

Environmental Engineering, Civil Engineering Forensic Engineering, Construction Services

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

For Property Located at:

50 Symphony Road Boston, MA 02115

Prepared For:

Prepared By:

50 Symphony LLC 1167 Broadway Somerville, MA 02144 FSL Associates, Inc. 358 Chestnut Hill Avenue, 1st Floor Boston, MA 02135

Fax: (617) 232-7800

April 11, 2018

Office: (617) 232-0001

358 Chestnut Hill Avenue, Boston, MA 02135

Environmental Engineering, Civil Engineering Forensic Engineering, Construction Services

Environmental Engineering

Forensic Engineering

Civil Engineering

Construction Services

April 11, 2018

U.S. Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

And

Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue Roxbury, MA 02119

RE: Notice of Intent for Discharge Pursuant to
Massachusetts Remediation General Permit MAG9100000
50 Symphony Road, Boston, MA 02115
MADEP Release Tracking Number (RTN) 3-34506

To Whom It May Concern:

On behalf of 50 Symphony LLC, FSL Associates, Inc. ("FSL") has prepared the attached Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 for the discharge of construction dewatering effluent into the Charles River via the City of Boston storm drainage system. Temporary construction dewatering discharge is scheduled to occur during the construction of a 5-story residential apartment building with a full basement. The development project is to take place at 50 Symphony Road in the Fenway neighborhood of Boston, Massachusetts (the subject site). Refer to the attached **Figure 1** for the site locus.

This permit application was prepared by FSL Associates, Inc. ("FSL") on behalf of 50 Symphony LLC, the owner of the subject property with an address of 1167 Broadway, Somerville, MA 02144. The required Notice of Intent Form contained in the RGP permit and Boston Water and Sewer Dewatering Discharge Permit Application are included in **Appendix A** and all supporting documentation is included in **Appendix B** and **Appendix C**. A Best Management Practice Plan (BMPP) is contained in **Appendix D**. This project is considered Activity Category I as defined in the RGP. Category I is defined as Petroleum-Related Site Remediation. Based on historical and current soil and groundwater analysis completed at the site and constituents of concern detected under Subcategories A (lead, mercury, cadmium, chromium), B (acetone, benzene), D (total group 1 polycyclic aromatic hydrocarbons (PAHs) and total group 2 PAHs),

358 Chestnut Hill Avenue, Boston, MA 02135 Office: (617) 232-0001 Fax: (617) 232-7800

and F (extractable petroleum hydrocarbons (EPH) and volatile petroleum hydrocarbons (VPH) in soil and oil & grease in groundwater), Technology Based Effluent Limitations (TBELs) and Water Quality Based Effluent Limitations (WQBELs) for Type A, B, D, and F contamination apply.

<u>Applicant</u> <u>Contractor</u>

50 Symphony LLCSterling Construction1167 Broadway134 Heywood RoadSomerville, MA 02144Sterling, MA 01564

Attention: Mr. Charles Aggouras Attn: Mr. Nathan Pfleegor Telephone: (847) 241-8857 Phone: (978) 793-6429

1.0 BACKGROUND AND SITE HISTORY

The site is an approximately 6,000 square foot parcel of land located at 50 Symphony Road in a residential area of the Fenway neighborhood of Boston, Massachusetts. Historically the site has been used as a vehicle parking lot since the late 1970s. The site had formerly been improved with a three-story residential apartment building from approximately 1905 until the building was razed following a fire circa 1976. Following the demolition of the former residential apartment building on the site, the site was filled to grade sometime between 1976 and 1978 and subsequently covered with asphalt pavement.

2.0 EXISTING CONDITIONS

The site is currently unimproved and surrounded by construction fencing. The site has been vacant and surrounded by construction fencing since September 2016. The asphalt pavement had been removed at the time construction fencing was initially erected in September 2016. The adjoining properties consist of multi-story residential apartment buildings to the northeast, southeast, and southwest. Symphony Road abuts the site immediately to the northeast while Public Alley 810 abuts the site immediately to the southwest. The Symphony Community Garden abuts the site to the northwest.

Site grades slope downward from elevation 16.5+/- at the northeast portion of the site to about elevation 12.0+/- at the southwest portion of the site. FSL utilized the benchmark indicated as *DH Set in Cem. Conc.* = El. + 16.54 on the site survey drawing prepared by Boston Surveying and Engineering dated January 15, 2014.

Elevations cited herein are in feet and are referenced to the North American Vertical Datum of 1988 (NAVD88).

3.0 PROPOSED SCOPE OF SITE DEVELOPMENT

The proposed development is understood to consist of a building which will occupy the entirety of the 6,000 square foot property parcel. The building will consist of five (5) stories above-grade and a basement underneath. The maximum depth of excavation for the construction of the building foundation will be nine (9) feet below-grade along the Symphony Road portion of the property and five (5) feet below grade along the Public Alley 810 portion of the property. The excavation for the elevator pit for the proposed building will be advanced to a maximum depth of twelve (12) feet below-grade. The elevator pit is located adjacent to the southeastern abutting residential apartment building. The excavation for the elevator pit is scheduled to be the source of the discharge.

4.0 SITE ENVIRONMENTAL SETTING

A review of the current Massachusetts Department of Environmental Protection (MADEP) Priority Resource Map indicates that the subject site is not located within Zone II of a public water supply, an Interim Wellhead Protection Area or Zone A of a Class A surface water supply reservoir. There are no known private or public drinking water supply wells located within the site boundaries, nor within a half mile of the site. Site groundwater is not classified as a current or potential drinking water source. The nearest surface water body is the Back Bay Fens, located approximately 600 feet to the west-southwest of the property.

The site is located within 500 feet of a residentially zoned area. In accordance with 310 CMR 40.0361, the applicable soil reporting category for this site is RCS-1. In accordance with 310 CMR 40.0362, the

applicable groundwater reporting category for this site is RCGW-2. A copy of the MADEP Phase I Site Assessment Map is included in **Appendix B**.

5.0 SUBSURFACE CONDITIONS

A geotechnical investigation was conducted on the subject site on January 25, 2018 and January 29, 2018. The investigation included the advancement of five (5) soil borings and the installation of three (3) groundwater monitoring wells. The boreholes were advanced using hollow-stem augers and samples were recovered at each borehole using a standard split spoon sampler driven in accordance with ASTM D-1556. Environmental investigations conducted in order to characterize site soil for off-site disposal as part of construction, including a test pit program and drilling program, were conducted in September 2016 and January 2018, respectively. Refer to the attached **Figure 2** for soil boring, groundwater monitoring well, and test pit locations.

The general subsurface profile at the site includes: A.) Urban fill ranging in thickness from approximately 5 feet to 8 feet across the site, which is underlain by; B.) Peat ranging in thickness from approximately 6 feet to 11 feet, which is underlain by; C.) Sand ranging in thickness from approximately 22 feet to 28 feet, which is underlain by; D.) Boston Blue Clay. The urban fill layer is predominantly granular with some organic silt with brick and ash. The peat layer consists of very soft peat organics. The sand layer consists of medium dense to very dense, coarse to fine sand with traces of inorganic silt and fine gravel. The Boston Blue Clay layer features medium stiff to soft clay with numerous traces of silt.

Groundwater levels were measured at depths of between 5.2 feet and 12 feet below the ground surface (bgs). FSL expects that there is perched water from the former building foundation which remains in the subsurface. The excavation for the elevator pit is scheduled to be the source of the discharge (refer to **Figure 3**).

6.0 MCP REGULATORY STATUS

The site is currently listed as a MADEP disposal site under release tracking number (RTN) 3-34506 due to reportable concentrations of the heavy metal lead detected in soil. Lead was detected at a maximum concentration of 4,900 parts per million (ppm) in soil during the test pit program conducted in September 2016. A Release Notification Form (RNF) was submitted to MADEP on September 25, 2017 on behalf of the current owner of the property. Reportable concentrations of petroleum and PAHs were also subsequently identified in the subsurface, specifically: extractable petroleum hydrocarbons (EPH), volatile petroleum hydrocarbons (VPH), and PAH constituents naphthalene, 2-methylnaphthalene, acenaphthylene, acenaphthene, phenanthrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene. The petroleum impacted soil layer is located at a depth of between 7.5 feet and 9 feet bgs. Refer to **Table S1** for a summary of this soil data.

7.0 GROUNDATER ANALYTICAL DATA

Three (3) separate groundwater sampling events were conducted during the process of preparing this application. Each of the three sampling events consisted of sampling the two (2) groundwater monitoring wells located on the subject site (monitoring wells "MW-1" and "MW-3", which are depicted on the attached **Figure 2**), while the final sampling event also consisted of collecting a sample of the receiving water from the Charles River in the vicinity of BWSC Outfall No. CSO-023. Monitoring wells MW-1 and MW-3 on the subject site were sampled between February 7, 2018 and March 30, 2018 and analyzed for the following: oil & grease, total petroleum hydrocarbons (TPH), extractable petroleum hydrocarbons

(EPH), pH, hardness, alkalinity, ammonia, chloride, total suspended solids (TSS), total dissolved solids (TSS), total metals (antimony, arsenic, lead, cyanide, iron, selenium, thallium, beryllium, cadmium, chromium III, chromium VI, total chromium, copper, mercury, nickel, silver, and zinc), dissolved metals (antimony, arsenic, lead, iron, selenium, thallium, beryllium, cadmium, total chromium, copper, mercury, nickel, silver, and zinc), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), EPH, and pesticides.

Several of these parameters were determined to be at elevated levels which require treatment before discharge under the RGP. These include: TSS, lead, mercury, cadmium, chromium, acetone, benzene, naphthalene, zinc, and PAHs. Pesticide constituent 4,4'-DDT (none of the constituents of which are included in the RGP) was detected at a concentration of 0.049 parts per billion (ppb), just above the laboratory detection limit of 0.040 ppb for 4,4'-DDT. No other pesticide constituents were detected. Refer to the attached **Table 1** for a summary of groundwater analytical data collected from the subject site.

Receiving water from the Charles River in the vicinity of the Outfall No. CSO-023 was sampled on March 30, 2018 and analyzed for the following: oil & grease, TPH, pH, hardness, alkalinity, ammonia, chloride, TSS, TSS, total metals (antimony, arsenic, lead, cyanide, iron, selenium, thallium, beryllium, cadmium, chromium III, chromium VI, total chromium, mercury, nickel, silver, and zinc), VOCs, SVOCs, PCBs, and pesticides. TPH, ammonia, TSS, antimony, arsenic, cyanide, selenium, thallium, beryllium, cadmium, chromium VI, chromium III, mercury, nickel, and silver were all below the laboratory detection limits. All VOCs, SVOCs, PCBs, and pesticides were also below the laboratory detection limits. Remaining receiving waters analytical data are summarized in the attached **Table 2**.

8.0 GROUNDWATER TREATMENT SYSTEM

Based on the groundwater analytical data collected from the site, raw discharged groundwater is expected to contain TSS, heavy metals, VOCs, SVOCs, and oil & grease. MADEP has approved a dilution factor of 111.8 (based upon a 7Q10 downstream flow of 15.96 million gallons per day (MGD)). This dilution factor and the analytical data collected from the site and receiving waters were used to calculate Water Quality Based Effluent Limitations (WQBELs). It was determined that Technology Based Effluent Limitations (TBELs) apply for all Inorganics, VOCs, SVOCs, and Fuels Parameters, with the exception of: the heavy metal lead and PAH constituents benzo(a)anthracene, benzo(b)pyrene, benzo(b)fluoranthene, and chrysene. WQBELs will apply for lead, benzo(a)anthracene, benzo(b)pyrene, benzo(b)fluoranthene, and chrysene. The WQBEL calculation spreadsheet and TBEL and WQBEL effluent limitations are included in **Appendix B**.

Based upon the soil and groundwater analytical data collected to-date, the proposed groundwater treatment system for this project consists of an influent Oil Water Separator (OWS) tank, bag filters, organoclay media, and liquid-phase activated carbon adsorbers. Based upon the total metals and dissolved metals analytical data, it is assumed that any metals present in the raw water are associated with the Total Suspended Solids (TSS) and can be removed by settling followed by mechanical filtration such as bag filtration. If base treatment system components cannot lower metals concentrations below discharge limits, an Ion Resin Exchange Filter will be employed to ensure discharged groundwater meets all applicable TBELs and WQBELs. The treatment system schematic is depicted on **Drawing No. QT-147977-LYT01**.

9.0 GROUNDWATER DISCHARGE

Dewatering activities are anticipated to be required based upon the maximum depth of excavation (12 feet bgs) and the high groundwater level measured on the subject site during assessment activities (5.2 feet bgs). On-site recharge of groundwater collected during construction activities at this site is anticipated to be unfeasible. Therefore, groundwater will be required to be discharged off-site via the municipal storm drain. Correspondence with personnel at BWSC indicates that the storm drainage system that services Symphony Road ultimately discharges via Outfall No. CSO-023 into the Charles River. Outfall No. CSO-023 is approximately 500 meters (1,640 feet) to the north-northwest of the subject site. The location of Outfall No. CSO-023 is depicted on **Figure 4**. The latitude and longitude coordinates of Outfall No. CSO-023 are 42.351760 North and 71.092320 West. The latitude and longitude coordinates of the storm drain grate in Symphony Road (the primary groundwater discharge point for this project) is 42.343015 West and 71.088971 West.

10.0 SUMMARY

FSL is pleased to submit this application on behalf of 50 Symphony LLC for the purpose of obtaining authorization to discharge groundwater from the project construction site under the provisions of the Massachusetts Remediation General Permit MAG9100000.

Based upon the soil and groundwater analytical data collected to-date, treatment of encountered groundwater will need to be treated prior to discharge in order to meet the requisite TBELs and WQBELs. The proposed groundwater treatment system for this project consists of an influent Oil Water Separator (OWS) tank, bag filters, organoclay media, and liquid-phase activated carbon adsorbers. Based upon the total metals and dissolved metals analytical data, it is assumed that any metals present in the raw water are associated with the Total Suspended Solids (TSS) and can be removed by settling followed by mechanical filtration such as bag filtration. If base treatment system components cannot lower metals concentrations below discharge limits, an Ion Resin Exchange Filter will be employed to ensure discharged groundwater meets all applicable TBELs and WQBELs.

Thank you for the opportunity to provide you with this application. Please feel free to contact the undersigned should you have any questions.

Sincerely,

Jarod R. Cournoyer, E.I.T.

Vice President: Environmental

FSL Associates, Inc.

GENERAL TERMS AND CONDITIONS

The terms and conditions set forth herein are attached to and form an integral part of the Agreement between FSL Associates, Inc. (the "Company") and **50 Symphony LLC** (the "Client") regarding certain engineering services ("this Agreement" or the "Agreement"). This attachment contains clauses that limit the Company's liability to Client and require Client to indemnify Company for some claims for damages. The entire Agreement should be reviewed carefully, and Client may choose to consult with an attorney. Company and Client agree as follows:

Section 1. Services

Company shall provide Client with the Services described in the scope of services hereto attached with respect to the property herein above identified in this Agreement (the "Site" or "On-Site"), under the terms and conditions set forth herein. Company's Services will be performed on behalf of and solely for the exclusive use of Client for the purposes set forth in this Agreement and for no other purpose. Client acknowledges that Company's Services require decisions, which are based upon judgment stemming from limited data rather than upon scientific certainties. Client acknowledges the inherent risks to Client and its property associated with the work described in this Agreement and with underground work in general. Company reserves the right to refuse to undertake services that it determines may involve risks or activities beyond those currently contemplated. Client acknowledges that other qualified persons and entities may be available to carry out such services. No attempt will be made to determine compliance of present or former owners or operators of the Site with federal, state or municipal environmental or land use laws or regulations. The Services do not include directly or indirectly storing, arranging for or actually transporting, disposing, treating or monitoring oils or hazardous materials, unless otherwise expressly specified in this Agreement.

Section 2. Billing and Payment

Client will pay Company for services performed in accordance with the rates and charges set forth in this Agreement. Client will pay all invoices submitted by the Company for the Services in accordance with the terms specified in the invoice(s). Invoice balances remaining unpaid after the due date provided in the invoice will bear interest from invoice date at 1.5 percent per month or at the maximum lawful interest rate, if such lawful rate is less than 1.5 percent per month, except for charges disputed in good faith. If Client fails to pay undisputed invoice charges in full within forty-five (45) days after invoice date, Company may, at any time, and without waiving any other rights or claims against Client and without thereby incurring any liability to Client, elect to terminate performance of the Services upon ten (10) days prior written notice by Company to Client.

Notwithstanding any termination of Services by Company for non-payment of invoices, Client shall pay Company in full for all Services rendered in accordance with this Agreement and its terms and conditions by Company to the date of termination of Services plus all interest, termination costs and expenses incurred by Company and related to such termination. Client shall be liable to reimburse Company for all costs and expenses of collection, including reasonable attorneys' fees for such Services. The failure to exercise any rights or remedies, whether specified herein or otherwise provided by law, shall not be deemed a waiver of any such rights or remedies, nor preclude the exercise of such rights or other rights and remedies under this instrument, or at law.

Section 3. Right of Entry

Client hereby grants to Company permission for Right of Entry from time to time, by Company, its agents, staff, consultants, and subcontractors, upon the Site for the purpose of performing the Basic Services (as described in this Agreement), including without limitation, the making of test borings, installation of wells, trenches, and other subsurface and surface structures, the installation and operation of equipment and the removal of treatment system(s), pursuant to the Scope of Services.

Section 4. Site Work

- a. <u>Normal Disturbance</u>. Client hereby recognizes that the use of exploration, excavation, construction, and other heavy equipment may unavoidably affect, alter or damage the terrain and affect vegetation, buildings, structures and equipment in, at or upon the Site. Client accepts the fact that this is inherent in Company's work. Reasonable care will be exercised in locating underground structures in the vicinity of proposed subsurface work. Company will take reasonable precautions to limit damage to Site. If Company is required to restore the land to its former conditions, this will be accomplished and the cost will be added to our fee unless such restoration is specifically included in the Scope of Services or is due to damage caused by the negligence or willful misconduct of Company or its officers, employees or subcontractors.
- b. <u>Damage to Latent Subterranean Structures</u>. Company will exercise due and reasonable care in locating subterranean structures in the vicinity where proposed excavations will take place and will contact appropriate public utilities and review plans provided by Client and/or the Owner of the Site relating to the locations of subterranean structures. Provided Company has proceeded with due and reasonable care, Company will not be liable for damages or injury arising from damage to or interference with subterranean structures (including, without limitation, pipes, tanks, telephone cables, etc.) which are not called to Company's attention and/or not correctly shown on the plans furnished by Client or others in connection with work performed under this Agreement. The Client will be named as an additional insured on the drilling insurance policy of Company and/or its subcontractors.

Section 5. Sample Disposition

Company will preserve such soil, water, and other samples, if any obtained from the Site for such period of time, as Company in its sole

discretion deems appropriate. No such samples will be discarded before thirty (30) days after completion of the work without prior written notice to Client, provided, however, that samples on which soil or chemical laboratory testing has been performed may be thereafter discarded by Company without such notification. Samples will be available at Company's office for inspection by Client and others authorized by Client; samples will be shipped to a location selected by Client at Client's expense.

Section 6. Standard of Care

Client agrees that Company's services are on behalf of and for the exclusive use of Client for the purposes set forth in this Agreement. Client recognizes that Company's services require decisions, which are not based upon pure science but rather upon judgmental considerations, including without limitation, the economic feasibility of alternate designs. Company will perform Services in accordance with generally accepted practices of engineers and geohydrologists undertaking similar studies or actions in the same locale under like or identical circumstances. Client agrees that such services will be rendered without any other warranty, expressed or implied, except as otherwise provided in this Agreement. In providing reports, Company may review and interpret certain information provided to it by third parties. Company will not conduct an independent evaluation of the accuracy or completeness of such information. It is understood and agreed that in seeking the professional services of Company under this Agreement, the Client is requesting Company to undertake uninsured obligations for the Client's benefit involving the presence or potential presence of oil or hazardous materials. The Client hereby explicitly recognizes that even a comprehensive sampling and testing program implemented with the appropriate equipment and experienced personnel under the direction of a trained professional who functions in accordance with a professional standard of practice may fail to detect certain conditions, because they are hidden and, therefore, cannot be considered in development of subsequent subsurface exploration programs. Further, because geological and soil formations are inherently random, variable and indeterminate (heterogenous) in nature, the Professional Services and opinions provided by Company under this Agreement are not guaranteed to be a representation of complete site conditions, which are subject to change with time as a result of natural or man-made processes. Although the Services are extensive, findings and conclusions are limited to and by the information obtained. Company makes no expressed or implied representations or warranties regarding any changes in condition of the Site after the date of the on-site inspections(s).

Section 7. Insurance

The Company shall obtain and maintain for as long as the Company has obligations under this Agreement, at its sole cost and expense, the following insurance with a financially sound and responsible insurance company or companies authorized to do business in the Commonwealth of Massachusetts under generally accepted and practiced forms of policy:

- (A) Worker's Compensation Insurance, including occupational disease benefits, as prescribed by applicable law.
- (B) Commercial General Liability Insurance including blanket contractual liability sufficient to address the indemnification obligations of Company under this Agreement, if any. The following minimum limits of liability shall be maintained: One Million (\$1,000,000) Dollars each occurrence; One Million (\$1,000,000) Dollars personal and advertising injury; Two Million (\$2,000,000) Dollars general policy aggregate.
- (C) Automobile, Bodily Injury and Property Damage Liability Insurance in an amount not less than the compulsory coverage required by applicable law. Such insurance shall extend to owned and leased automobiles used in the performance of the activities under this Agreement.
- (D) Professional Liability (errors and omissions) Insurance including coverage for bodily injury and/or property damage arising out of the negligent acts, errors and omissions of the Company in the performance of the professional services under this Agreement and coverage for contractual liability assumed under this Agreement, if any. The limits of liability of such insurance shall be not less than One Million (\$1,000,000) Dollars for each claim and Two Million \$2,000,000) Dollars in the aggregate.

The above insurance shall be standard policies written on an occurrence basis (except for the Professional Liability/Contractors Pollution Insurance which shall be on a claims made basis). The insurance specified above shall provide that such insurance is primary coverage with respect to Company's activities hereunder. Said policies shall name Client as an additional insured and/or loss payee, as appropriate, and shall contain a provision stating that the insurer shall endeavor to provide at least twenty (20) days prior written notice to the Client before such coverage is cancelled, reduced or otherwise materially altered.

Certificates of Insurance showing such insurance coverage as required by this Section will be forwarded to Client under separate cover.

To the extent allowed under all applicable law, Company hereby waives and relinquishes, and agrees to request of all its subcontractors to waive and relinquish, any right of subrogation it might have against Client under the provisions of the Workers' Compensation Act in Massachusetts on account of any injury to its employees or employees of its subcontractors caused in whole or in part by any negligent or wrongful act or omission of Client, so long as such waiver shall not affect the applicable insurance policy or any right, claim or defense hereunder or the premium therefore.

Client hereby releases Company and all its subcontractors from any and all liability for any loss or damage caused by any of the socalled broad form coverage casualties, even if such casualty shall be brought about by the fault or negligence of Company or any of its subcontractors. Client agrees that its property casualty insurance policies will include such a release or waiver of subrogation clause.

Section 8. Client's Duty to Notify Company of Hazards

Client represents and warrants that it will provide Company with any and all information known to or suspected by Client with respect to (1) the existence or possible existence at, on or under the Site of any hazardous materials, pollutants or asbestos as defined in the Federal Water Pollution Control Act, the Federal Comprehensive Environmental Response, Compensation and Liability Act of 1980, the Resource Conservation and Recovery Act of 1976, or under the provisions of federal, state and local laws of similar import now or hereafter existing; (2) any condition known to Client to exist in, on, under or in the vicinity of the Site which might present a potential safety hazard or danger to human health or the environment; or (3) any permit, manifest, title record or other record of compliance or non-compliance with any federal, state or local laws relating in any way, directly or indirectly, to the past or present environmental conditions at the Site. Company acknowledges that Client makes no representations or warranties as to the accuracy or completeness of information contained in materials provided to the Company by the Client and prepared by third parties.

Section 9. Hazardous Materials; Pollutants; Asbestos

If unanticipated, potentially hazardous materials, pollutants or asbestos are encountered during the course of the work, Company shall have the right (1) to suspend its work immediately and (2) to terminate the work described in the Scope of Services upon ten (10) days written notice of intent to terminate, unless Company and Client agree upon a mutually satisfactory amendment to this Agreement that may include a revision of the Scope of Services, adjustment of budget estimates, revised Terms and Conditions, and revised fees. Client shall remain liable for and shall pay all fees and charges incurred in accordance with the provisions of this Agreement through the date of termination, notwithstanding Client and Company not having reached a new, mutually satisfactory, revision of this Agreement.

Section 10. Confidentiality

Company will not disclose information regarding this Agreement, Company's Services or its Report, except (1) to Client; (2) to parties designated by Client; or (3) as provided in Section 11 below. Information which is in the public domain or which is provided to the Company by third parties is accepted from the foregoing non-disclosure agreement.

Section 11. Public Responsibility

Client acknowledges that the Client or the Site owner, as the case may be, is now and shall remain in control of the Site for all purposes at all times. Company does not undertake to report to any Federal, state, county or local public agencies having jurisdiction over the subject matter any conditions existing at the Site from time to time which may present a potential danger to public health, safety or the environment. Client agrees that Client will timely notify each appropriate Federal, state, county and local public agency, as required by law, of the existence of any condition at the Site, which may present a potential danger to public health, safety or the environment. Company will promptly notify Client when such condition becomes evident. It is understood, however, that this is not a contract for the rendition of legal services and no opinions, advice, counseling or any other assistance pertaining to the rendering of legal advice will be provided by Company. Client specifically acknowledges responsibility to notify appropriate authorities if same is recommended by Company, and further releases and holds Company harmless from any responsibility pertaining to such notification.

Notwithstanding the provisions of Section 10 and this Section 11, Company will comply with judicial orders or governmental directives, and federal, state, county and local laws, regulations and ordinances and applicable codes regarding the reporting to the appropriate public agencies of findings with respect to potential dangers to public health, safety or the environment, but Company shall have no liability to Client or to any other person or entity from the failure so to comply. To the extent feasible, Company will provide Client with prior notice of Company's proposed reporting, if any. Company shall have no liability or responsibility to Client or to any other person or entity for reports or disclosures made in accordance with such statutory or other lawful requirements.

Section 12. General Indemnity

The Client agrees to hold harmless, indemnify, and defend Company and its officers and employees from and against any and all claims, losses, damages, liability and costs, including but not limited to, costs of defense, arising out of or in any way connected with (i) any breach by Client or its officers, employees, agents, or subcontractors of the terms and conditions of this Agreement; (ii) any act, omission or negligence of Client or its officers, employees, agents, or subcontractors; or (iii) the presence, release, or migration of contaminants of any kind on or about the Site. Furthermore, the Client hereby agrees to indemnify and hold Company harmless against any and all claims that may arise from reliance on services beyond the Scope of Services described herein, from third parties' reliance upon same or from reliance on said services, from any party, whether party to this Agreement or not, unless Company has failed to exercise the prevailing standard of care for similarly situated professionals, and further against the negligence of private subcontractors pertaining to the Services rendered pursuant to this Agreement. This indemnity in no way limits any potential cause of action the Client may have against such private subcontractors.

Section 13. Limitation of Professional Liability

The Client hereby agrees that to the fullest extent permitted by law, Company's total liability to the Client for any and all liability, claims and losses, expenses, damages or claimed expenses whatsoever arising out of or in any way related to this Agreement from any cause or causes, including, but not limited to, Company's negligence, errors, omissions, strict liability or breach of warranty or contract, shall not exceed \$50,000.00.

Section 14. Delays

In the event that Company is obstructed or delayed in the completion of the Services by any act of the Client or the Client's agents or by any act beyond the control of Company, including, but not limited to, inclement weather, illness, strikes, failure of equipment, unanticipated degree of difficulty encountered in performing the Services, or delay created within or by approving agencies, then the time herein fixed for the

completion of the Services shall be extended for a period of time equivalent to the time lost by reason of any or all of the aforementioned causes.

Section 15. Ownership of Documents

All documents, including original field notes and data, are and shall remain the sole and exclusive property of Company as instruments of service. The Client may, at its expense, obtain copies, in consideration of which the Client will use them solely in connection with the above-described project.

Section 16. Disputes

If a dispute arises out of or relates to this Agreement, or the performance or breach thereof, the parties agree first to try in good faith to settle the dispute by mediation under the commercial Mediation Rules of the American Arbitration Association, before resorting to arbitration. Thereafter, any remaining unresolved controversy or claim arising out of or relating to this Agreement, or the performance or breach thereof, shall be settled by arbitration in accordance with the Commercial Arbitration Rules of the American Arbitration Association, conducted in Boston, Massachusetts. The sole Arbitrator shall be a retired or former Judge of the Trial Court of Massachusetts. Judgment upon the award rendered by the Arbitrator may be entered in any court having jurisdiction thereof.

Section 17. Authorization

Each of the signatories to this Agreement hereby certifies that he/she is presently authorized to enter into this Agreement on behalf of the Company or the Client, as the case may be, and to bind such party to all terms, representations, and agreements herein contained.

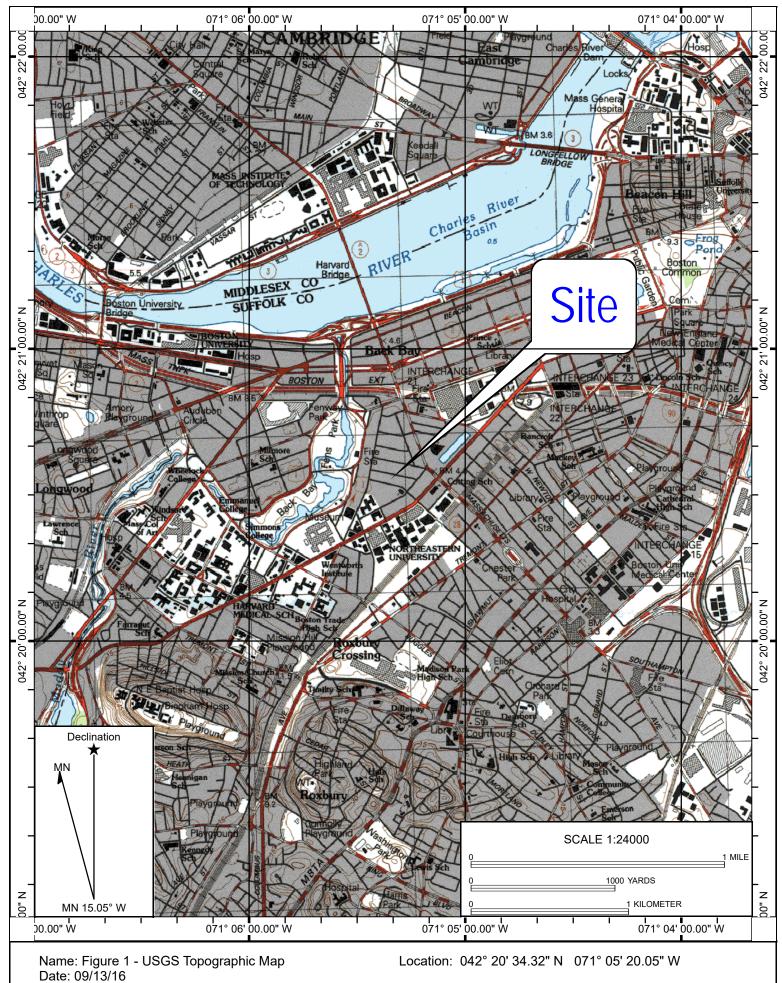
Section 18. Construction of Agreement

This instrument, which may be executed in multiple counterparts, constitutes a legal and binding contract, is to take effect as a sealed instrument, sets forth the entire contract between the parties hereto and their respective heirs, legal representatives, successors and assigns, supersedes all prior proposals, purchase orders, or agreements between the parties with respect to the subject matter hereof, and may be canceled, modified or amended only by a written instrument duly executed by both the Client and Company. The Client hereby agrees that he/she/it has read and understands all the terms of this Agreement and either has reviewed this Agreement with legal counsel or knowingly declined such review after having a reasonable opportunity to seek the same.

If any section, subsection, sentence or clause of this Agreement shall be adjudged illegal, invalid or unenforceable, such illegality or unenforceability shall not effect the legality, validity or enforceability of the Agreement as a whole or of any section, subsection, sentence or clause hereof not so adjudged. This Agreement shall be governed by the laws of the Commonwealth of Massachusetts.

Section 19. Fiduciary Responsibility

Client confirms that neither Company nor any of Company's subconsultants or subcontractors has offered any fiduciary service to Client and no fiduciary responsibility shall be owned to Client by Company or any of Company's subconsultants or subcontractors, as a consequence of Company's entering into this Agreement with Client.

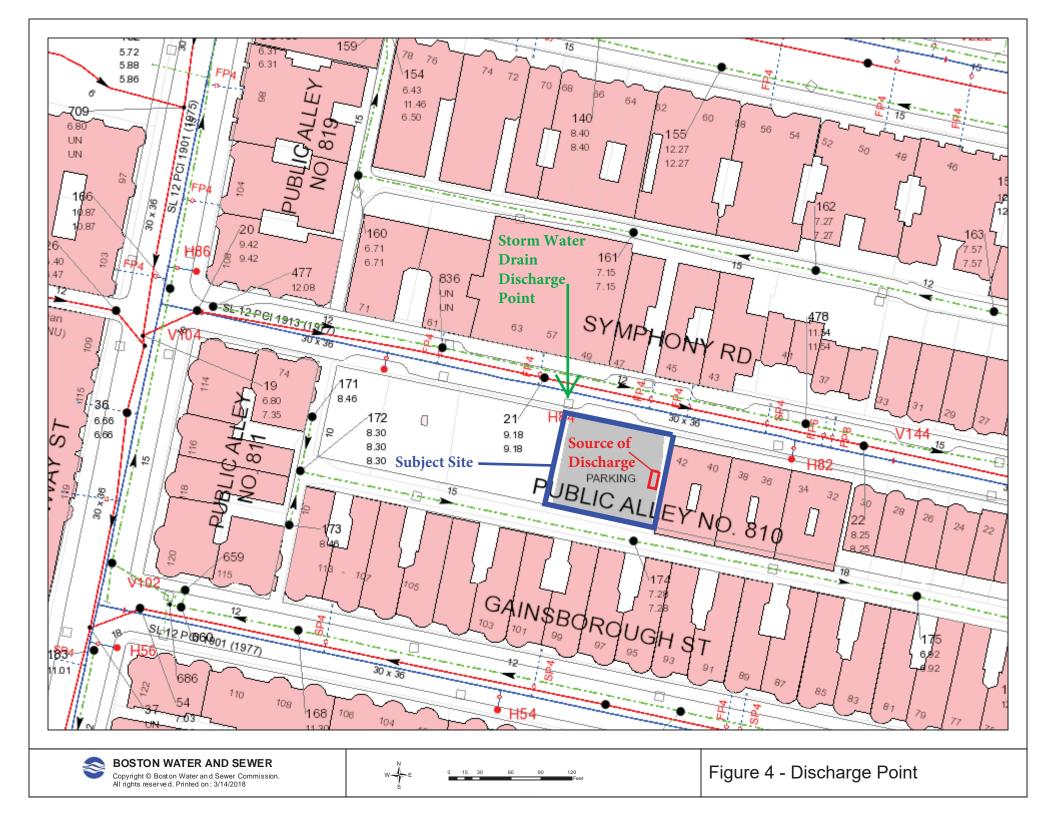

Section 20. Use of Licensed Site Professionals

In accordance with Massachusetts General Laws Chapter 21E, the performance of the Services contained in this Agreement may require the engagement of a Licensed Site Professional ("LSP") registered with the Commonwealth of Massachusetts under Massachusetts General Laws Chapter 21A and the regulations promulgated by the Massachusetts Department of Environmental Protection ("DEP") thereunder (collectedly the "LSP Program"). Accordingly, Client recognizes and agrees to the following:

- (i) The LSP Program places upon the LSP certain professional obligations owed to the public, including, in some instances, a duty to disclose and report the existence of certain environmental contaminants to the DEP. In the event the LSP's obligations under the LSP Program conflict with the interests of the Client, the Client accepts that the LSP is bound by law to comply with the requirements of the LSP Program.
- (ii) The Client recognizes that the LSP shall be immune from all civil liability resulting from any alleged conflict between the interests of the Client and the investigatory, reporting, and disclosure requirements placed upon the LSP pursuant to 310 CMR 40.0000 and the rules promulgated thereunder.
- (iii) Under the LSP Program, the LSP is required to provide professional opinions ("Opinions") at various stages of an environmental assessment/remediation project. The LSP shall be entitled to request performance of any additional investigations, tests, or other services which, in the LSP's professional judgment, are necessary to permit the LSP to render Opinions required under the LSP Program.
- (iv) At all times, the LSP shall exercise independent professional judgment in the rendering of Opinions and requests for additional investigations, tests, or other services which, in the LSP's professional judgment, are necessary to permit the LSP to render Opinions.
- (v) As part of the LSP Program, the DEP may randomly audit the services performed by the LSP. The Client recognizes that such an audit is part of the regulatory process imposed by the LSP Program, and is in no way associated with, or the result of, any act of the LSP or Company. The Client agrees that any services requested of the LSP or Company in connection with any regulatory audit shall

be additional services, and Company shall be compensated at then existing rates or as otherwise agreed by Client and Company.

(vi) Notwithstanding the provisions of the LSP Program, any Opinions rendered pursuant to this Agreement are for the sole and exclusive use of Client, and are not intended for the use of or reliance upon by any third parties without the prior written approval of Company. Accordingly, Client agrees to indemnify, hold harmless, and defend Company, and the LSP individually, to the fullest extent permitted by law for any claims, losses, or damages allegedly suffered by third parties due to Client's unauthorized release or publication of any Opinion provided hereunder.



Scale: 1 inch = 2,000 feet

Datum: NAD27

Copyright (C) 2009 MyTopo

GREATER BOSTON SURVEYING AND ENGINEERING 19 FREDITH ROAD FREWOUTH, AN CASES (781) 331-5728 PLAN OF PROPOSED CONSTRUCTION Test Pit Advanced September 21, Installed January 25-January 29, Soil Boring Advanced January Groundwater Monitoring Well BOSTON, MASSACHUSETTS (BOSTON PROPER DISTRICT) 50 SYMPHONY ROAD PREPARED FOR ANDREW WEESNER URBANICA DESIGN AND DEVELOPMENT 1412 BERKIEY STREET BOSTON, MA 02116 DATE: SEPTEMBER 11, 2013 18-January 19, 2018 20 SCALED Figure 2 - January 2018 Sampling Event Locations CALC BY: PJT PARCEL #40 S PARCEL #0401567000 N/F CREEN REALTY TRUST N/F N/F N/F 205.49,30,E $SYMPHONY_{-(40.0\ FT.\ WDE\ -\ PUBLIC)}$ ROADFLUSH WITH ABUTTING BUILDING (OFFSET FROM PROPERTYALINE/C) S2-2 #50 **S2-1** *PARCEL #0401567000* 80.00 DEED 47996/225 PLAN 2029/506 6,(2) S.F.± 50 SYMPHONY ROAD. PUBLIC ALLEY 810 (18.0 FT. WDE 72 BUBLIC) S1-3 LIMIT OF GROU SEMS PAINT **MW-3** N02*49'30"W PARCEL #0401567000 PARCEL #0401567000 N/F BOSTON VATURAL N/F N/F N/F THE S8619/246 0.50

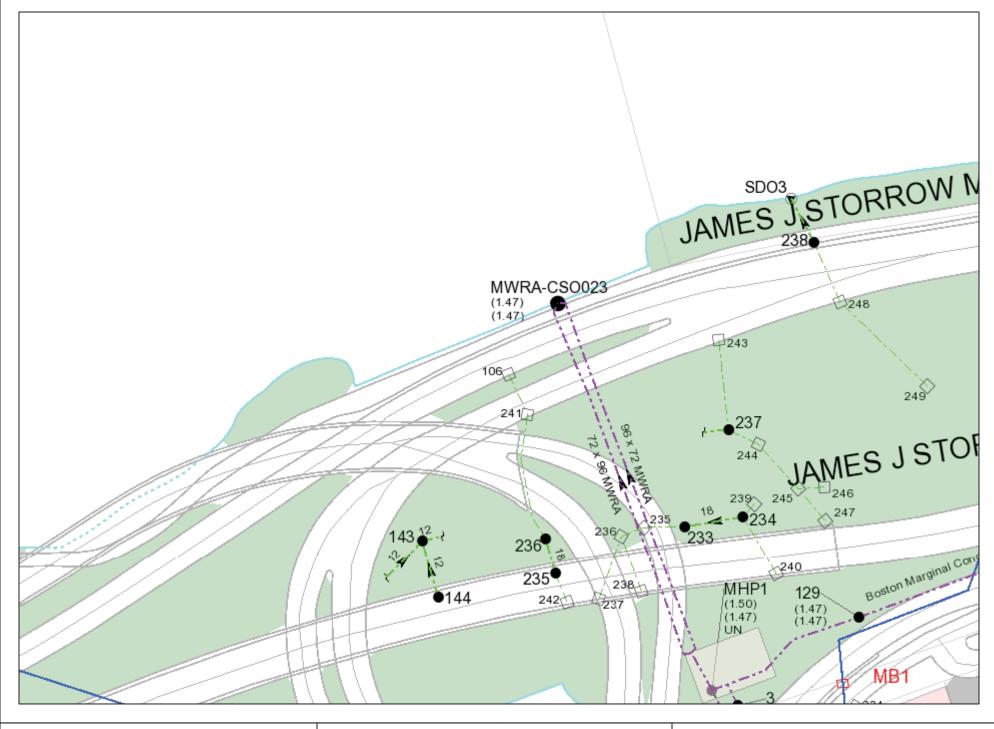
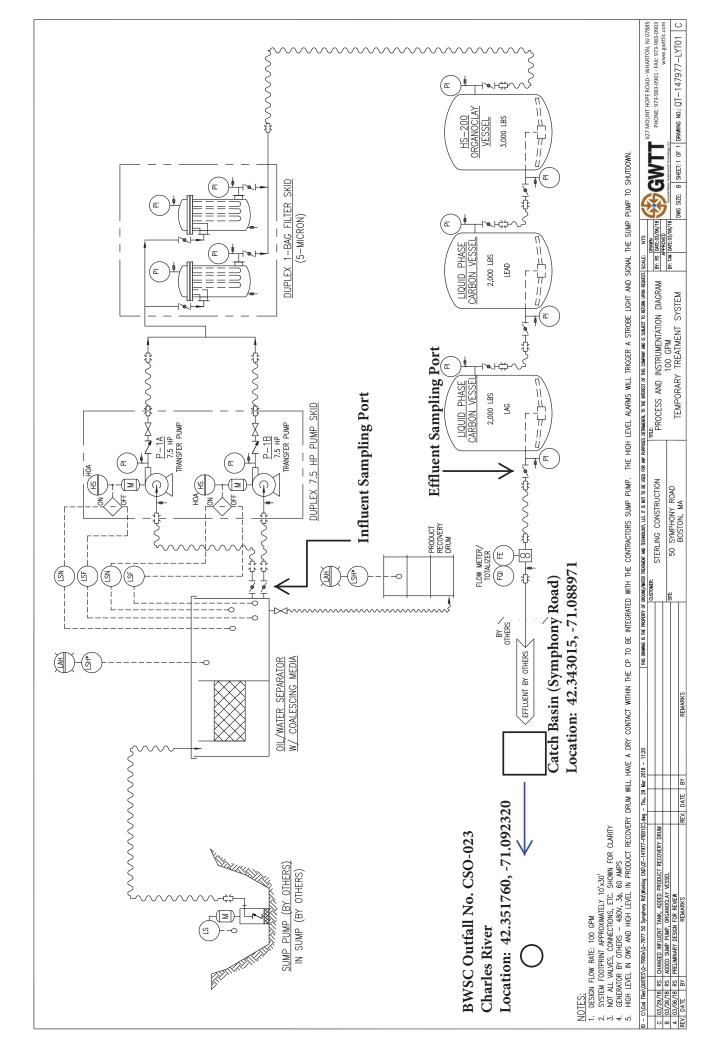



Figure 4 - CS0-023 Outfall

Table S1. Analytical Results - Petroleum Impacted Soil Layer

50 Symphony Road Boston, MA 02115 MADEP RTN 3-34506

					KIN 3-343						
Sample Identification	MADEP Reportable Concentration RCS-1		Max	S1-1	S2-1	S2-2	\$5-3	S2-3	S3-1	S3-2	S3-3
Depth	Concentration RC3-1	Average	Value	9-12'	9-10'	9-10'	5-7'	8-12'	8-11'	7.5-11'	9-10'
Sample Date	N/A		value	01/18/18	01/18/18	01/18/18	01/18/18	01/18/18	01/18/18	01/18/18	01/18/18
Units	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EPH/PAH											
C9-C18 Aliphatics	1,000	1,087.1	2,000.0	1,300.0	660.0	310.0	<36	2,000.0	1,400.0	1,400.0	540.0
C19-C36 Aliphatics	3,000	1,380.0	4,200.0		140.0	350.0	<36	310.0	4,200.0	4,200.0	160.0
C11-C22 Aromatics	1,000	1,097.1	2,200.0		390.0	380.0	<36	1,200.0	2,200.0	2,200.0	340.0
Naphthalene	4	3.1	4.5		<0.4	<0.5	<0.6	<0.5	0.8	4.1	<0.5
2-Methylnaphthalene	0.7	1.8	4.6		0.6	<0.5	<0.6	2.5	0.7	4.6	0.5
Acenaphthylene	1	4.3	13.0	0.8	< 0.4	< 0.5	< 0.6	2.7	0.8	13.0	< 0.5
Acenaphthene	4	2.9	5.9		0.5	<0.5	< 0.6	2.9	0.7	4.7	< 0.5
Fluorene	1,000	2.8	6.4	6.4	1.3	0.7	<0.6	5.1	2.3	< 0.5	0.9
Phenanthrene	10	7.4	34.0	34.0	0.9	3.8	< 0.6	3.8	0.8	1.1	< 0.5
Anthracene	1,000	2.1	4.6	4.6	< 0.4	0.8	< 0.6	1.8	< 0.5	1.2	< 0.5
Fluoranthene	1,000	8.6	37.0	37.0	0.6	3.5	< 0.6	7.4	0.7	2.5	< 0.5
Pyrene	1,000	9.5	28.0	28.0	0.5	3.4	< 0.6	6.2	< 0.5	< 0.5	< 0.5
Benzo(a)anthracene	7	5.9	17.0	17.0	< 0.4	1.7	< 0.6	3.3	1.5	< 0.5	< 0.5
Chrysene	70	5.3	19.0	19.0	< 0.4	2.3	< 0.6	3.8	0.7	0.7	< 0.5
Benzo(b)fluoranthene	7	5.5	12.0	12.0	< 0.4	1.0	< 0.6	3.4	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	70	5.1	12.0	12.0	< 0.4	1.2	< 0.6	2.2	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	2	4.8	10.0	10.0	< 0.4	1.5	< 0.6	2.9	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-cd)pyrene	7	2.8	6.3	6.3	< 0.4	0.7	< 0.6	1.4	< 0.5	< 0.5	< 0.5
Dibenzo(a,h)anthracene	0.7	1.2	2.4	2.4	< 0.4	< 0.5	0.6	0.5	< 0.5	< 0.5	< 0.5
Benzo(g,h,i)perylene	1,000	2.4	5.2	5.2	< 0.4	0.7	< 0.6	1.2	< 0.5	< 0.5	< 0.5
VPH											
C5-C8 Aliphatics	100	<14	<14	<8.6	<9.2	<10	<14	<9.1	<11	<12	<11
C9-C12 Aliphatics	1,000	108.3	210.0	<8.6	120.0	46.0	<14	210.0	54.0	100.0	120.0
C9-C10 Aromatics	100	82.1	150.0	110.0	81.0	35.0	<14	150.0	41.0	62.0	96.0
Methyl-tert-butylether (MTBE)	0.1	< 0.14	< 0.14	< 0.086	< 0.092	< 0.10	< 0.14	< 0.091	< 0.11	< 0.12	< 0.11
Benzene	2	< 0.70	< 0.70	< 0.43	< 0.46	< 0.52	< 0.70	< 0.46	< 0.56	< 0.59	< 0.55
Toluene	30	< 0.70	< 0.70	< 0.43	< 0.46	< 0.52	< 0.70	< 0.46	< 0.56	< 0.59	< 0.55
Ethylbenzene	40	< 0.70	< 0.70	< 0.43	< 0.46	< 0.52	< 0.70	< 0.46	< 0.56	< 0.59	< 0.55
m,p-Xylene	100	<1.4	<1.4	< 0.86	< 0.92	<1.0	<1.4	< 0.91	<1.1	<1.2	<1.1
o-Xylene	100	< 0.70	< 0.70	< 0.43	< 0.46	< 0.52	< 0.70	< 0.46	< 0.56	< 0.59	< 0.55
Naphthalene	4	3.7	3.7	3.7	< 0.46	< 0.52	< 0.70	< 0.46	< 0.56	< 0.59	< 0.55

Table 1. Groundwater Analytical

50 Symphony Road Boston, MA 02115 **MADEP RTN 3-34506**

			MADEP	RTN 3-345	000					
Sample Location	MW-1	MW-3	MW-1	MW-3	MW-1	MW-3		NPDES MAG9100	_	
Sample Date	02/07/18	02/08/18	03/16/18	03/16/18	03/30/18	03/30/18	Max Value	Limitat	ions ²	Average
Groundwater Category		GW-2/GW-3		GW-2/GW-3				TBEL	WQBEL	
General Chemistry and Miscellaneous										
Oil & Grease	10	11	NT	NT	NT	NT	11.0	NS	NS	10.5
Total Petroleum Hydrocarbons (TPH)	NT	NT	NT	NT	<4.00	<4.00	NT	5.0	NS	<4.00
pH (Standard Units)	7.0	7.3	6.9	7.4	NT	NT	7.4	6.5 - 8.3	6.5 - 8.3	7.2 656.5
Hardness Alkalinity	NT NT	NT NT	854.0	459.0 308.0	NT NT	NT NT	854.0	NS NS	NS NS	659.0
Ammonia	NT	NT NT	1,010.0 NT	308.0 NT	9.74	2.21	1,010.0 9.74	Report Results	NS NS	6.0
TRC (mg/L [TBEL] and ug/L [WQBEL])	NT	NT NT	NT NT	NT	9.74 NT	NT	9.74 NT	0.2	1.230	NT
Chloride (ug/L)	NT	NT	NT	NT	850,000	398,000	850,000.0	Report Results	NS	624,000.0
Total Suspended Solids (TSS)	730.0	310.0	1,100.0	320.0	NT	NT	1,100.0	30	NS	615.0
Total Dissolved Solids (TDS)	NT	NT	3,000.0	800.0	NT	NT	3,000.0	<i>30</i>	NS	1,900.0
Inorganics (Total Metals)										
Antimony	< 0.050	< 0.050	< 0.004	0.0075	NT	NT	0.0075	0.2060	71.5730	0.0075
Arsenic	0.015	0.020	0.0062	0.0094	NT	NT	0.0200	0.1040	1.1180	
Lead	0.3030	0.6150	0.5223	0.2572	NT	NT	0.6150	0.1600	0.15068	0.4244 <0.005
Cyanide	NT	NT	NT	NT	< 0.005	< 0.005		178.0	0.5815	31.7500
Iron Selenium	NT 0.0130	NT <0.010	NT <0.005	NT <0.005	37.8 NT	25.7 NT	37.8 0.0130	5.0000 0.2358	71.823 0.5592	0.0130
Thallium	< 0.0130	<0.010	<0.005	<0.005	N I NT	N I NT	< 0.0130	0.2358 NS	0.5592 NS	<0.020
Beryllium	<0.020	<0.020	<0.001	<0.001	NT NT	NT NT	<0.001	NS NS	NS NS	<0.025
Cadmium	< 0.005	< 0.005	0.0001	0.00022	NT	NT NT	0.00022	0.0102	0.0273	0.000215
Chromium Total	0.0540	0.0300	0.0207	0.0136	0.06488	0.02270		0.3230	1.2788	0.0343
Chromium VI	NT	NT	NT	NT	< 0.010	< 0.010	< 0.010	0.3230	1.2788	< 0.010
Chromium III	NT	NT	NT	NT	0.0650	0.0230		0.3230	8.6005	0.0440
Copper	0.0470	0.0510	0.0067	0.0238	NT	NT	0.0510	0.2420	0.9264	0.0321
Mercury	<0.0002	0.00106	<0.0002	<0.0002	NT	NT	0.00106	0.000739	0.10131	0.0011
Nickel	0.0290	< 0.025	0.0099	0.0079	NT	NT NT	0.0290	1.4500	5.1862	0.0156 <0.007
Silver Zinc	<0.007 0.1380	<0.007 0.3360	<0.0004	<0.0004	NT NT	NT NT	<0.007 0.3360	0.0351 0.4200	0.3332 10.3588	<0.007 0.1764
Inorganics (Dissolved Metals)	0.1380	0.3300	0.1166	0.1148	IN I	IN I	v.336U	0.4200	10.3588	0.1704
Antimony	NT	NT	< 0.004	0.0051	NT	NT	0.0051	0.2060	71.5730	0.0051
Arsenic	NT	NT	0.0024	0.0028	NT	NT	0.0028	0.1040	1.1180	0.0026
Lead	NT	NT	0.0029	0.0491	NT	NT	0.0491	0.1600	0.00267	0.0260
Cyanide	NT	NT	NT	NT	NT	NT	NT	178.0	0.5815	NT
Iron	NT	NT	NT	NT	0.0660	< 0.050	0.0660	5.0000	71.823	0.0660
Selenium	NT	NT	< 0.005	< 0.005	NT	NT	< 0.005	0.2358	0.5592	< 0.005
Thallium	NT	NT	< 0.001	< 0.001	NT	NT	< 0.001	NS	NS	< 0.001
Beryllium	NT	NT	<0.001	< 0.001	NT	NT	< 0.001	NS	NS	< 0.001
Cadmium	NT	NT	<0.0002	<0.0002	NT	NT	< 0.0002	0.0102	0.0273	<0.0002 0.0019
Chromium Total Chromium VI	NT NT	NT NT	0.0020 NT	0.0020 NT	0.0017 NT	<0.0010 NT	0.0020 NT	0.3230 0.3230	1.2788 1.2788	0.0019 NT
Chromium III	NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	0.3230	7.4922	NT
Copper	NT	NT	< 0.001	0.0074	NT	NT	0.0074	0.2420	0.9264	0.0074
Mercury	NT	NT	< 0.0001	< 0.0002	NT	NT	< 0.0074	0.000739	0.10131	< 0.0002
Nickel	NT	NT	< 0.002	0.0022	NT	NT	0.0022	1.4500	5.1862	0.0022
Silver	NT	NT	< 0.0004	< 0.0004	NT	NT	< 0.0004	0.0351	0.3332	< 0.0004
Zinc	NT	NT	< 0.010	0.0225	NT	NT	0.0225	0.4200	10.3588	0.0225
Volatile Organic Compounds (Non-Ha										
Acetone	0.5600	< 0.020	NT	NT	NT	NT	0.5600	7.970	NS	0.5600
Benzene	<0.001	0.0057	NT	NT	NT	NT	0.0057	0.0050	NS	0.0057
Volatile Organic Compounds (Haloger All Constituents		ND	NIT	NIT	NT	NT	ND	NT / A II	NI / A	ND
All Constituents Semi-Volatile Organic Compounds	ND	ND	NT	NT	IN I	IN I	ND	N/A	N/A	ND
Acenaphthene (Group 2)	<0.0020	0.0074	NT	NT	NT	NT	0.0074	NS	NS	0.0074
Fluoranthene (Group 2)	< 0.0020	0.0074	NT NT	NT	NT NT	NT NT	0.0074	NS NS	NS NS	0.0060
Naphthalene (Group 2)	< 0.0020	0.0650	NT	NT	NT	NT NT	0.0650	0.0200	NS NS	0.0650
Benzo(a)anthracene (Group 1)	< 0.0020	0.0027	NT	NT	NT	NT	0.0027	0.0010	0.000425	0.0027
Benzo(a)pyrene (Group 1)	< 0.0020	0.0022	NT	NT	NT	NT	0.0022	0.0010	0.000425	0.0022
Benzo(b)fluoranthene (Group 1)	< 0.0020	0.0029	NT	NT	NT	NT	0.0029	0.0010	0.000425	0.0029
Chrysene (Group 1)	< 0.0020	0.0024	NT	NT	NT	NT	0.0024	0.0010	0.000425	0.0024
Acenaphthylene (Group 2)	< 0.0020	0.0087	NT	NT	NT	NT	0.0087	NS	NS	0.0087
Anthracene (Group 2)	<0.0020	0.0030	NT	NT	NT	NT	0.0030	NS NG	NS	0.0030
Fluorene (Group 2)	<0.0020	0.0081	NT NT	NT NT	NT	NT NT	0.0081	NS NC	NS NC	0.0081 0.0110
Phenanthrene (Group 2)	<0.0020 <0.0020	0.0110 0.0053	NT NT	NT NT	NT NT	NT NT	0.0110 0.0053	NS NS	NS NS	0.0110
Pyrene (Group 2) Dibenzofuran	<0.0020 <0.0020	0.0053	N I NT	N I NT	N I NT	N I NT	0.0053	NS NS	NS NS	0.0053
2-Methylnaphthalene	< 0.0020	0.0068	NT NT	NT	NT NT	NT NT	0.0008	NS NS	NS NS	0.0100
2,4-Dimethylphenol	<0.0020	0.0520	NT	NT	NT	NT NT	0.0520	NS NS	NS NS	0.0520
Phenol	< 0.0050	0.0200	NT	NT	NT	NT	0.0200	1.0800	33.5500	0.0200
2-Methylphenol	< 0.0050	0.0380	NT	NT	NT	NT	0.0380	NS	NS	0.0380
3-Methylphenol/4-Methylphenol	< 0.0050	0.0790	NT	NT	NT	NT	0.0790	NS	NS	0.0790
Total Group I PAHs	ND	0.0102	N/A	N/A	NT	NT	0.0102	0.0010	NS	0.0102
Total Group II PAHs	ND	0.1071	N/A	N/A	NT	NT	0.1071	0.1000	0.1000	0.1071
Extractable Petroleum Hydrocarbons										ME
All Constituents	ND	ND	NT	NT	NT	NT	ND	N/A	N/A	ND
Polychlorinated Biphenyls (PCBs)	<0.000250	<0.0002F0	NIT	NT	NT	NT	ND	0.000000064	MC	<0.000250
All Constituens Pesticides	<0.000250	<0.000250	NT	IN I	N ¹ T	NT	ND	v. vvvvvvv00064	NS	<0.000Z30
4,4'-DDT	<0.000040	0.000049	NT	NT	NT	NT	0.000049	NS	NS	0.000049
Prepared by: J.Cournoyer	-0.0000TU	0.000047	14.1	14.1	11/1	111	0.000017	110	113	
- p , ·										

Prepared by: J.Cournoyer
All results in mg/L unless indicated otherwise
Values in **bold** exceed applicable NPDES Permit No. MAG910000 Discharge Limitations
Values in **bold** are the controlling discharge limitations for each parameter

-- = Not Analyzed NT = Not Tested

NS = No Standard

NA = Not Applicable
Non-detect (ND) analytes have not been included in this table
1 = The Massachusetts Contingency Plan, 310 CMR 40.1600, Massachusetts OHM List April 25, 2014
2 = NPDES Permit No. MAG910000

Table 2. Receiving Waters Analytical

50 Symphony Road Boston, MA 02115 MADEP RTN 3-34506

MADEP RTN 3-345	000
Sample Location	Charles River CSO-023
Sample Date	03/30/18
Groundwater Category	GW-3
General Chemistry and Miscellaneous	
Oil & Grease	NT
Total Petroleum Hydrocarbons (TPH)	<4.00
pH (Standard Units)	7.2
Temparature (Celsius)	11.0
Hardness	80.1
Alkalinity	27.3
Ammonia	< 0.075
TRC	NT
Chloride (ug/L)	186,000.0
Total Suspended Solids (TSS)	<5.0
Total Dissolved Solids (TDS)	410.0
Inorganics (Total Metals)	
Antimony	< 0.004
Arsenic	< 0.001
Lead	0.00130
Barium	0.059
Cyanide	< 0.005
Iron	0.361
Selenium	< 0.005
Thallium	< 0.001
Beryllium	< 0.001
Cadmium	< 0.0002
Chromium Total	0.00104
Chromium VI	< 0.010
Chromium III	< 0.010
Mercury	< 0.0002
Nickel	<0.002
Silver	<0.0004
Zinc Volatile Organic Compounds (Non-H	0.014
Acetone	<0.010 <0.001
Benzene Volatile Organic Compounds (Haloge	
All Constituents	ND
Semi-Volatile Organic Compounds	ND
Acenaphthene (Group 2)	< 0.00010
Fluoranthene (Group 2	<0.00010
Naphthalene (Group 2	
Benzo(a)anthracene (Group 1)	1
Benzo(a)pyrene (Group 1)	
Benzo(b)fluoranthene (Group 1)	< 0.00010
	< 0.00010
Chrysene (Group 1)	
	< 0.00010
Chrysene (Group 1 Acenaphthylene (Group 2)	<0.00010 <0.00010
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2	<0.00010 <0.00010 <0.00010
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2	<0.00010 <0.00010 <0.00010 <0.00010
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2)	<0.00010 <0.00010 <0.00010 <0.00010
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2) Pyrene (Group 2	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2 Pyrene (Group 2 Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.0020
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2) Pyrene (Group 2 Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol Phenol	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.0020 <0.0020
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2 Pyrene (Group 2 Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol Phenol 2-Methylphenol	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.0020 <0.0050 <0.0050 <0.0050
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2) Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol Phenol 2-Methylphenol 3-Methylphenol/4-Methylphenol	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2 Pyrene (Group 2 Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol Phenol 2-Methylphenol 3-Methylphenol/4-Methylphenol Total Group I PAHs	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.0020 <0.0050 <0.0050 <0.0050 ND
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2 Pyrene (Group 2 Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol Phenol 2-Methylphenol 3-Methylphenol/4-Methylphenol Total Group I PAHs Total Group II PAHs	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2 Pyrene (Group 2 Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol Phenol 2-Methylphenol 3-Methylphenol/4-Methylphenol Total Group I PAHs Total Group II PAHs Polychlorinated Biphenyls (PCBs)	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.0020 <0.0050 <0.0050 <0.0050 ND ND
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2 Pyrene (Group 2 Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol Phenol 2-Methylphenol 3-Methylphenol/4-Methylphenol Total Group I PAHs Total Group II PAHs Polychlorinated Biphenyls (PCBs) All Constituents	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.0020 <0.0050 <0.0050 <0.0050 ND
Chrysene (Group 1 Acenaphthylene (Group 2) Anthracene (Group 2 Fluorene (Group 2 Phenanthrene (Group 2 Pyrene (Group 2 Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol Phenol 2-Methylphenol 3-Methylphenol/4-Methylphenol Total Group I PAHs Total Group II PAHs Polychlorinated Biphenyls (PCBs)	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00020 <0.0020 <0.0050 <0.0050 <0.0050 ND ND

Prepared by: J.Cournoyer
All results in mg/L unless indicated otherwise
-- = Not Analyzed
NT = Not Tested

NS = No Standard

NA = Not Applicable Non-detect (ND) analytes have not been included

$\begin{array}{lll} \textbf{APPENDIX} \ \textbf{A} - \textbf{NOTICE} \ \textbf{OF} \ \textbf{INTENT} \ \textbf{AND} \ \textbf{BWSC} \ \textbf{DEWATERING} \ \textbf{DISCHARGE} \ \textbf{PERMIT} \\ \textbf{APPLICATION} \end{array}$

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 50 Symphony Road						
50 Symphony Road	Street:						
	City: Boston		State: MA	^{Zip:} 02115			
2. Site owner	Contact Person: Charles Aggouras	Contact Person: Charles Aggouras					
50 Symphony LLC	Telephone: (847) 241-8857 Email: charles@gfcdevelopment.co						
	Mailing address: 1167 Broadway	1					
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Somerville State: MA Zip: 02144						
3. Site operator, if different than owner	Contact Person: Nathan Pfleegor						
Sterling Construction	Telephone: (978) 793-6429	Email: npf	leegor@ste	rlingconstruct.com			
	Mailing address:						
	Street: 134 Heywood Road						
	City: Sterling		State: MA	Zip: 01564			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	3. Other regulatory program(s) that appry to the site	(encon an in	ar approj.				
	■ MA Chapter 21e; list RTN(s):	□ CERCL	11 0/				
NIDDEG AT A LANGE OF THE PORT OF THE	■ MA Chapter 21e; list RTN(s): 3-34506	`	A				
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	■ MA Chapter 21e; list RTN(s):	□ CERCL	A				

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Class	ification of receiving water(s):
Charles River	MA72-36	В	
Receiving water is (check any that apply): □ Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □	Wild and Scenic	River
2. Has the operator attached a location map in accordance Are sensitive receptors present near the site? (check one): If yes, specify:		□ No	
3. Indicate if the receiving water(s) is listed in the State's pollutants indicated. Also, indicate if a final TMDL is ava 4.6 of the RGP. The Charles River is identified as Segment	lable for any of the indicated pollutants. For more infor	mation, contact th	he appropriate State as noted in Part
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		uctions in	15.96
5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in			111.8
6. Has the operator received confirmation from the appropriate of the property	ceived from MassDEP via email on April 5, 2018.	,	
(check one): ■ Yes □ No			
C. Source water information:			
1. Source water(s) is (check any that apply):			

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: Chloride, Ammonia, TSS, Lead, Mercury, C	admium, Chromium, Acetone, Benzene, Naphthalene, Zinc, and PAHs
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ■ Yes □ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
CSO-023	42.351726, -71.092511
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water Indirect discharge, if so, specify:
Discharge to municipal (BWSC) storm drain outfall indirectly into the Cl	harles River.
☐ A private storm sewer system ■ A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sew	
Has notification been provided to the owner of this system? (check one): ■ Yo	
÷ • • • • • • • • • • • • • • • • • • •	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for
obtaining permission: Documentation has been submitted to BWSC in ta	
Has the operator attached a summary of any additional requirements the owner	• • • • • • • • • • • • • • • • • • • •
Provide the expected start and end dates of discharge(s) (month/year): May 20	018 - April 2019
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	I, IV, V, VI, VII or VIII: (check either G or H)			
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

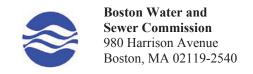
	Known	Known		TID. 4	D 4 4	In	fluent	Effluent L	imitations
Parameter or believed absent	ieved believed	or # of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL	
A. Inorganics									
Ammonia		✓	2	4500B	75	9,740	9,740	Report mg/L	
Chloride		✓	2	300.0	12,500	850,000	850,000	Report μg/l	
Total Residual Chlorine	✓		0	N/A	N/A	N/A	N/A	0.2 mg/L	1.230
Total Suspended Solids		✓	4	2540D	20,000	1,100	1,100	30 mg/L	
Antimony		✓	4	200.8	4	7.5	7.5	206 μg/L	71.5730
Arsenic		✓	4	200.7	5	20	12.6	104 μg/L	1.118
Cadmium		✓	4	200.8	0.20	0.22	0.215	10.2 μg/L	27.30
Chromium III		✓	2	200.8	10	65	44.0	323 μg/L	8,600.5
Chromium VI	✓		2	7196A	10	<dl< td=""><td><dl< td=""><td>323 μg/L</td><td>1278.8</td></dl<></td></dl<>	<dl< td=""><td>323 μg/L</td><td>1278.8</td></dl<>	323 μg/L	1278.8
Copper		✓	4	200.7	10	51.0	32.1	242 μg/L	926.4
Iron		✓	2	200.7	50	37,800	31,750	5,000 μg/L	71,823
Lead		✓	4	200.7	10	615	424.4	160 μg/L	150.68
Mercury		✓	4	245.1	0.2	1.06	1.06	0.739 μg/L	101.31
Nickel		✓	4	200.7	25	29	15.6	1,450 μg/L	5,186.2
Selenium		✓	4	200.7	10	13	13	235.8 μg/L	559.2
Silver	✓		4	200.8	0.4	<dl< td=""><td><dl< td=""><td>35.1 μg/L</td><td>333.2</td></dl<></td></dl<>	<dl< td=""><td>35.1 μg/L</td><td>333.2</td></dl<>	35.1 μg/L	333.2
Zinc		✓	4	200.7	10	336.0	176.4	420 μg/L	10,358.8
Cyanide	✓		2	4500CN	5	<dl< td=""><td><dl< td=""><td>178 mg/L</td><td>581.5</td></dl<></td></dl<>	<dl< td=""><td>178 mg/L</td><td>581.5</td></dl<>	178 mg/L	581.5
B. Non-Halogenated VOC	e's		1		Lac		l s a		
Total BTEX		✓	2	624	2.0	5.7	5.7	100 μg/L	
Benzene		✓	2	624	1.0	5.7	5.7	5.0 μg/L	
1,4 Dioxane	✓		2	624	2,000	<dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>200 μg/L</td><td></td></dl<>	200 μg/L	
Acetone		✓	2	624	10	0.560	0.560	7.97 mg/L	
Phenol		✓	2	625	5	20	20	1,080 µg/L	33,550

	Known	Known			-	In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		2	624	2.0	<dl< td=""><td><dl< td=""><td>4.4 μg/L</td><td>178.9</td></dl<></td></dl<>	<dl< td=""><td>4.4 μg/L</td><td>178.9</td></dl<>	4.4 μg/L	178.9
1,2 Dichlorobenzene	✓		2	624	10	<dl< td=""><td><dl< td=""><td>600 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>600 μg/L</td><td></td></dl<>	600 μg/L	
1,3 Dichlorobenzene	✓		2	624	10	<dl< td=""><td><dl< td=""><td>320 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>320 μg/L</td><td></td></dl<>	320 μg/L	
1,4 Dichlorobenzene	✓		2	624	10	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Total dichlorobenzene	✓		2	624	10	<dl< td=""><td><dl< td=""><td>763 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>763 μg/L in NH</td><td></td></dl<>	763 μg/L in NH	
1,1 Dichloroethane	✓		2	624	3.0	<dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
1,2 Dichloroethane	✓		2	624	3.0	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
1,1 Dichloroethylene	✓		2	624	2.0	<dl< td=""><td><dl< td=""><td>3.2 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>3.2 μg/L</td><td></td></dl<>	3.2 μg/L	
Ethylene Dibromide	✓		0					0.05 μg/L	
Methylene Chloride	✓		2	624	10	<dl< td=""><td><dl< td=""><td>4.6 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.6 μg/L</td><td></td></dl<>	4.6 μg/L	
1,1,1 Trichloroethane	✓		2	624	4.0	<dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>200 μg/L</td><td></td></dl<>	200 μg/L	
1,1,2 Trichloroethane	✓		2	624	3.0	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Trichloroethylene	✓		2	624	2.0	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Tetrachloroethylene	✓		2	624	3.0	<dl< td=""><td><dl< td=""><td>5.0 μg/L</td><td>369.1</td></dl<></td></dl<>	<dl< td=""><td>5.0 μg/L</td><td>369.1</td></dl<>	5.0 μg/L	369.1
cis-1,2 Dichloroethylene	✓		2	624	2.0	<dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
Vinyl Chloride	✓		2	624	2.0	<dl< td=""><td><dl< td=""><td>2.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>2.0 μg/L</td><td></td></dl<>	2.0 μg/L	
D. Non-Halogenated SVOC	~s								
Total Phthalates	<i>√</i>		2	625	5	<dl< td=""><td><dl< td=""><td>190 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>190 μg/L</td><td></td></dl<>	190 μg/L	
Diethylhexyl phthalate	✓		0					101 μg/L	246.0
Total Group I PAHs		✓	2	625	2	10.2	10.2	1.0 μg/L	
Benzo(a)anthracene		✓	2	625	1.9	2.7	2.7	10	0.4250
Benzo(a)pyrene		√	2	625	1.9	2.2	2.2	1	0.4250
Benzo(b)fluoranthene		✓	2	625	1.9	2.9	2.9	1	0.4250
Benzo(k)fluoranthene	✓		2	625	1.9	<dl< td=""><td><dl< td=""><td>As Total PAHs</td><td>0.4250</td></dl<></td></dl<>	<dl< td=""><td>As Total PAHs</td><td>0.4250</td></dl<>	As Total PAHs	0.4250
Chrysene		√	2	625	1.9	2.4	2.4	1	0.4250
Dibenzo(a,h)anthracene	✓		2	625	1.9	<dl< td=""><td><dl< td=""><td>1</td><td>0.4250</td></dl<></td></dl<>	<dl< td=""><td>1</td><td>0.4250</td></dl<>	1	0.4250
Indeno(1,2,3-cd)pyrene	✓		2	625	1.9	<dl< td=""><td><dl< td=""><td>1</td><td>0.4250</td></dl<></td></dl<>	<dl< td=""><td>1</td><td>0.4250</td></dl<>	1	0.4250

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	2	625	1.9	107.1	107.1	100 μg/L	
Naphthalene		✓	2	625	1.9	65	65	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		2	5,608	0.250	<dl< td=""><td><dl< td=""><td>0.000064 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.000064 μg/L</td><td></td></dl<>	0.000064 μg/L	
Pentachlorophenol	✓		2	625	4.8	<dl< td=""><td><dl< td=""><td>1.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1.0 μg/L</td><td></td></dl<>	1.0 μg/L	
F. Fuels Parameters							•		
Total Petroleum Hydrocarbons		✓	4	1664A	4	<dl< td=""><td><dl< td=""><td>5.0 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>5.0 mg/L</td><td></td></dl<>	5.0 mg/L	
Ethanol	✓		0					Report mg/L	
Methyl-tert-Butyl Ether	✓		2	624	10	<dl< td=""><td><dl< td=""><td>70 μg/L</td><td>2,237</td></dl<></td></dl<>	<dl< td=""><td>70 μg/L</td><td>2,237</td></dl<>	70 μg/L	2,237
tert-Butyl Alcohol	✓		2	624	100	<dl< td=""><td><dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<>	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		0	624	20	<dl< td=""><td><dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<>	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature pH	, hardness,	salinity, LC	C ₅₀ , addition	nal pollutar 4500H+B	ts present);	if so, specify:	7.2		
Temperature		✓	1	YSI	N/A	11	11		
Hardness		✓	2	200.7	660	854,000	656,500		
				+	10.000				
Alkalinity		✓	2	2320B	10,000	1,010,000	659,000		
Alkalinity Oil & Grease		√	2	2320B 1664A	10,000	1,010,000	10,500		
•							1		
Oil & Grease		✓	2	1664A	4	10,000	10,500		
Oil & Grease 4,4'-DDT		√	2 2	1664A 608	4 0.040	10,000	10,500 0.049		
Oil & Grease 4,4'-DDT Dibenzofuran		√ √ √	2 2 2	1664A 608 625	4 0.040 2	10,000 0.049 6.8	10,500 0.049 6.8		
Oil & Grease 4,4'-DDT Dibenzofuran 2-Methylnaphthalene		√ √ √	2 2 2 2	1664A 608 625 625	4 0.040 2 2	10,000 0.049 6.8 10	10,500 0.049 6.8 10		
Oil & Grease 4,4'-DDT Dibenzofuran 2-Methylnaphthalene 2,4-Dimethylphenol		√ √ √ √	2 2 2 2 2 2	1664A 608 625 625 625	4 0.040 2 2 5	10,000 0.049 6.8 10 52	10,500 0.049 6.8 10 52		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify: Organoclay media	ı
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Oil Water Separator (OWS) tank, bag filters, organoclay media, liquid phase activated carbon adsorbers. And (if necessary): Ion exchange resin filter.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank ■ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter ■ Other; if so, specify: Organoclay media.	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Equalization tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	100
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	


F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of							
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No							
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \Box Yes \Box No							
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.							
H. NConstituted Durant And Restable Learning							
H. National Historic Preservation Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:							
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on							
historic properties.							
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.							
☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.							
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No							
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or							
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No							
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):							
I. Supplemental information							
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.							
N/A							
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No							
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No							

J. Certification requirement

Print Name and Title: Nathan Pfleegor, Sterling Construction Principle	Signature: Date: 04/26/18	Notinication provided to the owner/operator of the area associated with activities covered by an additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes ■ No □ NA □ □ Other; if so, specify:	Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes No NA	Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes No NA	Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes 8 No	Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □	A BMPP has been prepared in accordance with Section 2.5 of the Remediation General Permit. The BMPP certification statement: BMPP is to be implemented at the start of discharge activities.	that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.		I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure
--	---------------------------	---	--	--	---	--	--	---	--	--

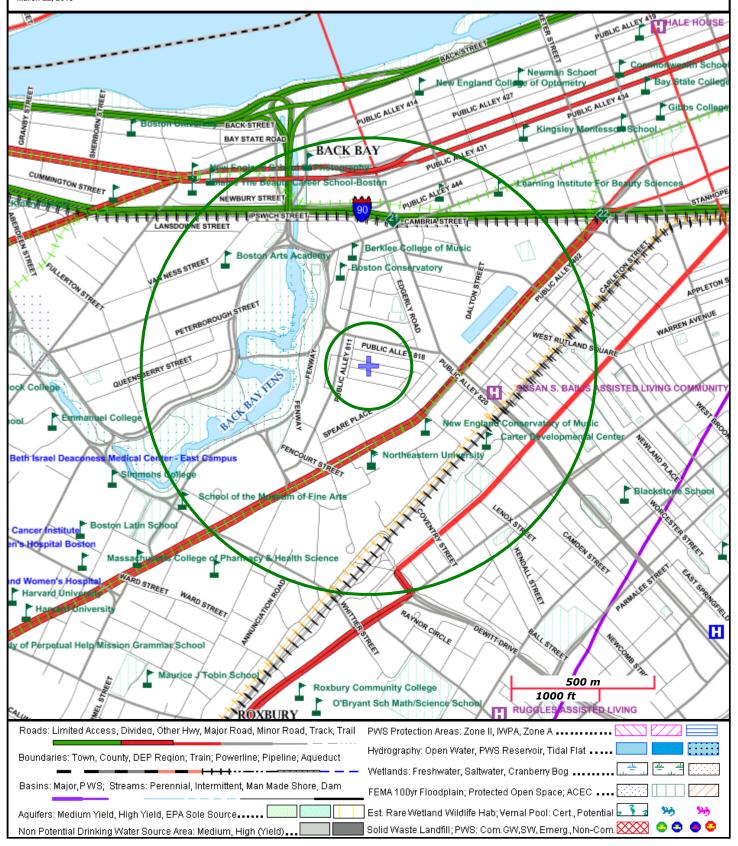
DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE: Company Name: Sterling Construction Address: 134 Heywood Road

Company Name: Sterling Construction	Address: 134 Heywood Road
Phone number: (978) 757-9898	Fax number:
Contact person name: Nathan Pfleegor	Title: Principle
Cell number: (978) 793-6429	Email address: _npfleegor@sterlingconstruct.com
Permit Request (check one): ☒ New Application □	Permit Extension □ Other (Specify):
Owner's Information (if different from above):	
Owner of property being dewatered: 50 Symphon	y LLC
Owner's mailing address: 1167 Broadway, Some	erville, MA 02144 Phone number:(847) 241-8857
Location of Discharge & Proposed Treatment Syst	em(s):
Street number and name: 50 Symphony Road	Neighborhood Fenway
	parator, bag filters, organoclay media, activated carbon - ION exchange resin
Describe Proposed Pre-Treatment System(s): filter (if	necessary)
BWSC Outfall No. CSO-023 Receiving	ng Waters Charles River
☐ Utility/Manhole Pumping☐ Accumulated Surface Water	bischarge): From May 2018 □ Tank Removal/Installation □ Test Pipe □ Hydrogeologic Testing To April 2019 ※Foundation Excavation □ Trench Excavation □ Other
□ Accumulated Surface Water	□ Crawl Space/Footing Drain □ Non-contact/Uncontaminated Cooling □ Other;
number, size, make and start reading. Note. All discharges to 2. If discharging to a sanitary or combined sewer, attach a copy of EPA as other relevant information. NOI Application En	's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well
Submit Completed Application to: Boston Water and Sew Engineering Customer 980 Harrison Avenue, Attn: Francis M. McLa E-mail: MclaughlinF@ Phone: 617-989-7208	Services Boston, MA 02119 aughlin, Manager Engineering Customer Services bwsc.org
Signature of Authorized Representative for Property Owner:	Manager Date: 3/8/18

APPENDIX B – NOTICE OF INTENT SUPPORTING DOCUMENTATION

MassDEP - Bureau of Waste Site Cleanup


Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:

50 SYMPHONY ROAD BOSTON, MA 3-000034506 NAD83 UTM Meters: 4689961mN, 327931mE (Zone: 19) March 22, 2018 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

http://www.mass.gov/mgis/.

StreamStats Report

Region ID: MA

Workspace ID: MA20180403204654061000

Clicked Point (Latitude, Longitude): 42.35349, -71.09369

Time: 2018-04-03 16:47:15 -0400

Basin Characteristics							
Parameter Code	Parameter Description	Value	Unit				
DRNAREA	Area that drains to a point on a stream	24	square miles				
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.521	percent				
DRFTPERSTR	Area of stratified drift per unit of stream length	1.79	square mile per mile				
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless				

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	24	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.521	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	1.79	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

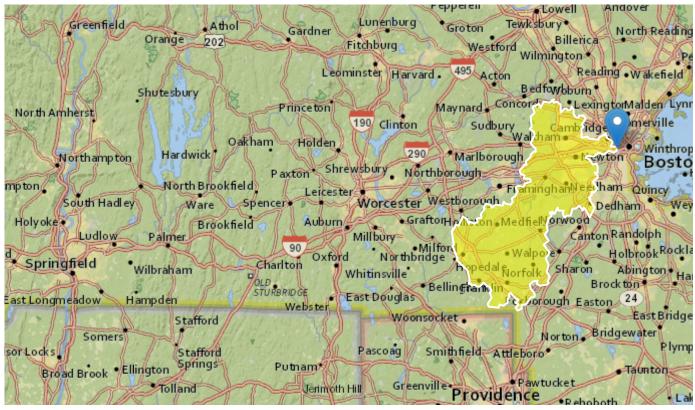
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	13.9	ft^3/s
7 Day 10 Year Low Flow	11.2	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)


StreamStats Report

Region ID: MA

Workspace ID: MA20180403210244704000

Clicked Point (Latitude, Longitude): 42.35404, -71.09416

Time: 2018-04-03 17:03:04 -0400

Basin Characteristics				
Parameter Code	Parameter Description	Value	Unit	
DRNAREA	Area that drains to a point on a stream	283	square miles	
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.326	percent	
DRFTPERSTR	Area of stratified drift per unit of stream length	0.23	square mile per mile	
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless	

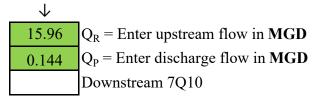
Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	283	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.326	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.23	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

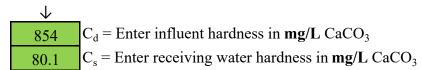
Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]


Statistic	Value	Unit
7 Day 2 Year Low Flow	49.6	ft^3/s
7 Day 10 Year Low Flow	24.7	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Enter number values in green boxes below


Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
7.2	pH in Standard Units
11	Temperature in °C
0	Ammonia in mg /L
80.1	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg /L
0	Arsenic in μg /L
0	Cadmium in μg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
361	Iron in μg/L
1.33	Lead in μg/L
0	Mercury in μg /L
0	Nickel in μg/L
0	Selenium in μg /L
0	Silver in μg/L
14	Zinc in μg /L

Enter influent concentrations in the units specified

	_
0	TRC in µg/L
9.74	Ammonia in mg/L
7.5	Antimony in μg /L
20	Arsenic in μg /L
0.2	Cadmium in μg/L
65	Chromium III in µg/L
0	Chromium VI in μg/L
51	Copper in µg/L
37,800	Iron in μg/L
615	Lead in μg/L
1.06	Mercury in μg/L
29	Nickel in μg/L
13	Selenium in μg/L
0	Silver in μg/L
336	Zinc in μg/L
0	Cyanide in μg/L
20	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
2.7	Benzo(a)anthracene in μg/L
2.2	Benzo(a)pyrene in μg/L
2.9	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
2.4	Chrysene in μg/L
0	Dibenzo(a,h)anthracene in μ g/L
0	Indeno(1,2,3-cd)pyrene in μ g /L
0	Methyl-tert butyl ether in μ g/L

	11110			
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	1230	μg/L
Total Suspended Solids	30	mg/L		μg/L
Antimony	206	mg/L μg/L	71573	ug/I
Arsenic	104		1118	μg/L
Cadmium		μg/L	27.3023	μg/L
	10.2	μg/L		μg/L
Chromium III	323	μg/L	8600.5	μg/L
Chromium VI	323	μg/L	1278.8	μg/L
Copper	242	$\mu g/L$	926.4	μg/L
Iron	5000	$\mu g/L$	71823	$\mu g/L$
Lead	160	$\mu g/L$	150.68	$\mu g/L$
Mercury	0.739	$\mu g/L$	101.31	μg/L
Nickel	1450	μg/L	5186.2	μg/L
Selenium	235.8	μg/L	559.2	μg/L
Silver	35.1	μg/L	333.2	μg/L
Zinc	420	μg/L	10358.8	μg/L
Cyanide	178	mg/L	581.5	μg/L
B. Non-Halogenated VOCs	170	mg/L	301.3	μg/L
Total BTEX	100	μg/L		
Benzene	5.0	μg/L		
1,4 Dioxane	200	$\mu g/L$		
Acetone	7970	$\mu g/L$		
Phenol	1,080	$\mu g/L$	33550	$\mu g/L$
C. Halogenated VOCs				
Carbon Tetrachloride	4.4	μg/L	178.9	μg/L
1,2 Dichlorobenzene	600	μg/L		
1,3 Dichlorobenzene	320	μg/L		
1,4 Dichlorobenzene	5.0	μg/L		
Total dichlorobenzene		μg/L		
1,1 Dichloroethane	70	μg/L		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	μg/L		
Trichloroethylene	5.0	μg/L	 260 1	, ~ / T
Tetrachloroethylene cis-1,2 Dichloroethylene	5.0 70	μg/L	369.1	μg/L
cis-1,2 Dichioloethylene	/υ	μg/L		

Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs		10		
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	246.0	μg/L
Total Group I Polycyclic		. 0		
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.4250	μg/L
Benzo(a)pyrene	1.0	μg/L	0.4250	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.4250	μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.4250	μg/L
Chrysene	1.0	μg/L	0.4250	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.4250	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.4250	μg/L
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	$\mu g/L$		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	$\mu g/L$	2237	$\mu g/L$
tert-Butyl Alcohol	120	$\mu g/L$		
tert-Amyl Methyl Ether	90	$\mu g/L$		

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: March 23, 2018

Consultation Code: 05E1NE00-2018-SLI-1380

Event Code: 05E1NE00-2018-E-03146 Project Name: 50 Symphony Road

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-1380

Event Code: 05E1NE00-2018-E-03146

Project Name: 50 Symphony Road

Project Type: DEVELOPMENT

Project Description: Construction project to build a 5-story multi-family residential building

with a basement. Groundwater dewatering will be required while

excavating soil from the foundation excavation (which is being advanced to a maximum depth of 12 feet below ground surface). The property is currently vacant and surrounded by construction fencing and was most recently used as a vehicle parking lot for several decades. "(CGP)"

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.34288119547322N71.08889643747848W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Fenway; Street No: 50; Street Name: Symphony Rd; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Wednesday, April 11, 2018 Page 1 of 1

APPENDIX C – GROUNDWATER AND RECEIVING WATER ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L1804229

Client: FSL Associates

358 Chestnut Hill Ave. Brighton, MA 02135

ATTN: Jarod Cournoyer Phone: (617) 232-0001

Project Name: 50 SYMPHONY RD.
Project Number: 50 SYMPHONY RD.

Report Date: 02/14/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 SYMPHONY RD.
Project Number: 50 SYMPHONY RD.

Lab Number: L1804229 **Report Date:** 02/14/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1804229-01	MW-1	WATER	50 SYMPHONY RD.	02/07/18 09:00	02/07/18
L1804229-02	MW-3	WATER	50 SYMPHONY RD.	02/08/18 12:30	02/09/18
L1804229-03	MW-1	WATER	50 SYMPHONY RD.	02/08/18 13:00	02/09/18
L1804229-04	TRIP BLANK	WATER	50 SYMPHONY RD.	02/08/18 00:00	02/09/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client S	services a	at 800	-624-9220	with	any	questions.	

Case Narrative (continued)

Sample Receipt

L1804229-04: A sample identified as "TRIP BLANK" was received but not listed on the Chain of Custody. This sample was not analyzed.

MCP Related Narratives

Report Submission

All MCP required questions were answered with affirmative responses; therefore, there are no relevant protocol-specific QC and/or performance standard non-conformances to report.

Non MCP Related Narratives

Volatile Organics by Method 624

L1804229-02: The sample has elevated detection limits due to the dilution required by the sample matrix.

Sample has particles.

The WG1088358-3 LCS recovery for 2-chloroethylvinyl ether (125%) associated with L1804229-01, is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

The WG1088550-3 LCS recovery for bromomethane (60%), associated with L1804229-02, is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/14/18

Custen Walker Cristin Walker

ALPHA

ORGANICS

VOLATILES

02/07/18

Not Specified

Date Received:

Field Prep:

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/07/18 09:00

Client ID: MW-1

Sample Location: 50 SYMPHONY RD.

Sample Depth:

Matrix: Water Analytical Method: 5,624

Analytical Date: 02/09/18 14:15

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	5.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Chloroform	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	3.5		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Tetrachloroethene	ND		ug/l	1.5		1
Chlorobenzene	ND		ug/l	3.5		1
Trichlorofluoromethane	ND		ug/l	5.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	1.5		1
cis-1,3-Dichloropropene	ND		ug/l	1.5		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	5.0		1
Bromomethane	ND		ug/l	5.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.5		1
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/07/18 09:00

Client ID: MW-1 Date Received: 02/07/18
Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene ¹	ND		ug/l	2.0		1
o-xylene ¹	ND		ug/l	1.0		1
Xylenes, Total ¹	ND		ug/l	1.0		1
Styrene ¹	ND		ug/l	1.0		1
Acetone ¹	560		ug/l	10		1
Carbon disulfide ¹	ND		ug/l	5.0		1
2-Butanone ¹	ND		ug/l	10		1
Vinyl acetate ¹	ND		ug/l	10		1
4-Methyl-2-pentanone ¹	ND		ug/l	10		1
2-Hexanone ¹	ND		ug/l	10		1
Acrolein ¹	ND		ug/l	8.0		1
Acrylonitrile ¹	ND		ug/l	10		1
Dibromomethane ¹	ND		ug/l	1.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	105		80-120	
Fluorobenzene	100		80-120	
4-Bromofluorobenzene	95		80-120	

02/09/18

Not Specified

Date Received:

Field Prep:

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-02 D Date Collected: 02/08/18 12:30

Client ID: MW-3

Sample Location: 50 SYMPHONY RD.

Sample Depth:

Matrix: Water Analytical Method: 5,624

Analytical Date: 02/10/18 12:19

Analyst: BD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	10		2	
1,1-Dichloroethane	ND		ug/l	3.0		2	
Chloroform	ND		ug/l	3.0		2	
Carbon tetrachloride	ND		ug/l	2.0		2	
1,2-Dichloropropane	ND		ug/l	7.0		2	
Dibromochloromethane	ND		ug/l	2.0		2	
1,1,2-Trichloroethane	ND		ug/l	3.0		2	
2-Chloroethylvinyl ether	ND		ug/l	20		2	
Tetrachloroethene	ND		ug/l	3.0		2	
Chlorobenzene	ND		ug/l	7.0		2	
Trichlorofluoromethane	ND		ug/l	10		2	
1,2-Dichloroethane	ND		ug/l	3.0		2	
1,1,1-Trichloroethane	ND		ug/l	4.0		2	
Bromodichloromethane	ND		ug/l	2.0		2	
trans-1,3-Dichloropropene	ND		ug/l	3.0		2	
cis-1,3-Dichloropropene	ND		ug/l	3.0		2	
Bromoform	ND		ug/l	2.0		2	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0		2	
Benzene	5.7		ug/l	2.0		2	
Toluene	ND		ug/l	2.0		2	
Ethylbenzene	ND		ug/l	2.0		2	
Chloromethane	ND		ug/l	10		2	
Bromomethane	ND		ug/l	10		2	
Vinyl chloride	ND		ug/l	2.0		2	
Chloroethane	ND		ug/l	4.0		2	
1,1-Dichloroethene	ND		ug/l	2.0		2	
trans-1,2-Dichloroethene	ND		ug/l	3.0		2	
cis-1,2-Dichloroethene ¹	ND		ug/l	2.0		2	
Trichloroethene	ND		ug/l	2.0		2	

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-02 D

Client ID: MW-3

Sample Location: 50 SYMPHONY RD.

Sample Depth:

Date Collected: 02/08/18 12:30

Date Received: 02/09/18

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,2-Dichlorobenzene	ND		ug/l	10		2	
1,3-Dichlorobenzene	ND		ug/l	10		2	
1,4-Dichlorobenzene	ND		ug/l	10		2	
p/m-Xylene ¹	ND		ug/l	4.0		2	
o-xylene ¹	ND		ug/l	2.0		2	
Xylenes, Total ¹	ND		ug/l	2.0		2	
Styrene ¹	ND		ug/l	2.0		2	
Acetone ¹	ND		ug/l	20		2	
Carbon disulfide ¹	ND		ug/l	10		2	
2-Butanone ¹	ND		ug/l	20		2	
Vinyl acetate ¹	ND		ug/l	20		2	
4-Methyl-2-pentanone ¹	ND		ug/l	20		2	
2-Hexanone ¹	ND		ug/l	20		2	
Acrolein ¹	ND		ug/l	16		2	
Acrylonitrile ¹	ND		ug/l	20		2	
Dibromomethane ¹	ND		ug/l	2.0		2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	106	80-120	
Fluorobenzene	101	80-120	
4-Bromofluorobenzene	94	80-120	

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 02/09/18 12:02

Analyst: GT

Methylene chloride ND ug/l 5.0 1,1-Dichloroethane ND ug/l 1.5 Chloroform ND ug/l 1.5 Chloroform ND ug/l 1.5 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.5 Dibromochloromethane ND ug/l 1.5 1,1,2-Trichloroethane ND ug/l 1.5 2-Chloroethykinyl ether ND ug/l 1.5 2-Chloroethykinyl ether ND ug/l 1.5 1,1,2-Trichloroethane ND ug/l 1.5 Chlorobenzene ND ug/l 1.5 Trichloroethane ND ug/l 1.5 1,1-Trichloroethane ND ug/l 1.5	Parameter	Result	Qualifier	Units	RL	MDL
1,1-Dichloroethane	Volatile Organics by GC/MS	- Westborough Lal	o for sampl	e(s): 0	1 Batch:	WG1088358-4
Chloroform ND ug/l 1.5 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 2-Chloroethylvinyl ether ND ug/l 1.5 Tetrachloroethane ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 5.0 1,2-Dichlorogthane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.5 Itans-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 Bromoform ND ug/l 1.0	Methylene chloride	ND		ug/l	5.0	
Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 3.5 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 2-Chloroethylvinyl ether ND ug/l 1.5 Tetrachloroethane ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 5.0 Trichlorofluoromethane ND ug/l 1.5 1,2-Dichloroethane ND ug/l 1.5 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.0 strans-1,2-Dichloroethane ND ug/l 1.0 Benzene ND ug/l	1,1-Dichloroethane	ND		ug/l	1.5	
1,2-Dichloropropane ND	Chloroform	ND		ug/l	1.5	
Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 2-Chloroethylvinyl ether ND ug/l 1.5 Tetrachloroethene ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 sis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Tolluene ND ug/l 1.0	Carbon tetrachloride	ND		ug/l	1.0	
1,1,2-Trichloroethane ND	1,2-Dichloropropane	ND		ug/l	3.5	
2-Chloroethylvinyl ether ND ug/l 10 Tetrachloroethene ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichloroftuoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.5 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 5.0 Chloromethane ND ug/l 5.0	Dibromochloromethane	ND		ug/l	1.0	
Tetrachloroethene ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichloroffluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.5 trans-1,3-Dichloropropene ND ug/l 1.5 sen,3-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 5.0 Bromomethane ND ug/l 5.0 <	1,1,2-Trichloroethane	ND		ug/l	1.5	
Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Ethylbenzene ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0	2-Chloroethylvinyl ether	ND		ug/l	10	
Trichlorofluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0	Tetrachloroethene	ND		ug/l	1.5	
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	3.5	
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	5.0	
Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene ¹ ND ug/l 1.0 <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.5</td> <td></td>	1,2-Dichloroethane	ND		ug/l	1.5	
trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 1.0 Bromomethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Chlorotide ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 Toluene ND ug/l 5.0 Ug/l 5.0 Ug/l 1.0 Toluene ND ug/l 1.0 Bromomethane ND ug/l 1.0 Ug/l 1.0 Toluene ND ug/l 1.0 Ug/l 1.0 Toluene ND ug/l 1.0 Ug/l 1.0 Toluene ND ug/l 1.0 Ug/l 1.5 Ug/l 1.5 Ug/l 1.5 Ug/l 1.5 Ug/l 1.0	1,1,1-Trichloroethane	ND		ug/l	2.0	
cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 5.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Bromodichloromethane	ND		ug/l	1.0	
Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 5.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.5 trans-1,2-Dichloroethene¹ ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	trans-1,3-Dichloropropene	ND		ug/l	1.5	
1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	cis-1,3-Dichloropropene	ND		ug/l	1.5	
ND	Bromoform	ND		ug/l	1.0	
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	
Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Benzene	ND		ug/l	1.0	
Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Toluene	ND		ug/l	1.0	
Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Ethylbenzene	ND		ug/l	1.0	
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Chloromethane	ND		ug/l	5.0	
Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Bromomethane	ND		ug/l	5.0	
1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Vinyl chloride	ND		ug/l	1.0	
trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Chloroethane	ND		ug/l	2.0	
cis-1,2-Dichloroethene ¹ ND ug/l 1.0	1,1-Dichloroethene	ND		ug/l	1.0	
	trans-1,2-Dichloroethene	ND		ug/l	1.5	
Trichloroethene ND ug/l 1.0	cis-1,2-Dichloroethene ¹	ND		ug/l	1.0	
	Trichloroethene	ND		ug/l	1.0	

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 02/09/18 12:02

Analyst: GT

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lal	o for sampl	e(s): (01 Batch	: WG1088358-4
1,2-Dichlorobenzene	ND		ug/l	5.0	
1,3-Dichlorobenzene	ND		ug/l	5.0	
1,4-Dichlorobenzene	ND		ug/l	5.0	
p/m-Xylene ¹	ND		ug/l	2.0	
o-xylene ¹	ND		ug/l	1.0	
Xylenes, Total ¹	ND		ug/l	1.0	
Styrene ¹	ND		ug/l	1.0	
Acetone ¹	ND		ug/l	10	
Carbon disulfide ¹	ND		ug/l	5.0	
2-Butanone ¹	ND		ug/l	10	
Vinyl acetate ¹	ND		ug/l	10	
4-Methyl-2-pentanone ¹	ND		ug/l	10	
2-Hexanone ¹	ND		ug/l	10	
Acrolein ¹	ND		ug/l	8.0	
Acrylonitrile ¹	ND		ug/l	10	
Methyl tert butyl ether ¹	ND		ug/l	10	
Dibromomethane ¹	ND		ug/l	1.0	
1,4-Dioxane ¹	ND		ug/l	200	0
Tert-Butyl Alcohol ¹	ND		ug/l	100	
Tertiary-Amyl Methyl Ether ¹	ND		ug/l	20	
Dichlorodifluoromethane ¹	ND		ug/l	1.0	

		Acceptance	
Surrogate	%Recovery Qu	alifier Criteria	
Pentafluorobenzene	105	80-120	
Fluorobenzene	100	80-120	
4-Bromofluorobenzene	94	80-120	

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 02/10/18 10:06

Analyst: BD

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	Vestborough Lab ND ND ND ND ND ND ND ND ND	for sample(s): (ug/lug/lug/lug/lug/lug/lug/lug/lug/l	5.0 1.5 1.5 1.0 3.5	WG1088550-4
1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND ND	ug/l ug/l ug/l ug/l	1.5 1.5 1.0	
Chloroform Carbon tetrachloride	ND ND ND	ug/l ug/l ug/l	1.5 1.0	
Carbon tetrachloride	ND ND	ug/l ug/l	1.0	
	ND	ug/l		
1 2-Dichloropropage			3.5	
1,2 Diomoropropario	ND	ua/l	3.3	
Dibromochloromethane		ug/i	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
2-Chloroethylvinyl ether	ND	ug/l	10	
Tetrachloroethene	ND	ug/l	1.5	
Chlorobenzene	ND	ug/l	3.5	
Trichlorofluoromethane	ND	ug/l	5.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Bromodichloromethane	ND	ug/l	1.0	
trans-1,3-Dichloropropene	ND	ug/l	1.5	
cis-1,3-Dichloropropene	ND	ug/l	1.5	
Bromoform	ND	ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Chloromethane	ND	ug/l	5.0	
Bromomethane	ND	ug/l	5.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	2.0	
1,1-Dichloroethene	ND	ug/l	1.0	
trans-1,2-Dichloroethene	ND	ug/l	1.5	
cis-1,2-Dichloroethene ¹	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,624

Analytical Date: 02/10/18 10:06

Analyst: BD

Parameter	Result	Qualifier Unit	s	RL	MDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s):	02	Batch:	WG1088550-4	
1,2-Dichlorobenzene	ND	ug/	I	5.0		
1,3-Dichlorobenzene	ND	ug/	l	5.0		
1,4-Dichlorobenzene	ND	ug/	l	5.0		
p/m-Xylene ¹	ND	ug/	l	2.0		
o-xylene ¹	ND	ug/	l	1.0		
Xylenes, Total ¹	ND	ug/	I	1.0		
Styrene ¹	ND	ug/	l	1.0		
Acetone ¹	ND	ug/	I	10		
Carbon disulfide ¹	ND	ug/	I	5.0		
2-Butanone ¹	ND	ug/	I	10		
Vinyl acetate ¹	ND	ug/	I	10		
4-Methyl-2-pentanone ¹	ND	ug/	I	10		
2-Hexanone ¹	ND	ug/	I	10		
Acrolein ¹	ND	ug/	l	8.0		
Acrylonitrile ¹	ND	ug/	l	10		
Methyl tert butyl ether ¹	ND	ug/	I	10		
Dibromomethane ¹	ND	ug/	I	1.0		

		Acceptance
Surrogate	%Recovery Qı	ualifier Criteria
Pentafluorobenzene	106	80-120
Fluorobenzene	101	80-120
4-Bromofluorobenzene	94	80-120

Project Name: 50 SYMPHONY RD. Pro

Lab Number:

L1804229

Project Number:	50 SYMPHONY RD.	Report Date:	02/14/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westbor	rough Lab Associated	sample(s):	01 Batch: WG1	088358-3				
Methylene chloride	100		-		70-111	-		30
1,1-Dichloroethane	105		-		78-116	-		30
Chloroform	100		-		86-111	-		30
Carbon tetrachloride	80		-		60-112	-		30
1,2-Dichloropropane	100		-		83-113	-		30
Dibromochloromethane	85		-		58-129	-		30
1,1,2-Trichloroethane	95		-		80-118	-		30
2-Chloroethylvinyl ether	125	Q	-		69-124	-		30
Tetrachloroethene	105		-		80-126	-		30
Chlorobenzene	95		-		80-126	-		30
Trichlorofluoromethane	100		-		83-128	-		30
1,2-Dichloroethane	100		-		82-110	-		30
1,1,1-Trichloroethane	90		-		72-109	-		30
Bromodichloromethane	95		-		71-120	-		30
trans-1,3-Dichloropropene	85		-		73-106	-		30
cis-1,3-Dichloropropene	95		-		78-111	-		30
Bromoform	75		-		45-131	-		30
1,1,2,2-Tetrachloroethane	90		-		81-122	-		30
Benzene	100		-		84-116	-		30
Toluene	105		-		83-121	-		30
Ethylbenzene	95		-		84-123	-		30
Chloromethane	110		-		70-144	-		30
Bromomethane	85		-		63-141	-		30

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

Report Date: 02/14/18

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
latile Organics by GC/MS - Westborou	gh Lab Associated s	sample(s): 01	Batch: WG10	088358-3				
Vinyl chloride	105		-		56-118	-		30
Chloroethane	110		-		74-130	-		30
1,1-Dichloroethene	100		-		77-116	-		30
trans-1,2-Dichloroethene	100		-		81-121	-		30
cis-1,2-Dichloroethene ¹	100		-		85-110	-		30
Trichloroethene	100		-		84-118	-		30
1,2-Dichlorobenzene	90		-		78-128	-		30
1,3-Dichlorobenzene	95		-		77-125	-		30
1,4-Dichlorobenzene	95		-		77-125	-		30
p/m-Xylene ¹	98		-		81-121	-		30
o-xylene ¹	95		-		81-124	-		30
Styrene ¹	95		-		84-133	-		30
Acetone ¹	90		-		40-160	-		30
Carbon disulfide ¹	95		-		54-134	-		30
2-Butanone ¹	90		-		57-116	-		30
Vinyl acetate ¹	78		-		40-160	-		30
4-Methyl-2-pentanone ¹	94		-		79-125	-		30
2-Hexanone ¹	96		-		78-120	-		30
Acrolein ¹	70		-		40-160	-		30
Acrylonitrile ¹	92		-		66-123	-		30
Methyl tert butyl ether ¹	90		-		57-126	-		30
Dibromomethane ¹	90		-		65-126	-		30
1,4-Dioxane ¹	95		-		74-121	-		30

Project Name: 50 SYMPHONY RD.

Lab Number:

L1804229

Project Number: 50 SYMPHONY RD.

Report Date:

02/14/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	088358-3					
Tert-Butyl Alcohol ¹	60		-		52-114	-		30	
Tertiary-Amyl Methyl Ether ¹	90		-		66-111	-		30	
Dichlorodifluoromethane ¹	105		-		70-130	-		30	

Surrogate	LCS %Recovery Qua	LCSD %Recovery Qua	Acceptance al Criteria
Pentafluorobenzene	106		80-120
Fluorobenzene	99		80-120
4-Bromofluorobenzene	95		80-120

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

Report Date:

02/14/18

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
latile Organics by GC/MS - Westborough	Lab Associated	sample(s): 02	2 Batch: WG1	088550-3				
Methylene chloride	100		-		70-111	-		30
1,1-Dichloroethane	100		-		78-116	-		30
Chloroform	100		-		86-111	-		30
Carbon tetrachloride	85		-		60-112	-		30
1,2-Dichloropropane	105		-		83-113	-		30
Dibromochloromethane	90		-		58-129	-		30
1,1,2-Trichloroethane	100		-		80-118	-		30
2-Chloroethylvinyl ether	120		-		69-124	-		30
Tetrachloroethene	100		-		80-126	-		30
Chlorobenzene	95		-		80-126	-		30
Trichlorofluoromethane	95		-		83-128	-		30
1,2-Dichloroethane	100		-		82-110	-		30
1,1,1-Trichloroethane	90		-		72-109	-		30
Bromodichloromethane	95		-		71-120	-		30
trans-1,3-Dichloropropene	90		-		73-106	-		30
cis-1,3-Dichloropropene	95		-		78-111	-		30
Bromoform	80		-		45-131	-		30
1,1,2,2-Tetrachloroethane	90		-		81-122	-		30
Benzene	100		-		84-116	-		30
Toluene	100		-		83-121	-		30
Ethylbenzene	95		-		84-123	-		30
Chloromethane	100		-		70-144	-		30
Bromomethane	60	Q	-		63-141	-		30

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - West	borough Lab Associated sa	mple(s): 02 Batch: WG1	1088550-3		
Vinyl chloride	95	-	56-118	-	30
Chloroethane	105	-	74-130	-	30
1,1-Dichloroethene	95	-	77-116	-	30
trans-1,2-Dichloroethene	95	-	81-121	-	30
cis-1,2-Dichloroethene1	95	•	85-110	-	30
Trichloroethene	95	-	84-118	-	30
1,2-Dichlorobenzene	90	-	78-128	-	30
1,3-Dichlorobenzene	90	-	77-125	-	30
1,4-Dichlorobenzene	90	-	77-125	-	30
p/m-Xylene ¹	95	-	81-121	-	30
o-xylene ¹	95	-	81-124	-	30
Styrene ¹	90	-	84-133	-	30
Acetone ¹	92	-	40-160	-	30
Carbon disulfide ¹	90	-	54-134	-	30
2-Butanone ¹	92	-	57-116	-	30
Vinyl acetate ¹	80	-	40-160	-	30
4-Methyl-2-pentanone ¹	94	-	79-125	-	30
2-Hexanone ¹	96	-	78-120	-	30
Acrolein ¹	75	-	40-160	-	30
Acrylonitrile ¹	95	-	66-123	-	30
Methyl tert butyl ether¹	90	-	57-126	-	30
Dibromomethane ¹	90	-	65-126	-	30

Lab Number: L1804229

Project Number: 50 SYMPHONY RD. Report Date: 02/14/18

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1088550-3

50 SYMPHONY RD.

Project Name:

Surrogate	LCS %Recovery Qual	LCSD %Recovery Q	Acceptance Qual Criteria
Pentafluorobenzene	106		80-120
Fluorobenzene	99		80-120
4-Bromofluorobenzene	95		80-120

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number: L1804229

Report Date: 02/14/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun		Recover Qual Limits	y RPD	RPD Qual Limits
Volatile Organics by GC/MS	- Westborough L	ab Asso	ciated sample(s): 01 QC Bat	tch ID: WG10883	58-6 QC Sam	ple: L1804508-02	Client II	D: MS Sample
Methylene chloride	ND	200	200	100	-	-	70-111	-	30
1,1-Dichloroethane	ND	200	210	105	-	-	78-116	-	30
Chloroform	ND	200	200	100	-	-	86-111	-	30
Carbon tetrachloride	ND	200	170	85	-	-	60-112	-	30
1,2-Dichloropropane	ND	200	200	100	-	-	83-113	-	30
Dibromochloromethane	ND	200	170	85	-	-	58-129	-	30
1,1,2-Trichloroethane	ND	200	190	95	-	-	80-118	-	30
2-Chloroethylvinyl ether	ND	200	230	115	-	-	69-124	-	30
Tetrachloroethene	ND	200	200	100	-	-	80-126	-	30
Chlorobenzene	ND	200	190	95	-	-	80-126	-	30
Trichlorofluoromethane	ND	200	200	100	-	-	83-128	-	30
1,2-Dichloroethane	ND	200	200	100	-	-	82-110	-	30
1,1,1-Trichloroethane	ND	200	180	90	-	-	72-109	-	30
Bromodichloromethane	ND	200	180	90	-	-	71-120	-	30
trans-1,3-Dichloropropene	ND	200	160	80	-	-	73-106	-	30
cis-1,3-Dichloropropene	ND	200	150	75	Q -	-	78-111	-	30
Bromoform	ND	200	140	70	-	-	45-131	-	30
1,1,2,2-Tetrachloroethane	ND	200	180	90	-	-	81-122	-	30
Benzene	ND	200	200	100	-	-	84-116	-	30
Toluene	ND	200	200	100	-	-	83-121	-	30
Ethylbenzene	ND	200	190	95	-	-	84-123	-	30
Chloromethane	ND	200	210	105	-	-	70-144	-	30
Bromomethane	ND	200	74	37	Q -	-	63-141	-	30
Vinyl chloride	ND	200	210	105	-	-	56-118	-	30

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number: L1804229

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	r rpd	RPD Qual Limits
Volatile Organics by GC/M	IS - Westborough	Lab Assoc	ciated sample(s): 01 QC Ba	tch ID: WG1088358	-6 QC Samp	ole: L1804508-02	Client ID	: MS Sample
Chloroethane	ND	200	220	110	-	-	74-130	-	30
1,1-Dichloroethene	ND	200	200	100	-	-	77-116	-	30
trans-1,2-Dichloroethene	ND	200	200	100	-	-	81-121	-	30
cis-1,2-Dichloroethene ¹	ND	200	200	100	-	-	85-110	-	30
Trichloroethene	ND	200	190	95	-	-	84-118	-	30
1,2-Dichlorobenzene	ND	200	170	85	-	-	78-128	-	30
1,3-Dichlorobenzene	ND	200	180	90	-	-	77-125	-	30
1,4-Dichlorobenzene	ND	200	180	90	-	-	77-125	-	30
p/m-Xylene ¹	ND	400	390	98	-	-	81-121	-	30
o-Xylene ¹	ND	200	190	95	-	-	81-124	-	30
Styrene ¹	ND	200	180	90	-	-	84-133	-	30
Acetone ¹	ND	500	470	94	-	-	40-160	-	30
Carbon disulfide ¹	ND	200	180	90	-	-	54-134	-	30
2-Butanone ¹	ND	500	480	96	-	-	57-116	-	30
Vinyl acetate ¹	ND	400	330	82	-	-	40-160	-	30
4-Methyl-2-pentanone ¹	ND	500	470	94	-	-	79-125	-	30
2-Hexanone ¹	ND	500	490	98	-	-	78-120	-	30
Acrolein ¹	ND	400	290	72	-	-	40-160	-	30
Acrylonitrile ¹	ND	400	390	98	-	-	66-123	-	30
Dibromomethane ¹	ND	200	180	90	-	-	65-126	-	30

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

	Native	MS	MS	MS		MSD	MSD		Recovery	,		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1088358-6 QC Sample: L1804508-02 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	94		80-120
Fluorobenzene	100		80-120
Pentafluorobenzene	106		80-120

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number: L1804229

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS	- Westborough	Lab Asso	ciated sample(s): 02 QC Bat	tch ID: W	G1088550-	6 QC Samp	le: L1804	1312-02	Client ID	: MS S	ample
Methylene chloride	ND	200	210	105		-	-		70-111	-		30
1,1-Dichloroethane	ND	200	230	115		-	-		78-116	-		30
Chloroform	ND	200	220	110		-	-		86-111	-		30
Carbon tetrachloride	ND	200	200	100		-	-		60-112	-		30
1,2-Dichloropropane	ND	200	230	115	Q	-	-		83-113	-		30
Dibromochloromethane	ND	200	190	95		-	-		58-129	-		30
1,1,2-Trichloroethane	ND	200	200	100		-	-		80-118	-		30
2-Chloroethylvinyl ether	ND	200	250	125	Q	-	-		69-124	-		30
Tetrachloroethene	ND	200	230	115		-	-		80-126	-		30
Chlorobenzene	ND	200	200	100		-	-		80-126	-		30
Trichlorofluoromethane	ND	200	220	110		-	-		83-128	-		30
1,2-Dichloroethane	ND	200	210	105		-	-		82-110	-		30
1,1,1-Trichloroethane	ND	200	210	105		-	-		72-109	-		30
Bromodichloromethane	ND	200	210	105		-	-		71-120	-		30
trans-1,3-Dichloropropene	ND	200	190	95		-	-		73-106	-		30
cis-1,3-Dichloropropene	ND	200	200	100		-	-		78-111	-		30
Bromoform	ND	200	140	70		-	-		45-131	-		30
1,1,2,2-Tetrachloroethane	ND	200	180	90		-	-		81-122	-		30
Benzene	ND	200	220	110		-	-		84-116	-		30
Toluene	ND	200	230	115		-	-		83-121	-		30
Ethylbenzene	ND	200	200	100		-	-		84-123	-		30
Chloromethane	ND	200	230	115		-	-		70-144	-		30
Bromomethane	ND	200	100	50	Q	-	-		63-141	-		30
Vinyl chloride	ND	200	230	115		-	-		56-118	-		30

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number: L1804229

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	r RPD	RPD Qual Limits
Volatile Organics by GC/MS	- Westborough	Lab Assoc	ciated sample(s): 02 QC Ba	tch ID: WG1088550	-6 QC Samp	le: L1804312-02	Client IE): MS Sample
Chloroethane	ND	200	240	120	-	-	74-130	-	30
1,1-Dichloroethene	ND	200	220	110	-	-	77-116	-	30
trans-1,2-Dichloroethene	ND	200	220	110	-	-	81-121	-	30
cis-1,2-Dichloroethene ¹	ND	200	210	105	-	-	85-110	-	30
Trichloroethene	ND	200	210	105	-	-	84-118	-	30
1,2-Dichlorobenzene	ND	200	180	90	-	-	78-128	-	30
1,3-Dichlorobenzene	ND	200	180	90	-	-	77-125	-	30
1,4-Dichlorobenzene	ND	200	180	90	-	-	77-125	-	30
p/m-Xylene ¹	ND	400	400	100	-	-	81-121	-	30
o-Xylene ¹	ND	200	190	95	-	-	81-124	-	30
Styrene ¹	ND	200	190	95	-	-	84-133	-	30
Acetone ¹	3000	500	3700	140	-	-	40-160	-	30
Carbon disulfide ¹	ND	200	200	100	-	-	54-134	-	30
2-Butanone ¹	ND	500	500	100	-	-	57-116	-	30
Vinyl acetate ¹	ND	400	370	92	-	-	40-160	-	30
4-Methyl-2-pentanone ¹	ND	500	490	98	-	-	79-125	-	30
2-Hexanone ¹	ND	500	510	102	-	-	78-120	-	30
Acrolein ¹	ND	400	190	48	-	-	40-160	-	30
Acrylonitrile ¹	ND	400	390	98	-	-	66-123	-	30
Dibromomethane ¹	ND	200	190	95	-	-	65-126	-	30

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	y Qual Limits	RPD	Qual Limit

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 QC Batch ID: WG1088550-6 QC Sample: L1804312-02 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	92		80-120
Fluorobenzene	101		80-120
Pentafluorobenzene	105		80-120

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG1088	3358-5 QC Sar	mple: L180	4508-02 Client ID: DUP Sample
Methylene chloride	ND	ND	ug/l	NC	30
1,1-Dichloroethane	ND	ND	ug/l	NC	30
Chloroform	ND	ND	ug/l	NC	30
Carbon tetrachloride	ND	ND	ug/l	NC	30
1,2-Dichloropropane	ND	ND	ug/l	NC	30
Dibromochloromethane	ND	ND	ug/l	NC	30
1,1,2-Trichloroethane	ND	ND	ug/l	NC	30
2-Chloroethylvinyl ether	ND	ND	ug/l	NC	30
Tetrachloroethene	ND	ND	ug/l	NC	30
Chlorobenzene	ND	ND	ug/l	NC	30
Trichlorofluoromethane	ND	ND	ug/l	NC	30
1,2-Dichloroethane	ND	ND	ug/l	NC	30
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30
Bromodichloromethane	ND	ND	ug/l	NC	30
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30
Bromoform	ND	ND	ug/l	NC	30
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30
Benzene	ND	ND	ug/l	NC	30
Toluene	ND	ND	ug/l	NC	30
Ethylbenzene	ND	ND	ug/l	NC	30

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

Colotile Organics by CC/MS Weatherough L	ab Associated sample(s): 01	-			Qual Limits
olatile Organics by GC/MS - Westborough L	ab / locociatou campio(c). Ci	QC Batch ID: WG10	88358-5 QC Sa	ample: L180	04508-02 Client ID: DUP Sample
Chloromethane	ND	ND	ug/l	NC	30
Bromomethane	ND	ND	ug/l	NC	30
Vinyl chloride	ND	ND	ug/l	NC	30
Chloroethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene	ND	ND	ug/l	NC	30
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
Trichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene ¹	ND	ND	ug/l	NC	30
o-Xylene ¹	ND	ND	ug/l	NC	30
Xylene (Total) ¹	ND	ND	ug/l	NC	30
Styrene ¹	ND	ND	ug/l	NC	30
Acetone ¹	ND	ND	ug/l	NC	30
Carbon disulfide ¹	ND	ND	ug/l	NC	30
2-Butanone ¹	ND	ND	ug/l	NC	30
Vinyl acetate ¹	ND	ND	ug/l	NC	30
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC	30
2-Hexanone ¹	ND	ND	ug/l	NC	30

Project Name: 50 SYMPHONY RD.

Batch Quality Cor

Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG1088	358-5 QC San	nple: L180	4508-02 Client ID: DUP Sample
Acrolein ¹	ND	ND	ug/l	NC	30
Acrylonitrile ¹	ND	ND	ug/l	NC	30
Dibromomethane ¹	ND	ND	ug/l	NC	30

Surrogate	%Recovery Qualifi	er %Recovery Qualifier	Acceptance Criteria
Pentafluorobenzene	107	107	80-120
Fluorobenzene	101	101	80-120
4-Bromofluorobenzene	95	94	80-120

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

Parameter	Native Sample	Duplicate Samp	le Units	RPD	RPI Qual Lim	
olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 02	QC Batch ID: WG	1088550-5 QC Sa	mple: L180	4312-02 Client II	D: DUP Sample
Methylene chloride	ND	ND	ug/l	NC		30
1,1-Dichloroethane	ND	ND	ug/l	NC	;	30
Chloroform	ND	ND	ug/l	NC	;	30
Carbon tetrachloride	ND	ND	ug/l	NC	;	30
1,2-Dichloropropane	ND	ND	ug/l	NC	;	30
Dibromochloromethane	ND	ND	ug/l	NC	;	30
1,1,2-Trichloroethane	ND	ND	ug/l	NC	;	30
2-Chloroethylvinyl ether	ND	ND	ug/l	NC	;	30
Tetrachloroethene	ND	ND	ug/l	NC	;	30
Chlorobenzene	ND	ND	ug/l	NC	;	30
Trichlorofluoromethane	ND	ND	ug/l	NC	;	30
1,2-Dichloroethane	ND	ND	ug/l	NC	;	30
1,1,1-Trichloroethane	ND	ND	ug/l	NC	;	30
Bromodichloromethane	ND	ND	ug/l	NC	;	30
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	;	30
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	;	30
Bromoform	ND	ND	ug/l	NC	;	30
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	;	30
Benzene	ND	ND	ug/l	NC	;	30
Toluene	ND	ND	ug/l	NC	;	30
Ethylbenzene	ND	ND	ug/l	NC	;	30

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 02	QC Batch ID: WG1088	3550-5 QC Sa	mple: L180	4312-02 Client ID: DUP Sample
Chloromethane	ND	ND	ug/l	NC	30
Bromomethane	ND	ND	ug/l	NC	30
Vinyl chloride	ND	ND	ug/l	NC	30
Chloroethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene	ND	ND	ug/l	NC	30
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
Trichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene ¹	ND	ND	ug/l	NC	30
o-Xylene ¹	ND	ND	ug/l	NC	30
Xylene (Total) ¹	ND	ND	ug/l	NC	30
Styrene ¹	ND	ND	ug/l	NC	30
Acetone ¹	3000	3000	ug/l	0	30
Carbon disulfide ¹	ND	ND	ug/l	NC	30
2-Butanone ¹	ND	ND	ug/l	NC	30
Vinyl acetate ¹	ND	ND	ug/l	NC	30
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC	30
2-Hexanone ¹	ND	ND	ug/l	NC	30

50 SYMPHONY RD. Batch Quality Conf

Lab Number:

L1804229

Report Date:

02/14/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 02	QC Batch ID: WG1088	550-5 QC Sar	mple: L180	4312-02 Client ID: DUP Sampl
Acrolein ¹	ND	ND	ug/l	NC	30
Acrylonitrile ¹	ND	ND	ug/l	NC	30
Dibromomethane ¹	ND	ND	ug/l	NC	30

Surrogate	%Recovery Qualifi	er %Recovery Qualifier	Acceptance Criteria
Pentafluorobenzene	104	105	80-120
Fluorobenzene	99	100	80-120
4-Bromofluorobenzene	93	93	80-120

Project Name:

Project Number:

50 SYMPHONY RD.

SEMIVOLATILES

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/07/18 09:00

Client ID: MW-1 Date Received: 02/07/18

Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625

Analytical Method: 5,625 Extraction Date: 02/08/18 16:20

Analytical Date: 02/11/18 04:11
Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine ¹	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene ¹	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether ¹	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene ¹	ND		ug/l	10		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA ¹	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

Project Name: Lab Number: 50 SYMPHONY RD. L1804229

Project Number: Report Date: 50 SYMPHONY RD. 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-01 Date Collected: 02/07/18 09:00

Client ID: MW-1 Date Received: 02/07/18

Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
4-Chloroaniline ¹	ND		ug/l	5.0		1
Dibenzofuran ¹	ND		ug/l	2.0		1
2-Methylnaphthalene ¹	ND		ug/l	2.0		1
n-Nitrosodimethylamine ¹	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol ¹	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	5.0		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol ¹	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	5.0		1
Phenol	ND		ug/l	5.0		1
2-Methylphenol ¹	ND		ug/l	5.0		1
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.0		1
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0		1
Benzoic Acid ¹	ND		ug/l	50		1
Benzyl Alcohol ¹	ND		ug/l	2.0		1

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-01 Date Collected: 02/07/18 09:00

Client ID: MW-1 Date Received: 02/07/18
Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

% Recovery	Acceptance Qualifier Criteria
63	21-120
46	10-120
103	23-120
96	15-120
109	10-120
107	33-120
	63 46 103 96 109

Dilution Footon

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-02 Date Collected: 02/08/18 12:30

Client ID: MW-3 Date Received: 02/09/18
Sample Location: 50 SYMPHONY RD Field Prep: Not Specified

Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625

Analytical Method: 5,625 Extraction Date: 02/10/18 02:19

O......

Analytical Date: 02/11/18 07:52
Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - West	borough Lab						
Acenaphthene	7.4		ug/l	1.9		1	
Benzidine ¹	ND		ug/l	19		1	
1,2,4-Trichlorobenzene	ND		ug/l	4.8		1	
Hexachlorobenzene	ND		ug/l	1.9		1	
Bis(2-chloroethyl)ether	ND		ug/l	1.9		1	
2-Chloronaphthalene	ND		ug/l	1.9		1	
3,3'-Dichlorobenzidine	ND		ug/l	4.8		1	
2,4-Dinitrotoluene	ND		ug/l	4.8		1	
2,6-Dinitrotoluene	ND		ug/l	4.8		1	
Azobenzene ¹	ND		ug/l	1.9		1	
Fluoranthene	6.0		ug/l	1.9		1	
4-Chlorophenyl phenyl ether	ND		ug/l	1.9		1	
4-Bromophenyl phenyl ether¹	ND		ug/l	1.9		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	1.9		1	
Bis(2-chloroethoxy)methane	ND		ug/l	4.8		1	
Hexachlorobutadiene	ND		ug/l	1.9		1	
Hexachlorocyclopentadiene ¹	ND		ug/l	9.7		1	
Hexachloroethane	ND		ug/l	1.9		1	
Isophorone	ND		ug/l	4.8		1	
Naphthalene	65		ug/l	1.9		1	
Nitrobenzene	ND		ug/l	1.9		1	
NDPA/DPA ¹	ND		ug/l	1.9		1	
n-Nitrosodi-n-propylamine	ND		ug/l	4.8		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.9		1	
Butyl benzyl phthalate	ND		ug/l	4.8		1	
Di-n-butylphthalate	ND		ug/l	4.8		1	
Di-n-octylphthalate	ND		ug/l	4.8		1	
Diethyl phthalate	ND		ug/l	4.8		1	
Dimethyl phthalate	ND		ug/l	4.8		1	

Project Name: Lab Number: 50 SYMPHONY RD. L1804229

Project Number: Report Date: 50 SYMPHONY RD. 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-02 Date Collected: 02/08/18 12:30

Client ID: MW-3 Date Received: 02/09/18

Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Benzo(a)anthracene	2.7		ug/l	1.9		1
Benzo(a)pyrene	2.2		ug/l	1.9		1
Benzo(b)fluoranthene	2.9		ug/l	1.9		1
Benzo(k)fluoranthene	ND		ug/l	1.9		1
Chrysene	2.4		ug/l	1.9		1
Acenaphthylene	8.7		ug/l	1.9		1
Anthracene	3.0		ug/l	1.9		1
Benzo(ghi)perylene	ND		ug/l	1.9		1
Fluorene	8.1		ug/l	1.9		1
Phenanthrene	11		ug/l	1.9		1
Dibenzo(a,h)anthracene	ND		ug/l	1.9		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	1.9		1
Pyrene	5.3		ug/l	1.9		1
4-Chloroaniline ¹	ND		ug/l	4.8		1
Dibenzofuran ¹	6.8		ug/l	1.9		1
2-Methylnaphthalene ¹	10		ug/l	1.9		1
n-Nitrosodimethylamine ¹	ND		ug/l	1.9		1
2,4,6-Trichlorophenol	ND		ug/l	4.8		1
p-Chloro-m-cresol ¹	ND		ug/l	1.9		1
2-Chlorophenol	ND		ug/l	1.9		1
2,4-Dichlorophenol	ND		ug/l	4.8		1
2,4-Dimethylphenol	52		ug/l	4.8		1
2-Nitrophenol	ND		ug/l	4.8		1
4-Nitrophenol	ND		ug/l	9.7		1
2,4-Dinitrophenol	ND		ug/l	19		1
4,6-Dinitro-o-cresol ¹	ND		ug/l	9.7		1
Pentachlorophenol	ND		ug/l	4.8		1
Phenol	20		ug/l	4.8		1
2-Methylphenol ¹	38		ug/l	4.8		1
3-Methylphenol/4-Methylphenol ¹	79		ug/l	4.8		1
2,4,5-Trichlorophenol ¹	ND		ug/l	4.8		1
Benzoic Acid¹	ND		ug/l	48		1
Benzyl Alcohol ¹	ND		ug/l	1.9		1

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-02 Date Collected: 02/08/18 12:30

Client ID: MW-3 Date Received: 02/09/18
Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	68	21-120
Phenol-d6	53	10-120
Nitrobenzene-d5	90	23-120
2-Fluorobiphenyl	85	15-120
2,4,6-Tribromophenol	99	10-120
4-Terphenyl-d14	97	33-120

Project Name: 50 SYMPHONY RD.

Project Number: 50 SYMPHONY RD.

Lab Number: L1804229 **Report Date:** 02/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 02/09/18 21:31

Analyst: EK

Extraction Method: EPA 625

Extraction Date: 02/08/18 16:20

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/M	S - Westborough	Lab for sample(s):	01 Batch:	WG1087709-1
Acenaphthene	ND	ug/l	2.0	
Benzidine ¹	ND	ug/l	20	
1,2,4-Trichlorobenzene	ND	ug/l	5.0	
Hexachlorobenzene	ND	ug/l	2.0	
Bis(2-chloroethyl)ether	ND	ug/l	2.0	
2-Chloronaphthalene	ND	ug/l	2.0	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	
2,4-Dinitrotoluene	ND	ug/l	5.0	
2,6-Dinitrotoluene	ND	ug/l	5.0	
Azobenzene ¹	ND	ug/l	2.0	
Fluoranthene	ND	ug/l	2.0	
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	
4-Bromophenyl phenyl ether ¹	ND	ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	
Hexachlorobutadiene	ND	ug/l	2.0	
Hexachlorocyclopentadiene ¹	ND	ug/l	10	
Hexachloroethane	ND	ug/l	2.0	
Isophorone	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.0	
Nitrobenzene	ND	ug/l	2.0	
NDPA/DPA ¹	ND	ug/l	2.0	
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	
Butyl benzyl phthalate	ND	ug/l	5.0	
Di-n-butylphthalate	ND	ug/l	5.0	
Di-n-octylphthalate	ND	ug/l	5.0	
Diethyl phthalate	ND	ug/l	5.0	
Dimethyl phthalate	ND	ug/l	5.0	

Project Name: 50 SYMPHONY RD.

Project Number: 50 SYMPHONY RD.

Lab Number: L1804229

Report Date: 02/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 02/09/18 21:31

Analyst: EK

Extraction Method: EPA 625

Extraction Date: 02/08/18 16:20

Parameter	Result	Qualifier	Units	I	₹L	MDL	
Semivolatile Organics by GC/MS -	- Westborough	Lab for s	ample(s):	01	Batch:	WG1087709-1	
Benzo(a)anthracene	ND		ug/l	2	2.0		
Benzo(a)pyrene	ND		ug/l	2	2.0		
Benzo(b)fluoranthene	ND		ug/l	2	2.0		
Benzo(k)fluoranthene	ND		ug/l	2	2.0		
Chrysene	ND		ug/l	2	2.0		
Acenaphthylene	ND		ug/l	2	2.0		
Anthracene	ND		ug/l	2	2.0		
Benzo(ghi)perylene	ND		ug/l	2	2.0		
Fluorene	ND		ug/l	2	2.0		
Phenanthrene	ND		ug/l	2	2.0		
Dibenzo(a,h)anthracene	ND		ug/l	2	2.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l	2	2.0		
Pyrene	ND		ug/l	2	2.0		
4-Chloroaniline ¹	ND		ug/l	5	5.0		
Dibenzofuran ¹	ND		ug/l	2	2.0		
2-Methylnaphthalene ¹	ND		ug/l	2	2.0		
n-Nitrosodimethylamine ¹	ND		ug/l	2	2.0		
2,4,6-Trichlorophenol	ND		ug/l	5	5.0		
p-Chloro-m-cresol ¹	ND		ug/l	2	2.0		
2-Chlorophenol	ND		ug/l	2	2.0		
2,4-Dichlorophenol	ND		ug/l	5	5.0		
2,4-Dimethylphenol	ND		ug/l	5	5.0		
2-Nitrophenol	ND		ug/l	5	5.0		
4-Nitrophenol	ND		ug/l		10		
2,4-Dinitrophenol	ND		ug/l	:	20		
4,6-Dinitro-o-cresol ¹	ND		ug/l		10		
Pentachlorophenol	ND		ug/l	5	5.0		
Phenol	ND		ug/l	5	5.0		
2-Methylphenol ¹	ND		ug/l	5	5.0		

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625 Extraction Method: EPA 625

Analytical Date: 02/09/18 21:31 Extraction Date: 02/08/18 16:20

Analyst: EK

Westborough				
	Lab for sample(s)	: 01 Batch:	WG1087709-1	
ND	ug/l	5.0		
ND	ug/l	5.0		
ND	ug/l	50		
ND	ug/l	2.0		
	ND	ND ug/l ND ug/l	ND ug/l 5.0 ND ug/l 50	ND ug/l 5.0 ND ug/l 50

Tentatively Identified Compounds			
Aldol Condensates	9.40	J	ug/l

%Recovery	Acceptance Qualifier Criteria
51	21-120
37	10-120
84	23-120
85	15-120
90	10-120
103	33-120
	51 37 84 85 90

Project Name: 50 SYMPHONY RD.

Project Number: 50 SYMPHONY RD.

Lab Number: L1804229

Report Date: 02/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

00/40/40 00:0

Analytical Date:

02/10/18 23:35

Analyst: KR

Extraction Method: EPA 625

Extraction Date: 02/09/18 20:36

Parameter	Result	Qualifier Ur	nits	RL	MDL
Semivolatile Organics by GC/MS -	- Westborough	Lab for samp	ole(s): 0	2 Batch:	WG1088108-1
Acenaphthene	ND	L	ıg/l	2.0	
Benzidine ¹	ND		ıg/l	20	
1,2,4-Trichlorobenzene	ND	·	ıg/l	5.0	
Hexachlorobenzene	ND	·	ıg/l	2.0	
Bis(2-chloroethyl)ether	ND	·	ıg/l	2.0	
2-Chloronaphthalene	ND	L	ıg/l	2.0	
3,3'-Dichlorobenzidine	ND	L	ıg/l	5.0	
2,4-Dinitrotoluene	ND	L	ıg/l	5.0	
2,6-Dinitrotoluene	ND	L	ıg/l	5.0	
Azobenzene ¹	ND	L	ıg/l	2.0	
Fluoranthene	ND	L	ıg/l	2.0	
4-Chlorophenyl phenyl ether	ND	L	ıg/l	2.0	
4-Bromophenyl phenyl ether ¹	ND	U	ıg/l	2.0	
Bis(2-chloroisopropyl)ether	ND	U	ıg/l	2.0	
Bis(2-chloroethoxy)methane	ND	U	ıg/l	5.0	
Hexachlorobutadiene	ND	U	ıg/l	2.0	
Hexachlorocyclopentadiene ¹	ND	L	ıg/l	10	
Hexachloroethane	ND	L	ıg/l	2.0	
Isophorone	ND	U	ıg/l	5.0	
Naphthalene	ND	U	ıg/l	2.0	
Nitrobenzene	ND	U	ıg/l	2.0	
NDPA/DPA ¹	ND	U	ıg/l	2.0	
n-Nitrosodi-n-propylamine	ND	L	ıg/l	5.0	
Bis(2-ethylhexyl)phthalate	ND	U	ıg/l	3.0	
Butyl benzyl phthalate	ND	U	ıg/l	5.0	
Di-n-butylphthalate	ND	ι	ıg/l	5.0	
Di-n-octylphthalate	ND	l	ıg/l	5.0	
Diethyl phthalate	ND	l	ıg/l	5.0	
Dimethyl phthalate	ND	U	ıg/l	5.0	

Project Name: 50 SYMPHONY RD.

Project Number: 50 SYMPHONY RD.

Lab Number: L1804229 **Report Date:** 02/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 02/10/18 23:35

Analyst: KR

Extraction Method: EPA 625

Extraction Date: 02/09/18 20:36

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	02	Batch:	WG1088108-1
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	
Benzo(b)fluoranthene	ND		ug/l		2.0	
Benzo(k)fluoranthene	ND		ug/l		2.0	
Chrysene	ND		ug/l		2.0	
Acenaphthylene	ND		ug/l		2.0	
Anthracene	ND		ug/l		2.0	
Benzo(ghi)perylene	ND		ug/l		2.0	
Fluorene	ND		ug/l		2.0	
Phenanthrene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Pyrene	ND		ug/l		2.0	
4-Chloroaniline ¹	ND		ug/l		5.0	
Dibenzofuran ¹	ND		ug/l		2.0	
2-Methylnaphthalene ¹	ND		ug/l		2.0	
n-Nitrosodimethylamine1	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol ¹	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		5.0	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol ¹	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		5.0	
Phenol	ND		ug/l		5.0	
2-Methylphenol ¹	ND		ug/l		5.0	

Extraction Method: EPA 625

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: 50 SYMPHONY RD. Report Date: 02/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 02/10/18 23:35 Extraction Date: 02/09/18 20:36

Analyst: KR

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS -	Westborough	Lab for	sample(s):	02	Batch:	WG1088108-1	
3-Methylphenol/4-Methylphenol ¹	ND		ug/l		5.0		
2,4,5-Trichlorophenol ¹	ND		ug/l		5.0		
Benzoic Acid ¹	ND		ug/l		50		
Benzyl Alcohol ¹	ND		ug/l		2.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	92	33-120

02/14/18

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Wes	stborough Lab Associ	ated sample(s):	01 Batch:	WG1087709	9-2				
Acenaphthene	87		-		47-145	-		30	
1,2,4-Trichlorobenzene	65		-		44-142	-		30	
Hexachlorobenzene	87		-		1-152	-		30	
Bis(2-chloroethyl)ether	84		-		12-158	-		30	
2-Chloronaphthalene	80		-		60-118	-		30	
3,3'-Dichlorobenzidine	42		-		1-262	-		30	
2,4-Dinitrotoluene	104		-		39-139	-		30	
2,6-Dinitrotoluene	101		-		50-158	-		30	
Fluoranthene	95		-		26-137	-		30	
4-Chlorophenyl phenyl ether	87		-		25-158	-		30	
4-Bromophenyl phenyl ether ¹	91		-		53-127	-		30	
Bis(2-chloroisopropyl)ether	98		-		36-166	-		30	
Bis(2-chloroethoxy)methane	94		-		33-184	-		30	
Hexachlorobutadiene	58		-		24-116	-		30	
Hexachloroethane	61		-		40-113	-		30	
Isophorone	100		-		21-196	-		30	
Naphthalene	74		-		21-133	-		30	
Nitrobenzene	91		-		35-180	-		30	
n-Nitrosodi-n-propylamine	102		-		1-230	-		30	
Bis(2-Ethylhexyl)phthalate	110		-		8-158	-		30	
Butyl benzyl phthalate	101		-		1-152	-		30	
Di-n-butylphthalate	101		-		1-118	-		30	
Di-n-octylphthalate	108		-		4-146	-		30	

02/14/18

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

Report Date:

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ated sample(s): 01 Batch:	WG1087709-2		
Diethyl phthalate	94	-	1-114	-	30
Dimethyl phthalate	94	-	1-112	-	30
Benzo(a)anthracene	97	-	33-143	-	30
Benzo(a)pyrene	98	-	17-163	-	30
Benzo(b)fluoranthene	94	-	24-159	-	30
Benzo(k)fluoranthene	96	-	11-162	-	30
Chrysene	90	-	17-168	-	30
Acenaphthylene	91	-	33-145	-	30
Anthracene	94	-	27-133	-	30
Benzo(ghi)perylene	96	-	1-219	-	30
Fluorene	92	-	59-121	-	30
Phenanthrene	90	-	54-120	-	30
Dibenzo(a,h)anthracene	98	-	1-227	-	30
Indeno(1,2,3-cd)Pyrene	104	-	1-171	-	30
Pyrene	92	-	52-115	-	30
2,4,6-Trichlorophenol	100	-	37-144	-	30
P-Chloro-M-Cresol ¹	105	-	22-147	-	30
2-Chlorophenol	84	-	23-134	-	30
2,4-Dichlorophenol	100	-	39-135	-	30
2,4-Dimethylphenol	92	-	32-119	-	30
2-Nitrophenol	100	-	29-182	-	30
4-Nitrophenol	60	-	1-132	-	30
2,4-Dinitrophenol	82	-	1-191	-	30

Project Name: 50 SYMPHONY RD.

Lab Number:

L1804229

Project Number: 50 SYMPHONY RD.

Report Date:

<u>Pa</u>	rameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Se	mivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s):	01	Batch:	WG1087709-2					
	4,6-Dinitro-o-cresol ¹	96			-		1-181	-		30	
	Pentachlorophenol	76			-		14-176	-		30	
	Phenol	44			-		5-112	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	60		21-120
Phenol-d6	49		10-120
Nitrobenzene-d5	99		23-120
2-Fluorobiphenyl	95		15-120
2,4,6-Tribromophenol	101		10-120
4-Terphenyl-d14	107		33-120

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Wes	tborough Lab Associa	ated sample(s): 02 Batch:	WG1088108-2		
Acenaphthene	86	-	47-145	-	30
1,2,4-Trichlorobenzene	68	-	44-142	-	30
Hexachlorobenzene	89	-	1-152	-	30
Bis(2-chloroethyl)ether	86	-	12-158	-	30
2-Chloronaphthalene	79	-	60-118	-	30
3,3'-Dichlorobenzidine	39	-	1-262	-	30
2,4-Dinitrotoluene	104	-	39-139	-	30
2,6-Dinitrotoluene	100	-	50-158	-	30
Fluoranthene	99	-	26-137	-	30
4-Chlorophenyl phenyl ether	87	-	25-158	-	30
4-Bromophenyl phenyl ether ¹	92	-	53-127	-	30
Bis(2-chloroisopropyl)ether	96	•	36-166	-	30
Bis(2-chloroethoxy)methane	94	-	33-184	-	30
Hexachlorobutadiene	62	-	24-116	-	30
Hexachloroethane	64	-	40-113	-	30
Isophorone	98	-	21-196	-	30
Naphthalene	77	-	21-133	-	30
Nitrobenzene	94	-	35-180	-	30
n-Nitrosodi-n-propylamine	102	-	1-230	-	30
Bis(2-Ethylhexyl)phthalate	107	-	8-158	-	30
Butyl benzyl phthalate	104	-	1-152	-	30
Di-n-butylphthalate	102	-	1-118	-	30
Di-n-octylphthalate	112	-	4-146	-	30

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

ameter	LCS %Recovery	Qual	LCSD %Recovery		ecovery .imits	RPD	Qual	RPD Limits
mivolatile Organics by GC/MS - Westborou	ugh Lab Associa	ated sample(s)	: 02 Batch:	WG1088108-2				
Diethyl phthalate	95		-		1-114	-		30
Dimethyl phthalate	94		-		1-112	-		30
Benzo(a)anthracene	98		-	3	33-143	-		30
Benzo(a)pyrene	103		-	1	17-163	-		30
Benzo(b)fluoranthene	100		-	2	24-159	-		30
Benzo(k)fluoranthene	99		-	1	11-162	-		30
Chrysene	93		-	1	17-168	-		30
Acenaphthylene	90		-	3	33-145	-		30
Anthracene	95		-	2	27-133	-		30
Benzo(ghi)perylene	99		-		1-219	-		30
Fluorene	93		-	5	59-121	-		30
Phenanthrene	92		-	5	54-120	-		30
Dibenzo(a,h)anthracene	102		-		1-227	-		30
Indeno(1,2,3-cd)Pyrene	110		-		1-171	-		30
Pyrene	95		-	5	52-115	-		30
2,4,6-Trichlorophenol	101		-	3	37-144	-		30
P-Chloro-M-Cresol ¹	106		-	2	22-147	-		30
2-Chlorophenol	90		-	2	23-134	-		30
2,4-Dichlorophenol	102		-	3	39-135	-		30
2,4-Dimethylphenol	94		-	3	32-119	-		30
2-Nitrophenol	104		-	2	29-182	-		30
4-Nitrophenol	56		-		1-132	-		30
2,4-Dinitrophenol	82				1-191			30

Project Name: 50 SYMPHONY RD.

Lab Number:

L1804229 02/14/18

Project Number: 50 SYMPHONY RD.

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ited sample(s):	02 Batch:	WG1088108-2	2			
4,6-Dinitro-o-cresol ¹	96		-		1-181	-		30
Pentachlorophenol	77		-		14-176	-		30
Phenol	45		-		5-112	-		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	•	•	
2-Fluorophenol	60		21-120
Phenol-d6	47		10-120
Nitrobenzene-d5	97		23-120
2-Fluorobiphenyl	91		15-120
2,4,6-Tribromophenol	98		10-120
4-Terphenyl-d14	103		33-120

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recover	y Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GO	C/MS - Westbor	ough Lab	Associated sar	mple(s): 01 C	C Batch ID:	: WG108	7709-3 QC	Sample	: L1800002-2	26 Clie	ent ID:	MS Sample
Acenaphthene	ND	40	32	80		-	-		47-145	-		30
1,2,4-Trichlorobenzene	ND	40	23	58		-	-		44-142	-		30
Hexachlorobenzene	ND	40	34	85		-	-		1-152	-		30
Bis(2-chloroethyl)ether	ND	40	32	80		-	-		12-158	-		30
2-Chloronaphthalene	ND	40	27	68		-	-		60-118	-		30
3,3'-Dichlorobenzidine	ND	80	28	35		-	-		1-262	-		30
2,4-Dinitrotoluene	ND	40	40	100		-	-		39-139	-		30
2,6-Dinitrotoluene	ND	40	38	95		-	-		50-158	-		30
Fluoranthene	ND	40	38	95		-	-		26-137	-		30
4-Chlorophenyl phenyl ether	ND	40	33	83		-	-		25-158	-		30
4-Bromophenyl phenyl ether ¹	ND	40	35	88		-	-		53-127	-		30
Bis(2-chloroisopropyl)ether	ND	40	36	90		-	-		36-166	-		30
Bis(2-chloroethoxy)methane	ND	40	35	88		-	-		33-184	-		30
Hexachlorobutadiene	ND	40	19	48		-	-		24-116	-		30
Hexachloroethane	ND	40	22	55		-	-		40-113	-		30
Isophorone	ND	40	38	95		-	-		21-196	-		30
Naphthalene	ND	40	27	68		-	-		21-133	-		30
Nitrobenzene	ND	40	35	88		-	-		35-180	-		30
n-Nitrosodi-n-propylamine	ND	40	38	95		-	-		1-230	-		30
Bis(2-Ethylhexyl)phthalate	ND	40	42	110		-	-		8-158	-		30
Butyl benzyl phthalate	ND	40	41	100		-	-		1-152	-		30
Di-n-butylphthalate	ND	40	40	100		-	-		1-118	-		30
Di-n-octylphthalate	ND	40	43	110		-	-		4-146	-		30
Diethyl phthalate	ND	40	37	93		-	-		1-114	-		30
												_

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	y Qual	MSD Found	MSD %Recovery	/ Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC	/MS - Westbor	ough Lab	Associated sa	mple(s): 01	QC Batch I	D: WG108	7709-3 QC	Sample:	L1800002-2	26 Clie	ent ID: I	MS Sample
Dimethyl phthalate	ND	40	36	90		-	-		1-112	-		30
Benzo(a)anthracene	ND	40	38	95		-	-		33-143	-		30
Benzo(a)pyrene	ND	40	40	100		-	-		17-163	-		30
Benzo(b)fluoranthene	ND	40	39	98		-	-		24-159	-		30
Benzo(k)fluoranthene	ND	40	37	93		-	-		11-162	-		30
Chrysene	ND	40	36	90		-	-		17-168	-		30
Acenaphthylene	ND	40	33	83		-	-		33-145	-		30
Anthracene	ND	40	36	90		-	-		27-133	-		30
Benzo(ghi)perylene	ND	40	38	95		-	-		1-219	-		30
Fluorene	ND	40	36	90		-	-		59-121	-		30
Phenanthrene	ND	40	35	88		-	-		54-120	-		30
Dibenzo(a,h)anthracene	ND	40	39	98		-	-		1-227	-		30
Indeno(1,2,3-cd)Pyrene	ND	40	42	110		-	-		1-171	-		30
Pyrene	ND	40	37	93		-	-		52-115	-		30
2,4,6-Trichlorophenol	ND	40	38	95		-	-		37-144	-		30
P-Chloro-M-Cresol ¹	ND	40	40	100		-	-		22-147	-		30
2-Chlorophenol	ND	40	33	83		-	-		23-134	-		30
2,4-Dichlorophenol	ND	40	39	98		-	-		39-135	-		30
2,4-Dimethylphenol	ND	40	32	80		-	-		32-119	-		30
2-Nitrophenol	ND	40	39	98		-	-		29-182	-		30
4-Nitrophenol	ND	40	23	58		-	-		1-132	-		30
2,4-Dinitrophenol	ND	40	33	83		-	-		1-191	-		30
4,6-Dinitro-o-cresol1	ND	40	37	93		-	-		1-181	-		30
Pentachlorophenol	ND	40	30	75		-	-		14-176	-		30

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

	Native	MS	MS	MS		MSD	MSD		Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	/ Qual	Found	%Recove	y Qual	Limits	RPD Qu	ual Limits
Semivolatile Organics by GC/M	S - Westbor	ough Lab	Associated sam	nple(s): 01	QC Batch II	D: WG1087	7709-3 Q	C Sample	L1800002-2	6 Client I	D: MS Sample
Phenol	ND	40	17	43		-	-		5-112	-	30

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
2,4,6-Tribromophenol	99		10-120	
2-Fluorobiphenyl	89		15-120	
2-Fluorophenol	58		21-120	
4-Terphenyl-d14	104		33-120	
Nitrobenzene-d5	95		23-120	
Phenol-d6	47		10-120	

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recove	ry Qual	Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC	MS - Westbore	ough Lab	Associated sa	mple(s): 02	QC Batch II	D: WG1088	3108-3 Q	C Sample	: L1804649-0	1 Clier	nt ID: MS Sample
1,2,4-Trichlorobenzene	ND	200	140	70		-	-		44-142	-	30
Naphthalene	ND	200	160	80		-	-		21-133	-	30
Bis(2-Ethylhexyl)phthalate	ND	200	230	120		-	-		8-158	-	30
Phenol	44	200	140	48		-	-		5-112	-	30

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
2,4,6-Tribromophenol	102		10-120	
2-Fluorobiphenyl	93		15-120	
2-Fluorophenol	61		21-120	
4-Terphenyl-d14	105		33-120	
Nitrobenzene-d5	95		23-120	
Phenol-d6	50		10-120	

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Parameter		Native Sample	Duplicate Sampl	le Units	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS Sample	- Westborough Lab	Associated sample(s): 0	1 QC Batch ID:	WG1087709-4	QC Sample:	L1800002-26 Client ID: DUP
Acenaphthene		ND	ND	ug/l	NC	30
Benzidine ¹		ND	ND	ug/l	NC	30
1,2,4-Trichlorobenzene		ND	ND	ug/l	NC	30
Hexachlorobenzene		ND	ND	ug/l	NC	30
Bis(2-chloroethyl)ether		ND	ND	ug/l	NC	30
2-Chloronaphthalene		ND	ND	ug/l	NC	30
3,3'-Dichlorobenzidine		ND	ND	ug/l	NC	30
2,4-Dinitrotoluene		ND	ND	ug/l	NC	30
2,6-Dinitrotoluene		ND	ND	ug/l	NC	30
Azobenzene ¹		ND	ND	ug/l	NC	30
Fluoranthene		ND	ND	ug/l	NC	30
4-Chlorophenyl phenyl ether		ND	ND	ug/l	NC	30
4-Bromophenyl phenyl ether ¹		ND	ND	ug/l	NC	30
Bis(2-chloroisopropyl)ether		ND	ND	ug/l	NC	30
Bis(2-chloroethoxy)methane		ND	ND	ug/l	NC	30
Hexachlorobutadiene		ND	ND	ug/l	NC	30
Hexachlorocyclopentadiene ¹		ND	ND	ug/l	NC	30
Hexachloroethane		ND	ND	ug/l	NC	30
Isophorone		ND	ND	ug/l	NC	30
Naphthalene		ND	ND	ug/l	NC	30
Nitrobenzene		ND	ND	ug/l	NC	30

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Parameter	Native Sample	Duplicate Samp	le Units	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Wes	stborough Lab Associated sample(s):	01 QC Batch ID:	WG1087709-4	QC Sample:	L1800002-26 Client ID: DUP
NitrosoDiPhenylAmine(NDPA)/DPA1	ND	ND	ug/l	NC	30
n-Nitrosodi-n-propylamine	ND	ND	ug/l	NC	30
Bis(2-Ethylhexyl)phthalate	ND	ND	ug/l	NC	30
Butyl benzyl phthalate	ND	ND	ug/l	NC	30
Di-n-butylphthalate	ND	ND	ug/l	NC	30
Di-n-octylphthalate	ND	ND	ug/l	NC	30
Diethyl phthalate	ND	ND	ug/l	NC	30
Dimethyl phthalate	ND	ND	ug/l	NC	30
Benzo(a)anthracene	ND	ND	ug/l	NC	30
Benzo(a)pyrene	ND	ND	ug/l	NC	30
Benzo(b)fluoranthene	ND	ND	ug/l	NC	30
Benzo(k)fluoranthene	ND	ND	ug/l	NC	30
Chrysene	ND	ND	ug/l	NC	30
Acenaphthylene	ND	ND	ug/l	NC	30
Anthracene	ND	ND	ug/l	NC	30
Benzo(ghi)perylene	ND	ND	ug/l	NC	30
Fluorene	ND	ND	ug/l	NC	30
Phenanthrene	ND	ND	ug/l	NC	30
Dibenzo(a,h)anthracene	ND	ND	ug/l	NC	30
Indeno(1,2,3-cd)Pyrene	ND	ND	ug/l	NC	30
Pyrene	ND	ND	ug/l	NC	30

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID: W	G1087709-4	QC Sample:	L1800002-26 Client ID: DUP
Biphenyl ¹	ND	ND	ug/l	NC	30
Aniline ¹	ND	ND	ug/l	NC	30
4-Chloroaniline ¹	ND	ND	ug/l	NC	30
1-Methylnaphthalene ¹	ND	ND	ug/l	NC	30
2-Nitroaniline ¹	ND	ND	ug/l	NC	30
3-Nitroaniline ¹	ND	ND	ug/l	NC	30
4-Nitroaniline ¹	ND	ND	ug/l	NC	30
Dibenzofuran ¹	ND	ND	ug/l	NC	30
2-Methylnaphthalene ¹	ND	ND	ug/l	NC	30
Acetophenone ¹	ND	ND	ug/l	NC	30
n-Nitrosodimethylamine ¹	ND	ND	ug/l	NC	30
2,4,6-Trichlorophenol	ND	ND	ug/l	NC	30
P-Chloro-M-Cresol ¹	ND	ND	ug/l	NC	30
2-Chlorophenol	ND	ND	ug/l	NC	30
2,4-Dichlorophenol	ND	ND	ug/l	NC	30
2,4-Dimethylphenol	ND	ND	ug/l	NC	30
2-Nitrophenol	ND	ND	ug/l	NC	30
4-Nitrophenol	ND	ND	ug/l	NC	30
2,4-Dinitrophenol	ND	ND	ug/l	NC	30
4,6-Dinitro-o-cresol ¹	ND	ND	ug/l	NC	30
Pentachlorophenol	ND	ND	ug/l	NC	30

Project Name: 50 SYMPHONY RD. Project Number: 50 SYMPHONY RD. Lab Number:

L1804229 02/14/18

Report Date:

Parameter	Native Sample	Duplicate Sample	e Units	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID: V	WG1087709-4	QC Sample:	L1800002-26 Client ID: D	UP
Phenol	ND	ND	ug/l	NC	30	
2-Methylphenol ¹	ND	ND	ug/l	NC	30	
3-Methylphenol/4-Methylphenol ¹	ND	ND	ug/l	NC	30	
2,4,5-Trichlorophenol ¹	ND	ND	ug/l	NC	30	
Benzoic Acid ¹	ND	ND	ug/l	NC	30	
Benzyl Alcohol ¹	ND	ND	ug/l	NC	30	
Carbazole ¹	ND	ND	ug/l	NC	30	
Pyridine ¹	ND	ND	ug/l	NC	30	
n-Decane ¹	ND	ND	ug/l	NC	30	

Surrogate	%Recovery Quali	fier %Recovery Qualifier	Acceptance Criteria	
2-Fluorophenol	51	54	21-120	
Phenol-d6	37	39	10-120	
Nitrobenzene-d5	89	92	23-120	
2-Fluorobiphenyl	89	88	15-120	
2,4,6-Tribromophenol	98	101	10-120	
4-Terphenyl-d14	111	108	33-120	

Project Name: 50 SYMPHONY RD.

Batch Quality
Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Parameter	Native Sample	Duplicate Samp	ole Units	RPD		PD mits
Acid Extractables by GC/MS - Westborough L	ab Associated sample(s): 02	QC Batch ID: WC	G1088108-4 QC S	Sample: L180	4649-02 Client	: ID: DUP Sample
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC		30
Naphthalene	ND	ND	ug/l	NC		30
Bis(2-Ethylhexyl)phthalate	ND	ND	ug/l	NC		30
Phenol	390	380	ug/l	3		30

			Acceptance
Surrogate	%Recovery Qualifie	er %Recovery Qualifie	r Criteria
2-Fluorophenol	60	60	21-120
Phenol-d6	44	43	10-120
Nitrobenzene-d5	93	98	23-120
2-Fluorobiphenyl	88	92	15-120
2,4,6-Tribromophenol	100	102	10-120
4-Terphenyl-d14	105	105	33-120

PETROLEUM HYDROCARBONS

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: 50 SYMPHONY RD. Report Date: 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-01 Date Collected: 02/07/18 09:00

Client ID: MW-1 Date Received: 02/07/18

Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 02/08/18 22:29
Analytical Date: 02/10/18 22:19 M.S. Analytical Date: 02/11/18 20:00 Cleanup Method1: EPH-04-1

Analyst: NS M.S. Analyst: KL Cleanup Date1: 02/10/18

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.400		1
2-Methylnaphthalene	ND		ug/l	0.400		1
Acenaphthylene	ND		ug/l	0.400		1
Acenaphthene	ND		ug/l	0.400		1
Fluorene	ND		ug/l	0.400		1
Phenanthrene	ND		ug/l	0.400		1
Anthracene	ND		ug/l	0.400		1
Fluoranthene	ND		ug/l	0.400		1
Pyrene	ND		ug/l	0.400		1
Benzo(a)anthracene	ND		ug/l	0.400		1
Chrysene	ND		ug/l	0.400		1
Benzo(b)fluoranthene	ND		ug/l	0.400		1
Benzo(k)fluoranthene	ND		ug/l	0.400		1
Benzo(a)pyrene	ND		ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1
Benzo(ghi)perylene	ND		ug/l	0.400		1

Dilution Factor

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: Report Date: 50 SYMPHONY RD. 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-01 Date Collected: 02/07/18 09:00

Client ID: MW-1 Date Received: 02/07/18 50 SYMPHONY RD. Field Prep: Not Specified

Sample Location:

Sample Depth: Parameter Qualifier RL MDL Result Units

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Chloro-Octadecane	53		40-140
o-Terphenyl	63		40-140
2-Fluorobiphenyl	68		40-140
2-Bromonaphthalene	66		40-140
O-Terphenyl-MS	78		40-140

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: 50 SYMPHONY RD. Report Date: 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-02 Date Collected: 02/08/18 12:30

Client ID: MW-3 Date Received: 02/09/18

Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 02/10/18 11:39

Analytical Date: 02/11/18 14:13 M.S. Analytical Date: 02/12/18 17:44 Cleanup Method1: EPH-04-1 Analyst: DG M.S. Analyst: KL Cleanup Date1: 02/11/18

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

		-				
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.449		1
2-Methylnaphthalene	ND		ug/l	0.449		1
Acenaphthylene	ND		ug/l	0.449		1
Acenaphthene	ND		ug/l	0.449		1
Fluorene	ND		ug/l	0.449		1
Phenanthrene	ND		ug/l	0.449		1
Anthracene	ND		ug/l	0.449		1
Fluoranthene	ND		ug/l	0.449		1
Pyrene	ND		ug/l	0.449		1
Benzo(a)anthracene	ND		ug/l	0.449		1
Chrysene	ND		ug/l	0.449		1
Benzo(b)fluoranthene	ND		ug/l	0.449		1
Benzo(k)fluoranthene	ND		ug/l	0.449		1
Benzo(a)pyrene	ND		ug/l	0.225		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.449		1
Dibenzo(a,h)anthracene	ND		ug/l	0.449		1
Benzo(ghi)perylene	ND		ug/l	0.449		1

02/08/18 12:30

Date Collected:

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: Report Date: 50 SYMPHONY RD. 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-02

Client ID: MW-3 Date Received:

02/09/18 Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Parameter Qualifier RL MDL **Dilution Factor** Result Units

EPH w/MS Targets - Westborough Lab

	o/ B		Acceptance Criteria	
Surrogate	% Recovery	Qualifier	Onteria	
Chloro-Octadecane	45		40-140	
o-Terphenyl	66		40-140	
2-Fluorobiphenyl	82		40-140	
2-Bromonaphthalene	79		40-140	
O-Terphenyl-MS	76		40-140	

Project Name:50 SYMPHONY RD.Lab Number:L1804229Project Number:50 SYMPHONY RD.Report Date:02/14/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 98,EPH-04-1.1

Analytical Date: 02/10/18 21:15

Analyst: NS

M.S. Analytical Date: 02/11/18 18:21

M.S. Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 02/08/18 19:25

Cleanup Method: EPH-04-1 Cleanup Date: 02/10/18

arameter	Result	Qualifi	er	Units	RL	MDL
PH w/MS Targets - Westborou	igh Lab for sam	ple(s):	01	Batch:	WG1087779-1	
C9-C18 Aliphatics	ND			ug/l	100	
C19-C36 Aliphatics	ND			ug/l	100	
C11-C22 Aromatics	ND			ug/l	100	
C11-C22 Aromatics, Adjusted	ND			ug/l	100	
Naphthalene	ND			ug/l	0.400	
2-Methylnaphthalene	ND			ug/l	0.400	
Acenaphthylene	ND			ug/l	0.400	
Acenaphthene	ND			ug/l	0.400	
Fluorene	ND			ug/l	0.400	
Phenanthrene	ND			ug/l	0.400	
Anthracene	ND			ug/l	0.400	
Fluoranthene	ND			ug/l	0.400	
Pyrene	ND			ug/l	0.400	
Benzo(a)anthracene	ND			ug/l	0.400	
Chrysene	ND			ug/l	0.400	
Benzo(b)fluoranthene	ND			ug/l	0.400	
Benzo(k)fluoranthene	ND			ug/l	0.400	
Benzo(a)pyrene	ND			ug/l	0.200	
Indeno(1,2,3-cd)Pyrene	ND			ug/l	0.400	
Dibenzo(a,h)anthracene	ND			ug/l	0.400	
Benzo(ghi)perylene	ND			ug/l	0.400	

Project Name: Lab Number: 50 SYMPHONY RD. L1804229

Project Number: 50 SYMPHONY RD. Report Date: 02/14/18

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Analytical Date: 02/10/18 21:15

Analyst: NS

KL

02/11/18 18:21

Extraction Method: EPA 3510C Extraction Date:

02/08/18 19:25

EPH-04-1 Cleanup Method: Cleanup Date: 02/10/18

Parameter	Result	Qualifier	Units	RL	MDL
EPH w/MS Targets - Westborough	Lab for sam	ple(s): 01	Batch:	WG1087779-1	

		Acceptance	
Surrogate	%Recovery C	Qualifier Criteria	
Chloro-Octadecane	67	40-140	
o-Terphenyl	73	40-140	
2-Fluorobiphenyl	79	40-140	
2-Bromonaphthalene	76	40-140	
O-Terphenyl-MS	72	40-140	

Project Name: Lab Number: 50 SYMPHONY RD. L1804229 **Project Number:** 50 SYMPHONY RD. Report Date: 02/14/18

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Analytical Date: 02/11/18 13:27

Analyst: DG M.S. Analytical Date: 02/11/18 17:18

M.S. Analyst: KL Extraction Method: EPA 3510C Extraction Date: 02/10/18 10:01

EPH-04-1 Cleanup Method: Cleanup Date: 02/11/18

arameter	Result	Qualif	ier	Units	RL	MDL
PH w/MS Targets - Westborough	n Lab for sam	ple(s):	02	Batch:	WG1088202-1	
C9-C18 Aliphatics	ND			ug/l	100	
C19-C36 Aliphatics	ND			ug/l	100	
C11-C22 Aromatics	ND			ug/l	100	
C11-C22 Aromatics, Adjusted	ND			ug/l	100	
Naphthalene	ND			ug/l	0.400	
2-Methylnaphthalene	ND			ug/l	0.400	
Acenaphthylene	ND			ug/l	0.400	
Acenaphthene	ND			ug/l	0.400	
Fluorene	ND			ug/l	0.400	
Phenanthrene	ND			ug/l	0.400	
Anthracene	ND			ug/l	0.400	
Fluoranthene	ND			ug/l	0.400	
Pyrene	ND			ug/l	0.400	
Benzo(a)anthracene	ND			ug/l	0.400	
Chrysene	ND			ug/l	0.400	
Benzo(b)fluoranthene	ND			ug/l	0.400	
Benzo(k)fluoranthene	ND			ug/l	0.400	
Benzo(a)pyrene	ND			ug/l	0.200	
Indeno(1,2,3-cd)Pyrene	ND			ug/l	0.400	
Dibenzo(a,h)anthracene	ND			ug/l	0.400	
Benzo(ghi)perylene	ND			ug/l	0.400	

Extraction Method: EPA 3510C

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: 50 SYMPHONY RD. Report Date: 02/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1

Analytical Date: 02/11/18 13:27 02/11/18 17:18 Extraction Date: 02/10/18 10:01

Analyst: DG KL Cleanup Method: EPH-04-1 Cleanup Date: 02/11/18

ParameterResultQualifierUnitsRLMDLEPH w/MS Targets - Westborough Lab for sample(s):02Batch:WG1088202-1

erv Qualifier Criteria
ery Qualifier Criteria
40-140
40-140
40-140
40-140
40-140

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recover Qual Limits	ry RPD	RPD Qual Limits
EPH w/MS Targets - Westborough Lab	Associated sample(s):	01 Batch:	WG1087779-2	WG1087779-3		
C9-C18 Aliphatics	63		64	40-140	2	25
C19-C36 Aliphatics	77		80	40-140	4	25
C11-C22 Aromatics	74		64	40-140	14	25
Naphthalene	52		57	40-140	9	25
2-Methylnaphthalene	56		60	40-140	7	25
Acenaphthylene	70		74	40-140	6	25
Acenaphthene	66		70	40-140	6	25
Fluorene	84		88	40-140	5	25
Phenanthrene	63		66	40-140	5	25
Anthracene	83		88	40-140	6	25
Fluoranthene	83		88	40-140	6	25
Pyrene	83		88	40-140	6	25
Benzo(a)anthracene	74		79	40-140	7	25
Chrysene	74		78	40-140	5	25
Benzo(b)fluoranthene	76		82	40-140	8	25
Benzo(k)fluoranthene	80		83	40-140	4	25
Benzo(a)pyrene	82		87	40-140	6	25
Indeno(1,2,3-cd)Pyrene	83		87	40-140	5	25
Dibenzo(a,h)anthracene	81		84	40-140	4	25
Benzo(ghi)perylene	68		70	40-140	3	25
Nonane (C9)	43		45	30-140	5	25
Decane (C10)	52		54	40-140	4	25
Dodecane (C12)	61		61	40-140	0	25

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
EPH w/MS Targets - Westborough Lab	Associated sample(s):	01 Batch:	WG1087779-2	WG10877	779-3			
Tetradecane (C14)	63		65		40-140	3		25
Hexadecane (C16)	68		70		40-140	3		25
Octadecane (C18)	73		75		40-140	3		25
Nonadecane (C19)	73		76		40-140	4		25
Eicosane (C20)	74		77		40-140	4		25
Docosane (C22)	75		78		40-140	4		25
Tetracosane (C24)	76		79		40-140	4		25
Hexacosane (C26)	76		79		40-140	4		25
Octacosane (C28)	76		79		40-140	4		25
Triacontane (C30)	75		78		40-140	4		25
Hexatriacontane (C36)	74		78		40-140	5		25

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	70	70	40-140
o-Terphenyl	76	65	40-140
2-Fluorobiphenyl	76	64	40-140
2-Bromonaphthalene	75	62	40-140
O-Terphenyl-MS	84	86	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
EPH w/MS Targets - Westborough Lab	Associated sample(s):	02 Batch:	WG1088202-2	2 WG1088202-3		
C9-C18 Aliphatics	66		72	40-140	9	25
C19-C36 Aliphatics	70		74	40-140	6	25
C11-C22 Aromatics	82		84	40-140	2	25
Naphthalene	75		77	40-140	3	25
2-Methylnaphthalene	75		78	40-140	4	25
Acenaphthylene	92		96	40-140	4	25
Acenaphthene	84		89	40-140	6	25
Fluorene	89		93	40-140	4	25
Phenanthrene	72		78	40-140	8	25
Anthracene	106		112	40-140	6	25
Fluoranthene	102		95	40-140	7	25
Pyrene	102		94	40-140	8	25
Benzo(a)anthracene	90		94	40-140	4	25
Chrysene	97		101	40-140	4	25
Benzo(b)fluoranthene	89		95	40-140	7	25
Benzo(k)fluoranthene	104		107	40-140	3	25
Benzo(a)pyrene	104		108	40-140	4	25
Indeno(1,2,3-cd)Pyrene	106		110	40-140	4	25
Dibenzo(a,h)anthracene	100		105	40-140	5	25
Benzo(ghi)perylene	99		101	40-140	2	25
Nonane (C9)	49		56	30-140	13	25
Decane (C10)	58		64	40-140	10	25
Dodecane (C12)	66		70	40-140	6	25

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

Davamatar		LCS	Ougl	LCSD %Recovery		%Recovery Limits	000	Oval	RPD Limits	
Parameter		%Recovery	Qual	70Necovery	Qual	LIIIIIS	RPD	Qual	LIIIIIIS	
EPH w/MS Targets	- Westborough Lab	Associated sample(s):	02 Batch	: WG1088202-2	WG10882	02-3				
Tetradecane (C14)		67		72		40-140	7		25	
Hexadecane (C16)		68		74		40-140	8		25	
Octadecane (C18)		68		75		40-140	10		25	
Nonadecane (C19)		67		74		40-140	10		25	
Eicosane (C20)		66		74		40-140	11		25	
Docosane (C22)		66		74		40-140	11		25	
Tetracosane (C24)		66		73		40-140	10		25	
Hexacosane (C26)		65		72		40-140	10		25	
Octacosane (C28)		65		72		40-140	10		25	
Triacontane (C30)		66		72		40-140	9		25	
Hexatriacontane (C3	36)	65		71		40-140	9		25	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	53	58	40-140
o-Terphenyl	73	75	40-140
2-Fluorobiphenyl	82	79	40-140
2-Bromonaphthalene	81	75	40-140
O-Terphenyl-MS	88	91	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

PCBS

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/07/18 09:00

Client ID: MW-1 Date Received: 02/07/18
Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608
Analytical Method: 5,608 Extraction Date: 02/08/18 21:15

Analystical Method: 5,666

Analystical Date: 02/09/18 13:59

Cleanup Method: EPA 3665A

Cleanup Date: 02/09/18

Cleanup Method: EPA 3660B Cleanup Date: 02/09/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ua/l	0.200		1	A

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	94		30-150	A
Decachlorobiphenyl	55		30-150	Α

Project Name: Lab Number: 50 SYMPHONY RD. L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/08/18 12:30 L1804229-02

Date Received: Client ID: MW-3 02/09/18 Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 608 Matrix: Water Extraction Date: 02/10/18 03:10 Analytical Method: 5,608

Cleanup Method: EPA 3665A Analytical Date: 02/12/18 11:27 Cleanup Date: 02/10/18 Analyst: HT

Cleanup Method: EPA 3660B Cleanup Date: 02/10/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	В
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ua/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	83		30-150	Α
Decachlorobiphenyl	76		30-150	Α

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 02/09/18 14:36

Analyst: HT

Extraction Method: EPA 608
Extraction Date: 02/08/18 21:15
Cleanup Method: EPA 3665A
Cleanup Date: 02/09/18
Cleanup Date: EPA 3660B
Cleanup Date: 02/09/18

Parameter	Result	Qualifier Uni	ts RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westborough	Lab for samp	le(s): 01 Ba	tch: WG1087	792-1
Aroclor 1016	ND	uç	g/l 0.250		А
Aroclor 1221	ND	uç	g/l 0.250		А
Aroclor 1232	ND	uç	g/l 0.250		А
Aroclor 1242	ND	uç	g/l 0.250		Α
Aroclor 1248	ND	uç	g/l 0.250		Α
Aroclor 1254	ND	uç	g/l 0.250		Α
Aroclor 1260	ND	uç	g/l 0.200		Α
			,		

		Acceptance				
Surrogate	%Recovery Qualifie	r Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	79	30-150	Α			
Decachlorobiphenyl	93	30-150	Α			

Project Name: 50 SYMPHONY RD. Lab Number: L1804229

Project Number: 50 SYMPHONY RD. Report Date: 02/14/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 02/12/18 12:29

Analyst: HT

Extraction Method: EPA 608
Extraction Date: 02/10/18 03:10
Cleanup Method: EPA 3665A
Cleanup Date: 02/10/18
Cleanup Method: EPA 3660B

02/10/18

Cleanup Date:

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	sample(s):	02 Batch:	WG1088148	8-1
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		А
Aroclor 1232	ND		ug/l	0.250		А
Aroclor 1242	ND		ug/l	0.250		А
Aroclor 1248	ND		ug/l	0.250		А
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance				
Surrogate	%Recovery Qualif	ier Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	91	30-150	Δ			
Decachlorobiphenyl	98	30-150	A			

Project Name: 50 SYMPHONY RD.

Lab Number:

L1804229

Project Number: 50 SYMPHONY RD.

Report Date:

Par	ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
	ychlorinated Biphenyls by GC - Westborou	•		,	WG1087792-		NI D	Quui	Ziiiii	Column
	Aroclor 1016	79		-		30-150	-		30	Α
	Aroclor 1260	76		-		30-150	-		30	А

Surrogate	LCS %Recovery	LCSI Qual %Recove	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	83 87		30-150 30-150	A A

Project Name: 50 SYMPHONY RD.

Lab Number:

L1804229

Project Number: 50 SYMPHONY RD.

Report Date:

	LCS		LCSD %Recover		%Recovery	/		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s)	: 02 Batch:	WG1088148-	-2				
Aroclor 1016	81		-		30-150	-		30	А
Aroclor 1260	78		-		30-150	-		30	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	81 85				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recove	ery Qua	Recovery Limits	RPD Q	RPD ual Limits	Column
Polychlorinated Biphenyls by G	GC - Westbor	ough Lab	Associated sam	nple(s): 01	QC Batch II	D: WG1087	7792-3 C	C Sample	e: L1800002-2	8 Client	ID: MS Samp	le
Aroclor 1016	ND	3.12	2.59	83		-	-		40-126	-	30	Α
Aroclor 1260	ND	3.12	2.54	81		-	-		40-127	-	30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		30-150	A
Decachlorobiphenyl	90		30-150	Α

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recover	rv Qual	Recovery Limits	RPD Qua	RPD I Limits (Column
Farameter	Gampic	Added	1 Ourid	701 CCCVC1 y	Quai	1 Ourid	701100000	y Quai	Lilling	NFD Qua	Lilling (<u>Solullii</u> i
Polychlorinated Biphenyls by 0	GC - Westbord	ough Lab	Associated san	nple(s): 02 (QC Batch ID): WG1088	3148-3 Q0	C Sample	: L1800002-3	4 Client ID:	MS Sample	е
Aroclor 1016	ND	3.12	2.88	92		-	-		40-126	-	30	Α
Aroclor 1260	ND	3.12	2.70	86		-	-		40-127	-	30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	92		30-150	Α
Decachlorobiphenyl	99		30-150	Α

Project Name: 50 SYMPHONY RD.

Batch Qualified Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): (01 QC Batch ID: WG	1087792-4	QC Sample:	L1800002-28	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

			Acceptance	
Surrogate	%Recovery Qualific	er %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	91	86	30-150	А
Decachlorobiphenyl	85	96	30-150	Α

Project Name: 50 SYMPHONY RD.

Batch Quality Co
Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s):	02 QC Batch ID: W	G1088148-4	QC Sample:	L1800002-34	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

			Acceptance	
Surrogate	%Recovery Qualific	er %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	85	87	30-150	Α
Decachlorobiphenyl	91	96	30-150	Α

PESTICIDES

Project Name: 50 SYMPHONY RD. **Lab Number:** L1804229

Project Number: 50 SYMPHONY RD. **Report Date:** 02/14/18

SAMPLE RESULTS

Lab ID: L1804229-01 Date Collected: 02/07/18 09:00

Client ID: MW-1 Date Received: 02/07/18
Sample Location: 50 SYMPHONY RD Field Prep: Not Specified

Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Parameter

Matrix: Water Extraction Method: EPA 608
Analytical Method: 5,608 Extraction Date: 02/08/18 21:20

Analytical Date: 02/12/18 16:39 Cleanup Method: EPA 3620B

Analyst: KEG Cleanup Date: 02/10/18

Result

i didilictei		Qualifier	Oo		 	oolulliii
Organochlorine Pesticides by GC - W	estborough Lab					
Delta-BHC	ND		ug/l	0.020	 1	Α
Lindane	ND		ug/l	0.020	 1	Α
Alpha-BHC	ND		ug/l	0.020	 1	Α
Beta-BHC	ND		ug/l	0.020	 1	Α
Heptachlor	ND		ug/l	0.020	 1	Α
Aldrin	ND		ug/l	0.020	 1	Α
Heptachlor epoxide	ND		ug/l	0.020	 1	Α
Endrin	ND		ug/l	0.040	 1	Α
Endrin aldehyde	ND		ug/l	0.040	 1	Α
Endrin ketone ¹	ND		ug/l	0.040	 1	Α
Dieldrin	ND		ug/l	0.040	 1	Α
4,4'-DDE	ND		ug/l	0.040	 1	Α
4,4'-DDD	ND		ug/l	0.040	 1	Α
4,4'-DDT	ND		ug/l	0.040	 1	Α
Endosulfan I	ND		ug/l	0.020	 1	Α
Endosulfan II	ND		ug/l	0.040	 1	Α
Endosulfan sulfate	ND		ug/l	0.040	 1	Α
Methoxychlor ¹	ND		ug/l	0.100	 1	Α
Toxaphene	ND		ug/l	0.400	 1	Α
Chlordane	ND		ug/l	0.200	 1	Α
cis-Chlordane ¹	ND		ug/l	0.020	 1	Α
trans-Chlordane ¹	ND		ug/l	0.020	 1	Α

Qualifier

Units

RL

MDL

Dilution Factor

Column

Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	111		30-150	Α
Decachlorobiphenyl	110		30-150	Α

Project Name: Lab Number: 50 SYMPHONY RD. L1804229

Report Date: **Project Number:** 50 SYMPHONY RD. 02/14/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/08/18 12:30 L1804229-02

Date Received: Client ID: MW-3 02/09/18 Sample Location: 50 SYMPHONY RD. Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 608 Matrix: Water Extraction Date: 02/10/18 03:13 Analytical Method: 5,608

Cleanup Method: EPA 3620B Analytical Date: 02/12/18 13:15 Cleanup Date: 02/10/18

Analyst: KEG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Organochlorine Pesticides by GC - Westborough Lab								
Delta-BHC	ND		ug/l	0.020		1	Α	
Lindane	ND		ug/l	0.020		 1	Α	
Alpha-BHC	ND		ug/l	0.020		 1	Α	
Beta-BHC	ND		ug/l	0.020		1	A	
Heptachlor	ND		ug/l	0.020		1	A	
Aldrin	ND		ug/l	0.020		1	Α	
Heptachlor epoxide	ND		ug/l	0.020		1	A	
Endrin	ND		ug/l	0.040		1	Α	
Endrin aldehyde	ND		ug/l	0.040		1	Α	
Endrin ketone ¹	ND		ug/l	0.040		1	Α	
Dieldrin	ND		ug/l	0.040		1	Α	
4,4'-DDE	ND		ug/l	0.040		1	Α	
4,4'-DDD	ND		ug/l	0.040		1	Α	
4,4'-DDT	0.049		ug/l	0.040		1	Α	
Endosulfan I	ND		ug/l	0.020		1	Α	
Endosulfan II	ND		ug/l	0.040		1	А	
Endosulfan sulfate	ND		ug/l	0.040		1	А	
Methoxychlor ¹	ND		ug/l	0.100		1	А	
Toxaphene	ND		ug/l	0.400		1	А	
Chlordane	ND		ug/l	0.200		1	Α	
cis-Chlordane ¹	ND		ug/l	0.020		1	Α	
trans-Chlordane ¹	ND		ug/l	0.020		1	Α	

		Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	119		30-150	Α				
Decachlorobiphenyl	117		30-150	Α				

L1804229

Project Name: 50 SYMPHONY RD. **Project Number:**

50 SYMPHONY RD.

Lab Number: Report Date: 02/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,608

Analytical Date: 02/12/18 16:01

Analyst: KEG Extraction Method: EPA 608

Extraction Date: 02/08/18 21:20 Cleanup Method: EPA 3620B Cleanup Date: 02/10/18

arameter	Result	Qualifier	Units	RL	MDL	Column
Organochlorine Pesticides by	GC - Westboroug	h Lab for	sample(s):	01 Batch:	WG108779	94-1
Delta-BHC	ND		ug/l	0.020		Α
Lindane	ND		ug/l	0.020		Α
Alpha-BHC	ND		ug/l	0.020		Α
Beta-BHC	ND		ug/l	0.020		Α
Heptachlor	ND		ug/l	0.020		Α
Aldrin	ND		ug/l	0.020		А
Heptachlor epoxide	ND		ug/l	0.020		Α
Endrin	ND		ug/l	0.040		Α
Endrin aldehyde	ND		ug/l	0.040		Α
Endrin ketone ¹	ND		ug/l	0.040		Α
Dieldrin	ND		ug/l	0.040		Α
4,4'-DDE	ND		ug/l	0.040		Α
4,4'-DDD	ND		ug/l	0.040		А
4,4'-DDT	ND		ug/l	0.040		А
Endosulfan I	ND		ug/l	0.020		А
Endosulfan II	ND		ug/l	0.040		Α
Endosulfan sulfate	ND		ug/l	0.040		Α
Methoxychlor ¹	ND		ug/l	0.100		Α
Toxaphene	ND		ug/l	0.400		Α
Chlordane	ND		ug/l	0.200		Α
cis-Chlordane ¹	ND		ug/l	0.020		Α
trans-Chlordane1	ND		ug/l	0.020		А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	93		30-150	Α	
Decachlorobiphenyl	114		30-150	Α	

02/14/18

Project Name: 50 SYMPHONY RD.

Project Number: 50 SYMPHONY RD.

Lab Number: L1804229

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 5,608

Analytical Date: 02/12/18 12:50

Analyst: KEG

Extraction Method: EPA 608

Extraction Date: 02/10/18 03:13
Cleanup Method: EPA 3620B
Cleanup Date: 02/10/18

arameter	Result	Qualifier	Units	F	RL	MDL	Column
Organochlorine Pesticides by G	C - Westborou	gh Lab for	sample(s):	02	Batch:	WG1088149	9-1
Delta-BHC	ND		ug/l	0.0	020		Α
Lindane	ND		ug/l	0.0	020		Α
Alpha-BHC	ND		ug/l	0.0	020		Α
Beta-BHC	ND		ug/l	0.0	020		Α
Heptachlor	ND		ug/l	0.0	020		Α
Aldrin	ND		ug/l	0.0	020		Α
Heptachlor epoxide	ND		ug/l	0.0	020		А
Endrin	ND		ug/l	0.0	040		А
Endrin aldehyde	ND		ug/l	0.0	040		Α
Endrin ketone ¹	ND		ug/l	0.0	040		А
Dieldrin	ND		ug/l	0.0	040		А
4,4'-DDE	ND		ug/l	0.0	040		Α
4,4'-DDD	ND		ug/l	0.0	040		Α
4,4'-DDT	ND		ug/l	0.0	040		Α
Endosulfan I	ND		ug/l	0.0	020		А
Endosulfan II	ND		ug/l	0.0	040		Α
Endosulfan sulfate	ND		ug/l	0.0	040		А
Methoxychlor ¹	ND		ug/l	0.	100		Α
Toxaphene	ND		ug/l	0.4	400		Α
Chlordane	ND		ug/l	0.2	200		Α
cis-Chlordane ¹	ND		ug/l	0.0	020		А
trans-Chlordane ¹	ND		ug/l	0.0	020		Α

		Acceptance				
Surrogate	%Recovery Qu	ualifier Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	101	30-150	Α			
Decachlorobiphenyl	94	30-150	Α			

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

arameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
rganochlorine Pesticides by GC - Westb	oorough Lab Assoc	iated sample(s): ()1 Batch:	WG108779	94-2				
Delta-BHC	114		-		30-150	-		30	Α
Lindane	107		-		30-150	-		30	А
Alpha-BHC	110		-		30-150	-		30	Α
Beta-BHC	111		-		30-150	-		30	Α
Heptachlor	130		-		30-150	-		30	А
Aldrin	114		-		30-150	-		30	А
Heptachlor epoxide	132		-		30-150	-		30	Α
Endrin	124		-		30-150	-		30	Α
Endrin aldehyde	111		-		30-150	-		30	Α
Endrin ketone ¹	140		-		30-150	-		30	Α
Dieldrin	132		-		30-150	-		30	Α
4,4'-DDE	118		-		30-150	-		30	Α
4,4'-DDD	123		-		30-150	-		30	Α
4,4'-DDT	134		-		30-150	-		30	Α
Endosulfan I	124		-		30-150	-		30	А
Endosulfan II	132		-		30-150	-		30	А
Endosulfan sulfate	132		-		30-150	-		30	А
Methoxychlor ¹	136		-		30-150	-		30	А
cis-Chlordane ¹	110		-		30-150	-		30	А
trans-Chlordane ¹	84		-		30-150	-		30	Α

Lab Number:

L1804229

Project Number: 50 SYMPHONY RD.

50 SYMPHONY RD.

Project Name:

Report Date:

02/14/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1087794-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	101 134				30-150 30-150	A A

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
rganochlorine Pesticides by GC - Westborou	ıgh Lab Associ	iated sample(s):	02 Batch:	WG108814	9-2				
Delta-BHC	105		-		30-150	-		30	Α
Lindane	99		-		30-150	-		30	А
Alpha-BHC	102		-		30-150	-		30	А
Beta-BHC	105		-		30-150	-		30	А
Heptachlor	109		-		30-150	-		30	Α
Aldrin	97		-		30-150	-		30	Α
Heptachlor epoxide	114		-		30-150	-		30	Α
Endrin	109		-		30-150	-		30	Α
Endrin aldehyde	107		-		30-150	-		30	А
Endrin ketone¹	123		-		30-150	-		30	Α
Dieldrin	119		-		30-150	-		30	Α
4,4'-DDE	105		-		30-150	-		30	А
4,4'-DDD	109		-		30-150	-		30	А
4,4'-DDT	126		-		30-150	-		30	А
Endosulfan I	113		-		30-150	-		30	А
Endosulfan II	121		-		30-150	-		30	А
Endosulfan sulfate	117		-		30-150	-		30	А
Methoxychlor ¹	130		-		30-150	-		30	А
cis-Chlordane¹	98		-		30-150	-		30	А
trans-Chlordane ¹	85		-		30-150	-		30	А

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1804229

Report Date: 02/14/18

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 02 Batch: WG1088149-2

50 SYMPHONY RD.

50 SYMPHONY RD.

Project Name:

Project Number:

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	84		30-150 A
Decachlorobiphenyl	108		30-150 A

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

02/14/18

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou	_		Recovery Limits	RPD	Qual	RPD Limits	<u>Column</u>
Organochlorine Pesticides	s by GC - Westbor	ough Lab	Associated sa	mple(s): 01	QC Batch ID: WG	1087794-3	QC Sample	: L1800002-	28 Cli	ent ID:	MS Sam	ole
Delta-BHC	ND	0.5	0.439	88	-	-		19-140	-		30	А
Lindane	ND	0.5	0.413	83	-	-		56-123	-		30	Α
Alpha-BHC	ND	0.5	0.423	85	-	-		37-134	-		30	Α
Beta-BHC	ND	0.5	0.427	85	-	-		17-147	-		30	Α
Heptachlor	ND	0.5	0.512	102	-	-		40-111	-		30	А
Aldrin	ND	0.5	0.436	87	-	-		40-120	-		30	Α
Heptachlor epoxide	ND	0.5	0.506	101	-	-		37-142	-		30	Α
Endrin	ND	0.5	0.481	96	-	-		56-121	-		30	Α
Endrin aldehyde	ND	0.5	0.438	88	-	-		42-122	-		30	Α
Endrin ketone ¹	ND	0.5	0.552	110	-	-		30-150	-		30	Α
Dieldrin	ND	0.5	0.504	101	-	-		52-126	-		30	Α
4,4'-DDE	ND	0.5	0.449	90	-	-		30-145	-		30	Α
4,4'-DDD	ND	0.5	0.473	95	-	-		31-141	-		30	Α
4,4'-DDT	ND	0.5	0.518	104	-	-		38-127	-		30	Α
Endosulfan I	ND	0.5	0.473	95	-	-		45-153	-		30	Α
Endosulfan II	ND	0.5	0.504	101	-	-		.1-202	-		30	Α
Endosulfan sulfate	ND	0.5	0.524	105	-	-		26-144	-		30	Α
Methoxychlor ¹	ND	0.5	0.524	105	-	-		30-150	-		30	Α
cis-Chlordane ¹	ND	0.5	0.412	82	-	-		30-150	-		30	Α
trans-Chlordane1	ND	0.5	0.336	67	-	-		30-150	-		30	Α

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1087794-3 QC Sample: L1800002-28 Client ID: MS Sample

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79		30-150	А
Decachlorobiphenyl	112		30-150	Α

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recove	ery Qual	Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides	by GC - Westbo	rough Lab	Associated sa	mple(s): 02	QC Batch I	D: WG108	8149-3 C	QC Sample	: L1800002-	34 Cli	ient ID:	MS Samp	ole
Delta-BHC	ND	0.5	0.548	110		-	-		19-140	-		30	Α
Lindane	ND	0.5	0.522	104		-	-		56-123	-		30	Α
Alpha-BHC	ND	0.5	0.547	109		-	-		37-134	-		30	Α
Beta-BHC	ND	0.5	0.534	107		-	-		17-147	-		30	Α
Heptachlor	ND	0.5	0.578	116	Q	-	-		40-111	-		30	Α
Aldrin	ND	0.5	0.498	100		-	-		40-120	-		30	Α
Heptachlor epoxide	ND	0.5	0.620	124		-	-		37-142	-		30	Α
Endrin	ND	0.5	0.579	116		-	-		56-121	-		30	Α
Endrin aldehyde	ND	0.5	0.482	96		-	-		42-122	-		30	Α
Endrin ketone ¹	ND	0.5	0.617	123		-	-		30-150	-		30	Α
Dieldrin	ND	0.5	0.611	122		-	-		52-126	-		30	Α
4,4'-DDE	ND	0.5	0.542	108		-	-		30-145	-		30	Α
4,4'-DDD	ND	0.5	0.528	106		-	-		31-141	-		30	Α
4,4'-DDT	ND	0.5	0.616	123		-	-		38-127	-		30	Α
Endosulfan I	ND	0.5	0.583	117		-	-		45-153	-		30	Α
Endosulfan II	ND	0.5	0.594	119		-	-		.1-202	-		30	Α
Endosulfan sulfate	ND	0.5	0.579	116		-	-		26-144	-		30	Α
Methoxychlor ¹	ND	0.5	0.604	121		-	-		30-150	-		30	Α
cis-Chlordane ¹	ND	0.5	0.501	100		-	-		30-150	-		30	Α
trans-Chlordane ¹	ND	0.5	0.462	92		-	-		30-150	-		30	Α

Project Name: 50 SYMPHONY RD.Project Number: 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

	Native	MS	MS	MS		MSD	MSD	R	ecovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 02 QC Batch ID: WG1088149-3 QC Sample: L1800002-34 Client ID: MS Sample

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88		30-150	A
Decachlorobiphenyl	116		30-150	Α

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD _imits	
Organochlorine Pesticides by GC - Westborough Lab	Associated sample(s): 0	01 QC Batch ID: WG	G1087794-4	QC Sample:	L1800002-28	Client ID:	DUP
Delta-BHC	ND	ND	ug/l	NC		30	Α
Lindane	ND	ND	ug/l	NC		30	Α
Alpha-BHC	ND	ND	ug/l	NC		30	Α
Beta-BHC	ND	ND	ug/l	NC		30	Α
Heptachlor	ND	ND	ug/l	NC		30	Α
Aldrin	ND	ND	ug/l	NC		30	Α
Heptachlor epoxide	ND	ND	ug/l	NC		30	Α
Endrin	ND	ND	ug/l	NC		30	Α
Endrin aldehyde	ND	ND	ug/l	NC		30	Α
Endrin ketone ¹	ND	ND	ug/l	NC		30	Α
Dieldrin	ND	ND	ug/l	NC		30	Α
4,4'-DDE	ND	ND	ug/l	NC		30	Α
4,4'-DDD	ND	ND	ug/l	NC		30	Α
4,4'-DDT	ND	ND	ug/l	NC		30	Α
Endosulfan I	ND	ND	ug/l	NC		30	Α
Endosulfan II	ND	ND	ug/l	NC		30	Α
Endosulfan sulfate	ND	ND	ug/l	NC		30	Α
Methoxychlor ¹	ND	ND	ug/l	NC		30	Α
Toxaphene	ND	ND	ug/l	NC		30	Α
Chlordane	ND	ND	ug/l	NC		30	Α
cis-Chlordane ¹	ND	ND	ug/l	NC		30	Α

Lab Number:

L1804229

Report Date:

02/14/18

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

RPD **Parameter Native Sample Duplicate Sample** Units RPD Qual Limits Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1087794-4 QC Sample: L1800002-28 Client ID: DUP Sample ND ND ug/l NC 30 trans-Chlordane1 Α

		Acceptance						
Surrogate	%Recovery Qu	ualifier %Recovery Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	99	77	30-150	Α				
Decachlorobiphenyl	133	85	30-150	Α				

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date: 02/14/18

arameter	Native Sample	Duplicate Sampl	e Units	RPD		RPD Limits	
	•						DUD
rganochlorine Pesticides by GC - Westborough Lab ample	Associated sample(s): (DZ QC Batch ID:	WG1088149-4	QC Sample:	L1800002-34	Client ID:	DUP
Delta-BHC	ND	ND	ug/l	NC		30	Α
Lindane	ND	ND	ug/l	NC		30	Α
Alpha-BHC	ND	ND	ug/l	NC		30	Α
Beta-BHC	ND	ND	ug/l	NC		30	Α
Heptachlor	ND	ND	ug/l	NC		30	Α
Aldrin	ND	ND	ug/l	NC		30	Α
Heptachlor epoxide	ND	ND	ug/l	NC		30	Α
Endrin	ND	ND	ug/l	NC		30	Α
Endrin aldehyde	ND	ND	ug/l	NC		30	Α
Endrin ketone ¹	ND	ND	ug/l	NC		30	Α
Dieldrin	ND	ND	ug/l	NC		30	Α
4,4'-DDE	ND	ND	ug/l	NC		30	Α
4,4'-DDD	ND	ND	ug/l	NC		30	Α
4,4'-DDT	ND	ND	ug/l	NC		30	Α
Endosulfan I	ND	ND	ug/l	NC		30	Α
Endosulfan II	ND	ND	ug/l	NC		30	Α
Endosulfan sulfate	ND	ND	ug/l	NC		30	Α
Methoxychlor ¹	ND	ND	ug/l	NC		30	Α
Toxaphene	ND	ND	ug/l	NC		30	Α
Chlordane	ND	ND	ug/l	NC		30	Α
cis-Chlordane ¹	ND	ND	ug/l	NC		30	Α

Lab Number:

L1804229

Report Date:

02/14/18

Project Number: 50 SYMPHONY RD.

RPD Parameter Native Sample Duplicate Sample Units RPD Qual Limits Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 02 QC Batch ID: WG1088149-4 QC Sample: L1800002-34 Client ID: DUP Sample ND ND ug/l NC 30 trans-Chlordane1 Α

		Acceptance							
Surrogate	%Recovery Qual	ifier %Recovery Qualif	ier Criteria	Column					
2,4,5,6-Tetrachloro-m-xylene	107	84	30-150	Α					
Decachlorobiphenyl	117	113	30-150	Α					

Project Name:

50 SYMPHONY RD.

METALS

SAMPLE RESULTS

Lab ID: L1804229-01

Client ID: MW-1

Sample Location: 50 SYMPHONY RD.

Sample Depth:

Matrix: Water

Date Collected: 02/07/18 09:00

Date Received: 02/07/18
Field Prep: Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
ield Lab										
ND		mg/l	0.050		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
0.015		mg/l	0.005		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
ND		mg/l	0.005		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
ND		mg/l	0.005		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
0.054		mg/l	0.010		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
0.047		mg/l	0.010		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
0.303		mg/l	0.010		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
ND		mg/l	0.00020		1	02/09/18 10:41	02/09/18 18:47	EPA 245.1	3,245.1	EA
0.029		mg/l	0.025		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
0.013		mg/l	0.010		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
ND		mg/l	0.007		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
ND		mg/l	0.020		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
0.138		mg/l	0.050		1	02/09/18 11:30	02/13/18 18:53	EPA 3005A	19,200.7	AB
	ND 0.015 ND 0.054 0.047 0.303 ND 0.029 0.013 ND ND	Field Lab ND 0.015 ND ND 0.054 0.047 0.303 ND 0.029 0.013 ND ND	Field Lab ND mg/l 0.015 mg/l ND mg/l ND mg/l 0.054 mg/l 0.047 mg/l 0.303 mg/l ND mg/l 0.029 mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l	ND mg/l 0.050 0.015 mg/l 0.005 ND mg/l 0.005 ND mg/l 0.005 0.054 mg/l 0.010 0.047 mg/l 0.010 0.303 mg/l 0.010 ND mg/l 0.0020 0.029 mg/l 0.025 0.013 mg/l 0.010 ND mg/l 0.007 ND mg/l 0.020	ND mg/l 0.050 0.015 mg/l 0.005 ND mg/l 0.005 ND mg/l 0.005 0.054 mg/l 0.010 0.047 mg/l 0.010 0.303 mg/l 0.010 ND mg/l 0.0020 0.013 mg/l 0.010 ND mg/l 0.007 ND mg/l 0.020 ND mg/l 0.020	Result Qualifier Units RL MDL Factor Field Lab ND mg/l 0.050 1 0.015 mg/l 0.005 1 ND mg/l 0.005 1 ND mg/l 0.005 1 0.054 mg/l 0.010 1 0.047 mg/l 0.010 1 ND mg/l 0.00020 1 ND mg/l 0.0025 1 ND mg/l 0.010 1 ND mg/l 0.007 1 ND mg/l 0.007 1 ND mg/l 0.020 1	Result Qualifier Units RL MDL Factor Prepared Field Lab ND mg/l 0.050 1 02/09/18 11:30 0.015 mg/l 0.005 1 02/09/18 11:30 ND mg/l 0.005 1 02/09/18 11:30 ND mg/l 0.010 1 02/09/18 11:30 0.047 mg/l 0.010 1 02/09/18 11:30 0.303 mg/l 0.010 1 02/09/18 11:30 ND mg/l 0.00020 1 02/09/18 11:30 0.013 mg/l 0.010 1 02/09/18 11:30 ND mg/l 0.007 1 02/09/18 11:30 ND mg/l 0.007 1 02/09/18 11:30 ND mg/l 0.007 1 02/09/18 11:30 ND mg/l 0.0007	Result Qualifier Units RL MDL Factor Prepared Analyzed Field Lab ND mg/l 0.050 1 02/09/18 11:30 02/13/18 18:53 0.015 mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 ND mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 ND mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 0.054 mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 0.047 mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 ND mg/l 0.010 1 02/09/18 10:41 02/09/18 18:47 0.029 mg/l 0.0020 1 02/09/18 11:30 02/13/18 18:53 ND mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 ND mg/l 0.007 1 02/09/18 11:30 02/13/18 18:53 ND mg/l 0.007	Result Qualifier Units RL MDL Factor Prepared Analyzed Method rield Lab ND mg/l 0.050 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 0.015 mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A ND mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A ND mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 0.054 mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 0.047 mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 0.303 mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A ND mg/l 0.0020 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A ND mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A ND mg/l 0.010 1 02/09/	Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method field Lab ND mg/l 0.050 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 19,200.7 0.015 mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 19,200.7 ND mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 19,200.7 ND mg/l 0.005 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 19,200.7 0.054 mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 19,200.7 0.047 mg/l 0.010 1 02/09/18 11:30 02/13/18 18:53 EPA 3005A 19,200.7 ND mg/l 0.00020 1 02/09/18 10:41 02/09/18 18:47 EPA 245.1 3,245.1 0.029 mg/l 0.025 1 02/09/18 11:30 02/13/18 18:53

SAMPLE RESULTS

Lab ID: L1804229-02

Client ID: MW-3

Sample Location: 50 SYMPHONY RD.

Sample Depth:

Matrix: Water

Date Collected: 02/08/18 12:30
Date Received: 02/09/18
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.050		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Arsenic, Total	0.020		mg/l	0.005		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Beryllium, Total	ND		mg/l	0.005		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Cadmium, Total	ND		mg/l	0.005		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Chromium, Total	0.030		mg/l	0.010		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Copper, Total	0.051		mg/l	0.010		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Lead, Total	0.615		mg/l	0.010		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Mercury, Total	0.00106		mg/l	0.00020		1	02/12/18 11:00	02/12/18 15:23	EPA 245.1	3,245.1	MG
Nickel, Total	ND		mg/l	0.025		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Selenium, Total	ND		mg/l	0.010		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Silver, Total	ND		mg/l	0.007		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Thallium, Total	ND		mg/l	0.020		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC
Zinc, Total	0.336		mg/l	0.050		1	02/10/18 07:27	02/12/18 13:05	EPA 3005A	19,200.7	LC

Project Name:50 SYMPHONY RD.LabProject Number:50 SYMPHONY RD.Rej

Lab Number: L1804229 **Report Date:** 02/14/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG10)87948-	1				
Mercury, Total	ND	mg/l	0.00020		1	02/09/18 10:41	02/09/18 18:30	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01 Batcl	h: WG1	087958-	·1				
Antimony, Total	ND	mg/l	0.050		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Arsenic, Total	ND	mg/l	0.005		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Beryllium, Total	ND	mg/l	0.005		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Cadmium, Total	ND	mg/l	0.005		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Chromium, Total	ND	mg/l	0.010		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Copper, Total	ND	mg/l	0.010		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Lead, Total	ND	mg/l	0.010		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Nickel, Total	ND	mg/l	0.025		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Selenium, Total	ND	mg/l	0.010		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Silver, Total	ND	mg/l	0.007		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Thallium, Total	ND	mg/l	0.020		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB
Zinc, Total	ND	mg/l	0.050		1	02/09/18 11:30	02/13/18 18:26	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	02 Batch	n: WG10	088165-	1				
Antimony, Total	ND	mg/l	0.050		1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Arsenic, Total	ND	mg/l	0.005		1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Beryllium, Total	ND	mg/l	0.005		1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Cadmium, Total	ND	mg/l	0.005		1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Chromium, Total	ND	mg/l	0.010		1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC

Project Name:50 SYMPHONY RD.Lab Number:L1804229Project Number:50 SYMPHONY RD.Report Date:02/14/18

Method Blank Analysis Batch Quality Control

Copper, Total	ND	mg/l	0.010	 1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Lead, Total	ND	mg/l	0.010	 1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Nickel, Total	ND	mg/l	0.025	 1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Selenium, Total	ND	mg/l	0.010	 1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Silver, Total	ND	mg/l	0.007	 1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Thallium, Total	ND	mg/l	0.020	 1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC
Zinc, Total	ND	mg/l	0.050	 1	02/10/18 07:27	02/12/18 11:53	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	sfield Lab for sample(s):	02 Batc	h: WG10	088503-	-1				
Mercury, Total	ND	mg/l	0.0002		1	02/12/18 11:00	02/12/18 15:03	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1087948	3-2					
Mercury, Total	94		-		85-115	-		
Fotal Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1087958	3-2					
Antimony, Total	107		-		85-115	-		
Arsenic, Total	112		-		85-115	-		
Beryllium, Total	104		-		85-115	-		
Cadmium, Total	113		-		85-115	-		
Chromium, Total	106		-		85-115	-		
Copper, Total	103		-		85-115	-		
Lead, Total	109		-		85-115	-		
Nickel, Total	104		-		85-115	-		
Selenium, Total	105		-		85-115	-		
Silver, Total	105		-		85-115	-		
Thallium, Total	111		-		85-115	-		
Zinc, Total	111		-		85-115	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD. Lab Number: L1804229

R

Report Date:	02/14/18
--------------	----------

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 02 Batch: WG10	088165-2			
Antimony, Total	90	-	85-115	-	
Arsenic, Total	108	-	85-115	-	
Beryllium, Total	88	-	85-115	-	
Cadmium, Total	97	-	85-115	-	
Chromium, Total	90	-	85-115	-	
Copper, Total	90	-	85-115	-	
Lead, Total	104	-	85-115	-	
Nickel, Total	91	-	85-115	-	
Selenium, Total	111	-	85-115	-	
Silver, Total	91	-	85-115	-	
Thallium, Total	107	-	85-115	-	
Zinc, Total	95	-	85-115	-	
Total Metals - Mansfield Lab Associated sample	(s): 02 Batch: WG10	088503-2			
Mercury, Total	101	-	85-115	-	

INORGANICS & MISCELLANEOUS

02/07/18 09:00

Not Specified

02/07/18

Date Collected:

Date Received:

Field Prep:

Project Name:50 SYMPHONY RD.Lab Number:L1804229Project Number:50 SYMPHONY RD.Report Date:02/14/18

SAMPLE RESULTS

Lab ID: L1804229-01

Client ID: MW-1

Sample Location: 50 SYMPHONY RD.

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)								
pH (H)	7.0		SU	-	NA	1	-	02/08/18 18:47	121,4500H+-B	AS
Oil & Grease, Hem-Grav	10.		mg/l	4.0		1	02/08/18 16:30	02/08/18 17:45	74,1664A	ML

02/08/18 12:30

02/09/18 Not Specified

Date Collected:

Date Received:

Field Prep:

Project Name:50 SYMPHONY RD.Lab Number:L1804229Project Number:50 SYMPHONY RD.Report Date:02/14/18

SAMPLE RESULTS

Lab ID: L1804229-02

Client ID: MW-3

Sample Location: 50 SYMPHONY RD.

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total Suspended	310		mg/l	20	NA	4	-	02/13/18 04:50	121,2540D	JT
pH (H)	7.3		SU	-	NA	1	-	02/09/18 23:03	121,4500H+-B	AS
Oil & Grease, Hem-Grav	11.		mg/l	4.4		1.1	02/09/18 17:00	02/09/18 18:00	74,1664A	ML

02/08/18 13:00

121,2540D

JT

02/09/18 Not Specified

Date Collected:

Date Received:

02/13/18 04:50

Field Prep:

Project Name:50 SYMPHONY RD.Lab Number:L1804229Project Number:50 SYMPHONY RD.Report Date:02/14/18

SAMPLE RESULTS

Lab ID: L1804229-03

Client ID: MW-1

Sample Location: 50 SYMPHONY RD.

730

Sample Depth:

Solids, Total Suspended

Matrix: Water

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analyst

General Chemistry - Westborough Lab

NA

4

20

mg/l

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1804229 **Report Date:** 02/14/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab fo	r sample(s):	01 Batch	n: WG10	087714-1				
Oil & Grease, Hem-Grav	ND	mg/	4.0		1	02/08/18 16:30	02/08/18 17:45	74,1664A	ML
General Chemistry	- Westborough Lab fo	r sample(s):	02 Batch	n: WG10	088061-1				
Oil & Grease, Hem-Grav	ND	mg/	4.0		1	02/09/18 17:00	02/09/18 18:00	74,1664A	ML
General Chemistry	- Westborough Lab fo	r sample(s):	02-03 Ba	atch: W	G1088455-	1			
Solids, Total Suspended	ND	mg/	5.0	NA	1	-	02/13/18 04:50	121,2540D	JT

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1804229

Report Date:

02/14/18

Parameter	LCS %Recovery Q	LCSD ual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1087714-	2				
Oil & Grease, Hem-Grav	94	-		78-114	-		18
General Chemistry - Westborough Lab A	ssociated sample(s): 0	Batch: WG1087771-	1				
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab A	ssociated sample(s): 02	2 Batch: WG1088061-	2				
Oil & Grease, Hem-Grav	92	-		78-114	-		18
General Chemistry - Westborough Lab A	ssociated sample(s): 02	2 Batch: WG1088119-	1				
рН	101	-		99-101	-		5

Lab Number: L1804229 02/14/18 Report Date:

Parameter	Native Sample	Duplicate Sam	ple Units	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associa	ated sample(s): 01 QC Batch ID:	WG1087771-2	QC Sample:	L1804229-01	Client ID:	MW-1
pH (H)	7.0	7.0	SU	0		5

Project Name:

Project Number:

50 SYMPHONY RD.

50 SYMPHONY RD.

Project Name:50 SYMPHONY RD.Project Number:50 SYMPHONY RD.

Lab Number: L1804229 **Report Date:** 02/14/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent A1 Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L1804229-01A	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		624(3)
L1804229-01B	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		624(3)
L1804229-01C	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		624(3)
L1804229-01D	Plastic 250ml HNO3 preserved	A	<2	<2	4.5	Υ	Absent		NI-UI(180),SB-UI(180),AG-UI(180),ZN- UI(180),SE-UI(180),HG-U(28),CD-UI(180),BE- UI(180),CR-UI(180),AS-UI(180),CU- UI(180),PB-UI(180),TL-UI(180)
L1804229-01E	Plastic 60ml unpreserved	Α	7	7	4.5	Υ	Absent		PH-4500(.01)
L1804229-01F	Amber 1000ml Na2S2O3	Α	7	7	4.5	Υ	Absent		625(7)
L1804229-01G	Amber 1000ml Na2S2O3	Α	7	7	4.5	Υ	Absent		625(7)
L1804229-01H	Amber 1000ml Na2S2O3	Α	7	7	4.5	Υ	Absent		PESTICIDE-608(7)
L1804229-01I	Amber 1000ml Na2S2O3	Α	7	7	4.5	Υ	Absent		PESTICIDE-608(7)
L1804229-01J	Amber 1000ml Na2S2O3	Α	7	7	4.5	Υ	Absent		PCB-608(7)
L1804229-01K	Amber 1000ml Na2S2O3	Α	7	7	4.5	Υ	Absent		PCB-608(7)
L1804229-01L	Amber 1000ml HCl preserved	Α	NA		4.5	Υ	Absent		OG-1664(28)
L1804229-01M	Amber 1000ml HCl preserved	Α	NA		4.5	Υ	Absent		OG-1664(28)
L1804229-01N	Amber 1000ml HCl preserved	Α	<2	<2	4.5	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1804229-01O	Amber 1000ml HCl preserved	Α	<2	<2	4.5	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1804229-02A	Vial Na2S2O3 preserved	A1	NA		2.9	Υ	Absent		624(3)
L1804229-02B	Vial Na2S2O3 preserved	A1	NA		2.9	Υ	Absent		624(3)
L1804229-02C	Vial Na2S2O3 preserved	A1	NA		2.9	Υ	Absent		624(3)
L1804229-02D	Plastic 60ml unpreserved	A1	7	7	2.9	Υ	Absent		PH-4500(.01)

Lab Number: L1804229

Report Date: 02/14/18

Container Info	ontainer Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1804229-02E	Plastic 250ml HNO3 preserved	A1	<2	<2	2.9	Y	Absent		NI-UI(180),SB-UI(180),AG-UI(180),ZN- UI(180),SE-UI(180),HG-U(28),CD-UI(180),BE- UI(180),CR-UI(180),AS-UI(180),CU- UI(180),PB-UI(180),TL-UI(180)
L1804229-02F	Amber 1000ml unpreserved	A1	7	7	2.9	Υ	Absent		TSS-2540(7)
L1804229-02G	Amber 1000ml HCI preserved	A1	NA		2.9	Υ	Absent		OG-1664(28)
L1804229-02H	Amber 1000ml HCI preserved	A1	NA		2.9	Υ	Absent		OG-1664(28)
L1804229-02I	Amber 1000ml HCI preserved	A1	<2	<2	2.9	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1804229-02J	Amber 1000ml HCl preserved	A1	<2	<2	2.9	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1804229-02L	Amber 1000ml Na2S2O3	A1	7	7	2.9	Υ	Absent		625(7)
L1804229-02M	Amber 1000ml Na2S2O3	A1	7	7	2.9	Υ	Absent		625(7)
L1804229-02N	Amber 1000ml Na2S2O3	A1	7	7	2.9	Υ	Absent		PCB-608(7)
L1804229-02O	Amber 1000ml Na2S2O3	A1	7	7	2.9	Υ	Absent		PESTICIDE-608(7)
L1804229-02P	Amber 1000ml Na2S2O3	A1	7	7	2.9	Υ	Absent		PESTICIDE-608(7)
L1804229-02Q	Amber 1000ml Na2S2O3	A1	7	7	2.9	Υ	Absent		PCB-608(7)
L1804229-03A	Amber 1000ml unpreserved	A1	7	7	2.9	Υ	Absent		TSS-2540(7)
L1804229-04A	Vial Na2S2O3 preserved	A1	NA		2.9	Υ	Absent		ARCHIVE()
L1804229-04B	Vial Na2S2O3 preserved	A1	NA		2.9	Υ	Absent		ARCHIVE()

Project Name:

50 SYMPHONY RD.

Project Number: 50 SYMPHONY RD.

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 11

Page 1 of 1

Published Date: 1/8/2018 4:15:49 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ALPHA MA	ANSFIEL	D CHAIN	OF C	JSTO	Y	PAGE \	_OF	Date	Rec'd	in Lab):	3/7	18		A	LPH	A Job #:	L18 04	229	
WESTBORO, MA	MANSFIELD, MA		Projec	t Informa	tion		1311	Re	oort In	forma	tion -	Data D	eliver	bles	E	Billing	Information	on		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-93 FAX: 508-822-32		Project	Name: S[Sum	Dhony	PI	D	FAX		à Én	/AIL			V	Same	as Client inf	o PO#:		
Client Informatio	THE RESERVE OF THE PARTY OF THE			Location:	n/		01	_	ADEx		- 4	d'I Delive	erables		-					
Phone: 6 7 7 7 Phone: 6 7 7 7 Phone: 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	e been previously pecific Requi	rements/Co	Project Project ALPHA Turne Stand Date Deamments/Deamments/Deam	#: 50 Manager: Quote #: Around Til ard Cue: 2/14 etection L	TO COMME	Time:		State	/Fed F	Prograp	Q	ents/Re	Criteria G	State of the state			// 600	AMPLE HAND Itration Done Not needed Lab to do	DLING	T O T A L # BO
MS/MSD (at unit	cost) will be	Sample ID	ess you ch		ection Time	Sample Matrix	Sampler's	No.		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		溪	THE DE		7/		/ D	Lab to do sae specify below) Specific Comm	nents	TTLES
04229- 01	MM-	1		2/7/18	9:00	GW	30	X	X>	X	X.	XX	X	X						
						Conta	ainer Type	V	1 0	Á	À	A A	01	<u> </u>			Please prin	it clearly, legib	ly and co	ım-
FORM NO: 101-09 (rev. 27-SE Page 123 of 124		B	Relingu	ished By:	7	Pr	eservative e/Time 8 \309	Ch		Receive	-	AL AL	A /	17/	e/Time	309	pletely. Sa in and turns start until a All samples	mples can not around time of ny ambiguities s submitted an ms and Condi	be logge lock will no are resor e subject t	ed lot olved

	CHAIN OF	CUSTO	CUSTODY PAGE 1 OF 1						Date Rec'd in Lab: 2/9/18							ALPHA JOB#: LJ804209			
ALPH		Project Info	mation		La la			Inform	natio				bles				nation		
World Glass Charles								☐ FAX ☑ EMAIL						Same as Client info PO #: 50Sympho				PO #: 50Symphony	
	Mansfield, MA	Project Name:	50 Sympho	ny Road		-	ADEx	-		2000		elivera	00756						
	TEL 508-822-9300 FAX: 508-822-3288	,		.,,		FT1.00000	gulat te/Fed i	-C+11-17-11	equir	emen	ts/Re	port	Limits					of the second	
Client Information	on	Project Locatio	n: 50 Sympi	nony Road		MA	MCP				Criteria GW-1								
Client: FSL Associa	ates, Inc.	Project #: 50 S	ymphony Ro	oad				ESU		E CE				EASONABLE CONFIDENCE PROTOCOLS					
_Address: 358 Ches	tnut Hill Ave, 1st Floor	Project Manage	er: Jarod Co	urnoyer				1	□ No			Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence Protocols) Required?							
Boston, MA 02135		ALPHA Quote	#:			-	ALYS						,,,,,,,,		00111	deriod	1101000	T	
Phone: (617) 232-0	0001	Turn-Around	Time													T	1	SAMPLE HANDLING T	
Fax: (617) 232-780	0	Standard	⊠ R	ush (ONLY IF PR	E-APPROVED)													Filtration A	
Email: jarod@fslass	sociates.com	_ :	1												□ Not Needed □ Lab to do				
	been Previously analyzed by Alpha	and the state of t	Due Date: 02/14/18 Time:									1240		- 60				Preservation 0	
Other Project Specific Requirements/Comments/Detection Limits:						SVOC ABN (625)	Metals PP13 (200.7)		Pesticide (608)	PH	Total fats, oil, & grease		Total Suspended Solids				Preservation O T Lab to do T (Please specify below) S		
				_		VOCs 624	C AB	als PF	PCB (608)	icide	MADEP EPH	fats,		Sus					
ALPHA Lab ID (Lab Use Only)	Sample ID	Coli Date	ection Time	Sample Matrix	Sampler's Initials	000	SVC	Met	PCB	Pest	MAL	Tota	Hd	Tota				Sample Specific Comments	
04209 - 02	MW-3	02/08/18	1230	water	JRC								\boxtimes				П		
Q3	MW-1	02/08/18	1300	water	JRC														
		_			-	님		Ц											
					-	H			H	님	님	Н		님	닏	Ц			
					-	H-	H		님	님	님		님			Ц			
					-		H		H	H	붜	H	님	片	片				
			_			H	H	H	H	뉘	님	H	님	님	H	H	님		
PLEASE ANSWER Q	UESTIONS ABOVE!			Con	ntainer Type	v	A	P	A	A	A	Α .		Δ	ш	Ц			
	TO STATE OF THE ST		1	A	Preservative	2				-	-	-		-	-			Please print clearly, legibly	
IS YOUR	PROJECT		Reijh	quished By:		Da	te/Time				Receive	ed By			D	ate/Tim		and completely. Samples can not be logged in and	
MA MCR	or CT RCP?	1/1	1	1		02/09	18.11	35 .	1	1/2	-	h		AL.			155	turnaround time clock will not start until any ambiguities are resolved. All samples	
FORM NO: 01-01(1) 01: 5-JAN-12)	atr: (520명) 위치류(1 (1))	1	July fully				8 18	190	Da	null	E.V	nad	+		2/9/18 18:30 Submitted are subject to Alpha's Payment Terms.				
			9																

ANALYTICAL REPORT

Lab Number: L1809196

Client: FSL Associates

358 Chestnut Hill Ave. Brighton, MA 02135

ATTN: Jarod Cournoyer Phone: (617) 232-0001

Project Name: 50 SYMPHONY RD.
Project Number: 50 SYMPHONY RD.

Report Date: 03/20/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1809196 **Report Date:** 03/20/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1809196-01	MW-1	WATER	50 SYMPHONY RD.	03/16/18 13:23	03/16/18
L1809196-02	MW-3	WATER	50 SYMPHONY RD.	03/16/18 12:45	03/16/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	NO
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:03201815:30

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

Case Narrative (continued)

Report Submission

March 20, 2018: This final report includes the results of all requested analyses.

March 19, 2018: This is a preliminary report.

MCP Related Narratives

Total Metals

In reference to question B:

At the client's request, the analytical method specified in the CAM protocol was not followed.

In reference to question H:

The WG1098075-3 MS recovery, performed on L1809196-01, is outside the acceptance criteria for mercury (47%). A post digestion spike was performed and was within acceptance criteria.

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

Dissolved Metals

In reference to question B:

At the client's request, the analytical method specified in the CAM protocol was not followed.

In reference to question H:

The WG1098074-3 MS recovery, performed on L1809196-01, is outside the acceptance criteria for mercury (49%). A post digestion spike was performed and was within acceptance criteria.

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/20/18

Melissa Cripps Melissa Cripps

ANALYTICAL

METALS

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

SAMPLE RESULTS

Lab ID: L1809196-01

Client ID: MW-1

Sample Location: 50 SYMPHONY RD.

Date Collected: 03/16/18 13:23 Date Received: 03/16/18

Field Prep: Field Filtered (Dissolved

Metals)

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00617		mg/l	0.00100		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Beryllium, Total	ND		mg/l	0.00100		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00021		mg/l	0.00020		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Chromium, Total	0.02068		mg/l	0.00100		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Copper, Total	0.00666		mg/l	0.00100		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Lead, Total	0.5223		mg/l	0.00100		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	03/17/18 11:45	03/17/18 16:32	EPA 245.1	3,245.1	MG
Nickel, Total	0.00985		mg/l	0.00200		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Thallium, Total	ND		mg/l	0.00100		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Zinc, Total	0.1166		mg/l	0.01000		1	03/17/18 10:15	03/19/18 10:41	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfiel	ld Lab								
Hardness	854		mg/l	0.660	NA	1	03/17/18 10:15	03/19/18 11:37	EPA 3005A	19,200.7	PS
Dissolved Metals -	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0024		mg/l	0.0010		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Beryllium, Dissolved	ND		mg/l	0.0010		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Chromium, Dissolved	0.0020		mg/l	0.0010		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Copper, Dissolved	ND		mg/l	0.0010		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Lead, Dissolved	0.0029		mg/l	0.0010		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND		mg/l	0.00020		1	03/17/18 11:45	03/17/18 16:46	EPA 245.1	3,245.1	MG
Nickel, Dissolved	ND		mg/l	0.0020		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004		1	03/17/18 10:35	03/19/18 11:18	EPA 3005A	3,200.8	AM

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

SAMPLE RESULTS

Lab ID: L1809196-01

Client ID: MW-1

Sample Location: 50 SYMPHONY RD. Field Prep: Field Filtered (Dissolved

Metals)

03/16/18

03/16/18 13:23

Date Collected:

Date Received:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
			_								
Thallium, Dissolved	ND		mg/l	0.0010		1	03/17/18 10:3	5 03/19/18 11:18	EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	03/17/18 10:3	5 03/19/18 11:18	EPA 3005A	3,200.8	AM

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

SAMPLE RESULTS

Lab ID: L1809196-02

Client ID: MW-3

Sample Location: 50 SYMPHONY RD.

•

Sample Depth:

Matrix: Water

Date Collected:	03/16/18 12:45

Date Received: 03/16/18

Field Prep: Field Filtered (Dissolved

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	nsfield Lab										
Antimony, Total	0.00751		mg/l	0.00400		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00937		mg/l	0.00100		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Beryllium, Total	ND		mg/l	0.00100		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00022		mg/l	0.00020		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Chromium, Total	0.01359		mg/l	0.00100		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Copper, Total	0.02384		mg/l	0.00100		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Lead, Total	0.2572		mg/l	0.00100		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	03/17/18 11:4	5 03/17/18 16:38	EPA 245.1	3,245.1	MG
Nickel, Total	0.00794		mg/l	0.00200		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Thallium, Total	ND		mg/l	0.00100		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Zinc, Total	0.1148		mg/l	0.01000		1	03/17/18 10:1	5 03/19/18 10:45	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	3 - Mansfiel	ld Lab								
Hardness	459		mg/l	0.660	NA	1	03/17/18 10:1	5 03/19/18 12:00	EPA 3005A	19,200.7	PS

Dissolved Metals -	Mansfield Lab						
Antimony, Dissolved	0.0051	mg/l	0.0040	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0028	mg/l	0.0010	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Beryllium, Dissolved	ND	mg/l	0.0010	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Chromium, Dissolved	0.0020	mg/l	0.0010	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0074	mg/l	0.0010	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Lead, Dissolved	0.0491	mg/l	0.0010	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND	mg/l	0.00020	 1	03/17/18 11:45 03/17/18 16:51 EPA 245.1	3,245.1	MG
Nickel, Dissolved	0.0022	mg/l	0.0020	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004	 1	03/17/18 10:35 03/19/18 11:22 EPA 3005A	3,200.8	AM

03/16/18 12:45

Project Name: Lab Number: 50 SYMPHONY RD. L1809196 **Project Number: Report Date:** 50 SYMPHONY RD. 03/20/18

SAMPLE RESULTS

Lab ID: L1809196-02

Client ID: MW-3

Date Received: 03/16/18 Sample Location: 50 SYMPHONY RD. Field Prep: Field Filtered (Dissolved

Metals)

Date Collected:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
						·				0.000.0	
Thallium, Dissolved	ND		mg/l	0.0010		1	03/17/18 10:3	5 03/19/18 11:22	EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.0225		mg/l	0.0100		1	03/17/18 10:3	5 03/19/18 11:22	EPA 3005A	3,200.8	AM

Project Name: 50 SYMPHONY RD.
Project Number: 50 SYMPHONY RD.

Lab Number: L1809196 **Report Date:** 03/20/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM	2340B - Mansfield La	b for sam	nple(s):	01-02	Batch: WG	1098043-1			
Hardness	ND	mg/l	0.660	NA	1	03/17/18 10:15	03/19/18 11:28	3 19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-02 E	Batch: Wo	G10980	45-1				
Antimony, Total	ND	mg/l	0.00400		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Arsenic, Total	ND	mg/l	0.0010		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Beryllium, Total	ND	mg/l	0.00100		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Thallium, Total	ND	mg/l	0.00100		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	03/17/18 10:15	03/19/18 09:14	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ınsfield Lab	for sample	e(s): 01-0	2 Batch	n: WG1	098049-1				
Antimony, Dissolved	ND		mg/l	0.0040		1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Arsenic, Dissolved	ND		mg/l	0.0010		1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Beryllium, Dissolved	ND		mg/l	0.0010		1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM

L1809196

Project Name: Lab Number: 50 SYMPHONY RD. Project Number: 50 SYMPHONY RD.

Report Date: 03/20/18

Method Blank Analysis Batch Quality Control

Copper, Dissolved	ND	mg/l	0.0010	 1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Lead, Dissolved	ND	mg/l	0.0010	 1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020	 1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050	 1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004	 1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Thallium, Dissolved	ND	mg/l	0.0010	 1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.0100	 1	03/17/18 10:35	03/19/18 09:56	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	I Analyst
Dissolved Metals - M	ansfield Lab	for sample	e(s): 01-0	2 Batch	: WG1	098074-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	03/17/18 11:45	03/17/18 16:39	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	sfield Lab for sample(s):	01-02 I	Batch: W	G10980	75-1				
Mercury, Total	ND	mg/l	0.00020		1	03/17/18 11:45	03/17/18 16:29	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1809196

Report Date:

03/20/18

arameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	/ RPD	Qual	RPD Limits
otal Hardness by SM 2340B - Mansfield	Lab Associated sample(s)	: 01-02 Batch: WG1098	043-2			
Hardness	102	-	85-115	-		
otal Metals - Mansfield Lab Associated	sample(s): 01-02 Batch: \	VG1098045-2				
Antimony, Total	96	-	85-115	-		
Arsenic, Total	108	-	85-115	-		
Beryllium, Total	105	-	85-115	-		
Cadmium, Total	113	-	85-115	-		
Chromium, Total	109	-	85-115	-		
Copper, Total	110	-	85-115	-		
Lead, Total	107	-	85-115	-		
Nickel, Total	110	-	85-115	-		
Selenium, Total	112	-	85-115	-		
Silver, Total	102	-	85-115	-		
Thallium, Total	90	-	85-115	-		
Zinc, Total	114	-	85-115	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1809196

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated	sample(s): 01-02 Bato	h: WG1098049-2			
Antimony, Dissolved	98	-	85-115	-	
Arsenic, Dissolved	106	-	85-115	-	
Beryllium, Dissolved	107	-	85-115	-	
Cadmium, Dissolved	107	-	85-115	-	
Chromium, Dissolved	111	-	85-115	-	
Copper, Dissolved	107	-	85-115	-	
Lead, Dissolved	104	-	85-115	-	
Nickel, Dissolved	108	-	85-115	-	
Selenium, Dissolved	109	-	85-115	-	
Silver, Dissolved	100	-	85-115	-	
Thallium, Dissolved	102	-	85-115	-	
Zinc, Dissolved	112	-	85-115	-	
Dissolved Metals - Mansfield Lab Associated	sample(s): 01-02 Bato	h: WG1098074-2			
Mercury, Dissolved	92	-	85-115	-	
Total Metals - Mansfield Lab Associated sam	ple(s): 01-02 Batch: W	G1098075-2			
Mercury, Total	91	-	85-115	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1809196

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery (Recovery Qual Limits	RPD Qual	RPD Limits
Total Hardness by SM 2340B	- Mansfield Lab	Associated	sample(s)	: 01-02 QC E		: WG10980	·	nple: L1809196-0		MW-1
Hardness	854	66.2	905	77		-		75-125	-	20
Total Metals - Mansfield Lab A	ssociated samp	ole(s): 01-02	QC Bate	ch ID: WG109	8045-5	QC Samp	ole: L1809196-0	1 Client ID: MV	V-1	
Antimony, Total	ND	0.5	0.6421	128		-	-	70-130	-	20
Arsenic, Total	0.00617	0.12	0.1381	110		-	-	70-130	-	20
Beryllium, Total	ND	0.05	0.05267	105		-	-	70-130	-	20
Cadmium, Total	0.00021	0.051	0.05442	106		-	-	70-130	-	20
Chromium, Total	0.02068	0.2	0.2255	102		-	-	70-130	-	20
Copper, Total	0.00666	0.25	0.2638	103		-	-	70-130	-	20
Lead, Total	0.5223	0.51	0.9724	88		-	-	70-130	-	20
Nickel, Total	0.00985	0.5	0.5207	102		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1365	114		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04940	99		-	-	70-130	-	20
Thallium, Total	ND	0.12	0.1134	94		-	-	70-130	-	20
Zinc, Total	0.1166	0.5	0.6768	112		-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number: L1809196

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
issolved Metals - Mansfie	eld Lab Associated	d sample(s):	01-02 QC	Batch ID: WG1	098049-3 Q	C Sample: L1809196-	01 Client ID:	MW-1	
Antimony, Dissolved	ND	0.5	0.6220	124	-	-	70-130	-	20
Arsenic, Dissolved	0.0024	0.12	0.1401	115	-	-	70-130	-	20
Beryllium, Dissolved	ND	0.05	0.0554	111	-	-	70-130	-	20
Cadmium, Dissolved	ND	0.051	0.0540	106	-	-	70-130	-	20
Chromium, Dissolved	0.0020	0.2	0.2206	109	-	-	70-130	-	20
Copper, Dissolved	ND	0.25	0.2680	107	-	-	70-130	-	20
Lead, Dissolved	0.0029	0.51	0.5549	108	-	-	70-130	-	20
Nickel, Dissolved	ND	0.5	0.5467	109	-	-	70-130	-	20
Selenium, Dissolved	ND	0.12	0.1418	118	-	-	70-130	-	20
Silver, Dissolved	ND	0.05	0.0507	101	-	-	70-130	-	20
Thallium, Dissolved	ND	0.12	0.1264	105	-	-	70-130	-	20
Zinc, Dissolved	ND	0.5	0.5174	103	-	-	70-130	-	20
issolved Metals - Mansfie	eld Lab Associated	d sample(s):	01-02 QC	Batch ID: WG1	098074-3 Q	C Sample: L1809196-	01 Client ID:	MW-1	
Mercury, Dissolved	ND	0.005	0.00244	49	Q -	-	75-125	-	20
otal Metals - Mansfield La	ab Associated sam	nple(s): 01-0	2 QC Bat	ch ID: WG10980)75-3 QC Sa	mple: L1809196-01	Client ID: MW	/-1	
Mercury, Total	ND	0.005	0.00236	47	Q -	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1809196

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Hardness by SM 2340B - Mansfield Lab Associated	sample(s): 01-02	QC Batch ID: WG1098043	-8 QC Samp	le: L1809	196-01 C	ient ID: MW-1
Hardness	854	858	mg/l	0		20
otal Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID: V	WG1098045-6 QC Sample:	L1809196-01	Client ID:	MW-1	
Antimony, Total	ND	0.00521	mg/l	NC		20
Arsenic, Total	0.00617	0.0062	mg/l	0		20
Beryllium, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.00021	0.00022	mg/l	7		20
Chromium, Total	0.02068	0.01997	mg/l	3		20
Copper, Total	0.00666	0.00657	mg/l	1		20
Lead, Total	0.5223	0.5176	mg/l	1		20
Nickel, Total	0.00985	0.00952	mg/l	3		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Thallium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.1166	0.1130	mg/l	3		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1809196

Report Date:

03/20/18

Parameter	Native Sample	Duplicate Sa	mple Units	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s)	: 01-02 QC Batch ID:	WG1098049-4	QC Sample: L18091	96-01 Client	t ID: MW-1
Antimony, Dissolved	ND	ND	mg/l	NC	20
Arsenic, Dissolved	0.0024	0.0023	mg/l	1	20
Beryllium, Dissolved	ND	ND	mg/l	NC	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Chromium, Dissolved	0.0020	0.0021	mg/l	1	20
Copper, Dissolved	ND	ND	mg/l	NC	20
Lead, Dissolved	0.0029	0.0030	mg/l	3	20
Nickel, Dissolved	ND	ND	mg/l	NC	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Thallium, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
ssolved Metals - Mansfield Lab Associated sample(s)	: 01-02 QC Batch ID:	WG1098074-4	QC Sample: L18091	96-01 Client	t ID: MW-1
Mercury, Dissolved	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	-02 QC Batch ID: WG	31098075-4 QC	Sample: L1809196-0 ⁻	1 Client ID:	MW-1
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

SAMPLE RESULTS

Lab ID: L1809196-01 Date Collected: 03/16/18 13:23

Client ID: MW-1 Date Received: 03/16/18

Sample Location: 50 SYMPHONY RD. Field Prep: Field Filtered

(Dissolved Metals)

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab								
Alkalinity, Total	1010	mg CaCO3/L	10.0	NA	5	-	03/19/18 09:30	121,2320B	BR
Solids, Total Dissolved	3000	mg/l	10		1	-	03/19/18 15:30	121,2540C	SD
Solids, Total Suspended	1100	mg/l	34	NA	6.7	-	03/17/18 21:00	121,2540D	CW
pH (H)	6.9	SU	-	NA	1	-	03/16/18 22:46	121,4500H+-B	AS

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

SAMPLE RESULTS

Lab ID: L1809196-02 Date Collected: 03/16/18 12:45

Client ID: MW-3 Date Received: 03/16/18

Sample Location: 50 SYMPHONY RD. Field Prep: Field Filtered (Dissolved Metals)

(Dissolved Weta

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)							
Alkalinity, Total	308.	mg CaCO3/L	2.00	NA	1	-	03/19/18 09:30	121,2320B	BR
Solids, Total Dissolved	800	mg/l	10		1	-	03/19/18 15:30	121,2540C	SD
Solids, Total Suspended	320	mg/l	20	NA	4	-	03/17/18 21:00	121,2540D	CW
pH (H)	7.4	SU	-	NA	1	-	03/16/18 22:46	121,4500H+-B	AS

Project Name: 50 SYMPHONY RD.
Project Number: 50 SYMPHONY RD.

Lab Number: L1809196 **Report Date:** 03/20/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab for sam	nple(s): 01-	02 Ba	tch: WC	G1098138-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	03/17/18 21:00	121,2540D	CW
General Chemistry - Wes	stborough Lab for sam	nple(s): 01-	02 Ba	tch: WC	G1098327-1				
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	03/19/18 09:30	121,2320B	BR
General Chemistry - Wes	stborough Lab for sam	nple(s): 01-	02 Ba	tch: WC	G1098459-1				
Solids, Total Dissolved	ND	mg/l	10		1	-	03/19/18 15:30	121,2540C	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1809196 03/20/18

PHONY RD. Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-02	Batch: WG1097950-1			
рН	100	-	99-101	-	5
General Chemistry - Westborough Lab A	Associated sample(s): 01-02	Batch: WG1098327-2			
Alkalinity, Total	102	-	90-110	-	10
General Chemistry - Westborough Lab A	Associated sample(s): 01-02	Batch: WG1098459-2			
Solids, Total Dissolved	98	-	80-120	-	

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 SYMPHONY RD. **Project Number:** 50 SYMPHONY RD.

Lab Number:

L1809196

Report Date:

03/20/18

Parameter	Native Sam	Native Sample Dupli		e Sample Units		Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01-02	QC Batch ID:	WG1097950-2	QC Sample:	L1809196-01	Client ID:	MW-1
pH (H)	6.9		6.8	SU	1		5
General Chemistry - Westborough Lab As	ssociated sample(s): 01-02	QC Batch ID:	WG1098138-2	QC Sample:	L1809196-01	Client ID:	MW-1
Solids, Total Suspended	1100		1100	mg/l	0		29

Project Name: 50 SYMPHONY RD. **Lab Number:** L1809196 Project Number: 50 SYMPHONY RD.

Report Date: 03/20/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1809196-01A	Plastic 950ml unpreserved	Α	7	7	4.7	Υ	Absent		TSS-2540(7)
L1809196-01B	Plastic 950ml unpreserved	Α	7	7	4.7	Υ	Absent		TDS-2540(7)
L1809196-01C	Plastic 250ml unpreserved	Α	7	7	4.7	Υ	Absent		PH-4500(.01)
L1809196-01D	Plastic 250ml unpreserved/No Headspace	Α	NA		4.7	Υ	Absent		ALK-T-2320(14)
L1809196-01E	Plastic 250ml HNO3 preserved	Α	<2	<2	4.7	Y	Absent		AG-2008S(180),CR-2008S(180),BE- 2008S(180),AS-2008S(180),PB- 2008S(180),ZN-2008S(180),NI-2008S(180),SE- 2008S(180),TL-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)
L1809196-01F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.7	Y	Absent		CD-2008T(180),NI-2008T(180),BE- 2008T(180),ZN-2008T(180),CU- 2008T(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180),TL- 2008T(180)
L1809196-02A	Plastic 950ml unpreserved	Α	7	7	4.7	Υ	Absent		TSS-2540(7)
L1809196-02B	Plastic 950ml unpreserved	Α	7	7	4.7	Υ	Absent		TDS-2540(7)
L1809196-02C	Plastic 250ml unpreserved	Α	7	7	4.7	Υ	Absent		PH-4500(.01)
L1809196-02D	Plastic 250ml unpreserved/No Headspace	Α	NA		4.7	Υ	Absent		ALK-T-2320(14)
L1809196-02E	Plastic 250ml HNO3 preserved	Α	<2	<2	4.7	Y	Absent		AG-2008S(180),CR-2008S(180),BE- 2008S(180),AS-2008S(180),PB- 2008S(180),ZN-2008S(180),NI-2008S(180),SE- 2008S(180),TL-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)
L1809196-02F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.7	Y	Absent		CD-2008T(180),NI-2008T(180),BE- 2008T(180),ZN-2008T(180),CU- 2008T(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180),TL- 2008T(180)

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:50 SYMPHONY RD.Lab Number:L1809196Project Number:50 SYMPHONY RD.Report Date:03/20/18

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

1	CHAIN OF	CUSTO	DY	PAGE 1 OF		Date	e Rec d	in Lab		3/	161	18		ALI	PHA.	lob#	: 4	1809196
ALPH	A	Project Infor	mation	See also				nforn	nation			veral	oles			-	ation	4.5.5.5.2
ANALYTIC							FAX			110,000,000	EMAIL				Same a	s Clier	nt info	PO#:
Westborough, MA	Mansfield, MA	Desired Masses	F0 C	David	ac the said	9_0	ADEx				Add I De	eliverat	oles					
	TEL 209-822-9300 FAX 508-822-3263	Project Name:	aa aympnony	Koad		1			equire	men	s/Re	port l	imits			0000		
Client Informati		Project Location	n: 50 Sympho	nv Road			e/Fed P MCP	rogran	1					GW-	na - 1 (Dnn)	king W	ater)	
Client FSL Associa	***	Project #: 50 S		WITH ME SHEET, SAN		Mo	PPR	ESUI	IPTIV	E CE	RTAII	NTY-	CT R	ASO	NAB	LEC	ONFID	ENCE PROTOCOLS
	stnut Hill Ave. 1º Floor	Project Manage							□ No		1000	Constitution		200000000000000000000000000000000000000	nds Re	TO STATE OF	C. Charles	
Boston, MA 02135		ALPHA Quote				-	ALYS		⊠ No	_	Are	CIRC	P (Rea	sonable	e Confi	dence	Protocol	s) Required?
Phone: (617) 232-0	0001	Turn-Around	STREET, STREET	schulate.	- A - B - B - B - B - B - B - B - B - B	PAIX	1								Т		1	SAMPLE HANDLING A L
Fax: (617) 232-780		Standard		h only if fr	E-APPROVED	7												Filtration
Email, jarod@fslas			23 1100		-		120											□ Not Needed #
	been Previously analyzed by Alpha	Due Date: ASA	P Time			1	200											Preservation 0
The state of the s	ecific Requirements/Comment	s/Detection Limit	s:			200	PHO											☐ Lab to do (Please specify
RUSH X-DAY TUR						1 4	sls (f			1								Lab to do (Please specify L below: E
		Run Meta	ls by 2	200.8		9) 21	Meta											
						Meta	ved		98	ilty								- 8
ALPHA Lab ID	Sample ID	Call	ection	Sample	Sampler's	Total Metals (PP13 200.7)	Dissolved Metals (PP13	Hd	Hardness	Alkalinity	TDS	TSS						Sample Specific
(Lab Use Only)		Date	Time	Matrix	Initials	-	0	g.	I	4	-	-		J.,	1	l	1.	Comments
09196 -01	MVV-1	03/16/18	13:23	GW	JC	\boxtimes	X	X										
02	MW-3	03/16/18	12;45	GW	JC	\boxtimes	\boxtimes		\boxtimes			\boxtimes						
						14	Щ	Ц	Ш	Ц	Ц	Ц						
						14	Н		님	님	님							
				-		H		Н	H	님			H	H	H	片	H	
5-05 1 10 1					+	H	H	H	H	井	님		H	H	H	片	H	
						H	H	H		님	H		H	H	H	H	H	
						Ī		H	H	H	H		H	H	H	H	H	
PLEASE ANSWER	QUESTIONS ABOVE!		7.00	Co	ntainer Type	-	-		-	_		-	-	-		-		
	enusumitati natebars Z.M.Til		3/	1	Preservative		¥	3	4	+	•			4		-		Please print clearly, legibly and completely. Samples can
SYOUR	PROJECT	17	Relina	uished By		Da	te/Time	,			Receiv	ed By			D	ate Tin	ne	not be logged in and lurnaround time clock will not
	or CT RCP?	15	1/1	2		03/1	5:16	55	Cha.	1	20	A	th		3/16	118 1	655	start until any ambiguitius are resolved. All samples
FORMA CODES		13	(-	#	d	3/16	18			2	1	W.			3-16-1	8 20	230	submitted are subject to Alpha's Payment Terms
		_1	-/	~3.		5-16-18 2110 au ce			_	3/16/18 2110								
Page 30 of 31		C														RX		

1	CHAIN OF	CUSTO	DY	PAGE 1 OF	4	Date	e Rec d	in Lab		3/	161	18		ALI	PHA J	lob#	1	1809196
ALPHA	1	Project Inform	nation	AND REAL PROPERTY.	200	Re	port l	nforn	nation	Dat	a Deli	veral	oles	Bill	ing In	form	ation	A LONG TO LONG
Warre Class Change							FAX			\boxtimes	EMAIL				Same a	s Clien	t info	PO#:
Westborough, MA N	Ansfield, MA	BOOK STATE OF STATE OF	STORESON.	- TOUR ST	之事与某些		ADEx				Add I D	eliveral	bles					
TEL 508-609-9220 1	TEL 708-822-9300	Project Name: 5	3 Symphon	y Road		1	_		equir	emen	ts/Re	port l	Limits		100			
Client Information	FAX 508-822-3283	Project Location	50 Symph	ony Road		100	e/Fed F	Program	7	-	-			GW-	na - 1 (Drink	king Wa	iter)	
Client: FSL Associa		Project #: 50 Sys		THE RESERVE TO SERVE THE PARTY OF THE PARTY		MC	P PR	ESUI	IPTIV	E CE	RTAI	NTY-	CT R	_				DENCE PROTOCOLS
especial community and the second	tnut Hill Ave. 1º Floor	Project Manager	-37-72-65			<u> </u>			□ No		1	100 mm (U.S.)	10000000	1000 DWD-10	nds Re	TOTAL STREET		
Boston, MA 02135		ALPHA Quote #		ni oju		D.	ALYS		⊠ No	_	Are	GTRG	P (Rea	sonable	e Confid	dence i	rotoco	ls) Required?
Phone: (617) 232-0	001	Turn-Around	STREET, STREET	Sepurate	NAME OF THE PERSON	Aiv	MLIS	13			i			Т				SAMPLE HANDLING A L
Fax: (617) 232-7800		☐ Standard		sh only it pri	-APPROVED	7												Filtration L
Email, jarod@fslass			23 .10				17.											☐ Not Needed ##
	onen Previously analyzed by Alpha	Due Date: ASAP	Time.			12	1 200											Preservation 0
Other Project Spe RUSH X-DAY TURN	ecific Requirements/Commer NAROUND	nts/Detection Limits	:			(PP13 200	etals (PP13.											Preservation O Lab to do (Please specify below) E S
ALPHA Lab ID	Sample ID	Colle	ction	Sample	Samplers	Total Metals (PP13 200.7)	Dissolved Metals	-	Hardness	Alkalinity	TDS	TSS						Sample Specific
(Lab Use Only)		Date	Time	Matrix	Initials	=	Ö	H	Ï	₹	=	1	ļ., ,	J .		l	1	Comments
09196 -01	MVV-1	03/16/18		GW	JC	\boxtimes	X	×										
02	MW-3	03/16/18		GW	JC		\boxtimes		\boxtimes									
							Ш		Ш	Ц			Ш					
							Ш						Ц	Ц	Ц			
							Ш	Ц		Ц	Ц		Ц	Ц		Ш	Ш	
							Ш	Ц	Ц	ᆜ			Ц	Ц		Ц	Ц	
						Ш	Ш	Ш	Ш	Ш	Ш		Ш	П	Ш	П	Ш	
PLEASE ANSWER Q	UESTIONS ABOVE!		1	1	ntainer Type				্	5	•	-	35	8			7.	Please print clearly legibly
INTOLID	DDOILECT	Preservative Preservative					*	-	-	it.	**	-		3		Ĺ.,		and completely. Samples can not be logged in and
MA MCP	PROJECT or CT RCP?	to the	Pagin	quished By		03/16	te/Time	55	Offer.	1	Receiv	ed By	th		3/16/	les I	(55 (55)	lumaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to
- 5,45,13		9 12	X	MB.	~	3-16-1	18 2	(10	tu	i	- (الا	_		3/16	lis à	10	A/oha's Payment Terms

ANALYTICAL REPORT

Lab Number: L1811047

Client: FSL Associates

358 Chestnut Hill Ave. Brighton, MA 02135

ATTN: Jarod Cournoyer Phone: (617) 232-0001

Project Name: 50 SYMPHONY ROAD
Project Number: 50 SYMPHONY ROAD

Report Date: 04/04/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number: Report Date:

L1811047 04/04/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1811047-01	RECEIVING WATERS CSO- 023	WATER	50 SYMPHONY ROAD	03/30/18 07:20	03/30/18
L1811047-02	MW-1	WATER	50 SYMPHONY ROAD	03/30/18 09:40	03/30/18
L1811047-03	MW-3	WATER	50 SYMPHONY ROAD	03/30/18 09:03	03/30/18

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

•	lease contact	Chefft Service	3 at 000-024-322	o with any que	53110113.	

Places contact Client Services at 900 624 9220 with any questions

Serial_No:04041817:03

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Case Narrative (continued)

Sample Receipt

The analyses performed were specified by the client.

Volatile Organics by Method 624

The WG1102946-9 LCS recoveries for methylene chloride (120%), 1,1-dichloroethane (125%), 1,1,1-trichloroethane (110%), trans-1,2-dichloroethene (125%) and cis-1,2-dichloroethene (115%), associated with L1811047-01, are outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

Anions by Ion Chromatography

The WG1103429-3 MS recovery for Chloride (71%), performed on L1811047-01, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/04/18

Melissa Cripps Melissa Cripps

ORGANICS

VOLATILES

Serial_No:04041817:03

Project Name: 50 SYMPHONY ROAD **Lab Number:** L1811047

Project Number: 50 SYMPHONY ROAD **Report Date:** 04/04/18

SAMPLE RESULTS

Lab ID: L1811047-01 Date Collected: 03/30/18 07:20

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

·

Sample Depth:

Matrix: Water Analytical Method: 5,624

Analytical Date: 04/03/18 18:02

Analyst: GT

Volatile Organics by GC/MS - Westboroug				Dilution Factor
volatile Organics by GC/M3 - Westboroug	h Lab			
Methylene chloride	ND	ug/l	5.0	 1
1,1-Dichloroethane	ND	ug/l	1.5	 1
Chloroform	ND	ug/l	1.5	 1
Carbon tetrachloride	ND	ug/l	1.0	 1
1,2-Dichloropropane	ND	ug/l	3.5	 1
Dibromochloromethane	ND	ug/l	1.0	 1
1,1,2-Trichloroethane	ND	ug/l	1.5	 1
2-Chloroethylvinyl ether	ND	ug/l	10	 1
Tetrachloroethene	ND	ug/l	1.5	 1
Chlorobenzene	ND	ug/l	3.5	 1
Trichlorofluoromethane	ND	ug/l	5.0	 1
1,2-Dichloroethane	ND	ug/l	1.5	 1
1,1,1-Trichloroethane	ND	ug/l	2.0	 1
Bromodichloromethane	ND	ug/l	1.0	 1
trans-1,3-Dichloropropene	ND	ug/l	1.5	 1
cis-1,3-Dichloropropene	ND	ug/l	1.5	 1
Bromoform	ND	ug/l	1.0	 1
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	 1
Benzene	ND	ug/l	1.0	 1
Toluene	ND	ug/l	1.0	 1
Ethylbenzene	ND	ug/l	1.0	 1
Chloromethane	ND	ug/l	5.0	 1
Bromomethane	ND	ug/l	5.0	 1
Vinyl chloride	ND	ug/l	1.0	 1
Chloroethane	ND	ug/l	2.0	 1
1,1-Dichloroethene	ND	ug/l	1.0	 1
trans-1,2-Dichloroethene	ND	ug/l	1.5	 1
cis-1,2-Dichloroethene1	ND	ug/l	1.0	 1

Serial_No:04041817:03

Project Name: 50 SYMPHONY ROAD **Lab Number:** L1811047

Project Number: 50 SYMPHONY ROAD **Report Date:** 04/04/18

SAMPLE RESULTS

Lab ID: L1811047-01 Date Collected: 03/30/18 07:20

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene ¹	ND		ug/l	2.0		1
o-xylene ¹	ND		ug/l	1.0		1
Xylenes, Total ¹	ND		ug/l	1.0		1
Styrene ¹	ND		ug/l	1.0		1
Acetone ¹	ND		ug/l	10		1
Carbon disulfide ¹	ND		ug/l	5.0		1
2-Butanone ¹	ND		ug/l	10		1
Vinyl acetate ¹	ND		ug/l	10		1
4-Methyl-2-pentanone ¹	ND		ug/l	10		1
2-Hexanone ¹	ND		ug/l	10		1
Acrylonitrile ¹	ND		ug/l	10		1
Dibromomethane ¹	ND		ug/l	1.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	100		80-120	
Fluorobenzene	114		80-120	
4-Bromofluorobenzene	129	Q	80-120	

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 04/03/18 13:19

Analyst: GT

Methylene chloride ND ug/l 5.0 1,1-Dichloroethane ND ug/l 1.5 Chloroform ND ug/l 1.5 Chloroform ND ug/l 1.5 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 2-Chloroethylvinyl ether ND ug/l 1.5 2-Chloroethylene ND ug/l 1.5 Chlorobenzene ND ug/l 1.5 Chlorobenzene ND ug/l 1.5 Trichloroftuoromethane ND ug/l 1.5 Trichloroethane ND ug/l 1.0 1,1-1-Trichloroethane ND ug/l 1.5	Parameter	Result	Qualifier	Units	RL	MDL
1,1-Dichloroethane	olatile Organics by GC/MS	- Westborough Lal	o for sampl	e(s): 0	1 Batch:	WG1102946-10
Chloroform ND ug/l 1.5 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 3.5 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 2-Chloroethylvinyl ether ND ug/l 1.5 2-Chloroethylvinyl ether ND ug/l 1.5 Tetrachloroethane ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 3.5 Trichlorofluoromethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l	Methylene chloride	ND		ug/l	5.0	
Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 3.5 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 2-Chloroethylvinyl ether ND ug/l 1.5 Tetrachloroethane ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 5.0 Trichlorofluoromethane ND ug/l 1.5 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l	1,1-Dichloroethane	ND		ug/l	1.5	
ND	Chloroform	ND		ug/l	1.5	
Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 2-Chloroethylvinyl ether ND ug/l 10 Tetrachloroethene ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.5 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0	Carbon tetrachloride	ND		ug/l	1.0	
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	3.5	
2-Chloroethylvinyl ether ND ug/l 10 Tetrachloroethene ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichloroffluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.5 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td></td>	Dibromochloromethane	ND		ug/l	1.0	
Tetrachloroethene ND ug/l 1.5 Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.5 Bromoformopropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 5.0 Vinyl chloride ND ug/l 1.0	1,1,2-Trichloroethane	ND		ug/l	1.5	
Chlorobenzene ND ug/l 3.5 Trichlorofluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0	2-Chloroethylvinyl ether	ND		ug/l	10	
Trichlorofluoromethane ND ug/l 5.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0	Tetrachloroethene	ND		ug/l	1.5	
1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Vinyl chloride ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.5 <t< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>3.5</td><td></td></t<>	Chlorobenzene	ND		ug/l	3.5	
1,1,1-Trichloroethane ND ug/l 2.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene ND ug/l 1.5	Trichlorofluoromethane	ND		ug/l	5.0	
Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene ¹ ND ug/l 1.0	1,2-Dichloroethane	ND		ug/l	1.5	
trans-1,3-Dichloropropene ND ug/l 1.5 cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 1.0 Bromomethane ND ug/l 1.0 Chlorodethane ND ug/l 1.0 Chlorodethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Unyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 Chloroethane ND ug/l 1.0 Chloroethane ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	1,1,1-Trichloroethane	ND		ug/l	2.0	
cis-1,3-Dichloropropene ND ug/l 1.5 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.5 trans-1,2-Dichloroethene¹ ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Bromodichloromethane	ND		ug/l	1.0	
Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	trans-1,3-Dichloropropene	ND		ug/l	1.5	
1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	cis-1,3-Dichloropropene	ND		ug/l	1.5	
Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Bromoform	ND		ug/l	1.0	
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	
Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Benzene	ND		ug/l	1.0	
Chloromethane ND ug/l 5.0 Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Toluene	ND		ug/l	1.0	
Bromomethane ND ug/l 5.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Ethylbenzene	ND		ug/l	1.0	
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Chloromethane	ND		ug/l	5.0	
Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Bromomethane	ND		ug/l	5.0	
1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Vinyl chloride	ND		ug/l	1.0	
trans-1,2-Dichloroethene ND ug/l 1.5 cis-1,2-Dichloroethene¹ ND ug/l 1.0	Chloroethane	ND		ug/l	2.0	
cis-1,2-Dichloroethene ¹ ND ug/l 1.0	1,1-Dichloroethene	ND		ug/l	1.0	
	trans-1,2-Dichloroethene	ND		ug/l	1.5	
Trichloroethene ND ug/l 1.0	cis-1,2-Dichloroethene ¹	ND		ug/l	1.0	
	Trichloroethene	ND		ug/l	1.0	

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 04/03/18 13:19

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS	- Westborough La	b for sample(s): 01	Batch:	WG1102946-10
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene ¹	ND	ug/l	2.0	
o-xylene ¹	ND	ug/l	1.0	
Xylenes, Total ¹	ND	ug/l	1.0	
Styrene ¹	ND	ug/l	1.0	
Acetone ¹	ND	ug/l	10	
Carbon disulfide ¹	ND	ug/l	5.0	
2-Butanone ¹	ND	ug/l	10	
Vinyl acetate ¹	ND	ug/l	10	
4-Methyl-2-pentanone ¹	ND	ug/l	10	
2-Hexanone ¹	ND	ug/l	10	
Acrylonitrile ¹	ND	ug/l	10	
Dibromomethane ¹	ND	ug/l	1.0	

		Acceptance	
Surrogate	%Recovery Q	ualifier Criteria	
Pentafluorobenzene	104	80-120	
Fluorobenzene	97	80-120	
4-Bromofluorobenzene	107	80-120	

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROAD

Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047

Report Date: 04/04/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	102946-9				
Methylene chloride	120	Q	-		70-111	-	30	
1,1-Dichloroethane	125	Q	-		78-116	-	30	
Chloroform	110		-		86-111	-	30	
Carbon tetrachloride	100		-		60-112	-	30	
1,2-Dichloropropane	110		-		83-113	-	30	
Dibromochloromethane	90		-		58-129	-	30	
1,1,2-Trichloroethane	95		-		80-118	-	30	
2-Chloroethylvinyl ether	85		-		69-124	-	30	
Tetrachloroethene	105		-		80-126	-	30	
Chlorobenzene	110		-		80-126	-	30	
Trichlorofluoromethane	110		-		83-128	-	30	
1,2-Dichloroethane	100		-		82-110	-	30	
1,1,1-Trichloroethane	110	Q	-		72-109	-	30	
Bromodichloromethane	95		-		71-120	-	30	
trans-1,3-Dichloropropene	90		-		73-106	-	30	
cis-1,3-Dichloropropene	95		-		78-111	-	30	
Bromoform	90		-		45-131	-	30	
1,1,2,2-Tetrachloroethane	100		-		81-122	-	30	
Benzene	105		-		84-116	-	30	
Toluene	110		-		83-121	-	30	
Ethylbenzene	115		-		84-123	-	30	
Chloromethane	85		-		70-144	-	30	
Bromomethane	65		-		63-141	-	30	

Project Name: 50 SYMPHONY ROAD

Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 0	1 Batch: WG1	102946-9					
Vinyl chloride	100		-		56-118	-		30	
Chloroethane	120		-		74-130	-		30	
1,1-Dichloroethene	110		-		77-116	-		30	
trans-1,2-Dichloroethene	125	Q	-		81-121	-		30	
cis-1,2-Dichloroethene ¹	115	Q	-		85-110	-		30	
Trichloroethene	110		-		84-118	-		30	
1,2-Dichlorobenzene	105		-		78-128	-		30	
1,3-Dichlorobenzene	105		-		77-125	-		30	
1,4-Dichlorobenzene	105		-		77-125	-		30	
p/m-Xylene ¹	118		-		81-121	-		30	
o-xylene ¹	115		-		81-124	-		30	
Styrene ¹	115		-		84-133	-		30	
Acetone ¹	98		-		40-160	-		30	
Carbon disulfide ¹	130		-		54-134	-		30	
2-Butanone ¹	100		-		57-116	-		30	
Vinyl acetate ¹	108		-		40-160	-		30	
4-Methyl-2-pentanone ¹	88		-		79-125	-		30	
2-Hexanone ¹	86		-		78-120	-		30	
Acrylonitrile ¹	105		-		66-123	-		30	
Dibromomethane ¹	100		-		65-126	-		30	

Lab Number:

L1811047

Project Number: 50 SYMPHONY ROAD

50 SYMPHONY ROAD

Project Name:

Report Date:

04/04/18

LCSD LCS %Recovery RPD %Recovery %Recovery Limits **Parameter** Qual Qual Limits RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1102946-9

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	106			80-120
Fluorobenzene	103			80-120
4-Bromofluorobenzene	106			80-120

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROADProject Number: 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

	Native	MS	MS	MS		MSD	MSD	ı	Recovery	,	RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Limits	<u> </u>
Volatile Organics by GC/MS -	Westborough	Lab Associ	ated sample(s	s): 01 QC Ba	tch ID: W	G1102946	-6 QC Samp	le: L181	1238-01	Client ID	: MS Sample	
4-Methyl-2-pentanone ¹	ND	100	94	94		-	-		79-125	-	30	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	103		80-120
Fluorobenzene	110		80-120
Pentafluorobenzene	102		80-120

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1811047

Report Date:

04/04/18

Project Name: 50 SYMPHONY ROAD Project Number: 50 SYMPHONY ROA

RPD **Parameter Native Sample Duplicate Sample** Units RPD Qual Limits Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1102946-5 QC Sample: L1811238-01 Client ID: DUP Sample

30 4-Methyl-2-pentanone1 ND ND NC ug/l

Surrogate	%Recovery Qualifier	· %Recovery Qualifier	Acceptance Criteria
Pentafluorobenzene	99	102	80-120
Fluorobenzene	109	109	80-120
4-Bromofluorobenzene	101	106	80-120

SEMIVOLATILES

Project Name: 50 SYMPHONY ROAD **Lab Number:** L1811047

Project Number: 50 SYMPHONY ROAD Report Date: 04/04/18

SAMPLE RESULTS

Lab ID: L1811047-01 Date Collected: 03/30/18 07:20

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 04/03/18 00:12

Analytical Date: 04/04/18 05:41

Analyst: PS

Semivolatile Organics by GC/MS - Westborough Lab Benzidine	
1.2,4-Trichlorobenzene ND ug/l 5.0 1	
1,2,4-Trichlorobenzene ND	
Bis(2-chloroethyl)ether ND ug/l 2.0 1 1,2-Dichlorobenzene ND ug/l 2.0 1 1,3-Dichlorobenzene ND ug/l 2.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 3,3'-Dichlorobenzidine ND ug/l 5.0 1 2,4-Dinitrotoluene ND ug/l 5.0 1 2,4-Dinitrotoluene ND ug/l 5.0 1 2,6-Dinitrotoluene ND ug/l 5.0 1 Azobenzene ND ug/l 2.0 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 1 4-Bis(2-chloroethoxy)methane ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Isophorone ND ug/l 5.0 <	
1,3-Dichlorobenzene ND ug/l 2.0 1 1,4-Dichlorobenzene ND ug/l 2.0 1 3,3'-Dichlorobenzidine ND ug/l 5.0 1 2,4-Dinitrotoluene ND ug/l 5.0 1 2,6-Dinitrotoluene ND ug/l 5.0 1 Azobenzene ND ug/l 2.0 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 4-Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 5.0 1 Isophorone ND ug/l 5.0 1 NDPA/DPA ND ug/l 2.0 <	
1,4-Dichlorobenzene ND ug/l 2.0 1 3,3'-Dichlorobenzidine ND ug/l 5.0 1 2,4-Dinitrotoluene ND ug/l 5.0 1 2,6-Dinitrotoluene ND ug/l 5.0 1 Azobenzene ND ug/l 2.0 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 5.0 1 Isophorone ND ug/l 5.0 1 NDPA/DPA ND ug/l 2.0	
3,3'-Dichlorobenzidine ND ug/l 5.0 1 2,4-Dinitrotoluene ND ug/l 5.0 1 2,6-Dinitrotoluene ND ug/l 5.0 1 Azobenzene ND ug/l 2.0 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 NDPA/DPA ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 ND ug/l 5.0 1 ND<	
2,4-Dinitrotoluene ND ug/l 5.0 1 2,6-Dinitrotoluene ND ug/l 5.0 1 Azobenzene ND ug/l 2.0 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 NDPA/DPA ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0	
2,6-Dinitrotoluene ND ug/l 5.0 1 Azobenzene ND ug/l 2.0 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 NDPA/DPA ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
Azobenzene ND ug/l 2.0 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 Nitrobenzene ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
4-Chlorophenyl phenyl ether ND ug/l 2.0 1 4-Bromophenyl phenyl ether ND ug/l 2.0 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 Nitrobenzene ND ug/l 5.0 1 Nitrobenzene ND ug/l 5.0 1 NDPA/DPA ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 Sis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
4-Bromophenyl phenyl ether ND ug/l 2.0 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 Nitrobenzene ND ug/l 2.0 1 NDPA/DPA ND ug/l 3.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 Nitrobenzene ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 Nitrobenzene ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
Hexachlorocyclopentadiene ND ug/l 20 1 Isophorone ND ug/l 5.0 1 Nitrobenzene ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
Isophorone ND ug/l 5.0 1 Nitrobenzene ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
Nitrobenzene ND ug/l 2.0 1 NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
NDPA/DPA ND ug/l 2.0 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1	
Butyl benzyl phthalate ND ug/l 5.0 1	
Di-n-butylphthalate ND ug/l 5.0 1	
Di-n-octylphthalate ND ug/l 5.0 1	
Diethyl phthalate ND ug/l 5.0 1	
Dimethyl phthalate ND ug/l 5.0 1	
Biphenyl ND ug/l 2.0 1	
Aniline ND ug/l 2.0 1	
4-Chloroaniline ND ug/l 5.0 1	

Project Name: Lab Number: **50 SYMPHONY ROAD** L1811047

Project Number: Report Date: 50 SYMPHONY ROAD 04/04/18

SAMPLE RESULTS

Lab ID: Date Collected: 03/30/18 07:20 L1811047-01

RECEIVING WATERS CSO-023 Date Received: Client ID: 03/30/18 Sample Location: **50 SYMPHONY ROAD** Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbor	ough Lab					
2-Nitroaniline	ND		ug/l	5.0		1
	ND					
3-Nitroaniline			ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Phenol	ND		ug/l	5.0		1
2-Methylphenol	ND		ug/l	5.0		1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol	ND		ug/l	5.0		1
Benzoic Acid	ND		ug/l	50		1
Benzyl Alcohol	ND		ug/l	2.0		1
Carbazole	ND		ug/l	2.0		1
Pyridine	ND		ug/l	3.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	89	15-120
2,4,6-Tribromophenol	89	10-120
4-Terphenyl-d14	115	41-149

Project Name: 50 SYMPHONY ROAD **Lab Number:** L1811047

Project Number: 50 SYMPHONY ROAD **Report Date:** 04/04/18

SAMPLE RESULTS

Lab ID: L1811047-01 Date Collected: 03/30/18 07:20

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/03/18 02:21

Analytical Date: 04/04/18 14:27

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	SIM - Westborough La	b					
Acenaphthene	ND		ug/l	0.10		1	
2-Chloronaphthalene	ND		ug/l	0.20		1	
Fluoranthene	ND		ug/l	0.10		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
1-Methylnaphthalene	ND		ug/l	0.10		1	
2-Methylnaphthalene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	0.80		1	
Hexachlorobenzene	ND		ug/l	0.80		1	
Hexachloroethane	ND		ug/l	0.80		1	

Project Name: 50 SYMPHONY ROAD **Lab Number:** L1811047

Project Number: 50 SYMPHONY ROAD **Report Date:** 04/04/18

SAMPLE RESULTS

Lab ID: L1811047-01 Date Collected: 03/30/18 07:20

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	38	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	71	10-120
4-Terphenyl-d14	71	41-149

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/03/18 17:04

Analyst: EK

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1102833-1 Acenaphthene ND ug/l 2.0 Benzidine ND ug/l 2.0 1,2,4-Trichlorobenzene ND ug/l 5.0 Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-chloroaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 5.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 2.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l	Parameter	Result	Qualifier (Jnits		RL	MDL	
Benzidine ND	Semivolatile Organics by GC/MS -	- Westborough	Lab for san	nple(s):	01	Batch:	WG1102833-1	
Benzidine	Acenaphthene	ND		ug/l		2.0		
1,2,4-Trichlorobenzene ND ug/l 2.0		ND						-
Bis(2-chloroethyl)ether	1,2,4-Trichlorobenzene	ND				5.0		-
Bis(2-chloroethyl)ether	Hexachlorobenzene	ND		ug/l		2.0		
1,2-Dichlorobenzene ND	Bis(2-chloroethyl)ether	ND				2.0		
1,2-Dichlorobenzene ND	2-Chloronaphthalene	ND		ug/l		2.0		
1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorobutadiene ND		ND				2.0		
3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachloroethoxy)methane ND ug/l 2.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 2.0 Naphthalene ND ug/l	1,3-Dichlorobenzene	ND				2.0		
3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachloroethoxy)methane ND ug/l 2.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 2.0 Naphthalene ND ug/l	1,4-Dichlorobenzene	ND		ug/l		2.0		
2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Hexachloroethane ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 NDPA/DPA ND ug/l 5.0	3,3'-Dichlorobenzidine	ND				5.0		
Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 5.0 Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 NDPA/DPA ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 5.0	2,4-Dinitrotoluene	ND		ug/l		5.0		
Fluoranthene	2,6-Dinitrotoluene	ND		ug/l		5.0		
4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Hexachlorothane ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 2.0 NItrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Azobenzene	ND		ug/l		2.0		
4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Hexachloroethane ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 2.0 NItrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Fluoranthene	ND		ug/l		2.0		
Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 20 Hexachloroethane ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 2.0 Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	4-Chlorophenyl phenyl ether	ND		ug/l		2.0		
Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 20 Hexachloroethane ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 2.0 Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	4-Bromophenyl phenyl ether	ND		ug/l		2.0		
Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 20 Hexachloroethane ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 2.0 Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Bis(2-chloroisopropyl)ether	ND		ug/l		2.0		
Hexachlorocyclopentadiene ND ug/l 20 Hexachloroethane ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 2.0 Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Bis(2-chloroethoxy)methane	ND		ug/l		5.0		
Hexachloroethane ND ug/l 2.0 Isophorone ND ug/l 5.0 Naphthalene ND ug/l 2.0 Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Hexachlorobutadiene	ND		ug/l		2.0		-
Sophorone ND ug/l 5.0	Hexachlorocyclopentadiene	ND		ug/l		20		
Naphthalene ND ug/l 2.0 Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Hexachloroethane	ND		ug/l		2.0		
Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Isophorone	ND		ug/l		5.0		
NDPA/DPA ND ug/l 2.0 n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Naphthalene	ND		ug/l		2.0		
n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Nitrobenzene	ND		ug/l		2.0		
Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	NDPA/DPA	ND		ug/l		2.0		
Butyl benzyl phthalate ND ug/l 5.0	n-Nitrosodi-n-propylamine	ND		ug/l		5.0		
	Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0		
Di-n-butylohthalate ND ug/l 5.0	Butyl benzyl phthalate	ND		ug/l		5.0		
Tip ugn 0.0	Di-n-butylphthalate	ND		ug/l		5.0		

L1811047

04/04/18

Project Name:50 SYMPHONY ROADLab Number:Project Number:50 SYMPHONY ROADReport Date:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/03/18 17:04

Analyst: EK

Parameter	Result	Qualifier U	nits		RL	MDL	
Semivolatile Organics by GC/MS	S - Westborough	Lab for sam	ple(s):	01	Batch:	WG1102833-1	
Di-n-octylphthalate	ND		ug/l		5.0		
Diethyl phthalate	ND		ug/l		5.0		
Dimethyl phthalate	ND		ug/l		5.0		
Benzo(a)anthracene	ND		ug/l		2.0		
Benzo(a)pyrene	ND		ug/l		2.0		
Benzo(b)fluoranthene	ND		ug/l		2.0		
Benzo(k)fluoranthene	ND		ug/l		2.0		
Chrysene	ND		ug/l		2.0		
Acenaphthylene	ND		ug/l		2.0		
Anthracene	ND		ug/l		2.0		
Benzo(ghi)perylene	ND		ug/l		2.0		
Fluorene	ND		ug/l		2.0		
Phenanthrene	ND		ug/l		2.0		
Dibenzo(a,h)anthracene	ND		ug/l		2.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0		
Pyrene	ND		ug/l		2.0		
Biphenyl	ND		ug/l		2.0		
Aniline	ND		ug/l		2.0		
4-Chloroaniline	ND		ug/l		5.0		
1-Methylnaphthalene	ND		ug/l		2.0		
2-Nitroaniline	ND		ug/l		5.0		
3-Nitroaniline	ND		ug/l		5.0		
4-Nitroaniline	ND		ug/l		5.0		
Dibenzofuran	ND		ug/l		2.0		
2-Methylnaphthalene	ND		ug/l		2.0		
n-Nitrosodimethylamine	ND		ug/l		2.0		
2,4,6-Trichlorophenol	ND		ug/l		5.0		
p-Chloro-m-cresol	ND		ug/l		2.0		
2-Chlorophenol	ND		ug/l		2.0		

Project Name: 50 SYMPHONY ROAD
Project Number: 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date: 04/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8270D 04/03/18 17:04

Analyst:

EK

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01	Batch:	WG1102833-1
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		3.5	

Tentatively Identified Compounds				
Total TIC Compounds	14.1	J	ug/l	
Aldol Condensates	14.1	J	ug/l	

Extraction Method: EPA 3510C

Extraction Date:

04/03/18 00:12

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/03/18 17:04

Analyst: EK

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Semivolatile Organics by GC/MS - Westborough Lab for sample(s):
 01
 Batch:
 WG1102833-1

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
	0.5		04.400	
2-Fluorophenol	85		21-120	
Phenol-d6	66		10-120	
Nitrobenzene-d5	112		23-120	
2-Fluorobiphenyl	105		15-120	
2,4,6-Tribromophenol	123	Q	10-120	
4-Terphenyl-d14	132		41-149	

Project Name: 50 SYMPHONY ROAD

Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047 **Report Date:** 04/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 04/04/18 14:01

Analyst: DV

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/M	S-SIM - Westbo	orough Lab	for sample	e(s): 01	Batch: WG11028	35-1
Acenaphthene	ND		ug/l	0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.10		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
1-Methylnaphthalene	ND		ug/l	0.10		
2-Methylnaphthalene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

04/03/18 00:19

Project Name: Lab Number: **50 SYMPHONY ROAD** L1811047 **Project Number:** 50 SYMPHONY ROAD Report Date: 04/04/18

Method Blank Analysis
Batch Quality Control

Extraction Method: EPA 3510C Analytical Method: 1,8270D-SIM Analytical Date: 04/04/18 14:01 Extraction Date:

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westb	orough Lab	for sampl	e(s): 01	Batch: WG1102835-1

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	71		21-120	
Phenol-d6	54		10-120	
Nitrobenzene-d5	109		23-120	
2-Fluorobiphenyl	110		15-120	
2,4,6-Tribromophenol	121	Q	10-120	
4-Terphenyl-d14	118		41-149	

Project Name: 50 SYMPHONY ROAD

Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s):	: 01 Batch:	WG1102833-	2 WG1102833-3				
Acenaphthene	75		80		37-111	6		30	
Benzidine	65		45		10-75	36	Q	30	
1,2,4-Trichlorobenzene	62		56		39-98	10		30	
Hexachlorobenzene	80		90		40-140	12		30	
Bis(2-chloroethyl)ether	83		76		40-140	9		30	
2-Chloronaphthalene	68		70		40-140	3		30	
1,2-Dichlorobenzene	61		54		40-140	12		30	
1,3-Dichlorobenzene	59		52		40-140	13		30	
1,4-Dichlorobenzene	60		53		36-97	12		30	
3,3'-Dichlorobenzidine	81		79		40-140	3		30	
2,4-Dinitrotoluene	96		111		48-143	14		30	
2,6-Dinitrotoluene	92		106		40-140	14		30	
Azobenzene	88		98		40-140	11		30	
Fluoranthene	89		103		40-140	15		30	
4-Chlorophenyl phenyl ether	76		83		40-140	9		30	
4-Bromophenyl phenyl ether	80		89		40-140	11		30	
Bis(2-chloroisopropyl)ether	71		65		40-140	9		30	
Bis(2-chloroethoxy)methane	89		86		40-140	3		30	
Hexachlorobutadiene	51		46		40-140	10		30	
Hexachlorocyclopentadiene	36	Q	35	Q	40-140	3		30	
Hexachloroethane	57		49		40-140	15		30	
Isophorone	95		95		40-140	0		30	
Naphthalene	65		62		40-140	5		30	

Project Name: 50 SYMPHONY ROAD

Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s):	01 Batch:	WG1102833-2	2 WG1102833-3		
Nitrobenzene	82		78		40-140	5	30
NDPA/DPA	89		99		40-140	11	30
n-Nitrosodi-n-propylamine	93		89		29-132	4	30
Bis(2-ethylhexyl)phthalate	95		111		40-140	16	30
Butyl benzyl phthalate	93		108		40-140	15	30
Di-n-butylphthalate	95		111		40-140	16	30
Di-n-octylphthalate	95		109		40-140	14	30
Diethyl phthalate	90		100		40-140	11	30
Dimethyl phthalate	86		97		40-140	12	30
Benzo(a)anthracene	87		100		40-140	14	30
Benzo(a)pyrene	99		110		40-140	11	30
Benzo(b)fluoranthene	98		109		40-140	11	30
Benzo(k)fluoranthene	91		107		40-140	16	30
Chrysene	84		96		40-140	13	30
Acenaphthylene	80		86		45-123	7	30
Anthracene	86		97		40-140	12	30
Benzo(ghi)perylene	93		105		40-140	12	30
Fluorene	82		90		40-140	9	30
Phenanthrene	81		92		40-140	13	30
Dibenzo(a,h)anthracene	94		107		40-140	13	30
Indeno(1,2,3-cd)pyrene	80		93		40-140	15	30
Pyrene	86		100		26-127	15	30
Biphenyl	69		71		40-140	3	30

Project Name: 50 SYMPHONY ROAD

Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	01 Batch:	WG1102833-2	2 WG1102833-3		
Aniline	56		44		40-140	24	30
4-Chloroaniline	73		70		40-140	4	30
1-Methylnaphthalene	62		62		41-103	0	30
2-Nitroaniline	96		108		52-143	12	30
3-Nitroaniline	84		88		25-145	5	30
4-Nitroaniline	92		106		51-143	14	30
Dibenzofuran	77		82		40-140	6	30
2-Methylnaphthalene	67		65		40-140	3	30
n-Nitrosodimethylamine	51		46		22-74	10	30
2,4,6-Trichlorophenol	94		99		30-130	5	30
p-Chloro-m-cresol	96		104	Q	23-97	8	30
2-Chlorophenol	88		80		27-123	10	30
2,4-Dichlorophenol	95		94		30-130	1	30
2,4-Dimethylphenol	94		94		30-130	0	30
2-Nitrophenol	94		90		30-130	4	30
4-Nitrophenol	59		70		10-80	17	30
2,4-Dinitrophenol	82		98		20-130	18	30
4,6-Dinitro-o-cresol	99		115		20-164	15	30
Pentachlorophenol	74		84		9-103	13	30
Phenol	46		44		12-110	4	30
2-Methylphenol	87		83		30-130	5	30
3-Methylphenol/4-Methylphenol	83		81		30-130	2	30
2,4,5-Trichlorophenol	88		98		30-130	11	30

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number: L1811047

Report Date:

arameter	LCS %Recovery Qual	LCSD %Recovery	9 Qual	6Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - West	borough Lab Associated sample(s	: 01 Batch:	WG1102833-2	WG1102833-3			
Benzoic Acid	33	26		10-164	24	30	
Benzyl Alcohol	81	77		26-116	5	30	
Carbazole	95	110		55-144	15	30	
Pyridine	33	27		10-66	20	30	

Surrogato	LCS	LCSD	Acceptance al Criteria
Surrogate	%Recovery Qu	ual %Recovery Qua	
2-Fluorophenol	74	67	21-120
Phenol-d6	57	53	10-120
Nitrobenzene-d5	92	86	23-120
2-Fluorobiphenyl	89	90	15-120
2,4,6-Tribromophenol	101	110	10-120
4-Terphenyl-d14	102	116	41-149

Project Name: 50 SYMPHONY ROAD

Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM	- Westborough Lab Asso	ociated sample(s): 01 Batcl	n: WG1102835-2 WG1102	835-3	
Acenaphthene	89	77	40-140	14	40
2-Chloronaphthalene	94	77	40-140	20	40
Fluoranthene	87	78	40-140	11	40
Hexachlorobutadiene	78	63	40-140	21	40
Naphthalene	92	73	40-140	23	40
Benzo(a)anthracene	96	87	40-140	10	40
Benzo(a)pyrene	102	91	40-140	11	40
Benzo(b)fluoranthene	103	100	40-140	3	40
Benzo(k)fluoranthene	103	88	40-140	16	40
Chrysene	95	87	40-140	9	40
Acenaphthylene	94	78	40-140	19	40
Anthracene	96	85	40-140	12	40
Benzo(ghi)perylene	104	95	40-140	9	40
Fluorene	95	83	40-140	13	40
Phenanthrene	95	85	40-140	11	40
Dibenzo(a,h)anthracene	107	98	40-140	9	40
Indeno(1,2,3-cd)pyrene	104	96	40-140	8	40
Pyrene	96	86	40-140	11	40
1-Methylnaphthalene	91	75	40-140	19	40
2-Methylnaphthalene	93	76	40-140	20	40
Pentachlorophenol	110	106	40-140	4	40
Hexachlorobenzene	91	81	40-140	12	40
Hexachloroethane	80	63	40-140	24	40

Project Name: 50 SYMPHONY ROAD

Lab Number:

L1811047

Project Number: 50 SYMPHONY ROAD

Report Date:

04/04/18

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1102835-2 WG1102835-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
		<u> </u>	
2-Fluorophenol	69	53	21-120
Phenol-d6	53	42	10-120
Nitrobenzene-d5	105	85	23-120
2-Fluorobiphenyl	104	88	15-120
2,4,6-Tribromophenol	104	89	10-120
4-Terphenyl-d14	107	96	41-149

PCBS

Project Name: 50 SYMPHONY ROAD **Lab Number:** L1811047

Project Number: 50 SYMPHONY ROAD **Report Date:** 04/04/18

SAMPLE RESULTS

Lab ID: Date Collected: 03/30/18 07:20

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608

Analytical Method: 5,608 Extraction Date: 04/03/18 18:00
Analytical Date: 04/04/18 05:40 Cleanup Method: EPA 3665A

Analytical Date: 04/04/18 05:40 Cleanup Method: EPA 3665A
Analyst: JW Cleanup Date: 04/04/18
Cleanup Method: EPA 3660B

Cleanup Method: EPA 3660 Cleanup Date: 04/04/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	90		30-150	Α
Decachlorobiphenyl	74		30-150	Α

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 04/04/18 06:18

Analyst: JW

Extraction Method: EPA 608
Extraction Date: 04/03/18 06:16
Cleanup Method: EPA 3665A
Cleanup Date: 04/04/18
Cleanup Date: EPA 3660B
Cleanup Date: 04/04/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Vestboroug	h Lab for s	ample(s):	01 Batch:	WG1102892	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance					
Surrogate	%Recovery Qualif	ier Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	105	30-150	Α				
Decachlorobiphenyl	85	30-150	Α				

50 SYMPHONY ROAD **Project Name:**

Lab Number:

L1811047

Project Number: 50 SYMPHONY ROAD

Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associa	ted sample(s)	: 01 Batch:	WG1102892-	2				
Aroclor 1016	82		-		30-150	-		30	Α
Aroclor 1260	89		-		30-150	-		30	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	102 96				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROADProject Number: 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

Davamatar	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recover	v Qual	Recovery Limits	RPD (=	RPD imits	Calumn
Parameter	Sample	Audeu	round	70Recover	y Quai	i ound	/øRecover	y Quai	Liiiits	KPU V	xuai L	IIIIII	<u>Column</u>
Polychlorinated Biphenyls by G	C - Westbor	ough Lab	Associated sam	nple(s): 01	QC Batch II	D: WG1102	2892-3 QC	Sample	: L1800004-0	3 Client	t ID: MS	Samp	le
Aroclor 1016	ND	3.12	2.60	83		-	-		40-126	-		30	Α
Aroclor 1260	ND	3.12	2.57	82		-	-		40-127	-		30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	100		30-150	Α
Decachlorobiphenyl	86		30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

Parameter	Native Sample	Duplicate Samp	le Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG1102892-4	QC Sample:	L1800004-03	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

			Acceptance	
Surrogate	%Recovery Qualific	er %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	102	101	30-150	Α
Decachlorobiphenyl	98	95	30-150	Α

PESTICIDES

Project Name: 50 SYMPHONY ROAD Lab Number: L1811047

Project Number: 50 SYMPHONY ROAD Report Date: 04/04/18

SAMPLE RESULTS

Lab ID: L1811047-01 Date Collected: 03/30/18 07:20

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608
Analytical Method: 5,608 Extraction Date: 04/03/18 21:17

Analystical Date: 04/04/18 13:40 Cleanup Method: EPA 3620B
Analyst: KEG Cleanup Date: 04/04/18

Qualifier Result Units RL MDL **Dilution Factor** Column **Parameter** Organochlorine Pesticides by GC - Westborough Lab Delta-BHC ND ug/l 0.020 1 Α Lindane ND ug/l 0.020 Α Alpha-BHC ND ug/l 0.020 1 Α Beta-BHC ND 1 ug/l 0.020 Α Heptachlor ND ug/l 0.020 1 Α Aldrin ND ug/l 0.020 1 Α Heptachlor epoxide ND 0.020 1 Α ug/l --Endrin ND 0.040 1 Α ug/l ND 1 Endrin aldehyde ug/l 0.040 --Α ND Endrin ketone¹ 0.040 1 Α ug/l ND Dieldrin 0.040 1 Α ug/l 4,4'-DDE ND 0.040 1 ug/l --Α 4,4'-DDD ND 0.040 1 Α ug/l --4,4'-DDT ND 1 ug/l 0.040 Α Endosulfan I ND 0.020 1 ug/l --Α Endosulfan II ND 0.040 1 Α ug/l

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	96		30-150	Α
Decachlorobiphenyl	93		30-150	Α

0.040

0.100

0.400

0.200

0.020

0.020

--

--

--

--

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

Α

Α

Α

Α

Α

Α

Endosulfan sulfate

Methoxychlor¹

cis-Chlordane1

trans-Chlordane1

Toxaphene

Chlordane

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 5,608

Analytical Date: 04/04/18 13:27

Analyst: KEG

Extraction Method: EPA 608
Extraction Date: 04/03/18 21:17

Cleanup Method: EPA 3620B Cleanup Date: 04/04/18

Parameter	Result	Qualifier	Units	I	RL	MDL	Column
Organochlorine Pesticides by GC -	Westboroug	h Lab for	sample(s):	01	Batch:	WG11032	13-1
Delta-BHC	ND		ug/l	0.	020		А
Lindane	ND		ug/l	0.	020		Α
Alpha-BHC	ND		ug/l	0.	020		Α
Beta-BHC	ND		ug/l	0.	020		Α
Heptachlor	ND		ug/l	0.	020		Α
Aldrin	ND		ug/l	0.	020		Α
Heptachlor epoxide	ND		ug/l	0.	020		Α
Endrin	ND		ug/l	0.	040		Α
Endrin aldehyde	ND		ug/l	0.	040		Α
Endrin ketone ¹	ND		ug/l	0.	040		Α
Dieldrin	ND		ug/l	0.	040		Α
4,4'-DDE	ND		ug/l	0.	040		Α
4,4'-DDD	ND		ug/l	0.	040		А
4,4'-DDT	ND		ug/l	0.	040		Α
Endosulfan I	ND		ug/l	0.	020		Α
Endosulfan II	ND		ug/l	0.	040		Α
Endosulfan sulfate	ND		ug/l	0.	040		Α
Methoxychlor ¹	ND		ug/l	0.	100		Α
Toxaphene	ND		ug/l	0.	400		Α
Chlordane	ND		ug/l	0.	200		Α
cis-Chlordane ¹	ND		ug/l	0.	020		Α
trans-Chlordane ¹	ND		ug/l	0.	020		Α

	<i>F</i>	Acceptanc	е
%Recovery	Qualifier	Criteria	Column
79		30-150	Α
83		30-150	Α
	79	%Recovery Qualifier 79	

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
rganochlorine Pesticides by GC - Westborou	ugh Lab Assoc	iated sample(s	s): 01 Batch:	WG110321	3-2				
Delta-BHC	93		-		30-150	-		30	Α
Lindane	94		-		30-150	-		30	Α
Alpha-BHC	89		-		30-150	-		30	А
Beta-BHC	97		-		30-150	-		30	А
Heptachlor	91		-		30-150	-		30	А
Aldrin	77		-		30-150	-		30	А
Heptachlor epoxide	111		-		30-150	-		30	А
Endrin	111		-		30-150	-		30	А
Endrin aldehyde	83		-		30-150	-		30	А
Endrin ketone ¹	109		-		30-150	-		30	А
Dieldrin	107		-		30-150	-		30	А
4,4'-DDE	91		-		30-150	-		30	А
4,4'-DDD	87		-		30-150	-		30	А
4,4'-DDT	91		-		30-150	-		30	Α
Endosulfan I	99		-		30-150	-		30	А
Endosulfan II	106		-		30-150	-		30	А
Endosulfan sulfate	99		-		30-150	-		30	А
Methoxychlor ¹	112		-		30-150	-		30	А
cis-Chlordane ¹	89		-		30-150	-		30	А
trans-Chlordane ¹	73		-		30-150	-		30	А

Lab Number:

L1811047

04/04/18

Project Number: 50 SYMPHONY ROAD

50 SYMPHONY ROAD

Project Name:

Report Date:

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1103213-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	84 97				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROADProject Number: 50 SYMPHONY ROAD

Lab Number: L1811047

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI ' Qual Foul	_	Recovei ery Qual Limits		RPD Qual Limits	Column
Organochlorine Pesticides by	y GC - Westbo	rough Lab	Associated sa	mple(s): 01	QC Batch ID: WG	1103213-3 (QC Sample: L180000	04-09 CI	ient ID: MS Sam	ple
Delta-BHC	ND	0.5	0.438	88	-	-	19-140	-	30	Α
Lindane	ND	0.5	0.452	90	-	-	56-123	-	30	Α
Alpha-BHC	ND	0.5	0.432	86		-	37-134	-	30	Α
Beta-BHC	ND	0.5	0.473	95		-	17-147	-	30	Α
Heptachlor	ND	0.5	0.457	91		-	40-111	-	30	Α
Aldrin	ND	0.5	0.367	73		-	40-120	-	30	Α
Heptachlor epoxide	ND	0.5	0.503	101		-	37-142	-	30	Α
Endrin	ND	0.5	0.528	106	-	-	56-121	-	30	Α
Endrin aldehyde	ND	0.5	0.386	77	-	-	42-122	-	30	Α
Endrin ketone ¹	ND	0.5	0.474	95	-	-	30-150	-	30	Α
Dieldrin	ND	0.5	0.510	102	-	-	52-126	-	30	Α
4,4'-DDE	ND	0.5	0.432	86	-	-	30-145	-	30	Α
4,4'-DDD	ND	0.5	0.415	83	-	-	31-141	-	30	Α
4,4'-DDT	ND	0.5	0.433	87	-	-	38-127	-	30	Α
Endosulfan I	ND	0.5	0.475	95	-	-	45-153	-	30	Α
Endosulfan II	ND	0.5	0.504	101	-	-	.1-202	-	30	Α
Endosulfan sulfate	ND	0.5	0.438	88		-	26-144	-	30	Α
Methoxychlor ¹	ND	0.5	0.525	105		-	30-150	-	30	Α
cis-Chlordane ¹	ND	0.5	0.429	86		-	30-150	-	30	Α
trans-Chlordane ¹	ND	0.5	0.363	73	-	-	30-150	-	30	Α

Matrix Spike Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROADProject Number: 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

04/04/18

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1103213-3 QC Sample: L1800004-09 Client ID: MS Sample

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	Α
Decachlorobiphenyl	87		30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

arameter	Native Sample	Duplicate Sampl	e Units	RPD		RPD Limits	
	•						- DI ID
rganochlorine Pesticides by GC - Westborough Lab ample	Associated sample(s): (D1 QC Batch ID:	WG1103213-4	QC Sample:	L1800004-09	Client ID:	DUP
Delta-BHC	ND	ND	ug/l	NC		30	Α
Lindane	ND	ND	ug/l	NC		30	Α
Alpha-BHC	ND	ND	ug/l	NC		30	Α
Beta-BHC	ND	ND	ug/l	NC		30	Α
Heptachlor	ND	ND	ug/l	NC		30	Α
Aldrin	ND	ND	ug/l	NC		30	Α
Heptachlor epoxide	ND	ND	ug/l	NC		30	Α
Endrin	ND	ND	ug/l	NC		30	Α
Endrin aldehyde	ND	ND	ug/l	NC		30	Α
Endrin ketone ¹	ND	ND	ug/l	NC		30	Α
Dieldrin	ND	ND	ug/l	NC		30	Α
4,4'-DDE	ND	ND	ug/l	NC		30	Α
4,4'-DDD	ND	ND	ug/l	NC		30	А
4,4'-DDT	ND	ND	ug/l	NC		30	Α
Endosulfan I	ND	ND	ug/l	NC		30	Α
Endosulfan II	ND	ND	ug/l	NC		30	Α
Endosulfan sulfate	ND	ND	ug/l	NC		30	Α
Methoxychlor ¹	ND	ND	ug/l	NC		30	Α
Toxaphene	ND	ND	ug/l	NC		30	Α
Chlordane	ND	ND	ug/l	NC		30	Α
cis-Chlordane ¹	ND	ND	ug/l	NC		30	Α

30

Α

Lab Duplicate Analysis

ug/l

98

NC

Batch Quality Control

Lab Number:

L1811047

Α

Report Date:

30-150

04/04/18

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Parameter

Native Sample

Duplicate Sample

Units

RPD

Qual

Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1103213-4 QC Sample: L1800004-09 Client ID: DUP Sample

ND

Surrogate %Recovery Qualifier %Recovery Qualifier Criteria Column

2,4,5,6-Tetrachloro-m-xylene 79 86 30-150 A

89

ND

trans-Chlordane1

Decachlorobiphenyl

METALS

03/30/18 07:20

Date Collected:

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

SAMPLE RESULTS

Lab ID: L1811047-01

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Barium, Total	0.05854		mg/l	0.00100		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Beryllium, Total	ND		mg/l	0.00100		1	04/03/18 15:50	04/04/18 11:18	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Chromium, Total	0.00104		mg/l	0.00100		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Iron, Total	0.361		mg/l	0.050		1	04/03/18 15:50	04/04/18 12:06	EPA 3005A	19,200.7	LC
Lead, Total	0.00133		mg/l	0.00100		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	04/04/18 07:50	04/04/18 11:13	EPA 245.1	3,245.1	BV
Nickel, Total	ND		mg/l	0.00200		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Thallium, Total	ND		mg/l	0.00100		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Vanadium, Total	ND		mg/l	0.00500		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Zinc, Total	0.01381		mg/l	0.01000		1	04/03/18 15:50	04/04/18 10:15	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	s - Mansfiel	d Lab								
Hardness	80.1		mg/l	0.660	NA	1	04/03/18 15:50	04/04/18 12:06	EPA 3005A	19,200.7	LC
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		04/04/18 10:15	NA	107,-	

03/30/18 09:40

Project Name: 50 SYMPHONY ROAD Lab Number: L1811047 **Project Number: Report Date:** 50 SYMPHONY ROAD 04/04/18

SAMPLE RESULTS

Lab ID: L1811047-02

Date Collected: Client ID: MW-1 Date Received:

03/30/18 Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.06488		mg/l	0.00100		1	04/03/18 15:50	04/04/18 10:19	EPA 3005A	3,200.8	AM
Iron, Total	37.8		mg/l	0.050		1	04/03/18 15:50	04/04/18 12:11	EPA 3005A	19,200.7	LC
General Chemistry	- Mansfield	d Lab									
Chromium, Trivalent	0.065		mg/l	0.010		1		04/04/18 10:19	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Chromium, Dissolved	0.0017		mg/l	0.0010		1	04/04/18 07:30	04/04/18 12:51	EPA 3005A	3,200.8	AM
Iron, Dissolved	0.066		mg/l	0.050		1	04/04/18 07:30	04/04/18 11:57	EPA 3005A	19,200.7	LC

03/30/18 09:03

Date Collected:

Project Name: 50 SYMPHONY ROAD Lab Number: L1811047 **Project Number: Report Date:** 50 SYMPHONY ROAD 04/04/18

SAMPLE RESULTS

Lab ID: L1811047-03

Client ID: MW-3

Date Received: 03/30/18 Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.02270		mg/l	0.00100		1	04/03/18 15:50	04/04/18 10:23	EPA 3005A	3,200.8	AM
Iron, Total	25.7		mg/l	0.050		1	04/03/18 15:50	04/04/18 12:15	EPA 3005A	19,200.7	LC
General Chemistry Chromium, Trivalent	- Mansfiel	d Lab	mg/l	0.010		1		04/04/18 10:23	NA	107,-	
Cinomium, mvalent	0.023		mg/i	0.010				04/04/10 10.23	IVA	107,	
Dissolved Metals - I	Mansfield	Lab									
Chromium, Dissolved	ND		mg/l	0.0010		1	04/04/18 07:30	04/04/18 12:05	EPA 3005A	3,200.8	AM
Iron, Dissolved	ND		mg/l	0.050		1	04/04/18 07:30	04/04/18 11:35	EPA 3005A	19,200.7	LC

Project Name: 50 SYMPHONY ROAD
Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047 **Report Date:** 04/04/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s)	: 01-03	Batch: W0	G11029	36-1				
Antimony, Total	ND	mg/l	0.00400		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Barium, Total	ND	mg/l	0.00100		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Beryllium, Total	ND	mg/l	0.00100		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Thallium, Total	ND	mg/l	0.00100		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Vanadium, Total	ND	mg/l	0.00500		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	04/03/18 15:50	04/04/18 09:22	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01-03 E	Batch: Wo	G11029	37-1				
Iron, Total	ND	mg/l	0.050		1	04/03/18 15:50	04/04/18 11:32	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	M 2340B - Mansfield La	b for sam	ple(s):	01-03 E	Batch: WG1	1102937-1			
Hardness	ND	mg/l	0.660	NA	1	04/03/18 15:50	04/04/18 11:32	19,200.7	LC

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

04/04/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Parameter F	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Mansfie	eld Lab	for sample(s): 02-03	Batch	: WG1	103158-1				
Chromium, Dissolved	ND		mg/l	0.0010		1	04/04/18 07:30	04/04/18 11:46	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Dissolved Metals - Mans	sfield Lab	for sample	(s): 02-03	Batch	: WG1	103160-1				
Iron, Dissolved	ND		mg/l	0.050		1	04/04/18 07:30	04/04/18 11:27	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s)	: 01 Batcl	h: WG11	103312-	1				
Mercury, Total	ND	mg/l	0.00020		1	04/04/18 07:50	04/04/18 11:10	3,245.1	BV

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047 04/04/18

Report Date:

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-03 Bate	ch: WG1102936-2				
Antimony, Total	104	-	85-115	-		
Arsenic, Total	107	-	85-115	-		
Barium, Total	100	-	85-115	-		
Beryllium, Total	106	-	85-115	-		
Cadmium, Total	110	-	85-115	-		
Chromium, Total	104	-	85-115	-		
Lead, Total	99	-	85-115	-		
Nickel, Total	104	-	85-115	-		
Selenium, Total	110	-	85-115	-		
Silver, Total	95	-	85-115	-		
Thallium, Total	94	-	85-115	-		
Vanadium, Total	104	-	85-115	-		
Zinc, Total	106	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-03 Bate	ch: WG1102937-2				
Iron, Total	113	<u>.</u>	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01-03 Batch: WG110	2937-2			
Hardness	109	-	85-115	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number: L1811047

Report Date: 04/04/18

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	ample(s): 02-03	Batch: WG1103158-2			
Chromium, Dissolved	105	-	85-115	-	
Dissolved Metals - Mansfield Lab Associated sa	ample(s): 02-03	Batch: WG1103160-2			
Iron, Dissolved	99	-	85-115	-	
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1103312-2			
Mercury, Total	107	-	85-115	-	

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number: L1811047

Report Date: 04/04/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qua	Recovery al Limits	RPD C	RPD Qual Limits
Fotal Metals - Mansfield Lab 023	o Associated sam	nple(s): 01-03	QC Bato	ch ID: WG110	2936-3	QC Sam	nple: L1811047-01	Client ID: RE	CEIVING	WATERS CSO
Antimony, Total	ND	0.5	0.5239	105		-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1343	112		-	-	70-130	-	20
Barium, Total	0.05854	2	2.023	98		-	-	70-130	-	20
Beryllium, Total	ND	0.05	0.05278	106		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05656	111		-	-	70-130	-	20
Chromium, Total	0.00104	0.2	0.2164	108		-	-	70-130	-	20
Lead, Total	0.00133	0.51	0.5158	101		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5495	110		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1332	111		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04724	94		-	-	70-130	-	20
Thallium, Total	ND	0.12	0.1147	96		-	-	70-130	-	20
Vanadium, Total	ND	0.5	0.5429	108		-	-	70-130	-	20
Zinc, Total	0.01381	0.5	0.5799	113		-	-	70-130	-	20

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-03	QC Bat	ch ID: WG1102936-	5 QC Sam	nple: L1811085-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.6002	120	-	-	70-130	-	20
Arsenic, Total	0.00402	0.12	0.1438	116	-	-	70-130	-	20
Barium, Total	0.1426	2	2.220	104	-	-	70-130	-	20
Beryllium, Total	ND	0.05	0.05082	102	-	-	70-130	-	20
Cadmium, Total	0.00028	0.051	0.05642	110	-	-	70-130	-	20
Chromium, Total	0.00228	0.2	0.2226	110	-	-	70-130	-	20
Lead, Total	0.01257	0.51	0.5660	108	-	-	70-130	-	20
Nickel, Total	0.01230	0.5	0.5589	109	-	-	70-130	-	20
Selenium, Total	0.00699	0.12	0.1428	113	-	-	70-130	-	20
Silver, Total	ND	0.05	0.04574	91	-	-	70-130	-	20
Thallium, Total	ND	0.12	0.1161	97	-	-	70-130	-	20
Vanadium, Total	ND	0.5	0.5631	113	-	-	70-130	-	20
Zinc, Total	0.02685	0.5	0.5788	110	-	-	70-130	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-03	QC Bat	ch ID: WG1102937-	3 QC Sam	nple: L1811085-01	Client ID: MS	Sample	
Iron, Total	1.94	1	3.28	134 Q	-	-	75-125	-	20
otal Hardness by SM 2340B	B - Mansfield La	b Associated	sample(s)): 01-03 QC Batch	ID: WG1102	.937-3 QC Samp	le: L1811085-0	1 Client II	D: MS Samp
Hardness	940	66.2	1070	196 Q	-	-	75-125	-	20
bissolved Metals - Mansfield	Lab Associated	d sample(s): 0	2-03 Q0	C Batch ID: WG1103	158-3 QC	Sample: L1811047	7-03 Client ID:	MW-3	
Chromium, Dissolved	ND	0.2	0.2276	114	-	-	70-130	-	20

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield La	ab Associated	l sample(s):	02-03 Q	C Batch ID: WG110	3160-3 QC	Sample: L181104	47-03 Client ID:	MW-3	
Iron, Dissolved	ND	1	0.993	99	-	-	75-125	-	20
Total Metals - Mansfield Lab As	ssociated sam	nple(s): 01	QC Batch	ID: WG1103312-3	QC Sample	: L1811047-01	Client ID: RECEI	VING W	ATERS CSO-023
Mercury, Total	ND	0.005	0.00499	100	-	-	70-130	-	20

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-023	03 QC Batch ID:	WG1102936-4 QC Sample:	L1811047-01	Client ID:	RECEIVING WATERS CSO-
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Barium, Total	0.05854	0.05226	mg/l	11	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	0.00104	ND	mg/l	NC	20
Lead, Total	0.00133	0.00122	mg/l	9	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Thallium, Total	ND	ND	mg/l	NC	20
Vanadium, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.01381	0.01215	mg/l	13	20
Total Metals - Mansfield Lab Associated sample(s): 01-023	03 QC Batch ID:	WG1102936-4 QC Sample:	L1811047-01	Client ID:	RECEIVING WATERS CSO
Beryllium, Total	ND	ND	mg/l	NC	20

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	-03 QC Batch ID: W	G1102936-6 QC Sample:	L1811085-01	Client ID:	: DUP Sample
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	0.00402	0.00420	mg/l	4	20
Cadmium, Total	0.00028	0.00030	mg/l	8	20
Chromium, Total	0.00228	0.00252	mg/l	10	20
Lead, Total	0.01257	0.01647	mg/l	27	Q 20
Nickel, Total	0.01230	0.01284	mg/l	4	20
Selenium, Total	0.00699	0.00697	mg/l	0	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.02685	0.02772	mg/l	3	20
otal Metals - Mansfield Lab Associated sample(s): 01	-03 QC Batch ID: W	G1102937-4 QC Sample:	L1811085-01	Client ID:	DUP Sample
Iron, Total	1.94	2.05	mg/l	6	20
otal Hardness by SM 2340B - Mansfield Lab Associat	ed sample(s): 01-03	QC Batch ID: WG1102937	'-4 QC Samp	le: L18110	085-01 Client ID: DUP
Hardness	940	976	mg/l	4	20
issolved Metals - Mansfield Lab Associated sample(s): 02-03 QC Batch II	D: WG1103158-4 QC Sar	nple: L181104	7-03 Clier	nt ID: MW-3
Chromium, Dissolved	ND	ND	mg/l	NC	20
issolved Metals - Mansfield Lab Associated sample(s): 02-03 QC Batch II	D: WG1103160-4 QC Sar	nple: L181104	7-03 Clier	nt ID: MW-3
Iron, Dissolved	ND	ND	mg/l	NC	20

Project Name: 50 SYMPHONY ROAD Batch Quality Control
Project Number: 50 SYMPHONY ROA

Lab Number:

L1811047

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG11033	312-4 QC Sample:	L1811047-01	Client ID:	RECEIVING WATERS CSO-023
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

03/30/18 07:20

Date Collected:

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

SAMPLE RESULTS

Lab ID: L1811047-01

Client ID: RECEIVING WATERS CSO-023 Date Received: 03/30/18
Sample Location: 50 SYMPHONY ROAD Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Alkalinity, Total	27.3	mg	CaCO3/L	2.00	NA	1	-	04/02/18 09:41	121,2320B	BR
Solids, Total Dissolved	410		mg/l	10		1	-	04/03/18 14:05	121,2540C	DW
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	04/03/18 12:35	121,2540D	JT
Cyanide, Total	ND		mg/l	0.005		1	04/01/18 16:00	04/02/18 10:46	121,4500CN-CE	LH
pH (H)	7.2		SU	-	NA	1	-	03/30/18 23:00	121,4500H+-B	CW
Nitrogen, Ammonia	ND		mg/l	0.075		1	04/03/18 02:00	04/03/18 19:27	121,4500NH3-BH	H ML
TPH, SGT-HEM	ND		mg/l	4.00		1	04/03/18 18:00	04/03/18 23:30	74,1664A	MM
Chromium, Hexavalent	ND		mg/l	0.010		1	03/30/18 21:55	03/30/18 22:12	1,7196A	CW
Anions by Ion Chromato	graphy - Wes	tborough L	.ab							
Chloride	186.		mg/l	12.5		25	-	04/04/18 04:51	44,300.0	JT

03/30/18 09:40

Date Collected:

Project Name: Lab Number: 50 SYMPHONY ROAD L1811047 Project Number: **Report Date:** 04/04/18 **50 SYMPHONY ROAD**

SAMPLE RESULTS

Lab ID: L1811047-02

Client ID: MW-1

Date Received: 03/30/18 Not Specified Sample Location: 50 SYMPHONY ROAD Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal)								
Cyanide, Total	ND		mg/l	0.005		1	04/01/18 16:00	04/02/18 10:48	121,4500CN-CE	LH
Nitrogen, Ammonia	9.74		mg/l	0.075		1	04/03/18 02:00	04/03/18 19:28	121,4500NH3-BH	ML
TPH, SGT-HEM	ND		mg/l	4.00		1	04/03/18 18:00	04/03/18 23:30	74,1664A	MM
Chromium, Hexavalent	ND		mg/l	0.010		1	03/30/18 21:55	03/30/18 22:13	1,7196A	CW
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	850.		mg/l	12.5		25	-	04/04/18 01:03	44,300.0	JR

03/30/18 09:03

Date Collected:

Project Name: Lab Number: 50 SYMPHONY ROAD L1811047 Project Number: **Report Date:** 04/04/18 **50 SYMPHONY ROAD**

SAMPLE RESULTS

Lab ID: L1811047-03

Client ID: MW-3

Date Received: 03/30/18 Not Specified Sample Location: 50 SYMPHONY ROAD Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ıb								
Cyanide, Total	ND		mg/l	0.005		1	04/01/18 16:00	04/02/18 10:49	121,4500CN-CE	LH
Nitrogen, Ammonia	2.21		mg/l	0.075		1	04/03/18 02:00	04/03/18 19:28	121,4500NH3-BH	l ML
TPH, SGT-HEM	ND		mg/l	4.00		1	04/03/18 18:00	04/03/18 23:30	74,1664A	MM
Chromium, Hexavalent	ND		mg/l	0.010		1	03/30/18 21:55	03/30/18 22:13	1,7196A	CW
Anions by Ion Chromato	graphy - Wes	stborough	Lab							
Chloride	398.		mg/l	12.5		25	-	04/04/18 01:15	44,300.0	JR

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number: L1811047 **Report Date:** 04/04/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualit	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab for	sample(s): 01-	-03 Ba	tch: WC	G1102235-1	1			
Chromium, Hexavalent	ND	mg/l	0.010		1	03/30/18 21:55	03/30/18 22:12	1,7196A	CW
General Chemistry - We	estborough Lab for	sample(s): 01-	-03 Ba	tch: WC	91102477-	1			
Cyanide, Total	ND	mg/l	0.005		1	04/01/18 16:00	04/02/18 10:22	121,4500CN-CE	LH
General Chemistry - We	estborough Lab for	sample(s): 01	Batch	: WG11	02563-1				
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	04/02/18 09:41	121,2320B	BR
General Chemistry - We	estborough Lab for	sample(s): 01-	-03 Ba	tch: WC	G1102827-	1			
Nitrogen, Ammonia	ND	mg/l	0.075		1	04/03/18 02:00	04/03/18 19:09	121,4500NH3-BH	H ML
General Chemistry - We	estborough Lab for	sample(s): 01	Batch	: WG11	02897-1				
Solids, Total Dissolved	ND	mg/l	10		1	-	04/03/18 14:05	121,2540C	DW
General Chemistry - We	estborough Lab for	sample(s): 01	Batch	: WG11	02916-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	04/03/18 12:35	121,2540D	JT
General Chemistry - We	estborough Lab for	sample(s): 01-	-03 Ba	tch: WC	G1103169-1	1			
TPH, SGT-HEM	ND	mg/l	4.00		1	04/03/18 18:00	04/03/18 23:30	74,1664A	MM
Anions by Ion Chromato	ography - Westboro	ugh Lab for sa	mple(s)	: 02-03	Batch: W	/G1103265-1			
Chloride	ND	mg/l	0.500		1		04/04/18 02:15	44,300.0	JR
Anions by Ion Chromato	ography - Westboro	ugh Lab for sa	mple(s)	: 01 B	atch: WG1	103429-1			
Chloride	ND	mg/l	0.500		1	-	04/04/18 04:03	44,300.0	JT

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047 04/04/18

Report Date:

Parameter	LCS %Recovery Qı	LCSD ual %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01	-03 Batch: WG1102235	i-2		
Chromium, Hexavalent	97	-	85-115	-	20
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1102257-1			
рН	100	-	99-101	-	5
General Chemistry - Westborough Lab A	Associated sample(s): 01	-03 Batch: WG1102477	7-2		
Cyanide, Total	98	-	90-110	-	
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1102563-2			
Alkalinity, Total	102	-	90-110	-	10
General Chemistry - Westborough Lab A	Associated sample(s): 01	-03 Batch: WG1102827	7-2		
Nitrogen, Ammonia	92	-	80-120	-	20
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1102897-2			
Solids, Total Dissolved	97	-	80-120	-	
General Chemistry - Westborough Lab A	Associated sample(s): 01	-03 Batch: WG1103169)-2		
TPH	82	-	64-132	-	34

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Westbord	ough Lab Associated sai	mple(s): 02-03 Batch: Wo	G1103265-2		
Chloride	93	-	90-110	-	
Anions by Ion Chromatography - Westboro	ough Lab Associated sal	mple(s): 01 Batch: WG11	103429-2		
Chloride	93	-	90-110	-	

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date: 04/04/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recov Qual Limi	- ,	RPD Qual Limits
General Chemistry - Westbo WATERS CSO-023	orough Lab Associ	ated samp	ole(s): 01-03	QC Batch II	D: WG11	02235-4	QC Sample:	L1811047-01	Client ID:	RECEIVING
Chromium, Hexavalent	ND	0.1	0.095	95		-	-	85-11	5 -	20
General Chemistry - Westbe	orough Lab Associ	ated samp	ole(s): 01-03	QC Batch II	D: WG11	02477-4	QC Sample:	L1811085-02	Client ID:	MS Sample
Cyanide, Total	0.016	0.2	0.201	92		-	-	90-11	0 -	30
General Chemistry - Westbe	orough Lab Associ	ated samp	ole(s): 01 C	C Batch ID: V	NG11025	63-4 Q	C Sample: L18	810901-02 C	lient ID: M	S Sample
Alkalinity, Total	94.8	100	195	100		-	-	86-11	6 -	10
General Chemistry - Westbo	orough Lab Associ	ated samp	ole(s): 01-03	QC Batch II	D: WG11	02827-4	QC Sample:	L1810631-01	Client ID:	MS Sample
Nitrogen, Ammonia	ND	4	3.68	92		-	-	80-12	0 -	20
General Chemistry - Westb	orough Lab Associ	ated samp	ole(s): 01-03	QC Batch II	D: WG11	03169-4	QC Sample:	L1810865-01	Client ID:	MS Sample
TPH	ND	20	15.4	77		-	-	64-13	2 -	34
Anions by Ion Chromatogra	phy - Westborough	n Lab Asso	ociated samp	ole(s): 02-03	QC Bato	h ID: WG	1103265-3	QC Sample: L	1811047-02	Client ID: MV
Chloride	850	100	954	105		-	-	90-11	0 -	18
Anions by Ion Chromatogra RECEIVING WATERS CSC	•	n Lab Asso	ociated samp	ole(s): 01 QC	C Batch II	D: WG110	3429-3 QC	Sample: L181	1047-01 (Client ID:
Chloride	186	100	257	71	Q	-	-	90-11	0 -	18

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

Parameter	Nat	ive Sample	Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab WATERS CSO-023	Associated sample(s):	01-03 QC Batch	ID: WG1102235-3	QC Sample: I	L1811047-0 ⁻	1 Client ID:	RECEIVING
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1102257-2 (QC Sample: L18	11085-01 C	Client ID: DI	JP Sample
рН		6.8	6.8	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s):	01-03 QC Batch	ID: WG1102477-3	QC Sample: I	L1811085-0	1 Client ID:	DUP Sample
Cyanide, Total		0.010	0.014	mg/l	38	Q	30
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1102563-3 (QC Sample: L18	10901-01 C	Client ID: DI	JP Sample
Alkalinity, Total		139	140	mg CaCO3/L	1		10
General Chemistry - Westborough Lab	Associated sample(s):	01-03 QC Batch	ID: WG1102827-3	QC Sample: I	L1810631-0 ⁻	1 Client ID:	DUP Sample
Nitrogen, Ammonia		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1102897-3 (QC Sample: L18	10768-01 C	Client ID: DI	JP Sample
Solids, Total Dissolved		960	980	mg/l	2		10
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1102916-2	QC Sample: L18	11041-01 C	Client ID: DI	JP Sample
Solids, Total Suspended		87	90	mg/l	3		29
General Chemistry - Westborough Lab WATERS CSO-023	Associated sample(s):	01-03 QC Batch	ID: WG1103169-3	QC Sample: I	L1811047-01	1 Client ID:	RECEIVING
TPH, SGT-HEM		ND	ND	mg/l	NC		34

Project Name: 50 SYMPHONY ROAD **Project Number:** 50 SYMPHONY ROAD

Lab Number:

L1811047

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Anions by Ion Chromatography - Westborough Lab	Associated sample(s): 02-03	QC Batch ID: WG110	03265-4	QC Sample: L	1811047-02 Client ID: MW-1
Chloride	850	850	mg/l	0	18
Anions by Ion Chromatography - Westborough Lab RECEIVING WATERS CSO-023	Associated sample(s): 01 C	QC Batch ID: WG11034	29-4 QC	C Sample: L181	1047-01 Client ID:
Chloride	186	186	mg/l	0	18

Project Name: 50 SYMPHONY ROAD Project Number: 50 SYMPHONY ROAD

Lab Number: L1811047 **Report Date:** 04/04/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1811047-01A	Vial Na2S2O3 preserved	Α	NA		5.0	Υ	Absent		624(7)
	L1811047-01B	Vial Na2S2O3 preserved	Α	NA		5.0	Υ	Absent		624(7)
	L1811047-01C	Vial Na2S2O3 preserved	Α	NA		5.0	Υ	Absent		624(7)
	L1811047-01D	Plastic 120ml unpreserved	Α	7	7	5.0	Υ	Absent		CL-300(28),PH-4500(.01)
	L1811047-01E	Plastic 250ml unpreserved/No Headspace	Α	NA		5.0	Υ	Absent		ALK-T-2320(14)
	L1811047-01F	Plastic 250ml NaOH preserved	Α	>12	>12	5.0	Υ	Absent		TCN-4500(14)
	L1811047-01G	Plastic 250ml HNO3 preserved	Α	<2	<2	5.0	Y	Absent		CD-2008T(180),NI-2008T(180),BE-2008T(180),ZN-2008T(180),FE-UI(180),HARDU(180),V-2008T(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),BA-2008T(180),CR-2008T(180),PB-2008T(180),SB-2008T(180),TL-2008T(180)
	L1811047-01G1	Plastic 250ml HNO3 preserved	Α	<2	<2	5.0	Y	Absent		CD-2008T(180),NI-2008T(180),BE-2008T(180),ZN-2008T(180),FE-UI(180),HARDU(180),V-2008T(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),BA-2008T(180),CR-2008T(180),PB-2008T(180),SB-2008T(180),TL-2008T(180)
	L1811047-01H	Plastic 500ml H2SO4 preserved	Α	<2	<2	5.0	Υ	Absent		NH3-4500(28)
	L1811047-01I	Plastic 950ml unpreserved	Α	7	7	5.0	Υ	Absent		TSS-2540(7)
	L1811047-01J	Amber 1000ml unpreserved	Α	7	7	5.0	Υ	Absent		HEXCR-7196(1)
	L1811047-01K	Amber 1000ml unpreserved	Α	7	7	5.0	Υ	Absent		TDS-2540(7)
	L1811047-01L	Amber 1000ml HCl preserved	В	NA		4.6	Υ	Absent		TPH-1664(28)
	L1811047-01M	Amber 1000ml HCl preserved	В	NA		4.6	Υ	Absent		TPH-1664(28)
	L1811047-01N	Amber 1000ml unpreserved	В	7	7	4.6	Υ	Absent		PCB-608(7)
	L1811047-01O	Amber 1000ml unpreserved	В	7	7	4.6	Υ	Absent		PCB-608(7)
	L1811047-01P	Amber 1000ml Na2S2O3	В	7	7	4.6	Υ	Absent		PESTICIDE-608(7)

Serial_No:04041817:03 *Lab Number:* L1811047

Report Date: 04/04/18

Project Name: 50 SYMPHONY ROADProject Number: 50 SYMPHONY ROAD

Container Information			Initial	Final	Temp			Frozen				
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)			
L1811047-01Q	Amber 1000ml Na2S2O3	В	7	7	4.6	Υ	Absent		PESTICIDE-608(7)			
L1811047-01R	Amber 1000ml unpreserved	В	7	7	4.6	Υ	Absent		8270TCL(7),8270TCL-SIM(7)			
L1811047-01S	Amber 1000ml unpreserved	В	7	7	4.6	Υ	Absent		8270TCL(7),8270TCL-SIM(7)			
L1811047-02A	Plastic 250ml unpreserved	В	7	7	4.6	Υ	Absent		-			
L1811047-02D	Plastic 60ml unpreserved	В	7	7	4.6	Υ	Absent		CL-300(28)			
L1811047-02F	Plastic 250ml NaOH preserved	В	>12	>12	4.6	Υ	Absent		TCN-4500(14)			
L1811047-02G	Plastic 250ml HNO3 preserved	В	<2	<2	4.6	Υ	Absent		FE-UI(180),CR-2008T(180)			
L1811047-02H	Plastic 500ml H2SO4 preserved	В	<2	<2	4.6	Υ	Absent		NH3-4500(28)			
L1811047-02J	Amber 1000ml unpreserved	В	7	7	4.6	Υ	Absent		HEXCR-7196(1)			
L1811047-02L	Amber 1000ml HCl preserved	В	NA		4.6	Υ	Absent		TPH-1664(28)			
L1811047-02M	Amber 1000ml HCl preserved	В	NA		4.6	Υ	Absent		TPH-1664(28)			
L1811047-02X	Plastic 120ml HNO3 preserved Filtrates	В	NA		4.6	Υ	Absent		CR-2008S(180),FE-RI(180)			
L1811047-03A	Plastic 250ml unpreserved	В	7	7	4.6	Υ	Absent		-			
L1811047-03D	Plastic 60ml unpreserved	В	7	7	4.6	Υ	Absent		CL-300(28)			
L1811047-03F	Plastic 250ml NaOH preserved	В	>12	>12	4.6	Υ	Absent		TCN-4500(14)			
L1811047-03G	Plastic 250ml HNO3 preserved	В	<2	<2	4.6	Υ	Absent		FE-UI(180),CR-2008T(180)			
L1811047-03H	Plastic 500ml H2SO4 preserved	В	<2	<2	4.6	Υ	Absent		NH3-4500(28)			
L1811047-03J	Amber 1000ml unpreserved	В	7	7	4.6	Υ	Absent		HEXCR-7196(1)			
L1811047-03L	Amber 1000ml HCl preserved	В	NA		4.6	Υ	Absent		TPH-1664(28)			
L1811047-03M	Amber 1000ml HCl preserved	В	NA		4.6	Υ	Absent		TPH-1664(28)			
L1811047-03X	Plastic 120ml HNO3 preserved Filtrates	В	NA		4.6	Υ	Absent		CR-2008S(180),FE-RI(180)			

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

В

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:50 SYMPHONY ROADLab Number:L1811047Project Number:50 SYMPHONY ROADReport Date:04/04/18

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Page 1 of 1

Published Date: 1/8/2018 4:15:49 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

CHAIN OF C		CUSTO	DY	PAGE 1 OF	2	Date	Date Recid in Lab. 3/30//8								ALPHA Job#: 4811047						
ALPHI	Project Infor	mation	1966	THE SE	Re	Report Information Data Deliverables							Billing Information								
World Class Chees							☐ FAX ☐ EMAIL								Same	as Clier	nt info	PO #:			
Westborough, MA	Mansfield, MA	One in the last	NAME OF THE PARTY				☐ ADEx ☐ Add'l Deliverables														
	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	ly Road					equir	emen	ts/Re	port	Limits	s and the same same same								
Client Informati	EX EUROSE DE LOS DE LOS	Project Location	n: 50 Symph	ony Road		State/Fed Program MA MCP and EPA RGP							GW-		Fresh	water		_			
Client: FSL Associ		Project #: 50 Sy				(000000000	N 62 36 1	SECTION.	C. Section 1	/E CE	RTAI	NTY-	CT R	Chargonesis	SUBMISSION	IODINISTATION	EDISORS MANAGE	DENCE PROTOCO	OLS		
Address: 358 Ches	tnut Hill Ave, 1st Floor	Project Manage	The second second	1000					☐ No		_					equired'					
Boston, MA 02135		ALPHA Quote #	N-200-000-00-00				ALYS		NO NO	_	Are	CIRC	P (Rea	sonable	e Conti	dence	Protoco	ls) Required?	T		
Phone: (617) 232-0	0001	Turn-Around	Time	37			T	T							1.0	Т	Т	SAMPLE HANDLING	0 1		
Fax: (617) 232-780	0	_ Standard	⊠ Ru	sh (ONLY IF PR	E-APPROVED)	(e)									 = 5			Filtration Done	A L		
Email: jarod@fslas	sociates.com	_				VOCs (624 and 524.2 for Acetone)						,)			and.			Lab to do Preservation	#		
☐ These samples have	been Previously analyzed by Alpha	Due Date: ASA	P Time:			for A					13				Inon.	1			B O T		
	ecific Requirements/Comment										8	(B0				En		☐ Lab to do (Please specify	T L E S		
before analysis	ed Iron and Chromium III, lab to fil					Dt 55	7		L _A		4110	1450	1	8)	14 Metals,	Trom	X	below)			
\$ Hexavalento	Chromium, samples me	re collected at the times				24 ar	SIM)	2	,		Chloride (SM 4110B)	(SN	4A)	Pesticides (608)	4 4	i C	68				
	indirated below.					9) s	Cs	SVOCs (SIM) Alkalinity	ness	1	ride	onia	TPH (1664A)	cide	I MC		(608)				
ALPHA Lab ID (Lab Use Only)	Sample ID	0.00000	ection	Sample Matrix	Sampler's	000	SVO	Alkalinity	Hardness	표	Chlo	Ammonia (SM 4500B)	TPH	Pesti	Total MCP	Hexavalent Chromium	PCBs	Sample Specific Comments			
11047-01		Date	Time	TO THE SECOND	Initials	_		1	1	57		IC2	100	1	1 67	1 67	ki i				
02	Receiving Waters CSO-023	03/30/18	9:40	GW	JC					×	M		Ø				Ø		_		
03	MW-1 MW-3	03/30/18	9.03	GW	JC	H	H	片	H	H				분	H		H				
,	MVV-3	03/30/16	1.07	GW	JC	H	H	H	H	H				片	H	H	片		-		
						Ħ	Ħ	Ħ	Ħ	Ħ	H	H	H	H	H	H	H		+-		
												ī	$\overline{}$	ī	ŏ	H	Ħ		+		
PLEASE ANSWER QUESTIONS ABOVE			Container Type		-			2		*	4	2	*	100	40.	ű.					
IC VOUD	DDOLEGE		7		Preservative	*	*	*	5		•	•		•	٠		7	Please print clearly, legible and completely. Samples not be logged in and	s can		
	PROJECT	1//	Religio	quished By		1 Da	te/Time			. /	Receive	ed By:			- 7	ate/Tim	e	turnaround time clock will start until any ambiguities			
FORM NO 01-01m	or CT RCP?	De	M.	1000		3/3/	131	5	KIG.	M-	M	m	1	-	3/3/		27	resolved. All samples submitted are subject to			
Com S-JAN-12)		124-1	MM				11	18	1 XDomille / Het						0130	118	Alpha's Payment Terms.				

	CUSTODY PAGE 2 OF 2				Date Rec'd in Lab: 3/30/18								ALPHA Job#: 181047							
ALPHA	4	Project Infor	mation	Harles.	ALC: U	Report Information Data Deliverables							oles							
ANALYTIO	CONTRACTOR OF THE PARTY OF THE						FAX			⊠ E	EMAIL				Same	as Clier	nt info	PO#:		
Westborough, MA			SE SE	400 50		ADEX				Add'l De	liverat	oles								
TEL: 508-898-9220 FAX: 508-898-9193	Project Name:	Project Name: 50 Symphony Road				Regulatory Requirements/Report Limits								ts						
Client Information	Project Locatio	n: 50 Symph	ony Road		1	MCP a					_		Criteria GW-1; RGP Freshwater							
Client: FSL Associa	Project #: 50 S		11512		10000000	CURPICISION	SHOOMSON	AND DESCRIPTION OF THE PERSONS ASSESSMENT	/E CE	RTAIN	ITY-0	CT R	EASONABLE CONFIDENCE PROTOCOLS							
	tnut Hill Ave, 1st Floor	Project Manage				-	Yes		☐ No					al Meth		_				
Boston, MA 02135	BIOCTINI AVC, 1 TIOUT	ALPHA Quote		irrioyei		-			⊠ No		Are C	T RC	P (Rea	sonable	e Confi	dence	Protoco	ols) Required?	10.70	
Phone: (617) 232-0	001	Turn-Around	A second	15.28	W. B. W.	AN	IALYS	515	T	1						_	_	SAMPLE HANDLING	O T	
Pagasa Missa vanarana aking		The state of the s	w 5.00%	A.	Carrier Control	-3			3	100								Filtration	A	
Fax: (617) 232-7800	AND REPORTED AND LINE	_ Standard	⊠ Ru	sh (ONLY IF PR	RE-APPROVED)	200.	1		-0	-0								☐ Done ☐ Not Needed		
Email: jarod@fslass	been Previously analyzed by Alpha	Due Date: ASA	P Time:			=	min	1	3	100								☐ Lab to do Preservation	B 0	
(ATT)	ecific Requirements/Commen		E. 5000050			- iniu	l i	2	3	0								☐ Lab to do	T	
	d Iron and Chromium III, lab to fi					hror	Pug	900	100	-0								(Please specify below)	E S	
before analysis.		,			l b	100	M 45	500	~									3		
						on a	l pa	e (S	Sus	0									1	
ALPHA Lab ID	Sample ID	Collection Sample Sampler's			Dissolved from and Chromium III (200.8) bussolved from and Chromium III (200.8) cyanide (SM 4500-CN) cyanide (SM 4															
(Lab Use Only)	Gampie 15	Date Time		Matrix Initials		٩	0		10	0 0								Sample Specific Comments		
11047 -01	Receiving Waters CSO-023	03/30/18	7:20	GW	JC	\vdash			×	X										
60	MW-1	03/30/18	9:40	GW	JC	X	\boxtimes													
03	MW-3	03/30/18	9:03	GW	JC		\boxtimes													
E-WHITE																				
					-			닏	닏											
		_									Ц									
					-	H	H	片	님	H	뷔	님	片	H	片	님	님			
						Н	H	片	H	片	H	님	片		片	H	님			
DI EASE ANSWED C	WESTIONS ABOVE				_			ш	П		니	ш	П		П	П	П			
PLEASE ANSWER C	OESTIONS ABOVE				ntainer Type Preservative				-	-				-	-		-	Please print clearly, legible		
IS VOUR	PROJECT	1	/ / Rall K	ly/shed-By:	rieservative		ate/Time				Donelius	d Du			- 4	ala T		and completely. Samples not be logged in and	s can	
	or CT RCP?	1/1	110	7		2/20	enter mark		IL	M	Receive	SA			16.	ate/Tin	7/1-	turnaround time clock will start until any ambiguities		
FORM NO. 01-01(1)	UI OI KUPI	HS	M_			3/30/	P	1741	T	OMI	1000	W	bell	7	3/3	0)18	TIL	resolved. All samples submitted are subject to Alpha's Payment Terms.		
001 2-200-12)	17/				3/30/12 My Bamille						51001181119						-prior rayment railia.			

APPENDIX D – BEST MANAGEMENT PRACTICE PLAN

Environmental Engineering, Civil Engineering Forensic Engineering, Construction Services

Environmental Engineering

Forensic Engineering

Civil Engineering

Construction Services

Best Management Practice Plan (BMPP)

On behalf of 50 Symphony LLC, FSL Associates, Inc. ("FSL") has prepared a Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 for the discharge of construction dewatering effluent into the Charles River via the City of Boston storm drainage system. The NOI has been submitted to the United States Environmental Protection Agency (US EPA) and the Boston Water and Sewer Commission (BWSC) for their approval. Temporary construction dewatering discharge is scheduled to occur during the construction of the 5-story residential building with basement. The subject site address is 50 Symphony Road in the Fenway neighborhood of Boston, Massachusetts. This Best Practice Management Plan (BMPP) has been prepared as an appendix to the RGP and shall be posted onsite for the duration of temporary construction dewatering activities.

GROUNDWATER TREATMENT AND DISCHARGE

Dewatering activities are anticipated to be required based upon the maximum depth of excavation (12 feet bgs) and the high groundwater level measured on the subject site during assessment activities (5.2 feet bgs). On-site recharge of groundwater collected during construction activities is anticipated to be unfeasible. Therefore, groundwater will be required to be discharged off-site via the municipal storm drain. Prior to discharge to the storm drain, groundwater must be treated. During construction and excavation activities for the proposed building foundation, dewatering effluent is anticipated to be pumped from a localized sump from within the excavation directly into an Oil Water Separator (OWS) tank. The effluent will flow through the remainder of the treatment system (which contains separate components for bag filters, organoclay media, and liquid-phase activated carbon adsorbers) in order to be discharged to the storm drain via hoses or piping connected into the storm drain.

The primary discharge point for groundwater from this construction dewatering project is the nearest storm drain grate to the northwest of the subject site (located at latitude and longitude coordinates 42.343015 West and 71.088971 West). The BWSC indicates that the storm drainage system that services Symphony Road ultimately discharges via Outfall No. CSO-023 into the Charles River. Groundwater samples from the subject site and also from the Charles River (in the vicinity of Outfall No. CSO-023) have been collected and analyzed prior to EPA's and BWSC's approval of construction dewatering from this construction project. Continuous monitoring of the influent and effluent of the treatment system must be conducted for the duration of temporary dewatering activities in accordance with the schedule described below.

Office: (617) 232-0001

358 Chestnut Hill Avenue, Boston, MA 02135

Fax: (617) 232-7800

GROUNDWATER DISCHARGE MONITORING REQUIRED BY THE RGP

Sampling and analysis of the groundwater from the construction dewatering project into the treatment system ("influent") and exiting the treatment system ("effluent") is required to be conducted at predetermined intervals in accordance with the RGP regulations. During the first week of discharge, the operator will sample the untreated effluent and treated effluent two (2) times: one (1) sample of the untreated influent and one (1) sample of the treated effluent will be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples will be analyzed in accordance with 40 CFR Part 136 unless otherwise specified by the RGP, with a maximum 5-day turnaround time and results will be reviewed no more than 48 hours from receipt of the results of each sampling event. After the first week, samples will be analyzed with up to a ten (10)-day turnaround time and the results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as designed and achieving the effluent limitations outlined in the RGP, ongoing sampling and analysis shall be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours following initial sampling, and monthly as described below. Any adjustments/reductions in monitoring frequency must be approved by the EPA in writing.

In accordance with Part 4.1 of the RGP, the operator will perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5) consecutive months prior to submission of any request for modification of monitoring frequency.

The dewatering activity for this project is classified as Category I: Petroleum-Related Site Remediation. Monitoring shall include analysis of influent and effluent for contaminants specified by the EPA.

Additional monitoring shall include inspecting the condition of the treatment system, assessing the need for treatment system adjustments based upon monitoring data, observing and recording the daily flow rates and discharge quantities, and verifying and recording the flow path of the discharged effluent.

Flow shall be maintained below the "proposed maximum effluent flow" and "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. The total monthly flow shall be monitored by checking and documenting the flow through the flow meter that is to be installed on the system. Monthly monitoring reports shall be compiled and maintained at the site.

TREATMENT SYSTEM MAINTENANCE

The treatment system must be inspected and regular maintenance performed in order to ensure that all components are operating properly. Qualified personnel must perform all operation and maintenance. The operator should be familiar with process piping, electrical controls and components, and filtration components and filtration replacement, and all other components. Regular maintenance will include checking the condition of the treatment system equipment such as the oil water separate tank, bag filters, activated carbon chambers, organoclay chamber, hoses, pumps, and flow meters. Equipment shall be monitored daily for potential issues and unscheduled maintenance requirements. Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

MANAGEMENT OF TREATMENT SYSTEM WASTE

Dewatering effluent will be pumped directly into the treatment system from the excavation using hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or material storage that may be possible sources of pollution away from any dewatering activities, to the extent possible.

Waste materials generated from the dewatering treatment system must be characterized and removed from the site for disposal at an approved licensed receiving facility. Bag filters shall be replaced/disposed of as necessary.