

10 Tech Circle Natick, MA 01760 T: 508.652.9800 F: 508.652.9776 www.guigli.com

# HEAVY | HIGHWAY | SITEWORK | CIVIL CONSTRUCTION

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912

**ATTN: Remediation General Permit NOI Processing** 

August 10, 2018 File No. 4256.00

Re: Notice of Intent for the Remediation General Permit

**Temporary Construction Dewatering for Site Redevelopment** 

99 Sumner Street, East Boston, Massachusetts

# Dear Sir/Madam:

On behalf of DIV Sumner Street, LLC, Guigli & Sons, Inc. (Guigli) is submitting this Notice of Intent (NOI) to the U.S. Environmental Protection Agency (EPA) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) MAG910000 for 99 Sumner Street in East Boston, MA (the Site). This letter and supporting documentation were prepared in accordance with the U.S. EPA guidance for construction dewatering under the RGP program. Guigli is the earthwork contractor for the project and will have direct responsibility of performing the dewatering activities at the Site. The approximate location of the Site is shown on Figure 1 and the extent of the proposed area of groundwater dewatering activities and discharge location are shown on Figure 2.

The Site is located at 99 Sumner Street in East Boston, Massachusetts as shown on Figure 1. The Site consists of a relatively flat, lightly vegetated, approximately 3.3-acre waterfront lot on Boston's Inner Harbor in East Boston, Massachusetts.

Redevelopment activities at the Site include mass excavation of urban fill and natural soils for the construction of a six-story residential building with one level of below grade parking and outdoor amenity area. During pre-characterization activities at the Site between 2005 and 2018, reportable conditions were encountered under the Massachusetts Contingency Plan (MCP). Lead, arsenic, mercury, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), Polychlorinated Biphenyls (PCBs), and total petroleum hydrocarbons (TPH) were detected in soil at concentrations above applicable MCP Reportable Concentrations for S-1 soil (RCS-1). The release condition was reported to the Massachusetts Department of Environmental Protection (DEP) and Release Tracking Number (RTN) 3-25307 and 3-35025 were assigned to the Site. On behalf of the former owner, several MCP response action submittals were submitted to DEP, and a Class C-2 Response Action Outcome (RAO), or Temporary Solution, was filed on October 8, 2010.

The Site redevelopment work will be performed under a Release Abatement Measure (RAM) Plan for management under the MCP of contaminated soil generated during construction activities. Groundwater sampling was performed in several wells across the Site as part of assessment activities for RTN 3-25307 and contaminates in groundwater were not detected at concentration above applicable MCP Reportable Concentrations.

The earthwork to prepare the Site for redevelopment will require excavation of soil down to approximate Elevation (El.) 4.0 feet for building foundations. The excavation will be supported by sheet piles and groundwater that flows into the excavations during construction activities will be treated prior to discharge to through straw or haybale sediment barrier before entering the Boston Inner Harbor, such that the discharged effluent meets the effluent limitations established by NPDES Part 2.1 and Appendix V of the RGP Application. Figure 3 includes a schematic of the proposed conceptual dewatering treatment system. The completed Notice of Intent for the Remediation General Permit form is included as Appendix A.

On April 18, 2018, Sanborn Head & Associates (Sanborn), the project's environmental consultant, collected two samples to characterize the receiving and source waters in support of this NOI. The source water was collected from a groundwater monitoring well, identified as SH-6W, which is located within the proposed excavation area. In accordance with guidance provided by EPA and DEP (see Appendix C), we understand that one (1) source water sampling is appropriate for an excavation area of this size. The receiving water was collected from a public dock in the Boston Inner Harbor located in LoPresti Park, which is in the inland direction and toward the Mystic and Charles Rivers. The groundwater samples were collected from a bailer and were submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA for analysis for the 2017 NPDES suite of parameters.

The discharge point for the treatment system will be the Inner Boston Harbor. Information regarding the receiving water was collected from the Massachusetts Year 2014 Integrated List of Waters, which is included in Appendix B. Based on our correspondence with EPA the dilution factor for saltwater bodies is 1. Our correspondence with EPA and DEP is included in Appendix C. Analytical laboratory data for on-Site and surface water sampling is summarized in Table 1 and the calculations of the Site Water Quality Based Effluent Limitations (WQBELs) are provided in Appendix C. The analytical data reports are included in Appendix D.

According to the Information for Planning and Conservation (IPaC), available through the U.S. Fish and Wildlife Service (FWS) website, critical habitats are not located within the project area and the excavation activities will not impact federally-listed threatened or endangered species. A letter from the FWS is included in Appendix E. A letter requesting information regarding federally listed species in the project discharge area of the Boston Inner Harbor was sent to the National Oceanic and Atmospheric Administration (NOAA). The response from NOAA, included in Appendix E, states that while federally listed species may frequent the Massachusetts Bay, these species would not be expected to be exposed to effects of the project.

A review of the National Register of Historic Places within East Boston was performed. Based on the review, the discharge and discharge-related activities do not have the potential to cause effects on historic properties. A list of the properties reviewed is included in Appendix F.

Discharge of treated water is scheduled to begin as early as October 1, 2018, pending authorization from the EPA and other agencies.

Thank you for your consideration of this NOI/Permit. Please feel free to contact us if you wish to discuss the information contained in this application, or if any additional information is needed.

Very truly yours,

Ernest Guigli and Sons, Inc.

**Matt Guigli** Vice President

encl. Table 1 - Summary of Water Quality Data

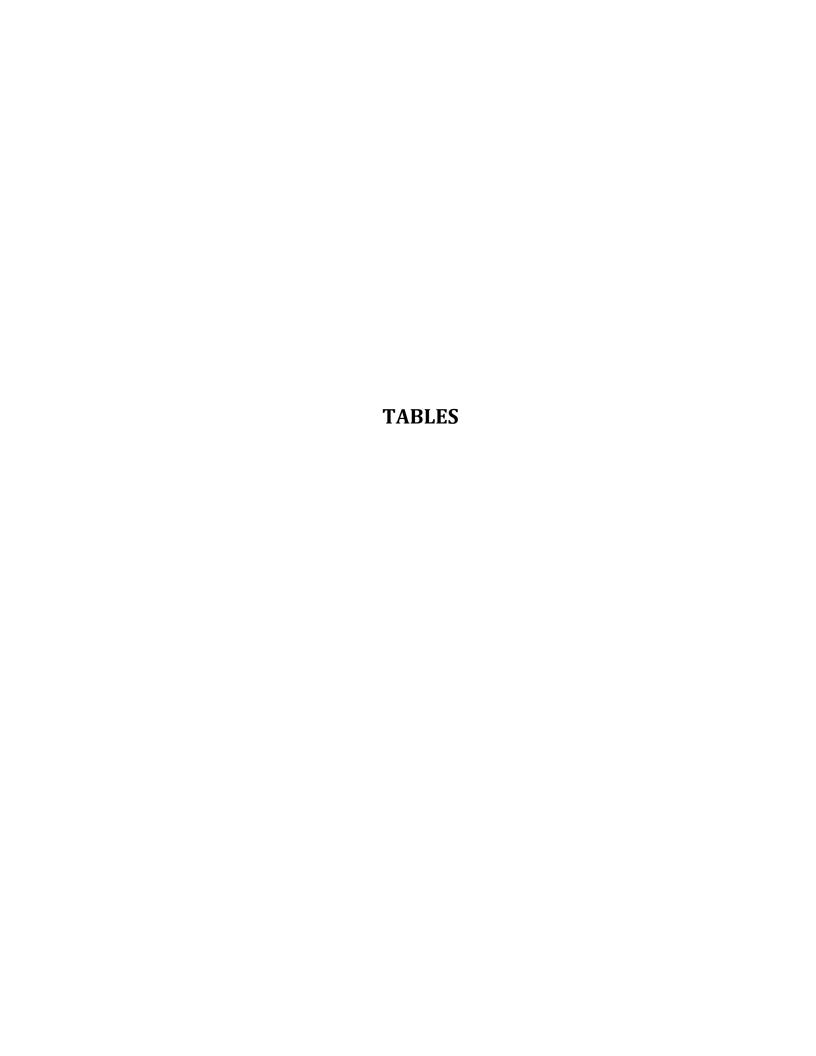
Figure 1 – Locus Plan

Figure 2 - Location of Proposed Excavation and Dewatering

Figure 3 – Conceptual Groundwater Treatment Schematic

Appendix A – Notice of Intent Form

Appendix B - Massachusetts Category 5 Waters "Waters requiring a TDML"


Appendix C - Water Quality Based Effluent Limitations (WQBELs) Documentation

Appendix D - Analytical Data Report

Appendix E – Environmental Receptors

Appendix F - National Register of Historic Places, Research Documentation

\bosserv1\SHDATA\SHDATA\4200s\4256.00\Source Files\NPDES RGP NOI\20180525 RGP NOI ltr DRAFT.docx



# Table 1 Water Quality Data Summary

99 Sumner Street East Boston, MA

| LOCATION                                             | Units        | INFLUENT                 | RECEIVING         |  |
|------------------------------------------------------|--------------|--------------------------|-------------------|--|
| LOCATION<br>SAMPLING DATE                            | Omits        | 4/18/2018                | 4/18/2018         |  |
| Anions by Ion Chromatography                         |              |                          | , -, -            |  |
| Chloride<br>General Chemistry                        | ug/l         | 125,000                  | -                 |  |
| Chromium, Trivalent                                  | ug/l         | 120                      | -                 |  |
| SALINITY                                             | SU           | -                        | 21                |  |
| Solids, Total Suspended<br>Cyanide, Total            | ug/l<br>ug/l | <b>2,300,000</b> <5      | -                 |  |
| Chlorine, Total Residual                             | ug/l         | <20                      | -                 |  |
| рН (Н)                                               | SU           | 7.9                      | 7.9               |  |
| Nitrogen, Ammonia<br>TPH, SGT-HEM                    | ug/l<br>ug/l | <b>654</b> <4,000        | <75<br>-          |  |
| Phenolics, Total                                     | ug/l         | <30                      | -                 |  |
| Chromium, Hexavalent                                 | ug/l         | <10                      | -                 |  |
| Microextractables by GC<br>1,2-Dibromoethane         | ug /l        | <0.01                    |                   |  |
| Polychlorinated Biphenyls by GC                      | ug/l         | <0.01                    | -                 |  |
| PCBs, Total                                          | ug/l         | BDL (<0.25)              | -                 |  |
| Semivolatile Organics by GC/MS                       | /1           | 2.2                      |                   |  |
| Bis(2-ethylhexyl)phthalate Total Phthalates          | ug/l<br>ug/l | 3.3                      | <u>-</u>          |  |
| Semivolatile Organics by GC/MS-                      |              | 0.0                      |                   |  |
| Fluoranthene                                         | ug/l         | 0.11                     | -                 |  |
| Pyrene<br>Total Group I PAHs                         | ug/l<br>ug/l | <b>0.1</b><br>BDL (<0.1) | -                 |  |
| Total Group II PAHs                                  | ug/l         | 0.2                      | <u> </u>          |  |
| Total Metals                                         |              |                          |                   |  |
| Arsenic, Total<br>Cadmium, Total                     | ug/l<br>ug/l | 21.06<br>1.56            | <b>1.66</b> < 0.2 |  |
| Chromium, Total                                      | ug/l<br>ug/l | 120.8                    | 3.04              |  |
| Copper, Total                                        | ug/l         | 329.3                    | 2.75              |  |
| Iron, Total<br>Lead, Total                           | ug/l<br>ug/l | 80,800<br>1,327          | 412<br>2.96       |  |
| Mercury, Total                                       | ug/l<br>ug/l | 2.92                     | <0.2              |  |
| Nickel, Total                                        | ug/l         | 60.46                    | <2                |  |
| Selenium, Total                                      | ug/l         | <5<br>0.42               | <5                |  |
| Silver, Total<br>Zinc, Total                         | ug/l<br>ug/l | 0.42<br>1,159            | <0.4<br><10       |  |
| Volatile Organics by GC/MS                           | - 8/         | ,                        |                   |  |
| Methylene chloride                                   | ug/l         | <3                       | -                 |  |
| 1,1-Dichloroethane<br>Chloroform                     | ug/l<br>ug/l | <0.75<br><0.75           | -                 |  |
| Carbon tetrachloride                                 | ug/l         | <0.5                     | -                 |  |
| 1,2-Dichloropropane                                  | ug/l         | <1.8                     | -                 |  |
| Dibromochloromethane 1,1,2-Trichloroethane           | ug/l<br>ug/l | <0.5<br><0.75            | -                 |  |
| Tetrachloroethene                                    | ug/l         | <0.5                     | -                 |  |
| Chlorobenzene                                        | ug/l         | <0.5                     | -                 |  |
| Trichlorofluoromethane 1,2-Dichloroethane            | ug/l<br>ug/l | <2.5<br><0.5             | -                 |  |
| 1,1,1-Trichloroethane                                | ug/l         | <0.5                     | -                 |  |
| Bromodichloromethane                                 | ug/l         | <0.5                     | -                 |  |
| trans-1,3-Dichloropropene<br>cis-1,3-Dichloropropene | ug/l<br>ug/l | <0.5<br><0.5             | <u>-</u>          |  |
| 1,3-Dichloropropene, Total                           | ug/l         | <0.5                     | -                 |  |
| 1,1-Dichloropropene                                  | ug/l         | <2.5                     | -                 |  |
| Bromoform<br>1,1,2,2-Tetrachloroethane               | ug/l<br>ug/l | <2<br><0.5               | -                 |  |
| Benzene                                              | ug/l         | <0.5                     | -                 |  |
| Toluene                                              | ug/l         | < 0.75                   | -                 |  |
| Ethylbenzene<br>Chloromethane                        | ug/l<br>ug/l | <0.5<br><2.5             | -                 |  |
| Bromomethane                                         | ug/l         | <1                       | -                 |  |
| Vinyl chloride                                       | ug/l         | <1                       | -                 |  |
| Chloroethane<br>1,1-Dichloroethene                   | ug/l<br>ug/l | <1<br><0.5               | -                 |  |
| 1,2-Dichloroethene, Total                            | ug/l<br>ug/l | <0.5<br><0.5             | -                 |  |
| Trichloroethene                                      | ug/l         | <0.5                     | -                 |  |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene              | ug/l         | <2.5<br><2.5             | -                 |  |
| 1,4-Dichlorobenzene                                  | ug/l<br>ug/l | <2.5<br><2.5             | -                 |  |
| Methyl tert butyl ether                              | ug/l         | <1                       | -                 |  |
| p/m-Xylene                                           | ug/l         | <1                       | -                 |  |
| o-Xylene<br>Xylenes, Total                           | ug/l<br>ug/l | <1<br><1                 | -                 |  |
| cis-1,2-Dichloroethene                               | ug/l         | <0.5                     | -                 |  |
| Dibromomethane                                       | ug/l         | <5                       | -                 |  |
| 1,4-Dichlorobutane<br>1,2,3-Trichloropropane         | ug/l<br>ug/l | <5<br><5                 | -                 |  |
| Styrene                                              | ug/l         | <1                       | -                 |  |
| Dichlorodifluoromethane                              | ug/l         | <5                       | -                 |  |
| Acetone                                              | ug/l         | <5<br><5                 | -                 |  |

# Table 1 **Water Quality Data Summary**

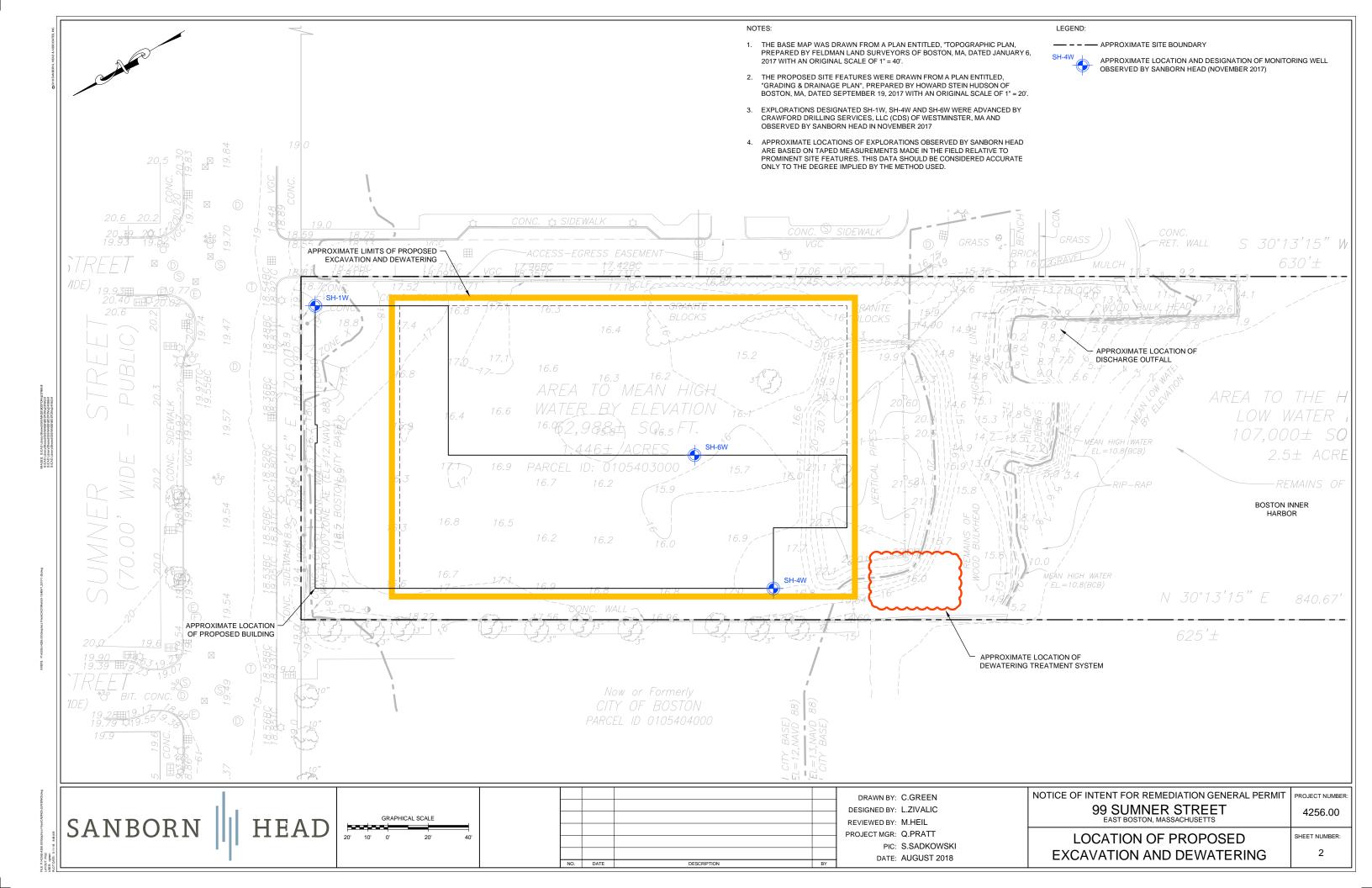
99 Sumner Street East Boston, MA

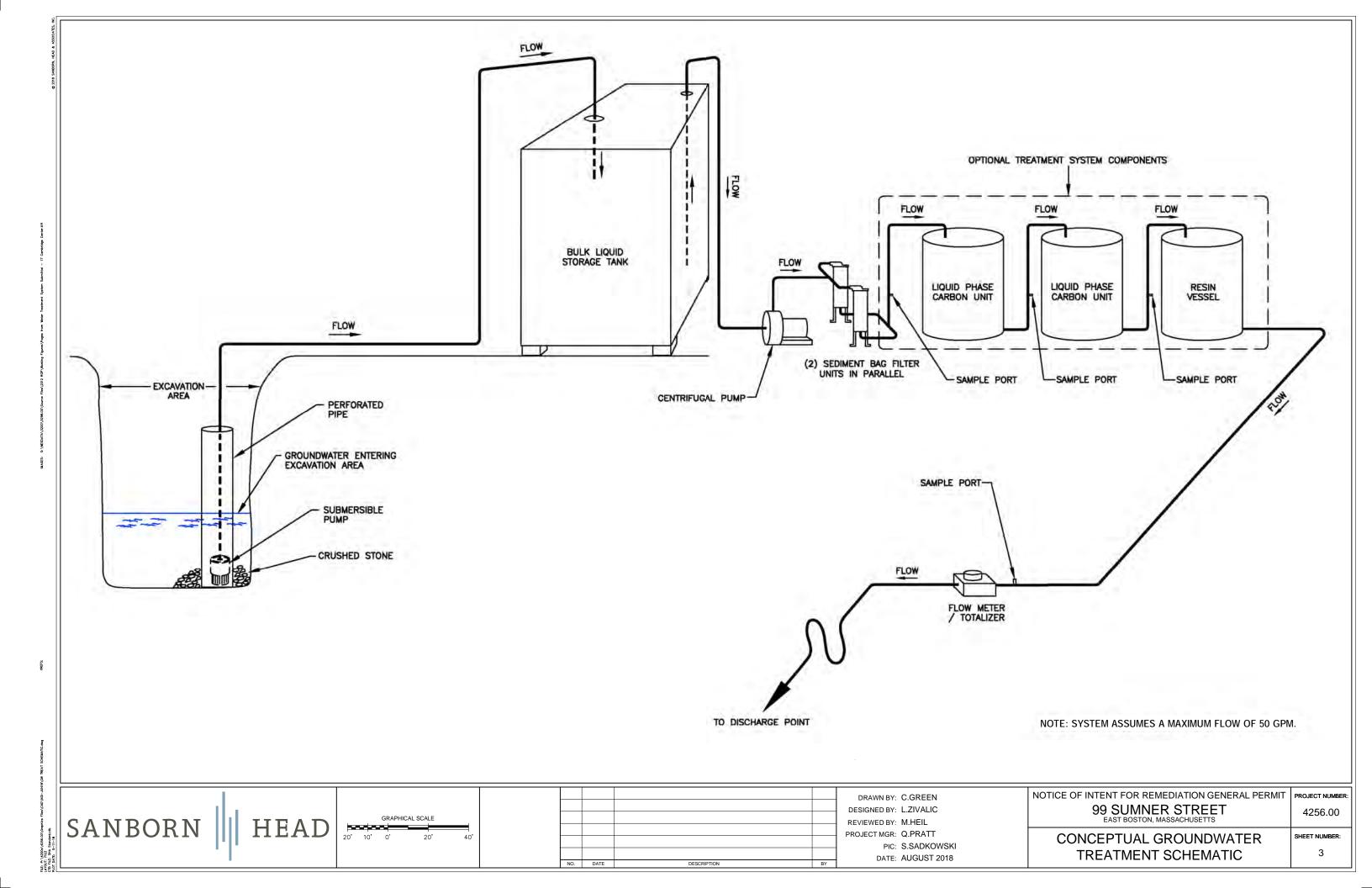
| LOCATION                       | Units | INFLUENT    | RECEIVING |
|--------------------------------|-------|-------------|-----------|
| SAMPLING DATE                  | Omes  | 4/18/2018   | 4/18/2018 |
| 2-Butanone                     | ug/l  | <5          | -         |
| Vinyl acetate                  | ug/l  | <5          | -         |
| 4-Methyl-2-pentanone           | ug/l  | <5          | -         |
| 2-Hexanone                     | ug/l  | <5          | -         |
| Ethyl methacrylate             | ug/l  | <5          | -         |
| Acrylonitrile                  | ug/l  | <5          | -         |
| Bromochloromethane             | ug/l  | <2.5        | -         |
| Tetrahydrofuran                | ug/l  | <5          | -         |
| 2,2-Dichloropropane            | ug/l  | <2.5        | -         |
| 1,2-Dibromoethane              | ug/l  | <2          | -         |
| 1,3-Dichloropropane            | ug/l  | <2.5        | -         |
| 1,1,1,2-Tetrachloroethane      | ug/l  | <0.5        | -         |
| Bromobenzene                   | ug/l  | <2.5        | -         |
| n-Butylbenzene                 | ug/l  | <0.5        | -         |
| sec-Butylbenzene               | ug/l  | <0.5        | -         |
| tert-Butylbenzene              | ug/l  | <2.5        | -         |
| o-Chlorotoluene                | ug/l  | <2.5        | -         |
| p-Chlorotoluene                | ug/l  | <2.5        | -         |
| 1,2-Dibromo-3-chloropropane    | ug/l  | <2.5        | -         |
| Hexachlorobutadiene            | ug/l  | <0.5        | -         |
| Isopropylbenzene               | ug/l  | <0.5        | -         |
| p-Isopropyltoluene             | ug/l  | <0.5        | -         |
| Naphthalene                    | ug/l  | <2.5        | -         |
| Tert-Butyl Alcohol             | ug/l  | <10         |           |
| Tertiary-Amyl Methyl Ether     | ug/l  | <2          | -         |
| Total BTEX                     | ug/l  | BDL (<0.75) |           |
| Volatile Organics by GC/MS-SIM |       |             |           |
| 1,4-Dioxane                    | ug/l  | <3          | -         |

## Notes:

- 1. The samples were collected by Sanborn, Head & Associates, Inc. personnel on the dates indicated and were submitted to Alpha Analytical, Inc. of Westborough, MA (Alpha) for analysis.

  2. The Laboratory Reporting Limit (RL) meets the requirements of Appendix V of the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP).
- 3. Concentrations above detected laboratory reporting limits are bolded.


Abbreviations: ug/l = micrograms per liter


BTEX = Sum of benzene, toluene, ethylbenzene, and total xylenes NS = no standard

< = the compound was not detected above the reporting limit shown MCP = Massachusetts Contingency Plan









# APPENDIX A NOTICE OF INTENT FORM

# II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

# A. General site information:

| 1. Name of site:                                                                  | Site address:                                                                 |                                                                       |        |      |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|------|--|--|--|
|                                                                                   | Street:                                                                       |                                                                       |        |      |  |  |  |
|                                                                                   | City:                                                                         |                                                                       | State: | Zip: |  |  |  |
| 2. Site owner                                                                     | Contact Person:                                                               |                                                                       |        |      |  |  |  |
|                                                                                   | Telephone:                                                                    | Email:                                                                |        |      |  |  |  |
|                                                                                   | Mailing address:                                                              |                                                                       |        |      |  |  |  |
|                                                                                   | Street:                                                                       |                                                                       |        |      |  |  |  |
| Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify: | City:                                                                         |                                                                       | State: | Zip: |  |  |  |
| 3. Site operator, if different than owner                                         | Contact Person:                                                               |                                                                       |        |      |  |  |  |
|                                                                                   | Telephone:                                                                    | Email:                                                                |        |      |  |  |  |
|                                                                                   | Mailing address:                                                              |                                                                       |        |      |  |  |  |
|                                                                                   | Street:                                                                       |                                                                       |        |      |  |  |  |
|                                                                                   | City:                                                                         |                                                                       | State: | Zip: |  |  |  |
| 4. NPDES permit number assigned by EPA:                                           | 5. Other regulatory program(s) that apply to the site (check all that apply): |                                                                       |        |      |  |  |  |
|                                                                                   | ☐ MA Chapter 21e; list RTN(s): ☐ CERC                                         |                                                                       | LA     |      |  |  |  |
| NPDES permit is (check all that apply: $\square$ RGP $\square$ DGP $\square$ CGP  | ☐ NH Groundwater Management Permit or                                         | ☐ UIC Program                                                         |        |      |  |  |  |
| ☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:                         | Groundwater Release Detection Permit:                                         | ☐ POTW Pretreatment ☐ OWN 1.0 1.1 [Applied for under the U.S. Army    |        |      |  |  |  |
| , , , , , , , , , , , , , , , , , , ,                                             |                                                                               | CWA Section 404 Corps of Engineers, General Permits for Massachusetts |        |      |  |  |  |

| В. | Receiving | water   | infor | mation: |
|----|-----------|---------|-------|---------|
|    |           | ******* |       |         |

| 1. Name of receiving water(s):                                                                                                      | Waterbody identification of receiving water                                                                                                                                                                                   | Waterbody identification of receiving water(s): Classification |                              |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
|                                                                                                                                     |                                                                                                                                                                                                                               |                                                                |                              |  |  |  |  |  |  |
| Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River |                                                                                                                                                                                                                               |                                                                |                              |  |  |  |  |  |  |
| 2. Has the operator attached a location map in accord                                                                               | ance with the instructions in B, above? (check one)                                                                                                                                                                           | : □ Yes □ No                                                   |                              |  |  |  |  |  |  |
| Are sensitive receptors present near the site? (check of If yes, specify:                                                           | one): □ Yes □ No                                                                                                                                                                                                              |                                                                |                              |  |  |  |  |  |  |
| 3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.    |                                                                                                                                                                                                                               |                                                                |                              |  |  |  |  |  |  |
|                                                                                                                                     | 4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire. |                                                                |                              |  |  |  |  |  |  |
| 5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s                       |                                                                                                                                                                                                                               |                                                                |                              |  |  |  |  |  |  |
| 6. Has the operator received confirmation from the applicate, indicate date confirmation received:                                  |                                                                                                                                                                                                                               | ,                                                              |                              |  |  |  |  |  |  |
| 7. Has the operator attached a summary of receiving                                                                                 | 1 0 1                                                                                                                                                                                                                         | RGP in accordance with the in                                  | nstruction in Appendix VIII? |  |  |  |  |  |  |
| (check one): ☐ Yes ☐ No (See Table 1 and Appendix D)                                                                                |                                                                                                                                                                                                                               |                                                                |                              |  |  |  |  |  |  |
| C. Source water information:                                                                                                        |                                                                                                                                                                                                                               |                                                                |                              |  |  |  |  |  |  |
| 1. Source water(s) is (check any that apply):                                                                                       |                                                                                                                                                                                                                               |                                                                |                              |  |  |  |  |  |  |
| ☐ Contaminated groundwater ☐ Contaminated surface water ☐ The receiving water ☐ Potable water; if so, in municipality or origin:    |                                                                                                                                                                                                                               |                                                                |                              |  |  |  |  |  |  |
| Has the operator attached a summary of influent                                                                                     | Has the operator attached a summary of influent                                                                                                                                                                               | ☐ A surface water other than the receiving water; if           |                              |  |  |  |  |  |  |
| sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):               |                                                                                                                                                                                                                               |                                                                | ☐ Other; if so, specify:     |  |  |  |  |  |  |
| ☐ Yes ☐ No (See Table 1 and Appendix D)                                                                                             | □ Yes □ No                                                                                                                                                                                                                    |                                                                |                              |  |  |  |  |  |  |

| 2. Source water contaminants:                                                                                                                                    |                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in             | b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance |
| the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII. | with the instructions in Appendix VIII? (check one): □ Yes □ No                                                                                                                    |
| 3. Has the source water been previously chlorinated or otherwise contains resid                                                                                  | dual chlorine? (check one): □ Yes □ No                                                                                                                                             |
| D. Discharge information                                                                                                                                         |                                                                                                                                                                                    |
| 1. The discharge(s) is $a(n)$ (check any that apply): $\Box$ Existing discharge $\Box$ New                                                                       | w discharge □ New source                                                                                                                                                           |
| Outfall(s):                                                                                                                                                      | Outfall location(s): (Latitude, Longitude)                                                                                                                                         |
|                                                                                                                                                                  |                                                                                                                                                                                    |
|                                                                                                                                                                  |                                                                                                                                                                                    |
| Discharges enter the receiving water(s) via (check any that apply): □ Direct di                                                                                  | scharge to the receiving water □ Indirect discharge, if so, specify:                                                                                                               |
| ☐ A private storm sewer system ☐ A municipal storm sewer system                                                                                                  |                                                                                                                                                                                    |
| If the discharge enters the receiving water via a private or municipal storm sew                                                                                 | ver system:                                                                                                                                                                        |
| Has notification been provided to the owner of this system? (check one): $\Box$ Ye                                                                               | es □ No                                                                                                                                                                            |
| Has the operator has received permission from the owner to use such system for obtaining permission:                                                             | or discharges? (check one): $\square$ Yes $\square$ No, if so, explain, with an estimated timeframe for                                                                            |
| Has the operator attached a summary of any additional requirements the owner                                                                                     | of this system has specified? (check one): $\square$ Yes $\square$ No                                                                                                              |
| Provide the expected start and end dates of discharge(s) (month/year):                                                                                           |                                                                                                                                                                                    |
| Indicate if the discharge is expected to occur over a duration of: ☐ less than 1                                                                                 | 2 months □ 12 months or more □ is an emergency discharge                                                                                                                           |
| Has the operator attached a site plan in accordance with the instructions in D, a                                                                                | above? (check one): ☐ Yes ☐ No (See Figure 2)                                                                                                                                      |

| 2. Activity Category: (check all that apply)                                                                                                                                                                                                                                                            | 3. Contamination Type Category: (check all that apply)                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                         | a. If Activity Category I or II: (check all that apply)                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                               |  |  |  |  |
| □ I – Petroleum-Related Site Remediation                                                                                                                                                                                                                                                                | <ul> <li>□ A. Inorganics</li> <li>□ B. Non-Halogenated Volatile Organic Compounds</li> <li>□ C. Halogenated Volatile Organic Compounds</li> <li>□ D. Non-Halogenated Semi-Volatile Organic Compounds</li> <li>□ E. Halogenated Semi-Volatile Organic Compounds</li> <li>□ F. Fuels Parameters</li> </ul>                                                                                                      |                                                                                                                                               |  |  |  |  |
| ☐ II – Non-Petroleum-Related Site Remediation                                                                                                                                                                                                                                                           | b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |  |  |  |  |
| <ul> <li>□ III – Contaminated Site Dewatering</li> <li>□ IV – Dewatering of Pipelines and Tanks</li> <li>□ V – Aquifer Pump Testing</li> <li>□ VI – Well Development/Rehabilitation</li> <li>□ VII – Collection Structure Dewatering/Remediation</li> <li>□ VIII – Dredge-Related Dewatering</li> </ul> | □ G. Sites with Known Contamination  c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)  □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ D. Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters | ☐ H. Sites with Unknown Contamination  d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply |  |  |  |  |

## 4. Influent and Effluent Characteristics

|                         | Known                    | Known                     |                 | <b>75</b> 5 4         | <b>5</b>                     | Infl                       | Influent Effluent Limitat  |             | mitations |
|-------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|-------------|-----------|
| Parameter               | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL        | WQBEL     |
| A. Inorganics           |                          |                           |                 |                       |                              |                            |                            |             |           |
| Ammonia                 |                          |                           |                 |                       |                              |                            |                            | Report mg/L |           |
| Chloride                |                          |                           |                 |                       |                              |                            |                            | Report μg/l |           |
| Total Residual Chlorine |                          |                           |                 |                       |                              |                            |                            | 0.2 mg/L    |           |
| Total Suspended Solids  |                          |                           |                 |                       |                              |                            |                            | 30 mg/L     |           |
| Antimony                |                          |                           |                 |                       |                              |                            |                            | 206 μg/L    |           |
| Arsenic                 |                          |                           |                 |                       |                              |                            |                            | 104 μg/L    |           |
| Cadmium                 |                          |                           |                 |                       |                              |                            |                            | 10.2 μg/L   |           |
| Chromium III            |                          |                           |                 |                       |                              |                            |                            | 323 μg/L    |           |
| Chromium VI             |                          |                           |                 |                       |                              |                            |                            | 323 μg/L    |           |
| Copper                  |                          |                           |                 |                       |                              |                            |                            | 242 μg/L    |           |
| Iron                    |                          |                           |                 |                       |                              |                            |                            | 5,000 μg/L  |           |
| Lead                    |                          |                           |                 |                       |                              |                            |                            | 160 μg/L    |           |
| Mercury                 |                          |                           |                 |                       |                              |                            |                            | 0.739 μg/L  |           |
| Nickel                  |                          |                           |                 |                       |                              |                            |                            | 1,450 μg/L  |           |
| Selenium                |                          |                           |                 |                       |                              |                            |                            | 235.8 μg/L  |           |
| Silver                  |                          |                           |                 |                       |                              |                            |                            | 35.1 μg/L   |           |
| Zinc                    |                          |                           |                 |                       |                              |                            |                            | 420 μg/L    |           |
| Cyanide                 |                          |                           |                 |                       |                              |                            |                            | 178 mg/L    |           |
| B. Non-Halogenated VOCs | 3                        |                           |                 |                       |                              |                            |                            | -           |           |
| Total BTEX              |                          |                           |                 |                       |                              |                            |                            | 100 μg/L    |           |
| Benzene                 |                          |                           |                 |                       |                              |                            |                            | 5.0 μg/L    |           |
| 1,4 Dioxane             |                          |                           |                 |                       |                              |                            |                            | 200 μg/L    |           |
| Acetone                 |                          |                           |                 |                       |                              |                            |                            | 7.97 mg/L   |           |
| Phenol                  |                          |                           |                 |                       |                              |                            |                            | 1,080 μg/L  |           |

|                          | Known                    | Known                     |              | _                     |                              | Inf                        | luent                      | Effluent Lin   | nitations |
|--------------------------|--------------------------|---------------------------|--------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------|-----------|
| Parameter                | or<br>believed<br>absent | or<br>believed<br>present | # of samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL           | WQBEL     |
| C. Halogenated VOCs      |                          |                           |              |                       |                              |                            |                            |                |           |
| Carbon Tetrachloride     |                          |                           |              |                       |                              |                            |                            | 4.4 μg/L       |           |
| 1,2 Dichlorobenzene      |                          |                           |              |                       |                              |                            |                            | 600 μg/L       |           |
| 1,3 Dichlorobenzene      |                          |                           |              |                       |                              |                            |                            | 320 μg/L       |           |
| 1,4 Dichlorobenzene      |                          |                           |              |                       |                              |                            |                            | 5.0 μg/L       |           |
| Total dichlorobenzene    |                          |                           |              |                       |                              |                            |                            | 763 μg/L in NH |           |
| 1,1 Dichloroethane       |                          |                           |              |                       |                              |                            |                            | 70 μg/L        |           |
| 1,2 Dichloroethane       |                          |                           |              |                       |                              |                            |                            | 5.0 μg/L       |           |
| 1,1 Dichloroethylene     |                          |                           |              |                       |                              |                            |                            | 3.2 μg/L       |           |
| Ethylene Dibromide       |                          |                           |              |                       |                              |                            |                            | 0.05 μg/L      |           |
| Methylene Chloride       |                          |                           |              |                       |                              |                            |                            | 4.6 μg/L       |           |
| 1,1,1 Trichloroethane    |                          |                           |              |                       |                              |                            |                            | 200 μg/L       |           |
| 1,1,2 Trichloroethane    |                          |                           |              |                       |                              |                            |                            | 5.0 μg/L       |           |
| Trichloroethylene        |                          |                           |              |                       |                              |                            |                            | 5.0 μg/L       |           |
| Tetrachloroethylene      |                          |                           |              |                       |                              |                            |                            | 5.0 μg/L       |           |
| cis-1,2 Dichloroethylene |                          |                           |              |                       |                              |                            |                            | 70 μg/L        |           |
| Vinyl Chloride           |                          |                           |              |                       |                              |                            |                            | 2.0 μg/L       |           |
| D. Non-Halogenated SVOC  | s                        |                           |              |                       |                              |                            |                            |                |           |
| Total Phthalates         |                          |                           |              |                       |                              |                            |                            | 190 μg/L       |           |
| Diethylhexyl phthalate   |                          |                           |              |                       |                              |                            |                            | 101 μg/L       |           |
| Total Group I PAHs       |                          |                           |              |                       |                              |                            |                            | 1.0 μg/L       |           |
| Benzo(a)anthracene       |                          |                           |              |                       |                              |                            |                            |                |           |
| Benzo(a)pyrene           |                          |                           |              |                       |                              |                            |                            | ]              |           |
| Benzo(b)fluoranthene     |                          |                           |              |                       |                              |                            |                            |                |           |
| Benzo(k)fluoranthene     |                          |                           |              |                       |                              |                            |                            | As Total PAHs  |           |
| Chrysene                 |                          |                           |              |                       |                              |                            |                            |                |           |
| Dibenzo(a,h)anthracene   |                          |                           |              |                       |                              |                            |                            |                |           |
| Indeno(1,2,3-cd)pyrene   |                          |                           |              |                       |                              |                            |                            |                |           |

|                                     | Known                    | Known                     |              |                       | Detection                    | Inf                        | luent                      | Effluent Lin                    | nitations |
|-------------------------------------|--------------------------|---------------------------|--------------|-----------------------|------------------------------|----------------------------|----------------------------|---------------------------------|-----------|
| Parameter                           | or<br>believed<br>absent | or<br>believed<br>present | # of samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                            | WQBEL     |
| Total Group II PAHs                 |                          |                           |              |                       |                              |                            |                            | 100 μg/L                        |           |
| Naphthalene                         |                          |                           |              |                       |                              |                            |                            | 20 μg/L                         |           |
| E. Halogenated SVOCs                |                          |                           |              |                       |                              |                            |                            |                                 |           |
| Total PCBs                          |                          |                           |              |                       |                              |                            |                            | 0.000064 μg/L                   |           |
| Pentachlorophenol                   |                          |                           |              |                       |                              |                            |                            | 1.0 μg/L                        |           |
|                                     | 1                        | •                         | •            | •                     | •                            |                            |                            |                                 |           |
| F. Fuels Parameters Total Petroleum |                          | 1                         |              | <u> </u>              |                              | <u> </u>                   |                            |                                 |           |
| Hydrocarbons                        |                          |                           |              |                       |                              |                            |                            | 5.0 mg/L                        |           |
| Ethanol                             |                          |                           |              |                       |                              |                            |                            | Report mg/L                     |           |
| Methyl-tert-Butyl Ether             |                          |                           |              |                       |                              |                            |                            | 70 μg/L                         |           |
| tert-Butyl Alcohol                  |                          |                           |              |                       |                              |                            |                            | 120 μg/L in MA<br>40 μg/L in NH |           |
| tert-Amyl Methyl Ether              |                          |                           |              |                       |                              |                            |                            | 90 μg/L in MA<br>140 μg/L in NH |           |
| Other (i.e., pH, temperatur         | re, hardness,            | salinity, LC              | 50, addition | al pollutar           | nts present);                | if so, specify:            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |
|                                     |                          |                           |              |                       |                              |                            |                            |                                 |           |

# E. Treatment system information

| 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| ☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption |  |
| ☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:                                    |  |
|                                                                                                                                             |  |
| 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.           |  |
|                                                                                                                                             |  |
|                                                                                                                                             |  |
| Identify each major treatment component (check any that apply):                                                                             |  |
| ☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter                                           |  |
| ☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:                                                             |  |
| Indicate if either of the following will occur (check any that apply):                                                                      |  |
| ☐ Chlorination ☐ De-chlorination                                                                                                            |  |
| 3. Provide the <b>design flow capacity</b> in gallons per minute (gpm) of the most limiting component.                                      |  |
| Indicate the most limiting component:                                                                                                       |  |
| Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:                                                     |  |
| Provide the proposed maximum effluent flow in gpm.                                                                                          |  |
|                                                                                                                                             |  |
| Provide the average effluent flow in gpm.                                                                                                   |  |
| If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:                                      |  |
| 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No (See Figure 3)    |  |

# F. Chemical and additive information

| r. Chemical and additive information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| □ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Provide the following information for each chemical/additive, using attachments, if necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). |
| 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| with the instructions in F, above? (check one): $\square$ Yes $\square$ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?                                                                                                                                                                                                                                                                                                                                                      |
| (check one): □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G. Endangered Species Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ <b>FWS Criterion A</b> : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ <b>FWS Criterion B</b> : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □                                                                                                                                                                             |
| Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ <b>FWS Criterion C</b> : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the                                                                                                                                                                    |
| FWS. This determination was made by: (check one) $\square$ the operator $\square$ EPA $\square$ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| □ <b>NMFS Criterion</b> : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No                                                                                                                                                                                                                                  |
| 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No                                                                                                                                                                      |
| Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.                                                                                                                                                                                        |
| H. National Historic Preservation Act eligibility determination                                                                                                                                                                                                                                                                        |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                 |
| □ <b>Criterion A</b> : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.                                                                                                                                             |
| □ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.                                                                                                                                                                         |
| □ <b>Criterion C</b> : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.                                                                                                                                    |
| 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one):   Yes  No (See Appendix)                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                        |
| Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or                                                                                                                                                                   |
| other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): $\square$ Yes $\square$ No                                                                                                                                              |
| I. Supplemental information                                                                                                                                                                                                                                                                                                            |
| Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                        |
| Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): □ Yes □ No                                                                                                                                                                                  |
| Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No                                                                                                                                                                                                         |
| Thas the operator attached the certification requirement for the Best Management Fractices Fidil (BMFF)? (Check One).                                                                                                                                                                                                                  |

# J. Certification requirement

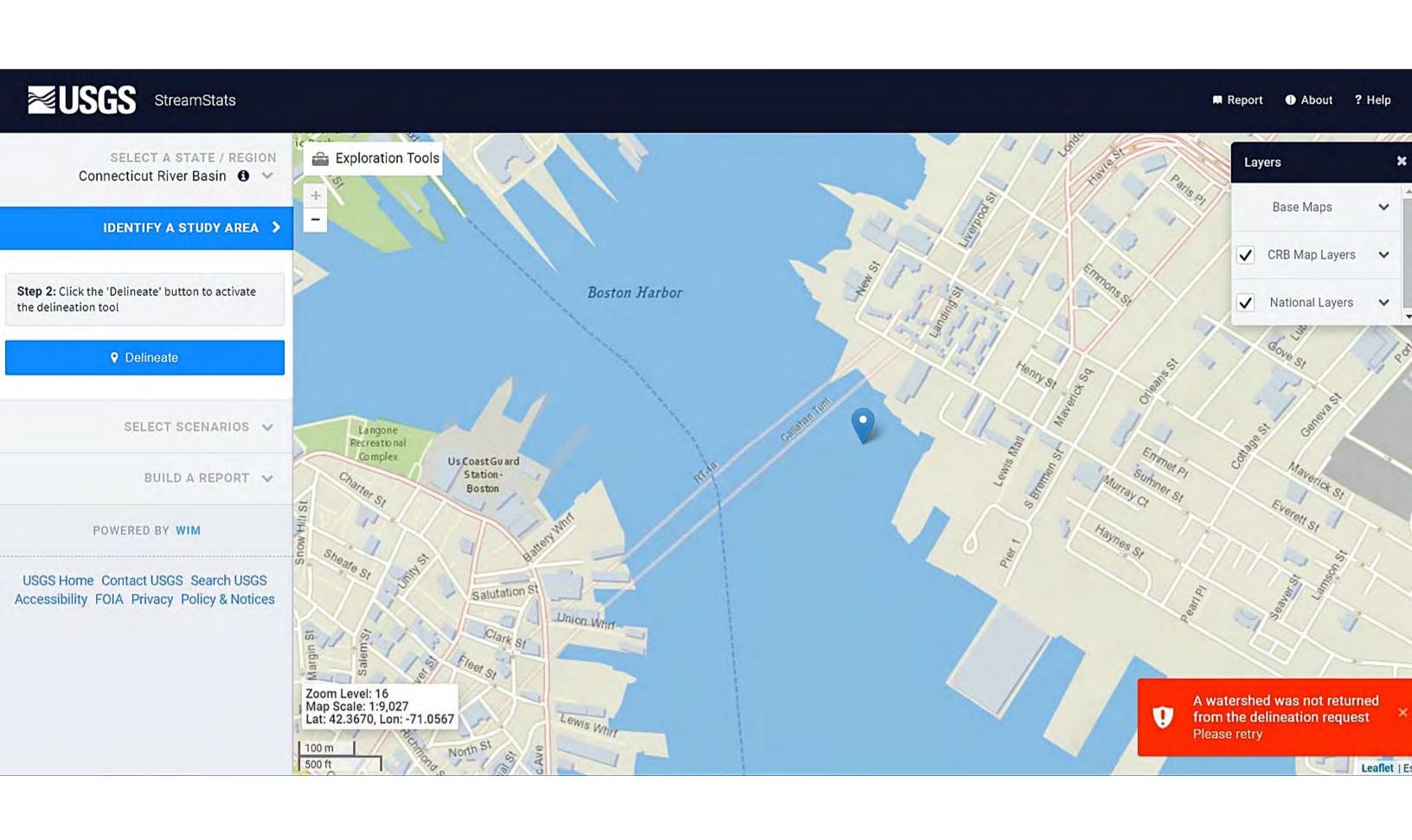
| I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations. | persons who manage<br>pelief, true, accurate, a | the system, or those<br>and complete. I have |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| A BMPP meeting the requirements of this general permit will be deverable.  BMPP certification statement: initiation of discharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eloped and imple                                | mented upon                                  |
| Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Check one: Yes ■                                | No □                                         |
| Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Check one: Yes ■                                | No □                                         |
| Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                            | Check one: Yes □                                | No □ NA ■                                    |
| Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.                                                                                                                                                                                                                                                                                                                                                                | Check one: Yes □                                | No □ NA ■                                    |
| Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one):   RGP DGP CGP MSGP Individual NPDES permit Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                      | Check one: Yes □                                | No □ NA ■                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | te: 8/15/18                                     |                                              |
| Print Name and Title: Matt Guigli, Vice President                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                              |

# **APPENDIX B**

# MASSACHUSETTS CATEGORY 5 WATERS "WATERS REQUIRING A TDML"

# Massachusetts Category 5 Waters "Waters requiring a TMDL"

| NAME                 | SEGMENT ID | DESCRIPTION                                                                                                                                                                                              | SIZE  | UNITS  | IMPAIRMENT CAUSE                              | EPA TMDL<br>NO. |  |
|----------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----------------------------------------------|-----------------|--|
| Unnamed Tributary    | MA51-38    | Unnamed tributary to Dark Brook, from perennial portion near the Route 90, 290EB, 395SB, 12NB interchange, Auburn to the confluence with Dark Brook, south of Water Street, Auburn (sections culverted). | 0.8   | MILES  | Chloride                                      |                 |  |
| Welsh Pond           | MA51176    | Sutton                                                                                                                                                                                                   | 8     | ACRES  | (Non-Native Aquatic Plants*)                  |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Aquatic Plants (Macrophytes)                  |                 |  |
| West River           | MA51-11    | Outlet Silver Lake, Grafton to Upton WWTP discharge, Upton (through Lake Wildwood formerly segment MA51181).                                                                                             | 3.8   | MILES  | (Non-Native Aquatic Plants*)                  |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | pH, Low                                       |                 |  |
| West River           | MA51-12    | Upton WWTP discharge, Upton to confluence                                                                                                                                                                | 9.3   | MILES  | (Non-Native Aquatic Plants*)                  |                 |  |
|                      |            | with Blackstone River, Uxbridge (through former segments Harrington Pool MA51197, and West                                                                                                               |       | ļ      | Aquatic Plants (Macrophytes)                  |                 |  |
|                      |            | River Pond MA51177).                                                                                                                                                                                     |       |        | Cadmium                                       |                 |  |
|                      |            | River Folia MASTITT).                                                                                                                                                                                    |       |        | Chloride                                      |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Copper                                        |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Lead                                          |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Nutrient/Eutrophication Biological Indicators |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | pH, Low                                       |                 |  |
| Woodbury Pond        | MA51185    | Sutton                                                                                                                                                                                                   | 5     | ACRES  | (Non-Native Aquatic Plants*)                  |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Aquatic Plants (Macrophytes)                  |                 |  |
| Woolshop Pond        | MA51186    | Millbury                                                                                                                                                                                                 | 5     | ACRES  | (Non-Native Aquatic Plants*)                  |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Aquatic Plants (Macrophytes)                  |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Turbidity                                     |                 |  |
| Boston Harbor (Prope | er)        |                                                                                                                                                                                                          |       |        |                                               |                 |  |
| Boston Harbor        | MA70-01    | The area defined by a line from the southerly tip                                                                                                                                                        | 18.59 | SQUARE | Fecal Coliform                                |                 |  |
|                      |            | of Deer Island to Boston Lighthouse on Little<br>Brewster Island, then south to Point Allerton;                                                                                                          |       | MILES  | Other                                         |                 |  |
|                      |            | across Hull and West guts; across the mouths of Quincy and Dorchester bays, Boston Inner Harbor and WinthropBay (including President Roads and Nantasket Roads).                                         |       |        | PCB in Fish Tissue                            |                 |  |
| Boston Inner Harbor  | MA70-02    | From the Mystic and Chelsea rivers,                                                                                                                                                                      | 2.56  | 2.56   | SQUARE                                        | Enterococcus    |  |
|                      |            | Chelsea/Boston, to the line between Governors Island and Fort Independence, Boston (East Boston) (including Fort Point, Reserved and Little Mystic channels).                                            |       | MILES  | Fecal Coliform                                |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Other                                         |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | Oxygen, Dissolved                             |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        | PCB in Fish Tissue                            |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        |                                               |                 |  |
|                      |            |                                                                                                                                                                                                          |       |        |                                               |                 |  |


# Appendix 1 Assessment Units and Integrated List Categories by Major Watershed

| NAME                  | SEGMENT ID | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SIZE | UNITS           | CATEGORY |
|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|----------|
| Boston Inner Harbor   | MA70-02    | From the Mystic and Chelsea rivers, Chelsea/Boston, to the line between Governors Island and Fort Independence, Boston (East Boston) (including Fort Point, Reserved and Little Mystic channels).                                                                                                                                                                                                                                                           | 2.56 | SQUARE<br>MILES | 5        |
| Dorchester Bay        | MA70-03    | From the mouth of the Neponset River, Boston/Quincy to the line between Head Island and the north side of Thompson Island and the line between the south point of Thompson Island, Boston and Chapel Rocks, Quincy.                                                                                                                                                                                                                                         | 3.46 | SQUARE<br>MILES | 5        |
| Hingham Bay           | MA70-06    | The area north of the mouth of the Weymouth Fore River extending on the west along the line between Nut Island and the south point of West Head, and on the east side along a line from Prince Head just east of Pig Rock to the mouth of the Weymouth ForeRiver (midway between Lower Neck and Manot Beach), Quincy.                                                                                                                                       | 0.96 | SQUARE<br>MILES | 5        |
| Hingham Bay           | MA70-07    | The area defined between Peddocks Island and Windmill Point; from Windmill Point southeast to Bumkin Island; from Bumkin Island southeast to Sunset Point; from Sunset Point across the mouth of the Weir River to Worlds End; from Worlds End across themouth of Hingham Harbor to Crow Point; from Beach Lane, Hingham across the mouth of the Weymouth Back River to Lower Neck; and from Lower Neck midway across the mouth of the Weymouth Fore River. | 4.8  | SQUARE<br>MILES | 5        |
| Hull Bay              | MA70-09    | The area defined east of a line from Windmill Point, Hull to Bumkin Island, Hingham and from Bumkin Island to Sunset Point, Hull.                                                                                                                                                                                                                                                                                                                           | 2.48 | SQUARE<br>MILES | 5        |
| Pleasure Bay          | MA70-11    | A semi-enclosed bay, the flow restricted through two channels between Castle and Head islands, Boston                                                                                                                                                                                                                                                                                                                                                       | 0.22 | SQUARE<br>MILES | 5        |
| Quincy Bay            | MA70-04    | From Bromfield Street near the Wollaston Yacht Club, northeast to N42 17.3 W71 00.1, then southeast to Houghs Neck near Sea Street and Peterson Road (formerly referred to as the "Willows"), Quincy.                                                                                                                                                                                                                                                       | 1.52 | SQUARE<br>MILES | 5        |
| Quincy Bay            | MA70-05    | Quincy Bay, north of the class SA waters (segment MA70-04), Quincy to the line between Moon Head and Nut Island, Quincy.                                                                                                                                                                                                                                                                                                                                    | 4.41 | SQUARE<br>MILES | 5        |
| Winthrop Bay          | MA70-10    | From the tidal flats at Coleridge Street, Boston (East Boston) to a line between Logan International Airport and Point Shirley, Boston/Winthrop.                                                                                                                                                                                                                                                                                                            | 1.65 | SQUARE<br>MILES | 5        |
| Boston Harbor: Mystic |            | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                 |          |
| Aberjona River        | MA71-01    | Source just south of Birch Meadow Drive, Reading to inlet Upper Mystic Lake at Mystic Valley Parkway, Winchester (portion culverted underground). (through former pond segments Judkins Pond MA71021 and Mill Pond MA71031).                                                                                                                                                                                                                                | 9.1  | MILES           | 5        |
| Alewife Brook         | MA71-04    | Outlet of Little Pond, Belmont to confluence with Mystic River, Arlington/Somerville (portion in Belmont and Cambridge identified as Little River with name changing to Alewife Brook at Arlington corporate boundary).                                                                                                                                                                                                                                     | 2.3  | MILES           | 5        |
| Belle Isle Inlet      | MA71-14    | From tidegate at Bennington Street, Boston/Revere to confluence with Winthrop Bay, Boston/Winthrop.                                                                                                                                                                                                                                                                                                                                                         | 0.12 | SQUARE<br>MILES | 5        |
| Bellevue Pond         | MA71004    | Medford                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2    | ACRES           | 3        |
| Blacks Nook           | MA71005    | Cambridge                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2    | ACRES           | 5        |
| Chelsea River         | MA71-06    | From confluence with Mill Creek, Chelsea/Revere to confluence with Boston Inner Harbor, Chelsea/East Boston/Charlestown.                                                                                                                                                                                                                                                                                                                                    | 0.38 | SQUARE<br>MILES | 5        |
| Clay Pit Pond         | MA71011    | Belmont                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12   | ACRES           | 5        |
| Cummings Brook        | MA71-10    | Headwaters east of Wright Street, Woburn to confluence with Fowle Brook, Woburn.                                                                                                                                                                                                                                                                                                                                                                            | 2.1  | MILES           | 3        |
| Ell Pond              | MA71014    | Melrose                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23   | ACRES           | 5        |
| Hills Pond            | MA71018    | Arlington                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2    | ACRES           | 4C       |

Final Massachusetts Year 2014 Integrated List of Waters December, 2015 (2) CN 450.1

# **APPENDIX C**

WATER QUALITY BASED EFFLUENT LIMITATIONS ( WQBELS) DOCUMENTATION



From: Little, Shauna

To: <u>Quincy Pratt</u>; <u>catherine.vakalopoulos@massmail.state.ma.us</u>; <u>Leah Zivalic</u>

Subject: RE: East Boston, MA RGP

**Date:** Monday, April 16, 2018 10:39:01 AM

Attachments: image001.png

### Hello,

# Regarding your questions:

- Section 4.2 of the RGP says a minimum of one (1) sample is required for Activity Category III. Is one (1) sample appropriate for a property/dewatering area of this size? The NOI Requirements in Part 3.4 refer to the sampling specified in all of Part 4. This includes the NOI-specific sampling in 4.2, but also the monitoring requirements that always apply, including for the NOI. The requirements pertaining to influent, including situations where more than one sample of influent would be necessary, are found in Part 4.1.1.a of the permit (page 32 of 50). This section generally encourages contacting EPA for assistance with complex influent sample design, and I am happy to offer assistance, if desired.
- Given the discharge is to saltwater, a Dilution Factor does not apply. In this case, should we compare the source water to the TBEL criterion? The suggested electronic format for dilution factor and limit calculations will determine which limits (TBEL or WQBEL) apply based on the influent concentrations. If you wish to generally state whether your source water is above or below TBELs or WQBELs, TBELs always apply for a present parameter, and while the WQBELs don't always apply- a parameter must have reasonable potential to exceed the criteria- influent concentrations are always compared to water quality criteria. The water quality criteria are generally what are shown in the WQBEL column of the permit, though metals are shown at certain default values that may be different at your site (more so for freshwater than saltwater).

## Regards,

Shauna Little
Physical Scientist
USEPA New England
5 Post Office Square, Suite 100/OEP06-1
Boston, Massachusetts 02109-3912
Phone (617)918-1989

**From:** Quincy Pratt [mailto:gpratt@sanbornhead.com]

**Sent:** Monday, April 16, 2018 10:07 AM

To: catherine.vakalopoulos@massmail.state.ma.us; Leah Zivalic < Izivalic@sanbornhead.com >

**Cc:** Little, Shauna <Little.Shauna@epa.gov>

Subject: RE: East Boston, MA RGP

Thank you for your informative email, Cathy. We look forward to hearing from Shauna, regarding the sampling.

Best, Quincy

--

# **Quincy Pratt**

Project Manager

#### SANBORN | HEAD & ASSOCIATES, INC.

239 Causeway Street, Suite 105, Boston, MA 02114 T 978.392.0900 D 857.327.9733 C 908.752.1604 www.sanbornhead.com

Click here to follow us on LinkedIn / Twitter / Facebook

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

From: Vakalopoulos, Catherine (DEP) [mailto:Catherine.Vakalopoulos@MassMail.State.MA.US]

**Sent:** Friday, April 13, 2018 11:32 AM

**To:** Leah Zivalic < <a href="mailto:lzivalic@sanbornhead.com">lzivalic@sanbornhead.com</a>>

Cc: Quincy Pratt <apratt@sanbornhead.com>; Little, Shauna <<u>Little.Shauna@epa.gov</u>>

Subject: RE: East Boston, MA RGP

#### Hi Leah,

I apologize for the delayed response but I had to be in the field this week on short notice and have not been able to keep up with my email. For the number of samples and WQBEL/TBEL questions, I need to send you to Shauna who I've cc'd here. She is out of the office today but she'll get back to you next week. Yes, you are correct, we do not apply a dilution factor to marine waters unless you can provide modeling or dye study results that show otherwise. I know Rich Signell from USGS did some hydrodynamic modeling in Boston Harbor for MWRA a while ago but I don't know how to apply his published paper to a specific location in Boston Harbor. We don't have a protocol for sampling in tidal areas but your plan to sample "upstream" towards the Charles and Mystic makes sense.

Please let me know if you have any further questions.

#### Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Leah Zivalic [mailto:lzivalic@sanbornhead.com]

**Sent:** Monday, April 09, 2018 10:30 AM **To:** Vakalopoulos, Catherine (DEP)

Cc: Quincy Pratt

Subject: East Boston, MA RGP

Hello Catherine,

We are assisting a general contractor with the preparation of a Notice of Intent (NOI) for a NPDES RGP for temporary construction dewatering for a proposed groundwater discharge to the Boston Harbor. The property is located in East Boston, is approximately 3 acres, and is considered an Activity Category III (Contaminated Site). The proposed construction dewatering activities will span an approximately 30,000 square foot area and will include pumping groundwater from filtered sumps, treating the water on-site and discharging the effluent to the Boston Harbor. We were wondering if you could help us clarify a few questions we had on the NOI:

- Section 4.2 of the RGP says a minimum of one (1) sample is required for Activity Category III. Is one (1) sample appropriate for a property/dewatering area of this size?
- The proposed receiving water body is the Boston Inner Harbor. As such, the direction of flow of the proposed receiving water changes with the tide. We have assumed the receiving body of water sample will be collected in the inland direction (toward the Charles and Mystic Rivers) from the proposed discharge. Is that assumption correct? Or is there another sampling protocol we should follow for tidal areas.
- Given the discharge is to saltwater, a Dilution Factor does not apply. In this case, should we compare the source water to the TBEL criterion?

Please let us know if you have any questions or need any additional information.

Thank you,

-Leah Zivalic

Leah Zivalic Project Engineer



SANBORN, HEAD & ASSOCIATES, INC.

1 Technology Park Drive, Westford, MA 01886 T 978.392.0900 D 978.577.1018

# www.sanbornhead.com

# Click here to follow us on <u>LinkedIn</u> /<u>Twitter</u> / <u>Facebook</u>

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

| 0.0                    |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TBEL applies if bolded |                                                                                                                                                         | WQBEL applies if bolded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Report                 | mg/L                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| -                      | -                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| -                      |                                                                                                                                                         | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μα/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        | _                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        | _                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        | μg/L                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 323                    | μg/L                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 323                    | $\mu$ g/L                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mu g/L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 242                    | $\mu g/L$                                                                                                                                               | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mu g/L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 5000                   | μg/L                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 160                    | μg/L                                                                                                                                                    | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0.739                  |                                                                                                                                                         | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                                                                                         | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 178                    | mg/L                                                                                                                                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 100                    | ua/I                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 7.97                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 1,080                  | μg/L                                                                                                                                                    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 4.4                    |                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mu g/L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                        | μg/L                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5.0                    |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 70                     |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                        |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                        |                                                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 0.05                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 4.6                    | μg/L                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 200                    | $\mu g/L$                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5.0                    | $\mu$ g/L                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5.0                    | μg/L                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                        |                                                                                                                                                         | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 70                     | μg/L                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                        | Report Report 0.2 30 206 104 10.2 323 323 242 5000 160 0.739 1450 235.8 35.1 420 178 100 5.0 200 7.97 1,080 4.4 600 320 5.0 70 5.0 3.2 0.05 4.6 200 5.0 | Report         mg/L           0.2         mg/L           30         mg/L           206         μg/L           104         μg/L           10.2         μg/L           323         μg/L           242         μg/L           5000         μg/L           160         μg/L           1450         μg/L           1420         μg/L           178         mg/L           1980         μg/L           1,080         μg/L           1,08 | Report         mg/L            0.2         mg/L            30         mg/L            206         μg/L         640           104         μg/L         36           10.2         μg/L         8.9           323         μg/L         100.0           323         μg/L         50           242         μg/L         3.7           5000         μg/L         8.5           0.739         μg/L         8.5           0.739         μg/L         8.3           235.8         μg/L         71           35.1         μg/L         86           178         mg/L         1.0           100         μg/L            5.0         μg/L            1,080         μg/L            1,080         μg/L            320         μg/L            3.2         μg/L            5.0         μg/L            5.0         μg/L            5.0         μg/L            5.0 |  |

| Vinyl Chloride                  | 2.0      | $\mu$ g/L |        |           |
|---------------------------------|----------|-----------|--------|-----------|
| D. Non-Halogenated SVOCs        |          |           |        |           |
| Total Phthalates                | 190      | μg/L      |        | μg/L      |
| Diethylhexyl phthalate          | 101      | μg/L      | 2.2    | μg/L      |
| Total Group I Polycyclic        |          |           |        |           |
| Aromatic Hydrocarbons           | 1.0      | μg/L      |        |           |
| Benzo(a)anthracene              | 1.0      | μg/L      | 0.0038 | $\mu$ g/L |
| Benzo(a)pyrene                  | 1.0      | μg/L      | 0.0038 | $\mu$ g/L |
| Benzo(b)fluoranthene            | 1.0      | μg/L      | 0.0038 | μg/L      |
| Benzo(k)fluoranthene            | 1.0      | μg/L      | 0.0038 | μg/L      |
| Chrysene                        | 1.0      | μg/L      | 0.0038 | μg/L      |
| Dibenzo(a,h)anthracene          | 1.0      | $\mu$ g/L | 0.0038 | μg/L      |
| Indeno(1,2,3-cd)pyrene          | 1.0      | $\mu$ g/L | 0.0038 | μg/L      |
| Total Group II Polycyclic       |          |           |        |           |
| Aromatic Hydrocarbons           | 100      | μg/L      |        |           |
| Naphthalene                     | 20       | μg/L      |        |           |
| E. Halogenated SVOCs            |          |           |        |           |
| Total Polychlorinated Biphenyls | 0.000064 | μg/L      |        |           |
| Pentachlorophenol               | 1.0      | μg/L      |        |           |
| F. Fuels Parameters             |          |           |        |           |
| Total Petroleum Hydrocarbons    | 5.0      | mg/L      |        |           |
| Ethanol                         | Report   | mg/L      |        |           |
| Methyl-tert-Butyl Ether         | 70       | μg/L      | 20     | μg/L      |
| tert-Butyl Alcohol              | 120      | μg/L      |        |           |
| tert-Amyl Methyl Ether          | 90       | μg/L      |        |           |
|                                 |          |           |        |           |

# APPENDIX D ANALYTICAL DATA REPORT



#### ANALYTICAL REPORT

Lab Number: L1813424

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Quincy Pratt
Phone: (978) 577-1054

Project Name: 99 SUMMER STREET

Project Number: 4256.00 Report Date: 04/24/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00 Lab Number: L1813424 Report Date:

04/24/18

| Alpha<br>Sample ID | Client ID | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------|--------|--------------------|-------------------------|--------------|
| L1813424-01        | INFLUENT  | WATER  | EAST BOSTON, MA    | 04/18/18 09:00          | 04/18/18     |
| L1813424-02        | RECEIVING | WATER  | EAST BOSTON, MA    | 04/18/18 10:30          | 04/18/18     |



Project Name: 99 SUMMER STREET Lab Number: L1813424

Project Number: 4256.00 Report Date: 04/24/18

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please  | contact | Client  | Services  | at 800. | -624-9220 | with an | nv c | nuestions  |
|---------|---------|---------|-----------|---------|-----------|---------|------|------------|
| i icasc | Contact | Ciletit | OCI VICES | at 000  | -024-3220 | with a  | ıy c | fuestions. |



Project Name: 99 SUMMER STREET Lab Number: L1813424

Project Number: 4256.00 Report Date: 04/24/18

#### **Case Narrative (continued)**

**Total Metals** 

The WG1107812-3 MS recovery for iron (0%), performed on L1813424-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG1107812-4 Laboratory Duplicate RPD for iron (55%), performed on L1813424-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

Chlorine, Total Residual

The WG1107706-4 MS recovery (0%), performed on L1813424-01, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Wildle M. Morris

Authorized Signature:

Title: Technical Director/Representative

-

Date: 04/24/18

#### **ORGANICS**



#### **VOLATILES**



**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00

**SAMPLE RESULTS** 

Lab Number: L1813424

Report Date: 04/24/18

Lab ID: L1813424-01

Client ID: **INFLUENT** 

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/20/18 07:29

Analyst: KD Date Collected: 04/18/18 09:00 Date Received: 04/18/18

Field Prep: Field Filtered (Dissolved

Metals)

| Parameter                        | Result        | Qualifier | Units | RL   | MDL | Dilution Factor |
|----------------------------------|---------------|-----------|-------|------|-----|-----------------|
| Volatile Organics by GC/MS - Wes | stborough Lab |           |       |      |     |                 |
| Methylene chloride               | ND            |           | ug/l  | 3.0  |     | 1               |
| 1,1-Dichloroethane               | ND            |           | ug/l  | 0.75 |     | 1               |
| Chloroform                       | ND            |           | ug/l  | 0.75 |     | 1               |
| Carbon tetrachloride             | ND            |           | ug/l  | 0.50 |     | 1               |
| 1,2-Dichloropropane              | ND            |           | ug/l  | 1.8  |     | 1               |
| Dibromochloromethane             | ND            |           | ug/l  | 0.50 |     | 1               |
| 1,1,2-Trichloroethane            | ND            |           | ug/l  | 0.75 |     | 1               |
| Tetrachloroethene                | ND            |           | ug/l  | 0.50 |     | 1               |
| Chlorobenzene                    | ND            |           | ug/l  | 0.50 |     | 1               |
| Trichlorofluoromethane           | ND            |           | ug/l  | 2.5  |     | 1               |
| 1,2-Dichloroethane               | ND            |           | ug/l  | 0.50 |     | 1               |
| 1,1,1-Trichloroethane            | ND            |           | ug/l  | 0.50 |     | 1               |
| Bromodichloromethane             | ND            |           | ug/l  | 0.50 |     | 1               |
| trans-1,3-Dichloropropene        | ND            |           | ug/l  | 0.50 |     | 1               |
| cis-1,3-Dichloropropene          | ND            |           | ug/l  | 0.50 |     | 1               |
| 1,3-Dichloropropene, Total       | ND            |           | ug/l  | 0.50 |     | 1               |
| 1,1-Dichloropropene              | ND            |           | ug/l  | 2.5  |     | 1               |
| Bromoform                        | ND            |           | ug/l  | 2.0  |     | 1               |
| 1,1,2,2-Tetrachloroethane        | ND            |           | ug/l  | 0.50 |     | 1               |
| Benzene                          | ND            |           | ug/l  | 0.50 |     | 1               |
| Toluene                          | ND            |           | ug/l  | 0.75 |     | 1               |
| Ethylbenzene                     | ND            |           | ug/l  | 0.50 |     | 1               |
| Chloromethane                    | ND            |           | ug/l  | 2.5  |     | 1               |
| Bromomethane                     | ND            |           | ug/l  | 1.0  |     | 1               |
| Vinyl chloride                   | ND            |           | ug/l  | 1.0  |     | 1               |
| Chloroethane                     | ND            |           | ug/l  | 1.0  |     | 1               |
| 1,1-Dichloroethene               | ND            |           | ug/l  | 0.50 |     | 1               |
| 1,2-Dichloroethene, Total        | ND            |           | ug/l  | 0.50 |     | 1               |



**Project Name:** 99 SUMMER STREET **Lab Number:** L1813424

Project Number: 4256.00 Report Date: 04/24/18

**SAMPLE RESULTS** 

Lab ID: L1813424-01 Date Collected: 04/18/18 09:00

Client ID: INFLUENT Date Received: 04/18/18

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Sample Depth:

| Parameter                       | Result        | Qualifier | Units | RL   | MDL | Dilution Factor |
|---------------------------------|---------------|-----------|-------|------|-----|-----------------|
| Volatile Organics by GC/MS - We | stborough Lab |           |       |      |     |                 |
| Trichloroethene                 | ND            |           | ug/l  | 0.50 |     | 1               |
| 1,2-Dichlorobenzene             | ND            |           | ug/l  | 2.5  |     | 1               |
| 1,3-Dichlorobenzene             | ND            |           | ug/l  | 2.5  |     | 1               |
| 1,4-Dichlorobenzene             | ND            |           | ug/l  | 2.5  |     | 1               |
| Methyl tert butyl ether         | ND            |           | ug/l  | 1.0  |     | 1               |
| p/m-Xylene                      | ND            |           | ug/l  | 1.0  |     | 1               |
| o-Xylene                        | ND            |           | ug/l  | 1.0  |     | 1               |
| Xylenes, Total                  | ND            |           | ug/l  | 1.0  |     | 1               |
| cis-1,2-Dichloroethene          | ND            |           | ug/l  | 0.50 |     | 1               |
| Dibromomethane                  | ND            |           | ug/l  | 5.0  |     | 1               |
| 1,4-Dichlorobutane              | ND            |           | ug/l  | 5.0  |     | 1               |
| 1,2,3-Trichloropropane          | ND            |           | ug/l  | 5.0  |     | 1               |
| Styrene                         | ND            |           | ug/l  | 1.0  |     | 1               |
| Dichlorodifluoromethane         | ND            |           | ug/l  | 5.0  |     | 1               |
| Acetone                         | ND            |           | ug/l  | 5.0  |     | 1               |
| Carbon disulfide                | ND            |           | ug/l  | 5.0  |     | 1               |
| 2-Butanone                      | ND            |           | ug/l  | 5.0  |     | 1               |
| Vinyl acetate                   | ND            |           | ug/l  | 5.0  |     | 1               |
| 4-Methyl-2-pentanone            | ND            |           | ug/l  | 5.0  |     | 1               |
| 2-Hexanone                      | ND            |           | ug/l  | 5.0  |     | 1               |
| Ethyl methacrylate              | ND            |           | ug/l  | 5.0  |     | 1               |
| Acrylonitrile                   | ND            |           | ug/l  | 5.0  |     | 1               |
| Bromochloromethane              | ND            |           | ug/l  | 2.5  |     | 1               |
| Tetrahydrofuran                 | ND            |           | ug/l  | 5.0  |     | 1               |
| 2,2-Dichloropropane             | ND            |           | ug/l  | 2.5  |     | 1               |
| 1,2-Dibromoethane               | ND            |           | ug/l  | 2.0  |     | 1               |
| 1,3-Dichloropropane             | ND            |           | ug/l  | 2.5  |     | 1               |
| 1,1,1,2-Tetrachloroethane       | ND            |           | ug/l  | 0.50 |     | 1               |
| Bromobenzene                    | ND            |           | ug/l  | 2.5  |     | 1               |
| n-Butylbenzene                  | ND            |           | ug/l  | 0.50 |     | 1               |
| sec-Butylbenzene                | ND            |           | ug/l  | 0.50 |     | 1               |
| tert-Butylbenzene               | ND            |           | ug/l  | 2.5  |     | 1               |
| o-Chlorotoluene                 | ND            |           | ug/l  | 2.5  |     | 1               |
| p-Chlorotoluene                 | ND            |           | ug/l  | 2.5  |     | 1               |
| 1,2-Dibromo-3-chloropropane     | ND            |           | ug/l  | 2.5  |     | 1               |
| Hexachlorobutadiene             | ND            |           | ug/l  | 0.50 |     | 1               |
| Isopropylbenzene                | ND            |           | ug/l  | 0.50 |     | 1               |
|                                 |               |           |       |      |     |                 |



**Project Name:** 99 SUMMER STREET **Lab Number:** L1813424

**Project Number:** 4256.00 **Report Date:** 04/24/18

**SAMPLE RESULTS** 

Lab ID: L1813424-01 Date Collected: 04/18/18 09:00

Client ID: INFLUENT Date Received: 04/18/18

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Sample Depth:

| Parameter                              | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|----------------------------------------|--------|-----------|-------|------|-----|-----------------|--|
| Volatile Organics by GC/MS - Westborou | gh Lab |           |       |      |     |                 |  |
| p-Isopropyltoluene                     | ND     |           | ug/l  | 0.50 |     | 1               |  |
| Naphthalene                            | ND     |           | ug/l  | 2.5  |     | 1               |  |
| n-Propylbenzene                        | ND     |           | ug/l  | 0.50 |     | 1               |  |
| 1,2,3-Trichlorobenzene                 | ND     |           | ug/l  | 2.5  |     | 1               |  |
| 1,2,4-Trichlorobenzene                 | ND     |           | ug/l  | 2.5  |     | 1               |  |
| 1,3,5-Trimethylbenzene                 | ND     |           | ug/l  | 2.5  |     | 1               |  |
| 1,2,4-Trimethylbenzene                 | ND     |           | ug/l  | 2.5  |     | 1               |  |
| trans-1,4-Dichloro-2-butene            | ND     |           | ug/l  | 2.5  |     | 1               |  |
| Ethyl ether                            | ND     |           | ug/l  | 2.5  |     | 1               |  |
| Tert-Butyl Alcohol                     | ND     |           | ug/l  | 10   |     | 1               |  |
| Tertiary-Amyl Methyl Ether             | ND     |           | ug/l  | 2.0  |     | 1               |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 118        | 70-130                           |  |
| Toluene-d8            | 104        | 70-130                           |  |
| 4-Bromofluorobenzene  | 112        | 70-130                           |  |
| Dibromofluoromethane  | 101        | 70-130                           |  |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

**SAMPLE RESULTS** 

Lab Number: L1813424

**Report Date:** 04/24/18

5..... <u>--</u> ..-55

Lab ID: L1813424-01
Client ID: INFLUENT

Sample Location: EAST BOSTON, MA

Date Received: Field Prep:

Date Collected:

04/18/18

Field Filtered (Dissolved Metals)

04/18/18 09:00

Sample Depth:

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 04/20/18 07:29

Analyst: MM

| Parameter                                        | Result | Qualifier | Units | RL  | MDL | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|-----|-----|-----------------|--|
| Volatile Organics by GC/MS-SIM - Westborough Lab |        |           |       |     |     |                 |  |
| 1,4-Dioxane                                      | ND     |           | ug/l  | 3.0 |     | 1               |  |



**Project Name:** 99 SUMMER STREET **Lab Number:** L1813424

Project Number: 4256.00 Report Date: 04/24/18

SAMPLE RESULTS

Lab ID: Date Collected: 04/18/18 09:00

Client ID: INFLUENT Date Received: 04/18/18

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Sample Depth:

AWS

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 04/19/18 11:03

Analytical Date: 04/19/18 15:04

| Parameter                                 | Result | Qualifier | Units | RL    | MDL | Dilution Factor | Column |
|-------------------------------------------|--------|-----------|-------|-------|-----|-----------------|--------|
| Microextractables by GC - Westborough Lab |        |           |       |       |     |                 |        |
| 1,2-Dibromoethane                         | ND     |           | ug/l  | 0.010 |     | 1               | Α      |



Analyst:

L1813424

Lab Number:

**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00 Report Date: 04/24/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 14,504.1 Analytical Date: 04/19/18 11:47

Analyst: AWS Extraction Method: EPA 504.1 04/19/18 11:03 Extraction Date:

| Parameter                          | Result      | Qualifier  | Units | RL             | MDL   |   |
|------------------------------------|-------------|------------|-------|----------------|-------|---|
| Microextractables by GC - Westboro | ugh Lab for | sample(s): | 01    | Batch: WG11078 | 389-1 |   |
| 1,2-Dibromoethane                  | ND          |            | ug/l  | 0.010          |       | А |



Project Name: 99 SUMMER STREET Lab Number: L1813424

**Project Number:** 4256.00 **Report Date:** 04/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 04/20/18 05:49

Analyst: MM

| Parameter                          | Result      | Qualifier  | Units     |    | RL     | MDL         |  |
|------------------------------------|-------------|------------|-----------|----|--------|-------------|--|
| Volatile Organics by GC/MS-SIM - V | Vestborough | Lab for sa | ample(s): | 01 | Batch: | WG1108305-5 |  |
| 1,4-Dioxane                        | ND          |            | ug/l      |    | 3.0    |             |  |



L1813424

Lab Number:

**Project Name:** 99 SUMMER STREET

**Project Number:** Report Date: 4256.00 04/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/20/18 05:49

Analyst: MM

| Volatile Organics by GC/MS - Westborough Lab for sample(s):         01         Batch:         WG1108322-5           Methylene chloride         ND         ug/l         3.0            1,1-Dichloroethane         ND         ug/l         0.75            Chloroform         ND         ug/l         0.50            Carbon tetrachloride         ND         ug/l         0.50            1,2-Dichloropropane         ND         ug/l         0.50            1,2-Dichloropropane         ND         ug/l         0.50            1,1,2-Trichloroethane         ND         ug/l         0.50            1,1,1-Trichloroethane         ND         ug/l         0.50            Trichlorofluoromethane         ND         ug/l         0.50            1,1,1-Trichloroethane         ND         ug/l         0.50            1,1,1-Trichloroethane         ND         ug/l         0.50            1,3-Dichloropropene         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total </th <th>Parameter</th> <th>Result</th> <th>Qualifier Units</th> <th>RL</th> <th>MDL</th> | Parameter                  | Result            | Qualifier Units   | RL     | MDL         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|-------------------|--------|-------------|
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | olatile Organics by GC/MS  | - Westborough Lab | for sample(s): 01 | Batch: | WG1108322-5 |
| Chloroform         ND         ug/l         0.75            Carbon tetrachloride         ND         ug/l         0.50            1,2-Dichloropropane         ND         ug/l         1.8            Dibromochloromethane         ND         ug/l         0.50            1,1,2-Trichloroethane         ND         ug/l         0.50            Tetrachloroethene         ND         ug/l         0.50            Chlorobenzene         ND         ug/l         0.50            Trichlorofluoromethane         ND         ug/l         0.50            1,2-Dichloroethane         ND         ug/l         0.50            1,1-Trichloroethane         ND         ug/l         0.50            Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total         ND         ug/l         0.50            Bromoform         ND         ug/l <td>Methylene chloride</td> <td>ND</td> <td>ug/l</td> <td>3.0</td> <td></td>                                                     | Methylene chloride         | ND                | ug/l              | 3.0    |             |
| Carbon tetrachloride         ND         ug/l         0.50            1,2-Dichloropropane         ND         ug/l         1.8            Dibromochloromethane         ND         ug/l         0.50            1,1,2-Trichloroethane         ND         ug/l         0.50            Tetrachloroethene         ND         ug/l         0.50            Chlorobenzene         ND         ug/l         0.50            Trichlorofluoromethane         ND         ug/l         0.50            1,2-Dichloroethane         ND         ug/l         0.50            1,1-1-Trichloroethane         ND         ug/l         0.50            Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total         ND         ug/l         0.50            Bromoform         ND         ug/l         0.50            1,1-2,2-Tetrachloroethane         ND                                                                                                                              | 1,1-Dichloroethane         | ND                | ug/l              | 0.75   |             |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloroform                 | ND                | ug/l              | 0.75   |             |
| Dibromochloromethane         ND         ug/l         0.50            1,1,2-Trichloroethane         ND         ug/l         0.75            Tetrachloroethene         ND         ug/l         0.50            Chlorobenzene         ND         ug/l         0.50            Trichlorofluoromethane         ND         ug/l         0.50            1,2-Dichloroethane         ND         ug/l         0.50            1,1,1-Trichloroethane         ND         ug/l         0.50            Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene         ND         ug/l         0.50            1,1-Dichloropropene         ND         ug/l         0.50            Bromoform         ND         ug/l         0.50            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l                                                                                                                                    | Carbon tetrachloride       | ND                | ug/l              | 0.50   |             |
| Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2-Dichloropropane        | ND                | ug/l              | 1.8    |             |
| Tetrachloroethene         ND         ug/l         0.50            Chlorobenzene         ND         ug/l         0.50            Trichlorofluoromethane         ND         ug/l         2.5            1,2-Dichloroethane         ND         ug/l         0.50            1,1,1-Trichloroethane         ND         ug/l         0.50            Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            cis-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total         ND         ug/l         0.50            1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         2.5            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.50            Ethylbenzene         ND         ug/l         0.50 <td>Dibromochloromethane</td> <td>ND</td> <td>ug/l</td> <td>0.50</td> <td></td>                                                           | Dibromochloromethane       | ND                | ug/l              | 0.50   |             |
| Chlorobenzene         ND         ug/l         0.50            Trichlorofluoromethane         ND         ug/l         2.5            1,2-Dichloroethane         ND         ug/l         0.50            1,1,1-Trichloroethane         ND         ug/l         0.50            Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene         ND         ug/l         0.50            1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         2.5            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.50            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0                                                                                                                                                           | 1,1,2-Trichloroethane      | ND                | ug/l              | 0.75   |             |
| Trichlorofluoromethane         ND         ug/l         2.5            1,2-Dichloroethane         ND         ug/l         0.50            1,1,1-Trichloroethane         ND         ug/l         0.50            Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            is-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total         ND         ug/l         0.50            1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         2.5            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.50            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0                                                                                                                                                 | Tetrachloroethene          | ND                | ug/l              | 0.50   |             |
| 1,2-Dichloroethane         ND         ug/l         0.50            1,1,1-Trichloroethane         ND         ug/l         0.50            Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            cis-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total         ND         ug/l         0.50            1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         2.0            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.50            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         0.50                                                                                                                                                         | Chlorobenzene              | ND                | ug/l              | 0.50   |             |
| 1,1,1-Trichloroethane         ND         ug/l         0.50            Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            cis-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total         ND         ug/l         2.5            1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         2.0            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.75            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         0.50            1,1-Dichloroethene         ND         ug/l         0.50         -                                                                                                                                                | Trichlorofluoromethane     | ND                | ug/l              | 2.5    |             |
| Bromodichloromethane         ND         ug/l         0.50            trans-1,3-Dichloropropene         ND         ug/l         0.50            cis-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total         ND         ug/l         0.50            1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         0.50            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.50            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                               | 1,2-Dichloroethane         | ND                | ug/l              | 0.50   |             |
| trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 0.50  Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Chloromethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0  Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 Ug/l 1.0 Chloroethane ND ug/l 1.0 Ug/l 1.0 Chloroethane ND ug/l 1.0 Chloroethane ND ug/l 1.0 Chloroethane ND ug/l 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1,1-Trichloroethane      | ND                | ug/l              | 0.50   |             |
| cis-1,3-Dichloropropene         ND         ug/l         0.50            1,3-Dichloropropene, Total         ND         ug/l         0.50            1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         2.0            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.75            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                               | Bromodichloromethane       | ND                | ug/l              | 0.50   |             |
| 1,3-Dichloropropene, Total         ND         ug/l         0.50            1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         2.0            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.75            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trans-1,3-Dichloropropene  | ND                | ug/l              | 0.50   |             |
| 1,1-Dichloropropene         ND         ug/l         2.5            Bromoform         ND         ug/l         2.0            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.75            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0            Bromomethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cis-1,3-Dichloropropene    | ND                | ug/l              | 0.50   |             |
| Bromoform         ND         ug/l         2.0            1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.75            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         1.0            Bromomethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3-Dichloropropene, Total | ND                | ug/l              | 0.50   |             |
| 1,1,2,2-Tetrachloroethane         ND         ug/l         0.50            Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.75            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         2.5            Bromomethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1-Dichloropropene        | ND                | ug/l              | 2.5    |             |
| Benzene         ND         ug/l         0.50            Toluene         ND         ug/l         0.75            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         2.5            Bromomethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bromoform                  | ND                | ug/l              | 2.0    |             |
| Toluene         ND         ug/l         0.75            Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         2.5            Bromomethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,2,2-Tetrachloroethane  | ND                | ug/l              | 0.50   |             |
| Ethylbenzene         ND         ug/l         0.50            Chloromethane         ND         ug/l         2.5            Bromomethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzene                    | ND                | ug/l              | 0.50   |             |
| Chloromethane         ND         ug/l         2.5            Bromomethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toluene                    | ND                | ug/l              | 0.75   |             |
| Bromomethane         ND         ug/l         1.0            Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ethylbenzene               | ND                | ug/l              | 0.50   |             |
| Vinyl chloride         ND         ug/l         1.0            Chloroethane         ND         ug/l         1.0            1,1-Dichloroethene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chloromethane              | ND                | ug/l              | 2.5    |             |
| Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bromomethane               | ND                | ug/l              | 1.0    |             |
| 1,1-Dichloroethene ND ug/l 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vinyl chloride             | ND                | ug/l              | 1.0    |             |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chloroethane               | ND                | ug/l              | 1.0    |             |
| 1,2-Dichloroethene, Total ND ug/l 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Dichloroethene         | ND                | ug/l              | 0.50   |             |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichloroethene, Total  | ND                | ug/l              | 0.50   |             |
| Trichloroethene ND ug/l 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trichloroethene            | ND                | ug/l              | 0.50   |             |



Project Name: 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

**Report Date:** 04/24/18

#### Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/20/18 05:49

Analyst: MM

| arameter                  | Result            | Qualifier Units   | RL       | MDL         |
|---------------------------|-------------------|-------------------|----------|-------------|
| olatile Organics by GC/MS | - Westborough Lab | for sample(s): 01 | 1 Batch: | WG1108322-5 |
| 1,2-Dichlorobenzene       | ND                | ug/l              | 2.5      |             |
| 1,3-Dichlorobenzene       | ND                | ug/l              | 2.5      |             |
| 1,4-Dichlorobenzene       | ND                | ug/l              | 2.5      |             |
| Methyl tert butyl ether   | ND                | ug/l              | 1.0      |             |
| p/m-Xylene                | ND                | ug/l              | 1.0      |             |
| o-Xylene                  | ND                | ug/l              | 1.0      |             |
| Xylenes, Total            | ND                | ug/l              | 1.0      |             |
| cis-1,2-Dichloroethene    | ND                | ug/l              | 0.50     |             |
| Dibromomethane            | ND                | ug/l              | 5.0      |             |
| 1,4-Dichlorobutane        | ND                | ug/l              | 5.0      |             |
| 1,2,3-Trichloropropane    | ND                | ug/l              | 5.0      |             |
| Styrene                   | ND                | ug/l              | 1.0      |             |
| Dichlorodifluoromethane   | ND                | ug/l              | 5.0      |             |
| Acetone                   | ND                | ug/l              | 5.0      |             |
| Carbon disulfide          | ND                | ug/l              | 5.0      |             |
| 2-Butanone                | ND                | ug/l              | 5.0      |             |
| Vinyl acetate             | ND                | ug/l              | 5.0      |             |
| 4-Methyl-2-pentanone      | ND                | ug/l              | 5.0      |             |
| 2-Hexanone                | ND                | ug/l              | 5.0      |             |
| Ethyl methacrylate        | ND                | ug/l              | 5.0      |             |
| Acrylonitrile             | ND                | ug/l              | 5.0      |             |
| Bromochloromethane        | ND                | ug/l              | 2.5      |             |
| Tetrahydrofuran           | ND                | ug/l              | 5.0      |             |
| 2,2-Dichloropropane       | ND                | ug/l              | 2.5      |             |
| 1,2-Dibromoethane         | ND                | ug/l              | 2.0      |             |
| 1,3-Dichloropropane       | ND                | ug/l              | 2.5      |             |
| 1,1,1,2-Tetrachloroethane | ND                | ug/l              | 0.50     |             |
| Bromobenzene              | ND                | ug/l              | 2.5      |             |
| n-Butylbenzene            | ND                | ug/l              | 0.50     |             |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

Report Date:

04/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/20/18 05:49

Analyst: MM

| arameter                    | Result         | Qualifier Units     | RL     | MDL         |
|-----------------------------|----------------|---------------------|--------|-------------|
| olatile Organics by GC/MS - | Westborough La | o for sample(s): 01 | Batch: | WG1108322-5 |
| sec-Butylbenzene            | ND             | ug/l                | 0.50   |             |
| tert-Butylbenzene           | ND             | ug/l                | 2.5    |             |
| o-Chlorotoluene             | ND             | ug/l                | 2.5    |             |
| p-Chlorotoluene             | ND             | ug/l                | 2.5    |             |
| 1,2-Dibromo-3-chloropropane | ND             | ug/l                | 2.5    | <del></del> |
| Hexachlorobutadiene         | ND             | ug/l                | 0.50   | <del></del> |
| Isopropylbenzene            | ND             | ug/l                | 0.50   |             |
| p-Isopropyltoluene          | ND             | ug/l                | 0.50   | <del></del> |
| Naphthalene                 | ND             | ug/l                | 2.5    |             |
| n-Propylbenzene             | ND             | ug/l                | 0.50   | <del></del> |
| 1,2,3-Trichlorobenzene      | ND             | ug/l                | 2.5    | <del></del> |
| 1,2,4-Trichlorobenzene      | ND             | ug/l                | 2.5    | <del></del> |
| 1,3,5-Trimethylbenzene      | ND             | ug/l                | 2.5    |             |
| 1,2,4-Trimethylbenzene      | ND             | ug/l                | 2.5    |             |
| trans-1,4-Dichloro-2-butene | ND             | ug/l                | 2.5    |             |
| Ethyl ether                 | ND             | ug/l                | 2.5    |             |
| Tert-Butyl Alcohol          | ND             | ug/l                | 10     |             |
| Tertiary-Amyl Methyl Ether  | ND             | ug/l                | 2.0    |             |

|                       |           | Acceptance         |  |
|-----------------------|-----------|--------------------|--|
| Surrogate             | %Recovery | Qualifier Criteria |  |
|                       |           |                    |  |
| 1,2-Dichloroethane-d4 | 115       | 70-130             |  |
| Toluene-d8            | 105       | 70-130             |  |
| 4-Bromofluorobenzene  | 114       | 70-130             |  |
| Dibromofluoromethane  | 99        | 70-130             |  |



**Project Name:** 99 SUMMER STREET

Lab Number:

L1813424

Project Number: 4256.00

Report Date:

04/24/18

| Parameter                                | LCS<br>%Recovery  | Qual        | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits | Column |
|------------------------------------------|-------------------|-------------|-------------------|--------|---------------------|-----|------|---------------|--------|
| Microextractables by GC - Westborough La | ab Associated san | nple(s): 01 | Batch: WG110      | 7889-2 |                     |     |      |               |        |
| 1,2-Dibromoethane                        | 108               |             | -                 |        | 80-120              | -   |      |               | Α      |



**Project Name:** 99 SUMMER STREET

Lab Number:

L1813424

Project Number: 4256.00

Report Date:

04/24/18

| Parameter                                | LCS<br>%Recovery | Qual           | LCSD<br>%Recovery | 9<br>Qual   | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------|------------------|----------------|-------------------|-------------|---------------------|-----|------|---------------|
| Volatile Organics by GC/MS-SIM - Westbor | ough Lab Associa | ted sample(s): | 01 Batch:         | WG1108305-3 | WG1108305-4         |     |      |               |
| 1,4-Dioxane                              | 96               |                | 87                |             | 70-130              | 10  |      | 25            |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

| Parameter                                | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------|------------------|---------------|-------------------|----------|---------------------|-----|------|---------------|
| /olatile Organics by GC/MS - Westborough | Lab Associated   | sample(s): 01 | Batch: WG1        | 108322-3 | WG1108322-4         |     |      |               |
| Methylene chloride                       | 98               |               | 98                |          | 70-130              | 0   |      | 20            |
| 1,1-Dichloroethane                       | 100              |               | 110               |          | 70-130              | 10  |      | 20            |
| Chloroform                               | 100              |               | 110               |          | 70-130              | 10  |      | 20            |
| Carbon tetrachloride                     | 120              |               | 110               |          | 63-132              | 9   |      | 20            |
| 1,2-Dichloropropane                      | 99               |               | 110               |          | 70-130              | 11  |      | 20            |
| Dibromochloromethane                     | 96               |               | 94                |          | 63-130              | 2   |      | 20            |
| 1,1,2-Trichloroethane                    | 88               |               | 99                |          | 70-130              | 12  |      | 20            |
| Tetrachloroethene                        | 100              |               | 87                |          | 70-130              | 14  |      | 20            |
| Chlorobenzene                            | 96               |               | 96                |          | 75-130              | 0   |      | 25            |
| Trichlorofluoromethane                   | 120              |               | 110               |          | 62-150              | 9   |      | 20            |
| 1,2-Dichloroethane                       | 100              |               | 110               |          | 70-130              | 10  |      | 20            |
| 1,1,1-Trichloroethane                    | 110              |               | 110               |          | 67-130              | 0   |      | 20            |
| Bromodichloromethane                     | 110              |               | 110               |          | 67-130              | 0   |      | 20            |
| trans-1,3-Dichloropropene                | 89               |               | 100               |          | 70-130              | 12  |      | 20            |
| cis-1,3-Dichloropropene                  | 96               |               | 100               |          | 70-130              | 4   |      | 20            |
| 1,1-Dichloropropene                      | 100              |               | 110               |          | 70-130              | 10  |      | 20            |
| Bromoform                                | 89               |               | 85                |          | 54-136              | 5   |      | 20            |
| 1,1,2,2-Tetrachloroethane                | 79               |               | 99                |          | 67-130              | 22  | Q    | 20            |
| Benzene                                  | 96               |               | 100               |          | 70-130              | 4   |      | 25            |
| Toluene                                  | 94               |               | 100               |          | 70-130              | 6   |      | 25            |
| Ethylbenzene                             | 95               |               | 100               |          | 70-130              | 5   |      | 20            |
| Chloromethane                            | 98               |               | 110               |          | 64-130              | 12  |      | 20            |
| Bromomethane                             | 97               |               | 92                |          | 39-139              | 5   |      | 20            |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

| Viryl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | arameter                               | LCS<br>%Recovery  | Qual         | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|--------------|-------------------|----------|---------------------|-----|------|---------------|--|
| Chloroethane         110         120         55-138         9         20           1,1-Dichloroethane         93         93         61-145         0         25           Trichloroethane         100         100         70-130         0         25           1,2-Dichlorobenzene         92         93         70-130         1         20           1,3-Dichlorobenzene         94         92         70-130         2         20           1,4-Dichlorobenzene         93         93         70-130         0         20           Methyl tert butyl ether         95         100         63-130         5         20           p/m-Xylene         100         100         70-130         0         20           c-Xylene         95         100         70-130         0         20           cis-1,2-Dichloroethene         100         100         70-130         0         20           Dibromomethane         100         100         70-130         0         20           1,4-Dichlorobutane         86         120         70-130         33         Q         20           1,2,3-Trichloropropane         84         110         64-130         27                                                                                                                      | olatile Organics by GC/MS - Westboroug | gh Lab Associated | sample(s): 0 | 1 Batch: WG11     | 108322-3 | WG1108322-4         |     |      |               |  |
| 1,1-Dichloroethene         93         93         61-145         0         25           Trichloroethene         100         100         70-130         0         25           1,2-Dichlorobenzene         92         93         70-130         1         20           1,3-Dichlorobenzene         94         92         70-130         2         20           1,4-Dichlorobenzene         93         93         70-130         0         20           Methyl tert butyl ether         95         100         63-130         5         20           p/m-Xylene         100         100         70-130         0         20           cis-1,2-Dichloroethene         100         100         70-130         0         20           cis-1,2-Dichloroethene         100         100         70-130         0         20           Dibromomethane         100         100         70-130         0         20           1,4-Dichlorobutane         86         120         70-130         33         Q         20           1,2-3-Trichloropropane         84         110         64-130         27         Q         20           Styrene         95         95         70-1                                                                                                                | Vinyl chloride                         | 100               |              | 110               |          | 55-140              | 10  |      | 20            |  |
| Trichloroethene         100         100         70-130         0         25           1,2-Dichlorobenzene         92         93         70-130         1         20           1,3-Dichlorobenzene         94         92         70-130         2         20           1,4-Dichlorobenzene         93         93         70-130         0         20           Methyl tert butyl ether         95         100         63-130         5         20           p/m-Xylene         100         100         70-130         0         20           o-Xylene         95         100         70-130         0         20           o-Xylene         95         100         70-130         0         20           o-Xylene         95         100         70-130         0         20           Dibromomethane         100         100         70-130         0         20           Dibromomethane         100         100         70-130         33         Q         20           1,2,3-Trichloropropane         84         110         64-130         27         Q         20           Styrene         95         95         70-130         0         20<                                                                                                                                  | Chloroethane                           | 110               |              | 120               |          | 55-138              | 9   |      | 20            |  |
| 1,2-Dichlorobenzene       92       93       70-130       1       20         1,3-Dichlorobenzene       94       92       70-130       2       20         1,4-Dichlorobenzene       93       93       70-130       0       20         Methyl tert butyl ether       95       100       63-130       5       20         p/m-Xylene       100       100       70-130       0       20         o-Xylene       95       100       70-130       5       20         cis-1,2-Dichloroethene       100       100       70-130       0       20         Dibromomethane       100       100       70-130       0       20         1,4-Dichlorobutane       86       120       70-130       0       20         1,4-Dichlorobutane       86       120       70-130       33       Q       20         1,2,3-Trichloropropane       84       110       64-130       27       Q       20         Styrene       95       95       70-130       0       20       20         Dichlorodifluoromethane       110       110       36-147       0       20         Acetone       89       110       58                                                                                                                                                                                                        | 1,1-Dichloroethene                     | 93                |              | 93                |          | 61-145              | 0   |      | 25            |  |
| 1,3-Dichlorobenzene       94       92       70-130       2       20         1,4-Dichlorobenzene       93       93       70-130       0       20         Methyl tert butyl ether       95       100       63-130       5       20         p/m-Xylene       100       100       70-130       0       20         o-Xylene       95       100       70-130       5       20         cis-1,2-Dichloroethene       100       100       70-130       0       20         Dibromomethane       100       100       70-130       0       20         1,4-Dichlorobutane       86       120       70-130       33       Q       20         1,2,3-Trichloropropane       84       110       64-130       27       Q       20         Styrene       95       95       70-130       0       20         Dichlorodifluoromethane       110       110       36-147       0       20         Acetone       89       110       55-148       21       Q       20         Carbon disulfide       79       100       51-130       23       Q       20         Vinyl acetate       120       40                                                                                                                                                                                                               | Trichloroethene                        | 100               |              | 100               |          | 70-130              | 0   |      | 25            |  |
| 1,4-Dichlorobenzene       93       93       70-130       0       20         Methyl tert butyl ether       95       100       63-130       5       20         p/m-Xylene       100       100       70-130       0       20         o-Xylene       95       100       70-130       5       20         cis-1,2-Dichloroethene       100       100       70-130       0       20         Dibromomethane       100       100       70-130       0       20         1,4-Dichlorobutane       86       120       70-130       33       Q       20         1,2,3-Trichloropropane       84       110       64-130       27       Q       20         Styrene       95       95       70-130       0       20         Dichlorodifluoromethane       110       110       36-147       0       20         Acetone       89       110       58-148       21       Q       20         Carbon disulfide       79       100       51-130       23       Q       20         Vinyl acetate       120       140       Q       70-130       15       20         4-Methyl-2-pentanone       75                                                                                                                                                                                                             | 1,2-Dichlorobenzene                    | 92                |              | 93                |          | 70-130              | 1   |      | 20            |  |
| Methyl tert butyl ether         95         100         63-130         5         20           p/m-Xylene         100         100         70-130         0         20           o-Xylene         95         100         70-130         5         20           cis-1,2-Dichloroethene         100         100         70-130         0         20           Dibromomethane         100         100         70-130         0         20           1,4-Dichlorobutane         86         120         70-130         33         Q         20           1,2,3-Trichloropropane         84         110         64-130         27         Q         20           Styrene         95         95         95         70-130         0         20           Dichlorodifluoromethane         110         110         36-147         0         20           Acetone         89         110         58-148         21         Q         20           Carbon disulfide         79         100         51-130         23         Q         20           2-Butanone         96         120         63-138         22         Q         20           Vinyl acetate         <                                                                                                                              | 1,3-Dichlorobenzene                    | 94                |              | 92                |          | 70-130              | 2   |      | 20            |  |
| p/m-Xylene         100         100         70-130         0         20           o-Xylene         95         100         70-130         5         20           cis-1,2-Dichloroethene         100         100         70-130         0         20           Dibromomethane         100         100         70-130         0         20           1,4-Dichlorobutane         86         120         70-130         33         Q         20           1,2,3-Trichloropropane         84         110         64-130         27         Q         20           Styrene         95         95         70-130         0         20         20           Dichlorodifluoromethane         110         110         36-147         0         20           Acetone         89         110         58-148         21         Q         20           Carbon disulfide         79         100         51-130         23         Q         20           2-Butanone         96         120         63-138         22         Q         20           Vinyl acetate         120         140         Q         70-130         15         20           4-Methyl-2-pentan                                                                                                                                  | 1,4-Dichlorobenzene                    | 93                |              | 93                |          | 70-130              | 0   |      | 20            |  |
| o-Xylene         95         100         70-130         5         20           cis-1,2-Dichloroethene         100         100         70-130         0         20           Dibromomethane         100         100         70-130         0         20           1,4-Dichlorobutane         86         120         70-130         33         Q         20           1,2,3-Trichloropropane         84         110         64-130         27         Q         20           Styrene         95         95         70-130         0         20           Dichlorodifluoromethane         110         110         36-147         0         20           Acetone         89         110         58-148         21         Q         20           Carbon disulfide         79         100         51-130         23         Q         20           2-Butanone         96         120         63-138         22         Q         20           Vinyl acetate         120         140         Q         70-130         15         20           4-Methyl-2-pentanone         75         94         59-130         22         Q         20           2-Hexanon                                                                                                                                  | Methyl tert butyl ether                | 95                |              | 100               |          | 63-130              | 5   |      | 20            |  |
| cis-1,2-Dichloroethene         100         100         70-130         0         20           Dibromomethane         100         100         70-130         0         20           1,4-Dichlorobutane         86         120         70-130         33         Q         20           1,2,3-Trichloropropane         84         110         64-130         27         Q         20           Styrene         95         95         70-130         0         20         20           Dichlorodifluoromethane         110         110         36-147         0         20           Acetone         89         110         58-148         21         Q         20           Carbon disulfide         79         100         51-130         23         Q         20           2-Butanone         96         120         63-138         22         Q         20           Vinyl acetate         120         140         Q         70-130         15         20           4-Methyl-2-pentanone         75         94         59-130         22         Q         20           2-Hexanone         80         100         57-130         22         Q         20 <td>p/m-Xylene</td> <td>100</td> <td></td> <td>100</td> <td></td> <td>70-130</td> <td>0</td> <td></td> <td>20</td> <td></td> | p/m-Xylene                             | 100               |              | 100               |          | 70-130              | 0   |      | 20            |  |
| Dibromomethane         100         100         70-130         0         20           1,4-Dichlorobutane         86         120         70-130         33         Q         20           1,2,3-Trichloropropane         84         110         64-130         27         Q         20           Styrene         95         95         70-130         0         20           Dichlorodifluoromethane         110         110         36-147         0         20           Acetone         89         110         58-148         21         Q         20           Carbon disulfide         79         100         51-130         23         Q         20           2-Butanone         96         120         63-138         22         Q         20           Vinyl acetate         120         140         Q         70-130         15         20           4-Methyl-2-pentanone         75         94         59-130         22         Q         20           2-Hexanone         80         100         57-130         22         Q         20                                                                                                                                                                                                                                      | o-Xylene                               | 95                |              | 100               |          | 70-130              | 5   |      | 20            |  |
| 1,4-Dichlorobutane       86       120       70-130       33       Q       20         1,2,3-Trichloropropane       84       110       64-130       27       Q       20         Styrene       95       95       70-130       0       20         Dichlorodiifluoromethane       110       110       36-147       0       20         Acetone       89       110       58-148       21       Q       20         Carbon disulfide       79       100       51-130       23       Q       20         2-Butanone       96       120       63-138       22       Q       20         Vinyl acetate       120       140       Q       70-130       15       20         4-Methyl-2-pentanone       75       94       59-130       22       Q       20         2-Hexanone       80       100       57-130       22       Q       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cis-1,2-Dichloroethene                 | 100               |              | 100               |          | 70-130              | 0   |      | 20            |  |
| 1,2,3-Trichloropropane       84       110       64-130       27       Q       20         Styrene       95       95       70-130       0       20         Dichlorodifluoromethane       110       110       36-147       0       20         Acetone       89       110       58-148       21       Q       20         Carbon disulfide       79       100       51-130       23       Q       20         2-Butanone       96       120       63-138       22       Q       20         Vinyl acetate       120       140       Q       70-130       15       20         4-Methyl-2-pentanone       75       94       59-130       22       Q       20         2-Hexanone       80       100       57-130       22       Q       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dibromomethane                         | 100               |              | 100               |          | 70-130              | 0   |      | 20            |  |
| Styrene     95     95     70-130     0     20       Dichlorodifluoromethane     110     110     36-147     0     20       Acetone     89     110     58-148     21     Q     20       Carbon disulfide     79     100     51-130     23     Q     20       2-Butanone     96     120     63-138     22     Q     20       Vinyl acetate     120     140     Q     70-130     15     20       4-Methyl-2-pentanone     75     94     59-130     22     Q     20       2-Hexanone     80     100     57-130     22     Q     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,4-Dichlorobutane                     | 86                |              | 120               |          | 70-130              | 33  | Q    | 20            |  |
| Dichlorodifluoromethane         110         110         36-147         0         20           Acetone         89         110         58-148         21         Q         20           Carbon disulfide         79         100         51-130         23         Q         20           2-Butanone         96         120         63-138         22         Q         20           Vinyl acetate         120         140         Q         70-130         15         20           4-Methyl-2-pentanone         75         94         59-130         22         Q         20           2-Hexanone         80         100         57-130         22         Q         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2,3-Trichloropropane                 | 84                |              | 110               |          | 64-130              | 27  | Q    | 20            |  |
| Acetone       89       110       58-148       21       Q       20         Carbon disulfide       79       100       51-130       23       Q       20         2-Butanone       96       120       63-138       22       Q       20         Vinyl acetate       120       140       Q       70-130       15       20         4-Methyl-2-pentanone       75       94       59-130       22       Q       20         2-Hexanone       80       100       57-130       22       Q       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Styrene                                | 95                |              | 95                |          | 70-130              | 0   |      | 20            |  |
| Carbon disulfide       79       100       51-130       23       Q       20         2-Butanone       96       120       63-138       22       Q       20         Vinyl acetate       120       140       Q       70-130       15       20         4-Methyl-2-pentanone       75       94       59-130       22       Q       20         2-Hexanone       80       100       57-130       22       Q       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dichlorodifluoromethane                | 110               |              | 110               |          | 36-147              | 0   |      | 20            |  |
| 2-Butanone       96       120       63-138       22       Q       20         Vinyl acetate       120       140       Q       70-130       15       20         4-Methyl-2-pentanone       75       94       59-130       22       Q       20         2-Hexanone       80       100       57-130       22       Q       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acetone                                | 89                |              | 110               |          | 58-148              | 21  | Q    | 20            |  |
| Vinyl acetate     120     140     Q     70-130     15     20       4-Methyl-2-pentanone     75     94     59-130     22     Q     20       2-Hexanone     80     100     57-130     22     Q     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbon disulfide                       | 79                |              | 100               |          | 51-130              | 23  | Q    | 20            |  |
| 4-Methyl-2-pentanone     75     94     59-130     22     Q     20       2-Hexanone     80     100     57-130     22     Q     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Butanone                             | 96                |              | 120               |          | 63-138              | 22  | Q    | 20            |  |
| 2-Hexanone 80 100 57-130 <b>22</b> Q 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vinyl acetate                          | 120               |              | 140               | Q        | 70-130              | 15  |      | 20            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-Methyl-2-pentanone                   | 75                |              | 94                |          | 59-130              | 22  | Q    | 20            |  |
| Ethyl methacrylate 80 96 70-130 18 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-Hexanone                             | 80                |              | 100               |          | 57-130              | 22  | Q    | 20            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ethyl methacrylate                     | 80                |              | 96                |          | 70-130              | 18  |      | 20            |  |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

| Parameter                                | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------|------------------|--------------|-------------------|----------|---------------------|-----|------|---------------|
| /olatile Organics by GC/MS - Westborough | Lab Associated   | sample(s): 0 | 1 Batch: WG1      | 108322-3 | WG1108322-4         |     |      |               |
| Acrylonitrile                            | 94               |              | 110               |          | 70-130              | 16  |      | 20            |
| Bromochloromethane                       | 110              |              | 99                |          | 70-130              | 11  |      | 20            |
| Tetrahydrofuran                          | 93               |              | 110               |          | 58-130              | 17  |      | 20            |
| 2,2-Dichloropropane                      | 120              |              | 120               |          | 63-133              | 0   |      | 20            |
| 1,2-Dibromoethane                        | 91               |              | 93                |          | 70-130              | 2   |      | 20            |
| 1,3-Dichloropropane                      | 89               |              | 100               |          | 70-130              | 12  |      | 20            |
| 1,1,1,2-Tetrachloroethane                | 100              |              | 96                |          | 64-130              | 4   |      | 20            |
| Bromobenzene                             | 94               |              | 93                |          | 70-130              | 1   |      | 20            |
| n-Butylbenzene                           | 89               |              | 110               |          | 53-136              | 21  | Q    | 20            |
| sec-Butylbenzene                         | 93               |              | 100               |          | 70-130              | 7   |      | 20            |
| tert-Butylbenzene                        | 100              |              | 110               |          | 70-130              | 10  |      | 20            |
| o-Chlorotoluene                          | 91               |              | 110               |          | 70-130              | 19  |      | 20            |
| p-Chlorotoluene                          | 91               |              | 110               |          | 70-130              | 19  |      | 20            |
| 1,2-Dibromo-3-chloropropane              | 79               |              | 77                |          | 41-144              | 3   |      | 20            |
| Hexachlorobutadiene                      | 85               |              | 74                |          | 63-130              | 14  |      | 20            |
| Isopropylbenzene                         | 94               |              | 100               |          | 70-130              | 6   |      | 20            |
| p-Isopropyltoluene                       | 96               |              | 100               |          | 70-130              | 4   |      | 20            |
| Naphthalene                              | 82               |              | 85                |          | 70-130              | 4   |      | 20            |
| n-Propylbenzene                          | 91               |              | 110               |          | 69-130              | 19  |      | 20            |
| 1,2,3-Trichlorobenzene                   | 86               |              | 79                |          | 70-130              | 8   |      | 20            |
| 1,2,4-Trichlorobenzene                   | 88               |              | 80                |          | 70-130              | 10  |      | 20            |
| 1,3,5-Trimethylbenzene                   | 93               |              | 100               |          | 64-130              | 7   |      | 20            |
| 1,2,4-Trimethylbenzene                   | 94               |              | 100               |          | 70-130              | 6   |      | 20            |
|                                          |                  |              |                   |          |                     |     |      |               |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

| Parameter                                   | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|---------------------------------------------|------------------|--------------|-------------------|----------|---------------------|-----|------|---------------|--|
| Volatile Organics by GC/MS - Westborough La | ab Associated    | sample(s): 0 | 1 Batch: WG       | 108322-3 | WG1108322-4         |     |      |               |  |
| trans-1,4-Dichloro-2-butene                 | 83               |              | 120               |          | 70-130              | 36  | Q    | 20            |  |
| Ethyl ether                                 | 100              |              | 110               |          | 59-134              | 10  |      | 20            |  |
| Tert-Butyl Alcohol                          | 84               |              | 92                |          | 70-130              | 9   |      | 20            |  |
| Tertiary-Amyl Methyl Ether                  | 92               |              | 98                |          | 66-130              | 6   |      | 20            |  |

|                       | LCS           | LCSD              | Acceptance |
|-----------------------|---------------|-------------------|------------|
| Surrogate             | %Recovery Qua | al %Recovery Qual | Criteria   |
| 1,2-Dichloroethane-d4 | 105           | 112               | 70-130     |
| Toluene-d8            | 96            | 104               | 70-130     |
| 4-Bromofluorobenzene  | 94            | 112               | 70-130     |
| Dibromofluoromethane  | 107           | 102               | 70-130     |



# Matrix Spike Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number:

L1813424

Report Date:

04/24/18

| Parameter                   | Native<br>Sample | MS<br>Added | MS<br>Found %    | MS<br>6Recovery | Qual     | MSD<br>Found | MSD<br>%Recovery |         | Recovery<br>Limits | RPD      | RPD<br>Qual Limits | Column |
|-----------------------------|------------------|-------------|------------------|-----------------|----------|--------------|------------------|---------|--------------------|----------|--------------------|--------|
| Microextractables by GC -   | Westborough Lab  | Associate   | ed sample(s): 01 | QC Batch        | ID: WG11 | 07889-3      | QC Sample:       | L181300 | 06-01 Clie         | nt ID: N | /IS Sample         |        |
| 1,2-Dibromoethane           | ND               | 0.25        | 0.239            | 96              |          | -            | -                |         | 80-120             | -        | 20                 | Α      |
| 1,2-Dibromo-3-chloropropane | ND               | 0.25        | 0.236            | 94              |          | -            | -                |         | 80-120             | -        | 20                 | Α      |

#### **SEMIVOLATILES**



**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00

**SAMPLE RESULTS** 

Report Date:

04/24/18

Lab ID: L1813424-01

Client ID: **INFLUENT** 

Sample Location: EAST BOSTON, MA Field Prep:

Lab Number:

Date Collected:

Date Received:

04/18/18

Field Filtered (Dissolved Metals)

L1813424

04/18/18 09:00

Sample Depth:

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 04/19/18 20:46

Analyst: CB

| Е | xtraction | Method: | EPA 3510C      |
|---|-----------|---------|----------------|
| Е | xtraction | Date:   | 04/19/18 00:26 |

| Parameter                          | Result          | Qualifier | Units | RL  | MDL | Dilution Factor |
|------------------------------------|-----------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - V | Vestborough Lab |           |       |     |     |                 |
| Benzidine                          | ND              |           | ug/l  | 20  |     | 1               |
| 1,2,4-Trichlorobenzene             | ND              |           | ug/l  | 5.0 |     | 1               |
| Bis(2-chloroethyl)ether            | ND              |           | ug/l  | 2.0 |     | 1               |
| 1,2-Dichlorobenzene                | ND              |           | ug/l  | 2.0 |     | 1               |
| 1,3-Dichlorobenzene                | ND              |           | ug/l  | 2.0 |     | 1               |
| 1,4-Dichlorobenzene                | ND              |           | ug/l  | 2.0 |     | 1               |
| 3,3'-Dichlorobenzidine             | ND              |           | ug/l  | 5.0 |     | 1               |
| 2,4-Dinitrotoluene                 | ND              |           | ug/l  | 5.0 |     | 1               |
| 2,6-Dinitrotoluene                 | ND              |           | ug/l  | 5.0 |     | 1               |
| Azobenzene                         | ND              |           | ug/l  | 2.0 |     | 1               |
| 4-Chlorophenyl phenyl ether        | ND              |           | ug/l  | 2.0 |     | 1               |
| 4-Bromophenyl phenyl ether         | ND              |           | ug/l  | 2.0 |     | 1               |
| Bis(2-chloroisopropyl)ether        | ND              |           | ug/l  | 2.0 |     | 1               |
| Bis(2-chloroethoxy)methane         | ND              |           | ug/l  | 5.0 |     | 1               |
| Hexachlorocyclopentadiene          | ND              |           | ug/l  | 20  |     | 1               |
| Isophorone                         | ND              |           | ug/l  | 5.0 |     | 1               |
| Nitrobenzene                       | ND              |           | ug/l  | 2.0 |     | 1               |
| NDPA/DPA                           | ND              |           | ug/l  | 2.0 |     | 1               |
| n-Nitrosodi-n-propylamine          | ND              |           | ug/l  | 5.0 |     | 1               |
| Bis(2-ethylhexyl)phthalate         | 3.3             |           | ug/l  | 3.0 |     | 1               |
| Butyl benzyl phthalate             | ND              |           | ug/l  | 5.0 |     | 1               |
| Di-n-butylphthalate                | ND              |           | ug/l  | 5.0 |     | 1               |
| Di-n-octylphthalate                | ND              |           | ug/l  | 5.0 |     | 1               |
| Diethyl phthalate                  | ND              |           | ug/l  | 5.0 |     | 1               |
| Dimethyl phthalate                 | ND              |           | ug/l  | 5.0 |     | 1               |
| Biphenyl                           | ND              |           | ug/l  | 2.0 |     | 1               |
| Aniline                            | ND              |           | ug/l  | 2.0 |     | 1               |
| 4-Chloroaniline                    | ND              |           | ug/l  | 5.0 |     | 1               |



Project Name: 99 SUMMER STREET Lab Number:

Project Number: 4256.00 Report Date: 04/24/18

**SAMPLE RESULTS** 

Lab ID: Date Collected: 04/18/18 09:00

Client ID: INFLUENT Date Received: 04/18/18

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

L1813424

Sample Depth:

| Parameter                                 | Result   | Qualifier | Units | RL  | MDL | Dilution Factor |
|-------------------------------------------|----------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - Westbord | ough Lab |           |       |     |     |                 |
| 2-Nitroaniline                            | ND       |           | ug/l  | 5.0 |     | 1               |
| 3-Nitroaniline                            | ND       |           | ug/l  | 5.0 |     | 1               |
| 4-Nitroaniline                            | ND       |           | ug/l  | 5.0 |     | 1               |
| Dibenzofuran                              | ND       |           | ug/l  | 2.0 |     | 1               |
| n-Nitrosodimethylamine                    | ND       |           | ug/l  | 2.0 |     | 1               |
| 2,4,6-Trichlorophenol                     | ND       |           | ug/l  | 5.0 |     | 1               |
| p-Chloro-m-cresol                         | ND       |           | ug/l  | 2.0 |     | 1               |
| 2-Chlorophenol                            | ND       |           | ug/l  | 2.0 |     | 1               |
| 2,4-Dichlorophenol                        | ND       |           | ug/l  | 5.0 |     | 1               |
| 2,4-Dimethylphenol                        | ND       |           | ug/l  | 5.0 |     | 1               |
| 2-Nitrophenol                             | ND       |           | ug/l  | 10  |     | 1               |
| 4-Nitrophenol                             | ND       |           | ug/l  | 10  |     | 1               |
| 2,4-Dinitrophenol                         | ND       |           | ug/l  | 20  |     | 1               |
| 4,6-Dinitro-o-cresol                      | ND       |           | ug/l  | 10  |     | 1               |
| Phenol                                    | ND       |           | ug/l  | 5.0 |     | 1               |
| 2-Methylphenol                            | ND       |           | ug/l  | 5.0 |     | 1               |
| 3-Methylphenol/4-Methylphenol             | ND       |           | ug/l  | 5.0 |     | 1               |
| 2,4,5-Trichlorophenol                     | ND       |           | ug/l  | 5.0 |     | 1               |
| Benzoic Acid                              | ND       |           | ug/l  | 50  |     | 1               |
| Benzyl Alcohol                            | ND       |           | ug/l  | 2.0 |     | 1               |
| Carbazole                                 | ND       |           | ug/l  | 2.0 |     | 1               |
| Pyridine                                  | ND       |           | ug/l  | 3.5 |     | 1               |

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------|------------|----------------------------------|
| 2-Fluorophenol       | 61         | 21-120                           |
| Phenol-d6            | 43         | 10-120                           |
| Nitrobenzene-d5      | 91         | 23-120                           |
| 2-Fluorobiphenyl     | 89         | 15-120                           |
| 2,4,6-Tribromophenol | 102        | 10-120                           |
| 4-Terphenyl-d14      | 102        | 41-149                           |



**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00

**SAMPLE RESULTS** 

Report Date: 04/24/18

Lab Number:

Date Collected:

Date Received:

Lab ID: L1813424-01

Client ID: **INFLUENT** 

Sample Location: EAST BOSTON, MA Field Prep:

Field Filtered (Dissolved

Metals)

04/18/18

L1813424

04/18/18 09:00

Sample Depth:

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 04/20/18 16:09

Analyst:  $\mathsf{DV}$  Extraction Method: EPA 3510C **Extraction Date:** 04/19/18 00:27

| Parameter                        | Result              | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|----------------------------------|---------------------|-----------|-------|------|-----|-----------------|--|
| Semivolatile Organics by GC/MS-S | IM - Westborough La | b         |       |      |     |                 |  |
| Acenaphthene                     | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| 2-Chloronaphthalene              | ND                  |           | ug/l  | 0.20 |     | 1               |  |
| Fluoranthene                     | 0.11                |           | ug/l  | 0.10 |     | 1               |  |
| Hexachlorobutadiene              | ND                  |           | ug/l  | 0.50 |     | 1               |  |
| Naphthalene                      | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Benzo(a)anthracene               | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Benzo(a)pyrene                   | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Benzo(b)fluoranthene             | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Benzo(k)fluoranthene             | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Chrysene                         | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Acenaphthylene                   | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Anthracene                       | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Benzo(ghi)perylene               | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Fluorene                         | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Phenanthrene                     | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Dibenzo(a,h)anthracene           | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Indeno(1,2,3-cd)pyrene           | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Pyrene                           | 0.10                |           | ug/l  | 0.10 |     | 1               |  |
| 1-Methylnaphthalene              | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| 2-Methylnaphthalene              | ND                  |           | ug/l  | 0.10 |     | 1               |  |
| Pentachlorophenol                | ND                  |           | ug/l  | 0.80 |     | 1               |  |
| Hexachlorobenzene                | ND                  |           | ug/l  | 0.80 |     | 1               |  |
| Hexachloroethane                 | ND                  |           | ug/l  | 0.80 |     | 1               |  |
|                                  |                     |           |       |      |     |                 |  |

**Project Name:** 99 SUMMER STREET **Lab Number:** L1813424

Project Number: 4256.00 Report Date: 04/24/18

**SAMPLE RESULTS** 

Lab ID: L1813424-01 Date Collected: 04/18/18 09:00

Client ID: INFLUENT Date Received: 04/18/18

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------|------------|----------------------------------|
| 2-Fluorophenol       | 41         | 21-120                           |
| Phenol-d6            | 33         | 10-120                           |
| Nitrobenzene-d5      | 63         | 23-120                           |
| 2-Fluorobiphenyl     | 75         | 15-120                           |
| 2,4,6-Tribromophenol | 64         | 10-120                           |
| 4-Terphenyl-d14      | 74         | 41-149                           |
|                      |            |                                  |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

**Report Date:** 04/24/18

#### Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/18/18 20:29

Analyst: RC

Extraction Method: EPA 3510C Extraction Date: 04/18/18 04:36

| arameter                       | Result        | Qualifier L | Inits      | RL       | MDL         |
|--------------------------------|---------------|-------------|------------|----------|-------------|
| Semivolatile Organics by GC/MS | - Westborough | Lab for sam | nple(s): 0 | 1 Batch: | WG1107401-1 |
| Acenaphthene                   | ND            |             | ug/l       | 2.0      |             |
| Benzidine                      | ND            |             | ug/l       | 20       |             |
| 1,2,4-Trichlorobenzene         | ND            |             | ug/l       | 5.0      |             |
| Hexachlorobenzene              | ND            |             | ug/l       | 2.0      |             |
| Bis(2-chloroethyl)ether        | ND            |             | ug/l       | 2.0      |             |
| 2-Chloronaphthalene            | ND            |             | ug/l       | 2.0      |             |
| 1,2-Dichlorobenzene            | ND            |             | ug/l       | 2.0      |             |
| 1,3-Dichlorobenzene            | ND            |             | ug/l       | 2.0      |             |
| 1,4-Dichlorobenzene            | ND            |             | ug/l       | 2.0      |             |
| 3,3'-Dichlorobenzidine         | ND            |             | ug/l       | 5.0      |             |
| 2,4-Dinitrotoluene             | ND            |             | ug/l       | 5.0      |             |
| 2,6-Dinitrotoluene             | ND            |             | ug/l       | 5.0      |             |
| Azobenzene                     | ND            |             | ug/l       | 2.0      |             |
| Fluoranthene                   | ND            |             | ug/l       | 2.0      |             |
| 4-Chlorophenyl phenyl ether    | ND            |             | ug/l       | 2.0      |             |
| 4-Bromophenyl phenyl ether     | ND            |             | ug/l       | 2.0      |             |
| Bis(2-chloroisopropyl)ether    | ND            |             | ug/l       | 2.0      |             |
| Bis(2-chloroethoxy)methane     | ND            |             | ug/l       | 5.0      |             |
| Hexachlorobutadiene            | ND            |             | ug/l       | 2.0      |             |
| Hexachlorocyclopentadiene      | ND            |             | ug/l       | 20       |             |
| Hexachloroethane               | ND            |             | ug/l       | 2.0      |             |
| Isophorone                     | ND            |             | ug/l       | 5.0      |             |
| Naphthalene                    | ND            |             | ug/l       | 2.0      |             |
| Nitrobenzene                   | ND            |             | ug/l       | 2.0      |             |
| NDPA/DPA                       | ND            |             | ug/l       | 2.0      |             |
| n-Nitrosodi-n-propylamine      | ND            |             | ug/l       | 5.0      |             |
| Bis(2-ethylhexyl)phthalate     | ND            |             | ug/l       | 3.0      |             |
| Butyl benzyl phthalate         | ND            |             | ug/l       | 5.0      |             |
| Di-n-butylphthalate            | ND            |             | ug/l       | 5.0      |             |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

**Report Date:** 04/24/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/18/18 20:29

Analyst: RC

Extraction Method: EPA 3510C Extraction Date: 04/18/18 04:36

| Parameter                      | Result        | Qualifier  | Units     |    | RL     | MDL         |
|--------------------------------|---------------|------------|-----------|----|--------|-------------|
| Semivolatile Organics by GC/MS | - Westborough | Lab for sa | ample(s): | 01 | Batch: | WG1107401-1 |
| Di-n-octylphthalate            | ND            |            | ug/l      |    | 5.0    | <del></del> |
| Diethyl phthalate              | ND            |            | ug/l      |    | 5.0    |             |
| Dimethyl phthalate             | ND            |            | ug/l      |    | 5.0    |             |
| Benzo(a)anthracene             | ND            |            | ug/l      |    | 2.0    |             |
| Benzo(a)pyrene                 | ND            |            | ug/l      |    | 2.0    |             |
| Benzo(b)fluoranthene           | ND            |            | ug/l      |    | 2.0    |             |
| Benzo(k)fluoranthene           | ND            |            | ug/l      |    | 2.0    |             |
| Chrysene                       | ND            |            | ug/l      |    | 2.0    |             |
| Acenaphthylene                 | ND            |            | ug/l      |    | 2.0    |             |
| Anthracene                     | ND            |            | ug/l      |    | 2.0    |             |
| Benzo(ghi)perylene             | ND            |            | ug/l      |    | 2.0    |             |
| Fluorene                       | ND            |            | ug/l      |    | 2.0    |             |
| Phenanthrene                   | ND            |            | ug/l      |    | 2.0    |             |
| Dibenzo(a,h)anthracene         | ND            |            | ug/l      |    | 2.0    |             |
| Indeno(1,2,3-cd)pyrene         | ND            |            | ug/l      |    | 2.0    |             |
| Pyrene                         | ND            |            | ug/l      |    | 2.0    |             |
| Biphenyl                       | ND            |            | ug/l      |    | 2.0    |             |
| Aniline                        | ND            |            | ug/l      |    | 2.0    |             |
| 4-Chloroaniline                | ND            |            | ug/l      |    | 5.0    |             |
| 1-Methylnaphthalene            | ND            |            | ug/l      |    | 2.0    |             |
| 2-Nitroaniline                 | ND            |            | ug/l      |    | 5.0    |             |
| 3-Nitroaniline                 | ND            |            | ug/l      |    | 5.0    |             |
| 4-Nitroaniline                 | ND            |            | ug/l      |    | 5.0    |             |
| Dibenzofuran                   | ND            |            | ug/l      |    | 2.0    |             |
| 2-Methylnaphthalene            | ND            |            | ug/l      |    | 2.0    |             |
| n-Nitrosodimethylamine         | ND            |            | ug/l      |    | 2.0    |             |
| 2,4,6-Trichlorophenol          | ND            |            | ug/l      |    | 5.0    |             |
| p-Chloro-m-cresol              | ND            |            | ug/l      |    | 2.0    |             |
| 2-Chlorophenol                 | ND            |            | ug/l      |    | 2.0    |             |
|                                |               |            |           |    |        |             |



**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00 Lab Number:

Report Date:

L1813424 04/24/18

**Method Blank Analysis Batch Quality Control** 

Analytical Method: Analytical Date:

1,8270D 04/18/18 20:29

Analyst: RC Extraction Method: EPA 3510C 04/18/18 04:36 **Extraction Date:** 

| Parameter                      | Result         | Qualifier   | Units     |    | RL     | MDL         |  |
|--------------------------------|----------------|-------------|-----------|----|--------|-------------|--|
| Semivolatile Organics by GC/MS | S - Westboroug | h Lab for s | ample(s): | 01 | Batch: | WG1107401-1 |  |
| 2,4-Dichlorophenol             | ND             |             | ug/l      |    | 5.0    |             |  |
| 2,4-Dimethylphenol             | ND             |             | ug/l      |    | 5.0    |             |  |
| 2-Nitrophenol                  | ND             |             | ug/l      |    | 10     |             |  |
| 4-Nitrophenol                  | ND             |             | ug/l      |    | 10     |             |  |
| 2,4-Dinitrophenol              | ND             |             | ug/l      |    | 20     |             |  |
| 4,6-Dinitro-o-cresol           | ND             |             | ug/l      |    | 10     |             |  |
| Pentachlorophenol              | ND             |             | ug/l      |    | 10     |             |  |
| Phenol                         | ND             |             | ug/l      |    | 5.0    |             |  |
| 2-Methylphenol                 | ND             |             | ug/l      |    | 5.0    |             |  |
| 3-Methylphenol/4-Methylphenol  | ND             |             | ug/l      |    | 5.0    |             |  |
| 2,4,5-Trichlorophenol          | ND             |             | ug/l      |    | 5.0    |             |  |
| Benzoic Acid                   | ND             |             | ug/l      |    | 50     |             |  |
| Benzyl Alcohol                 | ND             |             | ug/l      |    | 2.0    |             |  |
| Carbazole                      | ND             |             | ug/l      |    | 2.0    |             |  |
| Pyridine                       | ND             |             | ug/l      |    | 3.5    |             |  |
|                                |                |             |           |    |        |             |  |

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l



L1813424

**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00 Report Date: 04/24/18

Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/18/18 20:29

Analyst: RC Extraction Method: EPA 3510C 04/18/18 04:36 Extraction Date:

| Parameter                        | Result     | Qualifier   | Units     |    | RL     | MDL         |  |
|----------------------------------|------------|-------------|-----------|----|--------|-------------|--|
| Semivolatile Organics by GC/MS - | Westboroug | h Lab for s | ample(s): | 01 | Batch: | WG1107401-1 |  |

| Surrogate                | %Recovery | Acceptance Qualifier Criteria |
|--------------------------|-----------|-------------------------------|
| 2 Elyprophonol           | 60        | 21-120                        |
| 2-Fluorophenol Phenol-d6 | 43        | 10-120                        |
| Nitrobenzene-d5          | 43<br>87  | 23-120                        |
|                          | -         |                               |
| 2-Fluorobiphenyl         | 90        | 15-120                        |
| 2,4,6-Tribromophenol     | 108       | 10-120                        |
| 4-Terphenyl-d14          | 104       | 41-149                        |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number:

L1813424

**Report Date:** 04/24/18

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date: 1,8270D-SIM 04/20/18 12:42

Analyst:

DV

Extraction Method: EPA 3510C Extraction Date: 04/18/18 23:41

| aminalatila Organiaa by CC/MC CII |            |           |            |          |                    |  |
|-----------------------------------|------------|-----------|------------|----------|--------------------|--|
| emivolatile Organics by GC/MS-SII | M - Westbo | rough Lab | for sample | e(s): 01 | Batch: WG1107727-1 |  |
| Acenaphthene                      | ND         |           | ug/l       | 0.10     |                    |  |
| 2-Chloronaphthalene               | ND         |           | ug/l       | 0.20     |                    |  |
| Fluoranthene                      | ND         |           | ug/l       | 0.10     |                    |  |
| Hexachlorobutadiene               | ND         |           | ug/l       | 0.50     |                    |  |
| Naphthalene                       | ND         |           | ug/l       | 0.10     |                    |  |
| Benzo(a)anthracene                | ND         |           | ug/l       | 0.10     |                    |  |
| Benzo(a)pyrene                    | ND         |           | ug/l       | 0.10     |                    |  |
| Benzo(b)fluoranthene              | ND         |           | ug/l       | 0.10     |                    |  |
| Benzo(k)fluoranthene              | ND         |           | ug/l       | 0.10     |                    |  |
| Chrysene                          | ND         |           | ug/l       | 0.10     |                    |  |
| Acenaphthylene                    | ND         |           | ug/l       | 0.10     |                    |  |
| Anthracene                        | ND         |           | ug/l       | 0.10     |                    |  |
| Benzo(ghi)perylene                | ND         |           | ug/l       | 0.10     |                    |  |
| Fluorene                          | ND         |           | ug/l       | 0.10     |                    |  |
| Phenanthrene                      | ND         |           | ug/l       | 0.10     |                    |  |
| Dibenzo(a,h)anthracene            | ND         |           | ug/l       | 0.10     |                    |  |
| Indeno(1,2,3-cd)pyrene            | ND         |           | ug/l       | 0.10     |                    |  |
| Pyrene                            | ND         |           | ug/l       | 0.10     |                    |  |
| 1-Methylnaphthalene               | ND         |           | ug/l       | 0.10     |                    |  |
| 2-Methylnaphthalene               | ND         |           | ug/l       | 0.10     |                    |  |
| Pentachlorophenol                 | ND         |           | ug/l       | 0.80     |                    |  |
| Hexachlorobenzene                 | ND         |           | ug/l       | 0.80     |                    |  |
| Hexachloroethane                  | ND         |           | ug/l       | 0.80     |                    |  |



L1813424

Lab Number:

**Project Name:** 99 SUMMER STREET

**Project Number:** 

4256.00 Report Date: 04/24/18

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM 04/20/18 12:42

Analyst:

DV

Extraction Method: EPA 3510C

04/18/18 23:41 Extraction Date:

| Parameter                        | Result      | Qualifier  | Units     | RL       | MDL                |
|----------------------------------|-------------|------------|-----------|----------|--------------------|
| Semivolatile Organics by GC/MS-S | SIM - Westb | orough Lab | for sampl | e(s): 01 | Batch: WG1107727-1 |

|                      |           | Acceptance         |
|----------------------|-----------|--------------------|
| Surrogate            | %Recovery | Qualifier Criteria |
| 2-Fluorophenol       | 40        | 21-120             |
| Phenol-d6            | 32        | 10-120             |
| Nitrobenzene-d5      | 67        | 23-120             |
| 2-Fluorobiphenyl     | 77        | 15-120             |
| 2,4,6-Tribromophenol | 62        | 10-120             |
| 4-Terphenyl-d14      | 82        | 41-149             |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

| Parameter                                  | LCS<br>%Recovery | Qual             | LCSD<br>%Recovery | Qual        | %Recovery<br>Limits | RPD | RPD<br>Qual Limits |  |
|--------------------------------------------|------------------|------------------|-------------------|-------------|---------------------|-----|--------------------|--|
| Semivolatile Organics by GC/MS - Westborou | ıgh Lab Assoc    | iated sample(s): | : 01 Batch:       | WG1107401-2 | 2 WG1107401-3       |     |                    |  |
| Acenaphthene                               | 90               |                  | 84                |             | 37-111              | 7   | 30                 |  |
| Benzidine                                  | 29               |                  | 38                |             | 10-75               | 27  | 30                 |  |
| 1,2,4-Trichlorobenzene                     | 75               |                  | 77                |             | 39-98               | 3   | 30                 |  |
| Hexachlorobenzene                          | 102              |                  | 97                |             | 40-140              | 5   | 30                 |  |
| Bis(2-chloroethyl)ether                    | 74               |                  | 80                |             | 40-140              | 8   | 30                 |  |
| 2-Chloronaphthalene                        | 86               |                  | 84                |             | 40-140              | 2   | 30                 |  |
| 1,2-Dichlorobenzene                        | 71               |                  | 74                |             | 40-140              | 4   | 30                 |  |
| 1,3-Dichlorobenzene                        | 69               |                  | 73                |             | 40-140              | 6   | 30                 |  |
| 1,4-Dichlorobenzene                        | 70               |                  | 71                |             | 36-97               | 1   | 30                 |  |
| 3,3'-Dichlorobenzidine                     | 79               |                  | 76                |             | 40-140              | 4   | 30                 |  |
| 2,4-Dinitrotoluene                         | 118              |                  | 111               |             | 48-143              | 6   | 30                 |  |
| 2,6-Dinitrotoluene                         | 111              |                  | 103               |             | 40-140              | 7   | 30                 |  |
| Azobenzene                                 | 105              |                  | 99                |             | 40-140              | 6   | 30                 |  |
| Fluoranthene                               | 98               |                  | 93                |             | 40-140              | 5   | 30                 |  |
| 4-Chlorophenyl phenyl ether                | 94               |                  | 90                |             | 40-140              | 4   | 30                 |  |
| 4-Bromophenyl phenyl ether                 | 100              |                  | 96                |             | 40-140              | 4   | 30                 |  |
| Bis(2-chloroisopropyl)ether                | 73               |                  | 75                |             | 40-140              | 3   | 30                 |  |
| Bis(2-chloroethoxy)methane                 | 80               |                  | 83                |             | 40-140              | 4   | 30                 |  |
| Hexachlorobutadiene                        | 78               |                  | 78                |             | 40-140              | 0   | 30                 |  |
| Hexachlorocyclopentadiene                  | 89               |                  | 84                |             | 40-140              | 6   | 30                 |  |
| Hexachloroethane                           | 71               |                  | 75                |             | 40-140              | 5   | 30                 |  |
| Isophorone                                 | 84               |                  | 86                |             | 40-140              | 2   | 30                 |  |
| Naphthalene                                | 80               |                  | 80                |             | 40-140              | 0   | 30                 |  |
|                                            |                  |                  |                   |             |                     |     |                    |  |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

| Parameter                                  | LCS<br>%Recovery | Qual            | LCSD<br>%Recovery | Qual        | %Recovery<br>Limits | RPD | R!<br>Qual Lin | PD<br>nits |
|--------------------------------------------|------------------|-----------------|-------------------|-------------|---------------------|-----|----------------|------------|
| Semivolatile Organics by GC/MS - Westborou | ugh Lab Assoc    | ated sample(s): | 01 Batch:         | WG1107401-2 | 2 WG1107401-3       |     |                |            |
| Nitrobenzene                               | 86               |                 | 89                |             | 40-140              | 3   | 3              | 80         |
| NDPA/DPA                                   | 97               |                 | 92                |             | 40-140              | 5   | 3              | 30         |
| n-Nitrosodi-n-propylamine                  | 83               |                 | 83                |             | 29-132              | 0   | 3              | 60         |
| Bis(2-ethylhexyl)phthalate                 | 118              |                 | 112               |             | 40-140              | 5   | 3              | 60         |
| Butyl benzyl phthalate                     | 108              |                 | 102               |             | 40-140              | 6   | 3              | 60         |
| Di-n-butylphthalate                        | 104              |                 | 98                |             | 40-140              | 6   | 3              | 60         |
| Di-n-octylphthalate                        | 107              |                 | 99                |             | 40-140              | 8   | 3              | 60         |
| Diethyl phthalate                          | 100              |                 | 95                |             | 40-140              | 5   | 3              | 60         |
| Dimethyl phthalate                         | 94               |                 | 91                |             | 40-140              | 3   | 3              | 60         |
| Benzo(a)anthracene                         | 101              |                 | 96                |             | 40-140              | 5   | 3              | 60         |
| Benzo(a)pyrene                             | 104              |                 | 98                |             | 40-140              | 6   | 3              | 60         |
| Benzo(b)fluoranthene                       | 94               |                 | 88                |             | 40-140              | 7   | 3              | 60         |
| Benzo(k)fluoranthene                       | 108              |                 | 105               |             | 40-140              | 3   | 3              | 30         |
| Chrysene                                   | 92               |                 | 90                |             | 40-140              | 2   | 3              | 60         |
| Acenaphthylene                             | 96               |                 | 90                |             | 45-123              | 6   | 3              | 60         |
| Anthracene                                 | 98               |                 | 91                |             | 40-140              | 7   | 3              | 60         |
| Benzo(ghi)perylene                         | 97               |                 | 93                |             | 40-140              | 4   | 3              | 60         |
| Fluorene                                   | 97               |                 | 92                |             | 40-140              | 5   | -              | 30         |
| Phenanthrene                               | 93               |                 | 87                |             | 40-140              | 7   | -              | 30         |
| Dibenzo(a,h)anthracene                     | 99               |                 | 93                |             | 40-140              | 6   | 3              | 30         |
| Indeno(1,2,3-cd)pyrene                     | 105              |                 | 100               |             | 40-140              | 5   | 3              | 30         |
| Pyrene                                     | 95               |                 | 87                |             | 26-127              | 9   | 3              | 30         |
| Biphenyl                                   | 90               |                 | 87                |             | 40-140              | 3   |                | 60         |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

| Parameter                                 | LCS<br>%Recovery | Qual             | LCSD<br>%Recovery | Qual        | %Recovery<br>Limits | RPD | RPD<br>Qual Limits |
|-------------------------------------------|------------------|------------------|-------------------|-------------|---------------------|-----|--------------------|
| Semivolatile Organics by GC/MS - Westboro | ugh Lab Assoc    | iated sample(s): | 01 Batch:         | WG1107401-2 | 2 WG1107401-3       |     |                    |
| Aniline                                   | 40               |                  | 44                |             | 40-140              | 10  | 30                 |
| 4-Chloroaniline                           | 70               |                  | 71                |             | 40-140              | 1   | 30                 |
| 1-Methylnaphthalene                       | 88               |                  | 86                |             | 41-103              | 2   | 30                 |
| 2-Nitroaniline                            | 110              |                  | 109               |             | 52-143              | 1   | 30                 |
| 3-Nitroaniline                            | 81               |                  | 76                |             | 25-145              | 6   | 30                 |
| 4-Nitroaniline                            | 99               |                  | 91                |             | 51-143              | 8   | 30                 |
| Dibenzofuran                              | 94               |                  | 89                |             | 40-140              | 5   | 30                 |
| 2-Methylnaphthalene                       | 84               |                  | 82                |             | 40-140              | 2   | 30                 |
| n-Nitrosodimethylamine                    | 34               |                  | 39                |             | 22-74               | 14  | 30                 |
| 2,4,6-Trichlorophenol                     | 102              |                  | 102               |             | 30-130              | 0   | 30                 |
| p-Chloro-m-cresol                         | 101              | Q                | 99                | Q           | 23-97               | 2   | 30                 |
| 2-Chlorophenol                            | 84               |                  | 89                |             | 27-123              | 6   | 30                 |
| 2,4-Dichlorophenol                        | 93               |                  | 94                |             | 30-130              | 1   | 30                 |
| 2,4-Dimethylphenol                        | 94               |                  | 92                |             | 30-130              | 2   | 30                 |
| 2-Nitrophenol                             | 106              |                  | 110               |             | 30-130              | 4   | 30                 |
| 4-Nitrophenol                             | 86               | Q                | 79                |             | 10-80               | 8   | 30                 |
| 2,4-Dinitrophenol                         | 122              |                  | 117               |             | 20-130              | 4   | 30                 |
| 4,6-Dinitro-o-cresol                      | 129              |                  | 120               |             | 20-164              | 7   | 30                 |
| Pentachlorophenol                         | 93               |                  | 87                |             | 9-103               | 7   | 30                 |
| Phenol                                    | 48               |                  | 51                |             | 12-110              | 6   | 30                 |
| 2-Methylphenol                            | 78               |                  | 80                |             | 30-130              | 3   | 30                 |
| 3-Methylphenol/4-Methylphenol             | 80               |                  | 85                |             | 30-130              | 6   | 30                 |
| 2,4,5-Trichlorophenol                     | 107              |                  | 104               |             | 30-130              | 3   | 30                 |



04/24/18

# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

Report Date:

| Parameter                                  | LCS<br>%Recovery | Qual            | LCSD<br>%Recovery | Qual        | %Recovery<br>Limits | RPD | RF<br>Qual Lin | PD<br>nits |
|--------------------------------------------|------------------|-----------------|-------------------|-------------|---------------------|-----|----------------|------------|
| Semivolatile Organics by GC/MS - Westborou | ıgh Lab Associ   | ated sample(s): | 01 Batch:         | WG1107401-2 | 2 WG1107401-3       | 3   |                |            |
| Benzoic Acid                               | 35               |                 | 30                |             | 10-164              | 15  | 3              | 30         |
| Benzyl Alcohol                             | 76               |                 | 77                |             | 26-116              | 1   | 3              | 60         |
| Carbazole                                  | 98               |                 | 93                |             | 55-144              | 5   | 3              | 0          |
| Pyridine                                   | 21               |                 | 26                |             | 10-66               | 21  | 3              | 60         |

|                      | LCS          | LCSD              | Acceptance |
|----------------------|--------------|-------------------|------------|
| Surrogate            | %Recovery Qu | al %Recovery Qual | Criteria   |
| 2-Fluorophenol       | 59           | 61                | 21-120     |
| Phenol-d6            | 49           | 51                | 10-120     |
| Nitrobenzene-d5      | 90           | 94                | 23-120     |
| 2-Fluorobiphenyl     | 94           | 95                | 15-120     |
| 2,4,6-Tribromophenol | 115          | 114               | 10-120     |
| 4-Terphenyl-d14      | 108          | 105               | 41-149     |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

**Report Date:** 04/24/18

| Parameter                                | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD   | RPD<br>Qual Limits |
|------------------------------------------|------------------|--------------|-------------------|----------|---------------------|-------|--------------------|
| Semivolatile Organics by GC/MS-SIM - Wes | stborough Lab As | sociated sam | nple(s): 01 Batc  | h: WG110 | )7727-2 WG1107      | 727-3 |                    |
| Acenaphthene                             | 60               |              | 64                |          | 40-140              | 6     | 40                 |
| 2-Chloronaphthalene                      | 57               |              | 62                |          | 40-140              | 8     | 40                 |
| Fluoranthene                             | 65               |              | 66                |          | 40-140              | 2     | 40                 |
| Hexachlorobutadiene                      | 58               |              | 66                |          | 40-140              | 13    | 40                 |
| Naphthalene                              | 58               |              | 66                |          | 40-140              | 13    | 40                 |
| Benzo(a)anthracene                       | 67               |              | 68                |          | 40-140              | 1     | 40                 |
| Benzo(a)pyrene                           | 66               |              | 67                |          | 40-140              | 2     | 40                 |
| Benzo(b)fluoranthene                     | 68               |              | 70                |          | 40-140              | 3     | 40                 |
| Benzo(k)fluoranthene                     | 64               |              | 66                |          | 40-140              | 3     | 40                 |
| Chrysene                                 | 68               |              | 69                |          | 40-140              | 1     | 40                 |
| Acenaphthylene                           | 62               |              | 68                |          | 40-140              | 9     | 40                 |
| Anthracene                               | 65               |              | 66                |          | 40-140              | 2     | 40                 |
| Benzo(ghi)perylene                       | 52               |              | 54                |          | 40-140              | 4     | 40                 |
| Fluorene                                 | 64               |              | 67                |          | 40-140              | 5     | 40                 |
| Phenanthrene                             | 63               |              | 64                |          | 40-140              | 2     | 40                 |
| Dibenzo(a,h)anthracene                   | 61               |              | 63                |          | 40-140              | 3     | 40                 |
| Indeno(1,2,3-cd)pyrene                   | 59               |              | 61                |          | 40-140              | 3     | 40                 |
| Pyrene                                   | 66               |              | 67                |          | 40-140              | 2     | 40                 |
| 1-Methylnaphthalene                      | 60               |              | 66                |          | 40-140              | 10    | 40                 |
| 2-Methylnaphthalene                      | 58               |              | 64                |          | 40-140              | 10    | 40                 |
| Pentachlorophenol                        | 78               |              | 81                |          | 40-140              | 4     | 40                 |
| Hexachlorobenzene                        | 69               |              | 71                |          | 40-140              | 3     | 40                 |
| Hexachloroethane                         | 28               | Q            | 34                | Q        | 40-140              | 19    | 40                 |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Lab Number:

L1813424

Project Number: 4256.00

Report Date:

04/24/18

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1107727-2 WG1107727-3

| Surrogate            | LCS<br>%Recovery Qua | LCSD<br>al %Recovery Qual | Acceptance<br>Criteria |
|----------------------|----------------------|---------------------------|------------------------|
| 2-Fluorophenol       | 38                   | 44                        | 21-120                 |
| Phenol-d6            | 30                   | 36                        | 10-120                 |
| Nitrobenzene-d5      | 60                   | 68                        | 23-120                 |
| 2-Fluorobiphenyl     | 70                   | 78                        | 15-120                 |
| 2,4,6-Tribromophenol | 61                   | 64                        | 10-120                 |
| 4-Terphenyl-d14      | 78                   | 80                        | 41-149                 |



## **PCBS**



**Project Name:** 99 SUMMER STREET **Lab Number:** L1813424

Project Number: 4256.00 Report Date: 04/24/18

**SAMPLE RESULTS** 

Lab ID: Date Collected: 04/18/18 09:00

Client ID: INFLUENT Date Received: 04/18/18

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Sample Depth:

Matrix: Water Extraction Method: EPA 608
Analytical Method: 5 608 Extraction Date: 04/18/18 23:36

Analytical Method: 5,608 Extraction Date: 04/18/18 23:36
Analytical Date: 04/23/18 16:57 Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 04/19/18
Cleanup Method: EPA 3660B
Cleanup Date: 04/19/18

| Parameter                         | Result          | Qualifier | Units | RL    | MDL | Dilution Factor | Column |
|-----------------------------------|-----------------|-----------|-------|-------|-----|-----------------|--------|
| Polychlorinated Biphenyls by GC - | Westborough Lab |           |       |       |     |                 |        |
| Aroclor 1016                      | ND              |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1221                      | ND              |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1232                      | ND              |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1242                      | ND              |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1248                      | ND              |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1254                      | ND              |           | ug/l  | 0.250 |     | 1               | Α      |
| Aroclor 1260                      | ND              |           | ug/l  | 0.200 |     | 1               | Α      |

| Surrogate                    | % Recovery | Qualifier | Acceptance<br>Criteria | Column |
|------------------------------|------------|-----------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 97         |           | 30-150                 | А      |
| Decachlorobiphenyl           | 64         |           | 30-150                 | Α      |



L1813424

Lab Number:

**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00 **Report Date:** 04/24/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 04/19/18 05:46

Analyst: JW

Extraction Method: EPA 608
Extraction Date: 04/18/18 00:51
Cleanup Method: EPA 3665A
Cleanup Date: 04/18/18
Cleanup Method: EPA 3660B
Cleanup Date: 04/18/18

| Result       | Qualifier                           | Units                                    | RL                                                                                      | MDL       | Column                                                                                                                                               |
|--------------|-------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Westboroug | h Lab for s                         | ample(s):                                | 01 Batch:                                                                               | WG1107369 | -1                                                                                                                                                   |
| ND           |                                     | ug/l                                     | 0.250                                                                                   |           | Α                                                                                                                                                    |
| ND           |                                     | ug/l                                     | 0.250                                                                                   |           | Α                                                                                                                                                    |
| ND           |                                     | ug/l                                     | 0.250                                                                                   |           | Α                                                                                                                                                    |
| ND           |                                     | ug/l                                     | 0.250                                                                                   |           | Α                                                                                                                                                    |
| ND           |                                     | ug/l                                     | 0.250                                                                                   |           | Α                                                                                                                                                    |
| ND           |                                     | ug/l                                     | 0.250                                                                                   |           | Α                                                                                                                                                    |
| ND           |                                     | ug/l                                     | 0.200                                                                                   |           | Α                                                                                                                                                    |
|              | ND | ND N | ND ug/l | ND        | ND ug/l 0.250  ND ug/l 0.250 |

|                              |                    | Acceptance |          |  |  |  |  |
|------------------------------|--------------------|------------|----------|--|--|--|--|
| Surrogate                    | %Recovery Qualifie | r Criteria | Column   |  |  |  |  |
|                              |                    |            | <u>.</u> |  |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene | 86                 | 30-150     | Α        |  |  |  |  |
| Decachlorobiphenyl           | 87                 | 30-150     | Α        |  |  |  |  |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Lab Number:

L1813424

Project Number: 4256.00

Report Date: 04/24/18

|                                       | LCS                   |                | LCSD      |             | %Recovery |     |      | RPD    |        |
|---------------------------------------|-----------------------|----------------|-----------|-------------|-----------|-----|------|--------|--------|
| Parameter                             | %Recovery             | Qual           | %Recovery | Qual        | Limits    | RPD | Qual | Limits | Column |
| Polychlorinated Biphenyls by GC - Wes | stborough Lab Associa | ted sample(s): | 01 Batch: | WG1107369-2 | 2         |     |      |        |        |
| Aroclor 1016                          | 86                    |                | -         |             | 30-150    | -   |      | 30     | А      |
| Aroclor 1260                          | 80                    |                | -         |             | 30-150    | -   |      | 30     | Α      |

| Surrogate                                          | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria | Column |
|----------------------------------------------------|------------------|------|-------------------|------|------------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene<br>Decachlorobiphenyl | 92<br>91         |      |                   |      | 30-150<br>30-150       | A<br>A |



# Matrix Spike Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number:

L1813424

Report Date:

04/24/18

|                                | Native      | MS       | MS             | MS          |             | MSD      | MSD       |        | Recovery     |             | RPD        |                |
|--------------------------------|-------------|----------|----------------|-------------|-------------|----------|-----------|--------|--------------|-------------|------------|----------------|
| Parameter                      | Sample      | Added    | Found          | %Recovery   | / Qual      | Found    | %Recover  | y Qual | Limits       | RPD Qua     | al Limits  | <u>Colum</u> n |
| Polychlorinated Biphenyls by G | C - Westbor | ough Lab | Associated sar | mple(s): 01 | QC Batch II | D: WG110 | 7369-3 QC | Sample | : L1800004-7 | 5 Client ID | : MS Sampl | е              |
| Aroclor 1016                   | ND          | 3.12     | 2.53           | 81          |             | -        | -         |        | 40-126       | -           | 30         | Α              |
| Aroclor 1260                   | ND          | 3.12     | 2.27           | 73          |             | -        | -         |        | 40-127       | -           | 30         | Α              |

|                              | MS                   | MSD                  | Acceptance |        |  |
|------------------------------|----------------------|----------------------|------------|--------|--|
| Surrogate                    | % Recovery Qualifier | % Recovery Qualifier | Criteria   | Column |  |
| 2,4,5,6-Tetrachloro-m-xylene | 89                   |                      | 30-150     | А      |  |
| Decachlorobiphenyl           | 85                   |                      | 30-150     | Α      |  |



# Lab Duplicate Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number:

L1813424

**Report Date:** 04/24/18

| Parameter                                                | Native Sample         | Duplicate Sample   | Units      | RPD        |             | RPD<br>Limits |     |
|----------------------------------------------------------|-----------------------|--------------------|------------|------------|-------------|---------------|-----|
| Polychlorinated Biphenyls by GC - Westborough Lab Sample | Associated sample(s): | 01 QC Batch ID: WG | 31107369-4 | QC Sample: | L1800004-75 | Client ID:    | DUP |
| Aroclor 1016                                             | ND                    | ND                 | ug/l       | NC         |             | 30            | Α   |
| Aroclor 1221                                             | ND                    | ND                 | ug/l       | NC         |             | 30            | Α   |
| Aroclor 1232                                             | ND                    | ND                 | ug/l       | NC         |             | 30            | Α   |
| Aroclor 1242                                             | ND                    | ND                 | ug/l       | NC         |             | 30            | Α   |
| Aroclor 1248                                             | ND                    | ND                 | ug/l       | NC         |             | 30            | Α   |
| Aroclor 1254                                             | ND                    | ND                 | ug/l       | NC         |             | 30            | Α   |
| Aroclor 1260                                             | ND                    | ND                 | ug/l       | NC         |             | 30            | Α   |

|                              |                    | Acceptance             |          |        |  |  |  |  |
|------------------------------|--------------------|------------------------|----------|--------|--|--|--|--|
| Surrogate                    | %Recovery Qualific | er %Recovery Qualifier | Criteria | Column |  |  |  |  |
| 2,4,5,6-Tetrachloro-m-xylene | 97                 | 92                     | 30-150   | А      |  |  |  |  |
| Decachlorobiphenyl           | 96                 | 88                     | 30-150   | Α      |  |  |  |  |



## **METALS**



**Project Name:** 99 SUMMER STREET

Lab Number: Report Date:

L1813424

04/24/18

Project Number: 4256.00

SAMPLE RESULTS

Date Collected: 04

04/18/18 09:00

Lab ID: Client ID: L1813424-01 INFLUENT

Date Received:

04/18/18

Sample Location:

EAST BOSTON, MA

Field Prep:

Field Filtered (Dissolved

Metals)

Sample Depth:

Matrix:

Water

| Parameter           | Result     | Qualifier | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|------------|-----------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | sfield Lab |           |       |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total     | ND         |           | mg/l  | 0.00400 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Arsenic, Total      | 0.02106    |           | mg/l  | 0.00100 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Cadmium, Total      | 0.00156    |           | mg/l  | 0.00020 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Chromium, Total     | 0.1208     |           | mg/l  | 0.00100 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Copper, Total       | 0.3293     |           | mg/l  | 0.00100 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Iron, Total         | 80.8       |           | mg/l  | 0.050   |     | 1                  | 04/19/18 08:20   | 04/20/18 09:50   | EPA 3005A      | 19,200.7             | PE      |
| Lead, Total         | 1.327      |           | mg/l  | 0.00050 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Mercury, Total      | 0.00292    |           | mg/l  | 0.00020 |     | 1                  | 04/19/18 11:07   | 04/19/18 14:46   | EPA 245.1      | 3,245.1              | MG      |
| Nickel, Total       | 0.06046    |           | mg/l  | 0.00200 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Selenium, Total     | ND         |           | mg/l  | 0.00500 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Silver, Total       | 0.00042    |           | mg/l  | 0.00040 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| Zinc, Total         | 1.159      |           | mg/l  | 0.01000 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:35   | EPA 3005A      | 3,200.8              | AM      |
| General Chemistry   | - Mansfiel | d Lab     |       |         |     |                    |                  |                  |                |                      |         |
| Chromium, Trivalent | 0.12       |           | mg/l  | 0.010   |     | 1                  |                  | 04/19/18 14:35   | NA             | 107,-                |         |



L1813424

04/18/18 10:30

04/18/18

**Project Name:** Lab Number: 99 SUMMER STREET

**Project Number: Report Date:** 4256.00 04/24/18

**SAMPLE RESULTS** 

Lab ID: L1813424-02 Client ID: RECEIVING

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Date Collected:

Date Received:

Metals)

Sample Depth:

Matrix: Water

| Parameter           | Result    | Qualifier | Units | RL      | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|-----------|-----------|-------|---------|-----|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | field Lab |           |       |         |     |                    |                  |                  |                |                      |         |
| Antimony, Total     | ND        |           | mg/l  | 0.00400 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Arsenic, Total      | 0.00166   |           | mg/l  | 0.00100 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Cadmium, Total      | ND        |           | mg/l  | 0.00020 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Chromium, Total     | 0.00304   |           | mg/l  | 0.00100 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Copper, Total       | 0.00275   |           | mg/l  | 0.00100 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Iron, Total         | 0.412     |           | mg/l  | 0.050   |     | 1                  | 04/19/18 08:20   | 04/20/18 11:59   | EPA 3005A      | 19,200.7             | PE      |
| Lead, Total         | 0.00296   |           | mg/l  | 0.00050 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Mercury, Total      | ND        |           | mg/l  | 0.00020 |     | 1                  | 04/19/18 11:07   | 04/19/18 14:51   | EPA 245.1      | 3,245.1              | MG      |
| Nickel, Total       | ND        |           | mg/l  | 0.00200 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Selenium, Total     | ND        |           | mg/l  | 0.00500 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Silver, Total       | ND        |           | mg/l  | 0.00040 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |
| Zinc, Total         | ND        |           | mg/l  | 0.01000 |     | 1                  | 04/19/18 08:20   | 04/19/18 14:39   | EPA 3005A      | 3,200.8              | AM      |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number:

L1813424

**Report Date:** 

04/24/18

## **Method Blank Analysis Batch Quality Control**

| Parameter            | Result Qualifie         | r Units    | RL        | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|----------------------|-------------------------|------------|-----------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansf | field Lab for sample(s) | ): 01-02 E | Batch: WO | G11078 | 11-1               |                  |                  |                      |         |
| Antimony, Total      | ND                      | mg/l       | 0.00400   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Arsenic, Total       | ND                      | mg/l       | 0.00100   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Cadmium, Total       | ND                      | mg/l       | 0.00020   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Chromium, Total      | ND                      | mg/l       | 0.00100   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Copper, Total        | ND                      | mg/l       | 0.00100   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Lead, Total          | ND                      | mg/l       | 0.00050   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Nickel, Total        | ND                      | mg/l       | 0.00200   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Selenium, Total      | ND                      | mg/l       | 0.00500   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Silver, Total        | ND                      | mg/l       | 0.00040   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |
| Zinc, Total          | ND                      | mg/l       | 0.01000   |        | 1                  | 04/19/18 08:20   | 04/19/18 14:08   | 3,200.8              | AM      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter          | Result Qualifier          | Units   | RL       | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method |    |
|--------------------|---------------------------|---------|----------|---------|--------------------|------------------|------------------|----------------------|----|
| Total Metals - Man | sfield Lab for sample(s): | 01-02 E | Batch: W | 'G11078 | 312-1              |                  |                  |                      |    |
| Iron, Total        | ND                        | mg/l    | 0.050    |         | 1                  | 04/19/18 08:20   | 04/20/18 09:41   | 19,200.7             | PE |

#### **Prep Information**

Digestion Method: EPA 3005A

| Parameter           | Result Qualifier          | Units   | RL        | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method |    |
|---------------------|---------------------------|---------|-----------|--------|--------------------|------------------|------------------|---------------------|----|
| Total Metals - Mans | sfield Lab for sample(s): | 01-02 E | Batch: Wo | G11078 | 95-1               |                  |                  |                     |    |
| Mercury, Total      | ND                        | mg/l    | 0.00020   |        | 1                  | 04/19/18 11:07   | 04/19/18 14:42   | 3,245.1             | MG |

**Prep Information** 

Digestion Method: EPA 245.1



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

**Report Date:** 04/24/18

| Parameter                                      | LCS<br>%Recovery | LC<br>Qual %Rec | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|-----------------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | e(s): 01-02 Bate | ch: WG1107811-2 |                     |     |      |            |
| Antimony, Total                                | 104              |                 | 85-115              | -   |      |            |
| Arsenic, Total                                 | 107              |                 | 85-115              | -   |      |            |
| Cadmium, Total                                 | 106              |                 | 85-115              | -   |      |            |
| Chromium, Total                                | 100              |                 | 85-115              | -   |      |            |
| Copper, Total                                  | 99               |                 | 85-115              | -   |      |            |
| Lead, Total                                    | 105              |                 | 85-115              | -   |      |            |
| Nickel, Total                                  | 102              |                 | 85-115              | -   |      |            |
| Selenium, Total                                | 105              |                 | 85-115              | -   |      |            |
| Silver, Total                                  | 97               |                 | 85-115              | -   |      |            |
| Zinc, Total                                    | 106              |                 | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | e(s): 01-02 Bate | ch: WG1107812-2 |                     |     |      |            |
| Iron, Total                                    | 106              |                 | 85-115              | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | e(s): 01-02 Bate | ch: WG1107895-2 |                     |     |      |            |
| Mercury, Total                                 | 109              |                 | 85-115              | -   |      |            |



### Matrix Spike Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

**Report Date:** 04/24/18

| <sup>2</sup> arameter        | Native<br>Sample | MS<br>Added   | MS<br>Found | MS<br>%Recovery | Qual   | MSD<br>Found | MSD<br>%Recovery Qu | Recovery<br>al Limits | RPD Qual | RPD<br>Limits |
|------------------------------|------------------|---------------|-------------|-----------------|--------|--------------|---------------------|-----------------------|----------|---------------|
| Total Metals - Mansfield Lab | Associated sam   | ple(s): 01-02 | QC Bate     | ch ID: WG110    | 7811-3 | QC San       | nple: L1813534-01   | Client ID: MS         | S Sample |               |
| Antimony, Total              | ND               | 0.5           | 0.5945      | 119             |        | -            | -                   | 70-130                | -        | 20            |
| Arsenic, Total               | 0.00278          | 0.12          | 0.1294      | 106             |        | -            | -                   | 70-130                | -        | 20            |
| Cadmium, Total               | 0.00020          | 0.051         | 0.05407     | 106             |        | -            | -                   | 70-130                | -        | 20            |
| Chromium, Total              | 0.00193          | 0.2           | 0.1977      | 98              |        | -            | -                   | 70-130                | -        | 20            |
| Copper, Total                | 0.00858          | 0.25          | 0.2604      | 101             |        | -            | -                   | 70-130                | -        | 20            |
| Lead, Total                  | 0.03406          | 0.51          | 0.5580      | 103             |        | -            | -                   | 70-130                | -        | 20            |
| Nickel, Total                | 0.01388          | 0.5           | 0.5174      | 101             |        | -            | -                   | 70-130                | -        | 20            |
| Selenium, Total              | ND               | 0.12          | 0.1306      | 109             |        | -            | -                   | 70-130                | -        | 20            |
| Silver, Total                | ND               | 0.05          | 0.04783     | 96              |        | -            | -                   | 70-130                | -        | 20            |
| Zinc, Total                  | 0.06496          | 0.5           | 0.5761      | 102             |        | -            | -                   | 70-130                | -        | 20            |
| Total Metals - Mansfield Lab | Associated sam   | ple(s): 01-02 | QC Bate     | ch ID: WG110    | 7812-3 | QC San       | nple: L1813424-01   | Client ID: INI        | FLUENT   |               |
| Iron, Total                  | 80.8             | 1             | 45.5        | 0               | Q      | -            | -                   | 75-125                | -        | 20            |
| otal Metals - Mansfield Lab  | Associated sam   | ple(s): 01-02 | QC Bate     | ch ID: WG110    | 7812-7 | QC Sam       | nple: L1813534-01   | Client ID: MS         | S Sample |               |
| Iron, Total                  | 47.5             | 1             | 44.3        | 0               | Q      | -            | -                   | 75-125                | -        | 20            |
| Total Metals - Mansfield Lab | Associated sam   | ple(s): 01-02 | QC Bate     | ch ID: WG110    | 7895-3 | QC Sam       | nple: L1813424-01   | Client ID: INI        | FLUENT   |               |
| Mercury, Total               | 0.00292          | 0.005         | 0.00742     | 90              |        | -            | -                   | 70-130                | -        | 20            |
| Γotal Metals - Mansfield Lab | Associated sam   | ple(s): 01-02 | QC Bate     | ch ID: WG110    | 7895-5 | QC Sam       | nple: L1813424-02   | Client ID: RE         | CEIVING  |               |
| Mercury, Total               | ND               | 0.005         | 0.00482     | 96              |        | -            | -                   | 70-130                | -        | 20            |



# Lab Duplicate Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number:

L1813424 04/24/18

Report Date:

| Parameter                                            | Native Sample      | Duplicate Sample       | Units       | RPD        | Qual RP    | D Limits |
|------------------------------------------------------|--------------------|------------------------|-------------|------------|------------|----------|
| Total Metals - Mansfield Lab Associated sample(s): 0 | 01-02 QC Batch ID: | WG1107811-4 QC Sample: | L1813534-01 | Client ID: | DUP Sample |          |
| Antimony, Total                                      | ND                 | ND                     | mg/l        | NC         |            | 20       |
| Arsenic, Total                                       | 0.00278            | 0.00278                | mg/l        | 0          |            | 20       |
| Cadmium, Total                                       | 0.00020            | ND                     | mg/l        | NC         |            | 20       |
| Chromium, Total                                      | 0.00193            | 0.00193                | mg/l        | 0          |            | 20       |
| Copper, Total                                        | 0.00858            | 0.00784                | mg/l        | 9          |            | 20       |
| Lead, Total                                          | 0.03406            | 0.03366                | mg/l        | 1          |            | 20       |
| Nickel, Total                                        | 0.01388            | 0.01385                | mg/l        | 0          |            | 20       |
| Selenium, Total                                      | ND                 | ND                     | mg/l        | NC         |            | 20       |
| Silver, Total                                        | ND                 | ND                     | mg/l        | NC         |            | 20       |
| Zinc, Total                                          | 0.06496            | 0.06401                | mg/l        | 1          |            | 20       |
| Total Metals - Mansfield Lab Associated sample(s): ( | 01-02 QC Batch ID: | WG1107812-4 QC Sample: | L1813424-01 | Client ID: | INFLUENT   |          |
| Iron, Total                                          | 80.8               | 45.8                   | mg/l        | 55         | Q          | 20       |
| Total Metals - Mansfield Lab Associated sample(s): ( | 01-02 QC Batch ID: | WG1107812-8 QC Sample: | L1813534-01 | Client ID: | DUP Sample |          |
| Iron, Total                                          | 47.5               | 44.9                   | mg/l        | 6          |            | 20       |
| Total Metals - Mansfield Lab Associated sample(s): ( | 01-02 QC Batch ID: | WG1107895-4 QC Sample: | L1813424-01 | Client ID: | INFLUENT   |          |
| Mercury, Total                                       | 0.00292            | 0.00250                | mg/l        | 15         |            | 20       |
| Total Metals - Mansfield Lab Associated sample(s): ( | 01-02 QC Batch ID: | WG1107895-6 QC Sample: | L1813424-02 | Client ID: | RECEIVING  |          |
| Mercury, Total                                       | ND                 | ND                     | mg/l        | NC         |            | 20       |



# INORGANICS & MISCELLANEOUS



Project Name: 99 SUMMER STREET

Project Number: 4256.00

Lab Number:

L1813424

**Report Date:** 04/24/18

#### **SAMPLE RESULTS**

Lab ID: L1813424-01 Client ID: INFLUENT

Sample Location: EAST BOSTON, MA

Date Collected:

04/18/18 09:00

Date Received:

04/18/18 Field Filtered

Field Prep:

(Dissolved Metals)

Sample Depth:

Matrix: Water

| Parameter                | Result        | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|---------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes  | stborough Lab | )         |       |       |     |                    |                  |                  |                      |         |
| Solids, Total Suspended  | 2300          |           | mg/l  | 100   | NA  | 20                 | -                | 04/19/18 12:00   | 121,2540D            | JT      |
| Cyanide, Total           | ND            |           | mg/l  | 0.005 |     | 1                  | 04/19/18 07:30   | 04/19/18 14:13   | 121,4500CN-CE        | LH      |
| Chlorine, Total Residual | ND            |           | mg/l  | 0.02  |     | 1                  | -                | 04/18/18 21:16   | 121,4500CL-D         | AS      |
| Nitrogen, Ammonia        | 0.654         |           | mg/l  | 0.375 |     | 5                  | 04/19/18 03:00   | 04/19/18 21:44   | 121,4500NH3-BH       | H AT    |
| TPH, SGT-HEM             | ND            |           | mg/l  | 4.00  |     | 1                  | 04/21/18 09:00   | 04/21/18 11:00   | 74,1664A             | KZ      |
| Phenolics, Total         | ND            |           | mg/l  | 0.030 |     | 1                  | 04/19/18 08:44   | 04/19/18 12:04   | 4,420.1              | BR      |
| Chromium, Hexavalent     | ND            |           | mg/l  | 0.010 |     | 1                  | 04/18/18 23:24   | 04/19/18 00:12   | 1,7196A              | UN      |
| Anions by Ion Chromatog  | graphy - West | borough   | Lab   |       |     |                    |                  |                  |                      |         |
| Chloride                 | 125.          |           | mg/l  | 12.5  |     | 25                 | -                | 04/19/18 20:22   | 44,300.0             | AU      |



**Project Name:** Lab Number: 99 SUMMER STREET

L1813424

**Project Number: Report Date:** 04/24/18 4256.00

**SAMPLE RESULTS** 

Lab ID: Date Collected: L1813424-02 04/18/18 10:30 Client ID: RECEIVING Date Received: 04/18/18

Field Filtered Sample Location: EAST BOSTON, MA Field Prep:

(Dissolved Metals)

Sample Depth:

Matrix: Water

| Result    | Qualifier                | Units                   | RL                      | MDL                                 | Dilution<br>Factor                     | Date<br>Prepared                                                             | Date<br>Analyzed                                                                     | Analytical<br>Method                                                                                                                                                                                                                                                                                          | Analyst                                                                                                                                                                                                                                                                                                                                                             |
|-----------|--------------------------|-------------------------|-------------------------|-------------------------------------|----------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orough La | )                        |                         |                         |                                     |                                        |                                                                              |                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     |
| 21        |                          | SU                      | 2.0                     |                                     | 1                                      | -                                                                            | 04/18/18 22:30                                                                       | 121,2520B                                                                                                                                                                                                                                                                                                     | AS                                                                                                                                                                                                                                                                                                                                                                  |
| 7.9       |                          | SU                      | -                       | NA                                  | 1                                      | -                                                                            | 04/18/18 21:48                                                                       | 121,4500H+-B                                                                                                                                                                                                                                                                                                  | AS                                                                                                                                                                                                                                                                                                                                                                  |
| ND        |                          | mg/l                    | 0.075                   |                                     | 1                                      | 04/19/18 03:00                                                               | 04/19/18 21:45                                                                       | 121,4500NH3-BH                                                                                                                                                                                                                                                                                                | I AT                                                                                                                                                                                                                                                                                                                                                                |
|           | oorough Lal<br>21<br>7.9 | orough Lab<br>21<br>7.9 | orough Lab 21 SU 7.9 SU | orough Lab<br>21 SU 2.0<br>7.9 SU - | orough Lab<br>21 SU 2.0<br>7.9 SU - NA | Result Qualifier Units RL MDL Factor  orough Lab  21 SU 2.0 1  7.9 SU - NA 1 | Result Qualifier Units RL MDL Factor Prepared  orough Lab  21 SU 2.0 1 7.9 SU - NA 1 | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed           corough Lab           21         SU         2.0          1         -         04/18/18 22:30           7.9         SU         -         NA         1         -         04/18/18 21:48 | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed         Method           corough Lab           21         SU         2.0          1         -         04/18/18 22:30         121,2520B           7.9         SU         -         NA         1         -         04/18/18 21:48         121,4500H+-B |



L1813424

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00 Report Date

**Report Date:** 04/24/18

Lab Number:

Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualif         | ier Units       | RL       | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-----------------------|-----------------|----------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - \    | Westborough Lab for   | sample(s): 01   | Batch:   | WG11  | 07706-1            |                  |                  |                      |         |
| Chlorine, Total Residual | ND                    | mg/l            | 0.02     |       | 1                  | -                | 04/18/18 21:16   | 121,4500CL-D         | AS      |
| General Chemistry - \    | Westborough Lab for   | sample(s): 01   | Batch:   | WG11  | 07732-1            |                  |                  |                      |         |
| Chromium, Hexavalent     | ND                    | mg/l            | 0.010    |       | 1                  | 04/18/18 23:24   | 04/19/18 00:08   | 1,7196A              | UN      |
| General Chemistry - \    | Westborough Lab for   | sample(s): 01-  | 02 Bat   | ch: W | G1107765-1         |                  |                  |                      |         |
| Nitrogen, Ammonia        | ND                    | mg/l            | 0.075    |       | 1                  | 04/19/18 03:00   | 04/19/18 21:29   | 121,4500NH3-BH       | H AT    |
| General Chemistry - \    | Westborough Lab for   | sample(s): 01   | Batch:   | WG11  | 07792-1            |                  |                  |                      |         |
| Cyanide, Total           | ND                    | mg/l            | 0.005    |       | 1                  | 04/19/18 07:30   | 04/20/18 10:54   | 121,4500CN-CE        | LH      |
| General Chemistry - \    | Westborough Lab for   | sample(s): 01   | Batch:   | WG11  | 07890-1            |                  |                  |                      |         |
| Solids, Total Suspended  | ND                    | mg/l            | 5.0      | NA    | 1                  | -                | 04/19/18 12:00   | 121,2540D            | JT      |
| General Chemistry - \    | Westborough Lab for   | sample(s): 01   | Batch:   | WG11  | 07913-1            |                  |                  |                      |         |
| Phenolics, Total         | ND                    | mg/l            | 0.030    |       | 1                  | 04/19/18 08:44   | 04/19/18 12:02   | 4,420.1              | BR      |
| Anions by Ion Chroma     | atography - Westborou | ugh Lab for sai | mple(s): | 01 B  | atch: WG1          | 108472-1         |                  |                      |         |
| Chloride                 | ND                    | mg/l            | 0.500    |       | 1                  | -                | 04/19/18 17:34   | 44,300.0             | AU      |
| General Chemistry - \    | Westborough Lab for   | sample(s): 01   | Batch:   | WG11  | 08575-1            |                  |                  |                      |         |
| TPH, SGT-HEM             | ND                    | mg/l            | 4.00     |       | 1                  | 04/21/18 09:00   | 04/21/18 11:00   | 74,1664A             | KZ      |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00

Lab Number:

L1813424

Report Date:

04/24/18

| Parameter                           | LCS<br>%Recovery      | Qual  | LCSD<br>%Recovery | Qual  | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-------------------------------------|-----------------------|-------|-------------------|-------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Ba | tch: WG1107706    | -2    |                     |     |      |            |
| Chlorine, Total Residual            | 101                   |       | -                 |       | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): | 02 Ba | tch: WG1107708    | -1    |                     |     |      |            |
| рН                                  | 100                   |       | -                 |       | 99-101              | -   |      | 5          |
| General Chemistry - Westborough Lab | Associated sample(s): | 02 Ba | tch: WG1107715    | -1    |                     |     |      |            |
| SALINITY                            | 99                    |       | -                 |       |                     | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Ba | tch: WG1107732    | -2    |                     |     |      |            |
| Chromium, Hexavalent                | 94                    |       | -                 |       | 85-115              | -   |      | 20         |
| eneral Chemistry - Westborough Lab  | Associated sample(s): | 01-02 | Batch: WG1107     | 765-2 |                     |     |      |            |
| Nitrogen, Ammonia                   | 90                    |       | -                 |       | 80-120              | -   |      | 20         |
| seneral Chemistry - Westborough Lab | Associated sample(s): | 01 Ba | tch: WG1107792    | -2    |                     |     |      |            |
| Cyanide, Total                      | 95                    |       | -                 |       | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Ba | tch: WG1107913    | -2    |                     |     |      |            |
| Phenolics, Total                    | 92                    |       | -                 |       | 70-130              | -   |      |            |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

Report Date: 04/24/18

| Parameter                          | LCS<br>%Recovery             | LCSD<br>%Recovery      | %Recovery<br>Limits | RPD | RPD Limits |
|------------------------------------|------------------------------|------------------------|---------------------|-----|------------|
| Anions by Ion Chromatography - We  | stborough Lab Associated sar | mple(s): 01 Batch: WG1 | 108472-2            |     |            |
| Chloride                           | 99                           | -                      | 90-110              | -   |            |
| General Chemistry - Westborough La | ab Associated sample(s): 01  | Batch: WG1108575-2     |                     |     |            |
| TPH                                | 82                           | -                      | 64-132              | -   | 34         |



### Matrix Spike Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424

**Report Date:** 04/24/18

| Parameter                              | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery |             | ISD<br>ound | MSD<br>%Recovery C | Recov<br>Qual Limi | •            | RPD<br>Qual Limits |
|----------------------------------------|------------------|-------------|-------------|-----------------|-------------|-------------|--------------------|--------------------|--------------|--------------------|
| General Chemistry - Westboro           | ugh Lab Assoc    | ciated samp | le(s): 01   | QC Batch ID: \  | WG110770    | 6-4         | QC Sample: L1813   | 3424-01 C          | lient ID: IN | FLUENT             |
| Chlorine, Total Residual               | ND               | 0.248       | ND          | 0               | Q           | -           | -                  | 80-12              | 0 -          | 20                 |
| General Chemistry - Westboro           | ugh Lab Assoc    | ciated samp | le(s): 01   | QC Batch ID: \  | WG110773    | 2-4         | QC Sample: L1810   | 3424-01 C          | lient ID: IN | FLUENT             |
| Chromium, Hexavalent                   | ND               | 0.1         | 0.099       | 99              |             | -           | -                  | 85-11              | 5 -          | 20                 |
| General Chemistry - Westboro           | ugh Lab Assoc    | ciated samp | le(s): 01-0 | 2 QC Batch II   | D: WG1107   | 765-4       | QC Sample: L1      | 813534-02          | Client ID:   | MS Sample          |
| Nitrogen, Ammonia                      | 20.7             | 4           | 24.7        | 100             |             | -           | -                  | 80-12              | 0 -          | 20                 |
| General Chemistry - Westboro           | ugh Lab Assoc    | ciated samp | le(s): 01   | QC Batch ID: \  | WG110779    | 2-4         | QC Sample: L1810   | 3424-01 C          | lient ID: IN | FLUENT             |
| Cyanide, Total                         | ND               | 0.2         | 0.187       | 94              |             | -           | -                  | 90-11              | 0 -          | 30                 |
| General Chemistry - Westboro           | ugh Lab Assoc    | ciated samp | le(s): 01   | QC Batch ID: \  | WG110791:   | 3-4         | QC Sample: L1810   | 3505-02 C          | lient ID: MS | S Sample           |
| Phenolics, Total                       | ND               | 0.4         | 0.40        | 100             |             | -           | -                  | 70-13              | 0 -          | 20                 |
| Anions by Ion Chromatography<br>Sample | y - Westboroug   | jh Lab Asso | ciated san  | nple(s): 01 Q0  | C Batch ID: | WG1         | 108472-3 QC Sa     | ample: L181        | 3572-01 (    | Client ID: MS      |
| Chloride                               | 131              | 20          | 155         | 119             | Q           | -           | -                  | 90-11              | 0 -          | 18                 |
| General Chemistry - Westboro           | ugh Lab Assoc    | ciated samp | le(s): 01   | QC Batch ID: \  | WG110857    | 5-4         | QC Sample: L1813   | 3936-01 C          | lient ID: MS | S Sample           |
| TPH                                    | ND               | 20          | 11.7        | 58              | Q           | -           | -                  | 64-13              | 2 -          | 34                 |



# Lab Duplicate Analysis Batch Quality Control

**Project Name:** 99 SUMMER STREET

**Project Number:** 4256.00

Lab Number:

L1813424

Report Date:

04/24/18

| Parameter                                      | Nati                  | ve Sample         | Duplicate Sam  | nple Units      | RPD      | Qual                   | RPD Limits     |
|------------------------------------------------|-----------------------|-------------------|----------------|-----------------|----------|------------------------|----------------|
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch ID:   | WG1107706-3    | QC Sample: L181 | 3424-01  | Client ID:             | INFLUENT       |
| Chlorine, Total Residual                       |                       | ND                | ND             | mg/l            | NC       |                        | 20             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 02 QC Batch ID:   | WG1107708-2    | QC Sample: L181 | 3424-02  | Client ID:             | RECEIVING      |
| pH (H)                                         |                       | 7.9               | 7.9            | SU              | 0        |                        | 5              |
| General Chemistry - Westborough Lab            | Associated sample(s): | 02 QC Batch ID:   | WG1107715-2    | QC Sample: L181 | 3424-02  | Client ID:             | RECEIVING      |
| SALINITY                                       |                       | 21                | 21             | SU              | 0        |                        |                |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch ID:   | WG1107732-3    | QC Sample: L181 | 3424-01  | Client ID:             | INFLUENT       |
| Chromium, Hexavalent                           |                       | ND                | ND             | mg/l            | NC       |                        | 20             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01-02 QC Batch    | ID: WG1107765  | -3 QC Sample: L | 1813534- | 02 Client I            | D: DUP Sample  |
| Nitrogen, Ammonia                              |                       | 20.7              | 20.4           | mg/l            | 1        |                        | 20             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch ID:   | WG1107792-3    | QC Sample: L181 | 3424-01  | Client ID:             | INFLUENT       |
| Cyanide, Total                                 |                       | ND                | ND             | mg/l            | NC       |                        | 30             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch ID:   | WG1107890-2    | QC Sample: L181 | 3424-01  | Client ID:             | INFLUENT       |
| Solids, Total Suspended                        |                       | 2300              | 2300           | mg/l            | 0        |                        | 29             |
| General Chemistry - Westborough Lab            | Associated sample(s): | 01 QC Batch ID:   | WG1107913-3    | QC Sample: L181 | 3505-02  | Client ID:             | DUP Sample     |
| Phenolics, Total                               | . , ,                 | ND                | 0.032          | mg/l            | NC       |                        | 20             |
| Anions by Ion Chromatography - Westb<br>Sample | orough Lab Associated | d sample(s): 01 Q | C Batch ID: WG | 1108472-4 QC Sa | ample: L | 1813572-0 <sup>-</sup> | Client ID: DUP |
| Chloride                                       |                       | 131               | 132            | mg/l            | 1        |                        | 18             |



Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** 99 SUMMER STREET L1813424

04/24/18 Project Number: 4256.00 Report Date:

| Parameter                                           | Native Sample           | Duplicate Samp | ole Units     | RPD              | RPD Limits        |
|-----------------------------------------------------|-------------------------|----------------|---------------|------------------|-------------------|
| General Chemistry - Westborough Lab Associated samp | ole(s): 01 QC Batch ID: | WG1108575-3    | QC Sample: L' | 1813936-01 Clien | nt ID: DUP Sample |
| ТРН                                                 | ND                      | ND             | mg/l          | NC               | 34                |



**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

Lab Number: L1813424
Report Date: 04/24/18

#### Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

**Cooler Information** 

Cooler Custody Seal

A Absent

| Container Info | ormation                               |        | Initial | Final | Temp |      |        | Frozen    |                                                                                                                                                                                 |
|----------------|----------------------------------------|--------|---------|-------|------|------|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                         | Cooler | рН      | рН    | •    | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                     |
| L1813424-01A   | Vial HCI preserved                     | Α      | NA      |       | 4.0  | Υ    | Absent |           | 8260-SIM(14),8260(14)                                                                                                                                                           |
| L1813424-01B   | Vial HCl preserved                     | Α      | NA      |       | 4.0  | Υ    | Absent |           | 8260-SIM(14),8260(14)                                                                                                                                                           |
| L1813424-01C   | Vial HCl preserved                     | Α      | NA      |       | 4.0  | Υ    | Absent |           | 8260-SIM(14),8260(14)                                                                                                                                                           |
| L1813424-01D   | Vial Na2S2O3 preserved                 | Α      | NA      |       | 4.0  | Υ    | Absent |           | 504(14)                                                                                                                                                                         |
| L1813424-01E   | Vial Na2S2O3 preserved                 | Α      | NA      |       | 4.0  | Υ    | Absent |           | 504(14)                                                                                                                                                                         |
| L1813424-01F   | Plastic 250ml unpreserved              | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | HOLD-METAL-DISSOLVED(180)                                                                                                                                                       |
| L1813424-01G   | Plastic 250ml HNO3 preserved           | Α      | <2      | <2    | 4.0  | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),CU-2008T(180),FE-UI(180),AG-<br>2008T(180),AS-2008T(180),HG-U(28),SE-<br>2008T(180),CR-2008T(180),PB-2008T(180),SB-<br>2008T(180) |
| L1813424-01H   | Plastic 250ml NaOH preserved           | Α      | >12     | >12   | 4.0  | Υ    | Absent |           | TCN-4500(14)                                                                                                                                                                    |
| L1813424-01I   | Plastic 500ml H2SO4 preserved          | Α      | <2      | <2    | 4.0  | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                    |
| L1813424-01J   | Plastic 950ml unpreserved              | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | CL-300(28),HEXCR-7196(1),TRC-4500(1)                                                                                                                                            |
| L1813424-01K   | Amber 1000ml unpreserved               | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | 8270TCL(7),8270TCL-SIM(7)                                                                                                                                                       |
| L1813424-01L   | Amber 1000ml unpreserved               | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | 8270TCL(7),8270TCL-SIM(7)                                                                                                                                                       |
| L1813424-01M   | Amber 1000ml H2SO4 preserved           | Α      | <2      | <2    | 4.0  | Υ    | Absent |           | TPHENOL-420(28)                                                                                                                                                                 |
| L1813424-01N   | Amber 1000ml Na2S2O3                   | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | PCB-608(7)                                                                                                                                                                      |
| L1813424-01O   | Amber 1000ml Na2S2O3                   | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | PCB-608(7)                                                                                                                                                                      |
| L1813424-01P   | Plastic 950ml unpreserved              | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | TSS-2540(7)                                                                                                                                                                     |
| L1813424-01Q   | Amber 1000ml HCl preserved             | Α      | NA      |       | 4.0  | Υ    | Absent |           | TPH-1664(28)                                                                                                                                                                    |
| L1813424-01R   | Amber 1000ml HCl preserved             | Α      | NA      |       | 4.0  | Υ    | Absent |           | TPH-1664(28)                                                                                                                                                                    |
| L1813424-01X   | Plastic 120ml HNO3 preserved Filtrates | Α      | NA      |       | 4.0  | Υ    | Absent |           | HOLD-METAL-DISSOLVED(180)                                                                                                                                                       |
| L1813424-02A   | Plastic 60ml unpreserved               | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | PH-4500(.01)                                                                                                                                                                    |
| L1813424-02B   | Amber 250ml unpreserved                | Α      | 7       | 7     | 4.0  | Υ    | Absent |           | SALINITY(28)                                                                                                                                                                    |



**Lab Number:** L1813424

Report Date: 04/24/18

**Project Name:** 99 SUMMER STREET

Project Number: 4256.00

| Container Info | ormation                               |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                 |
|----------------|----------------------------------------|--------|---------|-------|-------|------|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                         | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                     |
| L1813424-02C   | Plastic 250ml unpreserved              | Α      | 7       | 7     | 4.0   | Υ    | Absent |           | HOLD-METAL-DISSOLVED(180)                                                                                                                                                       |
| L1813424-02D   | Plastic 250ml HNO3 preserved           | Α      | <2      | <2    | 4.0   | Y    | Absent |           | CD-2008T(180),NI-2008T(180),ZN-<br>2008T(180),CU-2008T(180),FE-UI(180),AG-<br>2008T(180),AS-2008T(180),HG-U(28),SE-<br>2008T(180),CR-2008T(180),PB-2008T(180),SB-<br>2008T(180) |
| L1813424-02E   | Plastic 500ml H2SO4 preserved          | Α      | <2      | <2    | 4.0   | Υ    | Absent |           | NH3-4500(28)                                                                                                                                                                    |
| L1813424-02X   | Plastic 120ml HNO3 preserved Filtrates | Α      | NA      |       | 4.0   | Υ    | Absent |           | HOLD-METAL-DISSOLVED(180)                                                                                                                                                       |

Project Name:99 SUMMER STREETLab Number:L1813424Project Number:4256.00Report Date:04/24/18

#### **GLOSSARY**

#### **Acronyms**

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### **Footnotes**

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report



Project Name:99 SUMMER STREETLab Number:L1813424Project Number:4256.00Report Date:04/24/18

#### Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report



Project Name: 99 SUMMER STREET Lab Number: L1813424

Project Number: 4356 00 Papert Date: 04/24/18

Project Number: 4256.00 Report Date: 04/24/18

#### REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Revision 11

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

#### Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

#### **Mansfield Facility**

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

**Drinking Water** 

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

#### **Mansfield Facility:**

**Drinking Water** 

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

| Διрна                                            | СН                                                                                                                                 | AIN OF    | CUS                    | то            | DY .        | PAGE 1              | of 1      | Di | ate R     | ec'd i | n Lab       | 4-                        | 18        | -18               | 7               |              | 1                 | LPI        | HA.       | lob#              | #:L1813424                                                      |         |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|---------------|-------------|---------------------|-----------|----|-----------|--------|-------------|---------------------------|-----------|-------------------|-----------------|--------------|-------------------|------------|-----------|-------------------|-----------------------------------------------------------------|---------|
| 8 Walkup Drivi                                   | e 320 Forbes E                                                                                                                     | Shet      | Project In             | forma         | tion        |                     |           | R  | Repor     | t Info | orma        | tion -                    | Data      | Deli              | verat           | oles         | -                 | -          | _         | _                 | ation                                                           |         |
| Westboro MA<br>Tel: 508-898-                     | D1681 Mansfield M                                                                                                                  | 1A 02048' | Project Name           | 99            | SUMMO       | er Sta              | 201       | 38 | ADE       | ×      |             | DEN                       | AIL       |                   |                 |              | .8                | (San       | ne as     | Clien             | t infa PO#                                                      |         |
| Client Informati                                 | on                                                                                                                                 |           | Project Local          | tion: £       | ast B       | OSTOM               | , MA      | R  | egul      | atory  | Req         | uirem                     | ents      | 8.                | Pro             | ject         | Info              | rma        | tion      | Requ              | uirements                                                       |         |
| Client: Sanboo                                   | n Head & Asso                                                                                                                      | ecianos 1 | Project #: 4           | 256           | 00          |                     |           | 0  | Yes X     | No.    | MA M        | CP An                     | alytica   | al Met            | hods            | ene          | 22 /5             | 0          | es l      | No                | CT RCP Analytical Meth<br>P Inorganics)                         | ods     |
| Address Tech                                     | mology Park                                                                                                                        | Drive F   | Project Mana           |               |             | Pratt               |           | 0  | Yes €     | No     | GW1         | Standa                    | rds (     | info R            | equire          | d for        | Meta              | als &      | EPH       | with T            | P Inorganics)<br>Targets)                                       |         |
| Westford A                                       | MA 01386                                                                                                                           |           | ALPHA Quo              | ote #:        | ,           |                     |           |    |           |        |             | Progr                     |           |                   |                 |              |                   |            | Criti     | eria              |                                                                 |         |
| Phone: (178)                                     |                                                                                                                                    |           | Turn-Arou              | and Ti        | me          |                     | 1         | Г  |           | 1      | 1           | 7                         | 7         | 1                 | 1               | -            | 1                 | 7          | 7         | /                 | 111                                                             |         |
|                                                  | a San bo-n hé<br>Project Informa                                                                                                   |           | XStandard<br>Date Due: |               | I RUSH (wsy | soviimo) ў рге а    | iquement) |    | SISYTH    | 524.2  | 1           | DRCRAS                    | DAP13     | Ranges Only       | Juo san         | erprint      | 400 *             | To sa      | Metal     | 7                 |                                                                 | 1       |
| Hexcr, T                                         | run ethano<br>ri Cr (lub co<br>26P minimum                                                                                         | ilc.)     | tection                | livh          | its)mu      | ust be              | met       |    | 7 8260 CI | ABI    | CMCP 13 CIM | EPH. DRange DRORAS DRORAS | Rangets L | D PCB D PEC D PEC | TH: CQuant Only | S Pr - DFING | A Tal RGD Backage | 250 metals | W dbw     |                   | SAMPLE INFO                                                     | Q # 801 |
| ALPHA Lab ID<br>(Lab Use Only)                   | Sa                                                                                                                                 | ample ID  | b                      | Colle<br>Date | ection      | Sample<br>Matrix    | Sampler   | 80 |           | METALS | METAL       | EPH: D                    | D.Han     | D PCB             | 1               | NPDE         | 1079              | 1550       | #/        | Aminity           | Lab to do                                                       | TLE     |
| 13424 - 01                                       | Inf                                                                                                                                | loent     | 4/19                   | 8/18          | 9:00        | GW                  | LM2       |    |           |        |             |                           | 1         |                   | ×               | ×            | X                 | 1          | 1         | T                 | Hold Dissolved me                                               | _       |
| 02                                               | Rec                                                                                                                                | eiving    | 4/1                    | 18/18         | 10=30       | SW                  | LMZ       |    |           |        |             |                           |           |                   | 1               | X            | X                 | X          | X         | X                 |                                                                 | 3       |
|                                                  | Trip                                                                                                                               | Blunk MZ  |                        |               |             |                     |           |    |           |        |             |                           |           |                   |                 |              |                   |            |           |                   | Hold Dissolved mess<br>Hold ime                                 | 200     |
|                                                  |                                                                                                                                    |           |                        |               |             |                     |           |    |           |        |             |                           |           |                   |                 |              |                   |            |           |                   |                                                                 |         |
|                                                  |                                                                                                                                    |           |                        |               |             |                     |           |    |           |        |             |                           |           |                   |                 | F            |                   |            |           |                   |                                                                 |         |
| Container Type P≃ Plastic A≃ Amber glass ∨= Vial | Preservative A= None B= HCI                                                                                                        |           |                        |               | T           |                     | iner Type |    |           |        |             |                           | 1         |                   | -               | P            | P                 | P          | A         | R                 |                                                                 |         |
| G= Glass<br>B= Bacteria cup<br>C= Cube           | C= HNO <sub>3</sub><br>D= H <sub>2</sub> SO <sub>4</sub><br>E= NaOH                                                                |           | Relinquished           | Bu-           |             | T -                 | servative |    |           |        |             |                           |           | 1                 |                 | <            | A                 | A          | A         | D                 |                                                                 |         |
| C= Other C= Encore D= BOD Bottle  Page 69 of 72  | F= MeOH G= NaHSO+ H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> I= Ascorbic Acid J = NH <sub>3</sub> CI K= Zn Acetala O= Other | Leul Gi   | valic                  | oy.           | 2_          | 4/18/18<br>11/18/18 | -         | a  | Co        | Re     | - Ø         | d By:                     | -         | FAL               |                 | Date         | It la             | 146        | Alp<br>Se | oha's 1<br>e reve | oles aubmitted are subject<br>Terms and Conditions<br>arse side | t to    |

MAG910000 NHG910000

Appendix VII Page 2 of 7

|                            | Chemical Abstracts         |                               |                                                         | Inorgan  | ic Test Methods                                                                                          |                           |
|----------------------------|----------------------------|-------------------------------|---------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------|---------------------------|
| Parameter                  | Service (CAS)<br>Number(s) | ICP/AES <sup>1</sup><br>200.7 | ICP/AES <sup>1</sup> ICP/MS <sup>2</sup><br>200.7 200.8 |          | Other                                                                                                    | Notes                     |
| a. Inorganics              |                            | 2000                          | 200.0                                                   | 200.9    |                                                                                                          | Digestion                 |
| Ammonia                    |                            |                               |                                                         |          | SM <sup>4</sup> 4500 B and D (0.1 mg/L)<br>350.1 (0.01 mg/L)                                             |                           |
| Chloride                   | 16887006                   |                               |                                                         |          | 300.0, SM <sup>4</sup> 4110 B (0.1 mg/L)                                                                 |                           |
| Total Residual<br>Chlorine | 7782-50-5                  |                               |                                                         |          | SM <sup>4</sup> 4500-Cl D (200 μg/L)<br>SM <sup>4</sup> 4500-Cl G (50 μg/L)<br>SM <sup>4</sup> 4500-Cl E |                           |
| Total Suspended Solids     |                            |                               |                                                         |          | 160.2 SM4 2540D (5 mg/L)                                                                                 |                           |
| Antimony                   | 7440360                    | 20 μg/L                       | 0.5 µg/L                                                | 3 μg/L   | ( 8.9)                                                                                                   | 200                       |
| Arsenic                    | 7440382                    | 20 μg/L                       | 1 μg/L                                                  | 3 μg/L   |                                                                                                          | 206.5                     |
| Cadmium                    | 7440439                    | 10 µg/L                       | 0.2 μg/L                                                | 0.5 μg/L |                                                                                                          | 200                       |
| Chromium III               | 7440473                    | 20 μg/L                       | 1 μg/L                                                  | 1 μg/L   |                                                                                                          | 200                       |
| Chromium VI                | 18540299                   |                               |                                                         |          | 7196 A (10 µg/L)<br>218.6, 1636 (1 µg/L)                                                                 | 250                       |
| Copper                     | 7440508                    | 20 μg/L                       | 0.2 μg/L                                                | 3 μg/L   |                                                                                                          | 200                       |
| Iron                       | 7439896                    | 40 μg/L                       | 55 μg/L                                                 |          | N. T. C.                                                             | 200                       |
| Lead                       | 7439921                    | 20 μg/L                       | 0.2 μg/L                                                | 3 μg/L   |                                                                                                          | 200                       |
| Mercury                    | 7439976                    |                               |                                                         |          | 245.1, 7470 A (0.2 μg/L)<br>245.7, 1631 (0.001 μg/L)                                                     | 3112 B                    |
| Nickel                     | 7440020                    | 20 μg/L                       | 0.2 μg/L                                                | 5 μg/L   | 7.5.2.7.8.4)                                                                                             | 200                       |
| Selenium                   | 7782492                    | 40 µg/L                       | 1 µg/L                                                  | 5 μg/L   |                                                                                                          | 200                       |
| Silver                     | 7440224                    | 10 μg/L                       | 0.2 μg/L                                                | 5 μg/L   |                                                                                                          | 200                       |
| Zinc                       | 7440666                    | 15 μg/L                       | 2 μg/L                                                  |          |                                                                                                          | 200                       |
| Cyanide                    | 57125                      |                               |                                                         |          | 335.4 (5 μg/L)                                                                                           | 4500-CN<br>ΟΙΑ-1677 (5 μg |

MAG910000 NHG910000

Appendix VII Page 4 of 7

| Parameter                        | CAS Number(s)                                                     |                                         | Orga                            | nic Test Method | s              |                                   |
|----------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------|-----------------|----------------|-----------------------------------|
|                                  | Crio Humber(s)                                                    | GC <sup>5</sup>                         | GC/MS <sup>6</sup>              | HPLC7           | State Methods8 | Other <sup>9</sup>                |
| 1,2 Dichloroethane               | 107-06-2                                                          | 601 (0.5 μg/L)                          | 624 (1 μg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| 1,1 Dichloroethylene             | 75-35-4                                                           | 601 (0.5 μg/L)                          | 624 (I µg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| Ethylene Dibromide <sup>17</sup> | 106-93-4                                                          | 8011, 504.1 (0.01 μg/L)<br>618 (1 μg/L) | SIM <sup>10</sup> (0.1 μg/L)    |                 |                | 524.2 (1 µg/L)<br>8260 (10 µg/L)  |
| Methylene Chloride               | 75-09-2                                                           | 601 (0.5 μg/L)                          | 624 (1 μg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| 1,1,1 Trichloroethane            | 71-55-6                                                           | 601 (0.5 μg/L)                          | 624 (1 µg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| 1,1,2 Trichloroethane            | 79-00-5                                                           | 601 (0.5 μg/L)                          | 624 (1 μg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| Trichloroethylene                | 79-01-6                                                           | 601 (0.5 μg/L)                          | 624 (1 µg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| Tetrachloroethylene              | 127-18-4                                                          | 601 (0.5 μg/L)                          | 624 (1 μg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| cis-1,2 Dichloroethylene         | 156-59-2                                                          | 601 (0.5 μg/L)                          | 624 (1 μg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| Vinyl Chloride                   | 75-01-4                                                           | 601 (0.5 μg/L)                          | 624 (1 μg/L)                    |                 |                | 8260 (5 μg/L)<br>524.2 (0.5 μg/L) |
| d. Non-Halogenated Sem           | i-Volatile Organic Con                                            | npounds                                 |                                 |                 |                |                                   |
| Total Phthalates                 | 85-68-7 + 84-742 +<br>117-84-0 + 84-66-2 +<br>131-11-3 + 117-81-7 | 606 (10 μg/L)                           | 625 (2.5 μg/L)<br>1625 (5 μg/L) |                 |                | 8270 (5 μg/L)<br>525.2 (0.5 μg/L) |
| Diethylhexyl phthalate           | 117-81-7                                                          | 606 (10 μg/L)                           | 625 (2.5 μg/L)<br>1625 (5 μg/L) |                 |                | 8270 (5 μg/L)<br>525.2 (0.5 μg/L) |

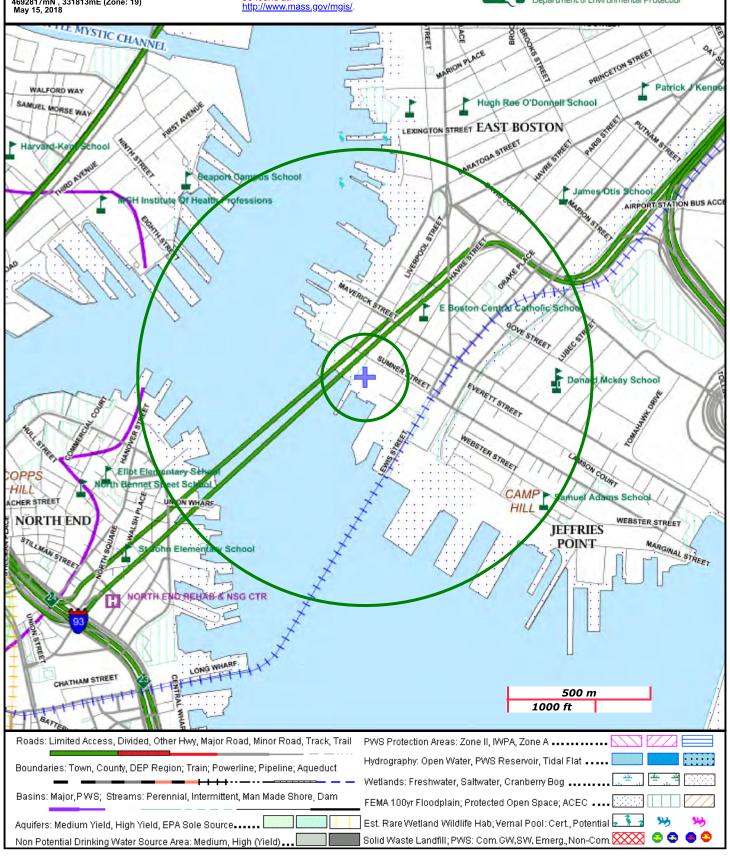
MAG910000 NHG910000

Appendix VII Page 6 of 7

| Parameter                                          | CAS Number(s)                                                                                            |                 | Orga               | nic Test Methods    |                                    |                                                                                    |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------|--------------------|---------------------|------------------------------------|------------------------------------------------------------------------------------|
|                                                    |                                                                                                          | GC <sup>5</sup> | GC/MS <sup>6</sup> | HPLC7               | State Methods8                     | Other9                                                                             |
| Total Group II Polycyclic<br>Aromatic Hydrocarbons | 83-32-9 + 208-96-8 +<br>120-12-7 + 191-24-2 +<br>206-44-0 + 86-73-7 +<br>91-20-3 + 85-01-8 +<br>129-00-0 | 610 (5 μg/L)    | 625 (0.5-2.5 μg/L) | 610<br>(0.5-2 μg/L) | MA EPH (5 μg/L)                    | 8270 (5 μg/L)<br>SIM <sup>10</sup> (0.1 μg/L)<br>525.2 (0.5 μg/L)                  |
| Naphthalene                                        | 91-20-3                                                                                                  | 610 (5 μg/L)    | 625 (0.5 μg/L)     | 610 (2 μg/L)        | MA VPH (5 μg/L)<br>MA EPH (5 μg/L) | 8270 (5 μg/L)<br>SIM <sup>10</sup> (0.1 μg/L)<br>524.2 (0.5 μg/L)<br>8260 (2 μg/L) |
| e. Halogenated Semi-Vola                           | atile Organic Compounds                                                                                  |                 |                    |                     |                                    |                                                                                    |
| Total Polychlorinated<br>Biphenyls                 | 1336-36-3A                                                                                               | 608 (0.5 μg/L)  |                    |                     |                                    | 8082 (0.5 μg/L)<br>1668B<br>(0.00005 μg/L)                                         |
| Pentachlorophenol                                  | 87-86-5                                                                                                  | 604 (10 μg/L)   | 625 (5 μg/L)       |                     |                                    | 8270<br>525 (5 μg/L)                                                               |
| f. Fuels Parameters                                |                                                                                                          |                 |                    |                     |                                    | (5 PS 2)                                                                           |
| Total Petroleum<br>Hydrocarbons                    |                                                                                                          |                 |                    |                     | 1664A (5 mg/L)                     |                                                                                    |
| Ethanol                                            | 64-17-5                                                                                                  |                 | 11                 |                     |                                    | 1666/1671/D3695                                                                    |
| Methyl-tert-Butyl Ether                            | 1634-04-4                                                                                                |                 | 524.2 (10 μg/L)    |                     | MA VPH (5 μg/L)                    | 8260<br>(10 μg/L)                                                                  |
| tert-Butyl Alcohol                                 | 75-65-0                                                                                                  |                 | 524.2 (10 μg/L)    |                     |                                    | 624, 8260<br>(10 μg/L)                                                             |
| tert-Amyl Methyl Ether                             | 994-05-08                                                                                                |                 | 524.2 (10 μg/L)    |                     |                                    | 624, 8260<br>(10 μg/L)                                                             |

# APPENDIX E ENVIRONMENTAL RECEPTORS

## MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

99 SUMNER STREET BOSTON, MA

NAD83 UTM Meters: 4692817mN , 331813mE (Zone: 19) May 15, 2018

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found to the state. be found at:





#### **Leah Zivalic**

From: Christine Vaccaro - NOAA Federal <christine.vaccaro@noaa.gov>

**Sent:** Wednesday, May 09, 2018 9:27 AM

**To:** Leah Zivalic

**Subject:** Re: Boston, MA RGP

Although Atlantic sturgeon, sea turtles, and whales may frequent Massachusetts Bay, based on the location and nature of your discharge, we would not expect any of these species to be exposed to the effects of this project.

Cheers, Chris

Chris Vaccaro
Fisheries Biologist
Protected Resources Division
NOAA Fisheries, Greater Atlantic Region
Gloucester, MA

Phone: 978-281-9167

Email: <a href="mailto:christine.vaccaro@noaa.gov">christine.vaccaro@noaa.gov</a>

For additional ESA Section 7 information and Critical Habitat guidance, please see: www.greateratlantic.fisheries.noaa.gov/protected/section7

On Wed, May 9, 2018 at 9:25 AM, Leah Zivalic <a href="mailto:sanbornhead.com">lzivalic@sanbornhead.com</a> wrote:

Good Morning Chris,

I am requesting information to be included as part of a Notice of Intent (NOI) for a Remediation General Report (RGP). The NOI is for construction dewatering during excavation activities at <u>99 Sumner Street</u> in East Boston, Massachusetts. Effluent, after passing through a fractionalization tank and bag filters, will

be discharged to the Inner Boston Harbor in East Boston, Massachusetts via an outfall.

As part of the application to the USEPA for the RGP, we need to investigate whether this proposed temporary discharge has the potential to adversely affect any federally listed species in the reach of the Boston Inner Harbor located downstream of the discharge point.

Thank you in advance for your assistance, and please let me know if there is any additional information that I can provide.

#### -Leah

#### Leah Zivalic Project Engineer



SANBORN, HEAD & ASSOCIATES, INC. 1 Technology Park Drive, Westford, MA 01886 T 978.392.0900 D 978.577.1018 www.sanbornhead.com

Click here to follow us on LinkedIn /Twitter / Facebook

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.



## United States Department of the Interior

#### FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland



May 14, 2018

In Reply Refer To:

Consultation Code: 05E1NE00-2018-SLI-1825

Event Code: 05E1NE00-2018-E-04220

Project Name: 99 Sumner Street

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

#### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle\_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

#### Attachment(s):

Official Species List

## Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

## **Project Summary**

Consultation Code: 05E1NE00-2018-SLI-1825

Event Code: 05E1NE00-2018-E-04220

Project Name: 99 Sumner Street

Project Type: DEVELOPMENT

Project Description: East Boston, Massachusetts 02128

#### **Project Location:**

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/place/42.368816960647436N71.04283558191793W">https://www.google.com/maps/place/42.368816960647436N71.04283558191793W</a>



Counties: Suffolk, MA

## **Endangered Species Act Species**

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

#### Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

# APPENDIX F NATIONAL REGISTER OF HISTORICAL PLACES

#### Appendix F National Register of Historic Places Research Documentation

99 Sumner Street East Boston, Massachusetts

| Site Name                    | Address                                                              | Date Listed |
|------------------------------|----------------------------------------------------------------------|-------------|
| East Boston High School, Old | 127 Marion St.                                                       | 3/15/2006   |
| Eagle Hill Historic District | Roughly bounded by<br>Border, Lexington,<br>Trenton, and Falcon Sts. | 2/26/1998   |
| Donald McKay House           | 78-80 White St.                                                      | 6/2/1982    |

#### Notes:

Sanborn, Head & Associates, Inc. (Sanborn Head) conducted a review of the National Register of Historic Places within East Boston, Massachusetts. The search returned 3 results. The Site is not listed in the National Register of Historical Places.