

6 March 2018 File No. 130904-002

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Coordinator 5 Post Office Square, Suite 100 (OEP06-01) Boston, Massachusetts 02109-3912

Attention: Ms. Shelley Puleo

Subject: NPDES RGP NOI Application

Temporary Construction Dewatering

1000 Washington Street Boston, Massachusetts

Dear Ms. Puleo:

On behalf of the project owner, 1000 Washington (Boston) Owner, LLC, c/o Nordblom Company, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the U.S. Environmental Protection Agency (EPA) for temporary construction site dewatering under the NPDES RGP. As defined in Table 1 of the NPDES RGP, the Activity Category is III.G (Contaminated Site Dewatering, Sites with Known Contamination) due to the presence of Iron in groundwater above the NPDES RGP Effluent Limitation. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary construction dewatering planned in support of the proposed 1000 Washington Street project located in Boston, Massachusetts. Refer to Figure 1 – Project Locus. We anticipate construction dewatering will be conducted, as necessary, during foundation construction and below-grade excavation.

EXISTING SITE CONDITIONS

The approximately 83,000 square foot (sf) property is bound by Washington Street to the west; William E. Mullins Way to the south; Harrison Avenue to the east; and Herald Street to the north. Site grades vary from about El. 24 in the northeast corner of the site to about El. 15 in the southwest corner of the site. ¹

An 11-story office building (1000 Washington Street) currently occupies about 24,000 sf of the southern half of the site, with a 10,000-sf surface paved lot along the eastern side of the building for parking and loading dock access. A network of subsurface utilities, including below-grade stormwater leaching chambers, exist beneath the paved lot. A 1-story lobby building connects the office building to a 3-story

 $^{\rm 1}$ Elevations reported herein are in feet and reference the Boston City Base (BCB) Datum.

above-grade (33,000 sf footprint and one below-grade level) parking garage structure within much of the north half of the site. Refer to Figure 2 – Subsurface Exploration and Discharge Location Plan.

PROPOSED CONSTRUCTION

The proposed project consists of the construction of a vertical expansion above the parking garage (8 additional floors) for office use. The 1-story lobby between the office building and the garage will be demolished, and a new, larger and taller lobby will be constructed to serve both the existing office building and proposed office building/garage.

To the east of the existing office building, within the currently paved surface lot, a 1-story retail building will be constructed, having a footprint of about 2,500 sf and with the ground floor planned to be at about El. 19. Other new work includes upgrades and replacement to the site's subsurface utility infrastructure (including expansion of the existing stormwater storage and groundwater infiltration system), and landscape/hardscape improvements surrounding the site buildings.

No new below-grade space beneath any of the three buildings is planned. However, excavations to construct the proposed foundations and other site improvements are anticipated to extend beneath site groundwater levels, anticipated to be encountered at approximately El. 8 to El. 10. As a result, dewatering will be necessary to control groundwater, seepage, precipitation, surface water runoff and construction-generated water to enable below-grade construction activities in-the-dry.

Construction is anticipated to begin in March 2018. Dewatering is anticipated to start at that time and continue for an estimated seven (7) months or through approximately October 2018.

SITE HISTORY

Historic maps indicate the colonial shoreline crossed through the site in an approximate north-to-south direction; refer to Figure 2 for an approximation of the 1630 colonial shoreline. Much of the eastern half of the site is believed to have been submerged until about 1814, when filling of South Cove (i.e., South Boston Bay) had progressed enough to allow for the extension of Front Street (today's Harrison Avenue) and the making of the subject site's land parcel.

Other historical sources show numerous rowhouse-type and other larger footprint buildings (former cathedral and theatre occupying the northwest quadrant of the site until sometime between 1909 and 1929, and orphanage building in the south half of the site until around 1914 when the existing office building was constructed). The existing garage structure was built in the late 1980s/early 1990s.

ENVIRONMENTAL CONDITIONS AND REGULATORY BACKGROUND

Review of documents pertaining to the environmental history of the site indicated several underground storage tanks (USTs) have existed at the site, including six (6) USTs associated with a former fuel dispensing area in the northwest corner of the site (removed in 1984), and six (6) USTs associated with the former Wolfe building in the northwest quadrant of the site (removed during demolition of the

Wolfe building in the early 1980s). Three (3) of these tanks were associated with hydraulic vehicle lifts, two (2) contained heating oil and the remaining tank contained waste oil.

In 2006, three (3) USTs were also identified in the southeast quadrant of the site. Two (2) of these tanks contained #4 heating oil, and the remaining tank contained diesel fuel. Records indicate these USTs were installed in 1980. The location of these USTs is currently occupied by the below-grade stormwater leaching chambers located east of the existing 1000 Washington Street building shown on Figure 2. Therefore, it is assumed these three USTs were removed some time during the period between 2006 and installation of the stormwater leaching chambers.

On 3 February 1989, the site was reported to the Department of Environmental Quality Engineering (DEQE), now the Massachusetts Department of Environmental Protection (MassDEP), following the discovery of gasoline-contaminated soil in the northwest corner of the site during construction of the existing parking garage structure. A Notice of Responsibility (NOR) was issued on 7 February 1989, and Release Tracking Number (RTN) 3-2782 was subsequently assigned to the site. Following a series of site investigations to further define the extent of impacted soils, GZA concluded the sources of the contamination included the former fuel dispensing area in the northwest corner of the site; the former heating oil tanks in the northwest quadrant of the site; and creosote and asphalt associated with placement of asphalt pavement at the site. Soils determined to be impacted with Volatile Organic Compounds (VOCs) and Petroleum Hydrocarbons were removed from the site; the exact quantity of material removed from the site was not reported. In a 13 October 1995 letter to MassDEP, GZA provided a Licensed Site Professional (LSP) Evaluation Opinion indicating that the equivalent of a Class A-2 Response Action Outcome (RAO) had been achieved at the site, concluding at that time that a condition of No Significant Risk (NSR) exists at the site but background conditions had not been achieved.

Haley & Aldrich conducted a subsurface exploration program at the site for geotechnical and environmental purposes in October and November 2017 in association with the planned subject development. The program consisted of six (6) test borings (designated HA17-01 through HA17-06) drilled to depths ranging from 41 to 123 ft below existing site grades. The designations and approximate locations of the test borings, along with the elevation of the top of each soil unit and bedrock (where encountered) at each location, are indicated on Figure 2.

A total of fourteen (14) composited soil samples were collected of which eleven (11) samples were obtained from the fill soils and three (3) samples were from the underlying Marine Deposits (Clay). The samples were submitted to Alpha Analytical (Alpha) of Westborough, Massachusetts for chemical analyses of constituents identified in MassDEP Policy #COMM-97-001 and those typically required by soil receiving facilities. The analytical data collected from this recent program indicates a reportable condition does not currently exist at the site.

TEMPORARY CONSTRUCTION DEWATERING NOTICE OF INTENT (NOI)

One groundwater sample was obtained from observation well HA17-05(OW) on 7 December 2017. The location of the observation well is shown on Figure 2. The sample was submitted to Alpha for analysis for the following NPDES RGP permit parameters: VOCs, Semivolatile Organic Compounds (SVOCs), total

metals (including antimony, arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, selenium, silver and zinc), hexavalent chromium, total petroleum hydrocarbons (TPH), Polychlorinated Biphenyls (PCBs), total suspended solids (TSS), total chloride, total cyanide, total phenols, total residual chlorine (TRC), ammonia, hardness, salinity, pH and temperature.

Refer to Table I for a summary of the groundwater analytical data. The results did not indicate any concentrations of constituents above applicable Massachusetts Contingency Plan (MCP) RCGW-2 reportable concentrations. However, the presence of Iron at a concentration above the applicable NPDES RGP Effluent Limitation was detected. As such, any construction dewatering effluent that will be discharged off-site will need to be managed under the NPDES RGP. Alternatively, and when feasible, the project intends to use on-site recharge to manage dewatering effluent

When excavation to construct proposed foundations and other site improvements extend beneath site groundwater levels, dewatering will be necessary to control groundwater, seepage, precipitation, surface water runoff and construction-generated water to enable below-grade construction activities inthe-dry. We estimate effluent discharge rates of a maximum of 50 gallons per minute (gpm).

Temporary construction dewatering will be conducted from sumps located in excavations. Prior to discharge, collected water will be routed through a baffled sedimentation tank and bag filters, at a minimum, to remove suspended solids and undissolved chemical constituents. Total flow will be measured with a flow meter/totalizer. If necessary to meet NPDES RGP Effluent Limitations, supplemental pretreatment may include pH control, oil/water separators and/or other components as required; refer to Figure 3 – Proposed Treatment System Schematic. Discharge of dewatering effluent will be to the local storm drain beneath either Washington Street, William E. Mullins Way or Harrison Avenue after which the effluent will flow beneath Traveler Street and continue to the northeast along Albany Street and beneath I-93 before discharging at outfall CSO 068 to the Fort Point Channel, which ultimately reaches Boston Inner Harbor. The proposed discharge route is shown on Figures 2 and 4A through 4C – Proposed Discharge Route.

OWNER AND OPERATOR INFORMATION

Owner:

1000 Washington (Boston) Owner, LLC c/o Nordblom Company
71 Third Avenue
Burlington, MA 01803-4470
Attn: Todd Fremont-Smith

Senior Vice President, Development

Operator:

John Moriarty & Associates 3 Church Street, Suite 2 Winchester, MA 01890 Attn: Joshua Snyder Project Executive

The Owner (1000 Washington (Boston) Owner, LLC, c/o Nordblom Company) has hired John Moriarty & Associates (JMA) as the General Contractor. An earthwork subcontractor (Site Contractor) will be hired by JMA to conduct the site work, including dewatering activities. The Site Contractor will operate the dewatering system. Haley & Aldrich will be on site to monitor the contractors' site and foundation work on behalf of the Owner and will conduct sampling and testing of the dewatering effluent in accordance with the NPDES RGP compliance requirements.

ETHANOL DISCUSSION

Ethanol analysis was not conducted on the groundwater sample collected in December 2017 as site history does not suggest that ethanol was stored at the property, and a petroleum product containing ethanol is not known to have been released at the site. Ethanol has been increasingly used in fuels since 2006 (according to the 2016 NOI Fact Sheet), and according to site history, no known fuel-related storage or handling activities have been conducted on-site since that time.

RECEIVING WATER QUALITY INFORMATION AND DILUTION FACTOR

On 27 October 2017, Haley & Aldrich collected a receiving water sample from the Fort Point Channel, upstream of the discharge location shown on Figure 4C, using a disposable polyethylene bailer. The surface water sample was collected and submitted to Alpha for chemical analysis of pH, ammonia and salinity. The results of the receiving water quality testing are included in Table I.

Measurements of pH and temperature readings collected in the field were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). It is our understanding that since the receiving water is a saltwater body, hardness does not need to be analyzed on either the effluent water or receiving water. Additionally, it is our understanding (based on confirmation from MassDEP) that the dilution factor for a saltwater receiving water is 1.

EFFLUENT CRITERIA DETERMINATION

The EPA-suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the site. Groundwater and receiving water data were input, and the resulting criteria was tabulated in the attached Table I. As is requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculation will be submitted to the EPA via email, for their review upon submission of this NOI.

NATIONAL MARINE FISHERIES SERVICE (NMFS) ELIGIBILITY

Based on our review of the National Marine Fisheries Service (NMFS) criterion, it is the opinion of Haley & Aldrich that related activities under the NPDES RGP are not likely to adversely affect federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and should not result in a take of listed species. According to Appendix I: Endangered Species Act (ESA) Guidance and Eligibility Criteria in the NPDES RGP, and the reference footnoted below², the Atlantic Sturgeon and the Shortnose Sturgeon are the only ESA-listed species under NMFS jurisdiction that may have a critical habitat in Massachusetts Bay.

The Shortnose Sturgeon mainly occupy deep channel sections of large coastal rivers and nearshore marine waters. The outfall to be used for the temporary construction discharge is not situated adjacent to large coastal rivers and is not expected to affect the Shortnose Sturgeon population. The closest river to the outfall is the Charles River, which is approximately one (1) mile from the site. Similarly, the Atlantic Sturgeon is more commonly found in large rivers and brackish waters; adults who live in coastal

² https://www3.epa.gov/region1/npdes/remediation/RGPNMFSletter.pdf

waters are typically found in shallow areas with sand and gravel substrates. The outfall proposed for discharge is not located in an area where Atlantic Sturgeon may be found, and the discharge is similarly not expected to affect its population. Furthermore, according to the Charles River Watershed Association (CRWA) and Neponset River Watershed Association (NRWA) references footnoted below³, resident populations of Sturgeon no longer exist in the Charles River.

APPENDICES

The completed "Suggested Format for the Remediation General Permit Notice of Intent (NOI)" form as provided in the NPDES RGP is enclosed in Appendix A. Appendix B provides a copy of the Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit Application to be submitted separately to the BWSC. Appendices C and D include the Endangered Species Act Documentation and National Register of Historic Places and Massachusetts Historical Commission Documentation, respectively. The groundwater laboratory data reports are provided in Appendix E.

The Site Contractor has not yet submitted their construction dewatering submittal, which will include details of the proposed dewatering system along with Safety Data Sheets (SDSs) and fact sheets for possible chemical additives (if needed to adjust pH or reduce suspended sediments). A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

CLOSING

Thank you for considering this NPDES RGP NOI. Please feel free to contact the undersigned should you require additional information or have questions.

Sincerely yours, HALEY & ALDRICH, INC.

Jonathan M. Thibault Technical Specialist Michael J. Atwood, P.E. Principal Consultant

Attachments:

Table I – Summary of Water Quality Data

Figure 1 - Project Locus

Figure 2 – Subsurface Exploration and Discharge Location Plan

Figure 3 – Proposed Treatment System Schematic

Figure 4A – Proposed Discharge Route (Figure 1 of 3)

Figure 4B – Proposed Discharge Route (Figure 2 of 3)

Figure 4C – Proposed Discharge Route (Figure 3 of 3)

Appendix A – Remediation General Permit Notice of Intent (NOI)

³ http://blog.crwa.org/blog/5-migratory-fish-found-in-the-charles-river-ecosystem https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish/

Appendix B – Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit Application

Appendix C – Endangered Species Act Documentation

Appendix D – National Register of Historic Places and Massachusetts Historical Commission Documentation

Appendix E – Laboratory Data Reports

c: 1000 Washington (Boston) Owner, LLC, c/o Nordblom Company, Attn: Todd Fremont-Smith John Moriarty & Associates, Attn: Joshua Snyder, Andrew Hall Boston Water and Sewer Commission; Attn: Matthew Tuttle

TABLE I SUMMARY OF WATER QUALITY DATA 1000 WASHINGTON STREET BOSTON, MASSACHUSETTS FILE NO. 130904-002

	1	г			
LOCATION NAME	2014	2017		HA17-05	FORT POINT CHANNEL
SAMPLE NAME	2014	2017		HA17-05_120717	HA17-BUSS
SAMPLING DATE	MassDEP MCP	NPDES RGP		12/7/2017	10/23/2017
LAB SAMPLE ID	RCGW-2	Project-Specific	Units	L1745151-01	L1738447-01
WELL SCREEN INTERVAL (FT, BCB)	Reportable	Effluent		2 to 12	-
GROUNDWATER ELEVATION (FT, BCB) ⁴	Concentrations	Limitations		8.05	
SAMPLE TYPE				Groundwater	Receiving Water
Volatile Organic Compounds by GC/MS					
Methylene chloride	2000	4.6	ug/L	ND(3)	
1,1-Dichloroethane	2000	70	ug/L ug/L	ND(0.75)	-
Carbon tetrachloride	2	4.4	ug/L ug/L	ND(0.73)	
1,1,2-Trichloroethane	900	5	ug/L ug/L	ND(0.75)	
Tetrachloroethene	50	5	ug/L	ND(0.5)	_
1,2-Dichloroethane	5	5	ug/L	ND(0.5)	_
1,1,1-Trichloroethane	4000	200	ug/L	ND(0.5)	-
Benzene	1000	5	ug/L	ND(0.5)	-
Toluene	40000	NA	ug/L	ND(0.75)	-
Ethylbenzene	5000	NA	ug/L	ND(0.5)	-
p/m-Xylene	3000	NA	ug/L	ND(1)	-
o-Xylene	3000	NA	ug/L	ND(1)	-
Total BTEX	NA	100	ug/L	ND	-
Vinyl chloride	2	2	ug/L	ND(1)	-
1,1-Dichloroethene	80	3.2	ug/L	ND(0.5)	-
Trichloroethene	5	5	ug/L	ND(0.5)	-
1,2-Dichlorobenzene	2000	600	ug/L	ND(2.5)	-
1,3-Dichlorobenzene	6000	320	ug/L	ND(2.5)	-
1,4-Dichlorobenzene	60	5	ug/L	ND(2.5)	-
Total Dichlorobenzene	NA	NA	ug/L	ND	-
Methyl tert butyl ether	5000	70	ug/L	ND(1)	-
cis-1,2-Dichloroethene	20	70	ug/L	ND(0.5)	-
Acetone	50000	7970	ug/L	ND(5)	-
1,2-Dibromoethane	2	0.05	ug/L	ND(2)	-
Tert-Butyl Alcohol	NA	120	ug/L	ND(10)	-
Tertiary-Amyl Methyl Ether	NA NA	90 NA	ug/L	ND(2)	-
Total VOCs by GC/MS	NA	NA	ug/L	ND	-
Volatile Organics Compounds by GC/MS-SIM	6000	200	ug/L	ND(3)	
1,4-Dioxane	6000	200	ug/L	ND(3)	-
Microextractables by GC					
1,2-Dibromoethane	2	0.05	ug/L	ND(0.01)	-
Semivolatile Organic Compounds by GC/MS					
Bis(2-ethylhexyl)phthalate	50000	101	ug/L	ND(3)	-
Butyl benzyl phthalate	10000	NA	ug/L	ND(5)	-
Di-n-butylphthalate	5000	NA	ug/L	ND(5)	-
Di-n-octylphthalate	100000	NA	ug/L	ND(5)	-
Diethyl phthalate	9000	NA	ug/L	ND(5)	-
Dimethyl phthalate	50000	NA	ug/L	ND(5)	-
Total Phthalates	NA	190	ug/L	ND	-
Phenol	2000	1080	ug/L	ND(5)	-
Total SVOCs by GC/MS	NA	NA	ug/L	ND	-
Semivolatile Organic Compounds by GC/MS-SIM	1				
Benzo(a)anthracene	1000	1	ug/L	ND(0.1)	_
Benzo(a)pyrene	500	1	ug/L	ND(0.1)	_
Benzo(b)fluoranthene	400	1	ug/L	ND(0.1)	_
Benzo(k)fluoranthene	100	1	ug/L	ND(0.1)	-
Chrysene	70	1	ug/L	ND(0.1)	-
Dibenzo(a,h)anthracene	40	1	ug/L	ND(0.1)	-
Indeno(1,2,3-cd)pyrene	100	1	ug/L	ND(0.1)	-
Total Group I Polycyclic Aromatic Hydrocarbons	NA	1	ug/L	ND	-
Acenaphthene	10000	NA	ug/L	ND(0.1)	-
Acenaphthylene	40	NA	ug/L	ND(0.1)	-
Anthracene	30	NA	ug/L	ND(0.1)	-
Benzo(ghi)perylene	20	NA	ug/L	ND(0.1)	-
Fluoranthene	200	NA	ug/L	ND(0.1)	-
Fluorene	40	NA	ug/L	ND(0.1)	-
Naphthalene	700	20	ug/L	0.32	-
Phenanthrene	10000	NA	ug/L	ND(0.1)	-
Pyrene	20	NA	ug/L	ND(0.1)	-
Total Group II Polycyclic Aromatic Hydrocarbons	NA	100	ug/L	0.32	-
1-Methylnaphthalene	NA	NA	ug/L	0.11	-
2-Methylnaphthalene	2000	NA	ug/L	0.14	-
Pentachlorophenol	200	1	ug/L	ND(0.8)	-
Total SVOCs by GC/MS-SIM	NA	NA	ug/L	0.57	-

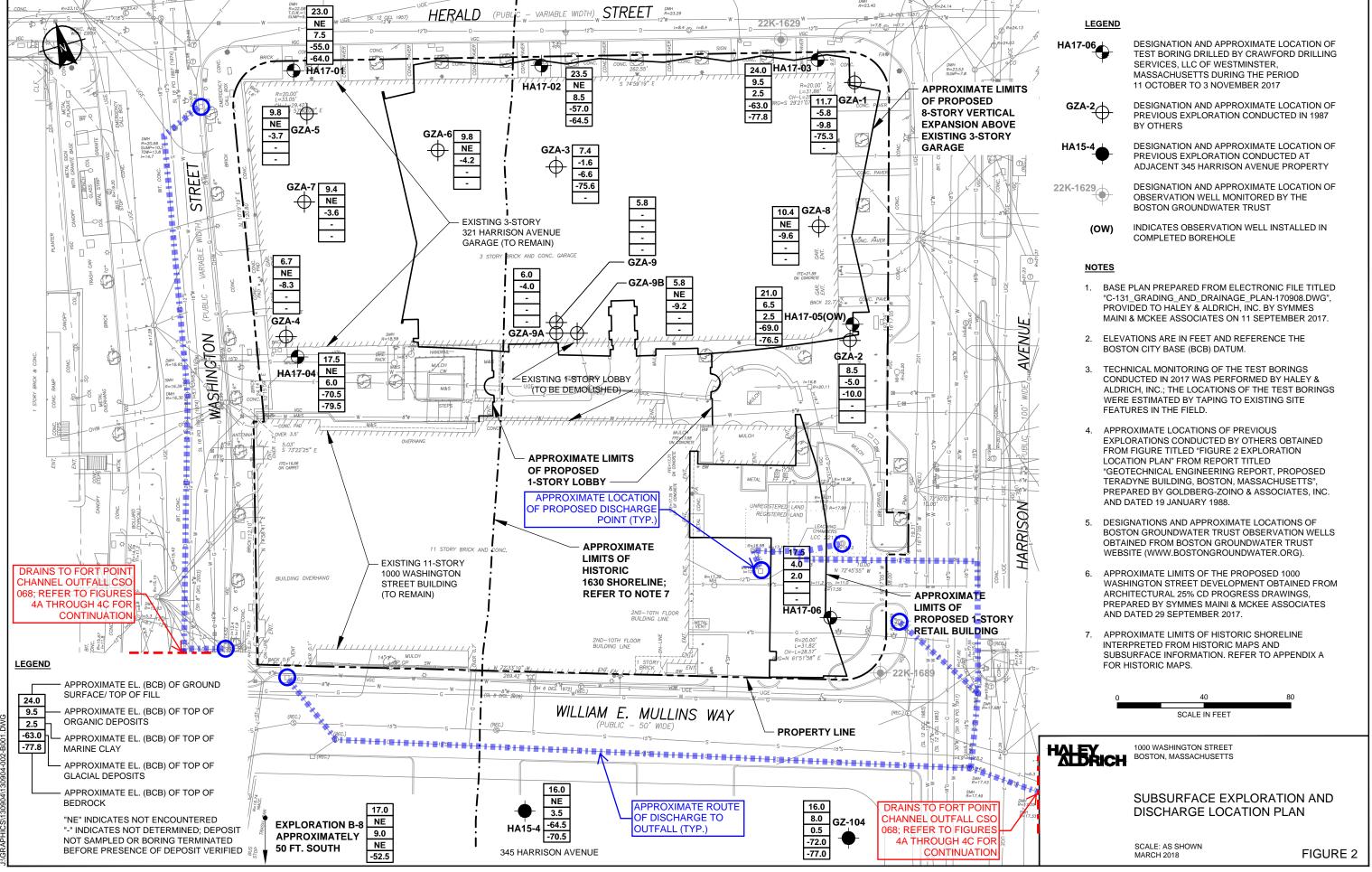
TABLE I

SUMMARY OF WATER QUALITY DATA 1000 WASHINGTON STREET BOSTON, MASSACHUSETTS FILE NO. 130904-002

LOCATION NAME		I		HA17-05	FORT POINT CHANNEL
SAMPLE NAME	2014	2017		HA17-05_120717	HA17-BUSS
SAMPLING DATE	MassDEP MCP	NPDES RGP		12/7/2017	10/23/2017
LAB SAMPLE ID	RCGW-2	Project-Specific	Units	L1745151-01	L1738447-01
WELL SCREEN INTERVAL (FT, BCB)	Reportable	Effluent		2 to 12	-
GROUNDWATER ELEVATION (FT, BCB)⁴	Concentrations	Limitations		8.05	-
SAMPLE TYPE				Groundwater	Receiving Water
Polychlorinated Biphenyls by GC					
Aroclor 1016	5	NA	ug/L	ND(0.25)	-
Aroclor 1221	5	NA	ug/L	ND(0.25)	-
Aroclor 1232	5	NA	ug/L	ND(0.25)	-
Aroclor 1242	5	NA	ug/L	ND(0.25)	-
Aroclor 1248	5	NA	ug/L	ND(0.25)	-
Aroclor 1254	5	NA	ug/L	ND(0.25)	-
Aroclor 1260	5	NA	ug/L	ND(0.2)	-
Total PCBs by GC	NA	0.5	ug/L	ND	-
Total Metals					
Antimony, Total	8000	206	ug/L	ND(4)	-
Arsenic, Total	900	104	ug/L	2.66	-
Cadmium, Total	4	10.2	ug/L	ND(0.2)	-
Chromium, Total	300	323	ug/L	ND(1)	-
Chromium, Trivalent	600	323	ug/L	ND(10)	-
Chromium, Hexavalent	300	323	ug/L	ND(10)	-
Copper, Total	100000	242	ug/L	ND(1)	-
Iron, Total	NA	5000	ug/L	6880	-
Lead, Total	10	160	ug/L	0.72	-
Mercury, Total	20	0.739	ug/L	ND(0.2)	-
Nickel, Total	200	1450	ug/L	ND(2)	-
Selenium, Total	100	235.8	ug/L	ND(5)	-
Silver, Total	7	35.1	ug/L	ND(0.4)	-
Zinc, Total	900	420	ug/L	ND(10)	-
General Chemistry					
Ammonia	NA	Report Only	ug/L	1310	191
Chloride	NA NA	Report Only	ug/L ug/L	1760000	131
Chlorine, Total Residual	NA NA	50	ug/L ug/L	ND(20)	
Solids, Total Suspended	NA NA	30000	ug/L ug/L	9900	
Cyanide, Total	30	178000	ug/L ug/L	9900 ND(5)	
Hardness, Total	NA	178000 NA	ug/L ug/L	1280000	
Salinity	NA NA	NA NA	ug/L SU	3.1	28
Total Petroleum Hydrocarbons	5000	5000	ug/L	ND(4000)	- 20
Phenolics, Total	NA	NA	ug/L ug/L	ND(4000) ND(30)	
pH	NA NA	6.5 to 8.5	ug/L SU	6.9	7.6
I ·			°C		-
Temperature ⁵	NA	29.5	٠.	16.5	16.5

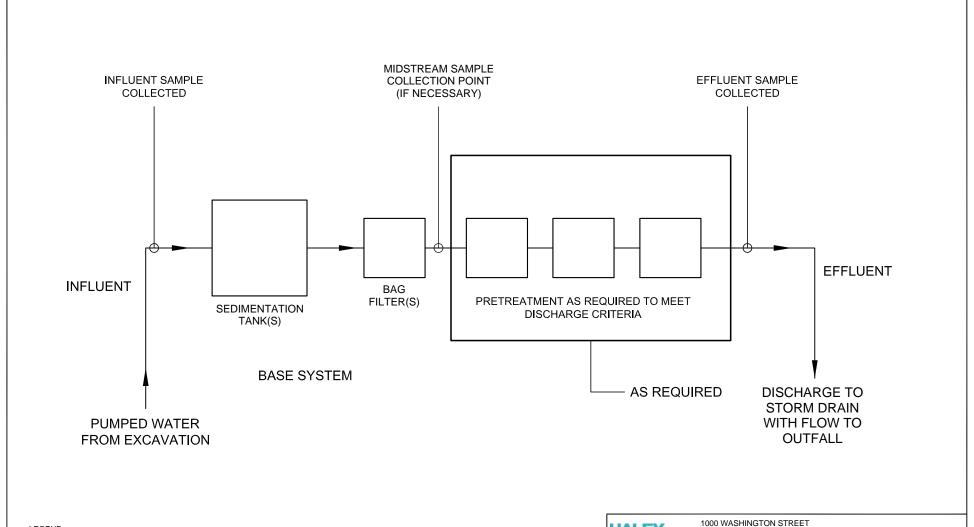
ABBREVIATIONS AND NOTES:

BCB: Boston City Base Datum ug/L: Micrograms per liter


MCP: 310 CMR 40.0000 Massachusetts Contingency Plan effective 25 April 2014; revisions 23 May 2014

NA: Not applicable

ND(2.5): Not detected; number in parentheses is the laboratory reporting limit


- 1. This table includes only those VOCs, SVOCs and PCBs detected on the date indicated and/or listed in Table 2 of the NPDES RGP. For a complete list of analytes, refer to the laboratory data report.
- 2. **Bold** values indicate an exceedance of the applicable NPDES RGP Effluent Limitation.
- $\textbf{3. Bold ND} \ \text{values indicate the laboratory reporting limit exceeds the applicable NPDES RGP Effluent Limitation}.$
- 4. Groundwater elevation measured in the field on the sampling date indicated.
 5. Temperature measured in the field on the sampling date indicated.

6/2017 9:00 AM Lavout: BO

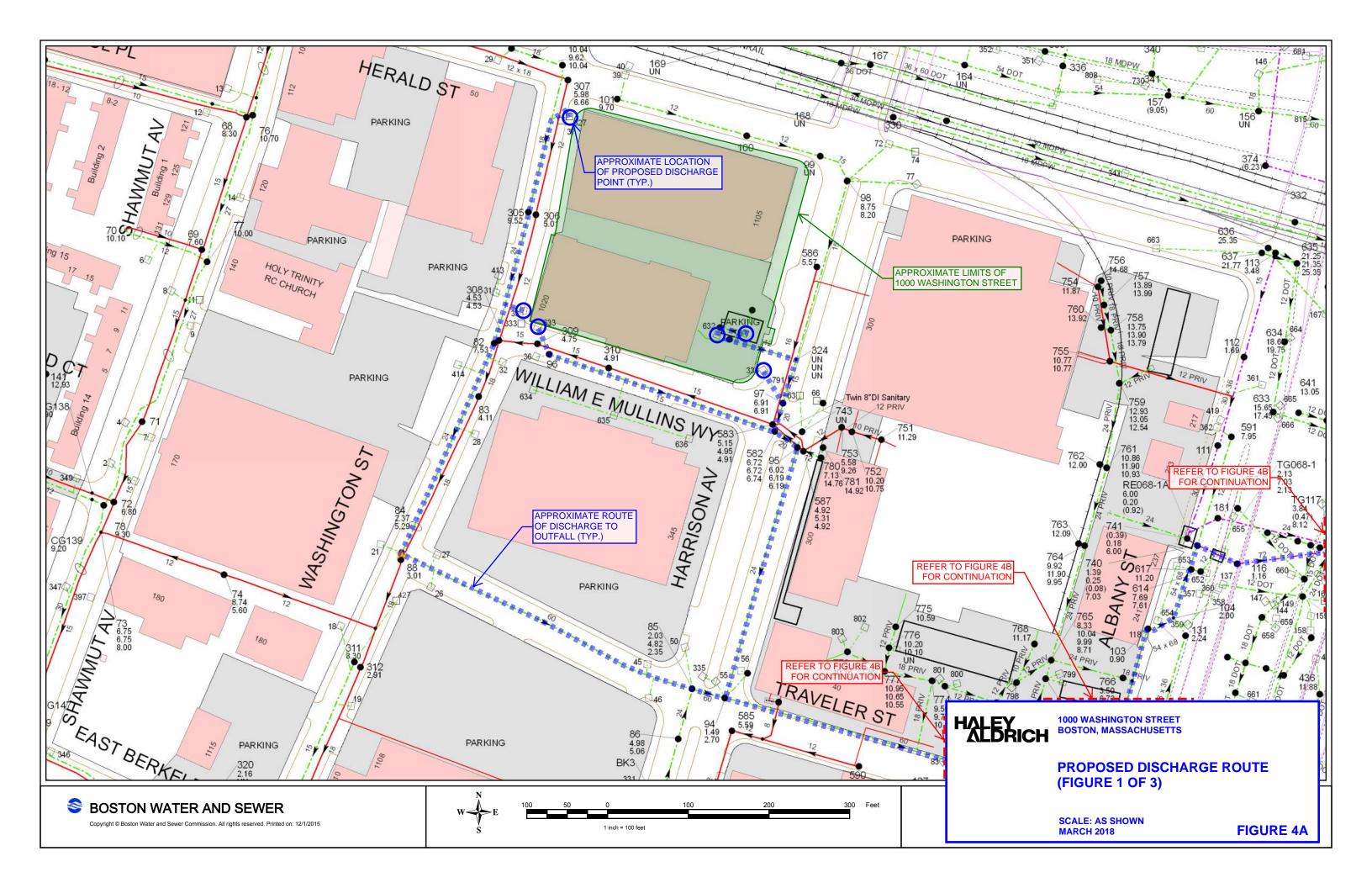
AYNA Printed: 11/16/20

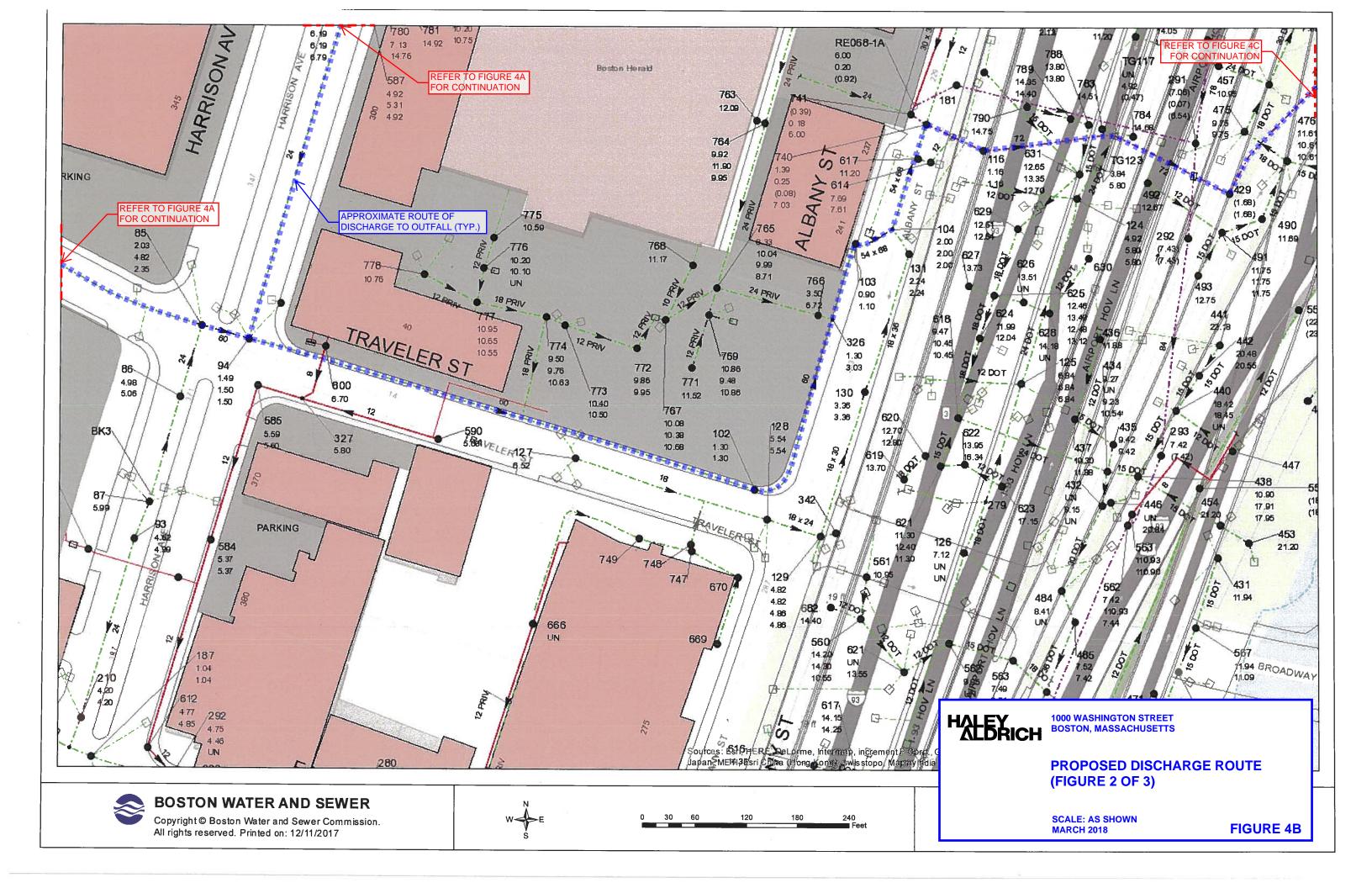
LEGEND:

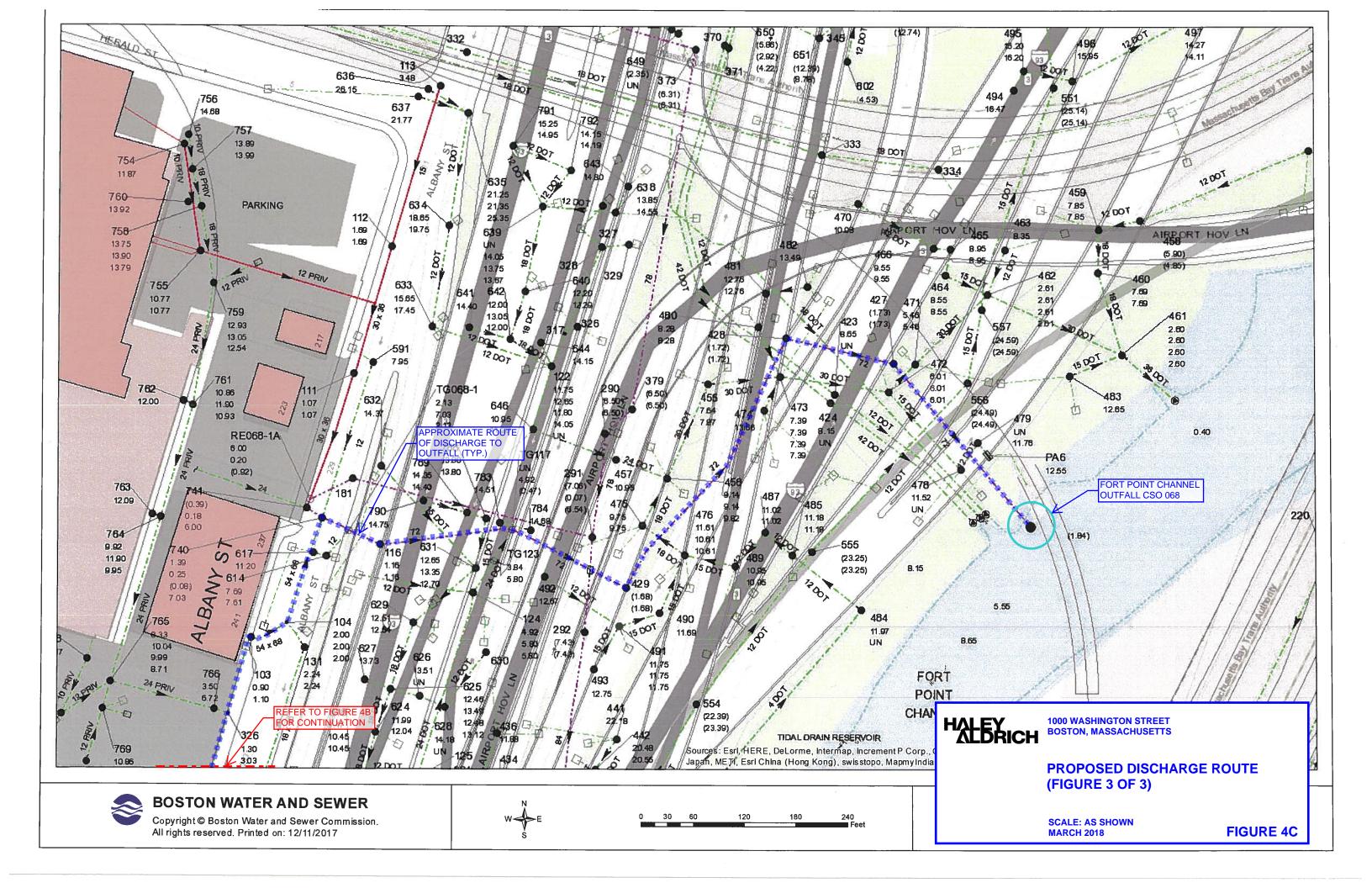
DIRECTION OF FLOW

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.




1000 WASHINGTON STREET BOSTON, MASSACHUSETTS


PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE MARCH 2018

FIGURE 3

APPENDIX A

Remediation General Permit Notice of Intent (NOI)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Name of site: 1000 WASHINGTON STREET	Site address: Street: 1000 WASHINGTON STREET					
	City: BOSTON		State: MA	Zip: 02118		
2. Site owner 1000 WASHINGTON (BOSTON) OWNER, LLC	Contact Person: TODD FREMONT-SMITH					
C/O NORDBLOM COMPANY	Telephone: (781) 238-4814	Email: TF	REMONT-S	SMITH@NORDBLC		
	Mailing address: 71 THIRD AVENUE Street:					
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: BURLINGTON		State: MA	Zip: 01803-4470		
3. Site operator, if different than owner	Contact Person: JOSHUA SNYDER					
JOHN MORIARTY & ASSOCIATES	Telephone: (781) 729-3900	Email: JSI	SNYDER@JM-A.COM			
	Mailing address: 3 CHURCH STREET, SUITE 2 Street:					
	City: WINCHESTER		State: MA	Zip: 01890		
4. NPDES permit number assigned by EPA: NA	5. Other regulatory program(s) that apply to the site (check all that apply):					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Groundwater Release Detection Permit:			t		

B.	Receiving	water	infori	nation:
₽.	1teeti in 5	Water.		1144110111

B. Receiving water information:								
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classi	fication of receiving water(s):					
FORT POINT CHANNEL (BOSTON INNER HARBOR)	MA70-02	SB						
Receiving water is (check any that apply): Outstanding Resource Water Ocean Sanctuary territorial sea Wild and Scenic River								
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): ■ Yes □	No						
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes ■ No							
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. CATEGORY 5 - WATERS REQUIRING A TMDL PER MASSACHUSETTS YEAR 2014 INTEGRATED LIST OF WATERS, IMPAIRMENT								
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appendix		tions in	NA (SALTWATER RECEIVING WATER)					
5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites in			1 (SALTWATER)					
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ■ Yes □ No If yes, indicate date confirmation received: 1/30/2018 (DILUTION FACTOR)								
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII?								
(check one): ■ Yes □ No								
C. Source water information:								

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	■ Other; if so, specify:
■ Yes □ No	□ Yes □ No		SEEPAGE, PRECIPITATION, SURFACE WATER RUNOFF

2. Source water contaminants: IRON ABOVE NPDES RGP EFFLUENT LII	MITATI	ON
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in		r a source water that is a surface water other than the receiving water, potable water ther, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the	the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlo	orine? (check one): □ Yes ■ No
D. Discharge information		
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discha	arge □ New source
Outfall(s): OUTFALL CSO 068 TO THE FORT POINT CHANNEL (BOSTON INNE HARBOR)		Outfall location(s): (Latitude, Longitude) (42° 20' 42" N, 71° 3' 34" W)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	ischarge	to the receiving water <a> Indirect discharge , if so, specify:
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	•	
Has notification been provided to the owner of this system? (check one): ■ Yo		
Has the operator has received permission from the owner to use such system for obtaining permission: BWSC DEWATERING DISCHARGE PERMIT APP		arges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for TION BEING SUBMITTED CONCURRENTLY WITH THIS NOI
Has the operator attached a summary of any additional requirements the owner		
Provide the expected start and end dates of discharge(s) (month/year): MARC	н то с	OCTOBER 2018
Indicate if the discharge is expected to occur over a duration of: ■ less than 1		
Has the operator attached a site plan in accordance with the instructions in D, a	above? ((check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	Compounds le Organic Compounds				
☐ I – Petroleum-Related Site Remediation☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics □ B. Non-Halogenated Volatile	☐ H. Sites with Unknown Contamination				
	Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known			5	In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	1 +	SM 4500 +	75 +	1310	_ ±	Report mg/L	
Chloride		✓	1 +	300.0 +	25000 +	1760000 E	_ ±	Report μg/l	
Total Residual Chlorine	✓		1 +	SM 4500 +	20 +	ND E	E E	0.2 mg/L	7.5 ug/L
Total Suspended Solids		1	1 +	2540D +	5000 +	9900	_ =	30 mg/L	
Antimony	1		1 +	200 +	4 +	ND E	<u> </u>	206 μg/L	640 ug/L
Arsenic		✓	1 +	200 +	1 +	2.66	_ ±	104 μg/L	36 ug/L
Cadmium	V		1 +		0.2 +	ND E	_ +	10.2 μg/L	8.9 ug/L
Chromium III	V		1 +		10 +	ND E		323 μg/L	100 ug/L
Chromium VI	✓		1 +	7196A +	10 +	ND E	I . II	323 μg/L	50 ug/L
Copper	1		1 +	200 +		ND E	_ ±	242 μg/L	3.7 ug/L
Iron		✓	1 +	200 +	50 +	6880 E	_ #	5,000 μg/L	
Lead		✓	1 +		0.5 +	0.72		160 μg/L	8.5 ug/L
Mercury	1		1 +		0.2 +	ND E	. I	0.739 μg/L	1.11 ug/L
Nickel	V		1 +	200 +	2 +	ND E	_ #	1,450 μg/L	8.3 ug/L
Selenium	V		1 +	200 +	5 +	ND F	. ±	235.8 μg/L	71 ug/L
Silver	· /		1 +	200 +	0.4	ND E	- E	35.1 μg/L	2.2 ug/L
Zinc	V		1 +		10 +	ND E	_ ±	420 μg/L	86 ug/L
Cyanide	V		1 +	4500 CN +				178 mg/L	1 ug/L
B. Non-Halogenated VOCs	S								
Total BTEX	✓ /		1 +	8260 +				100 μg/L	
Benzene	✓ /		1 +	8260 +	0.5 +		+	5.0 μg/L	
1,4 Dioxane	✓		1 +	8260 +	3 +	ND E		200 μg/L	
Acetone	✓ ·		1 +	8260 +	5 +	ND E		7.97 mg/L	
Phenol	✓		1 +	8270 +	5 +	ND E		1,080 μg/L	300 ug/L

	Known	Known		_		Inf	luent	Effluent Li	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		1 +	8260 +	0.5	ND +	_	4.4 μg/L	1.6 ug/L +
1,2 Dichlorobenzene	✓		1 +	8260 +	2.5		_ +	600 μg/L	
1,3 Dichlorobenzene	✓		1 +	8260 +	2.5 +	ND +	_ +	320 μg/L	
1,4 Dichlorobenzene	✓		1 +	8260 +	2.5	ND +	_ +	$5.0~\mu g/L$	
Total dichlorobenzene	1		1 +	8260 +	2.5 +	ND +	_ +	763 μg/L in NH	
1,1 Dichloroethane	✓		1 +	8260 +	0.75 +		_ +	70 μg/L	
1,2 Dichloroethane	✓		1 +	8260 +	0.5	ND +	_ +	$5.0~\mu g/L$	
1,1 Dichloroethylene	✓		1 +	8260 +	0.5	ND +	_ +	$3.2~\mu g/L$	
Ethylene Dibromide	1		1 +	504.1	0.01	ND +	_ +	$0.05~\mu g/L$	
Methylene Chloride	1		1 +	8260 +	3 +	ND +	_	4.6 μg/L	
1,1,1 Trichloroethane	1		1 +	8260 +	0.5		_ +	200 μg/L	
1,1,2 Trichloroethane	1		1 +	8260 +			_ +	5.0 μg/L	
Trichloroethylene	1		1 +	8260 +	0.5		_ +	5.0 μg/L	
Tetrachloroethylene	1		1 +	8260 +	0.5	ND +	_ +	5.0 μg/L	3.3 ug/L +
cis-1,2 Dichloroethylene	✓		1 +	8260 +			_ +	70 μg/L	
Vinyl Chloride	✓		1 +	8260 +	1 +	ND +	_ +	2.0 μg/L	
D. Non-Halogenated SVOCs									
Total Phthalates	✓		1 +	8270 +	3 +		_ #	190 μg/L	+
Diethylhexyl phthalate	✓		1 +	8270 +	5 +		_ +	101 μg/L	2.2 ug/L +
Total Group I PAHs	✓		1 +	8270 SIM+	0.1	ND ±	_ +	1.0 μg/L	
Benzo(a)anthracene	✓		1 +	8270 SIM+	0.1	ND +	_ +		0.0038 ug/L +
Benzo(a)pyrene	✓		1 +	8270 SIM+	0.1 +	ND +	_		0.0038 ug/L +
Benzo(b)fluoranthene	✓		1 +	8270 SIM+	0.1 +	ND +	_ +		0.0038 ug/L +
Benzo(k)fluoranthene	1		1 +	8270 SIM+	0.1	ND +	- +	As Total PAHs	0.0038 ug/L
Chrysene	✓		1 +	8270 SIM+			_ +		0.0038 ug/L
Dibenzo(a,h)anthracene	✓		1 +	8270 SIM+			_ +		0.0038 ug/L
Indeno(1,2,3-cd)pyrene	✓		1 +				_ +		0.0038 ug/L

	Known	Known			-	In	fluent	Effluent Li	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	1 +	8270 SIM+	0.1 +	0.32	. #	100 μg/L	
Naphthalene		✓	1 +	8270 SIM+			_ +	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		1 +	608 +	0.25 +	ND +	_ +	0.000064 μg/L	
Pentachlorophenol	✓		1 +	8270 SIM+		ND ±		1.0 μg/L	
F. Fuels Parameters Total Petroleum			_	_		_		5.0/I	
Hydrocarbons	✓		1 #	1664A ±	4000 +	ND ±	- H	5.0 mg/L	
Ethanol			NA +					Report mg/L	
Methyl-tert-Butyl Ether	✓		1 +	8260 +	1 +	ND +	_ #	70 μg/L	20 ug/L
tert-Butyl Alcohol	✓		1 #	8260 +	10 +	ND ±	- B	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	1		1 +	8260 +	2 +	ND ±		90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	e, hardness,	salinity, LC	C ₅₀ , addition	ıal pollutan	ts present);	if so, specify:			
pH (SU) +		1	1 +	FIELD +	_ +	6.9 +	_ +		
Temperature (°C) +		✓	1 +	FIELD +	_ +				
Hardness +		✓	1 +	200 +					
Salinity +		✓	1 +	2520 +	2 +				
1-Methylnaphthalene +		✓	1 +	8270 SIM+	0.1 +	0.11	_ +		
2-Methylnaphthalene +		✓	1 +	8270 SIN+	0.1 +	0.14	_ +		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)							
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption							
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:							
TREATMENT AS REQUIRED TO MEET EFFLUENT LIMITATIONS							
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.							
PRIOR TO DISCHARGE, COLLECTED WATER WILL BE ROUTED THROUGH A SEDIMENTATION TANK AND BAG FILTERS, AT A MINIMUM, TO REMOVE SUSPENDED SOLIDS AND UNDISSOLVED CHEMICAL CONSTITUENTS. TOTAL FLOW WILL BE MEASURED WITH A FLOW METER/ TOTALIZER. SUPPLEMENTAL PRETREATMENT MAY BE REQUIRED TO MEET NPDES RGP EFFLUENT LIMITATIONS AND MAY INCLUDE pH CONTROL, OIL/WATER SEPARATORS AND/OR OTHER COMPONENTS AS REQUIRED; REFER TO FIGURE 3 OF THE NPDES RGP NOI APPLICATION.							
Identify each major treatment component (check any that apply):							
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter							
□ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:							
Indicate if either of the following will occur (check any that apply):							
☐ Chlorination ☐ De-chlorination							
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.							
Indicate the most limiting component: BAG FILTERS	50 GPM						
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:							
Provide the proposed maximum effluent flow in gpm.	50 GPM						
Provide the average effluent flow in gpm.	25 GPM						
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA						
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No							

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
1. Indicate the type(s) of chemical of additive that will be applied to efficient prior to discharge of that may otherwise be present in the discharge(s). (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine ■ Other; if so, specify: THE SITE CONTRACTOR HAS NOT YET SUBMITTED THEIR CONSTRUCTION DEWATERING SUBMITTAL WHICH WILL INCLUDE DETAILS OF THE PROPOSED
2. Provide the following information for each chemical/additive, using attachments, if necessary:
 a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): ☐ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ■ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of				
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No				
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No				
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ■ Yes □ No; if yes, attach.				
H. National Historic Preservation Act eligibility determination				
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:				
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.				
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.				
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.				
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No				
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or				
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No				
I. Supplemental information				
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.				
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No				
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No				

Appendix IV – Part 1 – NOI Page 24 of 24

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

information, including the possibility of fine and imprisonment for knowing violations.			
A BMPP MEETING THE REQUIREMENTS OF THIS GENERAL PERBMPP certification statement: AND IMPLEMENTED UPON INITIATION OF DISCHARGE.	MIT WILL BE D	EVELOPE)
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No 🖪	
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □	
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes 🗏	No□ NA□	
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No ■ NA□	
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	5.100 ii 5.101 ii 5.	110 1111	
permit(s). Additional discharge permit is (check one): ☐ RGP ☐ DGP ☐ CGP ☐ MSGP ☐ Individual NPDES permit	Check one: Yes □	No □ NA ■	
□ Other; if so, specify:			
190	= 3/6/12	5	
Print Name and Title: TODD FATHAUT-SNITH, AGENT FOR 1000	work ag	en (ou	winz
1			8 6

Print Name and Title

T	C 1.C 1.	
J.	Certification	requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP MEETING THE REQUIREMENTS OF THIS GENERAL PERMIT WILL BE DEVELOPED BMPP certification statement: AND IMPLEMENTED UPON INITIATION OF DISCHARGE. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes □ No ■ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes ■ No □ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes ■ No □ NA □ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No ■ NA □ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify: Signature: Date: 2018

APPENDIX B

Boston Water and Sewer Commission (BWSC)
Dewatering Discharge Permit Application

Haley & Aldrich, Inc. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

6 March 2018 File No. 130904-002

Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue Boston, Massachusetts 02119

Attention: Matthew Tuttle

Subject: Request for Approval of Temporary Construction Dewatering

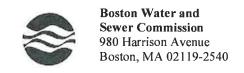
1000 Washington Street Boston, Massachusetts

Dear Mr. Tuttle:

On behalf of our client, 1000 Washington (Boston) Owner, LLC, c/o Nordblom Company, this letter submits the Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit Application in support of the proposed 1000 Washington Street project in Boston, Massachusetts.

Dewatering is necessary to enable construction in-the-dry and is anticipated to begin in March 2018 and continue for approximately seven (7) months. Prior to discharge, collected water will be routed through at minimum a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents. Other pretreatment may be conducted as necessary to comply with National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) effluent limitations. The proposed dewatering discharge route and BWSC outfall location are shown on Figures 4A through 4C of the submitted NPDES RGP Notice of Intent (NOI), attached for reference. Discharge of the dewatering effluent is currently under review by the U.S. Environmental Protection Agency (EPA) under the NPDES RGP.

If you have any questions, please feel free to contact the undersigned at 617-886-7400.


Sincerely yours,

HALEY & ALDRICH, INC.

Jonathan M. Thibault Technical Specialist Michael J. Atwood, P.E. Principal Consultant

Attachments:

BWSC Dewatering Discharge Permit Application Copy of NPDES RGP NOI Application

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INI 1000 WASHINGTON (BOSTON) OW	/NER, LLC				
	Address:71 THIRD AVENUE, BURLINGTON, MA 01803-4470				
	Fax number:				
Contact person name: TODD FREMONT-SMITH	Title: SENIOR VICE PRESIDENT, DEVELOPMENT				
Cell number: <u>(978)</u> 463-8787	Email address: TFREMONT-SMITH@NORDBLOM.COM				
Permit Request (check one): New Application □ Permit Extension □ Other (Specify):					
Owner's Information (if different from above):	TON (BOSTON) OWNER, LLC				
Owner's mailing address: C/O Nordblom Development Company, Inc. Phone number: 781-272-4000					
Location of Discharge & Proposed Treatment Syste					
Street number and name: 1000 WASHINGTON STR	EET Neighborhood SOUTH END				
	Sewer ⊠ Storm Drain □ Other (specify):				
SEDIMER Describe Proposed Pre-Treatment System(s): (REFER	NTATION TANK, BAG FILTERS AND OTHER COMPONENTS AS NECESSARY TO ATTACHED NPDES RGP NOI APPLICATION)				
	g Waters FORT POINT CHANNEL (BOSTON INNER HARBOR)				
☐ Groundwater Remediation ☐ Utility/Manhole Pumping ☐	ischarge): From MARCH 2018 ☐ Tank Removal/Installation ☐ Test Pipe ☐ Hydrogeologic Testing ☐ OCTOBER 2018 ☐ Foundation Excavation ☐ Trench Excavation ☐ Other				
Permanent Discharges □ Foundation Drainage □ Accumulated Surface Water	□ Crawl Space/Footing Drain □ Non-contact/Uncontaminated Cooling □ Other;				
 Attach a Site Plan showing the source of the discharge and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter number, size, make and start reading. Note. All discharges to the Commission's sewer system will be assessed current sewer charges. If discharging to a sanitary or combined sewer, attach a copy of MWRA's Sewer Use Discharge permit or application. If discharging to a separate storm drain, attach a copy of EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well as other relevant information. Dewatering Drainage Permit will be denied or revoked if applicant fails to obtain the necessary permits from MWRA or EPA. Submit Completed Application to: Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue, Boston, MA 02119 					
Attn: Matthew Tuttle, E E-mail: tuttlemp@bwsc Phone: 617-989-7204	ngineering Customer Service c. org Fax: 617-989-7716				
Signature of Authorized Representative for Property Owner:	Date: 3/6/8 Date: 3/6/8 Down Frequenti-Shitt 3/6/8 Down En, UC				
ψ	CENT FOR				
	1000 WASTINGTON (BOSTON) OWNER, UC				

APPENDIX C

Endangered Species Act Documentation

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: January 31, 2018

Consultation Code: 05E1NE00-2018-SLI-0824

Event Code: 05E1NE00-2018-E-01905

Project Name: 1000 Washington Street Site Location

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

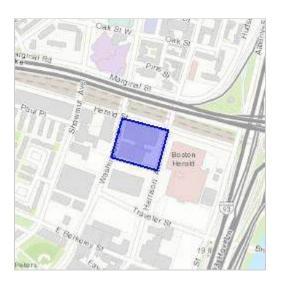
New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0824

Event Code: 05E1NE00-2018-E-01905

Project Name: 1000 Washington Street Site Location


Project Type: DEVELOPMENT

Project Description: Construction dewatering associated with below-grade construction

activities, managed under a NPDES RGP.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.3460164285002N71.06407260274185W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC: Resources Page 1 of 15

IPaC Information for Planning and Consultation u.s. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as trust resources) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional sitespecific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section. ONSULT

Project information

NAME

1000 Washington Street Site Location

LOCATION

Suffolk County, Massachusetts

DESCRIPTION

Construction

dewatering associated with below-grade construction activities, managed under a NPDES RGP.

Local office

New England Ecological Services Field Office

IPaC: Resources Page 2 of 15

NOT FOR CONSULTATION

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

IPaC: Resources Page 3 of 15

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project.
- Click REQUEST SPECIES LIST.

Listed species

¹ are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service.

 Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act

¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

IPaC: Resources Page 4 of 15

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds
 http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see maps of where birders and the general public have sighted birds in and around your project area, visit E-bird tools such as the <u>E-bird data mapping tool</u> (search for the name of a bird on your list to see specific locations where that bird has been reported to occur within your project area over a certain timeframe) and the <u>E-bird Explore Data Tool</u> (perform a query to see a list of all birds sighted in your county or region and within a certain timeframe). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

American Oystercatcher Haematopus palliatus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8935

Breeds Apr 15 to Aug 31

IPaC: Resources Page 5 of 15

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Black Skimmer Rynchops niger

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/5234

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Buff-breasted Sandpiper Calidris subruficollis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9488

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/2974

Eastern Whip-poor-will Antrostomus vociferus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Hudsonian Godwit Limosa haemastica

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Oct 15 to Aug 31

Breeds May 20 to Sep 15

Breeds May 15 to Oct 10

Breeds May 20 to Jul 31

Breeds elsewhere

Breeds Apr 29 to Jul 20

Breeds May 1 to Aug 20

Breeds elsewhere

Breeds elsewhere

Breeds Apr 20 to Aug 20

IPaC: Resources Page 6 of 15

King Rail Rallus elegans

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8936

Breeds May 1 to Sep 5

Least Tern Sterna antillarum

This is a Bird of Conservation Concern (BCC) only in particular Bird

Conservation Regions (BCRs) in the continental USA

Breeds Apr 20 to Sep 10

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Long-eared Owl asio otus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3631

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds Apr 1 to Jul 31

Purple Sandpiper Calidris maritima

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds elsewhere

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds elsewhere

IPaC: Resources Page 7 of 15

Seaside Sparrow Ammodramus maritimus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 20

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Whimbrel Numenius phaeopus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9483

Breeds elsewhere

Willet Tringa semipalmata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 5

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in your project's counties during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For

IPaC: Resources Page 8 of 15

example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.

- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

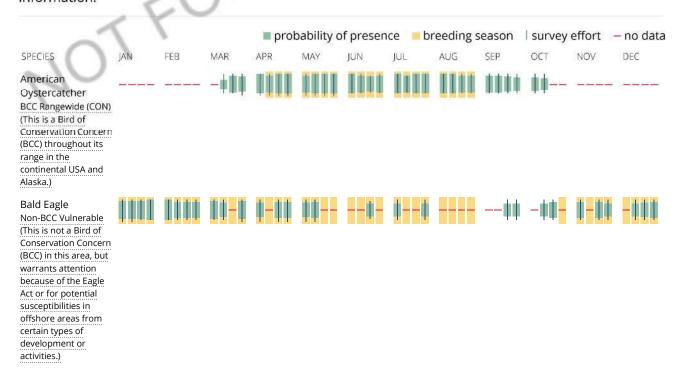
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (I)

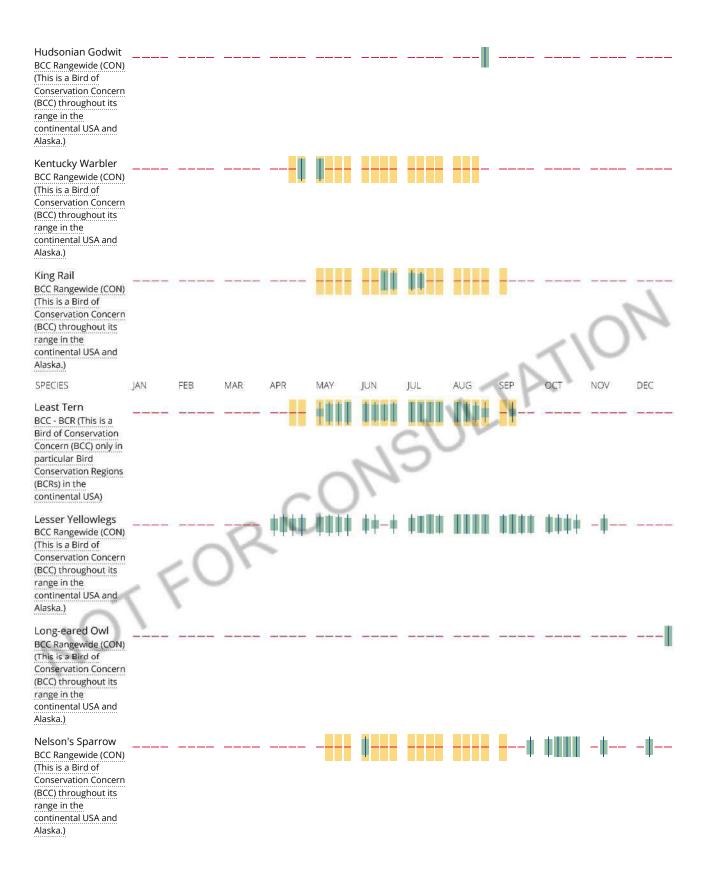
Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the counties of your project area. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

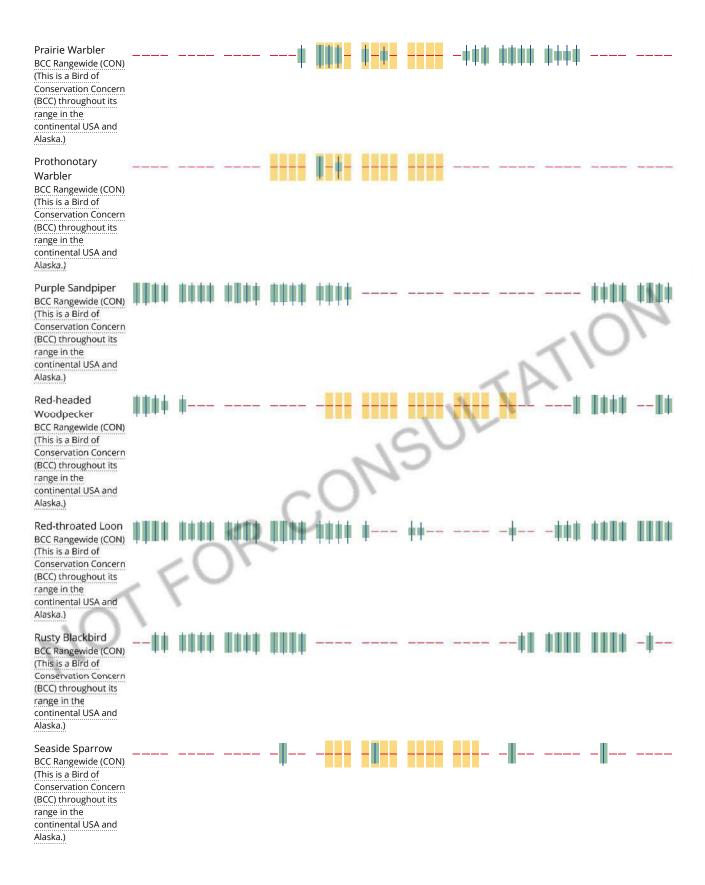

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

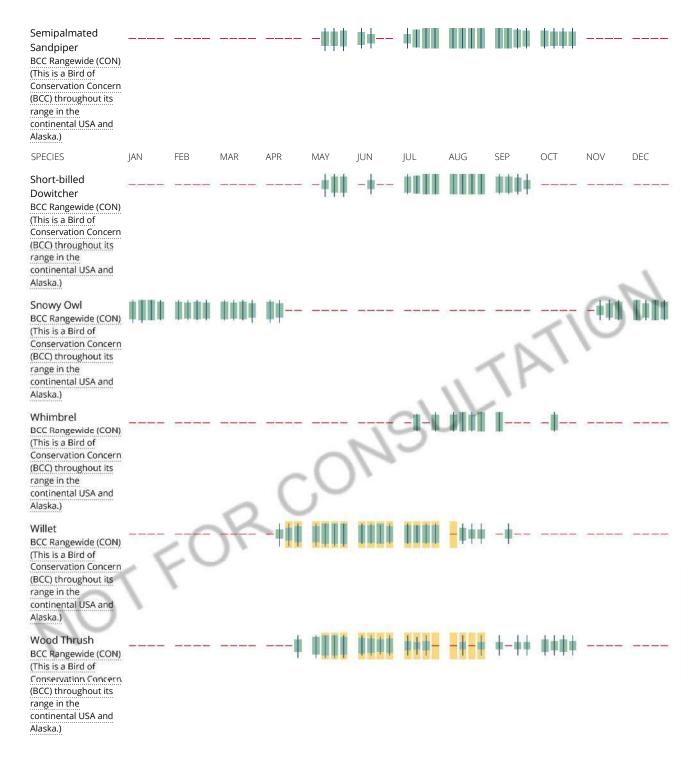
No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe


Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information.


IPaC: Resources Page 9 of 15


IPaC: Resources Page 10 of 15

IPaC: Resources Page 11 of 15

IPaC: Resources Page 12 of 15

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

IPaC: Resources Page 13 of 15

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the counties which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird entry on your migratory bird species list indicates a breeding season, it is probable that the bird breeds in your project's counties at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review.

IPaC: Resources Page 14 of 15

Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the BGEPA should such impacts occur.

Facilities

Wildlife refuges and fish hatcheries

REFUGE AND FISH HATCHERY INFORMATION IS NOT AVAILABLE AT THIS TIME

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers</u> <u>District</u>.

WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the NWI map to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

IPaC: Resources Page 15 of 15

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: January 31, 2018

Consultation Code: 05E1NE00-2018-SLI-0823

Event Code: 05E1NE00-2018-E-01903

Project Name: 1000 Washington Street Discharge Location

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0823

Event Code: 05E1NE00-2018-E-01903

Project Name: 1000 Washington Street Discharge Location

Project Type: DEVELOPMENT

Project Description: Construction dewatering associated with below-grade construction

activities, managed under a NPDES RGP.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.344985577218175N71.05934526503806W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC: Resources Page 1 of 15

IPaC Information for Planning and Consultation u.s. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as trust resources) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional sitespecific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional ONSULTI information applicable to the trust resources addressed in that section.

Project information

NAME

1000 Washington Street Discharge Location

LOCATION

Suffolk County, Massachusetts

DESCRIPTION

Construction

dewatering associated with below-grade construction activities, managed under a NPDES RGP.

Local office

New England Ecological Services Field Office

IPaC: Resources Page 2 of 15

NOT FOR CONSULTATION

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

IPaC: Resources Page 3 of 15

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project
- Click REQUEST SPECIES LIST.

Listed species

¹ are managed by the Ecological Services Program of the U.S. Fish and Wildlife Service.

 Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act

¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

IPaC: Resources Page 4 of 15

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds
 http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see maps of where birders and the general public have sighted birds in and around your project area, visit E-bird tools such as the <u>E-bird data mapping tool</u> (search for the name of a bird on your list to see specific locations where that bird has been reported to occur within your project area over a certain timeframe) and the <u>E-bird Explore Data Tool</u> (perform a query to see a list of all birds sighted in your county or region and within a certain timeframe). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

American Oystercatcher Haematopus palliatus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8935

Breeds Apr 15 to Aug 31

IPaC: Resources Page 5 of 15

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Black Skimmer Rynchops niger

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/5234

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Buff-breasted Sandpiper Calidris subruficollis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9488

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/2974

Eastern Whip-poor-will Antrostomus vociferus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Hudsonian Godwit Limosa haemastica

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Oct 15 to Aug 31

Breeds May 20 to Sep 15

Breeds May 15 to Oct 10

Breeds May 20 to Jul 31

Breeds elsewhere

Breeds Apr 29 to Jul 20

Breeds May 1 to Aug 20

Breeds elsewhere

Breeds elsewhere

Breeds Apr 20 to Aug 20

IPaC: Resources Page 6 of 15

King Rail Rallus elegans

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8936

Breeds May 1 to Sep 5

Least Tern Sterna antillarum

This is a Bird of Conservation Concern (BCC) only in particular Bird

Conservation Regions (BCRs) in the continental USA

Breeds Apr 20 to Sep 10

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Long-eared Owl asio otus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3631

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds Apr 1 to Jul 31

Purple Sandpiper Calidris maritima

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds elsewhere

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the

continental USA and Alaska.

Breeds elsewhere

IPaC: Resources Page 7 of 15

Seaside Sparrow Ammodramus maritimus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 20

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Whimbrel Numenius phaeopus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9483

Breeds elsewhere

Willet Tringa semipalmata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 5

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in your project's counties during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For

IPaC: Resources Page 8 of 15

example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.

- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

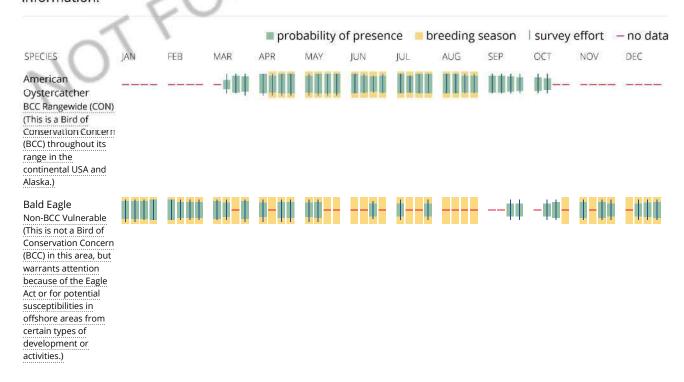
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (I)

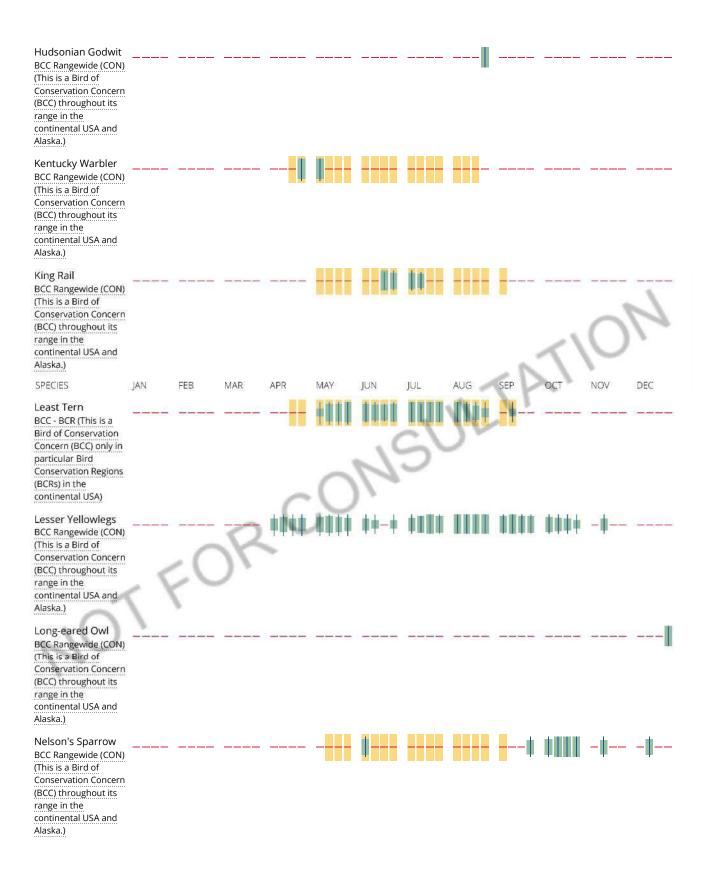
Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the counties of your project area. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

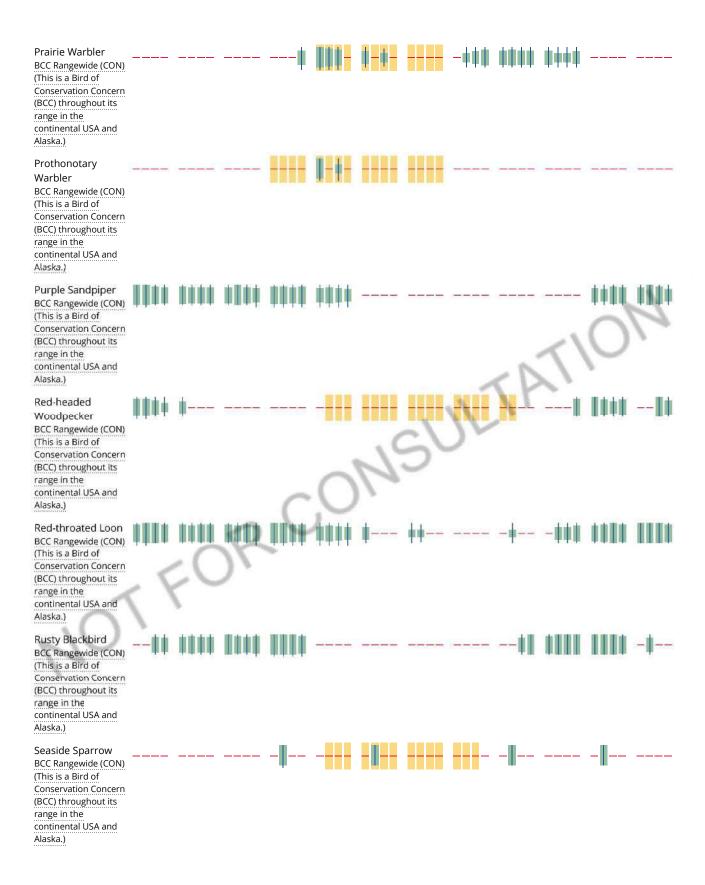

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

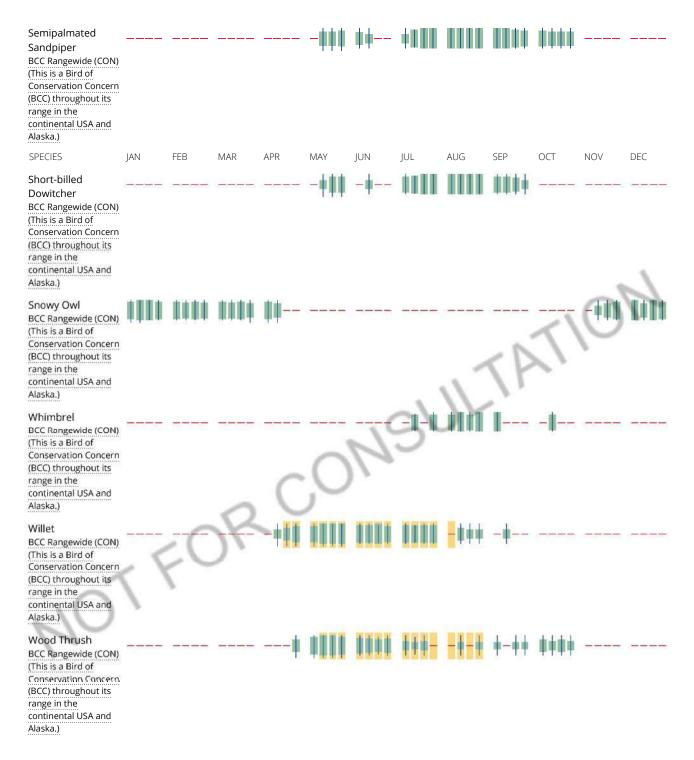
No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe


Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information.


IPaC: Resources Page 9 of 15


IPaC: Resources Page 10 of 15

IPaC: Resources Page 11 of 15

IPaC: Resources Page 12 of 15

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

IPaC: Resources Page 13 of 15

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the counties which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science</u> datasets.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird entry on your migratory bird species list indicates a breeding season, it is probable that the bird breeds in your project's counties at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review.

IPaC: Resources Page 14 of 15

Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the BGEPA should such impacts occur.

Facilities

Wildlife refuges and fish hatcheries

REFUGE AND FISH HATCHERY INFORMATION IS NOT AVAILABLE AT THIS TIME

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers</u> <u>District</u>.

WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

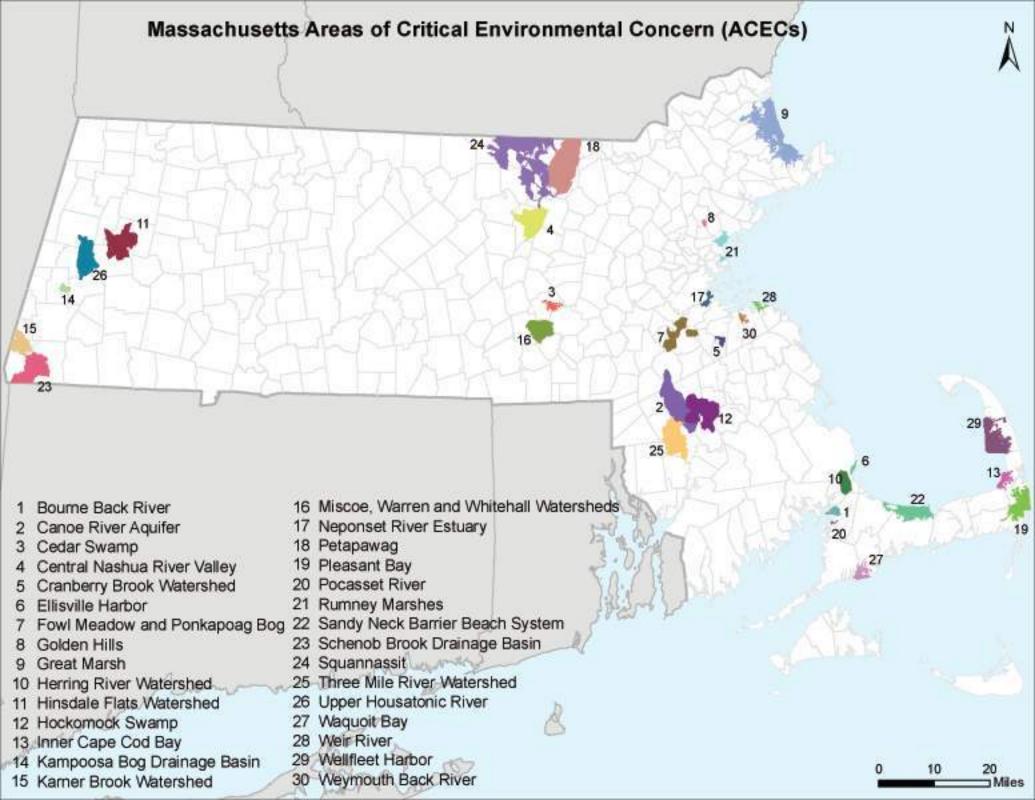
This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.


IPaC: Resources Page 15 of 15

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

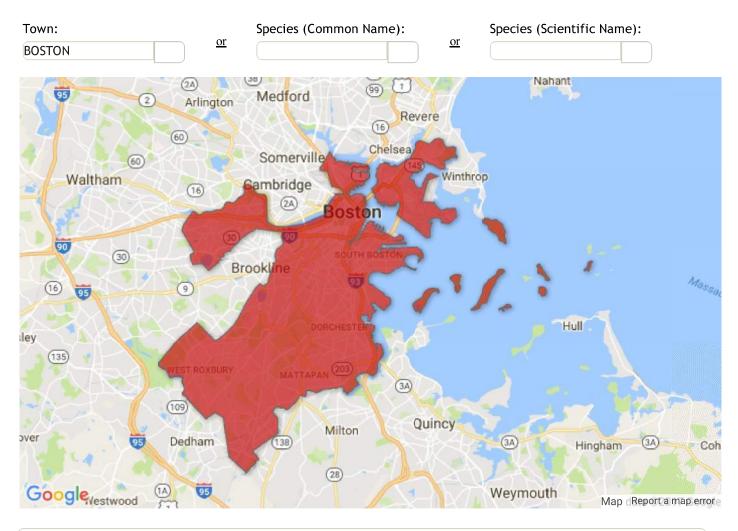
Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.


Towns with ACECs within their Boundaries

November 2010

TOWIIS WILL	II ACECS WILLIIII LITERI DOUTIGATIES		Novellibel 2010
TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag		Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River		Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed	_	Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp	0 :	Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay	01	Golden Hills
C	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer	Chaff; ald	Fowl Meadow and Ponkapoag Bog
Causes a sat	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley Stockbridge	Squannassit Kampoosa Bog Drainage Basin
Essex	Great Marsh	Taunton	Hockomock Swamp
Falmouth	Waquoit Bay Canoe River Aquifer	raunton	Canoe River Aquifer
Foxborough Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
Ciaitori	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
aroton	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley	Opton	Watersheds
riarvara	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	g.	Upper Housatonic River
rinigriani	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Showing 1	to 46 of 46 entries		Search:		
			First	Previous 1	Next Last
Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
BOSTON	Butterfly/Moth	Abagrotis nefascia	Coastal Heathland Cutworm	SC	2001
BOSTON	Vascular Plant	Ageratina aromatica	Lesser Snakeroot	E	1896
BOSTON	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC	2015
BOSTON	Bird	Ammodramus savannarum	Grasshopper Sparrow	T	1993
BOSTON	Butterfly/Moth	Apodrepanulatrix liberaria	New Jersey Tea Inchworm	E	Historic
BOSTON	Vascular Plant	Aristida purpurascens	Purple Needlegrass	T	Historic
BOSTON	Vascular Plant	Aristida tuberculosa	Seabeach Needlegrass	T	1877

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
BOSTON	Vascular Plant	Asclepias verticillata	Linear-leaved Milkweed	T	1878
BOSTON	Bird	Bartramia longicauda	Upland Sandpiper	Е	1993
BOSTON	Vascular Plant	Boechera missouriensis	Green Rock-cress	T	1930
BOSTON	Vascular Plant	Carex striata	Walter's Sedge	Е	Historic
BOSTON	Bird	Charadrius melodus	Piping Plover	T	2016
BOSTON	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger Beetle	SC	1910
BOSTON	Beetle	Cicindela purpurea	Cow Path Tiger Beetle	SC	1928
BOSTON	Beetle	Cicindela rufiventris hentzii	Eastern Red-bellied Tiger Beetle	T	1927
BOSTON	Vascular Plant	Desmodium cuspidatum	Large-bracted Tick-trefoil	T	1896
BOSTON	Vascular Plant	Eriophorum gracile	Slender Cottongrass	T	1885
BOSTON	Bird	Falco peregrinus	Peregrine Falcon	T	2014
BOSTON	Fish	Gasterosteus aculeatus	Threespine Stickleback	T	2014
BOSTON	Bird	Gavia immer	Common Loon	SC	1824
BOSTON	Vascular Plant	Houstonia longifolia	Long-leaved Bluet	E	1918
BOSTON	Vascular Plant	Liatris scariosa var. novae- angliae	New England Blazing Star	SC	1933
BOSTON	Mussel	Ligumia nasuta	Eastern Pondmussel	SC	1841
BOSTON	Vascular Plant	Linum medium var. texanum	Rigid Flax	T	1909
BOSTON	Vascular Plant	Lycopus rubellus	Gypsywort	E	1896
BOSTON	Vascular Plant	Malaxis unifolia	Green Adder's Mouth	T	1883
BOSTON	Butterfly/Moth	Metarranthis apiciaria	Barrens Metarranthis	E	1934
BOSTON	Vascular Plant	Myriophyllum alterniflorum	Alternate-flowered Water-milfoil	E	Historic
BOSTON	Vascular Plant	Ophioglossum pusillum	Adder's-tongue Fern	T	1884
BOSTON	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	T	1908
BOSTON	Bird	Pooecetes gramineus	Vesper Sparrow	T	1985
BOSTON	Butterfly/Moth	Pyrrhia aurantiago	Orange Sallow Moth	SC	1988
BOSTON	Vascular Plant	Ranunculus micranthus	Tiny-flowered Buttercup	E	1891
BOSTON	Vascular Plant	Rumex pallidus	Seabeach Dock	T	1984
BOSTON	Vascular Plant	Sanicula odorata	Long-styled Sanicle	T	Historic
BOSTON	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	T	1932
BOSTON	Vascular Plant	Scirpus longii	Long's Bulrush	T	1907
BOSTON	Vascular Plant	Setaria parviflora	Bristly Foxtail	SC	2001
BOSTON	Dragonfly/Damselfly	Somatochlora linearis	Mocha Emerald	SC	2009
BOSTON	Bird	Sterna hirundo	Common Tern	SC	2013
BOSTON	Bird	Sternula antillarum	Least Tern	SC	2014
BOSTON	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC	1909
BOSTON	Reptile	Terrapene carolina	Eastern Box Turtle	SC	1939
BOSTON	Bird	Tyto alba	Barn Owl	SC	1989
BOSTON	Bird	Vermivora chrysoptera	Golden-winged Warbler	E	Historic
BOSTON	Vascular Plant	Viola brittoniana	Britton's Violet	T	1909

Show Additional Info

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

APPENDIX D

National Register of Historic Places and Massachusetts Historical Commission Documentation

To: Jonathan M. Thibault, P.E. (H & A) Date: 2/2/2018 From: Mark Levine Project No.: 15103

Project: 1000 Washington Street/321 Harrison Avenue

Re: Massachusetts Historical Commission

Distribution: JCH, BCP

Memorandum

Symmes Maini & McKee Associates conducted research on the Massachusetts Historical Commission (MHC) on-line data base on February 2, 2018 to check the Inventory of Historic Assets of the Commonwealth and the State Register of Historic Places for 1000 Washington Street and 321 Harrison Avenue, Boston, MA.

- State Register of Historic Places: The building is not listed on the State Register of Historic Places. (The National Register of Historic Places is incorporated within the State Register of Historic Places)
- Inventory of Historic Assets of the Commonwealth: We reviewed MHC base maps and the MACRIS data base on-line for 1000 Washington Street and 321 Harrison Avenue, in the City of Boston. There are no Historical Assets on the Inventory of the Commonwealth listed or mapped in our project site location.
- Inventory of Archaeological Assets of the Commonwealth: We did not review Prehistorical Archaeological Assets of the Commonwealth mapped in our project site location.

1000 Massachusetts Avenue Cambridge, MA 02138 617.547.5400

National Register of Historic Places

National Park Service

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. Data last updated in Apr...

ddlmer/) | Geocoding by Esri | @ Mapbox (https://www.mapbox.com/about/maps/) @ OpenStreetMap (https://www.openstreetmap.org/copyright) contributors | Cultural Resources GIS, National Park Service

Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm) | Website Policies (https://www.nps.gov/aboutus/website-policies.htm) | Contact Us (https://www.nps.gov/contacts.htm)

Note: Not all properties are digitized

Reference State	County	City	Resource	Address		Text	Photos
Number			Name			Click me	Cl;ick me
83000601 MASSACHUSETTS	Suffolk	Boston	Charles Street African Methodist Episcopal Church	551 Warren St.	19830901		<u>Photos</u>
83000602 MASSACHUSETTS	Suffolk	Boston	Codman Square District	Norfolk, Talbot, Epping, Lithgow, Cer			<u>Photos</u>
83000603 MASSACHUSETTS	Suffolk	Boston	Gardner, Isabella Stewart, Museum	280 The Fenway	19830127		<u>Photos</u>
83000605 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Fire Station	16 Harvard Ave.	19830331		<u>Photos</u>
83000606 MASSACHUSETTS	Suffolk	Boston	Lawrence Model Lodging Houses	79, 89, 99 and 109 E. Canton St.	19830922		<u>Photos</u>
83000607 MASSACHUSETTS	Suffolk	Boston	Newspaper Row	322-328 Washington St., 5-23 Milk St			<u>Photos</u>
82000486 MASSACHUSETTS	Suffolk	Boston	Wigglesworth Building	89-83 Franklin St.	19821021		<u>Photos</u>
83004098 MASSACHUSETTS	Suffolk	Boston	Leather District	Roughly bounded by Atlantic Ave., K			<u>Photos</u>
83004285 MASSACHUSETTS	Suffolk	Boston	Baker, Sarah J., School	33 Perrin St.	19830707		<u>Photos</u>
79000370 MASSACHUSETTS	Suffolk	Boston	Washington Street Theatre District	511-559 Washington St.	19790319		Photos
85000318 MASSACHUSETTS	Suffolk	Boston	Dorchester Pottery Works	101-105 Victory Rd.	19850221		Photos
79000368 MASSACHUSETTS 80000442 MASSACHUSETTS	Suffolk	Boston	Bedford Building	89-103 Bedford St.	19790821		Photos
80000442 MASSACHUSETTS	Suffolk Suffolk	Boston	Wirth, Jacob, Buildings	31-39 Stuart St. 252-272 Tremont St.	19801209		Photos
80000445 MASSACHUSETTS	Suffolk	Boston	Metropolitan Theatre		19801209		Photos
	Suffolk	Boston	Hayden Building Dill Building	681-683 Washington St.	19801209	·	Photos
80000448 MASSACHUSETTS 80000450 MASSACHUSETTS	Suffolk	Boston	Boylston Building	11-25 Stuart St. 2-22 Boylston St.	19801209		Photos
80000450 MASSACHUSETTS	Suffolk	Boston		•	19801209		Photos
		Boston	Boston Young Men's Christian Union	48 Boylston St.	19801209		Photos
80000453 MASSACHUSETTS	Suffolk	Boston	Boston Edison Electric Illuminating Company West Street District	25-39 Boylston St.	19801209		Photos
80000455 MASSACHUSETTS	Suffolk Suffolk	Boston	West Street District	West St.	19801209		Photos
80000460 MASSACHUSETTS	Suffolk	Boston	Liberty Tree District	Roughly bounded by Harrison Ave.			Photos
80000462 MASSACHUSETTS	Suffolk	Boston	Beach-Knapp District	Roughly bounded by Harrison Ave., \		·	Photos
80000465 MASSACHUSETTS 66000127 MASSACHUSETTS	Suffolk	Boston	Oak Square School Arnold Arboretum	35 Nonantum St.	19801110		Photos
73000313 MASSACHUSETTS	Suffolk	Boston		22 Divinity Ave.	19661015		Photos
73000313 MASSACHUSETTS	Suffolk	Boston Boston	Arlington Street Church Old Corner Bookstore	Arlington and Boylston Sts. NW corner of Washington and School	19730504		Photos Photos
75000322 MASSACHUSETTS	Suffolk		South Station Headhouse	Atlantic Ave. and Summer St.			
74000392 MASSACHUSETTS	Suffolk	Boston	Winthrop Building	7 Water St.	19750213 19740418		Photos Photos
80000668 MASSACHUSETTS	Suffolk	Boston Boston		138-164 Federal St.	19800819		Photos
75000300 MASSACHUSETTS	Suffolk	Boston	United Shoe Machinery Corporation Building St. Stephen's Church	Hanover St. between Clark and Harri			Photos
80000669 MASSACHUSETTS	Suffolk	Boston	Union Wharf	295-353 Commercial St.	19800622		Photos
80000670 MASSACHUSETTS	Suffolk	Boston	Suffolk County Jail	215 Charles St.	19800423		Photos
80000674 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, School	20 Hutchings St.	19800416		Photos
80001683 MASSACHUSETTS	Suffolk	Boston	Dillaway School	16-20 Kenilworth St.	19800409		Photos
66000366 MASSACHUSETTS	Suffolk	Boston	Ether Dome, Massachusetts General Hospital	Fruit St.	19661015		Photos
70000539 MASSACHUSETTS	Suffolk	Boston	Otis, (First) Harrison Gray, House	141 Cambridge St.	19701230		Photos
73000314 MASSACHUSETTS	Suffolk	Boston	Armory of the First Corps of Cadets	97-105 Arlington St. and 130 Columb			Photos
73000315 MASSACHUSETTS	Suffolk	Boston	Blackstone Block Historic District	Area bound by Union, Hanover, Blac			Photos
72000145 MASSACHUSETTS	Suffolk	Boston	Crowninshield House	164 Marlborough St.	19720223		Photos
72000146 MASSACHUSETTS	Suffolk	Boston	First Baptist Church	Commonwealth Ave. and Clarendon			Photos
74000391 MASSACHUSETTS	Suffolk	Boston	John Adams Courthouse	Pemberton Sq.	19740508	·	Photos
72000150 MASSACHUSETTS	Suffolk	Boston	Trinity Rectory	Clarendon and Newbury Sts.	19720223	·	Photos
74000385 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Burial Ground	Charter, Snowhill, and Hull Sts.	19740418		Photos
74000393 MASSACHUSETTS	Suffolk	Boston	Youth's Companion Building	209 Columbus Ave.	19740502	·	Photos
66000764 MASSACHUSETTS	Suffolk	Boston	Harding, Chester, House	16 Beacon St.	19661015	·	Photos
74002044 MASSACHUSETTS	Suffolk	Boston	Howe, Samuel Gridley and Julia Ward, House	13 Chestnut St.	19740913	Text	Photos
74002045 MASSACHUSETTS	Suffolk	Boston	King's Chapel	Tremont and School Sts.	19740502	Text	Photos
70000682 MASSACHUSETTS	Suffolk	Boston	Massachusetts General Hospital	Fruit Street	19701230	<u>Text</u>	<u>Photos</u>
80000678 MASSACHUSETTS	Suffolk	Boston	All Saints' Church	211 Ashmont St.	19800616	<u>Text</u>	<u>Photos</u>
81000620 MASSACHUSETTS	Suffolk	Boston	Fields Corner Municipal Building	1 Arcadia St., 195 Adams St.	19811112	<u>Text</u>	<u>Photos</u>
66000770 MASSACHUSETTS	Suffolk	Boston	Massachusetts Historical Society Building	1154 Boylston St.	19661015	<u>Text</u>	<u>Photos</u>
66000771 MASSACHUSETTS	Suffolk	Boston	Massachusetts Statehouse	Beacon Hill	19661015	<u>Text</u>	<u>Photos</u>
76001979 MASSACHUSETTS	Suffolk	Boston	Nell, William C., House	3 Smith Ct.	19760511	<u>Text</u>	<u>Photos</u>
70000687 MASSACHUSETTS	Suffolk	Boston	Old City Hall	School and Providence Sts.	19701230	<u>Text</u>	<u>Photos</u>
70000690 MASSACHUSETTS	Suffolk	Boston	Old South Church in Boston	645 Boylston St.	19701230	<u>Text</u>	<u>Photos</u>
70000691 MASSACHUSETTS	Suffolk	Boston	Old West Church	131 Cambridge St.	19701230	<u>Text</u>	<u>Photos</u>
66000782 MASSACHUSETTS	Suffolk	Boston	Parkman, Francis, House	50 Chestnut St.	19661015	<u>Text</u>	<u>Photos</u>
80000444 MASSACHUSETTS	Suffolk	Boston	Shubert, Sam S., Theatre	263-265 Tremont St.	19801209	<u>Text</u>	<u>Photos</u>
80000458 MASSACHUSETTS	Suffolk	Boston	Piano Row District	Boston Common, Park Sq., Boylston	19801209	<u>Text</u>	<u>Photos</u>
80000443 MASSACHUSETTS	Suffolk	Boston	Wilbur Theatre	244-250 Tremont St.	19801209	<u>Text</u>	<u>Photos</u>
66000765 MASSACHUSETTS	Suffolk	Boston	Headquarters House	55 Beacon St.	19661015	<u>Text</u>	<u>Photos</u>
68000042 MASSACHUSETTS	Suffolk	Boston	Pierce-Hichborn House	29 North Sq.	19681124	·	<u>Photos</u>
66000784 MASSACHUSETTS	Suffolk	Boston	Quincy Market	S. Market St.	19661113	<u>Text</u>	<u>Photos</u>

70000730 MASSACHUSETTS	Suffolk	Boston	St. Paul's Church	136 Tremont St.	19701230 Text	Photos
70000730 MASSACHUSETTS	Suffolk	Boston	Sears, David, House	42 Beacon St.	19701230 <u>Text</u> 19701230 Text	<u>Photos</u> Photos
73001953 MASSACHUSETTS	Suffolk	Boston	Sumner, Charles, House	20 Hancock St.	19731107 Text	Photos
66000130 MASSACHUSETTS	Suffolk	Boston	Beacon Hill Historic District	Bounded by Beacon St., the Charles		Photos
73001955 MASSACHUSETTS	Suffolk	Boston	Otis, (Second) Harrison Gray, House	85 Mt. Vernon St.	19730727 Text	Photos
66000768 MASSACHUSETTS	Suffolk	Boston	Long Wharf and Customhouse Block	Foot of State St.	19661113 Text	Photos
66000132 MASSACHUSETTS	Suffolk	Boston	Boston Athenaeum	10 1/2 Beacon St.	19661015 <u>Text</u>	Photos
66000788 MASSACHUSETTS	Suffolk	Boston	Tremont Street Subway	Beneath Tremont, Boylston, and Wa	· · · · · · · · · · · · · · · · · · ·	Photos
70000733 MASSACHUSETTS	Suffolk	Boston	Trinity Church	Copley Sq.	19700701 Text	Photos
82004456 MASSACHUSETTS	Suffolk	Boston	Adams-Nervine Asylum	990-1020 Centre St.	19820601 Text	Photos
79000369 MASSACHUSETTS	Suffolk	Boston	International Trust Company Building	39-47 Milk St.	19790910 <u>Text</u>	Photos
74000388 MASSACHUSETTS	Suffolk	Boston	Eliot Burying Ground	Eustis and Washington Sts.	19740625 <u>Text</u>	Photos
80000463 MASSACHUSETTS	Suffolk	Boston	Russia Wharf Buildings	518-540 Atlantic Ave., 270 Congress	19801202 <u>Text</u>	<u>Photos</u>
71000087 MASSACHUSETTS	Suffolk	Boston	African Meetinghouse	8 Smith St.	19711007 <u>Text</u>	Photos
85002015 MASSACHUSETTS	Suffolk	Boston	Building at 138142 Portland Street	138142 Portland St.	19850905 <u>Text</u>	Photos
84000421 MASSACHUSETTS	Suffolk	Boston	Vermont Building	6-12 Thacher St.	19841113 <u>Text</u>	Photos
75000301 MASSACHUSETTS	Suffolk	Boston	Symphony and Horticultural Halls	Massachusetts and Huntington Aves	19750530 <u>Text</u>	<u>Photos</u>
73000324 MASSACHUSETTS	Suffolk	Boston	South End District	South Bay area between Huntington	19730508 <u>Text</u>	<u>Photos</u>
74000390 MASSACHUSETTS	Suffolk	Boston	Park Street District	Tremont, Park, and Beacon Sts.	19740501 <u>Text</u>	<u>Photos</u>
73000319 MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets District	Fulton, Commercial, Mercantile, Lew	19730321 <u>Text</u>	<u>Photos</u>
84002875 MASSACHUSETTS	Suffolk	Boston	Fenway-Boylston Street District	Fenway, Boylston, Westland, and He	19840904 <u>Text</u>	<u>Photos</u>
78000473 MASSACHUSETTS	Suffolk	Boston	Fenway Studios	30 Ipswich St.	19780913 <u>Text</u>	<u>Photos</u>
73000318 MASSACHUSETTS	Suffolk	Boston	Cyclorama Building	543-547 Tremont St.	19730413 <u>Text</u>	<u>Photos</u>
83004097 MASSACHUSETTS	Suffolk	Boston	Codman Building	55 Kilby St.	19831019 <u>Text</u>	<u>Photos</u>
80000676 MASSACHUSETTS	Suffolk	Boston	Charles Playhouse	74-78 Warenton St.	19800616 <u>Text</u>	<u>Photos</u>
74000382 MASSACHUSETTS	Suffolk	Boston	Ames Building	1 Court St.	19740426 <u>Text</u>	<u>Photos</u>
77001541 MASSACHUSETTS	Suffolk	Boston	Appleton, Nathan, Residence	39-40 Beacon St.	19771222 <u>Text</u>	<u>Photos</u>
66000134 MASSACHUSETTS	Suffolk	Boston	Boston Naval Shipyard	E of Chelsea St., Charlestown	19661115 <u>Text</u>	<u>Photos</u>
66000050 MASSACHUSETTS	Suffolk	Boston	Dorchester Heights National Historic Site	South Boston	19661015 <u>Text</u>	<u>Photos</u>
74002222 MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Inner harbor at mouth of Charles Riv	19741026 <u>Text</u>	<u>Photos</u>
66000785 MASSACHUSETTS	Suffolk	Boston	Revere, Paul, House	19 North Sq.	19661015 <u>Text</u>	<u>Photos</u>
66000776 MASSACHUSETTS	Suffolk	Boston	Old North Church	193 Salem St.	19661015 <u>Text</u>	<u>Photos</u>
66000778 MASSACHUSETTS	Suffolk	Boston	Old South Meetinghouse	Milk and Washington Sts.	19661015 <u>Text</u>	<u>Photos</u>
66000368 MASSACHUSETTS	Suffolk	Boston	Faneuil Hall	Dock Sq.	19661015 <u>Text</u>	<u>Photos</u>
66000779 MASSACHUSETTS	Suffolk	Boston	Old State House	Washington and State Sts.	19661015 <u>Text</u>	<u>Photos</u>
85003074 MASSACHUSETTS	Suffolk	Boston	Dudley Station Historic District	Washington, Warren, and Dudley Sts	· · · · · · · · · · · · · · · · · · ·	<u>Photos</u>
86000140 MASSACHUSETTS	Suffolk	Boston	Christ Church	1220 River Rd.	19860130 <u>Text</u>	<u>Photos</u>
73000317 MASSACHUSETTS	Suffolk	Boston	Boston Public Library	Copley Sq.	19730506 <u>Text</u>	<u>Photos</u>
86001909 MASSACHUSETTS	Suffolk	Boston	Filene's Department Store	426 Washington St.	19860724 <u>Text</u>	<u>Photos</u>
86001913 MASSACHUSETTS	Suffolk	Boston	Second Brazer Building	2529 State St.	19860724 <u>Text</u>	<u>Photos</u>
86001486 MASSACHUSETTS	Suffolk	Boston	Sears' Crescent and Sears' Block	3868 and 7072 Cornhill	19860809 <u>Text</u>	<u>Photos</u>
86001504 MASSACHUSETTS	Suffolk	Boston	Richardson Block	113151 Pearl and 109119 High Sts		<u>Photos</u>
85003375 MASSACHUSETTS	Suffolk	Boston	Engine House No. 34	444 Western Ave.	19851024 <u>Text</u>	<u>Photos</u>
80000671 MASSACHUSETTS	Suffolk	Boston	Stearns, R. H., House	140 Tremont St.	19800616 <u>Text</u>	<u>Photos</u>
86001911 MASSACHUSETTS	Suffolk	Boston	LockeOber Restaurant	34 Winter Pl.	19860724 <u>Text</u>	<u>Photos</u>
80000677 MASSACHUSETTS	Suffolk	Boston	Berger Factory	37 Williams St.	19800409 <u>Text</u>	<u>Photos</u>
85000316 MASSACHUSETTS	Suffolk	Boston	Bigelow School	350 W. 4th St.	19850221 <u>Text</u>	<u>Photos</u>
84002890 MASSACHUSETTS 70000921 MASSACHUSETTS	Suffolk Suffolk	Boston	Moreland Street Historic District	Roughly bounded by Kearsarge, Blue Castle Island		Photos
86000375 MASSACHUSETTS	Suffolk	Boston Boston	Fort Independence Harriswood Crescent	6088 Harold St.	19701015 <u>Text</u>	Photos
66000789 MASSACHUSETTS	Suffolk	Boston	U.S.S. CONSTITUTION	Boston Naval Shipyard	19860313 <u>Text</u> 19661015 <u>Text</u>	<u>Photos</u> <u>Photos</u>
87000757 MASSACHUSETTS	Suffolk	Boston	Harvard Stadium	60 N. Harvard St.	19870227 Text	Photos
72000144 MASSACHUSETTS	Suffolk	Boston	Boston Common and Public Garden	Beacon, Park, Tremont, Boylston, an		Photos
87000760 MASSACHUSETTS	Suffolk	Boston	Boston Common	Beacon, Park, Tremont, Boylston, and		<u>Photos</u>
87000760 MASSACHUSETTS	Suffolk	Boston	Boston Public Garden	Beacon, Charles, Boylston, and Arling		<u>Photos</u>
87001128 MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Monument Sq.	19870602 Text	Photos
66000138 MASSACHUSETTS	Suffolk	Boston	Bunker Hill Monument	Breed's Hill	19661015 Text	Photos
86000274 MASSACHUSETTS	Suffolk	Boston	Bulfinch Triangle Historic District		19860227 <u>Text</u>	Photos
80000675 MASSACHUSETTS	Suffolk	Boston	Dorchester-Milton Lower Mills Industrial District	Both sides of Neponset River	19800402 <u>Text</u>	<u>Photos</u>
86000084 MASSACHUSETTS	Suffolk	Boston	USS CASSIN YOUNG (destroyer)	Charlestown Navy Yard	19860114 Text	Photos
66000133 MASSACHUSETTS	Suffolk	Boston	Boston Light	Little Brewster Island, Boston Harboi		<u>Photos</u>
87001481 MASSACHUSETTS	Suffolk	Boston	Long Island Head Light	Long Island	19870615 Text	Photos
87001394 MASSACHUSETTS	Suffolk	Boston	New Riding Club	52 Hemenway St.	19870820 Text	Photos
87001396 MASSACHUSETTS	Suffolk	Boston	Congress Street Fire Station	344 Congress St.	19870903 Text	Photos
87000885 MASSACHUSETTS	Suffolk	Boston	Abbotsford	300 Walnut Ave.	19870916 Text	Photos
87001889 MASSACHUSETTS	Suffolk	Boston	Sumner Hill Historic District			Photos
87001771 MASSACHUSETTS	Suffolk	Boston	Bunker Hill School	65 Baldwin St.	19871015 <u>Text</u>	Photos
87001398 MASSACHUSETTS	Suffolk	Boston	House at 17 Cranston Street	17 Cranston St.	19871120 <u>Text</u>	Photos
87001399 MASSACHUSETTS	Suffolk	Boston	Hoxie, Timothy, House	135 Hillside St.	19871120 <u>Text</u>	Photos
87001495 MASSACHUSETTS	Suffolk	Boston	Saint Augustine Chapel and Cemetery	Dorchester St. between W. Sixth and		Photos

07002540 MARCACHUICETTC	C Ef all.	Dootoo	District 12 Delice Chaties	20 Converse Ave	10000310 Tout	Dhatas
87002549 MASSACHUSETTS 85003323 MASSACHUSETTS	Suffolk	Boston	District 13 Police Station	28 Seaverns Ave.	19880210 <u>Text</u>	Photos
	Suffolk Suffolk	Boston	Boston Harbor Islands Archeological District	Address Restricted	19851221 <u>Text</u>	Photos
82004448 MASSACHUSETTS	Suffolk	Boston	Roughan Hall	15-18 City Sq.	19820415 <u>Text</u>	Photos
82004450 MASSACHUSETTS	Suffolk	Boston	McKay, Donald, House	78-80 White St.	19820602 <u>Text</u>	Photos
82004453 MASSACHUSETTS		Boston	Haffenreffer Brewery Town Hill District	Germania St.	19820502 <u>Text</u>	Photos
73000850 MASSACHUSETTS	Suffolk	Boston		Bounded roughly by Rutherford Ave.		Photos
74000907 MASSACHUSETTS	Suffolk	Boston	Phipps Street Burying Ground	Phipps St.	19740514 <u>Text</u>	Photos
74000911 MASSACHUSETTS	Suffolk	Boston	Clapp Houses	199 and 195 Boston St.	19740502 <u>Text</u>	Photos
74000915 MASSACHUSETTS	Suffolk	Boston	Dorchester North Burying Ground	Stroughton St. and Columbia Rd.	19740418 <u>Text</u>	<u>Photos</u>
80004396 MASSACHUSETTS	Suffolk	Boston	Boston African American National Historic Site	Museum of Afro American History, D		<u>Photos</u>
66000141 MASSACHUSETTS	Suffolk	Boston	Brook Farm	670 Baker St.	19661015 <u>Text</u>	<u>Photos</u>
73000856 MASSACHUSETTS	Suffolk	Boston	Roxbury High Fort	Beech Glen St. at Fort Ave.	19730423 <u>Text</u>	<u>Photos</u>
73000855 MASSACHUSETTS	Suffolk	Boston	Kittredge, Alvah, House	12 Linwood St.	19730508 <u>Text</u>	<u>Photos</u>
73000854 MASSACHUSETTS	Suffolk	Boston	John Eliot Square District	John Eliot Sq.	19730423 <u>Text</u>	<u>Photos</u>
66000653 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, House	125 Highland St.	19661015 <u>Text</u>	<u>Photos</u>
72000544 MASSACHUSETTS	Suffolk	Boston	Loring-Greenough House	12 South St.	19720426 <u>Text</u>	<u>Photos</u>
74000917 MASSACHUSETTS	Suffolk	Boston	Pierce House	24 Oakton Ave.	19740426 <u>Text</u>	<u>Photos</u>
70000540 MASSACHUSETTS	Suffolk	Boston	Fort Warren	Georges Island, Boston Harbor	19700829 <u>Text</u>	<u>Photos</u>
74002350 MASSACHUSETTS	Suffolk	Boston	Blake, James, House	735 Columbia Rd.	19740501 <u>Text</u>	<u>Photos</u>
83000604 MASSACHUSETTS	Suffolk	Boston	Loring, Harrison, House	789 E. Broadway St.	19830901 <u>Text</u>	<u>Photos</u>
88000908 MASSACHUSETTS	Suffolk	Boston	Goodwin, Ozias, House	7 Jackson Ave.	19880623 <u>Text</u>	<u>Photos</u>
88000957 MASSACHUSETTS	Suffolk	Boston	Greek Orthodox Cathedral of New England	520 Parker St.	19880630 <u>Text</u>	Photos
88000427 MASSACHUSETTS	Suffolk	Boston	Temple Place Historic District	1155, 2658 Temple Pl.	19880726 <u>Text</u>	Photos
88000959 MASSACHUSETTS	Suffolk	Boston	Eliot Hall	7A Eliot St.	19880715 <u>Text</u>	<u>Photos</u>
87001478 MASSACHUSETTS	Suffolk	Boston	Austin, Francis B., House	58 High St.	19881021 <u>Text</u>	Photos
89000004 MASSACHUSETTS	Suffolk	Boston	Mount Pleasant Historic District	Roughly bounded by Forest St. and N	19890209 <u>Text</u>	Photos
89000147 MASSACHUSETTS	Suffolk	Boston	Roxbury Highlands Historic District	Roughly bounded by Dudley St., Was	19890222 <u>Text</u>	Photos
73000325 MASSACHUSETTS	Suffolk	Boston	Hale, Edward Everett, House	12 Morley St.	19790321 <u>Text</u>	Photos
83004099 MASSACHUSETTS	Suffolk	Boston	LUNA (tugboat)	NDC Pier, Charles River	19831006 <u>Text</u>	<u>Photos</u>
89000974 MASSACHUSETTS	Suffolk	Boston	Massachusetts School of Art	364 Brookline Ave.	19890803 <u>Text</u>	<u>Photos</u>
89001747 MASSACHUSETTS	Suffolk	Boston	Mission Hill Triangle Historic District	Roughly bounded by Smith St., Wort	19891106 <u>Text</u>	Photos
89002169 MASSACHUSETTS	Suffolk	Boston	St. Joseph's Roman Catholic Church Complex	Bounded by Circuit, Regent, Hulbert,	19891228 Text	Photos
89002251 MASSACHUSETTS	Suffolk	Boston	Bellevue Standpipe	On Bellevue Hill at Washington St. ar		Photos
88000955 MASSACHUSETTS	Suffolk	Boston	First Church of Jamaica Plain	6 Eliot St.	19880715 Text	Photos
90000631 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Terrace	Between Commercial and Charter St		Photos
89002271 MASSACHUSETTS	Suffolk	Boston	Chestnut Hill Reservoir Historic District	Beacon St. and Commonwealth Ave.		Photos
90001095 MASSACHUSETTS	Suffolk	Boston	Calf Pasture Pumping Station Complex	435 Mount Vernon St.	19900802 Text	Photos
90001145 MASSACHUSETTS	Suffolk	Boston	Bowditch School	8082 Greene St.	19900803 Text	Photos
90001536 MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Roughly bounded by Jamaicaway, Pc		Photos
90001537 MASSACHUSETTS	Suffolk	Boston	Upham's Corner Market	600 Columbia Rd.	19901011 Text	Photos
89002125 MASSACHUSETTS	Suffolk	Boston	Roxbury Presbyterian Church	328 Warren St.	19910315 Text	Photos
90001992 MASSACHUSETTS	Suffolk	Boston	Sears Roebuck and Company Mail Order Store	309 Park Dr. and 201 Brookline Ave.		<u>Photos</u>
92000356 MASSACHUSETTS	Suffolk	Boston	Trinity Neighborhood House	406 Meridian St.	19920414 Text	
73001948 MASSACHUSETTS	Suffolk		Back Bay Historic District	Roughly bounded by the Charles Rive		<u>Photos</u> Photos
90001757 MASSACHUSETTS	Suffolk	Boston	Textile District			
93001489 MASSACHUSETTS	Suffolk	Boston	Massachusetts Mental Health Center	Roughly, Essex St. from Phillips Sq. tc 74 Fenwood Rd.		Photos
		Boston			19940121 <u>Text</u>	Photos
93001573 MASSACHUSETTS	Suffolk	Boston	House at 1 Bay Street	1 Bay St.	19940209 <u>Text</u>	<u>Photos</u>
93001587 MASSACHUSETTS	Suffolk	Boston	Eliot Congregational Church	56 Dale St., corner 118120 Walnut		<u>Photos</u>
85000317 MASSACHUSETTS	Suffolk	Boston	Dimock Community Health Center Complex	41 and 55 Dimock St.	19850221 <u>Text</u>	<u>Photos</u>
80000672 MASSACHUSETTS	Suffolk	Boston	New England Conservatory of Music	290 Huntington Ave.	19800514 <u>Text</u>	<u>Photos</u>
94001494 MASSACHUSETTS	Suffolk	Boston	Lower Roxbury Historic District	Roughly, area surrounding Coventry,		<u>Photos</u>
94001492 MASSACHUSETTS	Suffolk	Boston	Faneuil, Peter, School	60 Joy St.	19941216 <u>Text</u>	<u>Photos</u>
95001450 MASSACHUSETTS	Suffolk	Boston	Riviera, The	270 Huntington Ave.	19951207 <u>Text</u>	<u>Photos</u>
73000321 MASSACHUSETTS	Suffolk	Boston	Custom House District	Between J.F.K. Expwy. and Kirby St. a		<u>Photos</u>
96001063 MASSACHUSETTS	Suffolk	Boston	Douglass, Frederick, Square Historic District	Roughly bounded by Hammond St., (<u>Photos</u>
97000969 MASSACHUSETTS	Suffolk	Boston	Charlestown Heights	Roughly bounded by St. Martin, Bun		<u>Photos</u>
97000920 MASSACHUSETTS	Suffolk	Boston	Brighton Evangelical Congregational Church	404-410 Washington St.	19970821 <u>Text</u>	<u>Photos</u>
97000970 MASSACHUSETTS	Suffolk	Boston	Students House	96 The Fenway	19970911 <u>Text</u>	<u>Photos</u>
97000971 MASSACHUSETTS	Suffolk	Boston	North Terminal Garage	600 Commercial St.	19970911 <u>Text</u>	<u>Photos</u>
97001239 MASSACHUSETTS	Suffolk	Boston	Dorchester Temple Baptist Church	670 Washington St.	19980116 <u>Text</u>	<u>Photos</u>
97001377 MASSACHUSETTS	Suffolk	Boston	Allston Congregational Church	31-41 Quint Ave.	19971107 <u>Text</u>	<u>Photos</u>
97001472 MASSACHUSETTS	Suffolk	Boston	St. Luke's and St. Margaret's Church	5-7 St. Luke's Rd.	19971112 <u>Text</u>	<u>Photos</u>
98000149 MASSACHUSETTS	Suffolk	Boston	Eagle Hill Historic District	Roughly bounded by Border, Lexingt	19980226 <u>Text</u>	<u>Photos</u>
98001082 MASSACHUSETTS	Suffolk	Boston	Boston Young Men's Christian Association	312-320 Huntington Ave.	19980820 <u>Text</u>	<u>Photos</u>
97001278 MASSACHUSETTS	Suffolk	Boston	ROSEWAY (schooner)	Boston Harbor	19970925 <u>Text</u>	<u>Photos</u>
98001292 MASSACHUSETTS	Suffolk	Boston	St. Mary's Episcopal Church	14-16 Cushing Ave.	19981030 <u>Text</u>	<u>Photos</u>
98001330 MASSACHUSETTS	Suffolk	Boston	Roslindale Baptist Church	52 Cummins Hwy.	19981105 <u>Text</u>	<u>Photos</u>
98001361 MASSACHUSETTS	Suffolk	Boston	Cathedral of St. George Historic District	517-523-525 E. Broadway	19981125 <u>Text</u>	<u>Photos</u>
98001381 MASSACHUSETTS	Suffolk	Boston	Baker Congregational Church	760 Saratoga St.	19981119 <u>Text</u>	<u>Photos</u>
99000593 MASSACHUSETTS	Suffolk	Boston	Woodbourne Historic District	Roughly bounded by Walk Hill, Good	19990604 <u>Te</u> xt	Photos
				•	-	_

99000633 MASSACHUSETTS	Suffolk	Boston	Symphony Hall	301 Massachusetts Avenue	19990120 Text	Photos
99001302 MASSACHUSETTS	Suffolk	Boston		11 North Square	19991112 Text	Photos
99001304 MASSACHUSETTS	Suffolk	Boston	Congregation Adath Jeshurun	397 Blue Hill Ave.	19991112 <u>Text</u>	Photos
99001308 MASSACHUSETTS	Suffolk	Boston	First Congregational Church of Hyde Park	6 Webster St.	19991112 <u>Text</u>	<u>Photos</u>
99001614 MASSACHUSETTS	Suffolk	Boston	Church Green Buildings Historic District	101-113 Summer St.	19991230 <u>Text</u>	<u>Photos</u>
00000160 MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets Historic District (Boundary Incre	81-95 Richmond St.	20000303 <u>Text</u>	<u>Photos</u>
00000415 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Historic District	•	20000428 <u>Text</u>	<u>Photos</u>
00000871 MASSACHUSETTS	Suffolk	Boston		25 Ambrose St.	20000802 <u>Text</u>	<u>Photos</u>
01000088 MASSACHUSETTS	Suffolk	Boston	_	Academy Hill R., Chestnut Hill Ave., [<u>Photos</u>
01000872 MASSACHUSETTS	Suffolk	Boston	•	195-197 Ashmont St.	20010808 <u>Text</u>	<u>Photos</u>
01001048 MASSACHUSETTS	Suffolk	Boston		137 Beacon St.	20010807 <u>Text</u>	<u>Photos</u>
01001557 MASSACHUSETTS	Suffolk Suffolk	Boston	•	249 River St.	20020207 <u>Text</u>	Photos
02000081 MASSACHUSETTS 02000154 MASSACHUSETTS	Suffolk	Boston Boston	Frances and Isabella Apartments Greenwood Memorial United Methodist Church	430-432 and 434-436 Dudley St. 378A-380 Washington St.	20020222 <u>Text</u> 20020308 <u>Text</u>	Photos
02000134 MASSACHUSETTS	Suffolk	Boston	Bennington Street Burying Ground	Bennington St., bet. Swift and harmo		Photos Photos
02000348 MASSACHUSETTS	Suffolk	Boston	Paine Furniture Building	75-81 Arlington St.	20020912 <u>Text</u>	Photos
02001099 MASSACHUSETTS	Suffolk	Boston	Harrison Square Historic District	Bounded by MBTA Braintree line em	20021022 Text	Photos
03000385 MASSACHUSETTS	Suffolk	Boston	Savin Hill Historic District	Roughly bounded by Savin Hill Ave.,	20030509 <u>Text</u>	Photos
03000645 MASSACHUSETTS	Suffolk	Boston		41-43 Union Street	20030527 Text	Photos
03000781 MASSACHUSETTS	Suffolk	Boston	·	40-44 Bromfield St.	20030820 Text	Photos
04000023 MASSACHUSETTS	Suffolk	Boston	, 3	150 Magnolia St.	20040211 <u>Text</u>	Photos
04000085 MASSACHUSETTS	Suffolk	Boston	Haskell, Edward H., Home for Nurses	220 Fisther Ave., 63 Parker Hill Ave.	20040226 Text	Photos
04000119 MASSACHUSETTS	Suffolk	Boston		140 Clarendon St.	20040303 Text	Photos
04000189 MASSACHUSETTS	Suffolk	Boston	Nix's Mate Daybeacon	Nubble Channel, The Narrows, Bosto		Photos
04000426 MASSACHUSETTS	Suffolk	Boston	•	224-236 Seaver St. and 1-8 Nazing Cc		Photos
04000534 MASSACHUSETTS	Suffolk	Boston		182-186 Dudley St.	20040602 <u>Text</u>	Photos
04000959 MASSACHUSETTS	Suffolk	Boston	Fort Point Channel Historic District	Necco Court, Thomson Place, A, Binfo	20040910 <u>Text</u>	Photos
04001219 MASSACHUSETTS	Suffolk	Boston	Forest Hills Cemetery	95 Forest Hills Ave.	20041117 <u>Text</u>	Photos
04001430 MASSACHUSETTS	Suffolk	Boston	Truman ParkwayMetropolitan Park System of Greater Bo	Truman Parkway	20050105 <u>Text</u>	Photos
04001432 MASSACHUSETTS	Suffolk	Boston	VFW Parkway, Metropolitan Park System of Greater Bostor	VFW Parkway, bet. Spring And Centr	20050105 <u>Text</u>	Photos
04001572 MASSACHUSETTS	Suffolk	Boston	Morton Street, Metropolitan Park System of Greater Bosto	Morton St.	20050124 <u>Text</u>	Photos
04001573 MASSACHUSETTS	Suffolk	Boston	Neponset Valley Parkway, Metorpolitan Park System of Gre	Neponset Valley Parkway	20050124 <u>Text</u>	<u>Photos</u>
05000459 MASSACHUSETTS	Suffolk	Boston	Ayer, Frederick, Mansion	395 Commonwealth Avenue	20050405 <u>Text</u>	Photos
05000559 MASSACHUSETTS	Suffolk	Boston	Collins Building	213-217 Washington St.	20050608 <u>Text</u>	Photos
05000879 MASSACHUSETTS	Suffolk	Boston	Home for Aged Couples	409, 419 Walnut Ave. and 2055 Colu	20050811 <u>Text</u>	Photos
05000936 MASSACHUSETTS	Suffolk	Boston	South Boston Boat Clubs Historic District	1793-1849 William J. Day Blvd.	20050901 <u>Text</u>	<u>Photos</u>
05001509 MASSACHUSETTS	Suffolk	Boston	Stony Brook Reservation Parkways, Metropolitan Park Syst	Dedham, Enneking, Turtle Pond Park	20060103 <u>Text</u>	<u>Photos</u>
06000127 MASSACHUSETTS	Suffolk	Boston	5	127 Marion St.	20060315 <u>Text</u>	<u>Photos</u>
01000304 MASSACHUSETTS	Suffolk	Boston	DorchesterMilton Lower Mills Industrial District (Boundar			<u>Photos</u>
07000510 MASSACHUSETTS	Suffolk	Boston		41 Ruggles St., 746-750 Shawmut Av		<u>Photos</u>
07000861 MASSACHUSETTS	Suffolk	Boston	· ·	15 Beacon St.	20070831 <u>Text</u>	<u>Photos</u>
08000089 MASSACHUSETTS	Suffolk	Boston	Dorchester Park	Bounded by Dorchester Ave., Richmo		<u>Photos</u>
08000693 MASSACHUSETTS	Suffolk	Boston	Old Harbor Reservation Parkways, Metropolitan Park Syste	•		<u>Photos</u>
08000793 MASSACHUSETTS	Suffolk	Boston	Joshua Bates School	731 Harrison Ave.	20080822 <u>Text</u>	<u>Photos</u>
08000795 MASSACHUSETTS	Suffolk	Boston	•	147 Wordsworth St.	20080819 <u>Text</u>	Photos
08001284 MASSACHUSETTS 09000612 MASSACHUSETTS	Suffolk Suffolk	Boston		159, 161-175 Devonshire St., 18-20 A 2060 Commonwealth Ave.	20081231 <u>Text</u> 20090814 <u>Text</u>	Photos
09000012 MASSACHUSETTS	Suffolk	Boston Boston	Evergreen Cemetery Fairview Cemetery	45 Fairview Ave.	20090814 <u>Text</u> 20090916 Text	<u>Photos</u> Photos
09000717 MASSACHUSETTS	Suffolk	Boston	Mount Hope Cemetery	355 Walk Hill St.	20090910 <u>Text</u> 20090924 Text	Photos
10000039 MASSACHUSETTS	Suffolk	Boston	·	Address Restricted	20101122 Text	Photos
10000300 MASSACHUSETTS	Suffolk	Boston		154-166 Terrace St	20100528 Text	Photos
10000391 MASSACHUSETTS	Suffolk	Boston		874, 876, 880 Beacon St	20100624 <u>Text</u>	Photos
10000506 MASSACHUSETTS	Suffolk	Boston	Charles River Reservation (Speedway)Upper Basin Headqu	• •	20100719 Text	Photos
10001066 MASSACHUSETTS	Suffolk	Boston	* * * * * * * * * * * * * * * * * * * *	3025 Washington St	20101227 <u>Text</u>	Photos
11000160 MASSACHUSETTS	Suffolk	Boston	United State Post Office, Courthouse, and Federal Building	G	20110408 <u>Text</u>	Photos
12000069 MASSACHUSETTS	Suffolk	Boston		24, & 2-4 Yawkey Wy., 64-76 Brooklii		Photos
12000099 MASSACHUSETTS	Suffolk	Boston	Terminal Storage Warehouse District	267-281 Medford St., 40 & 50 Termir	20120312 <u>Text</u>	Photos
12000783 MASSACHUSETTS	Suffolk	Boston	Saint Mark's Episcopal Church	73 Columbia Rd.	20140703 <u>Text</u>	Photos
12000978 MASSACHUSETTS	Suffolk	Boston	Sherman Apartments Historic District	544-546 Washington, 4-6, 12-14, 18 I	20121128 <u>Text</u>	Photos
12001012 MASSACHUSETTS	Suffolk	Boston	Central Congregational Church	67 Newbury St.	20121016 <u>Text</u>	<u>Photos</u>
12001162 MASSACHUSETTS	Suffolk	Boston	Commonwealth Pier Five	165 Northern Ave.	19791010 <u>Text</u>	<u>Photos</u>
13000621 MASSACHUSETTS		Boston		4228 Washington St.	20130827 <u>Text</u>	<u>Photos</u>
13000928 MASSACHUSETTS	Suffolk	Boston		3 Gaylord St.	20131218 <u>Text</u>	<u>Photos</u>
13000929 MASSACHUSETTS	Suffolk	Boston	Pilgrim Congregational Church	540-544 Columbia Rd.	20131218 <u>Text</u>	<u>Photos</u>
13000930 MASSACHUSETTS	Suffolk	Boston	Walton and Roslin Halls	702-708 & 710-726 Washington St., $\boldsymbol{\xi}$		<u>Photos</u>
14000272 MASSACHUSETTS	Suffolk	Boston		59 Temple Pl.	20140602 <u>Text</u>	<u>Photos</u>
14000365 MASSACHUSETTS	Suffolk	Boston	, 3	2095 Dorchester Ave.	20140627 <u>Text</u>	<u>Photos</u>
14000561 MASSACHUSETTS	Suffolk	Boston	6	825-829 Blue Hill Ave.	20140910 <u>Text</u>	<u>Photos</u>
14000698 MASSACHUSETTS	Suffolk	Boston	·	1439-1443 & 1447-1451 Blue Hill Ανε		<u>Photos</u>
14000974 MASSACHUSETTS	Suffolk	Boston	Gridley Street Historic District	Bounded by Congress, High, Pearl &	20141203 <u>Text</u>	<u>Photos</u>

14000975 MASSACHUSETTS	Suffolk	Boston	Lyman, Theodore, School	30 Gove St.	20141202 <u>Text</u>	<u>Photos</u>
14001095 MASSACHUSETTS	Suffolk	Boston	South End District (Boundary Increase)	200-224 Northampton St.	20141229 <u>Text</u>	<u>Photos</u>
15000048 MASSACHUSETTS	Suffolk	Boston	Boston Police Station Number OneTraffic Tunnel Adminis	s: 128, 150 North & 130 -140 Richmonc	20150303 <u>Text</u>	<u>Photos</u>
15000195 MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Charlestown Navy Yard	20150505 <u>Text</u>	<u>Photos</u>
86001378 MASSACHUSETTS	Suffolk	South Bost	c US Post Office Garage	135 A St.	19860626 <u>Text</u>	<u>Photos</u>

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: South End; Street No: 1000; Street Name: Washington; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Wednesday, January 31, 2018 Page 1 of 1

APPENDIX E

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1738447

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN:

Phone: (617) 886-7400

Project Name:

Project Number:

Report Date: 10/27/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: Project Number: Lab Number:

L1738447

Report Date:

10/27/17

Alpha Sample ID

Client ID

Matrix WATER Sample Location

ALBANY STREET, BOSTON, MA

Collection Date/Time

Receive Date

L1738447-01

HA17-BUSS

10/23/17 13:20

10/23/17

Project Name: BU DENTAL BUILDING Lab Number: L1738447

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

i icase co	ornaci Chem	Services at 00	0-024-3220 W	illi aliy ques	stioris.

Places contact Client Services at 800 624 9220 with any questions

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ДІРНА

Date: 10/27/17

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: L1738447

Project Number: Report Date: 10/27/17

SAMPLE RESULTS

 Lab ID:
 L1738447-01
 Date Collected:
 10/23/17 13:20

 Client ID:
 HA17-BUSS
 Date Received:
 10/23/17

Sample Location: ALBANY STREET, BOSTON, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result Qu	ualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab								
SALINITY	28	SU	2.0		1	-	10/26/17 18:37	121,2520B	AS
pH (H)	7.6	SU	-	NA	1	-	10/23/17 23:44	121,4500H+-B	AS
Nitrogen, Ammonia	0.191	mg/l	0.075		1	10/24/17 02:15	10/24/17 21:13	121,4500NH3-BH	l AT

Project Name: Lab Number: L1738447

Project Number: Report Date: 10/27/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	Batch:	WG10)55463-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	10/24/17 02:15	10/24/17 20:57	121,4500NH3-E	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name:
Project Number:

Lab Number:

L1738447

Report Date:

10/27/17

Parameter	LCS %Recovery Qua	LCSD «Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1055450-1					
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1055463-2	2				
Nitrogen, Ammonia	92	-		80-120	-		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1056756-1					
SALINITY	106	-			-		

Matrix Spike Analysis Batch Quality Control

Project Name:

Lab Number:

L1738447

Project Number:

Report Date:

10/27/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery I Limits	RPD Q	RPD ual Limits
General Chemistry - Westborou	igh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1055463-6	QC Sample: L173798	32-01 Client	ID: MS Sa	ample
Nitrogen, Ammonia	ND	4	3.61	90	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:

Project Number:

Lab Number: L1738447

Report Date: 10/27/17

Parameter	Native S	ample	Duplicate Sam	ple Units	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1055450-2	QC Sample:	L1738423-01	Client ID:	DUP Sample
рН	7.1		7.1	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1055463-5	QC Sample:	L1737982-01	Client ID:	DUP Sample
Nitrogen, Ammonia	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1056756-2	QC Sample:	L1738448-01	Client ID:	DUP Sample
SALINITY	4.2		4.2	SU	0		

Lab Number: L1738447

Report Date: 10/27/17

Project Name: Project Number:

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1738447-01A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		HOLD-METAL(180)
L1738447-01B	Amber 120ml unpreserved	Α	7	7	4.2	Υ	Absent		SALINITY(28)
L1738447-01C	Plastic 250ml unpreserved	Α	7	7	4.2	Υ	Absent		PH-4500(.01)
L1738447-01D	Plastic 500ml H2SO4 preserved	Α	<2	<2	4.2	Υ	Absent		NH3-4500(28)

Project Name: Lab Number: L1738447
Project Number: Report Date: 10/27/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name: Lab Number: L1738447
Project Number: Report Date: 10/27/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: Lab Number: L1738447
Project Number: Report Date: 10/27/17

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Title: Certificate/Approval Program Summary

Department: Quality Assurance

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

ID No.:17873

Revision 10

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

					_																	
	CHAIN OF	Service Centers Brewer, ME 04412 Pc	ortsmouth, NH G	1901 Mahwah N.	Page 1			Dete	Desid													
Дирна	CUSTODY	07430 Albany, NY 122 Tonawanda, NY 14150 H	105			of 1		-	Rec'd Lab			110	- 1 -				ALPHA Job#					
DOMORDOUS.		Tonawanna, NY 14139 P	tomes, rys 1894.	•	- V						ı	012	3/17				11738447					
Westborough, MA 0158 8 Walkup Dr.	1 Manefield, MA 02045 320 Forbes Blvd	Project Information					Deli	verable:	5								Billing Information					
TEL 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX 508-822-3288	Project Name:					☑ Email ☐ Fax							Same as Client Info	,							
100.000	Tree appropriate	Project Location:	Albany Street	, Boston, MA				EQu	IS (1 File)	V	EQuIS (4 F	ile)					POS					
H&A Information		Project#					7 🗆	Othe	er:													
H&A Client:		(Use Project name a	s Project)				Regi	ulatory	Requirem	ents (Progra	am/Criteria)			11 .			Disposal Site Information	100				
H&A Address 465 Me	dford St	Project Manager:	A. Chan				MA	NPD	ES RGP	-							Please identify below location of applica	shie dianosal				
Boston	, MA 02129-1400	ALPHAQuote #:					1										facilities.	and a share				
H&A Phone: 617-886	5-7400	Turn-Around Time															Disposal Facility:					
H&A Fax:		Standard	7	Due Date													ח ש דאי					
H&A Email: Kalepidi	1170/2					Note:	Select 5	State from n	enu & identif	y criteria.						I						
These samples have t	seen previously analyzed	by Aloha					ANA	LYSIS									Sample Filtration	Other: Other: Imple Filtration Done Lab to do esservation Lab to do				
	c requirements/comme						-	1	T	_		TT	1 1			TT		- 1				
	PA 2017 RGP Approved readings to additionall			etection Lev	vels.		Ammonia	H	Salinity								Done Lab to do Preservation Lab to do (Please Specify below)	B				
ALPHA Liib ID		200	Colle	ction	Sample Sampler's		1	-	+	-1-		\perp	-	-								
(Lab Use Only)	Samp	ie ID	Date	Time	Matrix	Initials	1	1									Sample Specific Comments	- 10				
38447-01	HA17-BUSS		10/23/17	1320	AQ		×	x	x	3 7								ч				
	1			-12																		
							1			_	\neg			_	\vdash	+		_				
							1	+				+	\neg	\neg	\vdash	1		_				
								\top	+		\neg	+	\vdash	\neg	\vdash	1		+				
								\top				+	\neg	\neg	\vdash	+	1	+				
							1	+	11			+	\neg	_		++-	1	_				
A = None P = Pla: B = HCl A = Am C = HNO ₃ V = Vial D = H ₂ SO ₄ G = Gla	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Preservative			ontainer Type Preservative	Р	P P Samples can not be logger time clock will not start un resolved. Alpha Analyticat's Chain of Custody shall be put					Please print clearly, legibly and comp Samples can not be logged in and tur- time clock will not start until any amb resolved. Alpha Analytical's services ur Chain of Custody shall be performed in I with terms and conditions within Blacket	d in and turnaround ntil any ambiguities are s services under this erformed in accordance									
F = MeOH C = Cube		Relinquished			/Tige		Recei	ved By:					Date/Ti	me			Agreement# 2015-18-Alpha Analytical by	y and				
G = NaHSO ₄ H = Na ₂ S ₂ O ₃	O = Other E = Encore	a a	4 Vin	10/23/1	7/	Mall	1	1		101	23/17	(617	0				between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.					
K/E = Zn Ac/NeOH	D = BOD Bottle	MILLE		10/23/17		May		a	me	MAL				30								
O = Other		mela	1	rolazio		1	n		te		10/2	2/12		102	1)							
Document ID: 20455 Rev 1	14 104 104 141				- to the standard and a second	1		-			45.50	2711					┥					

ANALYTICAL REPORT

Lab Number: L1745151

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Jessica Lefkowitz Phone: (617) 886-7400

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Report Date: 12/14/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:12141710:03

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Report Date:

12/14/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1745151-01	HA17-05_120717	WATER	BOSTON, MA	12/07/17 06:25	12/07/17

Serial_No:12141710:03

Project Name: 1000 WASHINGTON STREET Lab Number: L1745151

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name: 1000 WASHINGTON STREET Lab Number: L1745151

Project Number: 130904-002 **Report Date:** 12/14/17

Case Narrative (continued)

Semivolatile Organics

The WG1070355-3 LCSD recovery, associated with L1745151-01 (HA17-05_120717), is below the acceptance criteria for benzidine (6%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/14/17

King L. Wisters Lisa Westerlind

ORGANICS

VOLATILES

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

SAMPLE RESULTS

Data Callastad: 12/07/17 00:05

Lab Number:

Report Date:

Lab ID: Date Collected: 12/07/17 06:25

Client ID: HA17-05_120717 Date Received: 12/07/17

Sample Location: BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

L1745151

12/14/17

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/10/17 23:05

Analyst: MM

Chloroform ND ug/l 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 1.2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1.1,1-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1.2-Dichlorogropene ND ug/l 0.50 1 1.2-Dichlorogropene ND ug/l 0.50 1 1.1-Trichloroethane ND ug/l 0.50 1 1.2-Dichloropropene ND ug/l 0.50 1 ttans-1,3-Dichloropropene ND ug/l 0.50 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 0.75 1 Chloroform ND ug/l 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.75 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofuloromethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene, Total ND ug/l 0.50 <	Volatile Organics by GC/MS - West	borough Lab					
1,1-Dichloroethane ND ug/l 0.75 1 Chloroform ND ug/l 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroftuoromethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene, Total ND ug/l 0.50 <	Methylene chloride	ND		ug/l	3.0		1
Chloroform ND ug/l 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 1.2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1.12-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1.2-Dichlorogropene ND ug/l 0.50 1 1.1-Trichloroethane ND ug/l 0.50 1 </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	1,1-Dichloroethane	ND					1
Carbon tetrachloride ND ug/l 1.8 1 1,2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50	Chloroform	ND			0.75		1
1,2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.75 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itans-1,3-Dichloropropene ND ug/l 0.50 1 icis-1,3-Dichloropropene ND ug/l 0.50 1 icis-1,3-Dichloropropene, Total ND ug/l 0.50 1 Bromotorm ND ug/l 0.50 <	Carbon tetrachloride	ND			0.50		1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.75 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,1-1,1-2-Tetrachloroethane ND ug/l 0.50 1 Bromoform ND ug/l 0.50	1,2-Dichloropropane	ND			1.8		1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1<	Dibromochloromethane	ND			0.50		1
Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.75		1
Trichlorofluoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene, Total ND ug/l 0.50 1 Bromoform ND ug/l 2.5 1 Bromoform ND ug/l 2.5 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	Tetrachloroethene	ND			0.50		1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.5 1 Bromoform ND ug/l 2.5 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	Chlorobenzene	ND		ug/l	0.50		1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.5		1
ND	1,2-Dichloroethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene, Total ND ug/l 2.5 1 Bromoform ND ug/l 2.5 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Toluene ND ug/l 1.0 1	1,1,1-Trichloroethane	ND		ug/l	0.50		1
cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.5 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene, Total ND ug/l 0.50 1	Bromodichloromethane	ND		ug/l	0.50		1
1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.5 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	trans-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene ND ug/l 2.5 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	1,1-Dichloropropene	ND		ug/l	2.5		1
Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	Bromoform	ND		ug/l	2.0		1
Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	Benzene	ND		ug/l	0.50		1
Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	Toluene	ND		ug/l	0.75		1
Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50		1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	Chloromethane	ND		ug/l	2.5		1
Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	Bromomethane	ND		ug/l	1.0		1
1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene, Total ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	1.0		1
1,2-Dichloroethene, Total ND ug/l 0.50 1	Chloroethane	ND		ug/l	1.0		1
, · · · · · · · · · · · · · · · · · · ·	1,1-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene ND ug/l 0.50 1	1,2-Dichloroethene, Total	ND		ug/l	0.50		1
	Trichloroethene	ND		ug/l	0.50		1

Project Name: 1000 WASHINGTON STREET

L1745151-01

BOSTON, MA

HA17-05_120717

Project Number: 130904-002

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 12/07/17 06:25

Date Received: 12/07/17

Lab Number:

Report Date:

Field Prep: Field Filtered (Dissolved

Metals)

L1745151

12/14/17

					Metals)		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,2-Dichlorobenzene	ND		ug/l	2.5		1	
1,3-Dichlorobenzene	ND		ug/l	2.5		1	
1,4-Dichlorobenzene	ND		ug/l	2.5		1	
Methyl tert butyl ether	ND		ug/l	1.0		1	
p/m-Xylene	ND		ug/l	1.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylenes, Total	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	0.50		1	
Dibromomethane	ND		ug/l	5.0		1	
1,4-Dichlorobutane	ND		ug/l	5.0		1	
1,2,3-Trichloropropane	ND		ug/l	5.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	5.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	5.0		1	
2-Butanone	ND		ug/l	5.0		1	
Vinyl acetate	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Ethyl methacrylate	ND		ug/l	5.0		1	
Acrylonitrile	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.5		1	
Tetrahydrofuran	ND		ug/l	5.0		1	
2,2-Dichloropropane	ND		ug/l	2.5		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.5		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1	
Bromobenzene	ND		ug/l	2.5		1	
n-Butylbenzene	ND		ug/l	0.50		1	
sec-Butylbenzene	ND		ug/l	0.50		1	
tert-Butylbenzene	ND		ug/l	2.5		1	
o-Chlorotoluene	ND		ug/l	2.5		1	
p-Chlorotoluene	ND		ug/l	2.5		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
Isopropylbenzene	ND		ug/l	0.50		1	
p-Isopropyltoluene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	2.5		1	

Project Name: Lab Number: 1000 WASHINGTON STREET L1745151

Project Number: Report Date: 130904-002 12/14/17

SAMPLE RESULTS

Lab ID: L1745151-01 Date Collected: 12/07/17 06:25 Client ID: Date Received: 12/07/17

HA17-05_120717 Sample Location: Field Prep: BOSTON, MA Field Filtered (Dissolved

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
a Draw the consess	ND		//	0.50		4
n-Propylbenzene	ND		ug/l	0.50		<u> </u>
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1
Ethyl ether	ND		ug/l	2.5		1
Tert-Butyl Alcohol	ND		ug/l	10		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	107	70-130	

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

SAMPLE RESULTS

Data Callastada 40/07/47 00:05

Lab Number:

Report Date:

Lab ID: Date Collected: 12/07/17 06:25

Client ID: HA17-05_120717 Date Received: 12/07/17

Sample Location: BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

L1745151

12/14/17

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 12/10/17 23:05

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - We	stborough Lab						
1,4-Dioxane	ND		ug/l	3.0		1	

Project Name: Lab Number: 1000 WASHINGTON STREET L1745151

Project Number: 130904-002 Report Date: 12/14/17

SAMPLE RESULTS

12/11/17 11:28

Date Collected: 12/07/17 06:25

Lab ID: L1745151-01 Date Received: Client ID: HA17-05_120717 12/07/17

Sample Location: Field Prep: BOSTON, MA Field Filtered (Dissolved

Metals)

Extraction Method: EPA 504.1 Matrix: Water Extraction Date: 12/11/17 09:46

Analytical Method: 14,504.1

Analyst: SL

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	А

Project Name: 1000 WASHINGTON STREET **Lab Number:** L1745151

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 12/10/17 20:11

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - V	Vestborough	Lab for sa	ample(s):	01	Batch:	WG1071120-5	
1,4-Dioxane	ND		ug/l		3.0		

L1745151

Lab Number:

Project Name: 1000 WASHINGTON STREET

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/10/17 20:11

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	1 Batch:	WG1071125-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
1,2-Dichloroethene, Total	ND	ug/l	0.50	
Trichloroethene	ND	ug/l	0.50	

L1745151

Project Name: 1000 WASHINGTON STREET Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/10/17 20:11

Parameter	Result	Qualifier Un	its	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s)	: 01	Batch:	WG1071125-5
1,2-Dichlorobenzene	ND	u	g/l	2.5	
1,3-Dichlorobenzene	ND		g/l	2.5	
1,4-Dichlorobenzene	ND		g/l	2.5	
Methyl tert butyl ether	ND		g/l	1.0	
p/m-Xylene	ND		g/l	1.0	
o-Xylene	ND	u	g/l	1.0	
Xylenes, Total	ND	uç	g/l	1.0	
cis-1,2-Dichloroethene	ND	uç	g/l	0.50	
Dibromomethane	ND	uç	g/l	5.0	
1,4-Dichlorobutane	ND	uç	g/l	5.0	
1,2,3-Trichloropropane	ND	uç	g/l	5.0	
Styrene	ND	uç	g/l	1.0	
Dichlorodifluoromethane	ND	uç	g/l	5.0	
Acetone	ND	uç	g/l	5.0	
Carbon disulfide	ND	u	g/l	5.0	
2-Butanone	ND	u	g/l	5.0	
Vinyl acetate	ND	u	g/l	5.0	
4-Methyl-2-pentanone	ND	uį	g/l	5.0	
2-Hexanone	ND	uį	g/l	5.0	
Ethyl methacrylate	ND	uį	g/l	5.0	
Acrylonitrile	ND	uį	g/l	5.0	
Bromochloromethane	ND	uç	g/l	2.5	
Tetrahydrofuran	ND	uç	g/l	5.0	
2,2-Dichloropropane	ND	uç	g/l	2.5	
1,2-Dibromoethane	ND	uç	g/l	2.0	
1,3-Dichloropropane	ND	uç	g/l	2.5	
1,1,1,2-Tetrachloroethane	ND	uç	g/l	0.50	
Bromobenzene	ND	uç	g/l	2.5	
n-Butylbenzene	ND	uç	g/l	0.50	

L1745151

Project Name: 1000 WASHINGTON STREET Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/10/17 20:11

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	o for sample(s): 01	Batch:	WG1071125-5
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Tert-Butyl Alcohol	ND	ug/l	10	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	

		Acceptance			
Surrogate	%Recovery Q	ualifier Criteria			
1,2-Dichloroethane-d4	118	70-130			
Toluene-d8	103	70-130			
4-Bromofluorobenzene	108	70-130			
Dibromofluoromethane	108	70-130			

Project Name: 1000 WASHINGTON STREET **Lab Number:** L1745151

> Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 12/11/17 10:40 Extraction Date: 12/11/17 09:46

Analyst: SL

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab fo	r sample(s)	: 01	Batch: WG107	1187-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: 1000 WASHINGTON STREET

Lab Number:

L1745151

Project Number: 130904-002

Report Date:

12/14/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s):	01 Batch:	WG1071120-3	3 WG1071120-4			
1,4-Dioxane	90		82		70-130	9		25

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborou	igh Lab Associated	sample(s): 0	1 Batch: WG	1071125-3	WG1071125-4			
Methylene chloride	85		84		70-130	1		20
1,1-Dichloroethane	83		86		70-130	4		20
Chloroform	85		87		70-130	2		20
Carbon tetrachloride	90		90		63-132	0		20
1,2-Dichloropropane	81		85		70-130	5		20
Dibromochloromethane	89		87		63-130	2		20
1,1,2-Trichloroethane	88		84		70-130	5		20
Tetrachloroethene	98		90		70-130	9		20
Chlorobenzene	89		89		75-130	0		25
Trichlorofluoromethane	80		82		62-150	2		20
1,2-Dichloroethane	100		100		70-130	0		20
1,1,1-Trichloroethane	91		94		67-130	3		20
Bromodichloromethane	82		85		67-130	4		20
trans-1,3-Dichloropropene	86		82		70-130	5		20
cis-1,3-Dichloropropene	92		96		70-130	4		20
1,1-Dichloropropene	87		89		70-130	2		20
Bromoform	92		91		54-136	1		20
1,1,2,2-Tetrachloroethane	86		80		67-130	7		20
Benzene	82		84		70-130	2		25
Toluene	91		87		70-130	4		25
Ethylbenzene	84		81		70-130	4		20
Chloromethane	48	Q	50	Q	64-130	4		20
Bromomethane	73		57		39-139	25	Q	20

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 01	Batch: WG1	071125-3	WG1071125-4			
Vinyl chloride	74		80		55-140	8		20
Chloroethane	69		72		55-138	4		20
1,1-Dichloroethene	96		100		61-145	4		25
Trichloroethene	84		85		70-130	1		25
1,2-Dichlorobenzene	90		88		70-130	2		20
1,3-Dichlorobenzene	91		88		70-130	3		20
1,4-Dichlorobenzene	89		87		70-130	2		20
Methyl tert butyl ether	86		90		63-130	5		20
p/m-Xylene	100		95		70-130	5		20
o-Xylene	95		95		70-130	0		20
cis-1,2-Dichloroethene	87		89		70-130	2		20
Dibromomethane	86		84		70-130	2		20
1,4-Dichlorobutane	81		80		70-130	1		20
1,2,3-Trichloropropane	88		88		64-130	0		20
Styrene	95		90		70-130	5		20
Dichlorodifluoromethane	86		86		36-147	0		20
Acetone	71		77		58-148	8		20
Carbon disulfide	92		97		51-130	5		20
2-Butanone	87		76		63-138	13		20
Vinyl acetate	78		77		70-130	1		20
4-Methyl-2-pentanone	73		73		59-130	0		20
2-Hexanone	59		62		57-130	5		20
Ethyl methacrylate	81		75		70-130	8		20

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD mits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG	1071125-3	WG1071125-4		
Acrylonitrile	83		85		70-130	2	20
Bromochloromethane	90		90		70-130	0	20
Tetrahydrofuran	81		79		58-130	3	20
2,2-Dichloropropane	90		91		63-133	1	20
1,2-Dibromoethane	90		86		70-130	5	20
1,3-Dichloropropane	88		81		70-130	8	20
1,1,1,2-Tetrachloroethane	79		76		64-130	4	20
Bromobenzene	90		90		70-130	0	20
n-Butylbenzene	96		94		53-136	2	20
sec-Butylbenzene	140	Q	130		70-130	7	20
tert-Butylbenzene	92		86		70-130	7	20
o-Chlorotoluene	92		90		70-130	2	20
p-Chlorotoluene	91		88		70-130	3	20
1,2-Dibromo-3-chloropropane	84		75		41-144	11	20
Hexachlorobutadiene	92		91		63-130	1	20
Isopropylbenzene	92		92		70-130	0	20
p-Isopropyltoluene	94		92		70-130	2	20
Naphthalene	88		88		70-130	0	20
n-Propylbenzene	92		91		69-130	1	20
1,2,3-Trichlorobenzene	87		88		70-130	1	20
1,2,4-Trichlorobenzene	90		89		70-130	1	20
1,3,5-Trimethylbenzene	94		92		64-130	2	20
1,2,4-Trimethylbenzene	93		90		70-130	3	20

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1071125-3	WG1071125-4			
trans-1,4-Dichloro-2-butene	71		72		70-130	1		20
Ethyl ether	69		69		59-134	0		20
Tert-Butyl Alcohol	76		78		70-130	3		20
Tertiary-Amyl Methyl Ether	80		88		66-130	10		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	98	102	70-130	
Toluene-d8	105	103	70-130	
4-Bromofluorobenzene	101	102	70-130	
Dibromofluoromethane	103	104	70-130	

Project Name: 1000 WASHINGTON STREET

Lab Number:

L1745151

Project Number: 130904-002

Report Date:

12/14/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG107	1187-2					
1,2-Dibromoethane	106		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Report Date:

12/14/17

_ Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	<u>Column</u>
Microextractables by GC -	Westborough Lab	Associate	ed sample(s): 0	1 QC Batch	ID: WG10	71187-3	QC Sample:	L174515	51-01 Clie	ent ID: F	HA17-05	_120717	
1,2-Dibromoethane	ND	0.254	0.284	112		-	-		80-120	-		20	Α

SEMIVOLATILES

L1745151

12/14/17

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

SAMPLE RESULTS

12/07/17 06:25

Lab Number:

Report Date:

Lab ID: L1745151-01 Date Collected:

HA17-05_120717 Date Received: Client ID: 12/07/17 Sample Location: BOSTON, MA

Field Prep: Field Filtered (Dissolved

Metals)

Extraction Method: EPA 3510C Matrix: Water Extraction Date: 12/08/17 00:15

Analytical Method: 1,8270D Analytical Date: 12/12/17 02:12

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1

Project Name: 1000 WASHINGTON STREET Lab Number:

Project Number: 130904-002

L1745151-01

BOSTON, MA

HA17-05_120717

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 12/07/17 06:25

Date Collected: 12/07/17 06:

Report Date:

Field Prep: Field Filtered (Dissolved

Metals)

L1745151

12/14/17

					•	
Result	Qualifier	Units	RL	MDL	Dilution Factor	
stborough Lab						
ND		ug/l	5.0		1	
ND		ug/l	2.0		1	
ND		ug/l	2.0		1	
ND		ug/l	5.0		1	
ND		ug/l	2.0		1	
ND		ug/l	2.0		1	
ND		ug/l	5.0		1	
ND		ug/l	5.0		1	
ND		ug/l	10		1	
ND		ug/l	10		1	
ND		ug/l	20		1	
ND		ug/l	10		1	
ND		ug/l	5.0		1	
ND		ug/l	5.0		1	
ND		ug/l	5.0		1	
ND		ug/l	5.0		1	
ND		ug/l	50		1	
ND		ug/l	2.0		1	
	Stborough Lab ND	stborough Lab ND	ND ug/l ND ug/l	ND	ND	ND

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	43	21-120	
Phenol-d6	30	10-120	
Nitrobenzene-d5	78	23-120	
2-Fluorobiphenyl	91	15-120	
2,4,6-Tribromophenol	96	10-120	
4-Terphenyl-d14	101	41-149	

ug/l

2.0

ND

1

Carbazole

L1745151

12/14/17

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

SAMPLE RESULTS

12/07/17 06:25

Lab Number:

Report Date:

Lab ID: L1745151-01 Date Collected:

HA17-05_120717 Date Received: Client ID: 12/07/17 Sample Location: BOSTON, MA

Field Prep: Field Filtered (Dissolved

Metals)

Extraction Method: EPA 3510C Matrix: Water Extraction Date: 12/08/17 00:22

Analytical Method: 1,8270D-SIM Analytical Date: 12/09/17 20:26

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	0.32		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
1-Methylnaphthalene	0.11		ug/l	0.10		1
2-Methylnaphthalene	0.14		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

Project Name: 1000 WASHINGTON STREET Lab Number: L1745151

Project Number: 130904-002 **Report Date:** 12/14/17

SAMPLE RESULTS

Lab ID: Date Collected: 12/07/17 06:25

Client ID: HA17-05_120717 Date Received: 12/07/17

Sample Location: BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	32	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	81	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	78	41-149

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151 **Report Date:** 12/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 12/11/17 23:19

Analyst: CB

Extraction Method: EPA 3510C Extraction Date: 12/08/17 00:15

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/N	/IS - Westboroug	ıh Lab for s	ample(s):	01 Bate	ch: WG1070355-1
Acenaphthene	ND		ug/l	2.0	
Benzidine	ND		ug/l	20	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	
Hexachlorobenzene	ND		ug/l	2.0	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	
2-Chloronaphthalene	ND		ug/l	2.0	
1,2-Dichlorobenzene	ND		ug/l	2.0	
1,3-Dichlorobenzene	ND		ug/l	2.0	
1,4-Dichlorobenzene	ND		ug/l	2.0	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	
2,4-Dinitrotoluene	ND		ug/l	5.0	
2,6-Dinitrotoluene	ND		ug/l	5.0	
Azobenzene	ND		ug/l	2.0	
Fluoranthene	ND		ug/l	2.0	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	
Hexachlorobutadiene	ND		ug/l	2.0	
Hexachlorocyclopentadiene	ND		ug/l	20	
Hexachloroethane	ND		ug/l	2.0	
Isophorone	ND		ug/l	5.0	
Naphthalene	ND		ug/l	2.0	
Nitrobenzene	ND		ug/l	2.0	
NDPA/DPA	ND		ug/l	2.0	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	
Butyl benzyl phthalate	ND		ug/l	5.0	
Di-n-butylphthalate	ND		ug/l	5.0	

L1745151

12/14/17

Lab Number:

Report Date:

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 12/11/17 23:19 Extraction Date: 12/08/17 00:15

Analyst: CB

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1070355-1
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	
Benzo(b)fluoranthene	ND		ug/l		2.0	
Benzo(k)fluoranthene	ND		ug/l		2.0	
Chrysene	ND		ug/l		2.0	
Acenaphthylene	ND		ug/l		2.0	
Anthracene	ND		ug/l		2.0	
Benzo(ghi)perylene	ND		ug/l		2.0	
Fluorene	ND		ug/l		2.0	
Phenanthrene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Pyrene	ND		ug/l		2.0	
Biphenyl	ND		ug/l		2.0	
Aniline	ND		ug/l		2.0	
4-Chloroaniline	ND		ug/l		5.0	
1-Methylnaphthalene	ND		ug/l		2.0	
2-Nitroaniline	ND		ug/l		5.0	
3-Nitroaniline	ND		ug/l		5.0	
4-Nitroaniline	ND		ug/l		5.0	
Dibenzofuran	ND		ug/l		2.0	
2-Methylnaphthalene	ND		ug/l		2.0	
n-Nitrosodimethylamine	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Report Date: 12/14/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 12/11/17 23:19

Analyst: CB

Extraction Method: EPA 3510C Extraction Date: 12/08/17 00:15

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	sample(s):	01	Batch:	WG1070355-1	
2,4-Dichlorophenol	ND		ug/l		5.0		
2,4-Dimethylphenol	ND		ug/l		5.0		
2-Nitrophenol	ND		ug/l		10		
4-Nitrophenol	ND		ug/l		10		
2,4-Dinitrophenol	ND		ug/l		20		
4,6-Dinitro-o-cresol	ND		ug/l		10		
Pentachlorophenol	ND		ug/l		10		
Phenol	ND		ug/l		5.0		
2-Methylphenol	ND		ug/l		5.0		
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0		
2,4,5-Trichlorophenol	ND		ug/l		5.0		
Benzoic Acid	ND		ug/l		50		
Benzyl Alcohol	ND		ug/l		2.0		
Carbazole	ND		ug/l		2.0		
Pyridine	ND		ug/l		3.5		

No Tentatively Identified Compounds ND ug/l

Tentatively Identified Compounds

L1745151

Project Name: 1000 WASHINGTON STREET Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 12/11/17 23:19 Extraction Date: 12/08/17 00:15

Analyst: CB

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborougl	h Lab for s	ample(s):	01	Batch:	WG1070355-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	52	21-120
Phenol-d6	38	10-120
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	84	15-120
2,4,6-Tribromophenol	87	10-120
4-Terphenyl-d14	88	41-149

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Report Date: 12/14/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 12/09/17 16:32

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 12/08/17 00:22

Parameter	Result	Qualifier	Units	RL	ı	MDL
Semivolatile Organics by GC/M	IS-SIM - Westbo	rough Lab	for sample(s	s): 01	Batch:	WG1070357-1
Acenaphthene	ND		ug/l	0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.10		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
1-Methylnaphthalene	ND		ug/l	0.10		
2-Methylnaphthalene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

L1745151

Lab Number:

Project Name: 1000 WASHINGTON STREET

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 12/09/17 16:32 Extraction Date: 12/08/17 00:22

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westb	orough Lab	for sampl	e(s): 01	Batch: WG1070357-1

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	56	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	93	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	74	10-120
4-Terphenyl-d14	79	41-149

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS	- Westborough Lab Assoc	iated sample(s):	01 Batch:	WG1070355-2	2 WG1070355-3			
Acenaphthene	79		69		37-111	14		30
Benzidine	13		6	Q	10-75	80	Q	30
1,2,4-Trichlorobenzene	62		58		39-98	7		30
Hexachlorobenzene	90		80		40-140	12		30
Bis(2-chloroethyl)ether	74		69		40-140	7		30
2-Chloronaphthalene	76		68		40-140	11		30
1,2-Dichlorobenzene	57		57		40-140	0		30
1,3-Dichlorobenzene	54		55		40-140	2		30
1,4-Dichlorobenzene	54		56		36-97	4		30
3,3'-Dichlorobenzidine	70		59		40-140	17		30
2,4-Dinitrotoluene	104		89		48-143	16		30
2,6-Dinitrotoluene	98		86		40-140	13		30
Azobenzene	81		71		40-140	13		30
Fluoranthene	90		78		40-140	14		30
4-Chlorophenyl phenyl ether	84		74		40-140	13		30
4-Bromophenyl phenyl ether	89		78		40-140	13		30
Bis(2-chloroisopropyl)ether	66		62		40-140	6		30
Bis(2-chloroethoxy)methane	83		73		40-140	13		30
Hexachlorobutadiene	62		60		40-140	3		30
Hexachlorocyclopentadiene	58		52		40-140	11		30
Hexachloroethane	51		53		40-140	4		30
Isophorone	84		74		40-140	13		30
Naphthalene	67		63		40-140	6		30

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	ated sample(s):	01 Batch:	WG1070355-2	2 WG1070355-3		
Nitrobenzene	80		74		40-140	8	30
NDPA/DPA	88		76		40-140	15	30
n-Nitrosodi-n-propylamine	82		73		29-132	12	30
Bis(2-ethylhexyl)phthalate	95		86		40-140	10	30
Butyl benzyl phthalate	95		82		40-140	15	30
Di-n-butylphthalate	93		80		40-140	15	30
Di-n-octylphthalate	94		84		40-140	11	30
Diethyl phthalate	90		80		40-140	12	30
Dimethyl phthalate	91		80		40-140	13	30
Benzo(a)anthracene	88		78		40-140	12	30
Benzo(a)pyrene	86		76		40-140	12	30
Benzo(b)fluoranthene	89		79		40-140	12	30
Benzo(k)fluoranthene	87		77		40-140	12	30
Chrysene	88		78		40-140	12	30
Acenaphthylene	82		72		45-123	13	30
Anthracene	87		76		40-140	13	30
Benzo(ghi)perylene	88		77		40-140	13	30
Fluorene	84		73		40-140	14	30
Phenanthrene	86		76		40-140	12	30
Dibenzo(a,h)anthracene	88		77		40-140	13	30
Indeno(1,2,3-cd)pyrene	89		78		40-140	13	30
Pyrene	86		76		26-127	12	30
Biphenyl	82		72		40-140	13	30

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Assoc	iated sample(s):	01 Batch:	WG1070355-2	2 WG1070355-3		
Aniline	36	Q	31	Q	40-140	15	30
4-Chloroaniline	48		41		40-140	16	30
1-Methylnaphthalene	77		71		41-103	8	30
2-Nitroaniline	103		90		52-143	13	30
3-Nitroaniline	66		57		25-145	15	30
4-Nitroaniline	87		77		51-143	12	30
Dibenzofuran	82		72		40-140	13	30
2-Methylnaphthalene	70		64		40-140	9	30
n-Nitrosodimethylamine	38		39		22-74	3	30
2,4,6-Trichlorophenol	96		84		30-130	13	30
p-Chloro-m-cresol	94		82		23-97	14	30
2-Chlorophenol	77		72		27-123	7	30
2,4-Dichlorophenol	92		80		30-130	14	30
2,4-Dimethylphenol	74		70		30-130	6	30
2-Nitrophenol	97		86		30-130	12	30
4-Nitrophenol	65		59		10-80	10	30
2,4-Dinitrophenol	83		77		20-130	8	30
4,6-Dinitro-o-cresol	99		86		20-164	14	30
Pentachlorophenol	80		72		9-103	11	30
Phenol	42		39		12-110	7	30
2-Methylphenol	73		66		30-130	10	30
3-Methylphenol/4-Methylphenol	74		65		30-130	13	30
2,4,5-Trichlorophenol	97		87		30-130	11	30

Project Name: 1000 WASHINGTON STREET

Project Number:

130904-002

Lab Number: L1745151

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbo	rough Lab Associa	ited sample(s):	01 Batch	WG1070355-2	2 WG1070355-3				
Benzoic Acid	30		33		10-164	10		30	
Benzyl Alcohol	74		67		26-116	10		30	
Carbazole	89		77		55-144	14		30	
Pyridine	20		22		10-66	10		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
2-Fluorophenol	57	56	21-120
Phenol-d6	44	41	10-120
Nitrobenzene-d5	88	83	23-120
2-Fluorobiphenyl	93	82	15-120
2,4,6-Tribromophenol	113	101	10-120
4-Terphenyl-d14	95	83	41-149

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	sociated sample(s): 01 Bat	ch: WG1070357-2 WG10703	357-3	
Acenaphthene	82	79	40-140	4	40
2-Chloronaphthalene	86	83	40-140	4	40
Fluoranthene	86	79	40-140	8	40
Hexachlorobutadiene	70	71	40-140	1	40
Naphthalene	77	78	40-140	1	40
Benzo(a)anthracene	92	87	40-140	6	40
Benzo(a)pyrene	87	82	40-140	6	40
Benzo(b)fluoranthene	89	89	40-140	0	40
Benzo(k)fluoranthene	90	87	40-140	3	40
Chrysene	89	85	40-140	5	40
Acenaphthylene	97	91	40-140	6	40
Anthracene	91	86	40-140	6	40
Benzo(ghi)perylene	101	93	40-140	8	40
Fluorene	88	80	40-140	10	40
Phenanthrene	85	81	40-140	5	40
Dibenzo(a,h)anthracene	101	96	40-140	5	40
Indeno(1,2,3-cd)pyrene	104	98	40-140	6	40
Pyrene	84	76	40-140	10	40
1-Methylnaphthalene	85	83	40-140	2	40
2-Methylnaphthalene	82	81	40-140	1	40
Pentachlorophenol	91	80	40-140	13	40
Hexachlorobenzene	83	80	40-140	4	40
Hexachloroethane	64	65	40-140	2	40

Lab Control Sample Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Lab Number:

L1745151

Project Number: 130904-002

Report Date:

12/14/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1070357-2 WG1070357-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	56	56	21-120
Phenol-d6	44	41	10-120
Nitrobenzene-d5	90	88	23-120
2-Fluorobiphenyl	79	76	15-120
2,4,6-Tribromophenol	84	71	10-120
4-Terphenyl-d14	78	69	41-149

PCBS

Project Name: 1000 WASHINGTON STREET Lab Number: L1745151

SAMPLE RESULTS

 Lab ID:
 L1745151-01
 Date Collected:
 12/07/17 06:25

 Client ID:
 HA17-05_120717
 Date Received:
 12/07/17

Sample Location: BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Matrix: Extraction Method:EPA 608
Extraction Date: 12/08/17 05:12

Analytical Method: 5,608

Analytical Date: 12/09/17 19:10

Analyst: JW

Cleanup Method: EPA 3665A

Cleanup Date: 12/08/17

Cleanup Method: EPA 3660B

Cleanup Method: EPA 3660B Cleanup Date: 12/08/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by 0	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	87		30-150	Α
Decachlorobiphenyl	62		30-150	Α

L1745151

Lab Number:

Project Name: 1000 WASHINGTON STREET

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 12/09/17 20:12

Analyst: HT

Extraction Method: EPA 608
Extraction Date: 12/07/17 08:29
Cleanup Method: EPA 3665A
Cleanup Date: 12/07/17
Cleanup Method: EPA 3660B
Cleanup Date: 12/08/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Vestboroug	h Lab for s	ample(s):	01 Batch:	WG1070007	-1
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance				
Surrogate	%Recovery Qualifie	r Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	75	30-150	Α			
Decachlorobiphenyl	65	30-150	Α			

Lab Control Sample Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Lab Number:

L1745151

Project Number: 130904-002

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ted sample(s)	: 01 Batch:	WG1070007	-2				
Aroclor 1016	76		-		30-150	-		30	Α
Aroclor 1260	71		-		30-150	-		30	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	76 65				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Report Date:

12/14/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recov		Recovery al Limits	RPD G	RPD Qual Limits	Column
Polychlorinated Biphenyls by G	GC - Westbor	ough Lab	Associated sam	nple(s): 01	QC Batch II	D: WG1070	0007-3	QC Sam	ple: L1700012-4	2 Client	ID: MS Sam	ple
Aroclor 1016	ND	3.12	2.61	84		-	-		40-126	-	30	Α
Aroclor 1260	ND	3.12	2.34	75		-	-		40-127	-	30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79		30-150	A
Decachlorobiphenyl	68		30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Quality Control Lab Number: L1745151

Parameter	Native Sample	Duplicate Sampl	le Units	RPD		RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG1070007-4	QC Sample:	L1700012-42	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

		Acceptance						
Surrogate	%Recovery Qualific	er %Recovery Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	76	76	30-150	А				
Decachlorobiphenyl	48	67	30-150	Α				

METALS

Project Name: 1000 WASHINGTON STREET Lab Number: L1745151

Project Number: 130904-002 **Report Date:** 12/14/17

SAMPLE RESULTS

Date Collected: Lab ID: L1745151-01 12/07/17 06:25 Client ID: Date Received: HA17-05_120717 12/07/17

Sample Location: Field Prep: Field Filtered BOSTON, MA

(Dissolved Matrix: Water

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00266		mg/l	0.00100		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Iron, Total	6.88		mg/l	0.050		1	12/09/17 12:20) 12/12/17 17:56	EPA 3005A	19,200.7	AB
Lead, Total	0.00072		mg/l	0.00050		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	12/12/17 12:12	2 12/12/17 17:02	EPA 245.1	3,245.1	MG
Nickel, Total	ND		mg/l	0.00200		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	12/09/17 12:20) 12/12/17 17:04	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	3 - Mansfiel	d Lab								
Hardness	1280		mg/l	0.660	NA	1	12/09/17 12:20) 12/12/17 17:56	EPA 3005A	19,200.7	АВ
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		12/12/17 17:04	NA	107,-	

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Report Date: 12/14/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01 Bato	h: WG10	70940	·1				
Antimony, Total	ND	mg/l	0.00400		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	12/09/17 12:20	12/11/17 15:04	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	eld Lab for sample(s):	01 Batch	n: WG10	071570-	1				
Iron, Total	ND	mg/l	0.050		1	12/09/17 12:20	12/12/17 16:32	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield Lab	for samp	ole(s): 0	1 Bato	h: WG107	1570-1			
Hardness	ND	mg/l	0.660	NA	1	12/09/17 12:20	12/12/17 16:32	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

L1745151

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002 Report Date

Report Date: 12/14/17

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG10	71710-	1				
Mercury, Total	ND	mg/l	0.00020		1	12/12/17 12:12	12/12/17 16:13	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1070940-2				
Antimony, Total	103	-	85-115	-		
Arsenic, Total	110	-	85-115	-		
Cadmium, Total	110	•	85-115	-		
Chromium, Total	106	-	85-115	-		
Copper, Total	108	-	85-115	-		
Lead, Total	107	-	85-115	-		
Nickel, Total	108	-	85-115	-		
Selenium, Total	110	-	85-115	-		
Silver, Total	102	-	85-115	-		
Zinc, Total	113	-	85-115	-		
Total Metals - Mansfield Lab Associated sampl	e(s): 01 Batch:	WG1071570-2				
Iron, Total	99	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01 Batch: WG107157	70-2			
Hardness	108	-	85-115	-		
Total Metals - Mansfield Lab Associated sampl	e(s): 01 Batch: '	WG1071710-2				
Mercury, Total	113	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch II	D: WG1070940	-3 (QC Sample	: L1744981-01	Clien	t ID: MS Sa	mple		
Antimony, Total	ND	0.5	0.5401	108		-	-		70-130	-		20
Arsenic, Total	0.0024	0.12	0.1379	113		-	-		70-130	-		20
Cadmium, Total	0.0002	0.051	0.05512	108		-	-		70-130	-		20
Chromium, Total	0.0036	0.2	0.2079	102		-	-		70-130	-		20
Copper, Total	0.09440	0.25	0.3566	105		-	-		70-130	-		20
Lead, Total	0.0065	0.51	0.5543	107		-	-		70-130	-		20
Nickel, Total	0.0067	0.5	0.5180	102		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1301	108		-	-		70-130	-		20
Silver, Total	ND	0.05	0.04896	98		-	-		70-130	-		20
Zinc, Total	0.2227	0.5	0.7673	109		-	-		70-130	-		20
otal Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch II	D: WG1070940	-7 (QC Sample	: L1745192-01	Clien	t ID: MS Sa	mple		
Antimony, Total	ND	0.5	0.4949	99		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.1284	107		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05332	104		-	-		70-130	-		20
Chromium, Total	0.0013	0.2	0.2015	100		-	-		70-130	-		20
Copper, Total	0.4718	0.25	0.6777	82		-	-		70-130	-		20
Lead, Total	ND	0.51	0.5451	107		-	-		70-130	-		20
Nickel, Total	0.0054	0.5	0.5043	100		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1324	110		-	-		70-130	-		20
Silver, Total	ND	0.05	0.04729	94		-	-		70-130	-		20
Zinc, Total	0.1421	0.5	0.6770	107		-	-		70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1071570-3	QC Sample:	L1700012-73	Client ID: MS S	ample	
Iron, Total	3.27	1	4.08	81	-	-	75-125	-	20
Total Hardness by SM 23408	3 - Mansfield Lab	o Associate	ed sample(s):	: 01 QC Batch ID:	WG1071570	-3 QC Sampl	e: L1700012-73	Client ID:	MS Sample
Hardness	294	66.2	348	82	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1071710-3	QC Sample:	L1745109-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00498	100	-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1071710-5	QC Sample:	L1745109-02	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00399	80	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Parameter	Native Sample Dup	licate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1070940-4	QC Sample:	L1744981-01	Client ID:	DUP Sample	
Copper, Total	0.09440	0.09546	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1070940-8	QC Sample:	L1745192-01	Client ID:	DUP Sample	
Lead, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1071570-4	QC Sample:	L1700012-73	Client ID:	DUP Sample	
Iron, Total	3.27	3.31	mg/l	1		20
Total Hardness by SM 2340B - Mansfield Lab Associate	d sample(s): 01 QC Batch ID	: WG1071570-	4 QC Sampl	e: L17000	12-73 Client ID): DUP Sample
Hardness	294	292	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1071710-4	QC Sample:	L1745109-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1071710-6	QC Sample:	L1745109-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 1000 WASHINGTON STREET Lab Number: L1745151

Project Number: Report Date: 12/14/17 130904-002

Water

SAMPLE RESULTS

Lab ID: Date Collected: L1745151-01 12/07/17 06:25 HA17-05_120717 Client ID: Date Received: 12/07/17 Sample Location: BOSTON, MA Field Filtered Field Prep: (Dissolved Metals) Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal	b								
SALINITY	3.1		SU	2.0		1	-	12/11/17 17:53	121,2520B	AS
Solids, Total Suspended	9.9		mg/l	5.0	NA	1	-	12/08/17 04:50	121,2540D	VB
Cyanide, Total	ND		mg/l	0.005		1.1	12/11/17 11:00	12/11/17 14:44	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	12/07/17 21:23	121,4500CL-D	AS
pH (H)	6.9		SU	-	NA	1	-	12/07/17 22:39	121,4500H+-B	AS
Nitrogen, Ammonia	1.31		mg/l	0.075		1	12/08/17 04:00	12/08/17 22:49	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	12/08/17 17:30	12/08/17 22:05	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	12/11/17 12:24	12/12/17 15:41	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010		1	12/08/17 01:28	12/08/17 02:16	1,7196A	UN
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	1760		mg/l	25.0		50	-	12/11/17 20:10	44,300.0	AU

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Report Date: 12/14/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	70321-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	12/07/17 21:23	121,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	70371-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	12/08/17 04:50	121,2540D	VB
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	70390-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	12/08/17 01:28	12/08/17 02:13	1,7196A	UN
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	70395-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/08/17 04:00	12/08/17 22:31	121,4500NH3-BH	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	70741-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	12/08/17 17:30	12/08/17 22:05	74,1664A	ML
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	71205-1				
Cyanide, Total	ND		mg/l	0.005		1	12/11/17 11:00	12/11/17 13:43	121,4500CN-CE	LH
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG10	71297-1				
Phenolics, Total	ND		mg/l	0.030		1	12/11/17 12:24	12/12/17 15:38	4,420.1	AW
Anions by Ion Chrom	atography - Westbo	orough	Lab for sar	nple(s):	01 B	atch: WG1	071965-1			
Chloride	ND		mg/l	0.500		1	-	12/11/17 18:22	44,300.0	AU

Lab Control Sample Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Report Date:

12/14/17

Parameter	LCS %Recovery Qu	LCSD al %Recovery G	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1070321-2				
Chlorine, Total Residual	101	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1070335-1				
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1070390-2				
Chromium, Hexavalent	98	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1070395-2				
Nitrogen, Ammonia	96	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1070741-2				
ТРН	86	-	64-132	-		34
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1071205-2				
Cyanide, Total	97	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1071297-2				
Phenolics, Total	102	-	70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Report Date:

12/14/17

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits						
General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1071412-1											
SALINITY	101	-		-							
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 Batch: WG1071965-2											
Chloride	96	-	90-110	-							

Matrix Spike Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits R	RPD Qual	RPD Limits
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	WG1070321-4	QC Sample: L1744990	0-02 Client ID:	: MS Sampl	е
Chlorine, Total Residual	ND	0.248	ND	0	Q -	-	80-120	-	20
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	WG1070390-4	QC Sample: L1745151	I-01 Client ID:	: HA17-05_	120717
Chromium, Hexavalent	ND	0.1	0.090	90	-	-	85-115	-	20
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	NG1070395-4	QC Sample: L1745109	9-01 Client ID:	: MS Sampl	е
Nitrogen, Ammonia	8.38	4	12.2	96	-	-	80-120	-	20
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	NG1070741-4	QC Sample: L1744990	0-02 Client ID	: MS Sampl	е
ТРН	ND	20	16.5	82	-	-	64-132	-	34
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	NG1071205-4	QC Sample: L1745109	9-02 Client ID:	: MS Sampl	е
Cyanide, Total	ND	0.2	0.190	95	-	-	90-110	-	30
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	NG1071297-4	QC Sample: L1745151	I-01 Client ID	: HA17-05_	120717
Phenolics, Total	ND	0.4	0.43	108	-	-	70-130	-	20
Anions by Ion Chromatograph Sample	าy - Westborouoู	gh Lab Asso	ociated sar	nple(s): 01 Q(C Batch ID: WG1	071965-3 QC Samp	le: L1744593-03	3 Client ID	: MS
Chloride	6.88	4	10.8	99	-	-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151 12/14/17

Report Date:

Parameter	Nativ	ve Sa	mple	Duplicate Sam	ple Units	s RPD) Qual	RPD Limits		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1070321-3	QC Sample:	L1744990-01	Client ID:	DUP Sample		
Chlorine, Total Residual		ND		ND	mg/l	NC		20		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1070335-2	QC Sample:	L1745004-01	Client ID:	DUP Sample		
рН		9.1		9.0	SU	1		5		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1070371-2	QC Sample:	L1744780-01	Client ID:	DUP Sample		
Solids, Total Suspended		920		980	mg/l	6		29		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1070390-3	QC Sample:	L1745151-01	Client ID:	HA17-05_120717		
Chromium, Hexavalent		ND		ND	mg/l	NC		20		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1070395-3	QC Sample:	L1745109-01	Client ID:	DUP Sample		
Nitrogen, Ammonia		8.38		8.87	mg/l	6		20		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1070741-3	QC Sample:	L1744990-01	Client ID:	DUP Sample		
TPH		ND		ND	mg/l	NC		34		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1071205-3	QC Sample:	L1745109-01	Client ID:	DUP Sample		
Cyanide, Total		ND		ND	mg/l	NC		30		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1071297-3	QC Sample:	L1745151-01	Client ID:	HA17-05_120717		
Phenolics, Total		ND		ND	mg/l	NC		20		
General Chemistry - Westborough Lab As	ssociated sample(s):	01	QC Batch ID:	WG1071412-2	QC Sample:	L1745151-01	Client ID:	HA17-05_120717		
SALINITY		3.1		3.0	SU	3				

Lab Duplicate Analysis
Batch Quality Control

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number:

L1745151

Report Date:

12/14/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Anions by Ion Chromatography - Westborough Lab Sample	Associated sample(s): 01	QC Batch ID: WG107196	65-4 QC Sa	mple: L17445	93-03 Client ID: DUP
Chloride	6.88	6.85	mg/l	0	18

Project Name: 1000 WASHINGTON STREET

Project Number: 130904-002

Lab Number: L1745151 **Report Date:** 12/14/17

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1745151-01A	Vial HCl preserved	Α	NA		2.0	Υ	Absent		8260-SIM(14),8260(14)
L1745151-01B	Vial HCl preserved	Α	NA		2.0	Υ	Absent		8260-SIM(14),8260(14)
L1745151-01C	Vial HCl preserved	Α	NA		2.0	Υ	Absent		8260-SIM(14),8260(14)
L1745151-01D	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		504(14)
L1745151-01E	Vial Na2S2O3 preserved	Α	NA		2.0	Υ	Absent		504(14)
L1745151-01F	Amber 1000ml unpreserved	Α	7	7	2.0	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1745151-01G	Amber 1000ml unpreserved	Α	7	7	2.0	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1745151-01H	Amber 1000ml Na2S2O3	Α	7	7	2.0	Υ	Absent		PCB-608(7)
L1745151-01I	Amber 1000ml Na2S2O3	Α	7	7	2.0	Υ	Absent		PCB-608(7)
L1745151-01J	Amber 1000ml HCI preserved	Α	NA		2.0	Υ	Absent		TPH-1664(28)
L1745151-01K	Amber 1000ml HCI preserved	Α	NA		2.0	Υ	Absent		TPH-1664(28)
L1745151-01L	Plastic 950ml unpreserved	Α	7	7	2.0	Υ	Absent		TSS-2540(7)
L1745151-01M	Amber 1000ml H2SO4 preserved	Α	<2	<2	2.0	Υ	Absent		TPHENOL-420(28)
L1745151-01N	Amber 120ml unpreserved	Α	7	7	2.0	Υ	Absent		SALINITY(28)
L1745151-01O	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.0	Υ	Absent		NH3-4500(28)
L1745151-01P	Plastic 950ml unpreserved	Α	7	7	2.0	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1745151-01Q	Plastic 500ml NaOH preserved	Α	>12	>12	2.0	Υ	Absent		TCN-4500(14)
L1745151-01R	Plastic 250ml HNO3 preserved	А	<2	<2	2.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),TRICR- CALC(1),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1745151-01S	Plastic 250ml HNO3 preserved	Α	<2	<2	2.0	Υ	Absent		HOLD-METAL-DISSOLVED(180)

Project Name: 1000 WASHINGTON STREET Lab Number: L1745151

Project Number: 130904-002 Report Date: 12/14/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:1000 WASHINGTON STREETLab Number:L1745151Project Number:130904-002Report Date:12/14/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:1000 WASHINGTON STREETLab Number:L1745151Project Number:130904-002Report Date:12/14/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12141710:03

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

CHAIN OF		Service Centers Brewer, ME 04412	Portsmouth, NH 0	3801 Mahwah, N	Pag	e 1	I	Date	. Dar	-tot	100		7 6				26		W		91.			
ΔLPHA ************************************	CUSTODY Tonswards, NY 14150 Holimes, PA 18043		07430 Albany, NY 12265 Of 1 Tonawanda, NY 14150 Holmes, PA 19043				Date Rec'd 12/7/17										ALPHA Job# L1745/51							
Westborough, MA 01581 8 Walkup Dr.			- 45	N/ 40 -		Delin	Deliverables											-		Billing Information				
TEL 508-898-9220 TEL 508-822-9300 FAX 508-928-9193 FAX 508-922-3288		Project Name: 1000 Washington Street					☑ Email			□ Fax									☐ Same as Client info					
310,000,000,000	FAX. 300-022-0200	Project Location:	Boston, MA					EQui	S (1 F	File)		EQui	S (4 File	ý								PO#		
H&A Information		Project #	130904-002	Y				Other	r	AMAIL AND EMCODESTICATE												250		
H&A Client: 1000 W	ash. (Boston) Owner, LLC	(Use Project name	as Project #)				Reg	gulatory Requirements (Program/Criteria)													Disposal Site Information			
H&A Address 465 Medford Street Project Manager: J. Lefkowitz				MA	2017	NPDES	SRGP	T											Please identify below location of applicable	e office or early				
Suite 2200, Boston, MA 02129 ALPHAQuote #:						1				l l											facilities.	disposal		
H&A Phone: 617-885-7400 Turn-Around Time:										1											Disposal Facility:			
H&A Fax:		Standard 🖾 Due Date:									-											□ NJ □ NY		
H&A Email: jthibault) (only if pre approved) # of Days: 5 Day						Note: Select State from menu & identify criteria.											Other:					
These samples have t	been previously analyzed b	y Alpha 🔲					ANA	LYSIS														Sample Filtration		
The second secon	c requirements/comments								Т	1	T	1	100				10	-	8	723		Sample Finration	I	
Sample submitted fo levels as required by Note: Ethanol not req Please specify Metals	quired.	uite; please follow a	approved test	ing methods	and minimun	n detection	VOCs 8260, 8260-SIM	SVOCs 8270, 8270-SIM	3. PCBs 608	4. TPH 1664	5. TSS 2540	6. Total Phenoi 420	Cr. Tri Cr. TRC 4500 pH, Cl 300	Ammonia (NH3)	Total Cyanide 4500	10. EDB 504	Total NPDES RGP Metals	Dissolved NPDES RGP ils (Field Filtered, HOLD)	Amenable Cyanida (HOLD)	Physiologically Available Cyanide (HOLD)	Total Hardness, Salinity	☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)		
ALPHA Lab ID (Lab Use Only)	Sample	ID		ection	Sample	Sampler's	1 %	2. SVC				6	Hex	80	9. T		-	12. Dis		F. Phy	15. Tot			
C32006.05.65.654.50			Date	Time	Matrix	Initials							7.				=	- 3	5	7	**	Sample Specific Comments		
45151-01	HA17-05_1	20717	12/7/17	625	QA.	CAS	X	Х	X	X	Х	Х	Х	Х	х	X	X	X	Х	х	Х	11. NPDES RGP Metals includes:	19	
																						Ag. As. Cd, Cr, Cu, Ni, Pb, Sb, Se.		
																						Zn, Fe, Hg		
																						12. Dissolved Metals Field Filtered		
																						12, 13, 14. HOLD		
																	_							
																_	_							
																_	_							
Preservative Code	Container Code																							
N = Mote h = Mastic	Westboro: Certification No: MA935 Mansfield: Certification No: MA015 Container Type Preservative											1	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities ar resolved. Alpha Analysical's services under this											
E = NaOH	pulsa a series	Control of the Contro			ш				_							-	_			Chain of Custody shall be performed in according with terms and conditions within Blanket Services.				
G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOO Bottle	Relinguisty	A.	12/3/17 9:45 641			Received By:				12/7/17 Pate/Time						Agreement# 2015-18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.							
Document ID: 20455 Rev 1	(1/28/2016)	Since	erry Aft	14/1/17	1845	M	_	- 4	_		-1	213	417	184	X							-		