

REPORT ON NPDES RGP APPLICATION FOR TEMPORARY CONSTRUCTION DEWATERING BOSTON COLLEGE CENTRAL HEATING PLANT EXPANSION CHESTNUT HILL, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for Environmental Protection Agency (EPA) Region 1 Boston, Massachusetts

File No. 128271-018 July 2018

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

31 July 2018 File No. 128271-018

Environmental Protection Agency (EPA) Region 1 5 Post Office Square, Suite 100 Mail Code OEP06-1 Boston, Massachusetts 02109-3912

Attention: EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent

NPDES RGP Application for Temporary Construction Dewatering

Boston College Central Heating Plant Expansion

Chestnut Hill, Massachusetts

Ladies and Gentlemen:

On behalf of our client, Boston College, Haley & Aldrich, Inc. (Haley & Aldrich) is submitting this Notice of Intent (NOI) application to request authorization under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for off-site discharge of temporary construction dewatering during construction activities at the planned Central Heating Plant Expansion Project, located on the Boston College Campus in Chestnut Hill, Massachusetts (herein referred to as the "Work Area"). A copy of the Notice of Intent form is included in Appendix A.

A. GENERAL SITE INFORMATION

The Work Area is an approximately 16,600 sq. ft. area adjacent to the Central Heating Plant building located east of Cushing Hall on the Boston College campus. A portion of the Work Area is paved asphalt parking and driveway, and the remainder of the Work Area consists of a steeply sloped grass area and retaining wall. Ground surface elevations of the Work Area ranges from approximately El. 177. 5 Boston City Base (BCB) at the northwest boundary, to approximately El. 151 BCB at the base of the retaining wall and across the level paved portion of the site to the southeast boundary. The Work Area is bound to the east by Alumni Stadium, to the west by paved parking and Cushing Hall, to the north by a paved walking path and Higgins Hall, and to the south by the currently existing Central Heating Plant building.

The Central Heating Plant will undergo updates and an expansion to the north of the building that will house new mechanical equipment. Below-grade space is not planned. Existing utilities will be moved/removed and new utilities will be installed.

Dewatering is anticipated to be required for construction of the building foundations, utilities, and drainage improvements. Groundwater has been encountered at the site at approximately El. 144 BCB. Excavations for building foundations and utilities are expected to extend through fill deposits up to 6 ft

Environmental Protection Agency (EPA) Region 1 31 July 2018 Page 2

below existing site grade in the paved portion of the Work Area, or approximately 1ft above the groundwater table.

Additional water may also be generated from surface runoff from precipitation, groundwater seepage, and construction-generated water (e.g., wheel washes, dust control, decontamination activities, water utility testing, etc.). Temporary construction dewatering is anticipated to begin in August 2018 and is estimated to occur intermittently over a period of approximately 12 months.

An Activity and Use Limitation (AUL) exists beneath the existing building and beneath a portion of the proposed expansion area, as shown on Figure 2. This AUL is associated with a previous fuel oil release reported to the Massachusetts Department of Environmental Protection (MassDEP) under Release Tracking Number (RTN) 3-10103:

In September 1980, oil was discovered in Leverett Pond and the release was traced back via the sewer line to the Boston College Service Building (Central Heating Plant) where No. 6 fuel oil had entered a storm drain. A cracked boiler feed line released the fuel oil to a condensate line that ultimately discharged to the sewer system leading to Leverett Pond. Approximately 5,000 to 10,000 gallons of water and No. 6 fuel oil were recovered from the pond and flushed from the lines. Oil-impacted soil from around the broken condensate line was also removed and Boston College installed observation ports in the condensate lines for regular monitoring. In 1993, separate-phase floating oil was observed in the adjacent manhole. Approximately 90 gallons of oil-impacted water was removed from the manhole; however, a sheen persisted and as a result, MassDEP assigned RTN 3-10103 to the release.

Findings of the subsequent subsurface investigations indicated that soil and groundwater were impacted by residual product released from the 1980 condensate line release. The impacted area consisted of an approximately 0.5-ft thick horizon of oil-stained soil over the bedrock surface approximately 4 to 6 ft below ground surface. The entire impacted area (approximately 30 ft across) was asphalt-paved and the proximate building prevented delineation of the extent of oil impacts to the east or south of the source area. A Method 1 Risk Characterization performed for the Site indicated that there was no imminent threat to humans or the environment and the cost of remediation was not justified based on the limited nature of remaining oil impacts, therefore an AUL was implemented for the Site.

In April 2018, a subsurface explorations program consisting of six test borings, designated as HA18-B9 through HA18-B12 and HA-SS1 and HA-SS2, was conducted to characterize in-situ soil anticipated to be excavated and transported off-site as part of construction activities. Two borings were completed west of the proposed building footprint and at the top of the adjacent slope. The four other explorations were shallow (less than4 ft) and were completed with either a vacuum truck or hand auger.

A total of 13 soil samples were collected for site soil characterization. Soil samples were submitted to Alpha Analytical Laboratory for chemical analysis for one or more of the following parameters: volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), MCP 14 metals, total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), pesticides, waste characteristics, specific conductance total sulfur, sulfide and sulphate.

Environmental Protection Agency (EPA) Region 1 31 July 2018 Page 3

In addition, groundwater data was collected from a monitoring well, HA-B1 (OW) on 11 April 2018 and is presented on Table I.

B. SOURCE WATER INFORMATION

To evaluate groundwater (source water) quality at the Work Area, one representative groundwater sample was obtained on 11 April 2018 from the monitoring well designated HA-B1 (OW), recently installed by Haley & Aldrich within the Work Area as part of a site characterization program. The well location is shown on Figure 2.

The groundwater sample was sent to a MassDEP-certified laboratory, Alpha Analytical, for analysis of constituents consistent with requirements of the 2017 NPDES Remediation General Permit, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), total metals, total petroleum hydrocarbons, pesticides, polychlorinated biphenyls (PCBs), total suspended solids, chloride, total cyanide, total phenolics, and total residual chlorine.

A summary of the groundwater chemical analytical data is provided as Table I. The laboratory data report is provided in Appendix F.

Volatile and semi-volatile organic compounds were not detected in the groundwater sample above the laboratory detection limits. Three metals, total chromium, total copper, and total iron were detected at concentrations below the site-specific effluent criteria.

C. RECEIVING WATER INFORMATION

Receiving water quality data was collected in support of this NOI on 29 May 2018, the results of which are summarized in Table II. Receiving water temperature was obtained in the field at 13 $^{\circ}$ C, and is noted on the effluent limitations input calculation page in Appendix B. The sample was collected from Leverett Pond approximately 200 ft from the proposed discharge area. The laboratory data report is provided in Appendix F.

The seven-day-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by Massachusetts Department of Environmental Protection (MassDEP) on 10 July 2018. The StreamStats report, Dilution Factor calculations, and MassDEP confirmation of the 7Q10 and Dilution Factor are included in Appendix B.

The EPA suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the site. Groundwater and Receiving Water data were input and the resulting criteria were tabulated in the attached Table I. Copies of the "EnterData" and "FreshwaterResults" tabs from the excel file provided as an additional resource by EPA are included in Appendix B and will be transmitted electronically with the NOI. The effluent limitations calculated are included for reference in Table I.

D. DISCHARGE INFORMATION

During the excavation activities, it will be necessary to perform temporary construction dewatering to control surface water runoff from precipitation, groundwater seepage, and construction-generated water to enable excavations in-the-dry. Dewatering activities are anticipated to start in August 2018 and are anticipated to be required for up to 7 months. Construction dewatering will include piping and discharging water to a catch basin on-site. The catch basin drains to Leverett Pond via the Boston and Brookline sewer systems, which connect at Cleveland Circle. Refer to Figure 4 for the discharge route. We anticipate effluent discharge rates to be about 50 gallons per minute (gpm) or less, with occasional peak flows of about 150 gpm during significant precipitation events. The temporary dewatering will take place in excavations and will be conducted with sumps located in excavations or from dewatering wells installed at the Site. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

E. DEWATERING TREATMENT SYSTEM INFORMATION

An effluent treatment system will be designed and implemented by the Contractor to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents, as shown on Figure 3. The treatment system may be modified, as necessary to include granulated activated carbon (GAC), ion exchange, and pH adjustment.

F. ADDITIONAL TREATMENT INFORMATION

Product information for the proposed GAC and ion exchange systems, including Safety Data Sheets (SDSs), associated hazards, manufacturer, and proper system operation, are provided in Appendix C. Actual products used in the field may differ slightly. If different products are used, additional information will be provided to EPA. These systems may be mobilized if necessary to achieve necessary effluent limits. If required, pH adjustments will be conducted using sulfuric acid (70-100%), dosed to reduce pH using a metered system. Product information, including chemical formula, SDS, CAS registry number, manufacturer, and associated hazards, toxicological and ecological information, and manufacturer information, including dosing and metering, are provided in Appendix C. The sulfuric acid will be stored in 55-gallon drums with secondary containment systems in place; a summary of control measures for proper handling and spill prevention is provided in Appendix C. The addition of sulfuric acid to reduce pH concentrations is a standard treatment for temporary construction dewatering; it is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

G. DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service

Environmental Protection Agency (EPA) Region 1 31 July 2018 Page 5

(FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix D. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no listed species or critical habitat have been established to be present within the project action area.

H. DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been established to be present at the Work Area; however, Leverett Pond is located within the Olmsted Park System, which is referenced in the National Register of Historic Places under Reference Number: 71000086. The discharges and discharge-related activities are not considered to have the potential to negatively affect Olmsted Park, and the discharge is considered to meet Criterion B. Documentation is included in Appendix E.

I. SUPPLEMENTAL INFORMATION

Chestnut Hill, Massachusetts 02467

Owner and operation information are provided below for reference:

Owner: Operator:

Boston College Consigli Construction Company, Inc.
Clements Hall 266 Summer Street
140 Commonwealth Avenue Boston, MA 02210

Attn: Dan Diorio Attn: Matthew Harting

Consigli is seeking coverage under the RGP as permittee.

Environmental Protection Agency (EPA) Region 1 31 July 2018 Page 6

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

nbay Habel Staff Geologist

Kenneth N. Alepidis Senior Technical Specialist

Senior Associate

Enclosures:

Table I – Summary of Source Water Quality Data

Table II – Summary of Receiving Water Quality Data

Figure 1 – Project Locus

Figure 2 – Site and Subsurface Exploration Location Plan

Figure 3 – Proposed Treatment System Schematic

Figure 4 – Discharge Route – Boston Water and Sewer Commission and Brookline Sewer

Appendix A – Notice of Intent (NOI)

Appendix B – Effluent Limitations Documentation

Appendix C – Additional Treatment Information

Appendix D – Endangered Species Act Assessment

Appendix E - National Historic Preservation Act Review

Appendix F – Laboratory Data Reports

Boston College Capital Projects Management; Attn: Dan Diorio c: Consigli Construction Company, Inc.; Attn: Matt Harting

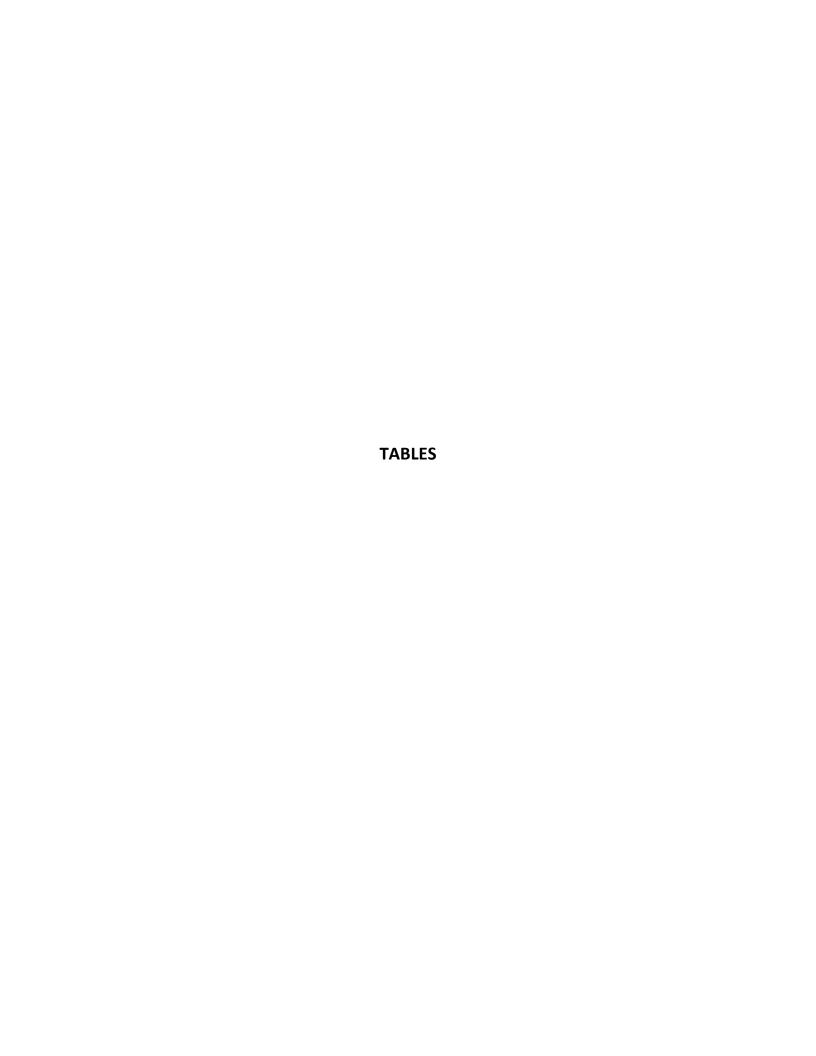


TABLE I SUMMARY OF GROUNDWATER DATA BOSTON COLLEGE CENTRAL HEAT NEWTON, MASSACHUSETTS FILE NO. 128271-018

LOCATION	2017 NPDES RGP	HA-B1(OW)_04112018
SAMPLING DATE	Site-Specific	4/11/2018
LAB SAMPLE ID	Criteria	L1812596-01
SAMPLE TYPE	Criteria	WATER
Volatile Organics (ug/l)		
Total BTEX	100	ND
SUM of Volatile Organic Compounds	NA	ND
Volatile Organics by SIM (ug/l)		
1,4-Dioxane	200	ND(3)
Semivolatile Organics (ug/l)	210	ND
SUM of Semi-Volatile Organic Compounds	NA	ND
Semivolatile Organics By SIM (ug/l)		
SUM of Group I PAHs	1	ND
SUM of Group II PAHs	100	ND
SUM of Semi-Volatile Organic Compounds (SIM	NA	ND
B		
Total Petroleum Hydrocarbons (ug/l)		
TPH, SGT-HEM	5000	ND(4000)
Total Metals (ug/l)		
Antimony, Total	206	ND(4)
Arsenic, Total	104	ND(1)
Cadmium, Total	10.2	ND(0.2)
Chromium, Total	NA	1.14
Copper, Total	242	1.46
Iron, Total	5000	341
Lead, Total	160	ND(0.5)
Mercury, Total	0.739	ND(0.2)
Nickel, Total	1450	ND(2)
Selenium, Total	235.8	ND(5)
Silver, Total	35.1	ND(0.4)
Zinc, Total	420	ND(10)
Pesticides (ug/l)	NA	ND(0.01)
1,2-Dibromo-3-chloropropane (DBCP)	0.05	ND(0.01)
1,2-Dibromoethane (Ethylene Dibromide)	0.05	ND(0.01)
Polychlorinated Biphenyls (ug/l)		
SUM of PCBs	0.000064	ND(0.25)
		·
Other (ug/l)		
Chloride	Report	478000
Chlorine, Total Residual	15	ND(20)
Chromium, Hexavalent	323	ND(10)
Chromium, Trivalent	323	ND(10)
Cyanide, Total	178000	ND(5)
Ethanol	Report	ND(500)
Hardness	NA	247000
Nitrogen, Ammonia	Report	ND(75)
Ph (SU)	NA	ND(7.4)
Phenolics, Total	NA	ND(30)
Total Suspended Solids	30000	9000

ABBREVIATIONS:

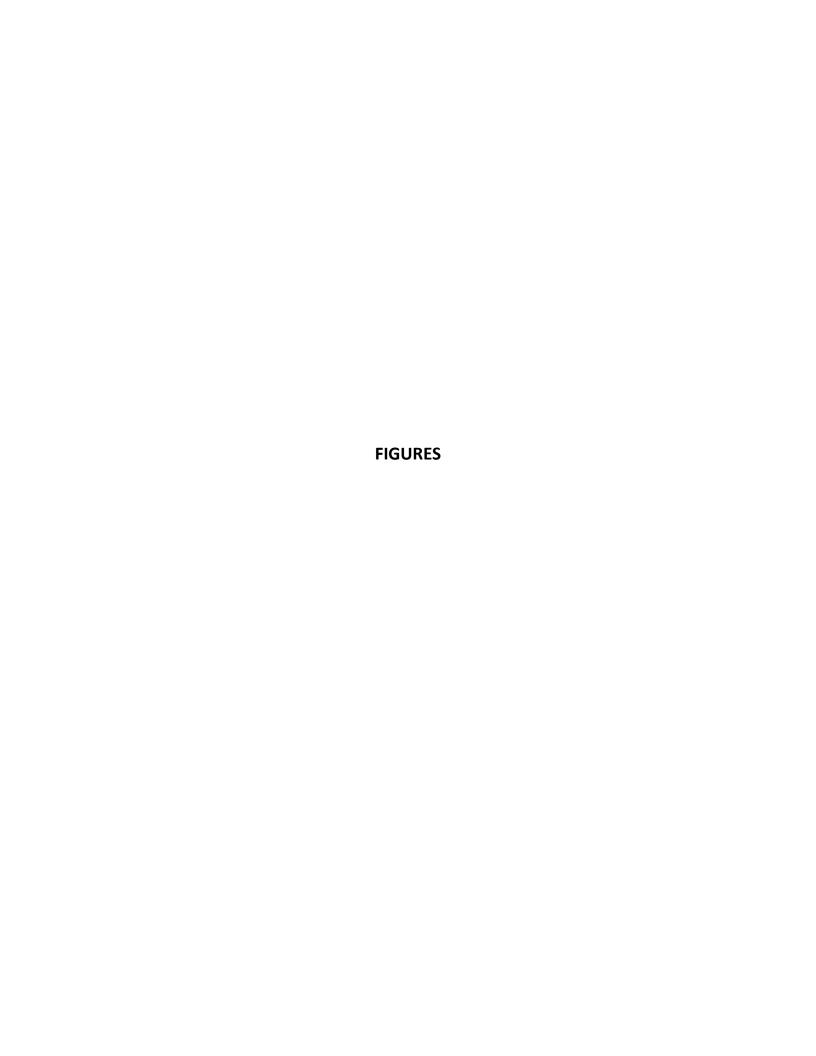
- : Not analyzed ug/l: micrograms per liter

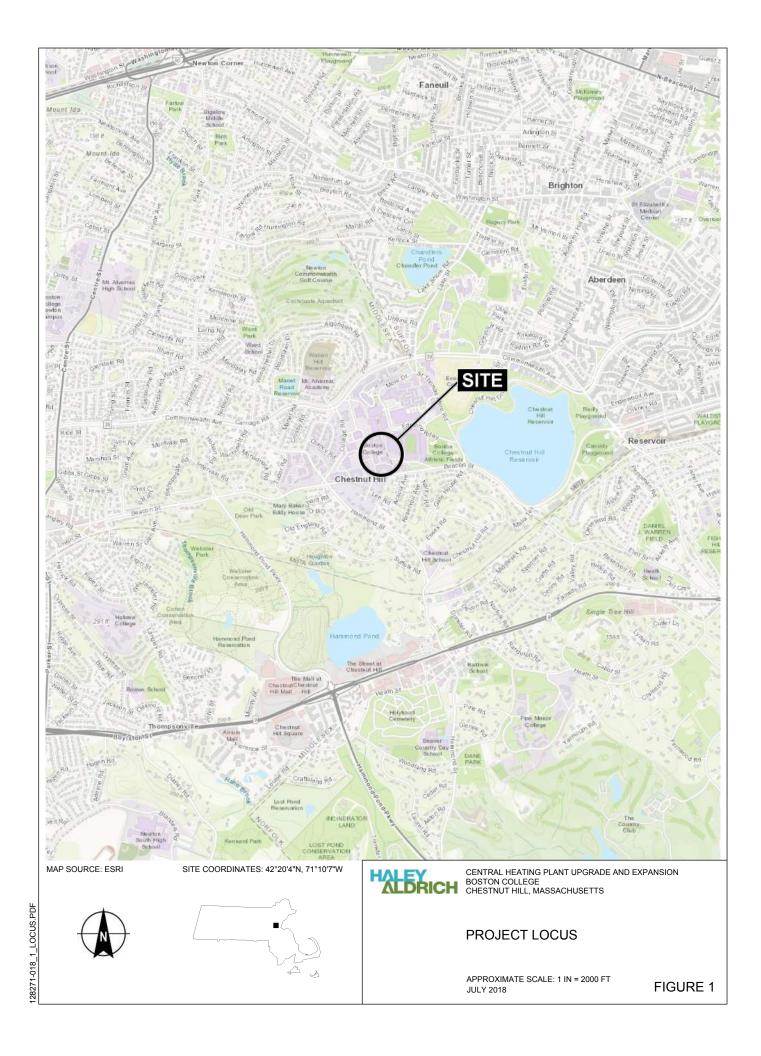
NA: Not Applicable

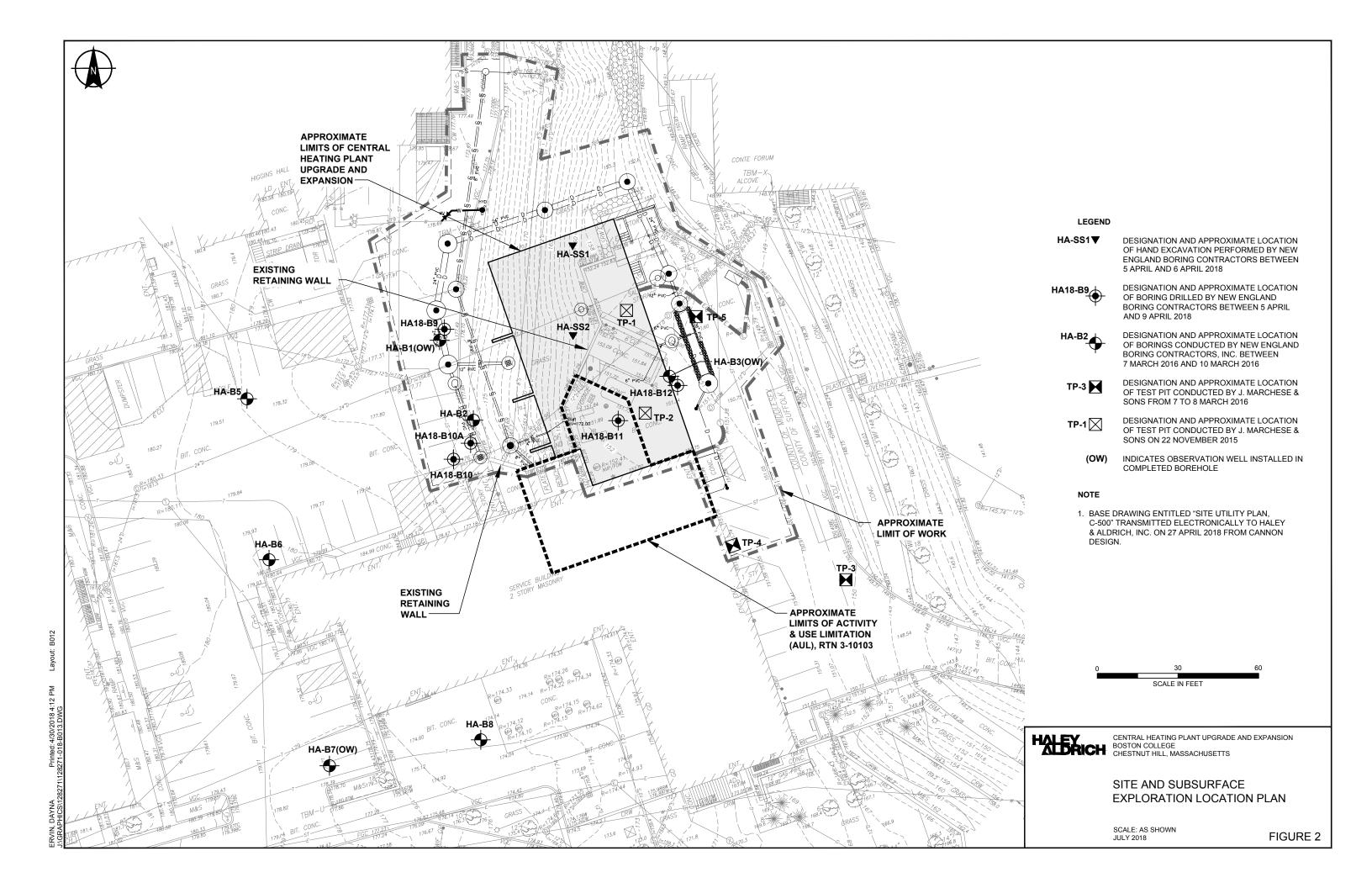
ND (2.5): Result not detected above reporting limit (shown in parentheses)

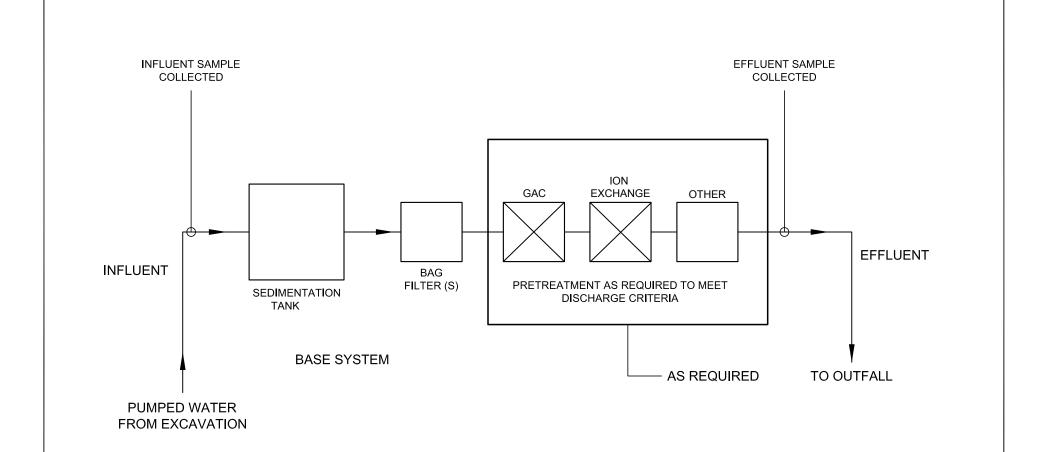
SU: Standard Units NOTES:

1. Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.


TABLE II
SUMMARY OF RECEIVING WATER QUALITY DATA
BOSTON COLLEGE CENTRAL HEATING PLANT
CHESTNUT HILL, MA
FILE NO. 128271-018


LOCATION	2018 LEVERETT POND
SAMPLING DATE	5/29/2018
LAB SAMPLE ID	L1819674-01
SAMPLE TYPE	WATER
Total Metals (ug/l)	
Antimony, Total	ND(4)
Arsenic, Total	ND(1)
Cadmium, Total	ND(0.2)
Chromium, Total	ND(1)
Copper, Total	1.92
Iron, Total	658
Lead, Total	1.59
Mercury, Total	ND(0.2)
Nickel, Total	ND(2)
Selenium, Total	ND(5)
Silver, Total	ND(0.4)
Zinc, Total	ND(10)
Consul Chamistan	
General Chemistry	ND(40)
Chromium, Hexavalent (ug/l)	ND(10)
Chromium, Trivalent (ug/l)	ND(10)
Nitrogen, Ammonia (ug/l)	118
pH (H) (SU)	7.2
Total Hardness by SM 2340B (ug,	1
Hardness	180000


NOTES & ABBREVIATIONS:


ug/I: micrograms per liter

ND (1): not detected, number in parentheses is the reporting limit

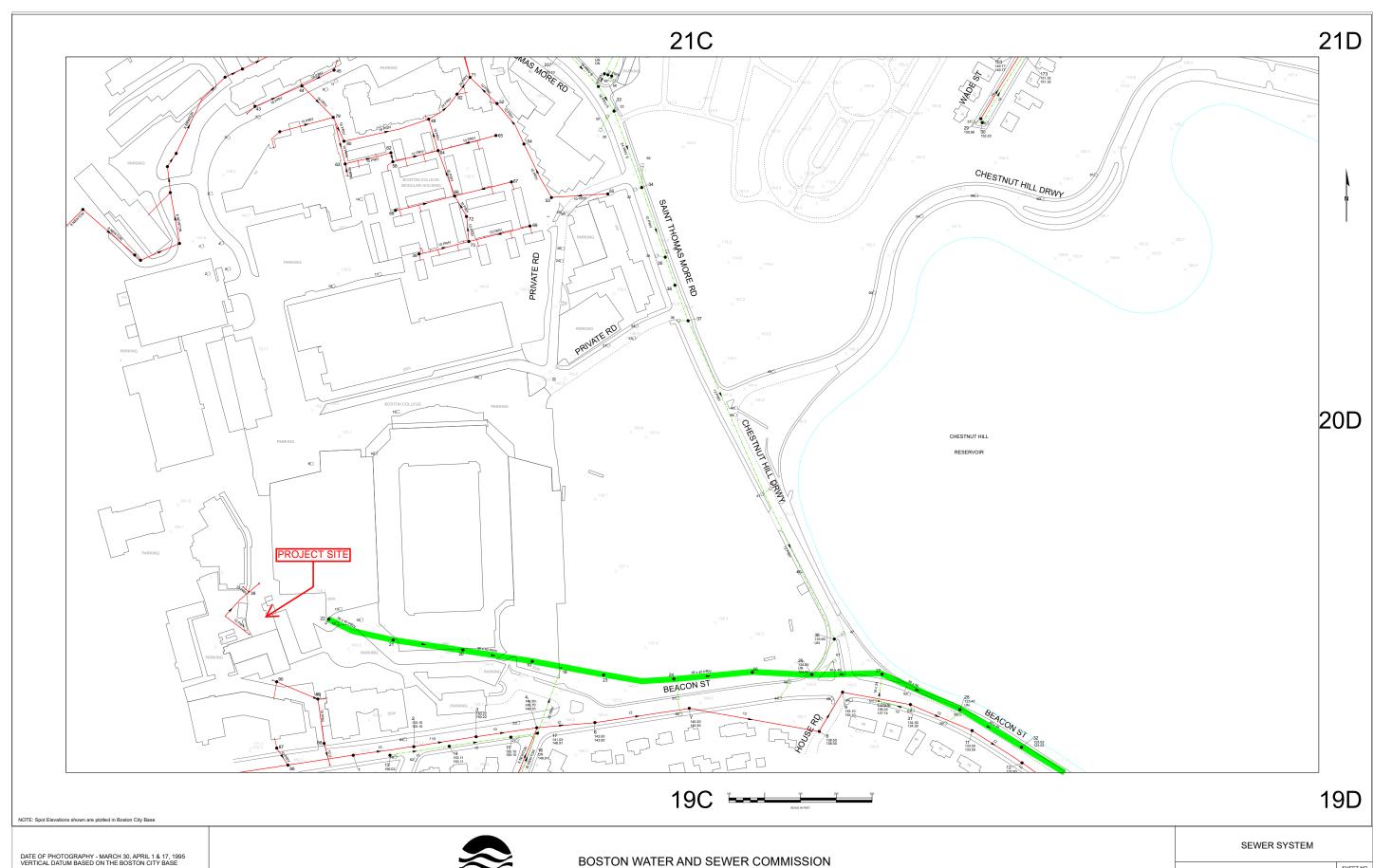
LEGEND:

 \boxtimes

DIRECTION OF FLOW INDICATES TECHNOLOGY EXPECTED TO BE USED ON THIS PROJECT

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.



BOSTON COLLEGE CENTRAL HEATING PLANT EXPANSION CHESTNUT HILL, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

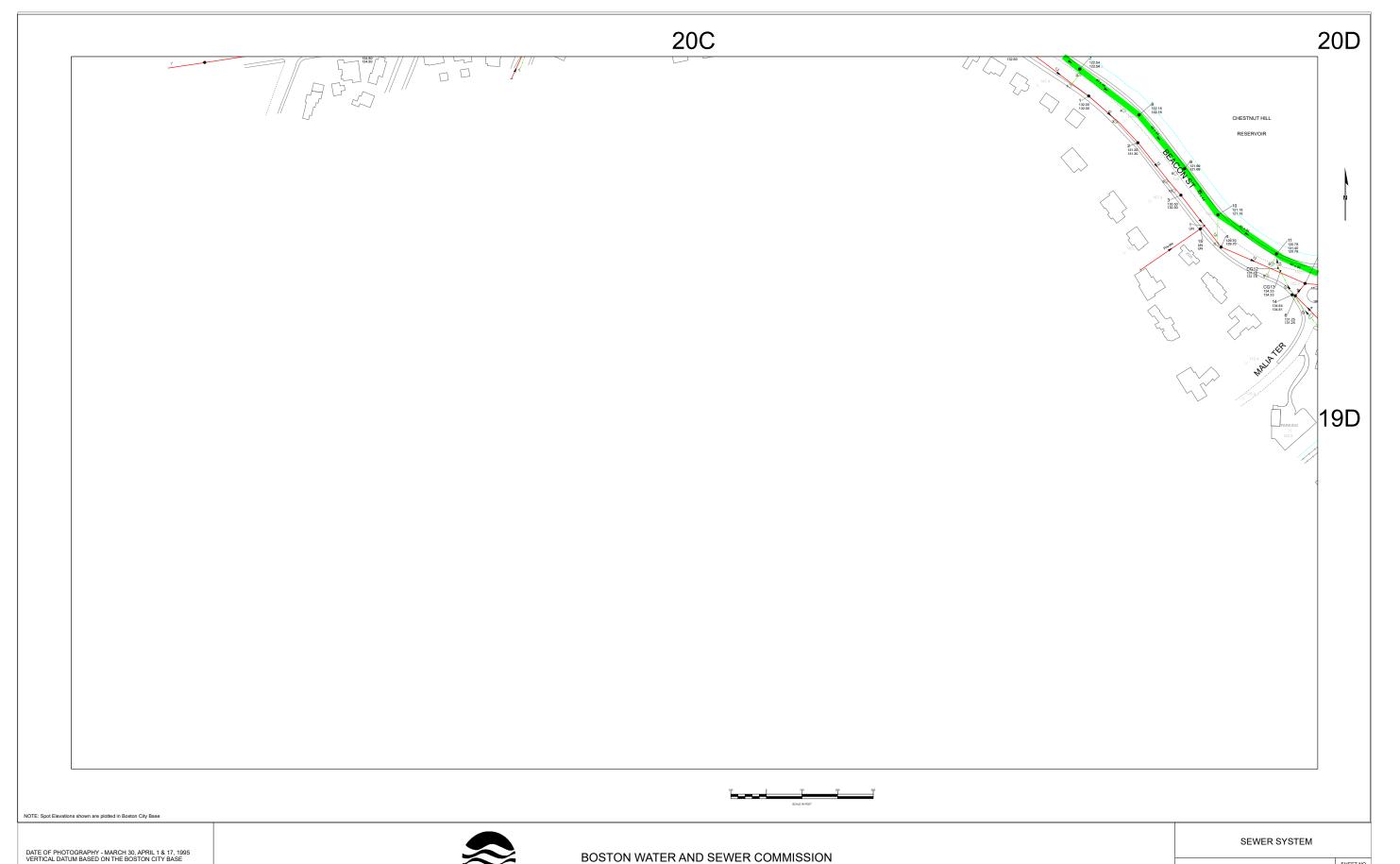
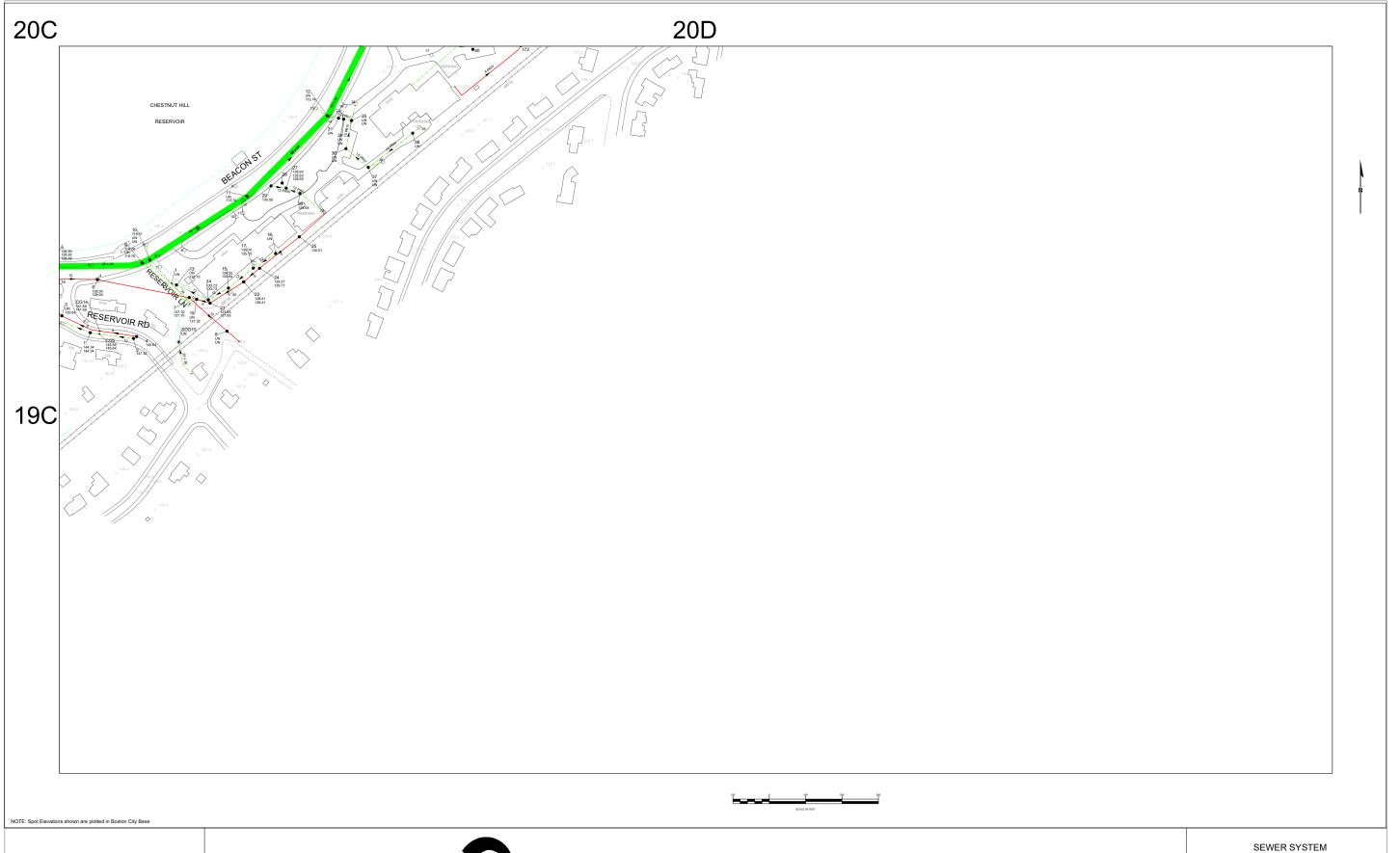
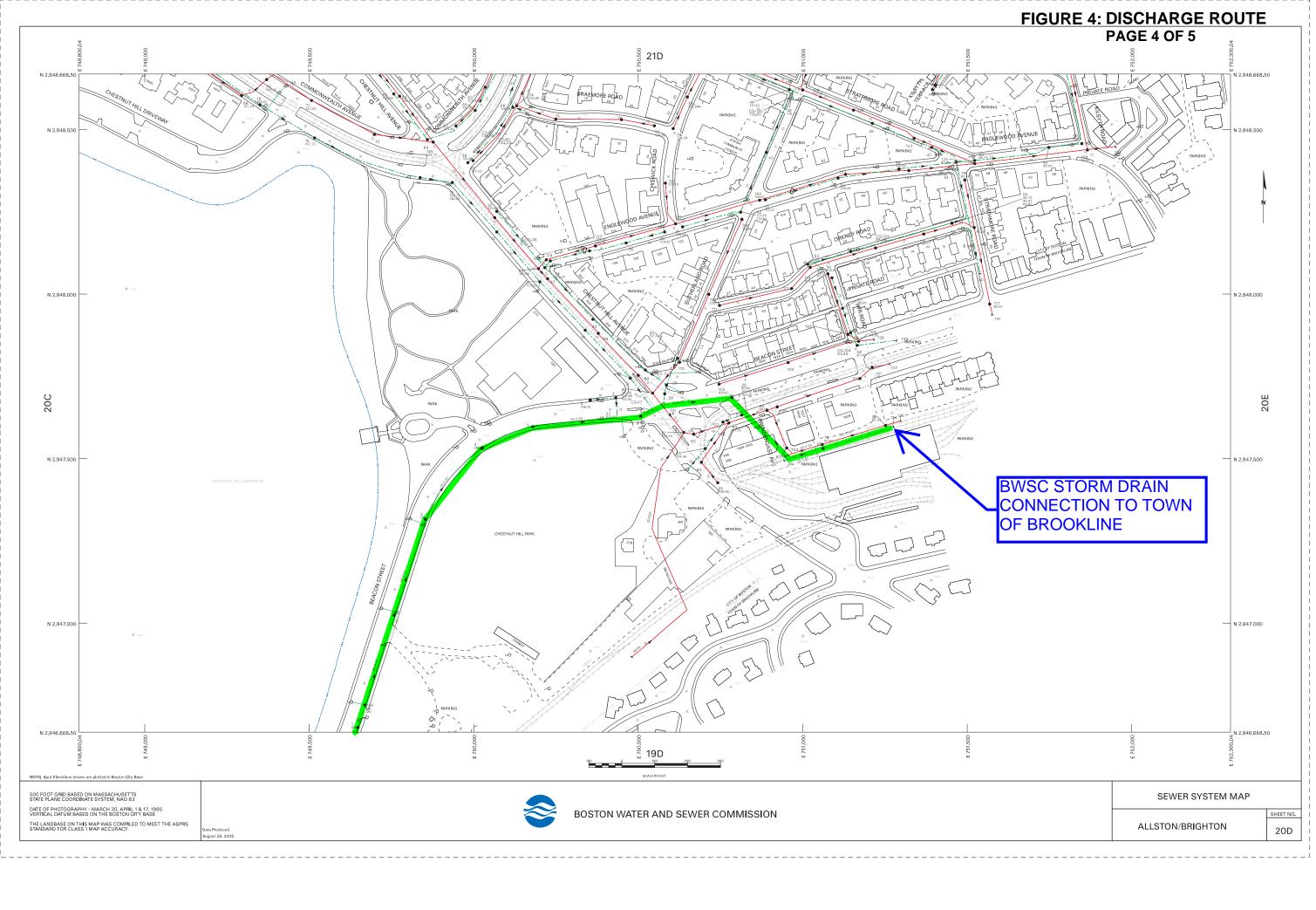

SCALE: NONE JULY 2018

FIGURE 3

THE LANDBASE ON THIS MAP WAS COMPILED TO MEET THE ASPRS STANDARD FOR CLASS 1 MAP ACCURACY


SHEET NO.

Date Produced: 4/25/2018


THE LANDBASE ON THIS MAP WAS COMPILED TO MEET THE ASPRS STANDARD FOR CLASS 1 MAP ACCURACY


SHEET NO.

THE LANDBASE ON THIS MAP WAS COMPILED TO MEET THE ASPRS STANDARD FOR CLASS 1 MAP ACCURACY

DATE OF PHOTOGRAPHY - MARCH 30, APRIL 1 & 17, 1995 VERTICAL DATUM BASED ON THE BOSTON CITY BASE

BWSC Storm Drain (Cleveland Circle) to Village Brook to Leverett Pond

APPENDIX A

Notice of Intent

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Name of site: Boston College Central Heating Plant Expansion	Site address: Central Heating Plant Boston College, Service Street:						
	City: Chestnut Hill	State: MA	Zip: 02467				
2. Site owner Boston College	Contact Person: Dan Diorio						
Dodon Conege	Telephone: 617-552-8772	Email: dar	n.diorio@bc	.edu			
	Mailing address: St. Clements Hall 140 Commonwealth Avenue Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private Other; if so, specify: Institutional	City: Chestnut Hill	State: MA	Zip: 02467				
3. Site operator, if different than owner	Contact Person: Matthew Harting						
Consigli Construction Company, Inc.	Telephone: 978-578-7010	Email: mh	harting@consigli.com				
	Mailing address:						
	72 Sumner Street Street:						
	City: Milford		State: MA	Zip: 01757			
4. NPDES permit number assigned by EPA: not applicable	5. Other regulatory program(s) that apply to the site	(check all the	at apply):				
пот аррисаоте	■ MA Chapter 21e; list RTN(s):	□ CERCL	μA				
	3-10103	☐ UIC Program					
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	□ NH Groundwater Management Permit or	□ POTW Pretreatment					
\square MSGP \square Individual NPDES permit \square Other; if so, specify:	Groundwater Release Detection Permit:	☐ CWA Section 404					

VIII? (check one):

■ Yes □ No

Although "Contaminated Groundwater" is listed, see table for compounds actually detected

B. Receiving water information:							
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classif	ication of receiving water(s):				
Leverett Pond	MA72-11 Class B (CSO)						
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic	River				
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: ■ Yes □ No					
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes ■ No						
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP. Bottom Deposits, non-native aquatic plants, flo not required or listed.	s available for any of the indicated pollutants. For n	nore information, contact the	appropriate State as noted in Part				
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		the instructions in	0.0788 MGD				
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s			1.36				
6. Has the operator received confirmation from the a If yes, indicate date confirmation received: 10 July 20	18	, ,					
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?				
(check one): ■ Yes □ No							
C. Source water information:							
1. Source water(s) is (check any that apply):							
■ Contaminated groundwater	taminated groundwater						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other					
in accordance with the instruction in Appendix	RGP in accordance with the instruction in	than the receiving water; i so, indicate waterbody:	■ Other; if so, specify:				
MII) (abook one): Appendix VIII) (abook one):							

Appendix VIII? (check one):

 \square Yes \square No

2. Source water contaminants: None above RGP effluent criteria: Total Cr,	Cu, Fe, total chloride, total suspended solids; attributable to urban fill on-site. Refer			
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance			
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No			
3. Has the source water been previously chlorinated or otherwise contains resid	ual chlorine? (check one): ☐ Yes ■ No			
D. Discharge information				
1.The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	discharge □ New source			
Outfall(s): Leverett Pond, Brookline, MA	Outfall location(s): (Latitude, Longitude) 42.3303, -71.1138			
Leverett Foria, Brookline, IVIA	42.3303, -71.1130			
Discharges enter the receiving water(s) via (check any that apply): \Box Direct dis	scharge to the receiving water Indirect discharge, if so, specify:			
Pump to catch basin that flows to Leverett Pond				
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer.	er system:			
Has notification been provided to the owner of this system? (check one): ■ Ye	s □ No			
Has the operator has received permission from the owner to use such system fo obtaining permission:	r discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for			
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No			
Provide the expected start and end dates of discharge(s) (month/year): August 2018 to March 2019				
Indicate if the discharge is expected to occur over a duration of: ■ less than 12	2 months □ 12 months or more □ is an emergency discharge			
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No			

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 III – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known			5	Influent Effluent Lim		mitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia	~		1	121,4500N	75	<75	<75	Report mg/L	
Chloride		~	1	44300.0	12500	478000	478000	Report µg/l	
Total Residual Chlorine	~		1	121,4500C	20	<20	<20	0.2 mg/L	15 ug/l.
Total Suspended Solids		~	1	1212540D	5000	9000	9000	30 mg/L	
Antimony	~		1	3200.8	4	<4	<4	206 μg/L	873 ug/l
Arsenic		~	1	3200.8	1	0	0	104 μg/L	14 ug/l
Cadmium		~	1	3200.8	0.2	0	0	10.2 μg/L	0.6826 ug/l
Chromium III	~		1	107<-	10	<10	<10	323 μg/L	231.9 ug/l
Chromium VI	~		1	1,7196A	10	<10	<10	323 μg/L	15.6 ug/l
Copper		~	1	3200.8	1	1.46	1.46	242 μg/L	25.2 ug/l
Iron		~	1	19200.7	50	341	341	5,000 μg/L	1125 ug/l
Lead		~	1	3200.8	0.5	1.59	1.59	160 μg/L	11.89 ug/l
Mercury		~	1	3245.1	0.2	0	0	0.739 μg/L	1.24 ug/l
Nickel		V	1	3200.8	2	0	0	1,450 μg/L	143.5 ug/l
Selenium	~		1	3200.8	5	<5	<5	235.8 μg/L	6.8 ug/l
Silver	~		1	3200.8	0.4	<0.4	<0.4	35.1 μg/L	21.5 ug/l
Zinc		~	1	3200.8	10	0	0	420 μg/L	330.1 ug/l
Cyanide	~		1	121,4500C	5	<5	<5	178 mg/L	7.1 ug/l
B. Non-Halogenated VOC	s								
Total BTEX	~		1	NA	NA	NA	NA	100 μg/L	
Benzene	~		1	18260C	0.5	<0.5	<0.5	5.0 μg/L	
1,4 Dioxane	~		1	18260C-SI	3	<3	<3	200 μg/L	
Acetone		~	1	18260C	5	0	0	7.97 mg/L	
Phenol	~		1	18270D	5	<0.5	<0.5	1,080 µg/L	409 ug/l

	Known	Known		_		In	Influent Effluent Limitat		mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		1	18260C	0.5	<0.5	<0.5	4.4 μg/L	2.2 ug/l
1,2 Dichlorobenzene	~		1	18260C	2.5	<2.5	<2.5	600 μg/L	
1,3 Dichlorobenzene	~		1	18260C	2.5	<2.5	<2.5	320 µg/L	
1,4 Dichlorobenzene	~		1	18260C	2.5	<2.5	<2.5	5.0 μg/L	
Total dichlorobenzene	~		1	NA	NA	NA	NA	763 µg/L in NH	
1,1 Dichloroethane	~		1	18260C	0.75	< 0.75	<0.75	70 μg/L	
1,2 Dichloroethane	~		1	18260C	0.5	< 0.5	<0.5	5.0 μg/L	
1,1 Dichloroethylene	~		1	18260C	0.5	<0.5	<0.5	3.2 μg/L	
Ethylene Dibromide	~		1	18260C	2	<2	<2	0.05 μg/L	
Methylene Chloride	V		1	18260C	3	<3	<3	4.6 μg/L	
1,1,1 Trichloroethane	~		1	18260C	0.5	<0.5	<0.5	200 μg/L	
1,1,2 Trichloroethane	~		1	18260C	0.75	< 0.75	<0.75	5.0 μg/L	
Trichloroethylene	~		1	18260C	0.5	<0.5	<0.5	5.0 μg/L	
Tetrachloroethylene	~		1	18260C	0.5	< 0.5	<0.5	5.0 μg/L	4.5 ug/l
cis-1,2 Dichloroethylene	~		1	18260C	0.5	< 0.5	<0.5	70 μg/L	
Vinyl Chloride	~		1	18260C	1	<1	<1	2.0 µg/L	
D. Non-Halogenated SVO	~a								
Total Phthalates	<i>v</i>		1	18270D	NA	0	0	190 μg/L	
Diethylhexyl phthalate	~		1	18270D	5	<5	<5	101 μg/L	
Total Group I PAHs		~	1	18270D-SI		0	0	1.0 µg/L	
Benzo(a)anthracene		~	1	18270D-SI		0	0	1	0.0052 ug/l
Benzo(a)pyrene		~	1	18270D-SI		0	0		0.0052 ug/l
Benzo(b)fluoranthene		~	1	18270D-SI		0	0	1	0.0052 ug/l
Benzo(k)fluoranthene		~	1	18270D-SI		0	0	As Total PAHs	0.0052 ug/l
Chrysene		~	1	18270D-SI		0	0	1	0.0052 ug/l
Dibenzo(a,h)anthracene		~	1	18270D-SI		0	0	1	0.0052 ug/l
Indeno(1,2,3-cd)pyrene		~	1	18270D-SI		0	0	1	0.0052 ug/l

	Known	Known				In	Influent Effluent Limitati		nitations
Parameter	or #of Test Detection			Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL		
Total Group II PAHs		~	1	18270D-SI	NA	0	0	100 μg/L	
Naphthalene		~	1	18270D-SI	0.1	0	0	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	V		1	5,608	0.25	<0.25	<0.25	0.000064 μg/L	
Pentachlorophenol	~		1	18270D-SI		<0.8	<0.8	1.0 μg/L	
F. Fuels Parameters Total Petroleum		·	1	741664A	4000	0	0	5.0 mg/L	
Hydrocarbons Ethanol			1						
Methyl-tert-Butyl Ether	<i>'</i>		1	1671A	2000	<2000	<2000	Report mg/L	
tert-Butyl Alcohol	· ·		1	18260C 18260C	10	<10	<1	70 μg/L 120 μg/L in MA 40 μg/L in NH	27 ug/l
tert-Amyl Methyl Ether	~		1	18260C	2	<2	<2	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	1	C ₅₀ , addition	nal pollutan	ts present);	if so, specify:	1		
Hardness		~	1	19200.7	660	247000	247000		
Total Chromium		~	1	3200.8	1	1.14	1.14		
Barium		<i>V</i>	1	976010C	422	0	0		
2-Methylnaphthalene		~	1	18270D-SI		0	0		
Acenaphthene		<u> </u>	1	18270D-SI		0	0		
Acenanhthvlene		~	1	18270D-SI		0	0		
Anthracene		✓	1	18270D-SI		0	0		
Benzo(g.h.i)pervlene		~	1	18270D-SI		0	0		
Dibenzofuran		<u> </u>	1	18270D-SI	0.1	0	0		
Fluoranthene		~	1	18270D-SI	0.1	0	0		
Fluorene		~	1	18270D-SI	0.1	0	0		
Phenanthrene		~	1	18270D-SI	0.1	0	0		
Pyrene		✓	1	18270D-SI	0.1	0	0		

	Vnouvn or	Vnoun or				Influ	ent	Effluent Limitations	
Parameter	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (ug/l)	Daily Maximum (ug/l)	Daily average (ug/l)	TBEL	WQBEL
Beryllium		V	13	976010C	211	0	0		
Vanadium		$\sqrt{}$	13	976010C	422	0	0		
4,4'-DDE		$\sqrt{}$	13	978081B	1.67	0	0		
4,4'-DDT		V	13	978081B	1.67	0	0		
Dieldrin		V	13	978081B	1.03	0	0		
Endosulfan II		V	13	978081B	1.64	0	0		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:	ļ
Applied as necessary to meet necessary effluent limits.	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Prior to discharge, collected water is routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents. Additional tre include granulated activated carbon (GAC), ion exchange, and/or pH adjustment, as needed to meet necessary effluent limits. After treatment, constituent concentrations in expected to range from non-detectable to less than effluent criteria. If authorized under the RGP, parameters to be monitored include one or more VOCs, SVOCs, metals/in and other compounds known or believed present in the source water.	n effluent
Identify each major treatment component (check any that apply):	ļ
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:	ļ
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	Γ
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component: Flowmeter	150 gpm
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	150 gpm
Provide the average effluent flow in gpm.	50 gpm
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers ■ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine ■ Other; if so, specify: pH conditioners may be added to the treatment system if necessary to meet effluent limits.
2. Provide the following information for each chemical/additive, using attachments, if necessary:
See attached manufacturers cut sheets and SDS for equipment which may be used if necessary. This information is only included as a contingency and is not currently needed based on groundwater data. Exact specifications on frequency, duration, quantity, and method of application are not known at this time. If the system eventually requires these additives, additional details will be provided to EPA.
o. Purpose or use or the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
(check one). I Tes I No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
■ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Refer to attached Haley & Aldrich, Inc. letter
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

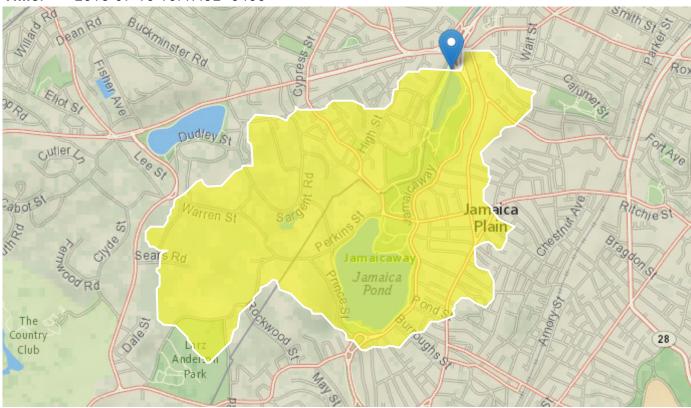
J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.							
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: of discharge.	emented at the si	te upon	initiation				
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □	N/A				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □					
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes 🗏	No□ N	[A □				
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No 🗆 N	[A □				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □ N	ÍA ■				
Signature: Da	te: 7/30/2018						
Print Name and Title: Matthew Harting, Superintendent, Consigli Construction							

APPENDIX B

Effluent Limitations Documentation

7/10/2018 StreamStats


StreamStats Report

Region ID: MA

Workspace ID: MA20180710144718814000

Clicked Point (Latitude, Longitude): 42.33063, -71.11375

Time: 2018-07-10 10:47:32 -0400

Outlet from Leverett Pond, Brookline

Basin Characteristics				
Parameter Code	Parameter Description	Value	Unit	
DRNAREA	Area that drains to a point on a stream	1.36	square miles	
BSLDEM250	Mean basin slope computed from 1:250K DEM	3.309	percent	
DRFTPERSTR	Area of stratified drift per unit of stream length	0.48	square mile per mile	
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless	

7/10/2018 StreamStats

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.36	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	3.309	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.48	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.212	ft^3/s
7 Day 10 Year Low Flow	0.112	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related

7/10/2018 StreamStats

material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.2.1

HALEY & ALDRICH, INC.	CALCULATIONS	FILE NO.	128271-018		
		SHEET	1	of	1

CLIENT **BOSTON COLLEGE**

DATE 10-Jul-18 PROJECT **CENTRAL HEATING PLANT EXPANSION COMPUTED BY KCS SUBJECT** CV **DILUTION FACTOR CALCULATIONS CHECKED BY**

PURPOSE: Calculate Dilution Factor (DF) for project based on 7 Day 10 Year (7Q10) Low Flow values.

APPROACH: Calculate DF based on EPA formula $(Q_S + Q_D)/Q_D$, where Q_S is 7Q10 in million gallons per day (MGD) and Q_D is discharge flow in

MGD.

ASSUMPTIONS: 1. 7Q10 is 0.112 cfs (from StreamStats 4.0)

2. A conversion of 7.48 is used to convert cubic feet to gallons

3. A discharge flowrate of 150 gpm is assumed

CALCULATIONS:

7Q10 Low Flow Value (Q_s)

$$Q_s = {0.112 \text{ ft}^3 \over \text{sec}}$$
 X ${7.48 \text{ gallons} \over \text{ft}^3}$ X ${86,400 \text{ sec} \over \text{day}}$ X ${1 \text{ MG} \over 1,000,000 \text{ gallons}}$

0.0788 MGD

Discharge Flowrate (Q_D)

$$Q_D = {150 \text{ gallons} \over \text{min}} \chi {1,440 \text{ min} \over \text{day}} \chi {1 \text{ MG} \over 1,000,000 \text{ gallons}}$$

 $Q_D = 0.216 \text{ MGD}$

Dilution Factor (DF)

$$DF = \frac{Q_S + Q_D}{QD} = \frac{0.0788 \text{ MGD} + 0.216 \text{ MGD}}{0.216 \text{ MGD}} = 1.36$$

CONCLUSION The dilution factor for this project is calculated to be 1.36 based on the provided 7Q10 low flow value and

discharge flowrate.

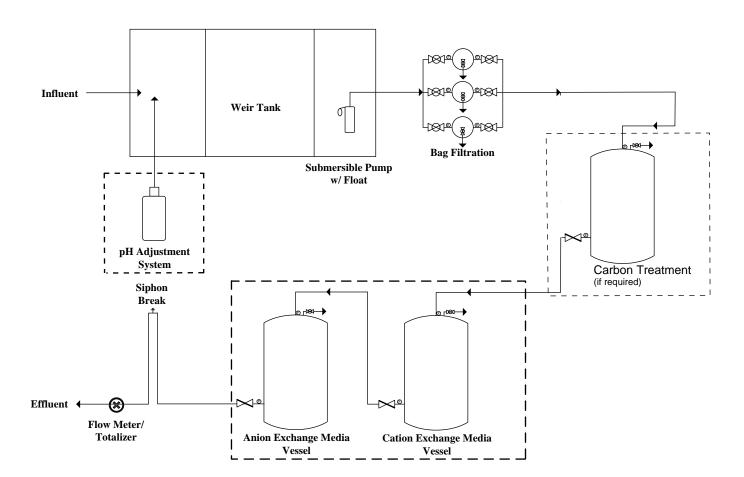
A. Inorganics	TBEL applies if	bolded	WQBEL applies in	f bolded
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	15	μg/L
Total Suspended Solids	30	mg/L		μg/L
Antimony		_	873	~/T
Arsenic	206	μg/L	14	μg/L
	104	μg/L		μg/L
Cadmium	10.2	μg/L	0.6826	μg/L
Chromium III	323	μg/L	231.9	μg/L
Chromium VI	323	μg/L	15.6	μg/L
Copper	242	$\mu g/L$	25.2	$\mu g/L$
Iron	5000	μg/L	1125	μg/L
Lead	160	μg/L	11.89	μg/L
Mercury	0.739	μg/L	1.24	μg/L
Nickel	1450	μg/L	143.5	μg/L
Selenium	235.8	μg/L	6.8	μg/L
Silver	35.1	μg/L	21.5	μg/L
Zinc	420	μg/L	330.1	μg/L
Cyanide	178	mg/L	7.1	μg/L
B. Non-Halogenated VOCs				, 0
Total BTEX	100	$\mu g/L$		
Benzene	5.0	$\mu g/L$		
1,4 Dioxane	200	μg/L		
Acetone	7970	μg/L		/1
Phenol	1,080	μg/L	409	μg/L
C. Halogenated VOCs	4.4	/I	2.2	a/I
Carbon Tetrachloride 1,2 Dichlorobenzene	600	μg/L μg/L	2.2	μg/L
1,3 Dichlorobenzene	320	μg/L μg/L		
1,4 Dichlorobenzene	5.0	μg/L μg/L		
Total dichlorobenzene		μg/L μg/L		
1,1 Dichloroethane	70	μg/L		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	$\mu g/L$		
Trichloroethylene	5.0	$\mu g/L$		
Tetrachloroethylene	5.0	$\mu g/L$	4.5	μg/L

cis-1,2 Dichloroethylene	70	μg/L		
Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μ g/L
Diethylhexyl phthalate	101	μg/L	3.0	μ g/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μ g/L		
Benzo(a)anthracene	1.0	μ g/L	0.0052	μ g/L
Benzo(a)pyrene	1.0	μ g/L	0.0052	μ g/L
Benzo(b)fluoranthene	1.0	μ g/ L	0.0052	μ g/L
Benzo(k)fluoranthene	1.0	μ g/ L	0.0052	μ g/L
Chrysene	1.0	μ g/L	0.0052	μ g/L
Dibenzo(a,h)anthracene	1.0	μ g/L	0.0052	μ g/L
Indeno(1,2,3-cd)pyrene	1.0	μ g/L	0.0052	μ g/L
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μ g/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μ g/L		
Pentachlorophenol	1.0	μ g/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	27	$\mu g/L$
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

Compliance Level applies if shown

 $\mu g/L$

--- $\mu g/L$

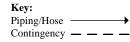

 $\begin{array}{lll} --- & \mu g/L \\ --- & \mu g/L \end{array}$

 $0.5 \hspace{1cm} \mu g/L$

APPENDIX C

Additional Treatment Information

ADDITIONAL TREATMENT SYSTEMS SCHEMATIC LAYOUT



Notes:

- 1.) Figure is not to scale
- 2.) System is rated for 100 gallons per minute.

CHECKED BY:

3.) Sampling ports located on all treatment system components

4	LRT	
	Technologies LLC	

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453 Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: B. Watkins

DATE:

Figure 4 - Water Treatment System Schematic

PROJECT No. 2-1494 FIGURE No.

Carbon Treatment System

Operating Pressures

When clean the bag filter houses will typically start with a 1 - 2psig differential pressure across them. When the differential pressure reaches 10psig between the inlet and outlet the bag is dirty and should be changed to prevent reduced flow. The bag filters are set up with isolation valves so that it is not necessary to stop operation while changing one bag at time.

The carbon vessels are equipped with inlet and outlet pressure gauges so that the condition of the carbon bed can be determined to be free of unwanted dirt and clogging. Typical pressure drop across a clean bed of carbon should be in the 3 – 5 psig range. If the inlet pressure goes up significantly the carbon bed has become fouled. It is possible to backflush with CLEAN water to get this dirt out, but if dirty water is used the problem will only be compounded.

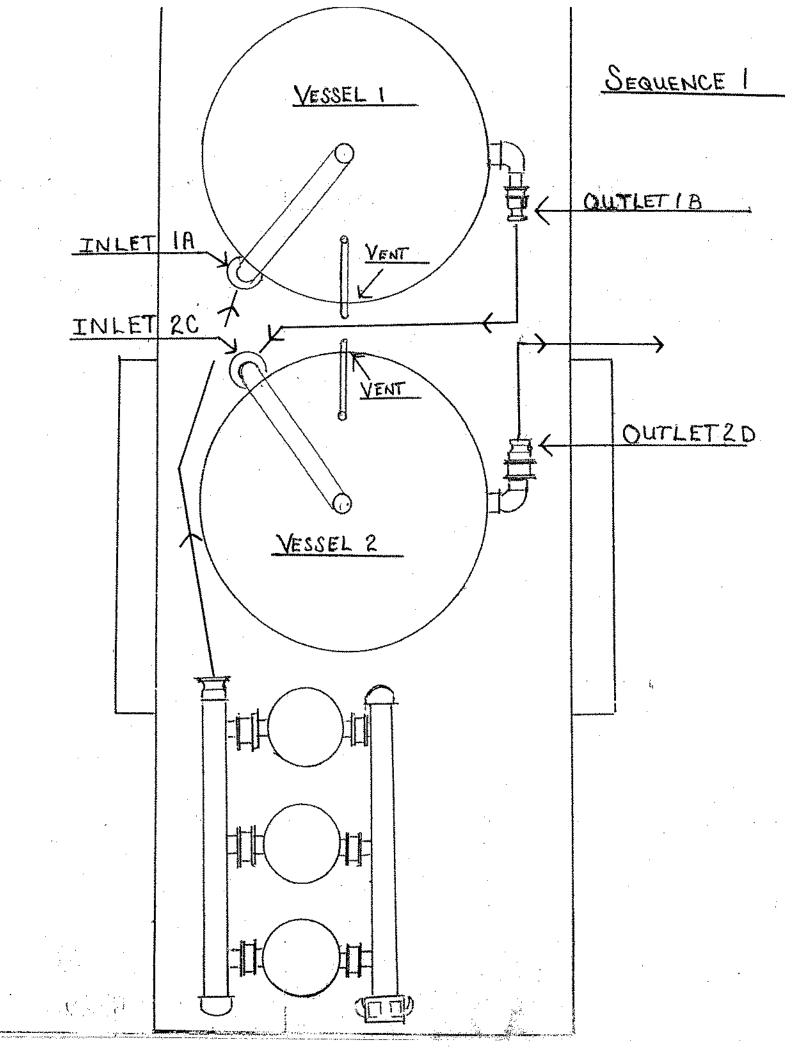
O & M Contents

In the following pages there are diagrams of the piping arrangement for "SEQUENCE 1" and "SEQUENCE 2" operation. This is followed by a manual and parts list for the Rosedale bag filter, and AXIS Products trailer axles. An operation and maintenance manual from TIGG has been provided on similar type vessels to those found on the CFS 6150 Mobile Filtration unit. This is provided to further round out the many nuances of proper carbon vessel operation and maintenance.

CARBON FILTRATION SYSTEMS, Inc.

Model 6150 Mobile Treatment System

The Mobile Treatment System model 6150 is designed to for sustained flows of 150 gpm. Optimum contact time between influent and carbon media is obtained at this 150 gpm flow rate. Operation at higher flow rates will reduce effectiveness of carbon to remove contaminates allowing them to pass through the system to drain.


The system is mounted on a 12,230lb GVWR / 9600lb LC equipment hauler manufactured by Superior Trailers of Georgia. The main frame is 7" channel with two (2) 6000lb brake axles. There are four (4) 12000lb drop leg jackets with one mounted in each corner of the trailer. The combined dry weight of the two (2) 3000lb carbon adsorbers fully loaded with 3000lbs of granular carbon per vessel and the Tri-plex bag filter system is approximately 9,7750lbs. When fully loaded and saturated with water the combined loaded weight is nearly 21,100lbs. For this reason all four 12000lb drop leg jacks must be in the fully down position when systems is in operation to prevent main frame damage. In addition it is recommended that the system be fully drained before attempting to move trailer to a new location. Failing to do so could result in damage to the axles, as well as, other structural components.

Deaerating

Prior to start up of system the carbon vessels must be filled with "clean" water. Since hydrant water is not always available the cleanest water available will generally do. This step is necessary to allow the activated carbon to de-gas and become thoroughly wetted. The escaping gas must be vented off through the ¾" vent pipe coming off the top and running down between the two carbon vessels. The recommended time period for this is a full 24 hours to ensure all of the minute pores have been evacuated of air and the carbon completely wetted. This is often hard to do under actual field conditions, but the longer it is allowed to stand before start up the better the result will be.

Vessel SEQUENCE

The carbon vessels are set up in series in a lead / lag sequence. This allows the maximum time exposure to the carbon bed and when breakthrough does occur the second vessel in series will afford protection against dumping raw VOCs into the drain. Each vessel is set up with sample ports top and bottom allowing for influent samples to be drawn before and between the vessels, as well as, downstream of the second vessel. When break through does occur after the first vessel it is necessary to schedule a change out of spent media and replenish it with new. The sequence of the vessels is changed from "sequence 1" to "sequence 2" by moving the inlet hose from the first vessel (inlet 1A) to the inlet of the second vessel (inlet 2C). The corresponding outlet hose off the first vessel must also be moved from outlet 1B to outlet 2D. Vessel 2 now becomes the "lead" vessel. An additional piece of 3" x 12' hose has been provided to allow a smooth transition from the final outlet to a layflat hose that typically is used for longer hose runs to drains and other distant outfall locations.

800 Old Pond Road, Suite 706 Bridgeville, PA 15017 (412)257-9580 ~ (412)257-8520 fax www.tigg.com

Operation and Maintenance Manual for CANSORB and Econosorb-L Liquid Phase Units

CO	NIE	ALZ	PAG
1,0	Ger	actul	1
2.0	Inst	alling the Cansorb & Econosorb-L Units	1
	2.1	Untouding	1
	2.2	Scrup	1
3.0	Star	duo Procedures	1
	3.1	Filling the Vessel with Carbon	2
	3.2		2
		3.2.1 Backwashable System	2
		3.2.2 Non-backwashable System	2
4.0	Ope	exation	3
	4,1	Post Stanup Deagration	3
	4.2	Backwashing	3
	4.3	Maintaining a Liquid Level in Carbon Bed	3
	4.4	Prevention of Siphoning	3
	4.5	Prevention of Over Pressuring Effluent Sampling/Changeout Determination	3
	4.6	Effluent Sampling/Changeout Determination_	3
	4.7	Removing Spent Carbon	4
		4.7.1 Carbon Units C35-C500	4
		4.7.2 ECOROSORD-L. 300, 1000, 2000 & 3RM	4
		4.7.1 Open Head Cansorb Drum Units	4
5.0,		ntenance	4
	5.3		4
	5.2	District thirty District Colors	4
	5.3	Lang-term Shutdown	5
6.0	Safe	ty Considerations	4
7.0	Trou	rbleshooting	5
	7.1		5
	7.2		\$
	7.3		5
	7.4		an Influent
		Contamentian	_

The liquid flow through the CANSORB adsorbers is downflow. Aqueous and non-aqueous liquids can be treated using granular activated carbon. For most efficient utilization of the carbon two vessels should be used in series operation.

If media other than carbon is to be used, contact a TIGG representative for any procedural changes.

2.0 INSTALLING THE CANSORB AND ECONOSORB-L UNITS

2.1 Unloading

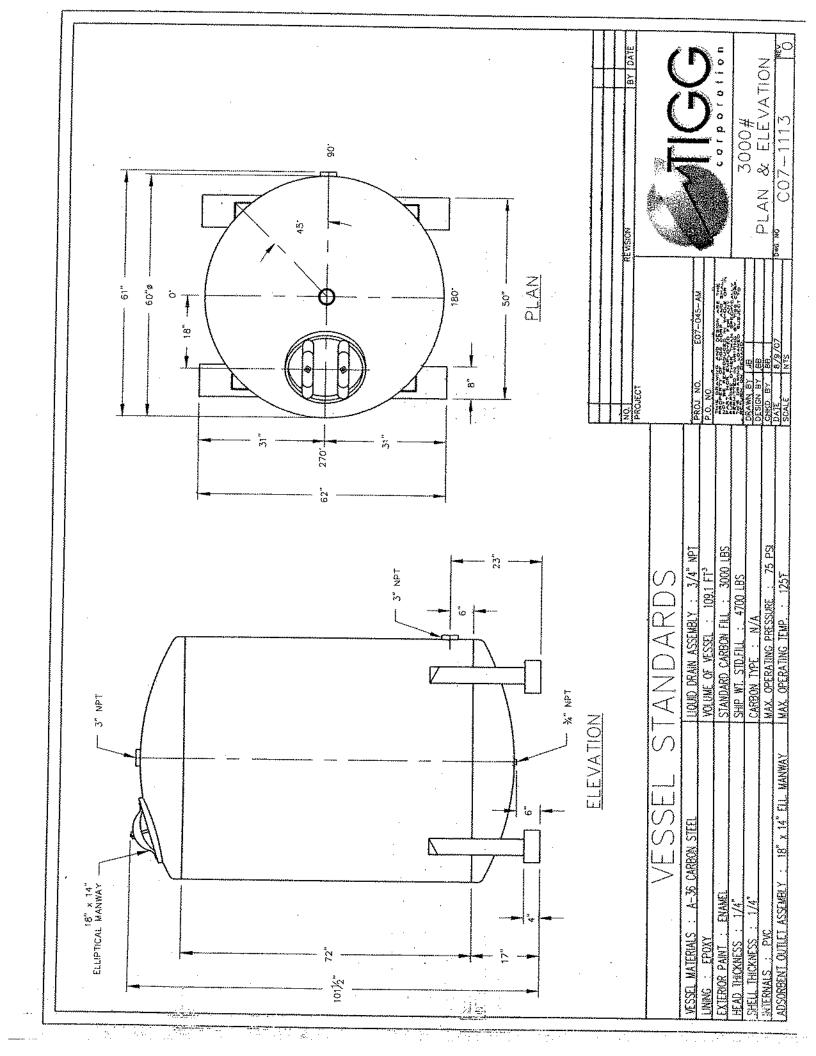
Following are the empty and loaded weights of the CANSORB units. This information will dictate what equipment should be used to lift and place the vessel.

UNIT	Empty W	t.	Filled Wi
C35	750		1410
C50	1040		2040
C75	1470		3470
C100	1790	4.7	4750
C200	2440	- 3	8440
C500	6500	_	14500
EL-500	900		1400
EL-1000	1250		2250
EL-2000	1600		3600
EL-3000	2490		54 9 0

If a forklift is used the fork tubes on the unit should be used. If a crane is used it is advisable to use a properly sized spreader beam and lifting cables. Do not use the lifting lugs to lift a vessel containing wet carbon. They are not designed for that weight.

2.2 Setup

The CANSORB unit should be placed on a level concrete pad or other support. Connect the piping or hoses to the inlet and outlet flanges or nozzles. Install any gages or other appurtenances that were shipped with the system.


See Sections 4.3 & 4.4 relating to the effluent piping.

3.0 STARTUP PROCEDURES

After the CANSORB unit (s) have been set in place and the piping is installed (See Section 4.0) they are ready to be filled with the media unless they were shipped with the media in place.

Filtration Trailer Equipment List

- 3) Rosedale simplex bag filter units Model # NCO8-30-2P-*-150-C-B-PB
- 2) TIGG 3000lb medium pressure carbon adsorbers.
- 1) Superior Trailers 12,232lb GVWR trailer equipped with two (2) 6000lb AXIS Products brake axles.
- 4) Legend Mfg. 3" Butterfly valves model T-335AB with EPBM seat, Aluminum/Bronze construction
- 6) Legend Mfg. 2" Butterfly valves model T-335AB with EPDM seat, Aluminum/Bronze construction.
- 10) 0 60 psi, 2.5" pressure gauges
- 3) 3" x 12' EPDM rubber water hose with camlock fittings.

3.1 Filling the vessel with carbon

In order to protect the liquid underdrain (collector) system, <u>uncontaminated</u> water (liquid) must be added to the vessel prior to adding the carbon.

A sufficient amount of water should be added so that the water level is at least 2 feet above the underdrain.

The water can be added via the process piping or through the top manway or (handhole on the inlet in PHD models. When filling, the vent, manway or handhole must be open and the inlet on dram units must be open.

Fresh carbon generally will arrive in (1000-1100 pound) super sacks or (55 pound) bags. Each vessel may be filled by emptying the carbon container through the manway on top of the vessel. Drum units usually have the carbon prefilled at TIGG's production facilities.

After all of the carbon is in the vessel, fill the vessel with uncontaminated liquid. This can be done through the process piping (inlet or outlet) or through the manway. Filling from the bottom up is the preferred method. In the event uncontaminated water is not available, fill with contaminated water from the top down at a slow rate so that a depression is not made in the top of the carbon bed. If the process lines are used, the vent or manway should be open.

3.2 Wetting and Deacrating

For peak adsorption performance, as much air as possible should be removed before the adsorber is put onstream.

A bed of carbon consists of the following:

Void volume - 40%
Pore volume - 40%
Carbon skeleton - 20%

Since 80% of the carbon bed volume is air, with 40% being in the pores of the carbon, special prewetting steps must be taken. If proper prewetting is not done, channeling will occur and high-pressure drop and/or premature breakthrough of the contaminant(s) will occur.

relatively long time is required for water to enter the pores and displace the air since the pores in dry carbon are filled with air and some adsorbed oxygen.

Approximately 90% of the pores in dry carbon are filled with water filter 24 hours at ambient temperature (70% degree 17) and any liquid having the same viscosity. With more viscous riquids the right to wer will be longer After 16 hours cheek the liquid 1 and Tritus below the same viscous and the carbon, and more liquid 1 and risks above the earbon.

3.2.1 Backwashable System

If there is inadequate prefiltration, and/or there are suspended solids present, backwashing will be required. In this case the carbon must be backwashed for 30-45 minutes prior to treating contaminated water.

This is necessary so that the particles will be segregated (classified) and thereby subsequent backwashing operations won't change the relative position of the particles and destroy the mass transfer zone.

This backwash operation will also remove the air and carbon fines from the bed. If this procedure is not followed the carbon usage rate will be higher, there could be very early breakthrough and the pressure drop will be higher than desired.

The following backwash rates should be used for the

AUTION APOPOTO				
Unit	CANSORB	ECONOSORB L		
C25PHD	50-60	with washington labor 16th Aug 16th		
C50 PHD	100-115	White present		
C35 & EL 500	80-110	80-100		
C50 & EL 1000	115-140	115-125		
C75 & EL 2000	180-210	90-100		
C100 & EL 3000	250-300	200-220		
C200	400-475	******		
C500	500-600	***		

If the initial time for prewetting is less than 2 days, backwash the adsorber two days after startup.

3.2.2 Non-backwashable System

Option 1 - When time is available

After the vessel has been filled with the water as described in Section 2.2 use the following procedures to remove air from the carbon and vessel:

- 1. Allow the adsorber to stand filled with the water for three or more days. The longer the better. If the time can only be two days or less see Option 2.
- 2. Remove the water from the vessel. This can be done by (1) draining (make sure the adsorber is vented), (2) using air pressure to pressure the liquid out the outlet nozzle, don't exceed the adsorber design pressure or (3) siphoning out the outlet (inlet or vent must be open to the atmosphere).
- 3. When all of the water is out of the adsorber, the adsorber must be refilled with uncontaminated waters. During this filling operation the adsorber must be veined the water addition should contain until the state addition should contain until the state in the water interpolate. Have step to moves the addition in the file state of the state

Option 2 - When time is limited to less than two days

When time is not available to prewet the carbon for 2 days, do the following:

- 1. Add uncontaminated water to the adsorber as described in Section 2.1.
- 2. After the time that can be allowed to wet the carbon, follow the steps described in items 2 & 3 in Option 1.
- 3. At this point, there is still air in the carbon pores. Therefore, after days 2 and 3 repeat steps described in items 2 & 3 in Option 1.

In a process system where water cannot be tolerated follow the same filling and draining procedures. However, add the liquid into the top of the adsorber.

4.0 OPERATION

Operational flow rates, and thus contact time for a given volume of adsorbent, are a function of:

- 1. The liquid being treated
- 2. Temperature
- 3. Nature and concentration of the contaminants
- 4. Other system conditions
- 5. Removal (effluent) requirements

If conditions dictate a longer contact time than is possible in one unit, CANSORB units can be operated in parallel or series. Either one of these options will usually result in a lower adsorbent usage rate.

4.1 Post startup deaeration

After several days of operation it is advantageous, in many cases, to drain and refill the adsorber in order to get rid of air that may not have been removed in the pre-startup deacration operation.

4.2 Backwashing

If there are suspended solids in the influent, these may be filtered by the carbon bed. If this occurs, they will usually collect on top of the bed and the pressure drop across the bed will increase. When the differential pressure drop across the bed is 8-10 psi greater than it was when the vessel was initially put onstream, the vessel should be backwashed. Use the flow rates listed in Section 3.2.1. For drum that's the maximum pressure should not be exceeded.

This operation should remove the solids and the differential pressure should a furn to no multiple it does not repeat the back wash procedure at a furnit rate. Have someone observes the backwash water effluent to make

sure carbon isn't being removed and to know when the water is clear.

If the backwashing operation doesn't result in lowering the differential pressure, the top few inches of the adsorbent may be loosened by raking and/or removed and discarded per an environmentally acceptable procedure.

4.3 Maintaining a liquid level in the carbon bed

Since the pressure drop through a carbon bed is very low during operation at normal flow rates, it is possible to have the water level reach an equilibrium point low in the bed when the discharge is at a point lower than the top of the carbon bed. This is especially true for the Econosorb L units. Therefore, the discharge piping should be elevated so that there is a section above the top of the carbon bed or a backpressure control valve should be installed in the discharge line.

4.4 Prevention of siphoning

When the flow to the CANSORB vessel is stopped, there is the potential for siphoning to occur, unless provisions are made in the discharge piping to prevent it. This is especially the case when the liquid is being discharged at an elevation lower than the top of the carbon bed.

The siphoning can be prevented by installing (1) an antisiphon device or a short vertical section of pipe, in a Tee in the effluent pipe open to the atmosphere above the top of the CANSORB unit or (2) discharging into a tank at a level higher than the top of the CANSORB unit.

4.5 Prevention of over pressuring

In addition to the filtering of suspended solids causing a pressure buildup across the carbon such things as bacteria growth, introduction of air into the bed via a pumping operation, and precipitation of metals, can cause the pressure across the carbon bed to increase.

If there is the possibility of any of these occurring and the design pressure of the vessel could be exceeded, a properly sized relief valve or rupture disc should be installed.

4.6 Effluent sampling / Changeout determination

The frequency for sampling will depend on whether the influent concentration of the contaminants is relatively constant or variable.

Sampling should be done on a routine basis multiplean of determined, what the carbon usage pare is: 134 % the angling frequency can usually be recluded as a second If there is only one CANSORB unit onstream the time to affect a carbon changeout will depend on the effluent criteria set by the discharge permit.

If there are two CANSORB units operating in series, it is normally possible to allow the concentration of the contaminants in the effluent from the lead vessel to equal that of the influent. This is an indication that the carbon is saturated and thus the carbon usage is the minimum

When this occurs the lead vessel is removed from the system, the spent carbon is removed and the vessel is filled with fresh carbon. This vessel is then put in the secondary (lag) position.

Since the change out, refilling and wetting of the carbon will take 2-3 days, the system will be sized so that during this time, breakthrough will not occur in the lag vessel.

4.7 Removing spent carbon

4.7.1 CANSORB units C35 - C500

Spent carbon can be removed either by vacuuming or in slurry form.

If vacuum is selected, a vac-truck or drum vacuum can be used. The CANSORB unit must be drained and the top manway removed. The carbon is subsequently removed via a non-metallic pipe or hose through the manway. Extreme care must be exercised to avoid damaging the internals and/or lining.

If the carbon is to be removed in the slurry form, it can be pressured, using air or water, out the bottom 2-inch outlet. The slurry line should be connected to a vented receiving container prior to carbon removal. The receiving container should have a drain for removing excess water from the carbon, prior to transportation.

The required pressure to move the slurry is generally less than 10 psig. This depends on the length of the slurry line and the elevation of the final point of discharge.

Note: After completing the slurry transfer, there is the possibility of a portion of spent carbon remaining in the bottom head. Therefore, open the manway to inspect the vessel. Depending on the quantity and location of the carbon, it may be necessary to use a hose to flush it into the bottom of the head and/or backwash to level carbon and then repressure the vessel.

When the vessel is empty it is ready to be refilled. The procedures outlined in Sections 3.0 should be followed.

4.7.2 Econosorb-L - 500,1000, 2000 & 3000

The spent carbon is removed from these units via vacuum only since there is no slurry outlet connection.

4.7.3 Open head CANSORB Drum units

In order to remove the spent carbon from the C5 and C15 drums, the bolt/ring closure is removed and the top is lifted or pivoted to one side.

Removing the top requires loosening the male adapter inside the top, immediately below the outlet bung.

For the C20 drum, a flex hose section of the outlet riser below the outlet bung is disconnected or used as a pivot.

The spent carbon is then dumped out and fresh carbon is put in.

The fresh carbon must be prewetted. After the carbon is wetted, the water can be removed by introducing air pressure through the inlet or siphoning through the outlet. Do not exceed the drum operating pressure!

5.0 MAINTENANCE

5.1 Regular maintenance

The CANSORB units are designed to require minimal maintenance. The following items should be inspected with regard to the carbon vessels, piping and gages:

- Internal inspection of the vessel should be performed each time carbon is removed. This would include the lining and the collectors (underdrain).
- 2. Pressure gages should be checked periodically to insure proper operation
- Piping and valving should be periodically inspected for signs of wear and/or leakage.

5.2 Short-term shutdown

The adsorption system is designed to operate continuously. A short-term shutdown is expected to last less than 72 hours. It is most likely to occur during a weekend shutdown or routine maintenance of the system. During a short-term shutdown, the adsorber may remain filled with water unless work is being performed on the adsorber itself. It may be necessary to close the inlet and earlier allows to prevent siphoning or drapage from the system.

5.3 Long-term shutdown

A long-term shutdown is most likely to occur during spent carbon change-out, changes in the system configuration, major maintenance, etc. During a long-term shutdown the adsorber should be completely drained to minimize the potential for biological growth and bed septicity.

6.0 SAFETY CONSIDERATIONS

The normal safety procedures that are practiced at the site should be followed.

Read the MSDS sheet for the carbon (media).

Understand the potential hazards of the stream being treated by the system. The media may contain higher concentrations of the contaminants being adsorbed than is in the influent stream. Also the media might be considered hazardous material and may require specific handling precautions.

In order to protect the vessel, a relief device such as a rupture disc or safety valve should be installed.

WARNING: Wet drained activated carbon preferentially removes oxygen from air. In closed or partially closed containers, the oxygen concentration can reach dangerously low levels. Therefore, OSHA procedures related to entering confined low-oxygen spaces should be followed by workers who must enter a vessel containing wet carbon.

7.0 TROUBLESHOOTING

There are a varied number of things that can cause poor performance of an activated carbon system. These are discussed below.

7.1 High pressure drop

Following are possible causes for having a high-pressure drop through the carbon. They are:

1. Air in the bed. This is the most frequent cause of high-pressure drop. This is mainly caused when the carbon is not properly prewetted. The other causes are incoming air due to a vortex in the tank feeding the pump and referse of dissolved gases within the carbon bed.

Solution: Check for air by slowly closing a valve in the discharge line. Watch the pressure gage in the inlet line. If the pressure mereases slowly there is air in the yessel. Praintemove the liquid aid refill the vessel while venting the air on the vent of thick all the problem secure and the problem of the control of the problem of the control of the control of the problem of the control of

vortex in the feed tank and/or determine if there is the possibility for degassing.

2. Excessive fines in the carbon. This is not a frequent cause for a high-pressure drop.

Solution: Backwash the carbon, if possible, at a rate of 8-10 gpm/ft² until the water exiting the vessel is clear. If the vessel cannot be <u>backwashed</u> and the pressure is too high to maintain the desired flow it may be necessary to remove the carbon, partially fill the vessel with water and slowly reinstall the carbon so that the fines can float on the top of the water. Then overflow the water to remove the fines.

3. Solids in the influent

Suspended solids or sediment in the influent will be filtered out by the carbon.

Solution: Open the manway or remove the top lid in the case of drums and inspect the top of the carbon bed. If the vessel can be backwashed this should solve the problem unless the solids have created a mud like cake on top of the bed. In this case manually remove the cake. If the layer to be removed is more than several inches, it may be necessary to replace with equivalent fresh carbon or if it is expected that the carbon is near exhaustion then replace the entire bed of carbon.

If it is anticipated that the solids will always be in the feed, a filter should be installed in the influent line.

7.2 Carbon loss

In most carbon systems that treat water and wastewater, carbon losses are not usually excessive. They usually result from excessive backwash rates, broken underdrains or physical degradation of the carbon by strong oxidants such as chlorine.

Solution: Lower the backwash rate. It may be too high due to the viscosity being higher than the design value. A seasonal decrease in water temperature is usually the cause for losing carbon during backwash.

Check the effluent liquid for the presence of carbon. If granules are present then the underdrain is damaged or the piping of the inlet and outlet is reversed. Remove the carbon and repair the underdrain or repipe the inlet and outlet.

Chlorine reacts with the carbon skeleton. With prolonged contact the effluent will turn brown. The carbon must be replaced when this occurs.

A Premature breakthrough of presence

cus avidio en 2019 de poloviar se asons

- 1. Channeling in the carbon due to presence of air in the bed.
- 2. Insufficient contact time in the carbon bed.
- 3. A change in the influent concentrations of the contaminants.
- 4. Incomplete removal of spent carbon prior to refilling.

Solution: Check for air by slowly closing a valve in the discharge line. Watch the pressure gage in the inlet line. If the pressure increases slowly there is air in the vessel. Drain/remove the liquid and refill the vessel while venting the air out the vent or inlet.

Add more carbon, if possible. Otherwise reduce the flow rate or consider adding another vessel.

Remove carbon completely and refill vessel.

7.4 Effluent concentration of an organic higher than influent concentration

This is due to a phenomenon termed rollover. This occurs when components that are more strongly adsorbed displace compounds that are less strongly adsorbed.

Solution: If the contaminant is not one of the regulated organics continue to operate the system. If the eluting organic is part of the discharge permit and it is exceeding the permitted level then the carbon needs to be replaced. In order to better utilize carbon it may be desirable to add another vessel downstream so that the lead adsorber can become saturated prior to having to be removed.

For reorders, replacement adsorbents or further technical information please contact TIGG Corporation, 1-800-925-0011

Rosedale Products, Inc. 3730 West Liberty Road Ann Arbor, Mi 48103

IOM NCO8.WPD n:Vom

Issue Date: 18JUL05 Revision: A Revision Date: 15Mar2006 Specification No.
7.4.33
PAGE: 1 of 6

INSTALLATION, OPERATION, & MAINTENANCE MANUAL

INSTALLATION, OPERATION AND MAINTENANCE MANUAL

ROSEDALE PRODUCTS, INC.

MODEL NCO-8

150 PSIG RATED FILTER UNIT

Table of Contents

1.	Installation		
II.	Operation	• • • • • • • • • • • • • • • • • • • •	
AII.	Spare Parts List	• • • • • • • • • • • • • • • • • • • •	

Rosedate Engineering Standards are the property of Rosedate Products (if): A product of the copy thereof shall like the distributed (except with express approval of Rosedate Products, Inc.) to any individual or firm beyond the intended recipient firm of individuals acting contrary to the above may be subject to suit, ineligibility for continued or future employment, or removal from Rosedate's "Approved Manufacturers and Specialty Contractors List".

Rosedale Products, Inc. 3730 West Liberty Road Ann Arbor, Mi 48103 IOM NCO8.WPD n:Vom\

Issue Date: 18JUL05 Revision: A Revision Date: 15Mar2006 7.4.33
PAGE: 2 of 6

INSTALLATION, OPERATION, & MAINTENANCE MANUAL

I. Installation

Please remove all shipping and crating materials carefully. Be sure to remove the plugs from the inlet and outlet openings. Dispose of all crating materials safely.

The Model NCO-8 Filter unit is capable of having several different piping variations based upon the outlet style of your unit. The inlet service line should be connected to the inlet flange or NPT coupling located near the top of the unit (above the basket level).

The outlet service line should be connected to the outlet flange or coupling, located near the middle or bottom of the unit depending upon the style of your unit (below basket level).

There are two 1/4" NPT ports on the shell and one 1/4" NPT port on the cover of the Model NCO-8 Filter unit. These ports can remain plugged or used for pressure gauges or special fittings as your application requires.

Some installations require electrical grounding of all equipment, be sure to provide adequate grounding where necessary.

After completing installation be sure to double check connections for integrity. Your Model NCO-8 Filter unit has been factory pressure tested leak free, therefore, any seepage problems usually occur from improper installation connections.

You are now ready to install the filter basket and bag. Remove cover by loosening the cover eyenuts. The eyenuts in the slotted corners should be loosened sufficiently to swing free. Loosen the third eyenut sufficiently to allow the top cover and closure assembly to swing away from the top of the unit.

If your application requires a basket seal, insert the basket seal into the basket collar groove. Refer to Figure 1 or Figure 2 in the Spare Parts Diagram for installation position of your seal.

Place the basket into the filter housing, make sure the basket flange is firmly seated into the adapter.

Insert bag into the bag basket making sure filter bag ring is firmly seated on top of the basket flange. For best results, be sure filter bag is installed fully extended to the bottom of the basket.

Before replacing cover assembly, inspect cover seal gasket (replacing as necessary). Close cover and alternately tighten the three clamp assemblies evenly to ensure a leak proof seal between the cover and housing body. Torque closure assemblies to a maximum of 60-90^{foot-lbs}. Each installation may have different closure bolting torque requirements to effectively seal the filter vessel cover. Many installations require significantly lower closure bolting torque due to the variables explained below. The suggested torque values are for reference only. They are to be used as a guideline by maintenance personnel. These values are meant as a guideline for safe operation of the filter system at its maximum rated pressure. Many variables affect the torque required to operate the filter vessel without leaks. These variables include the diameter of the bolt, type and number of threads, material type and grade, condition of the nut bearing surface and lubrication of bolt threads and number of threads. Other factors such as the condition of the o-ring, o-ring material, viscosity of the land terms littered operating pressures, temperature, and the closure assembly tightening procedure must also

Your Rosedale Model N. O. 8 resident cady for operation

Rosedale Products, Inc. 3730 West Liberty Road Ann Arbor, MI 48103

IOM NCO8.WPD n:Vom\

issue Date: 18JUL05 Revision: A Revision Date: 15Mar2006

7.4.33
PAGE: 3 of 6

INSTALLATION, OPERATION, & MAINTENANCE MANUAL

II. Operation

Filter System Start-Up Procedure:

Prior to turning on the flow to the inlet service, please make the following checks:

- Check inside filter unit to be sure basket and filter bag (if applicable) are in housing and do
 not require cleaning or replacement. If necessary install a clean filter basket and bag (if
 applicable).
- 2. Check that filter unit cover is securely fastened to housing. You are now ready to open the flow to the inlet service line. Slowly open the inlet service line approximately 25% of normal operational flow (open slowly as not to displace filter bag inside the housing). After filter unit is pressurized and vented, slowly open outlet service line unit valve until completely open. Complete opening of inlet service line until desired flow rate is reached.

Once the desired service flow has been established, the filter will operate efficiently until dirty. However, under no circumstances should more than 15 PSI Differential Pressure through the filter be obtained. Operating the filter unit with a high differential may cause filter bags to rupture and/or cause damage to filter system and downstream equipment.

To prevent excessive drop through the filter unit, regular inspection of the filter media is required. Monitoring of differential pressure through the housing can be utilized as a means of determining whether or not the filter media needs cleaning or replacement.

When it becomes necessary to clean or replace filter media, follow the procedure outlined below:

- First close the flow from the inlet service line.
- Close the flow to the outlet service line. (In some applications closing flow to outlet is not required.)
- Relieve the pressure from the filter unit.

▲ WARNING

CONTENTS UNDER PRESSURE
Relieve Pressure in accordance
with Manufacturer's instructions
before opening Filter Vessel.
FAILURE TO DO SO MAY RESULT
IN SERIOUS BODILY INJURY.

- Drain housing sufficiently to access filter basket.
- 5. Remove cover by loosening the cover eyenuts. The eyenuts in the slotted corners should be loosened sufficiently to swing free. Loosen the third eyenut sufficiently to allow the top cover and closure assembly to swing away from the top of the unit
- for Remove filter basket and clean thoroughly, remove the filter bag (if applicable) and if now away. (Cleaning and reusing the filter bag is not recommended.)
- 7 se Remais debusaged studge from the define interperation of housing to part distribute rence will a second of the order of that being the second of the se
- 8 av 21 Pennys basket seatand hispera and replace

Rosedale Engineering Standards are the property of Rosedale Products, life. It Rosedale Bandard process thereof shall not be distributed (except with express approval of Rosedale, Products, Inc.) to any individual or firm beyond the intended recipient firm or individuals acting contrary to the above may be subject to suit, ineligibility for continued of future employment, or removal from Rosedale's "Approved Manufacturers and Specially Contractors Lief"

Rosedale Products, Inc. 3730 West Liberty Road Ann Arbor, Mi 48103 IOM NCO8,WPD n:Vom\

Issue Date: 18JUL05

Revision: A Revision Date: 15Mar2006 Specification No.
7.4,33
PAGE: 4 of 6

INSTALLATION, OPERATION, & MAINTENANCE MANUAL

basket seal (see spare parts diagram for location of basket seal).

- Install clean filter basket and filter bag (if applicable). Place the basket into the filter housing, make sure the basket flange is firmly seated into the adaptor. If applicable, insert bag on top of the bag basket flange making sure filter bag ring is firmly seated inside the adaptor. For best results, be sure filter bag is installed fully extended to the bottom of the basket
- 10. Inspect cover gasket for cuts or other signs of failure and make sure it is properly seated.
- 11. Move cover back into position, and alternately tighten the three clamp assemblies evenly to ensure a leak proof seal between cover and housing body. Torque closure assemblies to a maximum of 60-90^{foot-bs}. Many installations require significantly lower closure bolting torque due to the variables previously explained in Section I.

Your Rosedale Model NCO-8 Filter unit is now ready for operation. Refer to filter system start-up procedure.

III. Spare Parts List

Your Rosedale Model NCO-8 Filter unit will give you many years of reliable service provided periodic inspections are made of various components and replacement of worn parts are made promptly. The following is meant to be a recommended spare parts list, these parts are illustrated on the following page.

SPAREPARTSLIST					
Balloon	Description :	Part Number	Time-Frame		
1	Cover Seal	8150CG-*	as needed		
2	Basket Seal	9BG-*	as needed		
3	Cover	RCO8	as needed		
4	Eye Nut	4ENNI	as needed		
5	Rod End	4RENI	as needed		
6	Clevis Pin Assembly	4CPNI	as needed		
7	Filter Bag	(See Order)	as needed		
8	Filter Basket	(See Order)	as needed		
9	Tripod Legs	8T22*S	as needed		

Select Material Designation

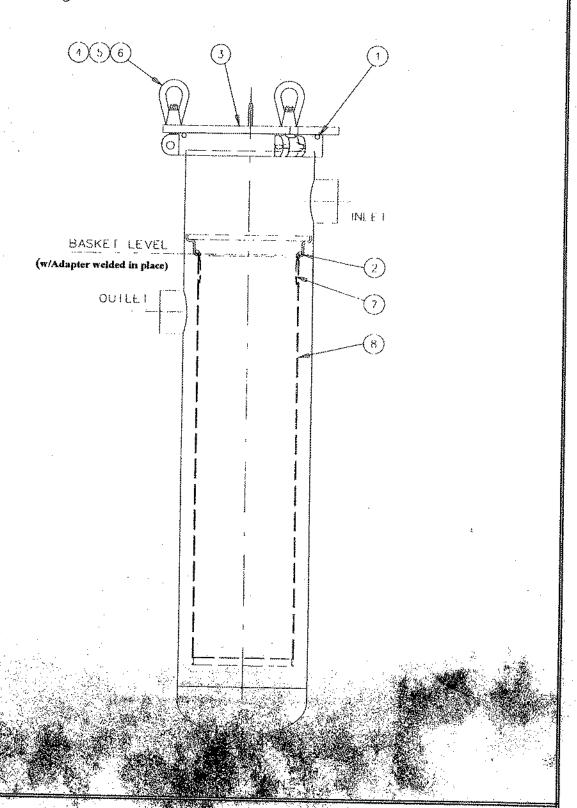
B=Bana N
E=Ethylene Propylene
V=Viton
TEV=Teflon Encapsulated Viton
TSW=Teflon Solid White

Rosedale Engineering Standards are the property of Rosedale Products, Inc. A Rosedale standard property thereof shall not be distributed (except with express approval of Rosedale Products, Inc.) to any individual or firm beyond the intended recipient firm or individual. Firms of individuals acting contrary to the above may be subject to suit, ineligibility for continued or future employment, or removal from Rosedale's "Approved Manufacturers and Specialty Contractors List".

C=Carbon Steel S=304 Stainless Steel S316=316 Stainless Stee

Rosedale Products, Inc. 3730 West Liberty Road Ann Arbor, MI 48103

IOM NCO8.WPD n:Vomi


Issue Date: 18JUL05

Revision: A Revision Date: 15Mar2006

7.4.33 PAGE: 5 of 6

INSTALLATION, OPERATION, & MAINTENANCE MANUAL

IV. Spare Parts Diagram

Rosedale Engineering Standards are the property of Rosedale Products, Inc. A Rosedale Engineering Standards are the property of Rosedale Products, Inc.) to any individual or firm beyond the intended recipient firm or individual. Firms of individuals acting contrary to the above may be subject to suit, ineligibility for continued or full full removal from Rosedale's "Approved Manufacturers and Specialty Contractors List".

Rosedale Products, Inc. 3730 West Liberty Road Ann Arbor, MI 48103

IOM NCO8.WPD n:Vom

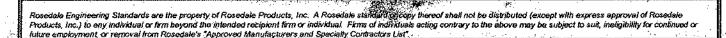
Issue Date: 18JUL05

Revision: A Revision Date: 15Mar2006 Specification No.
7.4.33
PAGE: 6 of 6

INSTALLATION, OPERATION, & MAINTENANCE MANUAL

Important Notice

<u>Warranty:</u> In the event any Rosedale Products, Inc. filtration product is found to be defective in material, workmanship, or not in conformance with any express warranty for a specific purpose, Rosedale's only obligation and your exclusive remedy, shall be to repair, replace or refund the purchase price of such parts or products upon timely notification thereof and substantiation that the product has been stored, maintained and used in accordance with Rosedale's written instructions.


EXCLUSIONS TO WARRANTY: THIS WARRANTY IS EXCLUSIVE AND IS IN LIEU OF ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHER WARRANTY OF QUALITY, EXCEPT OF TITLE AND AGAINST PATENT INFRINGEMENT.

LIMITATION OF LIABILITY: Except as provided above, Rosedale shall not be liable or responsible for any loss or damage, whether direct, indirect, incidental, special or consequential, arising out of sale, use or misuse of Rosedale filtration products, or the user's inability to use such products.

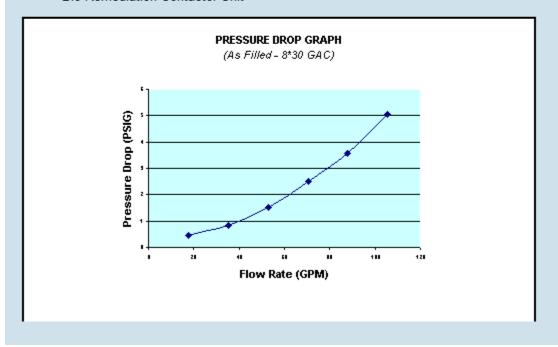
THE REMEDIES SET FORTH HEREIN ARE EXCLUSIVE.

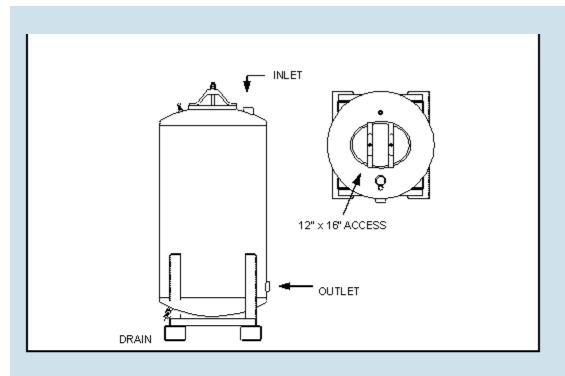
Rosedale Products, Inc. 3730 West Liberty Road Ann Arbor, MI 48103 USA 734-665-8201 800-821-5373 Fax. 734-665-2214 filters@rosedaleproducts.com

http://www.rosedaleproducts.com

89 Crawford Street

Leominster, Massachusetts 01453


Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net


HPAF SERIES FILTERS MODEL HPAF-2000

The HPAF-2000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- · Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- · Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- · Dissolved and Precipitated Metals Removal
- · Special Organics (Resin/Carbon Blend)
- · Catalytic Reactor (Chlorine and Peroxide Removal)
- · Bio-Remediation Contactor Unit

HPAF-2000 SPECIFICATIONS					
Overall Height	8'6"	Vessel/Internal Piping Materials	CS (SA-36) / SCH 40 PVC		
Diameter	48"	Internal Coating	Polyamide Epoxy Resin		
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic		
Drain / Vent (FNPT)	3/4" / 1/2"	Maximum Pressure / Temp	75 PSIG / 140° F		
GAC Fill (lbs)	2,000	Cross Sectional Bed Area	12.5 FT ²		
Shipping / Operational Weight (lbs)	3,020/6,775	Bed Depth/Volume	5.5 FT / 68.7 FT ³		

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 03.02.2015 Page 1 of 7

Charcoal, Activated Carbon

SECTION 1: Identification of the substance/mixture and of the supplier

Product name : Charcoal, Activated Carbon

Manufacturer/Supplier Trade name:

Manufacturer/Supplier Article number: S25246

Recommended uses of the product and uses restrictions on use:

Manufacturer Details:

AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331

Supplier Details:

Fisher Science Education 15 Jet View Drive, Rochester, NY 14624

Emergency telephone number:

Fisher Science Education Emergency Telephone No.: 800-535-5053

SECTION 2: Hazards identification

Classification of the substance or mixture:

Irritant

Eye irritation, category 2A Specific target organ toxicity following single exposure, category 3

Eye Irrit. 2 STOT SE 3 Hazards Not Otherwise Classified - Combustible Dust Flam. Sol. 2

Signal word : Danger

Hazard statements:

Flammable solid

Causes serious eye irritation

May cause respiratory irritation

Precautionary statements:

If medical advice is needed, have product container or label at hand

Keep out of reach of children

Read label before use

Keep away from heat/sparks/open flames/hot surfaces. No smoking

Ground/bond container and receiving equipment

Use explosion-proof electrical/ventilating/light/equipment

Avoid breathing dust/fume/gas/mist/vapours/spray

Wash skin thoroughly after handling

Use only outdoors or in a well-ventilated area

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 03.02.2015 Page 2 of 7

Charcoal, Activated Carbon

Wear protective gloves/protective clothing/eye protection/face protection

Do not eat, drink or smoke when using this product

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

In case of fire: Use agents recommended in section 5 for extinction

If eye irritation persists get medical advice/attention

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do.

Continue rinsing Store locked up

Store in a well ventilated place. Keep container tightly closed

Dispose of contents and container to an approved waste disposal plant

Combustible Dust Hazard::

May form combustible dust concentrations in air (during processing).

Other Non-GHS Classification:

WHMIS

NFPA/HMIS

HMIS RATINGS (0-4)

SECTION 3 : Composition/information on ingredients

Ingredients:		
CAS 7440-44-0	Carbon	100 %
Percentages are by weight		

SECTION 4 : First aid measures

Description of first aid measures

After inhalation: Loosen clothing as necessary and position individual in a comfortable position. Move exposed to fresh air. Give artificial respiration if necessary. If breathing is difficult give oxygen. Get medical assistance if cough or other symptoms appear.

After skin contact: Rinse/flush exposed skin gently using soap and water for 15-20 minutes. Seek medical advice if discomfort or irritation persists.

After eye contact: Protect unexposed eye. Rinse/flush exposed eye(s) gently using water for 15-20 minutes. Remove contact lens(es) if able to do so during rinsing. Seek medical attention if irritation persists or if

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 03.02.2015 Page 3 of 7

Charcoal, Activated Carbon

concerned.

After swallowing: Rinse mouth thoroughly. Do not induce vomiting. Have exposed individual drink sips of water. Seek medical attention if irritation, discomfort or vomiting persists.

Most important symptoms and effects, both acute and delayed:

Irritation, Nausea, Headache, Shortness of breath.;

Indication of any immediate medical attention and special treatment needed:

If seeking medical attention, provide SDS document to physician. Physician should treat symptomatically.

SECTION 5 : Firefighting measures

Extinguishing media

Suitable extinguishing agents: Use appropriate fire suppression agents for adjacent combustible materials or sources of ignition. Use water, dry chemical, chemical foam, carbon dioxide, or alcohol-resistant foam.

For safety reasons unsuitable extinguishing agents: None identified.

Special hazards arising from the substance or mixture:

Combustion products may include carbon oxides or other toxic vapors. Thermal decomposition can lead to release of irritating gases and vapors.

Advice for firefighters:

Protective equipment: Use NIOSH-approved respiratory protection/breathing apparatus.

Additional information (precautions): Move product containers away from fire or keep cool with water spray as a protective measure, where feasible. Use spark-proof tools and explosion-proof equipment. Avoid generating dust; fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard. Avoid inhaling gases, fumes, dust, mist, vapor, and aerosols. Avoid contact with skin, eyes, and clothing.

SECTION 6: Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Wear protective equipment. Use spark-proof tools and explosion-proof equipment. Ensure that air-handling systems are operational. Ensure adequate ventilation.

Environmental precautions:

Prevent from reaching drains, sewer or waterway. Collect contaminated soil for characterization per Section 13. Should not be released into environment.

Methods and material for containment and cleaning up:

Keep in suitable closed containers for disposal. Wear protective eyeware, gloves, and clothing. Refer to Section 8. Always obey local regulations. Avoid dispersal of dust in the air (i.e., clearing dust surfaces with compressed air). Collect solids in powder form using vacuum with (HEPA filter). Evacuate personnel to safe areas.

Reference to other sections:

SECTION 7 : Handling and storage

Precautions for safe handling:

Minimize dust generation and accumulation. Follow good hygiene procedures when handling chemical materials. Refer to Section 8.Do not eat, drink, smoke, or use personal products when handling chemical substances. Avoid contact with eyes, skin, and clothing.

Conditions for safe storage, including any incompatibilities:

Store away from incompatible materials. Protect from freezing and physical damage. Keep away from food and beverages. Provide ventilation for containers. Avoid storage near extreme heat, ignition sources or open flame.

Effective date: 03.02.2015 Page 4 of 7

Charcoal, Activated Carbon

Store in cool, dry conditions in well sealed containers. Store with like hazards

SECTION 8 : Exposure controls/personal protection

Control Parameters: , , OSHA PEL TWA (Total Dust) 15 mg/m3 (50 mppcf*) , , ACGIH TLV TWA (inhalable particles) 10 mg/m3

Appropriate Engineering controls: Eme

Emergency eye wash fountains and safety showers should be available in the immediate vicinity of use/handling.Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapor or dusts (total/respirable) below the applicable workplace exposure limits (Occupational Exposure Limits-OELs) indicated above.Ensure that dust-handling systems (such as exhaust ducts, dust collectors, vessels, and processing equipment) are designed in a manner to prevent the escape of dust into the work area (i.e., there is no leakage from the equipment).

Respiratory protection: When necessary use NIOSH approved breathing equipment.

Protection of skin: Select glove material impermeable and resistant to the substance. Select

glove material based on rates of diffusion and degradation. Dispose of contaminated gloves after use in accordance with applicable laws and

good laboratory practices. Wear protective clothing.

Eye protection: Wear equipment for eye protection tested and approved under

appropriate government standards such as NIOSH (US) or EN 166(EU). Safety glasses or goggles are appropriate eye protection.

General hygienic measures: Perform routine housekeeping. Wash hands before breaks and at the end

of work. Avoid contact with skin, eyes, and clothing. Before wearing wash

contaminated clothing.

SECTION 9: Physical and chemical properties

Appearance (physical state,color):	Black solid	Explosion limit lower: Explosion limit upper:	Not Determined Not Determined
Odor:	Odorless	Vapor pressure:	1 mm Hg @ 3586C
Odor threshold:	Not Determined	Vapor density:	Not Determined
pH-value:	6.0 - 9.0	Relative density:	1.8 - 2.1
Melting/Freezing point:	3652 - 3697°C / 6606 - 6687°F	Solubilities:	Insoluble in water.
Boiling point/Boiling range:	Decomposes	Partition coefficient (noctanol/water):	Not Determined
Flash point (closed cup):	Not Determined	Auto/Self-ignition temperature:	Not Determined
Evaporation rate:	Not Determined	Decomposition temperature:	1 mm Hg @ 3586C

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 03.02.2015 Page 5 of 7

Charcoal, Activated Carbon

Flammability (solid,gaseous):	Not Determined	Viscosity:	a. Kinematic:Not Determined b. Dynamic: Not Determined
Density : Not Determined			

SECTION 10 : Stability and reactivity

Reactivity: Nonreactive under normal conditions.

Chemical stability: Stable under normal conditions.

Possible hazardous reactions: None under normal processing

Conditions to avoid:Incompatible Materials.Ignition sources, dust generation, moisture, excess heat. **Incompatible materials:**May react vigorously or violently when mixed with strong oxidizing agents such as chlorates, bromates and nitrates, especially when heated. Incompatible with chlorinated paraffins, Lead oxide, manganese oxide, iron oxide, liquid oxygen, oils, and moisture.

Hazardous decomposition products:Oxides of carbon.

SECTION 11: Toxicological information

Acute Toxicity:		
Oral:	Effect level > 8000 mg/kg bw	LD50 rat
Inhalation:	Effect level > 4.6 mg/m³ air Exp. duration 4 h	rat
Chronic Toxicity: No additional information.		
Corrosion Irritation: No additional information.		
Sensitization:		No additional information.
Single Target Organ	n (STOT):	No additional information.
Numerical Measure	s:	No additional information.
Carcinogenicity:		No additional information.
Mutagenicity:		No additional information.
Reproductive Toxic	ity:	No additional information.

SECTION 12 : Ecological information

Ecotoxicity

Brachydanio rerio (new name: Danio rerio) Duration 96 h Endpoint LCO: Effect conc. 1000 mg/L

Daphnia magna 24 h Endpoint EC100: Effect conc. 10000 mg/L

Persistence and degradability:

Bioaccumulative potential:

Mobility in soil:

Other adverse effects:

SECTION 13: Disposal considerations

Effective date: 03.02.2015 Page 6 of 7

Charcoal, Activated Carbon

Waste disposal recommendations:

Contact a licensed professional waste disposal service to dispose of this material. Dispose of empty containers as unused product. Product or containers must not be disposed with household garbage. It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11). Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations. Ensure complete and accurate classification.

SECTION 14: Transport information

UN-Number

1362

UN proper shipping name

Carbon Activated

Transport hazard class(es)

4.2 Substances liable to spontaneous combustion

Packing group: III

Environmental hazard:

Transport in bulk:

Special precautions for user:

SECTION 15: Regulatory information

United States (USA)

SARA Section 311/312 (Specific toxic chemical listings):

SARA Section 313 (Specific toxic chemical listings):

None of the ingredients is listed

RCRA (hazardous waste code):

None of the ingredients is listed

TSCA (Toxic Substances Control Act):

All ingredients are listed.

CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

None of the ingredients is listed

Proposition 65 (California):

Chemicals known to cause cancer:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

Chemicals known to cause developmental toxicity:

None of the ingredients is listed

according to 29CFR1910/1200 and GHS Rev. 3

Effective date: 03.02,2015 Page 7 of 7

Charcoal, Activated Carbon

Canada

Canadian Domestic Substances List (DSL):

All ingredients are listed.

Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

Canadian NPRI Ingredient Disclosure list (limit 1%):

None of the ingredients is listed

SECTION 16: Other information

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user. The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment. The information contained herein is, to the best of our knowledge and belief, accurate. However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material. It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

GHS Full Text Phrases:

Abbreviations and acronyms:

IMDG: International Maritime Code for Dangerous Goods

PNEC: Predicted No-Effect Concentration (REACH)

CFR: Code of Federal Regulations (USA)

SARA: Superfund Amendments and Reauthorization Act (USA)

RCRA: Resource Conservation and Recovery Act (USA)

TSCA: Toxic Substances Control Act (USA)

NPRI: National Pollutant Release Inventory (Canada)

DOT: US Department of Transportation

IATA: International Air Transport Association

GHS: Globally Harmonized System of Classification and Labelling of Chemicals

ACGIH: American Conference of Governmental Industrial Hygienists

CAS: Chemical Abstracts Service (division of the American Chemical Society)

NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA)

WHMIS: Workplace Hazardous Materials Information System (Canada)

DNEL: Derived No-Effect Level (REACH)

Effective date: 03.02.2015 **Last updated**: 03.19.2015

RESINTECH CGS is a high purity, light colored, high capacity, gel type sulfonated polystyrene cation resin supplied in the sodium form as moist, tough uniform spherical beads. *ResinTech CGS* specifically is intended for use in all water softening applications, including beverages, potable water and water used for food processing. It's high capacity and high DVB content provide long life and good chlorine resistance in all potable water applications. (It is also available as a dark colored product *ResinTech CGS-BL* with identical properties.)

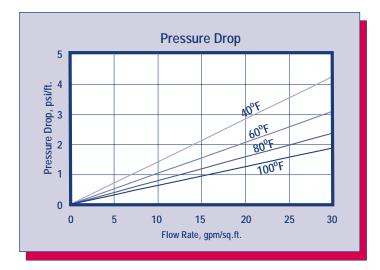
FEATURES & BENEFITS

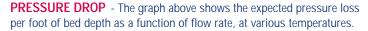
- COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS
 Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the F.D.A.*
- EXCELLENT REGENERATION EFFICIENCY

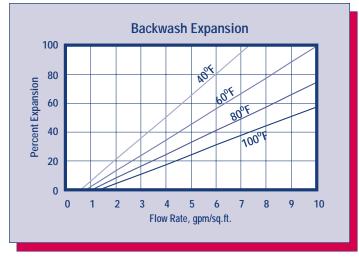
 Virtually the same operating capacity as premium grade ResinTech CG8-BL
- NSF/ANSI-61 VALIDATED

UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY


90% plus sphericity and high crush strengths together with a very uniform particle size provide greater resistance to bead breakage while maintaining low pressure drops.


LOW COLOR THROW

*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to insure compliance with extractable levels.

HYDRAULIC PROPERTIES

BACKWASH - After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH CGS* in the sodium form.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group R-(SO₃)⁻M⁺

Ionic Form, as shipped Sodium

Physical Form Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

pH Range 0 to 14

Sphericity 90+ percent

Uniformity Coefficient Approx. 1.6
Water Retention

Sodium Form 48 to 54 percent Solubility Insoluble

Shipping Weight

Sodium Form 48 lbs./cu.ft. Total Capacity

Sodium Form 1.8 meg/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Temperature
Sodium Form 250⁰ F

Minimum Bed Depth 24 inches
Backwash Rate 50 to 75% Bed Expansion

Regenerant (NaCl or KCl)

Service Flow Rate

Concentration 10 to 15 percent 0.5 to 1.5 gpm/cu.ft. Flow Rate Contact Time > 20 minutes Level 4 to 15 pounds/cu.ft. Displacement Rate Same as Regen Flow Rate Volume 10 to 15 gallons/cu.ft. Same as Service Flow Rate Fast Rinse Rate 35 to 60 gallons/cu.ft. Volume

2 to 10 gpm/cu.ft.

OPERATING CAPACITY

Sodium Chloride (NaCl) Regeneration

The sodium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	20.0
7.5	25.4
10	29.0
15	33.0

Potassium Chloride (KCI) Regeneration

The potassium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	16.6
7.5	21.8
10	26.6
15	31.2

APPLICATIONS

Softening

RESINTECH CGS is ideally suited for industrial, commercial, or residential softening applications where free chlorine is not present because of its high capacity, uniform particle size and good physical stability.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *ResinTech SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *ResinTech SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *ResinTech SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

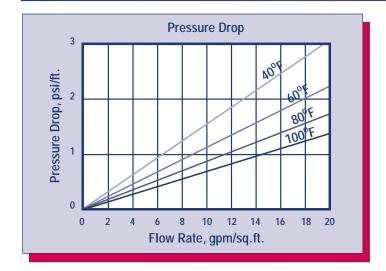
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

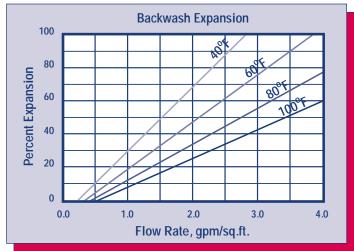
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group $R-N-(CH_3)_3+CI-$ Ionic Form, as shipped Chloride or Hydroxide Physical Form Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140° F alt Form 170° F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.

Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot			
NaOH/ft ³	HCI	H ₂ SO ₄	H ₂ SiO ₃	H_2CO_3
4	11.3	14.0	14.7	18.6
6	12.8	16.3	17.3	19.8
8	14.3	13.3	19.5	21.6
10	15.5	20.0	22.2	22.2

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°DF and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

Safety Data Sheet

Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form)
Effective date 31 March 2015

Section 1: Identification

10	Product Names	Design Teach CDC1	CDC1 UD C	SBG1-UPS, SBG1-C.
1a	Floudet Names	Resilitecti SBG I.	300 I-HF, 3	30G1-UP3, 30G1-C,

SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P,

SBG1P-UPS

1b Common Name Type I Strong base anion resin in the chloride form.

1c Intended use All general purpose anion exchanges for general use

including salt form and demineralization.

1d Manufacturer ResinTech, Inc.

Address 160 Cooper Road,

West Berlin, NJ 08091 USA

Phone 856-768-9600

Email ixresin@resintech.com

Section 2: Hazard Identification

2a Hazard classification Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

2b Product description White, yellow, or orange colored solid beads

approximately 0.6 mm diameter with little or no odor.

2c Precautions for use Safety glasses and gloves recommended.

Slipping hazard if spilled.

2c Potential health effects Will cause eye irritation.

Will cause skin skin irritation.

Ingestion is not likely to pose a health risk.

2d Environmental effects This product may alter the pH of any water that

contacts it.

Section 2A: Hazard classification UN OSHA globally harmonized system

WARNING

(contains ion exchange resin)

H320: Causes eye irritation

Precautionary Statements

P264: Wash hands thoroughly after handling.

P280: Wear protective gloves/protective clothing/eye protection/face protection

P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses if present and easy to do – continue rinsing.

P333+313: If skin irritation or a rash occurs: Get medical advice/attention.

P337+313: If eye irritation persists get medical advice/attention.

P403+233: Store in a well-ventilated place. Keep container tightly closed.

P411: Store at temperatures not exceeding 50 °C/ 122 °F.

Please refer to the safety data sheet for additional information regarding this product

ResinTech, Inc. 160 Cooper Road West Berlin, NJ 08091-9234 856 768-9600 Ixresin@resintech.com

Section 3: Composition/Information on Ingredients	Section 3: Com	position/ li	nformation	on Ingredients
---	-----------------------	--------------	------------	----------------

3a Chemical name Trimethylamine functionalized chloromethylated copolymer of polystyrene in the chloride form.

3b Ingredients

> Trimethylamine functionalized Chloromethlyated copolymer of Styrene and divinylbenzene in the

Chloride form

CAS# 60177-39-1 (35 - 65%)

Water CAS# 7732-18-5 (35 – 65%)

Section 4: First Aid Measures

4a	Inhalation	No adverse effects expected- normal use of p	product
T a	IIIIalalion	The adverse effects expected-fibrillar use of p	,

does not produce odors or vapors.

4b Skin Wash with soap and water- seek medical attention if a

rash develops.

Wash immediately with water-seek attention if Eye contact 4c

discomfort continues.

Ingestion No adverse effects expected for small amounts, larger 4d

amounts can cause stomach irritation. Seek medical

attention if discomfort occurs.

Section 5: Fire Fighting Measures

5a	Flammability	NFPA Fire rating =
Ja	i iaiiiiiabiiity	NI FATILE TAILING -

Extinguishing media Water, CO2, foam, dry powder. 5b

Fire fighting Procedures Follow general fire fighting procedures indicated in the 5c

work place. Seek medical attention if discomfort

continues.

Protective Equipment MSHA/NIOSH approved self-contained breathing 5d

gear, full protective clothing.

Combustion Products Carbon oxides and other toxic gasses and vapors. 5e

5f Unusual Hazards Product is not combustible until moisture is removed.

Resin begins to burn at approximately 230° C. Auto

ignition can occur above 500° C.

Section 6: Accidental Release Measures Personal Precautions Keep people away, spilled resin can be a slipping 6a hazard, wear gloves and safety glasses to minimize skin or eye contact. **Incompatible Chemicals** Strong oxidants can create risk of combustion 6b products similar to burning, exposure to strong bases can cause a rapid temperature increase. 6c **Environmental Precautions** Keep out of public sewers and waterways. Use plastic or paper containers, unlined metal **Containment Materials** 6d containers not recommended. Methods of Clean-up Sweep up material and transfer to containers. 6e

Section 7: Handling and Storage

7a	Handling	Avoid prolonged skin contact. Keep resin moist and avoid allowing resin to completely dry.
7b	Storage	Store in a cool dry place (0° to 45° C) in the original shipping container. This product is thermally sensitive and will have reduced shelf life if subjected to extended periods of time at temperatures exceeding 50° C. Although freezing does not usually damage ion exchange resins, avoid repeated freeze thaw cycles.
7c	TSCA considerations	Ion exchange resins should be listed on the TSCA Inventory in compliance with State and Federal Regulations.

Section 8: Exposure Controls/Personal Protection

8a	OSHA exposure limits	None noted.
8b	Engineering Controls	Provide adequate ventilation.
8c	Personal Protection Measures Eye Protection Respiratory Protection Protective Gloves	Safety glasses or goggles. Not required for normal use. Not required for limited exposure but recommended for extended contact.

Section 9: Physical and Chemical Properties

Appearance Amber, yellow, or red beads approx. 0.6 mm

diameter.

Flammability or explosive limits Flammable above 500° C

Odor Little or no odor

Physical State Solid

Vapor pressure

Odor threshold

Vapor density

Not available

Not available

pH Near neutral (6 to 8 typical)

Relative density Approx 710 grams/Liter

Melting point/freezing point Does not melt, freezes at approx. 0 C

Solubility Insoluble in water and most solvents

Boiling point Does not boil
Flash point Approx 500° C

Evaporation rate Does not evaporate

Partition Coefficient (n-octonol/water)

Auto-ignition temperature

Approx 500° C

Decomposition temperature

Above 230° C

Viscosity

Not applicable

Section 10: Stability and Reactivity

10a Stability Stable under normal conditions.

10b Conditions to Avoid Heat, exposure to strong oxidants.

10c Hazardous by-products Trimethylamine, charred polystyrene, aromatic acids

and hydrocarbons, organic amines, nitrogen oxides,

carbon oxides, chlorinated hydrocarbons,

10d Incompatible materials Strong oxidizing agents, e.g. nitric acid

(such as HNO₃)

10e Hazardous Polymerization Does not occur

11a Likely Routes of Exposure Oral, skin or eye contact.

11b Effects of exposure

Delayed None known.
Immediate (acute) None known.
Chronic None known.

11c Toxicity Measures

Skin Adsorption
Unlikely, some transfer of acidity is possible.
Ingestion
Oral toxicity believed to be low but no LD50 has

been established.

Inhalation Unknown, vapors are very unlikely due to physical

properties (insoluble solid).

11d Toxicity Symptoms

Skin Adsorption Mild Rash.

Ingestion Indigestion or general malaise.

Inhalation Unknown.

11e Carcinogenicity None known

Section 12: Ecological information

12a Eco toxicity Not acutely harmful to plant or animal life.

12b Mobility Insoluble, acidity or causticity may escape if wet.

12c Biodegradability Not biodegradable.

12d Bioaccumulation Insignificant.

12e Other adverse effects Not Harmful to the environment.

Section 13: Disposal Considerations

13a General considerations Material is non-hazardous. However, unused material

can cause a pH change when wetted.

13b Disposal Containers Most plastic and paper containers are suitable. Avoid

use of unlined metal containers.

13c Disposal methods No specific method necessary.

13d Sewage Disposal Not recommended.

13e Precautions for incineration May release trimethylamine and toxic vapors when

burned.

13f Precautions for landfills Resins used to remove hazardous materials may then

become hazardous mixtures

Section 14: Transportation Information

14a Transportation Class Not classified as a dangerous good for transport by

land, sea, or air.

14b TDG Not regulated.

14c IATA Not regulated.

14d DOT (49 CFR 172.101) Not Regulated.

Section 15: Regulatory Information

15a CERCLA Not regulated

15b SARA Title III Not regulated

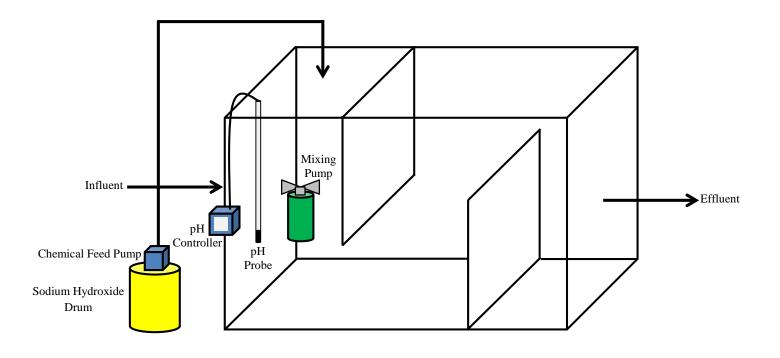
15c Clean Air act Not regulated

15d Clean Water Act Not regulated

15e TSCA Not regulated

15f Canadian Regulations

WHMIS Not a controlled product


TDG Not regulated

15g Mexican Regulations Not Dangerous

Section 16: Other Information

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features. Regulatory requirements are subject to change and may differ from one location to another. It is the buyer's responsibility to ensure that their activities comply with federal, state, and local laws.

16a Date of Revision 31 March 2015

Notes:

- 1.) Figure is not to scale.
- 2.) System layout can vary with site conditions.

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Configuration of pH Adjustment System

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

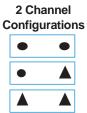
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


Features	Previous I sc100™ Controller	Models GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller

Choose from Hach's Broad Range of Digital and Analog Sensors			
Parameter	Sensor	Digital or Analog	
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•	
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•	
Chlorine Dioxide	9185 sc	•	
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A	
Dissolved Oxygen	LDO® Model 2, 5740 sc	•	
Dissolved Oxygen	5500	A	
Flow	U53, F53 Sensors	A	
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•	
Oil in Water	FP360 sc	•	
Organics	UVAS sc	•	
Ozone	9187 sc	•	
pH/ORP	pHD	•	
pH/ORP	pHD, pH Combination, LCP		
Phosphate	PHOSPHAX™ sc	•	
Sludge Level	SONATAX™sc	•	
Suspended Solids	SOLITAX™ sc, TSS sc	•	
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•	
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	A	
Ultra Pure pH/ORP	8362		

● = Digital ▲ = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

Specifications*

Dimensions (H x W x

D)

5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm) **Display** Graphic dot matrix LCD with LED

> backlighting, transreflective 1.9 x 2.7 in. (48 mm x 68 mm)

Display Size Display Resolution

240 x 160 pixels Weight 3.75 lbs. (1.70 kg)

Power Requirements

Power Requirements

(Voltage)

50/60 Hz

(Hz)

Operating **Temperature Range** -20 to 60 °C, 0 to 95% RH non-condensing

100 - 240 V AC, 24 V DC

Analog Outputs

Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, \pm 0.5% of FS over -20 °C to 60 °C

range

Operational Mode: measurement

or calculated value

Analog Output Functional Mode Linear, Logarithmic, Bi-linear, PID

Security Levels Mounting Configurations

2 password-protected levels Wall, pole, and panel mounting

Enclosure Rating Conduit Openings

1/2 in NPT Conduit Primaryorsecondary

NEMA 4X/IP66

Relay: Operational Mode

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Relays

Four electromechanical SPDT (Form C) contacts, 1200 W, 5 A

Communication MODBUS RS232/RS485,

EMC

PROFIBUS DPV1, or HART 7.2

optional

Memory Backup

Electrical Certifications Flash memory

CE compliant for conducted and

radiated emissions:

- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1 (Industrial limits)

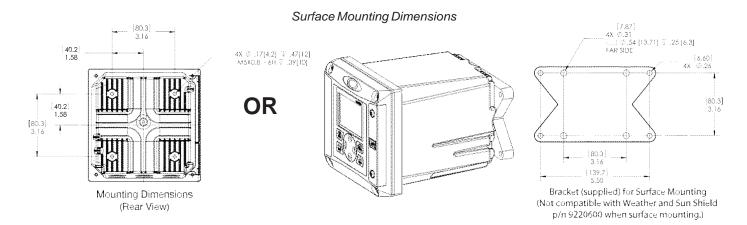
Safety

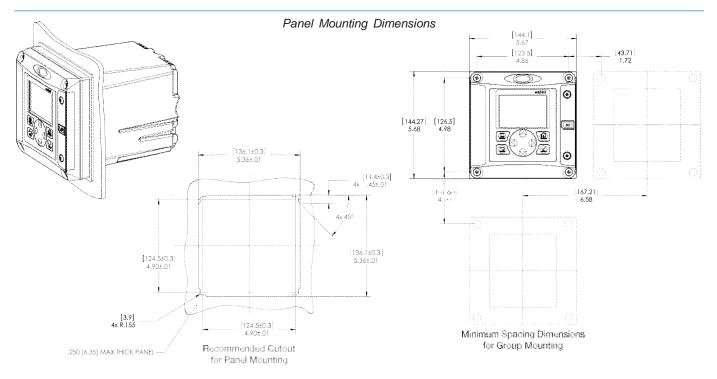
cETLus safety mark for:

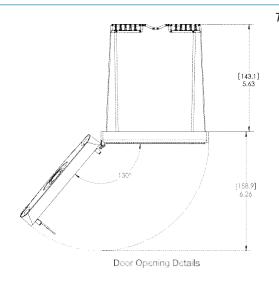
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No.

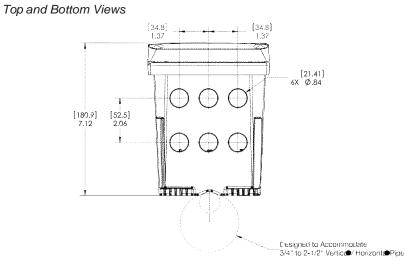
61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.


sc200™ Universal Controller

Dimensions

DW

PW

Lockwood Remediation Technologies, LLC

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and Viton $^{\circledR}$ O-rings

Warranty

90 days

*Specifications subject to change without notice.

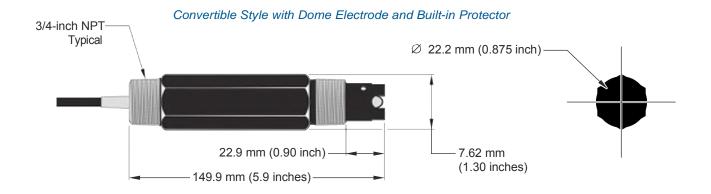
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

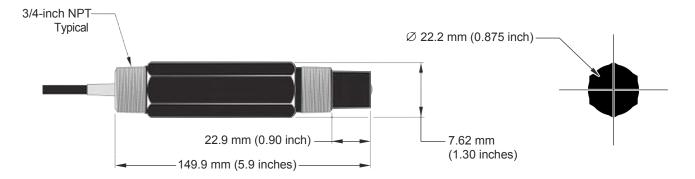
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.

Convertible Style with Flat Electrode

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing-Optional

External Pace With Stop-Optional (125 SPM only)

Controls Options				
Facture	Standard	Optional		
Feature	Configuration	Configuration ¹		
External Pacing		Auto / Manual Selection /		
External Pace w/ Stop		Auto / Manual Selection 2		
(125SPMonly)				
Manual Stroke Rate	10:1Ratio	100:1 Raio		
Manual Stroke Length	10:1 Ratio	10:1 Ratio		
Total Turndown Ratio	1001 Ratio	1000:1 Ratio		

Note 1:On S2,S3 & S4 sizes only.

Note 2:Not available on 1000:1 turn down pumps.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- · High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
- Process Controllers

(PULSAblue, MicroVision)

Series A Plus Electronic Metering Pumps

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP,PVDF,316SS or PVC <;Ncode) wTFE Seats) PVC (V code) Vion or CSPE Seats IDegas Liquid End	PSIG (Bar)	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (33)	250 (17) 150 (10)	150 (10)	100(7)
Connections:		Tubina			114'IDX	318' OD			318'DX 112'OD	114	'D X 318' OI)
		Pioina					1	14'FNPT				
Strokes/Minute		SPM	125					250				

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC PVDF 316 SS

PTFE-faced CSPE-backed Diaphragm:

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic

PTFE 316 SS

Alloy C

GFPPL Fittings Materials Available:

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capacty

Viscosity Max CPS: 1000 CPS Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1/100:1 by Model

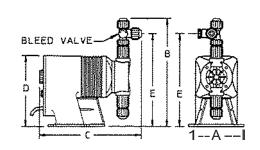
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hout Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems



Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

Series A PLUS Dimensions (inches)									
Model No.	Α	В	С	D	Е	Weight			
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10			
LBC2	5.0	9.9	9.5	6.5	8.5	10			
LBC3	5.0	9.9	9.5	6.5	8.5	10			
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10			
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10			
LB64	5.0	9.9	9.5	6.5	8.5	10			
LBC4	5.0	9.9	9.5	6.5	8.5	10			

NOTE: hches X2.54 cm

95-Gallon OverPack - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A950VER Specifications

Dimensions: ext. dia. 32" x 41.5" H

Shipping 31.75" W x 41.5" L x 31.75" H

Dimensions:

Sold as: 1 per package

Color: Yellow

Composition: Polyethylene

per Pallet: 3
Incinerable: No
Ship Class: 250

Metric Equivalent Specifications

Dimensions: ext. dia. 81.3cm x 105.4cm H

Shipping 80.6cm W x 105.4cm L x 80.6cm H

Dimensions:

A950VER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Job Safety Analysis pH/Chem Feed System

Date: 5/10/20	16
----------------------	----

Completed By: Tammie Hagie

Approved By: Mike Deso

Required PPE: Hard Hat, Safety Toe Boots, Reflective Vest, Safety Glasses, Chemical Resistant Gloves

TASK	POTENTIAL RISK/HAZARD	CONTROLS
Transporting acid/chemical drum	Splash, spill, heavy lifting	Inspect condition of drum prior to transportation. Use material handling devices when possible to move equipment (lift gates, pallet jacks, hand trucks, etc.). If necessary, use a ramp for loading/unloading wheeled devices, ensuring the ramp is properly supported prior to use. Lift with your knees and use drum dolly. Make sure drum is secure in vehicle prior to transportation. Review SDS on acid/chemical. Wear proper PPE and dispose of materials after clean up in a sealed container. Immediately use the eye wash station if acid or chemical comes in contact with your eye.
Opening acid drum	Splash, spill	Review MSDS on acid/chemical. Wear proper PPE and dispose of materials after clean up in a sealed container. Immediately use the eye wash station if acid or chemical comes in contact with your eye. Use bung wrench to open the drum properly.
Set up chemical feed pump	Splash, spill, leak	Wear proper PPE and dispose of materials after clean up in a sealed container. Immediately use the eye wash station if acid or chemical comes in contact with your eye. Monitor chem feed pump to assure its working and not leaking. Use chemical resistant tubing to transport liquid from the pump.
Notes:		

Note any changes/deviations to this JSA

Page1 Issued: 5/10/16 Revision# 0

SAFETY DATA SHEET

Creation Date 12-Nov-2010 Revision Date 24-May-2017 Revision Number 5

1. Identification

Product Name Sulfuric Acid (Certified ACS Plus)

Cat No.: A300-212; A300-225LB; A300-500; A300-612GAL; A300-700LB;

A300C212; A300C212EA; A300P500; A300S212; A300S212EA;

A300S500; A300SI212

Synonyms Hydrogen sulfate; Vitriol brown oil; Oil of vitriol

Recommended UseLaboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Specific target organ toxicity (single exposure)

Category 1

Category 1

Category 2

Category 3

Target Organs - Respiratory system.

Label Elements

Signal Word

Danger

Hazard Statements

Causes severe skin burns and eye damage May cause respiratory irritation

Precautionary Statements

Prevention

Do not breathe dust/fume/gas/mist/vapors/spray

Wear protective gloves/protective clothing/eye protection/face protection

Wash face, hands and any exposed skin thoroughly after handling

Use only outdoors or in a well-ventilated area

Response

Immediately call a POISON CENTER or doctor/physician

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing **Ingestion**

IF SWALLOWED: Rinse mouth. DO NOT induce vomiting

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer.

Unknown Acute Toxicity

3. Composition / information on ingredients

Component	CAS-No	Weight %
Sulfuric acid	7664-93-9	90 - 98
Water	7732-18-5	2 - 10

4. First-aid measures

General Advice Show this safety data sheet to the doctor in attendance. Immediate medical attention is

required.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Immediate medical attention is required.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Remove and wash

contaminated clothing before re-use. Call a physician immediately.

Inhalation If not breathing, give artificial respiration. Remove from exposure, lie down. Do not use

mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory

medical device. Call a physician immediately.

Ingestion Do not induce vomiting. Clean mouth with water. Never give anything by mouth to an

unconscious person. Call a physician immediately.

lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue

and danger of perforation

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media CO 2, dry chemical, dry sand, alcohol-resistant foam.

Unsuitable Extinguishing Media DO NOT USE WATER

Flash Point Not applicable

Method - No information available

Autoignition Temperature

Explosion Limits

No information available

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. The product causes burns of eyes, skin and mucous membranes.

Hazardous Combustion Products

Sulfur oxides Hydrogen

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

Health	Flammability	Instability	Physical hazards
3	0	2	W

Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment. Evacuate personnel to

safe areas. Keep people away from and upwind of spill/leak.

Environmental Precautions Should not be released into the environment.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up**

7. Handling and storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only

under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from

water. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)	
Sulfuric acid	TWA: 0.2 mg/m ³	(Vacated) TWA: 1 mg/m ³	IDLH: 15 mg/m ³	TWA: 1 mg/m ³	
	_	TWA: 1 mg/m ³	TWA: 1 mg/m ³	_	

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

Personal Protective Equipment

Eye/face ProtectionWear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State Liquid

Appearance Clear, Colorless to brown

Odorless

Odor Threshold No information available

pH 0.3 (1N) **Melting Point/Range** 10 °C / 50 °F

Boiling Point/Range 290 - 338 °C / 554 - 640.4 °F

Flash Point Not applicable
Evaporation Rate Slower than ether
Flammability (solid,gas) Not applicable

Flammability or explosive limits

Odor

UpperNo data availableLowerNo data available

Vapor Pressure < 0.001 mmHg @ 20 °C

Vapor Density 3.38 (Air = 1.0)

Specific Gravity 1.84

Solubility

Partition coefficient; n-octanol/water

Autoignition Temperature

Soluble in water

No data available

No information available

Decomposition Temperature 340°C

Viscosity No information available

Molecular FormulaH2SO4Molecular Weight98.08

10. Stability and reactivity

Reactive Hazard Yes

Stability Reacts violently with water. Hygroscopic.

Conditions to Avoid Incompatible products. Excess heat. Exposure to moist air or water.

Incompatible Materials Water, Organic materials, Strong acids, Strong bases, Metals, Alcohols, Cyanides, Sulfides

Hazardous Decomposition Products Sulfur oxides, Hydrogen

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions

None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. Oral LD50 **Dermal LD50** Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. Based on ATE data, the classification criteria are not met. ATE > 20 mg/l. Vapor LC50

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation		
Sulfuric acid	2140 mg/kg (Rat)	Not listed	LC50 = 510 mg/m ³ (Rat) 2 h		
Water	-	Not listed	Not listed		

Toxicologically Synergistic

No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Causes severe burns by all exposure routes

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Exposure to strong inorganic mists containing sulfuric acid may cause cancer by inhalation.

Component	CAS-No IARC		NTP	ACGIH	OSHA	Mexico	
Sulfuric acid	7664-93-9	Group 1	Known	A2	X	A2	
Water	7732-18-5	Not listed					

IARC: (International Agency for Research on Cancer)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program) NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Mexico - Occupational Exposure Limits - Carcinogens

Hygienists)

A1 - Known Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen A2 - Suspected Human Carcinogen

A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen A5 - Not Suspected as a Human Carcinogen

Mutagenic Effects No information available

Reproductive Effects No information available.

Developmental Effects No information available.

No information available. **Teratogenicity**

STOT - single exposure Respiratory system

STOT - repeated exposure None known

Aspiration hazard No information available

delayed

Symptoms / effects,both acute and Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes

severe swelling, severe damage to the delicate tissue and danger of perforation

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

This product contains the following substance(s) which are hazardous for the environment. .

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Sulfuric acid	-	LC50: > 500 mg/L, 96h static	-	EC50: 29 mg/L/24h
		(Brachydanio rerio)		

Persistence and Degradability No information available

Bioaccumulation/ AccumulationNo information available.

Mobility No information available.

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

14. Transport information

DOT

UN-No UN1830
Proper Shipping Name Sulfuric acid

Hazard Class 8
Packing Group ||

TDG

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group

<u>IATA</u>

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

IMDG/IMO

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Sulfuric acid	Х	Χ	-	231-639-5	-		Χ	Χ	Χ	Χ	Χ
Water	Х	Χ	-	231-791-2	-		Х	-	Χ	Х	Χ

Legend:

E - Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.

X - Listed

F - Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.

- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b)

Not applicable

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Sulfuric acid	7664-93-9	90 - 98	1.0

SARA 311/312 Hazard Categories

Acute Health Hazard

Chronic Health Hazard

Fire Hazard

Sudden Release of Pressure Hazard

Reactive Hazard

Yes

Yes

No

No

Reactive Hazard

Yes

CWA (Clean Water Act)

Component	CWA - Hazardous Substances			CWA - Priority Pollutants
Sulfuric acid	X	1000 lb	-	-

Clean Air Act Not applicable

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Sulfuric acid	1000 lb	1000 lb
Onliferation Descriptions OF	his was don't santaine the fall coling was a siting OF all	!!-

California Proposition 65 This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Sulfuric acid	7664-93-9	Carcinogen	-	Carcinogen

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sulfuric acid	X	X	X	X	Х
Water	-	-	X	-	-

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

16. Other information	
-----------------------	--

Prepared By Regulatory Affairs

Thermo Fisher Scientific

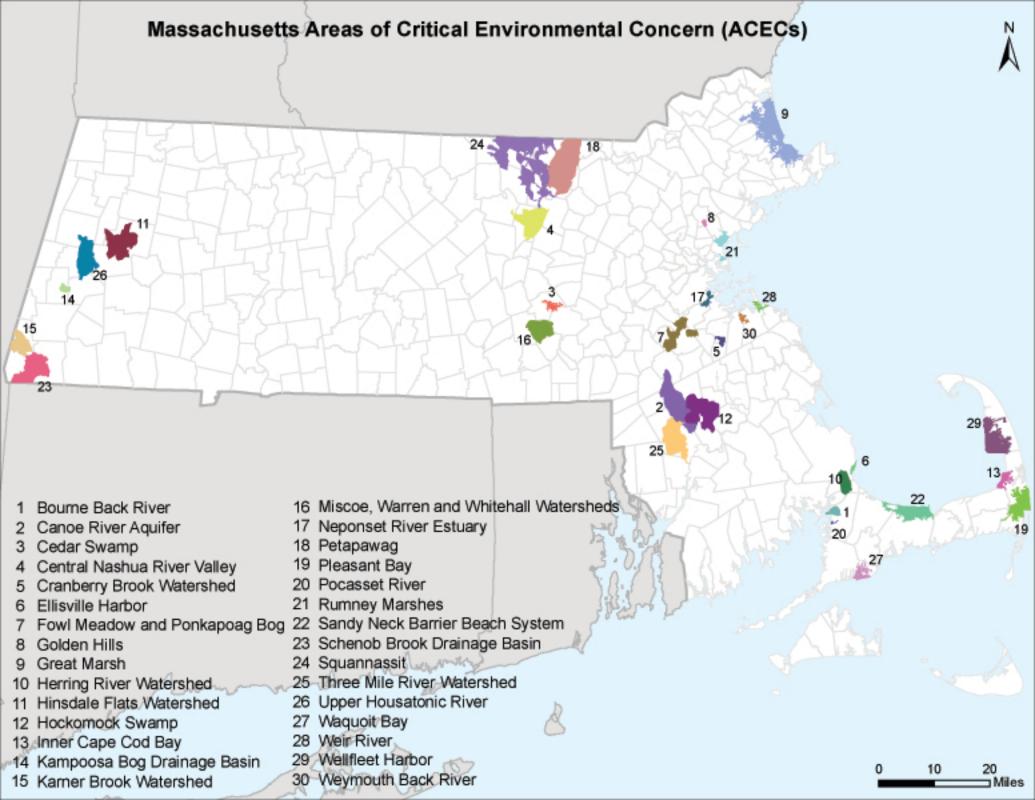
Email: EMSDS.RA@thermofisher.com

 Creation Date
 12-Nov-2010

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

Revision Summary SDS sections updated. 2.


Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

APPENDIX D

Endangered Species Act Assessment

MassDEP Phase 1 Site Assessment Map 7/13/2018 MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible Site Information: WASHINGTON STREET BROOKLINE, MA for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can NAD83 UTM Meters: 4688564mN , 325839mE (Zone: 19) July 13, 2018 be found at: Department of Environmental Protection http://www.mass.gov/mgis/. STEARNS ROAD BROOKLING HEALTH CARE CENTER m FOSTER STREET School of Psychoanalysis Inc FRANCIS STREET ALTON PLACE Dana-Farmer Cancer Institute Children's Hospital Bosto Boston Latin 7 Brigham and Women's Hos н St Mary of the Assumption Harvard Unive School LINDEN PLACE CE STREET: SEARLE AVEN PIÈRCE STREET WEBSTER PLACE dy of Perpetual Help Mission Gra Lynch Center Brookline High Scho IS COURT BKOOKLINE HILLSIDE STREE VILLAGE PARKER HILL TERRACE ON STREET STREET Manville School LANDMARK AT LONGY William H Lincoln School m nides School POND VIEW NURSING FACILITY MILTON ROAD ALLERTON PARKER HIL MARRO HERRILL HOUSE, INC BENJAMIN HEALTHCARE CENT AWN STR LEVERETT POND BICKFORD STREET GODDARD HOUSE, A RET & N HIGHLAND ROAD NT PLEASANT/HOME BYNNER STREET CODDARD COUR K STREET John F Kennedy WARD POND 90 BARBARA STREET HALIFAX STREET RGENT POND OAKVIEW TERRACE MORAINE STREET 500 m 1000 ft PERSHING ROAD Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail PWS Protection Areas: Zone II, IWPA, Zone A Hydrography: Open Water, PWS Reservoir, Tidal Flat ... Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct

Wetlands: Freshwater, Saltwater, Cranberry Bog ...

FEMA 100yr Floodplain; Protected Open Space; ACEC . Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential

Solid Waste Landfill; PWS: Com. GW,SW, Emerg., Non-Com.

Non Potential Drinking Water Source Area: Medium, High (Yield),

Aquifers: Medium Yield, High Yield, EPA Sole Source...

Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam

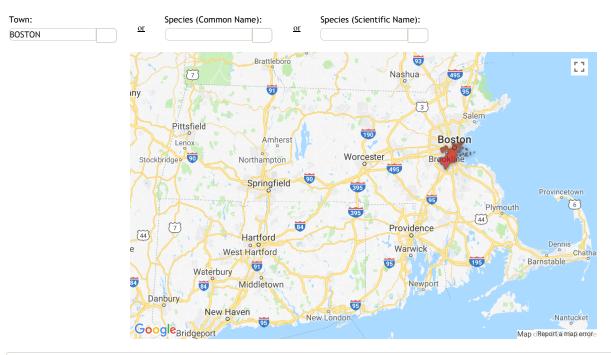
FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY SPECIES		FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS


COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke	
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.	
	Red Knot ¹	Red Knot ¹ Threatened Coastal Beaches and Rocky Shores, sand and mud flats		Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop	
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat Threatened Final 4(d) Rule Winter- mines and caves, Summer – v variety of forested habitats		Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster	
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

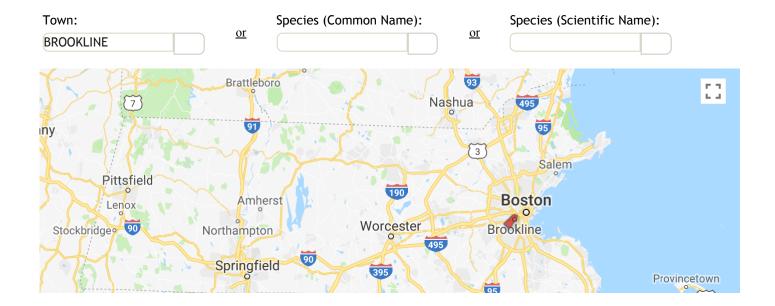
¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Show 50 ▼ en	tries			Search:		
Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Rece	
BOSTON	Butterfly/Moth	Abagrotis nefascia	Coastal Heathland Cutworm	SC	2001	
BOSTON	Vascular Plant	Ageratina aromatica	Lesser Snakeroot	E	1896	
BOSTON	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC	2015	
BOSTON	Bird	Ammodramus savannarum	Grasshopper Sparrow	T	1993	
BOSTON	Butterfly/Moth	Apodrepanulatrix liberaria	New Jersey Tea Inchworm	E	Historic	
BOSTON	Vascular Plant	Aristida purpurascens	Purple Needlegrass	T	Historic	
BOSTON	Vascular Plant	Aristida tuberculosa	Seabeach Needlegrass	T	1877	
BOSTON	Vascular Plant	Asclepias verticillata	Linear-leaved Milkweed	T	1878	
BOSTON	Bird	Bartramia longicauda	Upland Sandpiper	E	2015	
BOSTON	Vascular Plant	Boechera missouriensis	Green Rock-cress	T	1930	
BOSTON	Vascular Plant	Carex striata	Walter's Sedge	E	Historic	
BOSTON	Bird	Charadrius melodus	Piping Plover	T	2016	
BOSTON	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger Beetle	SC	1910	
BOSTON	Beetle	Cicindela purpurea	Cow Path Tiger Beetle	SC	1928	
BOSTON	Beetle	Cicindela rufiventris hentzii	Eastern Red-bellied Tiger Beetle	T	1927	
BOSTON	Vascular Plant	Desmodium cuspidatum	Large-bracted Tick-trefoil	T	1896	
BOSTON	Vascular Plant	Eriophorum gracile	Slender Cottongrass	T	1885	
BOSTON	Bird	Falco peregrinus	Peregrine Falcon	T	2017	
BOSTON	Fish	Gasterosteus aculeatus	Threespine Stickleback	T	2014	
BOSTON	Bird	Gavia immer	Common Loon	SC	1824	
BOSTON	Vascular Plant	Houstonia longifolia	Long-leaved Bluet	E	1918	
BOSTON	Vascular Plant	Liatris scariosa var. novae-angliae	New England Blazing Star	SC	1933	
BOSTON	Mussel	Ligumia nasuta	Eastern Pondmussel	SC	1841	
BOSTON	Vascular Plant	Linum medium var. texanum	Rigid Flax	T	1909	
BOSTON	Vascular Plant	Lycopus rubellus	Gypsywort	Е	1896	
BOSTON	Vascular Plant	Malaxis unifolia	Green Adder's Mouth	T	1883	
BOSTON	Butterfly/Moth	Metarranthis apiciaria	Barrens Metarranthis	E	1934	
BOSTON	Vascular Plant	Myriophyllum alterniflorum	Alternate-flowered Water-milfoil	Е	Historic	
BOSTON	Vascular Plant	Ophioglossum pusillum	Adder's-tongue Fern	T	1884	
BOSTON	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	T	1908	
BOSTON	Bird	Pooecetes gramineus	Vesper Sparrow	T	1985	
BOSTON	Butterfly/Moth	Pyrrhia aurantiago	Orange Sallow Moth	SC	1988	
BOSTON	Vascular Plant	Ranunculus micranthus	Tiny-flowered Buttercup	E	1891	
BOSTON	Vascular Plant	Rumex pallidus	Seabeach Dock	T	1984	
BOSTON	Vascular Plant	Sanicula odorata	Long-styled Sanicle	T	Historic	
BOSTON	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	T	1932	
BOSTON	Vascular Plant	Scirpus longii	Long's Bulrush	T	1907	
BOSTON	Vascular Plant	Setaria parviflora	Bristly Foxtail	SC	2001	
BOSTON	Dragonfly/Damselfly	Somatochlora linearis	Mocha Emerald	SC	2009	


NHESP Town Species Viewer

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent
BOSTON	Bird	Sterna hirundo	Common Tern	SC	2015
BOSTON	Bird	Sternula antillarum	Least Tern	SC	2015
BOSTON	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC	1909
BOSTON	Reptile	Terrapene carolina	Eastern Box Turtle	SC	1939
BOSTON	Bird	Tyto alba	Barn Owl	SC	1989
BOSTON	Bird	Vermivora chrysoptera	Golden-winged Warbler	E	Historic
BOSTON	Vascular Plant	Viola brittoniana	Britton's Violet	T	1909
Showing 1 to 46 o	f 46 entries			First Previous 1	Next Last

Show Additional Info

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Map dReporta map errore

Showing 1 to 8 of 8 entries			Search:				
			Fi	st Previous	1 Next Last		
Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs		
BROOKLINE	Beetle	Cicindela purpurea	Cow Path Tiger Beetle	SC	Historic		
BROOKLINE	Beetle	Cicindela rufiventris hentzii	Eastern Red-bellied Tiger Beetle	T	Historic		
BROOKLINE	Vascular Plant	Houstonia longifolia	Long-leaved Bluet	E	1897		
BROOKLINE	Vascular Plant	Linum medium var. texanum	Rigid Flax	T	1903		
BROOKLINE	Vascular Plant	Lipocarpha micrantha	Dwarf Bulrush	T	1902		
BROOKLINE	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	T	1912		

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
BROOKLINE	Bird	Vermivora chrysoptera	Golden-winged Warbler	E	1932
BROOKLINE	Vascular Plant	Viola brittoniana	Britton's Violet	T	1913
Show 10 ▼ entries					

Show Additional Info

IPaC

U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9045 **Threatened**

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

IPaC: Explore Location

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

7/11/2018

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/2974

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Oct 15 to Aug 31

Breeds May 15 to Oct 10

Breeds May 20 to Jul 31

Breeds May 20 to Aug 10

Breeds Apr 29 to Jul 20

Breeds elsewhere

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Long-eared Owl asio otus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3631

Breeds elsewhere

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Ruddy Turnstone Arenaria interpres morinella

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Saltmarsh Sparrow Ammodramus caudacutus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Whimbrel Numenius phaeopus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9483

Breeds elsewhere

Willet Tringa semipalmata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 5

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any

- week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

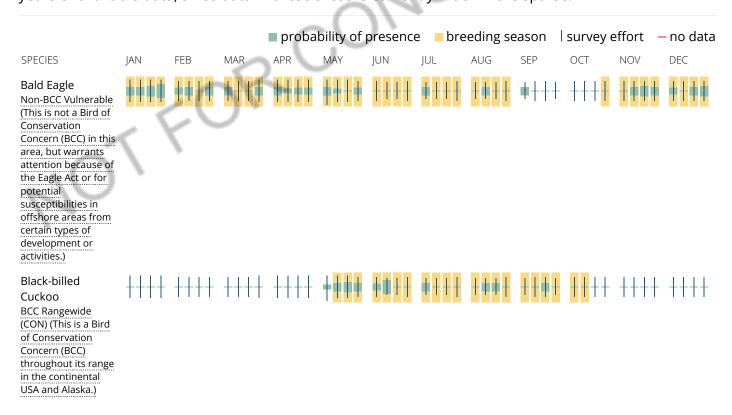
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

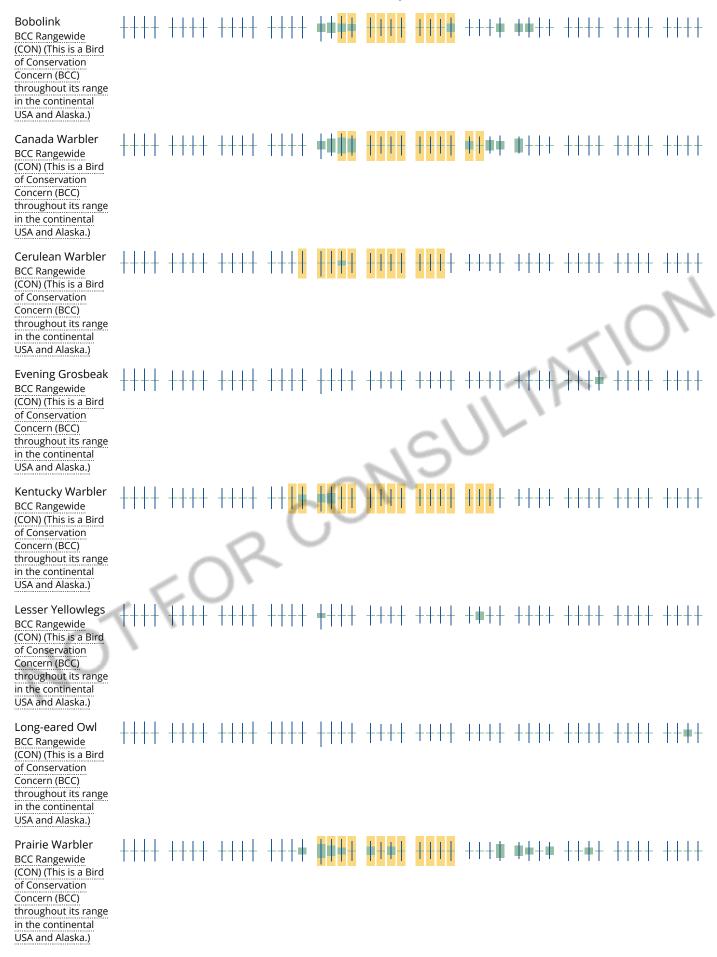
Breeding Season (

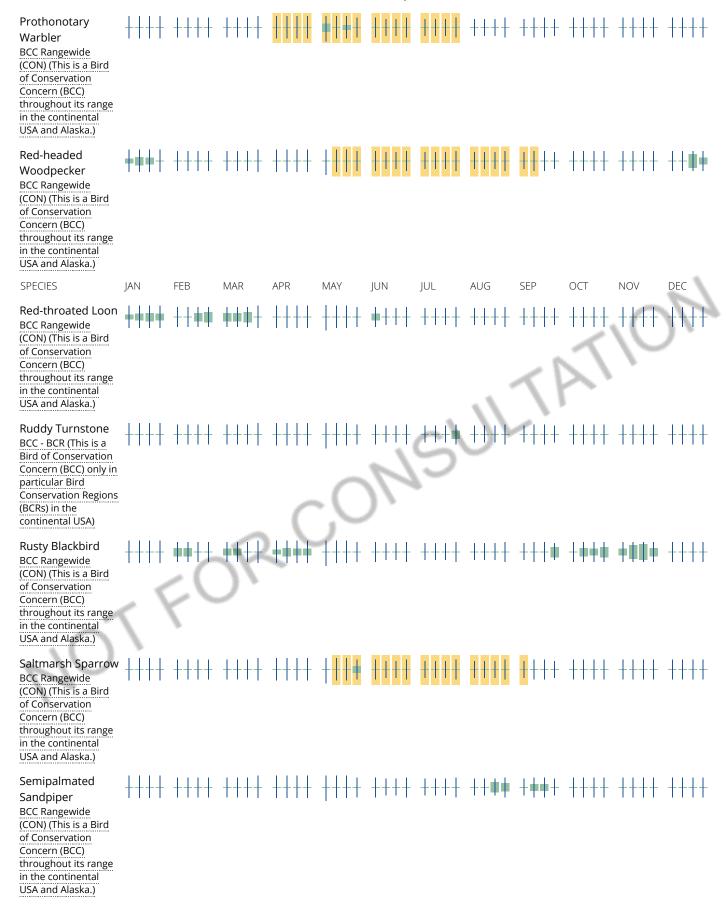
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

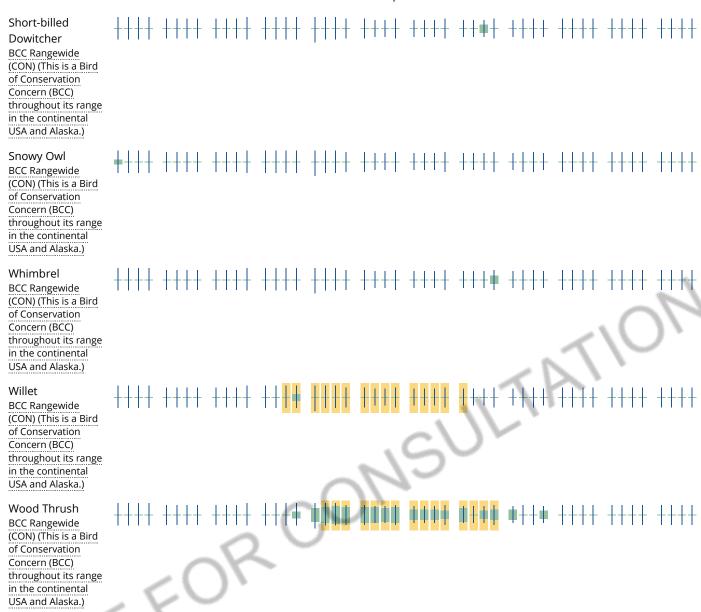
Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.


Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project

intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

FRESHWATER POND

PUBHh

RIVERINE

R4SBC

R5UBH

A full description for each wetland code can be found at the National Wetlands Inventory website

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

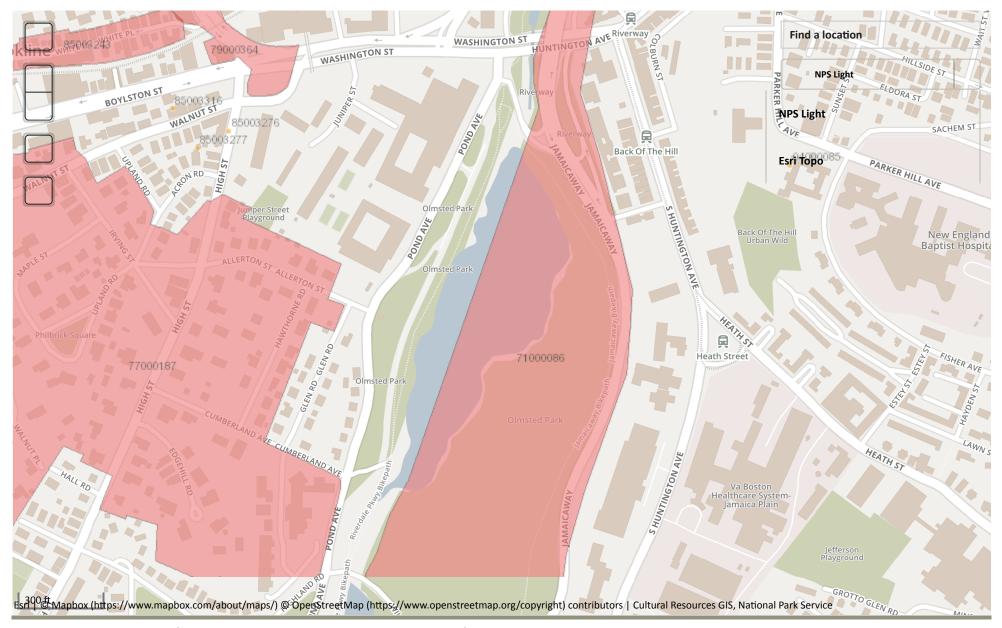
Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.


APPENDIX E

National Historic Preservation Act Review

National Register of Historic Places

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. ...

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Brookline; Street Name: Pond Ave; Resource Type(s): Area, Building, Object, Structure, Burial Ground;

Inv. No.	Property Name	Street	Town	Year
BKL.901	Leverett Pond	Huntington Ave	Brookline	1881
BKL.2244		203 Pond Ave	Brookline	1924
BKL.2245		209 Pond Ave	Brookline	1925
BKL.2246		215 Pond Ave	Brookline	1926
BKL.2247		219 Pond Ave	Brookline	1925
BKL.2248		225 Pond Ave	Brookline	1940
BKL.2249		231 Pond Ave	Brookline	1928

Friday, July 13, 2018 Page 1 of 1

Massachusetts Cultural Resource Information System

Scanned Record Cover Page

Inventory No: BKL.901
Historic Name: Leverett Pond

Common Name:

Address: Huntington Ave

Pond Ave

City/Town: Brookline

Village/Neighborhood:

Local No: O.P. 3
Year Constructed: 1881

Architect(s): Olmsted, Frederick Law

Architectural Style(s):

Use(s): Park

Significance: Landscape Architecture; Recreation

Area(s): BKL.X: Olmsted Park System

Designation(s): Nat'l Register District (12/08/1971)

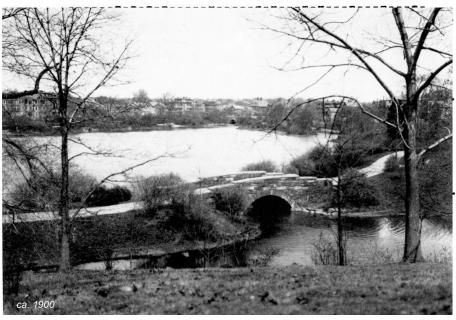
Building Materials(s):

The Massachusetts Historical Commission (MHC) has converted this paper record to digital format as part of ongoing projects to scan records of the Inventory of Historic Assets of the Commonwealth and National Register of Historic Places nominations for Massachusetts. Efforts are ongoing and not all inventory or National Register records related to this resource may be available in digital format at this time.

The MACRIS database and scanned files are highly dynamic; new information is added daily and both database records and related scanned files may be updated as new information is incorporated into MHC files. Users should note that there may be a considerable lag time between the receipt of new or updated records by MHC and the appearance of related information in MACRIS. Users should also note that not all source materials for the MACRIS database are made available as scanned images. Users may consult the records, files and maps available in MHC's public research area at its offices at the State Archives Building, 220 Morrissey Boulevard, Boston, open M-F, 9-5.

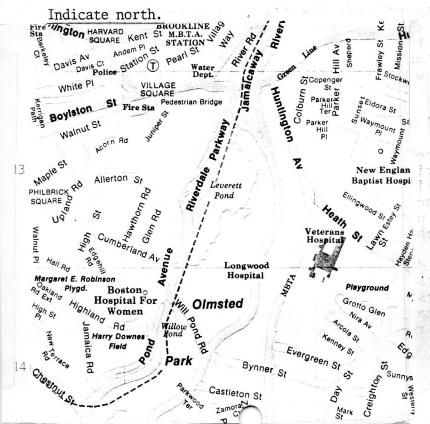
Users of this digital material acknowledge that they have read and understood the MACRIS Information and Disclaimer (http://mhc-macris.net/macrisdisclaimer.htm)

Data available via the MACRIS web interface, and associated scanned files are for information purposes only. THE ACT OF CHECKING THIS DATABASE AND ASSOCIATED SCANNED FILES DOES NOT SUBSTITUTE FOR COMPLIANCE WITH APPLICABLE LOCAL, STATE OR FEDERAL LAWS AND REGULATIONS. IF YOU ARE REPRESENTING A DEVELOPER AND/OR A PROPOSED PROJECT THAT WILL REQUIRE A PERMIT, LICENSE OR FUNDING FROM ANY STATE OR FEDERAL AGENCY YOU MUST SUBMIT A PROJECT NOTIFICATION FORM TO MHC FOR MHC'S REVIEW AND COMMENT. You can obtain a copy of a PNF through the MHC web site (www.sec.state.ma.us/mhc) under the subject heading "MHC Forms."


Commonwealth of Massachusetts
Massachusetts Historical Commission
220 Morrissey Boulevard, Boston, Massachusetts 02125
www.sec.state.ma.us/mhc

This file was accessed on: Friday, July 13, 2018 at 12:54 PM

FORM H - PARKS AND LANDSCAPE FEATURES


Area	Form No.
0, P.	3

MASSACHUSETTS HISTORICAL COMMISSION 294 Washington Street, Boston, Ma. 02108

SKETCH MAP

Draw map showing property's location in relationship to nearest cross streets and other buildings or geographical features.

Private	
Present owner Brookline, Boston & M	<u>ID</u> C
Type: Brookline Town Office 333 Washington St.	<u> </u>
X Park Brookline, MA	
Green .	
Training Field	
Boulevard or Parkway	

Town Brookline & Boston

AddressPond & Huntington Ave.s.

Name Leverett Pond (Olmsted Park)&

(Muddy River Improvement)

4. Description:

Other

Ownership:

x Public

Date 1881
Size (approx. acreage) 12.8 acres
Architect (if known) F.L. Olmsted
Location of Plans (if known) job # 964,927
930/FLONHS -99Warren St., Brookline
Setting primarily residential/urban
Current Condition improving/\$100,000
in revitalization funds/fair-good
Recorded by Becca Palder
Organization MAOP
Date Aug. 1983

VISUAL ASSESSMENT

Describe topography and layout. Note components such as structures (bandstands, gazebos, sheds) monuments & fountains; landscaping features (formal plantings, bodies of water).

NATURAL FEATURES: Compare current appearance with original, if possible.

The pond is 1500ft. x 500ft. & has a half-mile shoreline. The major inlet to Leverett Pond originates from Jamaica Pond, a kettle pond fed by a natural spring. From Jamaica Pond the brook is culverted from Ward Pond to Willow Pond & emerges into Leverett Pond. The water flows into Muddy River at the (N) end of the pond, into the Back Bay Fens, & finally into the Charles River basin. Leverett Pond is therefore an important link in the continuing function of the river-floodplain & wetland ystem of the Boston-Brookline area.

ARCH. ELEMENTS:

The Cumberland Avenue Bridge (1883) & the Leverett Pond footbridge (1894) designed by Shepley, Rutan & Coolidge, from designs furnished by the Odmsted office. To the (SE) on the Boston side, are two baseball diamonds & an MDC skating rink.

HISTORICAL SIGNIFICANCE Discuss types of use, major period of use, evaluate importance within town.

Leverett Pond is a major component of Frederick Law Olmsted's plan for the Boston Park System. It is thus a vital link in the chain of open spaces & waterways planned by Olmsted as a cohesive work of art. It is characteristic of Olmsted's naturalistic approach to park design.

The pond occupies a significant link in the Muddy River wetland system & the Charles River watershed.

Leverett Pond serves as a significant focal point for Brookline meetings & gatherings. The pond & surrounding parklands now called Leverett Park are situated in a densely populated district called Brookline Village. Olmsted Park (renamed in 1900) includes Jamaica Pond, Leverette Pond, Ward's Pond, & Willow Pond.

Landuse adjacent to the park is primarily residential. The northwest border of Leverette Pond is residential. At the (N) end of Pond Avenue is Brook House, an apartment complex. Until recently, the Parkway Division of the Lying-In Hospital, to the (W), provided an institutional land use. The grounds of this bldg. were designed by Frederick Law Olmsted in 1892. It has been proposed for condominium development.

Leverett Pond is primarily used for picnicking, sunbathing, & wildlife observation.

Olmsted's original design for Leverette Pond is still essentially intact, although the condition of the park has deteriorated. Many trees & shrubs planted by Olmsted on the Brookline side have inevitably been lost, although a few majestic maples, beeches & oaks survive. The oak forest on the Boston side contains much of the original planting. Invasive plants such as bittersweet & brambles have taken over, preventing fruiting & choking out other plants.

The pond is polluted & needs to be dredged. Since the pond is at the foot of the drumlin, the runoff from the streets is significant. The pond banks are eroded & the turf is torn up by parked cars. An intrinsic part of Olmsted's design was to divert attention away from the park's boundries. Today's traffic on the parkway has the opposite effect. A recent restoration study has been made by Radcliffe Seminars Landscape Design Program.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Street Name: Jamaicaway; Resource Type(s): Area, Building, Object, Burial Ground, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.9300	Jamaicaway Bridge over Huntington Avenue	Jamaicaway	Boston	1936
BOS.9310	Olmsted Park - Retaining Walls along Jamaicaway	Jamaicaway	Boston	1894
BOS.9338	Jamaica Pond	Jamaicaway	Boston	r 1780
BOS.9339	Jamaica Pond Pavilon	Jamaicaway	Boston	c 1910
BOS.10020	Perkins, Edward Newton House	Jamaicaway	Boston	1870
BOS.10021	Jamaica Pond Boathouse	Jamaicaway	Boston	1913
BOS.10022	Curley, James Michael House	350 Jamaicaway	Boston	1915
BOS.9308	Ward's Pond Stone Steps	Ward's Pond	Boston	1894

Wednesday, July 11, 2018 Page 1 of 1

7/13/2018 **MACRIS** Details

Massachusetts Cultural Resource Information System

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No:

Historic Name: Olmsted Park System

Common Name: Emerald Necklace around Boston

Address:

City/Town: **Boston**

Back Bay West; Dorchester; Fenway - Kenmore; Jamaica Village/Neighborhood:

Plain; Parker Hill - Mission Hill; Roxbury

Local No:

Year Constructed:

Architect(s): Olmsted, Frederick Law

Architectural Style(s):

Use(s): Other Recreational; Park

Significance: Community Planning; Landscape Architecture; Recreation

Area(s):

Designation(s): Nat'l Register District (12/08/1971)

Building Material(s):

New Search

Previous

MHC Home | MACRIS Home

7/13/2018 **MACRIS** Details

Massachusetts Cultural Resource Information System

Digital Photo

Not Yet

Available

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No: BOS.9310

Historic Name: Olmsted Park - Retaining Walls along Jamaicaway

Common Name:

Address: Jamaicaway

City/Town: Boston

Parker Hill - Mission Hill; Top and Back of the Hill; Centre -Village/Neighborhood:

Heath Streets

Local No: IO;JE Year Constructed: 1894 Architect(s): Olmsted

Architectural Style(s):

Use(s): Other Engineering; Other Road Related

Significance: Engineering; Landscape Architecture; Transportation

BOS.IO: Olmsted Park System Area(s):

BOS.JE: Emerald Necklace Parks

Designation(s): Nat'l Register District (12/08/1971); Local Landmark (12/18/1989)

Building Material(s):

New Search

Previous

MHC Home | MACRIS Home

7/13/2018 MACRIS Details

Massachusetts Cultural Resource Information System

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No: BOS.JE

Historic Name: Emerald Necklace Parks

Common Name:

Address:

City/Town: Boston

Village/Neighborhood: Fenway - Longwood; Jamaica Plain; Parker Hill - Mission Hill;

Fenway

Local No:

Year Constructed:

Architect(s): Olmsted, Frederick Law

Architectural Style(s):

Use(s): Other Recreational; Other Transportation; Park

Architecture; Community Planning; Conservation;

Significance: Engineering; Landscape Architecture; Recreation; Social

History; Transportation

Area(s):

Designation(s): Nat'l Register District (12/08/1971); Local Landmark (12/18/1989)

Building Material(s):

New Search

Previous

MHC Home

MACRIS Home

Digital Photo

Not Yet

Available

APPENDIX F

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1812596

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Cole Worthy
Phone: (617) 886-7341

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Report Date: 04/23/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04231819:36

Project Name: BOSTON COLLEGE CENTRAL HEAT

HA-B1(OW)_04112018

Project Number: 128271-018

Lab Number:

L1812596

Report Date: 04/23/18

Alpha Sample ID

L1812596-01

Client ID

Matrix WATER Sample Location

CHESTNUT HILL, MA

Collection Date/Time

04/11/18 13:35

e/Time Receive Date

04/11/18

L1812596

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:BOSTON COLLEGE CENTRAL HEATLab Number:L1812596Project Number:128271-018Report Date:04/23/18

Case Narrative (continued)

Report Submission

April 23, 2018: This final report includes the results of all requested analyses. In addition, the sample location has been corrected.

April 18, 2018: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Microextractables

The WG1105886-3 MS recovery, performed on L1812596-01 (HA-B1(OW)_04112018), is outside the acceptance criteria for 1,2-dibromoethane (76%).

Semivolatile Organics

The WG1106018-2/-3 LCS/LCSD recoveries, associated with L1812596-01 (HA-B1(OW)_04112018), are below the acceptance criteria for benzidine (3%/5%) and pyridine (LCS 9%); however, they have been identified as "difficult" analytes. The results of the associated samples are reported.

Total Metals

The WG1105795-4 Laboratory Duplicate RPD for iron (28%), performed on L1812596-01 (HA-B1(OW)_04112018), is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/23/18

600, Sew on Kelly Stenstrom

ORGANICS

VOLATILES

Serial_No:04231819:36

L1812596

04/23/18

Project Name: BOSTON COLLEGE CENTRAL HEAT

L1812596-01

HA-B1(OW)_04112018

CHESTNUT HILL, MA

Project Number: 128271-018

SAMPLE RESULTS

Date Collected: 04/11/18 13:35

OAM LE REGOLIO

Date Received: 04/11/18
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/16/18 08:07

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

L1812596

04/23/18

Project Name: Lab Number: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

SAMPLE RESULTS

Date Collected: 04/11/18 13:35

Date Received: 04/11/18 Field Prep: Not Specified

Report Date:

HA-B1(OW)_04112018 Client ID:

Sample Location: CHESTNUT HILL, MA

L1812596-01

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Methyl tert butyl ether	ND		ug/l	1.0		1
p/m-Xylene	ND		ug/l	1.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	5.0		1
1,4-Dichlorobutane	ND		ug/l	5.0		1
1,2,3-Trichloropropane	ND		ug/l	5.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	5.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	5.0		1
Vinyl acetate	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Ethyl methacrylate	ND		ug/l	5.0		1
Acrylonitrile	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.5		1
Tetrahydrofuran	ND		ug/l	5.0		1
2,2-Dichloropropane	ND		ug/l	2.5		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	2.5		1
n-Butylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	2.5		1
o-Chlorotoluene	ND		ug/l	2.5		1
p-Chlorotoluene	ND		ug/l	2.5		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1
Hexachlorobutadiene	ND		ug/l	0.50		1

Project Name: Lab Number: BOSTON COLLEGE CENTRAL HEAT L1812596

Project Number: Report Date: 128271-018 04/23/18

SAMPLE RESULTS

Lab ID: L1812596-01 Date Collected: 04/11/18 13:35

Client ID: Date Received: 04/11/18 HA-B1(OW)_04112018 Sample Location: Field Prep: Not Specified CHESTNUT HILL, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Isopropylbenzene	ND		ug/l	0.50		1	
p-Isopropyltoluene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	2.5		1	
n-Propylbenzene	ND		ug/l	0.50		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	103	70-130	

Project Name: Lab Number: BOSTON COLLEGE CENTRAL HEAT L1812596

Project Number: Report Date: 128271-018 04/23/18

SAMPLE RESULTS

Lab ID: L1812596-01 Date Collected: 04/11/18 13:35

Client ID: Date Received: 04/11/18 HA-B1(OW)_04112018 Field Prep: Sample Location: CHESTNUT HILL, MA Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 04/16/18 08:07

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westborough Lab						
1,4-Dioxane	ND		ug/l	3.0		1

04/23/18

Project Name: Lab Number: **BOSTON COLLEGE CENTRAL HEAT** L1812596

Project Number: Report Date: 128271-018

04/12/18 12:47

SAMPLE RESULTS

Lab ID: L1812596-01 Date Collected: 04/11/18 13:35

Date Received: Client ID: HA-B1(OW)_04112018 04/11/18 Sample Location: CHESTNUT HILL, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 04/12/18 11:13 Analytical Method: 14,504.1

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α

L1812596

Lab Number:

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018 **Report Date:** 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 04/12/18 12:14 Extraction Date: 04/12/18 11:13

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbore	ough Lab fo	r sample(s)	: 01	Batch: WG110	5886-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1812596

Project Number: 128271-018 **Report Date:** 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 04/16/18 06:03

Analyst: MM

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - \	Nestborough	Lab for sa	ample(s):	01	Batch:	WG1106782-5	
1,4-Dioxane	ND		ug/l		3.0		

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number:

Project Number: 128271-018 **Report Date:** 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/16/18 06:03

Analyst: MM

Parameter	Result	Qualifier Unit	s	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01	Batch:	WG1106788-5
Methylene chloride	ND	ug/	1	3.0	
1,1-Dichloroethane	ND	ug/	1	0.75	
Chloroform	ND	ug/	1	0.75	
Carbon tetrachloride	ND	ug/	1	0.50	
1,2-Dichloropropane	ND	ug/	1	1.8	
Dibromochloromethane	ND	ug/	1	0.50	
1,1,2-Trichloroethane	ND	ug/	1	0.75	
2-Chloroethylvinyl ether	ND	ug/	1	10	
Tetrachloroethene	ND	ug/	1	0.50	
Chlorobenzene	ND	ug/	1	0.50	
Trichlorofluoromethane	ND	ug/	1	2.5	
1,2-Dichloroethane	ND	ug/	1	0.50	
1,1,1-Trichloroethane	ND	ug/	1	0.50	
Bromodichloromethane	ND	ug/	1	0.50	
trans-1,3-Dichloropropene	ND	ug/	1	0.50	
cis-1,3-Dichloropropene	ND	ug/	1	0.50	
1,3-Dichloropropene, Total	ND	ug/	1	0.50	
1,1-Dichloropropene	ND	ug/	1	2.5	
Bromoform	ND	ug/	1	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/	1	0.50	
Benzene	ND	ug/	1	0.50	
Toluene	ND	ug/	1	0.75	
Ethylbenzene	ND	ug/	1	0.50	
Chloromethane	ND	ug/	1	2.5	
Bromomethane	ND	ug/	1	1.0	
Vinyl chloride	ND	ug/	1	1.0	
Chloroethane	ND	ug/	1	1.0	
1,1-Dichloroethene	ND	ug/	1	0.50	
trans-1,2-Dichloroethene	ND	ug/	1	0.75	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Report Date: 04/23/18

Lab Number:

Project Number: 128271-018

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/16/18 06:03

Analyst: MM

Parameter	Result	Qualifier L	Jnits	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s	s): 01	Batch:	WG1106788-5
1,2-Dichloroethene, Total	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	2.5	
1,3-Dichlorobenzene	ND		ug/l	2.5	
1,4-Dichlorobenzene	ND		ug/l	2.5	
Methyl tert butyl ether	ND		ug/l	1.0	
p/m-Xylene	ND		ug/l	1.0	
o-Xylene	ND		ug/l	1.0	
Xylenes, Total	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	5.0	
1,4-Dichlorobutane	ND		ug/l	5.0	
lodomethane	ND		ug/l	5.0	
1,2,3-Trichloropropane	ND		ug/l	5.0	
Styrene	ND		ug/l	1.0	
Dichlorodifluoromethane	ND		ug/l	5.0	
Acetone	ND		ug/l	5.0	
Carbon disulfide	ND		ug/l	5.0	
2-Butanone	ND		ug/l	5.0	
Vinyl acetate	ND		ug/l	5.0	
4-Methyl-2-pentanone	ND		ug/l	5.0	
2-Hexanone	ND		ug/l	5.0	
Ethyl methacrylate	ND		ug/l	5.0	
Acrylonitrile	ND		ug/l	5.0	
Bromochloromethane	ND		ug/l	2.5	
Tetrahydrofuran	ND		ug/l	5.0	
2,2-Dichloropropane	ND		ug/l	2.5	
1,2-Dibromoethane	ND		ug/l	2.0	
1,3-Dichloropropane	ND		ug/l	2.5	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Report Date: 04/23/18

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/16/18 06:03

Analyst: MM

						MDL
olatile Organics by GC/MS -	- Westborough Lab	for sample	e(s):	01	Batch:	WG1106788-5
1,1,1,2-Tetrachloroethane	ND		ug/l		0.50	
Bromobenzene	ND		ug/l		2.5	
n-Butylbenzene	ND		ug/l		0.50	
sec-Butylbenzene	ND		ug/l		0.50	
tert-Butylbenzene	ND		ug/l		2.5	
o-Chlorotoluene	ND		ug/l		2.5	
p-Chlorotoluene	ND		ug/l		2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l		2.5	
Hexachlorobutadiene	ND		ug/l		0.50	
Isopropylbenzene	ND		ug/l		0.50	
p-Isopropyltoluene	ND		ug/l		0.50	
Naphthalene	ND		ug/l		2.5	
n-Propylbenzene	ND		ug/l		0.50	
1,2,3-Trichlorobenzene	ND		ug/l		2.5	
1,2,4-Trichlorobenzene	ND		ug/l		2.5	
1,3,5-Trimethylbenzene	ND		ug/l		2.5	
1,3,5-Trichlorobenzene	ND		ug/l		2.0	
1,2,4-Trimethylbenzene	ND		ug/l		2.5	
trans-1,4-Dichloro-2-butene	ND		ug/l		2.5	
Halothane	ND		ug/l		2.5	
Ethyl ether	ND		ug/l		2.5	
Methyl Acetate	ND		ug/l		10	
Ethyl Acetate	ND		ug/l		10	
Isopropyl Ether	ND		ug/l		2.0	
Cyclohexane	ND		ug/l		10	
Tert-Butyl Alcohol	ND		ug/l		10	
Ethyl-Tert-Butyl-Ether	ND		ug/l		2.0	
Tertiary-Amyl Methyl Ether	ND		ug/l		2.0	
1,4-Dioxane	ND		ug/l		250	

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number:

Project Number: 128271-018 **Report Date:** 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C

Analytical Date: 04/16/18 06:03

Analyst: MM

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	tborough Lab f	for sample(s): 01	Batch:	WG1106788-5
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/l	10	
Methyl cyclohexane	ND	ug/l	10	
p-Diethylbenzene	ND	ug/l	2.0	
4-Ethyltoluene	ND	ug/l	2.0	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	104	70-130
Dibromofluoromethane	100	70-130

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018 Lab Number:

L1812596

Report Date:

04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1105	886-2					
1,2-Dibromoethane	109		-		80-120	-			А
1,2-Dibromo-3-chloropropane	102		-		80-120	-			Α

Project Name: BOSTON COLLEGE CENTRAL HEAT

Lab Number:

L1812596

Project Number: 128271-018

Report Date:

04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s):	01 Batch:	WG1106782-3	WG1106782-4			
1,4-Dioxane	93		93		70-130	0		25

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

nrameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
platile Organics by GC/MS - Westbor	rough Lab Associated	sample(s): 01	Batch: WG1	106788-3	WG1106788-4			
Methylene chloride	98		97		70-130	1	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	99		97		70-130	2	20	
Dibromochloromethane	97		94		63-130	3	20	
1,1,2-Trichloroethane	98		96		70-130	2	20	
2-Chloroethylvinyl ether	98		98		70-130	0	20	
Tetrachloroethene	99		97		70-130	2	20	
Chlorobenzene	98		96		75-130	2	25	
Trichlorofluoromethane	100		100		62-150	0	20	
1,2-Dichloroethane	98		95		70-130	3	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	97		96		70-130	1	20	
cis-1,3-Dichloropropene	98		97		70-130	1	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	92		88		54-136	4	20	
1,1,2,2-Tetrachloroethane	93		92		67-130	1	20	
Benzene	97		96		70-130	1	25	
Toluene	100		100		70-130	0	25	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	110		110		64-130	0	20	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	gh Lab Associated	sample(s): 0	1 Batch: WG	1106788-3	WG1106788-4			
Bromomethane	110		110		39-139	0	20	
Vinyl chloride	100		100		55-140	0	20	
Chloroethane	110		110		55-138	0	20	
1,1-Dichloroethene	87		95		61-145	9	25	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	99		98		70-130	1	25	
1,2-Dichlorobenzene	96		94		70-130	2	20	
1,3-Dichlorobenzene	97		95		70-130	2	20	
1,4-Dichlorobenzene	95		96		70-130	1	20	
Methyl tert butyl ether	95		94		63-130	1	20	
p/m-Xylene	100		100		70-130	0	20	
o-Xylene	100		100		70-130	0	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	100		99		70-130	1	20	
1,4-Dichlorobutane	97		96		70-130	1	20	
lodomethane	89		90		70-130	1	20	
1,2,3-Trichloropropane	97		93		64-130	4	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	100		99		36-147	1	20	
Acetone	95		97		58-148	2	20	
Carbon disulfide	82		99		51-130	19	20	
2-Butanone	100		100		63-138	0	20	
Vinyl acetate	110		110		70-130	0	20	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	n Lab Associated	sample(s): 0	1 Batch: WG1	106788-3	WG1106788-4			
4-Methyl-2-pentanone	91		85		59-130	7	20	
2-Hexanone	92		90		57-130	2	20	
Ethyl methacrylate	97		93		70-130	4	20	
Acrylonitrile	98		96		70-130	2	20	
Bromochloromethane	96		100		70-130	4	20	
Tetrahydrofuran	97		90		58-130	7	20	
2,2-Dichloropropane	110		110		63-133	0	20	
1,2-Dibromoethane	95		93		70-130	2	20	
1,3-Dichloropropane	98		96		70-130	2	20	
1,1,1,2-Tetrachloroethane	99		98		64-130	1	20	
Bromobenzene	96		95		70-130	1	20	
n-Butylbenzene	98		100		53-136	2	20	
sec-Butylbenzene	100		100		70-130	0	20	
tert-Butylbenzene	100		110		70-130	10	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	100		100		70-130	0	20	
1,2-Dibromo-3-chloropropane	85		84		41-144	1	20	
Hexachlorobutadiene	81		85		63-130	5	20	
Isopropylbenzene	100		100		70-130	0	20	
p-Isopropyltoluene	100		100		70-130	0	20	
Naphthalene	88		87		70-130	1	20	
n-Propylbenzene	100		100		69-130	0	20	
1,2,3-Trichlorobenzene	86		87		70-130	1	20	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

Parameter	LCS %Recovery	LCSI Qual %Recov	,	ry RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Batch:	WG1106788-3 WG1106788	-4		
1,2,4-Trichlorobenzene	91	89	70-130	2	20	
1,3,5-Trimethylbenzene	100	100	64-130	0	20	
1,3,5-Trichlorobenzene	89	90	70-130	1	20	
1,2,4-Trimethylbenzene	100	100	70-130	0	20	
trans-1,4-Dichloro-2-butene	94	100	70-130	6	20	
Halothane	100	100	70-130	0	20	
Ethyl ether	100	100	59-134	0	20	
Methyl Acetate	96	94	70-130	2	20	
Ethyl Acetate	95	90	70-130	5	20	
Isopropyl Ether	100	100	70-130	0	20	
Cyclohexane	100	100	70-130	0	20	
Tert-Butyl Alcohol	88	84	70-130	5	20	
Ethyl-Tert-Butyl-Ether	97	97	70-130	0	20	
Tertiary-Amyl Methyl Ether	94	93	66-130	1	20	
1,4-Dioxane	96	94	56-162	2	20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	93	98	70-130	5	20	
Methyl cyclohexane	98	100	70-130	2	20	
p-Diethylbenzene	98	98	70-130	0	20	
4-Ethyltoluene	100	100	70-130	0	20	
1,2,4,5-Tetramethylbenzene	96	95	70-130	1	20	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Lab Number: L1812596

Project Number: 128271-018 Report Date:

04/23/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1106788-3 WG1106788-4

Surrogate	LCS %Recovery Qual	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	100	99	70-130
Toluene-d8	102	102	70-130
4-Bromofluorobenzene	103	101	70-130
Dibromofluoromethane	101	102	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date:

04/23/18

Parameter	Native Sample	MS Added	MS Found %	MS &Recovery	Qual	MSD Found	MSD %Recovery	F Qual	Recovery Limits	RPD	Qual	RPD Limits	Columi
				,	,		,	-,0.0.					
Microextractables by GC -	•		ed sample(s): 01		_	103000-3	QC Sample:	L101239		יוונ וט. ד	HA-B1(O\	,—	
1,2-Dibromoethane	ND	0.249	0.190	76	Q	-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.249	0.203	82		-	-		80-120	-		20	Α

SEMIVOLATILES

L1812596

04/23/18

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number:

Project Number: 128271-018

L1812596-01

04/15/18 03:52

SAMPLE RESULTS

Date Collected: 04/11/18 13:35

Report Date:

Client ID: HA-B1(OW)_04112018 Date Received: 04/11/18
Sample Location: CHESTNUT HILL, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Lab ID:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 04/12/18 16:49

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	

04/23/18

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1812596

Project Number: 128271-018

L1812596-01

SAMPLE RESULTS

Date Collected: 04/11/18 13:35

Report Date:

Client ID: HA-B1(OW)_04112018 Date Received: 04/11/18
Sample Location: CHESTNUT HILL, MA Field Prep: Not Specified

Sample Depth:

Lab ID:

Semivolatile Organics by GC/MS - Westborough Lab 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 2.0 1 1-Nitrosodimethylamine ND ug/l 2.0 1 2,4-6-Trichlorophenol ND ug/l 2.0 1 2,4-6-Trichlorophenol ND ug/l 2.0 1 2-Chlorophenol ND ug/l 2.0 1 2-Chlorophenol ND ug/l 5.0 1 2,4-Dintrophenol ND ug/l 5.0 1 2,4-Dintrophenol ND ug/l 10 1 4,6-Dinitro-o-cresol ND ug/l 20 1 2,4-Dinitro-o-cresol ND ug/l	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 2.0 1 Dibenzofuran ND ug/l 2.0 1 n-Nitrosodimethylamine ND ug/l 5.0 1 2,4.6-Trichlorophenol ND ug/l 5.0 1 2,4.6-Trichlorophenol ND ug/l 2.0 1 2-Chlorophenol ND ug/l 5.0 1 2,4-Dinitrophenol ND ug/l 5.0 1 2,4-Dinitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 10 1 4,6-Dinitro-o-cresol ND ug/l 10 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1	Semivolatile Organics by GC/MS -	Westborough Lab					
3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 2.0 1 Dibenzofuran ND ug/l 2.0 1 n-Nitrosodimethylamine ND ug/l 5.0 1 2,4.6-Trichlorophenol ND ug/l 5.0 1 2,4.6-Trichlorophenol ND ug/l 2.0 1 2-Chlorophenol ND ug/l 5.0 1 2,4-Dinitrophenol ND ug/l 5.0 1 2,4-Dinitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 10 1 4,6-Dinitro-o-cresol ND ug/l 10 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1	O NEW YES	ND			5.0		,
A-Nitroaniline ND ug/l 5.0 1				ug/l			1
Dibenzofuran ND ug/l 2.0 1 n-Nitrosodimethylamine ND ug/l 2.0 1 2,4,6-Trichlorophenol ND ug/l 5.0 1 2,4-G-Trichlorophenol ND ug/l 2.0 1 2-Chlorophenol ND ug/l 2.0 1 2,4-Dichlorophenol ND ug/l 5.0 1 2,4-Dimethylphenol ND ug/l 5.0 1 2,4-Dimethylphenol ND ug/l 5.0 1 2,4-Dimethylphenol ND ug/l 10 1 2,4-Dimethylphenol ND ug/l 10 1 4-Nitrophenol ND ug/l 20 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1 <tr< td=""><td>3-Nitroaniline</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td></td><td>1</td></tr<>	3-Nitroaniline	ND		ug/l	5.0		1
n-Nitrosodimethylamine ND ug/l 2.0 1 2,4,6-Trichlorophenol ND ug/l 5.0 1 p-Chloro-m-cresol ND ug/l 2.0 1 2-Chlorophenol ND ug/l 5.0 1 2,4-Dichlorophenol ND ug/l 5.0 1 2,4-Dimethylphenol ND ug/l 5.0 1 2,4-Dimethylphenol ND ug/l 10 1 2-Nitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 20 1 4-Pinitro-o-cresol ND ug/l 5.0 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1 2-Methylphenol ND ug/l 5.0 1 3	4-Nitroaniline	ND		ug/l	5.0		1
2,4,6-Trichlorophenol ND ug/l 5.0 1 p-Chloro-m-cresol ND ug/l 2.0 1 2-Chlorophenol ND ug/l 2.0 1 2,4-Dichlorophenol ND ug/l 5.0 1 2,4-Dinethylphenol ND ug/l 5.0 1 2-Nitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 10 1 4-Pinitrophenol ND ug/l 10 1 4,6-Dinitro-o-cresol ND ug/l 20 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1 Phenol ND ug/l 5.0 1 2-Methylphenol/4-Methylphenol ND ug/l 5.0 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 5.0 1	Dibenzofuran	ND		ug/l	2.0		1
p-Chloro-m-cresol ND ug/l 2.0 1 2-Chlorophenol ND ug/l 2.0 1 2,4-Dichlorophenol ND ug/l 5.0 1 2,4-Dimethylphenol ND ug/l 5.0 1 2-Nitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 10 1 2,4-Dinitro-henol ND ug/l 20 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1 Phenol ND ug/l 5.0 1 2-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 5.0 1 B	n-Nitrosodimethylamine	ND		ug/l	2.0		1
2-Chlorophenol ND ug/l 2.0 - 1 2,4-Dichlorophenol ND ug/l 5.0 - 1 2,4-Dimethylphenol ND ug/l 5.0 - 1 2-Nitrophenol ND ug/l 10 - 1 2-Nitrophenol ND ug/l 10 - 1 4-Nitrophenol ND ug/l 10 - 1 2,4-Dinitrophenol ND ug/l 10 - 1 4-Nitrophenol ND ug/l 10 - 1 2,4-Dinitrophenol ND ug/l 10 - 1 4-Nitrophenol ND ug/l 20 - 1 4,6-Dinitro-o-cresol ND ug/l 20 - 1 4,6-Dinitro-o-cresol ND ug/l 5.0 - 1 2-Methylphenol ND ug/l 5.0 - 1 2-Methylphenol ND ug/l 5.0 - 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 - 1 2,4,5-Trichlorophenol ND ug/l 5.0 - 1 8-enzoic Acid ND ug/l 5.0 - 1	2,4,6-Trichlorophenol	ND		ug/l	5.0		1
2,4-Dichlorophenol ND ug/l 5.0 1 2,4-Dimethylphenol ND ug/l 5.0 1 2-Nitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 10 1 2,4-Dinitrophenol ND ug/l 20 1 4,6-Dinitro-o-cresol ND ug/l 10 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1 Phenol ND ug/l 5.0 1 2-Methylphenol ND ug/l 5.0 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 5.0 1 Benzole ND ug/l 5.0 1 Carbazole ND ug/l 2.0 1	p-Chloro-m-cresol	ND		ug/l	2.0		1
2,4-Dimethylphenol ND ug/l 5.0 1 2-Nitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 20 1 4,6-Dinitro-o-cresol ND ug/l 10 1 4,6-Dinitro-o-cresol ND ug/l 5.0 1 Phenol ND ug/l 5.0 1 2-Methylphenol ND ug/l 5.0 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 5.0 1 Benzyl Alcohol ND ug/l 2.0 1 Carbazole ND ug/l 2.0 1	2-Chlorophenol	ND		ug/l	2.0		1
2-Nitrophenol ND ug/l 10 1 4-Nitrophenol ND ug/l 10 1 2,4-Dinitrophenol ND ug/l 20 1 4,6-Dinitro-o-cresol ND ug/l 10 1 Phenol ND ug/l 5.0 1 2-Methylphenol ND ug/l 5.0 1 3-Methylphenol ND ug/l 5.0 1 3-Methylphenol ND ug/l 5.0 1 8-Methylphenol ND ug/l 5.0 1 8-Retyl Alcohol ND ug/l 5.0 1 8-Renzyl Alcohol ND ug/l 2.0 1	2,4-Dichlorophenol	ND		ug/l	5.0		1
4-Nitrophenol ND ug/l 10 1 2,4-Dinitrophenol ND ug/l 20 1 4,6-Dinitro-o-cresol ND ug/l 10 1 Phenol ND ug/l 5.0 1 2-Methylphenol ND ug/l 5.0 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 50 1 Benzyl Alcohol ND ug/l 50 1 Carbazole ND ug/l 2.0 1	2,4-Dimethylphenol	ND		ug/l	5.0		1
2,4-Dinitrophenol ND ug/l 20 1 4,6-Dinitro-o-cresol ND ug/l 10 1 Phenol ND ug/l 5.0 1 2-Methylphenol ND ug/l 5.0 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 50 1 Benzyl Alcohol ND ug/l 2.0 1 Carbazole ND ug/l 2.0 1	2-Nitrophenol	ND		ug/l	10		1
4,6-Dinitro-o-cresol ND ug/l 10 1 Phenol ND ug/l 5.0 1 2-Methylphenol ND ug/l 5.0 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 50 1 Benzyl Alcohol ND ug/l 2.0 1 Carbazole ND ug/l 2.0 1	4-Nitrophenol	ND		ug/l	10		1
Phenol ND ug/l 5.0 1 2-Methylphenol ND ug/l 5.0 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 50 1 Benzyl Alcohol ND ug/l 2.0 1 Carbazole ND ug/l 2.0 1	2,4-Dinitrophenol	ND		ug/l	20		1
2-Methylphenol ND ug/l 5.0 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 50 1 Benzyl Alcohol ND ug/l 2.0 1 Carbazole ND ug/l 2.0 1	4,6-Dinitro-o-cresol	ND		ug/l	10		1
3-Methylphenol/4-Methylphenol ND ug/l 5.0 1 2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 50 1 Benzyl Alcohol ND ug/l 50 1 Carbazole ND ug/l 2.0 1 Carbazole	Phenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol ND ug/l 5.0 1 Benzoic Acid ND ug/l 50 1 Benzyl Alcohol ND ug/l 2.0 1 Carbazole ND ug/l 2.0 1	2-Methylphenol	ND		ug/l	5.0		1
Benzoic Acid ND ug/l 50 1 Benzyl Alcohol ND ug/l 2.0 1 Carbazole ND ug/l 2.0 1	3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1
Benzyl Alcohol ND ug/l 2.0 1 Carbazole ND ug/l 2.0 1	2,4,5-Trichlorophenol	ND		ug/l	5.0		1
Carbazole ND ug/l 2.0 1	Benzoic Acid	ND		ug/l	50		1
	Benzyl Alcohol	ND		ug/l	2.0		1
Puriding ND ug/l 25 1	Carbazole	ND		ug/l	2.0		1
ryndine ug/i 5.5 I	Pyridine	ND		ug/l	3.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	53	21-120	
Phenol-d6	39	10-120	
Nitrobenzene-d5	68	23-120	
2-Fluorobiphenyl	81	15-120	
2,4,6-Tribromophenol	95	10-120	
4-Terphenyl-d14	100	41-149	

Project Name: Lab Number: **BOSTON COLLEGE CENTRAL HEAT** L1812596

Project Number: Report Date: 128271-018 04/23/18

SAMPLE RESULTS

Lab ID: L1812596-01 Date Collected: 04/11/18 13:35

Date Received: Client ID: HA-B1(OW)_04112018 04/11/18 Sample Location: CHESTNUT HILL, MA Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 04/12/18 16:55 Analytical Method: 1,8270D-SIM Analytical Date: 04/15/18 10:50

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
2-Chloronaphthalene	ND		ug/l	0.20		1	
Fluoranthene	ND		ug/l	0.10		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
1-Methylnaphthalene	ND		ug/l	0.10		1	
2-Methylnaphthalene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	0.80		1	
Hexachlorobenzene	ND		ug/l	0.80		1	
Hexachloroethane	ND		ug/l	0.80		1	

04/23/18

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1812596

Project Number: 128271-018 Report Date:

SAMPLE RESULTS

Date Collected: 04/11/18 13:35

Client ID: HA-B1(OW)_04112018 Date Received: 04/11/18
Sample Location: CHESTNUT HILL, MA Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

L1812596-01

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	38	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	54	23-120
2-Fluorobiphenyl	52	15-120
2,4,6-Tribromophenol	88	10-120
4-Terphenyl-d14	71	41-149

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1
Report Date: 04

L1812596

sis

04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/14/18 23:52

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 04/12/18 16:49

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/N	/IS - Westboroug	ıh Lab for s	ample(s):	01 Batch	: WG1106018-1
Acenaphthene	ND		ug/l	2.0	
Benzidine	ND		ug/l	20	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	
Hexachlorobenzene	ND		ug/l	2.0	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	
2-Chloronaphthalene	ND		ug/l	2.0	
1,2-Dichlorobenzene	ND		ug/l	2.0	
1,3-Dichlorobenzene	ND		ug/l	2.0	
1,4-Dichlorobenzene	ND		ug/l	2.0	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	
2,4-Dinitrotoluene	ND		ug/l	5.0	
2,6-Dinitrotoluene	ND		ug/l	5.0	
Azobenzene	ND		ug/l	2.0	
Fluoranthene	ND		ug/l	2.0	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	
Hexachlorobutadiene	ND		ug/l	2.0	
Hexachlorocyclopentadiene	ND		ug/l	20	
Hexachloroethane	ND		ug/l	2.0	
Isophorone	ND		ug/l	5.0	
Naphthalene	ND		ug/l	2.0	
Nitrobenzene	ND		ug/l	2.0	
NDPA/DPA	ND		ug/l	2.0	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	
Butyl benzyl phthalate	ND		ug/l	5.0	
Di-n-butylphthalate	ND		ug/l	5.0	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date:

04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8 Analytical Date: 04/

1,8270D 04/14/18 23:52

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 04/12/18 16:49

emivolatile Organics by GC/MS -	Westborough	lab fara				
	J	Lab for s	ample(s):	01	Batch:	WG1106018-1
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	
Benzo(b)fluoranthene	ND		ug/l		2.0	
Benzo(k)fluoranthene	ND		ug/l		2.0	
Chrysene	ND		ug/l		2.0	
Acenaphthylene	ND		ug/l		2.0	
Anthracene	ND		ug/l		2.0	
Benzo(ghi)perylene	ND		ug/l		2.0	
Fluorene	ND		ug/l		2.0	
Phenanthrene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Pyrene	ND		ug/l		2.0	
Biphenyl	ND		ug/l		2.0	
Aniline	ND		ug/l		2.0	
4-Chloroaniline	ND		ug/l		5.0	
1-Methylnaphthalene	ND		ug/l		2.0	
2-Nitroaniline	ND		ug/l		5.0	
3-Nitroaniline	ND		ug/l		5.0	
4-Nitroaniline	ND		ug/l		5.0	
Dibenzofuran	ND		ug/l		2.0	
2-Methylnaphthalene	ND		ug/l		2.0	
n-Nitrosodimethylamine	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018 Lab Number: Report Date:

L1812596 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D 04/14/18 23:52

Analyst: SZ Extraction Method: EPA 3510C **Extraction Date:** 04/12/18 16:49

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	01	Batch:	WG1106018-1
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		3.5	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

04/12/18 16:49

Lab Number:

Extraction Date:

Project Name: BOSTON COLLEGE CENTRAL HEAT

04/14/18 23:52

Project Number: 128271-018 Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Extraction Method: EPA 3510C Analytical Method: 1,8270D Analytical Date:

Analyst: SZ

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01	Batch:	WG1106018-1	

		Α	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
0. El considerant	57		04.400	
2-Fluorophenol	57		21-120	
Phenol-d6	39		10-120	
Nitrobenzene-d5	73		23-120	
2-Fluorobiphenyl	81		15-120	
2,4,6-Tribromophenol	97		10-120	
4-Terphenyl-d14	96		41-149	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 04/15/18 09:04

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 04/12/18 16:55

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab	for sample	e(s): 01	Batch: WG1106021	-1
Acenaphthene	ND		ug/l	0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.10		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
1-Methylnaphthalene	ND		ug/l	0.10		
2-Methylnaphthalene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

Lab Number:

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018 Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM 04/15/18 09:04

Analyst: KL Extraction Method: EPA 3510C 04/12/18 16:55 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	SIM - Westb	orough Lab	for sampl	e(s): 01	Batch: WG1106021-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	38	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	55	23-120
2-Fluorobiphenyl	51	15-120
2,4,6-Tribromophenol	84	10-120
4-Terphenyl-d14	66	41-149

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

arameter	LCS %Recover	y Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS	- Westborough Lab Ass	sociated sample(s)	: 01 Batch:	WG1106018-2	2 WG1106018-3				
Acenaphthene	95		98		37-111	3		30	
Benzidine	3	Q	5	Q	10-75	68	Q	30	
1,2,4-Trichlorobenzene	84		82		39-98	2		30	
Hexachlorobenzene	103		105		40-140	2		30	
Bis(2-chloroethyl)ether	81		80		40-140	1		30	
2-Chloronaphthalene	98		100		40-140	2		30	
1,2-Dichlorobenzene	78		75		40-140	4		30	
1,3-Dichlorobenzene	76		69		40-140	10		30	
1,4-Dichlorobenzene	75		68		36-97	10		30	
3,3'-Dichlorobenzidine	75		81		40-140	8		30	
2,4-Dinitrotoluene	110		111		48-143	1		30	
2,6-Dinitrotoluene	107		108		40-140	1		30	
Azobenzene	109		109		40-140	0		30	
Fluoranthene	103		108		40-140	5		30	
4-Chlorophenyl phenyl ether	99		103		40-140	4		30	
4-Bromophenyl phenyl ether	103		105		40-140	2		30	
Bis(2-chloroisopropyl)ether	65		68		40-140	5		30	
Bis(2-chloroethoxy)methane	90		90		40-140	0		30	
Hexachlorobutadiene	88		83		40-140	6		30	
Hexachlorocyclopentadiene	70		69		40-140	1		30	
Hexachloroethane	81		70		40-140	15		30	
Isophorone	94		96		40-140	2		30	
Naphthalene	88		89		40-140	1		30	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ugh Lab Associ	ated sample(s):	01 Batch:	WG1106018-2	2 WG1106018-3		
Nitrobenzene	92		96		40-140	4	30
NDPA/DPA	104		106		40-140	2	30
n-Nitrosodi-n-propylamine	92		95		29-132	3	30
Bis(2-ethylhexyl)phthalate	127		133		40-140	5	30
Butyl benzyl phthalate	112		117		40-140	4	30
Di-n-butylphthalate	115		120		40-140	4	30
Di-n-octylphthalate	124		134		40-140	8	30
Diethyl phthalate	110		114		40-140	4	30
Dimethyl phthalate	107		110		40-140	3	30
Benzo(a)anthracene	102		109		40-140	7	30
Benzo(a)pyrene	102		112		40-140	9	30
Benzo(b)fluoranthene	103		108		40-140	5	30
Benzo(k)fluoranthene	104		113		40-140	8	30
Chrysene	104		110		40-140	6	30
Acenaphthylene	106		106		45-123	0	30
Anthracene	102		107		40-140	5	30
Benzo(ghi)perylene	100		107		40-140	7	30
Fluorene	103		104		40-140	1	30
Phenanthrene	101		108		40-140	7	30
Dibenzo(a,h)anthracene	101		108		40-140	7	30
Indeno(1,2,3-cd)pyrene	101		110		40-140	9	30
Pyrene	103		107		26-127	4	30
Biphenyl	106		108		40-140	2	30

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s)	: 01 Batch:	WG1106018-2	2 WG1106018-3	3	
Aniline	22	Q	31	Q	40-140	34	Q 30
4-Chloroaniline	59		75		40-140	24	30
1-Methylnaphthalene	102		102		41-103	0	30
2-Nitroaniline	108		111		52-143	3	30
3-Nitroaniline	71		76		25-145	7	30
4-Nitroaniline	100		101		51-143	1	30
Dibenzofuran	101		104		40-140	3	30
2-Methylnaphthalene	97		97		40-140	0	30
n-Nitrosodimethylamine	48		45		22-74	6	30
2,4,6-Trichlorophenol	105		110		30-130	5	30
p-Chloro-m-cresol	108	Q	110	Q	23-97	2	30
2-Chlorophenol	84		89		27-123	6	30
2,4-Dichlorophenol	103		107		30-130	4	30
2,4-Dimethylphenol	94		99		30-130	5	30
2-Nitrophenol	89		98		30-130	10	30
4-Nitrophenol	67		66		10-80	2	30
2,4-Dinitrophenol	91		96		20-130	5	30
4,6-Dinitro-o-cresol	114		115		20-164	1	30
Pentachlorophenol	90		88		9-103	2	30
Phenol	44		48		12-110	9	30
2-Methylphenol	78		83		30-130	6	30
3-Methylphenol/4-Methylphenol	80		86		30-130	7	30
2,4,5-Trichlorophenol	106		109		30-130	3	30

Project Name: BOSTON COLLEGE CENTRAL HEAT

Lab Number: L1812596

Project Number: 128271-018

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/M	S - Westborough Lab Assoc	ciated sample(s)	: 01 Batch:	WG1106018-2	2 WG1106018-3				
Benzoic Acid	26		42		10-164	47	Q	30	
Benzyl Alcohol	79		86		26-116	8		30	
Carbazole	104		110		55-144	6		30	
Pyridine	9	Q	10		10-66	7		30	

Surveyede	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qu	ıal %Recovery Qual	
2-Fluorophenol	55	59	21-120
Phenol-d6	43	46	10-120
Nitrobenzene-d5	75	83	23-120
2-Fluorobiphenyl	86	88	15-120
2,4,6-Tribromophenol	94	98	10-120
4-Terphenyl-d14	86	95	41-149

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
semivolatile Organics by GC/MS-SIM -	Westborough Lab Ass	sociated sample(s): 01 Batcl	n: WG1106021-2 WG1106	6021-3	
Acenaphthene	64	64	40-140	0	40
2-Chloronaphthalene	55	56	40-140	2	40
Fluoranthene	70	66	40-140	6	40
Hexachlorobutadiene	50	49	40-140	2	40
Naphthalene	54	54	40-140	0	40
Benzo(a)anthracene	66	68	40-140	3	40
Benzo(a)pyrene	68	69	40-140	1	40
Benzo(b)fluoranthene	67	68	40-140	1	40
Benzo(k)fluoranthene	70	71	40-140	1	40
Chrysene	67	69	40-140	3	40
Acenaphthylene	60	62	40-140	3	40
Anthracene	65	66	40-140	2	40
Benzo(ghi)perylene	68	70	40-140	3	40
Fluorene	68	69	40-140	1	40
Phenanthrene	62	63	40-140	2	40
Dibenzo(a,h)anthracene	73	75	40-140	3	40
Indeno(1,2,3-cd)pyrene	72	73	40-140	1	40
Pyrene	64	66	40-140	3	40
1-Methylnaphthalene	55	55	40-140	0	40
2-Methylnaphthalene	55	55	40-140	0	40
Pentachlorophenol	74	76	40-140	3	40
Hexachlorobenzene	64	64	40-140	0	40
Hexachloroethane	50	49	40-140	2	40

BOSTON COLLEGE CENTRAL HEAT

Lab Number: L1812596

Project Number: 128271-018

Project Name:

Report Date:

04/23/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1106021-2 WG1106021-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	41	41	21-120
Phenol-d6	31	32	10-120
Nitrobenzene-d5	55	55	23-120
2-Fluorobiphenyl	50	49	15-120
2,4,6-Tribromophenol	76	77	10-120
4-Terphenyl-d14	61	61	41-149

PCBS

Project Name: BOSTON COLLEGE CENTRAL HEAT **Lab Number:** L1812596

Project Number: 128271-018 **Report Date:** 04/23/18

SAMPLE RESULTS

Lab ID: L1812596-01 Date Collected: 04/11/18 13:35

Client ID: HA-B1(OW)_04112018 Date Received: 04/11/18
Sample Location: CHESTNUT HILL, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608

Analytical Method: 5,608 Extraction Date: 04/12/18 19:11
Analytical Date: 04/16/18 08:07 Cleanup Method: EPA 3665A

Analytical Date: 04/16/18 08:07 Cleanup Method: EPA 3665A Analyst: HT Cleanup Date: 04/13/18

Cleanup Method: EPA 3660B Cleanup Date: 04/13/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	101		30-150	А
Decachlorobiphenyl	107		30-150	Α

L1812596

Lab Number:

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018 **Report Date:** 04/23/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 04/16/18 08:19 Extra

Analyst: HT

Extraction Method: EPA 608
Extraction Date: 04/12/18 19:11
Cleanup Method: EPA 3665A
Cleanup Date: 04/13/18
Cleanup Date: 04/13/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1106056	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptano	e
Surrogate	%Recovery Qualifie	r Criteria	Column
2.4.F.C. Tetraphlara manulana	7.4	20.450	A
2,4,5,6-Tetrachloro-m-xylene	74	30-150	А
Decachlorobiphenyl	90	30-150	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Lab Number:

L1812596

Project Number: 128271-018

Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	oorough Lab Associa	ted sample(s)	: 01 Batch:	WG1106056-	2				
Aroclor 1016	94		-		30-150	-		30	Α
Aroclor 1260	100		-		30-150	-		30	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	88 104				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recove	ry Qual	Recovery Limits	RPD G	RPD Qual Limits	Column
Polychlorinated Biphenyls by G	C - Westbor	ough Lab	Associated san	nple(s): 01 (QC Batch II	D: WG110	6056-3 Q	C Sample	: L1800004-0	5 Client	ID: MS Sam	ple
Aroclor 1016	ND	3.12	2.57	82		-	-		40-126	-	30	Α
Aroclor 1260	ND	3.12	2.88	92		-	-		40-127	-	30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	Α
Decachlorobiphenyl	95		30-150	Α

L1812596

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Quality Control Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID: V	VG1106056-4	QC Sample:	L1800004-05	Client ID	: DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

	Accept					
Surrogate	%Recovery Qualifie	er %Recovery Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	82	86	30-150	Α		
Decachlorobiphenyl	96	103	30-150	Α		

METALS

Project Name: BOSTON COLLEGE CENTRAL HEAT

Lab Number:

L1812596

Project Number: 128271-018

Report Date:

04/23/18

L1812596-01

Date Collected:

04/11/18 13:35

Client ID: Sample Location:

Lab ID:

HA-B1(OW)_04112018

Date Received:

04/11/18

•

CHESTNUT HILL, MA

Field Prep:

Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	04/12/18 08:50	0 04/12/18 14:23	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	04/12/18 08:50	04/12/18 14:23	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	04/12/18 08:50	04/12/18 14:23	EPA 3005A	3,200.8	AM
Chromium, Total	0.00114		mg/l	0.00100		1	04/12/18 08:50	04/12/18 14:23	EPA 3005A	3,200.8	AM
Copper, Total	0.00146		mg/l	0.00100		1	04/12/18 08:50	04/12/18 14:23	EPA 3005A	3,200.8	AM
Iron, Total	0.341		mg/l	0.050		1	04/12/18 08:50	04/12/18 17:27	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00050		1	04/12/18 08:50	04/12/18 14:23	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	04/12/18 11:04	4 04/12/18 16:18	EPA 245.1	3,245.1	MG
Nickel, Total	ND		mg/l	0.00200		1	04/12/18 08:50	04/12/18 14:23	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	04/12/18 08:50	0 04/12/18 14:23	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	04/12/18 08:50	0 04/12/18 14:23	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	04/12/18 08:50	0 04/12/18 14:23	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	- Mansfield	d Lab								
Hardness	247		mg/l	0.660	NA	1	04/12/18 08:50	04/12/18 17:27	EPA 3005A	19,200.7	AB
			J .						30001		. <u>-</u>
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		04/12/18 14:23	NA	107,-	

SAMPLE RESULTS

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s): 01 Batcl	h: WG11	05793-	1				
Antimony, Total	ND	mg/l	0.00400		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	04/12/18 08:50	04/12/18 14:08	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	ield Lab for sample(s):	01 Batch	n: WG1′	105795-	1				
Iron, Total	ND	mg/l	0.050		1	04/12/18 08:50	04/12/18 16:56	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM 2	340B - Mansfield Lab	for samp	ole(s): 01	l Bato	h: WG110	5795-1			
Hardness	ND	mg/l	0.660	NA	1	04/12/18 08:50	04/12/18 16:56	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date:

04/23/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batc	h: WG11	105888-	1				
Mercury, Total	ND	mg/l	0.00020		1	04/12/18 11:04	04/12/18 16:00	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits						
Total Metals - Mansfield Lab Associated sample	Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1105793-2											
Antimony, Total	109	-	85-115	-								
Arsenic, Total	112	-	85-115	-								
Cadmium, Total	112	-	85-115	-								
Chromium, Total	105	-	85-115	-								
Copper, Total	104	-	85-115	-								
Lead, Total	106	-	85-115	-								
Nickel, Total	102	-	85-115	-								
Selenium, Total	111	-	85-115	-								
Silver, Total	105	-	85-115	-								
Zinc, Total	107	-	85-115	-								
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1105795-2										
Iron, Total	105	-	85-115	-								
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01 Batch: WG110579	5-2									
Hardness	101	-	85-115	-								
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1105888-2										
Mercury, Total	98	-	85-115	-								

Matrix Spike Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Total Metals - Mansfield L	Lab Associated sam	nple(s): 01	QC Batch I	D: WG110579	3-3	QC Sample	: L1812596-01	Clien	ID: HA-B1	(OW)_	04112018
Antimony, Total	ND	0.5	0.5633	113		-	-		70-130	-	20
Arsenic, Total	ND	0.12	0.1290	108		-	-		70-130	-	20
Cadmium, Total	ND	0.051	0.05456	107		-	-		70-130	-	20
Chromium, Total	0.00114	0.2	0.1973	98		-	-		70-130	-	20
Copper, Total	0.00146	0.25	0.2408	96		-	-		70-130	-	20
Lead, Total	ND	0.51	0.4961	97		-	-		70-130	-	20
Nickel, Total	ND	0.5	0.4781	96		-	-		70-130	-	20
Selenium, Total	ND	0.12	0.1389	116		-	-		70-130	-	20
Silver, Total	ND	0.05	0.04904	98		-	-		70-130	-	20
Zinc, Total	ND	0.5	0.5071	101		-	-		70-130	-	20
otal Metals - Mansfield I	Lab Associated sam	nple(s): 01	QC Batch I	D: WG110579	5-3	QC Sample	: L1812596-01	Client	ID: HA-B1	(OW)_	04112018
Iron, Total	0.341	1	1.34	100		-	-		75-125	-	20
Total Hardness by SM 23 31(OW)_04112018	340B - Mansfield La	b Associate	ed sample(s)	: 01 QC Bato	h ID:	WG1105795	5-3 QC Samp	ole: L18	12596-01	Client	ID: HA-
Hardness	247	66.2	311	97		-	-		75-125	-	20
otal Metals - Mansfield L	Lab Associated sam	nple(s): 01	QC Batch I	D: WG110588	8-3	QC Sample	: L1812126-14	Clien	ID: MS Sa	ample	
Mercury, Total	0.00535	0.005	0.00890	71		-	-		70-130	-	20
otal Metals - Mansfield I	Lab Associated sam	nple(s): 01	QC Batch I	D: WG110588	8-5	QC Sample	: L1812126-15	Clien	ID: MS Sa	ample	
Mercury, Total	0.00534	0.005	0.00896	72		-	-		70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

arameter	Native Sample Dup	olicate Sample	Units	RPD	Qual RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1105793-4	QC Sample:	L1812596-01	Client ID:	HA-B1(OW)_04112018
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	0.00114	0.00111	mg/l	3	20
Copper, Total	0.00146	0.00148	mg/l	1	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1105795-4	QC Sample:	L1812596-01	Client ID:	HA-B1(OW)_04112018
Iron, Total	0.341	0.258	mg/l	28	Q 20
otal Hardness by SM 2340B - Mansfield Lab Associated 1(OW)_04112018	d sample(s): 01 QC Batch ID	: WG1105795-	4 QC Sampl	e: L18125	596-01 Client ID: HA-
Hardness	247	251	mg/l	2	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1105888-4	QC Sample:	L1812126-14	Client ID:	DUP Sample
Mercury, Total	0.00535	0.00547	mg/l	2	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1105888-6	QC Sample:	L1812126-15	Client ID:	DUP Sample
Mercury, Total	0.00534	0.00544			20

INORGANICS & MISCELLANEOUS

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1812596

Project Number: 128271-018 **Report Date:** 04/23/18

SAMPLE RESULTS

Lab ID: L1812596-01 Date Collected: 04/11/18 13:35

Client ID: HA-B1(OW)_04112018 Date Received: 04/11/18
Sample Location: CHESTNUT HILL, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	9.0		mg/l	5.0	NA	1	-	04/12/18 08:30	121,2540D	JT
Cyanide, Total	ND		mg/l	0.005		1	04/12/18 10:55	04/12/18 15:28	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/11/18 22:55	121,4500CL-D	AS
Nitrogen, Ammonia	ND		mg/l	0.075		1	04/12/18 04:00	04/12/18 23:03	121,4500NH3-BH	l AT
TPH, SGT-HEM	ND		mg/l	4.00		1	04/14/18 08:00	04/14/18 11:00	74,1664A	KZ
Phenolics, Total	ND		mg/l	0.030		1	04/12/18 09:18	04/12/18 14:14	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	04/12/18 00:10	04/12/18 00:40	1,7196A	MA
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	478.		mg/l	12.5		25	-	04/13/18 19:26	44,300.0	JR

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	105719-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/11/18 22:55	121,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	105727-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	04/12/18 00:10	04/12/18 00:37	1,7196A	MA
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	105766-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	04/12/18 04:00	04/12/18 23:00	121,4500NH3-BH	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	105773-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	04/12/18 08:30	121,2540D	JT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	105830-1				
Phenolics, Total	ND		mg/l	0.030		1	04/12/18 09:18	04/12/18 13:07	4,420.1	BR
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	105850-1				
Cyanide, Total	ND		mg/l	0.005		1	04/12/18 10:55	04/12/18 15:07	121,4500CN-CE	LH
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	106495-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	04/14/18 08:00	04/14/18 11:00	74,1664A	KZ
Anions by Ion Chrom	atography - Westb	orough	Lab for sar	nple(s):	01 E	atch: WG1	106585-1			
Chloride	ND		mg/l	0.500		1	-	04/13/18 18:26	44,300.0	JR

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1105719-	2				
Chlorine, Total Residual	101		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1105727-	2				
Chromium, Hexavalent	96		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1105766-	2				
Nitrogen, Ammonia	96		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1105830-	2				
Phenolics, Total	92		-		70-130	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1105850-	2				
Cyanide, Total	91		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1106495-	2				
ТРН	86		-		64-132	-		34
Anions by Ion Chromatography - Westb	orough Lab Associate	d sam	nple(s): 01 Batch: V	VG110658	85-2			
Chloride	98				90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD I %Recovery Qual	Recovery Limits R		RPD .imits
General Chemistry - Westb B1(OW)_04112018	orough Lab Associ	ated samp	le(s): 01	QC Batch ID: \	WG1105719-4	QC Sample: L1812596-0)1 Client ID:	HA-	
Chlorine, Total Residual	ND	0.248	0.26	105	-	-	80-120	-	20
General Chemistry - Westb B1(OW)_04112018	orough Lab Associ	ated samp	ole(s): 01	QC Batch ID: \	WG1105727-4	QC Sample: L1812596-0)1 Client ID:	HA-	
Chromium, Hexavalent	ND	0.1	0.096	96	-	-	85-115	-	20
General Chemistry - Westb B1(OW)_04112018	orough Lab Associ	ated samp	ole(s): 01	QC Batch ID: \	WG1105766-4	QC Sample: L1812596-0)1 Client ID:	HA-	
Nitrogen, Ammonia	ND	4	3.56	89	-	-	80-120	-	20
General Chemistry - Westb B1(OW)_04112018	orough Lab Associ	ated samp	ole(s): 01	QC Batch ID: \	WG1105830-4	QC Sample: L1812596-0)1 Client ID:	HA-	
Phenolics, Total	ND	0.4	0.39	97	-	-	70-130	-	20
General Chemistry - Westb	orough Lab Associ	ated samp	ole(s): 01	QC Batch ID: \	WG1105850-4	QC Sample: L1812468-0)2 Client ID:	MS Sample	
Cyanide, Total	ND	0.2	0.191	96	-	-	90-110	-	30
General Chemistry - Westb B1(OW)_04112018	orough Lab Associ	ated samp	ole(s): 01	QC Batch ID: \	WG1106495-4	QC Sample: L1812596-0)1 Client ID:	HA-	
TPH	ND	20	16.8	84	-	-	64-132	-	34
Anions by Ion Chromatogra	aphy - Westborough	Lab Asso	ociated san	nple(s): 01 Q0	C Batch ID: WG1	106585-3 QC Sample:	L1812894-06	6 Client ID:	MS
Chloride	ND	4	4.00	100		-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1812596

Report Date:

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated s B1(OW)_04112018	sample(s): 01 QC Batch ID:	WG1105719-3	QC Sample: L1812	596-01	Client ID: HA-
Chlorine, Total Residual	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated : B1(OW)_04112018	sample(s): 01 QC Batch ID:	WG1105727-3	QC Sample: L1812	:596-01	Client ID: HA-
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated s B1(OW)_04112018	sample(s): 01 QC Batch ID:	WG1105766-3	QC Sample: L1812	:596-01	Client ID: HA-
Nitrogen, Ammonia	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1105773-2	QC Sample: L1812	422-01	Client ID: DUP Sample
Solids, Total Suspended	200	200	mg/l	0	29
General Chemistry - Westborough Lab Associated s B1(OW)_04112018	sample(s): 01 QC Batch ID:	WG1105830-3	QC Sample: L1812	:596-01	Client ID: HA-
Phenolics, Total	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1105850-3	QC Sample: L1812	468-01	Client ID: DUP Sample
Cyanide, Total	ND	ND	mg/l	NC	30
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1106495-3	QC Sample: L1812	766-01	Client ID: DUP Sample
ТРН	ND	ND	mg/l	NC	34
Anions by Ion Chromatography - Westborough Lab Sample	Associated sample(s): 01 C	QC Batch ID: WG	1106585-4 QC Sai	mple: L1	1812894-06 Client ID: DUP
Chloride	ND	ND	mg/l	NC	18

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1812596 Report Date: 04/23/18

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information Container ID Container Type		Initial	Final	Temp		Frozen		
Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
Vial HCl preserved	Α	NA		2.6	Υ	Absent		8260-SIM(14),8260(14)
Vial HCI preserved	Α	NA		2.6	Υ	Absent		8260-SIM(14),8260(14)
Vial HCl preserved	Α	NA		2.6	Υ	Absent		8260-SIM(14),8260(14)
Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
Vial HCl preserved	Α	NA		2.6	Υ	Absent		SUB-ETHANOL(14)
Vial HCl preserved	Α	NA		2.6	Υ	Absent		SUB-ETHANOL(14)
Vial HCl preserved	Α	NA		2.6	Υ	Absent		SUB-ETHANOL(14)
Plastic 250ml HNO3 preserved	А	<2	<2	2.6	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
Plastic 250ml NaOH preserved	Α	>12	>12	2.6	Υ	Absent		TCN-4500(14)
Plastic 500ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NH3-4500(28)
Plastic 950ml unpreserved	Α	7	7	2.6	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
Plastic 950ml unpreserved	Α	7	7	2.6	Υ	Absent		TSS-2540(7)
Amber 1000ml HCI preserved	Α	NA		2.6	Υ	Absent		TPH-1664(28)
Amber 1000ml HCI preserved	Α	NA		2.6	Υ	Absent		TPH-1664(28)
Amber 950ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		TPHENOL-420(28)
Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		PCB-608(7)
Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		PCB-608(7)
Amber 1000ml unpreserved	Α	7	7	2.6	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
Amber 1000ml unpreserved	Α	7	7	2.6	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
	Vial HCl preserved Vial HCl preserved Vial HCl preserved Vial HCl preserved Vial Na2S2O3 preserved Vial Na2S2O3 preserved Vial HCl preserved Vial HCl preserved Vial HCl preserved Plastic 250ml HNO3 preserved Plastic 250ml HNO3 preserved Plastic 500ml H2SO4 preserved Plastic 950ml unpreserved Plastic 950ml unpreserved Amber 1000ml HCl preserved Amber 1000ml HCl preserved Amber 1000ml Na2S2O3 Amber 1000ml Na2S2O3 Amber 1000ml unpreserved	Container TypeCoolerVial HCl preservedAVial HCl preservedAVial HCl preservedAVial Na2S2O3 preservedAVial Na2S2O3 preservedAVial HCl preservedAVial HCl preservedAVial HCl preservedAPlastic 250ml HNO3 preservedAPlastic 500ml H2SO4 preservedAPlastic 950ml unpreservedAAmber 1000ml HCl preservedAAmber 1000ml HCl preservedAAmber 950ml H2SO4 preservedAAmber 1000ml Na2S2O3AAmber 1000ml Na2S2O3AAmber 1000ml unpreservedA	Container Type Cooler PH Vial HCl preserved A NA Vial HCl preserved A NA Vial HCl preserved A NA Vial Na2S2O3 preserved A NA Vial Na2S2O3 preserved A NA Vial HCl preserved A NA Vial HCl preserved A NA Vial HCl preserved A NA Plastic 250ml HNO3 preserved A <2	Container Type Cooler nmtail pH pH Vial HCl preserved A NA Vial HCl preserved A NA Vial Na2S2O3 preserved A NA Vial Na2S2O3 preserved A NA Vial HCl preserved A NA Vial HCl preserved A NA Vial HCl preserved A NA Plastic 250ml HNO3 preserved A <2	Container Type Cooler PH PH deg C Vial HCl preserved A NA 2.6 Vial HCl preserved A NA 2.6 Vial HCl preserved A NA 2.6 Vial Na2S2O3 preserved A NA 2.6 Vial HCl preserved A NA 2.6 Plastic 250ml HNO3 preserved A -2 -2 2.6 Plastic 250ml NaOH preserved A -2 -2 2.6 Plastic 950ml unpreserved A 7 7 2.6 Plastic 950ml unpreserved A 7 7 2.6 Amber 1000ml HCl preserved A NA 2.6 Amber 1000ml HCl preserved A NA 2.6 Amber 1000ml Na2S2O3 A 7 7 2.6 Amber 1000ml unpreserved <td>Container Type Cooler PH Head of the get of the</td> <td>Container Type Cooler pH PH deg C Pres Seal Vial HCl preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Vial Na2S2O3 preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Plastic 250ml HNO3 preserved A -2 -2</td> <td>Container Type Cooler pH pH deg C Pres Seal Seal Vial HCl preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Vial Hazszo3 preserved A NA 2.6 Y Absent Vial Na2Sz03 preserved A NA 2.6 Y Absent Vial HCl preserved A 2.2 2.2 2.6 Y Absent Plastic 250ml HNO3 preserved A 2.2 2.2 2.6 Y Absent Plastic 500ml H2SO4 preserved A 7 7 2.6 Y Absent Plastic 950ml unpreserved A 7 7 2.6 Y Absent Amber 1000ml HCl preserved A NA 2.6 Y Absent Amber 1000ml HCl preserved A NA 2.2 2 2 2.6 Y Absent Amber 1000ml HCl preserved A NA 2.2 2 2 2.6 Y Absent Amber 1000ml Na2S203 A 7 7 2.6 Y Absent</td>	Container Type Cooler PH Head of the get of the	Container Type Cooler pH PH deg C Pres Seal Vial HCl preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Vial Na2S2O3 preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Plastic 250ml HNO3 preserved A -2 -2	Container Type Cooler pH pH deg C Pres Seal Seal Vial HCl preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Vial HCl preserved A NA 2.6 Y Absent Vial Hazszo3 preserved A NA 2.6 Y Absent Vial Na2Sz03 preserved A NA 2.6 Y Absent Vial HCl preserved A 2.2 2.2 2.6 Y Absent Plastic 250ml HNO3 preserved A 2.2 2.2 2.6 Y Absent Plastic 500ml H2SO4 preserved A 7 7 2.6 Y Absent Plastic 950ml unpreserved A 7 7 2.6 Y Absent Amber 1000ml HCl preserved A NA 2.6 Y Absent Amber 1000ml HCl preserved A NA 2.2 2 2 2.6 Y Absent Amber 1000ml HCl preserved A NA 2.2 2 2 2.6 Y Absent Amber 1000ml Na2S203 A 7 7 2.6 Y Absent

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1812596

Project Number: 128271-018 Report Date: 04/23/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1812596

Project Number: 128271-018 Report Date: 04/23/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:BOSTON COLLEGE CENTRAL HEATLab Number:L1812596Project Number:128271-018Report Date:04/23/18

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

20-11	CHAIN OF			3601 Mahwah, NJ	Pag			Date	e Rec	o'd			315				153	191		190			77
ΔLPHA	CUSTODY	57420 Albany, NY 12 Tonawanda, NY 14150	705 Holmes, PA 1904	9		of 1	-		Lab			4	111	11	7							ALPHA Job#	
Westborough, MA 0158 8 Walkup Dr.	Manefield, MA 02048 320 Forbes Blvd	Project Information					Deli	verable	15			100.4	9/4/4	18.00	(4)	_	_	_	_	_	-	Billing Information	
TEL: 508-868-9220 FAX: 508-898-9193	TEL 508-822-9300 FAX 508-822-3268	Project Name:	Boston Colleg	ge Central Hea	ting Plant		2	Email	1			Fax					_		_			Same as Client Info	
FAX: 500-030-9193	FRA. 200-022-3220	Project Location:	Chestnut Hill,	MA				EQui	S (1 F	File)	2	EQuit	S (4 File)								PO #	
H&A Information		Project #	128271-018				70	Other	r:														
H&A Client: Boston	College	(Use Project name a	s Projed□)				Reg	ulatory	Requ	iremen	ts (Prog	ram/Cr	teria)	- 1						- B		Disposal Site Information	Toler.
H&A Address 465 Mer	dford St	Project Manager:	C. Worthy				MA	NPDE	SAG	Р	T											Please identify below location of applicat	this dispers
Boston	MA 02129-1400	ALPHAQuote #:																				facilities.	and only use
H&A Phone: 617-886	-7400	Turn-Around Time	JUL 10								1											Disposal Facility:	
H&A Fax:		Standard	2	Due Date:			7														T	אום ש ם	
H&A Email: Oworthy	, Siberg	Rush (if pre approved)		# of Days:	5 Day		Note	: Select	State	from me	nu & ide	ntily cra	eria.								Ī	Giher:	
These samples have b	een previously analyzed	by Alpha					ANA	LYSIS														Sample Filtration	1
Other project specific	c requirements/comme	nts:					$^{+}$	T.	T	T		É	-					T	_	$\neg \neg$			- 1
SEE NPDES PERMIT	od, Cr. Cu, NI, Pb, Sb, Se INFO FOR FULL LIST C 2017 RGP Approved Te	FANALYTES					1. TSS	al Residual Chlorine	Total Cyanide	Ammonia (NH3-4500)	5. Chloride	- Halogenated & No Halogenated	VOCs - Halogenated Non-Halogenated	8. Fuel Parameters	Total Metals (See note)	10, Total PCBs		HBX Cr - SM 3500	000000000000000000000000000000000000000			Done Lab to do Preservation Lab to do (Please Specify below)	8 0 1
ALPHA Lab ID (Lab Use Only)	Samp	le ID	Colle	ction Time	Sample Matrix	Sampler's Initials	1	2. Total	60	4. Am		VOCs	7. SVOCs Non-H	8.	9. Tota	-		12					-
	HAMBRAGA HA-	DI7 1 21	C2000000000000000000000000000000000000	731.712.7	70757530	10013945	-	100	-	-	-	σ	12		000		-	_	-	-		Sample Specific Comments	
100001	Land South States LL ()	DI OW TOUTH	4 4h yie	1335	AQ	MD	X	X	X	X	Х	Х	Х	Х	X	Х	X	Х	х	-	_	pH and temp collected in field	-
							-	-	-	-	-	-	-	-			_	-	-				
							-	-	-	-	-	-		_		_	-	-	-	-	_		
							-		-	-	-	-					_	-		\perp			
			_	_			-	_									_	_	-	\perp			
			-		_	_	-		-	-		-					-	-	+	+			
							-		-	-	-	_	_	_			-	-	-	+			
							-		-	-	-			_		_	-	-	-	\perp			
						_	-	_					0 3			-	-	-	-	\perp			
			-	-			1			-	_				_		_	-	13				
Preservative Code:	Container Code	Market and the second						_		-	_	-				_	_	_	_				
A = None B = HCI C = HNO ₈	P = Plastic A = Amber Glass V = Vlat		Westboro: Certification No: MA035 Mansfield: Certification No: MA015		Container Type		P	√.º	P	P	V°	V	A	A	P	P	1	2				Please print clearly, legibly and comple Samples can not be logged in and turns time clock will not start until any ambig resolved. Alpha Analytica's services und	around guities are
	G = Glass B = Bacteria Cup					Preservative	A		E	0		5	A	D	C	4	3/	4				Chain of Custody shall be performed in ac	ccordance
F = MeOH	C = Cube O = Other	Relinquished	By:	, Date/	Time		Recely	red By:							D	ate/Ti	me					with terms and conditions within Blanket 5 Agreement# 2015-18-Alpha Analytical by	
H = Na ₂ S ₂ O ₂	E = Encore	MAHOUM		4/11/18		Mar		-			41	utte	6	30		-						between Haley & Aldrich, Inc., its subsidia	aries and
K/E = Zn Ac/NaOH	D = BOD Bottle	THUNK		CHILLE	16/30	Said		-	A	AL			1620									affiliates and Alpha Analytical,	
O = Other		Singman	$\overline{}$	11	1800	bonn	000	m.	0 00	14			18										
Document ID: 20456 Rev	(1/28/2016)	C 009: 12:	7.775	, , ,		100		7.4	- 44	W.L	-	1.1	- 16	100				_					

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-150202-1

Client Project/Site: L1812596

For:

Alpha Analytical Inc 145 Flanders Road Westborough, Massachusetts 01581-1019

Attn: Melissa Gulli

Authorized for release by: 4/20/2018 12:29:59 PM

Kuth Hage

Ken Hayes, Project Manager II

(615)301-5035

ken.hayes@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at:
www.testamericainc.com
Page 68 of 80

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

6

0

9

TestAmerica Job ID: 490-150202-1

Client: Alpha Analytical Inc Project/Site: L1812596

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	
QC Association	8
Chronicle	9
Method Summary	10
Certification Summary	11
Chain of Custody	

2

3

4

5

7

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1812596

TestAmerica Job ID: 490-150202-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-150202-1	HA-B1(OW)_04112018	Water	04/11/18 13:35	04/17/18 09:15

Case Narrative

Client: Alpha Analytical Inc Project/Site: L1812596 TestAmerica Job ID: 490-150202-1

Job ID: 490-150202-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-150202-1

Comments

No additional comments.

Receipt

The sample was received on 4/17/2018 9:15 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 6.0° C.

GC Semi VOA

Method 1671A: The matrix spike / matrix spike duplicate (MS/MSD) precision for analytical batch 490-509221 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

_

D

6

0

9

10

11

Definitions/Glossary

Client: Alpha Analytical Inc Project/Site: L1812596

TestAmerica Job ID: 490-150202-1

Qualifiers

GC VOA

Qualifier **Qualifier Description**

F2 MS/MSD RPD exceeds control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed condent to a UDU and constant and a single that the constant is non-seted and a disconsistent to a

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Client Sample Results

Client: Alpha Analytical Inc Project/Site: L1812596 TestAmerica Job ID: 490-150202-1

Client Sample ID: HA-B1(OW)_04112018

Lab Sample ID: 490-150202-1

Date Collected: 04/11/18 13:35 Date Received: 04/17/18 09:15 . Matrix: Water

Method: 1671A - Ethanol (GC/FID)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Ethanol ND F2 2000 500 ug/L 04/18/18 18:05 1

č

6

9

10

11

QC Sample Results

RL

2000

Limits

70 - 130

MDL Unit

500 ug/L

D

Prepared

Prepared

Client: Alpha Analytical Inc Project/Site: L1812596

Analysis Batch: 509221

Matrix: Water

Analyte

Ethanol

Surrogate

Isopropyl acetate (Surr)

Matrix: Water

Matrix: Water

Analyte

Ethanol

Surrogate

Isopropyl acetate (Surr)

Analysis Batch: 509221

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-509221/14

Lab Sample ID: LCS 490-509221/15

Lab Sample ID: 490-150202-1 MSD

TestAmerica Job ID: 490-150202-1

Client Sample ID: Method Blank

Analyzed

04/18/18 16:24

Analyzed

04/18/18 16:24

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: HA-B1(OW)_04112018

%Rec

117

%Rec.

Limits

70 - 130

Prep Type: Total/NA

RPD

RPD

Limit

Prep Type: Total/NA

Dil Fac

Dil Fac

Analysis Batch: 509221 LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Ethanol 50200 113 70 - 130 56610 ug/L LCS LCS Surrogate %Recovery Qualifier Limits Isopropyl acetate (Surr) 70 - 130 118 Lab Sample ID: 490-150202-1 MS Client Sample ID: HA-B1(OW)_04112018 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 509221** Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits ND F2 50200 45980 Ethanol ug/L 70 - 130 MS MS Surrogate %Recovery Qualifier Limits Isopropyl acetate (Surr) 112 70 - 130

Spike

Added

50200

Limits 70 - 130 MSD MSD

58800 F2

Result Qualifier

Unit

ug/L

MB MB

MB MB

Qualifier

 $\overline{\mathsf{ND}}$

110

%Recovery

Sample Sample

ND F2

MSD MSD %Recovery Qualifier

97

Result Qualifier

Result Qualifier

QC Association Summary

Client: Alpha Analytical Inc Project/Site: L1812596 TestAmerica Job ID: 490-150202-1

GC VOA

Analysis Batch: 509221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-150202-1	HA-B1(OW)_04112018	Total/NA	Water	1671A	
MB 490-509221/14	Method Blank	Total/NA	Water	1671A	
LCS 490-509221/15	Lab Control Sample	Total/NA	Water	1671A	
490-150202-1 MS	HA-B1(OW)_04112018	Total/NA	Water	1671A	
490-150202-1 MSD	HA-B1(OW)_04112018	Total/NA	Water	1671A	

1

5

6

8

9

. .

Lab Chronicle

Client: Alpha Analytical Inc Project/Site: L1812596 TestAmerica Job ID: 490-150202-1

Lab Sample ID: 490-150202-1

Matrice Mater

Matrix: Water

Client Sample ID: HA-B1(OW)_04112018 Date Collected: 04/11/18 13:35

Date Received: 04/17/18 09:15

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Į	Total/NA	Analysis	1671A		1			509221	04/18/18 18:05	AAB	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

10

11

Method Summary

Client: Alpha Analytical Inc Project/Site: L1812596 TestAmerica Job ID: 490-150202-1

TAL NSH

Protocol	Laboratory

EPA

у____

Protocol References:

Method

1671A

EPA = US Environmental Protection Agency

Ethanol (GC/FID)

Method Description

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

4

6

6

9

10

11

Accreditation/Certification Summary

Client: Alpha Analytical Inc Project/Site: L1812596 TestAmerica Job ID: 490-150202-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Nur	mber Expiration Date
California	State Progr	ram	9	2938	10-31-18
The following analyte:	s are included in this report	, but accreditation	/certification is not off	fered by the governing	g authority:
Analysis Method	Prep Method	Matrix	Analy	te	
1671A		Water	Ethan	iol	
Maine	State Progr	ram	1	TN00032	11-03-19
The following analyte:	s are included in this report	, but accreditation	/certification is not off	fered by the governing	g authority:
Analysis Method	Prep Method	Matrix	Analy	te	
1671A		Water	Ethan	a d	

3

8

9

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Nashville, TN

COOLER RECEIPT FORM

See 10 09:15 KD 04-17.	-2018
Conter Receiven/Unened Un U4-1/-2018 (D) C	
Time Samples Removed From Cooler 18 03 Time Samples Placed In Storage 17 12	(2 Hour Window)
1. Tracking # / ZE36656/ (last 4 digits, FedEx) Courier: Courier:	(+ day Air
IR Gun ID_31470366 pH Strip Lot/Chlorine Strip Lot/	4
2. Temperature of rep. sample or temp blank when opened: 6. Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NONA
4. Were custody seals on outside of cooler?	YES:NONA
If yes, how many and where:	·
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	2
7. Were custody seals on containers: YES (NO) and Intact	YESNO. (NA)
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pap	er Other None
9. Cooling process: (Ice) Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	(FESNONA
12. Did all container labels and tags agree with custody papers?	(FESNONA
13a. Were VOA vials received?	ÉSNONA
b. Was there any observable headspace present in any VOA vial?	YES.).NONA
	$\overline{}$
Larger than this.	
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence	çe#
certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO(NA)
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNO(NA
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	(ESNONA
20. Was sufficient amount of sample sent in each container?	ESNONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	
certify that I attached a label with the unique LIMS number to each container (intial)	(CD
21. Were there Non-Conformance issues at login? (YES)NO Was a NCM generated? (YES)NO	.#

BIS = Broken in shipment Cooler Receipt Form.doc

		lis	hontract Ch	Subcontract Chain of Custody			
ANALY 10 A L		Test Ar 2960 F Nashvi	Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204	Drive		Alpha Job Number L1812596	mber
Client	Client Information	d	Project Information	tion	Regulatory Require	Regulatory Requirements/Report Limits	/6
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	ical Labs 5 Drive 1, MA 01581-1019	Project Location: MA Project Manager: Karyn Raymond Turnaround & Deliverab	ocation: MA lanager: Karyn Raymond rnaround & Deliverables Information	s Information	State/Federal Program: Regulatory Criteria: RCS-1-14;S1/G1-14	14;S1/G1-14	
Phone: 508.439.5186 Email: kraymond@alphalab.com	6 alphalab.com	Due Date: Deliverables:					
		Project Specific R	equirements a	Project Specific Requirements and/or Report Requirements	nents		
Refer Additional Comments	Reference following Alpha Job Number on final report/deliverables: L1812596 Additional Comments: Send all results/reports to subreports@alphalab.com Ethanol 1671	nber on final report/de ubreports@alphalab.co	liverables: L181 om Ethanol 1671	2596	Report to include Method Blank, LCS/LCSD:	CS/LCSD:	
					-		
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis		Ba	Batch QC
	HA-B1(OW)_04112018	04-11-18 13:35	WATER	Ethanol by EPA 1671 Revision A	Loc: 490 150202	202	
	Relinquished By	۸:	Date/	Date/Time:	Received By:	П	
	Bra	Le Mac	<u> </u>	16/18	CETAL Bamber TA-NAS	AS 04-17-2018 09	31.
Form No: AL_subcoc							

ANALYTICAL REPORT

Lab Number: L1819674

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Heather Scranton Phone: (617) 886-7400

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Report Date: 06/04/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1819674

Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1819674-01	2018 LEVERETT POND	WATER	CHESTNUT HILL, MA	05/29/18 10:30	05/29/18

Project Name:BOSTON COLLEGE CENTRAL HEATLab Number:L1819674Project Number:128271-018Report Date:06/04/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Maile Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 06/04/18

ALPHA

METALS

Project Name: BOSTON COLLEGE CENTRAL HEAT

Lab Number: **Report Date:**

L1819674

06/04/18

Project Number:

128271-018

SAMPLE RESULTS

Date Collected:

05/29/18 10:30

Lab ID: Client ID: L1819674-01

2018 LEVERETT POND

Date Received:

05/29/18

Sample Location:

CHESTNUT HILL, MA

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Copper, Total	0.00192		mg/l	0.00100		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Iron, Total	0.658		mg/l	0.050		1	06/01/18 09:1	7 06/02/18 08:34	EPA 3005A	19,200.7	PE
Lead, Total	0.00159		mg/l	0.00100		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	05/30/18 11:04	4 05/30/18 20:32	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	06/01/18 09:1	7 06/01/18 14:42	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	s - Mansfiel	d Lab								
Hardness	180		mg/l	0.660	NA	1	06/01/18 09:1	7 06/02/18 08:34	EPA 3005A	19,200.7	PE
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		06/01/18 14:42	NA	107,-	

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1819674

Report Date: 0

06/04/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG11	120603-	·1				
Mercury, Total	ND	mg/l	0.0002		1	05/30/18 11:04	05/30/18 19:27	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	n: WG1	121430-	1				
Iron, Total	ND	mg/l	0.050		1	06/01/18 09:17	06/02/18 07:08	19,200.7	PE

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield Lal	o for sam	ple(s): 0	1 Bato	h: WG112	1430-1			
Hardness	ND	mg/l	0.660	NA	1	06/01/18 09:17	06/02/18 07:08	3 19,200.7	PE

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01 Bato	h: WG11	21434-	-1				
Antimony, Total	ND	mg/l	0.00400		1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1819674

Project Number: 128271-018 **Report Date:** 06/04/18

Method Blank Analysis Batch Quality Control

Nickel, Total	ND	mg/l	0.00200	 1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500	 1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM
Silver, Total	ND	mg/l	0.00040	 1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000	 1	06/01/18 09:17	06/01/18 14:10	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1819674

Report Date:

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1120603-2				
Mercury, Total	91	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1121430-2				
Iron, Total	112	-	85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	Associated sample	e(s): 01 Batch: WG112143	30-2			
Hardness	110	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	NG1121434-2				
otal Metals - Mansfield Lab Associated sample Antimony, Total	e(s): 01 Batch: V	NG1121434-2 -	85-115	-		
		VG1121434-2 - -	85-115 85-115	-		
Antimony, Total	107	-		-		
Antimony, Total Arsenic, Total	107 110	-	85-115	-		
Antimony, Total Arsenic, Total Cadmium, Total	107 110 112	-	85-115 85-115	-		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total	107 110 112 99	- - -	85-115 85-115 85-115	-		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Total	107 110 112 99 101	- - - -	85-115 85-115 85-115 85-115	- - -		
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total	107 110 112 99 101 104	- - - -	85-115 85-115 85-115 85-115 85-115	- - - -		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Nickel, Total	107 110 112 99 101 104 106	- - - -	85-115 85-115 85-115 85-115 85-115 85-115	- - - -		

Matrix Spike Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1819674

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	y RPD Q	RPD ual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG112060	3-3 (QC Sample:	L1819581-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.0030	60	Q	-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG112060	3-5 (QC Sample:	L1819581-02	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.0014	28	Q	-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG112143	0-3	QC Sample:	L1819206-01	Client ID: MS	Sample	
Iron, Total	0.601	1	1.46	86		-	-	75-125	-	20
Total Hardness by SM 2340I	B - Mansfield Lab	Associate	ed sample(s):	01 QC Bato	ch ID: V	VG1121430-	-3 QC Samp	ole: L1819206-01	Client ID:	: MS Sample
Hardness	90.4	66.2	158	102		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG112143	0-7	QC Sample:	L1819673-01	Client ID: MS	Sample	
Iron, Total	0.125	1	0.894	77		-	-	75-125	-	20
Total Hardness by SM 2340I	B - Mansfield Lab	Associate	ed sample(s):	01 QC Bato	ch ID: V	VG1121430-	-7 QC Samp	ole: L1819673-01	Client ID:	: MS Sample
Hardness	172	66.2	227	83		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number: L1819674

Report Date: 06/04/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield L	ab Associated sar	nple(s): 01	QC Batch	ID: WG1121434-3	QC Sample	e: L1819673-01	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.4212	84	-	-	70-130	-	20
Arsenic, Total	0.00323	0.12	0.1356	110	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.03928	77	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1390	70	-	-	70-130	-	20
Copper, Total	0.00374	0.25	0.1705	67	Q -	-	70-130	-	20
Lead, Total	ND	0.51	0.5135	101	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.3563	71	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1319	110	-	-	70-130	-	20
Silver, Total	ND	0.05	0.03428	68	Q -	-	70-130	-	20
Zinc, Total	ND	0.5	0.3934	79	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1819674

Report Date:

Parameter	Native Sample Duj	olicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1120603-4	QC Sample:	L1819581-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1120603-6	QC Sample:	L1819581-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1121430-8	QC Sample:	L1819673-01	Client ID:	DUP Sample	
Iron, Total	0.125	0.115	mg/l	8		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1121434-4	QC Sample:	L1819673-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00323	0.00317	mg/l	2		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00374	0.00343	mg/l	9		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1819674

Project Number: 128271-018 **Report Date:** 06/04/18

SAMPLE RESULTS

Lab ID: L1819674-01 Date Collected: 05/29/18 10:30

Client ID: 2018 LEVERETT POND Date Received: 05/29/18
Sample Location: CHESTNUT HILL, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result Qu	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab								
pH (H)	7.2	SU	-	NA	1	-	05/29/18 21:03	121,4500H+-B	AS
Nitrogen, Ammonia	0.118	mg/l	0.075		1	05/30/18 05:00	05/30/18 22:41	121,4500NH3-BH	AT
Chromium, Hexavalent	ND	mg/l	0.010		1	05/30/18 01:00	05/30/18 03:56	1,7196A	MA

L1819674

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number:

Project Number: 128271-018 **Report Date:** 06/04/18

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sa	ample(s): 01	Batch:	WG1	120442-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	05/30/18 01:00	05/30/18 03:22	1,7196A	MA
General Chemistry -	Westborough Lab for sa	ample(s): 01	Batch:	WG1	120451-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	05/30/18 05:00	05/30/18 22:26	121,4500NH3-E	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1819674

Report Date:

Parameter	LCS %Recovery C	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1120384	-1				
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1120442	-2				
Chromium, Hexavalent	96	-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1120451	-2				
Nitrogen, Ammonia	98	-		80-120	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

Lab Number:

L1819674

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - Westborou POND	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1120442-4	QC Sample: L18	319674-01 Client	ID: 2018 LEV	/ERETT
Chromium, Hexavalent	ND	0.1	0.095	95	-	-	85-115	-	20
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1120451-4	QC Sample: L18	319629-01 Client	ID: MS Samp	ole
Nitrogen, Ammonia	3.23	4	7.02	95	-	-	80-120	-	20

L1819674

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018

vality Control

Lab Number:

Report Date: 06/04/18

Parameter	Native S	Sample	Duplicate Sam	ple Units	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1120384-2	QC Sample:	L1819637-01	Client ID:	DUP Sample
рН	7.	2	7.1	SU	1		5
General Chemistry - Westborough Lab POND	Associated sample(s): 01	QC Batch ID:	WG1120442-3	QC Sample:	L1819674-01	Client ID:	2018 LEVERETT
Chromium, Hexavalent	N	D	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1120451-3	QC Sample:	L1819629-01	Client ID:	DUP Sample
Nitrogen, Ammonia	3.2	23	3.48	mg/l	7		20

Serial_No:06041819:38 *Lab Number:* L1819674

Project Name: BOSTON COLLEGE CENTRAL HEAT

Project Number: 128271-018 **Report Date:** 06/04/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН рН	pH deg C F	Pres	Seal	Date/Time	Analysis(*)
L1819674-01A	Plastic 250ml unpreserved	Α	7	7	4.7	Υ	Absent		HEXCR-7196(1),PH-4500(.01)
L1819674-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.7	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1819674-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	4.7	Υ	Absent		NH3-4500(28)

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1819674

Project Number: 128271-018 Report Date: 06/04/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or mainture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1819674

Project Number: 128271-018 Report Date: 06/04/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: BOSTON COLLEGE CENTRAL HEAT Lab Number: L1819674

Project Number: 128271-018 Report Date: 06/04/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

_____ID_No.:**17873**

Revision 11 Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan BCRs, Statis Aldebude, Hentachler English BCRs, Control and Control and

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 Mansfield, MA 02048 320 Forbes Blvd TEL: 508-898-9220 FAX: 508-898-9193 FAX: 508-822-3288		Brewer, ME 04412 Albany, NY 12205 Tonawanda, NY 14150 Holmo Project Information Project Name: Project Location:		f		in verabl Ema	es	5	29 18 □ Fax ☑ EQuIS (4 File)			ALPHA Job # L 8 9674 Billing Information Same as Client Info			
H&A Information	ALIENS THE STATE OF	Project #	oject # 128271-018						er:						
H&A Client: Boston C	ollege		se Project name as Project #)						y Requ	uiremo	ents (P	n/Criteria)	Disposal Site Information	214	
H&A Address: 465 Medi	ford Street, #220	Project Manager:	H. Scranton				MA	NPD	ES 201	17 RGF				Please identify below location of	,
Boston, MA 02129		ALPHAQuote #:					1				1			applicable disposal facilities.	
H&A Phone: 617-886-	7400	Turn-Around Time	View To	-	15 Val 16						1			Disposal Facility:	
H&A Fax:		Standar	d 🗸	Due Date			1							□ NJ □ NY	
	cworthy, kalepidis	Rush (only if pre approved		# of Days			Note:	Select	State	from m	enu & i	dentify	criteria.	Other:	
These samples have been		/ Alpha					ANA	LYSIS	3					Sample Filtration	T
Please specify Metals or TAL.						al NPDES Metals	Total Hardness	3. NH3	al Chromium VI	5. pH			Done Lab to do Preservation Lab to do (Please Specify below)	0 - n - 1 B 0 + 1	
ALPHA Lab ID	Sa	mple ID Collection			Sample Sampler's Matrix Initials		Total	2 2		Total	1				
(Lab Use Only)			Date ,		Time Matrix		-							Sample Specific Comments	
19674-01	2018 Leverett Pond		5/29/18	10:30	aq		×	×	×	×	x			Temperature:	3
	i i														
											\perp				
								_		_					
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type Preservative			p p p p					Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. Alpha Analytical's services under this Chain of Custody		
F = MeOH	OH C = Cube Relinquished By: Date/Time						Receiv	ved By	<i>/</i> :	-		Date	Time	shall be performed in accordance	e with
$G = NaHSO_4$ $H = Na_2S_2O_3$	O = Other E = Encore	Scott War		5/29/19	15:30	U. MH	*	100 10		_	5/2	a la	16130	terms and conditions within Bian Service Agreement# 2015-18-Al	
K/E = Zn Ac/NaOH	D = BOD Bottle	Milita		5/20/18	613.	Some	Oan		. A	he	5/29	10	1630	Analytical by and between Haley	
O = Other		Smilena	- AAC	1/29/18	1825	Done				1				Aldrich, Inc., Its subsidiaries and affiliates and Alpha Analytical.	
Document ID: 20455 Rev 1 (1/	28/2016)			7-11-1	and the second	Come	ANIZ.	11.65	, yw		40		10.03	and righte resultings	