

July 7, 2017 Our Ref.: 993-6861

US Environmental Protection Agency Office of Ecosystem Protection **EPA/OEP RGP Applications Coordinator** 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

NOTICE OF INTENT FOR THE REMEDIATION GENERAL PERMIT RE: 229-231 NORTH MAIN STREET/31 RUTLEDGE ROAD

NATICK, MASSACHUSETTS 01760

To whom it may concern:

Golder Associates Inc (Golder) is submitting this Notice of Intent (NOI) for a Remediation General Permit (RGP) on behalf of the 229 Main Street Limited Partnership (MSLP) for the groundwater recovery and treatment system (GRTS) at the property referenced above.

Please contact Ross Bennett at (603) 668-0880 if you have any questions regarding this submittal.

Sincerely,

GOLDER ASSOCIATES INC.

Ross W. Bennett, PE **Project Engineer**

C. Kirsch - MSLP CC:

R. Sattler - PB&L

Town of Natick – Health Department

MassDEP - Division of Watershed Management

Attachments: **RGP NOI**

Alistair P. T. Macdonald, CPG, LSP

Program Leader and Principal

Attachments:

Figure 1 Figure 2 Figure 3	Property Location Map System Location Plan Ground Water Recovery and Treatment System Schematic
Appendix A Appendix B Appendix C Appendix D	Water Quality Based Effluent Limitations Calculations Receiving Water Analytical Results Summary Endangered Species Act Eligibility Determination Supplemental Information National Historic Preservation Act Eligibility Determination Supplemental Information
Appendix E	Analytical Data

February 5, 2018 Our Ref.: 993-6861

US Environmental Protection Agency Office of Ecosystem Protection **EPA/OEP RGP Applications Coordinator** 5 Post Office Square - Suite 100 (OEP06-01) Boston, MA 02109-3912

RE: REVISED NOTICE OF INTENT FOR THE REMEDIATION GENERAL PERMIT

229-231 NORTH MAIN STREET/31 RUTLEDGE ROAD

NATICK, MASSACHUSETTS 01760

To whom it may concern:

Golder Associates Inc (Golder) is submitting this revised Notice of Intent (NOI) form on behalf of the 229 Main Street Limited Partnership (MSLP) for the groundwater recovery and treatment system (GRTS) at the property referenced above. These revisions to the NOI addresses changes requested in an email received from USEPA on January 4, 2018, including minor edits to Parts B.1., D.3., and D.4.

In the aforementioned email, USEPA noted that the following parameters are included in the NOI as 'believed absent' despite their inclusion in the current permit for the Site:

Benzene Carbon Tetrachloride 1,2 Dichloroethane 1,1 Dichloroethene Methylene Chloride 1,1,2 Trichloroethane Vinyl Chloride

Golder has reviewed historical groundwater analytical results for the Site from August 2009 through December 2017, and with the exception of one detection of 1,1 Dichloroethene on December 2, 2015. none of the above compounds were detected in groundwater during this timeframe. Therefore, with the exception of 1,1 Dichloroethene, the aforementioned compounds are listed as 'believed absent' on the revised NOI. Golder contacted Shauna Little of USEPA on January 25, 2018 and confirmed this reasoning.

Please contact Brian Campelia at (603) 668-0880 if you have any questions regarding this submittal.

Sincerely,

GOLDER ASSOCIATES INC.

Ross Bennett, PE Senior Engineer

Alistair P. T. Macdonald, CPG, LSP Program Leader and Principal

cc:

C. Kirsch – MSLP

Town of Natick – Health Department
MassDEP – Division of Watershed Management

Attachments: Revised RGP NOI

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:	State:	Zip:				
3. Site operator, if different than owner	Contact Person:						
	Telephone: Email:						
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	at apply):					
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	CLA				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
		⊔ CWAS	CWA Section 404				

B. Receiving water information:1. Name of receiving water(s):

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classifi	cation of receiving water(s):						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:									
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?						
(check one): □ Yes □ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one): Sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):		than the receiving water; it so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known		787 4		Infl	uent	Effluent Lir	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics										
Ammonia								Report mg/L		
Chloride								Report µg/l		
Total Residual Chlorine								0.2 mg/L		
Total Suspended Solids								30 mg/L		
Antimony								206 μg/L		
Arsenic								104 μg/L		
Cadmium								10.2 μg/L		
Chromium III								323 µg/L		
Chromium VI								323 µg/L		
Copper								242 μg/L		
Iron								5,000 μg/L		
Lead								160 μg/L		
Mercury								0.739 μg/L		
Nickel								1,450 µg/L		
Selenium								235.8 μg/L		
Silver								35.1 μg/L		
Zinc								420 μg/L		
Cyanide								178 mg/L		
B. Non-Halogenated VOC	's									
Total BTEX								100 μg/L		
Benzene								5.0 μg/L		
1,4 Dioxane								200 μg/L		
Acetone								7.97 mg/L		
Phenol								1,080 µg/L		

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 μg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVOC	s		_						
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	Effluent Limitations	
Parameter	or or	# of samples Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL			
Total Group II PAHs								100 μg/L		
Naphthalene								20 μg/L		
E Hologopoted SVOCs										
E. Halogenated SVOCs Total PCBs								0.000064 μg/L		
Pentachlorophenol								1.0 μg/L		
1 children of the first of the					1			1.0 MB/2		
F. Fuels Parameters	-									
Total Petroleum Hydrocarbons								5.0 mg/L		
Ethanol								Report mg/L		
Methyl-tert-Butyl Ether								70 μg/L		
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperatur	e, hardness,	salinity, LC	50, addition	al pollutar	nts present);	if so, specify:				
, , , , , , , , , , , , , , , , , , ,		•		•						
	1									

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No	

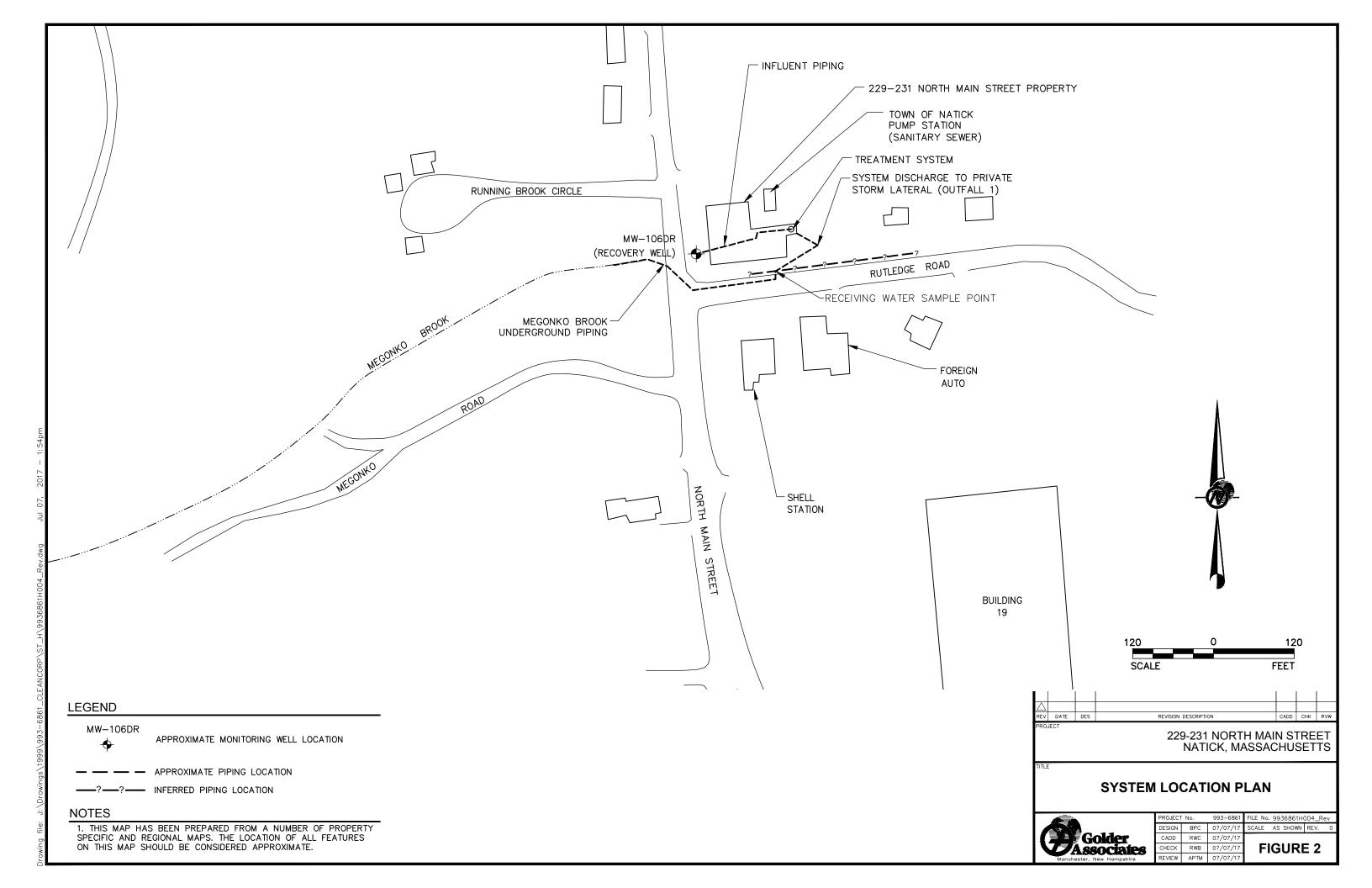
F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
1. Indicate the type(s) of chemical of additive that will be applied to efficient prior to discharge of that may otherwise be present in the discharge(s). (check an that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
(check one). If 165 I 165
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☐ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the
"action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
, , , , , , , , , , , , , , , , , , , ,
(informal consultation). Has the operator completed consultation with FWS? (check one): \square Yes \square No; if no, is consultation underway? (check one): \square
Yes □ No
☐ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical
habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and
related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:
1 11 5. This determination that made of the the operator in the operator in the operator.

MAG910000 NHG910000 Appendix IV – Part 1 – NOI Page 10 of 11

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement


I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage to velief, true, accurate, an	he system, or those ad complete. I have
A BMPP meeting the requirements of this general permit has been developed and BMPP certification statement:	implemented at the S	Site.
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □	No □ NA ■
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No □ NA ■
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit		
☐ Other; if so, specify:	Check one: Yes □	No □ NA ■
Signature: Dat	te: 02/06	/18
Print Name and Title: Ross Bennett, PE, Senior Engineer		

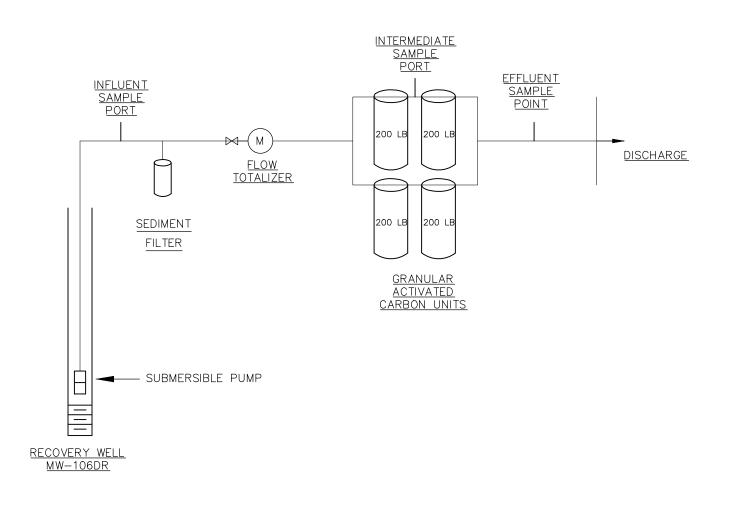
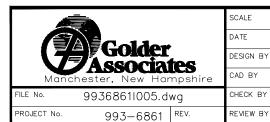


FIGURE 1

CLEANCORP\ 993-6861

1987. ORIGINAL SCALE 1:25000.

NTS


BPC

RWC

RWB

APTM

07/07/17

GROUNDWATER RECOVERY AND TREATMENT SYSTEM SCHEMATIC

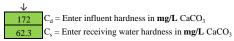
CLEAN CORP NATICK, MA

FIGURE

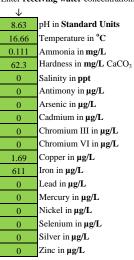
3

APPENDIX A WATER QUALITY BASED EFFLUENT LIMITATIONS CALCULATIONS

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0	Q_R = Enter upstream flow in MGD
0.0216	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10


Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

Enter influent concentrations in the units specified

\perp	<u>-</u>
0	TRC in µg/L
0	Ammonia in mg/L
0	Antimony in μg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
6.3	Copper in µg/L
78	Iron in μg/L
1.9	Lead in µg/L
0	Mercury in µg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
320	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \frac{Q_R + Q_P}{Q_P}$$

$$Q_{I}$$

$$Q_R = 7Q10$$
 in MGD

 Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 $C_r = Downstream hardness in mg/L$

 Q_d = Discharge flow in MGD

 C_d = Discharge hardness in mg/L

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [ln(h)] + b_c\}$

m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 $C_r = Water quality criterion in <math>\mu g/L$

Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

Q

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Upstream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	$\mu g/L$				
Total Residual Chlorine	0.2	mg/L	11	μg/L	50	$\mu g/L$
Total Suspended Solids	30	mg/L				
Antimony	206	$\mu g/L$	640	μg/L		
Arsenic	104	$\mu g/L$	10	μg/L		
Cadmium	10.2	μg/L	0.4045	μg/L		
Chromium III	323	$\mu g/L$	134.4	μg/L		
Chromium VI	323	$\mu g/L$	11.4	μg/L		
Copper	242	$\mu g/L$	14.8	μg/L		
Iron	5000	$\mu g/L$	1000	μg/L		
Lead	160	$\mu g/L$	6.35	μg/L		
Mercury	0.739	$\mu g/L$	0.91	μg/L		
Nickel	1450	$\mu g/L$	82.5	$\mu g/L$		
Selenium	235.8	$\mu g/L$	5.0	μg/L		
Silver	35.1	$\mu g/L$	9.6	μg/L		
Zinc	420	$\mu g/L$	189.7	μg/L		
Cyanide	178	mg/L	5.2	μg/L		$\mu g/L$
B. Non-Halogenated VOCs						
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L	200	~/T		
Phenol	1,080	$\mu g/L$	300	μg/L		

C. Halogenated VOCs					
Carbon Tetrachloride	4.4	μg/L	1.6	μg/L	
1,2 Dichlorobenzene	600	μg/L			
1,3 Dichlorobenzene	320	μg/L			
1,4 Dichlorobenzene	5.0	μg/L			
Total dichlorobenzene		μg/L			
1,1 Dichloroethane	70	μg/L			
1,2 Dichloroethane	5.0	μg/L			
1,1 Dichloroethylene	3.2	μg/L			
Ethylene Dibromide	0.05	μg/L			
Methylene Chloride	4.6	μg/L			
1,1,1 Trichloroethane	200	μg/L			
1,1,2 Trichloroethane	5.0	μg/L			
Trichloroethylene	5.0	μg/L			
Tetrachloroethylene	5.0	$\mu g/L$	3.3	μg/L	
cis-1,2 Dichloroethylene	70	$\mu g/L$			
Vinyl Chloride	2.0	μg/L			
D. Non-Halogenated SVOCs					
Total Phthalates	190	μg/L		μg/L	
Diethylhexyl phthalate	101	μg/L	2.2	μg/L	
Total Group I Polycyclic					
Aromatic Hydrocarbons	1.0	$\mu g/L$			
Benzo(a)anthracene	1.0	$\mu g/L$	0.0038	μg/L	 μg/L
Benzo(a)pyrene	1.0	$\mu g/L$	0.0038	μg/L	 μg/L
Benzo(b)fluoranthene	1.0	$\mu g/L$	0.0038	μg/L	 $\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L	 $\mu g/L$
Chrysene	1.0	μg/L	0.0038	μg/L	 $\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L	 $\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L	 $\mu g/L$
Total Group II Polycyclic					
Aromatic Hydrocarbons	100	μg/L			
Naphthalene	20	μg/L			
-		10			

E. Halogenated SVOCs

Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	$\mu g/L$				

APPENDIX B RECEIVING WATER ANALYTICAL RESULTS SUMMARY

Golder Associates, Manchester New Hampshire

603-668-0880

Clean Corp, 229-231 North Main Street, Natick MA 01760 NPDES Permit # 99-036

Receiving Water Sample

	рН	Temperature	Hardness	Copper	Iron	Lead	Ammonia
Sample Date	S.U.	°C	mg/L	mg/L	mg/L	mg/L	mg/L
	YSI	YSI	Method 3005A	Method 3005A	Method 3005A	Method 3005A	Method 4500NH3-BH
6/9/2017	8.63	16.66	62.3	0.00169	0.611	< 0.00050	0.111
# of measurements	1	1	1	1	1	1	1

Notes:

YSI = YSI 650 MDS Multi-Parameter Display System

S.U. = standard units

°C = degrees celsius

mg/L = milligram/liter

APPENDIX C ENDANGERED SPECIES ACT ELIGIBILITY DETERMINATION SUPPLEMENTAL INFORMATION

Finding:

Golder Associates (Golder) completed the United States Fish and Wildlife Service (USFWS) Information, Planning, and Conservation (IPac) online system process and saved the preliminary determination and report (attached) on May 15, 2017. The Northern Long-Eared Bat was identified as potentially occurring or being impacted by activities within the area covered by the Notice of Intent (NOI). No other endangered species or habitat were identified within the area covered by the NOI.

Golder contacted Maria Tur of USFWS on April 25, 2017 regarding the possible presence of the aforementioned species at the Site. Ms. Tur confirmed that due to the fact the Site is an existing facility and the habitats for these species are not impacted by the activities (i.e. deforestation activities will not be performed), these species will not be impacted. The letter provided in Appendix A was provided to Golder by USFWS on April 25, 2017.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

May 15, 2017

In Reply Refer To:

Consultation Code: 05E1NE00-2017-SLI-1550

Event Code: 05E1NE00-2017-E-03113

Project Name: Clean Corp

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2017-SLI-1550

Event Code: 05E1NE00-2017-E-03113

Project Name: Clean Corp

Project Type: ** OTHER **

Project Description: Granular activated carbon pump and treatment system located at 229-231

North Main Street, Natick, MA. Maximum flow rate = 15 gpm. System

discharges treated water to Megonko Brook.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.30324558534899N71.36414569516836W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

Event Code: 05E1NE00-2017-E-03113

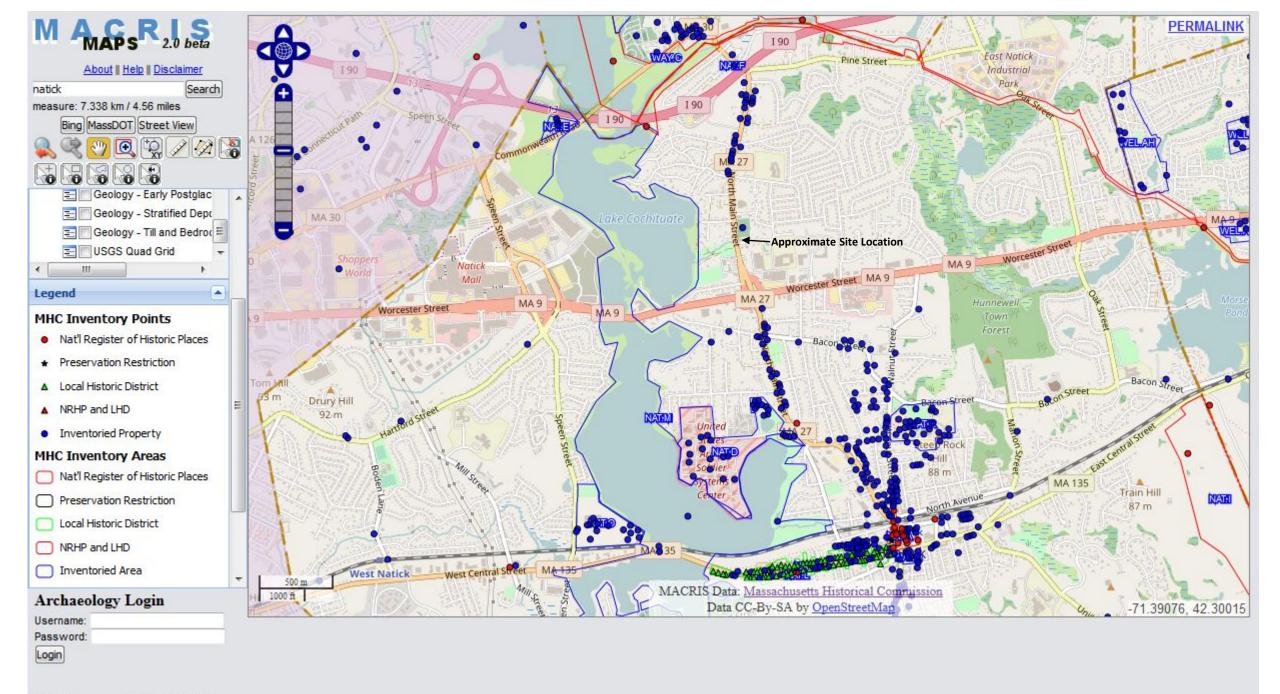
Mammals

NAME STATUS

Northern Long-eared Bat (Myotis septentrionalis) Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats


There are no critical habitats within your project area.

APPENDIX D

NATIONAL HISTORIC PRESERVATION ACT ELIGIBILITY DETERMINATION SUPPLEMENTAL INFORMATION

Finding:

The Massachusetts Cultural Resource Information System (MACRIS) program, MACRIS Maps 2.0 Beta, indicates that the nearest property that is listed on the National Register of Historic Places is located more than 4,500 ft from the discharge point. Therefore, "Criteria A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties" is met.

APPENDIX E
ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L1719260

Client: Golder Associates

670 North Commercial St.

Suite 103

Manchester, NH 03101

ATTN: Ross Bennett
Phone: (603) 668-0880
Project Name: CLEAN CORP

Project Number: 993-6861

Report Date: 06/16/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CLEAN CORP

Project Number: 993-6861

Lab Number: L1719260 **Report Date:** 06/16/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1719260-01	RECEIVING WATER	WATER	NATICK, MA	06/09/17 08:15	06/09/17
L1719260-02	INFLUENT	WATER	NATICK, MA	06/09/17 08:40	06/09/17

Project Name:CLEAN CORPLab Number:L1719260Project Number:993-6861Report Date:06/16/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Ρ	lease	contact	Client	Services	at 800	-624-92	220 with	n any	questi	ons.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/16/17

Melissa Cripps Melissa Cripps

ALPHA

METALS

Not Specified

Project Name: Lab Number: **CLEAN CORP** L1719260 **Project Number:** 993-6861 **Report Date:** 06/16/17

SAMPLE RESULTS

Lab ID: L1719260-01

Date Collected: 06/09/17 08:15 Client ID: **RECEIVING WATER** Date Received: 06/09/17

Sample Location: NATICK, MA

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	field Lab										
Copper, Total	0.00169		mg/l	0.00100		1	06/13/17 06:05	06/13/17 12:04	EPA 3005A	3,200.8	AM
Iron, Total	0.611		mg/l	0.050		1	06/13/17 06:05	06/13/17 15:06	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050		1	06/13/17 06:05	06/13/17 12:04	EPA 3005A	3,200.8	AM
Total Hardness by S	M 2340B	- Mansfield	l Lab								
Hardness	62.3		mg/l	0.660	NA	1	06/13/17 06:05	06/13/17 15:06	EPA 3005A	19,200.7	PS

Field Prep:

Project Name:CLEAN CORPLab Number:L1719260Project Number:993-6861Report Date:06/16/17

SAMPLE RESULTS

Lab ID:L1719260-02Date Collected:06/09/17 08:40Client ID:INFLUENTDate Received:06/09/17Sample Location:NATICK, MAField Prep:Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by	SM 2340B	- Mansfield	d Lab								
Hardness	172		mg/l	0.660	NA	1	06/14/17 10:2	5 06/16/17 12:35	EPA 3005A	19,200.7	PS

L1719260

Project Name: CLEAN CORP
Project Number: 993-6861

CORP Lab Number:

Report Date: 06/16/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Man	sfield Lab for sample(s):	01 Batc	h: WG10)12431-	-1				
Copper, Total	ND	mg/l	0.00100		1	06/13/17 06:05	06/13/17 10:18	3,200.8	AM
Lead, Total	ND	mg/l	0.0005		1	06/13/17 06:05	06/13/17 10:18	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG10	012436-	1				
Iron, Total	ND	mg/l	0.050		1	06/13/17 06:05	06/13/17 12:06	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield La	b for sam	ple(s): 0	1 Bato	ch: WG101	2436-1			
Hardness	ND	mg/l	0.660	NA	1	06/13/17 06:05	06/13/17 12:06	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield La	b for sam	ple(s): C)2 Bato	h: WG101	2936-1			
Hardness	ND	mg/l	0.660	NA	1	06/14/17 10:25	06/16/17 12:21	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: CLEAN CORP

Project Number: 993-6861

Lab Number: L1719260

Report Date: 06/16/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: V	VG101243	1-2					
Copper, Total	96		-		85-115	-		
Lead, Total	104		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: V	VG101243	6-2					
Iron, Total	108		-		85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01 B	Batch: WG101243	6-2				
Hardness	103		-		85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 02 B	Batch: WG101293	6-2				
Hardness	107		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CLEAN CORP

Project Number: 993-6861

Lab Number:

L1719260

Report Date:

06/16/17

Parameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Q	RPD ual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch ID): WG1012431-	.3 (QC Sample:	L1719545-01	Clien	t ID: MS Sa	ample	
Copper, Total	0.01796	0.25	0.2658	99		-	-		70-130	-	20
Lead, Total	0.00064	0.51	0.5353	105		-	-		70-130	-	20
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01	QC Batch ID): WG1012431-	5 (QC Sample:	L1719546-01	Clien	t ID: MS Sa	ample	
Copper, Total	0.00579	0.25	0.2507	98		-	-		70-130	-	20
Lead, Total	0.00126	0.51	0.5364	105		-	-		70-130	-	20
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01	QC Batch ID): WG1012436-	.3 (QC Sample:	L1719545-01	Clien	t ID: MS Sa	ample	
Iron, Total	0.557	1	1.61	105		-	-		75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lab	o Associate	ed sample(s):	01 QC Batch	ID: V	VG1012436-	3 QC Samp	ole: L17	19545-01	Client ID:	MS Sample
Hardness	238	66.2	300	94		-	-		75-125	-	20
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01	QC Batch ID): WG1012436-	7 (QC Sample:	L1719546-01	Clien	t ID: MS Sa	ample	
Iron, Total	1.77	1	2.78	101		-	-		75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lat	o Associate	ed sample(s):	01 QC Batch	ID: V	VG1012436-	7 QC Samp	le: L17	19546-01	Client ID:	MS Sample
Hardness	230	66.2	299	104		-	-		75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lat	o Associate	ed sample(s):	02 QC Batch	ID: V	VG1012936-	7 QC Samp	le: L17	19260-02	Client ID:	INFLUENT
Hardness	172	66.2	227	83		-	-		75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CLEAN CORP

Project Number: 993-6861

Lab Number: L1719260 06/16/17

Report Date:

Parameter	Native Sample	e Dupli	cate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: V	WG1012431-4	QC Sample:	L1719545-01	Client ID:	DUP Sample	
Copper, Total	0.01796		0.01715	mg/l	5		20
Lead, Total	0.00064		0.0006	mg/l	4		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: V	WG1012431-6	QC Sample:	L1719546-01	Client ID:	DUP Sample	
Copper, Total	0.00579		0.00563	mg/l	3		20
Lead, Total	0.00126		0.0013	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: V	WG1012436-4	QC Sample:	L1719545-01	Client ID:	DUP Sample	
Iron, Total	0.557		0.501	mg/l	11		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: V	WG1012436-8	QC Sample:	L1719546-01	Client ID:	DUP Sample	
Iron, Total	1.77		1.84	mg/l	4		20
Total Hardness by SM 2340B - Mansfield Lab Associated	d sample(s): 02	QC Batch ID:	WG1012936	-8 QC Sampl	e: L17192	260-02 Client I	D: INFLUENT
Hardness	172		170	mg/l	1		20

INORGANICS & MISCELLANEOUS

Project Name: CLEAN CORP Project Number: 993-6861

Lab Number: L1719260 06/16/17

Report Date:

SAMPLE RESULTS

Lab ID: L1719260-01 RECEIVING WATER Client ID:

Sample Location: NATICK, MA

Matrix: Water Date Collected:

06/09/17 08:15

Date Received: 06/09/17

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab)								
Nitrogen, Ammonia	0.111		mg/l	0.075		1	06/12/17 13:03	06/12/17 23:47	121,4500NH3-BH	I AT

Project Name: CLEAN CORP

Lab Number:

L1719260

Project Number: 993-6861 Report Date:

06/16/17

SAMPLE RESULTS

Lab ID:

L1719260-02

Client ID:

INFLUENT

NATICK, MA

Sample Location:

Date Collected: Date Received: 06/09/17 08:40

06/09/17

Field Prep:

Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	borough Lab)								
Nitrogen, Ammonia	ND		mg/l	0.075		1	06/13/17 12:59	06/13/17 20:45	121,4500NH3-BH	AT

Project Name: CLEAN CORP

Project Number: 993-6861

Lab Number:

L1719260

Report Date:

06/16/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG10	12105-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	06/12/17 13:03	06/12/17 23:42	121,4500NH3-E	BH AT
General Chemistry	- Westborough Lab	for sam	ple(s): 02	Batch:	WG10	12552-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	06/13/17 12:59	06/13/17 20:40	121,4500NH3-E	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: CLEAN CORP

Project Number: 993-6861

Lab Number:

L1719260

Report Date:

06/16/17

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1012105-2						
Nitrogen, Ammonia	87	-		80-120	-		20	
General Chemistry - Westborough Lab A	ssociated sample(s): 02	Batch: WG1012552-2						
Nitrogen, Ammonia	95	-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: CLEAN CORP Lab Number:

L1719260

Project Number: 993-6861

Report Date: 06/16/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery 0	Recovery Qual Limits	RPD Qu	RPD al Limits
General Chemistry	- Westborough Lab As	ssociated samp	ole(s): 01 (QC Batch ID: V	WG1012105-4	QC Sample: L171	9083-01 Client l	ID: MS Sai	mple
Nitrogen, Ammonia	ND	4	3.71	93	-	-	80-120	-	20
General Chemistry	- Westborough Lab As	ssociated samp	ole(s): 02 C	QC Batch ID: V	NG1012552-4	QC Sample: L171	9488-04 Client l	ID: MS Sai	mple
Nitrogen, Ammonia	2.62	4	6.49	97	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CLEAN CORP

Project Number: 993-6861

Lab Number:

L1719260

Report Date:

06/16/17

Parameter	Native Sam	nple Duplicate Sar	mple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 Q	C Batch ID: WG1012105-3	QC Sample: I	1719083-01	Client ID:	DUP Sample
Nitrogen, Ammonia	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 02 Q	C Batch ID: WG1012552-3	QC Sample: I	1719488-04	Client ID:	DUP Sample
Nitrogen, Ammonia	2.62	2.60	mg/l	1		20

Lab Number: L1719260

Report Date: 06/16/17

Project Name: CLEAN CORP **Project Number:** 993-6861

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1719260-01A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Υ	Absent		HARDU(180)
L1719260-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Υ	Absent		CU-2008T(180),FE-UI(180),PB-2008T(180)
L1719260-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	4.1	Υ	Absent		NH3-4500(28)
L1719260-02A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Υ	Absent		HARDU(180)
L1719260-02B	Plastic 500ml H2SO4 preserved	Α	<2	<2	4.1	Υ	Absent		NH3-4500(28)

Project Name:CLEAN CORPLab Number:L1719260Project Number:993-6861Report Date:06/16/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:CLEAN CORPLab Number:L1719260Project Number:993-6861Report Date:06/16/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:CLEAN CORPLab Number:L1719260Project Number:993-6861Report Date:06/16/17

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHAIN	OF CU	STO	DY P	PAGE_	_OF	- Date	Rec'd	in Lat	: 61	91	17			A	LPH	A Job	o #:	<u></u>	19260	
World Cit s Comistry		Projec	t Informat	tion				No. of Concession, Name of Street, or other Designation, or other		tion - I	-		erab	les	В	illin	g Info	rmati	on		1018
8 Walkup Drive Westboro, MA (Tel: 508-898-9		Project I	Name: C	Can 1	Cerco		Dec	DEx	*	G EM	AIL	-			X	Same	e as Cli	ent inf	fo PC) #:	
Client Information	PERMITTED AND THE PERMITTED AN	Project I	_ocation: N	ic its le	14 1	L	A STATE OF THE PARTY OF THE PAR	PHILIP LEVEL IN	43.00	Name and Address of	355155	&	Proj	ect l					ements		
Client: / John	Associates	Project :	ocation: N	3 - 68	6		□ Ye	s 🗆 No	AM c	ICP Ana	alytica	ıl Meth	ods			□ Y	es 🗆 N	lo CT	Γ RCP A	Analytical Metho	ods
A THE RESIDENCE OF THE PARTY OF	Commercial St Sail	Project !	Manager:	Dage 1	Bassan	حلام				x Spike Standa									norganio gets)	s)	
	- NH 03101		Quote #:	2033	COCOLOR		□ Ye	s D No	NPD	ES RGF	•							_	GP		
	663-0280	Turn-	Around Tir	ne				TIEI SIE	Tec		7	7	-	Ť		7	7	/N	7 7		
Email: 5 Four	ಯುಆಡ್ರಿಶ್ರೀಕಿತ್ ೧ roject Information:		dard □	1 RUSH (only	confirmed if pre-a _l	pprov#dl')	ANALYSI	U ABN U 524.2	METALS: DINCP 13	EPH: DRange DRCRAS DRCRAS	Range Depts D Rang	D PCB Targets D Ranges Only	Quant Only	HCC-ONCSC Lingerprint	Thomas - Total	11 CO - 5M 4500	FICT EPA	P. C. C. P. 4		SAMPLE INFO Filtration Field Lab to do Preservation Lab to do	"L # B O T
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection Time	Sample Matrix	Sampler	نې	SVoc.	METAL	EPH: D	NPH: D	D PCB		\$ \₹	2/2	1 10 1	Tota!	/ /			T L E S
19200-01	Receiving 1	Jahra	No. of the last of	AND THE RESERVE OF THE PERSON NAMED IN COLUMN TO THE PERSON NAMED		JF							X	X	'Y	-	X		Sam	ple Comments	-
03	Receiving 1	,	6/9/11	Mello	W	JF			+			+		X			1	+			3
04	INTIOEMY		0/1//1	0340	V-	34			+		+			//		1		\perp			2
										-			ļ							-	-
																		+			
											\top									<u> </u>	+
						,							+					+			
						<u>i</u>		-			-	+	-					-			
Container Type	Preservative											-	7								-
P= Plastic A= None A= Amber glass B= HCl						iner Type		_	-			_	7	9	8	8	P	_			
V= Vial G= Glass B= Bacteria cup	C= HNO D= H ₂ SO ₄ E= NaOH				-	eservative							C	D	C	C	C				
C= Cube O= Other E= Encore D= BOD Bottle Page 23 of 23	F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₁ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	Relinqu	ished By:			e/Time 7 H 50	F			ed By:	A	N		Date/ G (/ F			Alph: See	a's Ter reverse	rms and se side.	itted are subject I Conditions.	ot to

ANALYTICAL REPORT

Lab Number: L1717463

Client: EST Associates, Inc.

51 Freemont Street Needham, MA 02494

ATTN: John D'Andrea
Phone: (781) 455-0003
Project Name: CLEAN CORP.

Project Number: 993-6861

Report Date: 06/05/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CLEAN CORP.

Project Number: 993-6861

Lab Number:

L1717463

Report Date: 06/05/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1717463-01	INFLUENT	WATER	229 NORTH MAIN ST., NATICK, MA	05/25/17 14:50	05/26/17
L1717463-02	EFFLUENT	WATER	229 NORTH MAIN ST., NATICK, MA	05/25/17 14:40	05/26/17
L1717463-03	MIDFLUENT	WATER	229 NORTH MAIN ST., NATICK, MA	05/25/17 14:45	05/26/17

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 Report Date: 06/05/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	A response to questions G, H and I is required for "Presumptive Certainty" status										
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO									
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO									
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO									

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:CLEAN CORP.Lab Number:L1717463Project Number:993-6861Report Date:06/05/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:CLEAN CORP.Lab Number:L1717463Project Number:993-6861Report Date:06/05/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question G:

L1717463-01 through -03: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The initial calibration, associated with L1717463-01 through -03, did not meet the method required minimum response factor on the lowest calibration standard for 2-butanone (0.973) and 1,4-dioxane (0.0023), as well as the average response factor for 2-butanone and 1,4-dioxane.

The continuing calibration standard, associated with L1717463-01 through -03, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

In reference to question I:

L1717463-03: The sample was analyzed for a subset of MCP analytes per the Chain of Custody.

Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

Non-MCP Related Narratives

Solids, Total Suspended

WG1007657: A laboratory duplicate could not be performed due to insufficient sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Cripps Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

ANALYTICA

Date: 06/05/17

ORGANICS

VOLATILES

05/26/17

Date Received:

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

SAMPLE RESULTS

Lab ID: L1717463-01 D Date Collected: 05/25/17 14:50

Client ID: INFLUENT

Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 06/01/17 15:02

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	4.0		2
1,1-Dichloroethane	ND		ug/l	2.0		2
Chloroform	ND		ug/l	2.0		2
Carbon tetrachloride	ND		ug/l	2.0		2
1,2-Dichloropropane	ND		ug/l	2.0		2
Dibromochloromethane	ND		ug/l	2.0		2
1,1,2-Trichloroethane	ND		ug/l	2.0		2
Tetrachloroethene	200		ug/l	2.0		2
Chlorobenzene	ND		ug/l	2.0		2
Trichlorofluoromethane	ND		ug/l	4.0		2
1,2-Dichloroethane	ND		ug/l	2.0		2
1,1,1-Trichloroethane	ND		ug/l	2.0		2
Bromodichloromethane	ND		ug/l	2.0		2
trans-1,3-Dichloropropene	ND		ug/l	1.0		2
cis-1,3-Dichloropropene	ND		ug/l	1.0		2
1,3-Dichloropropene, Total	ND		ug/l	1.0		2
1,1-Dichloropropene	ND		ug/l	4.0		2
Bromoform	ND		ug/l	4.0		2
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0		2
Benzene	ND		ug/l	1.0		2
Toluene	ND		ug/l	2.0		2
Ethylbenzene	ND		ug/l	2.0		2
Chloromethane	ND		ug/l	4.0		2
Bromomethane	ND		ug/l	4.0		2
Vinyl chloride	ND		ug/l	2.0		2
Chloroethane	ND		ug/l	4.0		2
1,1-Dichloroethene	ND		ug/l	2.0		2
trans-1,2-Dichloroethene	ND		ug/l	2.0		2
Trichloroethene	ND		ug/l	2.0		2
1,2-Dichlorobenzene	ND		ug/l	2.0		2

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

SAMPLE RESULTS

Lab ID: L1717463-01 D Date Collected: 05/25/17 14:50

Client ID: INFLUENT Date Received: 05/26/17
Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou						
Wei Velatile Organice Weeks	.g., Edb					
1,3-Dichlorobenzene	ND		ug/l	2.0		2
1,4-Dichlorobenzene	ND		ug/l	2.0		2
Methyl tert butyl ether	ND		ug/l	4.0		2
p/m-Xylene	ND		ug/l	4.0		2
o-Xylene	ND		ug/l	2.0		2
Xylene (Total)	ND		ug/l	2.0		2
cis-1,2-Dichloroethene	ND		ug/l	2.0		2
1,2-Dichloroethene (total)	ND		ug/l	2.0		2
Dibromomethane	ND		ug/l	4.0		2
1,2,3-Trichloropropane	ND		ug/l	4.0		2
Styrene	ND		ug/l	2.0		2
Dichlorodifluoromethane	ND		ug/l	4.0		2
Acetone	ND		ug/l	10		2
Carbon disulfide	ND		ug/l	4.0		2
2-Butanone	ND		ug/l	10		2
4-Methyl-2-pentanone	ND		ug/l	10		2
2-Hexanone	ND		ug/l	10		2
Bromochloromethane	ND		ug/l	4.0		2
Tetrahydrofuran	ND		ug/l	4.0		2
2,2-Dichloropropane	ND		ug/l	4.0		2
1,2-Dibromoethane	ND		ug/l	4.0		2
1,3-Dichloropropane	ND		ug/l	4.0		2
1,1,1,2-Tetrachloroethane	ND		ug/l	2.0		2
Bromobenzene	ND		ug/l	4.0		2
n-Butylbenzene	ND		ug/l	4.0		2
sec-Butylbenzene	ND		ug/l	4.0		2
tert-Butylbenzene	ND		ug/l	4.0		2
o-Chlorotoluene	ND		ug/l	4.0		2
p-Chlorotoluene	ND		ug/l	4.0		2
1,2-Dibromo-3-chloropropane	ND		ug/l	4.0		2
Hexachlorobutadiene	ND		ug/l	1.2		2
Isopropylbenzene	ND		ug/l	4.0		2
p-Isopropyltoluene	ND		ug/l	4.0		2
Naphthalene	ND		ug/l	4.0		2
n-Propylbenzene	ND		ug/l	4.0		2
1,2,3-Trichlorobenzene	ND		ug/l	4.0		2
1,2,4-Trichlorobenzene	ND		ug/l	4.0		2
1,3,5-Trimethylbenzene	ND		ug/l	4.0		2
1,2,4-Trimethylbenzene	ND		ug/l	4.0		2
			-			

05/25/17 14:50

2

2

Date Collected:

4.0

500

ug/l

ug/l

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

SAMPLE RESULTS

Lab ID: L1717463-01 D

Tertiary-Amyl Methyl Ether

1,4-Dioxane

Client ID: INFLUENT Date Received: 05/26/17
Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

ND

ND

Dilution Factor RL Parameter Result Qualifier Units MDL MCP Volatile Organics - Westborough Lab Ethyl ether ND 4.0 2 ug/l Isopropyl Ether ND 4.0 2 ug/l Ethyl-Tert-Butyl-Ether 2 ND 4.0 ug/l --

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	91	70-130	

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/25/17 14:40

Client ID: EFFLUENT Date Received: 05/26/17

Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 06/01/17 13:54

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/25/17 14:40

Client ID: EFFLUENT Date Received: 05/26/17
Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics - Westborough Lab ND 1.0 1,3-Dichlorobenzene 1 ug/l 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 2.0 1 p/m-Xylene ND 2.0 1 ug/l o-Xylene ND 1.0 1 ug/l Xylene (Total) ND 1.0 1 ug/l -cis-1,2-Dichloroethene ND 1.0 1 ug/l --1,2-Dichloroethene (total) ND 1.0 1 ug/l Dibromomethane ND 2.0 1 ug/l 1,2,3-Trichloropropane ND 2.0 1 ug/l Styrene ND ug/l 1.0 1 Dichlorodifluoromethane ND 2.0 1 ug/l --ND 5.0 1 Acetone ug/l Carbon disulfide ND ug/l 2.0 1 2-Butanone ND 5.0 1 ug/l 4-Methyl-2-pentanone ND 5.0 1 ug/l ND 2-Hexanone ug/l 5.0 1 Bromochloromethane ND 2.0 1 ug/l --Tetrahydrofuran ND 2.0 1 ug/l 2,2-Dichloropropane ND 2.0 1 ug/l --ND 2.0 1 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 1.0 --1 Bromobenzene ND 2.0 1 ug/l -n-Butylbenzene ND 2.0 1 ug/l sec-Butylbenzene ND 2.0 1 ug/l tert-Butylbenzene ND 2.0 1 ug/l o-Chlorotoluene ND ug/l 2.0 1 ND p-Chlorotoluene 2.0 1 ug/l --1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 ND 1 Isopropylbenzene ug/l 2.0 p-Isopropyltoluene ND ug/l 2.0 1 ND Naphthalene ug/l 2.0 --1 n-Propylbenzene ND 2.0 1 ug/l --1,2,3-Trichlorobenzene ND 2.0 1 ug/l 1,2,4-Trichlorobenzene ND 1 ug/l 2.0 ND 1,3,5-Trimethylbenzene 2.0 1 ug/l 1,2,4-Trimethylbenzene ND ug/l 2.0 1

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/25/17 14:40

Client ID: EFFLUENT Date Received: 05/26/17
Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	ıgh Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	112	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	90	70-130	

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/25/17 14:45

Client ID: Date Received: 05/26/17

Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 06/01/17 14:28

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene, Total	ND		ug/l	1.0		1
Bromochloromethane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/25/17 14:45

Client ID: MIDFLUENT Date Received: 05/26/17
Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

MCP Volatile Organics - Westborough Lab					
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0	 1	
2-Chloroethylvinyl ether	ND	ug/l	10	 1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	91	70-130	

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 06/01/17 06:02

Analyst: MM

MCP Volatile Organics - Westborough Lab for sample(s): 01-03 Batch: WG1008797-5 Methylene chloride ND ug/l 2.0 1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Trichloroffluoromethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total <t< th=""><th>Parameter</th><th>Result</th><th>Qualifier</th><th>Units</th><th>RI</th><th>L MDL</th></t<>	Parameter	Result	Qualifier	Units	RI	L MDL
1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 1,1-Trichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l	MCP Volatile Organics	- Westborough Lab for	sample(s):	01-03	Batch:	WG1008797-5
1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 1,1-Trichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l	Methylene chloride	ND		ug/l	2.0)
Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 Bromodichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l <		ND			1.0)
Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l						
1,2-Dichloropropane ND	Carbon tetrachloride	ND			1.0)
1,1,2-Trichloroethane ND	1,2-Dichloropropane	ND		ug/l	1.0)
Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0	Dibromochloromethane	ND		ug/l	1.0)
Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0 Bromomethane ND ug/l 2.0 <	1,1,2-Trichloroethane	ND		ug/l	1.0)
Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 2.0	Tetrachloroethene	ND		ug/l	1.0)
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	1.0)
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.0)
Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0	1,2-Dichloroethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1,1-Trichloroethane	ND		ug/l	1.0)
cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromodichloromethane	ND		ug/l	1.0)
1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	trans-1,3-Dichloropropene	ND		ug/l	0.5	
1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	cis-1,3-Dichloropropene	ND		ug/l	0.5	
Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,3-Dichloropropene, Total	ND		ug/l	0.5	
1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1-Dichloropropene	ND		ug/l	2.0)
Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromoform	ND		ug/l	2.0)
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0)
Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Benzene	ND		ug/l	0.5	
Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Toluene	ND		ug/l	1.0)
Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Ethylbenzene	ND		ug/l	1.0)
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Chloromethane	ND		ug/l	2.0)
Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromomethane	ND		ug/l	2.0)
1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Vinyl chloride	ND		ug/l	1.0)
trans-1,2-Dichloroethene ND ug/l 1.0	Chloroethane	ND		ug/l	2.0)
·	1,1-Dichloroethene	ND		ug/l	1.0)
Trichloroethene ND ug/l 1.0	trans-1,2-Dichloroethene	ND		ug/l	1.0)
	Trichloroethene	ND		ug/l	1.0)

Project Name: Lab Number: CLEAN CORP. L1717463 **Project Number:**

Report Date: 993-6861 06/05/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 97,8260C 06/01/17 06:02

Analyst: MM

arameter	Result	Qualifier	Units	RI	L MDL
CP Volatile Organics	- Westborough Lab for	sample(s):	01-03	Batch:	WG1008797-5
1,2-Dichlorobenzene	ND		ug/l	1.0	0
1,3-Dichlorobenzene	ND		ug/l	1.0	0
1,4-Dichlorobenzene	ND		ug/l	1.0	0
Methyl tert butyl ether	ND		ug/l	2.0	0
p/m-Xylene	ND		ug/l	2.0	0
o-Xylene	ND		ug/l	1.0	0
Xylene (Total)	ND		ug/l	1.0	0
cis-1,2-Dichloroethene	ND		ug/l	1.0	0
1,2-Dichloroethene (total)	ND		ug/l	1.0	0
Dibromomethane	ND		ug/l	2.0	0
1,2,3-Trichloropropane	ND		ug/l	2.0	0
Styrene	ND		ug/l	1.0	0
Dichlorodifluoromethane	ND		ug/l	2.0	0
Acetone	ND		ug/l	5.0	0
Carbon disulfide	ND		ug/l	2.0	0
2-Butanone	ND		ug/l	5.0	0
4-Methyl-2-pentanone	ND		ug/l	5.0	0
2-Hexanone	ND		ug/l	5.0	0
Bromochloromethane	ND		ug/l	2.0	0
Tetrahydrofuran	ND		ug/l	2.0	0
2,2-Dichloropropane	ND		ug/l	2.0	0
1,2-Dibromoethane	ND		ug/l	2.0	0
1,3-Dichloropropane	ND		ug/l	2.0	0
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0	0
Bromobenzene	ND		ug/l	2.0	0
n-Butylbenzene	ND		ug/l	2.0	0
sec-Butylbenzene	ND		ug/l	2.0	0
tert-Butylbenzene	ND		ug/l	2.0	0
o-Chlorotoluene	ND		ug/l	2.0	0

Project Name:CLEAN CORP.Lab Number:L1717463Project Number:993-6861Report Date:06/05/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 06/01/17 06:02

Analyst: MM

arameter	Result	Qualifier	Units	RL	MDL	
ICP Volatile Organics - Westbord	ough Lab for	sample(s):	01-03	Batch: WG1	008797-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	2.0		
tert-Butyl Alcohol	ND		ug/l	10		
2-Chloroethylvinyl ether	ND		ug/l	10		

		Acceptance	
Surrogate	%Recovery Quality	ier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	93	70-130	

Project Name: CLEAN CORP.

Project Number: 993-6861

Lab Number: L1717463

Report Date: 06/05/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ple(s): 01-03	Batch: WG100	8797-3	WG1008797-4			
Methylene chloride	110		110		70-130	0	20	
1,1-Dichloroethane	99		100		70-130	1	20	
Chloroform	92		92		70-130	0	20	
Carbon tetrachloride	78		75		70-130	4	20	
1,2-Dichloropropane	95		97		70-130	2	20	
Dibromochloromethane	89		89		70-130	0	20	
1,1,2-Trichloroethane	110		110		70-130	0	20	
Tetrachloroethene	100		98		70-130	2	20	
Chlorobenzene	97		97		70-130	0	20	
Trichlorofluoromethane	92		87		70-130	6	20	
1,2-Dichloroethane	86		85		70-130	1	20	
1,1,1-Trichloroethane	86		82		70-130	5	20	
Bromodichloromethane	86		84		70-130	2	20	
trans-1,3-Dichloropropene	110		110		70-130	0	20	
cis-1,3-Dichloropropene	100		99		70-130	1	20	
1,1-Dichloropropene	100		96		70-130	4	20	
Bromoform	90		94		70-130	4	20	
1,1,2,2-Tetrachloroethane	110		110		70-130	0	20	
Benzene	100		100		70-130	0	20	
Toluene	110		100		70-130	10	20	
Ethylbenzene	110		100		70-130	10	20	
Chloromethane	92		84		70-130	9	20	
Bromomethane	120		100		70-130	18	20	

Project Name: CLEAN CORP.

Project Number: 993-6861

Lab Number: L1717463

Report Date: 06/05/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG10	08797-3	WG1008797-4				
Vinyl chloride	110		98		70-130	12		20	
Chloroethane	120		120		70-130	0		20	
1,1-Dichloroethene	110		110		70-130	0		20	
trans-1,2-Dichloroethene	110		110		70-130	0		20	
Trichloroethene	94		89		70-130	5		20	
1,2-Dichlorobenzene	96		94		70-130	2		20	
1,3-Dichlorobenzene	98		93		70-130	5		20	
1,4-Dichlorobenzene	95		92		70-130	3		20	
Methyl tert butyl ether	110		100		70-130	10		20	
p/m-Xylene	105		100		70-130	5		20	
o-Xylene	100		100		70-130	0		20	
cis-1,2-Dichloroethene	96		96		70-130	0		20	
Dibromomethane	96		92		70-130	4		20	
1,2,3-Trichloropropane	110		110		70-130	0		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	84		84		70-130	0		20	
Acetone	82		84		70-130	2		20	
Carbon disulfide	110		100		70-130	10		20	
2-Butanone	91		72		70-130	23	Q	20	
4-Methyl-2-pentanone	110		110		70-130	0		20	
2-Hexanone	80		83		70-130	4		20	
Bromochloromethane	89		83		70-130	7		20	
Tetrahydrofuran	78		74		70-130	5		20	

Project Name: CLEAN CORP.

Project Number: 993-6861

Lab Number: L1717463

Report Date: 06/05/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG100	8797-3	WG1008797-4			
2,2-Dichloropropane	91		93		70-130	2	20	
1,2-Dibromoethane	100		100		70-130	0	20	
1,3-Dichloropropane	120		120		70-130	0	20	
1,1,1,2-Tetrachloroethane	89		89		70-130	0	20	
Bromobenzene	99		94		70-130	5	20	
n-Butylbenzene	96		92		70-130	4	20	
sec-Butylbenzene	96		92		70-130	4	20	
tert-Butylbenzene	91		88		70-130	3	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	110		100		70-130	10	20	
1,2-Dibromo-3-chloropropane	93		100		70-130	7	20	
Hexachlorobutadiene	110		100		70-130	10	20	
Isopropylbenzene	97		91		70-130	6	20	
p-Isopropyltoluene	94		92		70-130	2	20	
Naphthalene	93		95		70-130	2	20	
n-Propylbenzene	100		100		70-130	0	20	
1,2,3-Trichlorobenzene	100		100		70-130	0	20	
1,2,4-Trichlorobenzene	99		97		70-130	2	20	
1,3,5-Trimethylbenzene	96		96		70-130	0	20	
1,2,4-Trimethylbenzene	99		95		70-130	4	20	
Ethyl ether	120		120		70-130	0	20	
Isopropyl Ether	78		77		70-130	1	20	
Ethyl-Tert-Butyl-Ether	98		90		70-130	9	20	

Project Name: CLEAN CORP. Lab Number:

L1717463

Project Number: 993-6861

Report Date:

06/05/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab A	ssociated samp	ole(s): 01-03	Batch: WG10	08797-3 V	VG1008797-4			
Tertiary-Amyl Methyl Ether	100		99		70-130	1		20
1,4-Dioxane	140	Q	130		70-130	7		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	100		96		70-130	4		20
tert-Butyl Alcohol	110		108		70-130	2		20
2-Chloroethylvinyl ether	120		120		70-130	0		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	98	86	70-130
Toluene-d8	112	111	70-130
4-Bromofluorobenzene	111	113	70-130
Dibromofluoromethane	95	85	70-130

METALS

Project Name:CLEAN CORP.Lab Number:L1717463Project Number:993-6861Report Date:06/05/17

SAMPLE RESULTS

 Lab ID:
 L1717463-01
 Date Collected:
 05/25/17 14:50

 Client ID:
 INFLUENT
 Date Received:
 05/26/17

Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals -	Mansfield	d Lab									
Copper, Total	0.0015		mg/l	0.0005		1	05/30/17 11:4	5 06/01/17 14:31	EPA 3005A	97,6020A	AM
Iron, Total	ND		mg/l	0.050		1	05/30/17 11:4	5 06/01/17 14:31	EPA 3005A	97,6020A	AM
Lead, Total	ND		mg/l	0.0010		1	05/30/17 11:45	5 06/01/17 14:31	EPA 3005A	97,6020A	AM

Project Name:CLEAN CORP.Lab Number:L1717463Project Number:993-6861Report Date:06/05/17

SAMPLE RESULTS

 Lab ID:
 L1717463-02
 Date Collected:
 05/25/17 14:40

 Client ID:
 EFFLUENT
 Date Received:
 05/26/17

Sample Location: 229 NORTH MAIN ST., NATICK, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals	- Mansfield	d Lab									
Copper, Total	0.0005		mg/l	0.0005		1	05/30/17 11:4	5 06/01/17 14:35	EPA 3005A	97,6020A	AM
Iron, Total	ND		mg/l	0.050		1	05/30/17 11:4	5 06/01/17 14:35	EPA 3005A	97,6020A	AM
Lead, Total	ND		mg/l	0.0010		1	05/30/17 11:4	5 06/01/17 14:35	EPA 3005A	97,6020A	AM

Project Name: CLEAN CORP. Project Number: 993-6861

Lab Number: L1717463

Report Date: 06/05/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Mar	nsfield Lab for sampl	e(s): 01-	02 Batc	h: WG	1008049-1				
Copper, Total	ND	mg/l	0.0005		1	05/30/17 11:45	06/01/17 14:15	5 97,6020A	AM
Iron, Total	ND	mg/l	0.050		1	05/30/17 11:45	06/01/17 14:15	5 97,6020A	AM
Lead, Total	ND	mg/l	0.0010		1	05/30/17 11:45	06/01/17 14:15	5 97,6020A	AM

Prep Information

Digestion Method: EPA 3005A

06/05/17

Lab Control Sample Analysis Batch Quality Control

Project Name: CLEAN CORP.

Lab Number: L1717463

Project Number: 993-6861

Report Date:

Parameter MCP Total Metals - Mansfield Lab Associa	•	LCSD ual %Recovery atch: WG1008049-2 WG1	%Recovery Qual Limits 008049-3	RPD	Qual RPD Lin	nits
Copper, Total	97	103	80-120	6	20	
Iron, Total	114	114	80-120	0	20	
Lead Total	103	106	80-120	3	20	

INORGANICS & MISCELLANEOUS

Project Name: CLEAN CORP.

Lab Number: Report Date:

L1717463

Project Number: 993-6861

06/05/17

SAMPLE RESULTS

Lab ID: L1717463-01

INFLUENT Client ID:

229 NORTH MAIN ST., NATICK, MA Sample Location:

Matrix: Water Date Collected:

05/25/17 14:50

Date Received:

05/26/17

Not Specified Field Prep:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab								
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	05/27/17 10:35	121,2540D	VB
Anions by Ion Chromatog	raphy - Westl	oorough Lab							
Chloride	153.	mg/l	12.5		25	-	06/01/17 19:18	44,300.0	AU

Project Name: CLEAN CORP.

Lab Number:

L1717463

Project Number: 993-6861

Report Date:

06/05/17

SAMPLE RESULTS

Lab ID: L1717463-02

Client ID: EFFLUENT

Sample Location: 229 NORTH MAIN ST., NATICK, MA

Matrix: Water

Date Collected:

05/25/17 14:40

Date Received:

05/26/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough La)								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/27/17 10:35	121,2540D	VB
Anions by Ion Chromatog	ıraphy - Wes	tborough L	₋ab							
Chloride	154.		mg/l	12.5		25	-	06/01/17 21:31	44,300.0	AU

Project Name: Lab Number: CLEAN CORP.

L1717463 Project Number: 993-6861 **Report Date:** 06/05/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst						
General Chemistry - We	General Chemistry - Westborough Lab for sample(s): 01-02 Batch: WG1007657-1														
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	05/27/17 10:35	121,2540D	VB						
Anions by Ion Chromato	ography - Westborough	Lab for sa	ample(s):	01-02	Batch: W	G1009438-1									
Chloride	ND	mg/l	0.500		1	-	06/01/17 17:23	44,300.0	AU						

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1717463

Project Number: 993-6861 **Report Date:** 06/05/17

LCS **LCSD** %Recovery %Recovery %Recovery Limits RPD **RPD Limits** Parameter Qual Qual Qual Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01-02 Batch: WG1009438-2 100 90-110 Chloride

Project Name:

CLEAN CORP.

Project Name:CLEAN CORP.Lab Number:L1717463Project Number:993-6861Report Date:06/05/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1717463-01A	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1717463-01B	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1717463-01C	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1717463-01D	Plastic 250ml HNO3 preserved	Α	<2	5.1	Υ	Absent	MCP-FE-6020T-10(180),MCP- CU-6020T-10(180),MCP-PB- 6020T-10(180)
L1717463-01E	Plastic 250ml unpreserved	Α	7	5.1	Υ	Absent	CL-300(28)
L1717463-01F	Plastic 950ml unpreserved	Α	7	5.1	Υ	Absent	TSS-2540(7)
L1717463-02A	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1717463-02B	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1717463-02C	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1717463-02D	Plastic 250ml HNO3 preserved	Α	<2	5.1	Υ	Absent	MCP-FE-6020T-10(180),MCP- CU-6020T-10(180),MCP-PB- 6020T-10(180)
L1717463-02E	Plastic 250ml unpreserved	Α	7	5.1	Υ	Absent	CL-300(28)
L1717463-02F	Plastic 950ml unpreserved	Α	7	5.1	Υ	Absent	TSS-2540(7)
L1717463-03A	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1717463-03B	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)
L1717463-03C	Vial HCl preserved	Α	N/A	5.1	Υ	Absent	MCP-8260-10(14)

Project Name:CLEAN CORP.Lab Number:L1717463Project Number:993-6861Report Date:06/05/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:CLEAN CORP.Lab Number:L1717463Project Number:993-6861Report Date:06/05/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: CLEAN CORP. Lab Number: L1717463

Project Number: 993-6861 Report Date: 06/05/17

REFERENCES

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

CHAIN OF CUSTODY RECORD

FGT					51 Fre	emont S	treet N	Veec	lhan	n, M	1A 0:	249	94 7	Γel:	781-	455-0	0003,	, Fax:	: 781	-455-8	336		5/20)	znai_iv	-	217		46.
			Cł	IIAH	1 0	F C	US ⁻	ГО	D,	Y	RI	EC	CO	R	D		1.	- b 4						, ,				1	•
Associates, Inc.																	La	aborat	ory:	•				Alpha (5	508) 898-9) 220			
Client	229 N	Main S	Street Lim	ited Part	nership			Γ									An	nalytica	l Infor	nation		Т							
Address 6	Old L	anterr	Circle Pa	xton, M	01612	2										T		T	T	T				E	ST to Invo	oice:			
Contact			Carole Kir	sch									.														9 N Main L	.Р	
Phone #			Fax:					\dashv	IV	IA	TR	IX				_								L	ab to Invo				
-			_					\dashv	1. Wa	etov	wator		1			6020											Q#EST09	0803	
Project Name	Cle	an Co	rp (Golde	# 002 6	264\											EPA 6			ŀ	- 1				La	ab Report	to:			
Address			Main Stre					\neg	2. Groundwater					by El				1 1				-	200		Adex				
		NOTH			10 C				3. Dri		g Wa	iter				Pb) b								Bi	Billing Reference:				
Contact Andrew Ko	рП		tel;	Offic	e: 603-6	68-0880			4. Soi	il			1		1	Fe, P	300.0							L		Quote	: 6680710	-09B	
Location ID #									5. Sur						1		A 30							L					
Description GRTS Monthly Sa	ampli	ng	PO#					— [6. Oth	ier_				a	1	Metals (Cu,	EPA							1					
	-	Coll	ection	-		# of bottle	s		Pr	Preservation				8260B		etal	Chloride by												
				Matrix	-	Type	т—	-	ΞŒ	14	ΙΞΤ	T				Z Z	orid			1									
Field ID / Point of Collection		Date	Time		Glass	Plastic	VOA's	된 (NaOH HNO3	HZS	MEO	Other	None	VOCs	TSS	Total	당									C	omments:		
Influent	5	125/1	1450	1		3	3	3	1			T	2	х	х	х	х										omments.		
Effluent			1440	1		3	3	3	1	\Box		\top		х	Х	х	х						+		Effluen		6.39		
Midfluent	Τ,	1	1445	1				3				1		x*	-	~							+	_	Lillueni	t pn =	6.57		
									\top	\top		\top	Τ΄						2000		_	+	+	+					
	T							\sqcap	+	\forall	\Box	+	\top	\dashv	-							+	+	-					
	\top							\vdash	+	\forall	\vdash	+	+	+	-			-	_			+-	-	+					
							\vdash	\vdash	+	\vdash	\vdash	+	+	\dashv	\dashv				_	\vdash	\dashv		+	_					
7	+				_	\vdash		+	+	+	\vdash	+	+	+	\dashv						-		+-+						
	+							+	+	H	\vdash	+	+	+									+						
100000	+							+	+	\vdash	\dashv	+	+	\dashv		_							11						
	-							+	+	\vdash	\dashv	+	+	_	_							_	\perp						
	+	_	-				\vdash	\perp	_	Ш	\dashv	\perp		\dashv															
Turnaround Information	+					<u></u>			/000		\perp	\perp																DV -1- /5-	
Std. 10 Day Turnaround	7720 William	roved By	/ :		5	SPECIAL (QA/QC (/QC TA R	equir	remer	nts:	-	7.		D - 441 -	0.4				70	Addi	tional Infor	rmation					
X 7 Day RUSH (no surcharge) 4 Day RUSH				All res	ults are	RGP.										Bottle VOC 8			As H	CI .									
3 Day RUSH					"for m	nidfluent	sample	Repo	ort 60	1 VO	C lis	st or	nly".		ľ	VOC 8260: 3 VOAs HCI TSS: 1LP unpreserved													
2 Day RUSH	-		_															P HN		· 3 VO	e HCI								
1 Day RUSH														VOC 601(run as 8260): 3 VOAs HCI Chloride: 250ml unpreserved										(40)					
Refinquished by Sample:	dy mus	st be doc	umented belo	w each time	samples	change pos	sesion, inc	luding	courie		very.	_	_	7					1000										
Relinquished by Sampler:				Date Tim	5/2	6/17	080	0		1 (_	1	1						Date Time:	26/1	7	C	9:0	U	Z X			
2 Relinquished by Sampler:	1= .									2	ived By:	Ø.								Date Time:									
Relinquished by Sampler:	Date	Time:		Received 3	I By:					Date T	'ime:		-	Se	eal#				Preserve	where appli	cable)	On Ice				Temp.		
				13										\bot								•	ш						

Method Blank Summary Form 4

Client : EST Associates, Inc. Lab Number : L1717463
Project Name : CLEAN CORP. Project Number : 993-6861
Lab Sample ID : WG1008797-5 Lab File ID : VJ170601A09

Instrument ID : JACK

Matrix : WATER Analysis Date : 06/01/17 06:02

_	Client Sample No.	Lab Sample ID	Analysis Date	
	WG1008797-3LCS	WG1008797-3	06/01/17 04:21	
	WG1008797-4LCSD	WG1008797-4	06/01/17 04:55	
	EFFLUENT	L1717463-02	06/01/17 13:54	
	MIDFLUENT	L1717463-03	06/01/17 14:28	
	INFLUENT	L1717463-01D	06/01/17 15:02	

Continuing Calibration Form 7

Client : EST Associates, Inc. Lab Number : L1717463
Project Name : CLEAN CORP. Project Number : 993-6861

Instrument ID : JACK Calibration Date : 06/01/17 04:21

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	10	10	-	0	20	68	0
Dichlorodifluorometh	ane 0.431	0.361	-	16.2	20	55	0
Chloromethane	0.412	0.381	-	7.5	20	64	0
Vinyl chloride	0.367	0.405	-	-10.4	20	76	0
Bromomethane	10	11.528	-	-15.3	20	90	0
Chloroethane	0.183	0.223	-	-21.9*	20	80	0
Trichlorofluorometha	ne 0.594	0.549	-	7.6	20	60	0
Ethyl ether	0.115	0.14	-	-21.7*	20	78	0
1,1-Dichloroethene	0.28	0.31	-	-10.7	20	74	0
Carbon disulfide	0.76	0.818	-	-7.6	20	75	0
Freon-113	0.291	0.293	-	-0.7	20	64	0
Methylene chloride	0.284	0.322	-	-13.4	20	78	0
Acetone	10	8.159	-	18.4	20	55	0
trans-1,2-Dichloroeth	nene 0.322	0.346	-	-7.5	20	72	0
Methyl tert-butyl ethe	er 0.683	0.733	-	-7.3	20	72	0
tert-Butyl alcohol	0.016	0.017*	-	-6.3	20	73	0
Diisopropyl ether	1.01	0.791	-	21.7*	20	55	0
1,1-Dichloroethane	0.555	0.552	-	0.5	20	69	0
Ethyl tert-butyl ether	0.877	0.864	-	1.5	20	68	0
cis-1,2-Dichloroether	ne 0.384	0.368	-	4.2	20	68	0
2,2-Dichloropropane	0.589	0.534	-	9.3	20	63	0
Bromochloromethane	e 0.192	0.171	-	10.9	20	61	0
Chloroform	0.629	0.581	-	7.6	20	62	0
Carbon tetrachloride	0.628	0.49	-	22*	20	54	0
Tetrahydrofuran	0.074	0.058	-	21.6*	20	56	0
Dibromofluorometha	ne 0.255	0.242	-	5.1	20	65	0
1,1,1-Trichloroethane	e 0.673	0.578	-	14.1	20	58	0
2-Butanone	0.088	0.08*	-	9.1	20	60	0
1,1-Dichloropropene	0.49	0.514	-	-4.9	20	72	0
Benzene	1.386	1.445	-	-4.3	20	74	0
tert-Amyl methyl ethe	er 0.772	0.792	-	-2.6	20	72	0
1,2-Dichloroethane-d	14 0.269	0.265	-	1.5	20	65	0
1,2-Dichloroethane	0.463	0.399	-	13.8	20	58	0
Trichloroethene	0.423	0.396	-	6.4	20	69	0
Dibromomethane	0.184	0.177	-	3.8	20	65	0
1,2-Dichloropropane	0.316	0.301	-	4.7	20	66	0
2-Chloroethyl vinyl e	ther 0.101	0.118	-	-16.8	20	92	0
Bromodichlorometha		0.444	-	13.5	20	63	0
1,4-Dioxane	0.00215	0.00301*	-	-40*	20	91	0
cis-1,3-Dichloroprope	ene 0.597	0.604	-	-1.2	20	70	0
Chlorobenzene-d5	1	1	-	0	20	62	0
Toluene-d8	1.05	1.173	-	-11.7	20	70	0
Toluene	1.033	1.12	-	-8.4	20	70	0
4-Methyl-2-pentanon	ie 10	11.175	-	-11.8	20	66	0
Tetrachloroethene	0.591	0.594	-	-0.5	20	61	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : EST Associates, Inc. Lab Number : L1717463 **Project Name** : CLEAN CORP. Project Number : 993-6861 : 06/01/17 04:21

Instrument ID Calibration Date : JACK

: VJ170601A03 Init. Calib. Date(s) : 04/25/17 Lab File ID 04/25/17 Sample No : WG1008797-2 Init. Calib. Times : 04:05 07:58

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
trans-1,3-Dichloropropene	0.478	0.523	-	-9.4	20	71	0
1,1,2-Trichloroethane	0.22	0.241	-	-9.5	20	73	0
Chlorodibromomethane	0.408	0.364	-	10.8	20	57	0
1,3-Dichloropropane	0.421	0.492	-	-16.9	20	72	0
1,2-Dibromoethane	0.295	0.301	-	-2	20	65	0
2-Hexanone	0.146	0.118	-	19.2	20	55	0
Chlorobenzene	1.362	1.323	-	2.9	20	62	0
Ethylbenzene	2.165	2.304	-	-6.4	20	69	0
1,1,1,2-Tetrachloroethane	0.492	0.439	-	10.8	20	56	0
p/m Xylene	0.937	0.974	-	-3.9	20	67	0
o Xylene	0.896	0.892	-	0.4	20	65	0
Styrene	1.461	1.5	-	-2.7	20	66	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	62	0
Bromoform	0.412	0.373	-	9.5	20	60	0
Isopropylbenzene	4.221	4.087	-	3.2	20	64	01
4-Bromofluorobenzene	0.715	0.797	-	-11.5	20	70	0
Bromobenzene	1.009	1.003	-	0.6	20	62	0
n-Propylbenzene	4.363	4.468	-	-2.4	20	66	01
1,1,2,2-Tetrachloroethane	10	11.146	-	-11.5	20	73	0
2-Chlorotoluene	2.841	2.947	-	-3.7	20	69	0
1,3,5-Trimethylbenzene	3.26	3.138	-	3.7	20	62	0
1,2,3-Trichloropropane	0.418	0.466	-	-11.5	20	77	0
4-Chlorotoluene	2.585	2.768	-	-7.1	20	70	0
tert-Butylbenzene	3.021	2.75	-	9	20	58	0
1,2,4-Trimethylbenzene	3.244	3.222	-	0.7	20	63	0
sec-Butylbenzene	3.897	3.734	-	4.2	20	62	0
p-Isopropyltoluene	3.488	3.279	-	6	20	57	0
1,3-Dichlorobenzene	1.964	1.917	-	2.4	20	61	0
1,4-Dichlorobenzene	1.965	1.867	-	5	20	59	0
n-Butylbenzene	2.573	2.469	-	4	20	65	0
1,2-Dichlorobenzene	1.782	1.702	-	4.5	20	58	0
1,2-Dibromo-3-chloropropan	10	9.288	-	7.1	20	60	01
Hexachlorobutadiene	0.398	0.435	-	-9.3	20	64	01
1,2,4-Trichlorobenzene	10	9.929	-	0.7	20	66	01
Naphthalene	10	9.337	-	6.6	20	65	02
1,2,3-Trichlorobenzene	10	10.191	-	-1.9	20	67	01

^{*} Value outside of QC limits.