

Proactive by Design

GEOTECHNICAL
ENVIRONMENTAL
ECOLOGICAL
WATER
CONSTRUCTION
MANAGEMENT

249 Vanderbilt Avenue
Norwood, MA 02062
T: 781.278.3700
F: 781.278.5701
E: 781.278.5702
www.gza.com

August 15, 2017
File No. 01.0019274.18

Ms. Shauna Little
United States Environmental Protection Agency – Region 1
5 Post Office Square, Mail Code OEP06-4
Boston, Massachusetts 02109-3912

Re: Submittal of Notice of Intent
Remediation General Permit
Wyman-Gordon Company
244 Worcester Street
Grafton, Massachusetts

Dear Ms. Little:

GZA GeoEnvironmental, Inc. (GZA), on behalf of our client, Wyman-Gordon (W-G), is submitting the attached Notice of Intent (NOI) form (Attachment 1) for Remediation General Permit (RGP) authorization for remediation work being conducted under the Massachusetts Contingency Plan (MCP) at the 244 Worcester Street property (the Site). This NOI is being submitted for activities being conducted in accordance with the Phase IV Remedial Implementation Plan (RIP; MCP: 310 CMR 40.0870) for the West Side of the W-G property within an area known as the West PCB Area (a former industrial land fill). The work involves excavation and off-Site disposal of upland soils with polychlorinated biphenyls (PCBs) concentrations equal to or greater than 100 milligrams per kilogram (mg/kg).

This Site is also regulated by the US Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) Corrective Action Program because of its former status as a Storage Facility of Hazardous Waste, and the remediation work requires approval from EPA under the Toxic Substances Control Act (TSCA) because it is an action to remediate PCBs.

RGP authorization is required to dewater, treat, and discharge groundwater likely to be encountered during soil excavation where excavation depths will be 6 or more feet below ground surface (bgs). The enclosed NOI form provides the required information on the general site conditions, proposed treatment system, discharge location and receiving water, and analytical results for groundwater collected from a monitoring well located within the proposed excavation area. The remediation area and proposed discharge locus at a nearby channelized, perennial stream known as Bonny Brook are shown in Attachment 3 – Figure 2A.

NOTICE OF INTENT

This NOI has included a review of literature pertaining to Areas of Critical Environmental Concern (ACEC), Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

Review of Appendix II “Summary of Endangered Species Act Listings” indicated that the Northern Long-eared Bat is located state-wide. However, this species is not likely to be

present within the areas of the Site to be disturbed during remediation activities due to the lack of habitat. Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Boston, shows that there are no ACECs and no habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. Review of the IPaC online resource of the USFWS indicated that no critical habitats are present at the Site. Informal consultation was conducted with the USFWS and the results letter is attached in Attachment 5. Therefore, permit eligibility meets "Criterion B".

- An electronic review of the Massachusetts Cultural Resource Information System database, made available through Massachusetts Historical Commission, found that no area, building, burial ground, object, or structure is located on the property located at 244 Worcester Street except for the Wyman Gordon Drop Forging Company. The documentation of this review can be found in Attachment 7. The Wyman Gordon Drop Forging Company will not be affected by the discharge. The project does not involve new construction or the demolition or rehabilitation of existing buildings or other structures or facilities and historic properties are not affected by the discharge or identified in the path of the discharges regulated by this permit; therefore, permit eligibility meets "Criterion B."
- Water Quality Based Effluent Limits (WQBELs) were calculated using the spreadsheet included in Appendix V of the RGP (Attachment 7) and are based on the Site influent and receiving water sampling data. Results applicable to this discharge are included in Section D(4) of the NOI. A letter was provided to the Town of Grafton to notify it of the proposed discharge operating in accordance with the NPDES RGP Permit. A copy of the notification is included in Attachment 8.
- Laboratory analytical results, summarized in the NOI (Attachment 1), are included as Attachment 9. Groundwater influent samples were collected from one monitoring well location RGP-1 on July 19, 2017. The July 2017 sample was analyzed for Ammonia, Total Metals, VOCs, SVOCs, Total Suspended Solids, Chlorides, and 1,4- Dioxane. Refer to Figure 2B (Attachment 3) for the approximate locations of the Site monitoring well. Due to the known absence of fuels parameters in the influent which were analyzed by methods of sufficient sensitivity, Ethanol is a parameter which is believed absent at the Site due to the known absence of fuel additives at the Site.
- The receiving water was sampled upstream of Outfall 1 on July 19, 2017. Physical parameters including pH and temperature were collected using a low flow sampling apparatus fitted with instrumentation capable of accurately measuring these parameters. The receiving water was also sampled for total recoverable metals and Ammonia. The physical parameter and chemical analyses results are reported in section D(4) of the NOI.
- No dilution factor was requested because Bonny Brook has the potential to run dry during low flow conditions.
- A Best Management Practices Plan (BMPP) will be implemented upon the initiation of Site discharge.

August 15, 2017
File No. 01.019274.18
Massachusetts Department of Environmental Protection
Page 3

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

A handwritten signature in blue ink that appears to read "Andrew Sargent".

Andrew Sargent EIT.
Engineer I

A handwritten signature in blue ink that appears to read "Randy Meuse".

Randy Meuse
Consultant/Reviewer

A handwritten signature in blue ink that appears to read "Gregg W. McBride".

Gregg W. McBride
Senior Principal

Attachments: Attachment 1: NOI Form
Attachment 2: Figure 1 – Site Locus Map
Attachment 3: Figures 2A and 2B – Site Plan and Outfall Locations
Attachment 4: Figure 3 – Process Flow Diagram
Attachment 5: ESA and EFH Documentation
Attachment 6: MHC Report
Attachment 7: WQBEL Calculation Spreadsheet
Attachment 8: Town of Grafton Notification
Attachment 9: Laboratory Analytical Reports

cc: MassDEP – Central Region

Attachment 1: NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:		
	Street:		
	City:	State:	Zip:
2. Site owner Owner is (check one): <input type="checkbox"/> Federal <input type="checkbox"/> State/Tribal <input type="checkbox"/> Private <input type="checkbox"/> Other; if so, specify: _____	Contact Person:		
	Telephone:	Email:	
	Mailing address:		
	Street:	City:	State:
3. Site operator, if different than owner	Contact Person:		
	Telephone:	Email:	
	Mailing address:		
	Street:	City:	State:
4. NPDES permit number assigned by EPA: NPDES permit is (check all that apply): <input type="checkbox"/> RGP <input type="checkbox"/> DGP <input type="checkbox"/> CGP <input type="checkbox"/> MSGP <input type="checkbox"/> Individual NPDES permit <input type="checkbox"/> Other; if so, specify: _____	5. Other regulatory program(s) that apply to the site (check all that apply): <input type="checkbox"/> MA Chapter 21e; list RTN(s): <input type="checkbox"/> CERCLA <input type="checkbox"/> NH Groundwater Management Permit or <input type="checkbox"/> UIC Program Groundwater Release Detection Permit: <input type="checkbox"/> POTW Pretreatment <input type="checkbox"/> CWA Section 404		

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):
Receiving water is (check any that apply): <input type="checkbox"/> Outstanding Resource Water <input type="checkbox"/> Ocean Sanctuary <input type="checkbox"/> territorial sea <input type="checkbox"/> Wild and Scenic River		
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No Are sensitive receptors present near the site? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No If yes, specify:		
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP.		
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.		
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.		
6. Has the operator received confirmation from the appropriate State for the 7Q10 and dilution factor indicated? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No If yes, indicate date confirmation received:		
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No		

C. Source water information:

1. Source water(s) is (check any that apply):			
<input type="checkbox"/> Contaminated groundwater Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Contaminated surface water Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> The receiving water <input type="checkbox"/> A surface water other than the receiving water; if so, indicate waterbody: <input type="checkbox"/> Other; if so, specify:	<input type="checkbox"/> Potable water; if so, indicate municipality or origin:

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in the RGP? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance with the instructions in Appendix VIII? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No
3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No	

D. Discharge information

1. The discharge(s) is a(n) (check any that apply): <input type="checkbox"/> Existing discharge <input type="checkbox"/> New discharge <input type="checkbox"/> New source	
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): <input type="checkbox"/> Direct discharge to the receiving water <input type="checkbox"/> Indirect discharge, if so, specify: <input type="checkbox"/> A private storm sewer system <input type="checkbox"/> A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system: Has notification been provided to the owner of this system? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No Has the operator has received permission from the owner to use such system for discharges? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No, if so, explain, with an estimated timeframe for obtaining permission: Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No	
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: <input type="checkbox"/> less than 12 months <input type="checkbox"/> 12 months or more <input type="checkbox"/> is an emergency discharge	
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No	

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)		
<input type="checkbox"/> I – Petroleum-Related Site Remediation <input type="checkbox"/> II – Non-Petroleum-Related Site Remediation <input type="checkbox"/> III – Contaminated Site Dewatering <input type="checkbox"/> IV – Dewatering of Pipelines and Tanks <input type="checkbox"/> V – Aquifer Pump Testing <input type="checkbox"/> VI – Well Development/Rehabilitation <input type="checkbox"/> VII – Collection Structure Dewatering/Remediation <input type="checkbox"/> VIII – Dredge-Related Dewatering		a. If Activity Category I or II: (check all that apply) <input type="checkbox"/> A. Inorganics <input type="checkbox"/> B. Non-Halogenated Volatile Organic Compounds <input type="checkbox"/> C. Halogenated Volatile Organic Compounds <input type="checkbox"/> D. Non-Halogenated Semi-Volatile Organic Compounds <input type="checkbox"/> E. Halogenated Semi-Volatile Organic Compounds <input type="checkbox"/> F. Fuels Parameters	
		b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)	
		<input type="checkbox"/> G. Sites with Known Contamination	<input type="checkbox"/> H. Sites with Unknown Contamination
		c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)	
		<input type="checkbox"/> A. Inorganics <input type="checkbox"/> B. Non-Halogenated Volatile Organic Compounds <input type="checkbox"/> C. Halogenated Volatile Organic Compounds <input type="checkbox"/> D. Non-Halogenated Semi-Volatile Organic Compounds <input type="checkbox"/> E. Halogenated Semi-Volatile Organic Compounds <input type="checkbox"/> F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply

4. Influent and Effluent Characteristics

Parameter	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	---
Chloride								Report µg/l	---
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	---
Antimony								206 µg/L	
Arsenic								104 µg/L	
Cadmium								10.2 µg/L	
Chromium III								323 µg/L	
Chromium VI								323 µg/L	
Copper								242 µg/L	
Iron								5,000 µg/L	
Lead								160 µg/L	
Mercury								0.739 µg/L	
Nickel								1,450 µg/L	
Selenium								235.8 µg/L	
Silver								35.1 µg/L	
Zinc								420 µg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs									
Total BTEX								100 µg/L	---
Benzene								5.0 µg/L	---
1,4 Dioxane								200 µg/L	---
Acetone								7.97 mg/L	---
Phenol								1,080 µg/L	

Parameter	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 µg/L	
1,2 Dichlorobenzene								600 µg/L	---
1,3 Dichlorobenzene								320 µg/L	---
1,4 Dichlorobenzene								5.0 µg/L	---
Total dichlorobenzene								763 µg/L in NH	---
1,1 Dichloroethane								70 µg/L	---
1,2 Dichloroethane								5.0 µg/L	---
1,1 Dichloroethylene								3.2 µg/L	---
Ethylene Dibromide								0.05 µg/L	---
Methylene Chloride								4.6 µg/L	---
1,1,1 Trichloroethane								200 µg/L	---
1,1,2 Trichloroethane								5.0 µg/L	---
Trichloroethylene								5.0 µg/L	---
Tetrachloroethylene								5.0 µg/L	
cis-1,2 Dichloroethylene								70 µg/L	---
Vinyl Chloride								2.0 µg/L	---
D. Non-Halogenated SVOCs									
Total Phthalates								190 µg/L	
Diethylhexyl phthalate								101 µg/L	
Total Group I PAHs								1.0 µg/L	---
Benzo(a)anthracene									As Total PAHs
Benzo(a)pyrene									
Benzo(b)fluoranthene									
Benzo(k)fluoranthene									
Chrysene									
Dibenzo(a,h)anthracene									
Indeno(1,2,3-cd)pyrene									

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

Adsorption/Absorption Advanced Oxidation Processes Air Stripping Granulated Activated Carbon (“GAC”)/Liquid Phase Carbon Adsorption
 Ion Exchange Precipitation/Coagulation/Flocculation Separation/Filtration Other; if so, specify:

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

Identify each major treatment component (check any that apply):

Fractionation tanks Equalization tank Oil/water separator Mechanical filter Media filter
 Chemical feed tank Air stripping unit Bag filter Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

Chlorination De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component:

Is use of a flow meter feasible? (check one): Yes No, if so, provide justification:

Provide the proposed maximum effluent flow in gpm.

Provide the average effluent flow in gpm.

If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:

4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): Yes No

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
<input type="checkbox"/> Algaecides/biocides <input type="checkbox"/> Antifoams <input type="checkbox"/> Coagulants <input type="checkbox"/> Corrosion/scale inhibitors <input type="checkbox"/> Disinfectants <input type="checkbox"/> Flocculants <input type="checkbox"/> Neutralizing agents <input type="checkbox"/> Oxidants <input type="checkbox"/> Oxygen <input type="checkbox"/> scavengers <input type="checkbox"/> pH conditioners <input type="checkbox"/> Bioremedial agents, including microbes <input type="checkbox"/> Chlorine or chemicals containing chlorine <input type="checkbox"/> Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
<ol style="list-style-type: none">a. Product name, chemical formula, and manufacturer of the chemical/additive;b. Purpose or use of the chemical/additive or remedial agent;c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; andf. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
<input type="checkbox"/> FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the “action area”.
<input type="checkbox"/> FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are “not likely to adversely affect” listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No; if no, is consultation underway? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No
<input type="checkbox"/> FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have “no effect” on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) <input type="checkbox"/> the operator <input type="checkbox"/> EPA <input type="checkbox"/> Other; if so, specify:

NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have “no effect” or are “not likely to adversely affect” any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): Yes No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- Criterion A:** No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B:** Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C:** Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): Yes No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No

Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): Yes No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

BMPP certification statement:

Notification provided to the appropriate State, including a copy of this NOI, if required.

Check one: Yes No

Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.

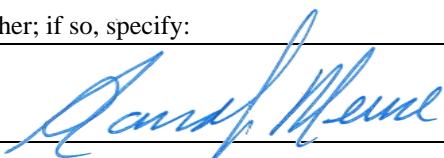
Check one: Yes No

Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.

Check one: Yes No NA

Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.

Check one: Yes No NA

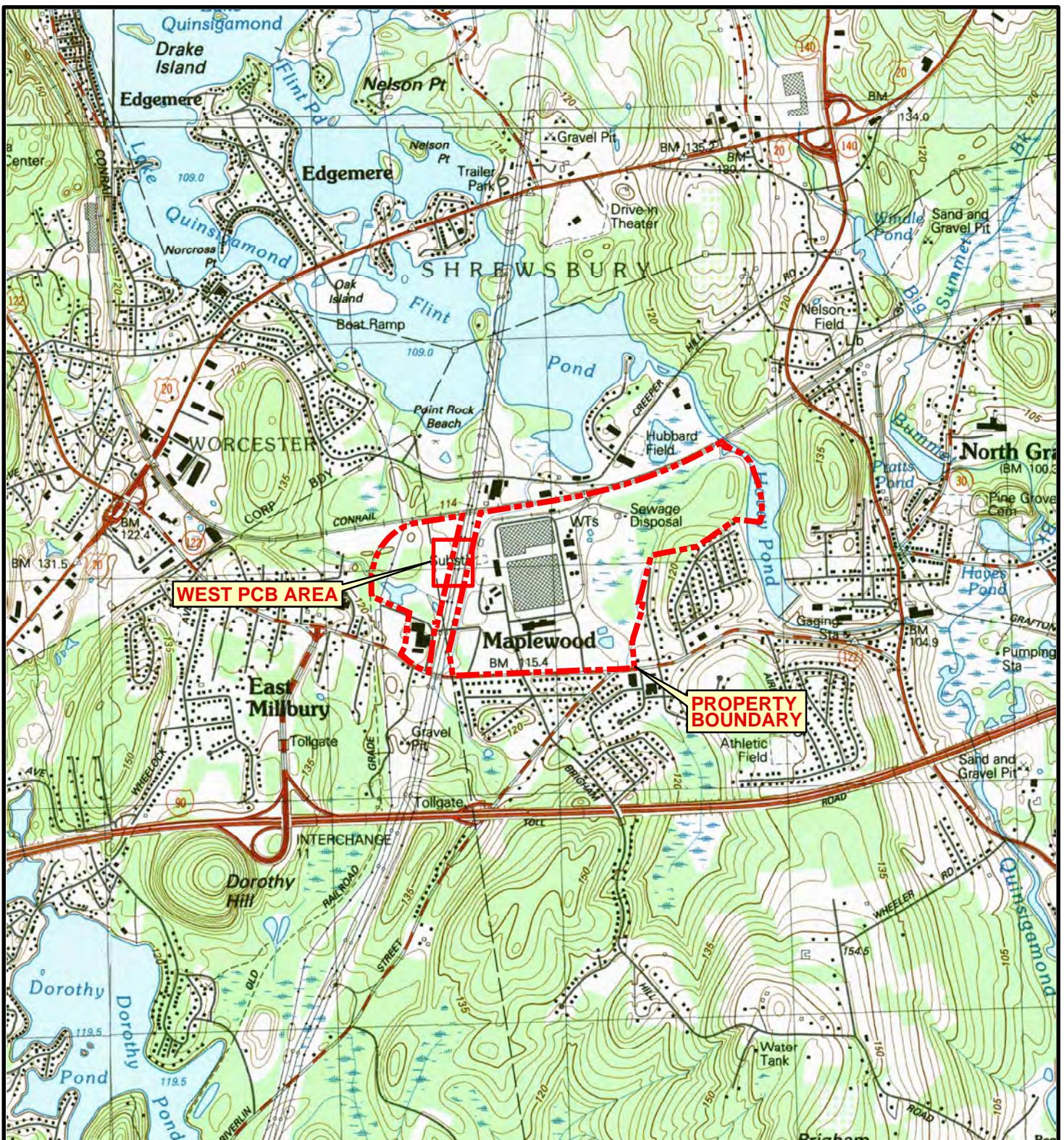

Notification provided to the owner/operator of the area associated with activities covered by an additional discharge

permit(s). Additional discharge permit is (check one): RGP DGP CGP MSGP Individual NPDES permit

Check one: Yes No NA

Other; if so, specify:

Signature:

Date:

Print Name and Title:

Attachment 2: Figure 1 – Site Locus Map

SOURCE : SCANNED USGS TOPOGRAPHIC QUADRANGLES
SCANNED BY THE MASSACHUSETTS EXECUTIVE OFFICE OF
ENVIRONMENTAL AFFAIRS, MASSGIS. DISTRIBUTED JUNE, 2001.

Data Supplied by :

0 1,000 2,000 4,000 6,000

Feet

SGS QUADRANGLE LOCATION

PROJ. MGR.: TLB
DESIGNED BY: TLB
REVIEWED BY: GWM
OPERATOR: SMW

DATE: 08-07-2014

LOCUS PLAN

WYMAN GORDON
NORTH GRAFTON, MASSACHUSETTS

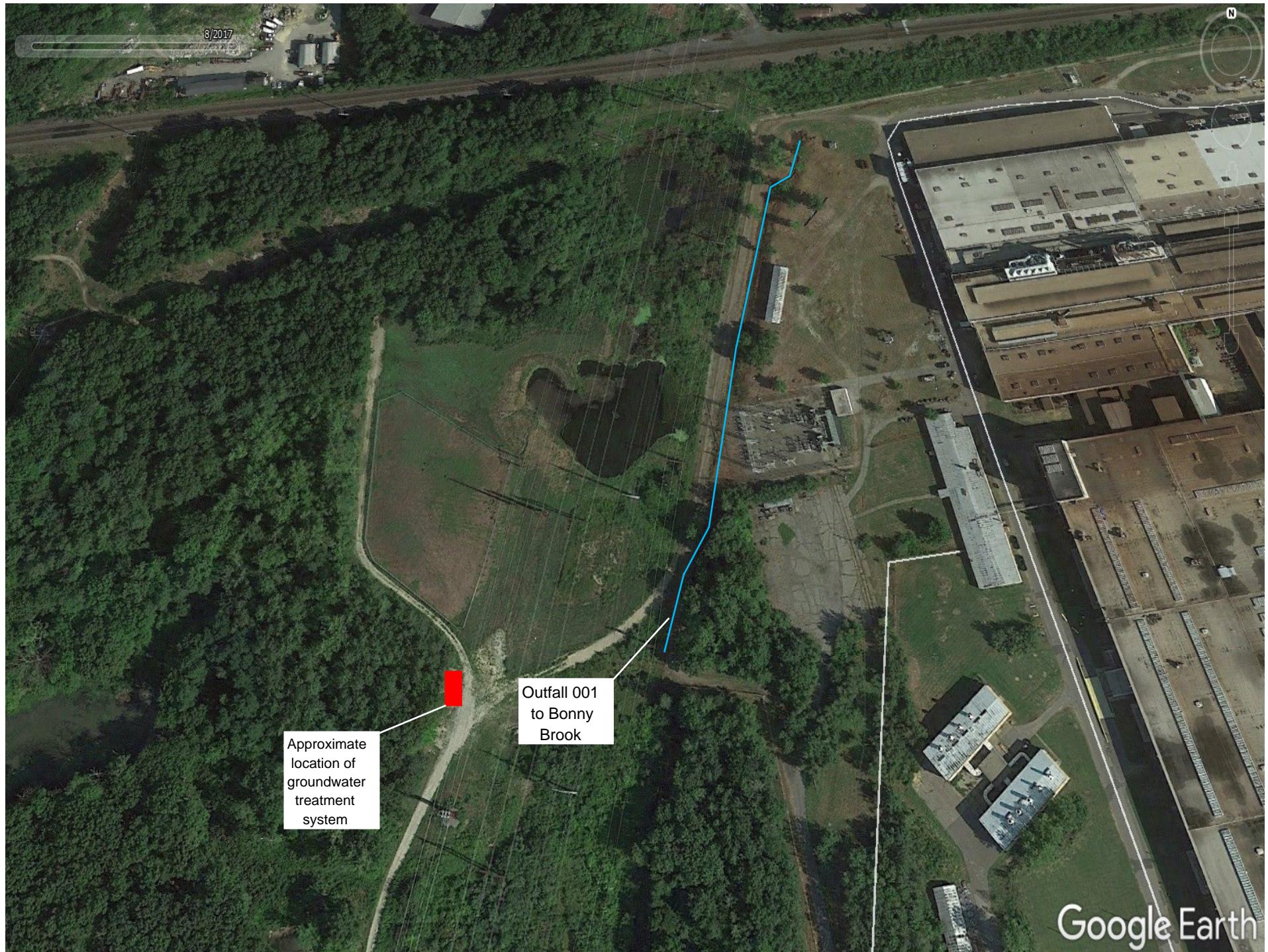
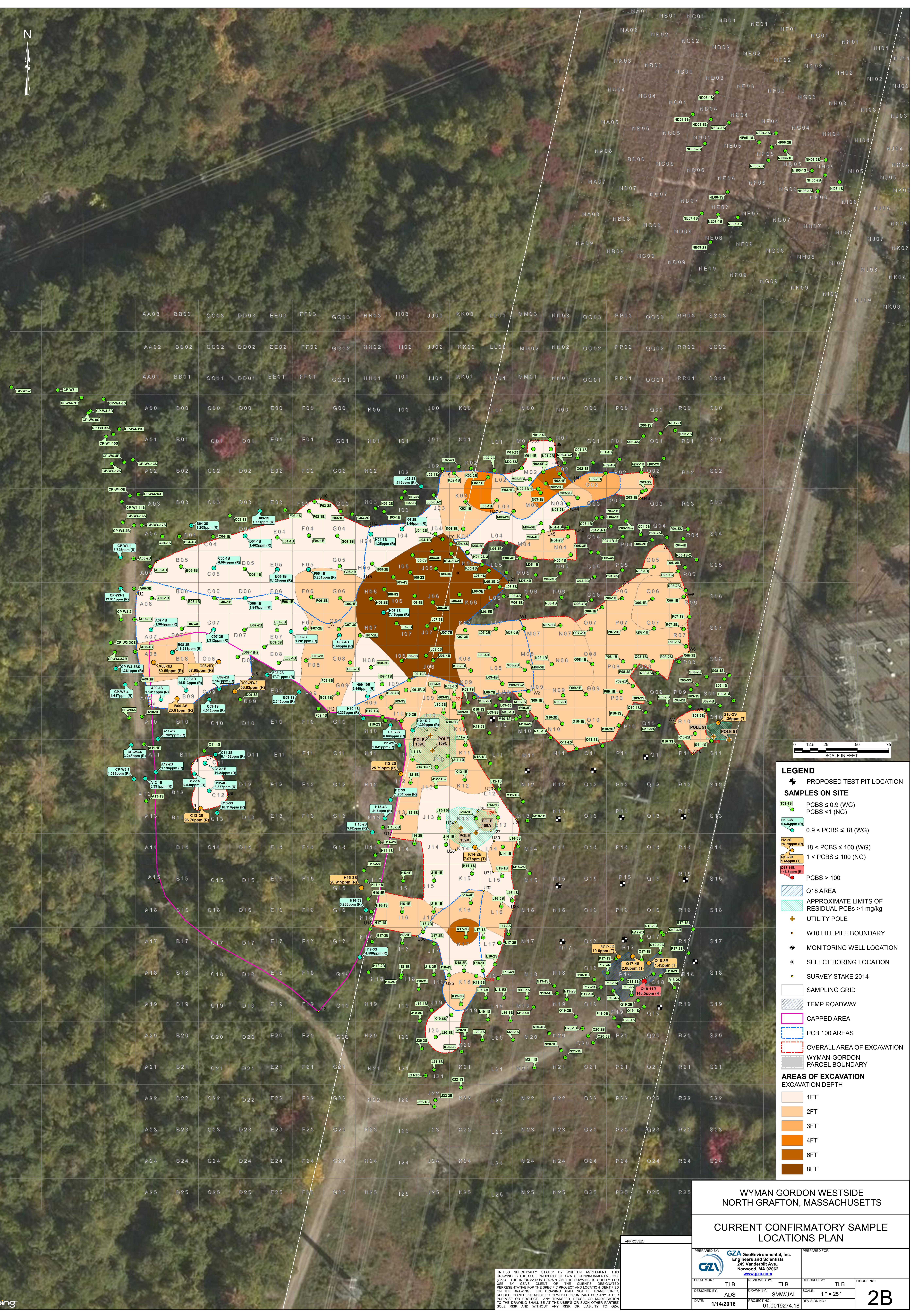

JOB NO.
01.0019274.08

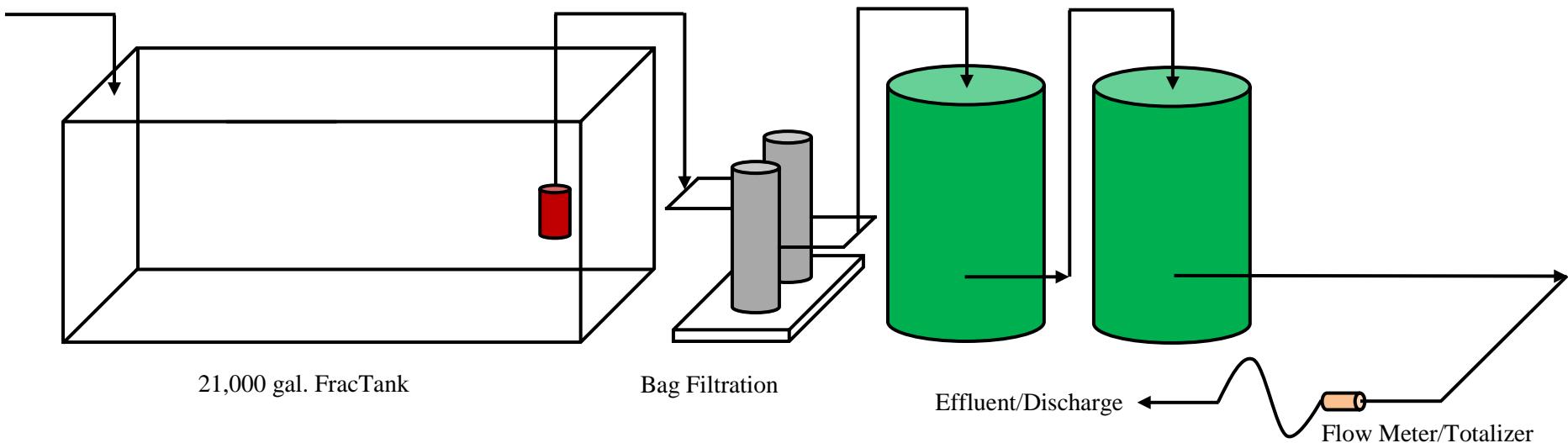
FIGURE NO.

1



Attachment 3: Figures 2A and 2B – Site Plan and Outfall Locations

OUTFALL LOCATION PLAN


FIGURE 2A

Attachment 4: Figure 3 – Process Flow Diagram

Influent from
Excavation Dewatering

Notes:

- 1.) Figure is not to scale.
- 2.) The water treatment system is rated for 100 gallons per minute.
- 3.) All discharge water shall be routed to the treatment system.

89 Crawford Street
Leominster, Massachusetts 01453
Tel: 774.450.7177
Fax: 888.835.0617
www.lrt-llc.net

Water Treatment System Schematic
Wyman Gordon
Grafton, Massachusetts

Attachment 5: ESA and EFH Documentation

**FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES
IN MASSACHUSETTS**

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

**FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES
IN MASSACHUSETTS**

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

**FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES
IN MASSACHUSETTS**

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Suffolk	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
	Northern Long-eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

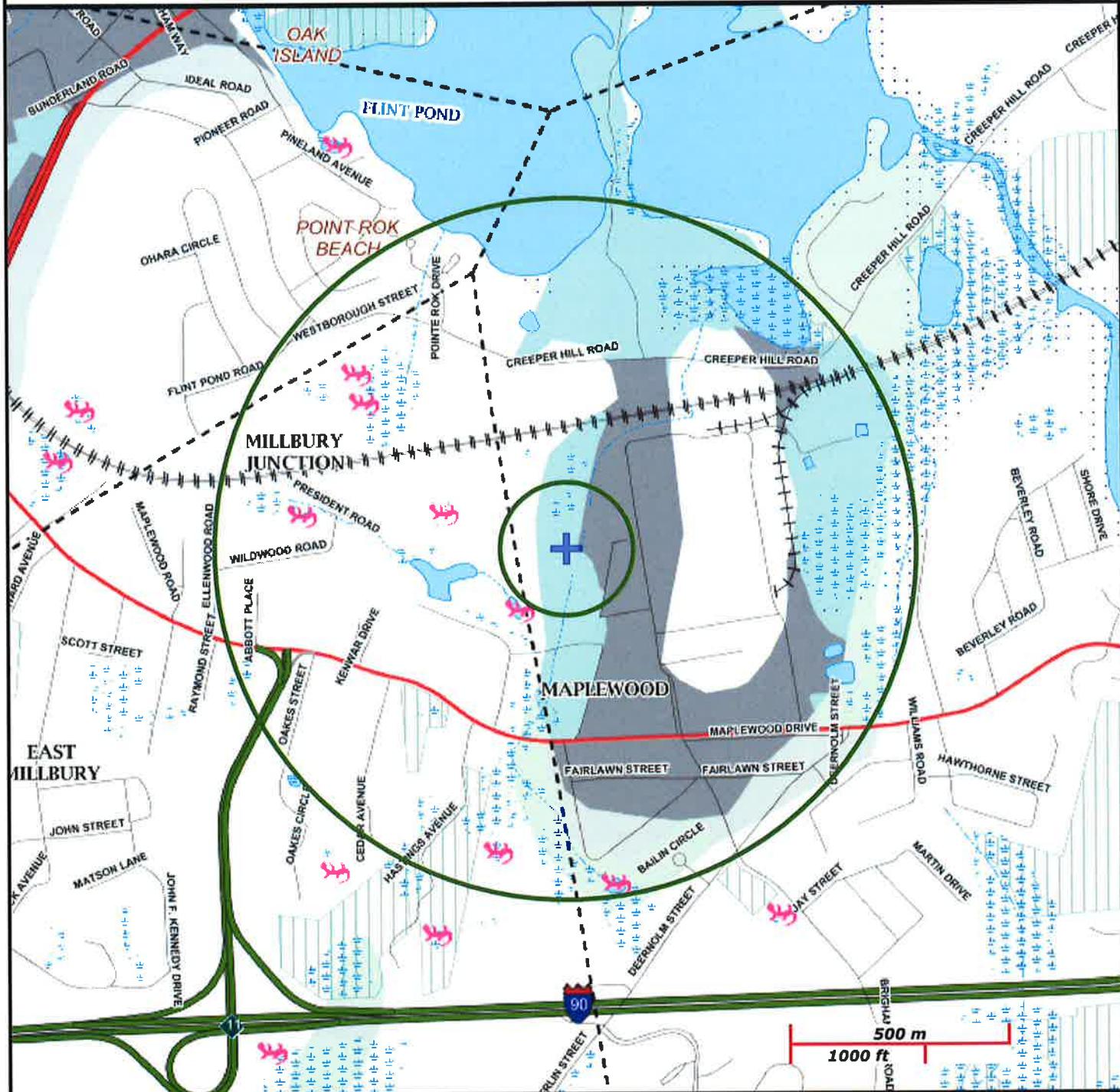
¹Migratory only, scattered along the coast in small numbers

- Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:


WYMAN-GORDON COMPANY
244 WORCESTER STREET GRAFTON, MA

NAD83 UTM Meters:
4679182mN, 274654mE (Zone: 19)
July 18, 2017

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: <http://www.mass.gov/mgis/>.

MassDEP
Commonwealth of Massachusetts
Department of Environmental Protection

Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail

PWS Protection Areas: Zone II, IWPA, Zone A

Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct

Hydrography: Open Water, PWS Reservoir, Tidal Flat

Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam

Wetlands: Freshwater, Saltwater, Cranberry Bog

Aquifers: Medium Yield, High Yield, EPA Sole Source

FEMA 100yr Floodplain; Protected Open Space; ACEC

Non Potential Drinking Water Source Area: Medium, High (Yield)

Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential

Solid Waste Landfill; PWS: Com. GW, SW, Emerg., Non-Com.

Solid Waste Landfill; PWS: Com. GW, SW, Emerg., Non-Com.

United States Department of the Interior

FISH AND WILDLIFE SERVICE
New England Ecological Services Field Office
70 Commercial Street, Suite 300
Concord, NH 03301-5094
Phone: (603) 223-2541 Fax: (603) 223-0104
<http://www.fws.gov/newengland>

In Reply Refer To:

August 02, 2017

Consultation Code: 05E1NE00-2017-SLI-2349

Event Code: 05E1NE00-2017-E-05120

Project Name: Wyman Gordon

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

<http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF>

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (<http://www.fws.gov/windenergy/>) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: <http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm>; <http://www.towerkill.com>; and <http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html>.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

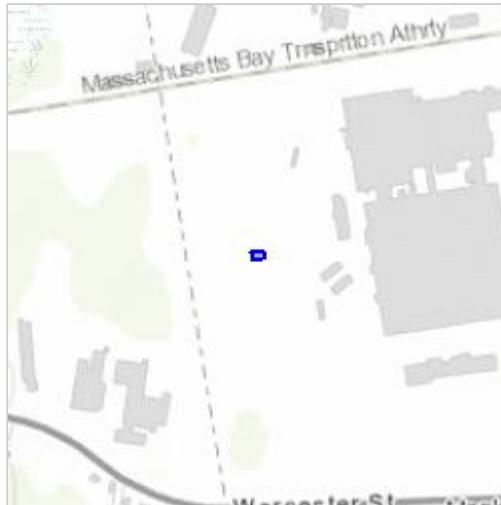
New England Ecological Services Field Office
70 Commercial Street, Suite 300
Concord, NH 03301-5094
(603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2017-SLI-2349

Event Code: 05E1NE00-2017-E-05120

Project Name: Wyman Gordon


Project Type: DREDGE / EXCAVATION

Project Description: Limited excavation of approximately 200 cubic yards of PCB impacted soils associated with soil remediation activities. Work is scheduled for the Fall 2017.

Project Location:

Approximate location of the project can be viewed in Google Maps:

<https://www.google.com/maps/place/42.232140883923684N71.730717015094W>

Counties: Worcester, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME	STATUS
Northern Long-eared Bat <i>Myotis septentrionalis</i> No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045	Threatened

Critical habitats

There are no critical habitats within your project area under this office's jurisdiction.

Evaluation of Endangered Species Habitats
244 Worcester Street and Adjacent Power Transmission Corridor
Grafton, Massachusetts

The northern long-eared bat (*Myotis septentrionalis*) has a federal status of Threatened and a state status of Endangered within Massachusetts.

The northern long-eared bat is a migratory species which utilizes a variety of habitats during the year depending on the season. Between early November and April, this species hibernates in crevices in portions of caves and abandoned mine shafts which have high humidity, constant temperatures, and little air flow. Individuals tend to return to the same hibernaculum from year to year although they are also known to sometimes use other hibernacula. Hibernacula are generally located within approximately 35 miles of summer foraging habitat. Between April and October, northern long-eared bats roost and forage in forested areas. Preferred roost sites include clusters of large, live or dead, hardwood trees with cavities or peeling bark. Preferred foraging sites include wooded areas around vernal pools or small ponds or along streams. Thus, transitional zones between forested uplands and wetlands represent prime summer roosting and foraging habitat.

The parcel at 244 Worcester Street in Grafton, MA (Site) is located within an industrially developed area currently used as a drop forging facility owned and operated by Wyman-Gordon Company. A power transmission corridor owned by National Grid abuts the facility to the west. The excavation work will be conducted within the power transmission corridor under an access agreement made between Wyman Gordon and National Grid. The transmission corridor is a predominantly open upland and wetland area with few trees and no known caves. The area to the west of the transmission corridor is forested. Several potential (uncertified) vernal pools are located within $\frac{1}{2}$ mile of the property with the closest potential pool located approximately 500 feet to the southwest of the proposed excavation area. A small stream named Bonny Brook flows northward along the boundary of the Wyman-Gordon and National Grid properties. The proposed excavation work will occur on an open portion of the upland area which will not require removal of trees or will disturb wetland areas. The discharge of water from remediation activities will be treated in accordance with the terms of the discharge authorization to levels well below what are currently observed within the brook. Therefore, it is unlikely that the proposed excavation work will adversely affect the northern long-eared bat or its potential habitats.

Northern Long-Eared Bat

Myotis septentrionalis

The northern long-eared bat is federally listed as a threatened species under the Endangered Species Act. **Endangered** species are animals and plants that are in danger of becoming extinct. **Threatened** species are animals and plants that are likely to become endangered in the foreseeable future. Identifying, protecting and restoring endangered and threatened species is the primary objective of the U.S. Fish and Wildlife Service's Endangered Species Program.

What is the northern long-eared bat?

Appearance: The northern long-eared bat is a medium-sized bat with a body length of 3 to 3.7 inches and a wingspan of 9 to 10 inches. Their fur color can be medium to dark brown on the back and tawny to pale-brown on the underside. As its name suggests, this bat is distinguished by its long ears, particularly as compared to other bats in its genus, *Myotis*.

Winter Habitat: Northern long-eared bats spend winter hibernating in caves and mines, called hibernacula. They use areas in various sized caves or mines with constant temperatures, high humidity, and no air currents. Within hibernacula, surveyors find them hibernating most often in small crevices or cracks, often with only the nose and ears visible.

Summer Habitat: During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or in crevices of both live trees and snags (dead trees). Males and non-reproductive females may also roost in cooler places, like caves and mines. Northern long-eared bats seem to be flexible in selecting roosts, choosing roost trees based on suitability to retain bark or provide cavities or crevices. They rarely roost in human structures like barns and sheds.

Reproduction: Breeding begins in late summer or early fall when males begin to swarm near hibernacula. After

This northern long-eared bat, observed during an Illinois mine survey, shows visible symptoms of white-nose syndrome.

copulation, females store sperm during hibernation until spring. In spring, females emerge from their hibernacula, ovulate and the stored sperm fertilizes an egg. This strategy is called delayed fertilization.

After fertilization, pregnant bats migrate to summer areas where they roost in small colonies and give birth to a single pup. Maternity colonies of females and young generally have 30 to 60 bats at the beginning of the summer, although larger maternity colonies have also been observed. Numbers of bats in roosts typically decrease from the time of pregnancy to post-lactation. Most bats within a maternity colony give birth around the same time, which may occur from late May or early June to late July, depending where the colony is located within the species' range. Young bats start flying by 18 to 21 days after birth. Maximum lifespan for the northern long-eared bat is estimated to be up to 18.5 years.

Feeding Habits: Like most bats, northern long-eared bats emerge at dusk to feed. They primarily fly through the

understory of forested areas feeding on moths, flies, leafhoppers, caddisflies, and beetles, which they catch while in flight using echolocation or by gleaning motionless insects from vegetation.

Range: The northern long-eared bat's range includes much of the eastern and north central United States, and all Canadian provinces from the Atlantic Ocean west to the southern Yukon Territory and eastern British Columbia. The species' range includes 37 States and the District of Columbia: Alabama, Arkansas, Connecticut, Delaware, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Hampshire, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Vermont, Virginia, West Virginia, Wisconsin, and Wyoming.

Why is the northern long-eared bat in trouble?

White-nose Syndrome: No other threat is as severe and immediate as

this. If this disease had not emerged, it is unlikely that northern long-eared bat populations would be experiencing such dramatic declines. Since symptoms were first observed in New York in 2006, white-nose syndrome has spread rapidly from the Northeast to the Midwest and Southeast; an area that includes the core of the northern long-eared bat's range, where it was most common before this disease. Numbers of northern long-eared bats (from hibernacula counts) have declined by up to 99 percent in the Northeast. Although there is uncertainty about the rate that white-nose syndrome will spread throughout the species' range, it is expected to continue to spread throughout the United States in the foreseeable future.

Other Sources of Mortality:

Although no significant population declines have been observed due to the sources of mortality listed below, they may now be important factors affecting this bat's viability until we find ways to address WNS.

Impacts to Hibernacula: Gates or other structures intended to exclude people from caves and mines not only restrict bat flight and movement, but also change airflow and microclimates. A change of even a few degrees can make a cave unsuitable for hibernating bats. Also, cave-dwelling bats are vulnerable to human disturbance while hibernating. Arousal during hibernation causes bats to use up their energy stores, which may lead to bats not surviving through winter.

Loss or Degradation of Summer Habitat:

Habitat: Highway construction, commercial development, surface mining, and wind facility construction permanently remove habitat and are activities prevalent in many areas of this bat's range. Many forest management activities benefit bats by keeping areas forested rather than converted to other uses. But, depending on type and timing, some forest management activities can cause mortality and temporarily remove or degrade roosting and foraging habitat.

Wind Farm Operation: Wind turbines kill bats, and, depending on the species, in very large numbers. Mortality from windmills has been documented for northern long-eared bats, although a

small number have been found to date. However, there are many wind projects within a large portion of the bat's range and many more are planned.

What Is Being Done to Help the Northern Long-Eared Bat?

Disease Management: Actions have been taken to try to reduce or slow the spread of white-nose syndrome through human transmission of the fungus into caves (e.g. cave and mine closures and advisories; national decontamination protocols). A national plan was prepared by the Service and other state and federal agencies that details actions needed to investigate and manage white-nose syndrome. Many state and federal agencies, universities and non-governmental organizations are researching this disease to try to control its spread and address its affect. See www.whitenosesyndrome.org/ for more.

Addressing Wind Turbine Mortality:

The Service and others are working to minimize bat mortality from wind turbines on several fronts. We fund and conduct research to determine why bats are susceptible to turbines, how to operate turbines to minimize mortality and where important bird and bat migration routes are located. The Service, state natural resource agencies, and the wind energy industry are developing a Midwest Wind Energy Habitat Conservation Plan, which will provide wind farms a mechanism to continue operating legally while minimizing and mitigating listed bat mortality.

Listing: The northern long-eared bat is listed as a threatened species under the federal Endangered Species Act. Listing a species affords it the protections of the Act and also increases the priority of the species for funds, grants, and recovery opportunities.

Hibernacula Protection: Many federal and state natural resource agencies and conservation organizations have protected caves and mines that are important hibernacula for cave-dwelling bats.

What Can I Do?

Do Not Disturb Hibernating Bats:

To protect bats and their habitats, comply with all cave and mine closures, advisories, and regulations. In areas without a cave and mine closure policy, follow approved decontamination protocols (see <http://whitenosesyndrome.org/topics/decontamination>). Under no circumstances should clothing, footwear, or equipment that was used in a white-nose syndrome affected state or region be used in unaffected states or regions.

Leave Dead and Dying Trees Standing:

Like most eastern bats, the northern long-eared bat roosts in trees during summer. Where possible and not a safety hazard, leave dead or dying trees on your property. Northern long-eared bats and many other animals use these trees.

Install a Bat Box: Dead and dying trees are usually not left standing, so trees suitable for roosting may be in short supply and bat boxes may provide additional roost sites. Bat boxes are especially needed from April to August when females look for safe and quiet places to give birth and raise their pups.

Support Sustainability: Support efforts in your community, county and state to ensure that sustainability is a development goal. Only through sustainable living will we provide rare and declining species, like the northern long-eared bat, the habitat and resources they need to survive alongside us.

Spread the Word: Understanding the important ecological role that bats play is a key to conserving the northern long-eared and other bats. Helping people learn more about the northern long-eared bat and other endangered species can lead to more effective recovery efforts. For more information, visit www.fws.gov/midwest/nleb and www.whitenosesyndrome.org

Join and Volunteer: Join a conservation group; many have local chapters. Volunteer at a local nature center, zoo, or national wildlife refuge. Many state natural resource agencies benefit greatly from citizen involvement in monitoring wildlife. Check your state agency websites and get involved in citizen science efforts in your area.

Northern Long-Eared Bat (*Myotis septentrionalis*) Species Guidance

Family: Vespertilionidae- the evening bats

State Status: [Threatened](#)

Dave Redell, Wisconsin DNR

State Rank: [S1S](#)

Federal Status: [None](#)

Global Rank: [G4](#)

Wildlife Action Plan

Area of Importance Score: [3](#)

Range of the northern long-eared bat in Wisconsin. Source: WI Bat Program 2012

Species Information

General Description: The northern long-eared bat, also referred to as the northern bat, is a medium-sized member of the genus *Myotis*. Adults weigh five to nine grams (0.2-0.3 oz). Individual weights vary seasonally and are lowest in the spring as bats emerge from hibernation (WI Bat Program 2010). Total length is 77-92 mm (3.0-3.63 in), adult forearm length is 34-38 mm (1.3-1.5 in), and females are generally larger than males (Kurta 1995). Wingspan is 23-26 cm (9.1-10.2 in; Barbour and Davis 1969). Fur color is light to dark brown. The northern long-eared bat is classified as a cave bat because it uses caves and mines for hibernation.

Similar Species: Three bat species in Wisconsin- the northern long-eared bat, the little brown bat (*Myotis lucifugus*) and the Indiana (*Myotis sodalis*) bat – are best distinguished by close (in-hand) inspection. The northern long-eared bat is most often confused with the little brown bat. The northern long-eared bat has longer ears than the little brown bat, and when folded alongside the head, the tips of the ears should extend 3 mm or more past the tip of the nose. Little brown bat ear length in Wisconsin, however, can be highly variable, and tragus shape and length in relation to the rest of the ear are the two best features to use to distinguish these two species (Fig. 1). The tragus of the northern long-eared bat is more pointed and spear-like than that of the little brown bat. The little brown bat also has a glossier appearance than the northern long-eared. The northern long-eared bat may also be confused with the Indiana bat, but the two can be distinguished much the same way as the little brown bat from the northern long-eared bat. The Indiana bat's keeled calcar, a spur of cartilage extended from the ankle and supporting the interfemoral membrane, is a distinguishing feature that the northern long-eared bat lacks. The northern long-eared bat can be identified by the echolocation call (Fig. 2), however both other *Myotis* species share similar call characteristics, and only trained individuals should positively identify the species through echolocation calls.

Figure 1. The asymmetrical tragus of the little brown bat (left), and the symmetrical, spear-like tragus of the northern long-eared bat (right). Dave Redell, Wisconsin DNR

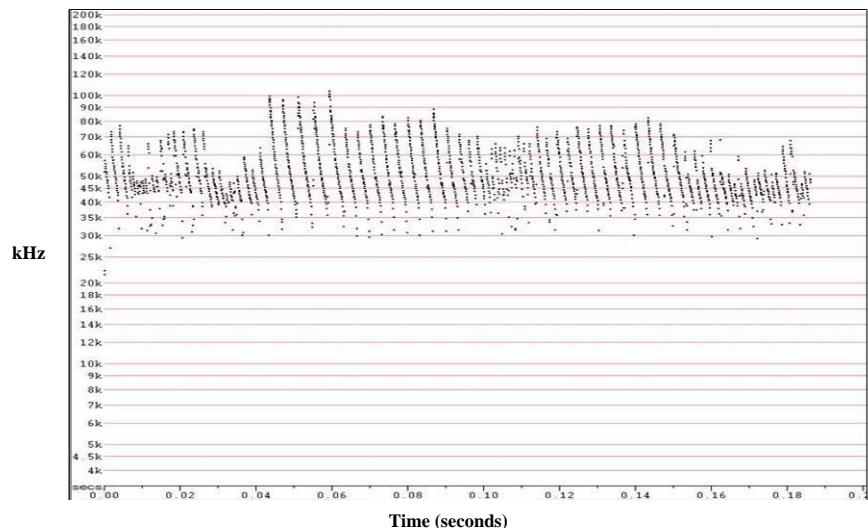


Figure 2. Echolocation call: Northern long-eared bats produce high-frequency calls of a shorter duration, broader bandwidth and lower intensity than other *Myotis* species. The call frequency ranges between 126 and 40 kHz (Caceres and Barclay 2000). The northern long-eared bat sonogram may appear similar to the little brown bat and the Indiana bat.

Associated Species: Northern long-eared bat predators include owls, hawks, occasionally snakes, and raccoons (*Procyon lotor*). As many as 13 feral cats have also been observed congregating at a mine entrance at dusk to prey upon bats as they leave the hibernaculum (D. Redell pers. obs.). Northern long-eared bats often share hibernacula with other bat species such as the tri-colored bat (*Perimyotis subflavus*), the little brown bat, the big brown bat (*Eptesicus fuscus*) and the Indiana bat, but the northern bat rarely, if ever, forms hibernating clusters with other species. Northern long-eared bats forage with other bat species, but there is no evidence of direct competition between species.

State Distribution and Abundance: Northern long-eared bats are found throughout the state of Wisconsin (but see “Threats” section below), but they are never abundant (Jackson 1961, WDNR 2013).

Global Distribution and Abundance: Northern long-eared bats are widely distributed in the eastern United States and Canada, with the exception of the very southeastern United States and Texas (see Fig. 3, BCI 2012).

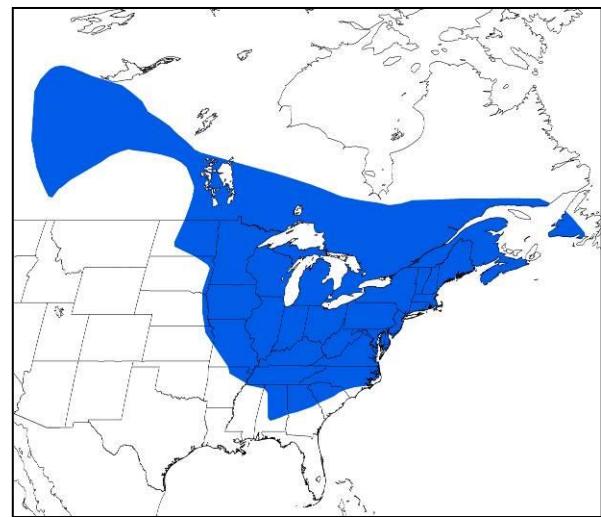
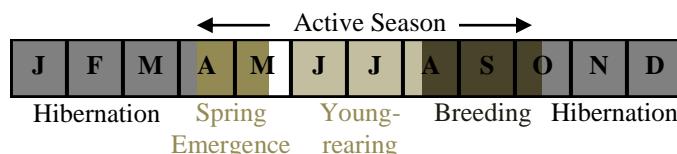



Figure 3. Global distribution of *Myotis septentrionalis*. (BCI 2012)

Diet: The northern long-eared bat is insectivorous and uses echolocation to locate and capture prey. Northern long-eared bat prey includes moths (*Lepidoptera*), flies (*Diptera*) and beetles (*Coleoptera*). This species is commonly referred to as a gleaning bat because it often catches insects that are at rest on leaves or twigs, in addition to catching insects that are flying (Lee and McCracken 2004).

Reproductive Cycle: The reproductive cycle for the northern long-eared bat begins when breeding occurs in the fall and sometimes into winter hibernation. Sperm is stored in the uterus of the female until April or May when the females emerge from hibernation and fertilization occurs. Females form small maternity colonies of up to 30 bats in late spring and females give birth to a single pup in June or early July (Caceres and Barclay 2000, Owen et. al. 2002). Pups are born hairless and flightless. The pup nurses for about a month and is left at the roost nightly while the mother goes out to feed. The pup begins to fly and explore on its own at four to six weeks. Maternity colonies disperse shortly after young are volant (able to fly) and bats move closer to hibernacula in the fall and mate before they hibernate. Young of the year do not usually mate, but some juvenile males appear reproductively active (WI Bat Program 2009, 2010). More research is needed to determine breeding and reproductive behavior of the northern long-eared bat.

Ecology: Female and male northern long-eared bats emerge from hibernation in April and May. In summer, the northern long-eared bat roosts alone, or females may form a colony with some other females. The northern long-eared bat chooses day roosts in tall trees and snags. Night roosts for this species include caves and rock shelters where they will rest between feeding bouts (Caceres and Barclay 2000). Roost fidelity is low in this species, and individual bats switch roosts about every two days in the summer (Foster and Kurta 1999). This species is a relatively long lived mammal for its size, and usually lives up to 8-10 years. Banding records indicated a northern long-eared bat caught in the wild lived up to 18 years (Caceres and Barclay 2000). In the fall, northern long-eared bats will make short migrations from summer habitat to winter hibernacula (caves and abandoned mines), and will often return to the same hibernaculum but not always in sequential seasons (Caceres and Barclay 2000). This species hibernates with other species such as the little brown bat and tri-colored bat, but often in different parts of the hibernaculum. The northern long-eared bat hibernates deep in crevices, rather than clustering on exposed surfaces like other cave bats, which makes it difficult to survey and monitor for this species during the winter (Caceres and Barclay 2000). More research is needed on northern long-eared bats’ basic life history and behavior.

Natural Community Associations: ([WDNR 2005](#) and [WDNR 2009](#))

Many bat species are associated more with structural features within natural communities than with any particular natural community or group of natural communities (see “Habitat” section).

Significant: [coldwater streams](#), [coolwater streams](#), [ephemeral pond](#)

Moderate: alder thicket, bog relict, boreal rich fen, calcareous fen (southern), central sands pine – oak forest, coastal plain marsh, emergent aquatic, floodplain forest, hemlock relict, inland lakes, northern dry forest, northern dry-mesic forest, northern hardwood swamp, northern mesic forest, northern sedge meadow, oak barrens, oak woodland, open bog, shrub carr, southern dry forest, southern

dry-mesic forest, southern hardwood swamp, southern mesic forest, southern sedge meadow, submergent aquatic, submergent aquatic-oligotrophic marsh, warmwater rivers, warmwater streams, white pine – red maple swamp

Minimal: none

Habitat: Northern long-eared bat habitat use changes over the course of the year, and varies based on sex and reproductive status. Reproductive females often use different summer habitat from males and non-reproductive females.

Summer: Northern long-eared bats commonly roost in trees but have been known to roost in man-made structures. This species often roosts under bark or close to the tree trunk in crevices of tree species such as maples and ashes (Foster and Kurta 1999). Northern long-eared bats prefer to roost in tall trees with a dynamic forest structure including old growth and some young trees (Foster and Kurta 1999). Females form small maternity colonies which are located in trees, under shingles, and in buildings. Northern long-eared bats commonly forage within the forest and below the canopy mainly in upland forests on hillsides and ridges (Owen et al. 2003), but have also been noted to forage along paths, ponds and streams, and at forest edges. Foster and Kurta (1999) found all roost trees to be close to wetlands. More information is needed to more fully describe northern long-eared bat foraging habitats and summer roosting in Wisconsin.

Home range: Northern long-eared bats use approximately 150 acres for their home range in summer (Owen et al. 2003). More information is needed to accurately describe northern long-eared bat home range and habitat in Wisconsin.

Winter: The northern long-eared bat hibernates in caves and abandoned mines in winter and tends to be found in deep crevices (Kurta 1994, Caceres and Barclay 2000). More research is needed to determine what characteristics make suitable caves and mines for northern long-eared bat hibernation.

Northern long-eared bat hibernacula in southwestern Wisconsin: Passage of a mine in Grant County that houses northern bats (left), and solitary northern long-eared bat in a crevice in Pierce County (right). Heather Kaarakka, Wisconsin DNR

Edge habitat (transition zone between two types of vegetation) is important for northern long-eared bats as they migrate and forage. When bats migrate from wintering caves to summer habitat or commute from roosts to feeding grounds, they move through the landscape in a manner that protects them from wind and predators. Instead of flying the shortest distance across a field, for instance, bats will take longer routes that follow edge habitat. In addition to offering protection, this behavior may also allow bats more feeding opportunities because food is more abundant around edge habitat (Limpens and Kapteyn 1991). Commuting along edge habitat may assist the bats with navigation and orientation through use of linear edges as landmarks (Verboom and Huitema 1997).

Threats: Lack of information on bat species' basic ecology is one of the greatest threats to bat conservation in Wisconsin. The northern long-eared bat faces two emerging threats, and several ongoing threats. White-nose syndrome (WNS) was discovered in 2006 in a hibernaculum in New York State, and appears as a white, powdery substance on the bat's face, tail and wings. White-nose syndrome has spread rapidly since 2007 to other hibernacula in neighboring states (USFWS 2012). Infected little brown bat and northern bat hibernacula in New York and surrounding states have experienced mortality rates of over 90%. White-nose syndrome has been called the "most precipitous wildlife decline in the past century in North America" (BCI 2009), and is caused by a fungus called *Geomyces destructans* (Lorch et al. 2011). This fungus grows best in the cool, wet conditions of hibernacula (Verant et al. 2012). Mortality from the fungus appears to come from increased arousals during torpor, which deplete bats' fat reserves and cause starvation (Reeder et al. 2012) and dehydration (Cryan et al. 2010). For up-to-date WNS information, see the USFWS WNS website and the USGS National Wildlife Health Center website (see *Additional Information*). Neither the fungus nor the disease has been found in Wisconsin as of this writing. Cave-hibernating bats, including the northern long-eared bat, should be monitored closely for any

indication of WNS; the Wisconsin Bat Program conducts WNS surveillance and monitoring in the state.

Wind power is another emerging threat to bats – wind turbines have been shown to fatally impact all bat species in Wisconsin (Johnson 2003, Arnett et al. 2008). Wind-turbine blades cause mortality through direct impact or through the pressure differential caused by the motion of the spinning blades. This pressure differential causes a bat's lungs to fill with fluid as it flies near the spinning blades, and this phenomenon (known as barotrauma) kills the bat instantly (Baerwald et. al. 2008). More research is under way to better understand bat wind-turbine vulnerabilities, but current studies suggest that bats face the greatest risk during migration from summer foraging sites to wintering grounds (tree bats) or hibernacula (cave bats) (Johnson 2003, Kunz et al. 2007). Research is needed on all Wisconsin bat species to better understand wind-turbine mortality in the state and the long term population impacts of turbine-related deaths.

Northern long-eared bats also face the ongoing threat of habitat degradation. Habitat degradation is caused by increased agricultural, industrial, and household pesticide use, and it has negative effects on bats through direct exposure and through dietary accumulation (O’Shea et al. 2001). Pesticides are a threat to many taxa, but bats may be more vulnerable than other small mammals due to certain life characteristics (Shore et al. 1996, O’Shea et al. 2001). Bats’ longevity and high trophic level means pesticides can concentrate in their body fat (Clark and Prouty 1977, Clark 1988). Even after pesticide exposure ceases, residues can be passed on to nursing young (Clark 1988). Bat species that migrate long distances may be more affected because pesticide residues become increasingly concentrated in the brain tissue as fat reserves are depleted during long-distance flights. This concentration can lead to convulsions and even death (Geluso et al. 1976, Clark 1978).

Northern long-eared bats also face the ongoing threat of hibernaculum disturbance from humans entering hibernacula in winter and waking bats from torpor. Bats in torpor reduce their metabolism and body temperature to low levels that require less energy than being fully awake. Interrupting torpor costs energy; a little brown bat uses up to 100 mg of fat reserves waking and the returning to torpor (and more if the bat starts flying), or the energetic equivalent of up to 67 days of torpor (Thomas et al. 1990, Thomas 1992). This loss clearly represents a large percentage of total body weight of the bat, and repeated arousals may cause bats to run out of energy reserves before spring arrives and therefore starve in the hibernaculum or die from exposure if they seek food outside (Thomas 1995).

Climate Change Impacts: The effects of climate change on the northern long-eared bat are unclear. Predictions suggest a northward expansion in the ranges of all cave-bat species, in pursuit of optimal hibernation (Humphries et al. 2002, USFWS 2007). This prediction assumes an abundance of suitable caves and other hibernaculum structures further north, but this assumption may not hold for karst-free regions at higher latitudes. Bat species may adapt by reducing torpor depth and duration during winter if prey insect species are available for more of the year (Weller et al. 2009), but bats’ adaptive capacities in this regard may be limited and are not well known. Shifts in prey insect emergence may also cause mismatches with bat emergence and cause food shortages in the spring or fall.

Survey Guidelines: Persons handling northern long-eared bats must possess a valid [Endangered and Threatened Species Permit](#). If surveys are being conducted for regulatory purposes, survey protocols and surveyor qualifications must first be approved by the Endangered Resources Review Program (see *Contact Information*).

Acoustic surveys, which should be done by trained individuals, are performed for all Wisconsin bat species in spring, summer, and fall; and are used to determine presence/absence, phenology, and distribution around the state. The Wisconsin Bat Program’s eventual goal is to use acoustic survey data to determine bat population trends in Wisconsin. Northern long-eared bats are ubiquitous around the state, and therefore surveys can be done wherever appropriate habitat exists. Acoustic recording systems that detect echolocation calls can survey bats as they fly through an area. The bat detection system detects and records these acoustic signals as bats fly by, and records the date and time of each encounter. The Wisconsin Bat Program currently uses broadband frequency division ultrasound detection equipment with a PDA (Personal Data Assistant) and a Global Positioning System. Start acoustic surveys half an hour after sunset, but only if the daytime temperature exceeds 50° F, and conduct the survey for at least one hour. There are three seasons for acoustic surveys: spring (April and May), summer (June and July), and fall (August and September). Acoustic surveys record bat passes, which can then be identified to species by trained individuals. These surveys could be used by land managers to create inventories of species distribution and relative abundance. Visit the [Wisconsin bat monitoring website](#) for additional information.

Wisconsin DNR also conducts a roost monitoring program to determine abundance of bats roosting in buildings and bat houses. People with bat houses or other roost sites identify species and count bats over the summer at night as bats leave the roost. People who find a bat roost while doing field surveys should contact the [Wisconsin Bat Program](#) to report the information.

Summarize results, including survey dates, times, weather conditions, number of detections, detection locations, and behavioral data and submit via the WDNR online report: <<http://dnr.wi.gov>, keyword “rare animal field report form”>

Management Guidelines

The following guidelines typically describe actions that will help maintain or enhance habitat for the species. These actions are not mandatory unless required by a permit, authorization or approval.

Summer Management

Roost availability is thought to limit northern long-eared bat populations, as it does for many bat species, and thus habitat management is important for the continued survival of this species (Duchamp et al. 2007). Northern long-eared bats are forest dwelling bats, and forest management to promote occupation by this species should increase roosting and foraging habitat (see Habitat section above). Northern long-eared bats have been shown to use both live and dead trees for roosting sites (Foster and Kurta 1999). These bats often roost under exfoliating bark, and therefore snags and dying trees may be important for encouraging northern long-eared bats. Forest managers are encouraged to promote mixed-species, mixed-aged plots as the northern long-eared bat chooses trees based on suitability of crevices and bark as roosts, rather than on tree species (Foster and Kurta 1999). The northern long-eared bat is known to switch roost trees frequently (about every 2 days) over the course of the summer, and therefore this species needs a large number of trees (Foster and Kurta 1999). As with many bat species, suitable forested habitat for northern long-eared bats is a multi-species matrix that contains some open areas (Owen et al. 2003).

Linear corridors are important for migrating and commuting bats, and forests may be managed such that suitable foraging habitat is connected by corridors; this may include managing edge habitat along roads, logging trails and riparian habitat. Land managers should also make an effort to reduce or eliminate burdock (*Arctium minus*), an exotic weed that produces seeds that trap bats and cause death from exposure.

Special consideration should be given to protecting snags or dying trees, especially those near known roost locations, particularly from June 1 through August 15 while bats may have pups at the roost.

Seasonal pools in woodlands may be important foraging and water sources for the northern long-eared bat and other Wisconsin bat species because they provide areas for feeding and drinking in an otherwise closed-canopy forest (Francl 2008). Pool size and depth do not appear to determine usage by northern long-eared bats; instead the presence of an opening in the forest is enough to encourage foraging and drinking (Francl 2008).

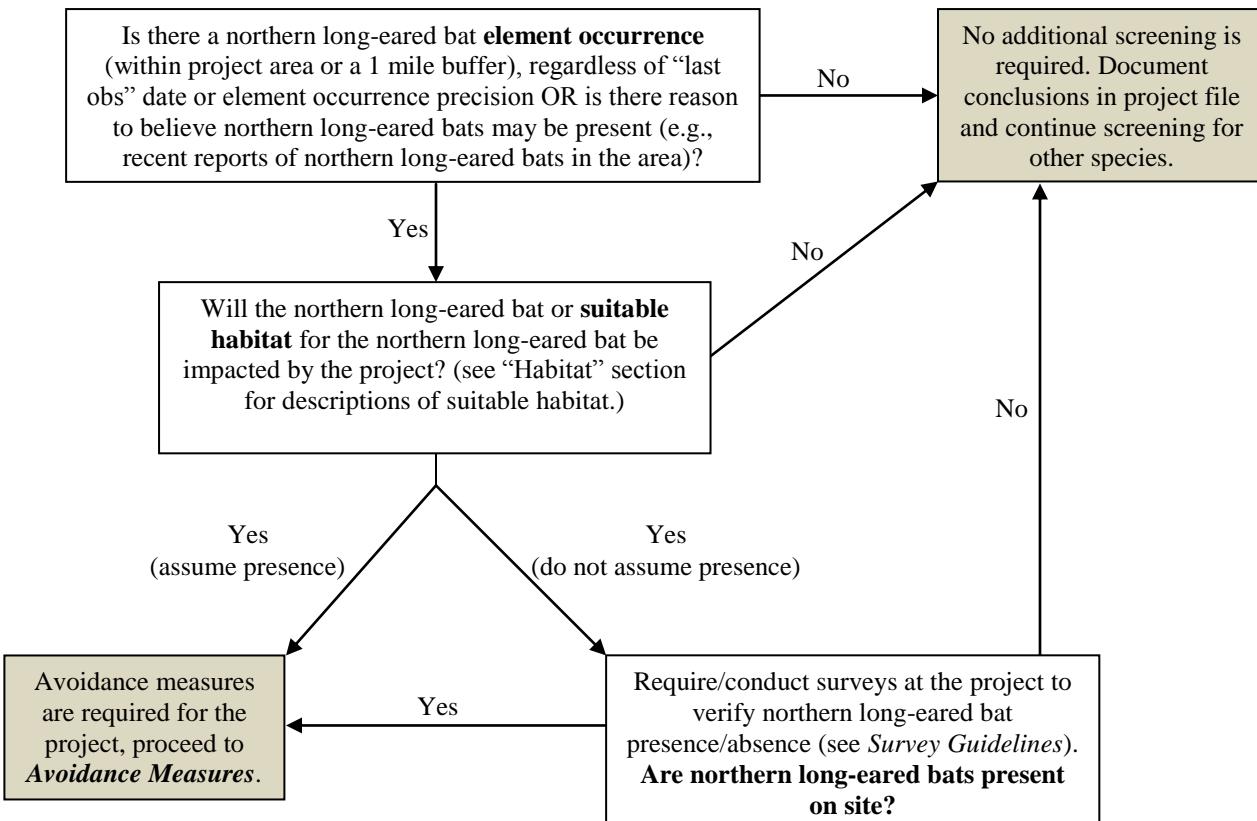
Fall Management

During fall swarm, large proportions of Wisconsin's cave bat population gather near entrances of the state's hibernacula (see "Habitat" section), and become concentrated and vulnerable to direct impacts. To avoid disturbance during crucial life history events, management activities such as logging and use of heavy machinery within 0.25 miles of hibernacula entrances should be avoided during fall swarm (August 15-October 15) or during spring emergence (April 1-May 15) because bats may use the surrounding area for roosting during those time periods.

Winter Management

Little is known about how northern long-eared bats choose hibernation sites, but suitable Wisconsin hibernacula typically have steady temperatures between 4° C and 12° C (39-53° F), high humidity, and no human disturbance. Artificial sites that can mimic this environment may provide suitable hibernacula. Artificial hibernacula include bunkers, food storage-caves and basements. Contact the [Wisconsin Bat Program](#) to inquire about developing artificial hibernacula.

Natural hibernacula can also be managed to encourage bat use. For example, closing but not sealing the entrance to an abandoned mine not only buffers temperature and humidity, but also reduces disturbance from humans and predators. Eliminating disturbance from humans, except for WNS surveillance, is the best management activity for natural cave hibernacula. Contact the [Wisconsin Bat Program](#) for more information about managing bat hibernacula.


Northern long-eared bats – and their populations as a whole – are particularly vulnerable during winter hibernation because they are concentrated in just a few major hibernacula and because repeated disturbance during hibernation can lead to mortality (see "Threats" section above). Each time a bat is aroused from torpor, it uses up a substantial proportion of the fat reserves it relies on to hibernate through the winter and faces greater odds of starvation before spring (see "Threats" section above). Therefore, avoid entering hibernacula from October 1 through May 15 unless conducting approved and permitted management, surveillance, or research.

Screening Procedures

The following procedures must be followed by DNR staff reviewing proposed projects for potential impacts to the species.

Follow the “Conducting Endangered Resources Reviews: A Step-by-Step Guide for Wisconsin DNR Staff” document (summarized below) to determine if northern long-eared bats will be impacted by a project (WDNR 2012):

Those seeking to complete wind farm projects should review and follow the [Guidance for Minimizing Impacts to Natural Resources from Terrestrial Commercial Wind Energy Development](#) created by the WDNR.

Avoidance Measures

The following measures are specific actions required by DNR to avoid take (mortality) of state threatened or endangered species per Wisconsin’s Endangered Species law (s. 29.604, Wis. Stats.) These guidelines are typically not mandatory for non-listed species (e.g., special concern species) unless required by a permit, authorization or approval.

According to Wisconsin’s Endangered Species Law (s. 29.604, Wis. Stats.), it is illegal to take, transport, possess, process, or sell any wild animal on the Wisconsin Endangered and Threatened Species List (ch. NR 27, Wis. Admin. Code). Take of an animal is defined as shooting, shooting at, pursuing, hunting, catching or killing.

If *Screening Procedures* above indicate that avoidance measures are required for a project, follow the measures below. If you have not yet read through *Screening Procedures*, please review them first to determine if avoidance measures are necessary for the project.

1. The simplest and preferred method to avoid take of northern long-eared bats is to avoid directly impacting individuals, known northern long-eared bat locations, or areas of suitable habitat (described above in the “Habitat” section and in *Screening Procedures*). The U.S. Fish and Wildlife Services identifies humans and their equipment as a possible vectors for spores of *Geomysces destructans* – the fungus that causes white-nose syndrome (WNS) – and therefore simply entering hibernacula at any time of year and moving between them poses threats to bats. Cavers and researchers must observe all cave and mine closures and decontamination protocols (s. NR 40.07, Wis. Admin. Code; see *Additional Information*). In addition, it is illegal to use pesticides and poisons when attempting to evict bats from house roosts (s. 94.708, Wis. Stats.).
2. If suitable habitat cannot be avoided, follow these time-of-year restrictions to avoid take:

Summer Avoidance (June 1-Aug 15)

Reproductive females and their young are highly vulnerable to mass mortality during the species' maternity period (June 1 – August 15) because they may aggregate in maternity colonies, and because pups cannot fly and therefore cannot leave the roost for several weeks after birth. Maternity colonies may occur in human structures, and those seeking to exclude bats from a building or other roost must follow the [Cave Bat Broad Incidental Take Permit and Authorization](#) (see *Additional Information*).

3. If impacts cannot be avoided during restoration or management activities, including wind projects and forestry management, but activities are covered under the [Cave Bat Broad Incidental Take Permit and Authorization](#); the project is covered for any unintentional take that may occur. For information about natural roost avoidance, see *Management Guidelines* and “Habitat” section above.

4. If northern long-eared bat impacts cannot be avoided, please contact the Natural Heritage Conservation Incidental Take Coordinator (see *Contact Information*) to discuss possible project-specific avoidance measures. If take cannot be avoided, an [Incidental Take Permit or Authorization](#) (see *Additional Information*) is necessary.

Additional Information

References

Arnett, E. B., W. K. Brown, W.P. Erickson, J. K. Fiedler, B. L. Hamilton, T. H. Henry, A. Jain, G. D. Johnson, J. Kerns, R. R. Koford, C. P. Nicholson, T. G. O'Connell, M. D. Piorkowski, R. D. Tankersley, Jr. 2008. Patterns of Bat Fatalities at Wind Energy Facilities in North America. *Journal Wildlife Management* 72: 61-78.

Baerwald, E.F., G. H. D'Amours, B. J. Klug, R. M. Barclay. 2008. Barotrauma is a Significant Cause of Bat Fatalities at Wind Turbines. *Current Biology* 18(16).

Barbour, R.W, and W.H. Davis. 1969 *Bats of America*. The University Press of Kentucky.Lexinton, KY.

Bat Conservation International [BCI]. 2001. *Bats in Eastern Woodlands*.

Bat Conservation International [BCI]. 2009. “White Nose Syndrome.” <http://batcon.org/index.php/what-we-do/white-nose-syndrome.html> (accessed Dec 2009).

Bat Conservation International [BCI]. . . “Bat Species Profiles: *Myotis septentrionalis*.” Bat Conservation International, 2012. <http://batcon.org/index.php/all-about-bats/species-profiles.html> (accessed Sept 2012).

Boyles J.G., P.M. Cryan, G.F. McCracken, T.H. Kunz. 2011. Economic importance of bats in agriculture. *Science* 332:41-42.

Caceres, M. C., R. M. Barclay. 2000. *Myotis septentrionalis*. *Mammalian Species* 634: 1-4

Clark, D. R. Jr. 1988. Environmental contaminants and the management of bat populations in the United States. Pp. 409-413 in R. C. Szaro, K. S. Severson, and D. R. Patton (eds.), *Proceedings of the Symposium on Management of Amphibians and Reptiles and Small Mammals of North America*, Flagstaff, AZ. USDA Forest Service, General Technical Report RM-166.

Clark, D. R. Jr., R. K. LaVal, and D. M. Swineford. 1978. Dieldrin-induced mortality in an endangered species, the Gray bat (*Myotis grisescens*). *Science* 199:1357-1359.

Clark, D. R. Jr. and R. M. Prouty. 1977. Experimental feeding of DDE and PCB to female big brown bats (*Eptesicus fuscus*). *Journal of Toxicology and Environmental health* 2:917-928.

Cryan, P.M., C.U. Meteyer, J.G. Boyles and D.S Blehert. 2010. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. *BMC Biology* 8:135-142.

Duchamp, J.E., E.B. Arnett, M.A. Larson, R.K. Swihart. 2007. Ecological considerations for landscape-level management of bats. Pp 237-361 in M.J. Lacki, J.P. Hayes, A. Kurta (eds), *Bats in Forests: Conservation and management*. John Hopkins University press. Baltimore, MD.

Franci, K. E. 2008. Summer bat activity at woodland seasonal pools in the northern Great Lakes region. *Wetlands*. 28: 117-124.

Foster, R. W., A. Kurta. 1999. Roosting ecology of the northern bat (*Myotis septentrionalis*) and comparisons with the endangered Indiana bat (*Myotis sodalis*). *Journal of Mammalogy* 80: 659-672.

Geluso, K. N., J. S. Altenbach, and D. E. Wilson. 1976. Bat mortality: Pesticide poisoning and migratory stress. *Science*, 194(4261): 184-186.

Humphries, M. M., D. W. Thomas, and J. R. Speakman. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. *Nature* 418:313-316

Indiana Bat (*Myotis sodalis*) Draft Recovery Plan: First Revision. 2006. USFWS. Fort Snelling, Minnesota.

Jackson, H. *Mammals of Wisconsin*. 1961. The University of Wisconsin Press. Madison, WI.

Johnson, G. D., W. P. Erickson, M.D. Strickland, M. F. Shepherd, D. A. Shepherd. 2003. Mortality of Bats at a Large-scale wind power development at buffalo ridge, Minnesota. *American Midland Naturalist* 50: 332-342.

Kunz, T. H., E. B. Arnett, W. P. Erickson, A. R. Hoar, G. D. Johnson, R. P. Larkin, M. D. Strickland, R. W. Thresher, M. D. Tuttle. 2007. Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. *Front Ecol. Environment* 5: 315-324.

Kurta, A. 1995. *Mammals of the great lakes region*. Ann Arbor: University of Michigan Press.

Lacki, M. J., J. P. Hayes, A. Kurta. *Bats in Forests: Conservation and management*. Baltimore: John Hopkins University Press, 2007. Pp 250.

Lee, Y. F., G. F. McCracken. 2004. Flight activity and food habits of three species of *Myotis* bats (Chiroptera: Vespertilionidae) in sympatry. *Zoological Studies* 43: 589-597.

Limpens, H., K. Kapteyn. 1991. Bats, their behavior and linear landscape elements. *Myotis* 29: 39-48.

Lorch, J.M., C.U. Meteyer, M.J. Behr, J.G. Boyles, P.M. Cryan, A.C. Hicks, A.E. Ballmann, J.T.H. Coleman, D.N. Redell, D.M. Reeder and D.S. Blehert. 2011 Experimental infection of bats with *Geomyces destructans* causes white-nose syndrome. *Nature* 480:376-378.

Nowak, R. M. *Walker's bats of the world*. Baltimore: John Hopkins University Press, 1991.

O'Shea, T. J., A. L. Everette, and L. E. Ellison. 2001. Cyclodiene Insecticide, DDE, DDT, Arsenic, and Mercury contamination of big brown bats (*Eptesicus fuscus*) foraging at a Colorado superfund site. *Archives of Environmental Contamination and Toxicology* 40:112-120.

Owen, S. F., M. Menzel, W. M. Ford, B. R. Chapman, K. V. Miller, J. W. Edwards, P. B. Wood. 2002. Roost tree selection by maternity colonies of northern long-eared myotis in an intensively managed forest. *Gen. Tech. Rep. NE-292*. Newtown Square, PA: U.S. Department of Agriculture, Forest service, Northeastern Research Station. 6 p.

Owen, S. F., M. Menzel, W. M. Ford, B. R. Chapman, K. V. Miller, J. W. Edwards, P. B. Wood. 2003. Home-range size and habitat used by the northern Myotis (*Myotis septentrionalis*). *American Midland Naturalist* 150:352-359.

Reeder, D., C.L. Frank, G.G. Turner, C.U. Meteyer, A. Kurta, E.R. Britzke, M.E. Vodzak, S.R. Darling, C.W. Stihler, A.C. Hicks, R. Jacob, L.E. Grieneisen, S.A. Brownlee, L.K. Muller, D.S. Blehert. 2012. Frequent arousal from hibernation linked to severity of infection and mortality in bats with White-nose syndrome. *PLoS ONE* 7: e38920. doi:10.1371/journal.pone.0038920.

Redell, D. 2005. Behavioral ecology of bats using the Neda mine hibernaculum. Thesis: University of Wisconsin, Madison.

Shore, R. F., D. G. Myhill, and J. A. Wright. 1996. Comparison of the toxicity to laboratory mice and pipistrelle bats *Pipistrellus pipistrellus* of exposure to remedially-treated timber. *Environmental Toxicology and Pharmacology* 2:125-129.

Thomas D. W. 1992. Lack of evidence for a biological alarm clock in bats (*Myotis* spp.) hibernating under natural conditions. *Canadian Journal of Zoology* 71:1-3.

Thomas D. W., M. Dorais, J. M. Bergeron. 1990. Winter energy budget and costs of arousals for hibernating little brown bats, *Myotis lucifugus*. *Journal Mammalogy* 71: 475-479.

USFWS [United States Fish and Wildlife Service]. 2007. Indiana Bat (*Myotis sodalis*) Draft Recovery Plan: First Revision. <http://www.fws.gov/midwest/endangered/mammals/inba/pdf/inba_fnldrftrcpln_apr07.pdf>

USFWS [US Fish and Wildlife Service]. "White nose syndrome in bats: Frequently asked questions" *US Fish and Wildlife Service Northeast Region*. April 2009. USFWS. <<http://www.fws.gov/northeast/pdf/white-nosefaqs.pdf>> (accessed Oct 2009).

USFWS [US Fish and Wildlife Service]. "White nose syndrome in bats: for cavers" *US Fish and Wildlife Services Northeast Region*. November 2009. USFWS. <<http://whitenosesyndrome.org/resources/cavers>> (accessed Dec 2009).

Verboom, B., H. Huitema. 1997. The Importance of linear landscapes for the pipistrelle *Pipistrellus pipistrellus* and the serotine bat *Eptesicus serotinus*. *Landscape Ecology* 12: 117-125.

Verant, M.L., J.G. Boyles, W.W. Waldrep Jr, G. Wibbelt, D.S. Blehert. 2012. Temperature-dependant growth of *Geomyces destructans*, the fungus that causes bat white-nose syndrome. *PLoS ONE* 7: e46280. doi:10.1371/journal.pone.0046280

Weller, T. J., P. M. Cryan, and T. J. O'Shea. 2009. Broadening the focus of bat conservation and research in the USA for the 21st century. *Endangered Species Research* 8:129-145.

Wisconsin Bat Program. 2008, 2009, 2010, 2012. Unpublished Data.

WDNR [Wisconsin Department of Natural Resources]. 2005. Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need: A State Wildlife Action Plan. Madison, Wisconsin, USA. <<http://dnr.wi.gov>>, key word "Wildlife Action Plan">

WDNR [Wisconsin Department of Natural Resources]. 2009. Wisconsin wildlife action plan species profile: Northern Long-eared Bat. (accessed May 27, 2012). Madison, Wisconsin, USA. <material now available on the Natural Heritage Conservation species Web page: <http://dnr.wi.gov>, key word "biodiversity">

WDNR [Wisconsin Department of Natural Resources]. 2012. Conducting Endangered Resources Reviews: A Step-by-Step Guide for Wisconsin DNR Staff. Bureau of Endangered Resources. Wisconsin Department of Natural Resources, Madison, Wisconsin.

WDNR [Wisconsin Department of Natural Resources]. 2013. Natural Heritage Inventory database. Accessed 29 July 2013.

WICCI [Wisconsin Initiative on Climate Change Impacts]. 2011. Wisconsin's Changing Climate: Impacts and Adaptation. Nelson Institute for Environmental Studies, University of Wisconsin-Madison and the Wisconsin Department of Natural Resources, Madison, Wisconsin, USA. <http://www.wicci.wisc.edu/report/2011_WICCI-Report.pdf>

Linked Websites:

- Cave bat Broad Incidental Take Permit and Authorization:<<http://dnr.wi.gov/topic/erreview/itbats.html>>
- Natural Communities of Wisconsin: <<http://dnr.wi.gov/org/land/er/communities/>>
- Natural Heritage Conservation Permit Requirements: <<http://dnr.wi.gov/topic/EndangeredResources/permits.html>>

- Rare Animal Field Report Form: <<http://dnr.wi.gov>>, key word “rare animal field report form”>
- USFW WNS Website: <<http://www.whitenosesyndrome.org>>
- USGS National Wildlife Health Center: <http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/>
- Wind Guidance: <<http://dnr.wi.gov/topic/Sectors/documents/energy/WindGuidelines.pdf>>
- Wisconsin Bat Program Exclusion Instructions: <<http://wiatri.net/inventory/bats/Monitoring/Roosts/docs/BatExclusion.pdf>>
- Wisconsin Bat Program: <<http://wiatri.net/inventory/bats>>
- WDNR Decontamination Protocols for Preventing Spread of White-nose syndrome: <http://dnr.wi.gov/topic/WildlifeHabitat/documents/WNS_DeconProtocols.pdf>
- Wisconsin Endangered and Threatened Species: <<http://dnr.wi.gov>>, key word “endangered resources”>
- Wisconsin Endangered and Threatened Species Permit: <<http://dnr.wi.gov>>, key word “endangered species permit”>”
- Wisconsin Initiative on Climate Change Impacts: <<http://www.wicci.wisc.edu>>
- Wisconsin Natural Heritage Inventory Working List Key: <<http://dnr.wi.gov/topic/NHI/WList.html>>
- Wisconsin’s Wildlife Action Plan: <<http://dnr.wi.gov/topic/wildlifehabitat/actionplan.html>>

Funding

- Natural Resources Foundation of Wisconsin: <<http://www.wisconservation.org>>
- USFWS State Wildlife Grants Program: <<http://wsfrprograms.fws.gov/subpages/grantprograms/swg/swg.htm>>
- Wisconsin Natural Heritage Conservation Fund
- Wisconsin DNR Division of Forestry

Endangered Resources Review Program Contacts

- General information (608-264-6057, DNRERReview@wisconsin.gov)
- [Rori Paloski](mailto:Rori.Paloski@wi.gov), Incidental Take Coordinator, Wisconsin DNR, Bureau of Natural Heritage Conservation (608-264-6040, rori.paloski@wi.gov)

Bat Contact Information

- [John Paul White](mailto:John.Paul.White@wisconsin.gov) Conservation biologist, Wisconsin DNR, Bureau of Natural Heritage Conservation (John.white@wisconsin.gov)
- Wisconsin Bat Program (608-266-5216, DNRbats@wisconsin.gov)

Suggested Citation

- Wisconsin Department of Natural Resources. 2013. Wisconsin Northern Long-Eared Bat Species Guidance. Bureau of Natural Heritage Conservation, Wisconsin Department of Natural Resources, Madison, Wisconsin. PUB-ER-700.

Developed by

- Heather M. Kaarakka, Emma M. Pelton, David N. Redell primary authors
- Gregor W. Schuurman, primary editor

Wisconsin Department of Natural Resources
 Bureau of Natural Heritage Conservation
 PO Box 7921
 Madison, WI 53707-7921
<http://dnr.wi.gov>, keyword “ER”

Attachment 6: MHC Report

Massachusetts Cultural Resource Information System

Scanned Record Cover Page

Inventory No:	GRF.1187
Historic Name:	Wyman-Gordon Drop Forging Company
Common Name:	
Address:	244 Worcester St
City/Town:	Grafton
Village/Neighborhood:	North Grafton
Local No:	111-35-1
Year Constructed:	c 1930
Architect(s):	
Architectural Style(s):	No style
Use(s):	Forge; Industrial Complex or District; Machine Factory
Significance:	Architecture; Industry; Military
Area(s):	
Designation(s):	
Building Materials(s):	Roof: Tar, Built-up Wall: Brick; Concrete Unspecified; Sheet Metal; Concrete Cinderblock Foundation: Concrete Unspecified

The Massachusetts Historical Commission (MHC) has converted this paper record to digital format as part of ongoing projects to scan records of the Inventory of Historic Assets of the Commonwealth and National Register of Historic Places nominations for Massachusetts. Efforts are ongoing and not all inventory or National Register records related to this resource may be available in digital format at this time.

The MACRIS database and scanned files are highly dynamic; new information is added daily and both database records and related scanned files may be updated as new information is incorporated into MHC files. Users should note that there may be a considerable lag time between the receipt of new or updated records by MHC and the appearance of related information in MACRIS. Users should also note that not all source materials for the MACRIS database are made available as scanned images. Users may consult the records, files and maps available in MHC's public research area at its offices at the State Archives Building, 220 Morrissey Boulevard, Boston, open M-F, 9-5.

Users of this digital material acknowledge that they have read and understood the MACRIS Information and Disclaimer (<http://mhc-macris.net/macrisdisclaimer.htm>)

Data available via the MACRIS web interface, and associated scanned files are for information purposes only. THE ACT OF CHECKING THIS DATABASE AND ASSOCIATED SCANNED FILES DOES NOT SUBSTITUTE FOR COMPLIANCE WITH APPLICABLE LOCAL, STATE OR FEDERAL LAWS AND REGULATIONS. IF YOU ARE REPRESENTING A DEVELOPER AND/OR A PROPOSED PROJECT THAT WILL REQUIRE A PERMIT, LICENSE OR FUNDING FROM ANY STATE OR FEDERAL AGENCY YOU MUST SUBMIT A PROJECT NOTIFICATION FORM TO MHC FOR MHC'S REVIEW AND COMMENT. You can obtain a copy of a PNF through the MHC web site (www.sec.state.ma.us/mhc) under the subject heading "MHC Forms."

Commonwealth of Massachusetts
Massachusetts Historical Commission
220 Morrissey Boulevard, Boston, Massachusetts 02125
www.sec.state.ma.us/mhc

This file was accessed on:

Tuesday, July 15, 2014 at 2:50: PM

FORM B - BUILDING

Assessor's number

USGS Quad

Area(s)

Form Number

Massachusetts Historical Commission
Massachusetts Archives Building
220 Morrissey Blvd.

111/35/1

Milford

Town GRAFTON

North.

Place (neighborhood or village)

NORTH GRAFTON

Address 244 Worcester Street

Historic Name WYMAN-GORDON COMPANY

Uses: Present Industrial

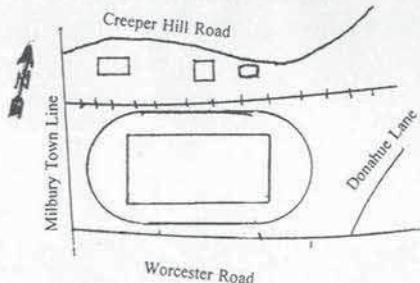
Original Industrial

Date of Construction ca. 1930

Source Company employee

Style/Form No style

Architect/Builder


Exterior Material:

Foundation Concrete

Wall/Trim Brick and concrete

Roof Tar

Outbuildings/Secondary Structures

Recorded by Sanford Johnson

Major Alteration (with dates)

Several large additions

Condition Good

Moved no yes Date

Acreage 189

Setting Commercial/residential with Conrail tracks to the north.

Date 04/96

RECEIVED

Follow Massachusetts Historical Commission Survey Manual instructions for completing this form.

SEP 30 1997

MASS. HIST. COMM

BUILDING FORM

ARCHITECTURAL DESCRIPTION *see continuation sheet*

Describe architectural features. Evaluate the characteristics of this building in terms of other buildings within the community.
No. 244 Worcester Street is a mid twentieth-century industrial/manufacturing complex built in many phases, beginning in ca. 1930. It is a one-story, flat-roof structure composed of several rectangular building sections occupying several hundred thousand square feet. It is constructed of brick, glass undetermined corrugated metal and concrete with aluminum roof vents. Sashes are fixed panes with metal frames. There is a large, rectangular brick section that was attached to the front of the structure in the mid twentieth century. The building appears in fair to good condition. Adjacent buildings are residential and industrial.

HISTORICAL NARRATIVE *see continuation sheet*

Discuss the history of the building. Explain its association with local (or state) history. Include uses of the building, and the role(s) the owners played within the community.

The approximate site of the Wyman-Gordon company was occupied in 1870 by a Mrs. N. (possibly Nelson), according to the Beers atlas of that year. The company was started in Worcester in 1883 by two graduates of Worcester Polytechnic Institute named Wyman and Gordon. The company began manufacturing drop forgings for loom and weaving equipment and expanded to include railroad and auto parts. By the 1890s, 40 men were employed by Wyman-Gordon and the product line was again expanded to include bicycles. The present building was first constructed prior to 1930, when Wyman-Gordon began forging aircraft, automobile and marine engine parts. During the same period, it became the largest drop-forging company in the world, employed 1,200 people at the new facility in Grafton and in Illinois, and produced 75% of all automobile-engine crankshafts. The company continued to grow through the purchase of larger hydraulic press equipment and did sufficient business with the railroad to install a siding to facilitate product shipment. The company continues to occupy the site and produce drop forgings.

BIBLIOGRAPHY and/or REFERENCE *see continuation sheet*

Beers atlas of Worcester County, 1870; Charles Brigham, Jr., 1831 map of Grafton; MHC Reconnaissance Report 1984; Ivan Sandrof, Massachusetts Towns: An 1840 Overview, 1963; Orra Stone, History of Massachusetts Industries, 1930.

Recommended for listing in the National Register of Historic Places. *If checked, you must attach a completed National Register Criteria Statement form.*

GRF.1187

Grafton AJ-

1187

The Commonwealth of Massachusetts

William Francis Galvin, Secretary of the Commonwealth
Massachusetts Historical Commission

September 9, 1996

Diana Parcon
Environmental Permitting Specialist
Massachusetts Bay Transportation
Authority
Ten Park Plaza
Boston, MA 02116-3974

RE: Cultural Resources Survey, Worcester Commuter Rail Extension Project; MHC #9415

Dear Ms. Parcon:

Staff of the Massachusetts Historical Commission have reviewed Volume II, "Historic Properties Survey For the Right-of-Way of the Worcester Commuter Rail Extension" which was submitted to this office together with original Area, Building, and Structure Forms. Please have two (2) additional copies of the final Volume II report submitted to the MHC to complete our files.

In general, the report is well-organized and comprehensive and MHC staff concur with the majority of the consultant's eligibility determinations for listing in the National Register of Historic Places and recommendations for further research. However, MHC staff do not agree that the right-of-way for the commuter rail extension constitutes a National Register-eligible entity; a fragment of the larger Boston & Worcester Railroad line, it retains insufficient integrity as an eligible property in its own right. After review and evaluation of this information, MHC staff have the following comments.

FRAMINGHAM

MHC staff concur that Lloyd's Diner (aka Worcester Lunch Car No. 749), 156 Fountain Street, is FRM. 1073 individually eligible for National Register listing.

The Fountain Street Area, a comparatively well-preserved complex of manufacturing and support buildings associated with the shoe, textiles, leather, and auto body manufacturing enterprises of Richard H. Long in the early 20th century, is National Register eligible. FRM. 1074

The former Gossamer Rubber Company, 885 Waverly Street, appears to be eligible for listing for its associations with one of the oldest and largest rubber clothing manufacturers in the United States in the FRM. I late 19th century; however, if National Register listing were to be pursued, additional information on construction dates and the physical development of the complex would be required.

FRAMINGHAM (cont.)

The following properties are ineligible for National Register listing:

Angier Company Building, 50 Fountain Street FRM. 1074
 R.H. Long Car Showroom, 635 Waverly Street FRM. 1075
 Residence, 949 Waverly Street FRM. 1077
 Residence, 997 Waverly Street FRM. 1078
 Residence, 1007 Waverly Street FRM. 1079
 Residence, 1015 Waverly Street FRM. 1080
 Residence, 1035 Waverly Street FRM. 1081
 Residence, 1045 Waverly Street FRM. 1082
 Residence, 1051 Waverly Street FRM. 1083

ASHLAND

The Tilton Avenue/Cherry Street Area is eligible for National Register listing as part of a larger ASL.C
 Ashland Center historic district.

The Kane/Ward Farmhouse, 34 Fountain Street, is individually eligible for National Register listing as a ASL.416
 well-preserved example of a mid-19th century farmhouse with attached barn.

The former Telechron Watch Company, constructed in 1927 at 50 Homer Street is eligible for ASL.47
 individual listing in the National Register as the only Moderne Style building in Ashland.

The following properties are ineligible for National Register listing:

Highway Department Garage, 80 Cherry Street ASL. 45
 Cloyes Farm, 2-4 High Street ASL.41
 Residence, 15 Metcalf Street ASL.25
 C.H. Tilton Shoe Factory, 60 Pleasant Street ASL.23
 Saving Spring Company, 280 Pleasant Street ASL.24
 Commercial/Professional Complex, 360 Pleasant Street ASL.22
 Beckongreen Garden Center, 18 Waverly Street ASL.48

SOUTHBOROUGH

The two mill villages of Cordaville and Southville, which developed in the mid-1800s in response to
 the 1830s construction of the Boston & Albany Railroad, are eligible for National Register listing. ASL.C
 Although the mills at Cordaville are no longer extant, the community retains a significant collection of
 Early and Late Industrial residential architecture associated with industrial and commercial operations in
 the village.

The village of Southville also retains a diverse collection of housing stock constructed in the mid and
 late 19th century in association with no longer extant boot and shoe factories, woolen and cotton mills,
 and a grist mill. In addition to the residences, the village also contains a church, former railroad depot,
 and community hall. Historical archaeological deposits at Cordaville and Southville may retain
 sufficient integrity as archaeological sites to be found eligible under Criterion D. MHC staff expects
 that additional information will be forthcoming as the result of archaeological investigations being
 undertaken.

SBR. B

GRF.1187

WB3 408
 WB3 415
 WB3 417
 WB3 417
 WB3 420
 WB3 421
 WB3 422
 WB3 419
 WB3 409

WESTBOROUGH

The properties at 25, 27, and 46 High Street Extension, 11, 13, and 15 State Street, 38, 43, and 49 Water Street, and 20 Willow Street are eligible for National Register listing as an extension of the existing West Main Street Historic District.

The Eliezer Rice House, 37 Maynard Street, is individually eligible for National Register listing as a remarkably well-preserved example of a circa 1830 Federal Style farmhouse with an earlier circa 1730 rear ell, and for its associations with Eliezer Rice, an early settler of Westborough. WB3 37

The following properties are ineligible for National Register listing:

Corrugated Paper, 111 Milk Street WB3 418
 Bay State Abrasives, Union Street WB3 423

GRAFTON

The Westborough Road Area, a grouping of moderately intact circa 1870 to 1900 single-family residences, appears to eligible for National Register listing; however, if National Register listing were to be pursued, additional information would be required regarding the area's association with the nearby J.S. Nelson shoe factory. GRF B2

The Wyman-Gordon Company Building, 244 Worcester Street, is not eligible for listing. GRF 1187

WORCESTER

The East Worcester Street Area is eligible for listing in the National Register as a well-preserved complex of industrial and public-works buildings associated with the late 19th and early 20th century development of the City of Worcester. WUR EA

The following properties are ineligible for National Register listing:

Industrial Building, 1451 Grafton Street WUR 2254
 Residence, 5 Hecla Street WUR 2257
 Residence, 34 Nathaniel Street WUR 2260
 White, Peavy & Dexter Co., Building, Putnam Lane WUR 2261
 Industrial Building, 383 Shrewsbury Street WUR 2262

BRIDGES

The following bridges are individually eligible for listing in the National Register:

Ashland- Conrail over Stream (Boston & Albany Railroad Bridge No. 26.35) ASL 908
 Conrail over Sudbury River (Boston & Albany Railroad Bridge No. 23.54) ASL 909

Southborough- Conrail over Ash Stream (Boston & Albany Railroad Bridge No. 27.29); also considered a contributing element in the Cordaville Historic Area SBK 925

Westborough- Conrail over Millpond (Boston & Albany Railroad Bridge No. 33.12) WB3 937

The following bridges in Southborough are not individually eligible for National Register listing, but are considered eligible as contributing elements in the Cordaville Historic Area:

Conrail over Pedestrian Underpass (Boston & Albany Railroad Bridge No. 27.47) *SB& 924*
 Conrail over Route 85 (Boston & Albany Railroad Bridge No. 27.34) *SB& 923*

The following bridges are ineligible for National Register Listing:

Ashland- Conrail over Indian Brook (Boston & Albany Railroad Bridge No. 25.84) *ASL 910*
 Conrail over Sudbury River (Boston & Albany Railroad Bridge No. 23.83) *ASL 911*

Westborough- Conrail over Arch Street (Boston & Albany Railroad Bridge No. 34.73) *WB& 924*
 Conrail over East Main Street (Boston & Albany Railroad Bridge No. 31.99) *WB& 935*
 Fruit Street over Conrail (Boston & Albany Railroad Bridge No. 28.92) *WB& 922*
 Conrail over Maynard Street (Boston & Albany Railroad Bridge No. 33.18) *WB& 936*
 Conrail over Millpond (Boston & Albany Railroad Bridge No. 33.12) *WB& 927*
 Conrail over Water Street (Boston & Albany Railroad Bridge No. 32.22) *WB& 928*

Grafton- Conrail over Blackstone River (Boston & Albany Railroad Bridge No. 38.24) *GRF 9217*
 Conrail over Pedestrian Subway (Boston & Albany Railroad Bridge No. 37.82) *GRF 9015*
 Conrail over Shrewsbury Street (Boston & Albany Railroad Bridge No. 37.90) *GRF 9016*

Worcester- Conrail over Putnam Avenue (Boston & Albany Railroad Bridge No. 43.31) *W&R 947*
 Conrail over Route 20 (Boston & Albany Railroad Bridge No. 39.92) *W&R 948*
 Conrail over Sunderland Road (Boston & Albany Railroad Bridge No. 40.23) *W&R 945*
 Conrail over Seasonal Stream (Boston & Albany Railroad Bridge No. 41.89) *W&R 941*

Finally, MHC staff look forward to reviewing Volume IV on the Ashland, Southborough, and Westborough stations, and consulting on ways to avoid, minimize, or mitigate adverse effects to any significant historic or archaeological resources that may be affected by the project.

These comments are provided to assist in compliance with Section 106 of the National Historic Preservation Act of 1966, as amended (36 CFR 800), Massachusetts General Laws, Chapter 9, Sec. 26-27c, as amended by Chapter 254 of the Acts of 1988 (950 CMR 71), MEPA (301 CMR 11), and the terms of the Process Memorandum of Agreement for this project.

If you have additional questions, please contact Allen Johnson or Edward L. Bell of this office.

Sincerely,

Judith B. McDonough
 Executive Director
 State Historic Preservation Officer
 Massachusetts Historical Commission

cc: Local Historical Commissions
 Michael Roberts, Timelines, Inc.
 Leslie Donovan
 James Herlihy, Edwards & Kelcey, Inc.
 Jacqueline Wilkins, Rackemann Environmental Services, Inc.

FORM B - BUILDING

Assessor's Number

USGS Quad

Area(s)

Form Number

Massachusetts Historical Commission
80 Boylston Street
Boston, Massachusetts 02116

111/35/1

Milford

GRF.1187

Town

Grafton

Neighborhood or village)

244 Worcester Street

Name Wyman-Gordon Company

Present Commercial

Original Commercial

Construction ca. 1945

Company Employee

Arm

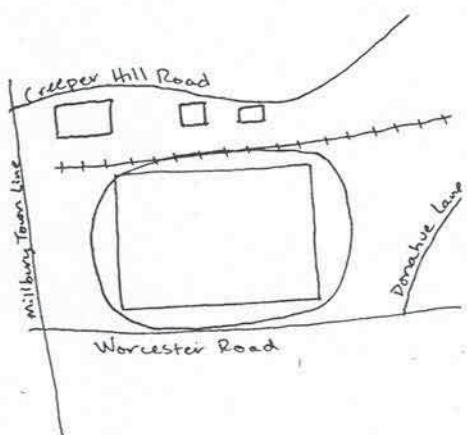
t/Builder

Exterior Material:

Foundation Concrete

Wall/Trim Brick and concrete

Roof Tar


Outbuildings/Secondary Structures

Major Alterations (with dates)

Condition Good

Moved no yes Date

Acreage 189 acres

Setting Commercial/residential with Conrail
tracks to the north.

Recorded by Barbara Putnam and Rachel Smith

Organization Timelines, Inc.

Date (month/year) 1/95

BUILDING FORM

ARCHITECTURAL DESCRIPTION *see continuation sheet*

Describe architectural features. Evaluate the characteristics of this building in terms of other buildings within the community.

Rising a tall single story from a concrete foundation, 244 Worcester Street is a brick and concrete, flat-roofed industrial building. The shape of this building is highly irregular and it appears that many concrete-block additions to the north have been made to this structure, home of the Wyman-Gordon Company. The facade of the building has a band of brick, a band of windows, and a band of concrete from bottom to top. Many metal vent shafts are located throughout the main building and the extensions to the north. 244 Worcester Street is located in a residential/industrial area (the other side of the road is residential) and is atypical of its surroundings.

HISTORICAL NARRATIVE *see continuation sheet*

Discuss the history of the building. Explain its associations with local (or state) history. Include uses of the buildings, and the role(s) the owners/occupants played within the community.

This section of North Grafton, between Worcester Road and Creeper Hill Road, west of the present Donahue Lane, remained undeveloped prior to the construction of the Wyman-Gordon Company complex. Involved in aircraft forging, this company was started with an 18,000-ton hydraulic press and by 1963 had added a 35,000-ton and a 50,000-ton hydraulic press. Located south of and adjacent to the tracks of the Boston and Albany Railroad, the plant is reached by several railroad spurs to facilitate shipping and receiving.

BIBLIOGRAPHY and/or REFERENCES *see continuation sheet*

Beers, F.W.

1870 *Atlas of Worcester County, Massachusetts*. F.W. Beers, New York.

Brigham, Jr., Charles

1837 Map of Grafton, Worcester County. Pendleton's Lithography, Boston.

Massachusetts Historical Commission

1984 *Reconnaissance Survey Report: Grafton*. Massachusetts Historical Commission, Boston.

Sandrup, Ivan

1963 *Massachusetts Towns: An 1840 Overview*. Barre Publishers, Barre.

Recommended for listing in the National Register of Historic Places. *If checked, you must attach a completed National Register Criteria Statement Form.*

Massachusetts Cultural Resource Information System

MACRIS

MACRIS Search Results

Search Criteria: Town(s): Grafton; Street No: 244; Street Name: Worcester St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
GRF.1187	Wyman-Gordon Drop Forging Company	244 Worcester St	Grafton	c 1930

Attachment 7: WQBEL Calculation Spreadsheet

Enter number values in green boxes below

Enter values in the units specified

↓

0.024	Q_R = Enter upstream flow in MGD
0.144	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

↓

0

Enter values in the units specified

↓

40.5	C_d = Enter influent hardness in mg/L CaCO_3
105	C_s = Enter receiving water hardness in mg/L CaCO_3

Enter **receiving water** concentrations in the units specified

↓

7.3	pH in Standard Units
27.34	Temperature in °C
0.19	Ammonia in mg/L
105	Hardness in mg/L CaCO_3
0	Salinity in ppt
0	Antimony in $\mu\text{g}/\text{L}$
2.2	Arsenic in $\mu\text{g}/\text{L}$
0.16	Cadmium in $\mu\text{g}/\text{L}$
0	Chromium III in $\mu\text{g}/\text{L}$
0	Chromium VI in $\mu\text{g}/\text{L}$
0	Copper in $\mu\text{g}/\text{L}$
1780	Iron in $\mu\text{g}/\text{L}$
0	Lead in $\mu\text{g}/\text{L}$
0	Mercury in $\mu\text{g}/\text{L}$
0	Nickel in $\mu\text{g}/\text{L}$
0	Selenium in $\mu\text{g}/\text{L}$
0	Silver in $\mu\text{g}/\text{L}$
385	Zinc in $\mu\text{g}/\text{L}$

Enter **influent** concentrations in the units specified

↓

0	TRC in µg/L
0.72	Ammonia in mg/L
0	Antimony in µg/L
0	Arsenic in µg/L
0.06	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
621	Iron in µg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
539	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
0	Methyl-tert butyl ether in µg/L

Dilution Factor	1.2	TBEL applies if bolded		WQBEL applies if bolded	
A. Inorganics					
Ammonia	Report	mg/L	---		
Chloride	Report	µg/L	---		
Total Residual Chlorine	0.2	mg/L	13	µg/L	
Total Suspended Solids	30	mg/L	---		
Antimony	206	µg/L	747	µg/L	
Arsenic	104	µg/L	11	µg/L	
Cadmium	10.2	µg/L	0.1612	µg/L	
Chromium III	323	µg/L	56.7	µg/L	
Chromium VI	323	µg/L	13.3	µg/L	
Copper	242	µg/L	6.0	µg/L	
Iron	5000	µg/L	1000	µg/L	
Lead	160	µg/L	1.52	µg/L	
Mercury	0.739	µg/L	1.06	µg/L	
Nickel	1450	µg/L	33.7	µg/L	
Selenium	235.8	µg/L	5.8	µg/L	
Silver	35.1	µg/L	1.3	µg/L	
Zinc	420	µg/L	66.3	µg/L	
Cyanide	178	mg/L	6.1	µg/L	
B. Non-Halogenated VOCs					
Total BTEX	100	µg/L	---		
Benzene	5.0	µg/L	---		
1,4 Dioxane	200	µg/L	---		
Acetone	7970	µg/L	---		
Phenol	1,080	µg/L	350	µg/L	
C. Halogenated VOCs					
Carbon Tetrachloride	4.4	µg/L	1.9	µg/L	
1,2 Dichlorobenzene	600	µg/L	---		
1,3 Dichlorobenzene	320	µg/L	---		
1,4 Dichlorobenzene	5.0	µg/L	---		
Total dichlorobenzene	---	µg/L	---		
1,1 Dichloroethane	70	µg/L	---		
1,2 Dichloroethane	5.0	µg/L	---		
1,1 Dichloroethylene	3.2	µg/L	---		
Ethylene Dibromide	0.05	µg/L	---		
Methylene Chloride	4.6	µg/L	---		
1,1,1 Trichloroethane	200	µg/L	---		
1,1,2 Trichloroethane	5.0	µg/L	---		
Trichloroethylene	5.0	µg/L	---		
Tetrachloroethylene	5.0	µg/L	3.9	µg/L	
cis-1,2 Dichloroethylene	70	µg/L	---		

Vinyl Chloride **2.0** µg/L ---

D. Non-Halogenated SVOCs

Total Phthalates	190	µg/L	---	µg/L
Diethylhexyl phthalate	101	µg/L	2.6	µg/L
Total Group I Polycyclic Aromatic Hydrocarbons	1.0	µg/L	---	
Benzo(a)anthracene	1.0	µg/L	0.0044	µg/L
Benzo(a)pyrene	1.0	µg/L	0.0044	µg/L
Benzo(b)fluoranthene	1.0	µg/L	0.0044	µg/L
Benzo(k)fluoranthene	1.0	µg/L	0.0044	µg/L
Chrysene	1.0	µg/L	0.0044	µg/L
Dibenzo(a,h)anthracene	1.0	µg/L	0.0044	µg/L
Indeno(1,2,3-cd)pyrene	1.0	µg/L	0.0044	µg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100	µg/L	---	
Naphthalene	20	µg/L	---	

E. Halogenated SVOCs

Total Polychlorinated Biphenyls	0.000064	µg/L	---	
Pentachlorophenol	1.0	µg/L	---	
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L	---	
Ethanol	Report	mg/L	---	
Methyl-tert-Butyl Ether	70	µg/L	23	µg/L
tert-Butyl Alcohol	120	µg/L	---	
tert-Amyl Methyl Ether	90	µg/L	---	

Attachment 8: Town of Grafton Notification

Proactive by Design

GEOTECHNICAL
ENVIRONMENTAL
ECOLOGICAL
WATER
CONSTRUCTION
MANAGEMENT

249 Vanderbilt Avenue
Norwood, MA 02062
T: 781.278.3700
F: 781.278.5701
F: 781.278.5702
www.gza.com

Notification of Discharge under the 2016 Remediation General Permit

August 15, 2017
GZA File No. 01.0019274.18

Mr. Timothy P. McInerney
Town Administrator
Grafton Memorial Municipal Center
30 Providence Road
Grafton, MA 01519

Re: Notification of Discharge under 2017 Remediation General Permit
Wyman Gordon Company
244 Worcester Street
Grafton, Massachusetts

Dear Mr. McInerney:

Federal National Pollution Discharge Elimination System (NPDES) regulations require operators of discharges permitted under the 2017 Remediation General Permit (RGP) jointly administered by the United States Environmental Protection Agency (USEPA) and the Massachusetts Department of Environmental Protection (MassDEP), to notify the municipality of said discharge. These notice requirements are contained in Part 3.4(a) of the 2017 RGP. An electronic version of the 2017 RGP is available at <https://www3.epa.gov/region1/npdes/rgp.html>. In compliance with these requirements, GZA GeoEnvironmental, Inc. (GZA), on behalf of Wyman-Gordon Company, is notifying the Town of Grafton of the discharge of treated water derived from the dewatering of excavations at the property located at 244 Worcester Street, in Grafton Massachusetts.

A copy of the Notice of Intent (NOI) submitted to USEPA can be made available upon request.
Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Randy Meuse, PG.,
Principal

J:\19,000-20,999\19274\19274-18.TLB\Remedial General Permit\NOI 7-2017\Attachment 8- Notice to Town of Grafton\Town of Grafton Notification.docx

Attachment 9: Laboratory Analytical Reports

CERTIFICATE OF ANALYSIS

Randy Meuse
GZA GeoEnvironmental, Inc.
249 Vanderbilt Avenue
Norwood, MA 02062

RE: Wyman Gordon - RGP (01.0019274.18)
ESS Laboratory Work Order Number: 1707435

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard
Laboratory Director

REVIEWED

By ESS Laboratory at 4:14 pm, Jul 27, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

SAMPLE RECEIPT

The following samples were received on July 20, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number	Sample Name	Matrix	Analysis
1707435-01	RGP-1	Ground Water	1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 504.1, 524.2, 608, 625 SIM, 8270D SIM
1707435-02	SW-1	Surface Water	200.7, 245.1, 3113B, 350.1, 3500Cr B-2009

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

PROJECT NARRATIVE

625(SIM) Semi-Volatile Organic Compounds

CG72101-BSD2 Surrogate recovery(ies) above upper control limit (S+).
2,4,6-Tribromophenol (112% @ 15-110%)

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

C7G0356-TUN1 Pentachlorophenol tailing factor > 2.

Total Metals

CG72035-BS1 Blank Spike recovery is above upper control limit (B+).
Lead (125% @ 85-115%), Selenium (119% @ 85-115%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

[Definitions of Quality Control Parameters](#)

[Semivolatile Organics Internal Standard Information](#)

[Semivolatile Organics Surrogate Information](#)

[Volatile Organics Internal Standard Information](#)

[Volatile Organics Surrogate Information](#)

[EPH and VPH Alkane Lists](#)

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint
6010C - ICP
6020A - ICP MS
7010 - Graphite Furnace
7196A - Hexavalent Chromium
7470A - Aqueous Mercury
7471B - Solid Mercury
8011 - EDB/DBCP/TCP
8015C - GRO/DRO
8081B - Pesticides
8082A - PCB
8100M - TPH
8151A - Herbicides
8260B - VOA
8270D - SVOA
8270D SIM - SVOA Low Level
9014 - Cyanide
9038 - Sulfate
9040C - Aqueous pH
9045D - Solid pH (Corrosivity)
9050A - Specific Conductance
9056A - Anions (IC)
9060A - TOC
9095B - Paint Filter
MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: RGP-1

Date Sampled: 07/19/17 14:00

Percent Solids: N/A

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (10.0)	200.7	3113B	1	KJK	07/21/17 10:35	100	20	CG72035	
Arsenic	ND (1.0)	3113B	3113B	1	KJK	07/27/17 3:55	100	20	CG72035	
Cadmium	0.06 (0.05)		3113B	1	KJK	07/25/17 16:56	100	20	CG72035	
Chromium III	ND (10.0)	200.7	3113B	1	EEM	07/21/17 10:35	1	1	[CALC]	
Copper	ND (4.0)	200.7	3113B	1	KJK	07/21/17 10:35	100	20	CG72035	
Hardness	40500 (165)		3113B	1	KJK	07/21/17 10:35	1	1	[CALC]	
Iron	621 (20.0)		3113B	1	KJK	07/21/17 10:35	100	20	CG72035	
Lead	ND (1.0)	3113B	3113B	1	KJK	07/27/17 1:30	100	20	CG72035	
Mercury	ND (0.200)	245.1	3113B	1	MJV	07/21/17 19:19	20	40	CG72036	
Nickel	ND (10.0)	200.7	3113B	1	KJK	07/21/17 10:35	100	20	CG72035	
Selenium	ND (2.0)	3113B	3113B	1	KJK	07/27/17 6:45	100	20	CG72035	
Silver	ND (1.0)	200.7	3113B	1	KJK	07/21/17 10:35	100	20	CG72035	
Zinc	539 (10.0)		3113B	1	KJK	07/21/17 10:35	100	20	CG72035	

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: RGP-1

Date Sampled: 07/19/17 14:00

Percent Solids: N/A

Initial Volume: 25

Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-01

Sample Matrix: Ground Water

Units: ug/L

Analyst: DMC

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
1,1,2-Trichloroethane	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
1,1-Dichloroethane	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
1,1-Dichloroethene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
1,2-Dichlorobenzene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
1,2-Dichloroethane	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
1,3-Dichlorobenzene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
1,4-Dichlorobenzene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Acetone	ND (5.0)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Benzene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Carbon Tetrachloride	ND (0.3)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
cis-1,2-Dichloroethene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Ethylbenzene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Methyl tert-Butyl Ether	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Methylene Chloride	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Naphthalene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Tertiary-amyl methyl ether	ND (1.0)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Tertiary-butyl Alcohol	ND (25.0)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Tetrachloroethene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Toluene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Trichloroethene	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Vinyl Chloride	ND (0.2)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Xylene O	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532
Xylene P,M	ND (0.5)	524.2	524.2	1	1	07/25/17 14:33	C7G0358	CG72532

	<i>%Recovery</i>	<i>Qualifier</i>	<i>Limits</i>
<i>Surrogate: 1,2-Dichlorobenzene-d4</i>	107 %		80-120
<i>Surrogate: 4-Bromofluorobenzene</i>	103 %		80-120

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: RGP-1

Date Sampled: 07/19/17 14:00

Percent Solids: N/A

Initial Volume: 1060

Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-01

Sample Matrix: Ground Water

Units: ug/L

Analyst: SMR

Prepared: 7/21/17 9:54

608 Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.09)		608		1	07/21/17 12:12		CG72118
Aroclor 1221	ND (0.09)		608		1	07/21/17 12:12		CG72118
Aroclor 1232	ND (0.09)		608		1	07/21/17 12:12		CG72118
Aroclor 1242	ND (0.09)		608		1	07/21/17 12:12		CG72118
Aroclor 1248	ND (0.09)		608		1	07/21/17 12:12		CG72118
Aroclor 1254 [2C]	1.00 (0.09)		608		1	07/21/17 12:12		CG72118
Aroclor 1260	ND (0.09)		608		1	07/21/17 12:12		CG72118
Aroclor 1262	ND (0.09)		608		1	07/21/17 12:12		CG72118
Aroclor 1268	ND (0.09)		608		1	07/21/17 12:12		CG72118

	<i>%Recovery</i>	<i>Qualifier</i>	<i>Limits</i>
<i>Surrogate: Decachlorobiphenyl</i>	84 %		30-150
<i>Surrogate: Decachlorobiphenyl [2C]</i>	88 %		30-150
<i>Surrogate: Tetrachloro-m-xylene</i>	74 %		30-150
<i>Surrogate: Tetrachloro-m-xylene [2C]</i>	81 %		30-150

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: RGP-1

Date Sampled: 07/19/17 14:00

Percent Solids: N/A

Initial Volume: 1070

Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-01

Sample Matrix: Ground Water

Units: ug/L

Analyst: VSC

Prepared: 7/21/17 14:09

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Acenaphthylene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Anthracene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Benzo(a)anthracene	ND (0.05)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Benzo(a)pyrene	ND (0.05)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Benzo(b)fluoranthene	ND (0.05)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Benzo(g,h,i)perylene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Benzo(k)fluoranthene	ND (0.05)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
bis(2-Ethylhexyl)phthalate	ND (1.87)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Butylbenzylphthalate	ND (2.34)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Chrysene	ND (0.05)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Dibenzo(a,h)Anthracene	ND (0.05)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Diethylphthalate	ND (2.34)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Dimethylphthalate	ND (2.34)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Di-n-butylphthalate	ND (2.34)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Di-n-octylphthalate	ND (2.34)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Fluoranthene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Fluorene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Indeno(1,2,3-cd)Pyrene	ND (0.05)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Naphthalene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Pentachlorophenol	ND (0.84)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Phenanthrene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101
Pyrene	ND (0.19)	625 SIM		1		07/21/17 23:09	C7G0323	CG72101

	<i>%Recovery</i>	<i>Qualifier</i>	<i>Limits</i>
<i>Surrogate: 1,2-Dichlorobenzene-d4</i>	36 %		30-130
<i>Surrogate: 2,4,6-Tribromophenol</i>	58 %		15-110
<i>Surrogate: 2-Fluorobiphenyl</i>	51 %		30-130
<i>Surrogate: Nitrobenzene-d5</i>	55 %		30-130
<i>Surrogate: p-Terphenyl-d14</i>	72 %		30-130

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: RGP-1

Date Sampled: 07/19/17 14:00

Percent Solids: N/A

Initial Volume: 500

Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-01

Sample Matrix: Ground Water

Units: ug/L

Analyst: VSC

Prepared: 7/24/17 17:30

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
1,4-Dioxane	ND (0.250)		8270D SIM		1	07/25/17 23:36	C7G0356	CG72442
<hr/>								
	%Recovery		Qualifier	Limits				
<i>Surrogate: 1,4-Dioxane-d8</i>	48 %			15-115				

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: RGP-1

Date Sampled: 07/19/17 14:00

Percent Solids: N/A

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyst	Analyzed	Units	Batch
Ammonia as N	0.72 (0.10)		350.1		1	JLK	07/21/17 16:49	mg/L	CG72026
Chloride	59.4 (50.0)		300.0		100	JLK	07/25/17 18:29	mg/L	CG72537
Hexavalent Chromium	ND (10.0)		3500Cr B-2009		1	EEM	07/20/17 13:10	ug/L	CG72024
Phenols	ND (100)		420.1		1	JLK	07/25/17 18:50	ug/L	CG72540
Total Cyanide (LL)	ND (5.00)		4500 CN CE		1	EEM	07/21/17 10:55	ug/L	CG72115
Total Petroleum Hydrocarbon	ND (5)		1664A		1	CRR	07/26/17 15:15	mg/L	CG72515
Total Suspended Solids	ND (5)		2540D		1	EEM	07/20/17 16:45	mg/L	CG72021

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: RGP-1

Date Sampled: 07/19/17 14:00

Percent Solids: N/A

Initial Volume: 35

Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-01

Sample Matrix: Ground Water

Units: ug/L

Analyst: JXS

Prepared: 7/26/17 10:00

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
1,2-Dibromoethane	ND (0.015)	504.1		1		07/26/17 16:16		CG72615
<i>%Recovery Qualifier Limits</i>								
<i>Surrogate: Pentachloroethane</i>		107 %		30-150				
<i>Surrogate: Pentachloroethane [2C]</i>		113 %		30-150				

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: SW-1

Date Sampled: 07/19/17 14:30

Percent Solids: N/A

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-02

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (10.0)	200.7	3113B	1	KJK	07/21/17 10:51	100	20	CG72035	
Arsenic	2.2 (1.0)	3113B	3113B	1	KJK	07/27/17 4:07	100	20	CG72035	
Cadmium	0.16 (0.05)	3113B	3113B	1	KJK	07/25/17 19:06	100	20	CG72035	
Copper	ND (4.0)	200.7	3113B	1	KJK	07/21/17 10:51	100	20	CG72035	
Hardness	105000 (165)	200.7	3113B	1	KJK	07/21/17 10:51	1	1	[CALC]	
Iron	1780 (20.0)	200.7	3113B	1	KJK	07/21/17 10:51	100	20	CG72035	
Lead	ND (1.0)	3113B	3113B	1	KJK	07/27/17 1:47	100	20	CG72035	
Mercury	ND (0.200)	245.1	3113B	1	MJV	07/21/17 19:22	20	40	CG72036	
Nickel	ND (10.0)	200.7	3113B	1	KJK	07/21/17 10:51	100	20	CG72035	
Selenium	ND (2.0)	3113B	3113B	1	KJK	07/27/17 6:51	100	20	CG72035	
Silver	ND (1.0)	200.7	3113B	1	KJK	07/21/17 10:51	100	20	CG72035	
Zinc	385 (10.0)	200.7	3113B	1	BJV	07/24/17 12:42	100	20	CG72035	

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

Client Sample ID: SW-1

Date Sampled: 07/19/17 14:30

Percent Solids: N/A

ESS Laboratory Work Order: 1707435

ESS Laboratory Sample ID: 1707435-02

Sample Matrix: Surface Water

Classical Chemistry

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyst	Analyzed	Units	Batch
Ammonia as N	0.19 (0.10)		350.1		1	JLK	07/21/17 16:50	mg/L	CG72026
Hexavalent Chromium	ND (10.0)		3500Cr B-2009		1	EEM	07/20/17 13:10	ug/L	CG72024

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD	RPD Limit	Qualifier
Total Metals										
Batch CG72024 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Batch CG72035 - 3005A										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.05	ug/L							
Chromium III	ND	4.00	ug/L							
Copper	ND	4.0	ug/L							
Hardness	ND	165	ug/L							
Iron	ND	20.0	ug/L							
Lead	ND	1.0	ug/L							
Nickel	ND	10.0	ug/L							
Selenium	ND	2.0	ug/L							
Silver	ND	1.0	ug/L							
Zinc	ND	10.0	ug/L							
LCS										
Antimony	109	10.0	ug/L	100.0		109	85-115			
Arsenic	113	25.0	ug/L	100.0		113	85-115			
Cadmium	57.5	25.0	ug/L	50.00		115	85-115			
Chromium III	110	4.00	ug/L							
Copper	112	4.0	ug/L	100.0		112	85-115			
Hardness	7100	165	ug/L							
Iron	524	20.0	ug/L	500.0		105	85-115			
Lead	125	25.0	ug/L	100.0		125	85-115			B+
Nickel	112	10.0	ug/L	100.0		112	85-115			
Selenium	239	50.0	ug/L	200.0		119	85-115			B+
Silver	50.8	1.0	ug/L	50.00		102	85-115			
Zinc	114	10.0	ug/L	100.0		114	85-115			
LCS Dup										
Antimony	108	10.0	ug/L	100.0		108	85-115	1	20	
Chromium III	110	4.00	ug/L							
Copper	111	4.0	ug/L	100.0		111	85-115	0.6	20	
Hardness	7080	165	ug/L							
Iron	527	20.0	ug/L	500.0		105	85-115	0.7	20	
Nickel	111	10.0	ug/L	100.0		111	85-115	0.8	20	
Silver	55.7	1.0	ug/L	50.00		111	85-115	9	20	
Zinc	113	10.0	ug/L	100.0		113	85-115	1	20	
Batch CG72036 - 245.1/7470A										

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD	RPD Limit	Qualifier
Total Metals										
Batch CG72036 - 245.1/7470A										
Blank										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	5.98	0.200	ug/L	6.000		100	85-115			
LCS Dup										
Mercury	5.97	0.200	ug/L	6.000		99	85-115	0.3	20	
524.2 Volatile Organic Compounds										
Batch CG72532 - 524.2										
Blank										
1,1,1-Trichloroethane	ND	0.5	ug/L							
1,1,2-Trichloroethane	ND	0.5	ug/L							
1,1-Dichloroethane	ND	0.5	ug/L							
1,1-Dichloroethene	ND	0.5	ug/L							
1,2-Dichlorobenzene	ND	0.5	ug/L							
1,2-Dichloroethane	ND	0.5	ug/L							
1,3-Dichlorobenzene	ND	0.5	ug/L							
1,4-Dichlorobenzene	ND	0.5	ug/L							
Acetone	ND	5.0	ug/L							
Benzene	ND	0.5	ug/L							
Carbon Tetrachloride	ND	0.3	ug/L							
cis-1,2-Dichloroethene	ND	0.5	ug/L							
Ethylbenzene	ND	0.5	ug/L							
Methyl tert-Butyl Ether	ND	0.5	ug/L							
Methylene Chloride	ND	0.5	ug/L							
Naphthalene	ND	0.5	ug/L							
Tertiary-amyl methyl ether	ND	1.0	ug/L							
Tertiary-butyl Alcohol	ND	25.0	ug/L							
Tetrachloroethene	ND	0.5	ug/L							
Toluene	ND	0.5	ug/L							
Trichloroethene	ND	0.5	ug/L							
Vinyl Chloride	ND	0.2	ug/L							
Xylene O	ND	0.5	ug/L							
Xylene P,M	ND	0.5	ug/L							
<i>Surrogate: 1,2-Dichlorobenzene-d4</i>	5.41		ug/L	5.000		108	80-120			
<i>Surrogate: 4-Bromofluorobenzene</i>	5.19		ug/L	5.000		104	80-120			
LCS										
1,1,1-Trichloroethane	10.2		ug/L	10.00		102	70-130			
1,1,2-Trichloroethane	10.3		ug/L	10.00		103	70-130			
1,1-Dichloroethane	9.9		ug/L	10.00		99	70-130			
1,1-Dichloroethene	11.0		ug/L	10.00		110	70-130			
1,2-Dichlorobenzene	10.0		ug/L	10.00		100	70-130			
1,2-Dichloroethane	10.1		ug/L	10.00		101	70-130			
1,3-Dichlorobenzene	10.4		ug/L	10.00		104	70-130			

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
---------	--------	-----	-------	-------------	---------------	------	-------------	-----	-----------	-----------

524.2 Volatile Organic Compounds

Batch CG72532 - 524.2

1,4-Dichlorobenzene	10.3	ug/L	10.00		103	70-130				
Acetone	52.4	ug/L	50.00		105	70-130				
Benzene	10.4	ug/L	10.00		104	70-130				
Carbon Tetrachloride	10.6	ug/L	10.00		106	70-130				
cis-1,2-Dichloroethene	10.2	ug/L	10.00		102	70-130				
Ethylbenzene	10.3	ug/L	10.00		103	70-130				
Methyl tert-Butyl Ether	10.1	ug/L	10.00		101	70-130				
Methylene Chloride	10.5	ug/L	10.00		105	70-130				
Naphthalene	10.1	ug/L	10.00		101	70-130				
Tertiary-amyl methyl ether	10.1	ug/L	10.00		101	70-130				
Tertiary-butyl Alcohol	48.6	ug/L	50.00		97	70-130				
Tetrachloroethene	10.3	ug/L	10.00		103	70-130				
Toluene	10.1	ug/L	10.00		101	70-130				
Trichloroethene	10.7	ug/L	10.00		107	70-130				
Vinyl Chloride	10.2	ug/L	10.00		102	70-130				
Xylene O	9.9	ug/L	10.00		99	70-130				
Xylene P,M	19.5	ug/L	20.00		97	70-130				
Surrogate: 1,2-Dichlorobenzene-d4	5.29	ug/L	5.000		106	80-120				
Surrogate: 4-Bromofluorobenzene	5.22	ug/L	5.000		104	80-120				

LCS Dup

1,1,2-Trichloroethane	9.9	ug/L	10.00		99	70-130	3	20		
1,1,2-Trichloroethane	10.2	ug/L	10.00		102	70-130	0.3	20		
1,1-Dichloroethane	9.3	ug/L	10.00		93	70-130	6	20		
1,1-Dichloroethene	10.4	ug/L	10.00		104	70-130	6	20		
1,2-Dichlorobenzene	9.5	ug/L	10.00		95	70-130	5	20		
1,2-Dichloroethane	9.6	ug/L	10.00		96	70-130	5	20		
1,3-Dichlorobenzene	9.7	ug/L	10.00		97	70-130	6	20		
1,4-Dichlorobenzene	9.6	ug/L	10.00		96	70-130	6	20		
Acetone	50.8	ug/L	50.00		102	70-130	3	20		
Benzene	9.8	ug/L	10.00		98	70-130	6	20		
Carbon Tetrachloride	9.8	ug/L	10.00		98	70-130	7	20		
cis-1,2-Dichloroethene	10.0	ug/L	10.00		100	70-130	2	20		
Ethylbenzene	9.8	ug/L	10.00		98	70-130	5	20		
Methyl tert-Butyl Ether	10.0	ug/L	10.00		100	70-130	1	20		
Methylene Chloride	10.1	ug/L	10.00		101	70-130	4	20		
Naphthalene	9.8	ug/L	10.00		98	70-130	3	20		
Tertiary-amyl methyl ether	9.7	ug/L	10.00		97	70-130	5	20		
Tertiary-butyl Alcohol	47.3	ug/L	50.00		95	70-130	3	25		
Tetrachloroethene	9.8	ug/L	10.00		98	70-130	4	20		
Toluene	9.7	ug/L	10.00		97	70-130	5	20		
Trichloroethene	10.3	ug/L	10.00		103	70-130	4	20		
Vinyl Chloride	9.8	ug/L	10.00		98	70-130	4	20		
Xylene O	9.3	ug/L	10.00		93	70-130	6	20		
Xylene P,M	18.9	ug/L	20.00		94	70-130	3	20		
Surrogate: 1,2-Dichlorobenzene-d4	5.15	ug/L	5.000		103	80-120				

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
---------	--------	-----	-------	-------------	---------------	------	-------------	-----	-----------	-----------

524.2 Volatile Organic Compounds

Batch CG72532 - 524.2

Surrogate: 4-Bromofluorobenzene	5.22	ug/L	5.000	104	80-120
608 Polychlorinated Biphenyls (PCB)					

Batch CG72118 - 3510C

Blank						
Aroclor 1016	ND	0.10	ug/L			
Aroclor 1016 [2C]	ND	0.10	ug/L			
Aroclor 1221	ND	0.10	ug/L			
Aroclor 1221 [2C]	ND	0.10	ug/L			
Aroclor 1232	ND	0.10	ug/L			
Aroclor 1232 [2C]	ND	0.10	ug/L			
Aroclor 1242	ND	0.10	ug/L			
Aroclor 1242 [2C]	ND	0.10	ug/L			
Aroclor 1248	ND	0.10	ug/L			
Aroclor 1248 [2C]	ND	0.10	ug/L			
Aroclor 1254	ND	0.10	ug/L			
Aroclor 1254 [2C]	ND	0.10	ug/L			
Aroclor 1260	ND	0.10	ug/L			
Aroclor 1260 [2C]	ND	0.10	ug/L			
Aroclor 1262	ND	0.10	ug/L			
Aroclor 1262 [2C]	ND	0.10	ug/L			
Aroclor 1268	ND	0.10	ug/L			
Aroclor 1268 [2C]	ND	0.10	ug/L			

Surrogate: Decachlorobiphenyl	0.0442	ug/L	0.05000	88	30-150
Surrogate: Decachlorobiphenyl [2C]	0.0481	ug/L	0.05000	96	30-150
Surrogate: Tetrachloro-m-xylene	0.0288	ug/L	0.05000	58	30-150
Surrogate: Tetrachloro-m-xylene [2C]	0.0327	ug/L	0.05000	65	30-150

LCS						
Aroclor 1016	0.92	0.10	ug/L	1.000	92	40-140
Aroclor 1016 [2C]	0.94	0.10	ug/L	1.000	94	40-140
Aroclor 1260	0.92	0.10	ug/L	1.000	92	40-140
Aroclor 1260 [2C]	0.86	0.10	ug/L	1.000	86	40-140

Surrogate: Decachlorobiphenyl	0.0525	ug/L	0.05000	105	30-150
Surrogate: Decachlorobiphenyl [2C]	0.0541	ug/L	0.05000	108	30-150
Surrogate: Tetrachloro-m-xylene	0.0458	ug/L	0.05000	92	30-150
Surrogate: Tetrachloro-m-xylene [2C]	0.0476	ug/L	0.05000	95	30-150

LCS Dup						
Aroclor 1016	0.82	0.10	ug/L	1.000	82	40-140
Aroclor 1016 [2C]	0.84	0.10	ug/L	1.000	84	40-140
Aroclor 1260	0.84	0.10	ug/L	1.000	84	40-140
Aroclor 1260 [2C]	0.79	0.10	ug/L	1.000	79	40-140
					12	20
					8	20
					8	20

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
---------	--------	-----	-------	-------------	---------------	------	-------------	-----	-----------	-----------

608 Polychlorinated Biphenyls (PCB)

Batch CG72118 - 3510C

Surrogate: Decachlorobiphenyl	0.0460	ug/L	0.05000	92	30-150
Surrogate: Decachlorobiphenyl [2C]	0.0468	ug/L	0.05000	94	30-150
Surrogate: Tetrachloro-m-xylene	0.0404	ug/L	0.05000	81	30-150
Surrogate: Tetrachloro-m-xylene [2C]	0.0418	ug/L	0.05000	84	30-150

625(SIM) Semi-Volatile Organic Compounds

Batch CG72101 - 3510C

Blank

Acenaphthene	ND	0.20	ug/L			
Acenaphthylene	ND	0.20	ug/L			
Anthracene	ND	0.20	ug/L			
Benzo(a)anthracene	ND	0.05	ug/L			
Benzo(a)pyrene	ND	0.05	ug/L			
Benzo(b)fluoranthene	ND	0.05	ug/L			
Benzo(g,h,i)perylene	ND	0.20	ug/L			
Benzo(k)fluoranthene	ND	0.05	ug/L			
bis(2-Ethylhexyl)phthalate	ND	2.00	ug/L			
Butylbenzylphthalate	ND	2.50	ug/L			
Chrysene	ND	0.05	ug/L			
Dibenzo(a,h)Anthracene	ND	0.05	ug/L			
Diethylphthalate	ND	2.50	ug/L			
Dimethylphthalate	ND	2.50	ug/L			
Di-n-butylphthalate	ND	2.50	ug/L			
Di-n-octylphthalate	ND	2.50	ug/L			
Fluoranthene	ND	0.20	ug/L			
Fluorene	ND	0.20	ug/L			
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L			
Naphthalene	ND	0.20	ug/L			
Pentachlorophenol	ND	0.90	ug/L			
Phenanthrene	ND	0.20	ug/L			
Pyrene	ND	0.20	ug/L			
Surrogate: 1,2-Dichlorobenzene-d4	1.07	ug/L	2.500	43	30-130	
Surrogate: 2,4,6-Tribromophenol	2.84	ug/L	3.750	76	15-110	
Surrogate: 2-Fluorobiphenyl	1.34	ug/L	2.500	54	30-130	
Surrogate: Nitrobenzene-d5	1.41	ug/L	2.500	56	30-130	
Surrogate: p-Terphenyl-d14	1.62	ug/L	2.500	65	30-130	

LCS

Acenaphthene	3.02	0.20	ug/L	4.000	75	40-140
Acenaphthylene	2.91	0.20	ug/L	4.000	73	40-140
Anthracene	3.19	0.20	ug/L	4.000	80	40-140
Benzo(a)anthracene	3.31	0.05	ug/L	4.000	83	40-140
Benzo(a)pyrene	3.84	0.05	ug/L	4.000	96	40-140
Benzo(b)fluoranthene	3.78	0.05	ug/L	4.000	95	40-140
Benzo(g,h,i)perylene	3.87	0.20	ug/L	4.000	97	40-140

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
---------	--------	-----	-------	-------------	---------------	------	-------------	-----	-----------	-----------

625(SIM) Semi-Volatile Organic Compounds

Batch CG72101 - 3510C

Benzo(k)fluoranthene	3.90	0.05	ug/L	4.000	98	40-140
bis(2-Ethylhexyl)phthalate	3.72	2.00	ug/L	4.000	93	40-140
Butylbenzylphthalate	3.56	2.50	ug/L	4.000	89	40-140
Chrysene	3.43	0.05	ug/L	4.000	86	40-140
Dibenz(a,h)Anthracene	4.01	0.05	ug/L	4.000	100	40-140
Diethylphthalate	3.14	2.50	ug/L	4.000	79	40-140
Dimethylphthalate	3.48	2.50	ug/L	4.000	87	40-140
Di-n-butylphthalate	3.79	2.50	ug/L	4.000	95	40-140
Di-n-octylphthalate	3.79	2.50	ug/L	4.000	95	40-140
Fluoranthene	3.64	0.20	ug/L	4.000	91	40-140
Fluorene	3.34	0.20	ug/L	4.000	83	40-140
Indeno(1,2,3-cd)Pyrene	4.07	0.05	ug/L	4.000	102	40-140
Naphthalene	2.68	0.20	ug/L	4.000	67	40-140
Pentachlorophenol	3.76	0.90	ug/L	4.000	94	30-130
Phenanthrene	3.08	0.20	ug/L	4.000	77	40-140
Pyrene	3.71	0.20	ug/L	4.000	93	40-140
<i>Surrogate: 1,2-Dichlorobenzene-d4</i>	1.26		ug/L	2.500	50	30-130
<i>Surrogate: 2,4,6-Tribromophenol</i>	3.68		ug/L	3.750	98	15-110
<i>Surrogate: 2-Fluorobiphenyl</i>	1.67		ug/L	2.500	67	30-130
<i>Surrogate: Nitrobenzene-d5</i>	1.65		ug/L	2.500	66	30-130
<i>Surrogate: p-Terphenyl-d14</i>	1.94		ug/L	2.500	78	30-130

LCS Dup

Acenaphthene	3.45	0.20	ug/L	4.000	86	40-140	14	20
Acenaphthylene	3.34	0.20	ug/L	4.000	83	40-140	14	20
Anthracene	3.66	0.20	ug/L	4.000	91	40-140	14	20
Benzo(a)anthracene	3.71	0.05	ug/L	4.000	93	40-140	11	20
Benzo(a)pyrene	4.33	0.05	ug/L	4.000	108	40-140	12	20
Benzo(b)fluoranthene	4.19	0.05	ug/L	4.000	105	40-140	10	20
Benzo(g,h,i)perylene	4.30	0.20	ug/L	4.000	108	40-140	11	20
Benzo(k)fluoranthene	4.44	0.05	ug/L	4.000	111	40-140	13	20
bis(2-Ethylhexyl)phthalate	4.46	2.00	ug/L	4.000	112	40-140	18	20
Butylbenzylphthalate	4.09	2.50	ug/L	4.000	102	40-140	14	20
Chrysene	3.95	0.05	ug/L	4.000	99	40-140	14	20
Dibenz(a,h)Anthracene	4.48	0.05	ug/L	4.000	112	40-140	11	20
Diethylphthalate	3.74	2.50	ug/L	4.000	94	40-140	17	20
Dimethylphthalate	4.15	2.50	ug/L	4.000	104	40-140	18	20
Di-n-butylphthalate	4.29	2.50	ug/L	4.000	107	40-140	12	20
Di-n-octylphthalate	4.30	2.50	ug/L	4.000	108	40-140	13	20
Fluoranthene	4.05	0.20	ug/L	4.000	101	40-140	11	20
Fluorene	3.90	0.20	ug/L	4.000	97	40-140	15	20
Indeno(1,2,3-cd)Pyrene	4.56	0.05	ug/L	4.000	114	40-140	11	20
Naphthalene	2.89	0.20	ug/L	4.000	72	40-140	8	20
Pentachlorophenol	4.35	0.90	ug/L	4.000	109	30-130	15	20
Phenanthrene	3.54	0.20	ug/L	4.000	88	40-140	14	20
Pyrene	4.33	0.20	ug/L	4.000	108	40-140	15	20

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
---------	--------	-----	-------	-------------	---------------	------	-------------	-----	-----------	-----------

625(SIM) Semi-Volatile Organic Compounds

Batch CG72101 - 3510C

Surrogate: 1,2-Dichlorobenzene-d4	1.30		ug/L	2.500	52	30-130				
Surrogate: 2,4,6-Tribromophenol	4.21		ug/L	3.750	112	15-110				S+
Surrogate: 2-Fluorobiphenyl	1.77		ug/L	2.500	71	30-130				
Surrogate: Nitrobenzene-d5	1.85		ug/L	2.500	74	30-130				
Surrogate: p-Terphenyl-d14	2.09		ug/L	2.500	84	30-130				

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Batch CG72442 - 3535A

Blank

1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	2.27		ug/L	5.000	45	15-115				

LCS

1,4-Dioxane	9.62	0.250	ug/L	10.00	96	40-140				
Surrogate: 1,4-Dioxane-d8	1.95		ug/L	5.000	39	15-115				

LCS Dup

1,4-Dioxane	10.0	0.250	ug/L	10.00	100	40-140	4	20		
Surrogate: 1,4-Dioxane-d8	2.63		ug/L	5.000	53	15-115				

Classical Chemistry

Batch CG72021 - General Preparation

Blank

Total Suspended Solids	ND	5	mg/L							
------------------------	----	---	------	--	--	--	--	--	--	--

LCS

Total Suspended Solids	44		mg/L	43.50	101	80-120				
------------------------	----	--	------	-------	-----	--------	--	--	--	--

Batch CG72024 - General Preparation

Blank

Hexavalent Chromium	ND	10.0	ug/L							
---------------------	----	------	------	--	--	--	--	--	--	--

LCS

Hexavalent Chromium	0.497		mg/L	0.4998	99	90-110				
---------------------	-------	--	------	--------	----	--------	--	--	--	--

LCS Dup

Hexavalent Chromium	0.496		mg/L	0.4998	99	90-110	0.3	20		
---------------------	-------	--	------	--------	----	--------	-----	----	--	--

Batch CG72026 - NH4 Prep

Blank

Ammonia as N	ND	0.10	mg/L							
--------------	----	------	------	--	--	--	--	--	--	--

LCS

Ammonia as N	0.11	0.10	mg/L	0.09994	105	80-120				
--------------	------	------	------	---------	-----	--------	--	--	--	--

LCS

Ammonia as N	0.98	0.10	mg/L	0.9994	98	80-120				
--------------	------	------	------	--------	----	--------	--	--	--	--

Batch CG72115 - TCN Prep

Blank

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD RPD	RPD Limit	Qualifier
---------	--------	-----	-------	-------------	---------------	------	-------------	---------	-----------	-----------

Classical Chemistry

Batch CG72115 - TCN Prep

Total Cyanide (LL)	ND	5.00	ug/L
--------------------	----	------	------

LCS

Total Cyanide (LL)	20.5	5.00	ug/L	20.06	102	90-110
--------------------	------	------	------	-------	-----	--------

LCS

Total Cyanide (LL)	150	5.00	ug/L	150.4	100	90-110
--------------------	-----	------	------	-------	-----	--------

LCS Dup

Total Cyanide (LL)	151	5.00	ug/L	150.4	100	90-110	0.5	20
--------------------	-----	------	------	-------	-----	--------	-----	----

Batch CG72515 - General Preparation

Blank	Total Petroleum Hydrocarbon	ND	5	mg/L
--------------	-----------------------------	----	---	------

LCS

Total Petroleum Hydrocarbon	14	5	mg/L	19.38	71	66-114
-----------------------------	----	---	------	-------	----	--------

Batch CG72537 - General Preparation

Blank	Chloride	ND	0.5	mg/L
--------------	----------	----	-----	------

LCS

Chloride	2.5		mg/L	2.500	101	90-110
----------	-----	--	------	-------	-----	--------

Batch CG72540 - General Preparation

Blank	Phenols	ND	100	ug/L
--------------	---------	----	-----	------

LCS

Phenols	102	100	ug/L	100.0	102	80-120
---------	-----	-----	------	-------	-----	--------

LCS

Phenols	968	100	ug/L	1000	97	80-120
---------	-----	-----	------	------	----	--------

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Batch CG72615 - 504/8011

Blank	1,2-Dibromoethane	ND	0.015	ug/L
--------------	-------------------	----	-------	------

1,2-Dibromoethane [2C]	ND	0.015	ug/L
------------------------	----	-------	------

<i>Surrogate: Pentachloroethane</i>	0.196		ug/L	0.2000	98	30-150
-------------------------------------	-------	--	------	--------	----	--------

<i>Surrogate: Pentachloroethane [2C]</i>	0.189		ug/L	0.2000	95	30-150
--	-------	--	------	--------	----	--------

LCS

1,2-Dibromoethane	0.220	0.015	ug/L	0.2000	110	70-130
-------------------	-------	-------	------	--------	-----	--------

1,2-Dibromoethane [2C]	0.192	0.015	ug/L	0.2000	96	70-130
------------------------	-------	-------	------	--------	----	--------

<i>Surrogate: Pentachloroethane</i>	0.211		ug/L	0.2000	105	30-150
-------------------------------------	-------	--	------	--------	-----	--------

<i>Surrogate: Pentachloroethane [2C]</i>	0.195		ug/L	0.2000	97	30-150
--	-------	--	------	--------	----	--------

LCS

1,2-Dibromoethane	0.082	0.015	ug/L	0.08000	103	70-130
-------------------	-------	-------	------	---------	-----	--------

1,2-Dibromoethane [2C]	0.082	0.015	ug/L	0.08000	102	70-130
------------------------	-------	-------	------	---------	-----	--------

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane										

Batch CG72615 - 504/8011

Surrogate: Pentachloroethane	0.0786	ug/L	0.08000	98	30-150
Surrogate: Pentachloroethane [2C]	0.0749	ug/L	0.08000	94	30-150

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

Notes and Definitions

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).
PT	Pentachlorophenol tailing factor > 2.
D	Diluted.
B+	Blank Spike recovery is above upper control limit (B+).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.
Client Project ID: Wyman Gordon - RGP

ESS Laboratory Work Order: 1707435

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179
<http://www.health.ri.gov/find/labs/analytical/ESS.pdf>

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750
http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002
<http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml>

Massachusetts Potable and Non Potable Water: M-RI002
<http://public.dep.state.ma.us/Labcert/Labcert.aspx>

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424
<http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313
<http://www.wadsworth.org/labcert/elap/comm.html>

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006
http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752
<http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx>

ESS Laboratory Sample and Cooler Receipt Checklist

Client: <u>GZA - Norwood, MA - GZA/MM</u>	ESS Project ID: <u>1707435</u>																																																																																																																																																																																																								
Shipped/Delivered Via: <u>ESS Courier</u>	Date Received: <u>7/20/2017</u>																																																																																																																																																																																																								
	Project Due Date: <u>7/27/2017</u>																																																																																																																																																																																																								
	Days for Project: <u>5 Day</u>																																																																																																																																																																																																								
<table border="0" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">1. Air bill manifest present? Air No.: <u>NA</u></td> <td style="width: 50%; text-align: center;"><input type="checkbox"/> No</td> <td style="width: 50%;">6. Does COC match bottles?</td> <td style="width: 50%; text-align: center;"><input type="checkbox"/> Yes</td> </tr> <tr> <td>2. Were custody seals present?</td> <td style="text-align: center;"><input type="checkbox"/> No</td> <td>7. Is COC complete and correct?</td> <td style="text-align: center;"><input type="checkbox"/> Yes</td> </tr> <tr> <td>3. Is radiation count <100 CPM?</td> <td style="text-align: center;"><input type="checkbox"/> Yes</td> <td>8. Were samples received intact?</td> <td style="text-align: center;"><input type="checkbox"/> Yes</td> </tr> <tr> <td>4. Is a Cooler Present? Temp: <u>3.3</u> Iced with: <u>Ice</u></td> <td style="text-align: center;"><input type="checkbox"/> Yes</td> <td>9. Were labs informed about <u>short holds & rushes</u>?</td> <td style="text-align: center;"><input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No / NA</td> </tr> <tr> <td>5. Was COC signed and dated by client?</td> <td style="text-align: center;"><input type="checkbox"/> Yes</td> <td>10. Were any analyses received outside of hold time?</td> <td style="text-align: center;"><input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No</td> </tr> </table>		1. Air bill manifest present? Air No.: <u>NA</u>	<input type="checkbox"/> No	6. Does COC match bottles?	<input type="checkbox"/> Yes	2. Were custody seals present?	<input type="checkbox"/> No	7. Is COC complete and correct?	<input type="checkbox"/> Yes	3. Is radiation count <100 CPM?	<input type="checkbox"/> Yes	8. Were samples received intact?	<input type="checkbox"/> Yes	4. Is a Cooler Present? Temp: <u>3.3</u> Iced with: <u>Ice</u>	<input type="checkbox"/> Yes	9. Were labs informed about <u>short holds & rushes</u> ?	<input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No / NA	5. Was COC signed and dated by client?	<input type="checkbox"/> Yes	10. Were any analyses received outside of hold time?	<input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No																																																																																																																																																																																				
1. Air bill manifest present? Air No.: <u>NA</u>	<input type="checkbox"/> No	6. Does COC match bottles?	<input type="checkbox"/> Yes																																																																																																																																																																																																						
2. Were custody seals present?	<input type="checkbox"/> No	7. Is COC complete and correct?	<input type="checkbox"/> Yes																																																																																																																																																																																																						
3. Is radiation count <100 CPM?	<input type="checkbox"/> Yes	8. Were samples received intact?	<input type="checkbox"/> Yes																																																																																																																																																																																																						
4. Is a Cooler Present? Temp: <u>3.3</u> Iced with: <u>Ice</u>	<input type="checkbox"/> Yes	9. Were labs informed about <u>short holds & rushes</u> ?	<input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No / NA																																																																																																																																																																																																						
5. Was COC signed and dated by client?	<input type="checkbox"/> Yes	10. Were any analyses received outside of hold time?	<input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No																																																																																																																																																																																																						
<hr/> <table border="0" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">11. Any Subcontracting needed? ESS Sample IDs: Analysis: _____ TAT: _____</td> <td style="width: 50%;">Yes / <input type="checkbox"/> No</td> </tr> <tr> <td>12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?</td> <td style="text-align: center;"><input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No <input type="checkbox"/> Yes / <input type="checkbox"/> No Yes / No / NA</td> </tr> </table>		11. Any Subcontracting needed? ESS Sample IDs: Analysis: _____ TAT: _____	Yes / <input type="checkbox"/> No	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	<input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No <input type="checkbox"/> Yes / <input type="checkbox"/> No Yes / No / NA																																																																																																																																																																																																				
11. Any Subcontracting needed? ESS Sample IDs: Analysis: _____ TAT: _____	Yes / <input type="checkbox"/> No																																																																																																																																																																																																								
12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	<input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No <input type="checkbox"/> Yes / <input type="checkbox"/> No Yes / No / NA																																																																																																																																																																																																								
<hr/> <table border="0" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen:</td> <td style="width: 50%; text-align: center;"><input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No Date: _____ Date: _____</td> </tr> <tr> <td></td> <td style="text-align: center;">Time: _____ Time: _____</td> </tr> <tr> <td></td> <td style="text-align: center;">By: _____ By: _____</td> </tr> </table>		13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen:	<input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No Date: _____ Date: _____		Time: _____ Time: _____		By: _____ By: _____																																																																																																																																																																																																		
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen:	<input checked="" type="checkbox"/> Yes / <input type="checkbox"/> No Date: _____ Date: _____																																																																																																																																																																																																								
	Time: _____ Time: _____																																																																																																																																																																																																								
	By: _____ By: _____																																																																																																																																																																																																								
<p>Sample Receiving Notes:</p> <hr/> <hr/> <hr/>																																																																																																																																																																																																									
<hr/> <table border="0" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">14. Was there a need to contact Project Manager? a. Was there a need to contact the client?</td> <td style="width: 50%;">Yes <input type="checkbox"/> No Yes / <input type="checkbox"/> No</td> </tr> <tr> <td>Who was contacted? _____</td> <td>Date: _____ Time: _____ By: _____</td> </tr> </table> <hr/> <hr/> <hr/>		14. Was there a need to contact Project Manager? a. Was there a need to contact the client?	Yes <input type="checkbox"/> No Yes / <input type="checkbox"/> No	Who was contacted? _____	Date: _____ Time: _____ By: _____																																																																																																																																																																																																				
14. Was there a need to contact Project Manager? a. Was there a need to contact the client?	Yes <input type="checkbox"/> No Yes / <input type="checkbox"/> No																																																																																																																																																																																																								
Who was contacted? _____	Date: _____ Time: _____ By: _____																																																																																																																																																																																																								
<hr/> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">Sample Number</th> <th style="width: 10%;">Container ID</th> <th style="width: 10%;">Proper Container</th> <th style="width: 10%;">Air Bubbles Present</th> <th style="width: 10%;">Sufficient Volume</th> <th style="width: 10%;">Container Type</th> <th style="width: 10%;">Preservative</th> <th style="width: 20%;">Record pH (Cyanide and 608 Pesticides)</th> </tr> </thead> <tbody> <tr><td>01</td><td>149514</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Amber - H₂SO₄</td><td>H₂SO₄</td><td></td></tr> <tr><td>01</td><td>149515</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Amber - H₂SO₄</td><td>H₂SO₄</td><td></td></tr> <tr><td>01</td><td>149516</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Amber - Unpres</td><td>NP</td><td></td></tr> <tr><td>01</td><td>149517</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Amber - Unpres</td><td>NP</td><td></td></tr> <tr><td>01</td><td>149518</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Amber - Unpres</td><td>NP</td><td></td></tr> <tr><td>01</td><td>149519</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Amber - Unpres</td><td>NP</td><td></td></tr> <tr><td>01</td><td>149520</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Amber - Unpres</td><td>NP</td><td></td></tr> <tr><td>01</td><td>149521</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Amber - Unpres</td><td>NP</td><td></td></tr> <tr><td>01</td><td>149522</td><td>Yes</td><td>NA</td><td>Yes</td><td>1L Poly - Unpres</td><td>NP</td><td></td></tr> <tr><td>01</td><td>149525</td><td>Yes</td><td>NA</td><td>Yes</td><td>500 mL Poly - HNO₃</td><td>HNO₃</td><td></td></tr> <tr><td>01</td><td>149526</td><td>Yes</td><td>NA</td><td>Yes</td><td>500 mL Poly - HNO₃</td><td>HNO₃</td><td></td></tr> <tr><td>01</td><td>149528</td><td>Yes</td><td>NA</td><td>Yes</td><td>500 mL Poly - H₂SO₄</td><td>H₂SO₄</td><td></td></tr> <tr><td>01</td><td>149529</td><td>Yes</td><td>NA</td><td>Yes</td><td>250 mL Poly - NaOH</td><td>NaOH</td><td>pH >12 w/ 7/20/17 1119</td></tr> <tr><td>01</td><td>149531</td><td>Yes</td><td>NA</td><td>Yes</td><td>250 mL Amber - Unpres</td><td>NP</td><td></td></tr> <tr><td>01</td><td>149532</td><td>Yes</td><td>No</td><td>Yes</td><td>VOA Vial - HCl</td><td>HCl</td><td></td></tr> <tr><td>01</td><td>149533</td><td>Yes</td><td>No</td><td>Yes</td><td>VOA Vial - HCl</td><td>HCl</td><td></td></tr> <tr><td>01</td><td>149534</td><td>Yes</td><td>No</td><td>Yes</td><td>VOA Vial - HCl</td><td>HCl</td><td></td></tr> <tr><td>01</td><td>149535</td><td>Yes</td><td>No</td><td>Yes</td><td>VOA Vial - HCl</td><td>HCl</td><td></td></tr> <tr><td>01</td><td>149536</td><td>Yes</td><td>No</td><td>Yes</td><td>VOA Vial - HCl</td><td>HCl</td><td></td></tr> <tr><td>01</td><td>149537</td><td>Yes</td><td>No</td><td>Yes</td><td>VOA Vial - HCl</td><td>HCl</td><td></td></tr> <tr><td>02</td><td>149523</td><td>Yes</td><td>NA</td><td>Yes</td><td>500 mL Poly - HNO₃</td><td>HNO₃</td><td></td></tr> <tr><td>02</td><td>149524</td><td>Yes</td><td>NA</td><td>Yes</td><td>500 mL Poly - HNO₃</td><td>HNO₃</td><td></td></tr> <tr><td>02</td><td>149527</td><td>Yes</td><td>NA</td><td>Yes</td><td>500 mL Poly - H₂SO₄</td><td>H₂SO₄</td><td></td></tr> <tr><td>02</td><td>149530</td><td>Yes</td><td>NA</td><td>Yes</td><td>250 mL Amber - Unpres</td><td>NP</td><td></td></tr> </tbody> </table>		Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)	01	149514	Yes	NA	Yes	1L Amber - H ₂ SO ₄	H ₂ SO ₄		01	149515	Yes	NA	Yes	1L Amber - H ₂ SO ₄	H ₂ SO ₄		01	149516	Yes	NA	Yes	1L Amber - Unpres	NP		01	149517	Yes	NA	Yes	1L Amber - Unpres	NP		01	149518	Yes	NA	Yes	1L Amber - Unpres	NP		01	149519	Yes	NA	Yes	1L Amber - Unpres	NP		01	149520	Yes	NA	Yes	1L Amber - Unpres	NP		01	149521	Yes	NA	Yes	1L Amber - Unpres	NP		01	149522	Yes	NA	Yes	1L Poly - Unpres	NP		01	149525	Yes	NA	Yes	500 mL Poly - HNO ₃	HNO ₃		01	149526	Yes	NA	Yes	500 mL Poly - HNO ₃	HNO ₃		01	149528	Yes	NA	Yes	500 mL Poly - H ₂ SO ₄	H ₂ SO ₄		01	149529	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH >12 w/ 7/20/17 1119	01	149531	Yes	NA	Yes	250 mL Amber - Unpres	NP		01	149532	Yes	No	Yes	VOA Vial - HCl	HCl		01	149533	Yes	No	Yes	VOA Vial - HCl	HCl		01	149534	Yes	No	Yes	VOA Vial - HCl	HCl		01	149535	Yes	No	Yes	VOA Vial - HCl	HCl		01	149536	Yes	No	Yes	VOA Vial - HCl	HCl		01	149537	Yes	No	Yes	VOA Vial - HCl	HCl		02	149523	Yes	NA	Yes	500 mL Poly - HNO ₃	HNO ₃		02	149524	Yes	NA	Yes	500 mL Poly - HNO ₃	HNO ₃		02	149527	Yes	NA	Yes	500 mL Poly - H ₂ SO ₄	H ₂ SO ₄		02	149530	Yes	NA	Yes	250 mL Amber - Unpres	NP	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)																																																																																																																																																																																																		
01	149514	Yes	NA	Yes	1L Amber - H ₂ SO ₄	H ₂ SO ₄																																																																																																																																																																																																			
01	149515	Yes	NA	Yes	1L Amber - H ₂ SO ₄	H ₂ SO ₄																																																																																																																																																																																																			
01	149516	Yes	NA	Yes	1L Amber - Unpres	NP																																																																																																																																																																																																			
01	149517	Yes	NA	Yes	1L Amber - Unpres	NP																																																																																																																																																																																																			
01	149518	Yes	NA	Yes	1L Amber - Unpres	NP																																																																																																																																																																																																			
01	149519	Yes	NA	Yes	1L Amber - Unpres	NP																																																																																																																																																																																																			
01	149520	Yes	NA	Yes	1L Amber - Unpres	NP																																																																																																																																																																																																			
01	149521	Yes	NA	Yes	1L Amber - Unpres	NP																																																																																																																																																																																																			
01	149522	Yes	NA	Yes	1L Poly - Unpres	NP																																																																																																																																																																																																			
01	149525	Yes	NA	Yes	500 mL Poly - HNO ₃	HNO ₃																																																																																																																																																																																																			
01	149526	Yes	NA	Yes	500 mL Poly - HNO ₃	HNO ₃																																																																																																																																																																																																			
01	149528	Yes	NA	Yes	500 mL Poly - H ₂ SO ₄	H ₂ SO ₄																																																																																																																																																																																																			
01	149529	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH >12 w/ 7/20/17 1119																																																																																																																																																																																																		
01	149531	Yes	NA	Yes	250 mL Amber - Unpres	NP																																																																																																																																																																																																			
01	149532	Yes	No	Yes	VOA Vial - HCl	HCl																																																																																																																																																																																																			
01	149533	Yes	No	Yes	VOA Vial - HCl	HCl																																																																																																																																																																																																			
01	149534	Yes	No	Yes	VOA Vial - HCl	HCl																																																																																																																																																																																																			
01	149535	Yes	No	Yes	VOA Vial - HCl	HCl																																																																																																																																																																																																			
01	149536	Yes	No	Yes	VOA Vial - HCl	HCl																																																																																																																																																																																																			
01	149537	Yes	No	Yes	VOA Vial - HCl	HCl																																																																																																																																																																																																			
02	149523	Yes	NA	Yes	500 mL Poly - HNO ₃	HNO ₃																																																																																																																																																																																																			
02	149524	Yes	NA	Yes	500 mL Poly - HNO ₃	HNO ₃																																																																																																																																																																																																			
02	149527	Yes	NA	Yes	500 mL Poly - H ₂ SO ₄	H ₂ SO ₄																																																																																																																																																																																																			
02	149530	Yes	NA	Yes	250 mL Amber - Unpres	NP																																																																																																																																																																																																			

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA - Norwood, MA - GZA/MM

ESS Project ID: 1707435
Date Received: 7/20/2017

2nd Review

Are barcode labels on correct containers?

Yes / No

Completed

By:

Reviewed

By:

Delivered

By:

Date & Time: 7/20/17 1119

Date & Time: 7/20/17 1144

Date & Time: 7/20/17 1151

