

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

2 July 2018 File No. 34250-844

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

Attention: Ms. Shelley Puleo; EPA/OEP RGP Applications Coordinator

Subject: Temporary Construction Dewatering

50 Rogers Street

Cambridge, Massachusetts

Dear Ms. Puleo:

On behalf of our client, ARE-MA No. 62, LLC (ARE), Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during building construction activities at the proposed 50 Rogers Street development (the "site"), located in Cambridge, Massachusetts (See Figure 1). The information presented herein has been prepared to follow requirements of the 2017 US Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) General Remediation General Permit (RGP). A copy of the completed Notice of Intent (NOI) form is enclosed as Appendix A.

EXISTING SITE CONDITIONS

The new development site herein referred to as "50 Rogers Street" consists of two parcels of land at 50 Rogers Street and 161 First Street that will be consolidated and subdivided into two new Lots. The new development (Lot 1) is a 35,006 square feet (sf) parcel of land shown on Figure 2 consisting of a portion of 161 First Street property and the entire 50 Rogers Street property. The current 161 First Street property is occupied by a two-story "Annex" building (to be demolished) connected to a four-story brick building (to remain). The first floor of both buildings is partially below-grade. The remainder of the 161 First Street property consists of at-grade asphalt paved parking and landscaping. Existing site grades at the 161 First Street property range from El. 20.5 to El. 21¹ near Rogers Street to El. 23 to 24 near Binney Street. The 50 Rogers Street parcel is currently an open paved parking lot with existing grades ranging from El. 20 to El. 21.

The site is bordered by Rogers Street to the north, First Street to the east, and Binney Street to the south. An existing building borders the site to the west at 65 Binney Street and is occupied by The Church of Jesus Christ of Latter-day Saints (the Church).

SITE HISTORY

50 Rogers Street

According to the Sanborn Maps, available historical plans, and reports prepared by others as well as Haley & Aldrich project files at and in the vicinity of the subject property, the current 50 Rogers Street property was formerly marshlands associated with the Charles River until about 1888. The area was filled in the 1890s. The 50 Rogers Street property remained undeveloped until the 1930s, when a building was first constructed in the southern portion of the parcel. A.F. Boiler Works occupied this building until the 1960s. The building was demolished in the 1960s or 1970s and converted to a paved parking lot. ARE acquired the parcel consisting of the entire property addressed as 50 Rogers Street in 2007 and maintained the property as a parking lot. In early 2008, the property was subdivided, and the western three-quarters of the lot was sold to the LDS Church, while ARE retained the eastern quarter (approximately 0.23 acres). The use of this parcel remained a paved parking lot until the proposed development.

161 First Street

Previous reports prepared by Environ (previous site consultant) indicate that the first development at 161 First Street included construction of the existing four-story brick building in 1907. A half-basement exists in this building. The 1934 Sanborn map shows the site was occupied by the four-story brick building and other attached buildings. The buildings were used by the Ashton Valve Company which included a foundry for manufacturing of valves, a boiler room, and coal storage area. The 1950 Sanborn map shows the same building layout, however the buildings, with the exception of the foundry still operated by the valve company, housed the Nicholson & Co. glue factory. The 1986 Sanborn map shows the property occupied by the glue factory and a warehouse constructed in the 1970s and used for shipping and receiving located south of the former foundry. The 1990 and 1992 Sanborn maps show the warehouse was demolished, and the site was occupied by the Cuneo Press of New England Inc. (book publishing plant). Records indicate that Lotus Development Corp (spreadsheet software developers) acquired the property in the 1990s and that the basement of the original building was used as a machine shop for design and assembly of active motion control systems. No significant changes to the buildings are noted on the Sanborn Maps in the 1990s and 2000s. The buildings were most recently used for office and laboratory space, until they were vacated in March 2018 for the new development.

ENVIRONMENTAL CONDITIONS AND REGULATORY BACKGROUND

The development property is associated with three Release Tracking Numbers (RTNs) as described below:

161 First Street (RTN 3-25556)

A Class B-2 Response Action Outcome (RAO) Statement was filed for the 161 First Street property by Environ on 22 January 2007, which concluded that no further Response/Remedial Actions are required at the property with the implementation of an Activity and Use Limitation (AUL) to maintain a condition of No Significant Risk. The AUL was implemented on the entire property on 22 January 2007.

50 Rogers Street (RTN 3-27626)

A Class B-1 Response Action Outcome (RAO) Statement was filed for the smaller 50 Rogers Street property on the west side of the current site by Haley & Aldrich in April 2013 to achieve regulatory closure for RTN 3-27626. The MCP Phase II report concluded that current conditions do not pose risk to human health and that MCP Phase III and Phase IV were not necessary to achieve a Permanent Solution.

New Site Development (RTN 3-34863)

Based on the soil precharacterization data from subsurface exploration programs conducted by Haley & Aldrich between November 2017 and March 2018, a new Release Notification Form (RNF) was prepared and submitted to MassDEP on 28 March 2018 for the development site. MassDEP assigned RTN 3-34863 to the site on 29 March 2018 for the presence of Volatile Organic Compounds (VOCs), Semi-volatile Organic Compounds (SVOCs), metals (arsenic, lead, mercury, and zinc), and Total Petroleum Hydrocarbons (TPH) above the applicable MCP Reportable Concentrations for soil (RCS-1). Development activities will be conducted under a Release Abatement Measure (RAM) Plan which has been filed with MassDEP. Upon removal of contaminated soils from the building site, a RAM Completion Report and a Permanent Solution Statement will be filed to achieve regulatory closure for the release.

PROPOSED CONSTRUCTION

The proposed project consists of a six-story residential development with two levels of below-grade parking. The proposed below-grade footprint is approximately 30,000 sf, the approximate limit of which is shown on Figure 2. The building is planned to be supported on concrete footing foundations bearing in the natural inorganic soils (Marine Clay) underlying the site. An interlocking steel sheetpile wall is planned to provide temporary excavation support and groundwater cut-off. Dewatering will be required to allow for construction of the below-grade space in-the-dry. The lowest level floor slab is planned at El. -1.75, approximately 22 ft from current street grades; bottom of excavation for footings is anticipated to range from approximately El. -4 to El. -6, locally deeper excavations will be required for sub-slab pits and structures.

CURRENT GROUNDWATER QUALITY INFORMATION

To evaluate groundwater quality at the site, a groundwater sample was collected obtained from the observation well HA11-01 on 23 November 2011. The sample was submitted to Alpha Analytical, Inc. of Westborough, Massachusetts (Alpha) for analysis of VOCs, Extractable Petroleum Hydrocarbons (EPH), Volatile Petroleum Hydrocarbons (VPH), and dissolved RCRA 8 metals. Results of the analyses indicated concentrations below 2010 NPDES RGP effluent criteria and applicable RCGW-2 Reportable Concentrations.

On 15 December 2017, two groundwater samples were collected from HA-D4 and HA-C2 to evaluate groundwater quality and meet the requirements of the 2017 NPDES RGP NOI, respectively. The sample from HA-D4 was submitted to Alpha for analysis of VOCs, SVOCs, EPH and VPH. The sample from HA-C2 sample was submitted to Alpha Analytical for analysis of VOCs, SVOCs, Total Metals, TPH, pesticides PCBs, TSS, Total Residual Chlorine, Chloride, Total Cyanide, Ammonia, Total Phenolics and hardness.

Results of the analyses indicated concentrations below 2017 NPDES RGP effluent criteria and applicable RCGW-2 Reportable Concentrations.

On 17 April 2018, two groundwater samples were collected from HA-C2 and HA11-01A to evaluate groundwater quality and meet the requirements of the 2017 NPDES RGP NOI, respectively. The samples were submitted to Alpha for analysis of VOCs, EPH and VPH. Results of the analyses indicated concentrations below the calculated 2017 NPDES RGP effluent criteria (see Effluent Criteria Determination section and Appendix B) and applicable RCGW-2 Reportable Concentrations.

The locations of the observation wells are shown on Figure 2. The results of the 2017 and 2018 sampling programs are provided in Table I. Laboratory data reports are included in Appendix H.

ETHANOL SAMPLING

Ethanol sampling was not conducted on the groundwater sample as site history does not suggest that ethanol was stored at the property, nor that a petroleum product containing ethanol was released at the site. Ethanol has been increasingly used in fuels since 2006 (according to the 2016 NOI Fact Sheet), and according to site history, the site has been used as a paved parking lot since the 1960s or 1970s.

RECEIVING WATERS SAMPLING AND DILUTION FACTOR

On 13 April 2018, one sample was collected from the CAM017 outfall location into the Charles River and submitted to Alpha Analytical to be analyzed for hardness, ammonia and total metals. The laboratory data report is enclosed in Appendix H. The results of this sampling program are provided in Table II.

The pH and temperature readings collected in the field were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). It is our understanding that since the receiving water is a freshwater body, salinity does not need to be analyzed on either the effluent water or receiving water.

The seven-day-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by Massachusetts Department of Environmental Protection (MassDEP) on 20 April 2018. We have additionally confirmed with the MassDEP that the dilution factor for the receiving waters is 88.36. The StreamStats Report, Dilution Factor calculations, and confirmation from MassDEP are included in Appendix B.

EFFLUENT CRITERIA DETERMINATION

Groundwater and Receiving Water data were input into the WQBEL Calculation spreadsheet and used to calculate the effluent criteria for the site. Copies of the "EnterData" and "FreshwaterResults" tabs from the excel file provided as an additional resource by EPA are included in Appendix B. The effluent limitations calculated are included for reference in Table I.

DEWATERING SYSTEM AND OFF-SITE DISCHARGE

During construction of the building, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage, and construction-generated water to enable construction in-the-dry. Construction and construction dewatering activities are currently anticipated to be required for a period of up to 12 months. On average, we estimate effluent discharge rates of about 50 to 100 gallons per minute (gpm) or less, with occasional peak flows of approximately 150 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations.

Construction dewatering will include piping and discharging to a storm drain located near the site that discharges into the Charles River through outfall CAM017. The proposed discharge route is shown on Figure 3. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters and other necessary treatment components, to remove suspended solids and undissolved chemical constituents, as shown on Figure 4. The contractor's dewatering submittal documents are included in Appendix D. A Notice of Change (NOC) will be submitted to EPA if additional treatment components need to be mobilized at the site.

DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT ELIGIBILITY REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been established to be present at the project site, and discharges and discharge-related activities are not considered to have the potential to affect historic properties. The discharge is considered to meet Criterion A. Documentation is included in Appendix E.

DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix F. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no listed species or critical habitat have been established to be present within the project action area.

SUPPLEMENTAL INFORMATION

An application for a temporary construction dewatering permit has been submitted to the City of Cambridge by the contractor; a copy of the application is provided in Appendix C. Approval will be received prior to the start of discharge. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is included in Appendix G.

Owner and Operator Information

Owner:

ARE-MA Region No. 62, LLC 400 Technology Square Suite 101 Cambridge, MA 02139 Attn: Bill DePippo

Operator:

Consigli Construction Co, Inc. 266 Summer Street Boston, MA 02210 Attn: Justin Pollard

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,

HALEY & ALDRICH, INC.

Grace Daylor, EIT Engineer

Keith E. Johnson, P.E., LSP

Vice President

Attachments:

Table I — Summary of Groundwater Quality Data

Table II – Summary of Receiving Water Data

Figure 1 - Project Locus

Figure 2 – Site and Subsurface Exploration Location Plan and Limits of RAM Activities

Figure 3 – Proposed Discharge Routes

Figure 4 – Proposed Treatment System Schematic

Appendix A – Notice of Intent (NOI)

Appendix B – Dilution Factor and Effluent Limit Calculations

Appendix C – Copy of City of Cambridge Dewatering Permit Application

Appendix D – Contractor's Dewatering System Schematic

Appendix E – National Register of Historic Places Documentation

Appendix F – Endangered Species Act Documentation

Appendix G – Best Management Practices Plan (BMPP)

Appendix H – Laboratory Data Reports

G:\34250\840 series - 50 Rogers\844 - Dewatering NPDES\2018 NPDES Permit Application\Text\2018-0702-HAI-50 Rogers-NPDES RGP Application-F.docx

TABLE I SUMMARY OF GROUNDWATER QUALITY DATA 50 ROGERS STREET CAMBRIDGE, MA FILE NO. 34250-840

Location Name	MCP 2014		HA-C2	HA-C2	HA-D4	HA11-01A
Sample Name	RCGW-2	2017 NPDES RGP	HA-C2(OW)-NPDES_2017-1215	HA-C2_2018-0417	HA-D4(OW)_2017-1215	HA11-01A_2018-0417
Sample Date	Reportable	Project-Specific	12/15/2017	04/17/2018	12/15/2017	04/17/2018
Lab Sample ID	Concentration	Effluent Limit	L1746498-01	L1813322-01	L1746496-01	L1813322-02
·			11740438-01	11013322-01	L1740430-01	L1013322-02
Volatile Organic Compounds (ug/L)						
SUM of Volatile Organic Compounds	NA	NA	ND	ND	ND	ND
Volatile Organic Compounds SIM (ug/L)						
1,4-Dioxane			ND (3)			
			ì			
Semi-Volatile Organic Compounds (ug/L)		***	ND.			
SUM of Semi-Volatile Organics Compounds	NA	NA	ND	-	ND	-
Semi-Volatile Organic Compounds (SIM) (ug/L)						
1-Methylnaphthalene	NA	NA	0.25	-	-	-
2-Methylnaphthalene	2000	NA	0.26	-	ND (0.1)	-
Acenaphthene	6000	100**	2.3	-	0.48	-
Anthracene	30	100**	0.19	-	0.38	-
Fluoranthene	200	100**	0.86	-	0.71	-
Fluorene	40	100**	0.45	-	0.3	-
Naphthalene	700	20	0.48	-	0.13	-
Phenanthrene	10000	100**	0.94	-	1.3	-
Pyrene	20	100**	0.61	-	0.54	-
SUM of Semi-Volatile Organic Compounds (SIM)	NA	NA	6.34	-	3.84	-
Total Petroleum Hydrocarbons (mg/L)						
Oil and Grease (HEM), Total	_				-	
Petroleum hydrocarbons	5	NA	ND (5.2)	-	-	-
EPH (ug/L)						
C11-C22 Aromatic Hydrocarbons, Adjusted	5000	NA	-	ND (100)	ND (100)	ND (100)
C19-C36 Aliphatic Hydrocarbons	50000	NA	-	ND (100)	ND (100)	ND (100)
C9-C18 Aliphatic Hydrocarbons	5000	NA	-	ND (100)	ND (100)	ND (100)
VPH (ug/L)						
C5-C8 Aliphatic Hydrocarbons, Adjusted	3000	NA		ND (50)	ND (50)	ND (50)
C9-C10 Aromatic Hydrocarbons	4000	NA NA	_	ND (50)	ND (50)	ND (50)
C9-C12 Aliphatic Hydrocarbons, Adjusted	5000	NA NA	_	ND (50)	ND (50)	ND (50)
C3-C12 Aliphatic Hydrocarbons, Adjusted	3000	IVA	-	ND (30)	ND (30)	ND (30)
Total Metals (mg/L)						
Antimony	8	0.206	ND (0.004)	-	-	-
Arsenic	0.9	0.104	ND (0.001)	-	-	-
Cadmium	0.004	0.0102	ND (0.0002)	-	-	-
Chromium	0.3	0.323	ND (0.001)	-	-	-
Chromium III (Trivalent)	0.6	0.323	ND (0.01)	-	-	-
Chromium VI (Hexavalent)	0.3	0.323	ND (0.01)	-	-	-
Copper	100	0.242	ND (0.001)	-	-	-
Cyanide	0.03	0.178	ND (0.005)	-	-	-
Hardness	NA	NA	459	-	-	-
Iron	NA	5	4.99	-	-	-
Lead	0.01	0.16	ND (0.001)	-	-	-
Mercury	0.02	0.000739	ND (0.0002)	-	-	-
Nickel	0.2	1.45	ND (0.002)	-	-	-
Selenium	0.1	0.2358	ND (0.005)	-	-	-
Silver	0.007	0.0351	ND (0.0004)	-	-	-
Zinc	0.9	0.42	ND (0.01)	-	-	-
Pesticides (ug/L)						
1,2-Dibromo-3-chloropropane (DBCP)	NA	NA	ND (0.01)	_	_	-
1,2-Dibromoethane (Ethylene Dibromide)	2	NA	ND (0.01)	_	-	-
	_		,5.5.2,			
PCBs (ug/L)	_	0.00				
SUM of PCBs	5	0.000064	ND	-	-	-
Other						
Total Ammonia (mg/L)	NA	Report	1.44	-	-	-
Total Chloride (mg/L)	NA	Report	950	-	-	-
Total Residual Chlorine (mg/L)	NA	0.2	ND (0.02)	-	-	-
Total phenols (mg/L)	NA	NA	ND (0.03)	-	-	-
Total Suspended Solids (TSS) (mg/L)	NA	30	13	-	-	-
		•				

ABBREVIATIONS:

-: Not analyzed

NA: Not Applicable

ND (2.5): Result not detected above reporting limit (shown in parentheses)

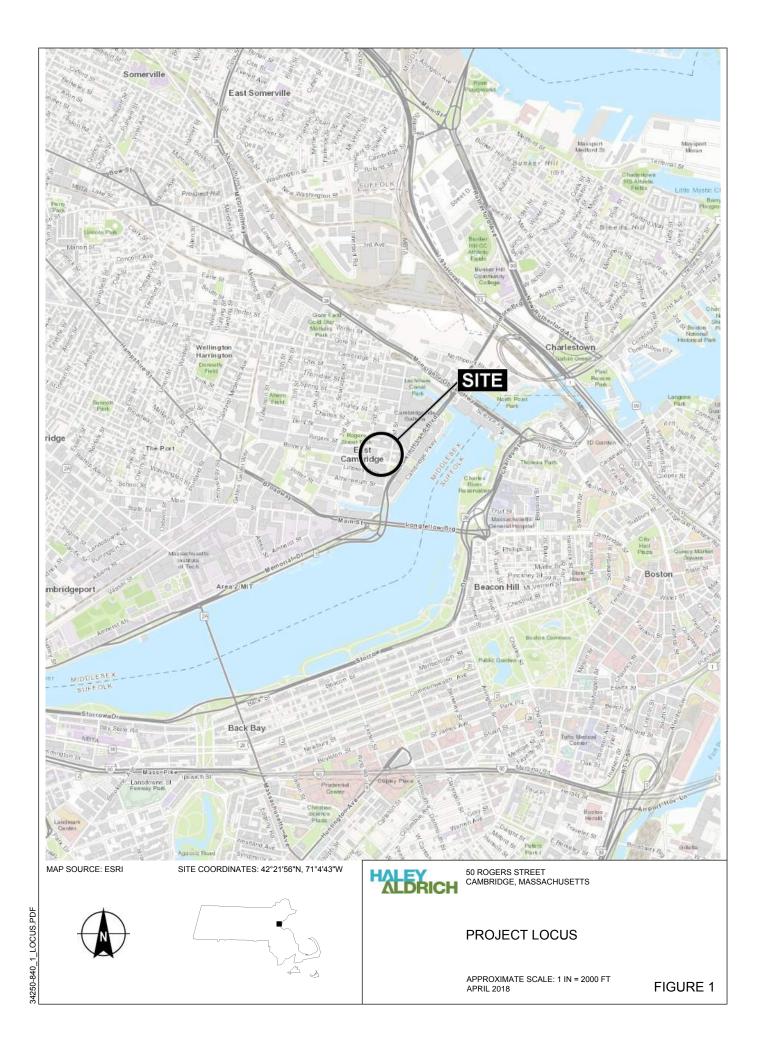
NOTES:

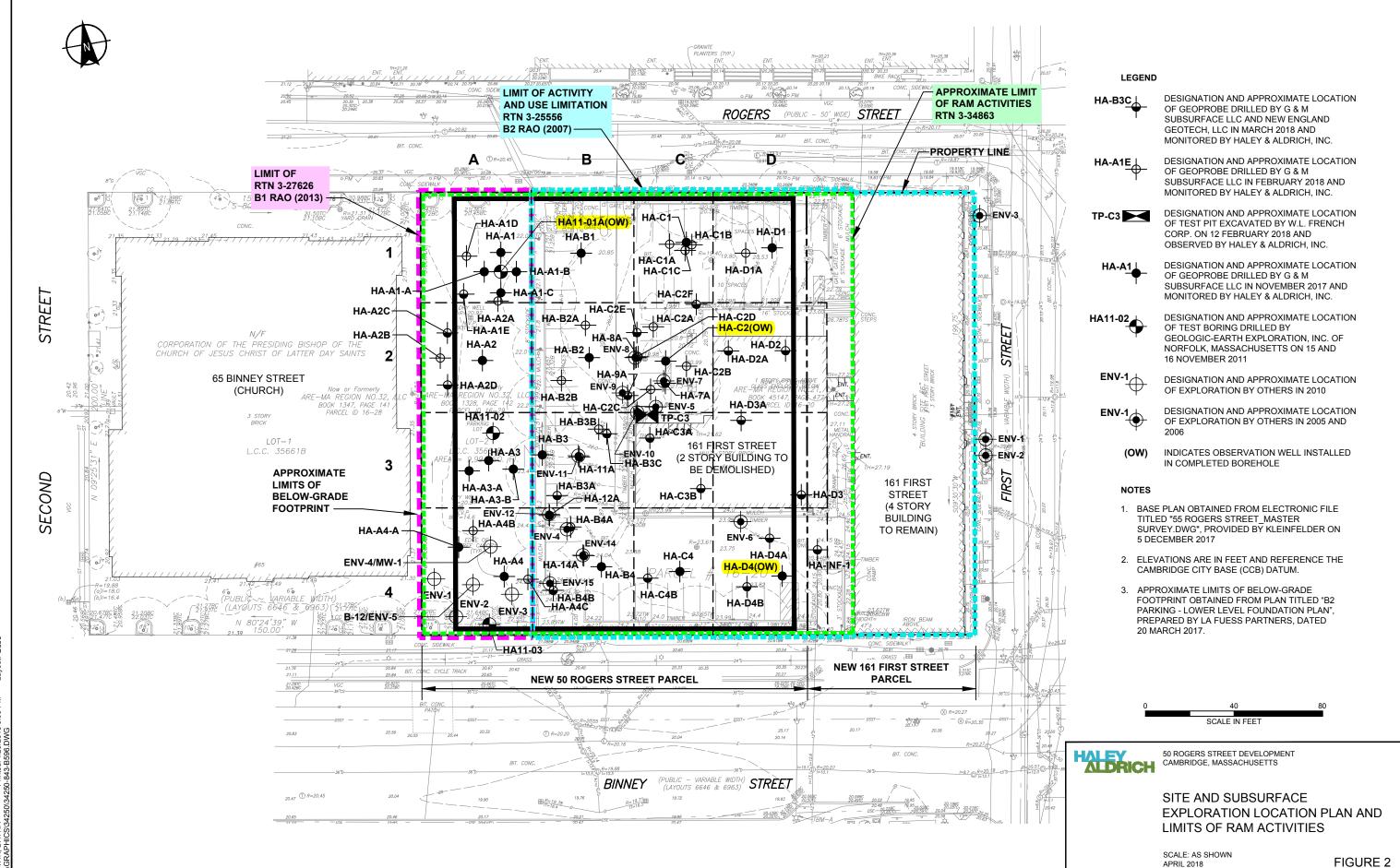
- 1. Volatile and Semi-Volatile Organics Compounds detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.

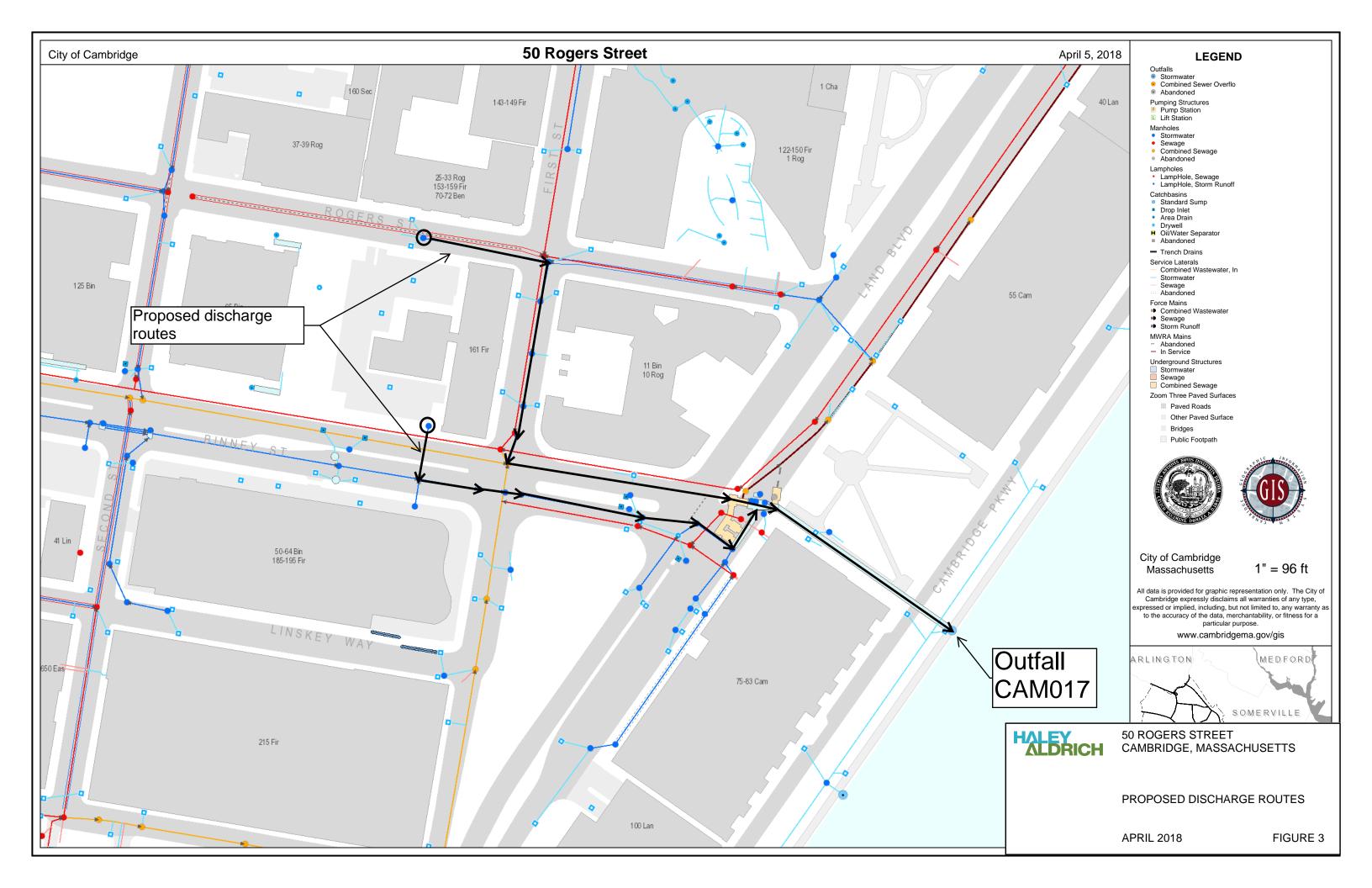
 2. Bold values indicate an exceedance of the MCP GW-2 criteria.
- 4. **: Indicates effluent limit is limited as total Group II PAHs of 100 ug/l

SUMMARY OF RECEIVING WATER QUALITY DATA 50 ROGERS STREET CAMBRIDGE, MA

FILE NO. 34250-840


	Location Name	CHARLES RIVER CAM017
	Sample Name	2018-0413-
		CHARLES_CAM017
	Sample Date	4/13/2018
	Lab Sample ID	L1813049-01
	Lab Sample 1D	L1813321-01
Total Metals (mg/L)		
Antimony		ND (0.004)
Arsenic		ND (0.001)
Cadmium		ND (0.0002)
Chromium		0.00106
Chromium III (Trivalent)		ND (0.01)
Chromium VI (Hexavalent)		ND (0.01)
Copper		0.00193
Iron		0.334
Lead		0.00117
Mercury		ND (0.0002)
Nickel		ND (0.002)
Selenium		ND (0.005)
Silver		ND (0.0004)
Zinc		ND (0.01)
Other		· · · · · · · · · · · · · · · · · · ·
Total Ammonia (mg/L)		ND (0.075)
Hardness		82.3
Temperature °C		9
pH		7.51


ABBREVIATIONS:


-: Not analyzed NA: Not Applicable

ND (2.5): Result not detected above reporting limit (shown in parentheses)

1. Readings of temperature and pH are measured in the field

LEGEND:

→ DIRECTION OF FLOW

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

50 ROGERS STREET CAMBRIDGE, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE APRIL 2018

FIGURE 4

APPENDIX A

Notice of Intent (NOI)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Name of site: So Rogers Street	Site address: 50 Rogers Street						
ou riogoro circot	Street:						
	City: Cambridge		State: MA	^{Zip:} 02142			
2. Site owner ARE-MA NO. 62, LLC	Contact Person: William DePippo	.					
71112 107/11401. 02, 220	Telephone: 6172524904	epippo@are	e.com				
	Mailing address: 400 Technology Square Suite 1	01					
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Cambridge State: MA Zip: 0213						
3. Site operator, if different than owner	Contact Person: Justin Pollard						
Consigli Construction Co, Inc.	Telephone: 7745735693 Email: JPollard@consigli.com						
	Mailing address:						
	Street: 266 Summer Street						
	City: Boston		State: MA	Zip: 02210			
4. NPDES permit number assigned by EPA:							
Not applicable	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
Not applicable	■ MA Chapter 21e; list RTN(s):	(check all the					
	■ MA Chapter 21e; list RTN(s): 3-34863, 3-25556	□ CERCL	.A ogram				
Not applicable NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	■ MA Chapter 21e; list RTN(s):	□ CERCL	A ogram Pretreatment				

■ Yes □ No

B. Receiving water information:						
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classif	cation of receiving water(s):			
Charles River	narles River MA72-38 Class B					
Receiving water is (check any that apply): □ Outstan	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic I	tiver			
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: ■ Yes □ No				
Are sensitive receptors present near the site? (check of the state) if yes, specify:	one): □ Yes ■ No					
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL it 4.6 of the RGP. TMDL for phosphorus and pathogen	s available for any of the indicated pollutants. For n					
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		n the instructions in	18.87 MGD			
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s			88.36			
6. Has the operator received confirmation from the a If yes, indicate date confirmation received: 4/20/2018		, ,				
7. Has the operator attached a summary of receiving (check one): ■ Yes □ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?			
C. Source water information:						
1. Source water(s) is (check any that apply):						
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicat municipality or origin:			
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other				
in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; is so, indicate waterbody:	☐ Other; if so, specify:				

 \square Yes \square No

2. Source water contaminants: SVOCs, iron, ammonia, chloride	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains residue.	dual chlorine? (check one): □ Yes ■ No
D. Dischause information	
 D. Discharge information 1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New 	w discharge □ New source
Outfall(s): CAM-017	Outfall location(s): (Latitude, Longitude) 42.3646, -71.0762
CAMI-UT/	42.3040, -71.0762
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	ischarge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sev	ver system:
Has notification been provided to the owner of this system? (check one):	·
	or discharges? (check one): Yes No, if so, explain, with an estimated timeframe for
obtaining permission: City of Cambridge permit being submitted concurred Has the operator attached a summary of any additional requirements the owner.	
Provide the expected start and end dates of discharge(s) (month/year): July 20	018 - June 2019
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D,	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	c all that apply)			
	a. If Activity Categ	eory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing 	G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dieuge-Keialeu Dewalering	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			
	Organic Compounds F. Fuels Parameters				

4. Influent and Effluent Characteristics

	Known	Known				Int	luent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	1 +	4500NH3+	75 +	1440 +	1440 +	Report mg/L	
Chloride		✓	1 +	300.0 +	12500	950000 +	950000 +	Report μg/l	
Total Residual Chlorine	✓		1 +	4500CL-I+	20 +	ND ±	ND ±	0.2 mg/L	
Total Suspended Solids		v	1 +			13000 +	13000 ±	30 mg/L	
Antimony		✓	1 +	200.8	4 +	ND ±	ND ±	206 μg/L	
Arsenic		✓	1 +			ND ±		104 μg/L	
Cadmium		✓	1 +	200.8 +	0.2	ND +	ND ±	10.2 μg/L	
Chromium III		1	1 +	107 +		ND ±		323 μg/L	
Chromium VI	1		1 +		10 +	ND ±		323 μg/L	
Copper		✓	1 +			ND +		242 μg/L	
Iron		✓	1 +	200.7 +	50 +	4990 +		5,000 μg/L	
Lead		/	1 +			ND ±		160 μg/L	
Mercury		1	1 +		0.2	ND ±		0.739 μg/L	
Nickel		1	1 +			ND ±		1,450 μg/L	
Selenium		✓	1 +	200.8 +		ND ±		235.8 μg/L	
Silver		✓	1 +		0.4	ND +		35.1 μg/L	
Zinc		/	1 +			ND ±		420 μg/L	
Cyanide	✓ ·		1 +					178 mg/L	
B. Non-Halogenated VOCs	s								
Total BTEX		✓	4 +	8260C +	NA +	ND ±	ND +	100 μg/L	
Benzene		✓	4 +	8260C +	0.5	ND +	ND ±	5.0 μg/L	
1,4 Dioxane	V		4 +		3. +	ND ±	ND ±	200 μg/L	
Acetone		✓	4 +			ND +		7.97 mg/L	
Phenol		V		8270 +				1,080 μg/L	

	Known	Known				Int	fluent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride		✓	4 +	8260C ±	1 +	ND +	ND ±	4.4 μg/L	
1,2 Dichlorobenzene	/		4 +			ND +		600 μg/L	
1,3 Dichlorobenzene	·		4 +			ND +		320 μg/L	
1,4 Dichlorobenzene	1		4 +			ND +		5.0 μg/L	
Total dichlorobenzene	1		4 +			ND +		763 μg/L in NH	
1,1 Dichloroethane		✓	4 +	8260C ±	1 +			70 μg/L	
1,2 Dichloroethane	✓		4 +	8260C +	1 +	ND ±	ND #	5.0 μg/L	
1,1 Dichloroethylene	✓		4 +	8260C ±	1 +	ND ±	ND ±	3.2 μg/L	
Ethylene Dibromide	✓		4 +	8260C ±	2 +	ND +	ND ±	0.05 μg/L	
Methylene Chloride	1		4 +	8260C +	2 +	ND +	ND ±	4.6 μg/L	
1,1,1 Trichloroethane		✓	4 +	8260C +	1 +	ND #	ND ±	200 μg/L	
1,1,2 Trichloroethane	✓		4 +	8260C ±	1 +	ND +	ND +	5.0 μg/L	
Trichloroethylene		✓	4 +	8260C +	1 +	ND +	ND ±	5.0 μg/L	
Tetrachloroethylene		✓	4 +	8260C ±	1	ND +	ND +	5.0 μg/L	
cis-1,2 Dichloroethylene		✓	4 +	8260C ±	1	ND +		70 μg/L	
Vinyl Chloride		✓	4 +	8260C +	1 +	ND +	ND +	2.0 μg/L	
D. Non-Halogenated SVOC	Cs.								
Total Phthalates	✓		2 +	8270D +	5 +	ND +	ND ±	190 μg/L	
Diethylhexyl phthalate	1		2 +	8270D +	3 +	ND ±	ND ±	101 μg/L	
Total Group I PAHs		✓		8270DSII+	0.1 +	ND ±		1.0 μg/L	
Benzo(a)anthracene		1		8270DSII+					
Benzo(a)pyrene		v	2 +			ND ±	ND ±		
Benzo(b)fluoranthene		✓	2 +	8270DSII+		ND ±	ND ±		
Benzo(k)fluoranthene		✓	1	8270DSII+		ND ±		As Total PAHs	
Chrysene		✓		8270DSII+		ND +	ND ±		
Dibenzo(a,h)anthracene		v		8270DSII+					
Indeno(1,2,3-cd)pyrene		✓		8270DSII+			ND +		

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	2	8270DSIM	NA	5.93	4.94	100 μg/L	
Naphthalene		✓	2	8270DSII+	0.1	0.48	0.305	20 μg/L	
E. Halogenated SVOCs									
Total PCBs		✓	1	608	NA	ND	ND	0.000064 μg/L	
Pentachlorophenol	1		2	8270D-SI+		ND	ND	1.0 μg/L	
F. Fuels Parameters Total Petroleum Hydrocarbons		v	1	1664A	5.2	ND	ND	5.0 mg/L	
Ethanol	✓		0	NA	NA	NA	ND	Report mg/L	
Methyl-tert-Butyl Ether	/		2	8260C	2 2	ND ND	ND	70 μg/L	
tert-Butyl Alcohol	·		1	8260C	10	ND	ND	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	/		2	8260C	2	ND	ND	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutan	ts present);	if so, specify:	459000		
1-methylnaphthalene		✓	1	8270DSIM		0.25	0.25		
2-methylnaphthalene		✓	2	8270DSIM		0.26	0.18		
trichloromethane		✓	2	8260C	0.75	ND	ND		
2,4-dimethylphenol		✓	2	8270D	5	ND	ND		
2-methylphenol		✓	2	8270D	5	ND	ND		
3-methylphenol		✓	2	8270D	5	ND	ND		
acetophenone		✓	1	8270D	5	ND	ND		
1.3.5-trimethylbenzene		✓	2	8260C	2.5	ND	ND		
harium		✓	0	NOT TEST		ND	ND		
bervllium		✓	0	NOT TEST		ND	ND		
vanadium		✓	0	NOT TEST	ED IN GW	ND	ND		
bis(2-ethylhexyl)phthalate		✓	0	8270D	3	ND	ND		

Other (continued):

Parameter	Known or believed absent	Known or believed present	# of samples	Test Method (#)	Detection limit (ug/L)	Daily maximum (ug/L)	Daily average (ug/L)
Butyl benzylphthalate		Х	2	8270D	5	ND	ND
Dibenzofuran		Х	2	8270D	2	ND	ND
1,2,4-Trimethylbenzene		Х	2	8260C	2.5	ND	ND
2-Butanone (methyl ethyl ketone)		Х	2	8260C	5	ND	ND
2-Phenylbutane (sec-Butylbenzene)		Х	2	8260C	2	ND	ND
Carbon disulfide		Х	2	8260C	5	ND	ND
Cymene (p-Isopropyltoluene)		Х	2	8260C	2	ND	ND
Ethylbenzene		Х	2	8260C	1	ND	ND
Isopropylbenzene (Cumene)		Х	2	8260C	2	ND	ND
n-Butylbenzene		Х	2	8260C	2	ND	ND
n-Propylbenzene		Х	2	8260C	2	ND	ND
Toluene		Х	2	8260C	1	ND	ND
trans-1,2-Dichloroethene		Х	1	8260C	1	ND	ND
Xylene (total)		Х	2	8260C	1	ND	ND

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. See attached Figure 4.	
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Bag filters Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	150
Provide the proposed maximum effluent flow in gpm.	150
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:	
Scavengers pH conditioners Bioremedial agents, including microbes Chlorine or chemicals containing chlorine Other; if so, specify: 2. Provide the following information for each chemical/additive, using attachments, if necessary: Not Applicable a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LCS0 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): Yes No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No FWS Criterion C: Using the best scientif	1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
2. Provide the following information for each chemical/additive, using attachments, if necessary: Not Applicable a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): ☐ Yes ☐ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): ☐ Yes ☐ No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐ Yes ☐ No □ FWS	□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
Not Applicable a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): □ Yes □ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): □ Yes □ No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientiffic and commercial data available, the effect of the discharges	scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LCSO in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F. above? (check one): West No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): West No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No; if no, is consultation underway? (check one): Yes No; if no, is consultation underway? (check one): Yes No; if no, is consultation	2. Provide the following information for each chemical/additive, using attachments, if necessary:
c. Malerial Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No, if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? Check one): Yes No Sendangered Species Act eligibility determination Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the o	Not Applicable a. Product name, chemical formula, and manufacturer of the chemical/additive;
c. Malerial Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No, if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? Check one): Yes No Sendangered Species Act eligibility determination Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the o	b. Purpose or use of the chemical/additive or remedial agent;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): Yes No Rendangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the ju	
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): \(\triangle \	
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): Yes No Rendangered Species Act eligibility determination I. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): Yes No Rendangered Species Act eligibility determination I. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): □ Yes □ No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	(check one): □ Yes □ No
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	G. Endangered Species Act eligibility determination
"action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
Yes \square No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	Yes □ No
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:	habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and
	J

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No Refer to Appendix E of "Temporary Construction Dewatering, 50 Rogers Street, Cambridge, Massachusetts" by Haley & Aldrich, Inc.
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Refer to Appendix D of "Temporary Construction Dewatering, 50 Rogers Street, Cambridge, Massachusetts" by Haley & Aldrich, Inc.
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
See attached letter.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one):
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.						
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: discharge	emented upon ini	tiation of				
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □ NA				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■	No □ NA □				
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □ NA □				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge						
permit(s). Additional discharge permit is (check one): \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:	Check one: Yes □	No □ NA ■				
I Con 1	te: 6/78/18					
Print Name and Title: Consigli Construction Company						

APPENDIX B

Dilution Factor and Effluent Limit Calculations

StreamStats Page 2 of 2

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): MA MA20180328174448677000 42.36454, -71.07405 2018-03-28 13:45:03 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	308	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.334	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.25	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	308	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.334	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.25	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	57.4	ft^3/s
7 Day 10 Year Low Flow	29.2	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

HALEY & ALDRIC	H, INC.			CALCU	JLATIONS	FIL	E NO.	34250-844		
CLIENT PROJECT SUBJECT	ARE-MA Region No 50 Rogers Street, C DILUTION FACTOR	Cambridge, M				DA	EET NTE OMPUTED BY	1 29-Mar-18 KGD	of	1
PURPOSE:	Calculate Dilution	Factor (DF) fo	or project based on 7 D	ay 10 Y	ear (7Q10) Low Flow v	values.				
APPROACH:	Calculate DF based MGD.	d on EPA form	nula $(Q_S + Q_D)/Q_D$, whe	ere Q _s is	7Q10 in million gallor	ns per day	(MGD) and Q_D is c	discharge flow in	า	
ASSUMPTIONS:	 7Q10 is 29.2 cfs A conversion of A discharge flow 	7.48 is used t	o convert cubic feet to	o gallon:	s					
CALCULATIONS: 7Q10 Low Flow \										
Q _S =	= 29.2 ft ³ sec	X	7.48 gallons ft ³	Х	<u>86,400 sec</u> day	х	<u>1 MG</u> 1,000,000 gallons			
Q _s =	= 18.87 MGD									
Discharge Flowr	ate (Q _D)									
Q _D =	= <u>150 gallons</u> min	Х	<u>1,440 min</u> day	Х	<u>1 MG</u> 1,000,000 gallons					
Q _D =	= 0.216 MGD									
Dilution Factor (I	$\Omega_c + \Omega_c$	= \frac{18.87}{}	7 MGD + 0.216 MGD 0.216 MGD	=	88.36					
CONCLUSION	The dilution factor discharge flowrate		ect is calculated to be 8	38.36 ba	ased on the provided	7Q10 low	flow value and			

Daylor, Grace

From: Vakalopoulos, Catherine (DEP) < Catherine. Vakalopoulos @MassMail. State. MA. US>

Sent: Friday, April 20, 2018 11:00 AM **To:** Daylor, Grace; Ruan, Xiaodan (DEP)

Subject: RE: NPDES RGP Application - 50 Rogers Street - 7Q10 and Dilution Factor Confirmation

Hi Grace,

Your dilution factor calculation of 88.36 using the 150 gpm for a discharge through CSO CAM017 to the Charles River is correct. To assist you with the NOI, this part of the Charles River has a segment ID of MA72-38, is classified as Class B, is not an Outstanding Resource Water, and has two TMDLs (phosphorus and pathogens). To see the specific impairments, go to: https://www.mass.gov/files/documents/2017/08/zu/16ilwplist.pdf and search for MA72-38. For the purposes of completing the NOI, you should be all set from MassDEP but feel free to contact me if you have any questions. Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Daylor, Grace [mailto:GDaylor@haleyaldrich.com]

Sent: Thursday, April 19, 2018 9:25 AM

To: Vakalopoulos, Catherine (DEP); Ruan, Xiaodan (DEP)

Subject: NPDES RGP Application - 50 Rogers Street - 7Q10 and Dilution Factor Confirmation

Good morning Cathy, Xiaodan.

As required in Appendix V of the 2017 RGP, I have attached to this email our StreamStats report detailing the 7 Day 10 Year (7Q10) low flow value for our project (listed below) along with the dilution factor calculations for your review and confirmation.

Project:

50 Rogers Street Cambridge, Massachusetts

7 Day 10 Year Low Flow value (from attached StreamStats Report) = 29.2 cfs, 18.87 MGD

Dilution Factor (from attached calculations) = 88.36

We are assuming a flow of 50 gpm with peak flows up to 150 gpm. The discharge route for this project travels east on Rogers Street and then south on First Street, east on Binney Street and then discharges to the Charles River via outfall CAM-017.

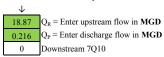
Can you please confirm if these values are appropriate for use for our project?

Thanks,

Grace

Grace Daylor, EIT

Engineer


Haley & Aldrich, Inc.

465 Medford Street | Suite 2200 Boston, Massachusetts 02129

T: 617.886.7433 C: 804.514.5255 www.haleyaldrich.com

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
459	C_d = Enter influent hardness in mg/L CaCO ₃
82.3	C _c = Enter receiving water hardness in mg/L CaCO ₂

Enter receiving water concentrations in the units specified

\downarrow	_
7.51	pH in Standard Units
9	Temperature in °C
0	Ammonia in mg/L
82.3	Hardness in mg/L CaCO
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
1.93	Copper in µg/L
334	Iron in μg/L
1.17	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
	•

Enter influent concentrations in the units specified

\downarrow	
0	TRC in µg/L
1.44	Ammonia in mg/L
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in µg/L
0	Copper in µg/L
4990	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in µg/L
0	Zinc in μg/L
0	Cyanide in μg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Only if approved by State as the entry for Q_R ; leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required **Dilution Factor** 88.4

Dilution Factor	88.4				Compliance Level	
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	972	μg/L		μg/L
Total Suspended Solids	30	mg/L		1.0		1.0
Antimony	206	μg/L	56551	μg/L		
Arsenic	104	μg/L	884	μg/L		
Cadmium	10.2	μg/L μg/L	21.4880	μg/L μg/L		
Chromium III			6766.2			
Chromium VI	323	μg/L	1010.4	μg/L		
	323	μg/L		μg/L		
Copper	242	μg/L	560.1	μg/L		
Iron	5000	μg/L	59183	μg/L		
Lead	160	μg/L	131.74	μg/L		
Mercury	0.739	μg/L	80.04	μg/L		
Nickel	1450	μg/L	4079.5	μg/L		
Selenium	235.8	$\mu g/L$	441.8	$\mu g/L$		
Silver	35.1	$\mu g/L$	260.9	$\mu g/L$		
Zinc	420	$\mu g/L$	9368.7	$\mu g/L$		
Cyanide	178	mg/L	459.5	$\mu g/L$		$\mu g/L$
B. Non-Halogenated VOCs						
Total BTEX	100	μg/L				
Benzene 1,4 Dioxane	5.0 200	μg/L μg/L				
Acetone	7970	μg/L μg/L				
Phenol	1,080	μg/L	26508	μg/L		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	μg/L	141.4	μg/L		
1,2 Dichlorobenzene 1,3 Dichlorobenzene	600 320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	$\mu g/L$				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide Methylene Chloride	0.05 4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	$\mu g/L$				
Tetrachloroethylene	5.0	μg/L	291.6	μg/L		
cis-1,2 Dichloroethylene Vinyl Chloride	70 2.0	μg/L μg/L				
D. Non-Halogenated SVOCs	2.0	μg/L				
Total Phthalates	190	$\mu g/L$		$\mu g/L$		
Diethylhexyl phthalate	101	$\mu g/L$	194.4	$\mu g/L$		
Total Group I Polycyclic	1.0	/I				
Aromatic Hydrocarbons Benzo(a)anthracene	1.0 1.0	μg/L μg/L	0.3358	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L μg/L	0.3358	μg/L μg/L		μg/L μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.3358	μg/L		μg/L
Benzo(k)fluoranthene	1.0	$\mu g/L$	0.3358	$\mu g/L$		$\mu g/L$
Chrysene	1.0	μg/L	0.3358	μg/L		μg/L
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	1.0 1.0	μg/L μg/L	0.3358 0.3358	μg/L μg/L		μg/L μg/L
Total Group II Polycyclic	1.0	μg/L	0.3336	μg/L		μg/L
Aromatic Hydrocarbons	100	$\mu g/L$				
Naphthalene	20	$\mu g/L$				
E. Halogenated SVOCs	0.000074	, /т			0.5	/T
Total Polychlorinated Biphenyls Pentachlorophenol	0.000064 1.0	μg/L μg/L			0.5	μg/L
F. Fuels Parameters	1.0	μg/L				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	1767	μg/L		
tert-Butyl Alcohol tert-Amyl Methyl Ether	120 90	μg/L				
Wit-1 migr wienigr Edici	70	μg/L				

APPENDIX C

Copy of City of Cambridge Dewatering Permit Application

NOVIS ASS

or property.

PERMIT TO DEWATER

Location:	50 Rogers Street	Temporary
Owner:	ARE-MA Region No. 62, LLC	Permanent
Contractor:	Consigli Construction, Co., Inc.	Termanent
	ARE-MA Region No. 62, LLC Cambridge for any liability on the part of the Citration.	agrees to hold harmless and y directly or indirectly arising out
The issuance of this p as follows:	ermit is based in part in the submission packet of	the applicant with documentation
Haley & Aldrich, Massachusetts"	Inc. report "Temporary Construction Dewatering, 50	Rogers Street, Cambridge,
In addition, the application the following reports:	eation has been reviewed by the City under third p	party agreement as documented in
the provisions of the a	ed in conjunction with the issuance of this permit aforementioned reports. Any deviations in condit missioner of Public Works.	
	tion to any other street permit issued by the Departstruction; and all conditions as specified in the D	
	of time the groundwater is being discharged to a soft each Discharge Monitoring Report Form submitmit.	
compliance with EPA stormwater (also incluARE-MA Region No.	A requires the City of Cambridge to bring existing quality standards, as a condition to the continual ading groundwater) into an EPA regulated system (52, LLC) (property owner) drains, the owner with the continuation of the co	tion of discharge of that into which the
The property owner a agreement/affidavits.	nd contractor shall at all times meet the condition	s specified in the requisite legal

Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the

All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces

Contractor during the progress of work as directed by the Public Works Department.

Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.

Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.

Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.

Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.

This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.

The following special conditions as set forth below are part of the permit.

Commissioner of Inspectional Services

not applicable	
City Manager	Property Manager: Corporate Entity President, General Partner or Trustee Trustee with Instrument of Authority
Date	Date Justin Pallal
City Solicitor	Contractor
Date	Date
Commissioner of Public	Contractor
Date	Date
CC: Engineering Supervisor of Sewer Maintenance and Enginee Superintendent of Streets	ering

APPENDIX D

Contractor's Dewatering Submittal

Project: 1759 - ARE - 50 Rogers Street

50 Rogers Street

Cambridge, Massachusetts 01242

Submittal #312319-001.1 312319 - Construction Dewatering

Printed On: 06/20/2018 10:53 AM

SD: Dewatering Plan

APPRO	OVERS:	Joe Nault ((Consigli Const	ruction Co., In	ıc.)	CRI	EATED BY:			_	
	ONSIBLE RACTOR:		h Excavating Co	Corp. Excavating Corp.)		STA	TUS:	Pending	Pending		
TYPE:		Material De	elivery			SPEC SECTION:		312319 -	Construction I	Dewa	tering
(Cons	ca Higgins (Higgins Constru), Frank Valdes								o., Inc.) , Justin Pollard struction Co., Inc.)
DESCF	RIPTION:										
ATTAC	HMENTS:										
ARCH	HITECT'S	STAMP				COI	NTRACTO	R'S STAMP			
							Cor	nsigli Cor	nstruction	ı Co	o., Inc.
						X	Approved fo	r A/E Review			Revise & Resubmit
							Approved as	Noted for A/E	Review		Rejected
						Sp	ec. Section	: 312319	Submit	tal N	lo.: 312319-001
						Da	te: 6/20/20	18	By: Joe	Na	ult
						rel red spo	ieve the quirements ecifications	subcontrac of the co . The subco	tor from ontract, cor ontract, sh	com ntrac all b	n only. It does not plying with the et drawings and e responsible for I field conditions.
SUBM #	ITTAL WOF	RKFLOW	SUBMITTER/	SENT DATE	DUE DA	re	RETURNED	RESPONSE	ATTACHME	NTS	COMMENTS
			APPROVER	1			DATE		711 1710 111112		
1	Joe Nault		Approver		6/20/201	8	6/20/2018	Approved			
ВҮ				DATE				COPI	ES TO		

SUBMITTAL COVER SHEET

Date:	6/20/18

General Contractor: Consigli Construction

72 Sumner Street Milford, MA 01757

Project: 50 Rogers Street

Cambridge, MA

Submittal Description: Dewatering Plan

Spec Section(s): 312319 Construction Dewatering

Subsection(s):

Previous Submittal No. 001

Submittal No. 001A

Supplier or Subcontractor: W.L. French Excavating Corp. Company / LRT

Submitted BY: NVE

Comments: Attached for review and approval is the resubmittal for the

construction dewatering plan for 50 Rogers Street.

DEWATERING PLAN

50 Rogers Street Cambridge, Massachusetts

Prepared by:

Prepared for:

Date: <u>June 19, 2018</u>

Contents

Section				
1. In	troduction	4		
1.1	Purpose and Scope	4		
1.2	Key Assumptions	4		
1.3	Description of Dewatering Model and Model Assumptions	5		
2. Aı	nticipated Conditions	7		
2.1	Subsurface Soils and Groundwater	7		
2.2	Excavation Dimensions and Depths	7		
2.3	Pumping Rates	8		
3. De	ewatering Methods	9		
3.1	General	9		
3.2	Dewatering Sumps	9		
3.3	Pumps	9		
3.4	Discharge Lines	9		
3.5	Water Treatment System	9		
3.6	Flow Metering	10		
3.7	Pump Tests	10		
3.8	Record Keeping	10		
3.9	Dewatering System Layout	10		
4. Ba	ackup Systems and Contingencies	11		
4.1	Backup System	11		
4.2	Contingency Plans	11		

Figures

Figure 1: Locus Plan

Figure 2: Dewatering System Layout Figure 3: Dewatering Sump Detail

Figure 4: Water Treatment System Schematic

Attachments

Attachment A: Dewatering Model Outputs

Attachment B: Dewatering System Cut Sheets

Attachment C: Water Treatment System Cut Sheets

Attachment D: Calculations

1. Introduction

This Dewatering Plan has been prepared by Lockwood Remediation Technologies, LLC on behalf of W.L. French Excavating Corporation (French) for the excavation project at 50 Rogers Street, Cambridge, Massachusetts. This Plan relies on available data contained in the *Subsurface Investigations and Geotechnical Design Recommendations* prepared by Haley & Aldrich, Inc. (H&A) dated February 19, 2018, the *Soil Precharacterization Report* prepared by H&A dated March 9, 2018, drawings specifications and available information provided by French. The Plan also relies on experience in dewatering under similar conditions and in similar soils. This was used to generate a finite difference dewatering model using Visual Modflow version 2012.1.

1.1 Purpose and Scope

The purpose of this Plan is to provide French with an overview of the anticipated dewatering effort, and additional information regarding the methods to be used; the size, type, and location of pumps; discharge locations; manufacturer's data for mechanical equipment; and anticipated dewatering/pumping rates.

1.2 Key Assumptions

To estimate pumping rates at the site the following assumptions were used in this study:

- 1. The new development site now known as "50 Rogers Street" consists of two parcels of land at 50 Rogers Street and 161 First Street that will be consolidated and subdivided into two new Lots. Existing surface grade is approximately El. +21'.
- 2. The proposed construction consists of a 6-story residential development with two levels of below-grade parking. The lowest level floor slab is planned at El. -1.9' and the bottom of excavation for footings is approximately El. -7'. In addition, a sanitary holding tank will be installed at approximately El. 0' with a tie-in point for this structure on Binney Street at El. +2.5'.
- 3. Support of excavation (SOE) will consist of steel sheeting surrounding the proposed building. The SOE for the sanitary tank and associated sewer line tie in location on Binney Street will be trench boxes or open cut.
- 4. Subsurface material at the site consists of fill material which is comprised of a gray to brown silty sand with gravel. Cohesive fill consisting of sandy clay is also present in some areas of the site. Beneath the fill material is an organic deposit layer underlain by an estuarine/marine sand deposit layer, comprised of brown to olive gray poorly graded fine to medium sand. Beneath the estuarine/marine sand deposit layer is a marine clay which is comprised of lean clay and frequent fine sand partings in some locations.

- 5. Based upon groundwater monitoring conducted in observations wells, the depth to groundwater ranged from approximately 9.3 to 16.6 ft below ground surface (bgs), corresponding to approximately El. +7.3' to El. +11.7'.
- 6. Dewatering will be conducted via a sump dewatering system. Sumps will be installed by others.
- 7. The influent flow rate has been estimated at 150 gallons per minute (gpm); however, this is only an estimate and actual site conditions may vary.
- 8. According to the *Soil Precharacterization Report* by H&A dated March 9, 2018, the site was listed as a Disposal Site by the Massachusetts Department of Environmental Protection (MassDEP) and subsequently assigned a Release Tracking Number. A Class B-2 Response Action Outcome (RAO) Statement with an Activity and Use Limitation (AUL) was submitted to the MassDEP on January 22, 2007 indicating no further response actions were required. In addition, a Class B-1 RAO Statement was submitted to the MassDEP in April 2013, also indicating that no further response actions were necessary.
- 9. Primary contaminants of concern in the waste stream are total suspended solids (TSS). It is assumed that any metals concentrations will be addressed through settling and bag filtration. If additional analytes are encountered, modification to the treatment system may be required which could affect the system budget.
- 10. Treated water will be discharged under a National Pollutant Discharge Elimination System (NPDES) and a City of Cambridge permit obtained by others.

1.3 Description of Dewatering Model and Model Assumptions

A finite difference model using Visual Modflow version 2012.1 was created for the dewatering estimate. The model consists of two layers. One for the fill, organics and marine sand deposits and a second layer for the marine clay. For purposes of estimation of pumping rates at the site, the following assumptions were used in this study:

- 1. The model dimensions are 284,568 square feet centering on the deepest portion of the excavation. The model area was divided into a 60 by 40 nodal array.
- 2. The model was run under steady-state conditions. The actual time required to achieve steady-state conditions on a dewatering job varies but for this site it may take several days depending on how fast the water in storage is removed from the overburden and if any significant rainfall occurs.
- 3. The estimated recharge based on annual averages and degree of surface permeability was input as 2.0 inches/year.
- 4. The model has two layers with Layer 1 simulating the fill, organics and marine sand layer with an estimated thickness of 23.5 feet to El -2.5'. Layer 2 simulates the marine clay and was assigned an arbitrary thickness of 37.5 feet to El. -40'. Actual elevations of

- stratigraphic sequences were incorporated into the model based on the geotechnical information provided to LRT.
- 5. The hydraulic conductivity (permeability) of Layer 1 and Layer 2 is estimated at 1x10⁻² cm/s and 1x10⁻⁶ cm/s respectively. This site specific hydraulic conductivity is estimated based on geotechnical classification of the stratification at the site by others and using publishing values for those classification (i.e. Fetter, 1988).
- 6. The effective porosity of the subsurface was assumed to be 0.30.
- 7. Any dewatering sumps installed will be completed a minimum of 5' below the bottom of the excavation.
- 8. The steel sheeting was modeled at 36 feet bgs (El. -15'). The leakage of the steel sheeting was estimated at 1×10^{-6} cm/s.

2. Anticipated Conditions

2.1 Subsurface Soils and Groundwater

Available data from subsurface investigations indicate subsurface material at the site consists of fill which is comprised of a gray to brown silty sand with gravel. Cohesive fill consisting of sandy clay is also present in some areas of the site. The fill contains varying amounts of cinders and a range of miscellaneous debris (wood, brick, concrete, glass, etc.); substantial quantities of ash and cinders were also encountered at several locations. Beneath the fill material is an organic deposit layer which is comprised of brown to black organic silty sand to sandy organic soil with and varying amounts of peat and trace shells underlain by an estuarine/marine sand deposit layer which is comprised of brown to olive gray poorly graded fine to medium sand. Beneath the estuarine/marine sand deposit layer is a marine clay which is comprised of stiff gray to olive gray lean clay with frequent fine sand seams in some locations.

For detailed information regarding depth and elevations of the various soil strata encountered at each of the boring locations, refer to the *Subsurface Investigations and Geotechnical Design Recommendations* prepared by Haley & Aldrich, Inc. (H&A) dated February 19, 2018.

Groundwater measured at the site ranges between 9.3 to 16.6 ft below ground surface (bgs), corresponding to approximately El. +7.3' to El. +11.7'. A design groundwater level of El. +12' was used in this submittal. Area groundwater levels are influenced by numerous other factors including below-grade structures, precipitation, surface runoff, local construction activity, pumping of dewatering systems, leakage from utilities, and seasonal variations. Water levels should be anticipated to fluctuate and may differ during construction from those reported herein.

2.2 Excavation Dimensions and Depths

There are three separate proposed excavation areas that will require dewatering services: Main Building, Sanitary Tank, and the Sanitary Line Tie-In location. LRT has assumed that the dewatering target is 2' below the bottom of each excavation.

- Main Building: dimensions of the excavation area are approximately 150 feet long by 190 feet wide extending approximately 28 feet below grade to approximately El. -7'.
- Sanitary Tank: dimensions of the sanitary tank are approximately 10 feet long by 14 feet wide extending approximately 21 feet below grade to approximately El. +0'.

• Sanitary Line Tie-In: dimensions of the excavation area are approximately 20 feet long by 10 feet wide extending approximately El. +2.5'.

2.3 Pumping Rates

As mentioned previously, for purposes of estimation of dewatering, a dewatering model was completed in Modflow for three separate excavation areas: Main Building, Sanitary Tank and the Sanitary Line Tie-In Location. One model was calibrated to observed non-pumping conditions. The additional models were completed to simulate pumping conditions. The models were based on site specific information that included geology reported in soil borings completed by H&A and the proposed excavation plan. Static groundwater elevations simulated in the model were assumed to be at or near El. +12' which is the highest water level observed and therefore should be considered a conservative estimate.

Main Building

The bottom of the deepest portion of the excavation is approximately El. -7' and water levels are to be maintained 2' below the excavation depth. Based on the results of the modeling, the combined steady-state dewatering flow rate is expected to be approximately 100-150 gpm for the Main Building. This estimated flow rate lowers ground water elevations within the footprint of the excavation to less than El. -9' or approximately at least a minimum of 2' below the bottom of the excavation which maintains a dry excavation during the project.

Sanitary Tank

The bottom of the deepest portion of the excavation is approximately El. 0' and water levels are to be maintained 2' below the excavation depth. Based on the results of the modeling, the combined steady-state dewatering flow rate is expected to be approximately 50-100 gpm for the Sanitary Tank. This estimated flow rate lowers ground water elevations within the footprint of the excavation to less than El. -2' or approximately at least a minimum of 2' below the bottom of the excavation which maintains a dry excavation during the project.

Sanitary Line Tie-In Location

The bottom of the deepest portion of the excavation is approximately El. +2.5' and water levels are to be maintained 2' below the excavation depth. Based on the results of the modeling, the combined steady-state dewatering flow rate is expected to be approximately 50-100 gpm for the Sanitary Line Tie-In Location. This estimated flow rate lowers ground water elevations within the footprint of the excavation to less than El. +0.5' or approximately at least a minimum of 2' below the bottom of the excavation which maintains a dry excavation during the project.

Actual dewatering flow rates will mostly depend on site conditions and on the amount of precipitation that occurs at the time of active dewatering. The output graphs showing the model results are included in Attachment A.

3. Dewatering Methods

3.1 General

French shall maintain site grades to direct runoff in the excavation to the dewatering sumps. The effective radius of each dewatering sump can be enhanced via gravel placement. In addition, French shall manage the dewatering effluent to minimize the potential for erosion, damage, or contamination of the site.

3.2 Dewatering Sumps

French will install as many sumps as necessary along the perimeter of the excavations, however, for conceptual purposes thirteen (13) sumps are shown on (Figure 2), each with their own submersible pump. The final number and combination of sumps will be determined by French based on the actual conditions encountered in the field. If total influent flow rate of dewatering required exceeds the flow rate calculated in this dewatering plan, additional sumps may be installed.

3.3 Pumps

Pumps are expected to be 3-inch diameter discharge electric submersible pumps.

3.4 Discharge Lines

Discharge lines will run from the pump(s) to a water treatment system. It is anticipated that a combination of PVC pipe, flexible hose, and quick-connect connections will be used for the discharge lines.

3.5 Water Treatment System

French will provide a water treatment system suitable to reduce total suspended solids prior to discharge. This system includes a weir tank, bag filtration and a flow meter/totalizer (refer to Additional treatment may include granulated activated carbon (GAC) and ion exchange, if necessary to meet NPDES discharge standards. Please refer to Figure 4 for a system schematic and Attachment C for individual cut sheets of system components. Calculations regarding the water treatment system are included as Attachment D.

The treatment system is capable of treating water up to 150 gpm and consists of one (1) 18,000-gallon weir tank. From the weir tank, water is pumped via a 3-inch submersible pump to one (1) triple bag filter skid with three (3) single bag filters plumbed in parallel such that two bag filter vessels can operate while the other remains in standby. During a bag filter change-out, two

vessels are opened while the other is closed so that water treatment never needs to be shut down. Each bag filter vessel includes isolation valves, sample ports and pressure gauges on the influent and effluent piping so that it is clear when a bag filter change-out is required. From the bag filter housings, treated water will be monitored with a flow meter/totalizer.

Contingency water treatment components include a two (2) media vessels each containing 3,000 pounds of reactivated liquid phase carbon, followed by one (1) media vessel containing 60 cubic feet of cation exchange resin. Each media vessel is rated for a maximum flow rate of 150 gpm and 75 PSI.

3.6 Flow Metering

Flow metering (instantaneous and total) is recommended on this project. The water treatment system includes a non-resettable flow meter and totalizer. See Attachment C for a cut sheet.

3.7 Pump Tests

Dewatering for this project will be completed using dewatering wellpoints and sump pumps within the excavation. Pump tests are not planned as part of this project.

3.8 Record Keeping

During dewatering, French will maintain results of monitoring and inspection reports dictated by the applicable permit requirements/conditions.

3.9 Dewatering System Layout

The proposed dewatering system layout for this project indicates the anticipated number of sump wells and is presented in Figure 2. As mentioned, the final number, combination, location and configuration of these components will be determined by the actual conditions encountered in the field.


4. Backup Systems and Contingencies

4.1 Backup System

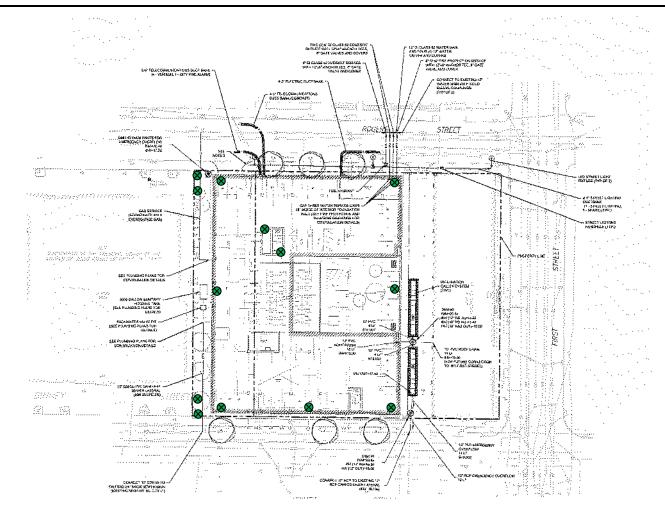
An electrical service will be provided by French for the operation of the dewatering system. Backup power will be provided by emergency power generators that will be staged by French at the site.

4.2 Contingency Plans

In the event of periods of high precipitation, it is recommended that the job cease due to the possibility of the excavation being overwhelmed by water. Formal contingency plans will be developed by French after assessing a particular situation and may include, but would not be limited to; repositioning/installing additional wells and/or pumps; using alternative excavation support measures to reduce flows into the excavation; additional groundwater constituents that exceed discharge criteria; and operating the dewatering systems during work hours only.

Source: MassGIS Topographic Base Map from the following USGS Quadrangle Map: South Boston - Massachusetts

Notes

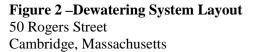

1. Figure is not to scale.

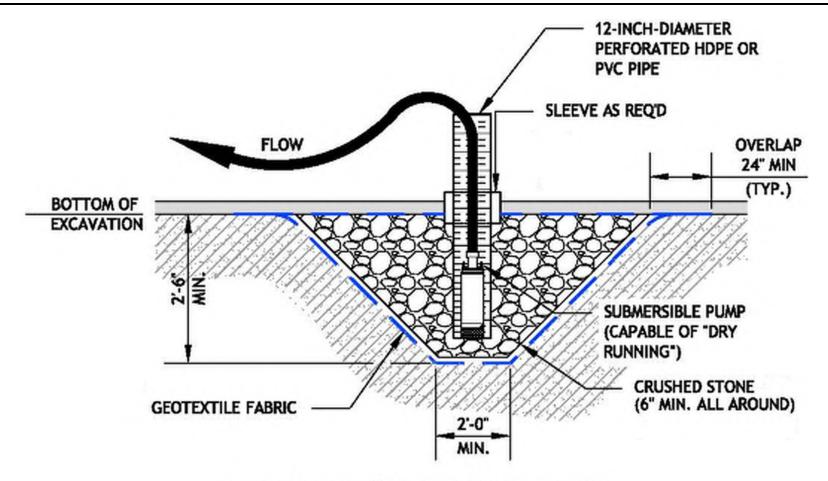
89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Fax: 888.835.0617 www.lrt-llc.net **Figure 1 – Locus Plan** 50 Rogers Street Cambridge, Massachusetts

Source: C-5 - Composite Utility Plan - Simella Shaffer, dated March 1, 2018

<u>Notes</u>


1. Figure is not to scale.


Dewatering Sump

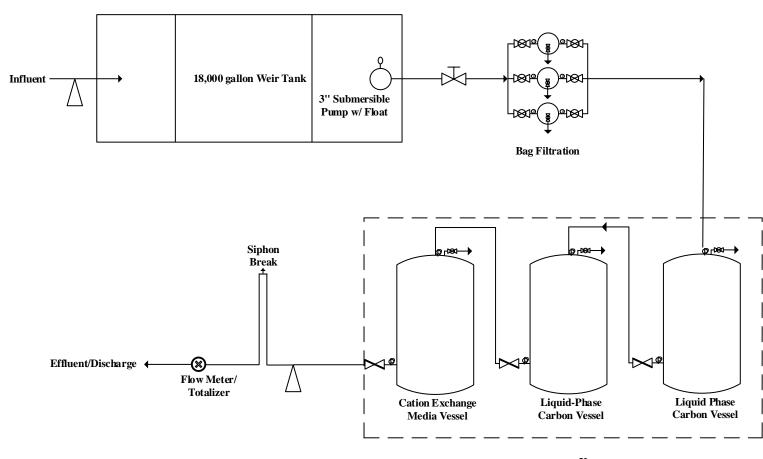
89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Fax: 888.835.0617 www.lrt-llc.net

TYPICAL SUMP AND PUMP DETAIL SCALE: NTS

Notes:

- 1.) Figure is not to scale.
- 2.) Sumps should be packed with 3/4" stone.


89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 3 - Dewatering Sump Detail

50 Rogers Street

Cambridge, Massachusetts

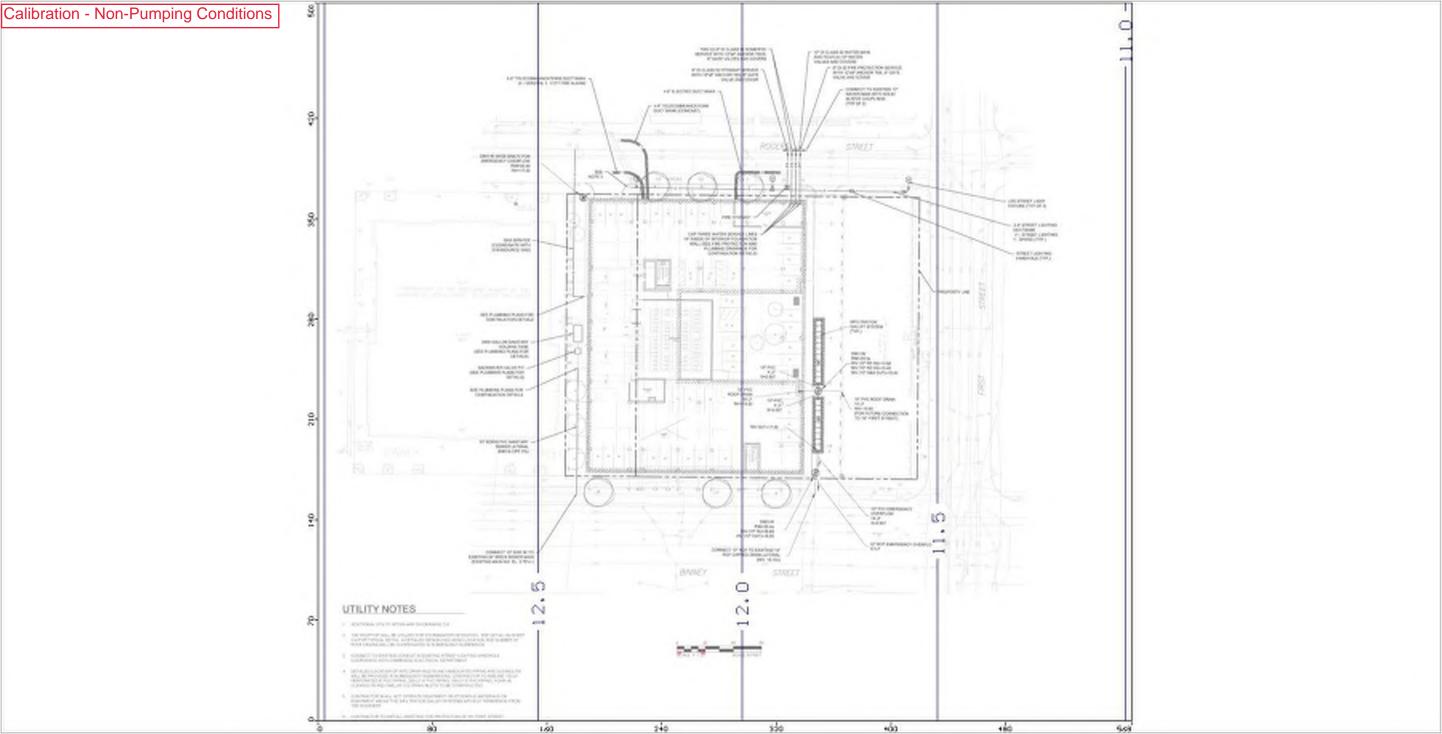
Notes:

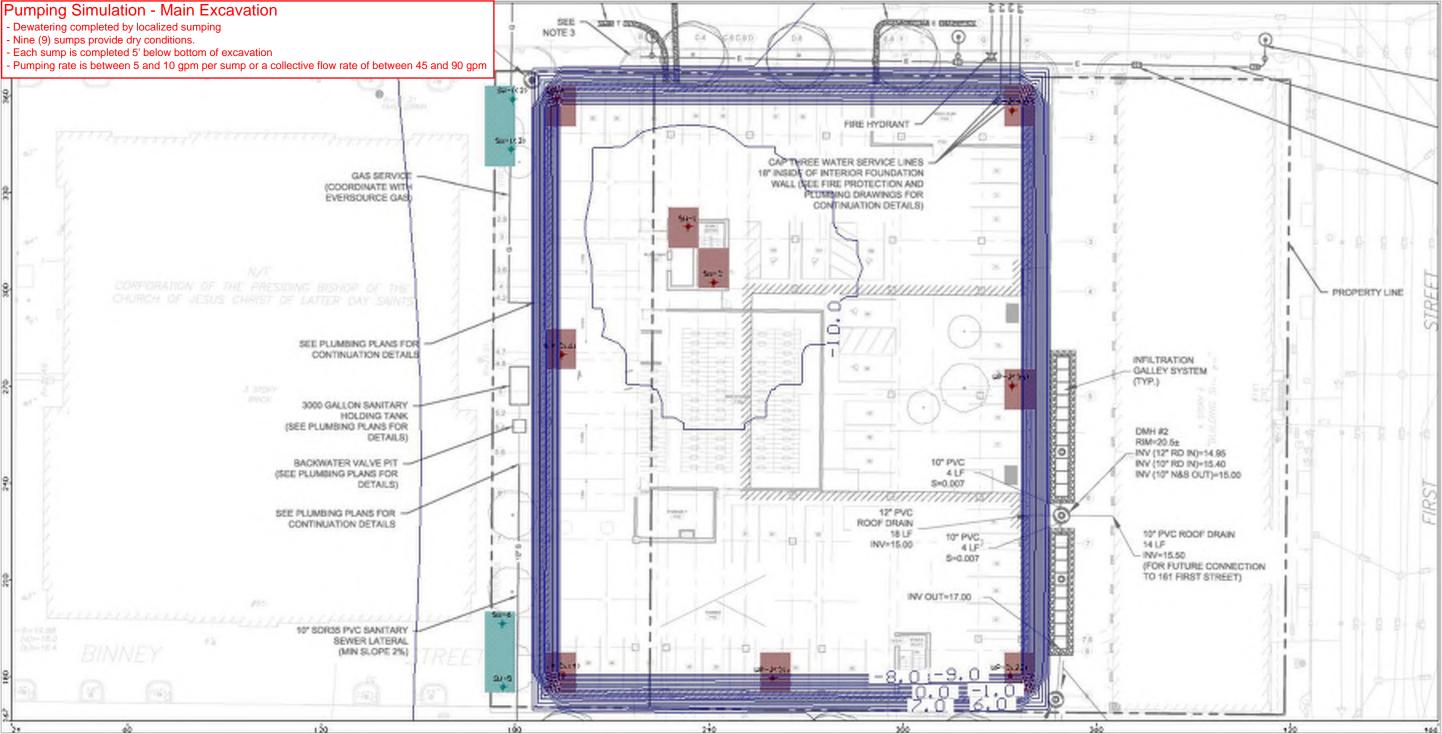
- 1.) Figure is not to scale
- 2.) System rated for 150 GPM

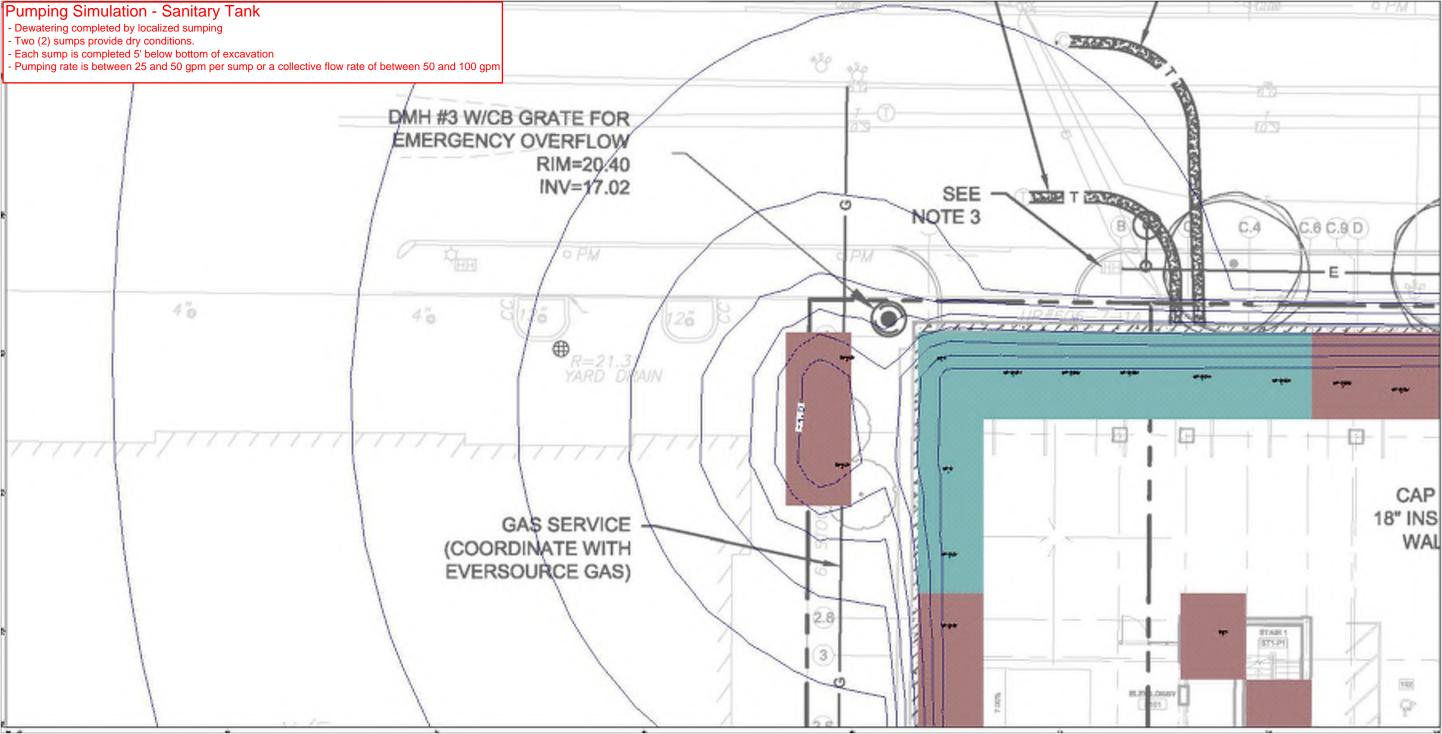
Key:	
Piping/Hose	\longrightarrow
Sample Port	
Contingent	

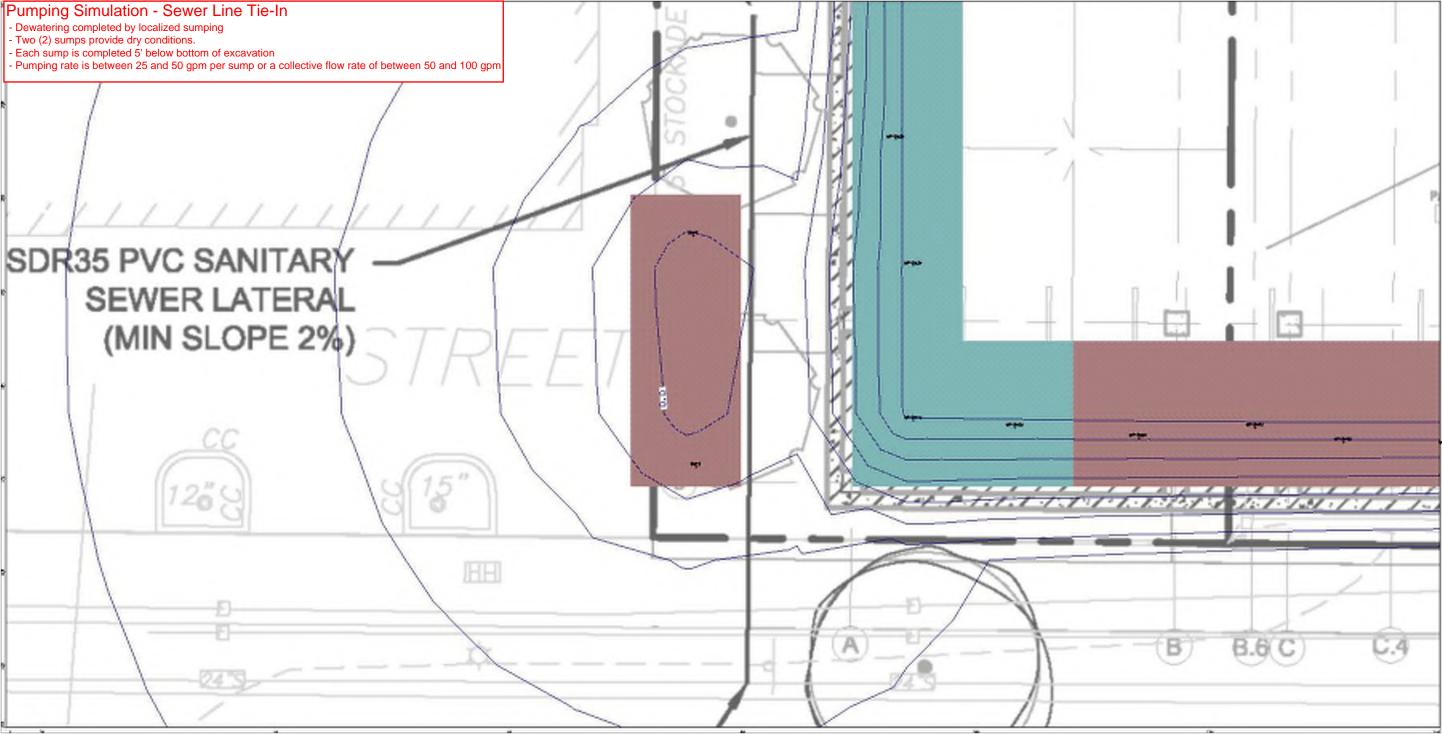
Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453 Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: K. Gravelle


CHECKED BY: DATE:


Figure 4 - Water Treatment System Schematic


50 Rogers Street Cambridge, Massachusetts


Attachment A

Dewatering Model Outputs

Attachment B

Dewatering System Cut Sheets

Motor Protection

All models provide built-in thermal overload protection that shuts down the pump when operating temperature becomes too high, and automatically restarts once the motor cools and a proper temperature is met.

YELLSUB

33 GPM - 15' HEAD 3/4" GHT and 1 1/4" NPT Discharge

The Yellow Submarine is lightweight, compact and is a great choice for light duty jobs found around the shop or home. One piece polymer pump casing resists corrosion and heat. Features internal overload protection, dual shaft seals, and UL/CUL listings.

ST2038P

2" NPT Discharge 60 GPM - 38' HEAD

Designed for hard industrial pumping applications. Unique strainer permits dewatering levels down to 1/16". Features oil-filled dual shaft seals, aluminum housing, streamline shape, powerful 115V motor, internal thermal protection, and UL/CUL listings.

ST2047

2" NPT Discharge 87 GPM - 47' HEAD

This time tested pump is the contractors choice for tough demanding applications. The engineered design provides superior performance in a compact package. Trusted powerful 115V motor, low maintenance requirements, thermal protection, and UL/CUL listings.

All MQ 115V 1Ø pumps are designed with internal thermal overload protection and do not require extra electrical protection, however, the CB3 Control Box is offered for convenient ON/OFF/AUTO and float switch operations. The CB3 comes with two SW1WOPA float switches.

Quality and Safety

ST Series Single Phase Pumps are in accordance with ISO9001 Quality Management System standard. Also, all Single Phase models carry the Underwriters Laboratories (UL) Listing for compliance with both U.S. or Canadian electrical safety codes.

SS233

2" NPT Discharge 60 GPM - 20' HEAD

This highly portable, lightweight pump is a great choice for flooded rooms, flat roofs, fill tanks, basins, fountains and waterfalls. Features include hardy thermoplastic casing, stainless steel fitting, internal overload protection, full oil lubricated shaft seals, and UL/CUL listings.

ST2037

2" NPT Discharge 73 GPM - 37' HEAD

Popular, and versatile, the ST2037 is a low maintenance pump that is designed for long hard industrial pumping applications. Features include oil-filled dual shaft seals, aluminum housing, streamline shape, powerful 115V motor, internal thermal protection, and provides UL/CUL listings.

ST3020BCUL

3" NPT Discharge 170 GPM - 72' HEAD

Slim design and proven performance, this 2HP 230V pump de-waters surfaces down to ½" and handles fluids up to 140° F. Features include double mechanical oil-filled seals, internal thermal protection, & sealed ball bearing assembly. The pump offers a ductile iron impeller, insulated aluminum casing, 50' power cable with strain relief, assembly, and provides a convenient carrying handle.

The pump model ST3020BCUL provides its own internal thermal overload protection, however, the 230V 1Ø CB6 Control Box is offered for convenient ON/OFF/AUTO and float switch operations. The CB6 comes standard with two SW1WOPA float switches.

Why Choose a Trash Pump?

When applications call for moving heavy debris laden water, the proper choice is the Multiquip Submersible Trash Pump. The pumps are equipped with a 2" discharge port, and are internally engineered to easily handle debris and solids up to one inch in diameter. All models employ a vortex action design that discharges solids away from the unique multi-vane impeller to prevent clogging.

ST2040T 2" NPT Discharge 79 GPM - 40' HEAD

This rugged compact submersible trash pump is ideal for moving debris laden water (MAX solid size 1"). A heavy duty cast iron housing and abrasion resistant impeller withstands tough dewatering applications. The ST2040T features dual shaft seals, powerful 115V motor, internal thermal protection, 25' power cable with strain relief, convenient carry handle, and UL/CUL listings. Pumps fluids up to 140° F.

Easy Clean out Base Design

PX400 2" NPT Discharge 72 GPM - 34' HEAD

Easy Clean out Base Design

The PX400 is a lightweight submersible trash pump in a compact package. It is ideal for moving debris laden water (MAX solid size 1"). An industrial grade cast iron housing and abrasion resistant impeller withstands tough dewatering applications. The corrosion resistant stainless steel casing allows this pump to tackle marine, and selected chemical applications. Major features include abrasion resistant impeller, dual shaft seals, powerful 115V motor, internal overload protection, 19' power cable with strain relief, convenient carry handle, and UL/CUL listings. Pumps fluids up to 140° F.

ST2010TCUL

2" Discharge 95 GPM - 45' HEAD

Designed for heavy industrial applications, the ST2010TCUL provides exceptional performance moving debris laden water (MAX solid size 1"). An industrial grade cast iron housing and abrasion resistant impeller withstands very demanding dewatering applications. Key features include a powerful 115V electric motor, double mechanical oil filled shaft seals, sealed ball bearing impeller, powerful 115V motor, internal thermal protection, 50' power cable with strain relief, convenient and carrying handle. Also, this pump has UL/CUL listings, and handle fluids up to 140° F.

Base Design

All MQ 115V 1Ø pumps are designed with internal thermal overload protection and do not require extra electrical protection, however, the CB3 control box is offered for convenient ON/OFF/AUTO and float switch operations. The CB3 comes with two SW1WOPA float switches.

Multiquip's Powerful 3-Phase Pumps

When three phase power is available, Multiquip provides three pump models that tackle a variety of industrial dewatering applications. These powerful submersibles are available in 3", 4" and 6" discharge sizes, and are available in either 230V or 460V models depending on power source.

ST3050D 3" NPT Discharge 270 GPM - 86' HEAD

The ST3050D is ideal for supporting tough utility and municipal jobs. The flexible dual voltage 230/460 5HP motor ensures optimum flow and head performance. The pump incorporates an industrial cast iron housing, dual shaft seals, sealed ball bearing impeller, carrying handle and molded 50' power cable w/ strain relief. The pump handles fluid up to 140° F.

A Control Box is required to provide overload safety shut downs that are thermal & voltage related, and to assist in powering float switches. MQ offers the control box CB200 to support the ST3050D.

ST41230 / ST41460 4" NPT Discharge 423 GPM - 138' HEAD

Powerful, compact and offering top performance output, the ST41 Series features: heat-treated stainless steel 410 shaft, double mechanical seals, oil free motor, thermal/over current motor protection, dynamically balanced high chrome impeller, and corrosion resistant stainless steel outer casing. Passes solids up to ½", has a carrying handle and comes with a molded 33' power cable w/ strain relief. The pump handles fluid up to 140° F. There are two 4" discharge models available: 230V 3Ø or 460V 3Ø.

A Control Box is required to provide safe ON/OFF functioning, overload safety shut downs that are thermal & voltage related, and proper conduits to assist in powering float switches. MQ offers the CB1269 control box to support the ST41230 and the CB1456 to support the ST41460.

ST61230 / ST61460

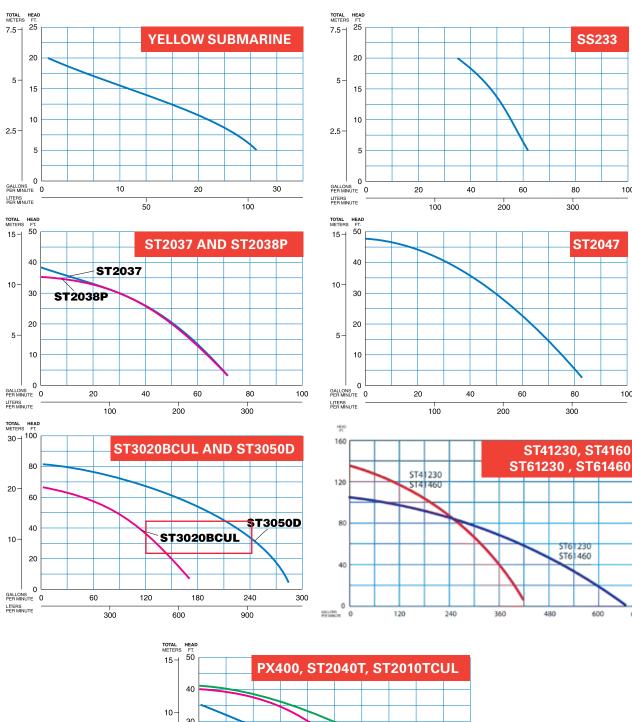
6" NPT Discharge 674 GPM - 105' HEAD

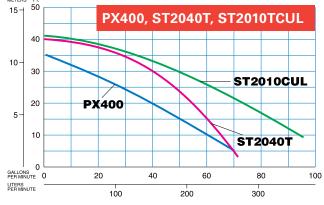
The ST61 Series provides exceptional flow output, durability, in an overall compact package. High performance and operating value is achieved through an oil free motor, thermal/over current motor protection, dynamically balanced high chrome impeller, heat-treated stainless steel 410 shaft, double mechanical seals, and rigid corrosion resistant stainless steel outer casing and strainer. Passes solids up to ½", lifting eyelets and comes with a molded 33' power cable w/ strain relief. The pump handles fluid up to 140° F. Depending on your electrical source, there are two 6" discharge model pumps: 230V 3Ø or 460V 3Ø.

A control box is required to provide safe ON/OFF functioning, overload safety shut downs that are thermal & voltage related, and proper conduits to assist in powering float switches. MQ offers the CB1274 control box to support the ST61230 and CB1456 Control Box to support the ST61460

ACCESSORIES

Control	Boxes	
Model		Description
00	CB3	Control box for 115V Pumps - Water resistant fiberglass housing and cable connectors prevent moisture from entering into box - (2) SW1WPOA float switches attached. Features operation switch and running light. Specs FLA (Amps): 120V 1Ø 40A.
00	CB6	Control box for 230V Pumps - Water resistant fiberglass housing and cable connectors prevent moisture from entering into box. Features operation AUTO switch. Specs FLA (Amps): 230V 1Ø 12A. Includes (2) SW1WOPA Single float switches
©	CB200	Control box. Magnetic starter, watertight housing and cable connectors prevent moisture from entering into box - additional cable glands support float switches. Features ON/OFF switch and running light. Electric overload helps prevent short circuits, and power spikes. Specs: 230V 1Ø 10.5A; 230V 3Ø 14.2A, 460V 3Ø 7.1A
* 1	CB1269	Control box for model ST41230 (230V 3Ø). Magnetic starter, electronic overload protection, power spike control, and short circuit protection. Watertight outer housing and cable glands that support float switches. ON/OFF switch with running lights. Three K69 heater elements included.
12 14	CB1274	Control Box for model ST61230 (230V 3Ø). Magnetic starter, electronic overload protection, power spike control, and short circuit protection. Watertight outer housing and cable glands that support float switches. ON/OFF switch with running lights. Three K74 heater elements included.
. 1	CB1456	Control box for model ST41460 (460V 3Ø). Magnetic starter, electronic overload protection, power spike control, and short circuit protection. Watertight outer housing and cable glands that support float switches. ON/OFF switch with running lights. Three K56 heater elements included.
12 1	CB1463	Control Box for model ST61460 (460V 3Ø). Magnetic starter, electronic overload protection, power spike control, and short circuit protection. Watertight outer housing and cable glands that support float switches. ON/OFF switch with running lights. Three K63 heater elements included.


Float Switches


Model		Description
O	SW1A	Mechanical single float switch, 120V. Provides NEMA 5-15 Plug and piggy-back receptacle end. Corrosion resistant PVC Housing for use in sewage/water up to 140° F. UL/CUL listed. Heavy-duty contacts. Adjustable range 7" to 36". 16 gauge cord. Pressure tested to 60'. 14 Gauge - 20' cord.
0	SW1WOPA	Mechanical single float switch, 120V. Open wire end. Corrosion resistant PVC Housing for use in sewage/water up to 140° F. UL/CUL listed. Heavy-duty contacts. Adjustable range 7" to 36". 16 gauge cord. Pressure tested to 60'. 14 Gauge - 20' cord. For control box applications only.
É	SW2A	Double mechanical float switch, 120V. Provides holding relay to permit floats to work in series, and eliminates pump chatter in turbulent applications. UL/CUL listed. Adjustable pumping ranges 3" to 48". With NEMA 5-15 plug and piggy-back receptacle. Float housings made from rugged polypropylene with 14 Gauge 20' cords.

Discharge Hose

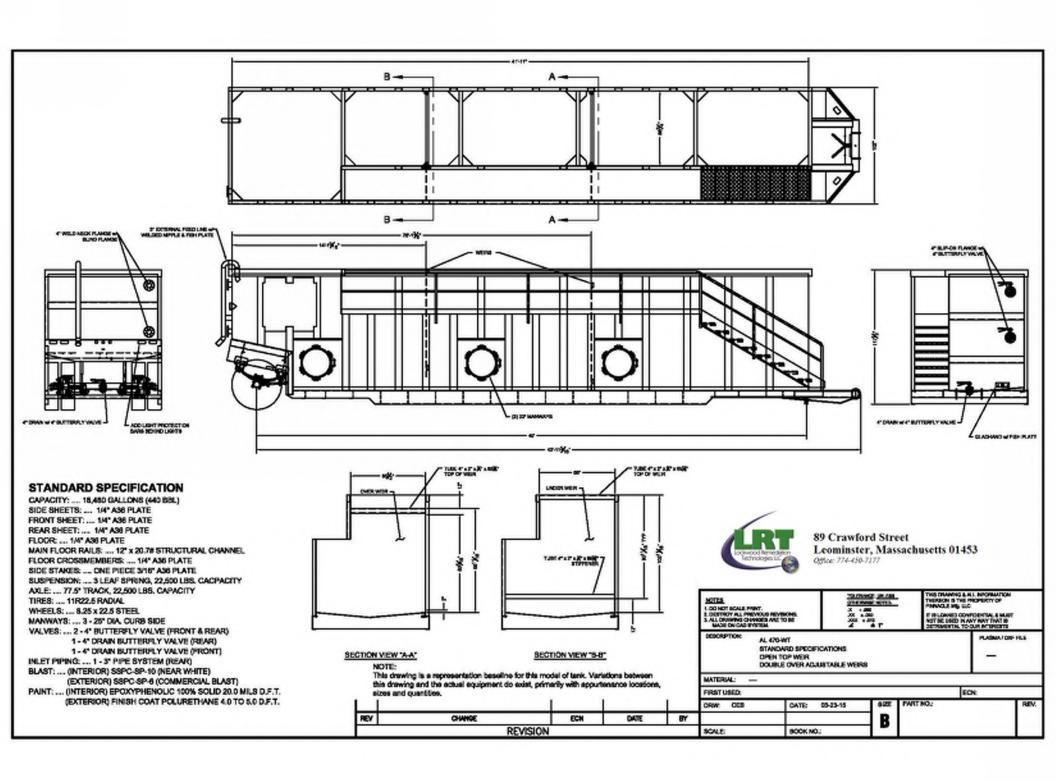
Discharge I	1000	
NPTTHREAD		
	HD1550	Discharge Hose, 50 feet - 1½" - 75psi
	HD250	Discharge Hose, 50 feet - 2" - 75psi
	HD350	Discharge Hose, 50 feet - 3" - 60psi
-	HD450	Discharge Hose, 50 feet - 4" - 60psi
	HD650	Discharge Hose, 50 feet - 6" - 45psi
QD COUPLER		
	HDQ1550	Discharge Hose, 50 feet - 11/2" Quick Coupler - 75psi
	HDQ250	Discharge Hose, 50 feet - 2" Quick Coupler - 75psi
Contract of the	HDQ350	Discharge Hose, 50 feet - 3" Quick Coupler - 60psi
	HDQ450	Discharge Hose, 50 feet - 4" Quick Coupler - 60psi
	HDQ650	Discharge Hose, 50 feet - 6" Quick Coupler - 45psi

Specifications

Model	Impeller	Disc. Size in. (mm)	Max. Solids in. (mm)	Total Head ft. (m)	Capacity GPM (Ipm)	HP (kw)‡	Voltage; Phase	Starting Amp.	Running Amp.	Cable Length ft. (m)	Diameter in. (mm)	Height in. (mm)	Weight Ib (kg)
CENTRIFUG	AL												
YELLSUB*	Heavy Polymer	1¼ (31.7)	0.4	15 (4.6)	33 (125)	0.25 (.185)	115V 1Ø	11.5	2.5	9 (2.7)	6.25 (159)	9.5 (241)	6 (2.72)
SS233*	Heavy Polymer	2 (50)	0.4	20 (6.1)	60 (227)	0.5 (0.37)	115V 1Ø	30	6	10 (7.6)	8.1 (206)	14.5 (368)	15.5 (7.0)
ST2038P*	Neoprene Rubber over Cast Iron	2 (50)	0.4	38 (11.5)	60 (227)	1 (0.75)	115V 1Ø	56	8	25 (7.6)	7.7 (196)	15.4 (391)	31 (14)
ST2037*	Neoprene Rubber over Cast Iron	2 (50)	0.4	37 (11.3)	73 (276)	1 (0.75)	115V 1Ø	34.5	6.9	25 (7.6)	7.4 (188)	15.4 (391)	31 (14)
ST2047*	Neoprene Rubber over Cast Iron	2 (50)	0.4	47 (14.3)	87 (329)	1 (0.75)	115V 1Ø	49	9.8	50 (15.2)	7.4 (188)	15.4 (391)	33 (15)
ST3020BCUL*	Cast Duc- tile Iron	3 (75)	0.4	72 (22)	170 (644)	2 (1.5)	230V 1Ø	52	10.5	50 (15.2)	6.7 (170)	28.5 (720)	67 (30)
ST3050D	Cast Duc- tile Iron	3 (75)	0.4	86 (26)	264 (999)	5 (3.75)	230/460V 3Ø	77 (230V) 39 (460V)	14.2 (230V) 7.1 (460V)	50 (15.2)	10.2 (259)	26.8 (680)	120 (54)
ST41230	Chrome Steel	4 (100)	.6" (15)	138 (42)	423 (1600)	10 (7.5)	230 3Ø	172.2	28.6	33 (10)	12.5 (317)	32 (807)	205 (93)
ST41460	Chrome Steel	4 (100)	.6" (15)	138 (42)	423 (1600)	10 (7.5)	460 3Ø	85.8	14.3	33 (10)	12.5 (317)	32 (807)	205 (93)
ST61230	Chrome Steel	6 (150)	.6" (15)	105 (32.5)	674 (2450)	15 (11.0)	230 3Ø	258	43	33 (10)	14 (352)	34 (855)	301 (137)
ST61460	Chrome Steel	6 (150)	.6" (15)	105 (32.5)	674 (2450)	15 (11.0)	460 3Ø	129	21.5	33 (10)	14 (352)	34 (855)	301 (137)
TRASH PUM	1PS												
PX400*	Urethane Resin	2 (50)	1 (25)	34 (10.3)	72 (273)	0.5 (0.37)	115V 1Ø	37	6.2	19 (5.6)	10 (254)	17 (430)	25 (11)
ST2040T*	Neoprene Rubber over Cast Iron	2 (50)	1 (25)	40 (12.2)	79 (299)	1 (0.75)	115V 1Ø	34	6.8	25 (7.6)	10.3 (267)	16.8 (427)	34 (15.4)
ST2010TCUL*	Cast Duc- tile Iron	2 (50)	1 (25)	45 (13.7)	95 (360)	1 (0.75)	115V 1Ø	53	9.4	50 (15.2)	10.3 (267)	24.5 (622)	77 (35)

Note: All Multiquip 3-phase submersible pumps require a control box to provide it with all of the operation safety shut-downs and to use with float switches (if required).

If these pumps are ordered to replace a unit in an existing application where a control box is already installed then the existing control box may be sufficient. If the pump is part of a new application where a control box is not already present then a control box needs to be ordered with the 3-phase submersible pump. A control box is needed specifically to provide the 3-phase submersible pump with the voltage overload and thermal overload shutdowns, as well as a connection point for the use of float switches.


Your Multiquip dealer is:

^{*} Complies with UL and Canadian Electrical Standards.

Attachment C
Water Treatment System Cut Sheets

AUGUST 2014

Electric Motor Driven

Submersible Pump

Models S3B1-E6 and S3B1

Size 3"

PUMP SPECIFICATIONS

Suction Head: Aluminum Alloy 356-T6 With Bonded Nitrile Lining:

Maximum Operating Pressure 50 psi (345 kPa).*
Impeller: Ductile Iron 65-45-12.

Seal Plate: Aluminum Alloy 356-T6 With Bonded Nitrile Lining. Intermediate: Aluminum Alloy 356-T6.

Motor Housing: Aluminum Alloy 356-T6. Motor Shaft: Stainless Steel 416.

Bearings: Upper, Open Single Row Ball Bearing.
Lower, Two Shield, Double Row Ball Bearing.

Shaft Sleeve: Stainless Steel 304

Discharge Flange: Aluminum Alloy 356-T6. Gaskets: Cork with Nitrile Binder (NC710).

O-Rings: Buna-N.

Wetted Hardware: Standard Plated Steel and Stainless Steel.

Strainer: Urethane Coated Steel. 51% Open Area, 0.375" (9,5 mm) Diameter Openings.

Hoisting Bail: Urethane Coated Steel.

Standard Equipment

NEMA Type 3R Rainproof Control Box. (See Section130, Pages 80 and 85.)
Provides On-Off, Circuit Breaker and Motor Overload Protection.

Optional Equipment

Liquid Level Control: (See Sec. 130, Page 150.)

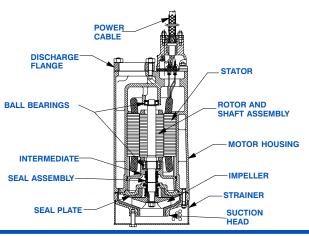
a. Turtle Type Pressure Activated Level Switch.

b. .Float Activated Level Switch.

Staging Adapter Kit. MOTOR/CABLE SPECIFICATIONS

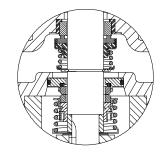
Motor: Oil Filled Enclosure; 6.0 H.P.; 3450 R.P.M.

Single Phase: 230 Volt, 60 Hz, 34 Full Load AMPS, 7.2 kW (Max.) Three Phase: 200/230/460/575 Volt, 60 Hz, 26.5/23/11.5/9.2


Full Load AMPS, 6.8 kW (Max.)

Power Cable: 4 Wire; Type SO/SOW/SOOW; 10 AWG; 3 Power Conductors, Plus 1 Ground. Nominal Length 50 Feet (15 m). Standard.

(Specify Alternate Length at Time of Order.)


Recommended Generator Size: 15 kW Across the Line Start.

*Consult Factory for Applications Exceeding Maximum Pressure and/or Temperature Indicated.

SEAL SPECIFICATIONS

Tandem, Oil Lubricated.

Upper Seal: Type 21, Mechanical. Carbon Rotating Face. Ni-Resist Stationary Face. Buna-N Elastomers. Stainless Steel 18-8 Cage and Spring.

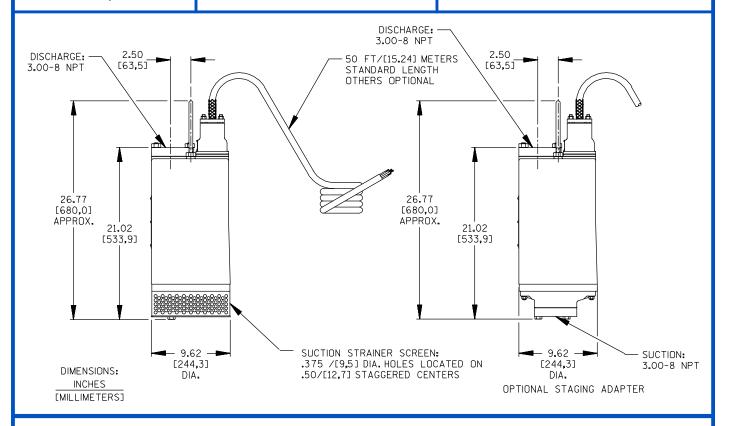
Lower Seal: Type 2, Mechanical. Tungsten Titanium Carbide Rotating and Stationary Faces. Stainless Steel 316 Stationary Seat. Fluorocarbon Elastomers (DuPont Viton® or Equivalent). Stainless Steel 303/304 Cage and Spring.

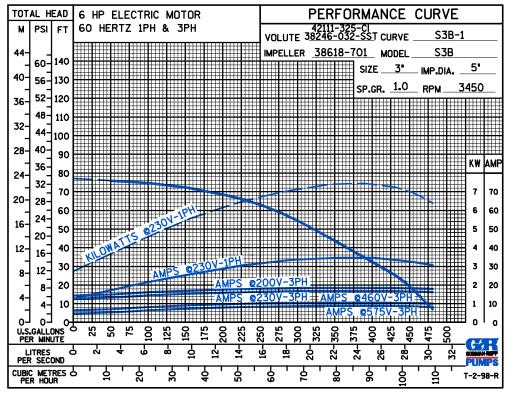
Maximum Temperature of Liquid Pumped, 122°F (50°C).*

GORMAN-RUPP PUMPS

www.grpumps.com

Specifications Subject to Change Without Notice

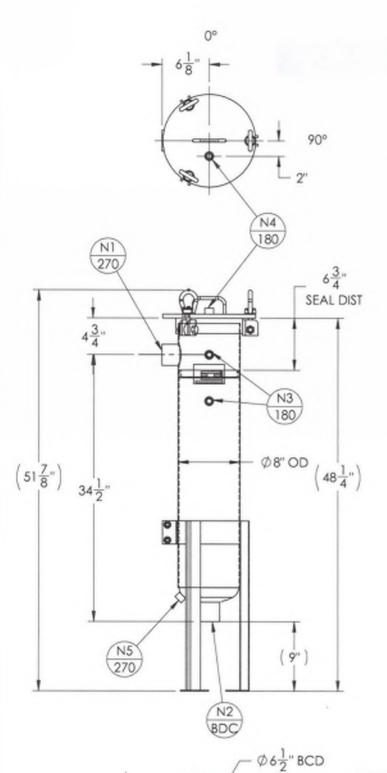

Printed in U.S.A.


Specification Data

SECTION 130, PAGE 660

APPROXIMATE DIMENSIONS and WEIGHTS

NET WEIGHT: SHIPPING WEIGHT: EXPORT CRATE SIZE: 145 LBS. (65,8 KG.) 155 LBS. (70,3 KG.) 7.8 CU. FT. (0,22 CU. M.)



GORMAN-RUPP PUMPS

www.grpumps.com

Specifications Subject to Change Without Notice

Printed in U.S.A.

 $\Box 5\frac{5}{8}$

		NOZZLE	SCHEDULE			
MARK	QTY	SIZE	/ RATING	DESCRIPTION INLET OUTLET		
N1	1	2" 150	# NPT			
N2	1	2" 150	# NPT			
N3	2	1/2" 30	00# NPT	PRE	SS GA	
N4	1	1/2" 30	00# NPT	VENT		
N5	1	1/2" 30	00# NPT	CLEA	N DRAIN	
N6	-		-	DIRT	Y DRAIN	
	VES	SEL DESIG	N CONDITION	NS.		
CODE:	BE	ST COMME	RCIAL PRACT	TICE		
M.A.W.P.:	150 PSI	@ 250°F	M.D.M.T.:	-20° F	@ 150 PSI	
M.A.E.P.:	15 PSI @	250°F				
CORROSION	ALLOWANCE	E: NONE	HYDROTES	T PRESS:	195 PS	
STAMP:	'NC'		SERVICE:	NON	LETHAL	
PWHT:	N/A		RADIOGRA	PHY:	N/A	
MATERIAL:	SS 304	/L	GASKET:	BU	NA-N	

DRY WEIGHT: 77.62 #'s FLOODED WEIGHT: 140 #'s SHIPPING WEIGHT: 100 #'s VESSEL VOLUME: 1.0 C.F.

1:1

 $\phi \frac{1}{2}$ TYP.

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

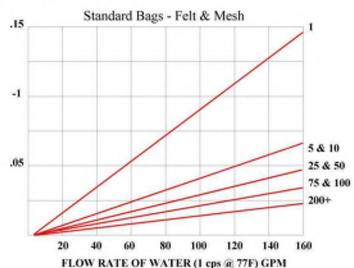
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities

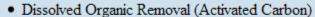

Optional Filter Media

Felt: Nomex, Polyester, Polypropylene

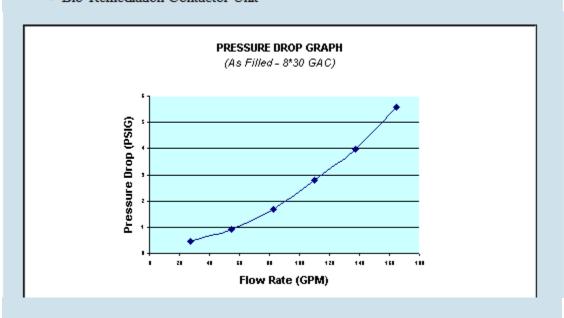
Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

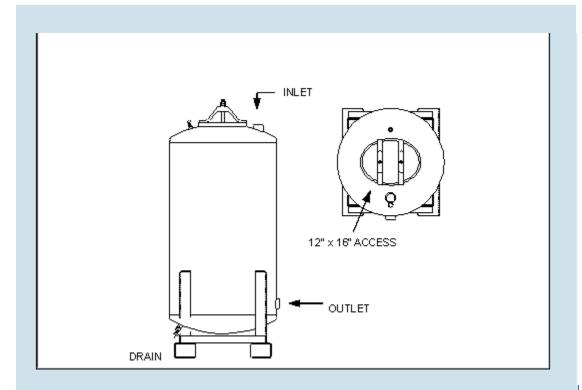
Polypropylene: Oil Removal


89 Crawford Street

Leominster, Massachusetts 01453


Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

HPAF SERIES FILTERS MODEL HPAF-3000


The HPAF-3000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- Suspended Solids Removal (Sand Filter)
- Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- Dissolved and Precipitated Metals Removal
- Special Organics (Resin/Carbon Blend)
- · Catalytic Reactor (Chlorine and Peroxide Removal)
- Bio-Remediation Contactor Unit

	HPAF-3000 S	PECIFICATIONS	
Overall Height	8'11"	Vessel/Internal Piping Materials	CS (SA-36) / SCH 40 PVC
Diameter	60"	Internal Coating	Polyamide Epoxy Resin
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic
Drain / Vent (FNPT)	1" / 1/2"	Maximum Pressure / Temp	75 PSIG / 140° F
GAC Fill (lbs)	3,000	Cross Sectional Bed Area	19.5 FT ²
Shipping / Operational Weight (lbs)	3,525/10,635	Bed Depth/Volume	5.5 FT / 107 FT ³

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

RESINTECH CGS is a sodium form standard crosslinked gel strong acid cation resin. *CGS* is optimized for residential applications that require good regeneration efficiency and high capacity. *RESINTECH CGS* is intended for use in all residential and commercial softening applications that do not have significant amounts of chlorine in the feedwater. *CGS* is supplied in the sodium form.

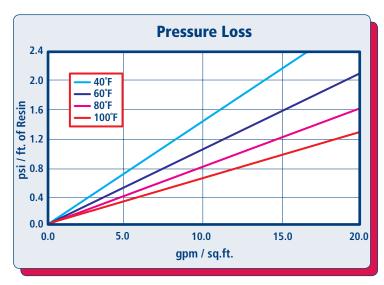
FEATURES & BENEFITS

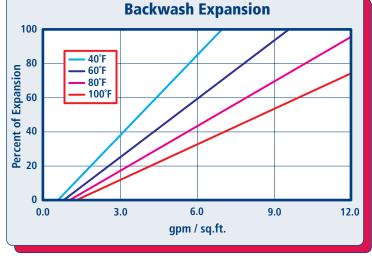
RESIDENTIAL SOFTENING APPLICATIONS

Resin parameters are optimized for residential softeners

LOW COLOR THROW

SUPERIOR PHYSICAL STABILITY


93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop


COMPLIES WITH US FDA REGULATIONS

Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.

HYDRAULIC PROPERTIES

PRESSURE LOSS

The graph above shows the expected pressure loss of *ResinTech CGS* per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH

The graph above shows the expansion characteristics of *ResinTech CGS* as a function of flow rate at various temperatures.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene/DVB

Polymer Type Gel

Functional Group Sulfonic Acid Physical Form Spherical beads

Ionic Form as shipped Sodium

Total Capacity

Sodium form >1.8 meq/mL

Water Retention

Sodium form 40 to 52 percent

Approximate Shipping Weight

Sodium form 50 lbs./cu.ft.

Screen Size Distribution (U.S. mesh) 16 to 50

Maximum Fines Content (<50 mesh) 1 percent

Minimum Sphericity 90 percent

Uniformity Coefficient 1.6 approx.

Resin Color Amber

Note: Physical properties can be certified on a per lot basis, available upon request

SUGGESTED OPERATING CONDITIONS

Maximum continuous temperature

Sodium form 250°F

Minimum bed depth 24 inches

Backwash expansion 25 to 50 percent

Maximum pressure loss 25 psi
Operating pH range 0 to 14 SU

Regenerant Concentration

Salt cycle 10 to 15 percent NaCl Regenerant level 4 to 15 lbs./cu.ft. Regenerant flow rate. 0.5 to 1.5 gpm/cu.ft.

Regenerant contact time >20 minutes

Displacement flow rate

Displacement volume

10 to 15 gallons/cu.ft.

Rinse flow rate

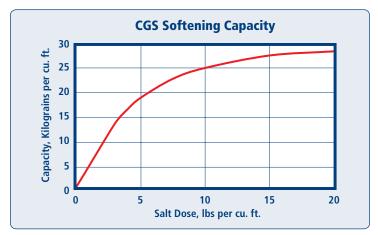
Same as service flow

Rinse volume

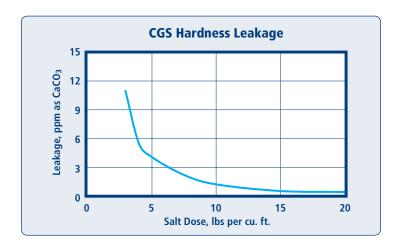
35 to 60 gallons/cu.ft.

Service flow rate

1 to 10 gpm/cu.ft.


Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.

For operation outside these guidelines, contact ResinTech Technical Support


APPLICATIONS

SOFTENING

RESINTECH CGS is a standard crosslinked cation resin optimized for residential and commercial applications. This type of resin is easier to regenerate than the higher crosslinked resins. CGS has marginal resistance to chlorine and other oxidants and is not ideal for high temperature and other high stress applications.

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO3, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

East Coast - West Berlin, NJ p:856.768.9600 • Midwest - Chicago, IL p:708.777.1167 • West Coast - Los Angeles, CA p:323.262.1600

ZENNER PERFORMANCE Cast Iron Turbine Meters

Sizes 2" through 12"

INTRODUCTION: ZENNER PERFORMANCE Turbine Meters are designed for applications where flows are usually moderate to high and occasionally low. They are used in measurement of potable cold water in commercial and industrial services where flows are in one direction.

OPERATION: Water flows through the turbine section which causes the rotor to turn proportionately to the quantity of water flowing through the meter. A drive magnet transmits the motion of the rotor to a driven magnet located within the hermetically sealed register. The magnet is connected to a gear train which translates the rotations into volume totalization displayed on the register dial face. The only moving parts in the meter are the rotor assembly and vertical shaft .

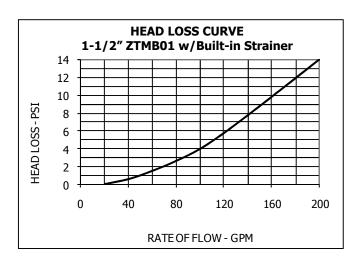
CONSTRUCTION: ZENNER PERFORMANCE Turbine Meters consist of three basic components: Cast Iron Epoxy Coated main case, measuring element, and sealed register. The measuring element assembly includes the rotor assembly, vertical shaft and a calibration vane which eliminates the need for calibration change gears.

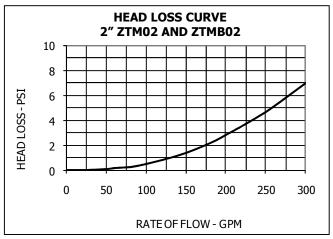
MAINTENANCE: ZENNER PERFORMANCE Turbine Meters are engineered and manufactured to provide long-term service and operate virtually maintenance free. If necessary the universal measuring element (UME) can be removed from the main case for maintenance. Interchangeability of certain parts between like sized meters minimizes spare parts inventory.

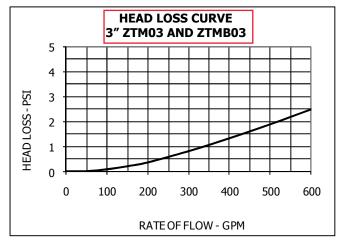
CONFORMANCE: ZENNER PERFORMANCE Turbine Meters are tested and comply with AWWA C701 Class II performance standards.

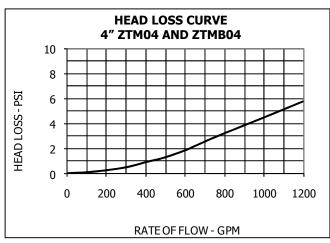
STRAINERS: ZENNER PERFORMANCE recommends the use of a separate strainer upstream from the turbine meter. Strainers reduce the chance of damage to the rotor as well as the frequency in which it must be removed for inspection. The lack of a strainer may void the warranty of the turbine meter.

CONNECTIONS: Companion flanges for installation of meters on various pipe types and sizes are available in bronze or cast iron.






MODEL		PMT02	PMT03	PMT04	PMT06	PMT08	PMT10	PMT12
SIZE		2"	3"	4"	6"	8"	10"	12"
Flow rate maximum intermittent	USGPM	400	550	1250	2500	4500	7000	8800
Maximum continuous	USGPM	200	450	1000	2000	3500	5500	6200
Optimum operating flow range	USGPM	3 - 200	5 - 550	10 - 1250	20 - 2500	30 - 4500	50 - 7000	90 - 8800
Low flow rate	USGPM	2	2-1/2	5	12	20	45	65
Start-up flow rate	USGPM	7/8	1-1/8	1-3/8	7-1/2	8	15	15
Maximum Working Pressure	P.S.I.	160	160	160	160	160	160	160
Maximum Temperature	Deg. F	140	140	140	140	140	140	140
Length	Inches	7-7/8	8-7/8	9-7/8	11-7/8	13-3/4	17-3/4	19-5/8
Height	Inches	9-1/2	10-1/4	11	12-7/8	14-1/4	19	20-1/4
Width	Inches	7	7-1/2	9	11	13-1/2	16	19
Weight	Pounds	24	32	38	84	126	225	255
Number of holes per flange		4	4	8	8	8	12	12



ZENNER ZTM and ZTMB Turbine Water Meters (Without Strainer) Typical Head Loss Curves

Attachment D

Calculations

DESIGN CALCULATIONS

Water Treatment System 50 Rogers Street Cambridge, MA

Treatment System Description:

System designed to treat groundwater within the excavation area at a maximum flow rate of 150 gallons per minute (gpm). Components include one 18,000-gallon weir tank, a 3-inch submersible transfer pump, a triple bag filter unit, two (2) contingent carbon vessels each filled with 3,000 pounds of reactiviated liquid phase carbon, one (1) contingent ion exchange vessel with 60 cubic feet of cation resin and a flow totalizer meter. Refer to the Water Treatment System Schematic (Figure 4).

A. Dewatering Sump Pumps

Main Building Area Number of Pumps = 9 Type = Submersible Centrifugal Pump Make/Model = Multiquip ST3020BCL or equiv. Power = 1HP, 230V, 1-phase Discharge = 3" Pump Qmax = 170 gpm Q design = 150 gpm/9 pumps = 16.6 gpm/pump TDH @ Q design = 65'...per pump curve To achieve Q design = 16.6 gpm/pump; TDH @ pump must be <= 65' Existing Grade Elev. = 21' (assumed at staging area) Bottom of Deepest Excav. Elev. = -7' Pump Intake Elev. (3' below botom of excav.) = -10' Weir Tank Inlet Elev. (10' above exist. grade) = 31' Elevation Head = 31' - (-10') = 41' Friction Head through 100' of 3" Hose @ 16.6 gpm = 0.1' Total Head = Elevation + Friction = 41' + 0.1' = 41.1' Since 41.1' < 65'; pump OK Sanitary Tank Area Number of Pumps = 2 Type = Submersible Centrifugal Pump Make/Model = Multiquip ST3020BCL or equiv. Power = 1HP, 230V, 1-phase Discharge = 3" Pump Qmax = 170 gpm Q design = 100 gpm/2 pumps = 50 gpm/pump TDH @ Q design = 58'...per pump curve To achieve Q design = 50 gpm/pump; TDH @ pump must be <= 58' Existing Grade Elev. = 21' (assumed at staging area) Bottom of Deepest Excav. Elev. = 0' Pump Intake Elev. (3' below botom of excav.) = -3' Weir Tank Inlet Elev. (10' above exist. grade) = 31' Elevation Head = 31' - (-3') = 34' Friction Head through 100' of 3" Hose @ 50 gpm = 0.8' Total Head = Elevation + Friction = 34' + 0.8' = 34.8' Since 34.8' < 58'; pump OK Sewer Tie-In Area Number of Pumps = 2 Type = Submersible Centrifugal Pump Make/Model = Multiquip ST3020BCL or equiv. Power = 1HP, 230V, 1-phase Discharge = 3" Pump Qmax = 170 gpm Q design = 100 gpm/2 pumps = 50 gpm/pump TDH @ Q design = 58'...per pump curve To achieve Q design = 50 gpm/pump; TDH @ pump must be <= 58'

Existing Grade Elev. = 21' (assumed at staging area)
Bottom of Deepest Excav. Elev. = 2.5'
Pump Intake Elev. (3' below botom of excav.) = -0.5'
Weir Tank Inlet Elev. (10' above exist. grade) = 31'
Elevation Head = 31' - (-0.5') = 31.5'
Friction Head through 100' of 3" Hose @ 50 gpm = 0.8'
Total Head = Elevation + Friction = 31.5' + 0.8' = 32.3'
Since 32.3' < 58'; pump OK

B. Weir Tank

Quantity = 1 V = 18,000 gallons Qsystem - 150gpm Qtank = Qsystem

Design Detention Time dt = V/Q = 18,000 gallons/150 gpm = 120 minutes = 2 hrs

Typical dt = 2 hrs for primary settling Since design dt = typical dt; OK

C. Submersible Transfer Pump

Number of Pumps = 1
Type = Submersible Centrifugal
Pump Make/Model = Gorman-Rupp S3B1 or equiv. Power = 6HP, 230V, 3-phase
Discharge = 3"
Pump Qmax = approx. 475 gpm
Q design = 150 gpm
TDH @ Q design = 72'...per pump curve
To achieve Q design = 150 gpm; TDH @ pump must be <= 72'. Refer to Section H below.

D. Bag Filters

Three single bag filters plumbed in parallel (two on-line; other in stand-by)

Press max = 125 psi

Qmax = 150 gpm/filter

Q system = 150 gpm/2 filters = 75 gpm/filter

Since Q system < Qmax; OK

Press Drop without bags @ 75 gpm = approx. 0.3 psi = 0.7 feet

Press Drop with 5 micron bags @ 75 gpm = approx. 0.3 psi + 0.07 psi = 0.37 psi = 0.9 feet

Note: Bags typically changed out at 5 psi pressure differential. Therefore, max pressure drop = 5 psi = 11.6 feet.

E. Carbon Filters (Contingency)

Two 3,000 lb vessels in series

Model HPAF 3000

Press max = 75 psi

Bed Diameter = 5 feet

Bed Area = pi x (5 feet)(5 feet)/4 = 19.6 SF

Bed Volume = 107 CF (per spec sheet)

Bed Depth = V/A = 107 CF/ 19.6 SF = 5.5 feet

Temperature (groundwater) = approximately 50 degrees

Press. Drop at 150 gpm = 4.5 psi/vessel (per curve) = 10.4 feet/vessel

EBCT = Bed Volume/Q = (107CF x 7.48 gal/CF)/150 gpm = 5.3 min. (per vessel) or 10.6 minutes total

Typical range for VOCs 7 to 10 minutes Since 10.6 min > range; OK

F. Ion Exchange Vessel (Contingency)

One HPAF-3000 filter bed with 60 cuft of ion exchange resin Press max = 75 psi Qmax = varies with bed depth Load Rate (design) = 2.0 to 4.0 gpm/CF of resin (typical design spec)

Bed Depth (design) > 24 inches or 2'

Bed Diameter = 5 feet

Bed Area = pi x (5 feet)(5 feet)/4 = 19.6 SF

Bed Volume = 60 CF

Bed Depth = V/A = 60 CF/ 19.6 SF = 3.1 feet

Since Bed Depth (3.1') > Bed Depth Design (2'); OK

Superficial Velocity = Q/A = 150 gpm/19.6 SF = 7.6

Temperature (groundwater) = approximately 50 degrees

Press. Drop @ Superficial Velocity 7.6 = 0.9 psi/bed foot (per cut sheet)

therefore, pressure drop = 3.1 x 0.9 = 2.79 psi = 6.4 feet

EBCT = Bed Volume/Q = (60 CF x 7.48 gal/CF)/150 gpm = 3 min.

EBCT is not a primary design parameter since it depends upon site-specific contaminant concentration

G. Flow Meter/Totalizer

Make/Model: Zenner Turbine Meter (Model ZTM03 and ZTMB03)

Size = 3 inch Qmax - 450 gpm Qmin = 5 gpm Q system = 150 gpm;

Since Qmin < Q system < Qmax; OK

Press Drop @ 150 gpm = 0.4 feet (from cutsheet)

H. System Head Loss (Submersible Transfer Pump to Discharge)

Components	Scenario 1 (clean bag filters) Head Loss (feet)	Scenario 2 bag filters at 5 psi Head Loss (feet)	
3 inch hose/piping at 150 gpm (100' @ 5.7'/100')	5.7	5.7	
3" fittings (equiv. pipe length 100' @ 5.7'/100')	5.7	5.7	
Bag Filters	0.9 (clean bag)	11.6	
Carbon Vessel 1 (contingency)	10.4	10.4	
Carbon Vessel 2 (contingency)	10.4	10.4	
Ion Exchange Vessel (contingency)	6.4	6.4	
Flow Meter	0.4	0.4	
3" Discharge Hose (100' @ 5.7'/100')	5.7	5.7	
Tota	45.6	Total 56.3	

Qsystem = 150 gpm

Pump TDH @ 150 gpm = 72 feet (refer to Section C).

Since total head loss for Scenerios 1 and 2 < 72 feet; system can achieve 150 gpm. Therefore; design OK.

APPENDIX E

National Register of Historic Places Documentation

Welcome to MACRIS http://mhc-macris.net/

Massachusetts Historical Commission

William Francis Galvin, Secretary of the Commonwealth

Home | Feedback | Contact Us

MHC Home

Massachusetts Cultural Resource Information System MACRIS

Scanned forms and photos now available for selected towns!

The Massachusetts Cultural Resource Information System (MACRIS) allows you to search the Massachusetts Historical Commission database for information on historic properties and areas in the Commonwealth.

Users of the database should keep in mind that it does not include information on all historic properties and areas in Massachusetts, nor does it reflect all the information on file on historic properties and areas at the Massachusetts Historical Commission.

Click here to begin your search of the MACRIS database.

Home | Search | Index | Feedback | Contact

1 of 1 4/28/2014 6:47 PM

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
CAM.A	Cambridge Common Historic District		Cambridge	
CAM.B	Lockhart, William L. and Company Coffin Factory	,	Cambridge	
CAM.C	Blake and Knowles Steam Pump Company		Cambridge	
CAM.D	Fort Washington Historic District		Cambridge	
CAM.E	East Cambridge Historic District		Cambridge	
CAM.F	Winter Street Historic District		Cambridge	
CAM.G	Cambridge Multiple Resource Area		Cambridge	
CAM.H	Lechmere Point Corporation Houses		Cambridge	
CAM.I	Sacred Heart Church, Rectory, School and Convent		Cambridge	
CAM.J	Upper Magazine Street Historic District		Cambridge	
CAM.K	Hastings Square Historic District		Cambridge	
CAM.L	Salem - Auburn Streets Historic District		Cambridge	
CAM.M	Inman Square Historic District		Cambridge	
CAM.N	Old Cambridgeport Historic District		Cambridge	
CAM.O	Norfolk Street Historic District		Cambridge	
CAM.P	Massachusetts Institute of Technology		Cambridge	
CAM.Q	Central Square Historic District		Cambridge	
CAM.R	Bigelow Street Historic District		Cambridge	
CAM.S	Garfield Street Historic District		Cambridge	
CAM.T	Harvard Street Historic District		Cambridge	
CAM.U	Kirkland Place Historic District		Cambridge	
CAM.V	Maple Avenue Historic District		Cambridge	
CAM.W	City Hall Historic District		Cambridge	
CAM.X	Shady Hill Historic District		Cambridge	
CAM.Y	Ash Street Historic District		Cambridge	
CAM.Z	Avon Hill Historic District		Cambridge	

Friday, March 30, 2018 Page 1 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.AA	Berkeley Street Historic District		Cambridge	
CAM.AB	Harvard Square Historic District		Cambridge	
CAM.AC	Harvard Houses Historic District		Cambridge	
CAM.AD	Harvard Yard Historic District		Cambridge	
CAM.AE	Old Cambridge Historic District		Cambridge	
CAM.AF	Gray Gardens East and West Historic District		Cambridge	
CAM.AG	Memorial Drive Apartments Historic District		Cambridge	
CAM.AH	Follen Street Historic District		Cambridge	
CAM.AI	Bennink - Douglas Cottages		Cambridge	
CAM.AJ	Charles River Basin Historic District		Cambridge	
CAM.AK	Boston Woven Hose and Rubber Complex		Cambridge	
CAM.AL	Fresh Pond		Cambridge	
CAM.AM	Old Cambridge Historic District		Cambridge	
CAM.AN	Harvard Riverfront		Cambridge	
CAM.AO	East Cambridge		Cambridge	
CAM.AP	Hubbard Park Historic District		Cambridge	
CAM.AQ	Davenport - Allen and Endicott Factory		Cambridge	
CAM.AR	Mount Auburn Cemetery		Cambridge	
CAM.AS	Metropolitan Park System of Greater Boston		Cambridge	
CAM.AT	Elmwood (James Russell Lowell House)		Cambridge	
CAM.AU	Christ Church		Cambridge	
CAM.AV	Blake and Knowles Steam Pump Company		Cambridge	
CAM.AW	Alewife Brook Parkway		Cambridge	
CAM.AX	Fresh Pond Parkway		Cambridge	
CAM.AY	Church of the Blessed Sacrament Catholic Church		Cambridge	
CAM.AZ	Immaculate Conception Roman Catholic Church		Cambridge	
CAM.BA	Immaculate Conception (Lithuanian) Catholic Church		Cambridge	
CAM.BB	Orchard Street Area		Cambridge	
CAM.BC	Central Square Historic District		Cambridge	
CAM.BD	Cambridge Common Historic District		Cambridge	
CAM.BE	Old Harvard Yard		Cambridge	
CAM.BF	Berkeley Street Historic District		Cambridge	
CAM.BG	Harvard Square Historic District		Cambridge	
CAM.BH	Volpe Center		Cambridge	
CAM.1	Wyeth, John House	56 Aberdeen Ave	Cambridge	1841
CAM.1009		24 Agassiz St	Cambridge	1889

Friday, March 30, 2018 Page 2 of 37

nv. No.	Property Name	Street	Town	Year
CAM.1010	Shaw, Edward L. House	30 Agassiz St	Cambridge	1890
CAM.1011	Sands, M. Winslow House	32 Agassiz St	Cambridge	1891
CAM.1012	Blackman, Horace House	33 Agassiz St	Cambridge	1890
CAM.1353	Standard Plate Glass Company Building	270 Albany St	Cambridge	1920
CAM.902	Alewife Brook Parkway Bridge over B & M Railroad	Alewife Brook Pkwy	Cambridge	1929
CAM.903	Alewife Brook Parkway Bridge over B & M Railroad	Alewife Brook Pkwy	Cambridge	1929
CAM.9012	Alewife Brook Parkway - Northern Segment	Alewife Brook Pkwy	Cambridge	1908
CAM.9013	Alewife Brook Parkway Tree Border	Alewife Brook Pkwy	Cambridge	r 1920
CAM.1372	Immaculate Conception Roman Catholic Church	45 Alewife Brook Pkwy	Cambridge	1929
CAM.1373	Immaculate Conception Catholic Church Rectory	45 Alewife Brook Pkwy	Cambridge	1935
CAM.359		6-24 Allston St	Cambridge	1946
CAM.2	Fay, Isaac House	125 Antrim St	Cambridge	1843
CAM.3	Withey, S. B. House	10 Appian Way	Cambridge	1855
CAM.4	Howe, Lois Lilly House	6 Appleton St	Cambridge	1887
CAM.5	Cook, William House	71 Appleton St	Cambridge	1876
CAM.1016		8-10 Arlington St	Cambridge	1864
CAM.1027	Aldrich, Frank A. House	11 Arlington St	Cambridge	1899
CAM.1017		12-14 Arlington St	Cambridge	1864
CAM.1028	Graustein, Adolph H. House	19 Arlington St	Cambridge	1902
CAM.1018		22 Arlington St	Cambridge	1862
CAM.1019	Fillmore, Wellington House	24 Arlington St	Cambridge	1869
CAM.1347		25 Arlington St	Cambridge	
CAM.1020	Moor, Rev. Clark House	26 Arlington St	Cambridge	1869
CAM.1021	Blackman, Horace P. House	28 Arlington St	Cambridge	1876
CAM.1022		30 Arlington St	Cambridge	1876
CAM.1023	Jameson, Edwin A. L. House	32 Arlington St	Cambridge	1872
CAM.1029	Davis, John House	33 Arlington St	Cambridge	1869
CAM.1024		36 Arlington St	Cambridge	1872
CAM.1030	Kelsey, Albert House	37 Arlington St	Cambridge	1875
CAM.1025	Moor, Rev. Clark Double House	38-40 Arlington St	Cambridge	1874
CAM.1026	Boardman, Charles House	42 Arlington St	Cambridge	1871
CAM.1061	Harvard Catholic Student Center	20 Arrow St	Cambridge	c 1890
CAM.1062	Saint Paul's Church	24 Arrow St	Cambridge	r 1920
CAM.784	Brooks, John House	5 Ash St	Cambridge	1887
CAM.6	Johnson, Philip House	9 Ash St	Cambridge	1942
CAM.785	Ela, Lucia House	13 Ash St	Cambridge	1869

Friday, March 30, 2018 Page 3 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.787	Eliot, T. S. House	16 Ash St	Cambridge	1855
CAM.786	Nowell, Henry House	19 Ash St	Cambridge	1825
CAM.788	Hunnewell, James A. House	6 Ash Street PI	Cambridge	1848
CAM.522		107 Auburn St	Cambridge	1803
CAM.523		108-110 Auburn St	Cambridge	1803
CAM.524		114 Auburn St	Cambridge	c 1844
CAM.525		119 Auburn St	Cambridge	c 1829
CAM.526		122 Auburn St	Cambridge	c 1840
CAM.527		131 Auburn St	Cambridge	c 1830
CAM.528		134 Auburn St	Cambridge	c 1845
CAM.7	Ellis, Asa House	158 Auburn St	Cambridge	1805
CAM.564	Hotel Eliot	66 Austin St	Cambridge	c 1885
CAM.565	Hotel Austin	70 Austin St	Cambridge	c 1885
CAM.8	Brabrook, Ezra H. House	42-44 Avon St	Cambridge	1849
CAM.352	Blake and Knowles Main Foundry	180 Bent St	Cambridge	c 1895
CAM.1035		1 Berkeley Pl	Cambridge	1892
CAM.1036		2 Berkeley Pl	Cambridge	1892
CAM.1037		3 Berkeley Pl	Cambridge	1892
CAM.1038		4 Berkeley Pl	Cambridge	1910
CAM.1039		5 Berkeley PI	Cambridge	1900
CAM.1040		6 Berkeley Pl	Cambridge	1914
CAM.1041		7 Berkeley Pl	Cambridge	1913
CAM.1042		8 Berkeley Pl	Cambridge	1931
CAM.1043	Pryor - Brown House	1 Berkeley St	Cambridge	1852
CAM.10	Thayer, Prof. Studio	2 1/2 Berkeley St	Cambridge	1894
CAM.1044	Pryor - Howells House	3 Berkeley St	Cambridge	1856
CAM.1045	Dana, Richard H. House	4 Berkeley St	Cambridge	1851
CAM.1046	Wyeth - Allen House	5-7R Berkeley St	Cambridge	1852
CAM.1047		6 Berkeley St	Cambridge	1853
CAM.1048	Ware, Henry House	8 Berkeley St	Cambridge	1859
CAM.1049	Allyn, John House	11 Berkeley St	Cambridge	1886
CAM.1050		12 Berkeley St	Cambridge	1881
CAM.1051		13 Berkeley St	Cambridge	1898
CAM.1052	Williston, Lyman House	15 Berkeley St	Cambridge	1863
CAM.1053		16 Berkeley St	Cambridge	1905
CAM.1054		17 Berkeley St	Cambridge	1863
CAM.1055		19 Berkeley St	Cambridge	1854
CAM.1056	Newell, William House	20 Berkeley St	Cambridge	1856
Friday, March	30, 2018			Page 4 of 37

lnv. No.	Property Name	Street	Town	Year
CAM.1057		21 Berkeley St	Cambridge	1854
CAM.1058	Fiske, John House	22 Berkeley St	Cambridge	1877
CAM.1059		23 Berkeley St	Cambridge	1854
CAM.1060		24 Berkeley St	Cambridge	1936
CAM.1355	Craft, William House	5 Bigelow St	Cambridge	1869
CAM.1356	Sharry, William J. House	5A Bigelow St	Cambridge	1940
CAM.663	Montague, Charles House	6 Bigelow St	Cambridge	1873
CAM.655	Snow, Simeon House	7 Bigelow St	Cambridge	1869
CAM.1360	Rhodes, Silas Jr. House	8 Bigelow St	Cambridge	1871
CAM.656	Pollard, John Double House	9-11 Bigelow St	Cambridge	1874
CAM.664	Hurd, Theodore House	10-12 Bigelow St	Cambridge	1884
CAM.657	Bird, Henry House	13 Bigelow St	Cambridge	1874
CAM.1361	Pike, Walter House	14 Bigelow St	Cambridge	1888
CAM.658	Davis, Curtis House	15 Bigelow St	Cambridge	1873
CAM.1362	Brazier, Abbie House	16 Bigelow St	Cambridge	1874
CAM.659	Whitely, Hiram House	17 Bigelow St	Cambridge	1873
CAM.1363	Sawyer - Dole House	18 Bigelow St	Cambridge	1876
CAM.1357	Oxford, Charles House	19 Bigelow St	Cambridge	1871
CAM.660	Snow - Twitchell Double House	21-23 Bigelow St	Cambridge	1873
CAM.665	Hyde, Edward House	22 Bigelow St	Cambridge	1870
CAM.1348	Robbins Block	24-46 Bigelow St	Cambridge	1871
CAM.661	Jessop, Joseph House	25 Bigelow St	Cambridge	1872
CAM.1358	Jessop Tenement House	29 Bigelow St	Cambridge	1891
CAM.1359	Whitcomb, Peter Double House	31-33 Bigelow St	Cambridge	1872
CAM.662	Davis, John W. House	35 Bigelow St	Cambridge	1870
CAM.1406	Volpe Center - Shipping and Receiving	182 Binney St	Cambridge	1965
CAM.357	Blake and Knowles Machine Shop #2	195 Binney St	Cambridge	1917
CAM.358	Blake and Knowles Machine Shop #3	199 Binney St	Cambridge	1918
CAM.356	Blake and Knowles Erecting and Assembling Building	201 Binney St	Cambridge	1903
CAM.1388		39 Bishop Allen Dr	Cambridge	
CAM.1397	Hotel Greyburn	77 Bishop Allen Dr	Cambridge	1891
CAM.577	Young Women's Christian Association Building	146 Bishop Allen Dr	Cambridge	c 1954
CAM.1386	Squirrel Brand Company Building	8 Boardman St	Cambridge	1915
CAM.11	Slowey, Patrick House	73 Bolton St	Cambridge	1852
CAM.1063	Bicycle Exchange Building	3-7 Bow St	Cambridge	1901
CAM.1064	- -	9 Bow St	Cambridge	1884
CAM.1065	Farwell - Russell, Thomas Store	12 Bow St	Cambridge	c 1830

Friday, March 30, 2018 Page 5 of 37

nv. No.	Property Name	Street	Town	Year
CAM.1066	Westmorly Court - Harvard University	15-29 Bow St	Cambridge	c 1898
CAM.12	Harvard Lampoon Building	44 Bow St	Cambridge	1909
AM.1067	Randolph Hall - Harvard University	47-57 Bow St	Cambridge	1897
CAM.13	Frost, Elizabeth Tenant House	35 Bowdoin St	Cambridge	1812
CAM.926	Anderson, Larz Bridge	Boylston St	Cambridge	1915
CAM.14	Hicks, John House	64 Boylston St	Cambridge	c 1761
AM.294	Radcliffe College Graduate Center	Brattle St	Cambridge	1955
AM.918	Longfellow Park	Brattle St	Cambridge	1887
AM.987	Lowell Park	Brattle St	Cambridge	
AM.1068	Brattle Building	4 Brattle St	Cambridge	1913
AM.1069	Atrium Building	9-11 Brattle St	Cambridge	1979
AM.1071		12-16 Brattle St	Cambridge	1887
AM.1070	Estes Block	13-15 Brattle St	Cambridge	1875
AM.1072	Dow Block	17-35 Brattle St	Cambridge	c 1936
AM.1073		18 Brattle St	Cambridge	1922
CAM.1074		26 Brattle St	Cambridge	1909
AM.1075	Hadley Building	28-36 Brattle St	Cambridge	1974
AM.1076	Cambridge Federal Savings Bank	38A Brattle St	Cambridge	1937
AM.1077		39-41 Brattle St	Cambridge	1925
AM.15	Brattle Hall	40 Brattle St	Cambridge	1889
AM.1078		40A Brattle St	Cambridge	c 1925
AM.16	Brattle, William House	42 Brattle St	Cambridge	c 1727
AM.1079	Sage Building	43-45 Brattle St	Cambridge	1926
AM.1080		44 Brattle St	Cambridge	1970
AM.1081		46R Brattle St	Cambridge	1966
AM.1082		47-49 Brattle St	Cambridge	c 1926
AM.1083	Design Research Building	48 Brattle St	Cambridge	1969
AM.1084	Washington Court	51 Brattle St	Cambridge	1905
AM.17	Pratt, Dexter House	54 Brattle St	Cambridge	1808
AM.1229	Warland, John House	69 Brattle St	Cambridge	1838
AM.1230	Greenleaf, James House	76 Brattle St	Cambridge	1859
AM.1228	Chamberlin, John House	77 Brattle St	Cambridge	1821
AM.18	Radcliffe College Alumnae House	79 Brattle St	Cambridge	1836
AM.19	Wadsworth Chambers	81-83 Brattle St	Cambridge	1908
AM.20	Burleigh House	85 Brattle St	Cambridge	1847
AM.21	Stoughton, Mary Fisk House	90 Brattle St	Cambridge	1882
AM.22		92 Brattle St	Cambridge	1882
AM.23	Vassall, Henry House	94 Brattle St	Cambridge	1635

Friday, March 30, 2018 Page 6 of 37

ıv. No.	Property Name	Street	Town	Year
AM.24	Episcopal Divinity School - Washburn Hall	99 Brattle St	Cambridge	1960
AM.25	Saint John's Chapel	99 Brattle St	Cambridge	1868
AM.26	Episcopal Divinity School Library - Sherrill Hall	99 Brattle St	Cambridge	1965
AM.27	Episcopal Divinity School - Wright Hall	99 Brattle St	Cambridge	1911
AM.28	Episcopal Divinity School - Reed Hall	99 Brattle St	Cambridge	1873
AM.29	Episcopal Divinity School - Lawrence Hall	99 Brattle St	Cambridge	1873
AM.30	Episcopal Divinity School - Burnham Hall	99 Brattle St	Cambridge	1879
AM.31	Hastings, Oliver House	101 Brattle St	Cambridge	1844
AM.32	Longfellow National Historic Site	105 Brattle St	Cambridge	c 1759
AM.33	Dana, Edith Longfellow House	113 Brattle St	Cambridge	1887
AM.34		114 Brattle St	Cambridge	1903
AM.35	Thorp, Annie Longfellow House	115 Brattle St	Cambridge	1887
AM.36	Worcester, Joseph House	121 Brattle St	Cambridge	1843
AM.37		121A Brattle St	Cambridge	1941
AM.38		123 Brattle St	Cambridge	
AM.39		124 Brattle St	Cambridge	1915
4M.40		125 Brattle St	Cambridge	1939
AM.41		126 Brattle St	Cambridge	1890
AM.1235		127 Brattle St	Cambridge	1970
AM.42		128 Brattle St	Cambridge	1892
AM.43		130-130R Brattle St	Cambridge	1886
AM.44		132 Brattle St	Cambridge	1886
AM.45	Falxa, Dr. Martin House	133 Brattle St	Cambridge	1970
AM.46		134-136 Brattle St	Cambridge	1857
AM.47		138 Brattle St	Cambridge	1930
AM.48		140 Brattle St	Cambridge	1930
AM.49		142 Brattle St	Cambridge	1915
AM.50	Cambridge Armenian Church	143 Brattle St	Cambridge	1959
AM.51		144 Brattle St	Cambridge	1915
AM.52	Brewster, William House	145 Brattle St	Cambridge	1887
AM.53		146 Brattle St	Cambridge	1939
AM.54		147 Brattle St	Cambridge	1887
AM.55		148 Brattle St	Cambridge	1914
\M.56	Lechmere, Richard House	149 Brattle St	Cambridge	c 1762
AM.57		150 Brattle St	Cambridge	1908
AM.58		152 Brattle St	Cambridge	1887
AM.59	Lee, Thomas House	153 Brattle St	Cambridge	1803
AM.60		154 Brattle St	Cambridge	r 1865

Friday, March 30, 2018 Page 7 of 37

lnv. No.	Property Name	Street	Town	Year
CAM.1236		155 Brattle St	Cambridge	1889
CAM.61		156 Brattle St	Cambridge	1867
CAM.62		158 Brattle St	Cambridge	1884
CAM.63	Hooper - Lee - Nichols House	159 Brattle St	Cambridge	c 1685
CAM.64		160 Brattle St	Cambridge	1884
CAM.65		164 Brattle St	Cambridge	1868
CAM.1237	Bartlett, John House	165 Brattle St	Cambridge	1873
CAM.66	Van Brunt, Henry House	167 Brattle St	Cambridge	1883
CAM.67		168 Brattle St	Cambridge	1888
CAM.68	Wells, Judge Daniel House	170 Brattle St	Cambridge	1852
CAM.69		174 Brattle St	Cambridge	1885
CAM.70	Marrett - Ruggles - Fayerweather House	175 Brattle St	Cambridge	r 1765
CAM.1238	Fayerweather House Squash Court and Garage	177 Brattle St	Cambridge	1915
CAM.71		180 Brattle St	Cambridge	1888
CAM.72	Richards, R. A. House	182 Brattle St	Cambridge	1895
CAM.73		190 Brattle St	Cambridge	1898
CAM.74	Frankfurter, Justice Felix House	192 Brattle St	Cambridge	1907
CAM.75		193 Brattle St	Cambridge	1893
CAM.76		194 Brattle St	Cambridge	1917
CAM.77		195 Brattle St	Cambridge	1896
CAM.78		198 Brattle St	Cambridge	1912
CAM.79	Stubbins, Hugh House	199 Brattle St	Cambridge	1966
CAM.80		200 Brattle St	Cambridge	1901
CAM.81		202 Brattle St	Cambridge	1903
CAM.82		205 Brattle St	Cambridge	r 1925
CAM.83		209 Brattle St	Cambridge	r 1925
CAM.84		213-215 Brattle St	Cambridge	1896
CAM.85	Frost, Robert House	29-35 Brewster St	Cambridge	1884
CAM.1402	Volpe Center - Auditorium	33 Broadway	Cambridge	c 1965
CAM.1409	Close, George Candy Manufacturing Company Building	243 Broadway	Cambridge	1910
CAM.86	Cambridge Public Library	449 Broadway	Cambridge	1888
CAM.515		301 Brookline Ave	Cambridge	1869
CAM.516		302 Brookline Ave	Cambridge	1887
CAM.517		308 Brookline Ave	Cambridge	1870
CAM.623	Southwick Block	11-19 Brookline St	Cambridge	1911
CAM.88	Brown, Daniel House	7 Brown St	Cambridge	1845
CAM.89	Hill, Aaron House	17 Brown St	Cambridge	c 1754

Friday, March 30, 2018 Page 8 of 37

nv. No.	Property Name	Street	Town	Year
CAM.708		1 Bryant St	Cambridge	1911
CAM.709		5 Bryant St	Cambridge	1916
CAM.710		7 Bryant St	Cambridge	1915
CAM.711		20-24 Bryant St	Cambridge	1916
CAM.712		21 Bryant St	Cambridge	1932
CAM.90	Bridgman, Percy House	10 Buckingham Pl	Cambridge	c 1920
CAM.91	Koch, Carl House	4 Buckingham St	Cambridge	1939
CAM.92	Higginson, Col. Thomas Wentworth House	29 Buckingham St	Cambridge	1880
CAM.941	Bridge, John Statue	Cambridge Common	Cambridge	1882
AM.942	Memorial Gateway	Cambridge Common	Cambridge	1906
AM.943	Revolutionary War Cannons	Cambridge Common	Cambridge	c 1770
AM.944	Soldiers Monument	Cambridge Common	Cambridge	1869
CAM.906	Cambridge Parkway Bridge over Broad Canal	Cambridge Pkwy	Cambridge	1957
AM.931	Cambridge Parkway	Cambridge Pkwy	Cambridge	1900
AM.97	Memorial Hall	Cambridge St	Cambridge	r 1875
CAM.379	Middlesex County Registry of Deeds Building	Cambridge St	Cambridge	1896
AM.380	Middlesex County Clerk of Courts Building	Cambridge St	Cambridge	1889
AM.912	Longfellow Bridge - West Boston Bridge	Cambridge St	Cambridge	c 1907
AM.914	Lechmere Square Streetcar Station	Cambridge St	Cambridge	1922
AM.372		82-84 Cambridge St	Cambridge	1937
AM.373	Davenport, A. H Irving and Casson Company	88-134 Cambridge St	Cambridge	1866
AM.378		160 Cambridge St	Cambridge	1965
AM.93	East Cambridge Savings Bank	292 Cambridge St	Cambridge	1931
AM.94	Union Railway Car Barn	613-621 Cambridge St	Cambridge	1869
AM.535		1353-1369 Cambridge St	Cambridge	1894
AM.532	Waite Building	1368 Cambridge St	Cambridge	1855
AM.533	Middlesex Bank Building	1374-1385 Cambridge St	Cambridge	1874
AM.95		1707-1709 Cambridge St	Cambridge	1845
AM.96		1715-1717 Cambridge St	Cambridge	1845
AM.635	Holmes Block II - Green Block	2-14 Central Sq	Cambridge	1798
AM.636	Home Realty Building	14 Central Sq	Cambridge	1970
AM.639	Southwick Building I	15-16 Central Sq	Cambridge	1896
AM.640	Southwick Building II	17-24 Central Sq	Cambridge	c 1860
AM.641	White Tower Restaurant	25 Central Sq	Cambridge	1932
AM.98	Melvin, Isaac House	19 Centre St	Cambridge	1842
AM.99	Boston and Maine Railroad Signal Tower A	Charles River	Cambridge	1931
AM.911	Charles River Railroad Draw Bridge #1	Charles River	Cambridge	1931
AM.920	Charles River Dam	Charles River	Cambridge	r 1905

Friday, March 30, 2018 Page 9 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.925	Weeks, John Wingate Foot Bridge	Charles River	Cambridge	1927
CAM.928	Lechmere Canal	Charles River	Cambridge	1909
CAM.929	Broad Canal	Charles River	Cambridge	1805
CAM.932	Charles River Basin Granite Seawall and Iron Fence	Charles River	Cambridge	
CAM.935	Metropolitan District Commission Swimming Pool	Charles River	Cambridge	
CAM.1320	Metropolitan District Commission Clorination Plant	Charles River	Cambridge	
CAM.1325	M. I. T Pierce, Harold Whitworth Boat House	Charles River	Cambridge	1965
CAM.1326	M. I. T Wood, Walter C. Sailing Pavilion	Charles River	Cambridge	1976
CAM.1328	Riverside Boat Club	Charles River	Cambridge	r 1910
CAM.543	Boardman, James Double House	Cherry St	Cambridge	1843
CAM.100	Fuller, Margaret House	71 Cherry St	Cambridge	1806
CAM.546		87 Cherry St	Cambridge	c 1845
CAM.545		116-120 Cherry St	Cambridge	c 1845
CAM.544	Eaton, Jacob House	128 Cherry St	Cambridge	c 1844
CAM.542		137-139 Cherry St	Cambridge	c 1840
CAM.537		149-151 Cherry St	Cambridge	c 1830
CAM.538		159-161 Cherry St	Cambridge	c 1830
CAM.547		167 Cherry St	Cambridge	1850
CAM.548		169 Cherry St	Cambridge	1850
CAM.101	Kingsley, Chester House	10 Chester St	Cambridge	1866
CAM.518		105 Chestnut St	Cambridge	1875
CAM.519		111 Chestnut St	Cambridge	1875
CAM.102	First Parish Church, Unitarian	1-3 Church St	Cambridge	1833
CAM.103		23-25 Church St	Cambridge	1936
CAM.1085		26-28 Church St	Cambridge	1857
CAM.104		27-29 Church St	Cambridge	1922
CAM.105	Cambridge Police Station	31-33 Church St	Cambridge	1864
CAM.1086	Oxford Grill	32-42 Church St	Cambridge	1931
CAM.1087	Hancock - Torrey House	53 Church St	Cambridge	1827
CAM.1088		54-56 Church St	Cambridge	1925
CAM.1089		59-63 Church St	Cambridge	1949
CAM.1377	Cambridge Almshouse Caretaker's House	36 Churchill Ave	Cambridge	c 1886
CAM.106	Gale, George House	14-16 Clinton St	Cambridge	c 1853
CAM.1387		41-43 Columbia St	Cambridge	
CAM.107	Beth Israel Synagogue	238 Columbia St	Cambridge	1901
CAM.908	Commercial Avenue Bridge over Lechmere Canal	Commercial Ave	Cambridge	1907

Friday, March 30, 2018 Page 10 of 37

nv. No.	Property Name	Street	Town	Year
CAM.1318	Metropolitan District Commission Stables	Commercial Ave	Cambridge	
CAM.336		3 Concord Ave	Cambridge	1915
CAM.337		5 Concord Ave	Cambridge	c 1917
CAM.108	Howells, William Dean House	37 Concord Ave	Cambridge	1873
CAM.1365	Cambridge Home for the Aged and Infirm	650 Concord Ave	Cambridge	1928
CAM.111	Holmes, Joseph House	144 Coolidge Hill	Cambridge	1801
CAM.109	Orne, Sarah House	10 Coolidge Hill Rd	Cambridge	1807
CAM.110	Coolidge, Josiah House	24 Coolidge Hill Rd	Cambridge	c 1822
CAM.600	Coolidge, Flavel House	2 Coolidge PI	Cambridge	1834
CAM.1369	Blessed Sacrament Roman Catholic Parish School	12 Corporal McTernan St	Cambridge	1924
CAM.112	Valentine Soap Workers' Cottage	5-7 Cottage St	Cambridge	1835
CAM.1212	Mather House - Harvard University	Cowperthwaite St	Cambridge	1967
CAM.113	Birkhoff, George D. House	22 Craigie St	Cambridge	r 1870
CAM.114	Ross, Denman House	24-26 Craigie St	Cambridge	1869
CAM.115		25 Craigie St	Cambridge	1856
CAM.116	Horsford, Eben House	27 Craigie St	Cambridge	1854
CAM.333	Day, Anna House	139 Cushing St	Cambridge	1856
CAM.117	Colburn, Sara Foster House	7 Dana St	Cambridge	1841
AM.118	University Museum	11-25 Divinity Ave	Cambridge	1859
CAM.119	Divinity Hall	12 Divinity Ave	Cambridge	1825
AM.120	Biological Laboratory	16 Divinity Ave	Cambridge	1930
CAM.121	Second Cambridge Savings Bank Building	11-21 Dunster St	Cambridge	1897
AM.1090	Union Railway Carbarn	25-33 Dunster St	Cambridge	1860
CAM.1091	Second D. U. Club	45 Dunster St	Cambridge	1930
CAM.1092	Metcalf, Eliab Wight House	46 Dunster St	Cambridge	1820
CAM.1093	Edwards, Abraham - Moore, Mary House	53 Dunster St	Cambridge	1841
AM.1094	Alpha Sigma Phi Club	54 Dunster St	Cambridge	1900
AM.122	Wyeth, Augustus House	69 Dunster St	Cambridge	1829
CAM.1095		71-77 Dunster St	Cambridge	1894
CAM.123		42 Edward J. Lopez Ave	Cambridge	c 1830
CAM.1096	Hotel Packard	10-14 Eliot St	Cambridge	1869
CAM.1097		14A Eliot St	Cambridge	1900
CAM.1098		16-18 Eliot St	Cambridge	1898
CAM.124	Sands, Ivory House	145 Elm St	Cambridge	1839
CAM.125	Foster, Dr. House	8 Elmwood Ave	Cambridge	1893
CAM.126	Greenough, J. J. House	9 Elmwood Ave	Cambridge	1903
CAM.127	Smyth, Herbert House	11-15 Elmwood Ave	Cambridge	1903

Friday, March 30, 2018 Page 11 of 37

nv. No.	Property Name	Street	Town	Year
CAM.128	Kempton, John House	14 Elmwood Ave	Cambridge	1895
AM.129		20 Elmwood Ave	Cambridge	1892
AM.130	Benson, Ruth House	26 Elmwood Ave	Cambridge	1899
AM.131	Watson House	30 Elmwood Ave	Cambridge	c 1750
AM.132	Elmwood - Lowell, James Russell House	33 Elmwood Ave	Cambridge	c 1767
AM.133	Reardon, Edmund House	195 Erie St	Cambridge	1884
CAM.1371	Blessed Sacrament Roman Catholic Church Convent	203 Erie St	Cambridge	1954
AM.134	Harvard Graduate Center	10-26 Everett St	Cambridge	1949
AM.135	Jarvis, The	27 Everett St	Cambridge	1890
AM.136	Newman, Andrew House	23 Fairmont St	Cambridge	1823
AM.713		2-4 Farrar St	Cambridge	1927
AM.714		9 Farrar St	Cambridge	1890
AM.715		15 Farrar St	Cambridge	1898
AM.716		16 Farrar St	Cambridge	1931
AM.717		17 Farrar St	Cambridge	1897
AM.718		18-20 Farrar St	Cambridge	1923
AM.719		22 Farrar St	Cambridge	1928
AM.720		26 Farrar St	Cambridge	1928
AM.137		10-12 Farwell Pl	Cambridge	r 1870
AM.138	Nichols House	11 Farwell Pl	Cambridge	1827
AM.139		14-16 Farwell Pl	Cambridge	c 1855
AM.140	Read, James House	15 Farwell Pl	Cambridge	c 1772
AM.141	Child, N. K. House	17 Farwell Pl	Cambridge	1835
AM.142		18-20 Farwell Pl	Cambridge	c 1855
AM.143	Christ Church Parish House	19 Farwell Pl	Cambridge	1948
AM.144	Toppan House	22-24 Farwell Pl	Cambridge	c 1900
AM.1408	Carey, Agnes Whiteside House	50 Fayerweather St	Cambridge	
AM.145	Deane, Ezra - Williams, George House	21-23 Fayette St	Cambridge	1848
AM.146		26-28 Fayette St	Cambridge	1857
AM.430	Cambridge Public Library - O'Connell Branch	Fifth St	Cambridge	1938
AM.441		69-71 Fifth St	Cambridge	
AM.452	Hall, Jesse House	75 Fifth St	Cambridge	1837
AM.428		82 Fifth St	Cambridge	
AM.429		83 Fifth St	Cambridge	
AM.1405	Volpe Center - Center Service Building	259 Fifth St	Cambridge	c 1965
AM.907	First Street Bridge over Broad Canal	First St	Cambridge	1924
AM.147	Athenaeum Press Building	215 First St	Cambridge	1895

Friday, March 30, 2018 Page 12 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.910	Fitchburg Railroad Signal Bridge	Fitchburg Railroad	Cambridge	c 1930
CAM.148	Abbot, Edwin House	1 Follen St	Cambridge	1889
CAM.1271		5 Follen St	Cambridge	1853
CAM.1273		6 Follen St	Cambridge	1868
CAM.1338		8 Follen St	Cambridge	1871
CAM.149	Second Waterhouse House	9 Follen St	Cambridge	1844
CAM.150		10 Follen St	Cambridge	1875
CAM.1274		13 Follen St	Cambridge	1900
CAM.151	Richards, Theodore W. House	15 Follen St	Cambridge	1900
CAM.1275		19 Follen St	Cambridge	1844
CAM.1276		20 Follen St	Cambridge	1949
CAM.1277		21 Follen St	Cambridge	1841
CAM.1278		22 Follen St	Cambridge	1951
CAM.1279		25 Follen St	Cambridge	1889
CAM.152	Clover Den - Mann, Mary House	29 Follen St	Cambridge	1837
CAM.1280		34 Follen St	Cambridge	1946
CAM.1281		36 Follen St	Cambridge	1847
CAM.1282		44 Follen St	Cambridge	1862
CAM.338	Puritan Arms	46-50 Follen St	Cambridge	1940
CAM.1331	Homer - Lovell House	11 Forest St	Cambridge	1867
CAM.153	Francis, Ebenezer Houuse	1 Francis Ave	Cambridge	1836
CAM.721		6 Francis Ave	Cambridge	1940
CAM.722		7 Francis Ave	Cambridge	1894
CAM.723		8 Francis Ave	Cambridge	1940
CAM.724		9 Francis Ave	Cambridge	c 1875
CAM.725		10 Francis Ave	Cambridge	1894
CAM.726		11 Francis Ave	Cambridge	1894
CAM.1337		12-14 Francis Ave	Cambridge	1895
CAM.727		16 Francis Ave	Cambridge	1906
CAM.154	Davis, William Morris House	17 Francis Ave	Cambridge	r 1895
CAM.728		18 Francis Ave	Cambridge	1911
CAM.155	Hyatt, Prof. Alpheus - Durant, Prof. Will B. House	19 Francis Ave	Cambridge	1889
CAM.729		21 Francis Ave	Cambridge	1925
CAM.730		22 Francis Ave	Cambridge	1912
CAM.731		23 Francis Ave	Cambridge	1902
CAM.732		24 Francis Ave	Cambridge	1906
CAM.733		30 Francis Ave	Cambridge	1905
CAM.734		32 Francis Ave	Cambridge	1903
iday March	20 2018			Page 13 o

Friday, March 30, 2018 Page 13 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.735	Center for the Study of World Religions	42 Francis Ave	Cambridge	1959
CAM.736		44 Francis Ave	Cambridge	1913
CAM.737		53 Francis Ave	Cambridge	1913
CAM.738		56 Francis Ave	Cambridge	1914
CAM.739		57 Francis Ave	Cambridge	1913
CAM.740		59 Francis Ave	Cambridge	1916
CAM.741		60 Francis Ave	Cambridge	1961
CAM.742		63 Francis Ave	Cambridge	1913
CAM.743	Sert, Jose Luis House	64 Francis Ave	Cambridge	1957
CAM.744		65 Francis Ave	Cambridge	1916
CAM.745		67 Francis Ave	Cambridge	1926
CAM.746		68 Francis Ave	Cambridge	1921
CAM.747		70 Francis Ave	Cambridge	1879
CAM.748		73 Francis Ave	Cambridge	1926
CAM.749		75-77 Francis Ave	Cambridge	1925
CAM.1329	Kennedy, F. A. Steam Bakery	129 Franklin St	Cambridge	1875
CAM.919	Fresh Pond Lane over B & M Railroad	Fresh Pond Ln	Cambridge	1926
CAM.9014	Fresh Pond Parkway	Fresh Pond Pkwy	Cambridge	1899
CAM.9015	Fresh Pond Parkway - Concord Avenue Rotary Islands	Fresh Pond Pkwy	Cambridge	1928
CAM.9016	Fresh Pond Parkway - New Street Rotary	Fresh Pond Pkwy	Cambridge	1928
CAM.9017	Fresh Pond Parkway Tree Canopy	Fresh Pond Pkwy	Cambridge	r 1920
CAM.9018	Fresh Pond Parkway Median System	Fresh Pond Pkwy	Cambridge	c 1958
CAM.156	Wyeth - Eliot, Charles House	17 Fresh Pond Pkwy	Cambridge	1838
CAM.157	Frost, Walter House	10 Frost St	Cambridge	1807
CAM.800	Old Burying Ground	Garden St	Cambridge	r 1750
CAM.940	Milestone, 1767	Garden St	Cambridge	1734
CAM.158	Christ Church	0 Garden St	Cambridge	1760
CAM.159	Saunders, William House	1 Garden St	Cambridge	1821
CAM.339		2 Garden St	Cambridge	1835
CAM.340	Howe, Sarah House	3 Garden St	Cambridge	1851
CAM.160	First Church in Cambridge Congregational	11 Garden St	Cambridge	1870
CAM.341		17-19 Garden St	Cambridge	1926
CAM.161	Sears Tower - Harvard Observatory	60 Garden St	Cambridge	1843
CAM.162	Warner House	63 Garden St	Cambridge	1855
CAM.163	Gray, Asa House	88 Garden St	Cambridge	1810
CAM.1240		91 Garden St	Cambridge	1922
CAM.164	Taylor Square Firehouse	113 Garden St	Cambridge	1904

Friday, March 30, 2018 Page 14 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.165	Warren, H. Langford House	6 Garden Terr	Cambridge	1904
CAM.671	Rollins, John House	16 Garfield St	Cambridge	1891
CAM.672	Wood, Edward House	18 Garfield St	Cambridge	1886
CAM.1336	Shepherd, Herbert House	31-33 Garfield St	Cambridge	1886
CAM.673	Farquhar, Robert House	34 Garfield St	Cambridge	1890
CAM.674	Coon, Sarah House	36 Garfield St	Cambridge	1887
CAM.666	Shepherd, Edward House	39 Garfield St	Cambridge	1885
CAM.675	Thayer, Bertha House	44 Garfield St	Cambridge	1888
CAM.667	Estabrook, J. W. House	45 Garfield St	Cambridge	1886
CAM.668	Bartlett, A. S. House	49 Garfield St	Cambridge	1888
CAM.676	Green, Roscoe House	54 Garfield St	Cambridge	1890
CAM.669	Dewey House	55 Garfield St	Cambridge	1889
CAM.677	Worcester, George House	58 Garfield St	Cambridge	1890
CAM.678	Allen, Frank House	64 Garfield St	Cambridge	1891
CAM.670	Sullivan, Cornelius House	67 Garfield St	Cambridge	1889
CAM.679	Farnsworth, Charles House	74 Garfield St	Cambridge	1897
CAM.680	Ball, Elijah House	80 Garfield St	Cambridge	1887
CAM.502	Lechmere Point Corporation Row House	47 Gore St	Cambridge	c 1821
CAM.503	Lechmere Point Corporation Row House	49 Gore St	Cambridge	c 1821
CAM.504	Lechmere Point Corporation Row House	51 Gore St	Cambridge	c 1821
CAM.1407	Carr, M. W. and Company Factory - Building #4	63 Gorham St	Cambridge	r 1920
CAM.1241		1 Gray Gardens East	Cambridge	1925
CAM.1242		2 Gray Gardens East	Cambridge	1930
CAM.1243		3 Gray Gardens East	Cambridge	1923
CAM.1244		8 Gray Gardens East	Cambridge	1923
CAM.1245		9 Gray Gardens East	Cambridge	1922
CAM.1246		11 Gray Gardens East	Cambridge	1924
CAM.1247		12 Gray Gardens East	Cambridge	1922
CAM.1248		13 Gray Gardens East	Cambridge	1925
CAM.1249		16 Gray Gardens East	Cambridge	1922
CAM.1250		17 Gray Gardens East	Cambridge	1958
CAM.1251		19 Gray Gardens East	Cambridge	1927
CAM.1252		22 Gray Gardens East	Cambridge	1962
CAM.1253		25 Gray Gardens East	Cambridge	1926
CAM.1254		26 Gray Gardens East	Cambridge	1922
CAM.1255		27 Gray Gardens East	Cambridge	1923
CAM.1256		30 Gray Gardens East	Cambridge	1928
CAM.1257		31 Gray Gardens East	Cambridge	1924
Fridav. March	30. 2018			Page 15 of 37

Friday, March 30, 2018 Page 15 of 37

lnv. No.	Property Name	Street	Town	Year
CAM.1258		37 Gray Gardens East	Cambridge	1923
AM.1259		3 Gray Gardens West	Cambridge	1923
AM.1260		4 Gray Gardens West	Cambridge	1922
AM.1261		11 Gray Gardens West	Cambridge	1923
AM.1262		14 Gray Gardens West	Cambridge	1924
AM.1263		15 Gray Gardens West	Cambridge	1929
AM.1264		16 Gray Gardens West	Cambridge	1925
AM.167	Hall Tavern	20 Gray Gardens West	Cambridge	r 1800
AM.1265		24 Gray Gardens West	Cambridge	1928
AM.166	Frost, David House	26 Gray St	Cambridge	1815
AM.618		133 Green St	Cambridge	c 1894
AM.624	Raymond, T. H. Warehouse	175 Green St	Cambridge	1908
AM.1389		205-207 Green St	Cambridge	
AM.534	Inman Square Fire Station	Hampshire St	Cambridge	1912
AM.168	Lamson, Rufus House	72-74 Hampshire St	Cambridge	1854
AM.1367	Massachusetts Avenue Baptist Church	146 Hampshire St	Cambridge	1902
AM.169	Opposition House	2-4 Hancock Pl	Cambridge	1807
AM.170		104-106 Hancock St	Cambridge	1839
AM.171	Atwood, Ephraim House	110 Hancock St	Cambridge	1839
AM.536	Fay, Samuel P. P. House	172 Harvard St	Cambridge	1805
AM.549	Allen Block	177-183 Harvard St	Cambridge	r 1875
AM.1354	Courtney, Benjamin House	273 Harvard St	Cambridge	1867
AM.172	Jones, William R. House	307 Harvard St	Cambridge	1865
AM.173	Vinal, Albert House	325 Harvard St	Cambridge	1853
AM.681	Melledge, James P. House	335 Harvard St	Cambridge	1850
AM.684	Warner, Caleb House	336 Harvard St	Cambridge	1858
AM.682		337 Harvard St	Cambridge	1887
AM.685	Frothingham, Amos House	338 Harvard St	Cambridge	1859
AM.686	Goepper, William House	340 Harvard St	Cambridge	1897
AM.683		341-343 Harvard St	Cambridge	1855
AM.687	Rindge, Samuel Baker House	342-344 Harvard St	Cambridge	1857
AM.174	Bradbury, William F. House	369 Harvard St	Cambridge	1877
AM.175	Hapgood, Richard House	382-392 Harvard St	Cambridge	1889
AM.176	Ware Hall	383 Harvard St	Cambridge	1893
AM.1099	Delta Upsilon Club	396 Harvard St	Cambridge	1914
AM.177	Old Cambridge Baptist Church	398 Harvard St	Cambridge	1867
AM.193	Austin Hall	Harvard University	Cambridge	1881
AM.178	Holden Chapel - Harvard University	Harvard Yard	Cambridge	1764
riday, March	30. 2018			Page 16 of

Friday, March 30, 2018 Page 16 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.179	Sever Hall	Harvard Yard	Cambridge	1880
CAM.180	University Hall	Harvard Yard	Cambridge	1812
CAM.181	Harvard Hall - Harvard University	Harvard Yard	Cambridge	1764
CAM.182	Hollis Hall - Harvard University	Harvard Yard	Cambridge	1762
CAM.183	Massachusetts Hall	Harvard Yard	Cambridge	1718
CAM.184	Weld Hall - Harvard University	Harvard Yard	Cambridge	1870
CAM.185	Boylston Hall - Harvard University	Harvard Yard	Cambridge	1857
CAM.186	Holworthy Hall - Harvard University	Harvard Yard	Cambridge	1811
CAM.187	Grays Hall - Harvard University	Harvard Yard	Cambridge	1862
CAM.188	Lehman Hall - Harvard University	Harvard Yard	Cambridge	1924
CAM.189	Matthews House - Harvard University	Harvard Yard	Cambridge	1871
CAM.190	Straus Hall - Harvard University	Harvard Yard	Cambridge	1926
CAM.191	Thayer Hall - Harvard University	Harvard Yard	Cambridge	1869
CAM.192	Wigglesworth Hall - Harvard University	Harvard Yard	Cambridge	1930
CAM.953	Harvard University - 1857 Gate	Harvard Yard	Cambridge	1901
CAM.954	Harvard University - 1870 Gate	Harvard Yard	Cambridge	1901
CAM.955	Harvard University - 1873 Tablet	Harvard Yard	Cambridge	1901
CAM.956	Harvard University - 1874 Gate	Harvard Yard	Cambridge	1901
CAM.957	Harvard University - 1875 Gate	Harvard Yard	Cambridge	1901
CAM.958	Harvard University - 1881 Gate	Harvard Yard	Cambridge	1906
CAM.959	Harvard University - 1885 Gate	Harvard Yard	Cambridge	1904
CAM.960	Harvard University - 1886 Gate	Harvard Yard	Cambridge	1901
CAM.961	Harvard University - 1887 Gate	Harvard Yard	Cambridge	1906
CAM.962	Harvard University - 1888 Gate	Harvard Yard	Cambridge	1906
CAM.963	Harvard University - 1889 Gate	Harvard Yard	Cambridge	1901
CAM.964	Harvard University - 1890 Gate	Harvard Yard	Cambridge	1901
CAM.965	Harvard University - 1880 Gate	Harvard Yard	Cambridge	1902
CAM.966	Harvard University - Bradley Fountain	Harvard Yard	Cambridge	1910
CAM.967	Harvard University - Chinese Steel	Harvard Yard	Cambridge	r 1810
CAM.968	Harvard University - Delivery Gate	Harvard Yard	Cambridge	1948
CAM.969	Harvard University - Driveway Gate	Harvard Yard	Cambridge	1948
CAM.970	Harvard University - 1908 Gate	Harvard Yard	Cambridge	1936
CAM.971	Harvard University - Emerson Gate	Harvard Yard	Cambridge	1936
CAM.972	Harvard University - Fire Station Gate	Harvard Yard	Cambridge	1970
CAM.973	Harvard University - Hollis Pump	Harvard Yard	Cambridge	1936
CAM.974	Harvard University - 1876 Gate	Harvard Yard	Cambridge	1901
CAM.975	Harvard University - Harvard, John Statue	Harvard Yard	Cambridge	1884
CAM.976	Harvard University - Johnston Gate	Harvard Yard	Cambridge	1889
Friday, Marc	ch 30. 2018		- -	Page 17 of 37

Friday, March 30, 2018 Page 17 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.977	Harvard University - Lamont Gate	Harvard Yard	Cambridge	1948
CAM.978	Harvard University - Gatehouse	Harvard Yard	Cambridge	1983
CAM.979	Harvard University - 1879 Gate	Harvard Yard	Cambridge	1891
CAM.980	Harvard University - Onion	Harvard Yard	Cambridge	1965
CAM.981	Harvard University - Porcellian Gate	Harvard Yard	Cambridge	1901
CAM.982	Harvard University - Reclining Figure	Harvard Yard	Cambridge	1972
CAM.983	Harvard University - Robinson Gate	Harvard Yard	Cambridge	1936
CAM.984	Harvard University - 1870 Sundial	Harvard Yard	Cambridge	1901
CAM.985	Harvard University - 1877 Gate	Harvard Yard	Cambridge	1901
CAM.1214	Harvard University - Canaday Hall	Harvard Yard	Cambridge	1973
CAM.1215	Harvard University - Emerson Hall	Harvard Yard	Cambridge	1904
CAM.1216	Harvard University - Houghton Library	Harvard Yard	Cambridge	1941
CAM.1217	Harvard University - Lamont Library	Harvard Yard	Cambridge	1947
CAM.1218	Harvard University - Lionel Hall	Harvard Yard	Cambridge	1924
CAM.1219	Harvard University - Memorial Church	Harvard Yard	Cambridge	1931
CAM.1220	Harvard University - Mower Hall	Harvard Yard	Cambridge	1924
CAM.1221	Brooks, Phillips House - Harvard Univsersity	Harvard Yard	Cambridge	1898
CAM.1222	Harvard University - Pusey Library	Harvard Yard	Cambridge	1973
CAM.1223	Harvard University - Robinson Hall	Harvard Yard	Cambridge	1900
CAM.1224	Harvard University - Stoughton Hall	Harvard Yard	Cambridge	1804
CAM.1227	Harvard University - Widener Library	Harvard Yard	Cambridge	1913
CAM.520		6 Hastings Sq	Cambridge	1884
CAM.1231	Bates, Jacob H. House	11 Hawthorn St	Cambridge	1813
CAM.194	Daly, Reginald A. House	23 Hawthorn St	Cambridge	c 1885
CAM.195	Wadsworth House	31 Hawthorn St	Cambridge	r 1935
CAM.196		35 Hawthorn St	Cambridge	r 1935
CAM.197	Glaser, Dorothy Merriless House	37 Hawthorn St	Cambridge	1937
CAM.198		41 Hawthorn St	Cambridge	1911
CAM.199	Maynardier, G. B. House	43 Hawthorn St	Cambridge	1900
CAM.1232		49 Hawthorn St	Cambridge	1900
CAM.521		75 Henry St	Cambridge	1892
CAM.1343		82-84 Henry St	Cambridge	
CAM.200	Noyes, J. A. House	1 Highland St	Cambridge	1894
CAM.796	Usher, Samuel House	11 Hillside Ave	Cambridge	1887
CAM.750		11 Holden St	Cambridge	1928
CAM.751		41 Holden St	Cambridge	1840
CAM.752		45 Holden St	Cambridge	1928
CAM.1383	Chadwick, Samuel E. House	10 Hollis St	Cambridge	1853
Fridav. March	30. 2018			Page 18 of 37

Friday, March 30, 2018 Page 18 of 37

nv. No.	Property Name	Street	Town	Year
CAM.1100	Alpha Delta Phi Club - Fly Club	2 Holyoke Pl	Cambridge	1896
AM.1101		9 Holyoke Pl	Cambridge	c 1930
AM.1197	Lowell House - Harvard University	10 Holyoke Pl	Cambridge	1929
AM.1198	Indoor Athletic Building - Harvard University	35-41 Holyoke Pl	Cambridge	1929
AM.1102		8-10 Holyoke St	Cambridge	1927
AM.201	Hasty Pudding Club	12 Holyoke St	Cambridge	1887
AM.1103	Apley Court	16 Holyoke St	Cambridge	1897
AM.1104	Sawyer, Samuel F. House	20 Holyoke St	Cambridge	1818
AM.1105		22 Holyoke St	Cambridge	1956
AM.1106		24 Holyoke St	Cambridge	1963
AM.1107	Owl Club	30 Holyoke St	Cambridge	1905
AM.1302		2 Hubbard Pk	Cambridge	1909
AM.1293		3 Hubbard Pk	Cambridge	1887
AM.1306	Warren, John L. House	5 Hubbard Pk	Cambridge	1922
AM.1305	Paine, George House	6 Hubbard Pk	Cambridge	c 1918
AM.1295		8 Hubbard Pk	Cambridge	1888
AM.1301	Nutting, Lillian House	12 Hubbard Pk	Cambridge	1908
AM.1297		14 Hubbard Pk	Cambridge	1892
AM.1304		15 Hubbard Pk	Cambridge	1914
AM.1303	Beach, Revel W. House	19 Hubbard Pk	Cambridge	1913
AM.1298		20 Hubbard Pk	Cambridge	1892
AM.1299		26 Hubbard Pk	Cambridge	1894
AM.1296		32 Hubbard Pk	Cambridge	1890
AM.1346		15 Humboldt St	Cambridge	
AM.904	Huron Avenue Bridge over B & M Railroad	Huron Ave	Cambridge	1892
AM.202	Syrian Orthodox Catholic Church of Saint Mary	8 Inman St	Cambridge	1822
AM.576	Matthews Apartments	12 Inman St	Cambridge	1966
AM.1364	Bennett, James House	17 Inman St	Cambridge	1871
AM.1349	Luke Rowhouse	19 Inman St	Cambridge	1877
AM.1350	Luke Rowhouse	21 Inman St	Cambridge	1877
AM.1351	Luke Rowhouse	21 1/2 Inman St	Cambridge	1877
AM.203		102-104 Inman St	Cambridge	1845
AM.204		106-108 Inman St	Cambridge	1845
AM.205		110-112 Inman St	Cambridge	1845
AM.753		80-82 Irving St	Cambridge	1927
AM.754		81 Irving St	Cambridge	1916
AM.755		84-86 Irving St	Cambridge	1927
AM.756		89 Irving St	Cambridge	1916
idav March	20, 2019	Ü	3.	Page 19 g

Friday, March 30, 2018 Page 19 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.206	James, William House	95 Irving St	Cambridge	1889
CAM.757		99 Irving St	Cambridge	1889
CAM.758		103-103A Irving St	Cambridge	1889
CAM.207	cummings, e. e. House	104 Irving St	Cambridge	1893
CAM.759	Van Dael - DeSola Pool House	105 Irving St	Cambridge	1890
CAM.760		107 Irving St	Cambridge	1891
CAM.761		109 Irving St	Cambridge	1893
CAM.762	Davis, Robert House	110 Irving St	Cambridge	1889
CAM.763		114 Irving St	Cambridge	1911
CAM.764		133 Irving St	Cambridge	1963
CAM.765	American Academy of Arts and Sciences	136 Irving St	Cambridge	1980
CAM.766		138 Irving St	Cambridge	1912
CAM.297	Radcliffe College - Schlesinger Library	James St	Cambridge	1907
CAM.950	Winthrop Square Park	Kennedy St	Cambridge	1631
CAM.1108	Abbott Building	5 Kennedy St	Cambridge	1908
CAM.1109		9-25 Kennedy St	Cambridge	1887
CAM.1110	Farwell, Levi Tenant House	10-14 Kennedy St	Cambridge	c 1820
CAM.1111	Read Block	18-28 Kennedy St	Cambridge	1885
CAM.1112		29-41 Kennedy St	Cambridge	1971
CAM.1113		30 Kennedy St	Cambridge	1936
CAM.1114	Garage, The	34-42 Kennedy St	Cambridge	1924
CAM.1115	Fox Club	44 Kennedy St	Cambridge	1906
CAM.1116	Drayton Hall	48 Kennedy St	Cambridge	1901
CAM.1117		50 Kennedy St	Cambridge	1892
CAM.1118		52-54 Kennedy St	Cambridge	1884
CAM.1119	Galeria	55-57 Kennedy St	Cambridge	1974
CAM.1120		56 Kennedy St	Cambridge	1903
CAM.1121	S. A. E. Club	60 Kennedy St	Cambridge	1929
CAM.1122		63-65 Kennedy St	Cambridge	1984
CAM.1200	Hicks, John House - Harvard University	64 Kennedy St	Cambridge	1762
CAM.1199	Smith Hall - Harvard University	70-78 Kennedy St	Cambridge	1913
CAM.208	Loring, Judge Edward - Peirce, Benjamin House	4 Kirkland Pl	Cambridge	1856
CAM.688	Merrill, John House	9 Kirkland Pl	Cambridge	1855
CAM.689	Shaw, Southworth House	10 Kirkland Pl	Cambridge	1856
CAM.690	Green, Louise House	11 Kirkland Pl	Cambridge	1921
CAM.691	Cutler, Isaac House	12 Kirkland Pl	Cambridge	1857
CAM.692	Cutler, George House	13 Kirkland Pl	Cambridge	1857
CAM.693	Ware House	14 Kirkland Pl	Cambridge	1839
Fridav. March	30 2018		_	Page 20 of 37

Friday, March 30, 2018 Page 20 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.209	Treadwell - Sparks House	21 Kirkland St	Cambridge	1838
CAM.210	Brooks, Luther House	34 Kirkland St	Cambridge	1840
CAM.211	Lovering, Joseph House	38 Kirkland St	Cambridge	1839
CAM.767		49 Kirkland St	Cambridge	1886
CAM.768		55 Kirkland St	Cambridge	1927
CAM.769		57-59 Kirkland St	Cambridge	1927
CAM.212	Eliot, Charles W. House	61 Kirkland St	Cambridge	1858
CAM.213	Child, Francis J. House	67 Kirkland St	Cambridge	1861
CAM.9019	Brown-Rhone, Jill Park	Lafayette Sq	Cambridge	2007
CAM.214	Fresh Pond Hotel	234 Lakeview Ave	Cambridge	1796
CAM.1013		13 Lancaster St	Cambridge	c 1880
CAM.1005		16 Lancaster St	Cambridge	1892
CAM.1006		18 Lancaster St	Cambridge	1885
CAM.1007		24 Lancaster St	Cambridge	1883
CAM.1014	Sawyer, Chester House	27 Lancaster St	Cambridge	1886
CAM.1015	Hovey, William B. House	29 Lancaster St	Cambridge	1887
CAM.1008		36 Lancaster St	Cambridge	1886
CAM.215	Yerxa House and Carriage House	37 Lancaster St	Cambridge	1887
CAM.216	Larches, The	22 Larch Rd	Cambridge	c 1808
CAM.1317	Metropolitan District Commission Boat House	Lechmere Canal	Cambridge	1910
CAM.217		15-17 Lee St	Cambridge	1856
CAM.218	Lowell, The	33 Lexington Ave	Cambridge	1900
CAM.1123		5-7 Linden St	Cambridge	c 1867
CAM.1124	Harvard Square Squash Court	8-10 Linden St	Cambridge	1908
CAM.1125	Delphic Club	9 Linden St	Cambridge	1902
CAM.219	Apthorp, Rev. East House	10 Linden St	Cambridge	c 1760
CAM.220	Cooper - Frost - Austin House	21 Linnaean St	Cambridge	1681
CAM.221	Peabody Court Apartments	41-43 Linnaean St	Cambridge	1922
CAM.1234	Cambridge Friends Meetinghouse and Center	5 Longfellow Pk	Cambridge	1914
CAM.1233		6 Longfellow Pk	Cambridge	1901
CAM.222	Lowell School	25 Lowell St	Cambridge	1883
CAM.1319	Magazine Beach Bath House	Magazine Beach	Cambridge	1899
CAM.223	First Baptist Church, Cambridge	5 Magazine St	Cambridge	1881
CAM.637	Church Corners Apartments	8-12 Magazine St	Cambridge	1985
CAM.510	Pilgrim Congregational Church	35 Magazine St	Cambridge	1871
CAM.511	Hinman, Joseph House	48 Magazine St	Cambridge	1875
CAM.512	Brewer, Isaac D Pulsifer, William Double House	50-52 Magazine St	Cambridge	1852

Friday, March 30, 2018 Page 21 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.513	Grace Methodist Church	56 Magazine St	Cambridge	1886
CAM.224	Flentje, Ernst House	129 Magazine St	Cambridge	1866
CAM.991	Shell Sign	187 Magazine St	Cambridge	1933
CAM.87	Kendall Square Subway Station	Main St	Cambridge	1912
CAM.225	Kendall Square Substation	Main St	Cambridge	1911
CAM.1308	Davenport - Allen and Endicott Factory Headhouse	Main St	Cambridge	1882
CAM.1309	Davenport - Allen and Endicott Factory East Wing	Main St	Cambridge	1848
CAM.1335	Luke Building	135-145 Main St	Cambridge	1874
CAM.1384	Engine House No. 7	350 Main St	Cambridge	c 1895
CAM.328	Union #2 Engine House	787-789 Main St	Cambridge	1852
CAM.609	Bright Building	853 Main St	Cambridge	1898
CAM.608	Wentworth Building	859-863 Main St	Cambridge	1897
CAM.610	Union Baptist Church	872 Main St	Cambridge	1882
CAM.607	Mellen Building	875 Main St	Cambridge	1897
CAM.606	Andelman, Ezra Building	877-881 Main St	Cambridge	1941
CAM.611	Sawyer, Charles Tenement	882-884 Main St	Cambridge	c 1873
CAM.605	Whitney, Lucretia and Henry Building	893-907 Main St	Cambridge	1870
CAM.703		6 Maple Ave	Cambridge	
CAM.694	Stevens, Charles B. House	8 Maple Ave	Cambridge	1873
CAM.704		12 Maple Ave	Cambridge	
CAM.705		14-16 Maple Ave	Cambridge	
CAM.702		15 Maple Ave	Cambridge	
CAM.701		19 Maple Ave	Cambridge	
CAM.697	Webster, Francis B. House	20 Maple Ave	Cambridge	1861
CAM.695	Hall, Lewis House	23 Maple Ave	Cambridge	1867
CAM.706		24 Maple Ave	Cambridge	
CAM.700		25 Maple Ave	Cambridge	r 1920
CAM.707		26 Maple Ave	Cambridge	
CAM.699		27 Maple Ave	Cambridge	
CAM.698		29 Maple Ave	Cambridge	
CAM.696	Munroe, Philip House	31 Maple Ave	Cambridge	1887
CAM.226	Mason, Josiah Jr. House	11 Market St	Cambridge	1831
CAM.295	Radcliffe College Gymnasium	Mason St	Cambridge	1898
CAM.296	Radcliffe College - Agassiz House	Mason St	Cambridge	1904
CAM.227	Norton House Ell	4 Mason St	Cambridge	1847
CAM.228		6-12 Mason St	Cambridge	

Friday, March 30, 2018 Page 22 of 37

CAM.261 F CAM.262 N CAM.901 F CAM.905 N CAM.916 C	M. I. T. Alumni Swimming Pool Building Kresge Auditorium M. I. T. Chapel Harvard Square Subway Kiosk Massachusetts Avenue Bridge over Conrail Central Square Subway Station Harvard Bridge	Massachusetts Ave Massachusetts Ave Massachusetts Ave Massachusetts Ave Massachusetts Ave Massachusetts Ave	Cambridge Cambridge Cambridge Cambridge Cambridge	1940 1953 1954 1928
CAM.262 M CAM.901 H CAM.905 M CAM.916 C CAM.921 H	M. I. T. Chapel Harvard Square Subway Kiosk Massachusetts Avenue Bridge over Conrail Central Square Subway Station Harvard Bridge	Massachusetts Ave Massachusetts Ave Massachusetts Ave	Cambridge Cambridge	1954
CAM.901 F CAM.905 M CAM.916 C CAM.921 F	Harvard Square Subway Kiosk Massachusetts Avenue Bridge over Conrail Central Square Subway Station Harvard Bridge	Massachusetts Ave Massachusetts Ave	Cambridge	
CAM.905 M CAM.916 C CAM.921 H	Massachusetts Avenue Bridge over Conrail Central Square Subway Station Harvard Bridge	Massachusetts Ave	· ·	1928
CAM.916 C CAM.921 F	Central Square Subway Station Harvard Bridge		Cambridge	
CAM.921 F	Harvard Bridge	Massachusetts Ave		1900
	_		Cambridge	1912
CAM.938 (0	Massachusetts Ave	Cambridge	r 1890
	Cambridge Common	Massachusetts Ave	Cambridge	1631
CAM.939 (Cambridge Common South Traffic Island	Massachusetts Ave	Cambridge	1976
CAM.945 E	Burying Ground Fence	Massachusetts Ave	Cambridge	1891
CAM.946 F	Flagstaff Park	Massachusetts Ave	Cambridge	1913
CAM.947 N	North Little Common	Massachusetts Ave	Cambridge	c 1858
CAM.949 (Central Square Street Pattern	Massachusetts Ave	Cambridge	c 1630
CAM.334 (Cambridge Armory	120 Massachusetts Ave	Cambridge	1902
CAM.332 N	Metropolitan Storage Warehouse	134 Massachusetts Ave	Cambridge	1895
CAM.1366 N	New England Confectionery Company Factory	250 Massachusetts Ave	Cambridge	1927
CAM.612 L	Lamson, The	351-355 Massachusetts Ave	Cambridge	1907
CAM.614 L	Lafayette Square Fire Station	378 Massachusetts Ave	Cambridge	1893
CAM.613	Shell Gas Station	385 Massachusetts Ave	Cambridge	1948
CAM.615	Salvation Army - Cambridge Citadel	400-402 Massachusetts Ave	Cambridge	1968
CAM.604		401-409 Massachusetts Ave	Cambridge	1966
CAM.603	Taylor, William A. House and Shop	411-413 Massachusetts Ave	Cambridge	1887
CAM.602 E	Barkin and Gorfinkle Building	415-429 Massachusetts Ave	Cambridge	1925
CAM.616 P	Kennedy, Frank A. Store	424 Massachusetts Ave	Cambridge	1896
CAM.617 k	Kutz, Issac Store	428 Massachusetts Ave	Cambridge	c 1910
CAM.229 P	Kennedy, The	430-442 Massachusetts Ave	Cambridge	1890
CAM.601 F	Robbins Building	433-447 Massachusetts Ave	Cambridge	1923
CAM.619 E	Blanchard Building	448-450 Massachusetts Ave	Cambridge	c 1886
CAM.324 S	South Row	452-458 Massachusetts Ave	Cambridge	1807
CAM.1393 [Dana Row - South Row	452-458 Massachusetts Ave	Cambridge	2003
CAM.599 F	Rogers, F. W. and G. M. Building	453-457 Massachusetts Ave	Cambridge	1885
CAM.620 F	Freedman Building	460-464 Massachusetts Ave	Cambridge	1933
AM.598 N	McDonald's Restaurant	463-467 Massachusetts Ave	Cambridge	1974
AM.621 (Central Square Realty Trust Building	468-480 Massachusetts Ave	Cambridge	1929
CAM.597 N	Moller's Furniture Store	485 Massachusetts Ave	Cambridge	1926
CAM.622 L	Longfellow, The	492-498 Massachusetts Ave	Cambridge	1893
CAM.596	Kane's Furniture Store	493-507 Massachusetts Ave	Cambridge	1916
CAM.625 E	Burger King Restaraunt	506 Massachusetts Ave	Cambridge	1970

Friday, March 30, 2018 Page 23 of 37

nv. No.	Property Name	Street	Town	Year
CAM.1394	Hovey, Phineas Building	512-514 Massachusetts Ave	Cambridge	1842
CAM.595	Central Trust Building	515-527 Massachusetts Ave	Cambridge	1927
CAM.627	Miller Store	520 Massachusetts Ave	Cambridge	1924
CAM.628	Rosenwald Realty Corporation Building	522-526 Massachusetts Ave	Cambridge	1928
CAM.230	Odd Fellows Hall	536 Massachusetts Ave	Cambridge	1884
CAM.629	Clark - Lamb Building	546-550 Massachusetts Ave	Cambridge	c 1873
CAM.630	Albani Building	552-566 Massachusetts Ave	Cambridge	1925
AM.592	Bullock, Charles Building	567-569 Massachusetts Ave	Cambridge	1859
AM.591	Central Square Theater	571-577 Massachusetts Ave	Cambridge	1917
AM.631	Ginsberg Building - Harvard Bazar	572-590 Massachusetts Ave	Cambridge	1913
AM.590	Morse, Asa P. Building	579-587 Massachusetts Ave	Cambridge	1893
CAM.589	Cambridgeport National Bank Building	593-597 Massachusetts Ave	Cambridge	1869
CAM.632	Manhattan Market - Purity Supreme Super Market	596-610 Massachusetts Ave	Cambridge	1899
AM.588	Morse, Asa Second Building	599-601 Massachusetts Ave	Cambridge	1905
AM.587	Fisk and Coleman Building	603-605 Massachusetts Ave	Cambridge	1892
AM.633	Prospect House	614-620 Massachusetts Ave	Cambridge	1869
AM.586	Corcoran, John H. Building	615-627 Massachusetts Ave	Cambridge	1927
AM.634	Holmes Block I	624-638 Massachusetts Ave	Cambridge	1915
AM.1395	New Holmes Block	624-638 Massachusetts Ave	Cambridge	1998
AM.585	Woolworth, F. W. Building	633-641 Massachusetts Ave	Cambridge	1950
AM.584	Watriss Building	643-649 Massachusetts Ave	Cambridge	1880
AM.583	Dowse, Thomas House	653-655 Massachusetts Ave	Cambridge	1814
AM.581	New England Gas and Electric Association II Bldg	671-675 Massachusetts Ave	Cambridge	1966
AM.642	Central Square Building	674 Massachusetts Ave	Cambridge	1926
AM.643	Chamberlain - Hyde Building	684-688 Massachusetts Ave	Cambridge	1869
AM.580	Cambridgeport Savings Bank	689 Massachusetts Ave	Cambridge	1904
AM.644	Dana Building	692-698 Massachusetts Ave	Cambridge	1872
AM.645	Southwick Building	700-706 Massachusetts Ave	Cambridge	1908
AM.646	Norris Building	710-720 Massachusetts Ave	Cambridge	1916
AM.579	Cambridge Electric Light Building	719 Massachusetts Ave	Cambridge	1912
AM.647	Thayer Building I	722-724 Massachusetts Ave	Cambridge	1863
AM.648	Thayer Building II	728-730 Massachusetts Ave	Cambridge	1868
AM.578	Southwick Building	731-751 Massachusetts Ave	Cambridge	1896
AM.649	Dobbins and Draper Store	736-750 Massachusetts Ave	Cambridge	1922
AM.650	Dobbins and Draper Store	736-750 Massachusetts Ave	Cambridge	1922
AM.231	Cambridge Mutual Fire Insurance Company Building	763 Massachusetts Ave	Cambridge	1888

Friday, March 30, 2018 Page 24 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.232	Central Square Post Office	770 Massachusetts Ave	Cambridge	1933
CAM.233	Cambridge City Hall	795 Massachusetts Ave	Cambridge	1889
CAM.651	Cambridge Senior Center	800-806 Massachusetts Ave	Cambridge	1925
CAM.652	Young Men's Christian Association Building	820-830 Massachusetts Ave	Cambridge	1896
CAM.1396	Brusch Medical Center	825-831 Massachusetts Ave	Cambridge	1951
CAM.653	Saint Peter's Episcopal Church	834 Massachusetts Ave	Cambridge	1867
CAM.654	Modern Manor Apartments	842-864 Massachusetts Ave	Cambridge	1925
CAM.900	Houghton Beech Tree	1000 Massachusetts Ave	Cambridge	
CAM.1127	Brentford Hall	1137 Massachusetts Ave	Cambridge	1899
CAM.1128	Dunham, Israel Houses	1156-1166 Massachusetts Ave	Cambridge	1858
CAM.1129		1168 Massachusetts Ave	Cambridge	c 1892
CAM.1130		1170-1174 Massachusetts Ave	Cambridge	c 1849
CAM.1131	Longfellow Court	1200 Massachusetts Ave	Cambridge	1916
CAM.1132	Gulf Gas Station	1201 Massachusetts Ave	Cambridge	1940
CAM.1133		1206 Massachusetts Ave	Cambridge	1965
CAM.1134		1208-1210 Massachusetts Ave	Cambridge	1842
CAM.1135	Quincy Hall	1218 Massachusetts Ave	Cambridge	1891
CAM.1136		1230 Massachusetts Ave	Cambridge	1907
CAM.1137		1234-1238 Massachusetts Ave	Cambridge	c 1894
CAM.1138	Hamden Hall	1246-1260 Massachusetts Ave	Cambridge	1902
CAM.1139	A. D. Club	1268-1270 Massachusetts Ave	Cambridge	1899
CAM.1140	Niles Building	1280 Massachusetts Ave	Cambridge	1984
CAM.234	Fairfax, The	1300-1306 Massachusetts Ave	Cambridge	1869
CAM.1141	Fairfax - Hilton Block	1310-1312 Massachusetts Ave	Cambridge	1883
CAM.1142	Fairfax - Hilton Block	1316 Massachusetts Ave	Cambridge	1885
CAM.235	Porcellian Club	1320-1324 Massachusetts Ave	Cambridge	1890
CAM.1143	Manter Hall	1325 Massachusetts Ave	Cambridge	1885
CAM.236	Wadsworth House	1341 Massachusetts Ave	Cambridge	1726
CAM.237	Holyoke Center	1350 Massachusetts Ave	Cambridge	1961
CAM.1144	Cambridge Savings Bank	1372-1376 Massachusetts Ave	Cambridge	1923
CAM.1145	Read, Joseph Stacey House	1380-1382 Massachusetts Ave	Cambridge	c 1783
CAM.1146	Bartlett, Joseph House	1384-1392 Massachusetts Ave	Cambridge	c 1800
CAM.1147	Harvard Coop Society	1400 Massachusetts Ave	Cambridge	1924
CAM.1148	Harvard Coop Society	1408-1410 Massachusetts Ave	Cambridge	1956
CAM.1149	Harvard Trust Company	1414 Massachusetts Ave	Cambridge	1923
CAM.1150	College House	1420-1442 Massachusetts Ave	Cambridge	1832
CAM.342	Gannett House	1511 Massachusetts Ave	Cambridge	1838
CAM.343	Hemenway Gymnasium	1517 Massachusetts Ave	Cambridge	1938
Fridav. March	30 2018		-	Page 25 of 3

Friday, March 30, 2018 Page 25 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.344	Hastings Hall	1519 Massachusetts Ave	Cambridge	1888
CAM.345	Harvard Epworth Methodist Church	1555 Massachusetts Ave	Cambridge	1891
CAM.1334	Francis - Allyn House	1564 Massachusetts Ave	Cambridge	1831
CAM.1333	Sawin - Cobb - Wilson House	1626 Massachusetts Ave	Cambridge	1868
CAM.238	Saunders, Charles Hicks House	1627 Massachusetts Ave	Cambridge	1862
CAM.239	Montrose, The	1648 Massachusetts Ave	Cambridge	1898
CAM.240	Dunvegan, The	1654 Massachusetts Ave	Cambridge	1898
CAM.241	Worcester, Frederick House	1734 Massachusetts Ave	Cambridge	1886
CAM.242	North Avenue Congregational Church	1803 Massachusetts Ave	Cambridge	1845
CAM.243	Lovell Block	1853 Massachusetts Ave	Cambridge	1882
CAM.1385	Cambridge Masonic Temple	1950 Massachusetts Ave	Cambridge	1910
CAM.244	Saint James Episcopal Church	1991 Massachusetts Ave	Cambridge	1888
CAM.245	Henderson Carriage Repository	2067-2089 Massachusetts Ave	Cambridge	1892
CAM.246	Cornerstone Baptist Church	2114 Massachusetts Ave	Cambridge	1854
CAM.247	Mead, Alpheus House	2200 Massachusetts Ave	Cambridge	1867
CAM.248	Snow, Daniel House	2210 Massachusetts Ave	Cambridge	1868
CAM.249	McLean, Isaac House	2218 Massachusetts Ave	Cambridge	1894
CAM.250	Farwell, R. H. Double House	2222-2224 Massachusetts Ave	Cambridge	1891
CAM.251	Saint John's Roman Catholic Church	2270 Massachusetts Ave	Cambridge	1904
CAM.1390		2557 Massachusetts Ave	Cambridge	
CAM.1376	Matignon Central Catholic High School	1 Matignon Rd	Cambridge	1946
CAM.1375	Immaculate Conception Catholic Church Convent	33 Matignon Rd	Cambridge	1954
CAM.252	Cambridge Almshouse	45 Matignon Rd	Cambridge	1850
CAM.1374	Cambridge Almshouse Dormitory	45 Matignon Rd	Cambridge	c 1887
CAM.566	M. I. T Pierce, Henry L. Engineering Laboratory	Memorial Dr	Cambridge	1913
CAM.567	M. I. T Buildings #2 and #8	Memorial Dr	Cambridge	1913
CAM.568	M. I. T Pratt School of Naval Architecture	Memorial Dr	Cambridge	1919
CAM.569	M. I. T Homburg Infirmary	Memorial Dr	Cambridge	1927
CAM.570	M. I. T Eastman, George Research Laboratories	Memorial Dr	Cambridge	1931
CAM.571	M. I. T Rogers, William Barton Building	Memorial Dr	Cambridge	1937
CAM.572	M. I. T Walker Memorial	Memorial Dr	Cambridge	1913
CAM.573	M. I. T President's House	Memorial Dr	Cambridge	1913
CAM.574	M. I. T Senior House	Memorial Dr	Cambridge	1913
CAM.575	M. I. T Hayden Library	Memorial Dr	Cambridge	1949
CAM.930	Memorial Drive	Memorial Dr	Cambridge	1896
CAM.933	M. I. T. Memorial Underpass	Memorial Dr	Cambridge	1931

Friday, March 30, 2018 Page 26 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.934	Reid, William J. Overpass	Memorial Dr	Cambridge	1939
CAM.1332	Little, Arthur D. Inc. Building	Memorial Dr	Cambridge	1917
CAM.1398	Lever Brothers Company Administration Building	50 Memorial Dr	Cambridge	1938
CAM.253		100 Memorial Dr	Cambridge	1950
CAM.254	M. I. T. Main Courtyard	182-226 Memorial Dr	Cambridge	1913
CAM.255	Riverbank Court Hotel	305 Memorial Dr	Cambridge	1900
CAM.256	Baker House	362 Memorial Dr	Cambridge	1947
CAM.1327	Boston University Boat House	619 Memorial Dr	Cambridge	1913
CAM.257	B & B Chemical Company	780 Memorial Dr	Cambridge	1937
CAM.258	Peabody Terrace	900 Memorial Dr	Cambridge	1958
CAM.1201	Dunster House - Harvard University	945 Memorial Dr	Cambridge	1929
CAM.1202	Gore Hall - Harvard University	960 Memorial Dr	Cambridge	1913
CAM.1203	Standish Hall - Harvard University	966 Memorial Dr	Cambridge	1913
CAM.1204	Eliot House - Harvard University	967 Memorial Dr	Cambridge	1930
CAM.1324	Harvard University - Weld Boat House	971 Memorial Dr	Cambridge	1906
CAM.259	Conventual Church of Saint Mary and Saint John	980 Memorial Dr	Cambridge	1936
CAM.1267	Radnor Hall	983-984 Memorial Dr	Cambridge	1916
CAM.1268	Hampstead Hall	985-986 Memorial Dr	Cambridge	1916
CAM.1269	Barrington Court	987-989 Memorial Dr	Cambridge	1924
CAM.1270	Strathcona-on-the-Charles	992-993 Memorial Dr	Cambridge	1914
CAM.1300		2 Mercer Cir	Cambridge	1894
CAM.1287		3 Mercer Cir	Cambridge	1885
CAM.1288		4 Mercer Cir	Cambridge	1885
CAM.1294		5 Mercer Cir	Cambridge	1887
CAM.1291		6 Mercer Cir	Cambridge	1886
CAM.1307	Harris, William F. House	7 Mercer Cir	Cambridge	1922
CAM.1289		8 Mercer Cir	Cambridge	1885
CAM.1292		9 Mercer Cir	Cambridge	1886
CAM.1151		11-15 Mifflin Pl	Cambridge	1901
CAM.1152		12-14 Mifflin Pl	Cambridge	1913
CAM.1153		17-19 Mifflin PI	Cambridge	1972
CAM.1205	McKinlock Hall - Harvard University	8 Mill St	Cambridge	1926
CAM.1206	Leverett House Library and Towers - Harvard Univ.	14-18 Mill St	Cambridge	1958
CAM.263	Cambridge Neighborhood House	79 Moore St	Cambridge	c 1821
CAM.264	Reversible Collar Company Building	25-27 Mount Auburn St	Cambridge	1860
CAM.1154	Saint Paul's Rectory	32-36 Mount Auburn St	Cambridge	1924
CAM.1155	Speakers Club	43-45 Mount Auburn St	Cambridge	1845

Friday, March 30, 2018 Page 27 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.1156		45 1/2 Mount Auburn St	Cambridge	1971
CAM.1157		47-49 Mount Auburn St	Cambridge	1926
CAM.1158	Claverly Hall	63 Mount Auburn St	Cambridge	1892
CAM.1159		65R Mount Auburn St	Cambridge	1957
CAM.1160	Ridgely Hall	65 Mount Auburn St	Cambridge	1904
CAM.1161	Manter Hall School	71-77 Mount Auburn St	Cambridge	1927
CAM.1162	Phoenix - S. K. Club	72 Mount Auburn St	Cambridge	1915
CAM.1163	Iroquois Club	74 Mount Auburn St	Cambridge	1916
CAM.1164	Spee Club	76 Mount Auburn St	Cambridge	1931
CAM.1165	Willard, Lucy House	78 Mount Auburn St	Cambridge	1839
CAM.1166		90 Mount Auburn St	Cambridge	1971
CAM.1167		92-96 Mount Auburn St	Cambridge	1895
CAM.1168		95-97 Mount Auburn St	Cambridge	1920
CAM.1169		99 Mount Auburn St	Cambridge	c 1919
CAM.1170	Cantabrigia Club	100 Mount Auburn St	Cambridge	c 1919
CAM.1171		102 Mount Auburn St	Cambridge	1869
CAM.1172		104 Mount Auburn St	Cambridge	1983
CAM.1173		110 Mount Auburn St	Cambridge	1959
CAM.9	Boston Elevated Railway Division 7 Headquarters	112 Mount Auburn St	Cambridge	c 1911
CAM.1175	Trinity Hall	114-120 Mount Auburn St	Cambridge	1892
CAM.1177	Waverly Hall	115 Mount Auburn St	Cambridge	1902
CAM.1178		119-123 Mount Auburn St	Cambridge	1988
CAM.1176		120R Mount Auburn St	Cambridge	1982
CAM.1126	U. S. Post Office - Cambridge Branch	125 Mount Auburn St	Cambridge	1953
CAM.791		151 Mount Auburn St	Cambridge	1853
CAM.792		153 Mount Auburn St	Cambridge	1874
CAM.789		154 Mount Auburn St	Cambridge	1852
CAM.790		156-158 Mount Auburn St	Cambridge	1856
CAM.265		173 Mount Auburn St	Cambridge	r 1905
CAM.266		175 Mount Auburn St	Cambridge	r 1895
CAM.267		259 Mount Auburn St	Cambridge	c 1850
CAM.268	Mount Auburn Hospital - Surgical Building	330 Mount Auburn St	Cambridge	1897
CAM.269	Mount Auburn Hospital - Main Building	330 Mount Auburn St	Cambridge	1886
CAM.801	Mount Auburn Cemetery	580 Mount Auburn St	Cambridge	1831
CAM.936	Mount Auburn Cemetery Fence and Gates	580 Mount Auburn St	Cambridge	1843
CAM.992	Mount Auburn Cemetery - Copenhagen, Maria Angel	580 Mount Auburn St	Cambridge	1872

Friday, March 30, 2018 Page 28 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.270	Mount Auburn Cemetery Reception House	583 Mount Auburn St	Cambridge	1870
CAM.1330	DeRosay - McNamee House	50 Mount Vernon St	Cambridge	1896
CAM.557		1-2 Norfolk Pl	Cambridge	1844
CAM.558		3 Norfolk PI	Cambridge	1846
CAM.593	Powers, Hannah - Ginsberg, Harris Building	7-15 Norfolk St	Cambridge	c 1894
CAM.562	Hotel Norfolk	30 Norfolk St	Cambridge	1886
CAM.560		51 Norfolk St	Cambridge	c 1885
CAM.561		59 Norfolk St	Cambridge	1886
CAM.554		65-67 Norfolk St	Cambridge	1844
CAM.559	Pollard, John House	68-72 Norfolk St	Cambridge	1859
CAM.552		69 Norfolk St	Cambridge	1843
CAM.555		71-73 Norfolk St	Cambridge	1844
CAM.556		75-77 Norfolk St	Cambridge	1844
CAM.551	Fuller, Robert House	79 Norfolk St	Cambridge	1843
CAM.553		87 Norfolk St	Cambridge	1843
CAM.563	Hotel Franklin	90 Norfolk St	Cambridge	1886
CAM.1392	Saint Mary of the Annunciation Catholic Church	134 Norfolk St	Cambridge	r 1865
CAM.550		1-2 Norfolk Terr	Cambridge	1839
CAM.913	East Cambridge Viaduct - Lechmere Viaduct	O'Brien Hwy	Cambridge	1910
CAM.9020	Boston and Lowell Railroad Retaining Wall	O'Brien Hwy	Cambridge	c 1857
CAM.349	Lockhart, William L. Coffin Factory Warehouse	195-199 O'Brien Hwy	Cambridge	1873
CAM.271	Barnes, James B. House	200 O'Brien Hwy	Cambridge	1824
CAM.348	Lockhart, William L. Coffin Factory Main Building	201 O'Brien Hwy	Cambridge	r 1870
CAM.272	Lockart, William L. Company Building	209 O'Brien Hwy	Cambridge	c 1859
CAM.1400	Morrell, John and Company Branch House	221 O'Brien Hwy	Cambridge	1929
CAM.1399	Whitehead Metal Products Company	225 O'Brien Hwy	Cambridge	1929
CAM.273	Aborn, John House	41 Orchard St	Cambridge	1846
CAM.274	Billings, Frederick House	45 Orchard St	Cambridge	1846
CAM.1310	Davenport - Allen and Endicott Factory West Wing	Osborn St	Cambridge	1848
CAM.1311	Davenport - Allen Factory West Wing Extension	Osborn St	Cambridge	1848
CAM.1312	Allen and Endicott Factory Extension	Osborn St	Cambridge	1896
CAM.1313	Allen and Endicott Factory Extension	Osborn St	Cambridge	1896
CAM.461	Putnam School	Otis St	Cambridge	1889
CAM.465	Saint Hedwig's Parish Church	Otis St	Cambridge	1939
CAM.468	Otis Hospital	Otis St	Cambridge	
CAM.371	Woodbury, James A Geldowsky, Ferdinand Building	2-28 Otis St	Cambridge	1869

Friday, March 30, 2018 Page 29 of 37

nv. No.	Property Name	Street	Town	Year
CAM.374		31 Otis St	Cambridge	1900
AM.473	Hall, Lewis and William A. Rowhouse	55 Otis St	Cambridge	1851
AM.474	Hall, Lewis and William A. Rowhouse	57 Otis St	Cambridge	1851
AM.475	Hall, Lewis and William A. Rowhouse	59 Otis St	Cambridge	1851
AM.485	Hazard, Samuel L. House	60 Otis St	Cambridge	1871
AM.476	Hall, Lewis and William A. Rowhouse	61 Otis St	Cambridge	1851
AM.484		62 Otis St	Cambridge	
AM.472	Sortwell, Daniel R. Double House	63-65 Otis St	Cambridge	1871
AM.483		64 Otis St	Cambridge	
AM.471		65 1/2 Otis St	Cambridge	
AM.482	Jones, Andrew - Hall, William A. Double House	66-68 Otis St	Cambridge	1846
AM.470	Goss, Abiel Double House	67-69 Otis St	Cambridge	1839
AM.481		70 Otis St	Cambridge	
AM.469		73-75 Otis St	Cambridge	
AM.480		74 Otis St	Cambridge	
AM.479		78 Otis St	Cambridge	
AM.477	Clark, Josias - Cummings, Daniel P. Rowhouse	80 Otis St	Cambridge	1861
AM.478	Clark, Josias - Cummings, Daniel P. Rowhouse	82 Otis St	Cambridge	1861
AM.467	Deshon, Royal P. House	93 Otis St	Cambridge	1842
AM.460		94 Otis St	Cambridge	
AM.466		95-97 Otis St	Cambridge	
AM.459		96 Otis St	Cambridge	
AM.458		98 Otis St	Cambridge	
AM.457	Taylor, Oliver House	100 Otis St	Cambridge	1848
AM.455	Adams, Jabez F Atwood, Samuel S. Rowhouse	102 Otis St	Cambridge	1848
AM.464	Bridgeman, John L. Double House	103-105 Otis St	Cambridge	1843
AM.456	Adams, Jabez F Atwood, Samuel S. Rowhouse	104 Otis St	Cambridge	1848
AM.454		106-108 Otis St	Cambridge	
AM.463		107-109 Otis St	Cambridge	
AM.453		110 Otis St	Cambridge	
AM.462		113 Otis St	Cambridge	
AM.439		117 1/2 Otis St	Cambridge	
AM.440		117-119 Otis St	Cambridge	
AM.451		118 Otis St	Cambridge	
AM.450		120 Otis St	Cambridge	
AM.448	Dennison, James Double House	122-124 Otis St	Cambridge	1870
AM.449		122 1/2-124 1/2 Otis St	Cambridge	
AM.438		123 Otis St	Cambridge	

Friday, March 30, 2018 Page 30 of 37

nv. No.	Property Name	Street	Town	Year
CAM.437		125-127 Otis St	Cambridge	
CAM.447		126-128 Otis St	Cambridge	
CAM.436		129-131 Otis St	Cambridge	
CAM.446		130 Otis St	Cambridge	
CAM.445		132 Otis St	Cambridge	
CAM.435		133-135 Otis St	Cambridge	
CAM.275	Hoyt, Benjamin House	134 Otis St	Cambridge	1868
CAM.443		136-138 Otis St	Cambridge	
CAM.434	Warren, Moses - Smith, Benjamin G. Rowhouse	137 Otis St	Cambridge	1852
AM.1339	Warren, Moses - Smith, Benjamin G. Rowhouse	139 Otis St	Cambridge	1852
CAM.442		140 Otis St	Cambridge	1895
CAM.1340	Warren, Moses - Smith, Benjamin G. Rowhouse	141 Otis St	Cambridge	1852
CAM.1341	Warren, Moses - Smith, Benjamin G. Rowhouse	143 Otis St	Cambridge	1852
CAM.1342	Warren, Moses - Smith, Benjamin G. Rowhouse	145 Otis St	Cambridge	1852
CAM.433	Fraser, John B. Double House	147-149 Otis St	Cambridge	1846
AM.432		151 Otis St	Cambridge	
AM.1179	Coop Annex	18 Palmer St	Cambridge	1964
AM.276	Urban Rowhouse	30-38 Pearl St	Cambridge	1874
AM.277	Urban Rowhouse	40-50 Pearl St	Cambridge	1875
AM.278	Valentine Soap Workers' Cottage	101 Pearl St	Cambridge	1835
AM.1368	Blessed Sacrament Roman Catholic Church	175 Pearl St	Cambridge	1907
AM.1370	Blessed Sacrament Roman Catholic Church Rectory	189 Pearl St	Cambridge	1868
AM.279		3 Phillips Pl	Cambridge	
AM.280		5 Phillips Pl	Cambridge	c 1845
AM.281		7 Phillips Pl	Cambridge	1898
AM.282		9 Phillips Pl	Cambridge	r 1870
AM.1180	Harvard Crimson Newspaper Office	14-18 Plympton St	Cambridge	1915
AM.1181	Crimson Building Annex	22 Plympton St	Cambridge	1961
CAM.1182	Adams House Dining Hall	28 Plympton St	Cambridge	1930
CAM.1183	Russell Hall	28 Plympton St	Cambridge	1931
CAM.1184	Russell Hall	30-30A Plympton St	Cambridge	1887
AM.1207	Quincy House - Harvard University	58 Plympton St	Cambridge	1958
AM.1208	Mather Hall - Harvard University	68-88 Plympton St	Cambridge	1930
AM.1209	•	101-103 Plympton St	Cambridge	1870
AM.1382	Brooks Apartments - Winthrop, John Chambers	78-80 Porter Rd	Cambridge	1915
CAM.283	Willis, Stillman House	1 Potter Pk	Cambridge	1839
CAM.1401	Volpe Center - High Rise Laboratory	2 Potter St	Cambridge	c 1965

Friday, March 30, 2018 Page 31 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.1403	Volpe Center - Space Guidance Building	2 Potter St	Cambridge	c 1965
CAM.1404	Volpe Center - Space Optics Building	2 Potter St	Cambridge	c 1965
CAM.284	Saunders, William House	6 Prentiss St	Cambridge	1843
CAM.1352	Beck - Warren House	1 Prescott St	Cambridge	1833
CAM.285		16 Prescott St	Cambridge	1873
CAM.291	Carpenter Center for the Visual Arts	19 Prescott St	Cambridge	1963
CAM.582	New England Gas and Electric Association I Bldg	45 Prospect St	Cambridge	1960
CAM.286	Prospect Congregational Church	99 Prospect St	Cambridge	1851
CAM.287	Baldwin, Maria House	196 Prospect St	Cambridge	r 1845
CAM.288	Sands, Hiram House	22 Putnam Ave	Cambridge	1848
CAM.293	Harvard Union	Quincy St	Cambridge	1900
CAM.986	Harvard University - Hallowell Gate	10 Quincy St	Cambridge	1928
CAM.289	Dana, Richard Henry - Palmer, George Herbert House	12-16 Quincy St	Cambridge	1822
CAM.952	Harvard University - Quincy Street Gate	17 Quincy St	Cambridge	1936
CAM.1213	Harvard University - President's House	17 Quincy St	Cambridge	1911
CAM.290	Fogg Art Museum	26-32 Quincy St	Cambridge	1925
CAM.292	Church of the New Jerusalem	50 Quincy St	Cambridge	1903
CAM.1266		60 Raymond St	Cambridge	1927
CAM.298	Mason, W. A. House	87 Raymond St	Cambridge	1846
CAM.299	Stickney, N. U Shepard, S. P. Double House	11-13 Remington St	Cambridge	1846
CAM.300	Hooper, Edward W Eliot, Rev. Samuel A. House	25-27 Reservoir Rd	Cambridge	1872
CAM.301		59 Rice St	Cambridge	1847
CAM.327	Hews Pottery Company Carriage House	202 Richdale Ave	Cambridge	1897
CAM.302	Kidder - Sargent - McCrehan House	146 Rindge Ave	Cambridge	1792
CAM.303	Wyeth Brickyard Superintendent's House	336 Rindge Ave	Cambridge	c 1848
CAM.923	River Street Bridge	River St	Cambridge	1926
CAM.304	Urban Rowhouse	26-32 River St	Cambridge	1860
CAM.330	Ricker, George and Jerediah House	109-113 River St	Cambridge	1844
CAM.305	River Street Firehouse	176 River St	Cambridge	1890
CAM.1211		11 Riverview Ave	Cambridge	1899
CAM.922	Boston University Bridge	Rt 2	Cambridge	1928
CAM.306	Soule, Lawrence Porter House	11 Russell St	Cambridge	1879
CAM.307	Wood, James A. House	3 Sacramento St	Cambridge	1888
CAM.1239	Winthrop Hall - Episcopal Theological School	Saint John's Rd	Cambridge	1892
CAM.529		6-8 Salem St	Cambridge	c 1829
CAM.530		10 Salem St	Cambridge	c 1840

Friday, March 30, 2018 Page 32 of 37

ıv. No.	Property Name	Street	Town	Year
CAM.531		15 Salem St	Cambridge	c 1841
AM.415	Hastings, Deborah House	72 Sciarappa St	Cambridge	1823
AM.416		74 Sciarappa St	Cambridge	
CAM.401	Pendexter, Charles House	80-82 Sciarappa St	Cambridge	1847
CAM.1321	Boston Museum of Science	Science Park	Cambridge	1951
AM.1322	Hayden Planetarium	Science Park	Cambridge	1958
CAM.770		2 Scott St	Cambridge	1889
CAM.771	Thaxter, Roland House	7 Scott St	Cambridge	1891
CAM.772		8 Scott St	Cambridge	1889
CAM.773		11 Scott St	Cambridge	1893
CAM.774		12 Scott St	Cambridge	1894
CAM.775		14 Scott St	Cambridge	1927
CAM.776		18 Scott St	Cambridge	1928
CAM.375	Roby, Ebenezer Rowhouse	30 Second St	Cambridge	1836
CAM.376	Roby, Ebenezer Rowhouse	32 Second St	Cambridge	1836
CAM.377	Roby, Ebenezer Rowhouse	34 Second St	Cambridge	1836
CAM.364	Hall, Jesse Rowhouse	36 Second St	Cambridge	1842
CAM.365	Hall, Jesse Rowhouse	38 Second St	Cambridge	1842
CAM.366	Hall, Jesse Rowhouse	40 Second St	Cambridge	1842
CAM.367	Hall, Jesse Rowhouse	42 Second St	Cambridge	1842
CAM.368	Hall, Jesse Rowhouse	44 Second St	Cambridge	1842
CAM.369	Hall, Jesse Rowhouse	46 Second St	Cambridge	1842
AM.370		50 Second St	Cambridge	
AM.308	American Net and Twine Company Factory	155R Second St	Cambridge	1875
AM.777		1 Shady Hill Sq	Cambridge	1915
AM.778		2-3 Shady Hill Sq	Cambridge	1915
AM.779		4-5 Shady Hill Sq	Cambridge	1915
AM.780		6-7 Shady Hill Sq	Cambridge	1915
AM.781		8-9 Shady Hill Sq	Cambridge	1915
CAM.782		10-11 Shady Hill Sq	Cambridge	1915
CAM.783		12 Shady Hill Sq	Cambridge	1915
AM.309	Eliot Hall	51 Shepard St	Cambridge	1907
AM.310	Bertram Hall	53 Shepard St	Cambridge	1901
AM.311	Watson, Abraham Jr. House	181-183 Sherman St	Cambridge	c 1750
AM.506	Sacred Heart Roman Catholic Church	39 Sixth St	Cambridge	1874
AM.431		40 Sixth St	Cambridge	
CAM.508	Sacred Heart Roman Catholic Church Rectory	49 Sixth St	Cambridge	1885
CAM.927	Eliot Bridge	Soldier's Field Rd	Cambridge	1950

Friday, March 30, 2018 Page 33 of 37

Inv. No.	Property Name	Street	Town	Year
CAM.1210	Bryan Hall - Harvard University	14-24 South St	Cambridge	1930
CAM.312	Stedman, Samuel House	17 South St	Cambridge	1826
CAM.1185	Harvard Advocate Building	21 South St	Cambridge	1956
CAM.313	Dodge, Edward House	70 Sparks St	Cambridge	1878
CAM.325	Harugari Hall	154 Spring St	Cambridge	1873
CAM.1186		4-6 Story St	Cambridge	1966
CAM.1187		8-12 Story St	Cambridge	1969
CAM.1188		14-16 Story St	Cambridge	1970
CAM.353	Blake and Knowles Core Shop #1	Third St	Cambridge	c 1889
CAM.354	Blake and Knowles Core Shop #2	Third St	Cambridge	c 1890
CAM.505	Lechmere Point Corporation Row House	25 Third St	Cambridge	c 1821
CAM.381	Rollins, John W. Rowhouse	83 Third St	Cambridge	1860
CAM.382	Rollins, John W. Rowhouse	85 Third St	Cambridge	1860
CAM.383	Rollins, John W. Rowhouse	87 Third St	Cambridge	1860
CAM.384	Rollins, John W. Rowhouse	89 Third St	Cambridge	1860
CAM.331	Old Middlesex County Superior Courthouse	90 Third St	Cambridge	1814
CAM.385	Rollins, John W. Rowhouse	91 Third St	Cambridge	1860
CAM.386	Rollins, John W. Rowhouse	93 Third St	Cambridge	1860
CAM.387	Rollins, John W. Rowhouse	95 Third St	Cambridge	1860
CAM.314	Holy Cross Polish National Catholic Church	99 Third St	Cambridge	1827
CAM.315	Bottle House Block	204-214 Third St	Cambridge	1826
CAM.350	Blake and Knowles Machine Shop #1	265 Third St	Cambridge	1889
CAM.351	Blake and Knowles Office Headhouse	265 Third St	Cambridge	1892
CAM.355	Blake and Knowles Smith Shop and Brass Foundry	275 Third St	Cambridge	c 1890
CAM.326	Cambridge Gas Light Company Purifying Plant	354 Third St	Cambridge	1908
CAM.388	Stevens, Atherton H. Rowhouse	59 Thorndike St	Cambridge	1827
CAM.395	Smallidge, Samuel House	66 Thorndike St	Cambridge	1827
CAM.389	Bates, Moses Jr. House	69 Thorndike St	Cambridge	1844
CAM.396	Buck, Silas B. House	70 Thorndike St	Cambridge	1845
CAM.390	Tufts, Sophia Kimball Double House	71-73 Thorndike St	Cambridge	1857
CAM.397	Wellington, Peter House	74 Thorndike St	Cambridge	1843
CAM.391		75 Thorndike St	Cambridge	
CAM.398		76 Thorndike St	Cambridge	
CAM.392		77 Thorndike St	Cambridge	
CAM.399		78 Thorndike St	Cambridge	
CAM.393		79-81 Thorndike St	Cambridge	
CAM.400		80 Thorndike St	Cambridge	

Friday, March 30, 2018 Page 34 of 37

nv. No.	Property Name	Street	Town	Year
CAM.394		83 Thorndike St	Cambridge	
CAM.402	Stickney, Francis H Davies, Benjamin Rowhouse	84 Thorndike St	Cambridge	1867
CAM.417	Clark, Cornelius - Kneeland, W. W. House	85 Thorndike St	Cambridge	1822
CAM.403	Stickney, Francis H Davies, Benjamin Rowhouse	86 Thorndike St	Cambridge	1867
AM.404	Stickney, Francis H Davies, Benjamin Rowhouse	88 Thorndike St	Cambridge	1867
CAM.418		89-91 Thorndike St	Cambridge	
CAM.405	Stickney, Francis H Davies, Benjamin Rowhouse	90 Thorndike St	Cambridge	1867
CAM.406	Stickney, Francis H Davies, Benjamin Rowhouse	92 Thorndike St	Cambridge	1867
CAM.419	Whitacre, Celeste I. Rowhouse	93 Thorndike St	Cambridge	1885
CAM.407	Stickney, Francis H Davies, Benjamin Rowhouse	94 Thorndike St	Cambridge	1867
CAM.420	Whitacre, Celeste I. Rowhouse	95 Thorndike St	Cambridge	1885
AM.408	Train, Isaac House	96 Thorndike St	Cambridge	1826
AM.421	Whitacre, Celeste I. Rowhouse	97 Thorndike St	Cambridge	1885
AM.422	Davies, Daniel House	97 1/2 Thorndike St	Cambridge	1843
AM.409		98 Thorndike St	Cambridge	
CAM.423		99 Thorndike St	Cambridge	
CAM.424	Daniels, Granville W. House	101 Thorndike St	Cambridge	1868
CAM.410		102 Thorndike St	Cambridge	
CAM.411	Spare, Elijah Jr. Double House	104-106 Thorndike St	Cambridge	1846
CAM.425	Eaton, Charles House	109 Thorndike St	Cambridge	1857
CAM.412	Quimby, Amos House	110 Thorndike St	Cambridge	1857
CAM.426		111-113 Thorndike St	Cambridge	
CAM.413	Stickney, Francis H. Double House	112-114 Thorndike St	Cambridge	1863
CAM.427		113 1/2 Thorndike St	Cambridge	
CAM.414	Bacon, Henry A. House	116 Thorndike St	Cambridge	1865
CAM.507	Sacred Heart Roman Catholic School and Convent	163 Thorndike St	Cambridge	1902
CAM.316	Craigie Arms	2-6 University Rd	Cambridge	1897
CAM.317	Wyeth, Jacob - Smith, Ebenezer House	152 Vassal Ln	Cambridge	1820
CAM.360	Metropolitan Supply Company Warehouse	269 Vassar St	Cambridge	1948
CAM.361	Hovey, F. A. and Company Warehouse	271-275 Vassar St	Cambridge	c 1940
CAM.362	Metropolitan Supply Company Warehouse	277-287 Vassar St	Cambridge	1939
CAM.363	Metropolitan Supply Company Warehouse	289-293 Vassar St	Cambridge	1939
CAM.989	Walden Street Cattle Pass	Walden St	Cambridge	1857

Friday, March 30, 2018 Page 35 of 37

lnv. No.	Property Name	Street	Town	Year
CAM.1283	Bennink - Douglas Double Cottage	35-37 Walker St	Cambridge	1874
CAM.1284	Bennink - Douglas Double Cottage	39-41 Walker St	Cambridge	1874
CAM.1285	Bennink - Douglas Double Cottage	43-45 Walker St	Cambridge	1874
CAM.1286	Bennink - Douglas Double Cottage	49-51 Walker St	Cambridge	1874
CAM.1034	Sands, Orrin E. House	2 Walnut Ave	Cambridge	1911
CAM.1032		4 Walnut Ave	Cambridge	1878
CAM.1033	Niles, Jacob Harris House	6 Walnut Ave	Cambridge	1884
CAM.1031	Niles, Eugene M. House	9 Walnut Ave	Cambridge	1887
CAM.318	Stanstead, The	19 Ware St	Cambridge	1887
CAM.799	Ritchie, David House	26 Washington Ave	Cambridge	1889
CAM.793	Brown, Laura House	27 Washington Ave	Cambridge	1908
CAM.794	Mellen, James House	33 Washington Ave	Cambridge	1887
CAM.795	Kelley, Stillman F. House	49 Washington Ave	Cambridge	1887
CAM.1000	Boardman, Charles House	58 Washington Ave	Cambridge	1880
CAM.797	Mansfield, Gardiner House	63 Washington Ave	Cambridge	1873
CAM.798	Green, Charles G. House	71 Washington Ave	Cambridge	1877
CAM.1001	Boynton, Morris House	78 Washington Ave	Cambridge	c 1874
CAM.319	Melendy, Henry J. House	81 Washington Ave	Cambridge	1871
CAM.1002		86-88 Washington Ave	Cambridge	1870
CAM.1003		92 Washington Ave	Cambridge	1876
CAM.1004	Hutchins, Elizabeth House	108 Washington Ave	Cambridge	1924
CAM.541	Whittemore, Rev. Thomas Double House	271-273 Washington St	Cambridge	1837
CAM.540	Whittemore, Rev. Thomas Double House	288 Washington St	Cambridge	1837
CAM.539	Paige, Rev. Lucius R. House	296 Washington St	Cambridge	1837
CAM.346		1 Waterhouse St	Cambridge	1916
CAM.320	Vassall - Waterhouse - Ware House	7 Waterhouse St	Cambridge	c 1753
CAM.347		9 Waterhouse St	Cambridge	1887
CAM.335	Christian Science Church	13 Waterhouse St	Cambridge	1923
CAM.988	Fort Washington	95 Waverly St	Cambridge	
CAM.924	Western Avenue Bridge	Western Ave	Cambridge	1924
CAM.638	Cambridge Police Headquarters	5 Western Ave	Cambridge	1933
CAM.948	Central Square Park	22 Western Ave	Cambridge	1987
CAM.321	Read, Cheney House	135 Western Ave	Cambridge	1846
CAM.323	Hasey, Abraham - Wheat, Dr. Samuel House	8 Willard St	Cambridge	c 1730
CAM.514	Hixon, Edward House	3 William St	Cambridge	1857
CAM.1378	Immaculate Conception (Lithuanian) Catholic Church	432 Windsor St	Cambridge	1910
CAM.1379	Immaculate Conception (Lithuanian) Church	432 Windsor St	Cambridge	1972

Friday, March 30, 2018 Page 36 of 37

Inv. No.	Property Name	Street	Town	Year
	Rectory			
CAM.1380	Immaculate Conception Church Rectory Metal Garage	432 Windsor St	Cambridge	1941
CAM.1381	Immaculate Conception Church Rectory Wood Garage	432 Windsor St	Cambridge	1948
CAM.500		19 Winter St	Cambridge	r 1855
CAM.492		21 Winter St	Cambridge	c 1854
CAM.486	Leighton, Thomas H. House	22 Winter St	Cambridge	1833
CAM.491		24 Winter St	Cambridge	c 1854
CAM.493		25 Winter St	Cambridge	c 1854
CAM.494		27 Winter St	Cambridge	c 1854
CAM.496		28-30 Winter St	Cambridge	c 1854
CAM.495		29 Winter St	Cambridge	c 1854
CAM.497		31-33 Winter St	Cambridge	c 1854
CAM.501		34-42 Winter St	Cambridge	r 1875
CAM.498		61 Winter St	Cambridge	c 1854
CAM.499		65 Winter St	Cambridge	c 1854
CAM.489	Stevens, Atherton Haugh House	67 Winter St	Cambridge	1843
CAM.490	Stevens, Atherton Haugh House	71 Winter St	Cambridge	1843
CAM.487	Stevens, Atherton Haugh House	74 Winter St	Cambridge	1838
CAM.1344		75 Winter St	Cambridge	
CAM.1345	Stevens, Atherton Haugh House	77 Winter St	Cambridge	1838
CAM.488	Stevens, Atherton Haugh House	79 Winter St	Cambridge	1838
CAM.1189	Metcalf, Lydia House	41 Winthrop St	Cambridge	1845
CAM.1190		65-67 Winthrop St	Cambridge	1887
CAM.1191	University Lutheran Church	66 Winthrop St	Cambridge	1950
CAM.1192		69 Winthrop St	Cambridge	r 1835
CAM.1193	Pi Eta Club	89 Winthrop St	Cambridge	r 1908
CAM.1194	Pi Eta Hall	95 Winthrop St	Cambridge	r 1896
CAM.1195	Hyde, Isaac - Taylor House	96 Winthrop St	Cambridge	1845
CAM.329	Cox - Hicks House	98 Winthrop St	Cambridge	c 1806
CAM.951	Winthrop Street Retaining Wall	98 Winthrop St	Cambridge	c 1725
CAM.1196	Dame School	106 Winthrop St	Cambridge	c 1800
CAM.909	Yerxa Street Pedestrian Subway	Yerxa St	Cambridge	1904
CAM.1391	Saint Patrick's Roman Catholic Church	40-50 York St	Cambridge	

Friday, March 30, 2018 Page 37 of 37

APPENDIX F

Endangered Species Act Documentation

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: February 13, 2018

Consultation Code: 05E1NE00-2018-SLI-0972

Event Code: 05E1NE00-2018-E-02217

Project Name: 50 Rogers Street

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0972

Event Code: 05E1NE00-2018-E-02217

Project Name: 50 Rogers Street

Project Type: DEVELOPMENT

Project Description: 50 Rogers Street, Cambridge, MA

30,000 sf, construction of a 6-story residential building with two-levels of

below-grade parking, June 2018-June 2020

Project Location:

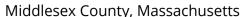
Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.36562758056557N71.0788223354377W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Critical habitats


THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord. NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service.

 Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act 1 and the Bald and Golden Eagle Protection Act 2 .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds</u> of <u>Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see maps of where birders and the general public have sighted birds in and around your project area, visit E-bird tools such as the <u>E-bird data mapping tool</u> (search for the name of a bird on your list to see specific locations where that bird has been reported to occur within your project area over a certain timeframe) and the <u>E-bird Explore Data Tool</u> (perform a query to see a list of all birds sighted in your county or region and within a certain timeframe). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Breeds May 15 to Oct 10

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Buff-breasted Sandpiper Calidris subruficollis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9488

Breeds elsewhere

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/2974

Breeds Apr 29 to Jul 20

Eastern Whip-poor-will Antrostomus vociferus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Aug 20

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Golden Eagle Aquila chrysaetos

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1680

Breeds elsewhere

Golden-winged Warbler Vermivora chrysoptera

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8745

Breeds May 1 to Jul 20

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

King Rail Rallus elegans

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8936

Breeds May 1 to Sep 5

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Long-eared Owl asio otus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3631

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Whimbrel Numenius phaeopus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9483

Breeds elsewhere

Willet Tringa semipalmata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 5

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in your project's counties during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

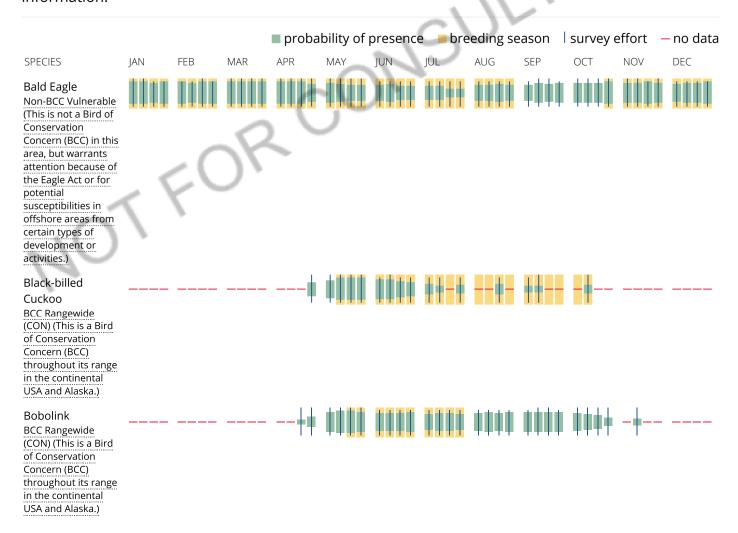
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

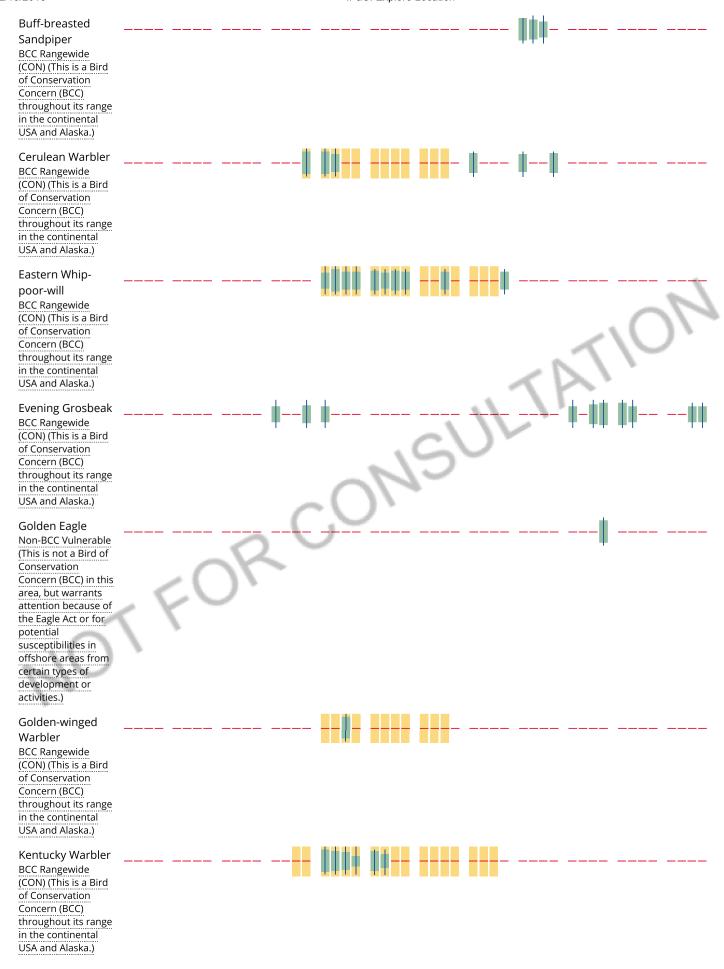
Breeding Season (

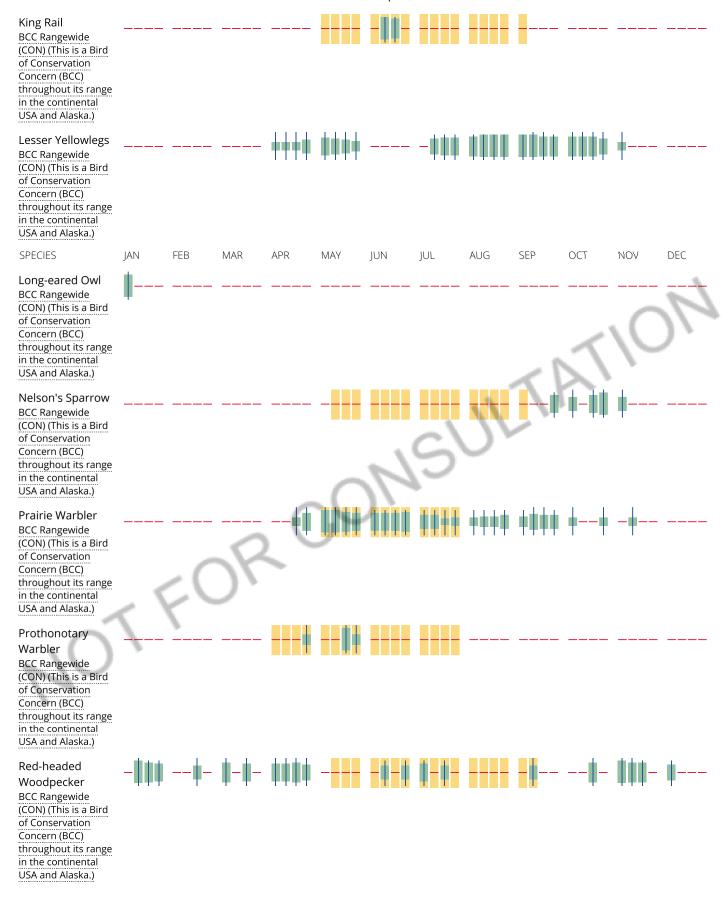
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

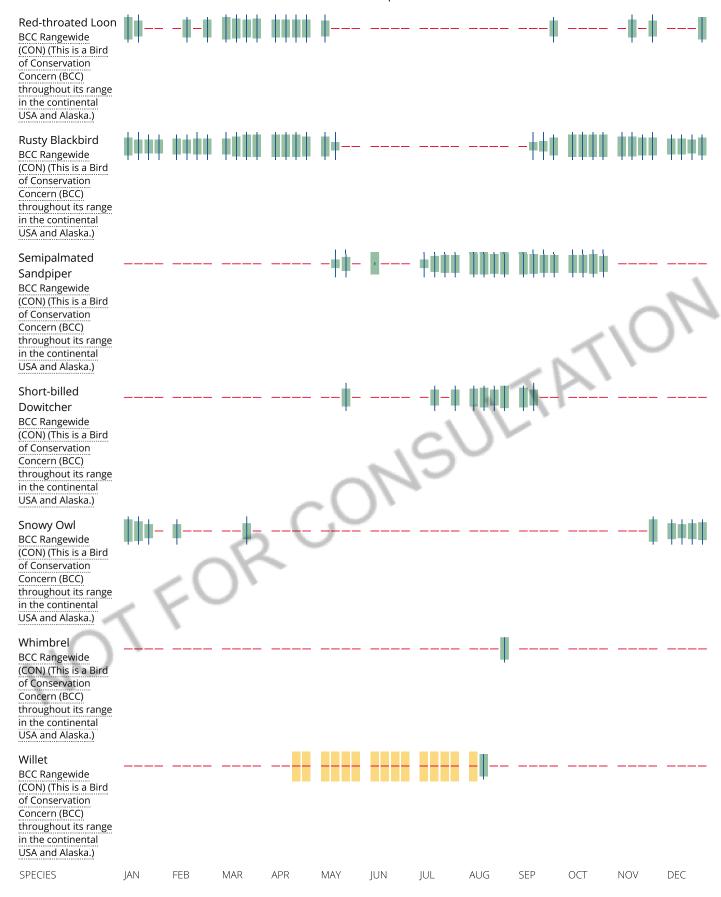
Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the counties of your project area. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.


Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information.

Wood Thrush
BCC Rangewide
(CON) (This is a Bird of Conservation
Concern (BCC)
throughout its range in the continental
USA and Alaska.)

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the counties which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds guide</u>. If a bird entry on your migratory bird species list indicates a breeding season, it is probable that the bird breeds in your project's counties at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the BGEPA should such impacts occur.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

APPENDIX G

Best Management Practices Plan (BMPP)

APPENDIX F – BEST MANAGEMENT PRACTICES PLAN
NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM
REMEDIATION GENERAL PERMIT
50 ROGERS STREET
CAMBRIDGE, MASSACHUSETTS

Best Management Practices Plan

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering planned to occur during the construction of the proposed development located at 50 Rogers Street in Cambridge, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time that temporary construction dewatering is occurring at the site.

Water Treatment and Management

Construction dewatering will be conducted using a combination of drainage ditches and sumps located inside the excavation. The treatment system has been designed by the Contractor (Refer to Appendix C for Contractor's submittal). Prior to discharge, collected water will be routed through a sedimentation tank and bag filters, as required, to remove suspended solids and undissolved chemical constituents. The Proposed Treatment System Schematic is shown on Figure 4. Construction dewatering under this RGP NOI will include piping and discharging to storm drains located in Rogers Street and Binney Street, adjacent to the site. The storm drains travel short distance south and east before discharging to the Charles River through outfall CAM017 as shown on Figure 2.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted by the Contractor of the treated effluent as required by the RGP. This includes chemical testing required within the first month of discharging and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the sedimentation tanks, filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Operator.

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM REMEDIATION GENERAL PERMIT 50 ROGERS STREET CAMBRIDGE, MASSACHUSETTS

Miscellaneous Items

It is anticipated that the excavation support system, erosion control measures, and the nature of the site and surrounding infrastructure will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control.

Site security for the treatment system will be covered within the overall site security plan.

No adverse affects of designated water use of surrounding surface water bodies is anticipated. The Charles River is the nearest surface water body to the site located adjacent to the construction activities on site. Dewatering effluent will be pumped to a sedimentation tank, bag filters, and any other treatment components (as required), prior to discharge to the storm drains.

Management of Treatment System Materials

Groundwater analytical data for the site is below the applicable MCP RCGW-2 criteria. Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and sumps to minimize handling. The Contractor will establish staging areas on the site for any equipment or materials storage which may be possible sources of pollution away from any dewatering activities.

Sediment from the sedimentation tank used in the treatment system will be characterized and disposed of as soil at an appropriate receiving facility in accordance with applicable laws and regulations.

 $G:\34250\840\$ series - 50 Rogers\844 - Dewatering NPDES\2018 NPDES Permit Application\Appendix F - BMPP\2018-0627-HAI-50 Rogers BMPP.docx

APPENDIX H

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1746496

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Rebecca Higgins Phone: (617) 886-7326

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Report Date: 12/22/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746496

Report Date:

12/22/17

Alpha Sample ID	e ID Client ID Matrix		Sample Location	Collection Date/Time	Receive Date
L1746496-01	HA-D4(OW)_2017-1215	WATER	CAMBRIDGE, MA	12/15/17 09:05	12/15/17

Project Name: 50 ROGERS STREET **Lab Number:** L1746496

Project Number: 34250-840 Report Date: 12/22/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L1746496

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: 34250-840 **Report Date:** 12/22/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800-	624-9220	with a	nv c	uestions.
	contact	0110110	00111000	at ooo	02 . 0220	with a	., .	14000.00.10.

L1746496

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: 34250-840 **Report Date:** 12/22/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1746496-01 (HA-D4(OW)_2017-1215), did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0012), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L1746496-01 (HA-D4(OW)_2017-1215), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

- Amita Naik

Nails

Authorized Signature:

Title: Technical Director/Representative

Date: 12/22/17

ORGANICS

VOLATILES

L1746496

Project Name: 50 ROGERS STREET

Project Number: 34250-840

SAMPLE RESULTS

Lab Number:

Report Date: 12/22/17

Lab ID: L1746496-01

Client ID: HA-D4(OW)_2017-1215 Sample Location: CAMBRIDGE, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 12/20/17 18:54

Analyst: NL

Date Received: 12/15/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

L1746496

12/22/17

Project Name: 50 ROGERS STREET

L1746496-01

HA-D4(OW)_2017-1215

Project Number: 34250-840

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 12/15/17 09:05

Lab Number:

Report Date:

Date Received: 12/15/17

Sample Location:	CAMBRIDGE, MA	15			Field Pre		Not Specified	
	CAMBRIDGE, MA		o ""			•		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organ	nics - Westborough Lab							
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	1.0		1	
1,2-Dichloroethene (total)		ND		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane		ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1	

Project Name: 50 ROGERS STREET **Lab Number:** L1746496

Project Number: 34250-840 **Report Date:** 12/22/17

SAMPLE RESULTS

Lab ID: Date Collected: 12/15/17 09:05

Client ID: HA-D4(OW)_2017-1215 Date Received: 12/15/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboroug	jh Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	103	70-130	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

L1746496 Report Date: 12/22/17

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 12/20/17 12:05

Analyst: MM

Parameter	Result	Qualifier U	nits		RL	MDL
MCP Volatile Organics -	Westborough Lab for	sample(s): 0	1 E	Batch:	WG1	075029-5
Methylene chloride	ND		ug/l		2.0	
1,1-Dichloroethane	ND		ug/l		1.0	
Chloroform	ND		ug/l		1.0	
Carbon tetrachloride	ND		ug/l		1.0	
1,2-Dichloropropane	ND		ug/l		1.0	
Dibromochloromethane	ND		ug/l		1.0	
1,1,2-Trichloroethane	ND		ug/l		1.0	
Tetrachloroethene	ND		ug/l		1.0	
Chlorobenzene	ND		ug/l		1.0	
Trichlorofluoromethane	ND		ug/l		2.0	
1,2-Dichloroethane	ND		ug/l		1.0	
1,1,1-Trichloroethane	ND		ug/l		1.0	
Bromodichloromethane	ND		ug/l		1.0	
trans-1,3-Dichloropropene	ND		ug/l		0.50	
cis-1,3-Dichloropropene	ND		ug/l		0.50	
1,3-Dichloropropene, Total	ND		ug/l		0.50	
1,1-Dichloropropene	ND		ug/l		2.0	
Bromoform	ND		ug/l		2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l		1.0	
Benzene	ND		ug/l		0.50	
Toluene	ND		ug/l		1.0	
Ethylbenzene	ND		ug/l		1.0	
Chloromethane	ND		ug/l		2.0	
Bromomethane	ND		ug/l		2.0	
Vinyl chloride	ND		ug/l		1.0	
Chloroethane	ND		ug/l		2.0	
1,1-Dichloroethene	ND		ug/l		1.0	
trans-1,2-Dichloroethene	ND		ug/l		1.0	
Trichloroethene	ND		ug/l		1.0	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Report Date: 12/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 12/20/17 12:05

Analyst: MM

arameter	Result	Qualifier	Units	S	RL	MDL
CP Volatile Organics	- Westborough Lab for	sample(s):	01	Batch:	WG10)75029-5
1,2-Dichlorobenzene	ND		ug/l		1.0	
1,3-Dichlorobenzene	ND		ug/l		1.0	
1,4-Dichlorobenzene	ND		ug/l		1.0	
Methyl tert butyl ether	ND		ug/l		2.0	
p/m-Xylene	ND		ug/l		2.0	
o-Xylene	ND		ug/l		1.0	
Xylene (Total)	ND		ug/l		1.0	
cis-1,2-Dichloroethene	ND		ug/l		1.0	
1,2-Dichloroethene (total)	ND		ug/l		1.0	
Dibromomethane	ND		ug/l		2.0	
1,2,3-Trichloropropane	ND		ug/l		2.0	
Styrene	ND		ug/l		1.0	
Dichlorodifluoromethane	ND		ug/l		2.0	
Acetone	ND		ug/l		5.0	
Carbon disulfide	ND		ug/l		2.0	
2-Butanone	ND		ug/l		5.0	
4-Methyl-2-pentanone	ND		ug/l		5.0	
2-Hexanone	ND		ug/l		5.0	
Bromochloromethane	ND		ug/l		2.0	
Tetrahydrofuran	ND		ug/l		2.0	
2,2-Dichloropropane	ND		ug/l		2.0	
1,2-Dibromoethane	ND		ug/l		2.0	
1,3-Dichloropropane	ND		ug/l		2.0	
1,1,1,2-Tetrachloroethane	ND		ug/l		1.0	
Bromobenzene	ND		ug/l		2.0	
n-Butylbenzene	ND		ug/l		2.0	
sec-Butylbenzene	ND		ug/l		2.0	
tert-Butylbenzene	ND		ug/l		2.0	
o-Chlorotoluene	ND		ug/l		2.0	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Report Date: 12/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 12/20/17 12:05

Analyst: MM

Parameter	Result	Qualifier	Units		RL	MDL	
MCP Volatile Organics - Westborou	gh Lab for s	sample(s):	01	Batch:	WG10	75029-5	
p-Chlorotoluene	ND		ug/	/1	2.0		
1,2-Dibromo-3-chloropropane	ND		ug	/I	2.0		
Hexachlorobutadiene	ND		ug	/ I	0.60		
Isopropylbenzene	ND		ug	1	2.0		
p-lsopropyltoluene	ND		ug	1	2.0		
Naphthalene	ND		ug	1	2.0		
n-Propylbenzene	ND		ug	1	2.0		
1,2,3-Trichlorobenzene	ND		ug	/1	2.0		
1,2,4-Trichlorobenzene	ND		ug	/1	2.0		
1,3,5-Trimethylbenzene	ND		ug	/1	2.0		
1,2,4-Trimethylbenzene	ND		ug	1	2.0		
Ethyl ether	ND		ug	/ I	2.0		
Isopropyl Ether	ND		ug	/ I	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug	/ I	2.0		
Tertiary-Amyl Methyl Ether	ND		ug	/ I	2.0		
1,4-Dioxane	ND		ug	/ I	250		

		Acceptance					
Surrogate	%Recovery	Qualifier Criteria					
1,2-Dichloroethane-d4	121	70-130					
Toluene-d8	102	70-130					
4-Bromofluorobenzene	112	70-130					
Dibromofluoromethane	112	70-130					

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG107502	29-3 WG1	075029-4			
Methylene chloride	90		92		70-130	2	20	
1,1-Dichloroethane	96		98		70-130	2	20	
Chloroform	92		93		70-130	1	20	
Carbon tetrachloride	94		99		70-130	5	20	
1,2-Dichloropropane	95		95		70-130	0	20	
Dibromochloromethane	94		90		70-130	4	20	
1,1,2-Trichloroethane	98		95		70-130	3	20	
Tetrachloroethene	92		100		70-130	8	20	
Chlorobenzene	95		95		70-130	0	20	
Trichlorofluoromethane	110		110		70-130	0	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	93		100		70-130	7	20	
Bromodichloromethane	97		95		70-130	2	20	
trans-1,3-Dichloropropene	91		92		70-130	1	20	
cis-1,3-Dichloropropene	100		100		70-130	0	20	
1,1-Dichloropropene	98		100		70-130	2	20	
Bromoform	94		94		70-130	0	20	
1,1,2,2-Tetrachloroethane	93		97		70-130	4	20	
Benzene	92		95		70-130	3	20	
Toluene	95		94		70-130	1	20	
Ethylbenzene	89		94		70-130	5	20	
Chloromethane	81		94		70-130	15	20	
Bromomethane	98		87		70-130	12	20	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG107502	29-3 WG1	075029-4			
Vinyl chloride	100		100		70-130	0	20	
Chloroethane	120		130		70-130	8	20	
1,1-Dichloroethene	96		100		70-130	4	20	
trans-1,2-Dichloroethene	89		93		70-130	4	20	
Trichloroethene	89		90		70-130	1	20	
1,2-Dichlorobenzene	90		88		70-130	2	20	
1,3-Dichlorobenzene	92		94		70-130	2	20	
1,4-Dichlorobenzene	89		93		70-130	4	20	
Methyl tert butyl ether	95		93		70-130	2	20	
p/m-Xylene	100		100		70-130	0	20	
o-Xylene	100		100		70-130	0	20	
cis-1,2-Dichloroethene	93		93		70-130	0	20	
Dibromomethane	92		92		70-130	0	20	
1,2,3-Trichloropropane	92		96		70-130	4	20	
Styrene	95		100		70-130	5	20	
Dichlorodifluoromethane	82		90		70-130	9	20	
Acetone	110		100		70-130	10	20	
Carbon disulfide	86		93		70-130	8	20	
2-Butanone	120		110		70-130	9	20	
4-Methyl-2-pentanone	92		92		70-130	0	20	
2-Hexanone	82		83		70-130	1	20	
Bromochloromethane	100		96		70-130	4	20	
Tetrahydrofuran	110		110		70-130	0	20	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01	Batch: WG10750)29-3 WG1	075029-4			
2,2-Dichloropropane	92		100		70-130	8	20	
1,2-Dibromoethane	95		90		70-130	5	20	
1,3-Dichloropropane	94		90		70-130	4	20	
1,1,1,2-Tetrachloroethane	81		83		70-130	2	20	
Bromobenzene	90		92		70-130	2	20	
n-Butylbenzene	100		100		70-130	0	20	
sec-Butylbenzene	120		140	Q	70-130	15	20	
tert-Butylbenzene	92		95		70-130	3	20	
o-Chlorotoluene	95		99		70-130	4	20	
p-Chlorotoluene	92		96		70-130	4	20	
1,2-Dibromo-3-chloropropane	84		78		70-130	7	20	
Hexachlorobutadiene	89		99		70-130	11	20	
Isopropylbenzene	92		100		70-130	8	20	
p-Isopropyltoluene	97		100		70-130	3	20	
Naphthalene	86		91		70-130	6	20	
n-Propylbenzene	96		100		70-130	4	20	
1,2,3-Trichlorobenzene	91		84		70-130	8	20	
1,2,4-Trichlorobenzene	89		90		70-130	1	20	
1,3,5-Trimethylbenzene	96		99		70-130	3	20	
1,2,4-Trimethylbenzene	95		96		70-130	1	20	
Ethyl ether	110		120		70-130	9	20	
Isopropyl Ether	100		99		70-130	1	20	
Ethyl-Tert-Butyl-Ether	97		97		70-130	0	20	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746496

Report Date:

12/22/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough La	b Associated sample	le(s): 01 E	Batch: WG10750	29-3 WG1	075029-4				
Tertiary-Amyl Methyl Ether	98		90		70-130	9		20	
1,4-Dioxane	94		78		70-130	19		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	107	70-130
Toluene-d8	104	102	70-130
4-Bromofluorobenzene	93	96	70-130
Dibromofluoromethane	101	101	70-130

SEMIVOLATILES

L1746496

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Report Date: 12/22/17

Lab Number:

SAMPLE RESULTS

Lab ID: L1746496-01

Client ID: HA-D4(OW)_2017-1215 Sample Location: CAMBRIDGE, MA

Matrix: Water Analytical Method: 97,8270D Analytical Date: 12/21/17 15:26

Analyst: SZ Date Collected: 12/15/17 09:05 Date Received: 12/15/17 Field Prep: Not Specified Extraction Method: EPA 3510C Extraction Date: 12/21/17 06:41

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - West	borough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
Acetophenone	ND		ug/l	5.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1

Project Name: 50 ROGERS STREET **Lab Number:** L1746496

Project Number: 34250-840 **Report Date:** 12/22/17

SAMPLE RESULTS

Lab ID: Date Collected: 12/15/17 09:05

Client ID: HA-D4(OW)_2017-1215 Date Received: 12/15/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Semivolatile Organics - Westbo	orough Lab						
2,4-Dinitrophenol	ND		ug/l	20		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	58	15-110	
Phenol-d6	41	15-110	
Nitrobenzene-d5	95	30-130	
2-Fluorobiphenyl	96	30-130	
2,4,6-Tribromophenol	108	15-110	
4-Terphenyl-d14	100	30-130	

L1746496

Project Name: 50 ROGERS STREET

Project Number: 34250-840

SAMPLE RESULTS

Lab Number:

Report Date: 12/22/17

Lab ID: L1746496-01

Client ID: HA-D4(OW)_2017-1215

Sample Location: CAMBRIDGE, MA

Matrix: Water

Analytical Method: 97,8270D-SIM Analytical Date: 12/21/17 17:56

Analyst: DV Date Collected: 12/15/17 09:05 Date Received: 12/15/17 Field Prep: Not Specified Extraction Method: EPA 3510C Extraction Date: 12/21/17 07:47

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics by SIM - W	estborough Lab					
Acenaphthene	0.48		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	0.71		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	0.13		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	0.38		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	0.30		ug/l	0.10		1
Phenanthrene	1.3		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	0.54		ug/l	0.10		1
2-Methylnaphthalene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

Project Name: 50 ROGERS STREET **Lab Number:** L1746496

Project Number: 34250-840 **Report Date:** 12/22/17

SAMPLE RESULTS

Lab ID: Date Collected: 12/15/17 09:05

Client ID: HA-D4(OW)_2017-1215 Date Received: 12/15/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

MCP Semivolatile Organics by SIM - Westborough Lab

% Recovery	Acceptance Qualifier Criteria
50	15-110
32	15-110
77	30-130
96	30-130
100	15-110
100	30-130
	50 32 77 96 100

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Report Date: 12/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 12/21/17 15:21

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 12/21/17 06:41

arameter	Result	Qualifier	Units	RL	MDL
CP Semivolatile Organics - W	estborough Lal	o for sample	e(s): 01	Batch:	WG1075244-1
Acenaphthene	ND		ug/l	2.0	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	
Hexachlorobenzene	ND		ug/l	2.0	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	
2-Chloronaphthalene	ND		ug/l	2.0	
1,2-Dichlorobenzene	ND		ug/l	2.0	
1,3-Dichlorobenzene	ND		ug/l	2.0	
1,4-Dichlorobenzene	ND		ug/l	2.0	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	
2,4-Dinitrotoluene	ND		ug/l	5.0	
2,6-Dinitrotoluene	ND		ug/l	5.0	
Azobenzene	ND		ug/l	2.0	
Fluoranthene	ND		ug/l	2.0	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	
Hexachlorobutadiene	ND		ug/l	2.0	
Hexachloroethane	ND		ug/l	2.0	
Isophorone	ND		ug/l	5.0	
Naphthalene	ND		ug/l	2.0	
Nitrobenzene	ND		ug/l	2.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	
Butyl benzyl phthalate	ND		ug/l	5.0	
Di-n-butylphthalate	ND		ug/l	5.0	
Di-n-octylphthalate	ND		ug/l	5.0	
Diethyl phthalate	ND		ug/l	5.0	
Dimethyl phthalate	ND		ug/l	5.0	
Benzo(a)anthracene	ND		ug/l	2.0	
Benzo(a)pyrene	ND		ug/l	2.0	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Report Date: 12/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 12/21/17 15:21

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 12/21/17 06:41

arameter	Result	Qualifier	Units	RL	MDL
ICP Semivolatile Organics - W	estborough Lab	o for sample	e(s): 01	Batch:	WG1075244-1
Benzo(b)fluoranthene	ND		ug/l	2.0	
Benzo(k)fluoranthene	ND		ug/l	2.0	
Chrysene	ND		ug/l	2.0	
Acenaphthylene	ND		ug/l	2.0	
Anthracene	ND		ug/l	2.0	
Benzo(ghi)perylene	ND		ug/l	2.0	
Fluorene	ND		ug/l	2.0	
Phenanthrene	ND		ug/l	2.0	
Dibenzo(a,h)anthracene	ND		ug/l	2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0	
Pyrene	ND		ug/l	2.0	
Aniline	ND		ug/l	2.0	
4-Chloroaniline	ND		ug/l	5.0	
Dibenzofuran	ND		ug/l	2.0	
2-Methylnaphthalene	ND		ug/l	2.0	
Acetophenone	ND		ug/l	5.0	
2,4,6-Trichlorophenol	ND		ug/l	5.0	
2-Chlorophenol	ND		ug/l	2.0	
2,4-Dichlorophenol	ND		ug/l	5.0	
2,4-Dimethylphenol	ND		ug/l	5.0	
2-Nitrophenol	ND		ug/l	10	
4-Nitrophenol	ND		ug/l	10	
2,4-Dinitrophenol	ND		ug/l	20	
Pentachlorophenol	ND		ug/l	10	
Phenol	ND		ug/l	5.0	
2-Methylphenol	ND		ug/l	5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	
2,4,5-Trichlorophenol	ND		ug/l	5.0	

L1746496

Project Name: 50 ROGERS STREET

Project Number: 34250-840 Report Date: 12/22/17

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 12/21/17 15:21

Analyst: SZ Extraction Method: EPA 3510C 12/21/17 06:41 Extraction Date:

Parameter	Result	Qualifier	Units	3	RL	MDL	
MCP Semivolatile Organics - Westl	oorough Lab	for sample	e(s): (01	Batch:	WG1075244-1	
Tentatively Identified Compounds							
Total TIC Compounds	28.5	J		ug/l			
Unknown	28.5	J		ug/l			

Surrogate	%Recovery G	Acceptance Qualifier Criteria
2-Fluorophenol	70	15-110
Phenol-d6	49	15-110
Nitrobenzene-d5	119	30-130
2-Fluorobiphenyl	101	30-130
2,4,6-Tribromophenol	95	15-110
4-Terphenyl-d14	105	30-130

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Report Date: 12/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D-SIM Analytical Date: 97,8270D-SIM 12/21/17 15:14

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 12/21/17 07:47

Parameter	Result	Qualifier	Units	RL		MDL	
MCP Semivolatile Organics by SIM	- Westboro	ugh Lab fo	r sample(s):	01	Batch:	WG1075281-1	
Acenaphthene	ND		ug/l	0.10)		
2-Chloronaphthalene	ND		ug/l	0.20)		
Fluoranthene	ND		ug/l	0.10)		
Hexachlorobutadiene	ND		ug/l	0.50)		
Naphthalene	ND		ug/l	0.10)		
Benzo(a)anthracene	ND		ug/l	0.10)		
Benzo(a)pyrene	ND		ug/l	0.10)		
Benzo(b)fluoranthene	ND		ug/l	0.10)		
Benzo(k)fluoranthene	ND		ug/l	0.10)		
Chrysene	ND		ug/l	0.10)		
Acenaphthylene	ND		ug/l	0.10)		
Anthracene	ND		ug/l	0.10)		
Benzo(ghi)perylene	ND		ug/l	0.10)		
Fluorene	ND		ug/l	0.10)		
Phenanthrene	ND		ug/l	0.10)		
Dibenzo(a,h)anthracene	ND		ug/l	0.10)		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10)		
Pyrene	ND		ug/l	0.10)		
2-Methylnaphthalene	ND		ug/l	0.10)		
Pentachlorophenol	ND		ug/l	0.80)		
Hexachlorobenzene	ND		ug/l	0.80)		
Hexachloroethane	ND		ug/l	0.80)		

L1746496

Project Name: 50 ROGERS STREET

Project Number: 34250-840 **Report Date:** 12/22/17

Report Bate: 12/22/

Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8270D-SIM Analytical Date: 12/21/17 15:14

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 12/21/17 07:47

ParameterResultQualifierUnitsRLMDLMCP Semivolatile Organics by SIM - Westborough Lab for sample(s):01Batch:WG1075281-1

_	_	Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	57	15-110
Phenol-d6	36	15-110
Nitrobenzene-d5	85	30-130
2-Fluorobiphenyl	108	30-130
2,4,6-Tribromophenol	104	15-110
4-Terphenyl-d14	113	30-130

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Semivolatile Organics - Westborough	h Lab Associated	sample(s): 01	Batch: WG1	075244-2	WG1075244-3			
Acenaphthene	82		72		40-140	13	20	
1,2,4-Trichlorobenzene	74		64		40-140	14	20	
Hexachlorobenzene	75		66		40-140	13	20	
Bis(2-chloroethyl)ether	83		71		40-140	16	20	
2-Chloronaphthalene	78		68		40-140	14	20	
1,2-Dichlorobenzene	71		63		40-140	12	20	
1,3-Dichlorobenzene	71		60		40-140	17	20	
1,4-Dichlorobenzene	72		62		40-140	15	20	
3,3'-Dichlorobenzidine	76		68		40-140	11	20	
2,4-Dinitrotoluene	94		82		40-140	14	20	
2,6-Dinitrotoluene	87		76		40-140	13	20	
Azobenzene	95		82		40-140	15	20	
Fluoranthene	87		74		40-140	16	20	
4-Bromophenyl phenyl ether	73		67		40-140	9	20	
Bis(2-chloroisopropyl)ether	91		79		40-140	14	20	
Bis(2-chloroethoxy)methane	88		76		40-140	15	20	
Hexachlorobutadiene	68		57		40-140	18	20	
Hexachloroethane	74		65		40-140	13	20	
Isophorone	91		78		40-140	15	20	
Naphthalene	75		65		40-140	14	20	
Nitrobenzene	86		75		40-140	14	20	
Bis(2-ethylhexyl)phthalate	104		91		40-140	13	20	
Butyl benzyl phthalate	101		85		40-140	17	20	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Semivolatile Organics - Westborough L	ab Associated	sample(s): 01	Batch: WG10	75244-2	WG1075244-3			
Di-n-butylphthalate	98		84		40-140	15		20
Di-n-octylphthalate	105		91		40-140	14		20
Diethyl phthalate	86		77		40-140	11		20
Dimethyl phthalate	84		72		40-140	15		20
Benzo(a)anthracene	89		76		40-140	16		20
Benzo(a)pyrene	92		78		40-140	16		20
Benzo(b)fluoranthene	88		78		40-140	12		20
Benzo(k)fluoranthene	88		75		40-140	16		20
Chrysene	86		74		40-140	15		20
Acenaphthylene	81		71		40-140	13		20
Anthracene	88		75		40-140	16		20
Benzo(ghi)perylene	89		74		40-140	18		20
Fluorene	85		74		40-140	14		20
Phenanthrene	82		72		40-140	13		20
Dibenzo(a,h)anthracene	89		75		40-140	17		20
Indeno(1,2,3-cd)pyrene	93		77		40-140	19		20
Pyrene	84		73		40-140	14		20
Aniline	57		52		40-140	9		20
4-Chloroaniline	69		62		40-140	11		20
Dibenzofuran	81		71		40-140	13		20
2-Methylnaphthalene	80		68		40-140	16		20
Acetophenone	89		78		40-140	13		20
2,4,6-Trichlorophenol	87		73		30-130	18		20

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ICP Semivolatile Organics - Westbord	ough Lab Associated s	ample(s): 01	Batch: WG	1075244-2	WG1075244-3			
2-Chlorophenol	80		70		30-130	13		20
2,4-Dichlorophenol	82		74		30-130	10		20
2,4-Dimethylphenol	91		78		30-130	15		20
2-Nitrophenol	86		75		30-130	14		20
4-Nitrophenol	57		50		30-130	13		20
2,4-Dinitrophenol	80		67		30-130	18		20
Pentachlorophenol	67		58		30-130	14		20
Phenol	40		34		30-130	16		20
2-Methylphenol	74		66		30-130	11		20
3-Methylphenol/4-Methylphenol	71		61		30-130	15		20
2,4,5-Trichlorophenol	81		71		30-130	13		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	56	49	15-110
Phenol-d6	41	35	15-110
Nitrobenzene-d5	93	78	30-130
2-Fluorobiphenyl	81	70	30-130
2,4,6-Tribromophenol	79	66	15-110
4-Terphenyl-d14	80	69	30-130

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Parameter	LCS %Recovery		SD covery	%Recovery Qual Limits	RPD	RPD Qual Limits	
MCP Semivolatile Organics by SIM - Westbo	rough Lab Asso	ociated sample(s): 01	Batch: \	WG1075281-2 WG10752	81-3		
Acenaphthene	78		71	40-140	9	20	
2-Chloronaphthalene	78		71	40-140	9	20	
Fluoranthene	79		72	40-140	9	20	
Hexachlorobutadiene	60		56	40-140	7	20	
Naphthalene	72		66	40-140	9	20	
Benzo(a)anthracene	80		73	40-140	9	20	
Benzo(a)pyrene	81		74	40-140	9	20	
Benzo(b)fluoranthene	86		79	40-140	8	20	
Benzo(k)fluoranthene	79		72	40-140	9	20	
Chrysene	81		74	40-140	9	20	
Acenaphthylene	81		74	40-140	9	20	
Anthracene	81		74	40-140	9	20	
Benzo(ghi)perylene	82		76	40-140	8	20	
Fluorene	79		72	40-140	9	20	
Phenanthrene	80		73	40-140	9	20	
Dibenzo(a,h)anthracene	83		76	40-140	9	20	
Indeno(1,2,3-cd)pyrene	85		78	40-140	9	20	
Pyrene	77		70	40-140	10	20	
2-Methylnaphthalene	75		70	40-140	7	20	
Pentachlorophenol	69		64	30-130	8	20	
Hexachlorobenzene	72		66	40-140	9	20	
Hexachloroethane	56		52	40-140	7	20	

Project Name: 50 ROGERS STREET

Lab Number:

L1746496

Project Number: 34250-840

Report Date:

12/22/17

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

MCP Semivolatile Organics by SIM - Westborough Lab Associated sample(s): 01 Batch: WG1075281-2 WG1075281-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	7011ecovery Quar	7011ecovery Quar	
2-Fluorophenol	55	47	15-110
Phenol-d6	36	30	15-110
Nitrobenzene-d5	70	65	30-130
2-Fluorobiphenyl	90	83	30-130
2,4,6-Tribromophenol	87	79	15-110
4-Terphenyl-d14	89	81	30-130

PETROLEUM HYDROCARBONS

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746496

Report Date: 12/22/17

SAMPLE RESULTS

Lab ID: L1746496-01

Client ID: HA-D4(OW)_2017-1215

Sample Location: CAMBRIDGE, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 12/20/17 11:24

Analyst: MZ

Date Collected:

12/15/17 09:05

Date Received: Field Prep:

12/15/17 Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - W	estborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

Surrogate	Acceptance			
	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	81		70-130	
2,5-Dibromotoluene-FID	88		70-130	

Project Name: 50 ROGERS STREET Lab Number: L1746496

Project Number: 34250-840 Report Date: 12/22/17

SAMPLE RESULTS

Lab ID: L1746496-01

Client ID: HA-D4(OW)_2017-1215

Sample Location: CAMBRIDGE, MA

Matrix: Water

Analytical Method: 98,EPH-04-1.1 Analytical Date: 12/21/17 22:10

Analyst: NS

Date Collected: 12/15/17 09:05

Date Received: 12/15/17

Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 12/20/17 21:05

Cleanup Method1: EPH-04-1 Cleanup Date1: 12/21/17

Quality Control Information

Condition of sample received:

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Satisfactory

Sample Temperature upon receipt: Received on le

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough L	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	45		40-140	
o-Terphenyl	81		40-140	
2-Fluorobiphenyl	87		40-140	
2-Bromonaphthalene	80		40-140	

L1746496

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: Report Date: 34250-840 12/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 12/20/17 10:44

Analyst: ΜZ

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Petroleum Hydrocarbons	- Westboroug	h Lab for s	sample(s):	01 Batch:	WG1075060-4	
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

	Acceptance					
Surrogate	%Recovery Qualifie	er Criteria				
2,5-Dibromotoluene-PID	78	70-130				
2,5-Dibromotoluene-FID	85	70-130				

L1746496

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: 34250-840 **Report Date:** 12/22/17

Method Blank Analysis
Batch Quality Control

Batch Quality Control

Analytical Date: 12/2
Analyst: NS

Analytical Method:

12/21/17 19:33

98,EPH-04-1.1

Extraction Method: EPA 3510C Extraction Date: 12/20/17 21:05

Cleanup Method: EPH-04-1 Cleanup Date: 12/21/17

Parameter	Result	Qualifier	Units	RL		MDL
Extractable Petroleum Hydrocarbon	s - Westbo	rough Lab f	or sample(s):	01	Batch:	WG1075131-1
C9-C18 Aliphatics	ND		ug/l	100		
C19-C36 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		

		Acceptance	!
Surrogate	%Recovery Q	ualifier Criteria	
Chloro-Octadecane	47	40-140	
o-Terphenyl	53	40-140	
2-Fluorobiphenyl	73	40-140	
2-Bromonaphthalene	69	40-140	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Report Date: 12/22/17

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recover Qual Limits	y RPD	RPD Qual Limits	
Volatile Petroleum Hydrocarbons - We	estborough Lab Associate	-	WG1075060-2 WG1075			
•	· ·	1 ()				
C5-C8 Aliphatics	88	98	70-130	11	25	
C9-C12 Aliphatics	96	105	70-130	9	25	
C9-C10 Aromatics	85	93	70-130	8	25	
Benzene	79	87	70-130	10	25	
Toluene	80	88	70-130	10	25	
Ethylbenzene	83	91	70-130	9	25	
p/m-Xylene	82	90	70-130	9	25	
o-Xylene	82	90	70-130	9	25	
Methyl tert butyl ether	78	84	70-130	8	25	
Naphthalene	86	92	70-130	7	25	
1,2,4-Trimethylbenzene	85	93	70-130	8	25	
Pentane	91	101	70-130	11	25	
2-Methylpentane	91	102	70-130	12	25	
2,2,4-Trimethylpentane	91	102	70-130	12	25	
n-Nonane	93	103	30-130	10	25	
n-Decane	99	106	70-130	7	25	
n-Butylcyclohexane	98	108	70-130	10	25	

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	84	89	70-130
2,5-Dibromotoluene-FID	90	96	70-130

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Report Date: 12/22/17

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - West	borough Lab Ass	sociated sample(s): 01 Ba	atch: WG1075131-2 WG1075	131-3	
C9-C18 Aliphatics	71	74	40-140	4	25
C19-C36 Aliphatics	80	76	40-140	5	25
C11-C22 Aromatics	80	78	40-140	3	25
Naphthalene	61	68	40-140	11	25
2-Methylnaphthalene	64	69	40-140	8	25
Acenaphthylene	71	73	40-140	3	25
Acenaphthene	73	74	40-140	1	25
Fluorene	76	76	40-140	0	25
Phenanthrene	80	76	40-140	5	25
Anthracene	82	77	40-140	6	25
Fluoranthene	84	78	40-140	7	25
Pyrene	85	79	40-140	7	25
Benzo(a)anthracene	84	78	40-140	7	25
Chrysene	83	79	40-140	5	25
Benzo(b)fluoranthene	86	80	40-140	7	25
Benzo(k)fluoranthene	83	79	40-140	5	25
Benzo(a)pyrene	83	77	40-140	8	25
Indeno(1,2,3-cd)Pyrene	74	73	40-140	1	25
Dibenzo(a,h)anthracene	75	76	40-140	1	25
Benzo(ghi)perylene	69	69	40-140	0	25
Nonane (C9)	57	64	30-140	12	25
Decane (C10)	62	69	40-140	11	25
Dodecane (C12)	66	72	40-140	9	25

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746496

Report Date: 12/22/17

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recover ' Qual Limits	ry RPD	RPD Qual Limits	
Extractable Petroleum Hydrocarbons -	· Westborough Lab Assoc	ciated sample(s): 01 Ba	atch: WG1075131-2 WG	1075131-3		
Tetradecane (C14)	70	73	40-140	4	25	
Hexadecane (C16)	75	75	40-140	0	25	
Octadecane (C18)	79	76	40-140	4	25	
Nonadecane (C19)	78	75	40-140	4	25	
Eicosane (C20)	80	76	40-140	5	25	
Docosane (C22)	79	75	40-140	5	25	
Tetracosane (C24)	79	74	40-140	7	25	
Hexacosane (C26)	79	74	40-140	7	25	
Octacosane (C28)	79	74	40-140	7	25	
Triacontane (C30)	79	74	40-140	7	25	
Hexatriacontane (C36)	80	75	40-140	6	25	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	60	58	40-140
o-Terphenyl	81	56 77	40-140
2-Fluorobiphenyl	87	84	40-140
2-Bromonaphthalene	85	78	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: 50 ROGERS STREET Lab Number: L1746496

Project Number: 34250-840 **Report Date:** 12/22/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

B Absent

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler			deg C	Pres	Seal	Date/Time	Analysis(*)
L1746496-01A	Vial HCl preserved	В	NA		4.0	Υ	Absent		MCP-8260-10(14)
L1746496-01B	Vial HCl preserved	В	NA		4.0	Υ	Absent		MCP-8260-10(14)
L1746496-01C	Vial HCl preserved	В	NA		4.0	Υ	Absent		MCP-8260-10(14)
L1746496-01D	Vial HCl preserved	В	NA		4.0	Υ	Absent		VPH-10(14)
L1746496-01E	Vial HCl preserved	В	NA		4.0	Υ	Absent		VPH-10(14)
L1746496-01F	Vial HCl preserved	В	NA		4.0	Υ	Absent		VPH-10(14)
L1746496-01G	Amber 1000ml HCl preserved	В	<2	<2	4.0	Υ	Absent		EPH-10(14)
L1746496-01H	Amber 1000ml HCl preserved	В	<2	<2	4.0	Υ	Absent		EPH-10(14)
L1746496-01J	Amber 1000ml unpreserved	В	7	7	4.0	Υ	Absent		MCP-8270-10(7),MCP-8270SIM-10(7)
L1746496-01K	Amber 1000ml unpreserved	В	7	7	4.0	Υ	Absent		MCP-8270-10(7),MCP-8270SIM-10(7)

Project Name: 50 ROGERS STREET Lab Number: L1746496

Project Number: 34250-840 Report Date: 12/22/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the

original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:50 ROGERS STREETLab Number:L1746496Project Number:34250-840Report Date:12/22/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: 50 ROGERS STREET Lab Number: L1746496

Project Number: 34250-840 Report Date: 12/22/17

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL 508-898-9230 FAX 508-898-9193	CHAIN OF CUSTODY Manafield, MA 02048 320 Forbes Blvd TEL 508-822-9300 FAX 508-822-3288	Service Centers Brower, ME 04412 Albany, NY 12205 Tenawanda, NY 14150 Helm Project Information Project Name: Project Location:	50 Rogers	Street	Pa	ge of (De	in L	oles ail		12/1	Fax	M		ALPHA Job # Billing Information. Same as Client Info	Tyrea.
H&A Information	NINE CENT		Cambridge,	MA] [] EQ	ulS (1	File)	V	EQuIS (4 File)		PO#	
	egion No. 21 LLC	Project #	34250-840					Oth	er:							
H&A Address: 465 Medfor		(Use Project name as P					Reg	gulato	y Req	uirem	ents (Prog	ram/Cri	leria)	W TO	Disposal Site Information	NAME OF
Boston, MA 02129	o St, Suite 2200	Project Manager:	Rebecca Hig	ggins/Lee Per	well		MA								THE RESIDENCE OF THE PARTY OF T	
Walter St.		ALPHAQuote #:	BINNEY				7				1				Please identify below location of disposal facilities.	of applicable
211 000 10		Turn-Around Time	100			HER					1				Disposal Facility:	
	aleyaldrich.com	Standar		Due Date	E		7								(BASS TOTAL STORY	
The second secon	aleyaldrich.com	Rush (only if pre approved	d) [# of Days	E.		Note	Selec	t State	from r	nenu & iden	tify criter	in		□ NJ □ NY □ Other	
These samples have been	previously analyzed by Alp	oha 🗆					-	ALYSI			nerio di reciti	my Grider	18.		50001	
Other project specific req	uirements/comments:						+	T	Ť		T T		_		Sample Filtration	10
Please sample per EPA Ap Please specify Metals or T		it methods					1. VOCs	2 SVOCs	EPH c-ranges	VPH c-ranges					Done Lab to do Preservation Lab to do	0 1 0 1
ALPHA Lab ID (Lab Use Only)	San	nple ID	Colle	ection	Sample	Sampler's	1	1977	3	4		-			(Please Specify below)	1
46496-01	HA-D4(OW)_ 2017	-12 //	Date	Time	Matrix	Initials									Sample Specific Comments	
1000	1000(00)_ [017	-1213	12/15/17	0905	AQ	SRP	Х	Х	Х	Х						10
			-		-											1.0
						-										
				-												
ALTONOMISM DE LA																
THE STATE OF THE S																
all the section of																
eservative Code: = None	Container Code	Westboro: Certification No	- MA026													
= HCI = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification No			Con	tainer Type	V	A	A	V					Please print clearly, legibly and Samples can not be logged in a turnaround time clock will not	and
≈ H₂SO₄ ≈ NæOH ≈ M e OH	B = Bacteria Cup		P	reservative	B	A	B	B					ambiguities are resolved. Alphi services under this Chain of Custo	a Analytical's odv shall be		
	O ≈ Other	Relinquished B	γ:	Date/T	me	R	eceive	ed By:	_			Date/	Time		performed in accordance with terr conditions within Blanket Service	Agreement#
	E = Encore D = 800 Bottle	Grant		12/4/17		Miat	_			-	Alist				2015-18-Alpha Analytical by and b	etween Haley
Other		Mills		alistiz 16	3		-	Carr	() E	141	12/15/	-		-	& Aldrich, Inc., its subsidiaries and Alpha Analytical.	d affiliates and
		Dri Danan		1 1	1900	1	-	/	m	CFIL	1451		100	7)		
cument ID: 20455 Rev 1 (1/28/2	2016)			1	1-0	100		~	~	-	1241	(7)	170	O.	l .	

Method Blank Summary Form 4

Client : Haley & Aldrich, Inc. Lab Number : L1746496
Project Name : 50 ROGERS STREET Project Number : 34250-840
Lab Sample ID : WG1075029-5 Lab File ID : V16171220C05

Instrument ID : VOA116

Matrix : WATER Analysis Date : 12/20/17 12:05

Client Sample No.	Lab Sample ID	Analysis Date
WG1075029-3LCS	WG1075029-3	12/20/17 10:07
WG1075029-4LCSD	WG1075029-4	12/20/17 10:37
HA-D4(OW)_2017-1215	L1746496-01	12/20/17 18:54

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1746496
Project Name : 50 ROGERS STREET Project Number : 34250-840

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area% 86	Dev(n
Fluorobenzene	1	0.272	-	0	20	76	
Dichlorodifluoromethane	0.33		-	17.6			0
Chloromethane	0.311	0.252	-	19	20	70	0
Vinyl chloride	0.253	0.258	-	-2	20	89	0
Bromomethane	0.131	0.128	-	2.3	20	88	01
Chloroethane	10	12.05	-	-20.5*	20	99	.01
Trichlorofluoromethane	0.446	0.478	-	-7.2	20	95	0
Ethyl ether	0.094	0.107	-	-13.8	20	103	0
1,1-Dichloroethene	0.239	0.23	-	3.8	20	83	0
Carbon disulfide	0.684	0.586	-	14.3	20	73	0
Methylene chloride	0.275	0.246	-	10.5	20	79	01
Acetone	10	11.111	-	-11.1	20	94	01
trans-1,2-Dichloroethene	0.284	0.253	-	10.9	20	79	01
Methyl tert-butyl ether	0.562	0.535	-	4.8	20	86	0
Diisopropyl ether	0.81	0.811	-	-0.1	20	92	0
1,1-Dichloroethane	0.513	0.492	-	4.1	20	84	0
Ethyl tert-butyl ether	0.675	0.653	-	3.3	20	89	0
cis-1,2-Dichloroethene	0.3	0.278	-	7.3	20	84	0
2,2-Dichloropropane	0.428	0.396	-	7.5	20	83	0
Bromochloromethane	0.135	0.136	-	-0.7	20	83	01
Chloroform	0.531	0.491	-	7.5	20	83	0
Carbon tetrachloride	0.469	0.441	-	6	20	92	0
Tetrahydrofuran	10	11.378	-	-13.8	20	102	0
Dibromofluoromethane	0.288	0.291	-	-1	20	87	01
1,1,1-Trichloroethane	0.483	0.45	-	6.8	20	85	01
2-Butanone	10	11.91		-19.1	20	102	0
1,1-Dichloropropene	0.367	0.36		1.9	20	90	0
Benzene	1.092	1.005		8	20	81	0
tert-Amyl methyl ether	0.583	0.571	-	2.1	20	81	0
1,2-Dichloroethane-d4	0.293	0.313	<u> </u>	-6.8	20	101	01
1,2-Dichloroethane	0.277	0.305		-10.1	20	100	0
Trichloroethene	0.277	0.303		10.1	20	84	0
Dibromomethane	0.311	0.277	-		20	82	
			-	8			0
1,2-Dichloropropane	0.259	0.246	-	5	20	86	0
Bromodichloromethane	0.389	0.377	-	3.1	20	91	0
1,4-Dioxane	0.00131	0.00124*	-	5.3	20	92	0
cis-1,3-Dichloropropene	0.386	0.393	-	-1.8	20	94	0
Chlorobenzene-d5	1	1	-	0	20	85	0
Toluene-d8	1.202	1.25	-	-4	20	89	0
Toluene	0.843	0.798	-	5.3	20	84	0
4-Methyl-2-pentanone	10	9.245	-	7.6	20	83	0
Tetrachloroethene	0.394	0.364	-	7.6	20	82	0
trans-1,3-Dichloropropene	0.469	0.426	-	9.2	20	87	0
1,1,2-Trichloroethane	0.222	0.217	-	2.3	20	83	01
Chlorodibromomethane	0.356	0.337	-	5.3	20	82	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1746496
Project Name : 50 ROGERS STREET Project Number : 34250-840

Instrument ID : VOA116 Calibration Date : 12/20/17 10:07

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,3-Dichloropropane	0.441	0.416	-	5.7	20	85	0
1,2-Dibromoethane	0.255	0.242	-	5.1	20	81	01
2-Hexanone	10	8.202	-	18	20	80	0
Chlorobenzene	0.935	0.886	-	5.2	20	82	0
Ethylbenzene	1.746	1.555	-	10.9	20	76	0
1,1,1,2-Tetrachloroethane	0.421	0.34	-	19.2	20	67	0
p/m Xylene	0.596	0.592	-	0.7	20	83	01
o Xylene	0.553	0.544	-	1.6	20	84	01
Styrene	20	18.669	-	6.7	20	79	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	89	0
Bromoform	0.389	0.367	-	5.7	20	80	01
Isopropylbenzene	3.019	2.781	-	7.9	20	84	0
4-Bromofluorobenzene	0.885	0.826	-	6.7	20	86	01
Bromobenzene	0.746	0.672	-	9.9	20	77	01
n-Propylbenzene	3.671	3.544	-	3.5	20	87	0
1,1,2,2-Tetrachloroethane	0.552	0.512	-	7.2	20	77	01
2-Chlorotoluene	2.47	2.357	-	4.6	20	84	01
1,3,5-Trimethylbenzene	2.539	2.444	-	3.7	20	85	0
1,2,3-Trichloropropane	10	9.15	-	8.5	20	74	01
4-Chlorotoluene	2.206	2.025	-	8.2	20	81	01
tert-Butylbenzene	10	9.242	-	7.6	20	90	0
1,2,4-Trimethylbenzene	2.503	2.379	-	5	20	84	0
sec-Butylbenzene	1.21	1.466	-	-21.2*	20	104	0
p-Isopropyltoluene	2.583	2.495	-	3.4	20	88	0
1,3-Dichlorobenzene	1.464	1.342	-	8.3	20	79	0
1,4-Dichlorobenzene	1.482	1.313	-	11.4	20	77	0
n-Butylbenzene	2.356	2.483	-	-5.4	20	98	0
1,2-Dichlorobenzene	1.303	1.178	-	9.6	20	79	0
1,2-Dibromo-3-chloropropan	0.086	0.072	-	16.3	20	73	0
Hexachlorobutadiene	0.338	0.301	-	10.9	20	91	0
1,2,4-Trichlorobenzene	0.731	0.652	-	10.8	20	76	0
Naphthalene	1.492	1.289	-	13.6	20	78	0
1,2,3-Trichlorobenzene	0.623	0.569	-	8.7	20	80	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1746498

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Rebecca Higgins Phone: (617) 886-7326

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Report Date: 12/21/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746498

Report Date:

12/21/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1746498-01	HA-C2(OW)-NPDES_2017- 1215	WATER	CAMBRIDGE, MA	12/15/17 10:00	12/15/17

Project Name: 50 ROGERS STREET Lab Number: L1746498

Project Number: 34250-840 Report Date: 12/21/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Ρ	lease	contact	Client	Services	at 800	-624-9	220 with	any	questions	•

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/21/17

600, Sharow Kelly Stenstrom

ORGANICS

VOLATILES

L1746498

12/15/17 10:00

Not Specified

12/15/17

Project Name: 50 ROGERS STREET

Project Number: 34250-840

SAMPLE RESULTS

Report Date: 12/21/17

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1746498-01

Client ID: HA-C2(OW)-NPDES_2017-1215

Sample Location: CAMBRIDGE, MA

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/20/17 10:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

L1746498

12/21/17

Project Name: 50 ROGERS STREET

L1746498-01

Project Number: 34250-840

Lab ID:

SAMPLE RESULTS

Date Collected: 12/15/17 10:00

> Date Received: 12/15/17

Lab Number:

Report Date:

HA-C2(OW)-NPDES_2017-1215 Client ID: Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

oumpio zooddom or unbrub oz, mr					γ.	rtot opcomod
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Methyl tert butyl ether	ND		ug/l	1.0		1
p/m-Xylene	ND		ug/l	1.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	5.0		1
1,4-Dichlorobutane	ND		ug/l	5.0		1
1,2,3-Trichloropropane	ND		ug/l	5.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	5.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	5.0		1
Vinyl acetate	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Ethyl methacrylate	ND		ug/l	5.0		1
Acrylonitrile	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.5		1
Tetrahydrofuran	ND		ug/l	5.0		1
2,2-Dichloropropane	ND		ug/l	2.5		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	2.5		1
n-Butylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	2.5		1
o-Chlorotoluene	ND		ug/l	2.5		1
p-Chlorotoluene	ND		ug/l	2.5		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	2.5		1
n-Propylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1

Project Name: 50 ROGERS STREET **Lab Number:** L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

SAMPLE RESULTS

Lab ID: Date Collected: 12/15/17 10:00

Client ID: HA-C2(OW)-NPDES_2017-1215 Date Received: 12/15/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	99	70-130	

Project Name: 50 ROGERS STREET Lab Number: L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

SAMPLE RESULTS

Lab ID: L1746498-01 Date Collected: 12/15/17 10:00

Client ID: HA-C2(OW)-NPDES_2017-1215 Date Received: 12/15/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 12/20/17 10:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS-SIM - Westborough Lab								
1,4-Dioxane	ND		ug/l	3.0		1		

Project Name: 50 ROGERS STREET Lab Number: L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

SAMPLE RESULTS

Lab ID: L1746498-01 Date Collected: 12/15/17 10:00

Client ID: HA-C2(OW)-NPDES_2017-1215 Date Received: 12/15/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Matrix: Extraction Method:EPA 504.1

Extraction Date: 12/21/17 10:24

Analytical Method: 14,504.1

Analytical Date: 12/21/17 12:46
Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Microextractables by GC - Westborough Lab											
1,2-Dibromoethane	ND		ug/l	0.010		1	А				
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α				

Project Name: 50 ROGERS STREET **Lab Number:** L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 12/20/17 08:30

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - V	Vestborough	Lab for sa	ample(s):	01	Batch:	WG1074947-5	
1,4-Dioxane	ND		ug/l		3.0		

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/20/17 08:30

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1074949-5 Methylene chloride ND ug/l 3.0 1,1-Dichloroethane ND ug/l 0.75 Chloroform ND ug/l 0.50 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 1,2-Dichloropethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethane ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene <t< th=""><th>Parameter</th><th>Result</th><th>Qualifier Units</th><th>RL</th><th>MDL</th></t<>	Parameter	Result	Qualifier Units	RL	MDL
1,1-Dichloroethane	olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG1074949-5
Chloroform ND ug/l 0.75 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 1.8 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichloroftuoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 Bromoform ND ug/l <td>Methylene chloride</td> <td>ND</td> <td>ug/l</td> <td>3.0</td> <td></td>	Methylene chloride	ND	ug/l	3.0	
Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 1.8 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 0.50 1,1,2,2-Tetrachloroethane	1,1-Dichloroethane	ND	ug/l	0.75	
1,2-Dichloropropane ND	Chloroform	ND	ug/l	0.75	
Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.75 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Ethylbenzene ND <td< td=""><td>Carbon tetrachloride</td><td>ND</td><td>ug/l</td><td>0.50</td><td></td></td<>	Carbon tetrachloride	ND	ug/l	0.50	
Tetrachloroethane	1,2-Dichloropropane	ND	ug/l	1.8	
Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 is-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.5 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50	Dibromochloromethane	ND	ug/l	0.50	
Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.5 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 2.5	1,1,2-Trichloroethane	ND	ug/l	0.75	
Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.5 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 0.50	Tetrachloroethene	ND	ug/l	0.50	
1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 0.50	Chlorobenzene	ND	ug/l	0.50	
1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.5 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	Trichlorofluoromethane	ND	ug/l	2.5	
Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50	1,2-Dichloroethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Vinyl chloride ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 Chloroethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0	1,1,1-Trichloroethane	ND	ug/l	0.50	
cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	Bromodichloromethane	ND	ug/l	0.50	
1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	trans-1,3-Dichloropropene	ND	ug/l	0.50	
1,1-Dichloropropene ND ug/l 2.5 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 1.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	cis-1,3-Dichloropropene	ND	ug/l	0.50	
Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 2.5 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 2.5 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	1,1-Dichloropropene	ND	ug/l	2.5	
Benzene ND ug/l 0.50 Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 2.5 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	Bromoform	ND	ug/l	2.0	
Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 2.5 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 2.5 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	Benzene	ND	ug/l	0.50	
Chloromethane ND ug/l 2.5 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	Toluene	ND	ug/l	0.75	
Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	Ethylbenzene	ND	ug/l	0.50	
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	Chloromethane	ND	ug/l	2.5	
Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	Bromomethane	ND	ug/l	1.0	
1,1-Dichloroethene ND ug/l 0.50	Vinyl chloride	ND	ug/l	1.0	
·	Chloroethane	ND	ug/l	1.0	
1 2-Dichloroethene Total ND ug/ 0.50	1,1-Dichloroethene	ND	ug/l	0.50	
1,2-Didiliotoetherie, Total 14D ug/1 0.50	1,2-Dichloroethene, Total	ND	ug/l	0.50	
Trichloroethene ND ug/l 0.50	Trichloroethene	ND	ug/l	0.50	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/20/17 08:30

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lat	o for sample(s): 0	1 Batch:	WG1074949-5
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dibromomethane	ND	ug/l	5.0	
1,4-Dichlorobutane	ND	ug/l	5.0	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Styrene	ND	ug/l	1.0	
Dichlorodifluoromethane	ND	ug/l	5.0	
Acetone	ND	ug/l	5.0	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	5.0	
Vinyl acetate	ND	ug/l	5.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	
2-Hexanone	ND	ug/l	5.0	
Ethyl methacrylate	ND	ug/l	5.0	
Acrylonitrile	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,2-Dibromoethane	ND	ug/l	2.0	
1,3-Dichloropropane	ND	ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
Bromobenzene	ND	ug/l	2.5	
n-Butylbenzene	ND	ug/l	0.50	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/20/17 08:30

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS	- Westborough Lal	o for sample(s): 01	Batch:	WG1074949-5
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Tert-Butyl Alcohol	ND	ug/l	10	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	

	Acceptance						
Surrogate	%Recovery C	lualifier Criteria					
1,2-Dichloroethane-d4	91	70-130					
Toluene-d8	105	70-130					
4-Bromofluorobenzene	98	70-130					
Dibromofluoromethane	97	70-130					

L1746498

Project Name: 50 ROGERS STREET

Project Number: 34250-840 Report Date:

12/21/17

Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 14,504.1 Analytical Date: 12/21/17 11:15

Analyst: NS Extraction Method: EPA 504.1 12/21/17 10:24 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab fo	r sample(s)	: 01	Batch: WG107	5358-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α

Project Name: 50 ROGERS STREET

Lab Number:

L1746498

Project Number: 34250-840

Report Date:

12/21/17

Parameter	LCS %Recovery	Qual	LCS %Reco		% Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westboroo	ugh Lab Associat	ed sample(s):	01 E	Batch:	WG1074947-3	WG1074947-4	1		
1,4-Dioxane	110		11	10		70-130	0		25

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	074949-3	WG1074949-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	120		110		70-130	9	20	
Chloroform	120		120		70-130	0	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	110		110		70-130	0	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	110		120		70-130	9	20	
Tetrachloroethene	120		120		70-130	0	20	
Chlorobenzene	120		120		75-130	0	25	
Trichlorofluoromethane	100		100		62-150	0	20	
1,2-Dichloroethane	100		110		70-130	10	20	
1,1,1-Trichloroethane	120		110		67-130	9	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	100		100		70-130	0	20	
cis-1,3-Dichloropropene	100		100		70-130	0	20	
1,1-Dichloropropene	110		110		70-130	0	20	
Bromoform	89		82		54-136	8	20	
1,1,2,2-Tetrachloroethane	98		100		67-130	2	20	
Benzene	110		110		70-130	0	25	
Toluene	120		120		70-130	0	25	
Ethylbenzene	110		110		70-130	0	20	
Chloromethane	89		87		64-130	2	20	
Bromomethane	98		97		39-139	1	20	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	074949-3	WG1074949-4		
Vinyl chloride	100		100		55-140	0	20
Chloroethane	100		99		55-138	1	20
1,1-Dichloroethene	120		110		61-145	9	25
Trichloroethene	110		110		70-130	0	25
1,2-Dichlorobenzene	110		110		70-130	0	20
1,3-Dichlorobenzene	120		120		70-130	0	20
1,4-Dichlorobenzene	110		110		70-130	0	20
Methyl tert butyl ether	97		100		63-130	3	20
p/m-Xylene	120		115		70-130	4	20
o-Xylene	110		110		70-130	0	20
cis-1,2-Dichloroethene	120		120		70-130	0	20
Dibromomethane	110		110		70-130	0	20
1,4-Dichlorobutane	93		89		70-130	4	20
1,2,3-Trichloropropane	98		100		64-130	2	20
Styrene	115		115		70-130	0	20
Dichlorodifluoromethane	94		88		36-147	7	20
Acetone	67		77		58-148	14	20
Carbon disulfide	98		95		51-130	3	20
2-Butanone	82		88		63-138	7	20
Vinyl acetate	95		97		70-130	2	20
4-Methyl-2-pentanone	84		92		59-130	9	20
2-Hexanone	77		89		57-130	14	20
Ethyl methacrylate	99		100		70-130	1	20

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG	1074949-3	WG1074949-4		
Acrylonitrile	96		100		70-130	4	20
Bromochloromethane	120		120		70-130	0	20
Tetrahydrofuran	84		88		58-130	5	20
2,2-Dichloropropane	110		100		63-133	10	20
1,2-Dibromoethane	110		110		70-130	0	20
1,3-Dichloropropane	110		110		70-130	0	20
1,1,1,2-Tetrachloroethane	110		110		64-130	0	20
Bromobenzene	110		110		70-130	0	20
n-Butylbenzene	110		120		53-136	9	20
sec-Butylbenzene	110		110		70-130	0	20
tert-Butylbenzene	110		110		70-130	0	20
o-Chlorotoluene	110		100		70-130	10	20
p-Chlorotoluene	110		110		70-130	0	20
1,2-Dibromo-3-chloropropane	93		92		41-144	1	20
Hexachlorobutadiene	140	Q	150	Q	63-130	7	20
Isopropylbenzene	110		110		70-130	0	20
p-Isopropyltoluene	110		110		70-130	0	20
Naphthalene	94		100		70-130	6	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	120		120		70-130	0	20
1,2,4-Trichlorobenzene	110		120		70-130	9	20
1,3,5-Trimethylbenzene	110		110		64-130	0	20
1,2,4-Trimethylbenzene	110		110		70-130	0	20

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746498

Report Date:

12/21/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1074949-3	WG1074949-4			
trans-1,4-Dichloro-2-butene	77		75		70-130	3		20
Ethyl ether	100		110		59-134	10		20
Tert-Butyl Alcohol	72		76		70-130	5		20
Tertiary-Amyl Methyl Ether	99		100		66-130	1		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	94	89	70-130
Toluene-d8	107	104	70-130
4-Bromofluorobenzene	98	89	70-130
Dibromofluoromethane	101	100	70-130

Project Name: 50 ROGERS STREET

Project Number:

34250-840

Lab Number:

L1746498

Report Date:

12/21/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1075	5358-2					
1,2-Dibromoethane	92		-		80-120	-			А
1,2-Dibromo-3-chloropropane	94		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746498

Report Date:

12/21/17

Parameter	Native Sample	MS Added	MS Found %	MS &Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits		RPD Qual Limi	ts Column
Microextractables by GC Sample	- Westborough Lab	Associate	ed sample(s): 01	QC Batch	ID: WG10)75358-3	WG1075358-4	QC Sa	ample: L174	44626-32	Client ID:	MS
1,2-Dibromoethane	ND	0.255	0.250	98		0.279	107		80-120	11	20	Α
1,2-Dibromo-3-chloropropane	ND	0.255	0.222	87		0.255	98		80-120	14	20	Α

SEMIVOLATILES

L1746498

12/21/17

Project Name: 50 ROGERS STREET

Project Number: 34250-840

SAMPLE RESULTS

Date Collected: 12/15/17 10:00

Lab Number:

Report Date:

Lab ID: L1746498-01

Client ID: HA-C2(OW)-NPDES_2017-1215

1,8270D

Sample Location: CAMBRIDGE, MA

Date Received: 12/15/17
Field Prep: Not Specified
Extraction Method: EPA 3510C

Matrix: Water Extraction Method.EFA 3510C

Extraction Date: 12/20/17 10:56

Analytical Date: 12/21/17 14:30

Analyst: SZ

Analytical Method:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	
2-Nitroaniline	ND		ug/l	5.0		1	
3-Nitroaniline	ND		ug/l	5.0		1	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

SAMPLE RESULTS

Report Date:

Date Collected:

Lab Number:

L1746498 12/21/17

12/15/17 10:00

Lab ID: L1746498-01

Client ID: HA-C2(OW)-NPDES_2017-1215

Sample Location: CAMBRIDGE, MA

Date Received: 12/15/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Phenol	ND		ug/l	5.0		1
2-Methylphenol	ND		ug/l	5.0		1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol	ND		ug/l	5.0		1
Benzoic Acid	ND		ug/l	50		1
Benzyl Alcohol	ND		ug/l	2.0		1
Carbazole	ND		ug/l	2.0		1
Pyridine	ND		ug/l	3.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	56	21-120	
Phenol-d6	41	10-120	
Nitrobenzene-d5	90	23-120	
2-Fluorobiphenyl	95	15-120	
2,4,6-Tribromophenol	111	10-120	
4-Terphenyl-d14	90	41-149	

L1746498

Project Name: 50 ROGERS STREET

Project Number: 34250-840

SAMPLE RESULTS

Report Date: 12/21/17

Lab Number:

SAMIFEE RESUL

Lab ID: Date Collected: 12/15/17 10:00
Client ID: HA-C2(OW)-NPDES 2017-1215 Date Received: 12/15/17

Client ID: HA-C2(OW)-NPDES_2017-1215 Date Received: Sample Location: CAMBRIDGE, MA Field Prep:

Field Prep: Not Specified Extraction Method: EPA 3510C

Matrix: Water Extraction Method.EFA 3510C

Extraction Date: 12/20/17 11:05

Analytical Method: 1,8270D-SIM Analytical Date: 12/21/17 12:42

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - V	Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	2.3		ug/l	0.10		1				
2-Chloronaphthalene	ND		ug/l	0.20		1	_			
Fluoranthene	0.86		ug/l	0.10		1				
Hexachlorobutadiene	ND		ug/l	0.50		1				
Naphthalene	0.48		ug/l	0.10		1				
Benzo(a)anthracene	ND		ug/l	0.10		1				
Benzo(a)pyrene	ND		ug/l	0.10		1				
Benzo(b)fluoranthene	ND		ug/l	0.10		1				
Benzo(k)fluoranthene	ND		ug/l	0.10		1				
Chrysene	ND		ug/l	0.10		1				
Acenaphthylene	ND		ug/l	0.10		1				
Anthracene	0.19		ug/l	0.10		1				
Benzo(ghi)perylene	ND		ug/l	0.10		1				
Fluorene	0.45		ug/l	0.10		1				
Phenanthrene	0.94		ug/l	0.10		1				
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1				
Pyrene	0.61		ug/l	0.10		1				
1-Methylnaphthalene	0.25		ug/l	0.10		1				
2-Methylnaphthalene	0.26		ug/l	0.10		1				
Pentachlorophenol	ND		ug/l	0.80		1				
Hexachlorobenzene	ND		ug/l	0.80		1				
Hexachloroethane	ND		ug/l	0.80		1				

Project Name: 50 ROGERS STREET **Lab Number:** L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

SAMPLE RESULTS

Lab ID: L1746498-01 Date Collected: 12/15/17 10:00

Client ID: HA-C2(OW)-NPDES_2017-1215 Date Received: 12/15/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	37	10-120
Nitrobenzene-d5	90	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	79	41-149

Project Name: 50 ROGERS STREET

Project Number: 34250-840 Lab Number: L1746498 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 12/21/17 10:31

Analyst: SZ Extraction Method: EPA 3510C 12/20/17 10:56 Extraction Date:

12/21/17

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/N	/IS - Westboroug	ıh Lab for s	ample(s):	01 Batch	: WG1074914-1
Acenaphthene	ND		ug/l	2.0	
Benzidine	ND		ug/l	20	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	
Hexachlorobenzene	ND		ug/l	2.0	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	
2-Chloronaphthalene	ND		ug/l	2.0	
1,2-Dichlorobenzene	ND		ug/l	2.0	
1,3-Dichlorobenzene	ND		ug/l	2.0	
1,4-Dichlorobenzene	ND		ug/l	2.0	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	
2,4-Dinitrotoluene	ND		ug/l	5.0	
2,6-Dinitrotoluene	ND		ug/l	5.0	
Azobenzene	ND		ug/l	2.0	
Fluoranthene	ND		ug/l	2.0	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	
Hexachlorobutadiene	ND		ug/l	2.0	
Hexachlorocyclopentadiene	ND		ug/l	20	
Hexachloroethane	ND		ug/l	2.0	
Isophorone	ND		ug/l	5.0	
Naphthalene	ND		ug/l	2.0	
Nitrobenzene	ND		ug/l	2.0	
NDPA/DPA	ND		ug/l	2.0	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	
Butyl benzyl phthalate	ND		ug/l	5.0	
Di-n-butylphthalate	ND		ug/l	5.0	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 12/21/17 10:31

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 12/20/17 10:56

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/M	IS - Westborough	Lab for s	ample(s):	01	Batch:	WG1074914-1
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	
Benzo(b)fluoranthene	ND		ug/l		2.0	
Benzo(k)fluoranthene	ND		ug/l		2.0	
Chrysene	ND		ug/l		2.0	
Acenaphthylene	ND		ug/l		2.0	
Anthracene	ND		ug/l		2.0	
Benzo(ghi)perylene	ND		ug/l		2.0	
Fluorene	ND		ug/l		2.0	
Phenanthrene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Pyrene	ND		ug/l		2.0	
Biphenyl	ND		ug/l		2.0	
Aniline	ND		ug/l		2.0	
4-Chloroaniline	ND		ug/l		5.0	
1-Methylnaphthalene	ND		ug/l		2.0	
2-Nitroaniline	ND		ug/l		5.0	
3-Nitroaniline	ND		ug/l		5.0	
4-Nitroaniline	ND		ug/l		5.0	
Dibenzofuran	ND		ug/l		2.0	
2-Methylnaphthalene	ND		ug/l		2.0	
n-Nitrosodimethylamine	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 12/21/17 10:31

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 12/20/17 10:56

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	6 - Westborougl	n Lab for s	ample(s):	01	Batch:	WG1074914-1
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		3.5	

Tentatively Identified Compounds				
Total TIC Compounds	5.53	J	ug/l	
Unknown	5.53	J	ug/l	

L1746498

Project Name: 50 ROGERS STREET

Project Number: 34250-840 Report Date: 12/21/17

Lab Number:

Method Blank Analysis Batch Quality Control

Extraction Method: EPA 3510C Analytical Method: 1,8270D Analytical Date: 12/21/17 10:31 12/20/17 10:56 Extraction Date:

Analyst: SZ

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1074914-1	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	55	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	99	23-120
2-Fluorobiphenyl	102	15-120
2,4,6-Tribromophenol	103	10-120
4-Terphenyl-d14	92	41-149

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 12/21/17 09:17

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 12/20/17 11:05

12/21/17

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC	MS-SIM - Westbo	rough Lab	for sample	(s): 01	Batch: WG1074917	-1
Acenaphthene	ND		ug/l	0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.10		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
1-Methylnaphthalene	ND		ug/l	0.10		
2-Methylnaphthalene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

L1746498

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: 34250-840 **Report Date:** 12/21/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 12/21/17 09:17 Extraction Date: 12/20/17 11:05

Analyst: KL

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01Batch: WG1074917-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	21-120
Phenol-d6	34	10-120
Nitrobenzene-d5	95	23-120
2-Fluorobiphenyl	81	15-120
2,4,6-Tribromophenol	84	10-120
4-Terphenyl-d14	81	41-149

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Assoc	iated sample(s):	01 Batch:	WG1074914-2	WG1074914-3			
Acenaphthene	89		90		37-111	1		30
Benzidine	17		31		10-75	58	Q	30
1,2,4-Trichlorobenzene	82		81		39-98	1		30
Hexachlorobenzene	97		105		40-140	8		30
Bis(2-chloroethyl)ether	86		86		40-140	0		30
2-Chloronaphthalene	97		97		40-140	0		30
1,2-Dichlorobenzene	74		74		40-140	0		30
1,3-Dichlorobenzene	71		71		40-140	0		30
1,4-Dichlorobenzene	72		71		36-97	1		30
3,3'-Dichlorobenzidine	84		77		40-140	9		30
2,4-Dinitrotoluene	111		111		48-143	0		30
2,6-Dinitrotoluene	118		122		40-140	3		30
Azobenzene	99		111		40-140	11		30
Fluoranthene	94		94		40-140	0		30
4-Chlorophenyl phenyl ether	96		99		40-140	3		30
4-Bromophenyl phenyl ether	97		105		40-140	8		30
Bis(2-chloroisopropyl)ether	86		85		40-140	1		30
Bis(2-chloroethoxy)methane	99		97		40-140	2		30
Hexachlorobutadiene	74		76		40-140	3		30
Hexachlorocyclopentadiene	69		70		40-140	1		30
Hexachloroethane	70		69		40-140	1		30
Isophorone	100		98		40-140	2		30
Naphthalene	81		84		40-140	4		30

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - West	tborough Lab Associ	ated sample(s):	01 Batch:	WG1074914-2	2 WG1074914-3		
Nitrobenzene	91		91		40-140	0	30
NDPA/DPA	99		109		40-140	10	30
n-Nitrosodi-n-propylamine	99		96		29-132	3	30
Bis(2-ethylhexyl)phthalate	114		117		40-140	3	30
Butyl benzyl phthalate	104		107		40-140	3	30
Di-n-butylphthalate	102		105		40-140	3	30
Di-n-octylphthalate	103		108		40-140	5	30
Diethyl phthalate	100		101		40-140	1	30
Dimethyl phthalate	111		109		40-140	2	30
Benzo(a)anthracene	96		96		40-140	0	30
Benzo(a)pyrene	91		92		40-140	1	30
Benzo(b)fluoranthene	89		94		40-140	5	30
Benzo(k)fluoranthene	91		92		40-140	1	30
Chrysene	95		97		40-140	2	30
Acenaphthylene	104		105		45-123	1	30
Anthracene	97		97		40-140	0	30
Benzo(ghi)perylene	104		96		40-140	8	30
Fluorene	98		101		40-140	3	30
Phenanthrene	96		94		40-140	2	30
Dibenzo(a,h)anthracene	104		96		40-140	8	30
Indeno(1,2,3-cd)pyrene	108		98		40-140	10	30
Pyrene	92		93		26-127	1	30
Biphenyl	103		104		40-140	1	30

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01 Batch:	WG1074914-2	2 WG1074914-3		
Aniline	60		59		40-140	2	30
4-Chloroaniline	61		53		40-140	14	30
1-Methylnaphthalene	90		92		41-103	2	30
2-Nitroaniline	124		124		52-143	0	30
3-Nitroaniline	78		69		25-145	12	30
4-Nitroaniline	99		108		51-143	9	30
Dibenzofuran	94		94		40-140	0	30
2-Methylnaphthalene	89		91		40-140	2	30
n-Nitrosodimethylamine	51		58		22-74	13	30
2,4,6-Trichlorophenol	112		113		30-130	1	30
p-Chloro-m-cresol	108	Q	109	Q	23-97	1	30
2-Chlorophenol	87		88		27-123	1	30
2,4-Dichlorophenol	108		106		30-130	2	30
2,4-Dimethylphenol	95		98		30-130	3	30
2-Nitrophenol	115		112		30-130	3	30
4-Nitrophenol	66		68		10-80	3	30
2,4-Dinitrophenol	111		108		20-130	3	30
4,6-Dinitro-o-cresol	125		137		20-164	9	30
Pentachlorophenol	91		98		9-103	7	30
Phenol	43		44		12-110	2	30
2-Methylphenol	85		82		30-130	4	30
3-Methylphenol/4-Methylphenol	81		80		30-130	1	30
2,4,5-Trichlorophenol	117		115		30-130	2	30

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS -	Westborough Lab Associate	ed sample(s):	01 Batch:	WG1074914-2	WG1074914-3			
Benzoic Acid	42		44		10-164	5		30
Benzyl Alcohol	82		82		26-116	0		30
Carbazole	101		102		55-144	1		30
Pyridine	32		42		10-66	27		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Q	ual %Recovery G	Qual Criteria
2-Fluorophenol	54	55	21-120
Phenol-d6	40	40	10-120
Nitrobenzene-d5	90	89	23-120
2-Fluorobiphenyl	96	99	15-120
2,4,6-Tribromophenol	103	115	10-120
4-Terphenyl-d14	88	89	41-149

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - We	stborough Lab As	ssociated sample(s): 01 Batcl	h: WG1074917-2 WG1074	917-3	
Acenaphthene	85	88	40-140	3	40
2-Chloronaphthalene	89	91	40-140	2	40
Fluoranthene	88	91	40-140	3	40
Hexachlorobutadiene	72	75	40-140	4	40
Naphthalene	82	84	40-140	2	40
Benzo(a)anthracene	95	98	40-140	3	40
Benzo(a)pyrene	90	92	40-140	2	40
Benzo(b)fluoranthene	91	91	40-140	0	40
Benzo(k)fluoranthene	92	92	40-140	0	40
Chrysene	93	95	40-140	2	40
Acenaphthylene	96	99	40-140	3	40
Anthracene	97	100	40-140	3	40
Benzo(ghi)perylene	98	102	40-140	4	40
Fluorene	88	91	40-140	3	40
Phenanthrene	89	92	40-140	3	40
Dibenzo(a,h)anthracene	102	104	40-140	2	40
Indeno(1,2,3-cd)pyrene	104	107	40-140	3	40
Pyrene	86	89	40-140	3	40
1-Methylnaphthalene	87	89	40-140	2	40
2-Methylnaphthalene	85	88	40-140	3	40
Pentachlorophenol	84	88	40-140	5	40
Hexachlorobenzene	84	87	40-140	4	40
Hexachloroethane	69	69	40-140	0	40

Project Name: 50 ROGERS STREET

Lab Number:

L1746498

Project Number: 34250-840

Report Date:

12/21/17

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1074917-2 WG1074917-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	49	49	21-120
Phenol-d6	35	35	10-120
Nitrobenzene-d5	88	90	23-120
2-Fluorobiphenyl	77	79	15-120
2,4,6-Tribromophenol	81	82	10-120
4-Terphenyl-d14	78	79	41-149

PCBS

Project Name: 50 ROGERS STREET **Lab Number:** L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

SAMPLE RESULTS

Lab ID: L1746498-01 Date Collected: 12/15/17 10:00

Client ID: HA-C2(OW)-NPDES_2017-1215 Date Received: 12/15/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Extraction Method:EPA 608

Matrix:WaterExtraction Date:12/21/17 03:10Analytical Method:5,608Cleanup Method:EPA 3665AAnalytical Date:12/21/17 14:01Cleanup Date:12/21/17

Analyst: JW Cleanup Method: EPA 3660B Cleanup Date: 12/21/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	stborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	Α
Decachlorobiphenyl	86		30-150	Α

L1746498

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: 34250-840 **Report Date:** 12/21/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 12/21/17 14:13

Analyst: JW

Extraction Method: EPA 608
Extraction Date: 12/21/17 03:10
Cleanup Method: EPA 3665A
Cleanup Date: 12/21/17
Cleanup Method: EPA 3660B
Cleanup Date: 12/21/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1075198-	·1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance	e
Surrogate	%Recovery Qualifie	r Criteria	Column
			<u>.</u>
2,4,5,6-Tetrachloro-m-xylene	61	30-150	Α
Decachlorobiphenyl	72	30-150	Α

Project Name: 50 ROGERS STREET

Lab Number:

L1746498

Project Number: 34250-840

	LCS		LCSD		%Recovery			RPD	D	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column	
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s)	: 01 Batch:	WG1075198-	2					
Aroclor 1016	78		-		30-150	-		30	А	
Aroclor 1260	88		-		30-150	-		30	Α	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	68 83				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746498

Report Date:

12/21/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recov	ery Qua	Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by G	GC - Westbor	ough Lab	Associated sam	nple(s): 01	QC Batch II	D: WG107	5198-3 (QC Sampl	e: L1700012-1	108 C	lient ID:	MS Sam	ple
Aroclor 1016	ND	3.12	2.41	77		-	-		40-126	-		30	Α
Aroclor 1260	ND	3.12	2.68	86		-	-		40-127	-		30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	Α
Decachlorobiphenyl	83		30-150	Α

Lab Duplicate Analysis Batch Quality Control

50 ROGERS STREET Batch Qualit

Lab Number: L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

Parameter	Native Sample	Duplicate Sample	e Units	RPD		RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG1075198-4	QC Sample:	L1700012-108	8 Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

			Acceptance	
Surrogate	%Recovery Qualifie	r %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71	70	30-150	Α
Decachlorobiphenyl	85	90	30-150	Α

Project Name:

METALS

Not Specified

Field Prep:

Project Name: Lab Number: **50 ROGERS STREET** L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

SAMPLE RESULTS

Lab ID: L1746498-01

Date Collected: 12/15/17 10:00 Client ID: HA-C2(OW)-NPDES_2017-1215 Date Received: 12/15/17

Sample Location: CAMBRIDGE, MA

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Iron, Total	4.99		mg/l	0.050		1	12/20/17 12:20	12/20/17 23:30	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	12/20/17 11:10	12/20/17 21:07	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	12/20/17 12:20	12/20/17 18:05	EPA 3005A	3,200.8	AM
Total Hardness by	y SM 2340E	3 - Mansfiel	d Lab								
Hardness	459		mg/l	0.660	NA	1	12/20/17 12:20	12/20/17 23:30	EPA 3005A	19,200.7	AB

General Chemistry	- Mansfield Lab					
Chromium, Trivalent	ND	mg/l	0.010	 1	12/20/17 18:05 NA 107,-	

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746498

Report Date:

12/21/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG10	74891-	-1				
Mercury, Total	ND	mg/l	0.00020		1	12/20/17 11:10	12/20/17 20:19	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01 Batc	h: WG10	74923	-1				
Antimony, Total	ND	mg/l	0.00400		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	12/20/17 12:20	12/20/17 16:47	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	01 Batch	: WG10	74929-	1				
Iron, Total	ND	mg/l	0.050		1	12/20/17 12:20	12/20/17 20:42	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: 50 ROGERS STREET

34250-840

Project Number:

Lab Number:

L1746498

Report Date:

12/21/17

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** RLMDL **Factor Prepared** Analyzed Units Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01 Batch: WG1074929-1 Hardness ND mg/l 0.660 NA 12/20/17 20:42 19,200.7 ΑB 12/20/17 12:20

Prep Information

Digestion Method: EPA 3005A

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1074891-2				
Mercury, Total	113	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1074923-2				
Antimony, Total	98	-	85-115	-		
Arsenic, Total	101	-	85-115	-		
Cadmium, Total	103	-	85-115	-		
Chromium, Total	105	-	85-115	-		
Copper, Total	103	-	85-115	-		
Lead, Total	112	-	85-115	-		
Nickel, Total	103	-	85-115	-		
Selenium, Total	101	-	85-115	-		
Silver, Total	100	-	85-115	-		
Zinc, Total	99	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1074929-2				
Iron, Total	107	-	85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01 Batch: WG107492	9-2			
Hardness	106	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Parameter	Native Sample	MS Added	MS Found ^o	MS %Recovery (MSD Qual Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
Total Metals - Mansfield Lab	o Associated sam	ple(s): 01	QC Batch ID	D: WG1074891-	3 QC Sample:	L1746497-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00492	98	-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch IE	D: WG1074891-	5 QC Sample:	L1746497-02	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00474	95	-	-	70-130	-	20
Total Metals - Mansfield Lab	o Associated sam	ple(s): 01	QC Batch IE	D: WG1074923-	3 WG1074923-4	QC Sample	: L1745390-02	Client ID:	: MS Sample
Antimony, Total	ND	0.5	0.4980	100	0.4945	99	70-130	1	20
Arsenic, Total	ND	0.12	0.1233	103	0.1221	102	70-130	1	20
Cadmium, Total	ND	0.051	0.05126	100	0.05179	102	70-130	1	20
Chromium, Total	ND	0.2	0.2068	103	0.2063	103	70-130	0	20
Copper, Total	ND	0.25	0.2575	103	0.2565	103	70-130	0	20
Lead, Total	0.00144	0.51	0.5742	112	0.5699	111	70-130	1	20
Nickel, Total	ND	0.5	0.5092	102	0.5052	101	70-130	1	20
Selenium, Total	ND	0.12	0.1244	104	0.1146	96	70-130	8	20
Silver, Total	ND	0.05	0.05025	100	0.05016	100	70-130	0	20
Zinc, Total	ND	0.5	0.5012	100	0.5249	105	70-130	5	20

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recover Limits	y RPD	RPD Limits
Total Metals - Mansfield L	Lab Associated san	nple(s): 01	QC Batch I	D: WG1074923	3-5 QC Sampl	e: L1746497-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.4895	98	-	-	70-130	-	20
Arsenic, Total	0.00232	0.12	0.1241	101	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05069	99	-	-	70-130	-	20
Chromium, Total	0.00289	0.2	0.2051	101	-	-	70-130	-	20
Copper, Total	0.00822	0.25	0.2589	100	-	-	70-130	-	20
Lead, Total	0.00416	0.51	0.5526	108	-	-	70-130	-	20
Nickel, Total	0.00414	0.5	0.4994	99	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1204	100	-	-	70-130	-	20
Silver, Total	ND	0.05	0.04883	98	-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5277	106	-	-	70-130	-	20
otal Metals - Mansfield I	Lab Associated san	nple(s): 01	QC Batch I	D: WG1074929	9-3 WG1074929	9-4 QC Sample:	L1745390-02	Client ID: N	MS Sample
Iron, Total	ND	1	1.06	106	1.07	107	75-125	1	20
otal Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s):	: 01 QC Batc	h ID: WG107492	29-3 WG1074929	9-4 QC Sample	e: L1745390	0-02 Client ID
Hardness	16.8	66.2	86.0	105	85.6	104	75-125	0	20
otal Metals - Mansfield I	Lab Associated san	nple(s): 01	QC Batch I	D: WG1074929	9-7 QC Sampl	e: L1746497-01	Client ID: MS	Sample	
Iron, Total	3.36	1	3.58	22	Q -	-	75-125	-	20
otal Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s):	: 01 QC Batc	h ID: WG107492	9-7 QC Samp	le: L1746497-01	Client ID	: MS Sample
Hardness	281	66.2	344	95	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746498

Parameter	Native Sample Dup	licate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1074891-4	QC Sample:	L1746497-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1074891-6	QC Sample:	L1746497-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1074923-6	QC Sample:	L1746497-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00232	0.00198	mg/l	16		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00289	0.00220	mg/l	27	Q	20
Copper, Total	0.00822	0.00755	mg/l	9		20
Lead, Total	0.00416	0.00371	mg/l	11		20
Nickel, Total	0.00414	0.00373	mg/l	10		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1074929-8	QC Sample:	L1746497-01	Client ID:	DUP Sample	
Iron, Total	3.36	2.69	mg/l	22	Q	20

INORGANICS & MISCELLANEOUS

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746498

Report Date: 12/21/17

SAMPLE RESULTS

Lab ID: L1746498-01

Client ID: HA-C2(OW)-NPDES_2017-1215

Sample Location: CAMBRIDGE, MA

Matrix: Water

Date Collected: 12/15/17 10:00

Date Received: 12/15/17
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab									
Solids, Total Suspended	13.		mg/l	5.0	NA	1	-	12/19/17 04:10	121,2540D	VB
Cyanide, Total	ND		mg/l	0.005		1	12/17/17 13:30	12/18/17 10:35	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	12/15/17 23:20	121,4500CL-D	CW
Nitrogen, Ammonia	1.44		mg/l	0.075		1	12/20/17 04:00	12/20/17 15:37	121,4500NH3-BH	I JO
TPH, SGT-HEM	ND		mg/l	5.20		1.3	12/19/17 17:00	12/19/17 22:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	12/19/17 11:45	12/19/17 15:29	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010		1	12/16/17 00:44	12/16/17 01:05	1,7196A	UN
Anions by Ion Chromatog	graphy - Westk	orough	Lab							
Chloride	950.		mg/l	12.5		25	-	12/20/17 19:35	44,300.0	JT

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	73403-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	12/15/17 23:20	121,4500CL-D	CW
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	73409-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	12/16/17 00:44	12/16/17 01:03	1,7196A	UN
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	73677-1				
Cyanide, Total	ND		mg/l	0.005		1	12/17/17 13:30	12/18/17 10:05	121,4500CN-CE	LH
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	74164-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	12/19/17 04:10	121,2540D	VB
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	74433-1				
Phenolics, Total	ND		mg/l	0.030		1	12/19/17 11:45	12/19/17 14:33	4,420.1	AW
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	74559-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	12/19/17 17:00	12/19/17 22:00	74,1664A	ML
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	74685-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/20/17 04:00	12/20/17 14:50	121,4500NH3-BI	н ЈО
Anions by Ion Chron	matography - Westk	orough	Lab for sar	mple(s):	01 B	atch: WG1	075294-1			
Chloride	ND		mg/l	0.500		1	-	12/20/17 11:35	44,300.0	JT

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number:

L1746498

Report Date:

12/21/17

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 0	1 Batch: WG1073403-2				
Chlorine, Total Residual	101	-	90-110	-		
General Chemistry - Westborough Lab A	ssociated sample(s): 01	1 Batch: WG1073409-2				
Chromium, Hexavalent	97	-	85-115	-		20
General Chemistry - Westborough Lab A	ssociated sample(s): 0	1 Batch: WG1073677-2				
Cyanide, Total	100	-	90-110	-		
General Chemistry - Westborough Lab A	ssociated sample(s): 0°	1 Batch: WG1074433-2				
Phenolics, Total	98	-	70-130	-		
General Chemistry - Westborough Lab A	ssociated sample(s): 01	1 Batch: WG1074559-2				
ТРН	83	-	64-132	-		34
General Chemistry - Westborough Lab A	ssociated sample(s): 0°	1 Batch: WG1074685-2				
Nitrogen, Ammonia	88	-	80-120	-		20
Anions by Ion Chromatography - Westbor	ough Lab Associated s	sample(s): 01 Batch: W	G1075294-2			
Chloride	102	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD I %Recovery Qual	Recovery Limits F	RPD Qual	RPD Limits
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG1073403-4	QC Sample: L1746437	7-01 Client ID	: MS Samp	le
Chlorine, Total Residual	ND	0.248	ND	0	Q -	-	80-120	-	20
General Chemistry - Westbook NPDES_2017-1215	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG1073409-4	QC Sample: L1746498	3-01 Client ID	: HA-C2(O\	V)-
Chromium, Hexavalent	ND	0.1	0.086	86	-	-	85-115	-	20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG1073677-4	QC Sample: L1746497	7-02 Client ID	: MS Samp	le
Cyanide, Total	0.009	0.2	0.207	99	-	-	90-110	-	30
General Chemistry - Westbook NPDES_2017-1215	rough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1074433-4	QC Sample: L1746498	3-01 Client ID	: HA-C2(O\	V)-
Phenolics, Total	ND	0.4	0.29	74	-	-	70-130	-	20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG1074559-4	QC Sample: L1745309	9-01 Client ID	: MS Samp	e
TPH	6.10	20.4	21.7	77	-	-	64-132	-	34
General Chemistry - Westbo	rough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1074685-4	QC Sample: L1744874	4-09 Client ID	: MS Samp	e
Nitrogen, Ammonia	0.129	4	3.85	93	-	-	80-120	-	20
Anions by Ion Chromatograp Sample	hy - Westboroug	h Lab Asso	ociated sar	nple(s): 01 Q	C Batch ID: WG	1075294-3 QC Samp	le: L1744378-0	1 Client ID	: MS
Chloride	6660	1000	7640	98		-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-840 Lab Number: L1746498 12/21/17

Report Date:

Parameter	Nat	ive Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1073403-3	QC Sample: L174	46437-01	Client ID:	DUP Sample
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab NPDES_2017-1215	Associated sample(s):	01 QC Batch ID:	WG1073409-3	QC Sample: L17	46498-01	Client ID:	HA-C2(OW)-
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1073677-3	QC Sample: L17	46497-01	Client ID:	DUP Sample
Cyanide, Total		0.007	0.007	mg/l	0		30
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1074164-2	QC Sample: L17	46540-01	Client ID:	DUP Sample
Solids, Total Suspended		180	170	mg/l	6		29
General Chemistry - Westborough Lab NPDES_2017-1215	Associated sample(s):	01 QC Batch ID:	WG1074433-3	QC Sample: L17	46498-01	Client ID:	HA-C2(OW)-
Phenolics, Total		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1074559-3	QC Sample: L17	45309-01	Client ID:	DUP Sample
TPH		6.10	5.70	mg/l	7		34
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1074685-3	QC Sample: L17	44874-09	Client ID:	DUP Sample
Nitrogen, Ammonia		0.129	0.231	mg/l	57	Q	20
Anions by Ion Chromatography - Westb Sample	oorough Lab Associated	d sample(s): 01 Q	C Batch ID: WG	1075294-4 QC S	ample: L	1744378-0	1 Client ID: DUP
Chloride		6660	6640	mg/l	0		18

Project Name: 50 ROGERS STREET

Project Number: 34250-840

Lab Number: L1746498

Report Date: 12/21/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1746498-01A	Vial HCl preserved	Α	NA		4.5	Υ	Absent		8260-SIM(14),8260(14)
L1746498-01B	Vial HCl preserved	Α	NA		4.5	Υ	Absent		8260-SIM(14),8260(14)
L1746498-01C	Vial HCl preserved	Α	NA		4.5	Υ	Absent		8260-SIM(14),8260(14)
L1746498-01D	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		504(14)
L1746498-01E	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		504(14)
L1746498-01F	Plastic 250ml HNO3 preserved	А	<2	<2	4.5	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1746498-01G	Plastic 500ml H2SO4 preserved	Α	NA		4.5	Υ	Absent		NH3-4500(28)
L1746498-01H	Plastic 250ml NaOH preserved	Α	>12	>12	4.5	Υ	Absent		TCN-4500(14)
L1746498-01J	Plastic 950ml unpreserved	Α	7	7	4.5	Υ	Absent		TSS-2540(7)
L1746498-01K	Plastic 950ml unpreserved	Α	7	7	4.5	Υ	Absent		CL-300(28),HEXCR-7196(1),HOLD- WETCHEM(),TRC-4500(1)
L1746498-01L	Amber 950ml H2SO4 preserved	Α	<2	<2	4.5	Υ	Absent		TPHENOL-420(28)
L1746498-01M	Amber 1000ml HCl preserved	Α	NA		4.5	Υ	Absent		TPH-1664(28)
L1746498-01N	Amber 1000ml HCl preserved	Α	NA		4.5	Υ	Absent		TPH-1664(28)
L1746498-01P	Amber 1000ml unpreserved	Α	7	7	4.5	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1746498-01Q	Amber 1000ml unpreserved	Α	7	7	4.5	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1746498-01R	Amber 1000ml Na2S2O3	Α	7	7	4.5	Υ	Absent		PCB-608(7)
L1746498-01S	Amber 1000ml Na2S2O3	Α	7	7	4.5	Υ	Absent		PCB-608(7)

Project Name: 50 ROGERS STREET Lab Number: L1746498

Project Number: 34250-840 Report Date: 12/21/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:50 ROGERS STREETLab Number:L1746498Project Number:34250-840Report Date:12/21/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: 50 ROGERS STREET Lab Number: L1746498

Project Number: 34250-840 **Report Date:** 12/21/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12211720:21

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westboosuph, MA 91581 8 Westup Or. TEL 504-98-920 FAX 504-98-920 HAXVInormston 18A Client ARE-MA Reg 18A Address 465 Medford 1 8oston, MA 02129 8A Phone 617-888-7359 8A Fax gdaylor@hale	St. Suite 2200	Project Information Project Name: Project Location Project Location Project # (Use Project name as Project Manager ALPHAQuote #: Turn/Around Time	50 Rogers Cambridge 34250-840 Project a) Rebecca H BINNEY	Street		ge of (in diversion of the control of the c	nail DulS (1	File)		Fax EQ	alS (4	File)	5	1	רו						ALPHA Job # 177 4-6 L Billing information Same as Client Info Po # Disposal Site Information Please identity below location disposal facilities	fo
H&A Email: Ipenwell@hale	yaldrich.com	Rush (only if pre approv		Due Day							1												Disposal Facility:	
hese samples have been pre Other project specific requir	wiously analyzed by Al	lpha 🗆		- ar out				ALYS		Irom i	menu & i	dentify o	ntena	i .									☐ Other	
Please sample per EPA Approced to Coc edits by Gi	na Hall AA)	L 12/20/17					TSS-2540	2. TRC-4500	3. TCN-4500 HOLD PACN & CAN	4 504	8280 & 8280 SIM for Diaxane	HAXCR-3500 & Trivalnet Chromium	7. TPHENOL-420	8. 8270TCL (including Diethythexylphthalate)	70TCL-SIM	U. CL-300	Metaba-Ag, As, Ca, Ca, Cu, No. St. St. Zn, Fe, Hg	Ammonia	Visit Hardness	AZ-ALCOHOL (Elhanol)	TPH-1684	PCB-608	Sample Filtration Done Lab to do Preservation Lab to do	T 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALPHA Lab ID (Lab Use Only)		pple ID	Coll	ection	Sample Matrix	Sampler's Initials	-	2	HOLD	-	5 8260	HAXCR	7. TPs	8. 8270' Diethylh	9 82	2	N. Pb. Sp.	12 1	0	AZ-ALC	15. T	16. F	(Please Specify below)	1
+6498-01H	A-C2(OW)-NPDES_	2017-1215	12/15/17	1000	AQ		X	x	х	x	х	χ	x	х	-	X :	X	x	1	X	×	×	Sample Specific Comments	
Hex is method Do NOT analy																								
Vone P=		Westboro: Certification N			Cont	ainer Type	-	1					-		1	+			+	+				
HNO; V = H,SO, G = NOH B =	Viel Glass Bacteria Cup Cube	fansfield: Certification N	o. MA015		FF WO	aner Type aservative	+	+	+	+	+	+	+	-	+		+	-	+	+	+	ti.	Please print clearty, legibly and iamples can not be logged in a amaround time clock will not s mbiguities are resolved. Alpha ervices under this Chain of Custo	and start until an
a_8_0 ₁ E = 1	Other Encore SOO Bottle	Reinquished E		Date/Ti	7	Microso			1	100	12/15	117	10	130		/Time	,		_			20	erformed in accordance with term ordations within Brankel Service A 015-16-Alpha Analytical by and bi Aldrich, Inc. its subsidiaries and lipha Analytical.	ms and Agreement#
		Chen II	- AHE 1	2/15/19	4 4	tuir	-	and the same of		Thomas I	# []	11.1		101	P							1	ALCOHOL STATE OF THE STATE OF T	

ALPHA Westborough, MA 01581	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Ports Albany, NY 12205 Tonswends, NY 14150 Hole Project Information		Mahwsh, NJ 0743		pe of (in L	NAME OF TAXABLE PARTY.			16	2	11	5	1	7				The same of	ALPHA Job # 17464	98
8 Walkup Dr. TEL 508-898-9220	320 Forbes Blvd TEL 505-822-9300	Project Name:	FA Bonner	Cheat				versit	1000							100						Billing information	
FAX 508-898-9193	FAX 508-822-3268	Project Location	50 Rogers Cambridge				-	Emi				Fax										 Same as Client Info 	
H&A Information	- 19 T	Project #	34250-840	, MA			-		ulS (1 F	ile)	1	EQui	S (4	He)								PO #	
	legion No. 21 LLC	(Use Project name as i			_		-	Oth	_	_													
H&A Address: 465 Medfor		Project Manager					_	ulato	ry Req.	ntem	ents (Pr	ogram	//Crite	ria)								Disposal Site Information	-
Boston, MA 02129	GI, GOILE 2200	ALPHAQuote #:		iggins/Lee Per	well		MA															Please identify below location of	f applicable
H&A Phone: 617-886-73	160	The second second second	BINNEY	-		_																disposal facilities	
	-	Turn-Around Time	. 53																			Disposal Faculty	
Buolius 661.	aleyaldrich com naleyaldrich com	Rush (only if pre approve	The second second	Due Date							1											O NJ O NY	
		Control of the contro	φ U	# of Days	i.		Note:	Salec	d State 1	rom ir	nenu & id	entify or	ntena.									☐ Other	
These samples have been Other project specific req		Npha 🗆					ANA	LYSI	S													Sample Filtration	100
Please sample per EPA A	pproved 2017 RGP Pen	mit methods					TSS-2540	TRC-4500	3. TCN-4500 HOLD PACN & CAN	4.504	8260 & 8260 SIM for Dioxane	HAXCR-3500 & Trivalna Chromium	7. TPHENOL-420	8. 8270TCL (including Diethythexylphthalate)	70TCL-SIM	10. CL-300	St. St. Zr. Fe, Hg	13. Total Hardness	A2-ALCOHOL (Ethanol)	15. TPH-1884	PCB-808	☐ Done ☐ Lab to do Preservation ☐ Lab to do	
ALPHA Lab ID (Lab Use Only)	Sar	mple ID		ection	Sample Matrix	Sampler's	-	2	3.7 HOLD	-	5 8260 J	HAXCR	7. TP	8. 8270 Dietnyth	9 82	- 13	N. Pb. Sb	13. Tot	AZ-ALC	15.7	16.8	(Please Specify below)	
46498-01	HA-C2(OW)-NPDES_	2017-1215	12/15/17	1000	AQ	meas	Х	X	×	х	X	×	×	х	x	×	×	x x	X	×	×	Sample Specific Comments	
																+	+	F	-				
reservative Code: = None = HCl	P. + P. HISSIG	Westboro: Certification N	SALAN STREET		Con	tainer Type	7					7	7	7	+	+	+	Ŧ	F	F		Please print clearly, legibly and	completely.
= HNO ₃ = M ₂ SO ₄ = NaOH	A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube	Mansfield: Certification N	o: MA015		- 12	reservative	+	+				\dashv	+	+	+	+	+	+	-			Samples can not be logged in a turnaround time clock will not s ambiguities are resolved. Alpha services under this Chain of Custo	tart until any Analytical's dy shall be
* NaHSO ₄	O = Other	Relinguished I	By	Date/T	me	, R	egeive	eri Riv			-	_	_		-		_	_	_			performed in accordance with term conditions within Blankel Service /	ns and Agreements
	E = Encore D = BOD Sottle	OUT CO		12/15/1	1.00	Micrie		-a oy			Alis	01,-	2 F	12	Dat	e/Tim	0	_	_		_	2015-18-Alpha Analytical by and b	etween Haler
= Other		N. all		12/15/17		10. 4	1			0.	6711	-/	/ 16	_					_	_		& Aldrich, Inc., its subsidiaries and Alpha Analytical.	arrouses and
ocument ID: 20455 Rev 1 (1/28/	2016)	Snidma	- AAC		1900	tim	11	2	ti	AL.	ille	1/17	-	70,									
100 MAN WAR I (1/5/10)	20/10/																						

ANALYTICAL REPORT

Lab Number: L1813049

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Penwell Phone: (617) 886-7359

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Report Date: 04/18/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number:

L1813049

Report Date:

04/18/18

Alpha Sample ID

L1813049-01

Client ID 2018-0413-

CHARLES_CAM017

Matrix WATER Sample Location

CAMBRIDGE, MA

Collection Date/Time

Receive Date

04/13/18 08:30 04/13/18

Project Name: 50 ROGERS STREET Lab Number: L1813049

Project Number: 34250-844 Report Date: 04/18/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client	Services at 800-624-9220	with any questions.
-----------------------	--------------------------	---------------------

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/18/18

Custen Walker Cristin Walker

METALS

04/13/18 08:30

Date Collected:

Project Name: Lab Number: **50 ROGERS STREET** L1813049 **Project Number:** Report Date: 34250-844 04/18/18

SAMPLE RESULTS

Lab ID: L1813049-01

Client ID: 2018-0413-CHARLES_CAM017 Date Received: 04/13/18 Field Prep: Not Specified

Sample Location: CAMBRIDGE, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Copper, Total	0.00193		mg/l	0.00100		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Iron, Total	0.334		mg/l	0.050		1	04/16/18 08:10	04/16/18 17:50	EPA 3005A	19,200.7	AB
Lead, Total	0.00117		mg/l	0.00050		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	04/17/18 11:05	04/17/18 15:17	EPA 245.1	3,245.1	MG
Nickel, Total	ND		mg/l	0.00200		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	04/16/18 08:10	04/16/18 13:15	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	82.3		mg/l	0.660	NA	1	04/16/18 08:10	04/16/18 17:50	EPA 3005A	19,200.7	AB

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number:

L1813049

Report Date: 04/18/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG11	06752-	1				
Antimony, Total	ND	mg/l	0.00400		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	04/16/18 08:10	04/16/18 12:56	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1106753-1			
Iron, Total ND mg/l 0.050 1 04/16/18 08:10	04/16/18 17:1	3 19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifi	er Units	RL	-	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM 2	340B - Mansfield	Lab for samp	ole(s): 01	Batch	n: WG110	6753-1			
Hardness	ND	mg/l	0.660	NA	1	04/16/18 08:10	04/16/18 17:13	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number:

L1813049

Report Date:

04/18/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG1	107139-	·1				
Mercury, Total	ND	mg/l	0.0002		1	04/17/18 11:05	04/17/18 15:13	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813049

Report Date: 04/18/18

Parameter	LCS %Recovery	Qual %l	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1106752-2						
Antimony, Total	99		-		85-115	-		
Arsenic, Total	103		-		85-115	-		
Cadmium, Total	109		-		85-115	-		
Copper, Total	95		-		85-115	-		
Lead, Total	100		-		85-115	-		
Nickel, Total	95		-		85-115	-		
Selenium, Total	109		-		85-115	-		
Silver, Total	99		-		85-115	-		
Zinc, Total	103		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1106753-2						
Iron, Total	103		-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01 Batch	n: WG110675	53-2				
Hardness	101		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1107139-2						
Mercury, Total	90		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number:

L1813049

Report Date: 04/18/18

arameter	Native Sample	MS Added	MS Found %	MS Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch ID:	WG1106752	2-3	QC Sample: I	_1813049-01	Client	ID: 2018-	0413-CI	HARLES_CAM017
Antimony, Total	ND	0.5	0.5696	114		-	-		70-130	-	20
Arsenic, Total	ND	0.12	0.1341	112		-	-		70-130	-	20
Cadmium, Total	ND	0.051	0.05990	117		-	-		70-130	-	20
Copper, Total	0.00193	0.25	0.2547	101		-	-		70-130	-	20
Lead, Total	0.00117	0.51	0.5484	107		-	-		70-130	-	20
Nickel, Total	ND	0.5	0.5096	102		-	-		70-130	-	20
Selenium, Total	ND	0.12	0.1476	123		-	-		70-130	-	20
Silver, Total	ND	0.05	0.05291	106		-	-		70-130	-	20
Zinc, Total	ND	0.5	0.5584	112		-	-		70-130	-	20
otal Metals - Mansfield	I Lab Associated sam	ple(s): 01	QC Batch ID:	WG1106753	3-3	QC Sample: I	_1812043-01	Client	ID: MS Sa	ample	
Iron, Total	ND	1	1.02	102		-	-		75-125	-	20
otal Hardness by SM 2	2340B - Mansfield Lal	o Associate	ed sample(s): 0	1 QC Batc	h ID: ˈ	WG1106753-3	3 QC Samp	le: L181	12043-01	Client I	D: MS Sample
Hardness	159	66.2	220	92		-	-		75-125	-	20
otal Metals - Mansfield	I Lab Associated sam	ple(s): 01	QC Batch ID:	WG1107139	9-3	QC Sample: I	_1813049-01	Client	ID: 2018-	0413-CI	HARLES_CAM017
Mercury, Total	ND	0.005	0.0048	96		-	-		70-130	-	20
otal Metals - Mansfield	I Lab Associated sam	ple(s): 01	QC Batch ID:	WG1107139	9-5	QC Sample: I	_1813184-01	Client	ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.0048	97		-	-		70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813049

Report Date: 04/18/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG110675	2-4 QC Sample:	L1813049-01	Client ID:	2018-0413-CHARLES_CAM017
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Copper, Total	0.00193	0.00206	mg/l	7	20
Lead, Total	0.00117	0.00121	mg/l	3	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG110675	3-4 QC Sample:	L1812043-01	Client ID:	DUP Sample
Iron, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG110713	9-4 QC Sample:	L1813049-01	Client ID:	2018-0413-CHARLES_CAM017
Mercury, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG110713	9-6 QC Sample:	L1813184-01	Client ID:	DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number:

L1813049

Report Date: 04/18/18

SAMPLE RESULTS

Lab ID: L1813049-01

2018-0413-CHARLES_CAM017

Sample Location: CAMBRIDGE, MA

Date Collected:

04/13/18 08:30

AMBRIDGE, MA

Date Received: 04/13/18

Field Prep:

Not Specified

Sample Depth:

Client ID:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lat)								
Nitrogen, Ammonia	ND		mg/l	0.075		1	04/14/18 15:50	04/16/18 20:07	121,4500NH3-BH	AT

L1813049

Project Name: 50 ROGERS STREET

Project Number: 34250-844 Report Date: 04/18/18

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	Batch:	: WG11	106531-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	04/14/18 15:50	04/16/18 20:03	121,4500NH3-l	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Lab Number:

L1813049

Project Number: 34250-844

Report Date:

04/18/18

Parameter	LCS %Recovery Q	LCSD ual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1106531-	2					
Nitrogen, Ammonia	92	-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number:

34250-844

Lab Number:

L1813049

Report Date:

04/18/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou	SD Ind	MSD %Recovery Qu	Re ual	ecovery Limits	RPD (Qual	RPD Limits
General Chemistry - Westborough CHARLES_CAM017	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1106531-	4	QC Sample: L18130	049-01	Client	ID: 2018	8-0413	-
Nitrogen, Ammonia	ND	4	3.60	90		-	-		80-120	-		20

L1813049

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name: 50 ROGERS STREET**

Project Number: Report Date: 04/18/18 34250-844

Parameter Native Sample Duplicate Sample Units **RPD** Qual **RPD Limits** General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1106531-3 QC Sample: L1813049-01 Client ID: 2018-0413-CHARLES_CAM017 ND Nitrogen, Ammonia ND mg/l NC 20

Lab Number: L1813049

Report Date: 04/18/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

50 ROGERS STREET

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 34250-844

Container Info	ontainer Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1813049-01A	Plastic 250ml HNO3 preserved	Α	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),PB- 2008T(180),SB-2008T(180)
L1813049-01B	Plastic 250ml HNO3 preserved	A	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),HARDU(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),PB-2008T(180),SB-2008T(180)
L1813049-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		NH3-4500(28)

Project Name:50 ROGERS STREETLab Number:L1813049Project Number:34250-844Report Date:04/18/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or mainture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

В

Project Name:50 ROGERS STREETLab Number:L1813049Project Number:34250-844Report Date:04/18/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:50 ROGERS STREETLab Number:L1813049Project Number:34250-844Report Date:04/18/18

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 11

ID No.:17873

Page 1 of 1

Published Date: 1/8/2018 4:15:49 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДІРНА	CHAIN OF CUSTODY	Albany, NY 12205	SECTION SECTION	Mahwah, NJ 07430		ge /	-	ate i	Rec'd		,	1/	1.	ALPHA Job#		
ACCUSATION AND ADDRESS OF THE PARTY OF THE P	COSTODY	Tonawanda, NY 14150 Holme	m, PA 19043				- 200	in L			C	1/1:	3/18	2/8/30	149	
Westborough, MA 01581 8 Walkup Dr.	1 Mansfield, MA 02048 320 Forbes Blvd	Project Information					Del	iverab	les				91 0	Billing Information	-	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	50 Rogers S	Street			E9166	Ema		- 10		Fax		☐ Same as Client Info		
TAAC Sourceure tes	PAX: 500-022-3200	Project Location:	Cambridge,		112		-	10.00	ulS (1 F	ile)	-	EQuIS (4	4 File)	PO#		
H&A Information	NE STERNA	Project #	34250-844	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_	Othe				,	1 1107	100		
H&A Client: ARE-MA F	Region No. 21 LLC	(Use Project name as Pro	-				Distance of the last	anguese.	A PORT OF THE PART	ireme	nts /Prov	gram/Crd	eria)	Disposal Site Information	Cities and	
H&A Address: 465 Medfo	TO THE STREET STREET	Project Manager:		ggins/Lee Penv	well		MA	and the same	Annihim	A CONTRACTOR	10 11 10 2	i sini c	3110)			
Boston, MA 02129		ALPHAQuote #:	BINNEY	Minutes 1	WG.		-							Please identify below location of disposal facilities.	applicable	
H&A Phone: 617-886-7	/359	Turn-Around Time	CONTRACTOR OF THE PARTY OF THE	ALC: UNK												
China and China	haleyaldrich.com	Standard	d [7]	Due Date:	i i		1							Disposal Facility:		
	haleyaldrich.com	Rush (only if pre approved)		# of Days:			Mate	Color	- Dinto		2 140	ntify criteri		□ NJ □ NY		
	n previously analyzed by Alg		//	# Ot Days.	4		-	_		rom me	anu & idei	ntity criteri	a.	Li Other:		
Other project specific rea		pna 🛶					ANA	LYSI	S	_				Sample Filtration	活	
	Approved 2017 RGP Perm	nit methods					metals	Ammonia nitrogen	Hardness					☐ Done ☐ Lab to do Preservation	0 1 0 1	
							la la	BHG	ardr					☐ Lab to do	g g	
Sb, As, Cd, Total Cr, Cr III,	I, Cr VI, Cu, Fe, Pb, Hg, Ni,	, Se, Ag, Zn					. Total	E	3. H					(Please Specify below)	1	
ALPHA Lab ID (Lab Lies Only) Sample ID		mnle ID	Coll	lection	Sample	Sampler's	-	2. A	15						1	
(Lab Use Only)	rily)		Date	Time	Matrix	Initials	1/							Sample Specific Comments	1	
13099-01	2018-0413-Cha	rles-CAMOIT	4/13/18	830	AQ	PJLA	X	×	×						3 %	
			' '			1			-	\Box				pH =	7.51	
														temperature =	9.000	
		=======================================											+	tomperature -	48.2°F	
												+	+		78.67	
						\vdash					-	_			-	
					\vdash		\vdash		\vdash	\vdash	-	+				
					\vdash	-	\vdash		\vdash	\vdash	-	-	+++			
				-	$\vdash \vdash \vdash$		H		\vdash	\vdash	-	+	+			
					$\vdash \vdash$		\vdash			\vdash	+	+	+			
Preservative Code:	Container Code	Westboro: Certification No	o: MA935		-						\rightarrow	+	+	Please print clearly, legibly and	d completely.	
A = None B = HCl	F = FIBSUC	Mansfield: Certification No.		1	Con	ntainer Type	Р	Р	Р					Samples can not be logged in a	and	
C = HNO ₃	V = Vial		i liniu i s	1			\vdash			-	+	+	++	turnaround time clock will not a ambiguities are resolved. Alpha		
$D = H_2SO_4$ E = NaOH	G = Glass B = Bacteria Cup			1	P	Preservative	С	D	С					services under this Chain of Custo		
F = MeOH	C = Cube	7.0								\rightarrow				performed in accordance with terr		
G = NaHSO ₄	O = Other	Relinquished B		Date/T			Receive	ed By		_	-/-	_	Time	conditions within Blanket Service a 2015-18-Alpha Analytical by and b	Agreement# between Haley	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	E = Encore D = BOD Bottle	Tanto lin			905	M. auth	À	1			4/13/		30	& Aldrich, Inc., its subsidiaries and	d affliates and	
0 = Other		14,000		4/15/6 16		Ma	- 1	IL	mi	AAL	4/13/	R 1	1705	Alpha Analytical.		
		mhod	~	4/13/18	1828	al	0	1		-		13/18				
Document ID: 20455 Rev 1 (1/2	(8/2016)														4	
							$\overline{}$	-	-							

ANALYTICAL REPORT

Lab Number: L1813321

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Penwell Phone: (617) 886-7359

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Report Date: 04/23/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 ROGERS STREET

CAM017

Project Number: 34250-844

Lab Number:

L1813321

Report Date:

04/23/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1813321-01	2018-0417-CHARLES-	WATER	CAMBRIDGE, MA	04/17/18 08:30	04/17/18

Serial_No:04231816:05

Project Name: 50 ROGERS STREET Lab Number: L1813321

Project Number: 34250-844 **Report Date:** 04/23/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Maile Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 04/23/18

ANALYTICA

METALS

Serial_No:04231816:05

04/17/18 08:30

Date Collected:

Project Name:50 ROGERS STREETLab Number:L1813321Project Number:34250-844Report Date:04/23/18

SAMPLE RESULTS

Lab ID: L1813321-01

Client ID: 2018-0417-CHARLES-CAM017 Date Received: 04/17/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Chromium, Total	0.00106		mg/l	0.00100		1	04/18/18 09:45	5 04/19/18 11:31	EPA 3005A	3,200.8	AM
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		04/19/18 11:31	NA	107,-	

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number:

L1813321

Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG11	107466-	1				
Chromium, Total	ND	mg/l	0.00100		1	04/18/18 09:45	04/18/18 15:09	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: 50 ROGERS STREET

Lab Number:

L1813321

Project Number: 34250-844

Report Date:

04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG110746	6-2					
Chromium, Total	98		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number:

34250-844

Lab Number:

L1813321

Report Date:

04/23/18

Parameter Total Metals - Mansfield Lab	Native Sample Associated sam	MS Added		MS %Recovery D: WG1107466	Qu 6-3		MSD %Recovery L1813208-01	Qual	Recovery Limits		Qual	RPD Limits
Chromium, Total	0.0072	0.2	0.2096	101		-	-		70-130	-		20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG1107466	6-5	QC Sample:	L1813208-02	Clien	t ID: MS Sa	ample		
Chromium, Total	ND	0.2	0.2002	100		-	-		70-130	-		20

INORGANICS & MISCELLANEOUS

Project Name: 50 ROGERS STREET Lab Number:

L1813321

Project Number: 34250-844 Report Date:

04/23/18

SAMPLE RESULTS

Lab ID: L1813321-01

2018-0417-CHARLES-CAM017

Field Prep:

04/17/18 08:30

Sample Location: CAMBRIDGE, MA

Date Received:

Date Collected:

04/17/18 Not Specified

Sample Depth:

Matrix:

Client ID:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab)								
Chromium, Hexavalent	ND		mg/l	0.010		1	04/17/18 11:48	04/18/18 00:14	1,7196A	UN

L1813321

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: 34250-844 **Report Date:** 04/23/18

nod Blank Analysis

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for samp	ole(s): 01	Batch:	: WG11	107358-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	04/17/18 11:48	04/18/18 00:09	1,7196A	UN

Project Name: 50 ROGERS STREET

Lab Number:

L1813321

Project Number: 34250-844

Report Date:

04/23/18

Parameter	LCS %Recovery Qu	LCSD ual %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01	Batch: WG1107358-	2				
Chromium, Hexavalent	96	-		85-115	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number:

34250-844

Lab Number:

L1813321

Report Date:

04/23/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery C	Recovery Qual Limits	RPD Qu	RPD al Limits
General Chemistry - Westborou CHARLES-CAM017	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1107358-4	QC Sample: L1813	3321-01 Client l	ID: 2018-0	417-
Chromium, Hexavalent	ND	0.1	0.095	95	-	-	85-115	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number: 50 ROGERS STREET L1813321

04/23/18 **Project Number:** 34250-844 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp CHARLES-CAM017	ole(s): 01 QC Batch ID	: WG1107358-3 QC	Sample: L1813	321-01 CI	ient ID: 20	18-0417-
Chromium, Hexavalent	ND	ND	mg/l	NC		20

Project Name:

50 ROGERS STREET L1813321

Project Number: 34250-844 **Report Date:** 04/23/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1813321-01A	Plastic 500ml unpreserved	Α	7	7	2.3	Υ	Absent		HEXCR-7196(1)
L1813321-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	2.3	Υ	Absent		CR-2008T(180)
L1813321-01B1	Plastic 250ml HNO3 preserved	Α	<2	<2	2.3	Υ	Absent		CR-2008T(180)

Project Name:50 ROGERS STREETLab Number:L1813321Project Number:34250-844Report Date:04/23/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:50 ROGERS STREETLab Number:L1813321Project Number:34250-844Report Date:04/23/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:50 ROGERS STREETLab Number:L1813321Project Number:34250-844Report Date:04/23/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

107 Alpha Analytical - In-house calculation method.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Revision 11

Page 1 of 1

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL 508-898-9220 FAX: 508-898-9193 H&A Information H&A Client: ARE-MA F. H&A Address: 465 Medfo	320 Forbes Blvd TEL: 508-522-9300 FAX: 508-822-3288 Region No. 21 LLC	Service Centers Brewer, ME 04412 Albany, NY 12203 Tenawenda, NY 14150 Holm Project Information Project Name: Project Location: Project # (Use Project name as P Project Manager: ALPHAQuote #:	50 Rogers Si Cambridge, I 34250-844	itreet		ge of	Deliv	Othe	ab 03 II IS (1 F r:	ile)		//8 Fax EQuIS (‡ File)		ALPHA Job # L 8 13 3 1 Billing Information L Same as Client Info PO # Disposal Site Information Please identify below location of disposal facilities.	applicable
	haleyaldrich.com	Turn-Around Time Standar Rush (only if pre approved		Due Date # of Days	200		Note:	_	_	rom me	nu & ider	ntify criter	ia.		Disposal Facility: NJ LI NY Other: Sample Filtration	lui de
Other project specific red Please sample per EPA A Please specify Metals or Sb, As, Cd, Total Cr, Cr III,	quirements/comments: Approved 2017 RGP Pern	nit methods	1 0.5				CK 111, Tanice		Sellation .						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	T 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALPHA Lab ID (Lab Use Only)		mple ID	Date	ection Time	Sample Matrix	Sampler's Initials	£ 2	A							Sample Specific Comments	
13331-01	2018-0417-Ch	arles - CAMBIT	4/17/18	8:30	AQ	NLK	メ							-	pH = temperature =	6.6 53° F
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N			_	ntainer Type Preservative		R R	R					t s	Please print clearly, legibly and Samples can not be logged in a urnaround time clock will not ambiguities are resolved. Alphaservices under this Chain of Custo performed in accordance with temperature.	nd start until any Analytical's ody shall be
F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished N Klammeyer 77	174	Date/1 4/13/18 1/17/18	163(- 1750	Brid	-		- A		1117		7Time 3 / 1'SO	2	conditions within Blanket Service 2015-18-Alpha Analytical by and b Aldrich, Inc., its subsidiaries and Alpha Analytical.	Agreement# etween Haley
Document ID: 20455 Rev 1 (1/2	28/2016)															

ANALYTICAL REPORT

Lab Number: L1813322

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Penwell Phone: (617) 886-7359

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Report Date: 04/23/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 34250-844

Lab Number: Report Date:

L1813322

04/23/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1813322-01	HA-C2_2018-0417	WATER	CAMBRIDGE, MA	04/17/18 11:50	04/17/18
L1813322-02	HA11-01A_2018-0417	WATER	CAMBRIDGE, MA	04/17/18 13:30	04/17/18

Project Name: 50 ROGERS STREET Lab Number: L1813322

Project Number: 34250-844 **Report Date:** 04/23/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	NO
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L1813322

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: 34250-844 **Report Date:** 04/23/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800-	-624-9220) with a	างเ	nuestions
loase	Contact	Olicit	OCI VICCO	at ooo	02-7 02-20	, with a	ıy c	_f ucstions.

L1813322

Lab Number:

Project Name: 50 ROGERS STREET

Project Number: 34250-844 **Report Date:** 04/23/18

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

L1813322-02 (HA11-01A_2018-0417): The collection date and time on the chain of custody was 17-APR-18 13:30; however, the collection date/time on the container label was 17-APR-18 13:35. At the client's request, the collection date/time is reported as 17-APR-18 13:30.

In reference to question A:

L1813322-02 (HA11-01A_2018-0417): The sample was received above the appropriate pH for EPH analysis. The laboratory added HCl; however, the pH would not adjust into the proper range.

Volatile Organics

In reference to question H:

The initial calibration, associated with L1813322-01 and -02 (all submitted samples), did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane, (0.0012), 2-butanone (0.083), and 4-methyl-2-pentanone (0.0835) as well as the average response factor for 1,4-dioxane, 2-butanone, and 4-methyl-2-pentanone.

The continuing calibration standard, associated with L1813322-01 and -02 (all submitted samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

Nails

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

- Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Date: 04/23/18

ORGANICS

VOLATILES

04/17/18 11:50

Not Specified

04/17/18

Project Name: 50 ROGERS STREET

Project Number: 34250-844

SAMPLE RESULTS

Lab Number: L1813322

Report Date: 04/23/18

Date Collected:

Date Received:

Field Prep:

Lab ID: L1813322-01 Client ID: HA-C2_2018-0417

Sample Location: CAMBRIDGE, MA

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 04/19/18 10:52

Analyst: MM

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.1-Dichloroethane	MCP Volatile Organics - Westborough La	nb					
Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1.2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1.1,2-Trichloroethane ND ug/l 1.0 1 1.1,2-Trichloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 Trichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 trans-1,3-Dichloropropene ND ug/l 0.40 1 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.0</td> <td></td> <td>1</td>	Methylene chloride	ND		ug/l	2.0		1
Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofutorethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 Itans-1,3-Dichloropropene ND ug/l 0.40 1 Itans-1,3-Dichloropropene ND ug/l 0.40	1,1-Dichloroethane	ND		ug/l	1.0		1
1,2-Dichloropropane ND Ug/l 1.0 1 1 1,12-Trichloroethane ND Ug/l 1.0 1 1 1,11-Trichloroethane ND Ug/l 1.0 1 1 1 1 1 1 1 1	Chloroform	ND		ug/l	1.0		1
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0		1
Tetrachloroethene ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 Itrans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 <t< td=""><td>Dibromochloromethane</td><td>ND</td><td></td><td>ug/l</td><td>1.0</td><td></td><td>1</td></t<>	Dibromochloromethane	ND		ug/l	1.0		1
Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 trans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 0.40 1 Bromoform ND ug/l 0.40 1 1,1-1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1	1,1,2-Trichloroethane	ND		ug/l	1.0		1
Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-Trichloroethane ND ug/l 0.40 1 1,1-Trichloropropene ND ug/l 2.0 1 1,1-Trichloropropene ND ug/l 2.0 1 1,1-Trichloropropene ND ug/l 1.0 1 1,1-Trichloropropene ND ug/l 1.0 1 1 1,1-Trichloropropene ND ug/l 1.0 1 1 1,1-Trichloropropene ND ug/l 1.0 1 1 1 1 1 1 1 1	Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene, Total ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 Bromoform ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 V	Chlorobenzene	ND		ug/l	1.0		1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.0		1
Bromodichloromethane ND ug/l 1.0 1	1,2-Dichloroethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene, Total ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 Bromoform ND ug/l 1.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-D	1,1,1-Trichloroethane	ND		ug/l	1.0		1
cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Bromodichloromethane	ND		ug/l	1.0		1
1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Winyl chloride ND ug/l 2.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 2.0 1	trans-1,3-Dichloropropene	ND		ug/l	0.40		1
1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 2.0 1	cis-1,3-Dichloropropene	ND		ug/l	0.40		1
ND	1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	1,1-Dichloropropene	ND		ug/l	2.0		1
ND	Bromoform	ND		ug/l	2.0		1
Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Benzene	ND		ug/l	0.50		1
Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Toluene	ND		ug/l	1.0		1
Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Chloromethane	ND		ug/l	2.0		1
Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Bromomethane	ND		ug/l	2.0		1
1,1-Dichloroethene ND ug/l 1.0 1	Vinyl chloride	ND		ug/l	1.0		1
	Chloroethane	ND		ug/l	2.0		1
trans-1,2-Dichloroethene ND ug/l 1.0 1	1,1-Dichloroethene	ND		ug/l	1.0		1
	trans-1,2-Dichloroethene	ND		ug/l	1.0		1

L1813322

04/23/18

Project Name: 50 ROGERS STREET

L1813322-01

HA-C2_2018-0417

CAMBRIDGE, MA

Project Number: 34250-844

SAMPLE RESULTS

Date Collected: 04/17/18 11:50

Date Received: 04/17/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	gh Lab					
			_			
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
			-			

Project Name: 50 ROGERS STREET **Lab Number:** L1813322

Project Number: 34250-844 **Report Date:** 04/23/18

SAMPLE RESULTS

Lab ID: L1813322-01 Date Collected: 04/17/18 11:50

Client ID: HA-C2_2018-0417 Date Received: 04/17/18 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	104	70-130	

04/17/18 13:30

Project Name: 50 ROGERS STREET

Project Number: 34250-844

SAMPLE RESULTS

Lab Number: L1813322

Report Date: 04/23/18

Date Collected:

Lab ID: L1813322-02

Client ID: HA11-01A_2018-0417 Sample Location: CAMBRIDGE, MA

Date Received: 04/17/18 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 04/19/18 10:27

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough Lab							
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	ND		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.40		1	
cis-1,3-Dichloropropene	ND		ug/l	0.40		1	
1,3-Dichloropropene, Total	ND		ug/l	0.40		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	

Project Name: 50 ROGERS STREET **Lab Number:** L1813322

Project Number: 34250-844 **Report Date:** 04/23/18

SAMPLE RESULTS

Lab ID: L1813322-02 Date Collected: 04/17/18 13:30

Client ID: HA11-01A_2018-0417 Date Received: 04/17/18 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab				
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	1.0		1
1,3-Dichlorobenzene	ND	ug/l	1.0		1
1,4-Dichlorobenzene	ND	ug/l	1.0		1
Methyl tert butyl ether	ND	ug/l	2.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-Xylene	ND	ug/l	1.0		1
Xylene (Total)	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
1,2-Dichloroethene (total)	ND	ug/l	1.0		1
Dibromomethane	ND	ug/l	2.0		1
1,2,3-Trichloropropane	ND	ug/l	2.0		1
Styrene	ND	ug/l	1.0		1
Dichlorodifluoromethane	ND	ug/l	2.0		1
Acetone	ND	ug/l	5.0		1
Carbon disulfide	ND	ug/l	2.0		1
2-Butanone	ND	ug/l	5.0		1
4-Methyl-2-pentanone	ND	ug/l	5.0		1
2-Hexanone	ND	ug/l	5.0		1
Bromochloromethane	ND	ug/l	2.0		1
Tetrahydrofuran	ND	ug/l	2.0		1
2,2-Dichloropropane	ND	ug/l	2.0		1
1,2-Dibromoethane	ND	ug/l	2.0		1
1,3-Dichloropropane	ND	ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1
Bromobenzene	ND	ug/l	2.0		1
n-Butylbenzene	ND	ug/l	2.0		1
sec-Butylbenzene	ND	ug/l	2.0		1
tert-Butylbenzene	ND	ug/l	2.0		1
o-Chlorotoluene	ND	ug/l	2.0		1
p-Chlorotoluene	ND	ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1
Hexachlorobutadiene	ND	ug/l	0.60		1
Isopropylbenzene	ND	ug/l	2.0		1
p-Isopropyltoluene	ND	ug/l	2.0		1
Naphthalene	ND	ug/l	2.0		1
n-Propylbenzene	ND	ug/l	2.0		1

Project Name: 50 ROGERS STREET **Lab Number:** L1813322

Project Number: 34250-844 **Report Date:** 04/23/18

SAMPLE RESULTS

Lab ID: L1813322-02 Date Collected: 04/17/18 13:30

Client ID: HA11-01A_2018-0417 Date Received: 04/17/18 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ugh Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	101	70-130	

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/19/18 06:17

Analyst: MM

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	estborough Lab for sample(s): ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Batch: 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0)))
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0)))
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0)))
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND	ug/l ug/l ug/l ug/l	1.0 1.0 1.0)))
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND	ug/l ug/l ug/l	1.0 1.0	
1,2-Dichloropropane Dibromochloromethane	ND ND ND	ug/l ug/l	1.0)
Dibromochloromethane	ND ND	ug/l	1.0	
	ND			
1,1,2-Trichloroethane		~g, .)
Tetrachloroethene	110	ug/l	1.0	
Chlorobenzene	ND	ug/l	1.0	
Trichlorofluoromethane	ND	ug/l	2.0	
1,2-Dichloroethane	ND	ug/l	1.0	
1,1,1-Trichloroethane	ND	ug/l	1.0	
Bromodichloromethane	ND	ug/l	1.0	
trans-1,3-Dichloropropene	ND	ug/l	0.4	
cis-1,3-Dichloropropene	ND	ug/l	0.4	
1,3-Dichloropropene, Total	ND ND	ug/l	0.4	
1,1-Dichloropropene	ND	ug/l	2.0	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	
Benzene	ND	ug/l	0.5	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Chloromethane	ND	ug/l	2.0	
Bromomethane	ND	ug/l	2.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	2.0)
1,1-Dichloroethene	ND	ug/l	1.0)
trans-1,2-Dichloroethene	ND	ug/l	1.0)
Trichloroethene	ND	ug/l	1.0	

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/19/18 06:17

Analyst: MM

arameter	Result	Qualifier	Units	RI	L MDL
CP Volatile Organics	- Westborough Lab for	sample(s):	01-02	Batch:	WG1107843-5
1,2-Dichlorobenzene	ND		ug/l	1.0	0
1,3-Dichlorobenzene	ND		ug/l	1.0	0
1,4-Dichlorobenzene	ND		ug/l	1.0	0
Methyl tert butyl ether	ND		ug/l	2.0	0
p/m-Xylene	ND		ug/l	2.0	0
o-Xylene	ND		ug/l	1.0	0
Xylene (Total)	ND		ug/l	1.0	0
cis-1,2-Dichloroethene	ND		ug/l	1.0	0
1,2-Dichloroethene (total)	ND		ug/l	1.0	0
Dibromomethane	ND		ug/l	2.0	0
1,2,3-Trichloropropane	ND		ug/l	2.0	0
Styrene	ND		ug/l	1.0	0
Dichlorodifluoromethane	ND		ug/l	2.0	0
Acetone	ND		ug/l	5.0	0
Carbon disulfide	ND		ug/l	2.0	0
2-Butanone	ND		ug/l	5.0	0
4-Methyl-2-pentanone	ND		ug/l	5.0	0
2-Hexanone	ND		ug/l	5.0	0
Bromochloromethane	ND		ug/l	2.0	0
Tetrahydrofuran	ND		ug/l	2.0	0
2,2-Dichloropropane	ND		ug/l	2.0	0
1,2-Dibromoethane	ND		ug/l	2.0	0
1,3-Dichloropropane	ND		ug/l	2.0	0
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0	0
Bromobenzene	ND		ug/l	2.0	0
n-Butylbenzene	ND		ug/l	2.0	0
sec-Butylbenzene	ND		ug/l	2.0	0
tert-Butylbenzene	ND		ug/l	2.0	0
o-Chlorotoluene	ND		ug/l	2.0	0

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/19/18 06:17

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westbor	ough Lab for	sample(s):	01-02	Batch: WG1	107843-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

	Acceptance						
Surrogate	%Recovery Qualif	ier Criteria					
1,2-Dichloroethane-d4	113	70-130					
Toluene-d8	100	70-130					
4-Bromofluorobenzene	104	70-130					
Dibromofluoromethane	103	70-130					

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-02	Batch: WG110	7843-3	WG1107843-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	110		110		70-130	0	20	
Carbon tetrachloride	120		120		70-130	0	20	
1,2-Dichloropropane	110		100		70-130	10	20	
Dibromochloromethane	100		100		70-130	0	20	
1,1,2-Trichloroethane	99		98		70-130	1	20	
Tetrachloroethene	98		96		70-130	2	20	
Chlorobenzene	100		99		70-130	1	20	
Trichlorofluoromethane	120		120		70-130	0	20	
1,2-Dichloroethane	120		120		70-130	0	20	
1,1,1-Trichloroethane	120		120		70-130	0	20	
Bromodichloromethane	110		110		70-130	0	20	
trans-1,3-Dichloropropene	100		100		70-130	0	20	
cis-1,3-Dichloropropene	100		100		70-130	0	20	
1,1-Dichloropropene	110		110		70-130	0	20	
Bromoform	90		91		70-130	1	20	
1,1,2,2-Tetrachloroethane	91		91		70-130	0	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	120		120		70-130	0	20	
Bromomethane	78		86		70-130	10	20	

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-02	Batch: WG110	7843-3	WG1107843-4			
Vinyl chloride	110		110		70-130	0	20	
Chloroethane	120		110		70-130	9	20	
1,1-Dichloroethene	91		89		70-130	2	20	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	110		100		70-130	10	20	
1,2-Dichlorobenzene	94		97		70-130	3	20	
1,3-Dichlorobenzene	97		98		70-130	1	20	
1,4-Dichlorobenzene	96		98		70-130	2	20	
Methyl tert butyl ether	100		100		70-130	0	20	
p/m-Xylene	105		100		70-130	5	20	
o-Xylene	100		100		70-130	0	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	110		100		70-130	10	20	
1,2,3-Trichloropropane	96		98		70-130	2	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	110		120		70-130	9	20	
Acetone	120		130		70-130	8	20	
Carbon disulfide	80		95		70-130	17	20	
2-Butanone	120		120		70-130	0	20	
4-Methyl-2-pentanone	90		90		70-130	0	20	
2-Hexanone	110		100		70-130	10	20	
Bromochloromethane	110		110		70-130	0	20	
Tetrahydrofuran	110		110		70-130	0	20	

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-02	Batch: WG110	7843-3	WG1107843-4			
2,2-Dichloropropane	120		120		70-130	0	20	
1,2-Dibromoethane	97		94		70-130	3	20	
1,3-Dichloropropane	100		99		70-130	1	20	
1,1,1,2-Tetrachloroethane	100		100		70-130	0	20	
Bromobenzene	95		96		70-130	1	20	
n-Butylbenzene	100		100		70-130	0	20	
sec-Butylbenzene	100		100		70-130	0	20	
tert-Butylbenzene	110		110		70-130	0	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	100		100		70-130	0	20	
1,2-Dibromo-3-chloropropane	85		83		70-130	2	20	
Hexachlorobutadiene	84		82		70-130	2	20	
Isopropylbenzene	100		100		70-130	0	20	
p-Isopropyltoluene	100		100		70-130	0	20	
Naphthalene	86		87		70-130	1	20	
n-Propylbenzene	100		100		70-130	0	20	
1,2,3-Trichlorobenzene	84		86		70-130	2	20	
1,2,4-Trichlorobenzene	85		88		70-130	3	20	
1,3,5-Trimethylbenzene	100		100		70-130	0	20	
1,2,4-Trimethylbenzene	100		100		70-130	0	20	
Ethyl ether	100		100		70-130	0	20	
Isopropyl Ether	120		120		70-130	0	20	
Ethyl-Tert-Butyl-Ether	110		110		70-130	0	20	

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number:

L1813322

Report Date:

04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-02	Batch: WG110	07843-3 V	/G1107843-4			
Tertiary-Amyl Methyl Ether	99		98		70-130	1		20
1,4-Dioxane	88		76		70-130	15		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	116	111	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	98	100	70-130
Dibromofluoromethane	104	104	70-130

PETROLEUM HYDROCARBONS

L1813322

Project Name: Lab Number: **50 ROGERS STREET**

Project Number: Report Date:

34250-844 04/23/18

SAMPLE RESULTS

Lab ID: Date Collected: 04/17/18 11:50 L1813322-01

Client ID: HA-C2_2018-0417 Date Received: 04/17/18 CAMBRIDGE, MA Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 100, VPH-04-1.1 Analytical Date: 04/18/18 19:26

Analyst: ΜZ

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

		Acceptance				
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	84		70-130			
2,5-Dibromotoluene-FID	98		70-130			

Project Name: 50 ROGERS STREET Lab Number: L1813322

Project Number: 34250-844 **Report Date:** 04/23/18

SAMPLE RESULTS

Lab ID: L1813322-01 Date Collected: 04/17/18 11:50

Client ID: HA-C2_2018-0417 Date Received: 04/17/18 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Sample Temperature upon receipt:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 04/17/18 23:25
Analytical Date: 04/18/18 13:56 Cleanup Method1: EPH-04-1

Analyst: MEO Cleanup Date1: 04/18/18

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

		Acceptance				
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	63		40-140			
o-Terphenyl	84		40-140			
2-Fluorobiphenyl	86		40-140			
2-Bromonaphthalene	84		40-140			

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

SAMPLE RESULTS

Lab ID: L1813322-02

Client ID: HA11-01A_2018-0417 Sample Location: CAMBRIDGE, MA Date Collected: 04/17/18 13:30
Date Received: 04/17/18
Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 04/18/18 20:06

Analyst: MZ

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	83		70-130		
2,5-Dibromotoluene-FID	97		70-130		

Project Name: 50 ROGERS STREET Lab Number: L1813322

Project Number: 34250-844 **Report Date:** 04/23/18

SAMPLE RESULTS

Lab ID: L1813322-02 Date Collected: 04/17/18 13:30

Client ID: HA11-01A_2018-0417 Date Received: 04/17/18 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 04/17/18 23:25

Analytical Date: 04/18/18 14:42 Cleanup Method1: EPH-04-1
Analyst: MEO Cleanup Date1: 04/18/18

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		ug/l	100		1		
C19-C36 Aliphatics	ND		ug/l	100		1		
C11-C22 Aromatics	ND		ug/l	100		1		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1		

		Acceptance				
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	59		40-140			
o-Terphenyl	78		40-140			
2-Fluorobiphenyl	82		40-140			
2-Bromonaphthalene	77		40-140			

Project Name: 50 ROGERS STREET

Project Number: 34250-844 Lab Number: L1813322

Report Date: 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

98,EPH-04-1.1

Analyst:

04/18/18 00:26

MEO

Extraction Method: EPA 3510C 04/17/18 08:10 Extraction Date:

EPH-04-1 Cleanup Method: Cleanup Date: 04/17/18

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons	s - Westbor	ough Lab f	or sample(s):	01-02	Batch: WG1107088-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

	Acceptance				
Surrogate	%Recovery Qual	ifier Criteria			
Chloro-Octadecane	65	40-140			
o-Terphenyl	67	40-140			
2-Fluorobiphenyl	82	40-140			
2-Bromonaphthalene	80	40-140			

Project Name: 50 ROGERS STREET

Lab Number: L1813322

Project Number: 34250-844 **Report Date:** 04/23/18

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 04/18/18 14:05

Analyst: MZ

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1107833-4
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

		Acceptance				
Surrogate	%Recovery Qual	ifier Criteria				
2,5-Dibromotoluene-PID	92	70-130				
2,5-Dibromotoluene-FID	108	70-130				

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recove Limits		RPD Qual Limits	
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sample(s	s): 01-02	Batch: W	G1107088-2	WG1107088-3		
C9-C18 Aliphatics	75		76		40-140	1	25	
C19-C36 Aliphatics	77		80		40-140	4	25	
C11-C22 Aromatics	69		82		40-140	17	25	
Naphthalene	62		74		40-140	18	25	
2-Methylnaphthalene	64		76		40-140	17	25	
Acenaphthylene	67		78		40-140	15	25	
Acenaphthene	69		81		40-140	16	25	
Fluorene	69		82		40-140	17	25	
Phenanthrene	70		83		40-140	17	25	
Anthracene	68		81		40-140	17	25	
Fluoranthene	68		83		40-140	20	25	
Pyrene	70		85		40-140	19	25	
Benzo(a)anthracene	68		82		40-140	19	25	
Chrysene	70		82		40-140	16	25	
Benzo(b)fluoranthene	67		82		40-140	20	25	
Benzo(k)fluoranthene	67		79		40-140	16	25	
Benzo(a)pyrene	65		78		40-140	18	25	
Indeno(1,2,3-cd)Pyrene	60		73		40-140	20	25	
Dibenzo(a,h)anthracene	65		78		40-140	18	25	
Benzo(ghi)perylene	61		73		40-140	18	25	
Nonane (C9)	60		62		30-140	3	25	
Decane (C10)	66		69		40-140	4	25	
Dodecane (C12)	69		72		40-140	4	25	

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sampl	e(s): 01-02	Batch: V	VG1107088-2 WG	1107088-3		
Tetradecane (C14)	73		74		40-140	1		25
Hexadecane (C16)	75		77		40-140	3		25
Octadecane (C18)	75		79		40-140	5		25
Nonadecane (C19)	75		78		40-140	4		25
Eicosane (C20)	75		79		40-140	5		25
Docosane (C22)	75		78		40-140	4		25
Tetracosane (C24)	74		78		40-140	5		25
Hexacosane (C26)	74		78		40-140	5		25
Octacosane (C28)	73		77		40-140	5		25
Triacontane (C30)	74		77		40-140	4		25
Hexatriacontane (C36)	76		79		40-140	4		25

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	67	71	40-140
o-Terphenyl	69	82	40-140
2-Fluorobiphenyl	78	88	40-140
2-Bromonaphthalene	76	86	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813322

Report Date: 04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - Westboro	ugh Lab Assoc	iated sample(s)	: 01-02 Batch	n: WG1107833-2 WG11078	33-3	
C5-C8 Aliphatics	112		113	70-130	1	25
C9-C12 Aliphatics	119		113	70-130	5	25
C9-C10 Aromatics	103		95	70-130	9	25
Benzene	90		90	70-130	1	25
Toluene	94		91	70-130	3	25
Ethylbenzene	104		97	70-130	7	25
p/m-Xylene	102		94	70-130	8	25
o-Xylene	101		93	70-130	8	25
Methyl tert butyl ether	90		90	70-130	0	25
Naphthalene	102		95	70-130	7	25
1,2,4-Trimethylbenzene	103		95	70-130	9	25
Pentane	123		125	70-130	2	25
2-Methylpentane	108		110	70-130	2	25
2,2,4-Trimethylpentane	109		111	70-130	2	25
n-Nonane	114		113	30-130	1	25
n-Decane	122		115	70-130	6	25
n-Butylcyclohexane	122		114	70-130	7	25

Surrogate	LCS %Recovery Qua	LCSD I %Recovery G	Acceptance Qual Criteria
2,5-Dibromotoluene-PID	101	94	70-130
2,5-Dibromotoluene-FID	116	108	70-130

Project Name: 50 ROGERS STREET

Project Number: 34250-844

Lab Number: L1813322 **Report Date:** 04/23/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1813322-01A	Vial HCI preserved	Α	NA		2.5	Υ	Absent		MCP-8260-10(14)
L1813322-01B	Vial HCl preserved	Α	NA		2.5	Υ	Absent		MCP-8260-10(14)
L1813322-01C	Vial HCl preserved	Α	NA		2.5	Υ	Absent		MCP-8260-10(14)
L1813322-01D	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-10(14)
L1813322-01E	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-10(14)
L1813322-01F	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-10(14)
L1813322-01G	Amber 1000ml HCl preserved	Α	<2	<2	2.5	Υ	Absent		EPH-10(14)
L1813322-01H	Amber 1000ml HCl preserved	Α	<2	<2	2.5	Υ	Absent		EPH-10(14)
L1813322-02A	Vial HCl preserved	Α	NA		2.5	Υ	Absent		MCP-8260-10(14)
L1813322-02B	Vial HCl preserved	Α	NA		2.5	Υ	Absent		MCP-8260-10(14)
L1813322-02C	Vial HCl preserved	Α	NA		2.5	Υ	Absent		MCP-8260-10(14)
L1813322-02D	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-10(14)
L1813322-02E	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-10(14)
L1813322-02F	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-10(14)
L1813322-02G	Amber 1000ml HCl preserved	Α	7	4	2.5	N	Absent		EPH-10(14)
L1813322-02H	Amber 1000ml HCl preserved	Α	<2	<2	2.5	Υ	Absent		EPH-10(14)

Project Name:50 ROGERS STREETLab Number:L1813322Project Number:34250-844Report Date:04/23/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:50 ROGERS STREETLab Number:L1813322Project Number:34250-844Report Date:04/23/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: 50 ROGERS STREET Lab Number: L1813322

Project Number: 34350 844

Penert Date: 04/23/18

Project Number: 34250-844 **Report Date:** 04/23/18

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 11

Page 1 of 1

Published Date: 1/8/2018 4:15:49 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Welkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Brewer, ME 04412 Portem Albany, NY 12205 Tonawanda, NY 14150 Holme Project Information Project Name: Project Location: Project #	outh, NH 93801 Ma s, PA 19043 50 Rogers St Cambridge, N 34250-844	reet	Pag / c	e /	Deli	in L verab	oles all ulS (1 I			7//S Fax EQuiS (4 File)		ALPHA Job # L/8/13322 Billing Information Same as Client I		
	Region No. 62 LLC	(Use Project name as Pro					-	_	-	ııremen	ts (Prog	ram/Cr	itena)	100	Disposal Site Information	
H&A Address: 465 Medfo Boston, MA 02129	TOTAL TOTAL BOOK THE TOTAL TO T					MA NPDES RGP MCP Method 1						Please identify below location of a disposal facilities.				
H&A Email: Ipenwell@	naleyaldrich.com haleyaldrich.com	Turn-Around Time Standard Rush (only if pre approved		Due Date # of Days			-	_		from me	nu & iden	tify crite	ria.		Disposal Facility: NJ NY Other:	
These samples have been Other project specific red		ona 🗀					ANA	LYSI	s T			_	_		Sample Filtration	
Please specify Metals or	TAL.						1. Vocs	EPH c-ranges	VPH c-ranges						Done Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	Colle	ction Time	Sample Matrix	Sampler's Initials		es	4							
13322-01	HA-CZ_Z HA-11 -01A	-2018-0417			AQ AQ	LCT	x X	×	×						Sample Specific Comments	
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type		N	A- 1	- V						Please print clearly, legibly and Samples can not be logged in a turnaround time clock will not	
				ime Re 1/541 You 1631 January		2	eceived By: / /			Date/Tir 41718 (63 41718 (7)			31	ambiguities are resolved. Alph- services under this Chain of Cust- performed in accordance with ten- conditions within Blanket Service 2015-18-Alpha Analytical by and I & Aldrich, Inc., its subsidiaries an Alpha Analytical.		

Method Blank Summary Form 4 VOLATILES

Client : Haley & Aldrich, Inc. Lab Number : L1813322
Project Name : 50 ROGERS STREET Project Number : 34250-844
Lab Sample ID : WG1107843-5 Lab File ID : V16180419A06

Instrument ID : VOA116 Matrix : WATER

Matrix : WATER Analysis Date : 04/19/18 06:17

Client Sample No.	Lab Sample ID	Analysis Date	
WG1107843-3LCS	WG1107843-3	04/19/18 05:02	
WG1107843-4LCSD	WG1107843-4	04/19/18 05:27	
HA11-01A_2018-0417	L1813322-02	04/19/18 10:27	
HA-C2_2018-0417	L1813322-01	04/19/18 10:52	

09:14

Continuing Calibration Form 7

Init. Calib. Times

: 06:15

Client : Haley & Aldrich, Inc. Lab Number : L1813322
Project Name : 50 ROGERS STREET Project Number : 34250-844

Channel:

: WG1107843-2

Sample No

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Fluorobenzene	1	1	-	0	20	73	02
Dichlorodifluoromethane	0.292	0.331	-	-13.4	20	83	0
Chloromethane	0.415	0.496	-	-19.5	20	89	0
Vinyl chloride	0.311	0.344	-	-10.6	20	82	0
Bromomethane	10	7.855	-	21.4*	20	72	0
Chloroethane	0.142	0.165	-	-16.2	20	84	0
Trichlorofluoromethane	0.357	0.426	-	-19.3	20	88	0
Ethyl ether	0.081	0.085	-	-4.9	20	77	0
1,1-Dichloroethene	0.218	0.199	-	8.7	20	74	0
Carbon disulfide	0.669	0.532	-	20.5*	20	61	0
Methylene chloride	0.258	0.261	-	-1.2	20	78	0
Acetone	10	12.434	-	-24.3*	20	87	01
trans-1,2-Dichloroethene	0.265	0.277	-	-4.5	20	78	0
Methyl tert-butyl ether	0.521	0.534	-	-2.5	20	79	01
Diisopropyl ether	1.083	1.297	-	-19.8	20	89	01
1,1-Dichloroethane	0.521	0.596	-	-14.4	20	84	01
Ethyl tert-butyl ether	0.824	0.902	-	-9.5	20	83	02
cis-1,2-Dichloroethene	0.287	0.3	-	-4.5	20	77	01
2,2-Dichloropropane	0.391	0.471	-	-20.5*	20	87	01
Bromochloromethane	0.123	0.136	-	-10.6	20	81	02
Chloroform	0.459	0.518	-	-12.9	20	84	02
Carbon tetrachloride	0.37	0.447	-	-20.8*	20	87	01
Tetrahydrofuran	10	11.202	-	-12	20	83	02
Dibromofluoromethane	0.248	0.257		-3.6	20	77	01
1,1,1-Trichloroethane	0.422	0.495		-17.3	20	87	02
2-Butanone	0.092	0.109	-	-18.5	20	83	02
1,1-Dichloropropene	0.382	0.414	<u> </u>	-8.4	20	81	02
Benzene	1.122	1.154	-	-2.9	20	79	01
tert-Amyl methyl ether	0.643	0.638		0.8	20	78	01
1,2-Dichloroethane-d4	0.25	0.289	-	-15.6	20	87	02
1,2-Dichloroethane	0.324	0.289		-18.5	20	91	02
Trichloroethene		0.384	-	-18.5	20	-	02
	0.287					82	
Dibromomethane	0.134	0.149	-	-11.2	20	82	02
1,2-Dichloropropane	0.298	0.322	-	-8.1	20	80	02
Bromodichloromethane	0.36	0.414	-	-15	20	83	02
1,4-Dioxane	0.0015	0.00131*	-	12.7	20	70	02
cis-1,3-Dichloropropene	0.441	0.465	-	-5.4	20	82	03
Chlorobenzene-d5	1	1	•	0	20	78	02
Toluene-d8	1.222	1.221	-	0.1	20	77	02
Toluene	0.86	0.876	-	-1.9	20	80	02
4-Methyl-2-pentanone	0.088	0.079*	-	10.2	20	73	02
Tetrachloroethene	0.35	0.345	-	1.4	20	79	02
trans-1,3-Dichloropropene	0.466	0.464	-	0.4	20	80	02
1,1,2-Trichloroethane	0.206	0.204	-	1	20	76	02
Chlorodibromomethane	0.303	0.305	-	-0.7	20	81	02

^{*} Value outside of QC limits.

09:14

Continuing Calibration Form 7

Init. Calib. Times

: 06:15

Client : Haley & Aldrich, Inc. Lab Number : L1813322
Project Name : 50 ROGERS STREET Project Number : 34250-844
Instrument ID : VOA116

Channel:

: WG1107843-2

Sample No

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,3-Dichloropropane	0.423	0.422	-	0.2	20	79	02
1,2-Dibromoethane	0.244	0.237	-	2.9	20	78	03
2-Hexanone	0.165	0.179	-	-8.5	20	81	02
Chlorobenzene	0.95	0.955	-	-0.5	20	79	02
Ethylbenzene	1.652	1.72	-	-4.1	20	81	02
1,1,1,2-Tetrachloroethane	0.326	0.345	-	-5.8	20	84	02
p/m Xylene	0.647	0.667	-	-3.1	20	82	02
o Xylene	0.606	0.614	-	-1.3	20	79	02
Styrene	1.002	1.009	-	-0.7	20	77	02
1,4-Dichlorobenzene-d4	1	1	-	0	20	80	02
Bromoform	0.33	0.297	-	10	20	73	02
Isopropylbenzene	3.448	3.495	-	-1.4	20	82	02
4-Bromofluorobenzene	0.965	0.943	-	2.3	20	76	02
Bromobenzene	0.726	0.689	-	5.1	20	75	01
n-Propylbenzene	4.009	4.174	-	-4.1	20	84	02
1,1,2,2-Tetrachloroethane	0.559	0.509	-	8.9	20	70	02
2-Chlorotoluene	2.588	2.631	-	-1.7	20	81	02
1,3,5-Trimethylbenzene	2.777	2.831	-	-1.9	20	82	02
1,2,3-Trichloropropane	0.436	0.421	-	3.4	20	75	02
4-Chlorotoluene	2.34	2.374	-	-1.5	20	80	01
tert-Butylbenzene	1.825	1.946	-	-6.6	20	86	01
1,2,4-Trimethylbenzene	2.738	2.772	-	-1.2	20	80	01
sec-Butylbenzene	3.384	3.467	-	-2.5	20	82	02
p-Isopropyltoluene	2.983	3.031	-	-1.6	20	83	01
1,3-Dichlorobenzene	1.452	1.405	-	3.2	20	77	01
1,4-Dichlorobenzene	1.44	1.379	-	4.2	20	76	01
n-Butylbenzene	2.622	2.672	-	-1.9	20	84	0
1,2-Dichlorobenzene	1.283	1.201	-	6.4	20	74	01
1,2-Dibromo-3-chloropropan	0.08	0.068	-	15	20	72	01
Hexachlorobutadiene	10	8.37	-	16.3	20	80	0
1,2,4-Trichlorobenzene	0.74	0.633	-	14.5	20	70	0
Naphthalene	1.779	1.524	-	14.3	20	70	0
1,2,3-Trichlorobenzene	0.642	0.538	-	16.2	20	69	0

^{*} Value outside of QC limits.