

NOTICE OF INTENT FOR

MASSACHUSETTS REMEDIATION GENERAL PERMIT

COLBEA-SHELL GASOLINE STATION 506 WEST CENTER STREET WEST BRIDGEWATER, MA RTN 4-19737

> Prepared for: COLBEA ENTERPRISES LLC 2050 PLAINFIELD PIKE CRANSTON, RI 02921

October 29, 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	GENERAL FACILITY INFORMATION	1
2.1 2.2 2.3	Sensitive Environmental Receptors	2
3.0	DISCHARGE INFORMATION	
3.1 3.2.	Receiving Water Information	4 4
4.0	CONATAMINANT INFORMATION	4
5.0	DILUTION FACTOR	5
6.0	DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)	5
7.0	DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS	5
8.0	SUPPLEMENTAL INFORMATION	6
9.0	REDEVELOPMENT CONSTRUCTION SCHEDULE	6

FIGURES

Figure 1	Site Locus Map
Figure 2	Site Plan
Figure 2A	Extended Site Plan
Figure 3	Waterbody Assessment & TMDL Status
Figure 4	Areas of Environmental Concern
Figure 5	MassDEP Phase 1 Site Assessment Map
Figure 3 Figure 4	Waterbody Assessment & TMDL Status Areas of Environmental Concern

Figure 6 Groundwater Dewatering Installation Diagram Figure 7 Extended Area Map with MARCIS Inventory

TABLES

Table 1 Summary of Groundwater Analytical Data

ATTACHMENTS

Attachment A	Notice of Intent
Attachment B	StreamStats 7Q10 Data & MassDEP Correspondence

Attachment C Laboratory Analytical Reports

Attachment D Fish and Wildlife Service - New England Services Field Office

Correspondence

1.0 INTRODUCTION

Tg2 Solutions, LLC (Tg2) prepared Notice of Intent (NOI) for a Massachusetts Remediation General Permit (RGP) for construction dewatering at the Shell-branded gasoline station located at Shell-branded service station located at 506 West Center Street in West Bridgewater, Massachusetts, on behalf of the site owner, Colbea Enterprises LLC (Colbea). This NOI is being submitted to the United State Environmental Protection Agency (USEPA) in accordance with the requirements of the Massachusetts General Permit No. MAG070000. This site was formerly identified by Massachusetts Department of Environmental Protection (MassDEP) as Release Tracking Number (RTN) 4-19737 and is regulated in accordance with Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The site is presently in Phase V Remedy Operation Status.

This NOI for an RGP is being submitted to account for site renovation activities being conducted at the facility. A portion of these activities include the dewatering of an excavation to allow for the removal and replacement of gasoline underground storage tanks (USTs). For the purpose of this NOI, the "facility" is defined as the area located within the property boundaries of 506 West Center Street in West Bridgewater, Massachusetts. A Site Locus Map is presented as **Figure 1**. A Site Plan is presented as **Figure 2**. A copy of the NOI is included as **Attachment A**.

2.0 GENERAL FACILITY INFORMATION

General site information for which this Phase I applies includes the following:

Property Owner/Facility Operator: Thomas Breckel

Operator Colbea Enterprises LLC

2050 Plainfield Pike Cranston, RI 02920 Tel: (401) 943-0005

Owner/Facility Operator Contact: Dennis Darveau, Director of Construction

<u>Ddarveau@seasoncornermarket.com</u>

Tel: (401) 490-2209

USGS Quadrangle: Brockton, Massachusetts

Longitude, Latitude: 71° 2' 24.94" W, 42° 0' 54.18" N

(approximate)

Site Zoning: Commercial

County: Plymouth

2.1 Facility Description

The facility is a Shell-branded service station located at 506 West Center Street, in a commercial area of West Bridgewater, Massachusetts. In 2008, Motiva Enterprises LLC,

the former owner/operator of the property and original responsible party for the RTN, sold the facility to Colbea. The property is developed with a single-story convenience store containing a Dunkin Donuts, two restrooms, an office area, and a storage area. The facility serves gasoline via two pump islands and has a separate automated car wash. The majority of the facility is paved. The site has operated as a retail gasoline station since 1969 when it was constructed by the Shell Oil Company, US (Shell). Refer to **Figure 2** - Site Plan, for the location of existing UST systems, dispensers, sampling locations, and pertinent facility features.

2.2 Sensitive Environmental Receptors

The nearest surface water body is an unnamed pond bordered by wetland located approximately 800 feet east/southeast of the facility. Depth to water at the disposal site ranges from approximately 6 to 16 feet below grade, depending on measurement location. Groundwater does not intersect surface water or wetland areas within the boundaries of the disposal site.

The western and downgradient portions of the disposal site are located within a Zone II Aquifer Protection Area. Portions of the disposal site are also located within a Medium Yield, Non-Potential Drinking Water Source Area and a Medium Yield, Potentially Productive Aquifer. The nearest public water supply wells, identified as 4322000-06G and 4322000-07G, are located approximately 0.5 miles northwest of the facility. Additionally, four private wells were previously identified within 500 feet of the disposal site at the time of the MCP Phase II submittal for this RTN. These wells were located at 19 and 22 High Street, and 486 and 488 West Center Street. However, subsequent conversations with the West Bridgewater Water Department indicate that one of the structures with a private well was razed and the remaining three properties receive town water; therefore, according to the West Bridgewater Water Department, these wells are considered irrigation wells. All of these locations are located upgradient of the disposal site.

A waterbody assessment and TMDL status relative to the facility location is provided in **Figure 3**. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.

2.3 National Pollutant Discharge Elimination System (NPDES) Status

A NPDES permit has not been previously applied for or granted for this discharge. Site redevelopment construction activities have not yet begun at the facility; however, they are planned for late fall 2018. The facility is not covered by an individual NPDES permit and there are no pending applications on file for any other permit with US EPA for this facility. As defined by 40 CFR Section 122.2, a new discharger means any building, structure, facility, or installation:

- A) From which there is or may be a "discharge of pollutants;"
- B) That did not commence the "discharge of pollutants" at a particular "site" prior to August 13, 1979;

- C) Which is not a "new source;" and,
- D) Which has never received a finally effected NPDES permit for discharges at that "site."

Based on groundwater samples collected at the facility, this site is not considered a new discharge.

3.0 DISCHARGE INFORMATION

This NOI for an RGP is being applied for groundwater discharge necessary during site redevelopment construction activities. These activities include the raze and rebuild of the facility building, and removal and replacement of the existing USTs and associated piping, and dispenser islands. The proposed discharge location for treated groundwater is a catch basin located adjacent to the property to the north off West Center Street, as depicted on **Figure 2A**. This catch basin discharges to an unnamed wetland that discharges to an unnamed pond that discharges to another wetland, Flaggy Meadow, which flows into the West Meadow Brook located approximately 2,600 feet to the east of the site. The latitude and longitude of the catch basin discharge and outfall point are:

Catch Basin Discharge Point:

Latitude: 42.015155 Longitude: -71.040294

Outfall (unnamed wetland) Point:

Latitude: 42.015644 Longitude: -71.035916

The dewatering and treatment system anticipated for this work includes a 20,000-gallon baffled setting fractionation tank, sediment bag filters, a greensand filter vessel for iron removal, and two activated carbon filter vessels for remaining contaminant removal. This system is designed to meet the required effluent limits for this permit. A diagram of the treatment system is provided on **Figure 6**.

Only one discharge point, described above, will be necessary for dewatering activities. The estimated maximum daily flow is 40 gallons per minute (gpm), with a design flow of 60 gpm. These estimations are expected to decrease once the excavation has been dewatered, and do not include surface run-off following precipitation events. The pH of onsite groundwater was measured at 6.78 (s.u.) and site activities are not anticipated to alter this pH. Discharge activities will only occur during site redevelopment, which is expected to occur between October to December 2018. The discharge point for these dewatering activities is a catch basin located immediately adjacent to the facility to the north off West Center Street. Areas of Concern in relation to the facility are located on Figure 4. Figure 5 provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.

If needed, modifications to the system will be made. Modifications to the system will be submitted for approval via a Notice of Change (NOC).

3.1 Receiving Water Information

The receiving water for the indirect discharge of groundwater from the facility is an unnamed wetland that discharges to an unnamed pond and then flows into another wetland, Flaggy Meadow, discharging to West Meadow Brook. West Meadow Brook flows through another wetland area and into the Town River. StreamStats 4.0 was consulted and it was determined based on the where the discharge outfall location is at the unnamed wetland, there is no 7Q10, however, the 7Q10 where the unnamed wetland enters the West Meadow Brook is 0.078 cubic feet per second (cfs). The StreamStats Reports are provided in **Attachment B**. Per the Waterbody Assessment and TMDL Status Map (**Figure 3**), West Meadow Brook was not assigned a TMDL status.

3.2.1 Receiving Water Classification

The discharge (outfall) point is an unnamed wetland that eventually leads into the West Meadow Brook, which discharges to Town River. West Meadow Brook is not classified. Town River is a Category 3 (no uses assessed) and is water Class B.

http://www.mass.gov/eea/docs/dep/water/laws/i-thru-z/tblfig.pdf

https://www.mass.gov/files/documents/2017/08/zu/16ilwplist.pdf

The receiving water bodies are not Outstanding Resources. The West Meadow Brook segment ID is MA62-208, and impairment causes include non-native aquatic plants. The Town River segment ID is MA62-11.

4.0 CONATAMINANT INFORMATION

On September 14, 2018, groundwater samples were collected from on-site monitoring well RGP Well MW-6 and the outfall discharge location at the outfall (unnamed wetland) off West Center Street (Receiving Water). Influent RGP samples from MW-6 were submitted to ESS Laboratory, Cranston, Rhode Island (ESS) for analysis of metals, hardness, ethanol, chloride, total cyanide, total petroleum hydrocarbons (TPH), total suspended solids (TSS), total residual chlorine (TRC), ammonia, hexavalent chromium, trivalent chromium, phenol, 1,4-dioxane, ethylene dibromide, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PBCs), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME). Surface water samples from the discharge location, Receiving Water, were submitted to ESS for analysis of ammonia, hexavalent chromium, metals, iron, pH, hardness, and salinity.

Results from the groundwater sampling of MW-6 demonstrated concentrations of benzo(a)pyrene, benzo(b)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, and TSS above technology-based effluent limitations (TBELs). Total cyanide was detected above Massachusetts Department of Environmental Protection (MassDEP) reportable

concentrations for groundwater (RCGW-2). The facility has previously been, and is currently, a gasoline and service station, and does not use any pH neutralization or dechlorination chemicals. Based on the summarized groundwater sampling results there are potential water-quality issues in the vicinity of the discharge.

Results from the surface water sample (Receiving Water) did not demonstrate concentrations of potential contaminants of concern (pCOCs) exceeding TBELs. **Table 1** provides a summary of detected pCOCs from groundwater collected at the facility (influent) and the surface water sample. Groundwater and surface water laboratory analytical reports are provided in **Attachment C**.

5.0 DILUTION FACTOR

MassDEP was contacted on October 8, 2018 to confirm the 7Q10 flow and determine a dilution factor. Final correspondence received on October 10, 2018 confirmed a dilution factor of zero (0). The Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet was subsequently completed. Copies of the Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet, StreamStats Report, and MassDEP correspondence are provided in **Attachment B**.

6.0 DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)

The United States Department of the Interior Fish and Wildlife Service – New England Ecological Services Field Office was contacted regarding the determination of endangered species act eligibility (ESA). There are no endangered or candidate species and no critical habitats within the project area for this NOI. There is one threatened species, the Northern Long-eared Bat (Myotis septentrionalis), on the list for this facility. However, no critical habitat has been designated for this species. Per the U.S. Fish and Wildlife Services, the Northern Long-eared Bat hibernates in caves and mines, swarming in surrounded wooded areas in autumn, and foraging in upland forests in late spring and summer. Based on the location and scope of this work (i.e. facility being redeveloped into another gasoline station), it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect the Northern Long-eared Bat. Therefore, this ESA determination is FWS Criterion C. Fish and Wildlife Service – New England Service Field Office Correspondence is provided as **Attachment D**.

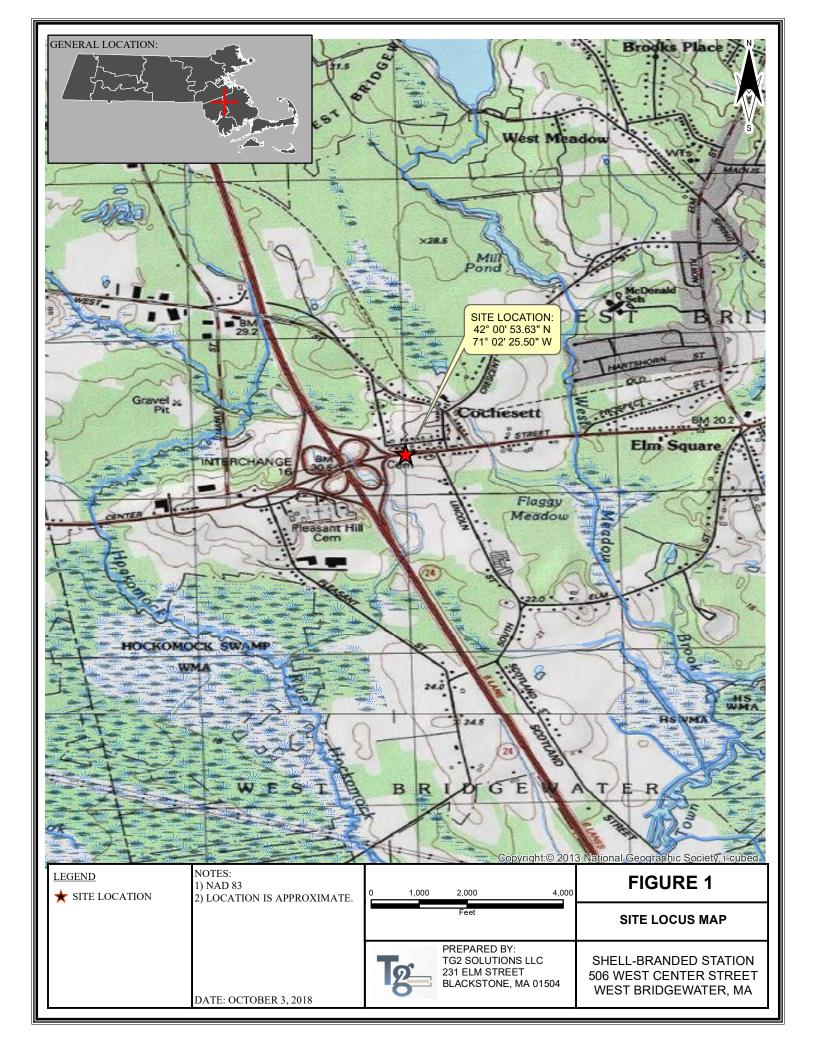
7.0 DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS

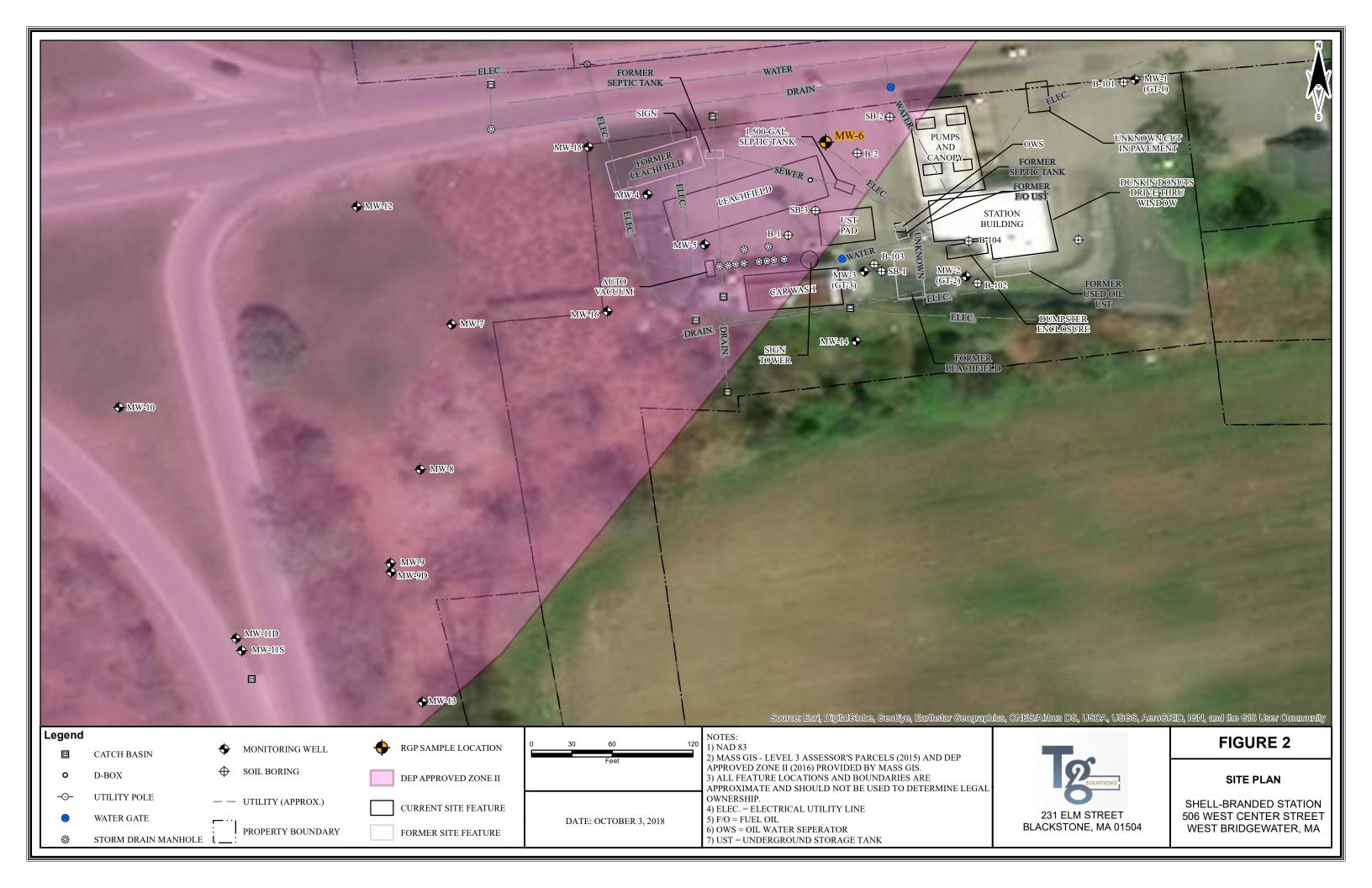
Listings of historic places within the West Bridgewater were obtained from the Massachusetts Cultural Resources Information System (MARCIS) online database:

http://mhc-macris.net/Towns.aspx?Page=towns.asp

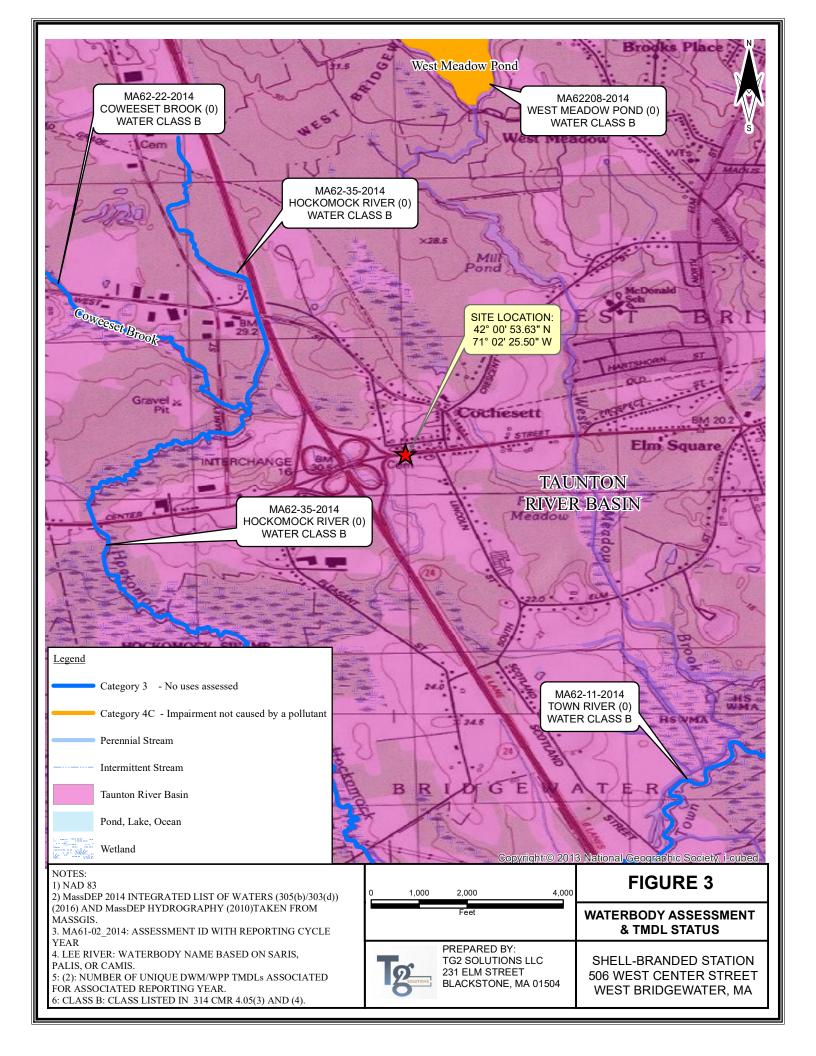
A site vicinity map showing historic places within a quarter mile of the facility is provided on **Figure 7**. One historic place is located within 500 feet of the facility. Based on the scope of this work, it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect any historic places.

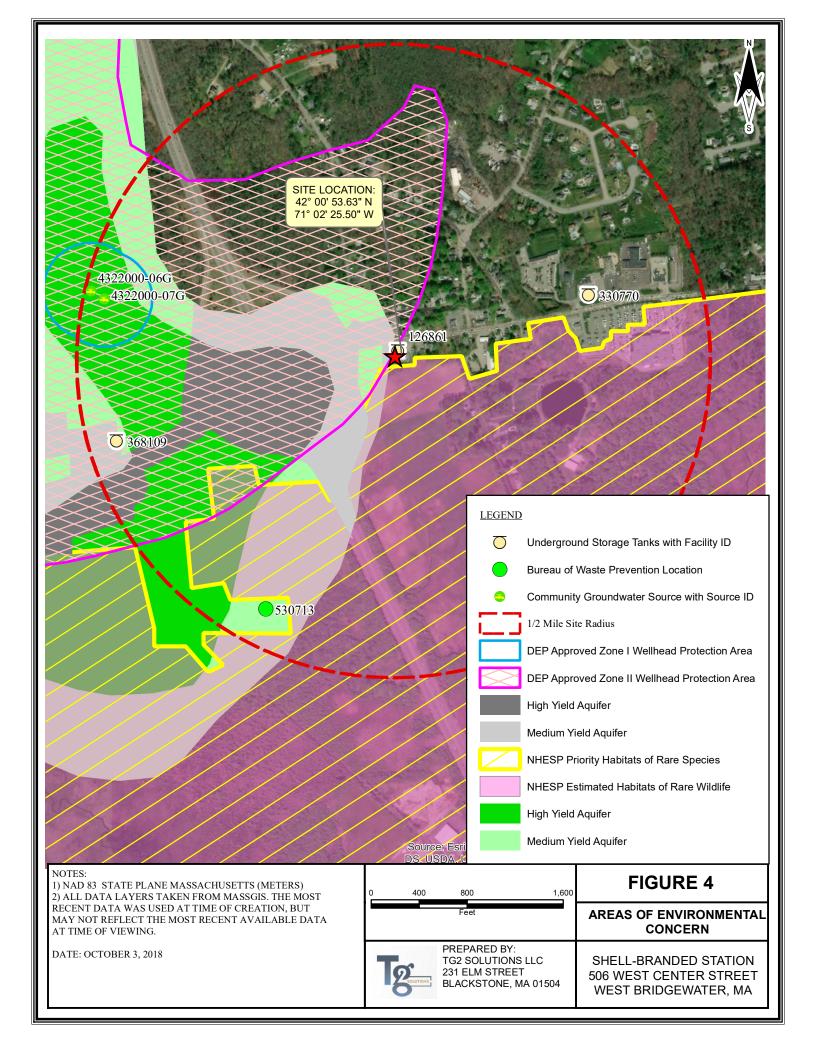
8.0 SUPPLEMENTAL INFORMATION


At this time no additional supplemental information is necessary to meet the requirements of the NOI for the RGP.


9.0 REDEVELOPMENT CONSTRUCTION SCHEDULE

Redevelopment construction activities requiring dewatering are anticipated to begin in late October 2018 and are anticipated to be complete by December 2018.

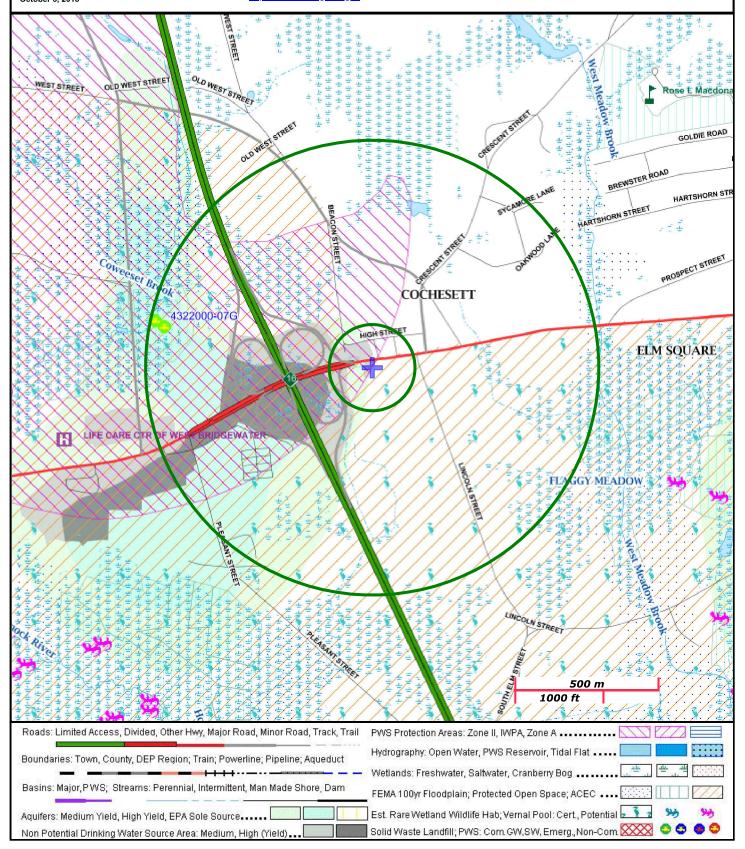


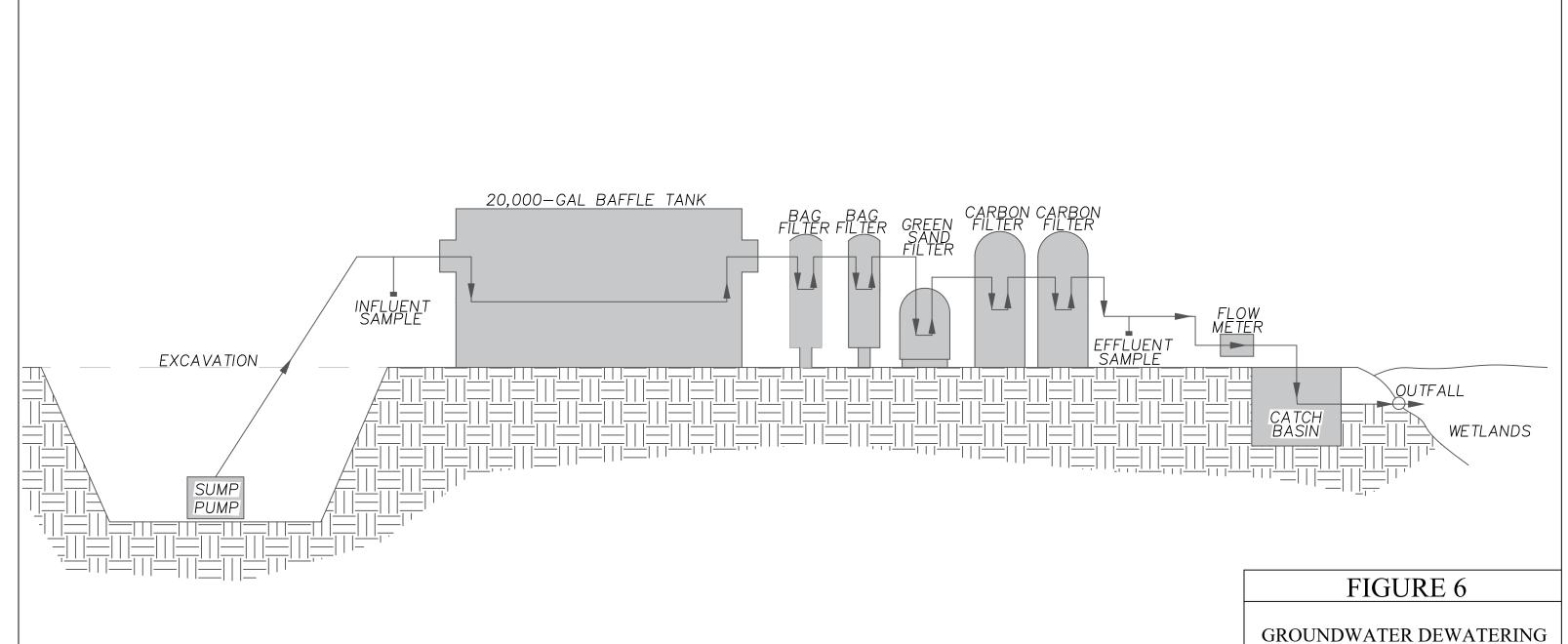

FIGURES

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: SHELL-BRANDED SERVICE STATION 506 WEST CENTER STREET WEST BRIDGEWATER, MA 4-000019737


NAD83 UTM Meters: 4653448mN , 331050mE (Zone: 19) October 3, 2018


FIGURE 5

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

http://www.mass.gov/mgis/.

NOTES:

1) NOT TO SCALE.

APPROXIMATELY 1285 FEET.

2) THE DISTANCE FROM THE CATCH BASIN/DISCHARGE LOCATION TO THE UNNAMED WETLAND OUTFALL IS

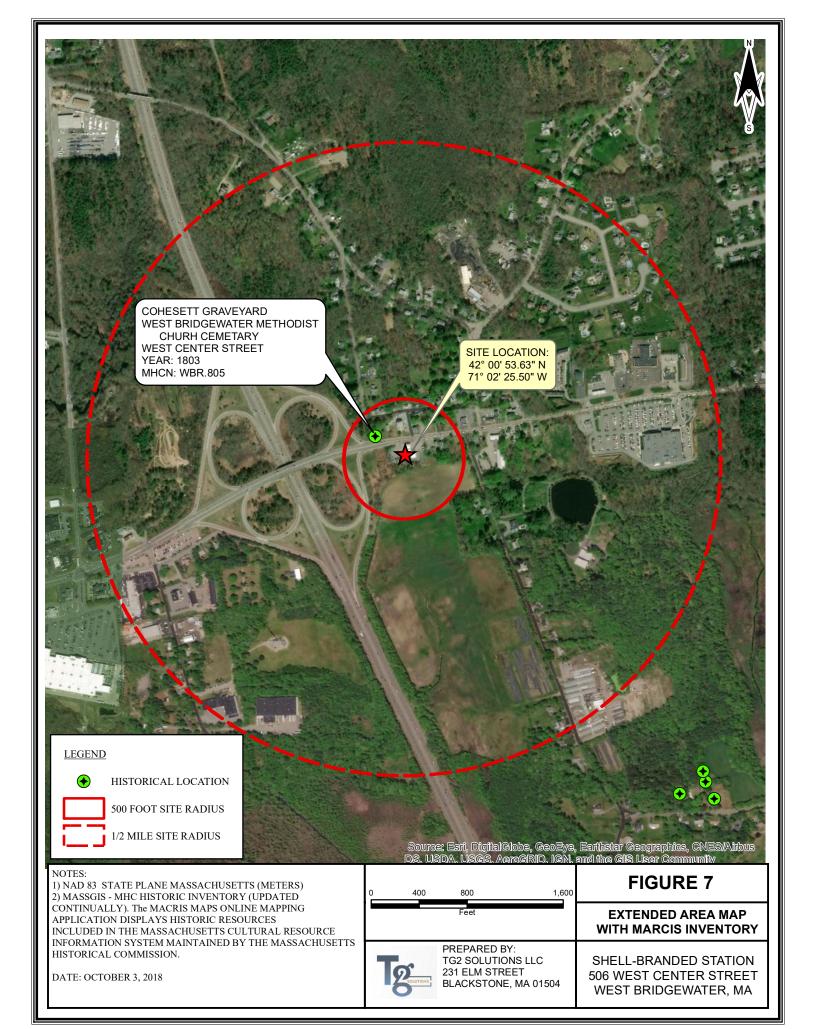
GROUNDWATER DEWATERING INSTALLATION DIAGRAM

SHELL-BRANDED SERVICE STATION

LOCATED AT

506 WEST CENTER STREET WEST BRIDGEWATER, MA

PREPARED FOR


COLBEA ENTERPRISES LLC

TG2 SOLUTIONS, LLC 231 ELM STREET BLACKSTONE, MA 0154

DATE: OCTOBER 3, 2018

REVISED:

TABLES

TABLE 1

SUMMARY OF REMEDIAL GENERAL PERMIT ANALYTICAL DATA

Colbea Shell-Branded Service Station 506 West Center Street West Bridgewater, Massachusetts

		Copper (µg/L)	lron (μg/L)	Lead (µg/L)	Zinc (µg/L)	Benzo(a)- pyrene (µg/L)	Benzo(b)- fluoranthene (µg/L)	Benzo(g,h,i)- perylene (µg/L)	Benzo(k)- fluoranthene (µg/L)		Dibenzo(a,h) Anthracene (µg/L)	Indeno- (1,2,3-cd)- Pyrene (µg/L)	Ammonia (as N) (mg/L)	Chloride (mg/L)	Total Cyanide (mg/L)	Total Suspended Solids (mg/L)	Hardness (mg/L)	рН
MassDEP Reportable (Concentrations (RCGW-2)	100,000	NA	10	900	1,000	400	20	100	70	40	100	NA	NA	0.03	NA	NA	NA
Effluent Lin	nitations - TBEL	242	5,000	160	420	0.1°	0.1°	100 ^b	0.1°	0.1°	0.1°	0.1ª	Report	Report	178	30	NA	NA
Well ID	Sample Date																	
Receiving Water (unnamed wetland)	09/14/18	5.9	2.56	8.2	65.5	П	-		-	П		П	0.23	-	1	-	139	6.16
RGP Well MW-6	09/14/18	14.60	817	5.1	37.8	0.18	0.24	0.38	0.07	0.13	0.10	0.30	<0.10	1,580	0.998	220	168	6.78

Notes:

µg/L - micrograms per liter

mg/L - milligram per liter

<5.0 - Not detected above method detection limit (MDL). MDL included.

MassDEP - Massachusetts Department of Envnironmental Protection

NA - not available

TBEL - Technology-Based Effluent Limitations

"-" - not sampled

MTBE - Methyl tert-Butyl Ether

a - Total Group I PAHs is the sum of: benzo(a) anthracene, benzo(a) pyrene, benzo(b) fluoranthene, benzo(k) fluoranthene, chrysene, dibenzo(a,h) anthracene, and indeno(1,2,3-cd) pyrene. The compliance level for each individual PAH is 0.1 µg/L.

Bold - above method detection limits

Bold & Shaded - above RCGW-2 and/or TBEL Effluent Limitations

b - Total Group II PAHs is the sum of: acenaphthene, acenaphthene, acenaphthylene, anthracene, benzo(g.h.i) perylene, fluorene, naphthalene, phenanthrene, and pyrene. The total compliance level for Group II PAHs is 100 µg/L.

ATTACHMENT A

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: Future Seasons Corner Market 506 WEST CENTER STREET WEST BRIDGEWATER, MA	Site address: 506 WEST CENTER STREET Street:			
WEST BINDGEWATER, WA	City: WEST BRIDEWATER		State: MA	Zip: 02379
2. Site owner Cobea Enterprises, LLC	Contact Person: Dennis Darveau			
2050 Plainfield Pike Cranston, RI 02921	Telephone: 401-490-2209	Email: dda	arveau@se	asonscornermarke
	Mailing address: 7 Starline Way			
	Street:			
Owner is (check one): ☐ Federal ☐ State/Tribal ☑ Private ☐ Other; if so, specify:	City: Cranston		State: RI	Zip: 02921
3. Site operator, if different than owner	Contact Person: Same as above			
Same as owner	Telephone:	Email:		
	Mailing address:			
	Street:		T	
	City:		State:	Zip:
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):	
	✓ MA Chapter 21e; list RTN(s): 4-19737	□ CERCI		
NPDES permit is (check all that apply: ☑ RGP □ DGP □ CGP	□ NH Groundwater Management Permit or	□ UIC Pr	ogram Pretreatmen	t
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:		Section 404	ι

В.	Receiving	water	informa	tion:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):
Unnamed wetland leading to W. Meadow Brook and W. Meadow Pond	62-208	4C - impairment not caused by a pollutar
Receiving water is (check any that apply): \Box Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □ V	Vild and Scenic River
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): Q Yes Q	No
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes □ No	
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP.		
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appendix		tions in none
5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in		
6. Has the operator received confirmation from the approp If yes, indicate date confirmation received:	riate State for the 7Q10and dilution factor indicated? (che	ck one): O Yes O No
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in acc	ordance with the instruction in Appendix VIII?
(check one): Q Yes Q No		

C. Source water information:

1. Source water(s) is (check any that apply):			
✓ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
• Yes • No	Q Yes Q No		

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☑ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ✓ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ☑ New	v discharge □ New source
Outfall(s): An unnamed wetland that discharges to an unnamed pond and then flow into another wetland, Flaggy Meadow, discharging to West Meadow Browhich discharges to the Town River.	
Discharges enter the receiving water(s) via (check any that apply): □ Direct dicatch basin	scharge to the receiving water <a> Indirect discharge , if so, specify:
☐ A private storm sewer system ☑ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ② Ye	es Q No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ✓ Yes □ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	
Provide the expected start and end dates of discharge(s) (month/year): October	er 2018 to December 2018 for construction - dewatering expected to be less time
Indicate if the discharge is expected to occur over a duration of: ✓ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ☑ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	x all that apply)					
	a. If Activity Categ	gory I or II: (check all that apply)					
	 ☑ A. Inorganics ☑ B. Non-Halogenated Volatile Organic Compounds ☑ C. Halogenated Volatile Organic Compounds ☑ D. Non-Halogenated Semi-Volatile Organic Compounds ☑ E. Halogenated Semi-Volatile Organic Compounds ☑ F. Fuels Parameters 						
 ✓ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering 		V, V, VI, VII or VIII: (check either G or H)					
☐ IV – Dewatering of Pipelines and Tanks ☐ V – Aquifer Pump Testing	☐ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination					
 □ V - Aquiter Pump Testing □ VI - Well Development/Rehabilitation □ VII - Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)						
□ VIII – Dredge-Related Dewatering	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply					

4. Influent and Effluent Characteristics

	Known	Known		m .	D ()	In	fluent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia	/		1	350.1	0.10	<0.10	0	Report mg/L	
Chloride		✓	1	300.0	500,000	1,580,000	1,580,000	Report µg/l	
Total Residual Chlorine	/		1	4500CI D	20.0	<20.0	0	0.2 mg/L	0.011
Total Suspended Solids		✓	1	2540D	5	220	220	30 mg/L	
Antimony	1		1	200.7	5.0	<5.0	0	206 μg/L	
Arsenic	/		1	200.7	5.0	<5.0	0	104 μg/L	
Cadmium	/		1	200.7	2.0	<2.0	0	10.2 μg/L	
Chromium III	/		1	200.7	10.0	<10.0	0	323 μg/L	
Chromium VI	1		1	200.7	10.0	<10.0	0	323 μg/L	
Copper		✓	1	200.7	499	14.6	14.6	242 μg/L	14.5
Iron		/	1	200.7	20.0	817	817	5,000 μg/L	
Lead		✓	1	200.7	4.0	5.1	5.1	160 μg/L	
Mercury	✓		1	200.7	0.2	<0.2	0	0.739 μg/L	
Nickel	✓		1	200.7	5.0	<5.0	0	1,450 μg/L	
Selenium	✓		1	200.7	5	<5	0	235.8 μg/L	
Silver	✓		1	200.7	0.5	<0.5	0	35.1 μg/L	
Zinc		✓	1	200.7	10.0	37.8	37.8	420 μg/L	
Cyanide		✓	1	4500 CN	0.05	0.998	0.998	178 mg/L	0.0052
B. Non-Halogenated VOC	s			, 2.11	,			,	
Total BTEX	✓		1	524.2	0.5	<0.5	0	100 μg/L	
Benzene	✓		1	524.2	0.5	<0.5	0	5.0 μg/L	
1,4 Dioxane	✓		1	8270D	0.250	< 0.250	0	200 μg/L	
Acetone	✓		1	524.2	5.0	<5.0	0	7.97 mg/L	
Phenol	✓		1	420.1	50	<50	0	1,080 μg/L	

	Known	Known				In	fluent	Effluent Limitations		
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride	✓		1	524.2	0.3	<0.3	0	4.4 μg/L		
1,2 Dichlorobenzene	~		1	524.2	0.5	<0.5	0	600 μg/L		
1,3 Dichlorobenzene	/		1	524.2	0.5	<0.5	0	320 μg/L		
1,4 Dichlorobenzene	~		1	524.2	0.5	<0.5	0	5.0 μg/L		
Total dichlorobenzene	/		1	524.2	0.5	<0.5	0	763 μg/L in NH		
1,1 Dichloroethane	✓		1	524.2	0.5	<0.5	0	70 μg/L		
1,2 Dichloroethane	✓		1	524.2	0.5	<0.5	0	5.0 μg/L		
1,1 Dichloroethylene	✓		1	524.2	0.5	<0.5	0	3.2 μg/L		
Ethylene Dibromide	~		1	524.2	0.5	<0.5	0	0.05 μg/L		
Methylene Chloride	✓		1	524.2	0.5	<0.5	0	4.6 μg/L		
1,1,1 Trichloroethane	~		1	524.2	0.5	<0.5	0	200 μg/L		
1,1,2 Trichloroethane	/		1	524.2	0.5	<0.5	0	5.0 μg/L		
Trichloroethylene	/		1	524.2	0.5	<0.5	0	5.0 μg/L		
Tetrachloroethylene	4		1	524.2	0.5	<0.5	0	5.0 μg/L		
cis-1,2 Dichloroethylene	~		1	524.2	0.5	<0.5	0	70 μg/L		
Vinyl Chloride	✓		1	524.2	0.2	<0.2	0	2.0 μg/L		
D. Non-Halogenated SVOC	¬s									
Total Phthalates	/		1	625.1 SIM	2.45	<2.45	0	190 μg/L		
Diethylhexyl phthalate	/		1	625.1 SIM	2.45	<2.45	0	101 μg/L		
Total Group I PAHs		✓	1	625.1 SIM	0.20	1.02	1.02	1.0 μg/L		
Benzo(a)anthracene	/		1	625.1 SIM	0.05	<0.05	0	1.5		
Benzo(a)pyrene		✓	1	625.1 SIM	0.05	0.18	0.18		0.0038	
Benzo(b)fluoranthene		✓	1	625.1 SIM	0.05	0.24	0.24		0.0038	
Benzo(k)fluoranthene		✓	1	625.1 SIM	0.05	0.07	0.07	As Total PAHs	0.0038	
Chrysene		/	1	625.1 SIM	0.05	0.13	0.13	1	0.0038	
Dibenzo(a,h)anthracene		·	1	625.1 SIM	0.05	0.10	0.10		0.0038	
Indeno(1,2,3-cd)pyrene		· /	1	625.1 SIM	0.05	0.30	0.30	1	0.0038	

Known	Known	T		Detection limit (µg/l)	Influent		Effluent Limitations	
or believed absent	or believed present	# of samples	Test method (#)		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
~		1			0.38	0.38	100 μg/L	
✓		1	625.1 SIM	0.20	<0.20	0	20 μg/L	
		1	608.3	0.09	<0.09	0	0.000064 µg/L	
✓		1	625.1	0.88	<0.88	0	1.0 μg/L	
	1				1	1		
✓		1	1664A	5	<5	0	5.0 mg/L	
		1	D3695	10	<10	0	Report mg/L	
✓		1	524.2	0.5	<0.5	0	70 μg/L	
~		1	524.2	25.0	<25.0	0	120 μg/L in MA 40 μg/L in NH	
~		1	524.2	1.0	<1.0	0	90 μg/L in MA 140 μg/L in NH	
re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutan 200.7	ts present);	if so, specify: 168,000 ug/L	168,000 ug/L		
re, hardness,	1	S ₅₀ , addition	al pollutar 200.7 Field	ts present); 499	if so, specify: 168,000 ug/L 6.78	168,000 ug/L 6.78		
re, hardness,	1	250, addition	200.7	499	168,000 ug/L			
re, hardness,	1	C50, addition 1 1	200.7	499	168,000 ug/L			
re, hardness,	1	C50, addition	200.7	499	168,000 ug/L			
re, hardness,	1	750, addition 1 1	200.7	499	168,000 ug/L			
re, hardness,	1	Cso, addition	200.7	499	168,000 ug/L			
re, hardness,	1	250, addition	200.7	499	168,000 ug/L			
re, hardness,	1	S ₅₀ , addition	200.7	499	168,000 ug/L			
re, hardness,	1	Cso, addition	200.7	499	168,000 ug/L			
re, hardness,	1	250, addition	200.7	499	168,000 ug/L			
	or believed absent	or believed absent present	or believed absent present # of samples	or believed absent present	or believed absent or believed present # of samples method (#) limit (μg/l) ✓ 1 625.1 SIM 0.20 ✓ 1 625.1 SIM 0.20 ✓ 1 625.1 SIM 0.09 ✓ 1 625.1 0.88	Test method (#) Daily maximum (μg/l)	Test method (#) Daily maximum (μg/l) D	Test method Hof samples Hof samples Hof believed absent Hof present Hof samples Hof samples Hof samples Hof samples Hof samples Hof method (#) Hof method (H) Hof meth

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ☑ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ☑ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply): ☑ Fractionation tanks□ Equalization tank □ Oil/water separator ☑ Mechanical filter ☑ Media filter □ Chemical feed tank □ Air stripping unit ☑ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Is use of a flow meter feasible? (check one): ✓ Yes □ No, if so, provide justification:	60 gpm
Provide the proposed maximum effluent flow in gpm.	40 gpm
Provide the average effluent flow in gpm.	< 40 gpm
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): • Yes • No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
1. Indicate the type(s) of chemical of additive that will be applied to efficient prior to discharge of that may otherwise be present in the discharge(s). (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
2. I To vide the following information for each enemical additive, using attachments, if necessary.
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
(check one). Wites Wino
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the
"action area".
☐ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
, , , , , , , , , , , , , , , , , , , ,
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical
habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and
related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
, , , , , , , , , , , , , , , , , , ,
FWS. This determination was made by: (check one) ✓ the operator □ EPA □ Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): Q Yes Q No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Ves No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
Does and supporting documentation include any written concentrates of intensity and the softweet. (entert one).
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): Ves O No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): • Yes • No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Please refer to the NOI RGP Report, attached. This report includes a site map with discharge and outfall locations, water classifications, potential environmental receptors, groundwater analytical tables and laboratory analytical report, and supporting documentation for the ESA determination and historic sites within the vicinity of the facility this NOI RGP is being applied for.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): • Yes • No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): Yes No

J. Certification requirement

J. Certification requirement		
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	lief, true, accurate, ar significant penalties j	nd complete. I have for submitting false
A BMPP meeting the requirements of this general permit will be devel BMPP certification statement: initiation of discharge	ореа апа ітіріен	пентей ироп
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ✓	№ □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ✓	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ✓	No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes 🗹	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes □	No □ NA Ø
☐ Other; if so, specify: Signature: Date Dat	e: 10/29/18	
Print Name and Title: Eric D. Simpson - Environmental Manager		

ATTACHMENT B

Subject: RE: 506 West Center Street, W. Bridgewater - EPA RGP

Date: Wednesday, October 10, 2018 at 3:29:53 PM Eastern Daylight Time

From: Ruan, Xiaodan (DEP)

To: Leah Smith

CC: Vakalopoulos, Catherine (DEP)

Hi Leah,

The outfall discharges to an unnamed wetland which appears to flow to an unnamed pond and then flows to another wetland-Flaggy Meadow and then to the West Meadow Brook. Therefore there is no dilution at this site (DF=0) which is same as what you entered in the spreadsheet.

Here is the WQ information you will need when filling out the NOI:

The West Meadow Brook flows through another wetland area and flow into the Town River which is in the Taunton Watershed. The water bodies and the wetlands are not Outstanding Resource Waters. The Town River has a segment ID of MA62-11 and is classified as Class B. There are no TMDLs for this river and to see the impairments, go to: https://www.mass.gov/files/documents/2016/08/sa/14list2_0.pdf and look up "MA62-11".

In addition to submitting the NOI to EPA, if this is not *currently* an MCP site, you will also have to apply with the state (submit same NOI to Cathy Vakalopoulos, fill out a transmittal form, and submit a \$500 fee unless exempt). Instructions are located here: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent.

Please let us know if you have any additional questions.

Thanks, Xiaodan

From: Vakalopoulos, Catherine (DEP) **Sent:** Tuesday, October 09, 2018 4:56 PM

To: Leah Smith

Cc: Ruan, Xiaodan (DEP)

Subject: FW: 506 West Center Street, W. Bridgewater - EPA RGP

Hi Leah,

I haven't had time to look at this so Xiaodan will review it tomorrow.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

Please consider the environment before printing this e-mail

From: Leah Smith [mailto:lsmith@tg2solutions.com]

Sent: Monday, October 08, 2018 1:31 PM

To: Vakalopoulos, Catherine (DEP)

Subject: 506 West Center Street, W. Bridgewater - EPA RGP

Hello,

I'm working on a RGP on behalf of a client to complete a NOI for a RGP for redevelopment activities at 506 West Center Street in West Bridgewater. This facility is an active gasoline station with an open RTN (4-19737) and is being redeveloped into an updated gasoline station facility with new tanks, etc.

Attached please find the dilution factor spreadsheet and effluent limit calculations, as well as the StreamStats output. The discharge location is a catch basin located adjacent to the site to the north off W. Center Street, which discharges to an unnamed wetland located east of the site – see Figure 2A. The discharge flow was calculated based on the design flow: (60 gpm x 60 mph x 24h) / 1 million = 0.0864 mgd. The latitude and longitude of the catch basin discharge and outfall point are:

Catch Basin Discharge Point: Latitude: 42.015155 Longitude: -71.040294

Outfall (Lee River) Point: Latitude: 42.015644 Longitude: -71.035916

The outfall leads to an unnamed wetland which appears to flow to the West Meadow Brook and into the West Meadow Pond, ID MA62-208. Impairment causes non-native aquatic plants.

I've also attached a table with the summary of contaminants detected in the influent sample (site groundwater) and the outfall surface water sample.

Could you verify the 7Q10 information and dilution factor? Please let me know if you require any additional information.

Thanks for your help.

Leah

Enter number values in green boxes below

Enter values in the units specified

\downarrow	
0	Q_R = Enter upstream flow in MGD
0.0864	Q _P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
168	C_d = Enter influent hardness in mg/L CaCO ₃
139	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	-
6.16	pH in Standard Units
19.6	Temperature in °C
0.23	Ammonia in mg/L
139	Hardness in mg/L CaCO ₃
0.8	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
5.9	Copper in µg/L
2.56	Iron in μg/L
8.2	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
65.5	Zinc in μg/L
	=

Enter influent concentrations in the units specified

↓	_
0	TRC in µg/L
0	Ammonia in mg/L
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in μg/L
0	Chromium III in µg/L
0	Chromium VI in μg/L
14.6	Copper in µg/L
817	Iron in μg/L
5.1	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
37.8	Zinc in µg/L
998	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0.18	Benzo(a)pyrene in μg/L
0.24	Benzo(b)fluoranthene in μg/L
0.07	Benzo(k)fluoranthene in μg/L
0.13	Chrysene in µg/L
0.1	Dibenzo(a,h)anthracene in μg/I
0.3	Indeno(1,2,3-cd)pyrene in μg/I
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

$$\label{eq:sigma} \begin{split} & \text{if} > 1 \text{ sample, enter maximum} \\ & \text{if} > 10 \text{ samples, may enter 95th percentile} \\ & \text{Enter 0 if non-detect or testing not required} \end{split}$$

I. Dilution Factor Calculation Method

A. 7010

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \underline{Q_R + Q_P}$$

 $Q_R = 7Q10$ in MGD

 $Q_p = Discharge flow, in MGD$

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

 C_d = Discharge hardness in mg/L

 $Q_s = Upstream flow (7Q10) in MGD$

 $C_s = Upstream$ (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [ln(h)] + b_c\}$

 m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_d = \underline{O_r C_r - O_s C_s}$$

 C_r = Water quality criterion in μ g/L

 $Q_d = Discharge flow in MGD$

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 $C_s = Ustream$ (receiving water) concentration in $\mu g/L$

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in $\mu g/L$

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 $C_s = Upstream$ (receiving water) concentration in $\mu g/L$

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor	1.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies is	f bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	$\mu g/L$				
Total Residual Chlorine	0.2	mg/L	11	$\mu g/L$	50	$\mu g/L$
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	10	μg/L		
Cadmium	10.2	μg/L	0.3975	μg/L		
Chromium III	323	μg/L	131.8	μg/L		
Chromium VI	323	μg/L	11.4	μg/L		
Copper	242	μg/L	14.5	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	μg/L	6.16	μg/L		
Mercury	0.739	μg/L	0.91	μg/L		
Nickel	1450	μg/L μg/L	80.9	μg/L μg/L		
Selenium	235.8	μg/L μg/L	5.0	μg/L μg/L		
Silver	35.1	μg/L μg/L	9.2	μg/L μg/L		
Zinc	420	μg/L μg/L	186.0			
			5.2	μg/L		/I
Cyanide P. Nan Halaganatad VOCa	178	mg/L	5.2	μg/L		μg/L
B. Non-Halogenated VOCs Total BTEX	100	μg/L				
Benzene	5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	300	$\mu g/L$		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	$\mu g/L$	1.6	$\mu g/L$		
1,2 Dichlorobenzene	600	μg/L				
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene	 70	μg/L				
1,1 Dichloroethane1,2 Dichloroethane	5.0	μg/L μg/L				
1,1 Dichloroethylene	3.2	μg/L μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	$\mu g/L$				
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				

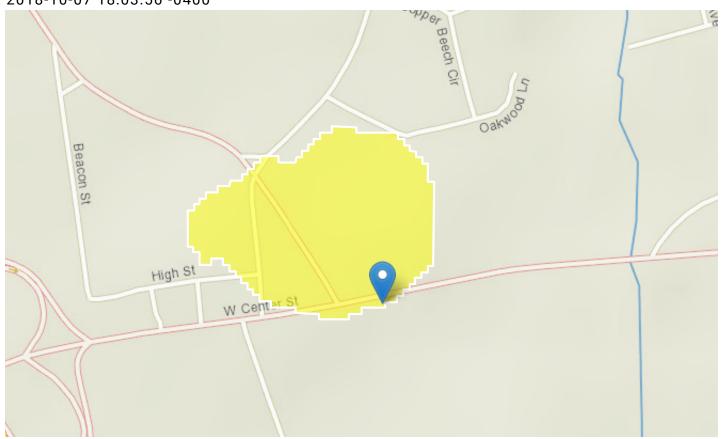
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	$\mu g/L$	0.0038	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Chrysene	1.0	$\mu g/L$	0.0038	μg/L	0.1	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Indeno(1,2,3-cd)pyrene	1.0	$\mu g/L$	0.0038	μg/L	0.1	$\mu g/L$
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	$\mu g/L$				
Naphthalene	20	$\mu g/L$				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	$\mu g/L$			0.5	$\mu g/L$
Pentachlorophenol	1.0	$\mu g/L$				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	$\mu g/L$				

StreamStats Report

Region ID:

MA

Workspace ID:


MA20181007220343198000

Clicked Point (Latitude, Longitude):

42.01562, -71.03571

Time:

2018-10-07 18:03:56 -0400

506 West Center Street in West Bridgewater outfall

Basin Character	istics		
Parameter Code	Parameter Description	Value	Unit
ACRSDFT	Area underlain by stratified drift	0.0279	square miles
DOLDENATONA	Maan haain alang computed from 10 m DEM	2 201	noroont

DOLUEIVI I UIVI	mean basin stope computed from 10 m beim	J.JOI	регсепт
BSLDEM250	Mean basin slope computed from 1:250K DEM	0.411	percent
CENTROIDX	Basin centroid horizontal (x) location in state plane coordinates	238358.1	feet
CENTROIDY	Basin centroid vertical (y) location in state plane units	863036.9	feet
CRSDFT	Percentage of area of coarse-grained stratified drift	72.81	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.2	square mile per mile
DRNAREA	Area that drains to a point on a stream	0.0361	square miles
ELEV	Mean Basin Elevation	87.4	feet
FOREST	Percentage of area covered by forest	27.41	percent
LAKEAREA	Percentage of Lakes and Ponds	0	percent
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	92.7	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	37.2	percent
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionles
MAXTEMPC	Mean annual maximum air temperature over basin area, in degrees Centigrade	15.4	feet per mi
OUTLETX	Basin outlet horizontal (x) location in state plane coordinates	238455	feet
OUTLETY	Basin outlet vertical (y) location in state plane coordinates	862905	feet
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	72.81	percent
PRECPRIS00	Basin average mean annual precipitation for 1971 to 2000 from PRISM	48.5	inches
STRMTOT	total length of all mapped streams (1:24,000-scale) in the basin	0.14	miles
		^ -·	-

WEILAND

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.2.1

ATTACHMENT C

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jason Sherburne Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: West Bridge - RGP (N/A)

ESS Laboratory Work Order Number: 1809361

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 2:39 pm, Oct 01, 2018

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

SAMPLE RECEIPT

The following samples were received on September 14, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1809361-01	MW-6	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 350.1, 3500Cr
			B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1,
			524.2, 608.3, 625.1 SIM, 8270D SIM, ASTM D3695
1809361-02	Receiving Water	Ground Water	200.7, 245.1, 2520B, 350.1, 3500Cr B-2009, 4500
			H+ B

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

PROJECT NARRATIVE

28I0374-CCV1	Pentachlorophenol (124% @ 80-120%)	
810374-CCV1	1 January 11 11 11 (12 11 16 (6) 00 12 01 1)	
	Pentachlorophenol (24% @ 20%)	
8I0374-CCV1		
	Perylene-d12 (213% @ 50-200%)	
Classical Chemis 809361-01	iry y	
809361-02		
Sanalanad Makala		
Dissolved Metals 809361-01		
	Cadmium , Lead	_
otal Metals		
809361-01		
	Cadmium	

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 04-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (5.0)		200.7		1	KJK	09/18/18 12:15	100	10	CI81744
Arsenic	ND (5.00)		200.7		1	KJK	09/18/18 12:15	100	10	CI81744
Cadmium	EL ND (2.00)		200.7		2	KJK	09/18/18 15:25	100	10	CI81744
Chromium	ND (2.0)		200.7		1	KJK	09/18/18 12:15	100	10	CI81744
Copper	4.7 (4.0)		200.7		2	KJK	09/18/18 15:25	100	10	CI81744
Iron	ND (200)		200.7		20	KJK	09/18/18 15:31	100	10	CI81744
Lead	EL ND (4.0)		200.7		2	KJK	09/18/18 15:25	100	10	CI81744
Mercury	ND (0.20)		245.1		1	MJV	09/18/18 11:29	20	40	CI81746
Nickel	ND (5.0)		200.7		1	KJK	09/18/18 12:15	100	10	CI81744
Selenium	ND (5.0)		200.7		1	KJK	09/18/18 12:15	100	10	CI81744
Silver	ND (1.0)		200.7		1	KJK	09/18/18 12:15	100	10	CI81744
Zinc	23.6 (10.0)		200.7		2	KJK	09/18/18 15:25	100	10	CI81744

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (5.0)		200.7		1	KJK	09/18/18 11:40	100	10	CI81744
Arsenic	ND (5.0)		200.7		1	KJK	09/18/18 11:40	100	10	CI81744
Cadmium	EL ND (2.00)		200.7		2	KJK	09/18/18 15:35	100	10	CI81744
Chromium	ND (4.0)		200.7		2	KJK	09/18/18 15:35	100	10	CI81744
Chromium III	ND (10.0)		200.7		2	CCP	09/18/18 15:35	1	1	[CALC]
Copper	14.6 (4.0)		200.7		2	KJK	09/18/18 15:35	100	10	CI81744
Hardness	168000 (499)		200.7		10	KJK	09/18/18 15:52	1	1	[CALC]
Iron	817 (20.0)		200.7		2	KJK	09/18/18 15:35	100	10	CI81744
Lead	5.1 (4.0)		200.7		2	KJK	09/18/18 15:35	100	10	CI81744
Mercury	ND (0.2)		245.1		1	MJV	09/18/18 11:25	20	40	CI81746
Nickel	ND (5.0)		200.7		1	KJK	09/18/18 11:40	100	10	CI81744
Selenium	ND (5)		200.7		1	KJK	09/18/18 11:40	100	10	CI81744
Silver	ND (0.5)		200.7		1	KJK	09/18/18 11:40	100	10	CI81744
Zinc	37.8 (10.0)		200.7		2	KJK	09/18/18 15:35	100	10	CI81744

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
1,1,2-Trichloroethane	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
1,1-Dichloroethane	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
1,1-Dichloroethene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
1,2-Dichlorobenzene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
1,2-Dichloroethane	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
1,3-Dichlorobenzene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
1,4-Dichlorobenzene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Acetone	ND (5.0)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Benzene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Carbon Tetrachloride	ND (0.3)		524.2		1	09/14/18 16:16	C8I0249	CI81428
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Ethylbenzene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Methylene Chloride	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Naphthalene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Tetrachloroethene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Toluene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Trichloroethene	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Vinyl Chloride	ND (0.2)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Xylene O	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428
Xylene P,M	ND (0.5)		524.2		1	09/14/18 16:16	C8I0249	CI81428

%Recovery Qualifier Limits

 Surrogate: 1,2-Dichlorobenzene-d4
 101 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 100 %
 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 9/19/18 14:01

608.3 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
Aroclor 1221	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
Aroclor 1232	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
Aroclor 1242	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
Aroclor 1248	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
Aroclor 1254	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
Aroclor 1260	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
Aroclor 1262	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
Aroclor 1268	ND (0.09)		608.3		1	09/20/18 3:13		CI81903
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		59 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		68 %		30-150				
Surrogate: Tetrachloro-m-xylene		73 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		86 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A Initial Volume: 1020 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/20/18 13:15

625.1(SIM) Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Acenaphthene	ND (0.20)	· ·	625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Acenaphthylene	ND (0.20)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Anthracene	ND (0.20)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Benzo(a)anthracene	ND (0.05)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Benzo(a)pyrene	0.18 (0.05)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Benzo(b)fluoranthene	0.24 (0.05)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Benzo(g,h,i)perylene	0.38 (0.20)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Benzo(k)fluoranthene	0.07 (0.05)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
bis(2-Ethylhexyl)phthalate	ND (2.45)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Butylbenzylphthalate	ND (2.45)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Chrysene	0.13 (0.05)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Dibenzo(a,h)Anthracene	0.10 (0.05)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Diethylphthalate	ND (2.45)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Dimethylphthalate	ND (2.45)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Di-n-butylphthalate	ND (2.45)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Di-n-octylphthalate	ND (2.45)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Fluoranthene	ND (0.20)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Fluorene	ND (0.20)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Indeno(1,2,3-cd)Pyrene	0.30 (0.05)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Naphthalene	ND (0.20)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Pentachlorophenol	ND (0.88)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Phenanthrene	ND (0.20)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001
Pyrene	ND (0.20)		625.1 SIM		1	09/21/18 12:49	C8I0374	CI82001

	MECOVERY	Qualinei	Limits
Surrogate: 1,2-Dichlorobenzene-d4	48 %		30-130
Surrogate: 2,4,6-Tribromophenol	76 %		15-110
Surrogate: 2-Fluorobiphenyl	64 %		30-130
Surrogate: Nitrobenzene-d5	82 %		30-130
Surrogate: p-Terphenyl-d14	107 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 9/21/18 19:45

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 09/25/18 17:01	Sequence C8I0468	Batch CI82164
	%F	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		47 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)	350.1		1	JLK	09/17/18 18:35	mg/L	CI81723
Chloride	1580000 (500000)	300.0		1000	EEM	09/17/18 20:47	ug/L	CI81718
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	CCP	09/14/18 16:29	ug/L	CI81459
Phenols	ND (50)	420.1		1	JLK	09/17/18 15:46	ug/L	CI81742
Total Cyanide	998 (50.0)	4500 CN CE		10	EEM	09/18/18 11:50	ug/L	CI81819
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	09/21/18 11:01	mg/L	CI81919
Total Residual Chlorine	ND (20.0)	4500Cl D		1	CCP	09/17/18 13:49	ug/L	CI81740
Total Suspended Solids	220 (5)	2540D		1	CCP	09/18/18 17:48	mg/L	CI81841

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 9/24/18 15:49

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	Method 504.1	<u>Limit</u>	<u>DF</u>	Analyzed 09/24/18 18:55	<u>Sequence</u>	Batch CI82460
	%	Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		120 %		30-150				
Surrogate: Pentachloroethane [2C]		112 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP

Client Sample ID: MW-6 Date Sampled: 09/14/18 10:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 9/19/18 14:23

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC09/21/18 10:52CI81934

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP Client Sample ID: Receiving Water Date Sampled: 09/14/18 11:00

Percent Solids: N/A

Extraction Method: 3005A/200.7

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-02

Sample Matrix: Ground Water

Units: ug/L

Total Metals

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (5.0)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Arsenic	ND (5.0)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Beryllium	ND (0.100)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Cadmium	ND (1.00)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Chromium	ND (2.0)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Copper	5.9 (2.0)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Hardness	139000 (82.4)	200.7		1	KJK	09/18/18 12:09	1	1	[CALC]
Iron	2.56 (0.010)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Lead	8.2 (2.0)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Mercury	ND (0.2)	245.1		1	MJV	09/18/18 11:27	20	40	CI81746
Nickel	ND (5)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Selenium	ND (5)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Silver	ND (0.5)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Thallium	ND (10.0)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744
Zinc	65.5 (5.0)	200.7		1	KJK	09/18/18 12:09	100	10	CI81744

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP Client Sample ID: Receiving Water Date Sampled: 09/14/18 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1809361 ESS Laboratory Sample ID: 1809361-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method Lin	nit <u>DF</u>	Analyst Analyzed	<u>Units</u>	Batch
Ammonia as N	0.23 (0.10)	350.1	1	JLK 09/17/18 18:36	mg/L	CI81723
Hexavalent Chromium	ND (10.0)	3500Cr B-2009	1	CCP 09/14/18 16:29	ug/L	CI81459
pH	6.16 (N/A)	4500 H+ B	1	CCP 09/14/18 19:18	S.U.	CI81439
pH Sample Temp	Aqueous pH measu	red in water at 19.6 °C. (N/A)				
Salinity	0.8 (0.1)	2520B	1	EEM 09/18/18 14:20	ppt	CI81825

Fax: 401-461-4486

Page 15 of 31

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		Ī	Dissolved M	etals						
Batch CI81744 - 3005/	A/200.7									
Blank										
Antimony	ND	5.0	ug/L							
Arsenic	ND	5.00	ug/L							
Cadmium	ND	1.00	ug/L							
Chromium	ND	2.0	ug/L							
Copper	ND	2.0	ug/L							
ron	ND	10.0	ug/L							
Lead	ND	2.0	ug/L							
Nickel	ND 	5.0	ug/L							
Selenium	ND	5.0	ug/L							
Silver	ND ND	1.0	ug/L							
Zinc	ND	5.0	ug/L							
LCS	***			F0.7=			05.115			
Antimony	48.8	5.0	ug/L	50.15		97	85-115			
Arsenic	47.9	5.00	ug/L	50.00		96	85-115			
Cadmium	23.1	1.00	ug/L	25.02		92	85-115			
Chromium	48.1	2.0 2.0	ug/L	50.00		96 107	85-115 85-115			
Copper ron	53.6 236	10.0	ug/L ug/L	50.00 250.1		107 94	85-115			
ead	48.2	2.0	ug/L	50.00		96	80-120			
Nickel	48.7	5.0	ug/L	50.00		97	85-115			
Selenium	90.5	5.0	ug/L	99.95		91	80-120			
Silver	24.9	1.0	ug/L	24.98		100	85-115			
Zinc	49.6	5.0	ug/L	50.00		99	85-115			
Batch CI81746 - 245.1	/74704									
Blank	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Mercury	ND	0.20	ug/L							
	···		-51-							
Mercury	5.77	0.20	ug/L	6.000		96	85-115			
-ici cui y	5.77	0.20				30	05 115			
			Total Met	ais						
Batch CI81459 - [CALC	 []									
Blank										
Chromium III	ND	10.0	ug/L							
.cs										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Batch CI81744 - 3005/			<u> </u>							
Blank	· · · · · · · · · · · · · · · · · · ·									
Antimony	ND	5.0	ug/L							
Arsenic	ND	5.0	ug/L							
·· -	ND	0.100	ug/L							

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Meta	als						
Batch CI81744 - 3005A/200.7										
Cadmium	ND	1.00	ug/L							
Chromium	ND	2.0	ug/L							
Chromium III	ND	2.00	ug/L							
Copper	ND	2.0	ug/L							
Hardness	ND	82.4	ug/L							
Iron	ND	10.0	ug/L							
Iron	ND	0.010	mg/L							
Lead	ND	2.0	ug/L							
Nickel	ND	5.0	ug/L							
Nickel	ND	5	ug/L							
Selenium	ND	5	ug/L							
Silver	ND	0.5	ug/L							
Thallium	ND	10.0	ug/L							
Zinc	ND	5.0	ug/L							
LCS										
Antimony	48.8	5.0	ug/L	50.15		97	85-115			
Arsenic	47.9	5.0	ug/L	50.00		96	85-115			
Beryllium	4.76	0.100	ug/L	5.000		95	85-115			
Cadmium	23.1	1.00	ug/L	25.02		92	85-115			
Chromium	48.1	2.0	ug/L	50.00		96	85-115			
Chromium III	48.1	2.00	ug/L							
Copper	53.6	2.0	ug/L	50.00		107	85-115			
Hardness	3120	82.4	ug/L							
Iron	0.236	0.010	mg/L	0.2501		94	85-115			
Iron	236	10.0	ug/L	250.1		94	85-115			
Lead	48.2	2.0	ug/L	50.00		96	85-115			
Nickel	48.7	5.0	ug/L	50.00		97	85-115			
Nickel	48.7	5	ug/L	50.00		97	85-115			
Selenium	90	5	ug/L	99.95		91	85-115			
Silver	24.9	0.5	ug/L	24.98		100	85-115			
Thallium	48.2	10.0	ug/L	50.05		96	85-115			
Zinc	49.6	5.0	ug/L	50.00		99	85-115			
LCS Dup										
Arsenic	47.5	5.0	ug/L	50.00		95	85-115	0.9	20	
Chromium III	48.6	2.00	ug/L							
Hardness	3150	82.4	ug/L							
Batch CI81746 - 245.1/7470A										
Blank										
Mercury	ND	0.2	ug/L							
LCS										
Mercury	5.8	0.2	ug/L	6.000		96	85-115			
			· 31 =			-				
LCS Dup	F 7	0.2	= N	6.000		00	05 115	0.7	20	
Mercury	5.7	0.2	ug/L	6.000		96	85-115	0.7	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Batch CI81428 - 524.2

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile Organic Cor	npounds
----------------------------	---------

Batch C181428 - 524.2							
Blank							
1,1,1-Trichloroethane	ND	0.5	ug/L				
1,1,2-Trichloroethane	ND	0.5	ug/L				
1,1-Dichloroethane	ND	0.5	ug/L				
1,1-Dichloroethene	ND	0.5	ug/L				
1,2-Dichlorobenzene	ND	0.5	ug/L				
1,2-Dichloroethane	ND	0.5	ug/L				
1,3-Dichlorobenzene	ND	0.5	ug/L				
1,4-Dichlorobenzene	ND	0.5	ug/L				
Acetone	ND	5.0	ug/L				
Benzene	ND	0.5	ug/L				
Carbon Tetrachloride	ND	0.3	ug/L				
cis-1,2-Dichloroethene	ND	0.5	ug/L				
Ethylbenzene	ND	0.5	ug/L				
Methyl tert-Butyl Ether	ND	0.5	ug/L				
Methylene Chloride	ND	0.5	ug/L				
Naphthalene	ND	0.5	ug/L				
Tertiary-amyl methyl ether	ND	1.0	ug/L				
Tertiary-butyl Alcohol	ND	25.0	ug/L				
Tetrachloroethene	ND	0.5	ug/L				
Toluene	ND	0.5	ug/L				
Trichloroethene	ND	0.5	ug/L				
Vinyl Chloride	ND	0.2	ug/L				
Xylene O	ND	0.5	ug/L				
Xylene P,M	ND	0.5	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	5.20		ug/L	5.000	104	80-120	
Surrogate: 4-Bromofluorobenzene	5.15		ug/L	5.000	103	80-120	
LCS							
1,1,1-Trichloroethane	10.6		ug/L	10.00	106	70-130	
1,1,2-Trichloroethane	10.3		ug/L	10.00	103	70-130	
1,1-Dichloroethane	10.0		ug/L	10.00	100	70-130	
1,1-Dichloroethene	10.8		ug/L	10.00	108	70-130	
1,2-Dichlorobenzene	10.5		ug/L	10.00	105	70-130	
1,2-Dichloroethane	10.1		ug/L	10.00	101	70-130	
1,3-Dichlorobenzene	10.3		ug/L	10.00	103	70-130	
1,4-Dichlorobenzene	10.5		ug/L	10.00	105	70-130	
Acetone	54.8		ug/L	50.00	110	70-130	
Benzene	10.2		ug/L	10.00	102	70-130	
Carbon Tetrachloride	10.5		ug/L	10.00	105	70-130	
cis-1,2-Dichloroethene	10.6		ug/L	10.00	106	70-130	
Ethylbenzene	10.3		ug/L	10.00	103	70-130	
Methyl tert-Butyl Ether	10.1		ug/L	10.00	101	70-130	
Methylene Chloride	11.5		ug/L	10.00	115	70-130	
Naphthalene	10.2		ug/L	10.00	102	70-130	
Tertiary-amyl methyl ether	10.4		ug/L	10.00	104	70-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Tertiary-amyl methyl ether

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		524.2 Vol	atile Organi	c Compou	ınds					
Batch CI81428 - 524.2										
Tertiary-butyl Alcohol	49.9		ug/L	50.00		100	70-130			
Tetrachloroethene	10.3		ug/L	10.00		103	70-130			

Toluene	10.6	ug/L	10.00	106	70-130			
Trichloroethene	10.4	ug/L	10.00	104	70-130			
Vinyl Chloride	9.7	ug/L	10.00	97	70-130			
Xylene O	10.3	ug/L	10.00	103	70-130			
Xylene P,M	20.5	ug/L	20.00	102	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.31	ug/L	5.000	106	80-120			
Surrogate: 4-Bromofluorobenzene	5.23	ug/L	5.000	105	80-120			
LCS Dup								
1,1,1-Trichloroethane	10.7	ug/L	10.00	107	70-130	1	20	
1,1,2-Trichloroethane	10.5	ug/L	10.00	105	70-130	2	20	
1,1-Dichloroethane	10.2	ug/L	10.00	102	70-130	2	20	
1,1-Dichloroethene	11.0	ug/L	10.00	110	70-130	2	20	
1,2-Dichlorobenzene	10.6	ug/L	10.00	106	70-130	2	20	
1,2-Dichloroethane	10.2	ug/L	10.00	102	70-130	1	20	
1,3-Dichlorobenzene	10.5	ug/L	10.00	105	70-130	1	20	
1,4-Dichlorobenzene	10.6	ug/L	10.00	106	70-130	0.4	20	

1,4-Dichlorobenzene	10.6	ug/L	10.00	106	70-130	0.4	20
Acetone	50.8	ug/L	50.00	102	70-130	8	20
Benzene	10.4	ug/L	10.00	104	70-130	2	20
Carbon Tetrachloride	10.6	ug/L	10.00	106	70-130	0.9	20
cis-1,2-Dichloroethene	10.8	ug/L	10.00	108	70-130	2	20
Ethylbenzene	10.6	ug/L	10.00	106	70-130	2	20
Methyl tert-Butyl Ether	10.2	ug/L	10.00	102	70-130	0.8	20
Methylene Chloride	10.9	ug/L	10.00	109	70-130	5	20
Naphthalene	10.3	ug/L	10.00	103	70-130	1	20

Tertiary-butyl Alcohol 51.8 ug/L 50.00 104 70-130 25 20 Tetrachloroethene 10.5 ug/L 10.00 105 70-130 Toluene 10.7 10.00 107 20 ug/L 70-130 1 Trichloroethene 10.5 ug/L 10.00 105 70-130 1 20 Vinyl Chloride 10.00 70-130 2 20 10.0 ug/L 100 20 Xylene O 10.6 ug/L 10.00 106 70-130 3 20 Xylene P,M 20.8 ug/L 20.00 104 70-130 2 80-120

ug/L

 Surrogate: 1,2-Dichlorobenzene-d4
 5.29
 ug/L
 5.000
 106
 80-120

 Surrogate: 4-Bromofluorobenzene
 5.32
 ug/L
 5.000
 106
 80-120

10.6

Batch CI81903 - 3510C					
Blank					
Aroclor 1016	ND	0.10	ug/L		
Aroclor 1016 [2C]	ND	0.10	ug/L		
Aroclor 1221	ND	0.10	ug/L		
Aroclor 1221 [2C]	ND	0.10	ug/L		
Aroclor 1232	ND	0.10	ug/L		

608.3 Polychlorinated Biphenyls (PCB)

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

10.00

106

70-130

2

20

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
, and , co	Nesdic					/UNLC	LiiiiG	IN D	Liiiic	Quanter
		608.3 Polyc	inomatea	ырпенуіѕ	(PCD)					
Batch CI81903 - 3510C										
Aroclor 1232 [2C]	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1242 [2C]	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0319		ug/L	0.05000		64	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0361		ug/L	0.05000		<i>72</i>	30-150			
Surrogate: Tetrachloro-m-xylene	0.0305		ug/L	0.05000		61	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0368		ug/L	0.05000		74	30-150			
LCS										
Aroclor 1016	0.96	0.10	ug/L	1.000		96	50-140			
Aroclor 1016 [2C]	0.95	0.10	ug/L	1.000		95	50-140			
Aroclor 1260	0.92	0.10	ug/L	1.000		92	1-164			
Aroclor 1260 [2C]	0.96	0.10	ug/L	1.000		96	1-164			
Surrogate: Decachlorobiphenyl	0.0404		ug/L	0.05000		81	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0446		ug/L	0.05000		89	30-150			
Surrogate: Tetrachloro-m-xylene	0.0366		ug/L	0.05000		73	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0379		ug/L	0.05000		76	30-150			
LCS Dup										

ug/L 625.1(SIM) Semi-Volatile Organic Compounds

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

1.000

1.000

1.000

1.000

0.05000

0.05000

0.05000

0.05000

94

94

88

92

74

81

71

50-140

50-140

1-164

1-164

30-150

30-150

30-150

30-150

2

1

4

4

36

36

38

38

Batch CI82001 - 3510C

Surrogate: Decachlorobiphenyl

Surrogate: Tetrachloro-m-xylene

Surrogate: Decachlorobiphenyl [2C]

Surrogate: Tetrachloro-m-xylene [2C]

Aroclor 1016

Aroclor 1260

Aroclor 1016 [2C]

Aroclor 1260 [2C]

Blank				
Acenaphthene	ND	0.20	ug/L	
Acenaphthylene	ND	0.20	ug/L	
Anthracene	ND	0.20	ug/L	

0.94

0.94

0.88

0.92

0.0370

0.0407

0.0356

0.0368

0.10

0.10

0.10

0.10

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Batch CI82001 - 3510C

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625.1(SIM)	Semi-Volatile	Organic	Compound	S
------------	---------------	---------	----------	---

Besting Authorities								
Berout (ph.1) per yielen ND	Benzo(a)anthracene	ND	0.05	ug/L				
Bearcol (A) Dipoyleme No	Benzo(a)pyrene	ND	0.05	ug/L				
Broto-Cle/University private	Benzo(b)fluoranthene	ND	0.05	ug/L				
Bid Bid	Benzo(g,h,i)perylene	ND	0.20	ug/L				
Buyshenzylehthalate ND	Benzo(k)fluoranthene	ND	0.05	ug/L				
Buty-benophthalatie NO 2.50 ugit Onysean 100 0.50 ugit	bis(2-Ethylhexyl)phthalate	ND	2.50	ug/L				
Chysnele ND 0.05 ugl. Feet Part International Part Int		ND						
District District								
Diethylpithialate								
Dimensity/pithalate								
Di-n-ctylphthalate								
Di-n-ctylphthalate N0 2.50 ug/L								
Fluorenthene ND 0.20 ug/L								
Fluorene No 0.20 ug/L	• •							
Indeno(1,2,3-cd)Pyrene ND 0.05 ug/L								
Naphthalene ND 0.20 ug/L Pentachlorophenol ND 0.90 ug/L Phenanthrene ND 0.20 ug/L Pyrene ND 0.20 ug/L Surrogate: 1,2-Dichlorobenzene-d4 1.17 ug/L 2.500 47 30-130 Surrogate: 2-Fibromolphenol 3.00 ug/L 3.790 60 15-110 Surrogate: 2-Fibromolphenol 1.61 ug/L 2.500 64 30-130 Surrogate: P-Terphenyl-d14 2.59 ug/L 2.500 68 30-130 LCS 1.61 ug/L 2.500 68 30-130 Surrogate: p-Terphenyl-d14 2.59 ug/L 4.000 70 40-140 Accenaphthylene 2.79 0.20 ug/L 4.000 70 40-140 Accenaphthylene 2.94 0.20 ug/L 4.000 71 40-140 Benzo(a), hyberylene 3.17 0.05 ug/L 4.000 79 40-140								
Pentachlorophenol ND 0.90 Ug/L								
Phenanthrene ND 0.20 ug/L Pyrene ND 0.20 ug/L Surrogate: 1,2-Dichlorobenzene-d4 1.17 ug/L 2.500 47 30-130 Surrogate: 2,4-6-Tribromophenol 3.00 ug/L 2.500 64 30-130 Surrogate: Witrobenzene-d5 2.19 ug/L 2.500 68 30-130 Surrogate: p-Terphenyl-d14 2.88 ug/L 2.500 68 30-130 Surrogate: p-Terphenyl-d14 2.89 ug/L 2.500 68 30-130 Surrogate: p-Terphenyl-d14 2.89 ug/L 2.500 88 30-130 Surrogate: p-Terphenyl-d14 2.89 0.20 ug/L 4.000 70 40-140 Acenaphthrene 2.79 0.20 ug/L 4.000 76 40-140 Acenaphthrene 2.85 0.05 ug/L 4.000 76 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000								
Pyrene ND 0.20 ug/L								
Surrogate: 1,2-Dichlorobenzene-d4 1.17 ug/L 2.500 47 30-130 Surrogate: 2,4,6-Tribromophenol 3.00 ug/L 3.750 80 15-110 Surrogate: 2-Hurobiphenyl 1.61 ug/L 2.500 64 30-130 Surrogate: Nitrobenzene-d5 2.19 ug/L 2.500 88 30-130 Surrogate: P-Terphenyl-d14 2.58 ug/L 2.500 88 30-130 LCS Acenaphthene 2.79 0.20 ug/L 4.000 70 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 74 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 76 40-140 Anthracene 3.04 0.20 ug/L 4.000 76 40-140 Benzo(a)prine 3.17 0.05 ug/L 4.000 79 40-140 Benzo(j,h)perylene 3.57 0.20 ug/L 4.000 65 40-140								
Surrogate: 2.4.6-Tribromophenol 3.00 ug/L 3.750 80 15-110 Surrogate: 2-Fluoroblphenyl 1.61 ug/L 2.500 64 30-130 Surrogate: Witrobenzene-d5 2.19 ug/L 2.500 88 30-130 Surrogate: Prephenyl-d14 2.58 ug/L 2.500 103 30-130 LCS Acenaphthene 2.79 0.20 ug/L 4.000 70 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 76 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 76 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 76 40-140 Benzo(a)anthracene 2.85 0.05 ug/L 4.000 79 40-140 Benzo(b)fluoranthene 3.17 0.05 ug/L 4.000 89 40-140 Benzo(s)fluoranthene 2.62 0.05 ug/L 4.000 87 40-140			0.20		2 500	47	20 120	
Surrogate: Pilurobiphenyl 1.61 ug/L 2.500 64 30-130 Surrogate: Nitrobenzene-d5 2.19 ug/L 2.500 88 30-130 Surrogate: p-Terphenyl-d14 2.58 ug/L 2.500 88 30-130 LCS Ug/L 2.500 103 30-130 LCS Ug/L 4.000 70 40-140 Acenaphthylene 2.79 0.20 ug/L 4.000 74 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 76 40-140 Acenaphthylene 3.04 0.20 ug/L 4.000 76 40-140 Benzo(a)anthracene 2.85 0.05 ug/L 4.000 79 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000 89 40-140 Benzo(a)floranthene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(h)floranthene 3.50 2.50 ug/L 4.000 87 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Surrogate: Ntrobenzene-dS 2.19 ug/L 2.500 88 30-130 Surrogate: p-Terphenyl-d14 2.58 ug/L 2.500 103 30-130 LCS Acenaphthene 2.79 0.20 ug/L 4.000 70 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 74 40-140 Acenaphtylene 3.04 0.20 ug/L 4.000 76 40-140 Benzo(a)anthracene 2.85 0.05 ug/L 4.000 71 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000 79 40-140 Benzo(b)fluoranthene 3.73 0.05 ug/L 4.000 93 40-140 Benzo(s)fluoranthene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(s)fluoranthene 3.50 2.50 ug/L 4.000 87 40-140 Benzo(s)fluoranthene 3.50 2.50 ug/L 4.000 87 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Surrogate: p-Terphenyl-d14 2.58 ug/L 2.500 103 30-130 LCS Acenaphthene 2.79 0.20 ug/L 4.000 70 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 76 40-140 Anthracene 3.04 0.20 ug/L 4.000 76 40-140 Benzo(a)anthracene 2.85 0.05 ug/L 4.000 71 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000 79 40-140 Benzo(b)fluoranthene 3.73 0.05 ug/L 4.000 79 40-140 Benzo(b)fluoranthene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 87 40-140 bis(2-Ethylhexyl)phthalate 3.50 2.50 ug/L 4.000 87 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000	- ' '							
Interest Service Interest Service LCS Acenaphthene 2.79 0.20 ug/L 4.000 70 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 76 40-140 Anthracene 3.04 0.20 ug/L 4.000 71 40-140 Benzo(a)anthracene 2.85 0.05 ug/L 4.000 79 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000 93 40-140 Benzo(b)fluoranthene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 87 40-140 Benzo(k)fluoranthene 3.50 2.50 ug/L 4.000 87 40-140 Benzo(k)fluoranthene 3.61 2.50 ug/L 4.000 87 40-140 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Acenaphthene 2.79 0.20 ug/L 4.000 70 40-140 Acenaphthylene 2.94 0.20 ug/L 4.000 74 40-140 Anthracene 3.04 0.20 ug/L 4.000 76 40-140 Benzo(a)anthracene 2.85 0.05 ug/L 4.000 79 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000 79 40-140 Benzo(a)phylperiane 3.73 0.05 ug/L 4.000 93 40-140 Benzo(k)fluoranthene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 87 40-140 Benzo(k)fluoranthene 3.50 2.50 ug/L 4.000 87 40-140 Benzo(k)fluoranthene 3.61 2.50 ug/L 4.000 87 40-140 Benzo(k)fluoranthene 3.61 2.50 ug/L 4.000 87 40-140 <td>Surrogate: p-Terphenyl-d14</td> <td></td> <td></td> <td>ug/L</td> <td>2.300</td> <td>103</td> <td>30-130</td> <td> </td>	Surrogate: p-Terphenyl-d14			ug/L	2.300	103	30-130	
Acenaphthylene 2.94 0.20 ug/L 4.000 74 40-140 Anthracene 3.04 0.20 ug/L 4.000 76 40-140 Benzo(a)anthracene 2.85 0.05 ug/L 4.000 71 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000 79 40-140 Benzo(b)fluoranthene 3.73 0.05 ug/L 4.000 93 40-140 Benzo(g,h,i)perylene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 87 40-140 Benzo(k)fluoranthene 3.50 2.50 ug/L 4.000 87 40-140 Benzo(k)fluoranthene 3.61 2.50 ug/L 4.000 87 40-140 Benzo(k)fluoranthene 3.61 2.50 ug/L 4.000 89 40-140 Bullylbenzylphthalate 3.61 2.50 ug/L 4.000 81 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></td<>								
Anthracene 3.04 0.20 ug/L 4.000 76 40-140 Benzo(a)anthracene 2.85 0.05 ug/L 4.000 71 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000 79 40-140 Benzo(b)fluoranthene 3.73 0.05 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 87 40-140 Bis(2-Ethylhexyl)phthalate 3.50 2.50 ug/L 4.000 87 40-140 Butylbenzylphthalate 3.61 2.50 ug/L 4.000 90 40-140 Chrysene 2.76 0.05 ug/L 4.000 90 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 81 40-140 Dimethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Benzo(a)anthracene 2.85 0.05 ug/L 4.000 71 40-140 Benzo(a)pyrene 3.17 0.05 ug/L 4.000 79 40-140 Benzo(b)fluoranthene 3.73 0.05 ug/L 4.000 93 40-140 Benzo(g,h,i)perylene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 87 40-140 bis(2-Ethylhexyl)phthalate 3.50 2.50 ug/L 4.000 87 40-140 Butylbenzylphthalate 3.61 2.50 ug/L 4.000 90 40-140 Chrysene 2.76 0.05 ug/L 4.000 90 40-140 Dienzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 81 40-140 Dienzbylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85								
Benzo(a)pyrene 3.17 0.05 ug/L 4.000 79 40-140 Benzo(b)fluoranthene 3.73 0.05 ug/L 4.000 93 40-140 Benzo(g,h,i)perylene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 87 40-140 bis(2-Ethylhexyl)phthalate 3.50 2.50 ug/L 4.000 87 40-140 Butylbenzylphthalate 3.61 2.50 ug/L 4.000 90 40-140 Chrysene 2.76 0.05 ug/L 4.000 90 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 91 40-140 Dimethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-cctylphthalate 3.53 2.50 ug/L 4.000 85	Anthracene			ug/L	4.000		40-140	
Benzo(b)fluoranthene 3.73 0.05 ug/L 4.000 93 40-140 Benzo(g,h,i)perylene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 65 40-140 bis(2-Ethylhexyl)phthalate 3.50 2.50 ug/L 4.000 87 40-140 Butylbenzylphthalate 3.61 2.50 ug/L 4.000 90 40-140 Chrysene 2.76 0.05 ug/L 4.000 69 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 81 40-140 Diethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-butylphthalate 3.53 2.50 ug/L 4.000 85 40-140 Di-n-butylphthalate 3.53 2.50 ug/L 4.000 88	Benzo(a)anthracene			ug/L			40-140	
Benzo(g,h,i)perylene 3.57 0.20 ug/L 4.000 89 40-140 Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 65 40-140 bis(2-Ethylhexyl)phthalate 3.50 2.50 ug/L 4.000 87 40-140 Butylbenzylphthalate 3.61 2.50 ug/L 4.000 90 40-140 Chrysene 2.76 0.05 ug/L 4.000 69 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 90 40-140 Diethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-butylphthalate 3.53 2.50 ug/L 4.000 85 40-140 Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81	Benzo(a)pyrene	3.17	0.05	ug/L	4.000	79	40-140	
Benzo(k)fluoranthene 2.62 0.05 ug/L 4.000 65 40-140 bis(2-Ethylhexyl)phthalate 3.50 2.50 ug/L 4.000 87 40-140 Butylbenzylphthalate 3.61 2.50 ug/L 4.000 90 40-140 Chrysene 2.76 0.05 ug/L 4.000 69 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 90 40-140 Diethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.24 2.50 ug/L 4.000 85 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Benzo(b)fluoranthene		0.05	ug/L	4.000	93	40-140	
bis(2-Ethylhexyl)phthalate 3.50 2.50 ug/L 4.000 87 40-140 Butylbenzylphthalate 3.61 2.50 ug/L 4.000 90 40-140 Chrysene 2.76 0.05 ug/L 4.000 69 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 90 40-140 Diethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Dimethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-cotylphthalate 3.53 2.50 ug/L 4.000 85 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Benzo(g,h,i)perylene	3.57	0.20	ug/L	4.000	89	40-140	
Butylbenzylphthalate 3.61 2.50 ug/L 4.000 90 40-140 Chrysene 2.76 0.05 ug/L 4.000 69 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 90 40-140 Diethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Dimethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Benzo(k)fluoranthene	2.62	0.05	ug/L	4.000	65	40-140	
Chrysene 2.76 0.05 ug/L 4.000 69 40-140 Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 90 40-140 Diethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Dinethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	bis(2-Ethylhexyl)phthalate	3.50	2.50	ug/L	4.000	87	40-140	
Dibenzo(a,h)Anthracene 3.58 0.05 ug/L 4.000 90 40-140 Diethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Dimethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Butylbenzylphthalate	3.61	2.50	ug/L	4.000	90	40-140	
Diethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Dimethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Chrysene	2.76	0.05	ug/L	4.000	69	40-140	
Dimethylphthalate 3.24 2.50 ug/L 4.000 81 40-140 Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Dibenzo(a,h)Anthracene	3.58	0.05	ug/L	4.000	90	40-140	
Di-n-butylphthalate 3.39 2.50 ug/L 4.000 85 40-140 Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Diethylphthalate	3.24	2.50	ug/L	4.000	81	40-140	
Di-n-octylphthalate 3.53 2.50 ug/L 4.000 88 40-140 Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Dimethylphthalate	3.24	2.50	ug/L	4.000	81	40-140	
Fluoranthene 3.25 0.20 ug/L 4.000 81 40-140	Di-n-butylphthalate	3.39	2.50	ug/L	4.000	85	40-140	
	Di-n-octylphthalate	3.53	2.50	ug/L	4.000	88	40-140	
	Fluoranthene	3.25	0.20	ug/L	4.000	81	40-140	
	Fluorene	3.09	0.20		4.000	77	40-140	
Indeno(1,2,3-cd)Pyrene 3.45 0.05 ug/L 4.000 86 40-140	Indeno(1,2,3-cd)Pyrene		0.05	ug/L	4.000	86	40-140	
- -								

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625.1(SIM)	Semi-Volatile	Organic	Compound	S
------------	---------------	---------	----------	---

Batch CI82001 - 3510C								
Naphthalene	2.32	0.20	ug/L	4.000	58	40-140		
Pentachlorophenol	4.65	0.90	ug/L	4.000	116	30-130		
Phenanthrene	3.00	0.20	ug/L	4.000	75	40-140		
Pyrene	2.91	0.20	ug/L	4.000	73	40-140		
Surrogate: 1,2-Dichlorobenzene-d4	1.23		ug/L	2.500	49	30-130		
Surrogate: 2,4,6-Tribromophenol	3.51		ug/L	3.750	94	15-110		
Surrogate: 2-Fluorobiphenyl	1.76		ug/L	2.500	70	30-130		
Surrogate: Nitrobenzene-d5	2.38		ug/L	2.500	95	30-130		
Surrogate: p-Terphenyl-d14	2.93		ug/L	2.500	117	30-130		
.CS Dup								
cenaphthene	2.93	0.20	ug/L	4.000	73	40-140	5	20
cenaphthylene	3.08	0.20	ug/L	4.000	77	40-140	5	20
Anthracene	3.19	0.20	ug/L	4.000	80	40-140	5	20
Benzo(a)anthracene	3.05	0.05	ug/L	4.000	76	40-140	7	20
Benzo(a)pyrene	3.40	0.05	ug/L	4.000	85	40-140	7	20
Benzo(b)fluoranthene	3.68	0.05	ug/L	4.000	92	40-140	1	20
lenzo(g,h,i)perylene	3.99	0.20	ug/L	4.000	100	40-140	11	20
enzo(k)fluoranthene	3.11	0.05	ug/L	4.000	78	40-140	17	20
is(2-Ethylhexyl)phthalate	3.93	2.50	ug/L	4.000	98	40-140	12	20
Sutylbenzylphthalate	3.91	2.50	ug/L	4.000	98	40-140	8	20
Chrysene	2.96	0.05	ug/L	4.000	74	40-140	7	20
ibenzo(a,h)Anthracene	4.00	0.05	ug/L	4.000	100	40-140	11	20
Piethylphthalate	3.31	2.50	ug/L	4.000	83	40-140	2	20
Dimethylphthalate	3.35	2.50	ug/L	4.000	84	40-140	3	20
oi-n-butylphthalate	3.56	2.50	ug/L	4.000	89	40-140	5	20
Di-n-octylphthalate	3.91	2.50	ug/L	4.000	98	40-140	10	20
luoranthene	3.36	0.20	ug/L	4.000	84	40-140	3	20
luorene	3.17	0.20	ug/L	4.000	79	40-140	3	20
ndeno(1,2,3-cd)Pyrene	3.94	0.05	ug/L	4.000	98	40-140	13	20
Naphthalene	2.38	0.20	ug/L	4.000	60	40-140	3	20
Pentachlorophenol	5.21	0.90	ug/L	4.000	130	30-130	11	20
henanthrene	3.16	0.20	ug/L	4.000	79	40-140	5	20
yrene	3.18	0.20	ug/L	4.000	79	40-140	9	20
Surrogate: 1,2-Dichlorobenzene-d4	1.22		ug/L	2.500	49	30-130		
Surrogate: 2,4,6-Tribromophenol	3.53		ug/L	3.750	94	15-110		
Surrogate: 2-Fluorobiphenyl	1.77		ug/L	2.500	71	30-130		
Surrogate: Nitrobenzene-d5	2.36		ug/L	2.500	94	30-130		
Surrogate: p-Terphenyl-d14	3.00		ug/L	2.500	120	30-130		

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Batch CI82164 - 3535A						
Blank			•			
1,4-Dioxane	ND	0.250	ug/L			
Surrogate: 1,4-Dioxane-d8	ND		ug/L	5.000	34	15-115
LCS						

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

		· Quant	Ly Cont							
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8270D(SIM) S	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Dilutio	on			
Batch CI82164 - 3535A										
1,4-Dioxane	8.84	0.250	ug/L	10.00		88	40-140			
Surrogate: 1,4-Dioxane-d8	1.94		ug/L	5.000		39	<i>15-115</i>			
LCS Dup										
1,4-Dioxane	8.49	0.250	ug/L	10.00		85	40-140	4	20	
Surrogate: 1,4-Dioxane-d8	2.20		ug/L	5.000		44	<i>15-115</i>			
		Cl	assical Che	mistry						
Batch CI81459 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.499		mg/L	0.4998		100	90-110			
LCS Dup										
Hexavalent Chromium	0.504		mg/L	0.4998		101	90-110	1	20	
Batch CI81718 - General Preparation										
Blank										
Chloride	ND	500	ug/L							
LCS										
Chloride	2		mg/L	2.500		97	90-110			
Batch CI81723 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.09	0.10	mg/L	0.09994		88	80-120			
LCS										
Ammonia as N	1.12	0.10	mg/L	0.9994		113	80-120			
Batch CI81740 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.07		mg/L	0.9790		109	85-115			
Batch CI81742 - General Preparation										
Blank										
PhenoIs	ND	50	ug/L							
LCS										
Phenols	97	50	ug/L	100.0		97	80-120			
LCS										
Phenols	1000	50	ug/L	1000		100	80-120			
Batch CI81819 - TCN Prep										
Blank										

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

			Cniko	Cource		0/sDEC		חחם	
Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
	Cla	assical Che	mistry						
ND	5.00	ug/L							
20.1	5.00	ug/L	20.06		100	90-110			
149	5.00	ug/L	150.4		99	90-110			
148	5.00	ug/L	150.4		98	90-110	0.9	20	
1.0		ppt	1.000		96	85-115			
ND	5	mg/L							
22		mg/L	22.00		100	80-120			
ND	5	mg/L							
16	5	mg/L	19.38		80	66-114			
504.1 1,2	2-Dibromoeth	nane / 1,2-l	Dibromo-3	-chloropr	ropane				
ND	0.015	ug/L							
ND	0.015	ug/L							
0.240		ug/l	0.2000		120	30-150			
					120	30 130			
					104	30-150			
0.208		ug/L ug/L	0.2000		104	30-150			
0.208	0.015	ug/L	0.2000						
	0.015 0.015				104 124 111	70-130 70-130			
0.208 0.100 0.089		ug/L ug/L	0.2000		124	70-130			
0.208 0.100 0.089 0.0955		ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.08000		124 111 119	70-130 70-130 <i>30-150</i>			
0.208 0.100 0.089		ug/L ug/L ug/L	0.2000 0.08000 0.08000		124 111	70-130 70-130			
0.208 0.100 0.089 0.0955 0.0883	0.015	ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.08000 0.08000		124 111 119 110	70-130 70-130 30-150 30-150			
0.208 0.100 0.089 0.0955 0.0883	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.08000 0.08000		124 111 119 110	70-130 70-130 30-150 30-150			
0.208 0.100 0.089 0.0955 0.0883	0.015	ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.08000 0.08000		124 111 119 110	70-130 70-130 30-150 30-150			
0.208 0.100 0.089 0.0955 0.0883	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.08000 0.08000 0.08000 0.08000		124 111 119 110	70-130 70-130 30-150 30-150			
	ND 20.1 149 148 1.0 ND 22 ND 16 504.1 1,2	ND 5.00 20.1 5.00 149 5.00 148 5.00 1.0 ND 5 22 ND 5 16 5 504.1 1,2-Dibromoeth ND 0.015 ND 0.015	ND 5.00 ug/L	ND 5.00 ug/L 20.06	ND 5.00 ug/L 20.06	ND 5.00 ug/L 20.06 100	ND S Mg/L 22.00 100 80-120	ND S.00 ug/L 20.06 100 90-110	Result MRL Units Level Result %REC Limits RPD Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Alcohol Scan by GC/FID										

Batch CI81934 - No Prep									
Blank									
Ethanol	ND	10	mg/L						
LCS									
Ethanol	1070	10	mg/L	1134	95	60-140			
LCS Dup									
Ethanol	1160	10	mg/L	1134	103	60-140	8	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

Notes and Definitions

Z16	Aqueous pH measured in water at 19.6 °C.
U	Analyte included in the analysis, but not detected
Q	Calibration required quadratic regression (Q).
I	Internal Standard(s) outside of criteria (I).

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

EL Elevated Method Reporting Limits due to sample matrix (EL).

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit Limit of Detection LOD Limit of Quantitation LOQ **Detection Limit** DL. I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: West Bridge - RGP ESS Laboratory Work Order: 1809361

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client:		Tg2 Ti	3/DS				roject ID:		
Shipped/De	elivered Via:		Client			Project D	Received: Due Date:	9/21/2018	
						Days to	or Project:	5 Day	
	anifest prese			No		6. Does COC	match bottles?		Yes
2. Were cu	stody seals p	present?	1	No		7. Is COC con	nplete and corre	ect?	Yes
3. Is radiati	ion count <10	00 CPM?		Yes		8. Were samp	les received int	act?	Yes
	ier Present? 4.6	Iced with:	ice	Yes		9. Were labs	informed abou	ut short holds & rushes?	Yes / No / NA
		d dated by cli		Yes		10. Were any	analyses recei	ved outside of hold time?	Yes (N)
		-	•	·					
	bcontracting Sample IDs: Analysis: TAT:			/ ®			As received? s in aqueous VO anol cover soil		Yes / No Yes / No Yes / No / NA
13. Are the	samples pro	operly preser	ved?	(Yes) / No					
	s preserved u			Date: _ Date:		_ Time: Time:		By: By:	
	ceiving Notes			•		_ · · · · <u>_</u>		,	
		_							
							<u> </u>		
	ere a need to	o contact Pro contact the c			Yes / No Yes / No	_ Time: _		Ву:	
				-					
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficlent Volume	Contair	ner Type	Preservat	ive Record pH (Cy Pesti	
01	266312	Yes	No	Yes		ial - HCI	HCI		
01 01	266313 266314	Yes Yes	No No	Yes Yes		ial - HCI ial - HCI	HCI HCI		
01	266315	Yes	No	Yes		ial - HCI	HCI		
01	266316	Yes	No	Yes		ial - HCl	HCI		
01	266317	Yes	No No	Yes Yes		ial - HCl il - Unpres	HCI NP		
01 01	266318 266319	Yes Yes	No No	Yes		l - Unpres	NP		
01	266325	Yes	NA	Yes		r - H2SO4	H2SO4	\$	
01	266326	Yes	NA	Yes	1L Ambe	r - H2SO4	H2SO4		
01	266327	Yes	NA	Yes		r - Unpres	NP		
01	266328	Yes	NA	Yes		r - Unpres	NP		
01	266329	Yes	NA	Yes		er - Unpres	NP NP		
01 01	266330	Yes	NA NA	Yes Yes		er - Unpres er - Unpres	NP NP		
01 01	266331 266332	Yes Yes	NA NA	Yes Yes		er - Unpres er - Unpres	NP		
01	266333	Yes	NA	Yes		- Unpres	NP		
01	266334	Yes	NA	Yes	•	oly - H2SO4	H2SO4	\$	
01	266335	Yes	NA	Yes		oly - HNO3	ниоз		
01	266336	Yes	NA	Yes	500 mL P	oly - HNO3	ниоз		
01	266337	Yes	NA	Yes		oly - Unpres	NP		
01	266338	Yes	NA	Yes		oly - HNO3	HNO3		45 DI
01	266339	Yes	NA	Yes		oly - NaOH	NaOH	H > 12 9/14/18 14م	45 RL
02	266320	Yes	NA	Yes	1L Poly	- Unpres	NP		

ESS Laboratory Sample and Cooler Receipt Checklist

Client:		Tg2 T	B/DS		_ ESS Pr	oject ID:	1809361
_					Date R	eceived:	9/14/2018
02	266321	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	_
02	266322	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
02	266323	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
02	266324	Yes	NA	Yes	250 mL Poly - Unpres	NP	
2nd Review Are barcode Are all neces	labels on co				Yes No Yes / No		
Completed By:	\mathcal{A}	J#			_ Date & Time: Sul	18 1456	
Reviewed By:		١.	\sim		Date & Time: GY	î 1509	5
Delivered By:	7			<u>لــ</u>	9/Mlx	1508	
						•	

					HAIN OF CUSTOD	ESS Lab# 1809 361												
	aboratory		i	Turn Time		Reporting												
Division of	Thielsch Engin	eering, Inc.	0	Regulatory State) (V		Limits											
185 Frances Avenue, Cranston RI 02910 Regulatory State Tel. (401) 461-7181 Fax (401) 461-4486 Is this					s project for any of the follow	Electon	_	Limit Ch				Star	ndard Ex	cel		()		
www.esslaboratory.com					OMA MCP OR	Deliveral	eliverables Other (Please Sp					T T			-	13		
VVVVV.C051C1	Çom	pany Name		Project #	Project Nan		~			1		SI				1		
	To 7				S	5			D C	14	5	~			16	3		
JASON SHEZBURNE				Z31 ELM S7				1	2 4	d.		CX	25	209	1		6	
City				tate	Zip Code	PO#	Analysis	RC	200	MACAIR	1607 ME	Diexp	62	200	MAN	D	1	1 1
BLO	+CUSTON	E	MA		266	1	3	4	5 :	ر ا	(0	2	1 \$	0	6770	25	
Telephone Number FAX N			FAX	Number Email Address				1, 6	7 5	I	E SOL	5 6		11 6		MAR	D E	5
ESS Lab	ESS Lab Collection Collection Sample Type			Sample Matrix	Sam	ple ID		2	0	A	FR	- 1	SIG	C =	3 Ly	7 6	Z Z	
ID	Date	Time			/				< X		/~			VV	X		X	X
1	9/14	10:00	GW		MW-6			X	1	X	40	11	70	4	1	11		-
																		\perp
									+		_		1	\neg			1	
													-	_	-	++	+	-
								-	_	-	-				-	+	+	+
								+	_		_		_		_	++		
												-	_	-			+	_
			10.1.1.01	D DOD Bottle	C-Cubitainer G - Glass O-C	other P-Poly S-St	terile V-Via	10										
			ette AG-Amber Gla		O Odbitalion		11-Other	-										
Cont	ainer Volume:	1-100 mL 2	2-2.5 gal 3-250 m		7-Na2S2O3 8-ZnAce, NaOH 9-NH4Cl			_										
Prese	rvation Code:	1-Non Preserved	2-HCI 3-H2504 4-HI	100 0 110011	Numbe	er of Containers pe	r Sample:											
		Laborato	ry Use Only		Sampled by :													
		Laborato	ly 330 Only		Please specify "Other" preservative and containers types in this space													
	r Present:		_		7 (Comments: ROP WILL ETAIL DETERING LIMIT)												
Sea	Is Intact:	M	- 100		P-0	1 / 21-												
	emperature:	4.6	·CICP			Relinquished E	ev. (Signatu	re Date	& Tim	e) T		Receiv	red By:	(Signal	ure, Da	ate & T	ime)	
R	elinguished by	r: (Signature, D		Redeived By	: (Signature, Date & Time)	Reiliquisited L	by. (Olginatu	io, Date		,								
/	/	~	9/14	2 MI 1~	9/14/18 1350												F1	
-	elinquished by	r (Signature F		Received By	(Signature, Date & Time)	Relinquished E	By: (Signatu	re, Date	e & Tim	e)		Receiv	ed By:	(Signa	ture, Da	ate & 7	ime)	
1	cinquistied by	. (Olynature, E																
				1														

ESS Laboratory CHAIN OF CUSTODY ESS Lab # 80936 Turn Time	
Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston RI 02910 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com Company Name Project # Project Name Project # Project Name Project # Project Name Project # Pr	
Tel. (401) 461-7181 Fax (401) 461-4486 Sthis project for any of the following?: OCT RCP OMA MCP ORGP Deliverables Other (Please Specify →)	
OCT RCP OMA MCP ORGP Deliverables Other (Please Specity →)	
Company Name Project ** Project Name VENTRUE RCP Address Address Superior Address	
Contact Person 23 For Silver	
ASU MORBOLE CHECK STEEL	
City State Zip Code PO# 5	
Representation of the state of	
Telephone Number FAX Number Email Address	(
ESS Lab Collection Collection Sample Type Sample Matrix Sample ID	\vdash
The state of the s	
Z 9/14 11:00 GD LECIENS WATER	
	-
	\vdash
	+-+-
	+
	+
Container Type: AC-Air Cassette AG-Amber Glass B-BOD Bottle C-Cubitainer G - Glass O-Other P-Poly S-Sterile V-Vial	+-
Container Volume: 1-100 mL 2-2.5 gal 3-250 mL 4-300 mL 5-500 mL 6-1L 7-VOA 8-2 oz 9-4 oz 10-8 oz 11-Orier	++
Procognation Code: 1-Non Preserved 2-HCI 3-H2SO4 4-HNO3 5-NaOH 6-Methanol 7-Na2S2O3 8-ZnAce, NaOH 9-NH4CI 10-DI H2O 11-Ascorbic Acid 12-Unier	++
Number of Containers per Sample:	
Laboratory Use Only Sampled by :	
Please specify "Other" preservative and containers types in this space	
Cooler Present. R. R. WILL FMIL DETECTION LINIZ)	
Cooler Temperature: U.C °C (CC Received By: (Signature, Date & Time) Received By: (Signature, Date & Time)	ne)
Received By: (Signature, Date & Time) Redeived By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time)	
1:50 9/4 1 1 9/4/8 1350	
Received By: (Signature, Date & Time) Received By: (Signature, Date & 11	ne)
Relinquished by: (Signature, Date & Time)	

ATTACHMENT D

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: October 08, 2018

Consultation Code: 05E1NE00-2019-SLI-0050

Event Code: 05E1NE00-2019-E-00106

Project Name: Colbea Gasoline Station, 506 West Center Street, West Bridgewater

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-0050

Event Code: 05E1NE00-2019-E-00106

Project Name: Colbea Gasoline Station, 506 West Center Street, West Bridgewater

Project Type: LAND - RESTORATION / ENHANCEMENT

Project Description: NOI for a RGP for groundwater discharge necessary during site

redevelopment construction activities. These activities include the raze and rebuild of the facility building, and removal and replacement of the

existing USTs and associated piping, and dispenser islands.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.014905167104395N71.04040884773588W

Counties: Plymouth, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Project information

NAME

Colbea Gasoline Station, 506 West Center Street, West Bridgewater

LOCATION

Plymouth County, Massachusetts

DESCRIPTION

NOI for a RGP for groundwater discharge necessary during site redevelopment construction activities. These activities include the raze and rebuild of the facility building, and removal and replacement of the existing USTs and associated piping, and dispenser islands.

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project.
- 4. Click REQUEST SPECIES LIST.

Listed species and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA</u> <u>Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9045

Threatened

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described below.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern
 http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/
 conservation-measures.php
- Nationwide conservation measures for birds
 http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626

Breeds May 15 to Oct 10

Breeds Oct 15 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

King Rail Rallus elegans

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8936

Breeds May 1 to Sep 5

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the

probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

						probabili	ty of prese	ence br	reeding sea	ason Isu	rvey effort	– no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Bald Eagle Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	+ +	++++	+11++	++++	++++			++	-+++	++++	++++	++-+
Black-billed Cuckoo BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	+	++++	++++	++++	→++ •			+	-+++	++++	++++	+++
Bobolink BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++	++++	++++	++++	+ <mark> </mark>				-111	111+	++++	++-+
King Rail BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	+	++++	++++	++++	·11·				+++	++++	++++	++-+
Lesser Yellowlegs BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++	++++	++++	++++	+ ++			++	-++	++++	++++	++-+
Nelson's Sparrow BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	+	++++	++++	++++	++++			+	+++	+11+	++++	-+

Prairie Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++ <mark>I</mark> +		++		++++	++++	+++
Rusty Blackbird BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	+++	 ++	++++	++++	 		-++	+1++	++ +	++-+
Semipalmated Sandpiper BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++ +	 		-+++	++++	++++	++-+
Wood Thrush BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	+++		+	-+++	++++	++++	++-+

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the Avian Knowledge Network (AKN). The AKN data is based on a growing collection of survey, banding, and citizen science datasets and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (Eagle Act requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to obtain a permit to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.