

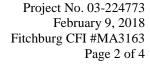
997 Millbury Street, Unit 6 Worcester, MA 01607 Telephone 508-756-0151 Fax 508-757-7063 www.atcgroupservices.com

February 9, 2018 Project Number 03-224773

Ms. Shelley Puleo U.S. Environmental Protection Agency Office of Ecosystem Processing RGP Applications Coordinator (OEP06-1) 5 Post Office Square, Suite 100 Boston, MA 02109-3912

RE: Notice of Intent for Dewatering General Permit Vacant McDonald's Restaurant Proposed Cumberland Farms Property #MA3163 550 Kimball Street Fitchburg, MA 01420 MassDEP RTN: 2-20376

Dear Ms. Puleo:


ATC Group Services LLC (ATC) is pleased to provide supporting documentation for the Notice of Intent (NOI) for the Remediation General Permit (RGP) on behalf of Cumberland Farms, Inc. (CFI), for the above-referenced property (the "Site"). This NOI is being submitted in order to obtain approval for the discharge of treated groundwater at the Site. The discharge and dewatering is necessary to allow for the installation of gasoline USTs on a portion of the Site. A Site Locus is provided as Figure 1 and a Site Plan depicting the dewatering and discharge locations is provided as Figure 2. A copy of the NOI form is provided as Attachment I.

Background

The Site is a former McDonald's restaurant with one single-story 4,628-square foot building, which closed in November 2015. According to the Assessor's Property Card, the Site building was reportedly constructed in 1990. The topography of the Site is generally flat with slight downward relief toward the eastern and southern portions of the property where the bank of the Nashua River is located. Site access is provided via asphalt paved egresses on Daniels Street and Kimball Street. The Site is in an area of commercial and industrial use with residential properties located approximately 200 feet south/southeast of the Site.

The Site is currently connected to municipal water and sewer systems. The sewer connection was made in 1990. Electricity service is provided to the Site buildings via an underground electric line extending from a utility pole located on the northern property boundary to the Site building. The building is heated via a natural gas burner which utilizes natural gas line that enters the property from the south.

Trichloroethylene, vinyl chloride, and cis 1,2-dichloroethene were detected in soil and groundwater samples at concentrations that exceeds MassDEP reportable concentrations and

required MassDEP notification. CVOCs were detected in groundwater throughout the site in both the shallow aquifer and the deep aquifer. As such, the CVOCs plume is widespread, both vertically and horizontally, and extends to the northern and southern portions of the Site. Based on extensive historical file reviews, due diligence, and site sampling, no on-site sources of CVOCs have been identified at the Site. However, it is possible that prior development of the Site utilized off-site fill soil that may have contained CVOCs.

On November 2, 2017, CFI notified the MassDEP of the Reportable Concentrations of CVOC analytes detected in soil and groundwater samples exceeding the applicable RCS-1 and RCGW-2 limits via a Release Notification Form submitted through the eDEP electronic filing system. MassDEP subsequently issued RTN 2-20376 for this 120-day regulatory notification condition. A Release Abatement Measure (RAM) Plan was submitted to MassDEP on December 11, 2017 and outlined the steps to be taken to manage soil and groundwater at the Site during upcoming redevelopment activities.

<u>Pretreatment</u>


The excavation will be dewatered by installing a recovery well using slotted pipe and well gravel around the screen to reduce solids. A pump will be used so that collected groundwater from the excavation area will be pumped into a 20,000 gallon frac tank (to settle out solids). An aerator will be used in the frac tank, as needed, to aid in the settling of solids and heavy metals, as well as a flocculant sock. The flocculant material to be used is called HaloKlear DMP-2100 (Socks) and is manufactured by HaloSource, INc. in Bothell, Washington. The HaloKlear material specifications and safety data sheet are included in Attachment II. The floc socks will be used as needed, depending on the solid content of the influent raw water. The floc socks will be installed in line with the influent hose and used intermittently during dewatering activities. The floc socks are commonly used in discharge treatment and have previously been authorized in general permit activities. The water in the frac tank will then be pumped through bag filters to remove solids and then through 1,000 lbs of carbon for removal of VOCs prior to discharge to a catch basin located on-site. Treated water will be discharged to an on-site storm water drainage system, which is connected to an outfall located along the bank of the Nashua River on the southern portion of the Site. Please refer to Figure 2 for a depiction of the discharge and outfall locations and Figure 3 for the Treatment System Schematic.

Average flow rate of discharge of treated groundwater from the Site to the storm drainage line is expected to be approximately 50 gallons per minute (gpm). The design capacity of the groundwater treatment system is 80 gpm based upon data collected from comparable sites operated/designed by ATC.

Influent Sample Analysis

Groundwater samples were collected from the raw water/influent location (MW-5) on September 18, 2017 and were submitted to Spectrum/Eurofins Analytical, Inc. of Agawam, Massachusetts for laboratory analysis for the following parameters:

- Total Petroleum Hydrocarbons (TPH) by EPA method 1664,
- Volatile Organic Compounds (VOCs) by EPA Method 8260/624/524.2,

- Semi-Volatile Organic Compounds (SVOCs) by EPA method 625,
- PCBs by EPA method 8082,
- Total metals by EPA Method 200.7,
- Cyanide,
- Ammonia,
- Flashpoint,
- pH,
- Salinity,
- Hardness, and,
- Total Suspended Solids (TSS).

Also, a sample of the receiving water (Nashua River) was collected on this date for laboratory analysis of pH, Hardness, Ammonia, and Metals. A summary of the sampling data is provided on Table 1 and a copy of the laboratory report is included in Attachment VI. Based on the location of the outfall and receiving waters and the proposed design discharge flow, the seven day-ten year low flow (7Q10) of the receiving waters was determined to be 2.66 MGD and the calculated dilution factor was determined to be 24.1. MassDEP reviewed and approved the 7Q10 low flow determination and the calculated dilution factor (Attachment III).

Groundwater analytical results were compared to the Appendix III effluent limitations (www.epa.gov/region1/npdes/rgp.html). These results indicate that various parameters were detected in the samples and the following parameters were detected at concentrations that exceed the applicable EPA Appendix III effluent limitations:

- Iron
- TSS

Total suspended solids and metals are expected to be reduced by pretreatment with settling and filtration.

<u>Evaluation of Threatened or Endangered Species or Critical Habitat Located within Receiving Waters</u>

According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), no Priority Habitat of Rare Species or Estimated Habitats of Rare Wildlife are located within the work area. No NHESP Estimated Habitats of Rare Wildlife in Wetland Areas Protected Open Spaces are located within 500 feet of the Site. Based on this information, the potential discharge will not have an adverse affect on the NHESP Estimated Habitats of Rare Wildlife. A copy of the MassGIS Resource Priority and NHESP Maps of the Site area is included in Attachment IV.

Review of National Register of Historic Places

Listings of Historic Places within the City of Fitchburg were obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc-macris.net/towns.aspx (accessed December 14, 2017). A copy of the MACRIS report is provided as Attachment V. The database indicated that there are no historic places located in close proximity to the Site and proposed discharge area. This project does not involve the demolition or rehabilitation of historic properties.

The proposed redevelopment project is scheduled to start on January 22, 2018 and last for approximately 6 months. The duration of the dewatering aspect of the project is only expected to be for 1-2 weeks. Should you have any questions or concerns regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (508) 756-0151.

Sincerely, ATC GROUP SERVICES LLC

Matthew J. Lyne

Senior Project Manager

Most J. me

cc: Matthew Young, Cumberland Farms, Inc., 165 Flanders Road, Westborough, MA

Cathy Vakalopoulus, MassDEP, Surface Water Discharge Permit Program, One Winter

Street, 5th Floor, Boston, MA 02108

City of Fitchburg Department of Public Works-301 Broad Street, Fitchburg, MA

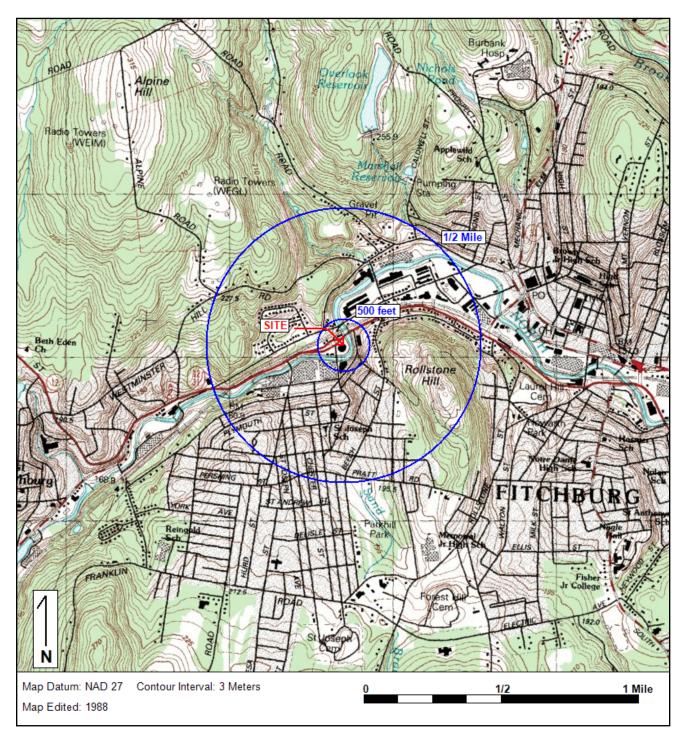
Attachments

Figure 1: Site Locus Figure 2: Site Plan

Figure 3: Treatment System Schematic

Table 1: Summary of Influent Sampling Data

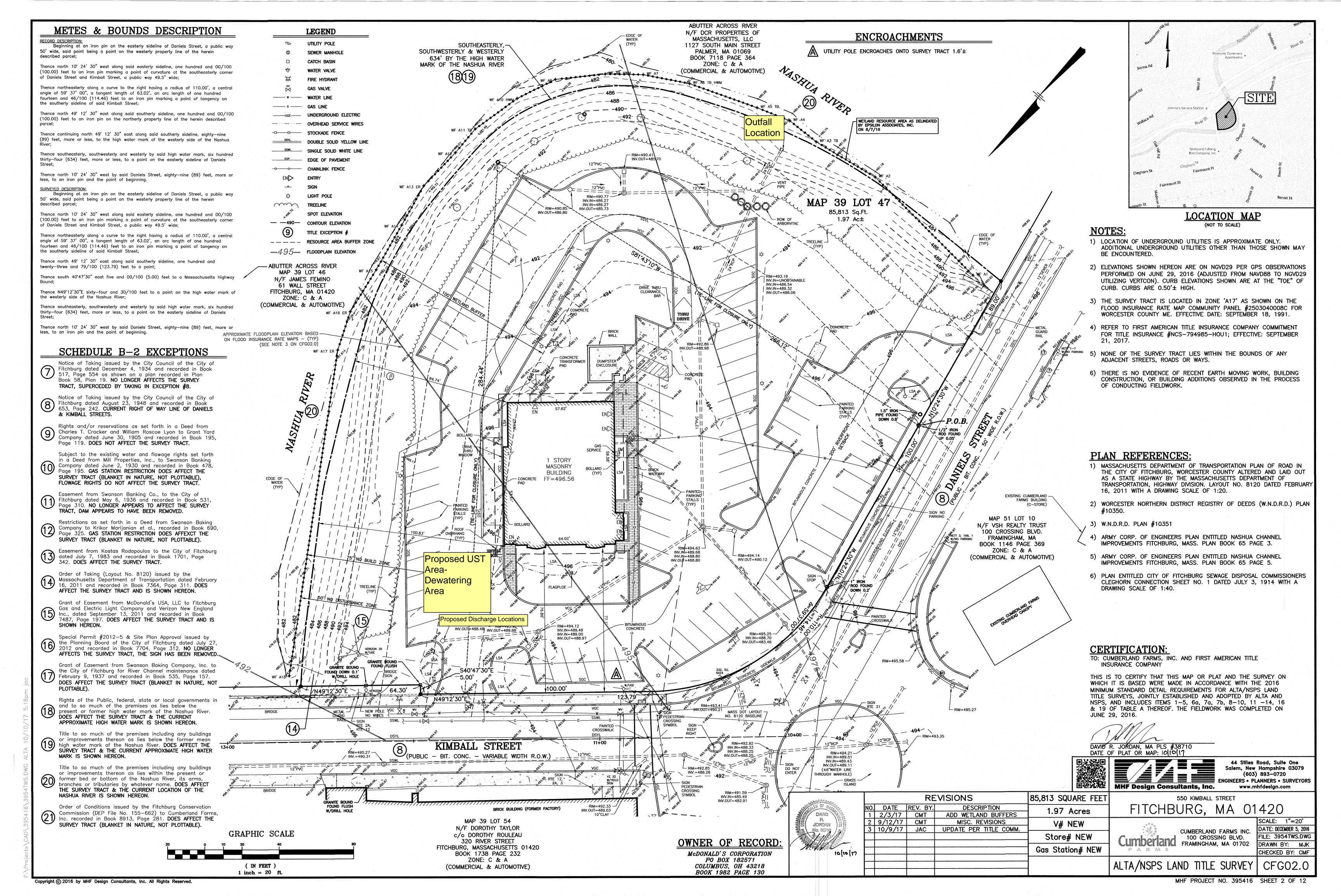
Attachment I: NOI for the RGP

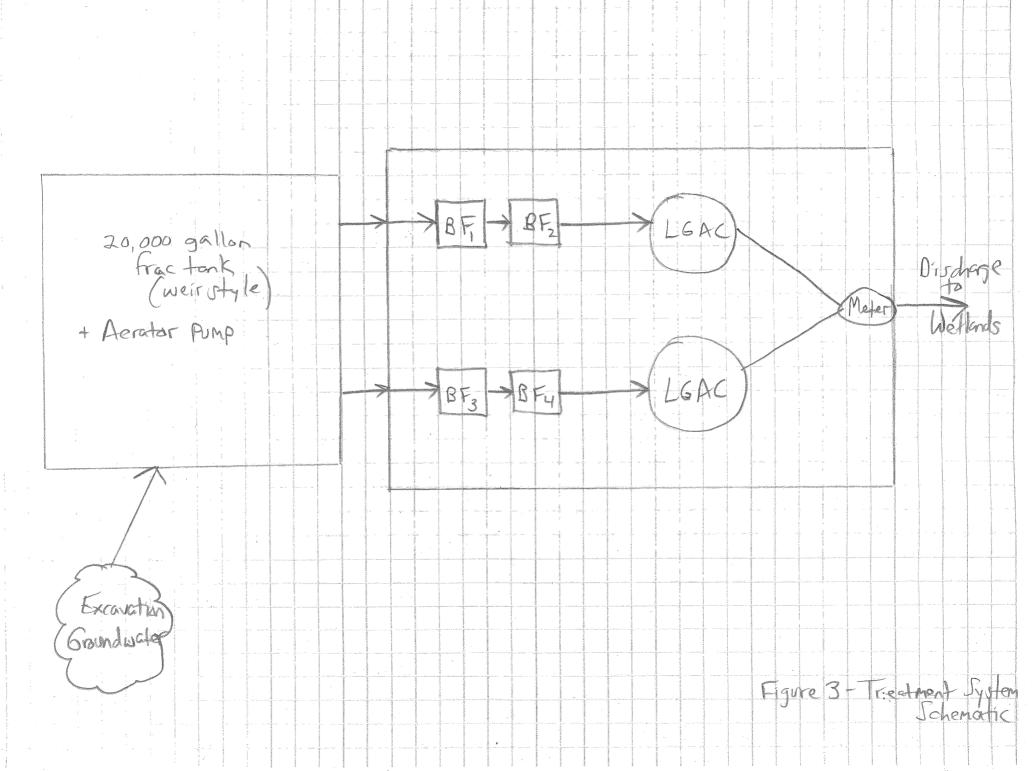

Attachment II: Flocculant Material-Product Specification and Safety Data Sheet

Attachment III: MassDEP Approval of 7Q10 Low Flow Determination & Dilution Factor Calculation

Attachment IV: MassGIS Resource Priority and NHESP Map Attachment V: MACRIS Database Search Results, PNF

Attachment VI: Laboratory Analytical Report


Figure 1: SITE LOCUS



Base Map: U.S. Geological Survey; Quadrangle Location: Fitchburg, MA

Lat/Lon: 42 34' 56.83" NORTH, 71 49' 5.17" WEST - UTM Coordinates: 19 268743.9 EAST / 4718298.5 NORTH

Generated By: Carol Farrington

Gach Charter Inc

Table 1 Summary of Groundwater Analytical Data CFI #MA3163 550 Kimball Street Fitchburg, MA

	Influent	River- Receiving Water	Minimum Lab ML	MassDEP RCGW-2	EPA RGP Discharge Limit-TBEL
Sampling Date	9-18-17	9-18-17			
Depth to Groundwater (ft)	14.44				
VOCs by 624/8260 (μg/L)					
Benzene	< 0.50	NS	5	1,000	5
Total BTEX	< 0.50	NS	NS	NA	100
MTBE	0.69	NS	20	5,000	70
Acetone	< 10.0	NS	7,970	50,000	7,970
Tert-amyl methyl ether (TAME)	< 0.50	NS	90	NS	90
Tert Butyl Alcohol (TBA)	< 10.0	NS	120	NS	120
Ethanol	< 200	NS	400	NS	NS
cis-1,2-Dichloroethene	4.68	NS	70	20	70
trans-1,2-Dichloroethene	0.61	NS	70	80	NS
Trichloroethene	0.58	NS	5.0	5	5
Vinyl Chloride	1.00	NS	2.0	2	2
SVOCs by 625 SIM (µg/L)					
Naphthalene	< 0.05	NS	20	700	20
Benzo(a)anthracene	< 0.05	NS	0.1	1,000	NS
Acenaphthene	< 0.05	NS	0.1	10,000	NS
Fluorene	< 0.05	NS	0.1	40	NS
Phenathrene	< 0.05	NS	0.1	10,000	NS
Total Group 1 PAHs	< 0.05	NS	1.0	NS	1.0
Total Group 1I PAHs	< 5.0	NS	100	NS	100
Pentachlorophenol	< 5.0	NS	1.0	NS	1.0
Total Pthalates	< 5.0	NS	190	NS	290
TDH by EDA 9100M (mg/L)	< 1.5	NS	5	5	5
TPH by EPA 8100M (mg/L)		 			
PCBs by EPA 608 (mg/L)	< 0.00019	NS	0.0005	0.005	0.064
PP13 Metals by 6010 (mg/L)					
Iron (Total)	<u>45.2</u>	NS	1	NS	5
Arsenic (Total)	0.09	NS	0.01	0.90	0.104
Cadmium (Total)	0.001	NS	0.00025	0.004	0.010
Nickel (Total)	0.006	0.002	0.052	0.20	1.45
Selenium (Total)	0.011	NS	0.005	0.10	0.235
Zinc (Total)	0.003	0.005	0.120	0.90	0.420
Chromium (Hex) by 7196A	< 0.005	NS	0.011	0.3	0.323
Cyanide (mg/L)	< 0.005		0.005	0.03	178
Ammonia (mg/L)	4.44	0.24	0.1	10	NS
Flashpoint	> 150 F	NS	NS	No Flash	NS
рН	6.39	7.22	NS	0-4, 10-14	6.3-8.5
Chloride (mg/L)	98.0	NS	NS	NS	NS
Total Residual Chlorine (mg/L)	NS	NS	0.050	NS	NS
Hardness (mg/L)	212	25.2	NS	NS	NS
Total Suspended Solids (mg/L)	<u>62.3</u>	NS	30	NS	30

NOTE NA = Not Applicable. NS = Not Sampled

RCGW-2: Reportable Concentration for groundwater classific Site is classified as RCGW-2.

EPA RGP Discharge Limit: Discharge Limits promulgated in 2017 RGP effective April 10, 2017.

<u>Underline</u>: Concentration exceeds EPA TBEL.

BOLD: Exceeds MassDEP RCGW-2.

\

ATTACHMENT I

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
	Street:							
	City:		State:	Zip:				
2. Site owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:							
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:				
3. Site operator, if different than owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):					
	☐ MA Chapter 21e; list RTN(s): ☐ CERC		CLA					
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment						
		☐ CWA Section 404						

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	ving water(s): Waterbody identification of receiving water(s): Classification of receiving water								
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver						
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.									
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.								
	5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.								
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-								
(check one): ☐ Yes ☐ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	cordance with the instruction in so indicate waterbody.							
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	5	Infl	uent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_	D	Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene]	

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, ar	he system, or those nd complete. I have
BMPP certification statement:		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □	No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site		
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No \square NA \square
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \square \ RGP \ \square \ DGP \ \square \ CGP \ \square \ MSGP \ \square \ Individual \ NPDES \ permit$	Check one: Yes □	No □ NA □
☐ Other; if so, specify:		
Signature: Watthew D Goung Date	te:	
Print Name and Title:		

DBP-2100_{TM}

HaloKlearTM DBP-2100 is formulated from natural biopolymers and is 100% biodegradeable through enzymatic activity thus preventing bioaccumulation. The patented design & concentrated formula delivers cost effective, superior and consistent performance. It is used in conjunction with HaloKlear LiquiFlocTM or GelFlocTM as part of the Dual Polymer System. The DBP-2100 series of products act as a charging agent when deployed in contaminant laden water enabling it to form highly stable strong bonds with the chitosan products.

Works well for contaminant removal applications including:

- Sediment
- Hydrocarbons
- Fats, oils or grease (FOG),
- Heavy metals

Deployment Method: A 6-foot segmented black sock with a green handle at one end.

Packaging Details: Product is sold as sets of 4 individually wrapped socks packaged within a 5 gallon pail.

SPECIFICATIONS

Appearance: Off-white to tan, odorless

powder

pH: 6.0 - 8.0 (as 1% solution) **Bulk Density:** 0.338 g/ml (freely settled)

Tap Density: 0.383 g/ml

DELIVERY METHOD

DBP-2100 may be applied using several delivery methods:

- passive systems
- semi-passive systems
- active treatment systems.

For more information, please contact a qualified HaloKlear sales representative at 1-888-282-6766 or visit the HaloKlear website at www.haloklear.com.

U.S. Patent No. 6,749,748 U.S. Patent No. 6,821,427 *additional patent pending

HaloSource, Inc.

1631 220th St. SE, Suite 100, Bothell, WA 98021
Phone: 425-881-6464 Fax: 425-556-4120
HaloKlear, GelFloc, LiquiFloc, and DBP-2100
are trademarks of HaloSource, Inc.
© Copyright 2011 HaloSource, Inc.
www.halosource.com • www.haloklear.com

Distributed By:

haloklear.com 1011

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Date of issue: 03/24/2016 Version: 1.0

SECTION 1: Identification of the substance/mixture and of the company/undertaking

Product identifier

Product form : Substance

Substance name : HaloKlear DBP-2100 Socks

Xanthan Gum Chemical name CAS No 11138-66-2 Product code : 210014

Relevant identified uses of the substance or mixture and uses advised against 1.2.

Use of the substance/mixture : Flocculant

Details of the supplier of the safety data sheet

Dober Chemical Corp. 11230 Katherine's Crossing Suite 100 Woodridge, IL 60517 - USA T 630-410-7300 - F 630-410-7444

regulatory@dobergroup.com - www.dober.com

Emergency telephone number

Emergency number : 1-800-255-3924 / 1-813-248-0585

ChemTel

SECTION 2: Hazards identification

Classification of the substance or mixture

GHS-US classification

Not classified

2.2. Label elements

GHS-US labelling

No labelling applicable

Other hazards

Other hazards not contributing to the

classification

: May form combustible dust concentrations in air. May cause eye irritation.

2.4. **Unknown acute toxicity (GHS-US)**

Not applicable

SECTION 3: Composition/information on ingredients

Substance

: Mono-constituent Substance type

: HaloKlear DBP-2100 Socks Name

CAS No 11138-66-2

Full text of H-statements: see section 16

Mixture 3.2.

Not applicable

Description of first aid measures

: Never give anything by mouth to an unconscious person. If you feel unwell, seek medical First-aid measures general

advice (show the label where possible).

First-aid measures after inhalation Allow breathing of fresh air. Allow the victim to rest.

First-aid measures after skin contact Remove affected clothing and wash all exposed skin area with mild soap and water, followed

by warm water rinse.

First-aid measures after eye contact : Rinse immediately with plenty of water. Obtain medical attention if pain, blinking or redness

First-aid measures after ingestion : Rinse mouth. Do NOT induce vomiting. Obtain emergency medical attention.

03/24/2016 EN (English) Page 1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

4.2. Most important symptoms and effects, both acute and delayed

Symptoms/injuries : Not expected to present a significant hazard under anticipated conditions of normal use.

4.3. Indication of any immediate medical attention and special treatment needed

No additional information available

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media : Foam. Dry powder. Carbon dioxide. Water spray. Sand.

Unsuitable extinguishing media : Do not use a heavy water stream.

5.2. Special hazards arising from the substance or mixture

Reactivity : The product is non-reactive under normal conditions of use, storage and transport.

5.3. Advice for firefighters

Firefighting instructions : Exercise caution when fighting any chemical fire. Eliminate all ignition sources if safe to do so.

Use water spray or fog for cooling exposed containers.

Protection during firefighting : Do not enter fire area without proper protective equipment, including respiratory protection.

Other information : Spills produce extremely slippery surfaces. Avoid dust formation.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

General measures : Use special care to avoid static electric charges.

6.1.1. For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

6.1.2. For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area.

6.2. Environmental precautions

None known.

6.3. Methods and material for containment and cleaning up

Methods for cleaning up : On land, sweep or shovel into suitable containers. Minimize generation of dust. Store away

from other materials.

6.4. Reference to other sections

See Heading 8. Exposure controls and personal protection.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Precautions for safe handling : Wash hands and other exposed areas with mild soap and water before eating, drinking or

smoking and when leaving work. Provide good ventilation in process area to prevent formation

of vapour. No smoking.

7.2. Conditions for safe storage, including any incompatibilities

Storage conditions : Keep only in the original container in a cool, well-ventilated place. Keep container closed when

not in use.

Incompatible products : Oxidizing agent.
Incompatible materials : Sources of ignition.

7.3. Specific end use(s)

No additional information available

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

HaloKlear DBP-2100 Socks ((11138-66-2)
ACGIH	Not applicable
OSHA	Not applicable

03/24/2016 EN (English) 2/1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

8.2. Exposure controls

Personal protective equipment : Avoid all unnecessary exposure.

Hand protection : Wear protective gloves/protective clothing/eye protection/face protection protective gloves.

Eye protection : Chemical goggles or safety glasses.

Respiratory protection : Use a properly fitted, particulate filter respirator complying with an approved standard if a risk

assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the

selected respirator.

: No data available

: No data available

Other information : Do not eat, drink or smoke during use.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state : Solid
Colour : White to tan
Odour : odourless

Odour threshold : No data available

pH : approximately neutral (1% solution)

Relative evaporation rate (butylacetate=1) No data available : No data available Melting point : No data available Freezing point **Boiling point** : No data available Flash point : No data available Auto-ignition temperature No data available Decomposition temperature : No data available Flammability (solid, gas) : No data available Vapour pressure No data available Relative vapour density at 20 °C : No data available Relative density No data available Solubility Water: 100 % Log Pow : No data available Log Kow : No data available Viscosity, kinematic : No data available No data available Viscosity, dynamic Explosive properties No data available

9.2. Other information

No additional information available

SECTION 10: Stability and reactivity

10.1. Reactivity

Oxidising properties Explosive limits

The product is non-reactive under normal conditions of use, storage and transport.

10.2. Chemical stability

Stable under normal conditions.

10.3. Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

10.4. Conditions to avoid

Avoid dust formation.

10.5. Incompatible materials

Oxidizing agent.

10.6. Hazardous decomposition products

Thermal decomposition generates: Carbon dioxide. Carbon monoxide. Fume.

03/24/2016 EN (English) 3/1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

SECTION 11: Toxicological information

11.1. Information on toxicological effects

Acute toxicity : Not classified
Skin corrosion/irritation : Not classified

pH: approximately neutral (1% solution)

Serious eye damage/irritation : Not classified

pH: approximately neutral (1% solution)

Respiratory or skin sensitisation : Not classified
Germ cell mutagenicity : Not classified
Carcinogenicity : Not classified
Reproductive toxicity : Not classified
Specific target organ toxicity (single exposure) : Not classified
Specific target organ toxicity (repeated : Not classified

exposure)

Aspiration hazard : Not classified

Potential adverse human health effects and

symptoms

: Based on available data, the classification criteria are not met.

SECTION 12: Ecological information

12.1. Toxicity

HaloKlear DBP-2100 Socks (11138-66-2)	
LC50 fish 1	491 mg/l Rainbow Trout; 96 hour

12.2. Persistence and degradability

HaloKlear DBP-2100 Socks (11138-66-2)	
Persistence and degradability	This product is biodegradable.

12.3. Bioaccumulative potential

HaloKlear DBP-2100 Socks (11138-66-2)	
Bioaccumulative potential	Inherently biodegradable.

12.4. Mobility in soil

HaloKlear DBP-2100 Socks (11138-66-2)	
Mobility in soil	Not available

12.5. Other adverse effects

Effect on the global warming : No known ecological damage caused by this product.

Other information : No other effects known.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Waste treatment methods : Dispose of contents/container in accordance with licensed collector's sorting instructions.

Ecology - waste materials : None known.

SECTION 14: Transport information

UN-No. (IMDG) : Non Regulated UN-No. (IATA) : Non Regulated : Non Regulated

14.2. UN proper shipping name

Proper Shipping Name (DOT) : Not applicable

03/24/2016 EN (English) 4/1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Proper Shipping Name (IMDG) : Not applicable

Proper Shipping Name (IATA) : Not applicable

14.3. Transport hazard class(es)

Transport hazard class(es) (DOT) : Not applicable

:

Transport hazard class(es) (IMDG) : Not applicable

Transport hazard class(es) (IATA) : Not applicable

14.4. Packing group

Packing group (DOT) : Not applicable

Packing group (IMDG) : Not applicable

Packing group (IATA) : Not applicable

14.5. Environmental hazards

Marine pollutant(IMDG) : No

Marine pollutant(IATA) : No

SECTION 15: Regulatory information

15.1. US Federal regulations

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency Toxic Substances Control Act (TSCA) inventory

This product or mixture does not contain a toxic chemical or chemicals in excess of the applicable de minimis concentration as specified in 40 CFR §372.38(a) subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

15.2. International regulations

CANADA

No additional information available

15.3. US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm

SECTION 16: Other information

Other information : None.

NFPA health hazard : 0 - Exposure under fire conditions would offer no hazard


beyond that of ordinary combustible materials.

NFPA fire hazard : 0 - Materials that will not burn.

NFPA reactivity : 0 - Normally stable, even under fire exposure conditions,

and are not reactive with water.

NFPA specific hazard : NA - Not Applicable

03/24/2016 EN (English) 5/1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

HMIS III Rating

Health : 0 - No significant risk to health

Flammability : 0
Physical : 0
Personal Protection : B

Dober SDS US

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

03/24/2016 EN (English) 6/1

ATTACHMENT III

Matthew Lyne

From:

Ruan, Xiaodan (DEP) < Xiaodan.Ruan@MassMail.State.MA.US>

Sent:

Wednesday, December 13, 2017 3:40 PM

To:

Matthew Lyne

Cc:

Vakalopoulos, Catherine (DEP)

Subject:

RE: RGP NOI: Request for Dilution Factor approval

Hi Matt,

Thanks. I can confirm that the 7Q10 of 2.66 MGD and using a design flow of 0.115 MGD, the dilution factor is 24.1 are correct.

The receiving water Nashua River is not listed as Outstanding Resource Waters, therefore you are all set from DEP. Please either attach this email to the NOI or add today's date where you indicate that you have consulted with MassDEP on the NOI. This will be helpful when EPA reviews the NOI.

The spreadsheet that contains the limits was developed by Shauna Little at EPA. If you have any questions regarding those numbers, please contact Shauna.

Please let us know if you have any further questions.

Thanks, Xiaodan

From: Matthew Lyne [mailto:Matthew.Lyne@atcassociates.com]

Sent: Wednesday, December 13, 2017 3:25 PM

To: Ruan, Xiaodan (DEP)

Cc: Vakalopoulos, Catherine (DEP)

Subject: RE: RGP NOI: Request for Dilution Factor approval

Also, it looks like there will be a lower WQBEL for Cadmium, very low standard. 0.08 ug/L. It was detected in raw water at 1.0. ug/L. TBEL is 10 ug/L.

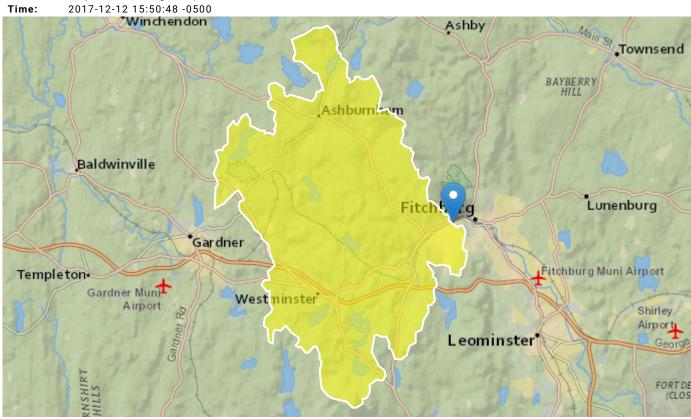
Any idea why the WQBEL is so so low? Lab limit is 1.0.

Please note new email address: matthew.lyne@atcassociates.com

Matt Lyne | SENIOR PROJECT MANAGER | ATC Group Services LLC +1 508 641 0476 mobile

997 Millbury Street, Worcester, MA 01607

+1 508 756-0151 phone | matthew.lyne@atcassociates.com | www.atcgroupservices.com


This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please notify the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of ATC.

Fitchburg-550 Kimball Street: StreamStats Report

Region ID:

Workspace ID: MA20171212205034345000

42.58195, -71.81767 Clicked Point (Latitude, Longitude):

For 7Q10 Determination

Basin Characteristics						
Parameter Code	Parameter Description	Value	Unit			
DRNAREA	Area that drains to a point on a stream	60.9	square miles			
DRFTPERSTR	Area of stratified drift per unit of stream length	0.13	square mile per mile			
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless			
BSLDEM250	Mean basin slope computed from 1:250K DEM	5.424	percent			

Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	60.9	square miles	1.61	149

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRFTPERSTR	Stratified Drift per Stream Length	0.13	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1
BSLDEM250	Mean Basin Slope from 250K DEM	5.424	percent	0.32	24.6

Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
50 Percent Duration	63.1	ft^3/s	33.9	117	17.6	17.6
60 Percent Duration	47.6	ft^3/s	23.7	95	19.8	19.8
70 Percent Duration	29.2	ft^3/s	11.4	73.9	23.5	23.5
75 Percent Duration	22.8	ft^3/s	8.84	58.2	25.8	25.8
80 Percent Duration	19.7	ft^3/s	7.01	54.6	28.4	28.4
85 Percent Duration	15.9	ft^3/s	5.5	45	31.9	31.9
90 Percent Duration	12.8	ft^3/s	4.19	38.1	36.6	36.6
95 Percent Duration	8.51	ft^3/s	2.54	27.6	45.6	45.6
98 Percent Duration	5.32	ft^3/s	1.38	19.4	60.3	60.3
99 Percent Duration	4.24	ft^3/s	1.05	16.2	65.1	65.1

Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	60.9	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	5.424	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.13	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	8.07	ft^3/s	2.3	27.3	49.5	49.5
7 Day 10 Year Low Flow	4.12	ft^3/s	0.961	16.5	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

August Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	60.9	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	5.424	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.13	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

August Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

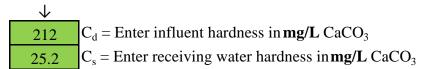
PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
August 50 Percent Duration	15.9	ft^3/s	5.5	45.2	33.2	33.2

August Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
2.66	$Q_R = Enter upstream flow in MGD$
0.1152	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
7.22	pH in Standard Units
22	Temperature in °C
0.24	Ammonia in mg/L
25.2	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in µg/L
0	Mercury in μg/L
2	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
5	Zinc in µg/L

Enter influent concentrations in the units specified

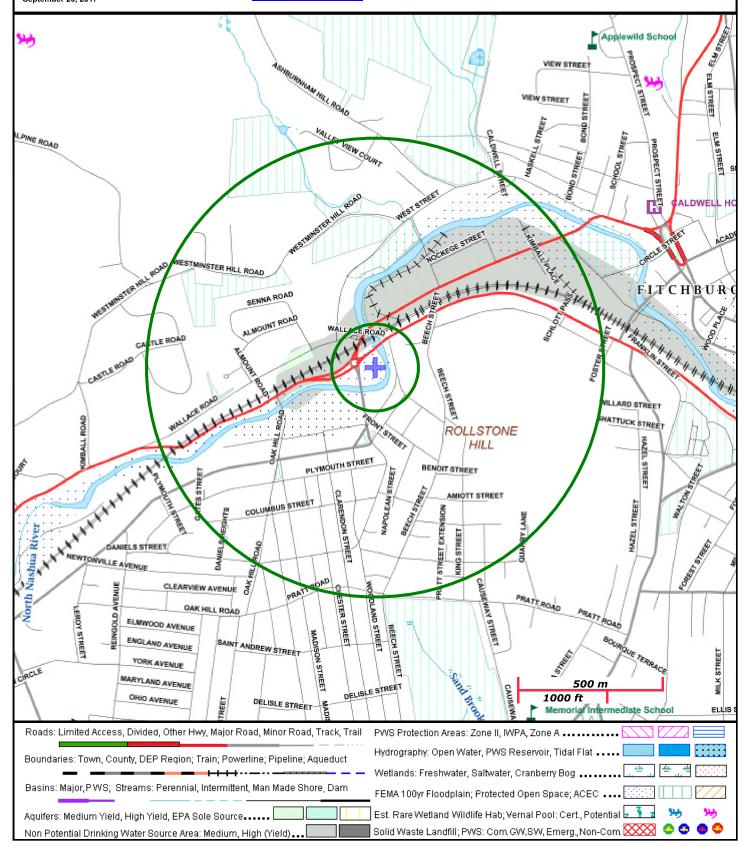
\downarrow	_
0	TRC in µg/L
4.44	Ammonia in mg/L
0	Antimony in μg/L
90	Arsenic in μg/L
1	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
45,200	Iron in μg/L
0	Lead in µg/L
0	Mercury in µg/L
6	Nickel in µg/L
11	Selenium in µg/L
0	Silver in µg/L
3	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μ g/L

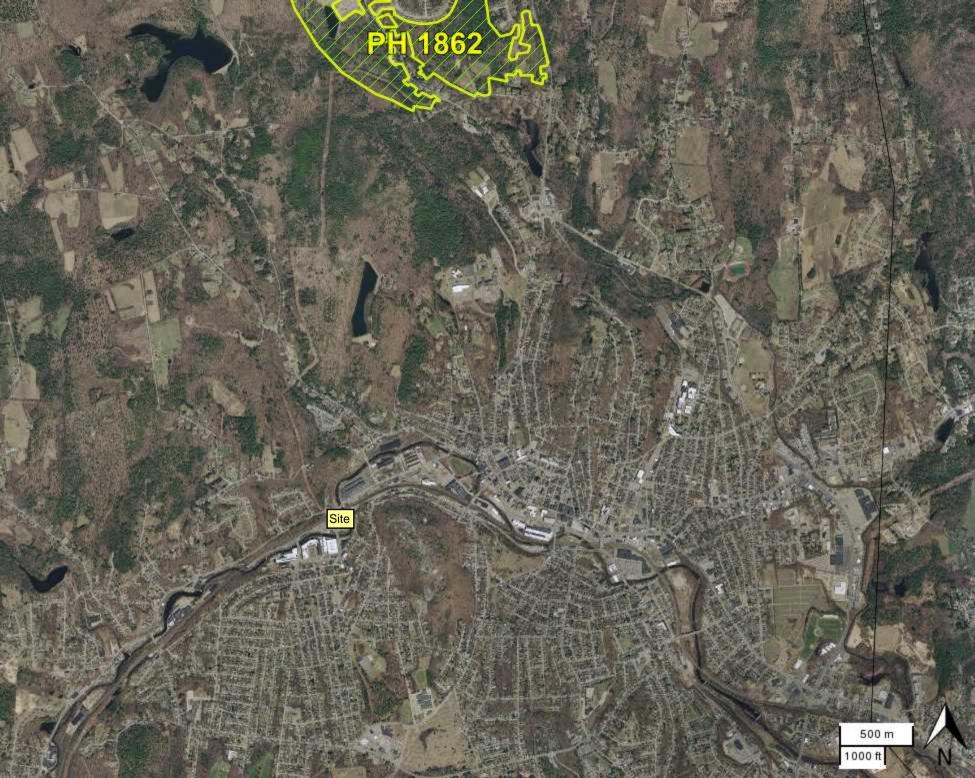
TBEL applies if Report Report	bolded mg/L	WQBEL applies i	f bolded	Compliance Level applies if shown	
Report	mg/L				
Report	mg/L			Tr	
	/I				
	μg/L		~		-
0.2	mg/L	265	μg/L		μg/L
30	mg/L				
206	μg/L	15418	μg/L		
104	μg/L	241	μg/L		
10.2	µg/L	2.8643	ug/L		
		836.4			1
					+
					_
					_
160	μg/L		μg/L		
0.739	μg/L	21.82	μg/L		
1450	μg/L	445.1	μg/L		
235.8		120.5			
		13.5			
					-
178	mg/L	125.3	μg/L		μg/L
100	77				
					_
					-
			па/І		
1,000	MS/L	1221	μg/L		-
4.4	ug/L	38.5	ug/L		
600			1.0		
320					
5.0					
	μg/L				
70	μg/L				
5.0	μg/L				
	μg/L				
					_
			μg/L		-
					-
⊿. ∪	μg/L				1
					+
101	μg/L	53.0	μg/L		+
4.0	nr.				
		0.0015	/r		
					μg/L μg/L
	104 10.2 323 323 323 242 5000 160 0.739 1450 235.8 35.1 420 178 100 5.0 200 7970 1,080 4.4 600 320 5.0 70	104 μg/L 10.2 μg/L 323 μg/L 323 μg/L 3242 μg/L 5000 μg/L 160 μg/L 160 μg/L 1450 μg/L 235.8 μg/L 35.1 μg/L 420 μg/L 178 mg/L 178 mg/L 200 μg/L 200 μg/L 1,080 μg/L 320 μg/L 5.0 μg/L 320 μg/L 5.0 μg/L	104 μg/L 241 10.2 μg/L 2.8643 323 μg/L 836.4 323 μg/L 275.5 242 μg/L 87.0 5000 μg/L 24090 160 μg/L 18.65 0.739 μg/L 445.1 235.8 μg/L 120.5 35.1 μg/L 13.5 420 μg/L 1011.4 178 mg/L 125.3 100 μg/L 5.0 μg/L 7970 μg/L 1,080 μg/L 1,080 μg/L 5.0 μg/L 5.0 μg/L 7970 μg/L 1,080 μg/L 5.0 μg	104 μg/L 241 μg/L 10.2 μg/L 2.8643 μg/L 323 μg/L 836.4 μg/L 323 μg/L 87.0 μg/L 5000 μg/L 24090 μg/L 160 μg/L 18.65 μg/L 1450 μg/L 445.1 μg/L 235.8 μg/L 120.5 μg/L 35.1 μg/L 13.5 μg/L 178 mg/L 125.3 μg/L 100 μg/L 5.0 μg/L 1,080 μg/L μg/L 1,080 μg/L μg/L 1,080 μg/L 1,080 μg/L 1,080 μg/L 1,080 μg/L 1,080 μg/L 5.0 μg/L 1,080 μg/L 5.0 μg/L 1,080 μg/L 5.0 μg/L	104 μg/L 241 μg/L 10.2 μg/L 2.8643 μg/L 323 μg/L 836.4 μg/L 324 μg/L 275.5 μg/L 242 μg/L 87.0 μg/L 5000 μg/L 24090 μg/L 160 μg/L 18.65 μg/L 0.739 μg/L 445.1 μg/L 235.8 μg/L 120.5 μg/L 335.1 μg/L 13.5 μg/L 178 mg/L 125.3 μg/L 100 μg/L 100 μg/L 100 μg/L 11,080 μg/L 11,080 μg/L 1227 μg/L 4.4 μg/L 1220 μg/L 1227 μg/L 4.4 μg/L 1220 μg/L 1227 μg/L 4.4 μg/L 1227 μg/L 4.4 μg/L 1220 μg/L 1227 μg/L 5.0 μg/L 1220 μg/

Benzo(b)fluoranthene	1.0	μg/L	0.0915	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0915	μg/L		μg/L
Chrysene	1.0	μg/L	0.0915	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0915	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0915	μg/L		μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	482	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:


550 KIMBALL STREET FITCHBURG, MA

NAD83 UTM Meters: 4718288mN , 268751mE (Zone: 19) September 20, 2017

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found to the site. http://www.mass.gov/mgis/.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Fitchburg; Place: Cleghorn; Street No: 550; Street Name: Kimball St; Resource Type(s): Building, Burial Ground, Area, Object, Structure;

Inv. No. Property Name Street Town Year

Thursday, December 14, 2017 Page 1 of 1

997 Millbury Street, Unit 6 Worcester, MA 01607 Telephone 508-756-0151 Fax 508-757-7063 www.atcgroupservices.com

December 15, 2017 File No. 03-224773

Massachusetts Historical Commission 220 Morrissey Boulevard Boston, MA 02125

RE: Project Notification Form

Vacant McDonald's Restaurant Proposed Cumberland Farms Property #MA3163 550 Kimball Street Fitchburg, Massachusetts

To whom it may concern:

On behalf of Cumberland Farms, Inc. (CFI), ATC Group Services LLC (ATC), is submitting this Project Notification Form (PNF) for the above referenced facility (i.e., the "Site"). CFI is proposing to redevelop the property in January 2018. Approval for dewatering through EPA is necessary and this PNF is required as part of the Notice of Intent process. A Site Locus map is included as Figure 1.

The subject property currently is a vacant McDonald's Restaurant. The vacant building is of concrete block construction and is a slab on grade structure with no basement. Land use in the vicinity of the Site is mainly commercial. The Nashua River surrounds the Site to the south and east, Kimball Street abuts the site to the north, and Daniels Street abuts the site to the west. Across Kimball Street is a self storage facility and across Daniels Street is a gas station. A Site Plan depicting the current setting of the property and surrounding area is included as Figures 2.

If there are any questions regarding this submittal, please do not hesitate to contact the undersigned or Mr. Matthew Young of Cumberland Farms, Inc. at (508) 270-1400.

Sincerely,

ATC Group Services LLC

Matthew Lyne

Senior Project Manager

Mars D. me

cc: Matt Young, Cumberland Farms Inc, 165 Flanders Road, Westborough, MA 01581

Figure 1- Site Locus Figure 2- Site Plan

	Final Report
¥	Revised Report

Report Date: 12-Dec-17 13:53

Laboratory Report SC39416

ATC Group Services, LLC 997 Millbury Street, Unit G Worcester, MA 01607 Attn: Matt Lyne

Project: CFI - Fitchburg, MA Project #: 03-224773.05

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Jawn & Woscik

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 41 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC39416

Project: CFI - Fitchburg, MA

Project Number: 03-224773.05

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC39416-01	MW-5	Ground Water	18-Sep-17 13:20	19-Sep-17 15:50
SC39416-02	River-1	Surface Water	18-Sep-17 14:40	19-Sep-17 15:50

This laboratory report is not valid without an authorized signature on the cover page.

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Eur	rofins Spectrum Analytic	cal, Inc.	Project #: 03-22	4773.05	
Proje	ct Location: CFI	- Fitchburg, MA		RTN:		
This	form provides cer	tifications for the follow	ving data set:	SC39416-01 through SC3	39416-02	
Matr	ices: Ground Wa	iter				
	Surface Wa	ter				
CAM	Protocol					
/	260 VOC AM II A	The provides certifications for the following data set: SC39416-01 through SC39416-02 Ground Water Surface Water Stocol To 74707471 Hg MassDEP VPH CAM V B TO CAM V B CAM V B		1 /	MassDEP APH CAM IX A	
	270 SVOC AM II B				8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
/	010 Metals AM III A	6860 Perchlorate CAM VIII B				
		Affirmative response	es to questions A through	F are required for Pres	umptive Certainty'status	
A	•					Yes ✓ No
В	-	CAM	✓ Yes No			
C	_	✓ Yes No				
D		✓ Yes No				
E		-		_		Yes No Yes No
F	* *		•			✓ Yes No
		Responses to que	stions G, H and I below o	are required for P resum	ptive Certainty'status	
G	Were the reporting	ng limits at or below all	CAM reporting limits spe	cified in the selected CA	M protocol(s)?	✓ Yes No
				sarily meet the data usabili	ity and representativeness	•
Н	Were all QC perf	formance standards spec	ified in the CAM protoco	l(s) achieved?		Yes ✓ No
I	Were results repo	orted for the complete an	alyte list specified in the	selected CAM protocol(s)?	Yes ✓ No
All ne	gative responses are	e addressed in a case narro	tive on the cover page of th	nis report.		

Dawn E. Wojcik Laboratory Director Date: 12/12/2017

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.4 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

Reactivity (40 CFR 261.23) Case Narrative:

These samples do not exhibit the characteristics of reactivity as defined in 40 CFR 261.23, sections (1), (2) and (4); however, Eurofins Spectrum Analytical, Inc. does not test for detonation, explosive reaction or potential, or forbidden explosives as defined in 40 CFR 261.23, sections (3), (6), (7) and (8).

Reactive sulfide and cyanide are tested at a pH of 2 and not tested at all conditions between pH 2 and 12.5 as stated in 40 CFR 261.23, section (5); thus reactive cyanide and sulfide results as reported in this document can not be used to support the nonreactive properties of these samples.

The responsibility falls on the generator to use knowledge of the waste to determine if the waste meets or does not meet the descriptive, prose definition of reactivity.

SC39416 Report Revision Case Narrative Issued December 12, 2017:

This report was revised to include 1,4-Dioxane by 624, per client request.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

E350.1

BZ03269-MS

This parameter is outside laboratory ms/msd specified recovery limits.

Ammonia as Nitrogen

EPA 300.0

Samples:

SC39416-01 *MW-5*

EPA 300.0

Samples:

SC39416-01 MW-5

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Chloride

EPA 524.2

Calibration:

1709039

Analyte quantified by quadratic equation type calibration.

- 1,1-Dichloropropene
- 1,2,3-Trichlorobenzene
- 1,2,4-Trichlorobenzene
- 1,2,4-Trimethylbenzene
- 1,2-Dibromo-3-chloropropane
- 1,3,5-Trimethylbenzene
- 2-Chlorotoluene
- 2-Hexanone (MBK)
- 4-Chlorotoluene
- 4-Isopropyltoluene
- 4-Methyl-2-pentanone (MIBK)

Bromoform

cis-1,3-Dichloropropene

Dibromochloromethane

Ethylbenzene

m,p-Xylene

Naphthalene

- n-Butylbenzene
- n-Propylbenzene
- o-Xylene
- sec-Butylbenzene

Styrene

tert-Butylbenzene

trans-1,3-Dichloropropene

Vinyl chloride

This affected the following samples:

1716332-BLK1

1716332-BS1 MW-5

S708366-ICV1

S708473-CCV1

Laboratory Control Samples:

1716332 BS

Dichlorodifluoromethane (Freon12) percent recovery 77 (80-120) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

EPA 624

Calibration:

1709048

EPA 624

Calibration:

1709048

Analyte quantified by quadratic equation type calibration.

2-Hexanone (MBK)

4-Methyl-2-pentanone (MIBK)

Bromoform

cis-1,3-Dichloropropene

m,p-Xylene

Methylene chloride

o-Xylene

Styrene

trans-1,3-Dichloropropene

This affected the following samples:

1716230-BLK1

1716230-BS1

1716230-BSD1

MW-5

S708418-CCV1

S708503-ICV1

EPA 625

Calibration:

1709033

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

This affected the following samples:

1716152-BLK1

1716152-BLK3

1716152-BS1

1716152-BS3

1716152-BSD1

1716152-BSD3

MW-5

S708282-ICV1

S708448-CCV1

S708595-CCV1

Laboratory Control Samples:

1716152 BS/BSD

Benzidine percent recoveries (14/16) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

Bis(2-chloroisopropyl)ether percent recoveries (35/39) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

Laboratory Control Samples:

1716152 BS/BSD

Fluorene percent recoveries (51/52) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

N-Nitrosodimethylamine percent recoveries (32/36) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

Phenanthrene percent recoveries (53/52) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

Phenanthrene percent recoveries (53/59) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

1716152 BSD

- 2,4-Dinitrophenol RPD 37% (20%) is outside individual acceptance criteria.
- 2-Nitrophenol RPD 22% (20%) is outside individual acceptance criteria.
- 4,6-Dinitro-2-methylphenol RPD 32% (20%) is outside individual acceptance criteria.
- 4-Nitrophenol RPD 23% (20%) is outside individual acceptance criteria.

Benzidine RPD 41% (20%) is outside individual acceptance criteria.

Pentachlorophenol RPD 31% (20%) is outside individual acceptance criteria.

1716152-BSD1

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

- 2,4-Dinitrophenol
- 2-Nitrophenol
- 4,6-Dinitro-2-methylphenol
- 4-Nitrophenol
- Benzidine
- Pentachlorophenol

Samples:

S708448-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

4-Nitrophenol (21.9%) Benzidine (-36.7%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

2,4-Dinitrophenol (21.9%)

EPA 625

Samples:

S708448-CCV1

This affected the following samples:

1716152-BLK1 1716152-BS1 1716152-BSD1

S708595-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Benzidine (20.7%)

This affected the following samples:

1716152-BLK3 1716152-BS3 1716152-BSD3 MW-5

Mod. EPA 625

Calibration:

1709035

Analyte quantified by quadratic equation type calibration.

Benzo (a) pyrene

This affected the following samples:

1716294-BLK2 1716294-BS2 1716294-BSD2 MW-5 S708328-ICV1 S708558-CCV1

Laboratory Control Samples:

1716294 BS/BSD

Acenaphthylene percent recoveries (36/37) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

Fluorene percent recoveries (39/47) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-5

SM3500-Cr-B (11)/7196A

Samples:

C39416-01 *MW-5*

This sample was received outside the EPA recommended holding time for the analysis specified.

Hexavalent Chromium

Sample Acceptance Check Form

Client:	ATC Group Services, LLC - Worcester, MA
Project:	CFI - Fitchburg, MA / 03-224773.05
W1-0-1	0020416

Work Order: SC39416 Sample(s) received on: 9/19/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	<u>No</u>	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples refrigerated upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		V	
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?		\checkmark	

12-Dec-17 13:53 Page 9 of 41

Summary of Hits

Client ID:

MW-5

Lab ID: SC39416-01

Selenium

Zinc

Result Units **Analytical Method Parameter** Flag **Reporting Limit** Hardness (CaCO3) 212 E200.7 0.1 mg/L Ammonia as Nitrogen 4.44 0.05 mg/L E350.1 GS1, D4.00 Chloride 98.0 mg/lEPA 300.0 cis-1,2-Dichloroethene 4.68 0.50 $\mu g/l$ EPA 524.2 Methyl tert-butyl ether 0.69 0.50 EPA 524.2 $\mu g/l$ trans-1,2-Dichloroethene 0.50 EPA 524.2 0.61 $\mu g/l$ Trichloroethene EPA 524.2 0.58 0.50 $\mu g/1$ Vinyl chloride 1.00 0.50 $\mu g/l$ EPA 524.2 cis-1,2-Dichloroethene 5.0 1.0 $\mu g/l$ EPA 624 Vinyl chloride 1.2 1.0 $\mu g/l$ EPA 624 Total Suspended Solids 62.3 0.5 mg/l SM2540D (11) Arsenic 0.090 0.004 mg/L SW6010C Cadmium 0.001 0.001 SW6010C mg/L Iron 45.2 0.010 SW6010C mg/L Nickel 0.006 0.001 SW6010C mg/L

Lab ID: SC39416-02 Client ID: River-1

0.011

0.003

Parameter	Result	Flag Reporting Limit	Units	Analytical Method	
Hardness (CaCO3)	25.2	0.1	mg/L	E200.7	
Ammonia as Nitrogen	0.24	0.05	mg/L	E350.1	
Nickel	0.002	0.001	mg/L	SW6010C	
Zinc	0.005	0.002	mg/L	SW6010C	

0.010

0.002

mg/L

mg/L

SW6010C

SW6010C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

12-Dec-17 13:53

Sample Identification

MW-5 SC39416-	lentification 01				Project # 1773.05					Collection Date/Time 18-Sep-17 13:20			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Purgeable	Organic Compounds												
98-82-8	Isopropylbenzene	< 0.50		μg/l	0.50	0.23	1	EPA 524.2	23-Sep-17	24-Sep-17	GMA	1716332	
99-87-6	4-Isopropyltoluene	< 0.50		μg/l	0.50	0.28	1	"	"	"	"	"	
1634-04-4	Methyl tert-butyl ether	0.69		μg/l	0.50	0.15	1	"	"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00		μg/l	2.00	0.35	1	"	"	"	"	"	
75-09-2	Methylene chloride	< 0.50		μg/l	0.50	0.35	1	"	"	"	"	"	
91-20-3	Naphthalene	< 0.50		μg/l	0.50	0.40	1	"	"	"	"	"	
103-65-1	n-Propylbenzene	< 0.50		μg/l	0.50	0.34	1	"	"	"	"	"	
100-42-5	Styrene	< 0.50		μg/l	0.50	0.40	1	"	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	< 0.50		μg/l	0.50	0.38	1	· ·	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50	0.33	1	· ·	"	"	"	"	
127-18-4	Tetrachloroethene	< 0.50		μg/l	0.50	0.39	1	"	"	"	"	"	
108-88-3	Toluene	< 0.50		μg/l	0.50	0.33	1	"	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	< 0.50		μg/l	0.50	0.34	1	"	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 0.50		μg/l	0.50	0.38	1	"	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 0.50		μg/l	0.50	0.35	1	"	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 0.50		μg/l	0.50	0.33	1	"	"	"	"	"	
79-01-6	Trichloroethene	0.58		μg/l	0.50	0.38	1	"	"	u u	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	< 0.50		μg/l	0.50	0.49	1	"	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	< 0.50		μg/l	0.50	0.22	1	u u	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	< 0.50		μg/l	0.50	0.36	1	u u	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	< 0.50		μg/l	0.50	0.43	1	"	"	u u	"	"	
75-01-4	Vinyl chloride	1.00		μg/l	0.50	0.45	1	"	"	u u	"	"	
179601-23-1	m,p-Xylene	< 0.50		μg/l	0.50	0.38	1	ıı	"	"	"	"	
95-47-6	o-Xylene	< 0.50		μg/l	0.50	0.26	1	u u	"	"	"	"	
109-99-9	Tetrahydrofuran	< 2.00		μg/l	2.00	0.39	1	u u	"	"	"	"	
994-05-8	Tert-amyl methyl ether	< 0.50		μg/l	0.50	0.49	1	u u	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 0.50		μg/l	0.50	0.33	1	u u	"	"	"	"	
108-20-3	Di-isopropyl ether	< 0.50		μg/l	0.50	0.16	1	"	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	3.55	1	п	"	"	"	"	
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	93			80-12	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	97			80-12	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	108			80-12	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	104			80-12	0 %		"	"	u	"	"	
Volatile O	rganic Compounds by GCN	<u>MS</u>											
67-64-1	Acetone	< 10.0		μg/l	10.0	0.8	1	EPA 624	22-Sep-17	22-Sep-17	GMA	1716230	
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
75-27-4	Bromodichloromethane	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
74-83-9	Bromomethane	< 2.0		μg/l	2.0	0.9	1	"	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	< 10.0		μg/l	10.0	1.1	1	· ·	"	"	"	u	
75-15-0	Carbon disulfide	< 5.0		μg/l	5.0	0.4	1	"	"	"	"	"	
56-23-5	Carbon tetrachloride	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	Χ
108-90-7	Chlorobenzene	< 1.0		μg/l	1.0	0.2	1	"		"		"	Х

Sample Identification MW-5		Client Project # Matrix							Received				
SC39416-	01			03-224	1773.05		Ground Wa	iter 18	8-Sep-17 13	:20	19-	Sep-17	17
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Or	ganic Compounds												
	rganic Compounds by GC												.,
75-00-3	Chloroethane	< 2.0		μg/l	2.0	0.6	1	EPA 624	22-Sep-17	22-Sep-17	GMA "	1716230	
67-66-3	Chloroform	< 1.0		μg/l	1.0	0.3	1						X
74-87-3 124-48-1	Chloromethane	< 2.0		µg/l	2.0	0.4	1	"				"	X
74-95-3	Dibromochloromethane	< 1.0		μg/l	1.0	0.3	1			,,	"	"	Х
95-50-1	Dibromomethane	< 1.0		μg/l	1.0	0.3	1	"		,,		"	v
541-73-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.3	1				"		X
106-46-7	1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.3	1					"	X
75-34-3	•	< 1.0		μg/l	1.0	0.3	1		,			"	X
107-06-2	1,1-Dichloroethane	< 1.0		µg/l	1.0	0.3	1				"		X
	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1						X
75-35-4 156-59-2	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.7	1	"			"	"	Х
156-59-2	cis-1,2-Dichloroethene	5.0		μg/l	1.0	0.3	1	"			"		Х
78-87-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	"		,,	"	"	
10061-01-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1				"		X
10061-01-5	cis-1,3-Dichloropropene	< 1.0		µg/l	1.0	0.4	1				"	"	X
10001-02-0	trans-1,3-Dichloropropene	< 1.0		µg/l	1.0	0.3	1		,			"	X
	Ethylbenzene	< 1.0		µg/l	1.0	0.3	1		,	,,	"		Х
591-78-6 1634-04-4	2-Hexanone (MBK)	< 10.0		µg/l	10.0	0.5	1		,			"	
108-10-1	Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK)	< 1.0 < 10.0		μg/l μg/l	1.0 10.0	0.2 0.5	1	n .	"	"	"	"	
75-09-2	Methylene chloride	< 10.0		μg/l	10.0	0.7	1	"	"		"		Х
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1		"	"	"	"	Х
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1		"	"	"	"	Х
71-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1	·	"	"	"	"	Х
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.5	1		"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.5	1	II .	"	"		u.	Х
75-01-4	Vinyl chloride	1.2		μg/l	1.0	0.5	1	"	"	"	"	"	Χ
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	Χ
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	Χ
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	11.4	1	"	"	"	"	"	
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	78			70-13			"	H .	"	"	"	
2037-26-5	Toluene-d8	101			70-13			"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	119			70-13			"	"	"	"	"	
1868-53-7	Dibromofluoromethane	121			70-13	0 %		"	"	"	"	"	
-	<u>/ SW846 8260</u> by mathad SW846 5030 V	Votor MC											
<u> </u>	<u>by method SW846 5030 V</u> Ethanol	<u>Vater MS</u> < 200		ua/l	200	30.9	1	SW846 8260C	23 Can 17	24-Sep-17	CMA	1716222	
		~ <u>2</u> 00		μg/l	200	30.8	1	344040 0200C	20-0ep-17	24-0ch-11	GIVIA	17 10332	
Surrogate r 460-00-4		0.3			70.40	0 %		"			"	"	
460-00-4 2037-26-5	4-Bromofluorobenzene Toluene-d8	93 97			70-13 70-13								

MW-5 SC39416-	dentification -01				Project # 4773.05				Collection Date/Time 18-Sep-17 13:20			Received 19-Sep-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert	
Volatile O	rganic Compounds													
Ethanol b	<u>y SW846 8260</u>													
17060-07-0	1,2-Dichloroethane-d4	108			70-13	80 %		SW846 8260C	23-Sep-17	24-Sep-17	GMA	1716332	2	
1868-53-7	Dibromofluoromethane	104			70-13	80 %		"	"	"	"	"		
	ile Organic Compounds by (GCMS												
PAHs by S	<u>SIM</u>													
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.030	1	Mod. EPA 625	25-Sep-17	26-Sep-17	MSL	1716294		
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.032	1	"	"	"	"	"		
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.024	1	"	"	"	"	"		
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.026	1	"	"	"	"	"		
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.024	1	"	"	"	"	"		
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.036	1	"	"	"	"	"		
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.035	1	"	u u	"	"	"		
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"	"		
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.028	1	"	"	"	"	"		
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.023	1	"	"	"	"	"		
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.026	1	"	"	"	"	"		
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.020	1	"	u	"	"	"		
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.030	1	"	u	"	"	"		
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.022	1	"	u u	"	"	"		
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.023	1	"	u u	"	"	"		
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"	"		
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.026	1	"	"	"	"	"		
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.022	1	"	"	"	"	"		
Surrogate i	recoveries:													
321-60-8	2-Fluorobiphenyl	31			30-13	80 %		"	"	"	"	"		
1718-51-0	Terphenyl-dl4	44			30-13	80 %		"	"	"	"	"		
205440-82-0	Benzo (e) pyrene-d12	41			30-13	80 %		"	"	"	"	"		
Semivolat	tile Organic Compounds													
83-32-9	Acenaphthene	< 5.00		μg/l	5.00	0.691	1	EPA 625	21-Sep-17	27-Sep-17	MSL	1716152	. X	
208-96-8	Acenaphthylene	< 5.00		μg/l	5.00	0.683	1	"	u	"	"		Χ	
120-12-7	Anthracene	< 5.00		μg/l	5.00	0.608	1	"	u	"	"	"	Х	
92-87-5	Benzidine	< 5.00		μg/l	5.00	1.15	1	"	"	"	"		Х	
56-55-3	Benzo (a) anthracene	< 5.00		μg/l	5.00	0.536	1	"	"	"	"		Х	
50-32-8	Benzo (a) pyrene	< 5.00		μg/l	5.00	0.562	1	"	"	"	"	"	Х	
205-99-2	Benzo (b) fluoranthene	< 5.00		μg/l	5.00	0.437	1	n .	"	"	"	"	Х	
191-24-2	Benzo (g,h,i) perylene	< 5.00		μg/l	5.00	0.530	1	"	"	"	"	"	Х	
207-08-9	Benzo (k) fluoranthene	< 5.00		μg/l	5.00	0.480	1	ıı .	u	"	"	"	Х	
111-91-1	Bis(2-chloroethoxy)metha ne	< 5.00		μg/l	5.00	0.666	1	"	"	"	"	"	Х	
111-44-4	Bis(2-chloroethyl)ether	< 5.00		μg/l	5.00	0.734	1	II .	"	"	"	"	Х	
108-60-1	Bis(2-chloroisopropyl)ethe	< 5.00		μg/l	5.00	0.778	1	"	"	"	"	"	Х	
117-81-7	Bis(2-ethylhexyl)phthalate	< 5.00		μg/l	5.00	0.638	1	"	u	"	"	"	Χ	
101-55-3	4-Bromophenyl phenyl ether	< 5.00		μg/l	5.00	0.602	1	"	"	"	"	"	Х	
85-68-7	Butyl benzyl phthalate	< 5.00		μg/l	5.00	0.438	1	II .	"	"	"	"	Х	
		< 5.00		μg/l	5.00	0.501	1	"	"				Х	

Sample Id	dentification			Cliant I	Drainat #		Motrin	Call	action Data	/Time	D o		
MW-5					Project #		Matrix		ection Date			ceived	
SC39416	-01			03-224	1773.05		Ground Wa	iter 18	8-Sep-17 13	0:20	19-	Sep-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
	tile Organic Compounds												
91-58-7	2-Chloronaphthalene	< 5.00		μg/l	5.00	0.590	1	EPA 625	21-Sep-17	27-Sep-17	MSL	1716152	X
95-57-8	2-Chlorophenol	< 5.00		μg/l	5.00	0.748	1		"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 5.00		μg/l	5.00	0.603	1	"	II	"	"	"	X
218-01-9	Chrysene	< 5.00		μg/l	5.00	0.532	1	"	"	"	"	"	X
53-70-3	Dibenzo (a,h) anthracene	< 5.00		μg/l	5.00	0.450	1	"	"	"			Х
95-50-1	1,2-Dichlorobenzene	< 5.00		μg/l	5.00	0.562	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 5.00		μg/l	5.00	0.647	1	"	"	"		"	Х
106-46-7	1,4-Dichlorobenzene	< 5.00		μg/l	5.00	0.614	1	"	"	"			Х
91-94-1	3,3'-Dichlorobenzidine	< 5.00		μg/l	5.00	1.99	1	"	"	"			Х
120-83-2	2,4-Dichlorophenol	< 5.00		μg/l	5.00	0.530	1	"					Х
84-66-2	Diethyl phthalate	< 5.00		μg/l	5.00	0.623	1	,,	"	"	"		Х
131-11-3	Dimethyl phthalate	< 5.00		μg/l	5.00	0.758	1	"	"	"			X
105-67-9	2,4-Dimethylphenol	< 5.00		μg/l	5.00	0.653	1	"	"	"			X
84-74-2	Di-n-butyl phthalate	< 5.00			5.00	0.457	1	"	"	"			X
534-52-1				µg/l				"	"	"			
	4,6-Dinitro-2-methylphenol	< 5.00		μg/l	5.00	0.319	1	,,	"	"	"		X
51-28-5	2,4-Dinitrophenol	< 5.00		μg/l "	5.00	0.561	1				"	"	X
121-14-2	2,4-Dinitrotoluene	< 5.00		μg/l	5.00	0.673	1	"		"	"		X
606-20-2	2,6-Dinitrotoluene	< 5.00		μg/l	5.00	0.593	1						Х
117-84-0	Di-n-octyl phthalate	< 5.00		μg/l	5.00	0.406	1	"	"	"	"	"	Х
206-44-0	Fluoranthene	< 5.00		μg/l	5.00	0.638	1	"	"	u	"	"	Х
86-73-7	Fluorene	< 5.00		μg/l	5.00	0.612	1	"	"	"		"	Х
118-74-1	Hexachlorobenzene	< 5.00		μg/l	5.00	0.571	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 5.00		μg/l	5.00	0.388	1	"	"	"	"	"	Χ
77-47-4	Hexachlorocyclopentadien e	< 5.00		μg/l	5.00	1.04	1	"	"	"	"	"	Х
67-72-1	Hexachloroethane	< 5.00		μg/l	5.00	0.639	1	"	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 5.00		μg/l	5.00	0.580	1	"	"	"	"	"	Χ
78-59-1	Isophorone	< 5.00		μg/l	5.00	0.586	1	"	"	"		"	Х
91-20-3	Naphthalene	< 5.00		μg/l	5.00	0.685	1	"	"	"		"	Х
98-95-3	Nitrobenzene	< 5.00		μg/l	5.00	0.690	1	"	"	"		"	Х
88-75-5	2-Nitrophenol	< 5.00		μg/l	5.00	0.465	1	"	"				Х
100-02-7	4-Nitrophenol	< 5.00		μg/l	5.00	0.838	1	"	"				Х
62-75-9	N-Nitrosodimethylamine	< 5.00		μg/l	5.00	0.673	1	"	"	"		"	Х
621-64-7	N-Nitrosodi-n-propylamine	< 5.00		μg/l	5.00	0.578	1	"	"	"			Х
86-30-6	N-Nitrosodiphenylamine	< 5.00		μg/l	5.00	0.651	1	"	"	"			Х
87-86-5	Pentachlorophenol	< 5.00		μg/l	5.00	0.373	1	"	"	"			X
85-01-8	Phenanthrene	< 5.00		μg/l	5.00	0.586	1	"	"	"			X
108-95-2	Phenol	< 5.00			5.00	0.645	1	"					X
129-00-0		< 5.00		µg/l	5.00	0.643	1	"				"	X
129-00-0	Pyrene			μg/l				"	"	"	"		
	1,2,4-Trichlorobenzene	< 5.00		μg/l	5.00	0.687	1	"	"	"			X
88-06-2	2,4,6-Trichlorophenol	< 5.00		μg/l	5.00	0.518	1		"				X
-	recoveries:												
321-60-8	2-Fluorobiphenyl	45			30-13			"	"	"	"	"	
367-12-4	2-Fluorophenol	26			15-11			"	"	"	"	"	
4165-60-0	Nitrobenzene-d5	33			30-13	0 %		"	"	"	"	"	

MW-5 SC39416-	entification 01			<u>Client F</u> 03-224		•	<u>Matrix</u> Ground Wa		ection Date 3-Sep-17 13			ceived Sep-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cei
Semivolati	le Organic Compounds by G	GCMS											
<u>Semivolati</u>	le Organic Compounds												
4165-62-2	Phenol-d5	20			15-11	0 %		EPA 625	21-Sep-17	27-Sep-17	MSL	1716152	
1718-51-0	Terphenyl-dl4	47			30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	43			15-11	0 %		"	"	"	"	"	
Semivolati	le Organic Compounds by C	GC											
olychlorir	nated Biphenyls												
2674-11-2	Aroclor-1016	< 0.190		μg/l	0.190	0.0990	1	EPA 608	25-Sep-17	25-Sep-17	IMR	1716296	X
1104-28-2	Aroclor-1221	< 0.190		μg/l	0.190	0.110	1		"	"			X
1141-16-5	Aroclor-1232	< 0.190		μg/l	0.190	0.106	1	"	"	"		"	X
3469-21-9	Aroclor-1242	< 0.190		μg/l	0.190	0.102	1	"	"	"	"	"	Х
2672-29-6	Aroclor-1248	< 0.190		μg/l	0.190	0.130	1	"	"				Х
1097-69-1	Aroclor-1254	< 0.190		μg/l	0.190	0.110	1		"	"	"	"	Х
1096-82-5	Aroclor-1260	< 0.190		μg/l	0.190	0.0810	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 0.190		μg/l	0.190	0.0853	1	"		"			
1100-14-4	Aroclor-1268	< 0.190		μg/l	0.190	0.0871	1	"		"	"	"	
Surrogate r													_
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	45			30-15	50 %		"	"		"	"	
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	45			30-15	50 %		"	u	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	55			30-15	50 %			"	"			
051-24-3	Decachlorobiphenyl (Sr) [2C]	50			30-15	50 %		"	u	"	"	"	
General Cl	nemistry Parameters												
	Flashpoint	>150		°F			1	SW846 1010A	26-Sep-17	26-Sep-17	BD	1716461	
6887-00-6	Chloride	98.0	GS1, D	mg/l	4.00	0.398	4	EPA 300.0	20-Sep-17	20-Sep-17	LNB	1716144	. >
8540-29-9	Hexavalent Chromium	< 0.005	HT2	mg/l	0.005	0.002	1	SM3500-Cr-B (11)/7196A	20-Sep-17 17:32	20-Sep-17 17:48	TN	1716158	
7-12-5	Cyanide (total)	< 0.00500		mg/l	0.00500	0.00474	1	EPA 335.4 / SW846 9012B	21-Sep-17	21-Sep-17	RLT	1716181	>
	рН	6.39	pН	pH Units			1	ASTM D 1293-99B	20-Sep-17 13:20	21-Sep-17 14:39	TN	1716162	>
Reactivity	Cyanide/Sulfide												
	Reactivity	See Narrative		mg/l			1	SW846 Ch. 7.3	21-Sep-17	22-Sep-17	TN	1716211	
7-12-5	Reactive Cyanide	< 25.0		mg/l	25.0	25.0	1	"	"	"	"	"	
8496-25-8	Reactive Sulfide	< 50.0		mg/l	50.0	50.0	1	· ·	"	"	"	"	
Subcontrac	Total Suspended Solids	62.3		mg/l	0.5	0.2	1	SM2540D (11)	21-Sep-17	22-Sep-17	CMB	1716177	×
Prepared I	oy method 402922		- د د رښ	770.07									
Inalysis pe	rformed by Phoenix Environn O&G, Non-polar Material	nental Labs, Ir < 1.5	ıc. * - MAC	7007 mg/L	1.5	1.5	1.1	E1664A		26-Sep-17	M-CT007	402922A	
Inal-vi	whomand by Dhamir Friin	nontal I =L = 1	. * 1//0	7007					13:20	06:45			
ınaıysıs pe	rformed by Phoenix Environn Hardness (CaCO3)	nental Labs, Ir 212	ис. ** - МАС	1007 mg/L	0.1	0.1	1	E200.7		26-Sep-17	M-CT007	' '[nonel'	
Prepared I	by method 402779			g/L	V. I	V. I	,	_200.1		11:28	51007	[·ione]	
	rformed by Phoenix Environn	nental Labs, Ir	nc. * - MAC	T007									
'664-41-7	Ammonia as Nitrogen	4.44		mg/L	0.05	0.05	1	E350.1	"	26-Sep-17 12:43	M-CT007	402779A	

Sample Ic MW-5 SC39416-	dentification		·	ient Project : 3-224773.05	_	Matrix Ground W		ection Date S-Sep-17 13			<u>seived</u> Sep-17	
CAS No.	Analyte(s)	Result	Flag Un	its *RD	L MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
	cted Analyses by method 402630)-SM3113B/S										
Analysis pe	erformed by Phoenix	Environmental Labs, Inc	c. * - MACT007									
7440-28-0	Thallium	< 0.001	mç	g/L 0.00	1 0.001	1	SM3113B/SW70 10-0	22-Sep-17	25-Sep-17 17:46	M-CT007	402630A	
	acted Analyses by method 402432	<u> </u>										
Analysis pe	erformed by Phoenix	Environmental Labs, Inc	e. * - MACT007									
7440-36-0	Antimony	< 0.005	mç	g/L 0.00	5 0.005	1	SW6010C	21-Sep-17	24-Sep-17 05:53	M-CT007	402432A	(
7440-38-2	Arsenic	0.090	mg	g/L 0.00	4 0.004	1	"	"	"	"	"	
7440-41-7	Beryllium	< 0.001	mg	g/L 0.00	1 0.001	1	"	"	"	"	"	
7440-43-9	Cadmium	0.001	mg	g/L 0.00	1 0.001	1	"	"	"	"	"	
7440-47-3	Chromium	< 0.001	mç	g/L 0.00	1 0.001	1	"	"	"	"	"	
7440-50-8	Copper	< 0.005	mg	g/L 0.00	5 0.005	1	"	"	"	"	"	
7439-89-6	Iron	45.2	mç	g/L 0.01	0.010	1	"	"	"	"	"	
7439-92-1	Lead	< 0.002	mg	g/L 0.00	2 0.002	1	"	"	"	"	"	
7782-49-2	Selenium	0.011	mç	g/L 0.01	0.010	1	"	"	"	"	"	
7440-22-4	Silver	< 0.001	mg	g/L 0.00	1 0.001	1	"	"	"	"	"	
7440-66-6	Zinc	0.003	mç	g/L 0.00	2 0.002	1	"	"	"	"	"	
7440-02-0	Nickel	0.006	mç	g/L 0.00	1 0.001	1	п	"	26-Sep-17 10:40	"	"	
<u>Prepared</u>	by method 402491	<u>l-</u>										
Analysis pe	erformed by Phoenix	Environmental Labs, Inc	c. * - MACT007									
7439-97-6	Mercury	< 0.0002	mg	g/L 0.000	0.0002	1	SW7470A	22-Sep-17	22-Sep-17 14:19	M-CT007	402491A	(

12-Dec-17 13:53 Page 17 of 41

Sample Io River-1 SC39416	dentification -02			Client P 03-224	-		Matrix Surface W		ection Date -Sep-17 14			ceived Sep-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
General C	Chemistry Parameters												
	рН	7.22	рН	pH Units			1	ASTM D 1293-99B	20-Sep-17 13:20	21-Sep-17 14:39	TN	1716162	X
Subcontra	acted Analyses												
Analysis p	erformed by Phoenix Enviro	onmental Labs,	Inc. * - MAC	T007									
	Hardness (CaCO3)	25.2		mg/L	0.1	0.1	1	E200.7	18-Sep-17 14:40	26-Sep-17 11:28	M-CT007	'[none]'	
<u>Prepared</u>	by method 402779												
	erformed by Phoenix Enviro	onmental Labs,	Inc. * - MAC	T007									
7664-41-7	Ammonia as Nitrogen	0.24		mg/L	0.05	0.05	1	E350.1	"	26-Sep-17 12:44	M-CT007	402779A	t.
	by method 402630-SM3	<u></u>											
	erformed by Phoenix Enviro		Inc. * - MAC	T007									
7440-28-0	Thallium	< 0.001		mg/L	0.001	0.001	1	SM3113B/SW70 10-0	22-Sep-17	25-Sep-17 17:51	M-CT007	402630A	·
	acted Analyses by method 402432-												
	erformed by Phoenix Enviro	onmental Labs,	Inc. * - MAC	T007									
7440-36-0	Antimony	< 0.005		mg/L	0.005	0.005	1	SW6010C	21-Sep-17	24-Sep-17 05:56	M-CT007	402432A	
7440-38-2	Arsenic	< 0.004		mg/L	0.004	0.004	1	"	"			"	
7440-41-7	Beryllium	< 0.001		mg/L	0.001	0.001	1	u u	"	"		"	
7440-43-9	Cadmium	< 0.001		mg/L	0.001	0.001	1	"	"			"	
7440-47-3	Chromium	< 0.001		mg/L	0.001	0.001	1	"	"			"	
7440-50-8	Copper	< 0.005		mg/L	0.005	0.005	1	u u	"	"		"	
7439-92-1	Lead	< 0.002		mg/L	0.002	0.002	1	"	"	"	"	"	
7782-49-2	Selenium	< 0.010		mg/L	0.010	0.010	1	"	"	"	"	"	
7440-22-4	Silver	< 0.001		mg/L	0.001	0.001	1	"	"	"	"	"	
7440-66-6	Zinc	0.005		mg/L	0.002	0.002	1	"	"	"	"	"	
7440-02-0	Nickel	0.002		mg/L	0.001	0.001	1	"	"	26-Sep-17 10:43	"	"	
	by method 402491-												
Analysis p	erformed by Phoenix Enviro	onmental Labs,	Inc. * - MAC	T007									

7439-97-6 Mercury

< 0.0002

mg/L

0.0002 0.0002

1

SW7470A

22-Sep-17 22-Sep-17 M-CT007 402491A 14:21

12-Dec-17 13:53 Page 18 of 41

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
CPA 524.2										
Batch 1716332 - SW846 5030 Water MS										
Blank (1716332-BLK1)					Pre	epared & Ai	nalyzed: 23-	Sep-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.50		μg/l	0.50		,	,			
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.50		μg/l	0.50						
Benzene	< 0.50		μg/l	0.50						
Bromobenzene	< 0.50		μg/l	0.50						
Bromochloromethane	< 0.50		μg/l	0.50						
Bromodichloromethane	< 0.50		μg/l	0.50						
Bromoform	< 0.50		μg/l	0.50						
Bromomethane	< 0.50		μg/l	0.50						
2-Butanone (MEK)	< 2.00		μg/l	2.00						
n-Butylbenzene	< 0.50		μg/l	0.50						
sec-Butylbenzene	< 0.50			0.50						
tert-Butylbenzene	< 0.50		μg/l	0.50						
Carbon disulfide	< 0.50		μg/l							
			μg/l	0.50						
Carbon tetrachloride	< 0.50		μg/l	0.50						
Chloropthaga	< 0.50		μg/l	0.50						
Chloroethane	< 0.50		μg/l "	0.50						
Chloroform	< 0.50		μg/l 	0.50						
Chloromethane	< 0.50		μg/l	0.50						
2-Chlorotoluene	< 0.50		μg/l	0.50						
4-Chlorotoluene	< 0.50		μg/l	0.50						
1,2-Dibromo-3-chloropropane	< 0.50		μg/l	0.50						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50						
Dibromomethane	< 0.50		μg/l	0.50						
1,2-Dichlorobenzene	< 0.50		μg/l	0.50						
1,3-Dichlorobenzene	< 0.50		μg/l	0.50						
1,4-Dichlorobenzene	< 0.50		μg/l	0.50						
Dichlorodifluoromethane (Freon12)	< 0.50		μg/l	0.50						
1,1-Dichloroethane	< 0.50		μg/l	0.50						
1,2-Dichloroethane	< 0.50		μg/l	0.50						
1,1-Dichloroethene	< 0.50		μg/l	0.50						
cis-1,2-Dichloroethene	< 0.50		μg/l	0.50						
trans-1,2-Dichloroethene	< 0.50		μg/l	0.50						
1,2-Dichloropropane	< 0.50		μg/l	0.50						
1,3-Dichloropropane	< 0.50		μg/l	0.50						
2,2-Dichloropropane	< 0.50		μg/l	0.50						
1,1-Dichloropropene	< 0.50		μg/l	0.50						
cis-1,3-Dichloropropene	< 0.50		μg/l	0.50						
trans-1,3-Dichloropropene	< 0.50		μg/l	0.50						
Ethylbenzene	< 0.50		μg/l	0.50						
Hexachlorobutadiene	< 0.50		μg/l	0.50						
2-Hexanone (MBK)	< 2.00		μg/l	2.00						
Isopropylbenzene	< 0.50		μg/l	0.50						
4-Isopropyltoluene	< 0.50		μg/l	0.50						
Methyl tert-butyl ether	< 0.50		μg/l	0.50						
4-Methyl-2-pentanone (MIBK)	< 2.00		μg/l	2.00						
Methylene chloride	< 0.50		μg/l	0.50						
Naphthalene	< 0.50		μg/l	0.50						
n-Propylbenzene	< 0.50		μg/l	0.50						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 524.2		•			•					
Batch 1716332 - SW846 5030 Water MS										
Blank (1716332-BLK1)					Pre	epared & Ar	nalyzed: 23-	-Sep-17		
Styrene	< 0.50		μg/l	0.50			•			
1,1,1,2-Tetrachloroethane	< 0.50		μg/l	0.50						
1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50						
Tetrachloroethene	< 0.50		μg/l	0.50						
Toluene	< 0.50		μg/l	0.50						
1,2,3-Trichlorobenzene	< 0.50		μg/l	0.50						
1,2,4-Trichlorobenzene	< 0.50		μg/l	0.50						
1,1,1-Trichloroethane	< 0.50		μg/l	0.50						
1,1,2-Trichloroethane	< 0.50		μg/l	0.50						
Trichloroethene	< 0.50		μg/l	0.50						
Trichlorofluoromethane (Freon 11)	< 0.50		μg/l	0.50						
1,2,3-Trichloropropane	< 0.50		μg/l	0.50						
1,2,4-Trimethylbenzene	< 0.50		μg/l	0.50						
1,3,5-Trimethylbenzene	< 0.50		μg/l	0.50						
Vinyl chloride	< 0.50		μg/l	0.50						
m,p-Xylene	< 0.50		μg/l	0.50						
o-Xylene	< 0.50		μg/l	0.50						
Tetrahydrofuran	< 2.00		μg/l	2.00						
Tert-amyl methyl ether	< 0.50		μg/l	0.50						
Ethyl tert-butyl ether	< 0.50		μg/l	0.50						
Di-isopropyl ether	< 0.50		μg/l	0.50						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
Surrogate: 4-Bromofluorobenzene	45.6		μg/l		50.0		91	80-120		
Surrogate: Toluene-d8	48.7		μg/l		50.0		97	80-120		
Surrogate: 1,2-Dichloroethane-d4	52.7		μg/l		50.0		105	80-120		
Surrogate: Dibromofluoromethane	50.5		μg/l		50.0		101	80-120		
LCS (1716332-BS1)					Pre	epared & Ar	nalyzed: 23-	-Sep-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.8		μg/l		20.0	•	89	80-120		
Acetone	18.7		μg/l		20.0		93	70-130		
Acrylonitrile	19.2		μg/l		20.0		96	70-130		
Benzene	20.2		μg/l		20.0		101	80-120		
Bromobenzene	21.7		μg/l		20.0		109	80-120		
Bromochloromethane	17.8		μg/l		20.0		89	80-120		
Bromodichloromethane	21.5		μg/l		20.0		107	80-120		
Bromoform	20.6		μg/l		20.0		103	80-120		
Bromomethane	17.0		μg/l		20.0		85	80-120		
2-Butanone (MEK)	21.5		μg/l		20.0		108	70-130		
n-Butylbenzene	19.8		μg/l		20.0		99	80-120		
sec-Butylbenzene	19.0		μg/l		20.0		95	80-120		
tert-Butylbenzene	19.9		μg/l		20.0		100	80-120		
Carbon disulfide	15.9		μg/l		20.0		80	70-130		
Carbon tetrachloride	20.7		μg/l		20.0		104	80-120		
Chlorobenzene	20.4		μg/l		20.0		102	80-120		
Chloroethane	17.5		μg/l		20.0		88	80-120		
Chloroform	18.9		μg/l		20.0		94	80-120		
Chloromethane	17.8		μg/l		20.0		89	80-120		
2-Chlorotoluene	19.6		μg/l		20.0		98	80-120		
4-Chlorotoluene	19.9		μg/l		20.0		100	80-120		
1,2-Dibromo-3-chloropropane	20.7		μg/l		20.0		103	80-120		
.,_ 2.2.01110 0 officiopropario	20.1		۳ 9 ′'		_5.0		. 50	00 120		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
EPA 524.2										
Batch 1716332 - SW846 5030 Water MS										
LCS (1716332-BS1)					Pre	epared & Ar	nalyzed: 23-	Sep-17		
1,2-Dibromoethane (EDB)	21.5		μg/l		20.0		107	80-120		
Dibromomethane	20.4		μg/l		20.0		102	80-120		
1,2-Dichlorobenzene	21.3		μg/l		20.0		107	80-120		
1,3-Dichlorobenzene	19.6		μg/l		20.0		98	80-120		
1,4-Dichlorobenzene	19.7		μg/l		20.0		98	80-120		
Dichlorodifluoromethane (Freon12)	15.4	QC2	μg/l		20.0		77	80-120		
1,1-Dichloroethane	17.9		μg/l		20.0		90	80-120		
1,2-Dichloroethane	20.5		μg/l		20.0		103	80-120		
1,1-Dichloroethene	17.4		μg/l		20.0		87	80-120		
cis-1,2-Dichloroethene	17.4		μg/l		20.0		90	80-120		
trans-1,2-Dichloroethene	17.7				20.0		88	80-120		
			μg/l							
1,2-Dichloropropage	19.6		μg/l		20.0 20.0		98 100	80-120 80-120		
1,3-Dichloropropane	19.9 19.3		μg/l		20.0		97	80-120 80-120		
2,2-Dichloropropane			μg/l							
1,1-Dichloropropene	18.5		μg/l		20.0		93	80-120		
cis-1,3-Dichloropropene	20.4		μg/l "		20.0		102	80-120		
trans-1,3-Dichloropropene	21.0		μg/l		20.0		105	80-120		
Ethylbenzene	19.5		μg/l		20.0		97	80-120		
Hexachlorobutadiene	21.0		μg/l		20.0		105	80-120		
2-Hexanone (MBK)	20.2		μg/l		20.0		101	70-130		
Isopropylbenzene	20.3		μg/l		20.0		102	80-120		
4-Isopropyltoluene	19.6		μg/l		20.0		98	80-120		
Methyl tert-butyl ether	20.4		μg/l		20.0		102	80-120		
4-Methyl-2-pentanone (MIBK)	20.4		μg/l		20.0		102	70-130		
Methylene chloride	17.4		μg/l		20.0		87	80-120		
Naphthalene	20.0		μg/l		20.0		100	80-120		
n-Propylbenzene	19.1		μg/l		20.0		95	80-120		
Styrene	20.0		μg/l		20.0		100	80-120		
1,1,1,2-Tetrachloroethane	22.2		μg/l		20.0		111	80-120		
1,1,2,2-Tetrachloroethane	21.3		μg/l		20.0		106	80-120		
Tetrachloroethene	20.4		μg/l		20.0		102	80-120		
Toluene	19.7		μg/l		20.0		98	80-120		
1,2,3-Trichlorobenzene	20.9		μg/l		20.0		104	80-120		
1,2,4-Trichlorobenzene	20.4		μg/l		20.0		102	80-120		
1,1,1-Trichloroethane	20.9		μg/l		20.0		104	80-120		
1,1,2-Trichloroethane	20.5		μg/l		20.0		102	80-120		
Trichloroethene	20.1		μg/l		20.0		100	80-120		
Trichlorofluoromethane (Freon 11)	18.1		μg/l		20.0		90	80-120		
1,2,3-Trichloropropane	21.4				20.0		107	80-120		
1,2,4-Trimethylbenzene	20.4		μg/l		20.0		107	80-120		
•			μg/l							
1,3,5-Trimethylbenzene	19.8		μg/l		20.0		99	80-120		
Vinyl chloride	17.8		μg/l		20.0		89	80-120		
m,p-Xylene	18.9		μg/l		20.0		95	80-120		
o-Xylene	19.6		μg/l		20.0		98	80-120		
Tetrahydrofuran	19.3		μg/l "		20.0		97	70-130		
Tert-amyl methyl ether	18.4		μg/l		20.0		92	70-130		
Ethyl tert-butyl ether	20.4		μg/l		20.0		102	70-130		
Di-isopropyl ether	18.5		μg/l		20.0		93	70-130		
Tert-Butanol / butyl alcohol	206		μg/l		200		103	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source	%REC	%REC Limits	RPD	RPD Limit
naiyte(s)	Resuit	riag	Units	*KDL	Level	Result	%KEC	Limits	KPD	Limi
PA 524.2										
atch 1716332 - SW846 5030 Water MS										
LCS (1716332-BS1)					Pre	epared & Ar	nalyzed: 23-	Sep-17		
Surrogate: Toluene-d8	49.1		μg/l		50.0		98	80-120		
Surrogate: 1,2-Dichloroethane-d4	49.9		μg/l		50.0		100	80-120		
Surrogate: Dibromofluoromethane	47.9		μg/l		50.0		96	80-120		
PA 624										
eatch 1716230 - SW846 5030 Water MS										
Blank (1716230-BLK1)					Pre	epared & Ar	nalyzed: 22-	Sep-17		
Acetone	< 10.0		μg/l	10.0		•				
Benzene	< 1.0		μg/l	1.0						
Bromodichloromethane	< 1.0		μg/l	1.0						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
Carbon disulfide	< 5.0		μg/l	5.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 1.0		μg/l	1.0						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						
cis-1,2-Dichloroethene	< 1.0		μg/l	1.0						
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 1.0		μg/l	1.0						
trans-1,3-Dichloropropene	< 1.0		μg/l	1.0						
Ethylbenzene	< 1.0		μg/l	1.0						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 10.0		μg/l	10.0						
Styrene	< 1.0		μg/l	1.0						
1,1,2,2-Tetrachloroethane	< 1.0		μg/l	1.0						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
1,4-Dioxane	< 20.0		μg/l	20.0						

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
CPA 624										
Satch 1716230 - SW846 5030 Water MS										
Blank (1716230-BLK1)					Pre	epared & A	nalyzed: 22-	Sep-17		
Surrogate: Toluene-d8	50.8		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.1		μg/l		50.0		108	70-130		
Surrogate: Dibromofluoromethane	54.7		μg/l		50.0		109	70-130		
LCS (1716230-BS1)			10		Pre	epared & A	nalyzed: 22-	Sep-17		
Acetone	23.3		μg/l		20.0	,	116	70-130		
Benzene	22.0		μg/l		20.0		110	70-130		
Bromodichloromethane	20.1		μg/l		20.0		100	35-155		
Bromoform	18.9		μg/l		20.0		94	45-169		
Bromomethane	22.6		μg/l		20.0		113	1-242		
2-Butanone (MEK)	17.0		μg/l		20.0		85	70-130		
Carbon disulfide	20.9		μg/l		20.0		104	70-130		
Carbon tetrachloride	21.1		μg/l		20.0		105	70-140		
Chlorobenzene	21.1		μg/l		20.0		105	70-130		
Chloroethane	20.0		μg/l		20.0		100	14-230		
Chloroform	19.8		μg/l		20.0		99	51-138		
Chloromethane	19.5		μg/l		20.0		97	1-273		
Dibromochloromethane	19.8		μg/l		20.0		99	53-149		
Dibromomethane	19.7		μg/l		20.0		98	70-130		
1,2-Dichlorobenzene	19.8		μg/l		20.0		99	18-190		
1,3-Dichlorobenzene	20.6		μg/l		20.0		103	59-156		
1,4-Dichlorobenzene	20.0		μg/l		20.0		100	18-190		
1,1-Dichloroethane	20.1		μg/l		20.0		100	59-155		
1,2-Dichloroethane	19.6		μg/l		20.0		98	49-155		
1,1-Dichloroethene	20.2		μg/l		20.0		101	70-130		
cis-1,2-Dichloroethene	21.6		μg/l		20.0		108	70-130		
trans-1,2-Dichloroethene	20.5		μg/l		20.0		102	54-156		
1,2-Dichloropropane	19.9		μg/l		20.0		99	1-210		
cis-1,3-Dichloropropene	19.0		μg/l		20.0		95	1-227		
trans-1,3-Dichloropropene	18.7		μg/l		20.0		94	17-183		
Ethylbenzene	21.1		μg/l		20.0		106	37-162		
2-Hexanone (MBK)	15.4		μg/l		20.0		77	70-130		
Methyl tert-butyl ether	19.6		μg/l		20.0		98	70-130		
4-Methyl-2-pentanone (MIBK)	17.9		μg/l		20.0		89	70-130		
Methylene chloride	18.2		μg/l		20.0		91	1-221		
Styrene	19.8		μg/l		20.0		99	70-130		
1,1,2,2-Tetrachloroethane	19.7		μg/l		20.0		99	46-157		
Tetrachloroethene	19.6		μg/l		20.0		98	64-148		
Toluene	20.1		μg/l		20.0		101	70-130		
1,1,1-Trichloroethane	20.6		μg/l		20.0		103	52-162		
1,1,2-Trichloroethane	19.6		μg/l		20.0		98	52-150		
Trichloroethene	19.9		μg/l		20.0		100	71-157		
Trichlorofluoromethane (Freon 11)	20.2		μg/l		20.0		101	17-181		
Vinyl chloride	20.3		μg/l		20.0		101	1-251		
m,p-Xylene	19.7		μg/l		20.0		99	70-130		
o-Xylene	19.1		μg/l		20.0		95	70-130		
1,4-Dioxane	177		μg/l		200		89	70-130		
-										
Surrogate: 4-Bromofluorobenzene	54.2 49.5		µg/l		50.0		108	70-130 70-130		
Surrogate: 1.2 Dichloroethane d4	48.5 47.7		μg/l		50.0		97 05	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	47.7 47.7		µg/l µg/l		50.0 50.0		95 95	70-130 70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
EPA 624										
Batch 1716230 - SW846 5030 Water MS										
LCS Dup (1716230-BSD1)					Pre	epared & Ar	nalyzed: 22-	-Sep-17		
Acetone	24.5		μg/l		20.0		122	70-130	5	30
Benzene	21.6		μg/l		20.0		108	70-130	2	30
Bromodichloromethane	19.8		μg/l		20.0		99	35-155	2	30
Bromoform	19.2		μg/l		20.0		96	45-169	1	30
Bromomethane	22.2		μg/l		20.0		111	1-242	2	30
2-Butanone (MEK)	19.2		μg/l		20.0		96	70-130	12	30
Carbon disulfide	20.0		μg/l		20.0		100	70-130	4	30
Carbon tetrachloride	20.9				20.0		105	70-130	0.8	30
			μg/l							30
Chlorotheas	20.0		μg/l		20.0		100	70-130	5	
Chloroethane	19.1		μg/l		20.0		96	14-230	4	30
Chloroform	19.2		μg/l		20.0		96	51-138	3	30
Chloromethane	18.6		μg/l		20.0		93	1-273	5	30
Dibromochloromethane	19.2		μg/l		20.0		96	53-149	3	30
Dibromomethane	19.6		μg/l		20.0		98	70-130	0.2	25
1,2-Dichlorobenzene	19.2		μg/l		20.0		96	18-190	3	30
1,3-Dichlorobenzene	19.6		μg/l		20.0		98	59-156	5	30
1,4-Dichlorobenzene	19.6		μg/l		20.0		98	18-190	2	30
1,1-Dichloroethane	19.8		μg/l		20.0		99	59-155	1	30
1,2-Dichloroethane	19.7		μg/l		20.0		98	49-155	0.6	30
1,1-Dichloroethene	19.4		μg/l		20.0		97	70-130	4	30
cis-1,2-Dichloroethene	20.9		μg/l		20.0		104	70-130	3	30
trans-1,2-Dichloroethene	19.6		μg/l		20.0		98	54-156	5	30
1,2-Dichloropropane	19.7		μg/l		20.0		98	1-210	1	30
cis-1,3-Dichloropropene	18.3		μg/l		20.0		92	1-227	4	30
trans-1,3-Dichloropropene	18.3		μg/l		20.0		91	17-183	3	30
Ethylbenzene	20.2		μg/l		20.0		101	37-162	4	30
2-Hexanone (MBK)	18.8		μg/l		20.0		94	70-130	20	30
Methyl tert-butyl ether	20.5		μg/l		20.0		103	70-130	5	30
4-Methyl-2-pentanone (MIBK)	18.4		μg/l		20.0		92	70-130	3	30
Methylene chloride	18.6		μg/l		20.0		93	1-221	2	30
Styrene	18.8		μg/l		20.0		94	70-130	5	30
1,1,2,2-Tetrachloroethane	20.0		μg/l		20.0		100	46-157	1	30
Tetrachloroethene	19.0		μg/l		20.0		95	64-148	3	30
Toluene	20.0		μg/l		20.0		100	70-130	0.5	30
1,1,1-Trichloroethane	20.0		μg/l		20.0		100	52-162	3	30
1,1,2-Trichloroethane	19.9				20.0		100	52-150	2	30
Trichloroethene	19.9		µg/l		20.0		96	71-157	4	30
			μg/l				98			30
Trichlorofluoromethane (Freon 11)	19.6		μg/l		20.0			17-181	3	
Vinyl chloride	19.4		μg/l "		20.0		97	1-251	5	30
m,p-Xylene	18.3		μg/l		20.0		92	70-130	8	30
o-Xylene	18.2		μg/l		20.0		91	70-130	5	30
1,4-Dioxane	198		μg/l		200		99	70-130	11	25
Surrogate: 4-Bromofluorobenzene	53.2		μg/l		50.0		106	70-130		
Surrogate: Toluene-d8	49.5		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.9		μg/l		50.0		96	70-130		
Surrogate: Dibromofluoromethane	48.0		μg/l		50.0		96	70-130		
W846 8260C										
atch 1716332 - SW846 5030 Water MS										
Blank (1716332-BLK1)					Pre	epared & Ar	nalyzed: 23-	-Sep-17		
Ethanol	< 200		μg/l	200	_		_			

					Spike	Source		%REC		RPE
analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
W846 8260C										
atch 1716332 - SW846 5030 Water MS										
Blank (1716332-BLK1)					Pre	epared & Ar	nalyzed: 23-	-Sep-17		
Surrogate: 4-Bromofluorobenzene	45.6		μg/l		50.0		91	70-130		
Surrogate: Toluene-d8	48.7		μg/l		50.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.7		μg/l		50.0		105	70-130		
Surrogate: Dibromofluoromethane	50.5		μg/l		50.0		101	70-130		
LCS (1716332-BS1)					Pre	epared & Ar	nalyzed: 23-	-Sep-17		
Ethanol	377		μg/l		400		94	70-130		
Surrogate: 4-Bromofluorobenzene	52.1		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	49.1		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.9		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	47.9		μg/l		50.0		96	70-130		
LCS Dup (1716332-BSD1)					Pre	epared & Ar	nalyzed: 23-	-Sep-17		
Ethanol	370		μg/l		400		93	70-130	2	20
Surrogate: 4-Bromofluorobenzene	52.9		μg/l		50.0		106	70-130		
Surrogate: Toluene-d8	49.5		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.9		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	47.2		μg/l		50.0		94	70-130		

12-Dec-17 13:53 Page 25 of 41

Semivolatile Organic Compounds by GCMS - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
PA 625										
atch 1716152 - SW846 3510C										
Blank (1716152-BLK1)					Pre	epared: 21-	Sep-17 An	alyzed: 22-S	Sep-17	
Acenaphthene	< 5.05		μg/l	5.05						
Acenaphthylene	< 5.05		μg/l	5.05						
Anthracene	< 5.05		μg/l	5.05						
Benzidine	< 5.05		μg/l	5.05						
Benzo (a) anthracene	< 5.05		μg/l	5.05						
Benzo (a) pyrene	< 5.05		μg/l	5.05						
Benzo (b) fluoranthene	< 5.05		μg/l	5.05						
Benzo (g,h,i) perylene	< 5.05		μg/l	5.05						
Benzo (k) fluoranthene	< 5.05		μg/l	5.05						
Bis(2-chloroethoxy)methane	< 5.05		μg/l	5.05						
Bis(2-chloroethyl)ether	< 5.05		μg/l	5.05						
Bis(2-chloroisopropyl)ether	< 5.05		μg/l	5.05						
Bis(2-ethylhexyl)phthalate	< 5.05		μg/l	5.05						
4-Bromophenyl phenyl ether	< 5.05		μg/l	5.05						
Butyl benzyl phthalate	< 5.05		μg/l	5.05						
4-Chloro-3-methylphenol	< 5.05		μg/l	5.05						
2-Chloronaphthalene	< 5.05		μg/l	5.05						
2-Chlorophenol	< 5.05		μg/l	5.05						
4-Chlorophenyl phenyl ether	< 5.05		μg/l	5.05						
Chrysene	< 5.05		μg/l	5.05						
Dibenzo (a,h) anthracene	< 5.05		μg/l	5.05						
1,2-Dichlorobenzene	< 5.05		μg/l	5.05						
1,3-Dichlorobenzene	< 5.05		μg/l	5.05						
1,4-Dichlorobenzene	< 5.05		μg/l	5.05						
3,3'-Dichlorobenzidine	< 5.05		μg/l	5.05						
2,4-Dichlorophenol	< 5.05		μg/l	5.05						
Diethyl phthalate	< 5.05		μg/l	5.05						
Dimethyl phthalate	< 5.05		μg/l	5.05						
2,4-Dimethylphenol	< 5.05		μg/l	5.05						
Di-n-butyl phthalate	< 5.05		μg/l	5.05						
4,6-Dinitro-2-methylphenol	< 5.05		μg/l	5.05						
2,4-Dinitrophenol	< 5.05		μg/l	5.05						
2,4-Dinitrotoluene	< 5.05		μg/l	5.05						
2,6-Dinitrotoluene	< 5.05		μg/l	5.05						
Di-n-octyl phthalate	< 5.05		μg/l	5.05						
Fluoranthene	< 5.05		μg/l	5.05						
Fluorene	< 5.05		μg/l	5.05						
Hexachlorobenzene	< 5.05		μg/l	5.05						
Hexachlorobutadiene	< 5.05		μg/l	5.05						
Hexachlorocyclopentadiene	< 5.05		μg/l	5.05						
Hexachloroethane	< 5.05		μg/l	5.05						
Indeno (1,2,3-cd) pyrene	< 5.05		μg/l	5.05						
Isophorone	< 5.05		μg/l	5.05						
Naphthalene	< 5.05		μg/l	5.05						
Nitrobenzene	< 5.05		μg/l	5.05						
2-Nitrophenol	< 5.05		μg/l	5.05						
4-Nitrophenol	< 5.05		μg/l	5.05						
N-Nitrosodimethylamine	< 5.05		μg/l	5.05						
N-Nitrosodi-n-propylamine	< 5.05		μg/l	5.05						
N-Nitrosodiphenylamine	< 5.05		μg/l	5.05						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
PA 625										
atch 1716152 - SW846 3510C										
Blank (1716152-BLK1)					Pre	epared: 21-	Sep-17 An	alyzed: 22-S	Sep-17	
Pentachlorophenol	< 5.05		μg/l	5.05			<u> </u>	a.,200. 22 c		
Phenanthrene	< 5.05		μg/l	5.05						
Phenol	< 5.05		μg/l	5.05						
Pyrene	< 5.05		μg/l	5.05						
1,2,4-Trichlorobenzene	< 5.05		μg/l	5.05						
2,4,6-Trichlorophenol	< 5.05		μg/l	5.05						
Surrogate: 2-Fluorobiphenyl	26.8		μg/l		50.5		53	30-130		
Surrogate: 2-Fluorophenol	17.8		μg/l		50.5		35	15-110		
Surrogate: Nitrobenzene-d5	25.1		μg/l		50.5		50	30-130		
Surrogate: Phenol-d5	13.5		μg/l		50.5		27	15-110		
Surrogate: Terphenyl-dl4	33.9		μg/l		50.5		67	30-130		
Surrogate: 2,4,6-Tribromophenol	31.8		μg/l		50.5		63	15-110		
•	37.0		۳3 [,] ۱			anared: 21		alyzed: 27-S	Sen_17	
Blank (1716152-BLK3)	. E ∩ E			5 OF	<u> 116</u>	εμαιεα. ∠1-	oep-1/ An	aiy260. 21-8	DED-11	
Acenaphthylone	< 5.05		μg/l	5.05						
Actions	< 5.05		μg/l	5.05						
Anthracene	< 5.05		μg/l 	5.05						
Benzidine	< 5.05		μg/l	5.05						
Benzo (a) anthracene	< 5.05		μg/l	5.05						
Benzo (a) pyrene	< 5.05		μg/l	5.05						
Benzo (b) fluoranthene	< 5.05		μg/l	5.05						
Benzo (g,h,i) perylene	< 5.05		μg/l	5.05						
Benzo (k) fluoranthene	< 5.05		μg/l	5.05						
Bis(2-chloroethoxy)methane	< 5.05		μg/l	5.05						
Bis(2-chloroethyl)ether	< 5.05		μg/l	5.05						
Bis(2-chloroisopropyl)ether	< 5.05		μg/l	5.05						
Bis(2-ethylhexyl)phthalate	< 5.05		μg/l	5.05						
4-Bromophenyl phenyl ether	< 5.05		μg/l	5.05						
Butyl benzyl phthalate	< 5.05		μg/l	5.05						
4-Chloro-3-methylphenol	< 5.05		μg/l	5.05						
2-Chloronaphthalene	< 5.05		μg/l	5.05						
2-Chlorophenol	< 5.05		μg/l	5.05						
4-Chlorophenyl phenyl ether	< 5.05		μg/l	5.05						
Chrysene	< 5.05		μg/l	5.05						
Dibenzo (a,h) anthracene	< 5.05		μg/l	5.05						
1,2-Dichlorobenzene	< 5.05		μg/l	5.05						
1,3-Dichlorobenzene	< 5.05		μg/l	5.05						
1,4-Dichlorobenzene	< 5.05		μg/l	5.05						
3,3'-Dichlorobenzidine	< 5.05		μg/l	5.05						
2,4-Dichlorophenol	< 5.05		μg/l	5.05						
Diethyl phthalate	< 5.05		μg/l	5.05						
Dimethyl phthalate	< 5.05		μg/l	5.05						
2,4-Dimethylphenol	< 5.05		μg/l	5.05						
Di-n-butyl phthalate	< 5.05		μg/l	5.05						
4,6-Dinitro-2-methylphenol	< 5.05		μg/l	5.05						
2,4-Dinitrophenol	< 5.05		μg/l	5.05						
2,4-Dinitrotoluene	< 5.05		μg/l	5.05						
2,6-Dinitrotoluene	< 5.05		μg/l	5.05						
Di-n-octyl phthalate	< 5.05		μg/l	5.05						
Fluoranthene	< 5.05		μg/l	5.05						
Fluorene	< 5.05		μg/l	5.05						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 625										
Batch 1716152 - SW846 3510C										
Blank (1716152-BLK3)					Pre	epared: 21-	Sep-17 An	alyzed: 27-S	Sep-17	
Hexachlorobenzene	< 5.05		μg/l	5.05						
Hexachlorobutadiene	< 5.05		μg/l	5.05						
Hexachlorocyclopentadiene	< 5.05		μg/l	5.05						
Hexachloroethane	< 5.05		μg/l	5.05						
Indeno (1,2,3-cd) pyrene	< 5.05		μg/l	5.05						
Isophorone	< 5.05		μg/l	5.05						
Naphthalene	< 5.05		μg/l	5.05						
Nitrobenzene	< 5.05		μg/l	5.05						
2-Nitrophenol	< 5.05		μg/l	5.05						
4-Nitrophenol	< 5.05		μg/l	5.05						
N-Nitrosodimethylamine	< 5.05		μg/l	5.05						
N-Nitrosodi-n-propylamine	< 5.05		μg/l	5.05						
N-Nitrosodiphenylamine	< 5.05		μg/l	5.05						
Pentachlorophenol	< 5.05		μg/l	5.05						
Phenanthrene	< 5.05			5.05						
Phenol	< 5.05		μg/l μg/l	5.05						
Pyrene	< 5.05		μg/l	5.05						
,	< 5.05									
1,2,4-Trichlorobenzene	< 5.05		μg/l	5.05 5.05						
2,4,6-Trichlorophenol			μg/l	5.05						
Surrogate: 2-Fluorobiphenyl	33.2		μg/l		50.5		66	30-130		
Surrogate: 2-Fluorophenol	20.9		μg/l		50.5		41	15-110		
Surrogate: Nitrobenzene-d5	25.1		μg/l		50.5		50	30-130		
Surrogate: Phenol-d5	19.5		μg/l		50.5		39	15-110		
Surrogate: Terphenyl-dl4	33.1		μg/l		50.5		66	30-130		
Surrogate: 2,4,6-Tribromophenol	29.7		μg/l		50.5		59	15-110		
LCS (1716152-BS1)					Pre	epared: 21-	Sep-17 An	alyzed: 22-S	Sep-17	
Acenaphthene	25.7		μg/l	5.15	51.5		50	47-145		
Acenaphthylene	29.2		μg/l	5.15	51.5		57	33-145		
Anthracene	28.9		μg/l	5.15	51.5		56	27-133		
Benzidine	38.7		μg/l	5.15	51.5		75	40-140		
Benzo (a) anthracene	30.4		μg/l	5.15	51.5		59	33-143		
Benzo (a) pyrene	32.5		μg/l	5.15	51.5		63	17-163		
Benzo (b) fluoranthene	33.3		μg/l	5.15	51.5		65	24-159		
Benzo (g,h,i) perylene	29.1		μg/l	5.15	51.5		56	1-219		
Benzo (k) fluoranthene	31.0		μg/l	5.15	51.5		60	11-162		
Bis(2-chloroethoxy)methane	22.6		μg/l	5.15	51.5		44	33-184		
Bis(2-chloroethyl)ether	21.7		μg/l	5.15	51.5		42	12-158		
Bis(2-chloroisopropyl)ether	18.0	QC2	μg/l	5.15	51.5		35	36-166		
Bis(2-ethylhexyl)phthalate	32.6		μg/l	5.15	51.5		63	8-158		
4-Bromophenyl phenyl ether	27.6		μg/l	5.15	51.5		53	53-127		
Butyl benzyl phthalate	31.8		μg/l	5.15	51.5		62	1-152		
4-Chloro-3-methylphenol	28.2		μg/l	5.15	51.5		55	22-147		
2-Chloronaphthalene	34.6		μg/l	5.15	51.5		67	60-118		
2-Chlorophenol	23.8		μg/l	5.15	51.5		46	23-134		
4-Chlorophenyl phenyl ether	26.9		μg/l	5.15	51.5		52	25-158		
Chrysene	30.5		μg/l	5.15	51.5		59	17-168		
Dibenzo (a,h) anthracene	32.4		μg/l	5.15	51.5		63	1-227		
1,2-Dichlorobenzene	28.0		μg/l	5.15	51.5		54	32-129		
1,3-Dichlorobenzene	26.7		μg/l	5.15	51.5		52	1-172		
1,4-Dichlorobenzene	27.0		μg/l	5.15	51.5		52	20-124		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
PA 625										
atch 1716152 - SW846 3510C										
LCS (1716152-BS1)					Pre	epared: 21-9	Sep-17 An	alyzed: 22-S	ep-17	
3,3´-Dichlorobenzidine	41.6		μg/l	5.15	51.5		81	1-262		
2,4-Dichlorophenol	25.1		μg/l	5.15	51.5		49	39-135		
Diethyl phthalate	29.1		μg/l	5.15	51.5		56	1-114		
Dimethyl phthalate	31.7		μg/l	5.15	51.5		61	1-112		
2,4-Dimethylphenol	24.0		μg/l	5.15	51.5		47	32-119		
Di-n-butyl phthalate	32.2		μg/l	5.15	51.5		62	1-118		
4,6-Dinitro-2-methylphenol	27.8		μg/l	5.15	51.5		54	1-181		
2,4-Dinitrophenol	24.2		μg/l	5.15	51.5		47	1-191		
2,4-Dinitrotoluene	37.3		μg/l	5.15	51.5		72	39-139		
2,6-Dinitrotoluene	40.2		μg/l	5.15	51.5		78	50-158		
Di-n-octyl phthalate	33.2		μg/l	5.15	51.5		64	4-146		
Fluoranthene	31.3		μg/l	5.15	51.5		61	26-137		
Fluorene	26.2	QC2	μg/l	5.15	51.5		51	59-121		
Hexachlorobenzene	36.3		μg/l	5.15	51.5		70	1-152		
Hexachlorobutadiene	25.8		μg/l	5.15	51.5		50	24-116		
Hexachlorocyclopentadiene	32.9		μg/l	5.15	51.5		64	40-140		
Hexachloroethane	26.8		μg/l	5.15	51.5		52	40-113		
Indeno (1,2,3-cd) pyrene	31.6		μg/l	5.15	51.5		61	1-171		
• • • • • • • • • • • • • • • • • • • •	24.9			5.15	51.5		48	21-196		
Isophorone	24.9		μg/l	5.15	51.5		46	21-190		
Naphthalene			μg/l							
Nitrobenzene	29.9		μg/l	5.15	51.5		58	35-180		
2-Nitrophenol	25.0		μg/l	5.15	51.5		49	29-182		
4-Nitrophenol	16.6	002	μg/l	5.15	51.5		32	1-132		
N-Nitrosodimethylamine	16.6	QC2	μg/l	5.15	51.5		32	40-140		
N-Nitrosodi-n-propylamine	23.6		μg/l "	5.15	51.5		46	1-230		
N-Nitrosodiphenylamine	30.2		μg/l 	5.15	51.5		59	40-140		
Pentachlorophenol	23.9		μg/l	5.15	51.5		46	14-176		
Phenanthrene	27.3	QC2	μg/l	5.15	51.5		53	54-120		
Phenol	12.9		μg/l	5.15	51.5		25	5-112		
Pyrene	30.2		μg/l	5.15	51.5		59	52-115		
1,2,4-Trichlorobenzene	29.0		μg/l	5.15	51.5		56	44-142		
2,4,6-Trichlorophenol	27.3		μg/l	5.15	51.5		53	37-144		
Surrogate: 2-Fluorobiphenyl	32.7		μg/l		51.5		63	30-130		
Surrogate: 2-Fluorophenol	18.0		μg/l		51.5		35	15-110		
Surrogate: Nitrobenzene-d5	29.0		μg/l		51.5		56	30-130		
Surrogate: Phenol-d5	14.0		μg/l		51.5		27	15-110		
Surrogate: Terphenyl-dl4	39.8		μg/l		51.5		77	30-130		
Surrogate: 2,4,6-Tribromophenol	35.0		μg/l		51.5		68	15-110		
LCS (1716152-BS3)					Pre	epared: 21-9	Sep-17 An	alyzed: 27-S	ep-17	
Acenaphthene	34.7		μg/l	5.15	51.5		67	47-145		
Acenaphthylene	35.2		μg/l	5.15	51.5		68	33-145		
Anthracene	29.2		μg/l	5.15	51.5		57	27-133		
Benzidine	7.08	QC2	μg/l	5.15	51.5		14	40-140		
Benzo (a) anthracene	30.9		μg/l	5.15	51.5		60	33-143		
Benzo (a) pyrene	32.9		μg/l	5.15	51.5		64	17-163		
Benzo (b) fluoranthene	34.0		μg/l	5.15	51.5		66	24-159		
Benzo (g,h,i) perylene	32.7		μg/l	5.15	51.5		64	1-219		
Benzo (k) fluoranthene	31.3		μg/l	5.15	51.5		61	11-162		
Bis(2-chloroethoxy)methane	23.9			5.15	51.5 51.5		46	33-184		
Dia(2-0111010cti10xy)HIEtHaHE	∠3.9		μg/l	5.15	31.5		40	JJ-104		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
EPA 625										
Batch 1716152 - SW846 3510C										
LCS (1716152-BS3)					Pre	epared: 21-	Sep-17 An	alyzed: 27-S	Sep-17	
Bis(2-chloroisopropyl)ether	20.8		μg/l	5.15	51.5		40	36-166		
Bis(2-ethylhexyl)phthalate	31.8		μg/l	5.15	51.5		62	8-158		
4-Bromophenyl phenyl ether	29.3		μg/l	5.15	51.5		57	53-127		
Butyl benzyl phthalate	32.0		μg/l	5.15	51.5		62	1-152		
4-Chloro-3-methylphenol	30.0		μg/l	5.15	51.5		58	22-147		
2-Chloronaphthalene	42.1		μg/l	5.15	51.5		82	60-118		
2-Chlorophenol	29.2		μg/l	5.15	51.5		57	23-134		
4-Chlorophenyl phenyl ether	38.0		μg/l	5.15	51.5		74	25-158		
Chrysene	30.9		μg/l	5.15	51.5		60	17-168		
Dibenzo (a,h) anthracene	35.7		μg/l	5.15	51.5		69	1-227		
1,2-Dichlorobenzene	30.1		μg/l	5.15	51.5		58	32-129		
1,3-Dichlorobenzene	29.5		μg/l	5.15	51.5		57	1-172		
1,4-Dichlorobenzene	29.6		μg/l	5.15	51.5		57	20-124		
3,3'-Dichlorobenzidine	36.1		μg/l	5.15	51.5		70	1-262		
2,4-Dichlorophenol	28.4		μg/l	5.15	51.5		55	39-135		
Diethyl phthalate	41.0		μg/l	5.15	51.5		80	1-114		
Dimethyl phthalate	38.6		μg/l	5.15	51.5		75	1-112		
2,4-Dimethylphenol	24.4		μg/l	5.15	51.5		47	32-119		
Di-n-butyl phthalate	31.9		μg/l	5.15	51.5		62	1-118		
4,6-Dinitro-2-methylphenol	31.5		μg/l	5.15	51.5		61	1-181		
2,4-Dinitrophenol	35.9		μg/l	5.15	51.5		70	1-191		
2,4-Dinitrotoluene	49.6		μg/l	5.15	51.5		96	39-139		
2,6-Dinitrotoluene	46.2		μg/l	5.15	51.5		90	50-158		
Di-n-octyl phthalate	32.5		μg/l	5.15	51.5		63	4-146		
Fluoranthene	30.6		μg/l	5.15	51.5		59	26-137		
Fluorene	36.2		μg/l	5.15	51.5		70	59-121		
Hexachlorobenzene	36.7		μg/l	5.15	51.5		71	1-152		
Hexachlorobutadiene	27.8		μg/l	5.15	51.5		54	24-116		
Hexachlorocyclopentadiene	38.5		μg/l	5.15	51.5		75	40-140		
Hexachloroethane	30.4		μg/l	5.15	51.5		59	40-113		
Indeno (1,2,3-cd) pyrene	35.2			5.15	51.5		68	1-171		
, , . , . , . , . , . , . , . , .	26.2		μg/l	5.15	51.5		51	21-196		
Isophorone Naphthalene	26.2 24.7		μg/l	5.15	51.5		48	21-196		
Nitrobenzene	29.3		μg/l μg/l	5.15	51.5 51.5		46 57	35-180		
2-Nitrophenol	29.3 29.0		μg/l μg/l	5.15	51.5 51.5		57 56	29-182		
•				5.15	51.5		58	1-132		
4-Nitrophenol	29.8		μg/l							
N-Nitrosodimethylamine	22.0		μg/l	5.15 5.15	51.5 51.5		43 51	40-140 1-230		
N-Nitrosodi-n-propylamine	26.2		μg/l							
N-Nitrosodiphenylamine	29.1		μg/l	5.15 5.15	51.5		56	40-140		
Pentachlorophenol	19.0	003	μg/l	5.15 5.15	51.5		37 52	14-176 54 120		
Phenanthrene	27.4	QC2	μg/l	5.15	51.5		53	54-120		
Phenol	17.7		μg/l	5.15	51.5		34	5-112 52-115		
Pyrene	29.7		μg/l	5.15	51.5		58	52-115		
1,2,4-Trichlorobenzene	29.2		μg/l	5.15	51.5		57 77	44-142		
2,4,6-Trichlorophenol	39.4		μg/l	5.15	51.5		77	37-144		
Surrogate: 2-Fluorobiphenyl	40.1		μg/l		51.5		78	30-130		
Surrogate: 2-Fluorophenol	23.9		μg/l		51.5		46	15-110		
Surrogate: Nitrobenzene-d5	28.7		μg/l		51.5		56	30-130		
Surrogate: Phenol-d5	19.0		μg/l		51.5		37	15-110		
Surrogate: Terphenyl-dl4	37.4		μg/l		51.5		72	30-130		

					Spike	Source		%REC		RPD	
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit	

EPA 625

Batch 1716152 - SW846 3510C LCS (1716152-BS3) Prepared: 21-Sep-17 Analyzed: 27-Sep-17 51.5 78 Surrogate: 2,4,6-Tribromophenol 40.1 15-110 μg/l LCS Dup (1716152-BSD1) Prepared: 21-Sep-17 Analyzed: 22-Sep-17 47-145 20 Acenaphthene 27.3 μg/l 5.15 51.5 53 6 Acenaphthylene 53 33-145 7 20 27.2 μg/l 5.15 51.5 Anthracene 30.5 5.15 51.5 59 27-133 5 20 μg/l QR9 Benzidine 5.15 51.5 50 40-140 41 20 25.6 μg/l Benzo (a) anthracene 51.5 65 33-143 10 20 33.7 μg/l 5.15 Benzo (a) pyrene 5.15 51.5 67 17-163 5 20 34.4 μg/l Benzo (b) fluoranthene 36.6 5.15 51.5 71 24-159 10 20 μg/l 20 Benzo (g,h,i) perylene 5.15 51.5 62 1-219 10 32.0 μg/l 57 11-162 5 20 Benzo (k) fluoranthene 29.4 μg/l 5.15 51.5 Bis(2-chloroethoxy)methane 5.15 49 33-184 10 20 25.0 μg/l 51.5 Bis(2-chloroethyl)ether 24.8 5.15 51.5 48 12-158 13 20 μg/l 20.0 Bis(2-chloroisopropyl)ether 5.15 51.5 39 36-166 10 20 μg/l Bis(2-ethylhexyl)phthalate 5.15 51.5 63 8-158 0.09 20 32.6 μg/l 4-Bromophenyl phenyl ether 31.0 μg/l 5.15 51.5 60 53-127 12 20 Butyl benzyl phthalate 33.4 μg/l 5.15 51.5 65 1-152 5 20 22-147 12 4-Chloro-3-methylphenol 5.15 51.5 62 20 31.8 μg/l 2-Chloronaphthalene 5.15 64 60-118 20 33.0 μg/l 51.5 5 2-Chlorophenol 28.5 μg/l 5.15 51.5 55 23-134 18 20 4-Chlorophenyl phenyl ether 27.9 μg/l 5.15 51.5 54 25-158 4 20 Chrysene 31.4 5.15 51.5 61 17-168 3 20 μg/l 5.15 69 1-227 9 20 Dibenzo (a,h) anthracene 51.5 35.5 μg/l 1,2-Dichlorobenzene 31.6 μg/l 5.15 51.5 61 32-129 12 20 1,3-Dichlorobenzene 30.1 μg/l 5.15 51.5 58 1-172 12 20 59 20-124 12 20 1 4-Dichlorobenzene 30.5 5 15 51.5 μg/l 3,3'-Dichlorobenzidine 5.15 51.5 87 1-262 7 20 44.9 μg/l 2,4-Dichlorophenol 30.6 μg/l 5.15 51.5 59 39-135 20 20 Diethyl phthalate 5.15 51.5 57 1-114 0.4 20 29.2 μg/l Dimethyl phthalate 5.15 51.5 57 1-112 8 20 29.3 μg/l 56 32-119 2,4-Dimethylphenol 5.15 51.5 18 20 28.6 μg/l Di-n-butyl phthalate 33.4 μg/l 5.15 51.5 65 1-118 4 20 QR9 4,6-Dinitro-2-methylphenol 38.6 μg/l 5.15 51.5 75 1-181 32 20 2,4-Dinitrophenol 35.0 QR9 5.15 68 1-191 37 20 μg/l 51.5 2,4-Dinitrotoluene 79 39-139 9 20 40.6 μg/l 5.15 51.5 76 3 2,6-Dinitrotoluene 39.1 μg/l 5.15 51.5 50-158 20 Di-n-octyl phthalate 32.2 μg/l 5.15 51.5 62 4-146 3 20 Fluoranthene μg/l 5.15 51.5 65 26-137 6 20 33.3 QC2 Fluorene 27.0 5.15 51.5 52 59-121 3 20 μg/l 79 1-152 12 20 Hexachlorobenzene 40.9 μg/l 5.15 51.5 Hexachlorobutadiene 56 24-116 29.0 μg/l 5.15 51.5 11 20 Hexachlorocyclopentadiene μg/l 5.15 51.5 68 40-140 6 20 35.1 Hexachloroethane 30.2 5.15 51.5 59 40-113 12 20 μg/l 68 1-171 20 Indeno (1,2,3-cd) pyrene 35.3 μg/l 5.15 51.5 11 Isophorone 5.15 51.5 55 21-196 12 20 28.1 μg/l Naphthalene 26.0 5.15 51.5 50 21-133 9 20 μg/l 20 Nitrobenzene 5.15 64 35-180 11 33.2 μg/l 51.5 2-Nitrophenol 31.1 QR9 μg/l 5.15 51.5 60 29-182 22 20 4-Nitrophenol OR9 1-132 23 20 21.1 μg/l 5.15 51.5 41 QC2 40-140 20 N-Nitrosodimethylamine 18.6 μg/l 5.15 51.5 36 11

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 625										
Batch 1716152 - SW846 3510C										
LCS Dup (1716152-BSD1)					Pre	epared: 21-	Sep-17 An	alyzed: 22-S	ep-17	
N-Nitrosodi-n-propylamine	26.5		μg/l	5.15	51.5	•	51	1-230	12	20
N-Nitrosodiphenylamine	33.2		μg/l	5.15	51.5		64	40-140	10	20
Pentachlorophenol	32.8	QR9	μg/l	5.15	51.5		64	14-176	31	20
Phenanthrene	30.7		μg/l	5.15	51.5		59	54-120	12	20
Phenol	14.3		μg/l	5.15	51.5		28	5-112	10	20
Pyrene	33.1		μg/l	5.15	51.5		64	52-115	9	20
1,2,4-Trichlorobenzene	32.8		μg/l	5.15	51.5		64	44-142	12	20
2,4,6-Trichlorophenol	30.7		μg/l	5.15	51.5		60	37-144	12	20
			-	0.10					12	
Surrogate: 2-Fluorobiphenyl	31.8		μg/l		51.5		62	30-130		
Surrogate: 2-Fluorophenol	21.3		μg/l		51.5		41	15-110		
Surrogate: Nitrobenzene-d5	32.2		μg/l		51.5		62	30-130		
Surrogate: Phenol-d5	15.7		μg/l		51.5		30	15-110		
Surrogate: Terphenyl-dl4	42.8		μg/l		51.5		83	30-130		
Surrogate: 2,4,6-Tribromophenol	44.9		μg/l		51.5		87	15-110		
LCS Dup (1716152-BSD3)					Pre	epared: 21-	Sep-17 An	alyzed: 27-S	ep-17	
Acenaphthene	32.9		μg/l	5.15	51.5		64	47-145	5	20
Acenaphthylene	34.0		μg/l	5.15	51.5		66	33-145	4	20
Anthracene	28.0		μg/l	5.15	51.5		54	27-133	4	20
Benzidine	8.09	QC2	μg/l	5.15	51.5		16	40-140	13	20
Benzo (a) anthracene	29.6		μg/l	5.15	51.5		58	33-143	4	20
Benzo (a) pyrene	31.5		μg/l	5.15	51.5		61	17-163	4	20
Benzo (b) fluoranthene	31.2		μg/l	5.15	51.5		60	24-159	9	20
Benzo (g,h,i) perylene	28.3		μg/l	5.15	51.5		55	1-219	14	20
Benzo (k) fluoranthene	31.3		μg/l	5.15	51.5		61	11-162	0.1	20
Bis(2-chloroethoxy)methane	22.4		μg/l	5.15	51.5		44	33-184	6	20
Bis(2-chloroethyl)ether	24.9		μg/l	5.15	51.5		48	12-158	6	20
Bis(2-chloroisopropyl)ether	19.7		μg/l	5.15	51.5		38	36-166	6	20
Bis(2-ethylhexyl)phthalate	30.6			5.15	51.5		59	8-158	4	20
4-Bromophenyl phenyl ether	27.2		μg/l	5.15	51.5		53	53-127	7	20
			μg/l					1-152		20
Butyl benzyl phthalate	30.4		μg/l	5.15	51.5		59		5	
4-Chloro-3-methylphenol	28.3		μg/l	5.15	51.5		55	22-147	6	20
2-Chloronaphthalene	40.7		μg/l	5.15	51.5		79	60-118	3	20
2-Chlorophenol	27.8		μg/l	5.15	51.5		54	23-134	5	20
4-Chlorophenyl phenyl ether	36.5		μg/l	5.15	51.5		71	25-158	4	20
Chrysene	30.0		μg/l	5.15	51.5		58	17-168	3	20
Dibenzo (a,h) anthracene	31.7		μg/l	5.15	51.5		62	1-227	12	20
1,2-Dichlorobenzene	28.6		μg/l	5.15	51.5		55	32-129	5	20
1,3-Dichlorobenzene	27.8		μg/l	5.15	51.5		54	1-172	6	20
1,4-Dichlorobenzene	28.2		μg/l	5.15	51.5		55	20-124	5	20
3,3'-Dichlorobenzidine	35.9		μg/l	5.15	51.5		70	1-262	0.7	20
2,4-Dichlorophenol	27.0		μg/l	5.15	51.5		52	39-135	5	20
Diethyl phthalate	38.9		μg/l	5.15	51.5		76	1-114	5	20
Dimethyl phthalate	37.7		μg/l	5.15	51.5		73	1-112	2	20
2,4-Dimethylphenol	23.2		μg/l	5.15	51.5		45	32-119	5	20
Di-n-butyl phthalate	30.4		μg/l	5.15	51.5		59	1-118	5	20
4,6-Dinitro-2-methylphenol	29.9		μg/l	5.15	51.5		58	1-181	5	20
2,4-Dinitrophenol	32.5		μg/l	5.15	51.5		63	1-191	10	20
2,4-Dinitrotoluene	46.1		μg/l	5.15	51.5		90	39-139	7	20
2,6-Dinitrotoluene	44.7		μg/l	5.15	51.5		87	50-158	3	20
Di-n-octyl phthalate	32.0		μg/l	5.15	51.5		62	4-146	2	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
EPA 625										
Batch 1716152 - SW846 3510C										
LCS Dup (1716152-BSD3)					Pre	epared: 21-	Sep-17 An	alyzed: 27-S	ep-17	
Fluoranthene	28.8		μg/l	5.15	51.5	•	56	26-137	6	20
Fluorene	34.4		μg/l	5.15	51.5		67	59-121	5	20
Hexachlorobenzene	35.0		μg/l	5.15	51.5		68	1-152	5	20
Hexachlorobutadiene	26.8		μg/l	5.15	51.5		52	24-116	4	20
Hexachlorocyclopentadiene	34.9		μg/l	5.15	51.5		68	40-140	10	20
Hexachloroethane	28.5		μg/l	5.15	51.5		55	40-113	6	20
Indeno (1,2,3-cd) pyrene	30.7		μg/l	5.15	51.5		59	1-171	14	20
Isophorone	25.3		μg/l	5.15	51.5		49	21-196	4	20
Naphthalene	23.8		μg/l	5.15	51.5		46	21-133	4	20
Nitrobenzene	28.1		μg/l	5.15	51.5		54	35-180	4	20
2-Nitrophenol	27.6		μg/l	5.15	51.5		54	29-182	5	20
4-Nitrophenol	27.6		μg/l	5.15	51.5		54	1-132	8	20
N-Nitrosodimethylamine	27.6		μg/l μg/l	5.15	51.5 51.5		54 40	40-140	o 7	20
N-Nitrosodi-n-propylamine	20.5 24.6			5.15	51.5 51.5		48	1-230	6	20
N-Nitrosodiphenylamine			μg/l	5.15	51.5		4 6 54	40-140	5	20
• •	27.8		μg/l							
Pentachlorophenol Phenanthrene	18.4	QC2	μg/l	5.15	51.5		36	14-176	3	20
	26.6	QC2	μg/l	5.15	51.5		52	54-120	3	20
Phenol	15.1		μg/l	5.15	51.5		29	5-112	16	20
Pyrene	28.1		μg/l "	5.15	51.5		54	52-115	6	20
1,2,4-Trichlorobenzene	27.9		μg/l	5.15	51.5		54	44-142	5	20
2,4,6-Trichlorophenol	38.3		μg/l	5.15	51.5		74	37-144	3	20
Surrogate: 2-Fluorobiphenyl	38.9		μg/l		51.5		76	30-130		
Surrogate: 2-Fluorophenol	22.9		μg/l		51.5		44	15-110		
Surrogate: Nitrobenzene-d5	27.6		μg/l		51.5		54	30-130		
Surrogate: Phenol-d5	18.0		μg/l		51.5		35	15-110		
Surrogate: Terphenyl-dl4	35.6		μg/l		51.5		69	30-130		
Surrogate: 2,4,6-Tribromophenol	37.3		μg/l		51.5		72	15-110		
<u> 10d. EPA 625</u>										
Batch 1716294 - SW846 3510C										
Blank (1716294-BLK2)					Pre	epared: 25-	Sep-17 An	alyzed: 26-S	<u>ep-17</u>	
Acenaphthene	< 0.050		μg/l	0.050						
Acenaphthylene	< 0.050		μg/l	0.050						
1-Methylnaphthalene	< 0.050		μg/l	0.050						
Anthracene	< 0.050		μg/l	0.050						
Benzo (a) anthracene	< 0.050		μg/l	0.050						
Benzo (a) pyrene	< 0.050		μg/l	0.050						
Benzo (b) fluoranthene	< 0.050		μg/l	0.050						
Benzo (g,h,i) perylene	< 0.050		μg/l	0.050						
Benzo (k) fluoranthene	< 0.050		μg/l	0.050						
Chrysene	< 0.050		μg/l	0.050						
Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050						
Fluoranthene	< 0.050		μg/l	0.050						
Fluorene	< 0.050		μg/l	0.050						
Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050						
2-Methylnaphthalene	< 0.050		μg/l	0.050						
Naphthalene	< 0.050		μg/l	0.050						
Phenanthrene	< 0.050		μg/l	0.050						
Pyrene	< 0.050		μg/l	0.050						
Surrogate: Benzo (e) pyrene-d12	0.449									

					Spike	Source		%REC		RPI
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
<u>lod. EPA 625</u>										
atch 1716294 - SW846 3510C										
LCS (1716294-BS2)					Pre	epared: 25-	Sep-17 An	alyzed: 26-S	ep-17	
Acenaphthene	0.405		μg/l	0.050	1.01		40	40-140		
Acenaphthylene	0.362	QC1	μg/l	0.050	1.01		36	40-140		
1-Methylnaphthalene	0.461		μg/l	0.050	1.01		46	40-140		
Anthracene	0.622		μg/l	0.050	1.01		62	40-140		
Benzo (a) anthracene	0.793		μg/l	0.050	1.01		78	40-140		
Benzo (a) pyrene	0.825		μg/l	0.050	1.01		82	40-140		
Benzo (b) fluoranthene	0.740		μg/l	0.050	1.01		73	40-140		
Benzo (g,h,i) perylene	0.591		μg/l	0.050	1.01		59	40-140		
Benzo (k) fluoranthene	0.631		μg/l	0.050	1.01		62	40-140		
Chrysene	0.716		μg/l	0.050	1.01		71	40-140		
Dibenzo (a,h) anthracene	0.703		μg/l	0.050	1.01		70	40-140		
Fluoranthene	0.673		μg/l	0.050	1.01		67	40-140		
Fluorene	0.397	QC1	μg/l	0.050	1.01		39	40-140		
Indeno (1,2,3-cd) pyrene	0.697		μg/l	0.050	1.01		69	40-140		
2-Methylnaphthalene	0.539		μg/l	0.050	1.01		53	40-140		
Naphthalene	0.429		μg/l	0.050	1.01		42	40-140		
Phenanthrene	0.506		μg/l	0.050	1.01		50	40-140		
Pyrene	0.690		μg/l	0.050	1.01		68	40-140		
Surrogate: Benzo (e) pyrene-d12	0.485		μg/l		1.01		48	30-130		
LCS Dup (1716294-BSD2)					<u>Pre</u>	epared: 25-	Sep-17 An	alyzed: 26-S	ep-17	
Acenaphthene	0.391		μg/l	0.050	0.917		43	40-140	4	20
Acenaphthylene	0.340	QC1	μg/l	0.050	0.917		37	40-140	6	20
1-Methylnaphthalene	0.448		μg/l	0.050	0.917		49	40-140	3	20
Anthracene	0.534		μg/l	0.050	0.917		58	40-140	15	20
Benzo (a) anthracene	0.743		μg/l	0.050	0.917		81	40-140	6	20
Benzo (a) pyrene	0.815		μg/l	0.050	0.917		89	40-140	1	20
Benzo (b) fluoranthene	0.689		μg/l	0.050	0.917		75	40-140	7	20
Benzo (g,h,i) perylene	0.530		μg/l	0.050	0.917		58	40-140	11	20
Benzo (k) fluoranthene	0.655		μg/l	0.050	0.917		71	40-140	4	20
Chrysene	0.646		μg/l	0.050	0.917		70	40-140	10	20
Dibenzo (a,h) anthracene	0.596		μg/l	0.050	0.917		65	40-140	16	20
Fluoranthene	0.613		μg/l	0.050	0.917		67	40-140	9	20
Fluorene	0.433		μg/l	0.050	0.917		47	40-140	9	20
Indeno (1,2,3-cd) pyrene	0.672		μg/l	0.050	0.917		73	40-140	4	20
2-Methylnaphthalene	0.537		μg/l	0.050	0.917		58	40-140	0.5	20
Naphthalene	0.407		μg/l	0.050	0.917		44	40-140	5	20
Phenanthrene	0.497		μg/l	0.050	0.917		54	40-140	2	20
Pyrene	0.645		μg/l	0.050	0.917		70	40-140	7	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
PA 608										
atch 1716296 - SW846 3510C										
Blank (1716296-BLK1)					Pre	enared & Ai	nalyzed: 25-	Sen-17		
Aroclor-1016	< 0.206		μg/l	0.206	1.10	zparca a 7 ti	laryzca. zo	<u> </u>		
Aroclor-1016 [2C]	< 0.206		μg/l	0.206						
Aroclor-1221	< 0.206		μg/l	0.206						
Aroclor-1221 [2C]	< 0.206		μg/l	0.206						
Aroclor-1232	< 0.206		μg/l	0.206						
Aroclor-1232 [2C]	< 0.206		μg/l	0.206						
Aroclor-1242	< 0.206		μg/l	0.206						
Aroclor-1242 [2C]	< 0.206		μg/l	0.206						
Aroclor-1248	< 0.206		μg/l	0.206						
Aroclor-1248 [2C]	< 0.206		μg/l	0.206						
Aroclor-1246 [26]	< 0.206		μg/l	0.206						
Aroclor-1254 [2C]	< 0.206		μg/l	0.206						
Aroclor-1260	< 0.206		μg/l	0.206						
Aroclor-1260 [2C]	< 0.206		μg/l	0.206						
Aroclor-1262	< 0.206		μg/l	0.206						
Aroclor-1262 [2C]	< 0.206		μg/l	0.206						
Aroclor-1268	< 0.206		μg/l	0.206						
Aroclor-1268 [2C]	< 0.206		μg/l	0.206						
				0.200				20.450		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.196		μg/l 		0.206		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.206		μg/l		0.206		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.237		μg/l		0.206		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.247		μg/l		0.206		120	30-150		
LCS (1716296-BS1)					Pre	epared & Ar	nalyzed: 25-	-Sep-17		
Aroclor-1016	2.61		μg/l	0.204	2.55		102	50-114		
Aroclor-1016 [2C]	2.65		μg/l	0.204	2.55		104	50-114		
Aroclor-1260	2.87		μg/l	0.204	2.55		112	40-127		
Aroclor-1260 [2C]	2.78		μg/l	0.204	2.55		109	40-127		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.143		μg/l		0.204		70	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.133		μg/l		0.204		65	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.163		μg/l		0.204		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.163		μg/l		0.204		80	30-150		
LCS Dup (1716296-BSD1)			. •			epared & Ar	nalyzed: 25-			
Aroclor-1016	2.60		μg/l	0.204	2.55		102	50-114	0.4	20
Aroclor-1016 [2C]	2.72		μg/l	0.204	2.55		107	50-114	3	20
Aroclor-1260	2.77		μg/l	0.204	2.55		108	40-127	4	20
Aroclor-1260 [2C]	2.86		μg/l	0.204	2.55		112	40-127	3	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.143		μg/l		0.204		70	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.143		μg/l		0.204		70	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.163		μg/l		0.204		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	0.163 0.173		μg/l μg/l		0.204		85	30-150 30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ASTM D 1293-99B										
Batch 1716162 - General Preparation					Dr	anarad: 20	Con 17 A	nalyzed: 21-S	on 17	
Reference (1716162-SRM1)	6.00		pH Units		6.00	epared. 20-	100	97.5-102.	sep-17	
рН	6.00		pn units		6.00		100	97.5-102. 5		
Reference (1716162-SRM2)					Pre	epared: 20-	Sep-17 A	nalyzed: 21-S	Sep-17	
рН	6.01		pH Units		6.00		100	97.5-102. 5		
EPA 300.0								3		
Batch 1716144 - General Preparation										
Blank (1716144-BLK1)					Pre	enared & A	nalyzed: 20	-Sen-17		
Chloride	< 1.00		mg/l	1.00	<u> </u>	oparca a ri	naiyzca. zc	7 OCP 17		
LCS (1716144-BS1)					Pre	enared & A	nalyzed: 20	-Sen-17		
Chloride	20.4		mg/l	1.00	20.0	cparca a 71	102	90-110		
Reference (1716144-SRM1)	20.4		1119/1	1.00		anared & A	nalyzed: 20			
Chloride	24.3		mg/l	1.00	25.0	spared & A	97	90-110		
EPA 335.4 / SW846 9012B			3							
Batch 1716181 - General Preparation										
Blank (1716181-BLK1)					Pre	epared & A	nalyzed: 21	-Sep-17		
Cyanide (total)	< 0.00500		mg/l	0.00500			,			
Blank (1716181-BLK2)					Pre	enared & A	nalyzed: 21	-Sen-17		
Cyanide (total)	< 0.00500		mg/l	0.00500	<u></u>	oparoa a ri	naryzou. z i	COP 11		
LCS (1716181-BS1)	0.0000		9	0.0000	Pre	enared & A	nalyzed: 21	-Sen-17		
Cyanide (total)	0.277		mg/l	0.00500	0.300	cparca a 71	92	90-110		
LCS (1716181-BS2)	0.277		1119/1	0.00000		anared & A	nalyzed: 21			
Cyanide (total)	0.287		mg/l	0.00500	0.300	spared & A	96	90-110		
	0.207		Source: SC			anarod & A	nalyzed: 21			
<u>Duplicate (1716181-DUP1)</u> Cyanide (total)	0.00504		mg/l	0.00500	<u> </u>	0.00493	naiyzeu. Z i	-3ep-17	2	20
	0.00304		_		Dr		nalyzed: 21	Son 17	2	20
Matrix Spike (1716181-MS1) Cyanide (total)	0.297		Source: SO mg/l	0.00500	0.300	0.00493	97	90-110		
	0.297		_							
Matrix Spike Dup (1716181-MSD1)	0.304		Source: SC		0.300		nalyzed: 21	90-110	2	20
Cyanide (total)	0.304		mg/l	0.00500		0.00493	100		2	20
Reference (1716181-SRM1)	0.424		ma/l	0.00500		epared & A	nalyzed: 21			
Cyanide (total)	0.431		mg/l	0.00500	0.360		120	76-123		
SM2540D (11)										
Batch 1716177 - General Preparation					_					
Blank (1716177-BLK1)					Pre	epared: 21-	Sep-17 A	nalyzed: 22-S	Sep-17	
Total Suspended Solids	< 0.5		mg/l	0.5						
LCS (1716177-BS1)					·	epared: 21-		nalyzed: 22-S	Sep-17	
Total Suspended Solids	94.0		mg/l	10.0	100		94	90-110		
<u>8M3500-Cr-B (11)/7196A</u>										
Batch 1716158 - General Preparation										
Blank (1716158-BLK1)					Pre	epared & A	nalyzed: 20)-Sep-17		
Hexavalent Chromium	< 0.005		mg/l	0.005						
LCS (1716158-BS1)					Pre	epared & A	nalyzed: 20			
Hexavalent Chromium	0.054		mg/l	0.005	0.0500		107	90-111		
<u>Duplicate (1716158-DUP1)</u>			Source: SC	<u> 39416-01</u>	Pre	epared & A	nalyzed: 20)-Sep-17		
Hexavalent Chromium	< 0.005		mg/l	0.005		BRL				20
Matrix Spike (1716158-MS1)			Source: SC	<u> 39416-01</u>	Pre	epared & A	nalyzed: 20)-Sep-17		
Hexavalent Chromium	0.052		mg/l	0.005	0.0500	BRL	103	85-115		
Matrix Spike Dup (1716158-MSD1)			Source: SC	39416-01	<u>P</u> re	epared & A	nalyzed: 20	-Sep-17		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SM3500-Cr-B (11)/7196A										
Batch 1716158 - General Preparation										
Matrix Spike Dup (1716158-MSD1)			Source: SO	C39416-01	Pre	epared & Ar	nalyzed: 20)-Sep-17		
Hexavalent Chromium	0.050		mg/l	0.005	0.0500	BRL	100	85-115	3	20
Reference (1716158-SRM1)					Pre	epared & Ar	nalyzed: 20)-Sep-17		
Hexavalent Chromium	0.025		mg/l	0.005	0.0250		99	85-115		
<u>SW846 1010A</u>										
Batch 1716461 - General Preparation										
Reference (1716461-SRM1)					Pre	epared & Ar	nalyzed: 26	S-Sep-17		
Flashpoint	80		°F		81.0		99	95-105		
SW846 Ch. 7.3										
Batch 1716211 - General Preparation										
Blank (1716211-BLK1)					Pre	epared: 21-	Sep-17 A	nalyzed: 22-S	Sep-17	
Reactivity	See Narrative		mg/l							
Reactive Cyanide	< 25.0		mg/l	25.0						
Reactive Sulfide	< 50.0		mg/l	50.0						
<u>Duplicate (1716211-DUP1)</u>			Source: SO	C39416-01	Pre	epared: 21-	Sep-17 A	nalyzed: 22-S	Sep-17	
Reactivity	See Narrative		mg/l			ee Narrativ				200
Reactive Cyanide	< 25.0		mg/l	25.0		BRL				20
Reactive Sulfide	< 50.0		mg/l	50.0		BRL				20
Reference (1716211-SRM1)					Pre	epared: 21-	Sep-17 A	nalyzed: 22-S	Sep-17	
Reactive Cyanide	< 25.0		mg/l	25.0	200		0	0-200		
Reference (1716211-SRM2)					Pre	epared: 21-	Sep-17 A	nalyzed: 22-S	Sep-17	
Reactive Sulfide	< 50.0		mg/l	50.0	13400		0	0-200		

12-Dec-17 13:53 Page 37 of 41

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result %RE	%REC C Limits	RPD	RPD Limi
E1664A									
Batch 402922A - 402922									
BLK (BZ05972-BLK)					Prer	pared & Analyzed	26-Sep-17		
O&G, Non-polar Material	< 1.4		mg/L	1.4	20	,	-		
DUP (BZ05972-DUP)			Source: BZ			pared: Analyzed	· 26-Sen-17		
O&G, Non-polar Material	< 1.4		mg/L	1.4	20	raica. / maryzea	. 20 OCP 17	NC	20
•	* 1.4		mg/L	1.4		pared: Analyzed	· 26 Cap 17	110	20
LCS (BZ05972-LCS) O&G, Non-polar Material	18.80		mg/L	1.4	20	<u>pared. Analyzed</u> 94	<u>. 20-Sep-17</u> 85-115		20
·	10.00		ŭ						20
MS (BZ05972-MS)	47.00		Source: BZ				: 26-Sep-17		20
O&G, Non-polar Material	17.80		mg/L	1.4	20	89	75-125		20
E350.1									
Batch 402779A - 402779									
BLK (BZ03269-BLK)					Prep	pared: 25-Sep-17	Analyzed: 26-9	Sep-17	
Ammonia as Nitrogen	< 0.05		mg/L	0.05			-		
<u>DUP (BZ03269-DUP)</u>			Source: BZ	203269	Prer	pared: 25-Sep-17	Analyzed: 26-9	Sep-17	
Ammonia as Nitrogen	0.14		mg/L	0.05			-	NC	20
LCS (BZ03269-LCS)					Prer	pared: 25-Sep-17	Analyzed: 26-9	Sep-17	
Ammonia as Nitrogen	3.640		mg/L	0.05	3.74	97.3	-		20
MS (BZ03269-MS)	5.5.6		Source: BZ			pared: 25-Sep-17		Sen-17	
Ammonia as Nitrogen	1.890	m	mg/L	0.05	2	87.0		<u> </u>	20
•	1.030	•••	IIIg/L	0.03	2	07.0	90-110		20
<u>M3113B/SW7010-0</u>									
eatch 402630A - 402630-SM3113B/S									
BLK (BZ06265-BLK)					Prep	oared: 22-Sep-17	Analyzed: 25-5	Sep-17	
Thallium	< 0.001		mg/L	0.001			-		
DUP (BZ06265-DUP)			Source: BZ	<u> 206265</u>	Prep	pared: 22-Sep-17	Analyzed: 25-9	Sep-17	
Thallium	< 0.001		mg/L	0.001			-	NC	30
LCS (BZ06265-LCS)					Prep	pared: 22-Sep-17	Analyzed: 25-9	Sep-17	
 Thallium	54.60		mg/L	0.001	50	109	75-125	<u> </u>	30
MS (BZ06265-MS)			Source: BZ	206265	Prer	pared: 22-Sep-17	Analyzed: 25-9	Sep-17	
Thallium	53.36		mg/L	0.001	50	107	-	<u> </u>	30
	33.00		3.=						
W6010C									
atch 402432A - 402432-									
BLK (BZ06265-BLK)					<u>Prer</u>	oared: 21-Sep-17	Analyzed: 24-5	Sep-17	
Zinc	< 0.0010		mg/L	0.0010			-		
Silver	< 0.0005		mg/L	0.0005			-		
Selenium	< 0.0050		mg/L	0.0050			-		
Nickel	< 0.0005		mg/L	0.0005			-		
Lead	< 0.0010		mg/L	0.0010			-		
Iron	< 0.0050		mg/L	0.0050			-		
Copper	< 0.0025		mg/L	0.0025			-		
Chromium	< 0.0005		mg/L	0.0005			-		
Cadmium	< 0.0005		mg/L	0.0005			-		
Beryllium	< 0.0005		mg/L	0.0005			-		
Arsenic	< 0.0020		mg/L	0.0020			-		
Antimony	< 0.0025		mg/L	0.0025			-		
DUP (BZ06265-DUP)			Source: BZ	<u> 206265</u>	Prep	pared: 21-Sep-17	Analyzed: 24-9	Sep-17	
Chromium	< 0.0005		mg/L	0.0005			-	NC	20
Selenium	< 0.0050		mg/L	0.0050			-	NC	20
Iron	0.0228		mg/L	0.0050			-	NC	20
Silver	< 0.0005		mg/L	0.0005			-	NC	20
Nickel	0.0078		mg/L	0.0005				74.2	20

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW6010C										
Batch 402432A - 402432-										
DUP (BZ06265-DUP)			Source: B	Z06265	Pre	epared: 21-	Sep-17 An	alyzed: 24-S	ep-17	
Lead	< 0.0010		mg/L	0.0010				-	NC	20
Copper	< 0.0025		mg/L	0.0025				-	NC	20
Cadmium	0.0006		mg/L	0.0005				-	NC	20
Beryllium	< 0.0005		mg/L	0.0005				-	NC	20
Arsenic	< 0.0020		mg/L	0.0020				-	NC	20
Antimony	< 0.0025		mg/L	0.0025				-	NC	20
Zinc	0.0035		mg/L	0.0010				-	NC	20
LCS (BZ06265-LCS)					Pre	epared: 21-	Sep-17 An	alyzed: 24-S	ep-17	
Nickel	0.4884		mg/L	0.0005	0.5		97.7	75-125		20
Lead	0.9799		mg/L	0.0010	1		98.0	75-125		20
Antimony	0.9943		mg/L	0.0025	1		99.4	75-125		20
Arsenic	0.9807		mg/L	0.0020	1		98.1	75-125		20
Beryllium	0.5034		mg/L	0.0005	0.5		101	75-125		20
Cadmium	0.4836		mg/L	0.0005	0.5		96.7	75-125		20
Chromium	0.4937		mg/L	0.0005	0.5		98.7	75-125		20
Copper	0.5093		mg/L	0.0025	0.5		102	75-125		20
Selenium	0.4823		mg/L	0.0050	0.5		96.5	75-125		20
Silver	0.1215		mg/L	0.0005	0.125		97.2	75-125		20
Zinc	0.4776		mg/L	0.0010	0.5		95.5	75-125		20
Iron	0.5099		mg/L	0.0050	0.5		102	75-125		20
MS (BZ06265-MS)			Source: B	Z06265	Pre	epared: 21-	Sep-17 An	alyzed: 24-S	ep-17	
Copper	0.5090		mg/L	0.0025	0.5	•	101	75-125		20
Zinc	0.4842		mg/L	0.0010	0.5		95.2	75-125		20
Silver	0.1234		mg/L	0.0005	0.125		99.0	75-125		20
Selenium	0.4927		mg/L	0.0050	0.5		98.4	75-125		20
Nickel	0.4619		mg/L	0.0005	0.5		89.0	75-125		20
Iron	0.4962		mg/L	0.0050	0.5		87.4	75-125		20
Chromium	0.4672		mg/L	0.0005	0.5		93.2	75-125		20
Cadmium	0.4654		mg/L	0.0005	0.5		92.8	75-125		20
Beryllium	0.4907		mg/L	0.0005	0.5		98.0	75-125		20
Arsenic	0.9962		mg/L	0.0020	1		99.7	75-125		20
Antimony	1.018		mg/L	0.0025	1		102	75-125		20
Lead	0.9277		mg/L	0.0010	1		92.8	75-125		20
SW7470A			Ü							
Batch 402491A - 402491-										
					Dro	anarad 9 Ar	anluzad: 22	Con 17		
BLK (BZ06265-BLK)	< 0.0002		ma/l	0.0003	<u> 116</u>	zpareu & Al	nalyzed: 22-	<u>σεμ-11</u>		
Mercury	< 0.0002		mg/L	0.0002	_			- Can 47		
DUP (BZ06265-DUP)	- 0.0000		Source: B		Pre	epared & Ar	nalyzed: 22-		NO	20
Mercury	< 0.0002		mg/L	0.0002				-	NC	30
LCS (BZ06265-LCS)						epared & Ar	nalyzed: 22-			
Mercury	0.0022		mg/L	0.0002	0.0025		89.3	75-125		30
MS (BZ06265-MS)			Source: B		Pre	epared & Ar	nalyzed: 22-	Sep-17		
Mercury	0.0023		mg/L	0.0002	0.0025		90.0	75-125		30

12-Dec-17 13:53 Page 39 of 41

Notes and Definitions

Data reported from a dilution
 GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

HT2 This sample was received outside the EPA recommended holding time for the analysis specified.

m This parameter is outside laboratory ms/msd specified recovery limits.

QC1 Analyte out of acceptance range.

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QR9 RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

[2C] Indicates concentration was reported from the secondary, confirmation column.

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis.

Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

12-Dec-17 13:53 Page 40 of 41

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

12-Dec-17 13:53 Page 41 of 41

	4		Carlo	Relinquished by:			4		· OUMWEST	2 0	C394/62/MW-5	Lab ID: Sample ID:	G= Grab	, X1=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air	DW=Drinking Water GW=Groundwater SW	NaHSO ₄ 9=Deionized Water	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H	M	Telephone #: 509 756 0/5/		Report To: ATC hoceste	Spectrum	eurofins :		N.
		Tar Carlo	28E	Received by:				San	11011	012/12/10	9/18/17 1:29	Date: Time:	C=Compsite	X3=	mbient Air SG=Soil Gas	SW=Surface Water	I ₃ PO ₄ 11=	3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=/	P.O No.:			Invoice To:	Spectrum Analytical			
		8/19/17 Kgs	356 41-616	Date: Time:						2 2 2	0	# of # of	voa Voa Ambe Clear	Glass	SS	Containers	12=	6=Ascorbic Acid	Quote #:	16486		(Z)	Page of	CHAIN OF CUSTODY RECORD		
2	Connected Condition upon receipt: Custody Seals:	Correction Factor	Observed DE-mail to, Matthew Lyne	* Temp °C					2	<	XXXXXXX	Vo SVI PP Inches To Hard Ha	C-13 V 13 V 4 Consideration achieves ac	Colored of the property of the	m 6 1 2 5 2 5 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	Analysis 28	LIST F TENETYATIVE CODE DEIOW:	I ist Processoriative Code below.	Andrew	Location: 550 kern bealt 54	Site Name: Rinball St.	Project No: 03-224	All TATs subject Min. 24-hr notific Samples disposed		Spec	1 56394
DI VOA Frozen Soil	Present Intact Broken		Elekcussocieros. Con		seo attachinant	Lating lind	Need to great FOA		neetex has	OH, Annowa Hardy		Other: State-specific reporting standards:	Ther II* Ther IV*		8	MA DEP MCP CAM Report? Yes No	VA/QC Reporting Notes: * additional charges may appply		kin	Fischbase State: M	CF1 #M8832	773.05	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed.	Standard LAT - / 10 10 business days, Wush TAT - Date Needed: 5 day	Special Handling:	16 By

1. Chemical-Specific Effluent Limitations in Massachusetts and New Hampshire During the period beginning on the effective date and lasting through the expiration date, EPA will authorize the discharges under Part 1.1 of this general permit to receiving waters in Massachusetts and New Hampshire. The effective date of authorization for each discharge covered under this general permit is the date indicated in EPA's written authorization to discharge, lasting through the expiration date of this general permit or written termination of coverage, whichever occurs first. Each discharge shall be limited and monitored as specified in Table 2, below. The applicability of effluent limitations for each Activity Category listed in Table 1 is included in footnote 2, below. Additional limitations and monitoring requirements are specified in Parts 2.2 through 2.5 and Part 4, below.

Table 2: Chemical-Specific Effluent Limitations and Monitor-Only Requirements¹

Parameter ² /Method / RL	Effluent Limitation ^{3,4}						
Parameter / nethod / na	TBEL ⁵	WQBEL ⁶					
A. Inorganics							
Ammonia ⁷ 350.1 / 0.1 ug/L or 0.0001 mg/L	Report mg/L						
Chloride ⁸ 300.0 / 1000 ug/L or 1.0 mg/L	Report μg/L						
Total Residual Chlorine ⁹ SM4500-Cl-G (11) / 0.02 mg/L	0.2 mg/L	FW= 11 μg/L SW= 7.5 μg/L					
Total Suspended Solids SM2540 D / 5 mg/L		30 mg/L					
Antimony ¹⁰ 200.8 / 0.5 ug/L	206 μg/L	640 μg/L in MA 4.3 mg/L in NH					
Arsenic ¹⁰ 200.8 / 0.5 ug/L	104 μg/L	FW= 10 μg/L SW= 36 μg/L					
Cadmium ^{11,12} 200.8 / 0.5 ug/L	10.2 μg/L	FW= 0.25 μg/L SW= 8.8 μg/L in MA SW= 9.3 μg/L in NH					
Chromium III ^{11,12} Calculation / 10 ug/L	323 μg/L	FW= 74 μg/L SW= 100 μg/L					
Chromium VI ^{11,13} 7196 / 5 ug/L	323 μg/L	FW= 11 μg/L SW= 50 μg/L					
Copper ^{11,12} 200.8 / 0.5 ug/L	242 μg/L	FW= 9 μg/L SW= 3.1 μg/L					
Iron ¹⁰ 200.7 / 30 ug/L	5,000 μg/L	$FW = 1,000 \mu g/L$					
Lead ^{11,12} 200.8 / 0.5 ug/L	160 μg/L	FW= 2.5 μg/L SW= 8.1 μg/L					
Mercury ¹¹ 245.1 / 0.2 ug/L	0.739 μg/L	FW= 0.77 μg/L SW= 0.94 μg/L					
Nickel ^{11,12} 200.8 / 0.5 ug/L	1,450 μg/L	FW= 52 μg/L SW= 8.2 μg/L					
Selenium 200.8 / 0.5 ug/L	235.8 μg/L	FW= $5.0 \mu g/L^{10}$ SW= $71 \mu g/L^{11}$					
Silver ^{11,12} 200.8 / 0.5ug/L	35.1 μg/L	$FW=3.2 \mu g/L$ $SW=1.9 \mu g/L$					
Zinc ^{11,12} 200.8 / 0.5 ug/L	420 μg/L	FW= 120 μg/L SW= 81 μg/L					

Do way	Effluent Limitation ^{3,4}					
Parameter ²	TBEL ⁵	WQBEL ⁶				
Cyanide ¹⁴ 335.4 / 5.0 ug/L	178 mg/L	$FW = 5.2 \mu g/L$ $SW = 1.0 \mu g/L$				
B. Non-Halogenated Volatile Organic Compounds						
Total $BTEX^{15}$ 624 / BTEX reported as ind. cmpds.	10	00 μg/L				
Benzene ¹⁵ 624 / 1 ug/L	5	.0 μg/L				
$1,4 \mathrm{Dioxane^{16}}$ 624 / 20 ug/L or 8260 SIM / 0.5 ug/L	20	00 μg/L				
Acetone 624 / 10 ug/L	7.9	97 mg/L				
Phenol 625 / 5 ug/L	1,080 μg/L	300 μg/L				
C. Halogenated Volatile Organic Compounds						
Carbon Tetrachloride 624 / 1 ug/L	4.4 μg/L	1.6 μg/L in MA				
1,2 Dichlorobenzene 624 / 1 ug/L	60	00 μg/L				
1,3 Dichlorobenzene 624 / 1 ug/L	32	20 μg/L				
1,4 Dichlorobenzene 624 / 1 ug/L	5	.0 μg/L				
Total dichlorobenzene reported as individ. cmpds	763 µ	ug/L in NH				
1,1 Dichloroethane 624 / 1 ug/L	7	'0 μg/L				
1,2 Dichloroethane 624 / 1 ug/L	5	.0 μg/L				
1,1 Dichloroethylene 624 / 1 ug/L		.2 μg/L				
Ethylene Dibromide 178260 / 0.5 ug/L *need 8011 or 504						
Methylene Chloride 624 / 10 ug/L *2ug/L when re	quested 4	.6 μg/L				
1,1,1 Trichloroethane 624 / 1 ug/L	200 μg/L					
1,1,2 Trichloroethane 624 / 1 ug/L	5.	5.0 μg/L				
Trichloroethylene 624 / 1 ug/L	5.0 μg/L					
Tetrachloroethylene 624 / 1 ug/L	5.0 μg/L	3.3 µg/L in MA				
cis-1,2 Dichloroethylene 624 / 1 ug/L	70 μg/L					
Vinyl Chloride 624 / 1 ug/L	2.0 μg/L					
D. Non-Halogenated Semi-Volatile Organic Compounds						
Total Phthalates 18 625 / Phthalates reported individ	e. 190 μg/L	FW = 3.0 μ g/L in NH SW = 3.4 μ g/L in NH				
Diethylhexyl phthalate ¹⁸ 625 / 5 ug/L	101 μg/L	2.2 μg/L in MA 5.9 μg/L in NH				
Total Group I Polycyclic Aromatic Hydrocarbons ¹⁹ 625 SIM	1.0 μg/L	As Individual PAHs				
Benzo(a)anthracene ¹⁹ 625 / 0.05 ug/L		0.0038 μg/L				
Benzo(a)pyrene ¹⁹ 625 / 0.05 ug/L		0.0038 μg/L				
Benzo(b)fluoranthene ¹⁹ 625 / 0.05 ug/L	A - T-4-1 C I	0.0038 μg/L				
Benzo(k)fluoranthene ¹⁹ 625 / 0.05 ug/L	As Total Group I PAHs	0.0038 μg/L				
Chrysene ¹⁹ 625 / 0.05 ug/L	PAHS	0.0038 μg/L				
Dibenzo(a,h)anthracene ¹⁹ 625 / 0.05 ug/L		0.0038 μg/L				
Indeno(1,2,3-cd)pyrene ¹⁹ 625 / 0.05 ug/L		0.0038 μg/L				
Total Group II Polycyclic Aromatic Hydrocarbons ²⁰	10	00 μg/L				
Naphthalene ²⁰ 625 / 0.05 ug/L		0 μg/L				
E. Halogenated Semi-Volatile Organic Compounds						
Total Polychlorinated Biphenyls ²¹ 608 / 0.2 ug/L reporte	ed individ. 0.000	0064 μg/L				
Pentachlorophenol 625 / 1.0 ug/L		.0 μg/L				

Parameter ²	Effluent Limitation ^{3,4}					
r arameter-	TBEL ⁵	WQBEL ⁶				
F. Fuels Parameters						
Total Petroleum Hydrocarbons ²² 1664 / 1.0 mg/L	5.0 mg/L					
Ethanol ²³ 8015 / 1 mg/L or 524 / 200 ug/L	Report mg/L					
Methyl-tert-Butyl Ether ²⁴ 624 / 1.0 ug/L	70 μg/L	20 μg/L in MA				
tert-Butyl Alcohol 524 / 10 ug/L	120 μg/L in MA					
tert-Butyl Alcohol 621 / 26 ag/2	40 μg/L in NH					
tert-Amyl Methyl Ether ²⁴ 524 / 0.5 ug/L	90 μg/L in MA 140 μg/L in NH					
tert-Amyr Methyr Ether 324 / 6.5 ag/ E						

Table 2 Footnotes:

^a Activity Category I: all parameters in contamination type A. Inorganics; any present in contamination type B. non-halogenated VOCs; if present in contamination type C. halogenated VOCs; any present in contamination type D. non-halogenated SVOCs; if present in contamination type E. halogenated SVOCs; and any present in contamination type F. fuels parameters.

^b Activity Category II:

all parameters in contamination type A. Inorganics; any present in contamination type B. non-halogenated VOCs; any present in contamination type C. halogenated VOCs; any present in contamination type D. non-halogenated SVOCs; if present in contamination type E. halogenated SVOCs; and if present in contamination type F. fuels parameters.

¹ The following abbreviations are used in Table 2, above:

^a TBEL = technology-based effluent limitation

^b WQBEL = water quality-based effluent limitation

^c mg/L = milligrams per liter

d avg = average

 $^{^{}e}$ μ g/L = micrograms per liter

f FW = freshwater

g SW = saltwater

² The sample type required for all parameters is grab. Grab samples must be analyzed individually and cannot be composited. See Appendix IX for additional definitions.

³ The effluent limitation and/or monitor-only requirement for any parameter listed applies to any site if the given parameter is present at that site. The effluent limitations and monitor-only requirements also apply to Activity Categories as follows:

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC39416-01	MW-5	Ethanol by SW846 8260	9/22/2017
SC39416-01	MW-5	Purgeable Organic Compounds	9/22/2017

Batch Summary

'[none]'

Subcontracted Analyses

SC39416-01 (MW-5)

SC39416-02 (River-1)

1716144

General Chemistry Parameters

1716144-BLK1 1716144-BS1

1716144-SRM1

SC39416-01 (MW-5)

1716152

Semivolatile Organic Compounds by GCMS

1716152-BLK1

1716152-BLK3

1716152-BS1

1716152-BS3

1716152-BSD1

1716152-BSD3

SC39416-01 (MW-5)

1716158

General Chemistry Parameters

1716158-BLK1

1716158-BS1

1716158-DUP1

1716158-MS1

1716158-MSD1

1716158-SRM1

SC39416-01 (MW-5)

<u>1716162</u>

General Chemistry Parameters

1716162-SRM1

1716162-SRM2

SC39416-01 (MW-5)

SC39416-02 (River-1)

1716177

General Chemistry Parameters

1716177-BLK1

1716177-BS1

SC39416-01 (MW-5)

<u>1716181</u>

General Chemistry Parameters

1716181-BLK1

1716181-BLK2

1716181-BS1

1716181-BS2

1716181-DUP1

1716181-MS1

1716181-MSD1

1716181-SRM1

SC39416-01 (MW-5)

<u>1716211</u>

General Chemistry Parameters

1716211-BLK1

1716211-DUP1

1716211-SRM1

1716211-SRM2

SC39416-01 (MW-5)

1716230

Volatile Organic Compounds

1716230-BLK1

1716230-BS1

1716230-BSD1

SC39416-01 (MW-5)

1716294

Semivolatile Organic Compounds by GCMS

1716294-BLK2

1716294-BS2

1716294-BSD2

SC39416-01 (MW-5)

1716296

Semivolatile Organic Compounds by GC

1716296-BLK1

1716296-BS1

1716296-BSD1

SC39416-01 (MW-5)

1716332

Volatile Organic Compounds

1716332-BLK1

1716332-BS1

1716332-BSD1

SC39416-01 (MW-5)

1716461

General Chemistry Parameters

1716461-SRM1

SC39416-01 (MW-5)

S705626-CAL9 402432A S705626-CALA Subcontracted Analyses S705626-CALB BZ06265-BLK S705626-CALC BZ06265-DUP S705626-CALD BZ06265-LCS S705626-CALE BZ06265-MS S705626-CALF SC39416-01 (MW-5) S705626-CALG SC39416-02 (River-1) S705626-CALH S705626-CALI 402491A S705626-CALJ Subcontracted Analyses S705626-CALK BZ06265-BLK S705626-CALL BZ06265-DUP S705626-CALM BZ06265-LCS S705626-CALN BZ06265-MS S705626-CALO SC39416-01 (MW-5) S705626-CALP SC39416-02 (River-1) S705626-CALQ S705626-CALR 402630A S705626-CALS Subcontracted Analyses S705626-CALT BZ06265-BLK S705626-CALU BZ06265-DUP S705626-ICV1 BZ06265-LCS S705626-ICV2 BZ06265-MS S705626-ICV3 SC39416-01 (MW-5) S705626-ICV4 SC39416-02 (River-1) S705626-ICV5 S705626-ICV6 402779A S705626-LCV1 Subcontracted Analyses S705626-LCV2 BZ03269-BLK S705626-LCV3 S705626-LCV4 BZ03269-DUP S705626-LCV5 BZ03269-LCS BZ03269-MS S705626-LCV6 SC39416-01 (MW-5) S708282 SC39416-02 (River-1) Semivolatile Organic Compounds by GCMS 402922A S708282-CAL1 Subcontracted Analyses S708282-CAL2 S708282-CAL3 BZ05972-BLK BZ05972-DUP S708282-CAL4 S708282-CAL5 BZ05972-LCS BZ05972-MS S708282-CAL6 SC39416-01 (MW-5) S708282-CAL7 S708282-CAL8 S705626 S708282-CAL9 S708282-CALA Semivolatile Organic Compounds by GC S708282-ICV1 S705626-CAL1 S708282-LCV1 S705626-CAL2 S708282-LCV2 S705626-CAL3 S708282-TUN1 S705626-CAL4 S705626-CAL5 S705626-CAL6

S705626-CAL7 S705626-CAL8

S708328

Semivolatile Organic Compounds by GCMS

S708328-CAL1 S708328-CAL2 S708328-CAL3 S708328-CAL4

S708328-CAL5

S708328-CAL6

S708328-CAL7

S708328-CAL8

S708328-CAL9

S708328-ICV1

S708328-LCV1

S708328-LCV2

S708328-TUN1

S708366

Volatile Organic Compounds

S708366-CAL1 S708366-CAL2

S708366-CAL3

S708366-CAL4

S708366-CAL5

S708366-CAL6

S708366-CAL7

S708366-CAL8

S708366-CAL9

S708366-CALA

S708366-CALB

S708366-ICV1 S708366-LCV1

S708366-LCV2

S708366-TUN1

S708418

Volatile Organic Compounds

S708418-CCV1

S708418-TUN1

S708448

Semivolatile Organic Compounds by GCMS

S708448-CCV1

S708448-TUN1

S708473

Volatile Organic Compounds

S708473-CCV1

S708473-CCV2

S708473-TUN1

S708503

Volatile Organic Compounds

S708503-CAL1

S708503-CAL2

S708503-CAL3

S708503-CAL4

S708503-CAL5

S708503-CAL6

S708503-CAL7

S708503-CAL8

S708503-CAL9

S708503-ICV1

S708503-LCV1

S708503-LCV2

S708503-TUN1

S708529

Semivolatile Organic Compounds by GC

S708529-CCV1

S708529-CCV2

S708529-IBL1

S708529-IBL2

S708558

Semivolatile Organic Compounds by GCMS

S708558-CCV1

S708558-TUN1

S708595

Semivolatile Organic Compounds by GCMS

S708595-CCV1

S708595-TUN1