |             |              |           | +       | +        | +           | $\dashv$ | +             |       |        |       |      |           |          |               |        |           |              |           |                              |               |
|                                                        |                   |              |              |             |              |           | +       | +        | +           | H        |               |       |        |       |      |           |          |               |        | 1         |              | +         |                              |               |
|                                                        |                   |              | _            |             |              |           | +       | +        |             |          |               |       |        |       |      |           |          |               |        | Additiona | I Informatio | on        |                              |               |
| Tumaround Information                                  | on                |              |              |             |              |           |         | VQC      |             |          | ato:          |       |        |       |      |           |          |               |        |           |              |           |                              |               |
| X Std. 10 Day Turnaround                               | Approved B        | у:           |              |             | SPECIAL      | LQAQ      | C or Di | TIMI     | FULL        | 1        | 11.5.         |       |        |       | Re   | SP        | Ro       | RMI           | 7      | Hille     | LICA         | (10       |                              |               |
| 7 Day RUSH                                             |                   | у:           | - h          | SILL        | ET           | VAIC      | 00      | 7 ·      |             | -1       | K151          | 1     |        |       |      |           |          |               |        |           |              |           |                              |               |
| 5 Day RUSH (HIGH PRIORI                                | TY)               |              | D            | EB          | 210          | 7         | 100     |          | 2(1)        |          | _ (           | )     |        |       |      |           |          |               |        |           |              |           |                              |               |
| 3 Day RUSH                                             | -                 |              | 7            |             |              |           |         |          |             |          |               |       |        |       |      |           |          |               |        |           |              |           |                              |               |
| 2 Day RUSH                                             |                   |              |              |             |              |           |         |          |             |          |               |       |        |       |      |           |          |               |        |           |              |           |                              |               |
|                                                        | stody must be doc | mented below | each time sa | mples chang | e possesion, | including | courier | lelivery | <i>(</i>    |          | _             |       | _      |       |      |           |          | Date Time:    | -1     | 0 .       | 210          |           |                              |               |
|                                                        | LE 18             | manted balow | Date 1       | ime:        |              |           |         |          | 1           | elved!   | $\rightarrow$ | N. W. | 5      |       |      |           |          | Date Time:    | 181    | 2/18      | 143          | 0         |                              |               |
| Relinguist Surpler:                                    |                   |              | Osto 7       | 18          | 18           | 130       | 80      | _        | 2           | e Time:  | <             | X     | Seal # |       |      |           | Preser   | re where appl | icable | 3 (VO-    | On los       |           | 2.8 I                        | EPCTOMP.      |
| Relinquished by Sampler:                               | Date Time:        |              | 3            | ved By:     |              |           |         | _        |             |          |               |       |        |       |      |           |          |               |        |           |              |           |                              |               |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Jason Sherburne Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: Attleboro 237-RGP (N/A)

ESS Laboratory Work Order Number: 1807408

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

### REVIEWED

By ESS Laboratory at 5:13 pm, Jul 26, 2018

### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

### SAMPLE RECEIPT

The following samples were received on July 18, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 1807408-01

Sample Name MW-A

Matrix Ground Water Analysis

1664A, 200.7, 200.8, 245.1, 2540D, 300.0, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM, ASTM D3695



The Microbiology Division of Thielsch Engineering, Inc.



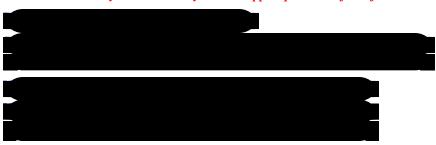
### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

### **PROJECT NARRATIVE**

| 625.1(SIM) Semi-                    | Volatile Organic Compounds                      |
|-------------------------------------|-------------------------------------------------|
| C8G0347-CCV1                        |                                                 |
|                                     | Pentachlorophenol (120% @ 80-120%)              |
| C8G0347-TUN1                        |                                                 |
| C8G0347-TUN1                        |                                                 |
| CG81915-BSD1                        |                                                 |
|                                     | Di-n-butylphthalate (21% @ 20%)                 |
|                                     | -Volatile Organic Compounds w/ Isotope Dilution |
| C8G0407-TUN1                        |                                                 |
| C8G0407-TUN1                        |                                                 |
| Classical Chemist                   | ry                                              |
| 1807408-01                          |                                                 |
|                                     |                                                 |
| <b>Dissolved Metals</b> CG81836-BS1 |                                                 |
| 0 001000 221                        | Cadmium (133% @ 85-115%)                        |
| CG81836-BSD1                        |                                                 |
|                                     | Cadmium (148% @ 85-115%)                        |
| <b>Total Metals</b>                 |                                                 |
| CG82535-BS1                         |                                                 |
|                                     | Cadmium (151% @ 85-115%)                        |
| CG82535-BSD1                        |                                                 |
|                                     | Cadmium (145% @ 85-115%)                        |
| No other observat                   | ione noted                                      |


No other observations noted.

End of Project Narrative.

### **DATA USABILITY LINKS**

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Dependability



Quality



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 04-2.1 - VPH

### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Dissolved Metals**

| <b>Analyte</b> | Results (MRL)     | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | Analyzed      | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|-------------------|------------|--------|--------------|-----------|---------|---------------|------------|-----|--------------|
| Antimony       | ND (5.0)          |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |
| Arsenic        | ND (5.00)         |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |
| Cadmium        | ND (0.1)          |            | 200.8  |              | 5         | NAR     | 07/25/18 19:0 | 02 100     | 10  | CG81836      |
| Chromium       | ND (2.0)          |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |
| Copper         | <b>4.2</b> (2.0)  |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |
| Iron           | ND (200)          |            | 200.7  |              | 20        | KJK     | 07/20/18 16:4 | 40 100     | 10  | CG81836      |
| Lead           | ND (2.0)          |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |
| Mercury        | ND (0.20)         |            | 245.1  |              | 1         | MJV     | 07/20/18 15:0 | 06 20      | 40  | CG81942      |
| Nickel         | ND (5.0)          |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |
| Selenium       | ND (5.0)          |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |
| Silver         | ND (1.0)          |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |
| Zinc           | <b>15.0</b> (5.0) |            | 200.7  |              | 1         | KJK     | 07/20/18 3:4  | 14 100     | 10  | CG81836      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Total Metals**

| <b>Analyte</b> | Results (MRL)        | <u>MDL</u> | Method | <u>Limit</u> | <b>DF</b> | Analyst | <b>Analyzed</b> | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|----------------------|------------|--------|--------------|-----------|---------|-----------------|------------|-----|--------------|
| Antimony       | ND (5.0)             |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Arsenic        | ND (5.0)             |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Cadmium        | ND (0.100)           |            | 200.8  |              | 5         | NAR     | 07/25/18 22:30  | 100        | 10  | CG82535      |
| Chromium       | ND (2.0)             |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Chromium III   | ND (10.0)            |            | 200.7  |              | 1         | CCP     | 07/20/18 3:38   | 1          | 1   | [CALC]       |
| Copper         | <b>5.7</b> (2.0)     |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Hardness       | <b>131000</b> (82.4) |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 1          | 1   | [CALC]       |
| Iron           | <b>103</b> (10.0)    |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Lead           | ND (2.0)             |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Mercury        | ND (0.200)           |            | 245.1  |              | 1         | MJV     | 07/20/18 15:04  | 20         | 40  | CG81942      |
| Nickel         | ND (5.0)             |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Selenium       | ND (5)               |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Silver         | ND (0.5)             |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |
| Zinc           | <b>28.6</b> (5.0)    |            | 200.7  |              | 1         | KJK     | 07/20/18 3:38   | 100        | 10  | CG81836      |

Page 6 of 26



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

### **524.2 Volatile Organic Compounds**

| <u>Analyte</u>             | Results (MRL)    | <b>MDL</b> | Method | <u>Limit</u> | <b>DF</b> | <u>Analyzed</u> | Sequence | <b>Batch</b> |
|----------------------------|------------------|------------|--------|--------------|-----------|-----------------|----------|--------------|
| 1,1,1-Trichloroethane      | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| 1,1,2-Trichloroethane      | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| 1,1-Dichloroethane         | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| 1,1-Dichloroethene         | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| 1,2-Dichlorobenzene        | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| 1,2-Dichloroethane         | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| 1,3-Dichlorobenzene        | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| 1,4-Dichlorobenzene        | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Acetone                    | ND (5.0)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Benzene                    | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Carbon Tetrachloride       | ND (0.3)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| cis-1,2-Dichloroethene     | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Ethylbenzene               | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Methyl tert-Butyl Ether    | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Methylene Chloride         | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Naphthalene                | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Tertiary-amyl methyl ether | ND (1.0)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Tertiary-butyl Alcohol     | ND (25.0)        |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Tetrachloroethene          | <b>0.7</b> (0.5) |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Toluene                    | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Trichloroethene            | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Vinyl Chloride             | ND (0.2)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Xylene O                   | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |
| Xylene P,M                 | ND (0.5)         |            | 524.2  |              | 1         | 07/20/18 12:44  | C8G0370  | CG82035      |

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 99 % 80-1.

 Surrogate: 1,2-Dichlorobenzene-d4
 99 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 99 %
 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A Initial Volume: 1010 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 7/23/18 11:01

### 608.3 Polychlorinated Biphenyls (PCB)

| <b>Analyte</b>                       | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|--------------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| Aroclor 1016                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
| Aroclor 1221                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
| Aroclor 1232                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
| Aroclor 1242                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
| Aroclor 1248                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
| Aroclor 1254                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
| Aroclor 1260                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
| Aroclor 1262                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
| Aroclor 1268                         | ND (0.10)     |            | 608.3     |              | 1         | 07/24/18 14:02  |                 | CG82308      |
|                                      | 9             | %Recovery  | Qualifier | Limits       |           |                 |                 |              |
| Surrogate: Decachlorobiphenyl        |               | 76 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Decachlorobiphenyl [2C]   |               | 85 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Tetrachloro-m-xylene      |               | 66 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Tetrachloro-m-xylene [2C] |               | 74 %       |           | 30-150       |           |                 |                 |              |

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A Initial Volume: 1040 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 7/19/18 14:00

### 625.1(SIM) Semi-Volatile Organic Compounds

| <b>Analyte</b>             | Results (MRL)      | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | Sequence | Batch   |
|----------------------------|--------------------|------------|-----------|--------------|-----------|-----------------|----------|---------|
| Acenaphthene               | ND (0.19)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Acenaphthylene             | ND (0.19)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Anthracene                 | ND (0.19)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Benzo(a)anthracene         | <b>0.11</b> (0.05) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Benzo(a)pyrene             | <b>0.24</b> (0.05) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Benzo(b)fluoranthene       | <b>0.48</b> (0.05) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Benzo(g,h,i)perylene       | <b>0.41</b> (0.19) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Benzo(k)fluoranthene       | <b>0.18</b> (0.05) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| bis(2-Ethylhexyl)phthalate | ND (2.40)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Butylbenzylphthalate       | ND (2.40)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Chrysene                   | <b>0.26</b> (0.05) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Dibenzo(a,h)Anthracene     | <b>0.08</b> (0.05) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Diethylphthalate           | ND (2.40)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Dimethylphthalate          | ND (2.40)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Di-n-butylphthalate        | ND (2.40)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Di-n-octylphthalate        | ND (2.40)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Fluoranthene               | <b>0.40</b> (0.19) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Fluorene                   | ND (0.19)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Indeno(1,2,3-cd)Pyrene     | <b>0.33</b> (0.05) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Naphthalene                | ND (0.19)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Pentachlorophenol          | ND (0.87)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Phenanthrene               | ND (0.19)          |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |
| Pyrene                     | <b>0.28</b> (0.19) |            | 625.1 SIM |              | 1         | 07/20/18 1:48   | C8G0347  | CG81915 |

|                                   | %Recovery | Qualifier | Limits |
|-----------------------------------|-----------|-----------|--------|
| Surrogate: 1,2-Dichlorobenzene-d4 | 55 %      |           | 30-130 |
| Surrogate: 2,4,6-Tribromophenol   | 96 %      |           | 15-110 |
| Surrogate: 2-Fluorobiphenyl       | 75 %      |           | 30-130 |
| Surrogate: Nitrobenzene-d5        | 83 %      |           | 30-130 |
| Surrogate: p-Terphenyl-d14        | 93 %      |           | 30-130 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 7/19/18 18:00

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>ND (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <b>Analyzed</b> 07/23/18 19:25 | Sequence<br>C8G0407 | Batch<br>CG81948 |
|---------------------------|-----------------------------|------------|---------------------|--------------|------------------|--------------------------------|---------------------|------------------|
|                           | 9/                          | 6Recovery  | Qualifier           | Limits       |                  |                                |                     |                  |
| Surrogate: 1,4-Dioxane-d8 |                             | 69 %       |                     | 15-115       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

### **Classical Chemistry**

| <u>Analyte</u>                | Results (MRL)         | MDL Method    | <u>Limit</u> | <u>DF</u> | Analyst |                | <u>Units</u> | Batch   |
|-------------------------------|-----------------------|---------------|--------------|-----------|---------|----------------|--------------|---------|
| Ammonia as N                  | ND (0.10)             | 350.1         |              | 1         | JLK     | 07/20/18 18:59 | mg/L         | CG81903 |
| Chloride                      | <b>276000</b> (50000) | 300.0         |              | 100       | JLK     | 07/19/18 19:24 | ug/L         | CG81940 |
| Hexavalent Chromium           | ND (10.0)             | 3500Cr B-2009 |              | 1         | CCP     | 07/18/18 16:55 | ug/L         | CG81826 |
| Phenols                       | ND (100)              | 420.1         |              | 1         | JLK     | 07/19/18 15:38 | ug/L         | CG81939 |
| Total Cyanide (LL)            | ND (5.00)             | 4500 CN CE    |              | 1         | EEM     | 07/19/18 14:10 | ug/L         | CG81918 |
| Total Petroleum Hydrocarbon   | ND (5)                | 1664A         |              | 1         | LAB     | 07/23/18 13:25 | mg/L         | CG81946 |
| Total Residual Chlorine       | ND (20.0)             | 4500Cl D      |              | 1         | CCP     | 07/18/18 18:22 | ug/L         | CG81824 |
| <b>Total Suspended Solids</b> | <b>40</b> (5)         | 2540D         |              | 1         | CCP     | 07/20/18 18:00 | mg/L         | CG82034 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 7/24/18 13:50

### 504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

| <b>Analyte</b>                    | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|-----------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| 1,2-Dibromoethane                 | ND (0.015)    |            | 504.1     |              | 1         | 07/25/18 0:47   |                 | CG82432      |
|                                   |               | %Recovery  | Qualifier | Limits       |           |                 |                 |              |
| Surrogate: Pentachloroethane      |               | 83 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Pentachloroethane [2C] |               | 101 %      |           | 30-150       |           |                 |                 |              |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP

Client Sample ID: MW-A Date Sampled: 07/18/18 10:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1807408 ESS Laboratory Sample ID: 1807408-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 7/19/18 10:48

### Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC07/19/18 12:50CG81921

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

### **Quality Control Data**

| Analyte                     | Result          | MRL  | Units       | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|-----------------------------|-----------------|------|-------------|----------------|------------------|------|----------------|-----|--------------|-----------|
|                             |                 | [    | Dissolved M | etals          |                  |      |                |     |              |           |
| Batch CG81836 - 3005A/200.7 |                 |      |             |                |                  |      |                |     |              |           |
| Blank                       |                 |      |             |                |                  |      |                |     |              |           |
| Antimony                    | ND              | 5.0  | ug/L        |                |                  |      |                |     |              |           |
| Arsenic                     | ND              | 5.00 | ug/L        |                |                  |      |                |     |              |           |
| Cadmium                     | ND              | 0.1  | ug/L        |                |                  |      |                |     |              |           |
| Chromium                    | ND              | 2.0  | ug/L        |                |                  |      |                |     |              |           |
| Copper                      | ND              | 2.0  | ug/L        |                |                  |      |                |     |              |           |
| Iron                        | ND              | 10.0 | ug/L        |                |                  |      |                |     |              |           |
| Lead                        | ND              | 2.0  | ug/L        |                |                  |      |                |     |              |           |
| Nickel                      | ND              | 5.0  | ug/L        |                |                  |      |                |     |              |           |
| Selenium                    | ND              | 5.0  | ug/L        |                |                  |      |                |     |              |           |
| Silver                      | ND              | 1.0  | ug/L        |                |                  |      |                |     |              |           |
| Zinc                        | ND              | 5.0  | ug/L        |                |                  |      |                |     |              |           |
| LCS                         |                 |      |             |                |                  |      |                |     |              |           |
| Antimony                    | 45.2            | 5.0  | ug/L        | 50.15          |                  | 90   | 85-115         |     |              |           |
| Arsenic                     | 45.9            | 5.00 | ug/L        | 50.00          |                  | 92   | 85-115         |     |              |           |
| Cadmium                     | 33.3            | 0.5  | ug/L        | 25.02          |                  | 133  | 85-115         |     |              | B+        |
| Chromium                    | 46.6            | 2.0  | ug/L        | 50.00          |                  | 93   | 85-115         |     |              |           |
| Copper                      | 49.7            | 2.0  | ug/L        | 50.00          |                  | 99   | 85-115         |     |              |           |
| iron                        | 236             | 10.0 | ug/L        | 250.1          |                  | 94   | 85-115         |     |              |           |
| Lead                        | 47.3            | 2.0  | ug/L        | 50.00          |                  | 95   | 80-120         |     |              |           |
| Nickel                      | 46.7            | 5.0  | ug/L        | 50.00          |                  | 93   | 85-115         |     |              |           |
| Selenium                    | 86.1            | 5.0  | ug/L        | 99.95          |                  | 86   | 80-120         |     |              |           |
| Silver                      | 23.7            | 1.0  | ug/L        | 24.98          |                  | 95   | 85-115         |     |              |           |
| Zinc                        | 47.2            | 5.0  | ug/L        | 50.00          |                  | 94   | 85-115         |     |              |           |
| LCS Dup                     |                 |      |             |                |                  |      |                |     |              |           |
| Cadmium                     | 37.0            | 0.5  | ug/L        | 25.02          |                  | 148  | 85-115         | 10  | 20           | B+        |
| Batch CG81942 - 245.1/7470A |                 |      | - 5,        |                |                  |      |                |     |              |           |
| Blank                       |                 |      |             |                |                  |      |                |     |              |           |
| Mercury                     | ND              | 0.20 | ug/L        |                |                  |      |                |     |              |           |
|                             | NU              | 0.20 | ug/ L       |                |                  |      |                |     |              |           |
| LCS<br>Monagine             | 6.55            | 0.20 | , n         | 6.000          |                  | 100  | 05 115         |     |              |           |
| Mercury                     | 6.55            | 0.20 | ug/L        | 6.000          |                  | 109  | 85-115         |     |              |           |
| LCS Dup                     |                 |      |             |                |                  |      |                |     |              |           |
| Mercury                     | 6.51            | 0.20 | ug/L        | 6.000          |                  | 109  | 85-115         | 0.5 | 20           |           |
|                             |                 |      | Total Met   | als            |                  |      |                |     |              |           |
| Batch CG81826 - [CALC]      |                 |      |             |                |                  |      |                |     |              |           |
| Blank                       |                 |      |             |                |                  |      |                |     |              |           |
| Chromium III                | ND              | 10.0 | ug/L        |                |                  |      |                |     |              |           |
| LCS                         |                 |      |             |                |                  |      |                |     |              |           |
| Chromium III                | ND              |      | ug/L        |                |                  |      |                |     |              |           |
| LCS Dup                     | ·· <del>-</del> |      | ·-3i =      |                |                  |      |                |     |              |           |
| 4.5 PUI)                    |                 |      |             |                |                  |      |                |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

| Analyte                     | Result | MRL   | Units      | Level | Result | %REC | Limits | RPD | Limit | Qualifier |
|-----------------------------|--------|-------|------------|-------|--------|------|--------|-----|-------|-----------|
|                             |        |       |            |       |        |      |        |     |       |           |
|                             |        |       | Total Meta | als   |        |      |        |     |       |           |
| Batch CG81836 - 3005A/200.7 |        |       |            |       |        |      |        |     |       |           |
| Blank                       |        |       |            |       |        |      |        |     |       |           |
| Antimony                    | ND     | 5.0   | ug/L       |       |        |      |        |     |       |           |
| Arsenic                     | ND     | 5.0   | ug/L       |       |        |      |        |     |       |           |
| Chromium                    | ND     | 2.0   | ug/L       |       |        |      |        |     |       |           |
| Chromium III                | ND     | 2.00  | ug/L       |       |        |      |        |     |       |           |
| Copper                      | ND     | 2.0   | ug/L       |       |        |      |        |     |       |           |
| Hardness                    | ND     | 82.4  | ug/L       |       |        |      |        |     |       |           |
| Iron                        | ND     | 10.0  | ug/L       |       |        |      |        |     |       |           |
| Lead                        | ND     | 2.0   | ug/L       |       |        |      |        |     |       |           |
| Nickel                      | ND     | 5.0   | ug/L       |       |        |      |        |     |       |           |
| Selenium                    | ND     | 5     | ug/L       |       |        |      |        |     |       |           |
| Silver                      | ND     | 0.5   | ug/L       |       |        |      |        |     |       |           |
| Zinc                        | ND     | 5.0   | ug/L       |       |        |      |        |     |       |           |
| LCS                         |        |       |            |       |        |      |        |     |       |           |
| Antimony                    | 45.2   | 5.0   | ug/L       | 50.15 |        | 90   | 85-115 |     |       |           |
| Arsenic                     | 45.9   | 5.0   | ug/L       | 50.00 |        | 92   | 85-115 |     |       |           |
| Chromium                    | 46.6   | 2.0   | ug/L       | 50.00 |        | 93   | 85-115 |     |       |           |
| Chromium III                | 46.6   | 2.00  | ug/L       |       |        |      |        |     |       |           |
| Copper                      | 49.7   | 2.0   | ug/L       | 50.00 |        | 99   | 85-115 |     |       |           |
| Hardness                    | 3130   | 82.4  | ug/L       |       |        |      |        |     |       |           |
| Iron                        | 236    | 10.0  | ug/L       | 250.1 |        | 94   | 85-115 |     |       |           |
| Lead                        | 47.3   | 2.0   | ug/L       | 50.00 |        | 95   | 85-115 |     |       |           |
| Nickel                      | 46.7   | 5.0   | ug/L       | 50.00 |        | 93   | 85-115 |     |       |           |
| Selenium                    | 86     | 5     | ug/L       | 99.95 |        | 86   | 85-115 |     |       |           |
| Silver                      | 23.7   | 0.5   | ug/L       | 24.98 |        | 95   | 85-115 |     |       |           |
| Zinc                        | 47.2   | 5.0   | ug/L       | 50.00 |        | 94   | 85-115 |     |       |           |
| LCS Dup                     |        |       |            |       |        |      |        |     |       |           |
| Chromium III                | 43.7   | 2.00  | ug/L       |       |        |      |        |     |       |           |
| Hardness                    | 2870   | 82.4  | ug/L       |       |        |      |        |     |       |           |
| Batch CG81942 - 245.1/7470A |        |       |            |       |        |      |        |     |       |           |
| Blank                       |        |       |            |       |        |      |        |     |       |           |
| Mercury                     | ND     | 0.200 | ug/L       |       |        |      | ·      | _   |       | _         |
| LCS                         |        |       |            |       |        |      |        |     |       |           |
| Mercury                     | 6.55   | 0.200 | ug/L       | 6.000 |        | 109  | 85-115 |     |       |           |
| LCS Dup                     |        |       |            |       |        |      |        |     |       |           |
| Mercury                     | 6.51   | 0.200 | ug/L       | 6.000 |        | 109  | 85-115 | 0.5 | 20    |           |
| Batch CG82535 - 3005A/200.7 |        |       |            |       |        |      |        |     |       |           |
| Blank                       |        |       |            |       |        |      |        |     |       |           |
| Cadmium                     | ND     | 0.100 | ug/L       |       |        |      |        |     | -     |           |
| LCS                         |        |       |            |       |        |      |        |     |       |           |
| Cadmium                     | 37.8   | 0.500 | ug/L       | 25.02 |        | 151  | 85-115 |     |       | B+        |
|                             |        |       | · 3i =     |       |        |      |        |     |       |           |
| LCS Dup                     |        |       |            |       |        |      |        |     |       |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Batch CG82035 - 524.2

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| 524.2 Volatile Organic Cor | npounds |
|----------------------------|---------|
|----------------------------|---------|

| Blank                             |      |      |      |       |     |        |  |
|-----------------------------------|------|------|------|-------|-----|--------|--|
| 1,1,1-Trichloroethane             | ND   | 0.5  | ug/L |       |     |        |  |
| 1,1,2-Trichloroethane             | ND   | 0.5  | ug/L |       |     |        |  |
| 1,1-Dichloroethane                | ND   | 0.5  | ug/L |       |     |        |  |
| 1,1-Dichloroethene                | ND   | 0.5  | ug/L |       |     |        |  |
| 1,2-Dichlorobenzene               | ND   | 0.5  | ug/L |       |     |        |  |
| 1,2-Dichloroethane                | ND   | 0.5  | ug/L |       |     |        |  |
| 1,3-Dichlorobenzene               | ND   | 0.5  | ug/L |       |     |        |  |
| 1,4-Dichlorobenzene               | ND   | 0.5  | ug/L |       |     |        |  |
| Acetone                           | ND   | 5.0  | ug/L |       |     |        |  |
| Benzene                           | ND   | 0.5  | ug/L |       |     |        |  |
| Carbon Tetrachloride              | ND   | 0.3  | ug/L |       |     |        |  |
| cis-1,2-Dichloroethene            | ND   | 0.5  | ug/L |       |     |        |  |
| Ethylbenzene                      | ND   | 0.5  | ug/L |       |     |        |  |
| Methyl tert-Butyl Ether           | ND   | 0.5  | ug/L |       |     |        |  |
| Methylene Chloride                | ND   | 0.5  | ug/L |       |     |        |  |
| Naphthalene                       | ND   | 0.5  | ug/L |       |     |        |  |
| Tertiary-amyl methyl ether        | ND   | 1.0  | ug/L |       |     |        |  |
| Tertiary-butyl Alcohol            | ND   | 25.0 | ug/L |       |     |        |  |
| Tetrachloroethene                 | ND   | 0.5  | ug/L |       |     |        |  |
| Toluene                           | ND   | 0.5  | ug/L |       |     |        |  |
| Trichloroethene                   | ND   | 0.5  | ug/L |       |     |        |  |
| Vinyl Chloride                    | ND   | 0.2  | ug/L |       |     |        |  |
| Xylene O                          | ND   | 0.5  | ug/L |       |     |        |  |
| Xylene P,M                        | ND   | 0.5  | ug/L |       |     |        |  |
| Surrogate: 1,2-Dichlorobenzene-d4 | 5.19 |      | ug/L | 5.000 | 104 | 80-120 |  |
| Surrogate: 4-Bromofluorobenzene   | 5.06 |      | ug/L | 5.000 | 101 | 80-120 |  |
| LCS                               |      |      |      |       |     |        |  |
| 1,1,1-Trichloroethane             | 10.3 |      | ug/L | 10.00 | 103 | 70-130 |  |
| 1,1,2-Trichloroethane             | 9.9  |      | ug/L | 10.00 | 99  | 70-130 |  |
| 1,1-Dichloroethane                | 9.5  |      | ug/L | 10.00 | 95  | 70-130 |  |
| 1,1-Dichloroethene                | 11.0 |      | ug/L | 10.00 | 110 | 70-130 |  |
| 1,2-Dichlorobenzene               | 10.8 |      | ug/L | 10.00 | 108 | 70-130 |  |
| 1,2-Dichloroethane                | 9.9  |      | ug/L | 10.00 | 99  | 70-130 |  |
| 1,3-Dichlorobenzene               | 10.7 |      | ug/L | 10.00 | 107 | 70-130 |  |
| 1,4-Dichlorobenzene               | 10.8 |      | ug/L | 10.00 | 108 | 70-130 |  |
| Acetone                           | 49.3 |      | ug/L | 50.00 | 99  | 70-130 |  |
| Benzene                           | 9.9  |      | ug/L | 10.00 | 99  | 70-130 |  |
| Carbon Tetrachloride              | 9.9  |      | ug/L | 10.00 | 99  | 70-130 |  |
| cis-1,2-Dichloroethene            | 10.3 |      | ug/L | 10.00 | 103 | 70-130 |  |
| Ethylbenzene                      | 10.1 |      | ug/L | 10.00 | 101 | 70-130 |  |
| Methyl tert-Butyl Ether           | 10.0 |      | ug/L | 10.00 | 100 | 70-130 |  |
| Methylene Chloride                | 10.0 |      | ug/L | 10.00 | 100 | 70-130 |  |
| Naphthalene                       | 11.1 |      | ug/L | 10.00 | 111 | 70-130 |  |
| Tertiary-amyl methyl ether        | 10.0 |      | ug/L | 10.00 | 100 | 70-130 |  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

## **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

### 524.2 Volatile Organic Compounds

| Batch CG82035 - 524.2             |      |      |       |     |        |     |    |
|-----------------------------------|------|------|-------|-----|--------|-----|----|
| Fertiary-butyl Alcohol            | 58.4 | ug/L | 50.00 | 117 | 70-130 |     |    |
| Tetrachloroethene                 | 9.9  | ug/L | 10.00 | 99  | 70-130 |     |    |
| oluene                            | 10.4 | ug/L | 10.00 | 104 | 70-130 |     |    |
| richloroethene                    | 10.2 | ug/L | 10.00 | 102 | 70-130 |     |    |
| /inyl Chloride                    | 9.1  | ug/L | 10.00 | 91  | 70-130 |     |    |
| (ylene O                          | 10.5 | ug/L | 10.00 | 105 | 70-130 |     |    |
| ylene P,M                         | 20.7 | ug/L | 20.00 | 103 | 70-130 |     |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 5.08 | ug/L | 5.000 | 102 | 80-120 |     |    |
| Surrogate: 4-Bromofluorobenzene   | 5.17 | ug/L | 5.000 | 103 | 80-120 |     |    |
| CS Dup                            |      |      |       |     |        |     |    |
| ,1,1-Trichloroethane              | 10.0 | ug/L | 10.00 | 100 | 70-130 | 3   | 20 |
| ,1,2-Trichloroethane              | 9.8  | ug/L | 10.00 | 98  | 70-130 | 0.6 | 20 |
| ,1-Dichloroethane                 | 9.4  | ug/L | 10.00 | 94  | 70-130 | 1   | 20 |
| ,1-Dichloroethene                 | 10.7 | ug/L | 10.00 | 107 | 70-130 | 3   | 20 |
| ,2-Dichlorobenzene                | 10.3 | ug/L | 10.00 | 103 | 70-130 | 5   | 20 |
| ,2-Dichloroethane                 | 9.9  | ug/L | 10.00 | 99  | 70-130 | 0.4 | 20 |
| ,3-Dichlorobenzene                | 10.2 | ug/L | 10.00 | 102 | 70-130 | 4   | 20 |
| ,4-Dichlorobenzene                | 10.4 | ug/L | 10.00 | 104 | 70-130 | 4   | 20 |
| cetone                            | 56.5 | ug/L | 50.00 | 113 | 70-130 | 14  | 20 |
| enzene                            | 9.6  | ug/L | 10.00 | 96  | 70-130 | 3   | 20 |
| arbon Tetrachloride               | 9.5  | ug/L | 10.00 | 95  | 70-130 | 4   | 20 |
| is-1,2-Dichloroethene             | 10.1 | ug/L | 10.00 | 101 | 70-130 | 1   | 20 |
| thylbenzene                       | 9.7  | ug/L | 10.00 | 97  | 70-130 | 4   | 20 |
| lethyl tert-Butyl Ether           | 9.9  | ug/L | 10.00 | 99  | 70-130 | 2   | 20 |
| lethylene Chloride                | 9.9  | ug/L | 10.00 | 99  | 70-130 | 2   | 20 |
| laphthalene                       | 10.8 | ug/L | 10.00 | 108 | 70-130 | 3   | 20 |
| ertiary-amyl methyl ether         | 9.7  | ug/L | 10.00 | 97  | 70-130 | 3   | 20 |
| ertiary-butyl Alcohol             | 56.2 | ug/L | 50.00 | 112 | 70-130 | 4   | 25 |
| etrachloroethene                  | 9.3  | ug/L | 10.00 | 93  | 70-130 | 6   | 20 |
| oluene                            | 9.9  | ug/L | 10.00 | 99  | 70-130 | 5   | 20 |
| richloroethene                    | 9.9  | ug/L | 10.00 | 99  | 70-130 | 2   | 20 |
| inyl Chloride                     | 8.9  | ug/L | 10.00 | 89  | 70-130 | 3   | 20 |
| ýylene O                          | 10.0 | ug/L | 10.00 | 100 | 70-130 | 5   | 20 |
| ylene P,M                         | 19.5 | ug/L | 20.00 | 97  | 70-130 | 6   | 20 |
| Surrogate: 1,2-Dichlorobenzene-d4 | 4.97 | ug/L | 5.000 | 99  | 80-120 |     |    |
| Surrogate: 4-Bromofluorobenzene   | 5.10 | ug/L | 5.000 | 102 | 80-120 |     |    |

608.3 Polychlorinated Biphenyls (PCB)

| Batcn | CG82308 | - | 35 | ΙU | , |
|-------|---------|---|----|----|---|
|       |         |   |    |    |   |
|       |         |   |    |    |   |

| Blank             |    |      |      |  |  |  |  |  |  |
|-------------------|----|------|------|--|--|--|--|--|--|
| Aroclor 1016      | ND | 0.10 | ug/L |  |  |  |  |  |  |
| Aroclor 1016 [2C] | ND | 0.10 | ug/L |  |  |  |  |  |  |
| Aroclor 1221      | ND | 0.10 | ug/L |  |  |  |  |  |  |
| Aroclor 1221 [2C] | ND | 0.10 | ug/L |  |  |  |  |  |  |
| Aroclor 1232      | ND | 0.10 | ua/L |  |  |  |  |  |  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

## **Quality Control Data**

|                                      |        |             |            | Spike     | Source |           | %REC   |     | RPD   |           |
|--------------------------------------|--------|-------------|------------|-----------|--------|-----------|--------|-----|-------|-----------|
| Analyte                              | Result | MRL         | Units      | Level     | Result | %REC      | Limits | RPD | Limit | Qualifier |
|                                      |        | 608.3 Polyc | hlorinated | Biphenyls | (PCB)  |           |        |     |       |           |
| Batch CG82308 - 3510C                |        |             |            |           |        |           |        |     |       |           |
| Aroclor 1232 [2C]                    | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1242                         | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1242 [2C]                    | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1248                         | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1248 [2C]                    | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1254                         | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1254 [2C]                    | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1260                         | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1260 [2C]                    | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1262                         | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1262 [2C]                    | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1268                         | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Aroclor 1268 [2C]                    | ND     | 0.10        | ug/L       |           |        |           |        |     |       |           |
| Surrogate: Decachlorobiphenyl        | 0.0373 |             | ug/L       | 0.05000   |        | <i>75</i> | 30-150 |     |       |           |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0433 |             | ug/L       | 0.05000   |        | 87        | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene      | 0.0266 |             | ug/L       | 0.05000   |        | 53        | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0325 |             | ug/L       | 0.05000   |        | 65        | 30-150 |     |       |           |
| LCS                                  |        |             |            |           |        |           |        |     |       |           |
| Aroclor 1016                         | 0.88   | 0.10        | ug/L       | 1.000     |        | 88        | 50-140 |     |       |           |
| Aroclor 1016 [2C]                    | 0.86   | 0.10        | ug/L       | 1.000     |        | 86        | 50-140 |     |       |           |
| Aroclor 1260                         | 0.90   | 0.10        | ug/L       | 1.000     |        | 90        | 1-164  |     |       |           |
| Aroclor 1260 [2C]                    | 0.92   | 0.10        | ug/L       | 1.000     |        | 92        | 1-164  |     |       |           |
| Surrogate: Decachlorobiphenyl        | 0.0415 |             | ug/L       | 0.05000   |        | 83        | 30-150 |     |       |           |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0459 |             | ug/L       | 0.05000   |        | 92        | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene      | 0.0333 |             | ug/L       | 0.05000   |        | 67        | 30-150 |     |       |           |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0340 |             | ug/L       | 0.05000   |        | 68        | 30-150 |     |       |           |
| LCS Dup                              |        |             |            |           |        |           |        |     |       |           |
| Aroclor 1016                         | 0.79   | 0.10        | ug/L       | 1.000     |        | 79        | 50-140 | 11  | 36    |           |
| Aroclor 1016 [2C]                    | 0.76   | 0.10        | ug/L       | 1.000     |        | 76        | 50-140 | 12  | 36    |           |
| Aroclor 1260                         | 0.78   | 0.10        | ug/L       | 1.000     |        | 78        | 1-164  | 14  | 38    |           |

ug/L 625.1(SIM) Semi-Volatile Organic Compounds

ug/L

ug/L

ug/L

ug/L

1.000

0.05000

0.05000

0.05000

0.05000

#### Batch CG81915 - 3510C

Surrogate: Decachlorobiphenyl

Surrogate: Decachlorobiphenyl [2C]

Surrogate: Tetrachloro-m-xylene [2C]

Surrogate: Tetrachloro-m-xylene

Aroclor 1260 [2C]

| Blank          |    |      |      |
|----------------|----|------|------|
| Acenaphthene   | ND | 0.20 | ug/L |
| Acenaphthylene | ND | 0.20 | ug/L |
| Anthracene     | ND | 0.20 | ug/L |

0.10

0.79

0.0367

0.0405

0.0281

0.0284

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

79

73

81

56

57

1-164

30-150

30-150

30-150

30-150

http://www.ESSLaboratory.com

16

38



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Batch CG81915 - 3510C

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

## **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| 625.1(SIM) | Semi-Volatile | Organic | Compounds |
|------------|---------------|---------|-----------|
|------------|---------------|---------|-----------|

| Benzo(a)anthracene                | ND   | 0.05 | ug/L |       |           |        |
|-----------------------------------|------|------|------|-------|-----------|--------|
| Benzo(a)pyrene                    | ND   | 0.05 | ug/L |       |           |        |
| Benzo(b)fluoranthene              | ND   | 0.05 | ug/L |       |           |        |
| Benzo(g,h,i)perylene              | ND   | 0.20 | ug/L |       |           |        |
| Benzo(k)fluoranthene              | ND   | 0.05 | ug/L |       |           |        |
| bis(2-Ethylhexyl)phthalate        | ND   | 2.50 | ug/L |       |           |        |
| Butylbenzylphthalate              | ND   | 2.50 | ug/L |       |           |        |
| Chrysene                          | ND   | 0.05 | ug/L |       |           |        |
| Dibenzo(a,h)Anthracene            | ND   | 0.05 | ug/L |       |           |        |
| Diethylphthalate                  | ND   | 2.50 | ug/L |       |           |        |
| Dimethylphthalate                 | ND   | 2.50 | ug/L |       |           |        |
| Di-n-butylphthalate               | ND   | 2.50 | ug/L |       |           |        |
| Di-n-octylphthalate               | ND   | 2.50 | ug/L |       |           |        |
| Fluoranthene                      | ND   | 0.20 | ug/L |       |           |        |
| Fluorene                          | ND   | 0.20 | ug/L |       |           |        |
| Indeno(1,2,3-cd)Pyrene            | ND   | 0.05 | ug/L |       |           |        |
| Naphthalene                       | ND   | 0.20 | ug/L |       |           |        |
| Pentachlorophenol                 | ND   | 0.90 | ug/L |       |           |        |
| Phenanthrene                      | ND   | 0.20 | ug/L |       |           |        |
| Pyrene                            | ND   | 0.20 | ug/L |       |           |        |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.18 |      | ug/L | 2.500 | 47        | 30-130 |
| Surrogate: 2,4,6-Tribromophenol   | 2.64 |      | ug/L | 3.750 | 70        | 15-110 |
| Surrogate: 2-Fluorobiphenyl       | 1.60 |      | ug/L | 2.500 | 64        | 30-130 |
| Surrogate: Nitrobenzene-d5        | 1.89 |      | ug/L | 2.500 | <i>75</i> | 30-130 |
| Surrogate: p-Terphenyl-d14        | 2.28 |      | ug/L | 2.500 | 91        | 30-130 |
| LCS                               |      |      |      |       |           |        |
| Acenaphthene                      | 2.72 | 0.20 | ug/L | 4.000 | 68        | 40-140 |
| Acenaphthylene                    | 2.79 | 0.20 | ug/L | 4.000 | 70        | 40-140 |
| Anthracene                        | 2.83 | 0.20 | ug/L | 4.000 | 71        | 40-140 |
| Benzo(a)anthracene                | 2.72 | 0.05 | ug/L | 4.000 | 68        | 40-140 |
| Benzo(a)pyrene                    | 2.87 | 0.05 | ug/L | 4.000 | 72        | 40-140 |
| Benzo(b)fluoranthene              | 3.27 | 0.05 | ug/L | 4.000 | 82        | 40-140 |
| Benzo(g,h,i)perylene              | 3.01 | 0.20 | ug/L | 4.000 | 75        | 40-140 |
| Benzo(k)fluoranthene              | 2.79 | 0.05 | ug/L | 4.000 | 70        | 40-140 |
| bis(2-Ethylhexyl)phthalate        | 3.29 | 2.50 | ug/L | 4.000 | 82        | 40-140 |
| Butylbenzylphthalate              | 3.34 | 2.50 | ug/L | 4.000 | 84        | 40-140 |
| Chrysene                          | 2.70 | 0.05 | ug/L | 4.000 | 67        | 40-140 |
| Dibenzo(a,h)Anthracene            | 3.10 | 0.05 | ug/L | 4.000 | 78        | 40-140 |
| Diethylphthalate                  | 3.06 | 2.50 | ug/L | 4.000 | 76        | 40-140 |
| Dimethylphthalate                 | 3.28 | 2.50 | ug/L | 4.000 | 82        | 40-140 |
| Di-n-butylphthalate               | 2.98 | 2.50 | ug/L | 4.000 | 74        | 40-140 |
| Di-n-octylphthalate               | 3.32 | 2.50 | ug/L | 4.000 | 83        | 40-140 |
| Fluoranthene                      | 2.99 | 0.20 | ug/L | 4.000 | 75        | 40-140 |
| Fluorene                          | 3.12 | 0.20 | ug/L | 4.000 | 78        | 40-140 |
| Indeno(1,2,3-cd)Pyrene            | 3.12 | 0.05 | ug/L | 4.000 | 78        | 40-140 |
|                                   |      |      |      |       |           |        |

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

## **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| 625.1(SIM) | Semi-Volatile | Organic | Compound | S |
|------------|---------------|---------|----------|---|
|------------|---------------|---------|----------|---|

| Batch CG81915 - 3510C             |      |      |      |       |           |               |    |    |    |
|-----------------------------------|------|------|------|-------|-----------|---------------|----|----|----|
| Naphthalene                       | 2.04 | 0.20 | ug/L | 4.000 | 51        | 40-140        |    |    |    |
| Pentachlorophenol                 | 4.09 | 0.90 | ug/L | 4.000 | 102       | 30-130        |    |    |    |
| Phenanthrene                      | 2.76 | 0.20 | ug/L | 4.000 | 69        | 40-140        |    |    |    |
| Pyrene                            | 2.93 | 0.20 | ug/L | 4.000 | 73        | 40-140        |    |    |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.23 |      | ug/L | 2.500 | 49        | 30-130        |    |    |    |
| Surrogate: 2,4,6-Tribromophenol   | 3.40 |      | ug/L | 3.750 | 91        | <i>15-110</i> |    |    |    |
| Surrogate: 2-Fluorobiphenyl       | 1.85 |      | ug/L | 2.500 | 74        | 30-130        |    |    |    |
| Surrogate: Nitrobenzene-d5        | 2.10 |      | ug/L | 2.500 | 84        | 30-130        |    |    |    |
| Surrogate: p-Terphenyl-d14        | 2.63 |      | ug/L | 2.500 | 105       | 30-130        |    |    |    |
| .CS Dup                           |      |      |      |       |           |               |    |    |    |
| Acenaphthene                      | 2.99 | 0.20 | ug/L | 4.000 | 75        | 40-140        | 9  | 20 |    |
| Acenaphthylene                    | 2.97 | 0.20 | ug/L | 4.000 | 74        | 40-140        | 6  | 20 |    |
| Anthracene                        | 3.23 | 0.20 | ug/L | 4.000 | 81        | 40-140        | 13 | 20 |    |
| Benzo(a)anthracene                | 2.98 | 0.05 | ug/L | 4.000 | 74        | 40-140        | 9  | 20 |    |
| Benzo(a)pyrene                    | 3.30 | 0.05 | ug/L | 4.000 | 83        | 40-140        | 14 | 20 |    |
| Benzo(b)fluoranthene              | 3.58 | 0.05 | ug/L | 4.000 | 90        | 40-140        | 9  | 20 |    |
| lenzo(g,h,i)perylene              | 3.52 | 0.20 | ug/L | 4.000 | 88        | 40-140        | 16 | 20 |    |
| Benzo(k)fluoranthene              | 3.08 | 0.05 | ug/L | 4.000 | 77        | 40-140        | 10 | 20 |    |
| is(2-Ethylhexyl)phthalate         | 3.59 | 2.50 | ug/L | 4.000 | 90        | 40-140        | 9  | 20 |    |
| utylbenzylphthalate               | 3.67 | 2.50 | ug/L | 4.000 | 92        | 40-140        | 10 | 20 |    |
| Chrysene                          | 2.89 | 0.05 | ug/L | 4.000 | 72        | 40-140        | 7  | 20 |    |
| ibenzo(a,h)Anthracene             | 3.74 | 0.05 | ug/L | 4.000 | 94        | 40-140        | 19 | 20 |    |
| Diethylphthalate                  | 3.33 | 2.50 | ug/L | 4.000 | 83        | 40-140        | 9  | 20 |    |
| Dimethylphthalate                 | 3.54 | 2.50 | ug/L | 4.000 | 88        | 40-140        | 8  | 20 |    |
| oi-n-butylphthalate               | 3.67 | 2.50 | ug/L | 4.000 | 92        | 40-140        | 21 | 20 | D+ |
| Di-n-octylphthalate               | 3.46 | 2.50 | ug/L | 4.000 | 87        | 40-140        | 4  | 20 |    |
| luoranthene                       | 3.63 | 0.20 | ug/L | 4.000 | 91        | 40-140        | 20 | 20 |    |
| luorene                           | 3.42 | 0.20 | ug/L | 4.000 | 85        | 40-140        | 9  | 20 |    |
| ndeno(1,2,3-cd)Pyrene             | 3.52 | 0.05 | ug/L | 4.000 | 88        | 40-140        | 12 | 20 |    |
| Naphthalene                       | 2.22 | 0.20 | ug/L | 4.000 | 55        | 40-140        | 8  | 20 |    |
| Pentachlorophenol                 | 4.93 | 0.90 | ug/L | 4.000 | 123       | 30-130        | 19 | 20 |    |
| Phenanthrene                      | 3.17 | 0.20 | ug/L | 4.000 | 79        | 40-140        | 14 | 20 |    |
| yrene                             | 3.17 | 0.20 | ug/L | 4.000 | 79        | 40-140        | 8  | 20 |    |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.28 |      | ug/L | 2.500 | 51        | 30-130        |    |    |    |
| Surrogate: 2,4,6-Tribromophenol   | 3.94 |      | ug/L | 3.750 | 105       | <i>15-110</i> |    |    |    |
| Surrogate: 2-Fluorobiphenyl       | 1.95 |      | ug/L | 2.500 | <i>78</i> | 30-130        |    |    |    |
| Surrogate: Nitrobenzene-d5        | 2.13 |      | ug/L | 2.500 | 85        | 30-130        |    |    |    |
| Surrogate: p-Terphenyl-d14        | 2.51 |      | ug/L | 2.500 | 100       | 30-130        |    |    |    |

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Batch CG81948 - 3535A     |      |       |      |       |    |        |
|---------------------------|------|-------|------|-------|----|--------|
| Blank                     |      |       |      |       |    |        |
| 1,4-Dioxane               | ND   | 0.250 | ug/L |       |    |        |
| Surrogate: 1,4-Dioxane-d8 | 3.65 |       | ug/L | 5.000 | 73 | 15-115 |
| LCS                       |      |       |      |       |    |        |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

| L                                   |              |               |             | Spike    | Source   | 0/5        | %REC          | <b>DF</b> - | RPD   |           |
|-------------------------------------|--------------|---------------|-------------|----------|----------|------------|---------------|-------------|-------|-----------|
| Analyte                             | Result       | MRL           | Units       | Level    | Result   | %REC       | Limits        | RPD         | Limit | Qualifier |
|                                     | 8270D(SIM) S | Semi-Volatile | Organic Co  | ompounds | w/ Isoto | pe Dilutio | n             |             |       |           |
| Batch CG81948 - 3535A               |              |               |             |          |          |            |               |             |       |           |
| 1,4-Dioxane                         | 6.82         | 0.250         | ug/L        | 10.00    |          | 68         | 40-140        |             |       |           |
| Surrogate: 1,4-Dioxane-d8           | 3.94         |               | ug/L        | 5.000    |          | 79         | <i>15-115</i> |             |       |           |
| LCS Dup                             |              |               |             |          |          |            |               |             |       |           |
| 1,4-Dioxane                         | 6.86         | 0.250         | ug/L        | 10.00    |          | 69         | 40-140        | 0.5         | 20    |           |
| Surrogate: 1,4-Dioxane-d8           | 4.53         |               | ug/L        | 5.000    |          | 91         | 15-115        |             |       |           |
|                                     |              | Cla           | assical Che | mistry   |          |            |               |             |       |           |
| Batch CG81824 - General Preparation |              |               |             |          |          |            |               |             |       |           |
| Blank                               |              |               |             |          |          |            |               |             |       |           |
| Total Residual Chlorine             | ND           | 20.0          | ug/L        |          |          |            |               |             |       |           |
| LCS                                 |              |               |             |          |          |            |               |             |       |           |
| Total Residual Chlorine             | 0.98         |               | mg/L        | 0.9790   |          | 100        | 85-115        |             |       |           |
| Batch CG81826 - General Preparation |              |               |             |          |          |            |               |             |       |           |
| Blank                               |              |               |             |          |          |            |               |             |       |           |
| Hexavalent Chromium                 | ND           | 10.0          | ug/L        |          |          |            |               |             |       |           |
| ıcs                                 |              |               |             |          |          |            |               |             |       |           |
| Hexavalent Chromium                 | 0.499        |               | mg/L        | 0.4998   |          | 100        | 90-110        |             |       |           |
| LCS Dup                             |              |               |             |          |          |            |               |             |       |           |
| Hexavalent Chromium                 | 0.502        |               | mg/L        | 0.4998   |          | 100        | 90-110        | 0.6         | 20    |           |
| Batch CG81903 - NH4 Prep            |              |               |             |          |          |            |               |             |       |           |
| Blank                               |              |               |             |          |          |            |               |             |       |           |
| Ammonia as N                        | ND           | 0.10          | mg/L        |          |          |            |               |             |       |           |
| LCS                                 |              |               |             |          |          |            |               |             |       |           |
| Ammonia as N                        | 0.11         | 0.10          | mg/L        | 0.09994  |          | 108        | 80-120        |             |       |           |
| LCS                                 |              |               |             |          |          |            |               |             |       |           |
| Ammonia as N                        | 1.06         | 0.10          | mg/L        | 0.9994   |          | 106        | 80-120        |             |       |           |
| Batch CG81918 - TCN Prep            |              |               |             |          |          |            |               |             |       |           |
| Blank                               |              |               |             |          |          |            |               |             |       |           |
| Total Cyanide (LL)                  | ND           | 5.00          | ug/L        |          |          |            |               |             |       |           |
| LCS                                 |              |               |             |          |          |            |               |             |       |           |
| Total Cyanide (LL)                  | 20.4         | 5.00          | ug/L        | 20.06    |          | 102        | 90-110        |             |       |           |
| LCS                                 |              |               |             |          |          |            |               |             |       |           |
| Total Cyanide (LL)                  | 150          | 5.00          | ug/L        | 150.4    |          | 99         | 90-110        |             |       |           |
| LCS Dup                             |              |               |             |          |          |            |               |             |       |           |
| Total Cyanide (LL)                  | 149          | 5.00          | ug/L        | 150.4    |          | 99         | 90-110        | 0.7         | 20    |           |
| Batch CG81939 - General Preparation |              |               |             |          |          |            |               |             |       |           |
| Blank                               |              |               |             |          |          |            |               |             |       |           |
| Phenols                             | ND           | 100           | ug/L        |          |          |            |               |             |       |           |
| LCS                                 |              |               |             |          |          |            |               |             |       |           |
| Phenols                             | 97           | 100           | ug/L        | 100.0    |          | 97         | 80-120        |             |       |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                |                                           |                                              | Spike                                                                           | Source     |                                       | %REC                                                               |     | RPD   |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|------------|---------------------------------------|--------------------------------------------------------------------|-----|-------|-----------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                                                           | MRL                                       | Units                                        | Level                                                                           | Result     | %REC                                  | Limits                                                             | RPD | Limit | Qualifier |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  | Cla                                       | assical Che                                  | mistry                                                                          |            |                                       |                                                                    |     |       |           |
| Batch CG81939 - General Preparation                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| .cs                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Phenols                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 993                                                              | 100                                       | ug/L                                         | 1000                                                                            |            | 99                                    | 80-120                                                             |     |       |           |
| Batch CG81940 - General Preparation                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                               | 500                                       | ug/L                                         |                                                                                 |            |                                       |                                                                    |     |       |           |
| .cs                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                |                                           | mg/L                                         | 2.500                                                                           |            | 95                                    | 90-110                                                             |     |       |           |
| Batch CG81946 - General Preparation                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Total Petroleum Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                               | 5                                         | mg/L                                         |                                                                                 |            |                                       |                                                                    |     |       |           |
| LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Total Petroleum Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                               | 5                                         | mg/L                                         | 19.38                                                                           |            | 73                                    | 66-114                                                             |     |       |           |
| Batch CG82034 - General Preparation                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| Total Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                               | 5                                         | mg/L                                         |                                                                                 |            |                                       |                                                                    |     |       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                           |                                              |                                                                                 |            |                                       |                                                                    |     |       |           |
| LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                               |                                           | mg/L                                         | 22.00                                                                           |            | 109                                   | 80-120                                                             |     |       |           |
| LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | 2-Dibromoeth                              |                                              |                                                                                 | 3-chloropi |                                       | 80-120                                                             |     |       |           |
| .CS<br>Fotal Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 2-Dibromoeth                              |                                              |                                                                                 | 3-chloropi |                                       | 80-120                                                             |     |       |           |
| LCS<br>Fotal Suspended Solids<br>Batch CG82432 - 504/8011                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  | 2-Dibromoeth                              |                                              |                                                                                 | 3-chloropi |                                       | 80-120                                                             |     |       |           |
| CCS Fotal Suspended Solids Batch CG82432 - 504/8011 Blank                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  | 2-Dibromoeth                              |                                              |                                                                                 | 3-chloropi |                                       | 80-120                                                             |     |       |           |
| Gotal Suspended Solids  Batch CG82432 - 504/8011  Blank  1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                   | 504.1 1,                                                         |                                           | nane / 1,2-                                  |                                                                                 | 3-chloropi |                                       | 80-120                                                             |     |       |           |
| Fotal Suspended Solids  Batch CG82432 - 504/8011  Blank  1,2-Dibromoethane 1,2-Dibromoethane [2C]                                                                                                                                                                                                                                                                                                                                                            | 504.1 1,7                                                        | 0.015                                     | ug/L<br>ug/L                                 |                                                                                 | 3-chloropi |                                       | 80-120<br>30-150                                                   |     |       |           |
| Grotal Suspended Solids  Batch CG82432 - 504/8011  Blank  1,2-Dibromoethane  1,2-Dibromoethane [2C]  Surrogate: Pentachloroethane                                                                                                                                                                                                                                                                                                                            | ND ND ND                                                         | 0.015                                     | ug/L                                         | Dibromo-3                                                                       | 3-chloropi | ropane                                |                                                                    |     |       |           |
| Fotal Suspended Solids  Batch CG82432 - 504/8011  Blank  1,2-Dibromoethane 1,2-Dibromoethane [2C]  Surrogate: Pentachloroethane [2C]                                                                                                                                                                                                                                                                                                                         | ND ND 0.133                                                      | 0.015                                     | ug/L<br>ug/L<br>ug/L                         | 0.2000                                                                          | 3-chloropi | ropane 66                             | 30-150                                                             |     |       |           |
| Grotal Suspended Solids  Batch CG82432 - 504/8011  Blank  1,2-Dibromoethane 1,2-Dibromoethane [2C]  Sourrogate: Pentachloroethane [2C]  CCS                                                                                                                                                                                                                                                                                                                  | ND ND 0.133                                                      | 0.015                                     | ug/L<br>ug/L<br>ug/L                         | 0.2000                                                                          | 3-chloropi | ropane 66                             | 30-150                                                             |     |       |           |
| Grotal Suspended Solids  Batch CG82432 - 504/8011  Blank L,2-Dibromoethane L,2-Dibromoethane [2C]  Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]  LCS L,2-Dibromoethane                                                                                                                                                                                                                                                                     | ND ND 0.133 0.134                                                | 0.015<br>0.015                            | ug/L<br>ug/L<br>ug/L<br>ug/L                 | 0.2000<br>0.2000                                                                | 3-chloropi | 66<br>67                              | 30-150<br>30-150                                                   |     |       |           |
| Batch CG82432 - 504/8011  Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]  Surrogate: Pentachloroethane [2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                         | ND ND 0.133 0.134 0.086 0.085                                    | 0.015<br>0.015                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.2000<br>0.2000<br>0.08000<br>0.08000                                          | 3-chloropi | 66<br>67<br>107<br>106                | 30-150<br>30-150<br>70-130<br>70-130                               |     |       |           |
| Fotal Suspended Solids  Batch CG82432 - 504/8011  Blank L,2-Dibromoethane L,2-Dibromoethane [2C]  Surrogate: Pentachloroethane L,2-Dibromoethane L,2-Dibromoethane L,2-Dibromoethane L,2-Dibromoethane L,2-Dibromoethane L,2-Dibromoethane L,2-Dibromoethane                                                                                                                                                                                                 | ND<br>ND<br>ND<br>0.133<br>0.134                                 | 0.015<br>0.015                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.2000<br>0.2000                                                                | 3-chloropi | 66<br>67                              | 30-150<br>30-150<br>70-130                                         |     |       |           |
| Batch CG82432 - 504/8011  Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]  Surrogate: Pentachloroethane [2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane                                                                                                                                                                                                                             | ND ND 0.133 0.134 0.086 0.085                                    | 0.015<br>0.015                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.2000<br>0.2000<br>0.08000<br>0.08000                                          | 3-chloropi | 66<br>67<br>107<br>106                | 30-150<br>30-150<br>70-130<br>70-130                               |     |       |           |
| Batch CG82432 - 504/8011  Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]  Surrogate: Pentachloroethane 1,2-Dibromoethane | ND ND 0.133 0.134 0.086 0.085                                    | 0.015<br>0.015                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.2000<br>0.2000<br>0.08000<br>0.08000                                          | 3-chloropi | 66<br>67<br>107<br>106                | 30-150<br>30-150<br>70-130<br>70-130                               |     |       |           |
| Batch CG82432 - 504/8011  Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]  Surrogate: Pentachloroethane [2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane  Surrogate: Pentachloroethane [2C]  LCS 1,2-Dibromoethane [2C]  Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]  LCS 1,2-Dibromoethane                                                                                                                                                   | ND ND 0.133 0.134 0.086 0.085 0.0811 0.0857                      | 0.015<br>0.015<br>0.015<br>0.015          | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 0.2000<br>0.2000<br>0.08000<br>0.08000<br>0.08000                               | 3-chloropi | 66<br>67<br>107<br>106<br>101<br>107  | 30-150<br>30-150<br>70-130<br>70-130<br>30-150                     |     |       |           |
| Batch CG82432 - 504/8011  Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 2C]  LCS 1,2-Dibromoethane 2C]  LCS 1,2-Dibromoethane 2C]  LCS 1,2-Dibromoethane 2C]  LCS 1,2-Dibromoethane 2C]                                                                                                                                                                                                          | ND ND 0.133 0.134  0.086 0.085  0.0811 0.0857                    | 0.015<br>0.015<br>0.015<br>0.015          | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 0.2000<br>0.2000<br>0.08000<br>0.08000<br>0.08000<br>0.2000<br>0.2000           | 3-chloropi | 107<br>106<br>101<br>105<br>98        | 30-150<br>30-150<br>70-130<br>70-130<br>30-150<br>70-130<br>70-130 |     |       |           |
| Batch CG82432 - 504/8011  Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane                                                                                | ND ND 0.133 0.134  0.086 0.085  0.0811 0.0857  0.209 0.197 0.204 | 0.015<br>0.015<br>0.015<br>0.015          | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 0.2000<br>0.2000<br>0.08000<br>0.08000<br>0.08000<br>0.2000<br>0.2000           | 3-chloropi | 107<br>106<br>101<br>107<br>105<br>98 | 30-150<br>30-150<br>70-130<br>70-130<br>30-150<br>70-130<br>30-150 |     |       |           |
| Batch CG82432 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 2C]  LCS 1,2-Dibromoethane 2C]                                                                                      | ND ND 0.133 0.134  0.086 0.085  0.0811 0.0857                    | 0.015<br>0.015<br>0.015<br>0.015<br>0.015 | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 0.2000<br>0.2000<br>0.08000<br>0.08000<br>0.08000<br>0.2000<br>0.2000<br>0.2000 | 3-chloropi | 107<br>106<br>101<br>105<br>98        | 30-150<br>30-150<br>70-130<br>70-130<br>30-150<br>70-130<br>70-130 |     |       |           |
| Batch CG82432 - 504/8011  Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]  LCS 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 2C]  LCS 1,2-Dibromoethane 2C]                                                                                                                                                                               | ND ND 0.133 0.134  0.086 0.085  0.0811 0.0857  0.209 0.197 0.204 | 0.015<br>0.015<br>0.015<br>0.015<br>0.015 | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L      | 0.2000<br>0.2000<br>0.08000<br>0.08000<br>0.08000<br>0.2000<br>0.2000<br>0.2000 | 3-chloropi | 107<br>106<br>101<br>107<br>105<br>98 | 30-150<br>30-150<br>70-130<br>70-130<br>30-150<br>70-130<br>30-150 |     |       |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

## **Quality Control Data**

|                         |        |      |             | Spike    | Source |      | %REC   |     | RPD   |           |
|-------------------------|--------|------|-------------|----------|--------|------|--------|-----|-------|-----------|
| Analyte                 | Result | MRL  | Units       | Level    | Result | %REC | Limits | RPD | Limit | Qualifier |
|                         |        | Alco | hol Scan by | / GC/FID |        |      |        |     |       |           |
| Batch CG81921 - No Prep |        |      |             |          |        |      |        |     |       |           |
| Ethanol                 | ND     | 10   | mg/L        |          |        |      |        |     |       |           |
| LCS                     |        |      |             |          |        |      |        |     |       |           |
| Ethanol                 | 759    | 10   | mg/L        | 1007     |        | 75   | 60-140 |     |       |           |
| LCS Dup                 |        |      |             |          |        |      |        |     |       |           |
| Ethanol                 | 704    | 10   | ma/L        | 1007     |        | 70   | 60-140 | 8   | 30    |           |

Dependability



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

#### **Notes and Definitions**

| U  | Analyte included in the analysis, but not detected                                                         |
|----|------------------------------------------------------------------------------------------------------------|
| Q  | Calibration required quadratic regression (Q).                                                             |
| PT | Pentachlorophenol tailing factor > 2.                                                                      |
| HT | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual |
|    | Chlorine is fifteen minutes.                                                                               |
| D+ | Relative percent difference for duplicate is outside of criteria (D+).                                     |

D Diluted.

BTBenzidine tailing factor >2.

B+Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

Sample results reported on a dry weight basis dry

Relative Percent Difference **RPD** MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DLI/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery Calculated Analyte [CALC]

**SUB** Subcontracted analysis; see attached report

RL Reporting Limit

EDL **Estimated Detection Limit** 

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Attleboro 237-RGP ESS Laboratory Work Order: 1807408

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 <a href="http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx">http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx</a>

|                                                                                          |                         |                                      |            |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           | 8     | 57   | 41  | 28                               |
|------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|------------|----------------------------------------------|-----------------|---------------|-----------------------|-------------|---------------|-------------------|-------------|--------------|-----------------------|------------------------|-------|-----------|-------|------|-----|----------------------------------|
| Too                                                                                      | 231                     | 1 Elm Street, Blackston              | e, MA (    | 1504                                         |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
| CHAIL                                                                                    | N OF CUSTOR             | DY RECORD                            |            |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
| 0,1,1,11                                                                                 |                         | DI NEGONE                            |            | L                                            | aborato         | ry: _         |                       | -           |               |                   |             |              |                       |                        |       | ESS       |       |      |     |                                  |
| Client Tg2 Solutions                                                                     |                         |                                      |            |                                              | Analytical      | Informati     | on                    |             |               |                   |             |              |                       |                        |       |           |       | (c)  |     | 1                                |
| Address 231 Elm Street, Blackstone MA Contact Jason Sherburne                            |                         | MATRIX                               |            |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
| Phone # 617-947-7702                                                                     |                         | WAIRIA                               | T          |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       | _         |       |      |     | Lab to Invoice:<br>Tg2 Solutions |
| Project Name A77 LEBORO 237                                                              |                         | . Wastewater                         | TT         |                                              |                 |               |                       |             |               | C.                |             |              |                       |                        |       | 625-SIM   |       |      |     | Lab Report to:                   |
| Address 237 WASHINGTON ST ATTE                                                           | -ES (C) 3.              | . Groundwater<br>. Drinking Water ** | pa         | ou)                                          |                 | =             |                       |             |               | run T             |             |              | 524                   | MIS                    |       | t 625     |       |      |     | Billing Reference:               |
| Contact Jason Sherburne<br>Location ID #                                                 |                         | . Soil<br>. Surface Water            | Dissolved  | :ulati                                       |                 | 4500          |                       |             |               |                   |             |              | List                  | .0.                    |       | Long List |       |      |     |                                  |
| Description                                                                              | 6.                      | Surface Water Other Preservation     | s Dis      | Calc                                         | .0.00           | ide 4         |                       | CL D        | 120.1         | MU                | 0           | ۳.           | guo-                  | e 827                  |       | Lon       |       |      |     |                                  |
| Collection                                                                               | # of bottles<br>Type    | Preservation                         | RGP Metals | Hardness (Calculation)<br>Ethanol ASTM D3695 | Chloride 300.0* | Total Cyanide | TPH 1664<br>TSS 2540D | TRC 4500-CL | Ammonia 350.1 | Tri Cr (Calc MUST | Hex Cr 3500 | Phenol 420.1 | RGP VOC Long List 524 | 1,4-Dioxane 8270 - SIM | 504.1 | SVOC      | 608   |      |     |                                  |
| Matrix                                                                                   | 7 H                     | HNO3<br>HZSo4<br>HZSo4<br>None       | GP N       | ard<br>thank                                 | hlori           | otal          | TPH 1664              | 30.4        | E I           | C                 | D X         | oner         | SP V                  | 4-Dic                  | EDB 5 | RGP S     | PCB 6 | TAME | TBA |                                  |
| Field, ID / Point of Collection Date Time                                                | Glass Plastic VOA's Y Z |                                      |            | X X                                          |                 | ×             | FF                    | _           |               | ¥                 | ž           | ā.           | ×                     | ×                      | ×     | N.        | ×     | ×    |     | Comments:                        |
| 7/18/18*                                                                                 |                         |                                      |            |                                              |                 |               |                       | 1           |               |                   |             |              | ~                     | -                      |       | ^         | _     | ~    |     |                                  |
| //10/16^                                                                                 |                         | +++++                                | -          | -                                            |                 | -             |                       | +           |               |                   |             | -            |                       | _                      |       |           | _     | -    | -   |                                  |
|                                                                                          |                         |                                      |            |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
|                                                                                          |                         | <del></del>                          |            | _                                            | +               | -             |                       | +           |               |                   |             |              |                       | _                      |       |           | _     | -    |     |                                  |
|                                                                                          |                         |                                      |            |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
|                                                                                          |                         |                                      |            |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
| Turnaround Information                                                                   |                         |                                      |            |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
|                                                                                          | QA/O                    |                                      |            |                                              | 1               |               |                       |             |               |                   |             |              | ditiona               |                        |       |           |       |      |     |                                  |
|                                                                                          | SPECIAL QA/QC or DAT    |                                      |            |                                              | 7-0             | 7             | PER                   | ' M.        | 7             | 1                 | PF          | 20           | CI                    | 7                      | 10    | >         |       |      |     |                                  |
| W                                                                                        | ILL BYAIL ?             |                                      |            | P                                            | 461             |               | TEN                   | 111         |               | 1                 | 11 1        | -            |                       | 7 .                    | 1 -   |           |       |      |     |                                  |
| 3 Day RUSH                                                                               | DETECTION               | REQUIRENT                            | rs         |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
| 2 Day RUSH                                                                               |                         |                                      |            | **                                           | то+             | al            | Meta                  | als         | =             | TO                | ta1         | R            | GР                    | Me                     | t.a I | ls        |       |      |     |                                  |
| 1 Day RUSH                                                                               |                         |                                      |            |                                              | -00             | <u> </u>      | 11000                 |             |               |                   | -           |              | -                     |                        | -     |           |       |      |     |                                  |
|                                                                                          |                         |                                      | - 1        |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
|                                                                                          |                         |                                      |            |                                              |                 |               |                       |             |               |                   |             |              |                       |                        |       |           |       |      |     |                                  |
| Refronze of Safquer   Sample Cyltody must be documented below each time sample Date Time |                         | very.                                |            |                                              |                 | Dat           | te Time:              | T           |               |                   |             |              |                       |                        |       |           | TO 12 |      |     |                                  |
|                                                                                          | К                       | Received by:                         | 5          |                                              |                 | Det           | to Time:              | 18          | 1,8           | 110               | 22          | - 0          | +30                   |                        |       |           |       |      |     |                                  |



**ATTACHMENT D** 



## United States Department of the Interior

### FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland



July 28, 2018

In Reply Refer To:

Consultation Code: 05E1NE00-2018-SLI-2550

Event Code: 05E1NE00-2018-E-05977

Project Name: Coblea Shell-Branded Gasoline Station

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle\_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

### Attachment(s):

Official Species List

## **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

## **Project Summary**

Consultation Code: 05E1NE00-2018-SLI-2550

Event Code: 05E1NE00-2018-E-05977

Project Name: Coblea Shell-Branded Gasoline Station

Project Type: DEVELOPMENT

Project Description: This facility has historically been an active gasoline station with

underground storage tanks (USTs) and dispenser islands. Plans to upgrade the facility, including the USTs and dispenser islands are anticipated under a National Pollutant Discharge Elimination System (NPDES). Therefore, a determination of endangered species act eligibility is

required.

### **Project Location:**

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/place/41.920139679884514N71.35883431212085W">https://www.google.com/maps/place/41.920139679884514N71.35883431212085W</a>



Counties: Bristol, MA

## **Endangered Species Act Species**

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

### **Mammals**

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: <a href="https://ecos.fws.gov/ecp/species/9045">https://ecos.fws.gov/ecp/species/9045</a>

### **Critical habitats**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.