

Proactive by Design

GEOTECHNICAL

ENVIRONMENTAL

FCOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

July 6, 2017 File No. 03.003930.08

Ms. Shauna Little
United States Environmental Protection Agency – Region 1
5 Post Office Square, Mail Code OEP06-4
Boston, Massachusetts 02109-3912

Re: Submittal of Notice of Intent Remediation General Permit UMASS- UCRR 100 Morrissey Blvd Boston, Massachusetts

Dear Ms. Little:

On behalf of the University of Massachusetts (Owner) and Bond Bothers, Inc. (Construction Manager; Operator), GZA is submitting the attached Notice of Intent (NOI) form (Attachment 1) for the Remedial General Permit (RGP) for the Utility Corridor and Roadway Relocation (UCRR) Project located in Boston, Massachusetts.

BACKGROUND

The UCRR Project consists of the reconfiguration of roadways and utilities in accordance with the campus master plan. The site is located on a peninsula (Columbia Point) that extends into Dorchester Bay to the north of Savin Hill Cove. A site locus plan is included as Figure 1 (Attachment 2), and a site plan is shown on Figure 2 (Attachment 3). Historically, the site was a municipal landfill. Additionally, a manufactured gas plant (MGP) was constructed in what is today the western portion of the campus and was in operation from the late 1880s to the 1930s. The landfill was closed in 1971 and the UMASS campus was constructed in the early 1970's. The site is tracked under MassDEP Release Tracking Number (RTN) 3-31002.

The project team anticipates that construction dewatering may be required to control groundwater during excavations for utility installation, and that groundwater pumped from the construction site will be infiltrated into the ground water via infiltration pits. However, in the event that the infiltration pits do not provide adequate recharge capacity, the collected groundwater will be introduced into storm drains that discharge to either Dorchester Bay or Savin Hill Cove. There are eight possible discharge points (Outfall Numbers 1 through 8) shown on Figure 2 (Attachment 3) that may be used for this discharge, depending upon the progression of the work zone along the utility corridor.

The dewatering will be accomplished using submersible pumps and lined sump pits which will discharge to a 5,000-gallon sedimentation tank for sediment removal. If additional storage, as needed for sedimentation or for storage, is needed, a second 10,000-gallon sedimentation tank will be installed in series. In addition to the sedimentation tank(s), water will be pumped through a bag filter system and a 1,000-pound liquid phase granular activated carbon (LGAC) unit prior to discharge to the storm drains. Sample ports will be installed at the end of the treatment train to allow monitoring of water quality, and a flow meter will be installed so that the discharge quantity can be recorded. A process flow diagram is included in Figure 3 (Attachment 4).

The sedimentation tank will be cleaned out when accumulated sediments reach 1 foot in depth. The bag filters will be changed out regularly to maintain flow and acceptable head loss. Bag filters will be installed in parallel to accommodate continuous filtering while filters are being changed out. The treatment system will be accessible for maintenance, monitoring, and sampling purposes. The treatment system will be moved periodically along the utility corridor to facilitate dewatering operations; the location of the treatment system shown on Figure 2 is one of several potential locations which may be utilized during the course of the project. The discharge will enter Dorchester Bay or Savin Hill Cover via the outfall closest to the treatment system.

NOTICE OF INTENT

This NOI has included a review of literature pertaining to Areas of Critical Environmental Concern (ACEC), the Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

- A review of Appendix II of the Remediation General Permit, "Summary of Endangered Species Act Listings," indicated that the Northern Long-eared Bat is located state-wide. However, this species is not likely to be present at the 100 Morrissey Boulevard site due to the densely-developed nature of the Site. The Roseate Tern and Red Knot were identified as endangered/threatened species that may be present near the Site; however, it is not likely that these species will be affected by site activities. A review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Boston shows that there are no ACECs and no habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. A review of the United States Fish and Wildlife Service (USFWS) Environmental Conservation Online System (ECOS) indicates that coastal sections along Suffolk county are not listed as locations where a Roseate Tern nesting population is known or is believed to occur. A review of the Audubon field guide for the Red Knot indicates that if present, they are typically located on tidal flats or along the shoreline vegetation. Since the work area does not disturb the tidal flats or vegetated shoreline areas, it is anticipated that no effects to the Red Knot will occur. Review of the IPaC online resource of the USFWS also indicated that no critical habitats are present at the Site. Informal consultation was conducted with the USFWS and the results letter is attached in Attachment 5. Therefore, permit eligibility meets "Criterion B."
- Review of the "Essential Fish Habitat Designations" for the 10 minute x 10 minute quadrangle encompassing Boston Harbor (Attachment 5) indicated that Essential Fish Habitats for listed species under the jurisdiction of the National Marine Fisheries Service (NMFS) are not likely to be present. Based upon the assumptions presented by EPA in its Endangered Species Act (ESA) concurrence with NMFS, it is GZA's opinion that the Site discharge is in accordance with those assumptions and is unlikely to adversely affect listed species or modify critical habitats under the jurisdiction of NMFS, and is eligible to select the NMFS criterion in Section G of Attachment 1.
- A review of the Massachusetts Cultural Resource Information System on-line database, made available through the
 Massachusetts Historical Commission, indicated several listings for historical properties. The documentation of
 this review can be found in Attachment 6. As described above, the water generated during remedial activities will
 be treated on-Site and then pumped directly into a catch basin located on-Site; the historical properties adjacent
 to the Site will not be affected by the discharge, and thus permit eligibility meets "Criterion B."
- Water Quality Based Effluent Limits (WQBELs) based on the Site influent and receiving water sampling data were calculated using the spreadsheet included in Appendix V of the RGP (Attachment 7). Results applicable to this discharge are included in Section D(4) of the NOI.

- A letter was provided to the City of Boston to notify it of the proposed discharge operating in accordance with the NPDES RGP Permit. A copy of the notification is included in Attachment 8.
- Laboratory analytical results, summarized in the NOI (Attachment 1), are included as Attachment 9. Groundwater influent samples were collected from four monitoring well locations (U-701, U-702, U-703, and U-9B) on June 7, 2017. These samples were analyzed for Ammonia, Total Metals, VOCs, SVOCs, Total Suspended Solids, Chlorides, and 1,4-Dioxane. Groundwater influent data collected on October 8, 2014, from monitoring well locations U-6, U-9B and U-108, was previously submitted to EPA as part of a NOI under the 2010 RGP; this data was used to confirm that some constituents of concern were known to be absent. These substituted data collected in 2014 were analyzed using laboratory methods of sufficient sensitivity in accordance with Appendix VII, and therefore did not require reanalysis. Refer to Figure 2 (Attachment 3) for the approximate locations of Site monitoring wells. Due to the confirmed absence of fuel parameters in the influent ethanol is a parameter which is not believed to be present at the Site.
- The receiving water was sampled upstream of Outfall 1 on June 7, 2017. Physical parameters including pH, temperature, and salinity were collected using a low flow sampling apparatus fitted with instrumentation capable of accurately measuring these parameters. The physical parameter results are reported in section D(4) of the NOI.
- A dilution factor for metals was not calculated for the discharge since a dilution factor of zero is appropriate for a discharge to tidally influenced waters.
- A Best Management Practices Plan (BMPP) will be implemented upon the initiation of Site discharge.

Please do not hesitate to contact the undersigned at 781-278-3700 if you have any questions or require further information.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Andrew Sargent, E.I.T.

anche Saya

Engineer I

Lawrence Feldman, LSP, Ph.D.

Senior Principal

Randy Meuse

Consultant/Reviewer, Principal

Burnel Manne

Attachments: Attachment 1: NOI Form

Attachment 2: Figure 1 – Site Locus Map

Attachment 3: Figure 2 – Site Plan and Storm Drain Outfall Locations

Attachment 4: Figure 3 – Process Flow Diagram Attachment 5: ESA and EFH Documentation

Attachment 6: MHC Report

Attachment 7: WQBEL Calculation Spreadsheet Attachment 8: City of Boston Notification Attachment 9: Laboratory Analytical Reports

NOI FORM

Appendix IV – Part 1 – NOI Page 14 of 24

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 100 Morrissey Boulevard						
University of Massachusetts Boston	Street:						
	City: Boston		State: MA	^{Zip:} 02125			
Site owner Commonwealth of MA - UMASS Boston	Contact Person: Zehra Schneider Graham						
Commonwealth of MA - OMASS Boston	Telephone: 617-287-5444	Email: zeh	ıra@umb.e	du			
	Mailing address: 225 Franklin Street, 12th Floor						
	Street:						
Owner is (check one): ☐ Federal ■ State/Tribal ☐ Private ☐ Other; if so, specify:	City: Boston State: MA Zip:			Zip: 02110			
3. Site operator, if different than owner	Contact Person: Elio DiBiase, Project Manager						
Bond Brothers	Telephone: 617-387-3400	ibiase@bondbrothers.com					
	Mailing address:						
	Street: 145 Spring Street						
	City: Everett		State: MA	Zip: 02149			
4. NPDES permit number assigned by EPA: CGP # MAR10007F	5. Other regulatory program(s) that apply to the site ((check all the	at apply):				
RGP# MAG910649 NPDES permit is (check all that apply: ■ RGP □ DGP ■ CGP	■ MA Chapter 21e; list RTN(s):	□ CERCL					
	RTN 3-31002	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment					
individual Nr DES permit in Other, it so, specify.	Stouris rate Release Between Permit.	□ CWA S	ection 404				

Appendix IV – Part 1 – NOI Page 15 of 24

B. Receiving water information:						
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classi	fication of receiving water(s):			
Dorchester Bay	MA70-03	SB				
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River						
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: ■ Yes □ No				
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes ■ No					
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP. Enterococcus, Fecal Coliform, PCB	s available for any of the indicated pollutants. For n	nore information, contact the				
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		the instructions in	N/A			
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s			N/A			
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	-	No dilution fac	ctor applied.			
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	e instruction in Appendix VIII?			
(check one): ■ Yes □ No						
C. Source water information:						
1. Source water(s) is (check any that apply):						
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:			
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other				
in accordance with the instruction in Appendix VIII? (check one):	required in Part 4.2 of the RGP sampling results as required in Part 4.2 of the					
■ Yes □ No	□ No □ Yes □ No					

Appendix IV – Part 1 – NOI Page 16 of 24

2. Source water contaminants: Sb, As, Cd, Cu, Pb, Fe, Ni, Zn,1,4-Dioxane, Acetone, 1,4-dichlorobenzene, TCE, Total Group I and II PAHs.				
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance			
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No			
3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): ☐ Yes ■ No				

D. Discharge information

1. The discharge(s) is a(n) (check any that apply): \blacksquare Existing discharge \square New disc	harge □ New source	
Outfall(s):	Outfall location(s): (Latitude, Longitude)	
Outfalls 1, 2,3, 4, 5, 6, 7, 8	1- 42.317322, -71.036542 2- 42.312476, -71.034190	
	3- 42.311929, -71.034915	
	5- 42.311872, -71.040336 6- 42.312631, -71.041646	
	7- 42.313379, -71.042818 8- 42.313672, -71.043281	
Discharges enter the receiving water(s) via (check any that apply): \Box Direct discharges	ge to the receiving water Indirect discharge, if so, specify:	
Discharges from the treatment system will enter Dorchester bay through Uni	versity owned storm drains.	
■ A private storm sewer system □ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system	tem:	
Has notification been provided to the owner of this system? (check one): ■ Yes □ No		
Has the operator has received permission from the owner to use such system for discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for obtaining permission: University owned storm sewer system.		
Has the operator attached a summary of any additional requirements the owner of this	s system has specified? (check one): ■ Yes □ No	
Provide the expected start and end dates of discharge(s) (month/year): July 2017 th	rough August 2018	
Indicate if the discharge is expected to occur over a duration of: \Box less than 12 more	ths ■ 12 months or more □ is an emergency discharge	
Has the operator attached a site plan in accordance with the instructions in D, above	(check one): ■ Yes □ No	

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)			
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds 				
	☐ E. Halogenated Semi-Volatile Organi				
	☐ F. Fuels Parameters				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
☐ VIII – Dredge-Related Dewatering	■ A. Inorganics				
	■ B. Non-Halogenated Volatile Organic Compounds	d. If Category III-H, IV-H, V-H, VI-H, VII-H or			
	C. Halogenated Volatile Organic Compounds	VIII-H Contamination Type Categories A through F apply			
	■ D. Non-Halogenated Semi-Volatile Organic Compounds				
	 □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				

Appendix IV – Part 1 – NOI Page 18 of 24

4. Influent and Effluent Characteristics

	Known	Known				Inf	fluent	Effluent L	imitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	4	350.1	100	24200	951	Report mg/L	
Chloride		~	4	300.0	50000	12900000	6498500	Report µg/l	
Total Residual Chlorine	~		3	4500ClE	10.0	<10	0	0.2 mg/L	
Total Suspended Solids			4	2540D	5000	46000	15000	30 mg/L	
Antimony		~	4	200.7	50.0	32.4	8.1	206 μg/L	
Arsenic		~	4	200.7	5.0	6.7	1.68	104 μg/L	
Cadmium		V	4	200.7	0.5	33.8	8.54	10.2 μg/L	8.9
Chromium III	~		4	200.7	4.0	<4.0	0	323 µg/L	
Chromium VI	V		4	7196A	10.0	<10.0	0	323 μg/L	
Copper		V	4	200.7	4.0	16.3	7.98	242 μg/L	3.7
Iron		V	4	200.7	200	9230	2708	5,000 μg/L	
Lead		~	4	200.7	5.0	36.3	20.3	160 μg/L	8.5
Mercury	V		4	245.1	0.2	< 0.2	0	0.739 μg/L	
Nickel		~	4	200.7	4.0	41.1	12.43	1,450 μg/L	8.3
Selenium	V		4	200.7	10.0	<10.0	0	235.8 μg/L	
Silver	~		4	200.7	5.0	<1.0	0	35.1 μg/L	
Zinc		~	4	200.7	50.0	977	267.4	420 μg/L	86
Cyanide	~		3	4500CN	5.0	<5.0	0	178 mg/L	
B. Non-Halogenated VOCs									
Total BTEX	~		4	524.2	0.5	<0.5	0	100 μg/L	
Benzene	~		4	524.2	0.5	<0.5	0	5.0 μg/L	
1,4 Dioxane		~	4	8270DSIM	0.250	0.904	0.226	200 μg/L	
Acetone		~	4	524.2	5.0	6.7	1.68	7.97 mg/L	
Phenol	~		4	420.1	100	<100	0	1,080 µg/L	

Appendix IV – Part 1 – NOI Page 19 of 24

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs	C. Halogenated VOCs								
Carbon Tetrachloride	·		4	524.2	0.3	<0.3	0	4.4 μg/L	
1,2 Dichlorobenzene	~		4	524.2	0.5	< 0.5	0	600 μg/L	
1,3 Dichlorobenzene	~		4	524.2	0.5	< 0.5	0	320 μg/L	
1,4 Dichlorobenzene		~	4	524.2	0.5	0.7	0.175	5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane	~		4	524.2	0.5	< 0.5	0	70 μg/L	
1,2 Dichloroethane	~		4	524.2	0.5	< 0.5	0	5.0 μg/L	
1,1 Dichloroethylene	~		4	524.2	0.5	< 0.5	0	3.2 µg/L	
Ethylene Dibromide	~		4	504.1	0.015	< 0.015	0	0.05 μg/L	
Methylene Chloride	~		4	524.2	0.5	<0.5	0	4.6 μg/L	
1,1,1 Trichloroethane	~		4	524.2	0.5	<0.5	0	200 μg/L	
1,1,2 Trichloroethane	~		4	524.2	0.5	<0.5	0	5.0 μg/L	
Trichloroethylene		~	4	524.2	0.5	0.8	0.2	5.0 μg/L	
Tetrachloroethylene	~		4	524.2	0.5	<0.5	0	5.0 μg/L	
cis-1,2 Dichloroethylene	~		4	524.2	0.5	< 0.5	0	70 μg/L	
Vinyl Chloride	~		4	524.2	0.2	<0.2	0	2.0 µg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates	~		4	8270CSIM	2.34	<2.34	0	190 μg/L	
Diethylhexyl phthalate	~		4	625 SIM	0.93	< 0.93	0	101 μg/L	
Total Group I PAHs		~	4	625 SIM	CALC	1.43	0.358	1.0 μg/L	
Benzo(a)anthracene		~	4		0.05	0.25	0.093		0.0038
Benzo(a)pyrene		~	4	625 SIM	0.05	0.25	0.075		0.0038
Benzo(b)fluoranthene		~	4	625 SIM	0.05	0.31	0.093		0.0038
Benzo(k)fluoranthene		~	4	625 SIM	0.05	0.11	0.028	As Total PAHs	0.0038
Chrysene		~	4	625 SIM	0.05	0.27	0.100		0.0038
Dibenzo(a,h)anthracene		~	4	625 SIM	0.05	0.05	0.013		0.0038
Indeno(1,2,3-cd)pyrene		~	4	625 SIM	0.05	0.19	0.048		0.0038

Appendix IV – Part 1 – NOI Page 20 of 24

	Known	nown Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		~	4	625 SIM	0.19	16.06	4.02	100 μg/L	
Naphthalene	V		4	8260CSIM	0.19	<0.19	0	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	V		3	8082A	0.5	<0.5	0	0.000064 μg/L	
Pentachlorophenol	~		4	8270CSIM	0.84	< 0.84	0	1.0 μg/L	
F. Fuels Parameters Total Petroleum Hydrocarbons	V		3	1664A	5000	<5000	0	5.0 mg/L	
Ethanol	V							Report mg/L	
Methyl-tert-Butyl Ether	~		4	8260B	1.0	<1.0	0	70 μg/L	
tert-Butyl Alcohol	~		4	8260B	25.0	<25	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		4	8260B	1.0	<1.0	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu pH	re, hardness,	salinity, LC	C50, addition	nal pollutan 4500-H+	ts present); 6.86-11.45	if so, specify:			
Temperature		~	4	2550B	10.4-10.6	deg C			

Appendix IV – Part 1 – NOI Page 21 of 24

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Groundwater encountered during excavation activities will be pumped into a treatment system prior to discharge into University owned storm drains. The first component system will be a frac tank where solids will settle out. The effluent will next pass through a series of bag filters to remove fines, and subsequently will pass through a 1000 liquid phase granular activated carbon vessel. The finished effluent will then pass through a flowmeter prior to entering the storm sewer system leading to Dorchester Bay.	O-lb capacity
Identify each major treatment component (check any that apply):	
■ Fractionation tanks □ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	4 = 0
Indicate the most limiting component: bag filters	150
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	100
Provide the proposed maximum effluent flow in gpm.	150
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

Appendix IV – Part 1 – NOI Page 22 of 24

F	Chemical	and	additive	inform	nation
T. •	Chemicai	anu	auuiuve		паичи

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers \square pH conditioners \square Bioremedial agents, including microbes \square Chlorine or chemicals containing chlorine \square Other; if so, specify:
No additives anticipated
2. Provide the following information for each chemical/additive, using attachments, if necessary:
No Additives Anticipated
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ■ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". ■ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". ■ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): ■ Yes □ No; if no, is consultation underway? (check one): □
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". ■ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): ■ Yes □ No; if no, is consultation underway? (check one): □
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". ■ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): ■ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". ■ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): ■ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". ■ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): ■ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and

MAG910000	Appendix IV – Part 1 – NOI
NHG910000	Page 23 of 24

■ NNIFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NNFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): Yes ■ No 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes ■ No Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes ■ No; if yes, attach. H. National Historic Preservation Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties. □ Criterion B: Historic properties are present. Discharges and discharge-related activities do not have the potential to cause effects on historic properties. □ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. □ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. □ Criterion B: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. □ Criterion C: Historic properties. □ Criterion B: Histori	
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No. if yes, attach. Yes No. if yes, attach.	
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.	listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
H. National Historic Preservation Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties. Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties. Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. Criterion C: Historic properties. Yes No No No No No No No No	2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: □ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties. □ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties. □ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): □ Yes ■ No I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No	Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.
□ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties. ■ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties. □ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): □ Yes ■ No I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No	
historic properties. Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties. Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): Yes No Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No No I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No	1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties. 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): □ Yes ■ No I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No	
effect on historic properties. 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): Yes No Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No	■ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No	
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No	2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No	
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No	I. Supplemental information
	Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No	Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
	Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

Appendix IV – Part 1 – NOI Page 24 of 24

J. Certification requirement

	Section 2011 Billion 27 To the control of the control of the				
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.					
BMPP certifi	A BMPP meeting the requirements of this general pernication statement: discharge.	nit will be implemented upor	n initiation of		
Notification 1	provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes	□ No ■		
Notification 1	provided to the municipality in which the discharge is located, including a copy of this NC	I, if requested. Check one: Yes	■ No □		
	provided to the owner of a private or municipal storm sewer system, if such system is used acluding a copy of this NOI, if requested.	for site Check one: Yes	□ No□ NA■		
Permission of discharges. If	btained from the owner of a private or municipal storm sewer system, if such system is use f yes, attach additional conditions. If no, attach explanation and timeframe for obtaining pe	rmission. Check one: Yes	□ No□ NA■		
	provided to the owner/operator of the area associated with activities covered by an addition	13 DDDEG :			
18 1 1	lditional discharge permit is (check one): □ RGP □ DGP ■ CGP □ MSGP □ Individua o, specify: Same operator for Site CGP and RGP	II NPDES permit Check one: Yes	No□ NA■		
Signature:	Zhra Shneider Ginham	Date: 12/01/2017			
Print Name and Ti	itle: Zehra Schneider Graham, UMass Boston Deputy Director, OEHS				

Appendix IV – Part 1 – NOI Page 24 of 24

T		Candiciandian	
J	•	Certification	requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP meeting the requirements of this general permit will be implemented upon initiation of BMPP certification statement: discharge. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes □ No ■ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes ■ No □ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes □ No □ NA ■ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No □ NA ■ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP ■ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify: Same operator for Site CGP and RGP Date: 12 - 1 - 17Signature: Elio DiBiase, P.M. Print Name and Title: BOND

FIGURE 1 – SITE LOCUS MAP

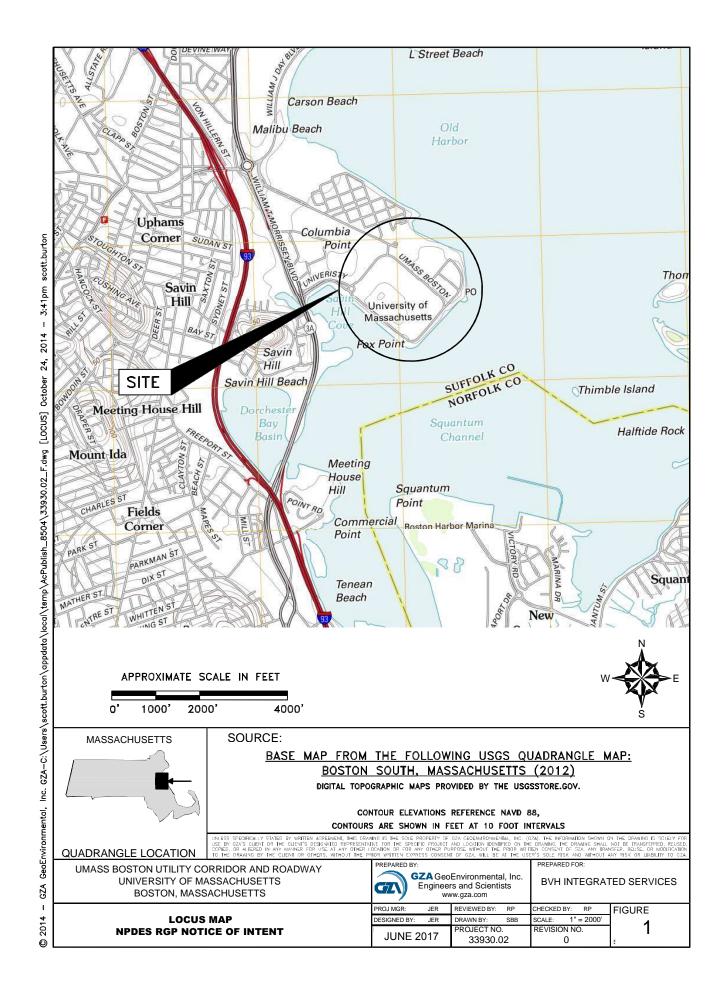


FIGURE 2 – SITE PLAN

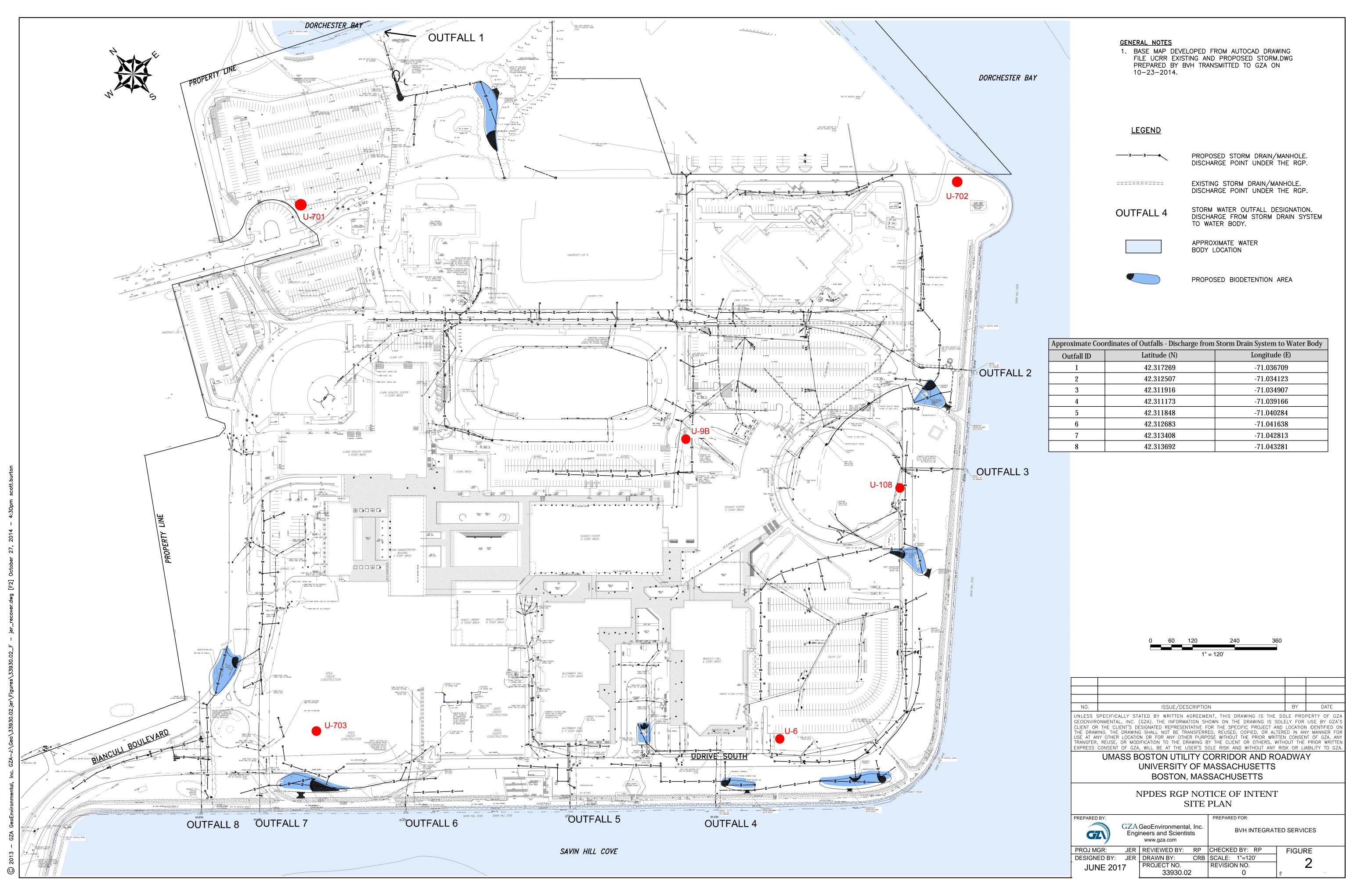
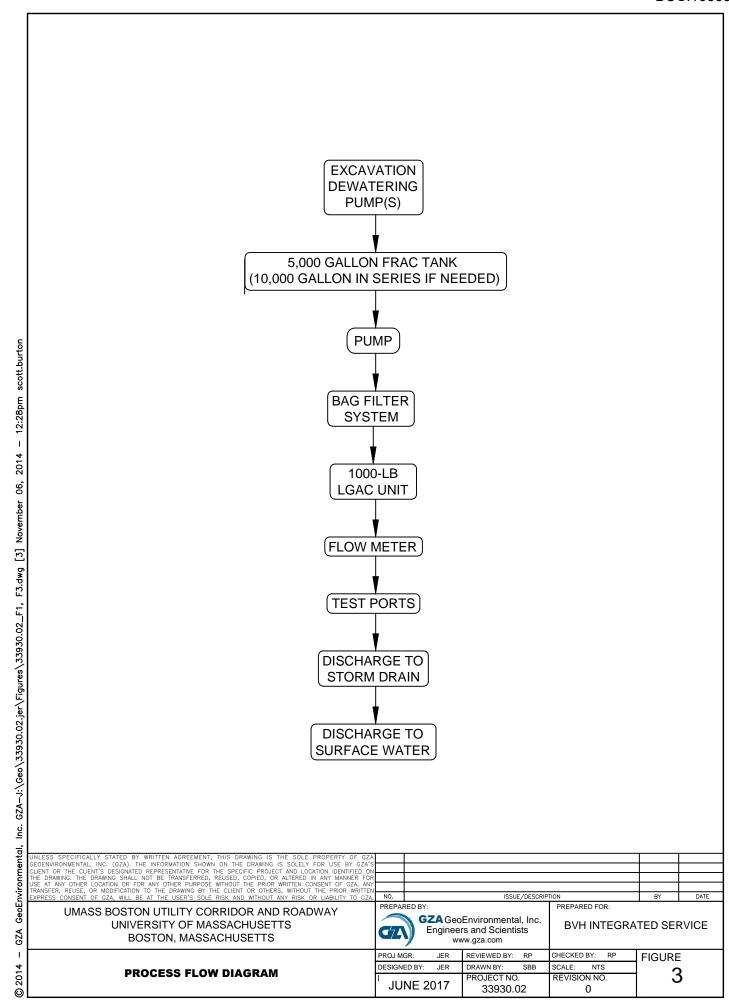



FIGURE 3 – PROCESS FLOW DIAGRAM

F . 1 of 148

ESA AND EFH DOCUMENTATION

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
Dukes	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

Updated 01/09/2015

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Middlesov	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

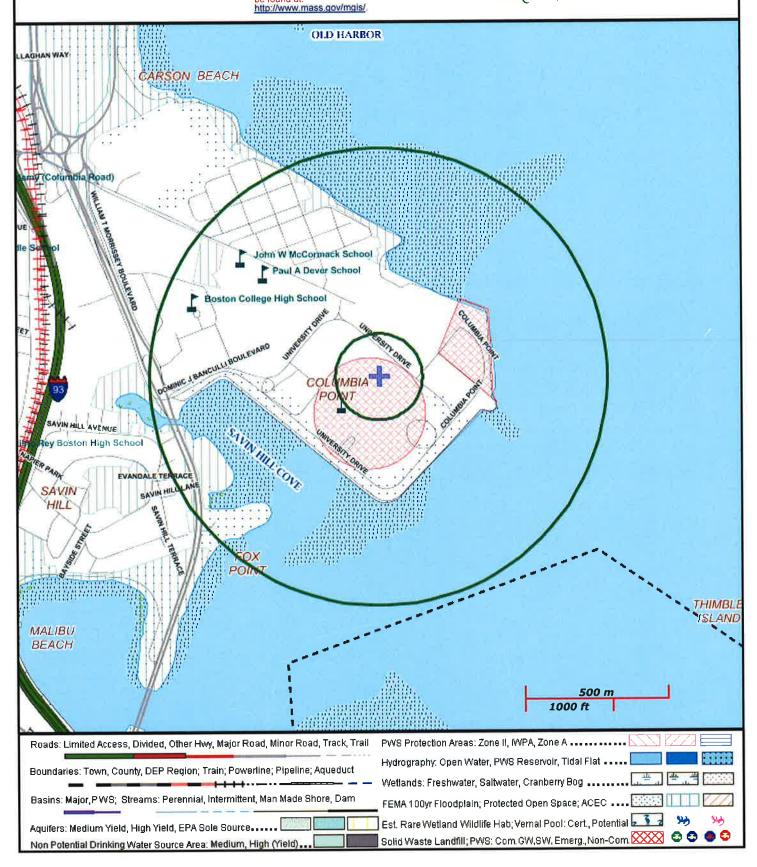
Updated 01/09/2015

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Suffolk	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Wanastan	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.


MHC REPORT

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:
100 MORRISSEY BLVD BOSTON, MA
NAD83 UTM Meters:
5208177mN , -7907879mE (Zone: 18)
June 19, 2017

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

June 08, 2017

In Reply Refer To:

Consultation Code: 05E1NE00-2017-SLI-1805

Event Code: 05E1NE00-2017-E-03954

Project Name: UMASS UCRR

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

06/08/2017 Event Code: 05E1NE00-2017-E-03954 2

Project Summary

Consultation Code: 05E1NE00-2017-SLI-1805

Event Code: 05E1NE00-2017-E-03954

Project Name: UMASS UCRR

Project Type: DREDGE / EXCAVATION

Project Description: Utility Excavations

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.314043609538814N71.03799706418644W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 2 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

Page 31 of 148

06/08/2017 Event Code: 05E1NE00-2017-E-03954 3

Birds

NAME STATUS

Red Knot (Calidris canutus rufa) Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/1864

Roseate Tern (Sterna dougallii dougallii) Endangered

Population: northeast U.S. nesting pop.

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/2083

Critical habitats

There are no critical habitats within your project area.

Evaluation of Select Endangered Species Habitats

100 Morrissey Blvd

Boston, Massachusetts

The northern long-eared bat (*Myotis septentrionalis*) has a federal status of Threatened and a state status of Endangered within Massachusetts.

The northern long-eared bat is a migratory species which utilizes a variety of habitats during the year depending on the season. Between early November and April, this species hibernates in crevices in portions of caves and abandoned mine shafts which have high humidity, constant temperatures, and little air flow. Individuals tend to return to the same hibernaculum from year to year although they are also known to sometimes use other hibernacula. Hibernacula are generally located within approximately 35 miles of summer foraging habitat. Between April and October, northern long-eared bats roost and forage in forested areas. Preferred roost sites include clusters of large, live or dead, hardwood trees with cavities or peeling bark. Preferred foraging sites include wooded areas around vernal pools or small ponds or along streams. Thus, transitional zones between forested uplands and wetlands represent prime summer roosting and foraging habitat.

The parcel at 100 Morrissey Boulevard in Boston, MA (Site) is located within a busy and densely developed area used as a University campus, athletic fields, and parking facilities. The Site is a predominantly open area with few trees and no ponds, vernal pools, caves, or mine shafts. The Site is bounded on three sides by the saline waters of Dorchester Bay. The lack of trees for roosting and the regular disturbances from noise from ongoing construction activities and campus activities make this Site a poor habitat for northern long-eared bats. It is unlikely that this species utilizes this area. Furthermore, there is no planned removal of the few existing Site trees.

The Red Knot is listed as a threatened species which is observed along coastal towns of Massachusetts. The work site does not involve the removal of trees or brush and the shoreline along the property is not being disturbed. The discharge is not expected to cause take of this species.

The Roseate Tern is listed as an endangered species which is observed along coastal towns of Massachusetts. However, review of the FWS's Environmental Conservation Online System (ECOS), indicates that coastal sections along Suffolk county are not listed as locations where the Roseate Tern nesting population is known or is believed to occur.

Photo by Steve Taylor; University of Illinois

Northern Long-Eared Bat

Myotis septentrionalis

The northern long-eared bat is federally listed as a threatened species under the Endangered Species Act. *Endangered* species are animals and plants that are in danger of becoming extinct. *Threatened* species are animals and plants that are likely to become endangered in the foreseeable future. Identifying, protecting and restoring endangered and threatened species is the primary objective of the U.S. Fish and Wildlife Service's Endangered Species Program.

What is the northern long-eared bat?

Appearance: The northern long-eared bat is a medium-sized bat with a body length of 3 to 3.7 inches and a wingspan of 9 to 10 inches. Their fur color can be medium to dark brown on the back and tawny to pale-brown on the underside. As its name suggests, this bat is distinguished by its long ears, particularly as compared to other bats in its genus, *Myotis*.

Winter Habitat: Northern long-eared bats spend winter hibernating in caves and mines, called hibernacula. They use areas in various sized caves or mines with constant temperatures, high humidity, and no air currents. Within hibernacula, surveyors find them hibernating most often in small crevices or cracks, often with only the nose and ears visible.

Summer Habitat: During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or in crevices of both live trees and snags (dead trees). Males and non-reproductive females may also roost in cooler places, like caves and mines. Northern long-eared bats seem to be flexible in selecting roosts, choosing roost trees based on suitability to retain bark or provide cavities or crevices. They rarely roost in human structures like barns and sheds.

Reproduction: Breeding begins in late summer or early fall when males begin to swarm near hibernacula. After

This northern long-eared bat, observed during an Illinois mine survey, shows visible symptoms of white-nose syndrome.

copulation, females store sperm during hibernation until spring. In spring, females emerge from their hibernacula, ovulate and the stored sperm fertilizes an egg. This strategy is called delayed fertilization.

After fertilization, pregnant bats migrate to summer areas where they roost in small colonies and give birth to a single pup. Maternity colonies of females and young generally have 30 to 60 bats at the beginning of the summer, although larger maternity colonies have also been observed. Numbers of bats in roosts typically decrease from the time of pregnancy to post-lactation. Most bats within a maternity colony give birth around the same time, which may occur from late May or early June to late July, depending where the colony is located within the species' range. Young bats start flying by 18 to 21 days after birth. Maximum lifespan for the northern longeared bat is estimated to be up to 18.5 years.

Feeding Habits: Like most bats, northern long-eared bats emerge at dusk to feed. They primarily fly through the

understory of forested areas feeding on moths, flies, leafhoppers, caddisflies, and beetles, which they catch while in flight using echolocation or by gleaning motionless insects from vegetation.

Range: The northern long-eared bat's range includes much of the eastern and north central United States, and all Canadian provinces from the Atlantic Ocean west to the southern Yukon Territory and eastern British Columbia. The species' range includes 37 States and the District of Columbia: Alabama, Arkansas, Connecticut, Delaware, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Hampshire, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Vermont, Virginia, West Virginia, Wisconsin, and Wyoming.

Why is the northern long-eared bat in trouble?

White-nose Syndrome: No other threat is as severe and immediate as

Page 34 of 148

this. If this disease had not emerged, it is unlikely that northern long-eared bat populations would be experiencing such dramatic declines. Since symptoms were first observed in New York in 2006, white-nose syndrome has spread rapidly from the Northeast to the Midwest and Southeast; an area that includes the core of the northern long-eared bat's range, where it was most common before this disease. Numbers of northern longeared bats (from hibernacula counts) have declined by up to 99 percent in the Northeast. Although there is uncertainty about the rate that white-nose syndrome will spread throughout the species' range, it is expected to continue to spread throughout the United States in the foreseeable future.

Other Sources of Mortality:

Although no significant population declines have been observed due to the sources of mortality listed below, they may now be important factors affecting this bat's viability until we find ways to address WNS.

Impacts to Hibernacula: Gates or other structures intended to exclude people from caves and mines not only restrict bat flight and movement, but also change airflow and microclimates. A change of even a few degrees can make a cave unsuitable for hibernating bats. Also, cave-dwelling bats are vulnerable to human disturbance while hibernating. Arousal during hibernation causes bats to use up their energy stores, which may lead to bats not surviving through winter.

Loss or Degradation of Summer Habitat: Highway construction, commercial development, surface mining, and wind facility construction permanently remove habitat and are activities prevalent in many areas of this bat's range. Many forest management activities benefit bats by keeping areas forested rather than converted to other uses. But, depending on type and timing, some forest management activities can cause mortality and temporarily remove or degrade roosting and foraging habitat.

Wind Farm Operation: Wind turbines kill bats, and, depending on the species, in very large numbers. Mortality from windmills has been documented for northern long-eared bats, although a

small number have been found to date. However, there are many wind projects within a large portion of the bat's range and many more are planned.

What Is Being Done to Help the Northern Long-Eared Bat?

Disease Management: Actions have been taken to try to reduce or slow the spread of white-nose syndrome through human transmission of the fungus into caves (e.g. cave and mine closures and advisories; national decontamination protocols). A national plan was prepared by the Service and other state and federal agencies that details actions needed to investigate and manage white-nose syndrome. Many state and federal agencies, universities and non-governmental organizations are researching this disease to try to control its spread and address its affect. See www.whitenosesyndrome. org/ for more.

Addressing Wind Turbine

Mortality: The Service and others are working to minimize bat mortality from wind turbines on several fronts. We fund and conduct research to determine why bats are susceptible to turbines, how to operate turbines to minimize mortality and where important bird and bat migration routes are located. The Service, state natural resource agencies, and the wind energy industry are developing a Midwest Wind Energy Habitat Conservation Plan, which will provide wind farms a mechanism to continue operating legally while minimizing and mitigating listed bat mortality.

Listing: The northern long-eared bat is listed as a threatened species under the federal Endangered Species Act. Listing a species affords it the protections of the Act and also increases the priority of the species for funds, grants, and recovery opportunities.

Hibernacula Protection: Many federal and state natural resource agencies and conservation organizations have protected caves and mines that are important hibernacula for cave-dwelling bats.

What Can I Do? Do Not Disturb Hibernating Bats:

To protect bats and their habitats, comply with all cave and mine closures, advisories, and regulations. In areas without a cave and mine closure policy, follow approved decontamination protocols (see http://whitenosesyndrome.org/topics/decontamination). Under no circumstances should clothing, footwear, or equipment that was used in a whitenose syndrome affected state or region be used in unaffected states or regions.

Leave Dead and Dying Trees

Standing: Like most eastern bats, the northern long-eared bat roosts in trees during summer. Where possible and not a safety hazard, leave dead or dying trees on your property. Northern long-eared bats and many other animals use these trees.

Install a Bat Box: Dead and dying trees are usually not left standing, so trees suitable for roosting may be in short supply and bat boxes may provide additional roost sites. Bat boxes are especially needed from April to August when females look for safe and quiet places to give birth and raise their pups.

Support Sustainability: Support efforts in your community, county and state to ensure that sustainability is a development goal. Only through sustainable living will we provide rare and declining species, like the northern longeared bat, the habitat and resources they need to survive alongside us.

Spread the Word: Understanding the important ecological role that bats play is a key to conserving the northern longeared and other bats. Helping people learn more about the northern longeared bat and other endangered species can lead to more effective recovery efforts. For more information, visit www.fws.gov/midwest/nleb and www.whitenosesyndrome.org

Join and Volunteer: Join a conservation group; many have local chapters. Volunteer at a local nature center, zoo, or national wildlife refuge. Many state natural resource agencies benefit greatly from citizen involvement in monitoring wildlife. Check your state agency websites and get involved in citizen science efforts in your area.

Northern Long-Eared Bat (Myotis septentrionalis) Species Guidance

Family: Vespertilionidae- the evening bats

State Status: Threatened

State Rank: **S1S3**

Federal Status: None

Global Rank: G4

Wildlife Action Plan Area of Importance Score: 3

Range of the northern long-eared bat in Wisconsin. Source: WI Bat Program 2012

Dave Redell, Wisconsin DNR

Species Information

General Description: The northern long-eared bat, also referred to as the northern bat, is a medium-sized member of the genus *Myotis*. Adults weigh five to nine grams (0.2-0.3 oz). Individual weights vary seasonally and are lowest in the spring as bats emerge from hibernation (WI Bat Program 2010). Total length is 77-92 mm (3.0-3.63 in), adult forearm length is 34-38 mm (1.3-1.5 in), and females are generally larger than males (Kurta 1995). Wingspan is 23-26 cm (9.1-10.2 in; Barbour and Davis 1969). Fur color is light to dark brown. The northern long-eared bat is classified as a cave bat because it uses caves and mines for hibernation.

Similar Species: Three bat species in Wisconsin- the northern long-eared bat, the little brown bat (*Myotis lucifugus*) and the Indiana (*Myotis sodalis*) bat – are best distinguished by close (in-hand) inspection. The northern long-eared bat is most often confused with the little brown bat. The northern long-eared bat has longer ears than the little brown bat, and when folded alongside the head, the tips of the ears should extend 3 mm or more past the tip of the nose. Little brown bat ear length in Wisconsin, however, can be highly variable, and tragus shape and length in relation to the rest of the ear are the two best features to use to distinguish these two species (Fig. 1). The tragus of the northern long-eared bat is more pointed and spear-like than that of the little brown bat. The little brown bat also has a glossier appearance than the northern long-eared. The northern long-eared bat may also be confused with the Indiana bat, but the two can be distinguished much the same way as the little brown bat from the northern long-eared bat. The Indiana bat's keeled calcar, a spur of cartilage extended from the ankle and supporting the interfemoral membrane, is a distinguishing feature that the northern long-eared bat lacks. The northern long-eared bat can be identified by the echolocation call (Fig. 2), however both other *Myotis* species share similar call characteristics, and only trained individuals should positively identify the species through

echolocation calls.

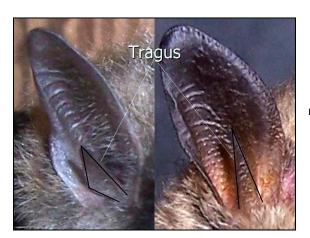


Figure 1. The asymmetrical tragus of the little brown bat (left), and the symmetrical, spear-like tragus of the northern long-eared bat (right). Dave Redell, Wisconsin DNR

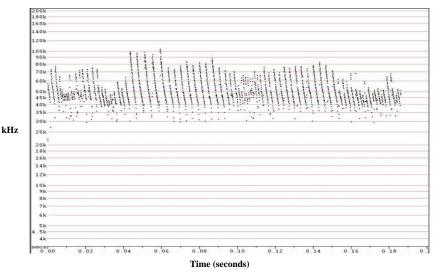


Figure 2. Echolocation call: Northern long-eared bats produce high-frequency calls of a shorter duration, broader bandwidth and lower intensity than other *Myotis* species. The call frequency ranges between 126 and 40 kHz (Caceres and Barclay 2000). The northern long-eared bat sonogram may appear similar to the little brown bat and the Indiana bat.

Associated Species: Northern long-eared bat predators include owls, hawks, occasionally snakes, and raccoons (*Procyon lotor*). As many as 13 feral cats have also been observed congregating at a mine entrance at dusk to prey upon bats as they leave the hibernaculum (D. Redell pers. obs.). Northern long-eared bats often share hibernacula with other bat species such as the tri-colored bat (*Perimyotis subflavus*), the little brown bat, the big brown bat (*Eptesicus fuscus*) and the Indiana bat, but the northern bat rarely, if ever, forms hibernating clusters with other species. Northern long-eared bats forage with other bat species, but there is no evidence of direct competition between species.

State Distribution and Abundance: Northern long-eared bats are found throughout the state of Wisconsin (but see "Threats" section below), but they are never abundant (Jackson 1961, WDNR 2013).

Global Distribution and Abundance: Northern long-eared bats are widely distributed in the eastern United States and Canada, with the exception of the very southeastern United States and Texas (see Fig. 3, BCI 2012).

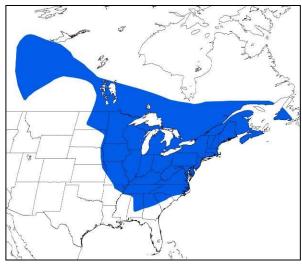
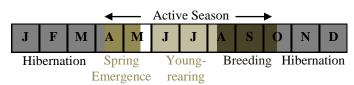



Figure 3. Global distribution of Myotis septentrionalis. (BCI 2012)

Diet: The northern long-eared bat is insectivorous and uses echolocation to locate and capture prey. Northern long-eared bat prey includes moths (*Lepidoptera*), flies (*Diptera*) and beetles (*Coleoptera*). This species is commonly referred to as a gleaning bat because it often catches insects that are at rest on leaves or twigs, in addition to catching insects that are flying (Lee and McCracken 2004).

Reproductive Cycle: The reproductive cycle for the northern long-eared bat begins when breeding occurs in the fall and sometimes into winter hibernation. Sperm is stored in the uterus of the female until April or May when the females emerge from hibernation and fertilization occurs. Females form small maternity colonies of up to 30 bats in late spring and females give birth to a single pup in June or early July (Caceres and Barclay 2000, Owen et. al. 2002). Pups are born hairless and flightless. The pup nurses for about a month and is left at the roost nightly while the mother goes out to feed. The pup begins to fly and explore on its own at four to six weeks. Maternity colonies disperse shortly after young are volant (able to fly) and bats move closer to hibernacula in the fall and mate before they hibernate. Young of the year do not usually mate, but some juvenile males appear reproductively active (WI Bat Program 2009, 2010). More research is needed to determine breeding and reproductive behavior of the northern long-eared bat.

Ecology: Female and male northern long-eared bats emerge from hibernation in April and May. In summer, the northern long-eared bat roosts alone, or females may form a colony with some other females. The northern long-eared bat chooses day roosts in tall trees and snags. Night roosts for this species include caves and rock shelters where they will rest between feeding bouts (Caceres and Barclay 2000). Roost fidelity is low in this species, and individual bats switch roosts about every two days in the summer (Foster and Kurta 1999). This species is a relatively long lived mammal for its size, and usually lives up to 8-10 years. Banding records indicated a northern long-eared bat caught in the wild lived up to 18 years (Caceres and Barclay 2000). In the fall, northern long-eared bats will make short migrations from summer habitat to winter hibernacula (caves and abandoned mines), and will often return to the same hibernaculum but not always in sequential seasons (Caceres and Barclay 2000). This species hibernates with other species such as the little brown bat and tri-colored bat, but often in different parts of the hibernaculum. The northern long-eared bat hibernates deep in crevices, rather than clustering on exposed surfaces like other cave bats, which makes it difficult to survey and monitor for this species during the winter (Caceres and Barclay 2000). More research is needed on northern long-eared bats' basic life history and behavior.

Natural Community Associations: (WDNR 2005 and WDNR 2009)

Many bat species are associated more with structural features within natural communities than with any particular natural community or group of natural communities (see "Habitat" section).

Significant: coldwater streams, coolwater streams, ephemeral pond

Moderate: alder thicket, bog relict, boreal rich fen, calcareous fen (southern), central sands pine – oak forest, coastal plain marsh, emergent aquatic, floodplain forest, hemlock relict, inland lakes, northern dry forest, northern dry-mesic forest, northern hardwood swamp, northern mesic forest, northern sedge meadow, oak barrens, oak woodland, open bog, shrub carr, southern dry forest, southern

dry-mesic forest, southern hardwood swamp, southern mesic forest, southern sedge meadow, submergent aquatic, submergent aquatic oligotrophic marsh, warmwater rivers, warmwater streams, white pine – red maple swamp *Minimal*: none

Habitat: Northern long-eared bat habitat use changes over the course of the year, and varies based on sex and reproductive status. Reproductive females often use different summer habitat from males and non-reproductive females.

Summer: Northern long-eared bats commonly roost in trees but have been known to roost in man-made structures. This species often roosts under bark or close to the tree trunk in crevices of tree species such as maples and ashes (Foster and Kurta 1999). Northern long-eared bats prefer to roost in tall trees with a dynamic forest structure including old growth and some young trees (Foster and Kurta 1999). Females form small maternity colonies which are located in trees, under shingles, and in buildings. Northern long-eared bats commonly forage within the forest and below the canopy mainly in upland forests on hillsides and ridges (Owen et al. 2003), but have also been noted to forage along paths, ponds and streams, and at forest edges. Foster and Kurta (1999) found all roost trees to be close to wetlands. More information is needed to more fully describe northern long-eared bat foraging habitats and summer roosting in Wisconsin.

Home range: Northern long-eared bats use approximately 150 acres for their home range in summer (Owen et al. 2003). More information is needed to accurately describe northern long-eared bat home range and habitat in Wisconsin.

Winter: The northern long-eared bat hibernates in caves and abandoned mines in winter and tends to be found in deep crevices (Kurta 1994, Caceres and Barclay 2000). More research is needed to determine what characteristics make suitable caves and mines for northern long-eared bat hibernation.

Northern long-eared bat hibernacula in southwestern Wisconsin: Passage of a mine in Grant County that houses northern bats (left), and solitary northern long-eared bat in a crevice in Pierce County (right). Heather Kaarakka, Wisconsin DNR

Edge habitat (transition zone between two types of vegetation) is important for northern long-eared bats as they migrate and forage. When bats migrate from wintering caves to summer habitat or commute from roosts to feeding grounds, they move through the landscape in a manner that protects them from wind and predators. Instead of flying the shortest distance across a field, for instance, bats will take longer routes that follow edge habitat. In addition to offering protection, this behavior may also allow bats more feeding opportunities because food is more abundant around edge habitat (Limpens and Kapteyn 1991). Commuting along edge habitat may assist the bats with navigation and orientation through use of linear edges as landmarks (Verboom and Huitema 1997).

Threats: Lack of information on bat species' basic ecology is one of the greatest threats to bat conservation in Wisconsin. The northern long-eared bat faces two emerging threats, and several ongoing threats. White-nose syndrome (WNS) was discovered in 2006 in a hibernaculum in New York State, and appears as a white, powdery substance on the bat's face, tail and wings. White-nose syndrome has spread rapidly since 2007 to other hibernacula in neighboring states (USFWS 2012). Infected little brown bat and northern bat hibernacula in New York and surrounding states have experienced mortality rates of over 90%. White-nose syndrome has been called the "most precipitous wildlife decline in the past century in North America" (BCI 2009), and is caused by a fungus called *Geomyces destructans* (Lorch et al. 2011). This fungus grows best in the cool, wet conditions of hibernacula (Verant et al. 2012). Mortality from the fungus appears to come from increased arousals during torpor, which deplete bats' fat reserves and cause starvation (Reeder et al. 2012) and dehydration (Cryan et al. 2010). For up-to-date WNS information, see the USFWS WNS website and the USGS National Wildlife Health Center website (see *Additional Information*). Neither the fungus nor the disease has been found in Wisconsin as of this writing. Cave-hibernating bats, including the northern long-eared bat, should be monitored closely for any

indication of WNS; the Wisconsin Bat Program conducts WNS surveillance and monitoring in the state.

Wind power is another emerging threat to bats – wind turbines have been shown to fatally impact all bat species in Wisconsin (Johnson 2003, Arnett et al. 2008). Wind-turbine blades cause mortality through direct impact or through the pressure differential caused by the motion of the spinning blades. This pressure differential causes a bat's lungs to fill with fluid as it flies near the spinning blades, and this phenomenon (known as barotrauma) kills the bat instantly (Baerwald et. al. 2008). More research is under way to better understand bat wind-turbine vulnerabilities, but current studies suggest that bats face the greatest risk during migration from summer foraging sites to wintering grounds (tree bats) or hibernacula (cave bats) (Johnson 2003, Kunz et al. 2007). Research is needed on all Wisconsin bat species to better understand wind-turbine mortality in the state and the long term population impacts of turbine-related deaths.

Northern long-eared bats also face the ongoing threat of habitat degradation. Habitat degradation is caused by increased agricultural, industrial, and household pesticide use, and it has negative effects on bats through direct exposure and through dietary accumulation (O'Shea et al. 2001). Pesticides are a threat to many taxa, but bats may be more vulnerable than other small mammals due to certain life characteristics (Shore et al. 1996, O'Shea et al. 2001). Bats' longevity and high trophic level means pesticides can concentrate in their body fat (Clark and Prouty 1977, Clark 1988). Even after pesticide exposure ceases, residues can be passed on to nursing young (Clark 1988). Bat species that migrate long distances may be more affected because pesticide residues become increasingly concentrated in the brain tissue as fat reserves are depleted during long-distance flights. This concentration can lead to convulsions and even death (Geluso et al. 1976, Clark 1978).

Northern long-eared bats also face the ongoing threat of hibernaculum disturbance from humans entering hibernacula in winter and waking bats from torpor. Bats in torpor reduce their metabolism and body temperature to low levels that require less energy than being fully awake. Interrupting torpor costs energy; a little brown bat uses up to 100 mg of fat reserves waking and the returning to torpor (and more if the bat starts flying), or the energetic equivalent of up to 67 days of torpor (Thomas et al. 1990, Thomas 1992). This loss clearly represents a large percentage of total body weight of the bat, and repeated arousals may cause bats to run out of energy reserves before spring arrives and therefore starve in the hibernaculum or die from exposure if they seek food outside (Thomas 1995).

Climate Change Impacts: The effects of climate change on the northern long-eared bat are unclear. Predictions suggest a northward expansion in the ranges of all cave-bat species, in pursuit of optimal hibernation (Humphries et al. 2002, USFWS 2007). This prediction assumes an abundance of suitable caves and other hibernaculum structures further north, but this assumption may not hold for karst-free regions at higher latitudes. Bat species may adapt by reducing torpor depth and duration during winter if prey insect species are available for more of the year (Weller et al. 2009), but bats' adaptive capacities in this regard may be limited and are not well known. Shifts in prey insect emergence may also cause mismatches with bat emergence and cause food shortages in the spring or fall.

Survey Guidelines: Persons handling northern long-eared bats must possess a valid <u>Endangered and Threatened Species Permit</u>. If surveys are being conducted for regulatory purposes, survey protocols and surveyor qualifications must first be approved by the Endangered Resources Review Program (see *Contact Information*).

Acoustic surveys, which should be done by trained individuals, are performed for all Wisconsin bat species in spring, summer, and fall; and are used to determine presence/absence, phenology, and distribution around the state. The Wisconsin Bat Program's eventual goal is to use acoustic survey data to determine bat population trends in Wisconsin. Northern long-eared bats are ubiquitous around the state, and therefore surveys can be done wherever appropriate habitat exists. Acoustic recording systems that detect echolocation calls can survey bats as they fly through an area. The bat detection system detects and records these acoustic signals as bats fly by, and records the date and time of each encounter. The Wisconsin Bat Program currently uses broadband frequency division ultrasound detection equipment with a PDA (Personal Data Assistant) and a Global Positioning System. Start acoustic surveys half an hour after sunset, but only if the daytime temperature exceeds 50° F, and conduct the survey for at least one hour. There are three seasons for acoustic surveys: spring (April and May), summer (June and July), and fall (August and September). Acoustic surveys record bat passes, which can then be identified to species by trained individuals. These surveys could be used by land managers to create inventories of species distribution and relative abundance. Visit the Wisconsin bat monitoring website for additional information.

Wisconsin DNR also conducts a roost monitoring program to determine abundance of bats roosting in buildings and bat houses. People with bat houses or other roost sites identify species and count bats over the summer at night as bats leave the roost. People who find a bat roost while doing field surveys should contact the <u>Wisconsin Bat Program</u> to report the information.

Summarize results, including survey dates, times, weather conditions, number of detections, detection locations, and behavioral data and submit via the WDNR online report: http://dnr.wi.gov, keyword "rare animal field report form">

Management Guidelines

The following guidelines typically describe actions that will help maintain or enhance habitat for the species. These actions are not mandatory unless required by a permit, authorization or approval.

Summer Management

Roost availability is thought to limit northern long-eared bat populations, as it does for many bat species, and thus habitat management is important for the continued survival of this species (Duchamp et al. 2007). Northern long-eared bats are forest dwelling bats, and forest management to promote occupation by this species should increase roosting and foraging habitat (see Habitat section above). Northern long-eared bats have been shown to use both live and dead trees for roosting sites (Foster and Kurta 1999). These bats often roost under exfoliating bark, and therefore snags and dying trees may be important for encouraging northern long-eared bats. Forest managers are encouraged to promote mixed-species, mixed-aged plots as the northern long-eared bat chooses trees based on suitability of crevices and bark as roosts, rather than on tree species (Foster and Kurta 1999). The northern long-eared bat is known to switch roost trees frequently (about every 2 days) over the course of the summer, and therefore this species needs a large number of trees (Foster and Kurta 1999). As with many bat species, suitable forested habitat for northern long-eared bats is a multi-species matrix that contains some open areas (Owen et al. 2003).

Linear corridors are important for migrating and commuting bats, and forests may be managed such that suitable foraging habitat is connected by corridors; this may include managing edge habitat along roads, logging trails and riparian habitat. Land managers should also make an effort to reduce or eliminate burdock (*Arctium minus*), an exotic weed that produces seeds that trap bats and cause death from exposure.

Special consideration should be given to protecting snags or dying trees, especially those near known roost locations, particularly from June 1 through August 15 while bats may have pups at the roost.

Seasonal pools in woodlands may be important foraging and water sources for the northern long-eared bat and other Wisconsin bat species because they provide areas for feeding and drinking in an otherwise closed-canopy forest (Francl 2008). Pool size and depth do not appear to determine usage by northern long-eared bats; instead the presence of an opening in the forest is enough to encourage foraging and drinking (Francl 2008).

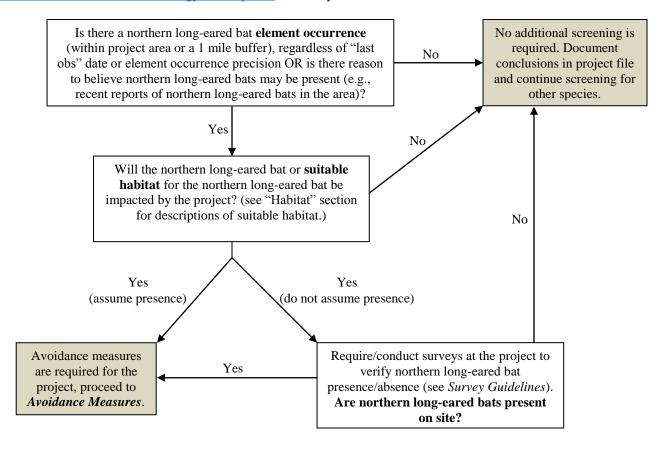
Fall Management

During fall swarm, large proportions of Wisconsin's cave bat population gather near entrances of the state's hibernacula (see "Habitat" section), and become concentrated and vulnerable to direct impacts. To avoid disturbance during crucial life history events, management activities such as logging and use of heavy machinery within 0.25 miles of hibernacula entrances should be avoided during fall swarm (August 15-October 15) or during spring emergence (April 1-May 15) because bats may use the surrounding area for roosting during those time periods.

Winter Management

Little is known about how northern long-eared bats choose hibernation sites, but suitable Wisconsin hibernacula typically have steady temperatures between 4° C and 12° C (39-53° F), high humidity, and no human disturbance. Artificial sites that can mimic this environment may provide suitable hibernacula. Artificial hibernacula include bunkers, food storage-caves and basements. Contact the Wisconsin Bat Program to inquire about developing artificial hibernacula.

Natural hibernacula can also be managed to encourage bat use. For example, closing but not sealing the entrance to an abandoned mine not only buffers temperature and humidity, but also reduces disturbance from humans and predators. Eliminating disturbance from humans, except for WNS surveillance, is the best management activity for natural cave hibernacula. Contact the <u>Wisconsin Bat Program</u> for more information about managing bat hibernacula.


Northern long-eared bats – and their populations as a whole – are particularly vulnerable during winter hibernation because they are concentrated in just a few major hibernacula and because repeated disturbance during hibernation can lead to mortality (see "Threats" section above). Each time a bat is aroused from torpor, it uses up a substantial proportion of the fat reserves it relies on to hibernate through the winter and faces greater odds of starvation before spring (see "Threats" section above). Therefore, avoid entering hibernacula from October 1 through May 15 unless conducting approved and permitted management, surveillance, or research.

Screening Procedures

The following procedures must be followed by DNR staff reviewing proposed projects for potential impacts to the species.

Follow the "Conducting Endangered Resources Reviews: A Step-by-Step Guide for Wisconsin DNR Staff" document (summarized below) to determine if northern long-eared bats will be impacted by a project (WDNR 2012):

Those seeking to complete wind farm projects should review and follow the <u>Guidance for Minimizing Impacts to Natural Resources</u> from Terrestrial Commercial Wind Energy Development created by the WDNR.

Avoidance Measures

The following measures are specific actions required by DNR to avoid take (mortality) of state threatened or endangered species per Wisconsin's Endangered Species law (s. 29.604, Wis. Stats.) These guidelines are typically not mandatory for non-listed species (e.g., special concern species) unless required by a permit, authorization or approval.

According to Wisconsin's Endangered Species Law (s. 29.604, Wis. Stats.), it is illegal to take, transport, possess, process, or sell any wild animal on the Wisconsin Endangered and Threatened Species List (ch. NR 27, Wis. Admin. Code). Take of an animal is defined as shooting, shooting at, pursuing, hunting, catching or killing.

If *Screening Procedures* above indicate that avoidance measures are required for a project, follow the measures below. If you have not yet read through *Screening Procedures*, please review them first to determine if avoidance measures are necessary for the project.

- 1. The simplest and preferred method to avoid take of northern long-eared bats is to avoid directly impacting individuals, known northern long-eared bat locations, or areas of suitable habitat (described above in the "Habitat" section and in *Screening Procedures*). The U.S. Fish and Wildlife Services identifies humans and their equipment as a possible vectors for spores of *Geomyces destructans* the fungus that causes white-nose syndrome (WNS) and therefore simply entering hibernacula at any time of year and moving between them poses threats to bats. Cavers and researchers must observe all cave and mine closures and decontamination protocols (s. NR 40.07, Wis. Admin. Code; see *Additional Information*). In addition, it is illegal to use pesticides and poisons when attempting to evict bats from house roosts (s. 94.708, Wis. Stats.).
- 2. If suitable habitat cannot be avoided, follow these time-of-year restrictions to avoid take:

Summer Avoidance (June 1-Aug 15)

Reproductive females and their young are highly vulnerable to mass mortality during the species' maternity period (June 1 – August 15) because they may aggregate in maternity colonies, and because pups cannot fly and therefore cannot leave the roost for several weeks after birth. Maternity colonies may occur in human structures, and those seeking to exclude bats from a building or other roost must follow the Cave Bat Broad Incidental Take Permit and Authorization (see Additional Information).

- 3. If impacts cannot be avoided during restoration or management activities, including wind projects and forestry management, but activities are covered under the <u>Cave Bat Broad Incidental Take Permit and Authorization</u>; the project is covered for any unintentional take that may occur. For information about natural roost avoidance, see *Management Guidelines* and "Habitat" section above.
- 4. If northern long-eared bat impacts cannot be avoided, please contact the Natural Heritage Conservation Incidental Take Coordinator (see *Contact Information*) to discuss possible project-specific avoidance measures. If take cannot be avoided, an Incidental Take Permit or Authorization (see *Additional Information*) is necessary.

Additional Information

References

- Arnett, E. B., W. K. Brown, W.P. Erickson, J. K. Fiedler, B. L. Hamilton, T. H. Henry, A. Jain, G. D. Johnson, J. Kerns, R. R. Koford, C. P. Nicholson, T. G. O'Connell, M. D. Piorkowski, R. D. Tankersley, Jr. 2008. Patterns of Bat Fatalities at Wind Energy Facilities in North America. Journal Wildlife Management 72: 61-78.
- Baerwald, E.F., G. H. D'Amours, B. J. Klug, R. M. Barclay. 2008. Barotrauma is a Significant Cause of Bat Fatalities at Wind Turbines. Current Biology 18(16).
- Barbour, R.W, and W.H. Davis. 1969 Bats of America. The University Press of Kentucky.Lexinton, KY.
- Bat Conservation International [BCI]. 2001. Bats in Eastern Woodlands.
- Bat Conservation International [BCI]. 2009. "White Nose Syndrome." http://batcon.org/index.php/what-we-do/white-nose-syndrome.html (accessed Dec 2009).
- Bat Conservation International [BCI]. "Bat Species Profiles: Myotis septentrionalis." Bat Conservation International, 2012. http://batcon.org/index.php/all-about-bats/species-profiles.html (accessed Sept 2012).
- Boyles J.G., P.M. Cryan, G.F. McCracken, T.H. Kunz. 2011. Economic importance of bats in agriculture. Science 332:41-42.
- Caceres, M. C., R. M. Barclay. 2000. Myotis septentrionalis. Mammalian Species 634: 1-4
- Clark, D. R. Jr. 1988. Environmental contaminants and the management of bat populations in the United States. Pp. 409-413 in R. C. Szaro, K. S. Severson, and D. R. Patton (eds.), Proceedings of the Symposium on Management of Amphibians and Reptiles and Small Mammals of North America, Flagstaff, AZ. USDA Forest Service, General Technical Report RM-166.
- Clark, D. R. Jr., R. K. LaVal, and D. M. Swineford. 1978. Dieldrin-induced mortality in an endangered species, the Gray bat (*Myotis grisescens*). Science 199:1357-1359.
- Clark, D. R. Jr. and R. M. Prouty. 1977. Experimental feeding of DDE and PCB to female big brown bats (*Eptesicus fuscus*). Journal of Toxicology and Environmental health 2:917-928.
- Cryan, P.M., C.U. Meteyer, J.G. Boyles and D.S Blehert. 2010. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biology 8:135-142.

- Duchamp, J.E., E.B. Arnett, M.A. Larson, R.K. Swihart. 2007. Ecological considerations for landscape-level management of bats. Pp 237-361 in M.J. Lacki, J.P. Hayes, A. Kurta (eds), Bats in Forests: Conservation and management. John Hopkins University press. Baltimore, MD.
- Francl, K. E. 2008. Summer bat activity at woodland seasonal pools in the northern Great Lakes region. Wetlands. 28: 117-124.
- Foster, R. W., A. Kurta. 1999. Roosting ecology of the northern bat (*Myotis septentrionalis*) and comparisons with the endangered Indiana bat (*Myotis sodalis*). Journal of Mammalogy 80: 659-672.
- Geluso, K. N., J. S. Altenbach, and D. E. Wilson. 1976. Bat mortality: Pesticide poisoning and migratory stress. Science, 194(4261): 184-186.
- Humphries, M. M., D. W. Thomas, and J. R. Speakman. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418:313-316
- Indiana Bat (Myotis sodalis) Draft Recovery Plan: First Revision. 2006. USFWS. Fort Snelling, Minnesota.
- Jackson, H. Mammals of Wisconsin. 1961. The University of Wisconsin Press. Madison, WI.
- Johnson, G. D., W. P. Erickson, M.D. Strickland, M. F. Shepherd, D. A. Shepherd. 2003. Mortality of Bats at a Large-scale wind power development at buffalo ridge, Minnesota. American Midland Naturalist 50: 332-342.
- Kunz, T. H., E. B. Arnett, W. P. Erickson, A. R. Hoar, G. D. Johnson, R. P. Larkin, M. D. Strickland, R. W. Thresher, M. D. Tuttle. 2007. Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. Front Ecol. Environment 5: 315-324.
- Kurta, A. 1995. Mammals of the great lakes region. Ann Arbor: University of Michigan Press.
- Lacki, M. J., J. P. Hayes, A. Kurta. Bats in Forests: Conservation and management. Baltimore: John Hopkins University Press, 2007. Pp 250.
- Lee, Y. F., G. F. McCracken. 2004. Flight activity and food habits of three species of *Myotis* bats (Chiroptera: Vespertilionidae) in sympatry. Zoological Studies 43: 589-597.
- Limpens, H., K. Kapteyn. 1991. Bats, their behavior and linear landscape elements. Myotis 29: 39-48.
- Lorch, J.M., C.U. Meteyer, M.J. Behr, J.G. Boyles, P.M. Cryan, A.C.Hicks, A.E.Ballmann, J.T.H. Coleman, D.N.Redell, D.M.Reeder and D.S.Blehert. 2011 Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376-378.
- Nowak, R. M. Walker's bats of the world. Baltimore: John Hopkins University Press, 1991.
- O'Shea, T. J., A. L. Everette, and L. E. Ellison. 2001. Cyclodiene Insecticide, DDE, DDT, Arsenic, and Mercury contamination of big brown bats (*Eptesicus fuscus*) foraging at a Colorado superfund site. Archives of Environmental Contamination and Toxicology 40:112-120.
- Owen, S. F., M. Menzel, W. M. Ford, B. R. Chapman, K. V. Miller, J. W. Edwards, P. B. Wood. 2002. Roost tree selection by maternity colonies of northern long-eared myotis in an intensively managed forest. Gen. Tech. Rep. NE-292. Newtown Square, PA: U.S. Department of Agriculture, Forest service, Northeastern Research Station. 6 p.
- Owen, S. F., M. Menzel, W. M. Ford, B. R. Chapman, K. V. Miller, J. W. Edwards, P. B. Wood. 2003. Home-range size and habitat used by the northern Myotis (*Myotis septentrionalis*). American Midland Naturalist 150:352-359.

- Reeder, D., C.L. Frank, G.G. Turner, C.U. Meteyer, A. Kurta, E.R. Britzke, M.E. Vodzak, S.R. Darling, C.W. Stihler, A.C. Hicks, R. Jacob, L.E. Grieneisen, S.A. Brownlee, L.K. Muller, D.S. Blehert. 2012. Frequent arousal from hibernation linked to severity of infection and mortality in bats with White-nose syndrome. PLoS ONE 7: e38920. doi:10.1371/journal.pone.0038920.
- Redell, D. 2005. Behavioral ecology of bats using the Neda mine hibernaculum. Thesis: University of Wisconsin, Madison.
- Shore, R. F., D. G. Myhill, and J. A. Wright. 1996. Comparison of the toxicity to laboratory mice and pipistrelle bats *Pipistrellus pipistrellus* of exposure to remedially-treated timber. Environmental Toxicology and Pharmacology 2:125-129.
- Thomas D. W. 1992. Lack of evidence for a biological alarm clock in bats (*Myotis* spp.) hibernating under natural conditions. Canadian Journal of Zoology 71:1-3.
- Thomas D. W., M. Dorais, J. M. Bergeron. 1990. Winter energy budget and costs of arousals for hibernating little brown bats, *Myotis lucifugus*. Journal Mammalogy 71: 475-479.
- USFWS [United States Fish and Wildlife Service]. 2007. Indiana Bat (*Myotis sodalis*) Draft Recovery Plan: First Revision. < http://www.fws.gov/midwest/endangered/mammals/inba/pdf/inba_fnldrftrecpln_apr07.pdf>
- USFWS [US Fish and Wildlife Service]. "White nose syndrome in bats: Frequently asked questions" *US Fish and Wildlife Service Northeast Region*. April 2009. USFWS. http://www.fws.gov/northeast/pdf/white-nosefags.pdf (accessed Oct 2009).
- USFWS [US Fish and Wildlife Service]. "White nose syndrome in bats: for cavers" *US Fish and Wildlife Services Northeast Region*. November 2009. USFWS. < http://whitenosesyndrome.org/resources/cavers> (accessed Dec 2009).
- Verboom, B., H. Huitema. 1997. The Importance of linear landscapes for the pipistrelle *Pipistrellus pipistrellus* and the serotine bat *Eptesicus serotinus*. Landscape Ecology 12: 117-125.
- Verant, M.L., J.G. Boyles, W.W. Waldrep Jr, G. Wibbelt, D.S. Blehert. 2012. Temperature-dependant growth of *Geomyces destructans*, the fungus that causes but white-nose syndrome. PLoS ONE 7: e46280. doi:10.1371/journal.pone.0046280
- Weller, T. J., P. M. Cryan, and T. J. O'Shea. 2009. Broadening the focus of bat conservation and research in the USA for the 21st century. Endangered Species Research 8:129-145.
- Wisconsin Bat Program. 2008, 2009, 2010, 2012. Unpublished Data.
- WDNR [Wisconsin Department of Natural Resources]. 2005. Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need: A State Wildlife Action Plan. Madison, Wisconsin, USA. http://dnr.wi.gov, key word "Wildlife Action Plan">
- WDNR [Wisconsin Department of Natural Resources]. 2009. Wisconsin wildlife action plan species profile: Northern Long-eared Bat. (accessed May 27, 2012). Madison, Wisconsin, USA. <material now available on the Natural Heritage Conservation species Web page: http://dnr.wi.gov, key word "biodiversity">
- WDNR [Wisconsin Department of Natural Resources]. 2012. Conducting Endangered Resources Reviews: A Step-by-Step Guide for Wisconsin DNR Staff. Bureau of Endangered Resources. Wisconsin Department of Natural Resources, Madison, Wisconsin.
- WDNR [Wisconsin Department of Natural Resources]. 2013. Natural Heritage Inventory database. Accessed 29 July 2013.
- WICCI [Wisconsin Initiative on Climate Change Impacts]. 2011. Wisconsin's Changing Climate: Impacts and Adaptation. Nelson Institute for Environmental Studies, University of Wisconsin-Madison and the Wisconsin Department of Natural Resources, Madison, Wisconsin, USA. http://www.wicci.wisc.edu/report/2011 WICCI-Report.pdf>

Linked Websites:

- > Cave bat Broad Incidental Take Permit and Authorization: http://dnr.wi.gov/topic/erreview/itbats.html
- Natural Communities of Wisconsin: http://dnr.wi.gov/org/land/er/communities/
- Natural Heritage Conservation Permit Requirements: < http://dnr.wi.gov/topic/EndangeredResources/permits.html>

- Rare Animal Field Report Form: http://dnr.wi.gov, key word "rare animal field report form">
- ➤ USFW WNS Website: <<u>http://www.whitenosesyndrome.org</u>>
- USGS National Wildlife Health Center: http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/
- Wind Guidance: http://dnr.wi.gov/topic/Sectors/documents/energy/WindGuidelines.pdf
- ➤ Wisconsin Bat Program Exclusion Instructions: http://wiatri.net/inventory/bats/Monitoring/Roosts/docs/BatExclusion.pdf
- ➤ Wisconsin Bat Program: < http://wiatri.net/inventory/bats>
- ➤ WDNR Decontamination Protocols for Preventing Spread of White-nose syndrome: http://dnr.wi.gov/topic/WildlifeHabitat/documents/WNS DeconProtocols.pdf>
- > Wisconsin Endangered and Threatened Species: http://dnr.wi.gov, key word "endangered resources">
- Wisconsin Endangered and Threatened Species Permit: http://dnr.wi.gov, key word "endangered species permit">"">"
- ➤ Wisconsin Initiative on Climate Change Impacts: < http://www.wicci.wisc.edu/>
- Wisconsin Natural Heritage Inventory Working List Key: http://dnr.wi.gov/topic/NHI/WList.html
- Wisconsin's Wildlife Action Plan: http://dnr.wi.gov/topic/wildlifehabitat/actionplan.html

Funding

- Natural Resources Foundation of Wisconsin: http://www.wisconservation.org/
- ➤ USFWS State Wildlife Grants Program: http://wsfrprograms.fws.gov/subpages/grantprograms/swg/swg.htm
- Wisconsin Natural Heritage Conservation Fund
- Wisconsin DNR Division of Forestry

Endangered Resources Review Program Contacts

- ➤ General information (608-264-6057, DNRERReview@wisconsin.gov)
- Rori Paloski, Incidental Take Coordinator, Wisconsin DNR, Bureau of Natural Heritage Conservation (608-264-6040, rori.paloski@wi.gov)

Bat Contact Information

- ➤ <u>John Paul White</u> Conservation biologist, Wisconsin DNR, Bureau of Natural Heritage Conservation (John.white@wisconsin.gov)
- Wisconsin Bat Program (608-266-5216, <u>DNRbats@wisconsin.gov</u>)

Suggested Citation

Wisconsin Department of Natural Resources. 2013. Wisconsin Northern Long-Eared Bat Species Guidance. Bureau of Natural Heritage Conservation, Wisconsin Department of Natural Resources, Madison, Wisconsin. PUB-ER-700.

Developed by

- ➤ Heather M. Kaarakka, Emma M. Pelton, David N. Redell primary authors
- Gregor W. Schuurman, primary editor

Wisconsin Department of Natural Resources
Bureau of Natural Heritage Conservation
PO Box 7921
Madison, WI 53707-7921
http://dnr.wi.gov, keyword "ER"

U.S. Fish & Wildlife Service

Rufa red knot

Calidris canutus rufa

Skilled aviator Rear Admiral Richard E. Byrd flew over both the North and South poles. But what this renowned man accomplished with the help of sled dogs, ships and airplanes, a little shorebird weighing less than a cup of coffee completes every year of its life. The red knot is truly a master of long-distance aviation.

On wingspans of 20 inches, some red knots fly more than 9,300 miles from south to north every spring and repeat the trip in reverse every autumn, making this bird one of the longest-distance migrants in the animal kingdom. About 9 inches long, red knots are about the size of a robin. Biologists have identified six subspecies, three of them living in the Western Hemisphere: C.c. islandica, C.c. roselaari, and *C.c.* rufa. This last, the red knot known as rufa, winters at the tip of South America in Tierra del Fuego, in northern Brazil, throughout the Caribbean, and along the U.S. coasts from Texas to North Carolina. The rufa red knot breeds in the tundra of the central Canadian Arctic from northern Hudson Bay to the southern Queen Elizabeth Islands.

Surveys of wintering knots along the coasts of southern Chile and Argentina and during spring migration in Delaware Bay on the U.S. coast indicated a serious population decline during the 2000. Biologists from the U.S. Fish and Wildlife Service, state natural resource agencies,

A red knot banded in May 1987 was seen on Delaware Bay in May 2000. During those 13 years, the bird had flown about 242,350 miles, a distance farther than from the earth to the moon.

and non-profit organizations all share a concern for the rufa red knot and are pooling efforts to identify what needs to be done to prevent further losses.

Strength in numbers

Red knots winter and migrate in large flocks containing hundreds of birds. While we can guess at some of the benefits of traveling in large flocks, such as protection from predators, we can also see the downside - susceptibility to habitat change and loss, oil spills, toxins, red tides, diseases, collisions with wind turbines, storms, and hunting. Red knots were heavily hunted in the early 20th century, and may have never recovered in eastern North America. Knots are still hunted in parts of the Caribbean and South America.

Eating like a bird

For much of the year red knots eat small clams, mussels, snails and other invertebrates, swallowing their prey whole – shell and all. Migrating knots can complete nonstop flights of 1,500 miles and more, converging on critical stopover areas to rest and refuel along

the way. In order to endure their long journeys, red knots undergo extensive physical changes. Flight muscles enlarge, while leg muscles shrink. Stomachs and gizzards decrease, while fat mass increases by more than 50 percent. Due to these physical changes, knots arriving from long migration flights are not able to feed maximally until their digestive systems regenerate, a process that may take several days. Thus, migrating birds require stopover habitats rich in easily digested foods – with thin or no shells – in order to gain enough weight to fuel the next flight. In spring, migrating knots seem to follow a northward "wave" in quality prey – by timing their stopovers with the spawning seasons of intertidal invertebrates, knots take advantage of readily digestible food resources like juvenile clams and mussels and horseshoe crab eggs. Red knots arrive at stopovers areas very thin, sometimes emaciated. They eat constantly to gain enough weight to continue their journeys, adding up to 10 percent of their body weight each day and nearly doubling their body weights during some stopovers.

Requirements for survival

The red knot's unique and impressive life history depends on suitable habitat, food, and weather conditions at far-flung sites across the Western Hemisphere, from the extreme south of Tierra del Fuego to the far north of the central Canadian Arctic. Further, red knots need to encounter these favorable habitat, food, and weather conditions within narrow seasonal windows as the birds hopscotch along migration stopovers between wintering and breeding areas. For example, the red knot population decline that occurred in the 2000s was caused primarily by reduced food availability from increased harvests of horseshoe crabs, exacerbated by small changes in the timing that red knots arrived at the Delaware Bay. Red knots may also be particularly vulnerable to global climate change, which is likely to affect the arctic tundra ecosystem where the knots breed; the quality and quantity of coastal habitats due to rising sea levels; the quantity and timing of invertebrate food resources throughout the bird's range; and the severity, timing, and location of storm and weather patterns.

Horseshoe crab harvests are now managed with explicit goals to stabilize and recover red knot populations; red knot number appear to have stabilized in the past few years, but at low levels relative to earlier decades. Red knots fascinate biologists, bird watchers and people who appreciate the complex beauty of the natural world. Together with these partners, the U.S. Fish and Wildlife Service is dedicated to working to conserve this extraordinary bird.

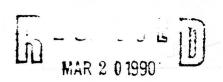
Northeast Region U.S. Fish and Wildlife Service 300 Westgate Center Drive Hadley, MA 01035 413/253 8200 http://northeast.fws.gov

Federal Relay Service for the deaf and hard-of-hearing 1 800/877 8339

U.S. Fish and Wildlife Service http://www.fws.gov 1 800/344 WILD September 2013

Summary of Essential Fish Habitat (EFH) Designations

Name of Estuary/ Bay/ River: Boston Harbor, Massachusetts


10□ x 10□ latitude and longitude squares included in this bay or estuary or river (southeast corner boundaries):

4220/7100; 4210/7050; 4210/7100

Species	Eggs	Larvae	Juveniles	Adults	Spawning Adults
Atlantic salmon (Salmo salar)					
Atlantic cod (Gadus morhua)	S	S	M,S	M,S	S
haddock (Melanogrammus aeglefinus)	S	S			
pollock (Pollachius virens)	S	S	M,S		
whiting (Merluccius bilinearis)	S	S	M,S	M,S	
offshore hake (Merluccius albidus)					
red hake (Urophycis chuss)		S	S	S	
white hake (Urophycis tenuis)	S	S	S	S	
redfish (Sebastes fasciatus)	n/a				
witch flounder (Glyptocephalus cynoglossus)					
winter flounder (Pleuronectes americanus)	M,S	M,S	M,S	M,S	M,S
yellowtail flounder (Pleuronectes ferruginea)	S	S	S	s	S
windowpane flounder (Scopthalmus aquosus)	M,S	M,S	M,S	M,S	M,S
American plaice (Hippoglossoides platessoides)	S	S	s	S	S
ocean pout (Macrozoarces americanus)			S	S	
Atlantic halibut (Hippoglossus hippoglossus)	s	S	S	S	S
Atlantic sea scallop (Placopecten magellanicus)					
Atlantic sea herring (Clupea harengus)		s	M,S	M,S	
monkfish (Lophius americanus)					
bluefish (Pomatomus saltatrix)			M,S	M,S	
long finned squid (Loligo pealei)	n/a	n/a			
short finned squid (Illex illecebrosus)	n/a	n/a			

Atlantic butterfish (Peprilus triacanthus)	S	S			
Atlantic mackerel (Scomber scombrus)	M,S	M,S	M,S	M,S	
summer flounder (Paralicthys dentatus)					
scup (Stenotomus chrysops)					
black sea bass (Centropristus striata)					
surf clam (Spisula solidissima)	n/a	n/a			
ocean quahog (Artica islandica)	n/a	n/a			
spiny dogfish (Squalus acanthias)	n/a	n/a			
tilefish (Lopholatilus chamaeleonticeps)					

National Register of Historic Places Registration Form

NATIONAL REGISTER

This form is for use in nominating or requesting determinations of eligibility for individual properties or districts. See instructions in *Guidelines for Completing National Register Forms* (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. It an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, styles, materials, and areas of significance, enter only the categories and subcategories listed in the instructions. For additional space use continuation sheets (Form 10-900a). Type all entries.

Name of Property			
	Pumping Station Complex		
other names/site number			
2. Location			
street & number 435 Mount V	ernon Street		N/A not for publication
city, town Boston, (Do	rchester)		N/A vicinity
state Massachusetts code	county Suffolk	code 02	5 zip code 02125
3. Classification			
Ownership of Property	Category of Property	Number of Res	ources within Property
private	X building(s)	Contributing	Noncontributing
X public-local	district	3	1 buildings
public-State	site		sites
public-Federal	structure	3	structures
	Object		objects
		3	1 Total
Name of related multiple property lis	sting:	Number of con	tributing resources previously
N/A			tional Register
. State/Federal Agency Certif	ication		
Signature of certifying official Exec State Historic Preserv State or Federal agency and bureau	eets does not meet the National Regi	s Historical	Date
 National Park Service Certification hereby, certify that this property is 			
_			
entered in the National Register.			
See continuation sheet.			
determined eligible for the Nation			
Register. See continuation shee	et		
determined not eligible for the			
National Register.			
removed from the National Regis	ster		
	Signature of th	ne Keeper	Date of Action

5. Function or Use Calf Pasture Pumping Stat	ion, Boston (Dorchester), Massachusetts
Historic Functions (enter categories from instructions) Government: Public Works	Current Functions (enter categories from instructions) Government: Public Works
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
converg-	
7. Description (Architectural Classification (enter categories from instructions)	Materials (enter categories from instructions)
Romanesque Revival Queen Anne	foundation Stone: Granite walls Stone: Granite
	roofAsphalt
Describe present and historic physical appearance.	Portions radacted

Portions redacted

The Calf Pasture Pumping Station is located on Columbia Point, a 350 acre peninsula, two miles south of Boston in the neighborhood of Dorchester. The pumping station and two related outbuildings, a gate house and shaft entrance, share a 9.5 acre lot and face northeast onto Dorchester Bay. The landscape of the peninsula is generally flat, with the exception of a hilly area to the east of the pumping station. A modern building, the switch house, is located north of the pumping station complex, and is not included in the nomination.

Columbia Point was the landing place in Dorchester for Puritan Settlers. Native Americans called the site "Mattaponnock". Between 1630 and 1869, the marshlands of the peninsula were used as a cow or "calf pasture." Its land mass originally totalled only 14 acres; however, numerous landfills from the mid-19th through the mid-20th centuries have increased the acreage to its present size, 350 acres.

Calf Pasture's pumping station shares Columbia Point with several notable buildings. To the northwest is the recently renovated Harbor Point Complex, originally built in 1953 as one of the nation's first public housing projects, it is now a mixed income development. Calf Pasture's rear facade faces the University of Massachusetts Boston Harbor Campus, constructed in 1970. It is a large red brick complex which has a total of 1.6 million square feet of classrooms, offices and recreation space. In 1979, the John F. Kennedy Library was constructed from designs by I.M. Pei and Associates. The dramatic white concrete and glass structure stands at the eastern tip of Columbia Point, facing Dorchester Bay. Finally, the Massachusetts Archives building, designed by Jim Batchelor and completed in 1986, is located to the east of the Pumping Station. This structure houses the Commonwealth Museum, the State Records Center and the Central Micrographics unit.

The plan of the structure is L-shaped. The engine room, the main section, measures 201 feet by 72 feet. The boiler room, an ell off of the engine room, measures 80 feet by 60 feet. The main elevation is divided into 5 sections, arranged in a step fashion. The lowest sections are 23 feet high and are on the outside. The intermediate sections measure 45 feet while the center section is 84 feet.

National Register of Historic Places Continuation Sheet

Section number7 Page1	Calf Pasture Pumping Station,	
Section namber	, age	Boston, (Dorchester), Massachusetts

The central section has a very steeply pitched gable-on-hip roof; the roof on the four remaining sections is flat. Copper flashing is evident on the main facade. This central section on both the front and rear elevations is framed by narrow castellated turrets which functioned as ventilators for the steam driven pumps. The gable-on-gable roof on the one story ell, which served as a boiler room, features a row of clerestory windows.

The exterior walls are constructed of rough cut, rock faced granite. Dark colored granite is used for most of the exterior; light granite is used to highlight certain architectural elements. Decorative detailing in lighter granite includes the belt courses, window and door frames and the castellated cornice. The central section of the main elevation has two plaques; the one to the left reading "B.I.S." (Boston Improved Sewer), and the one to the right with the construction date, 1883. All original granite appears to be intact and in excellent condition. However, years of accumulated dirt hide the polychromatic scheme. The structure's foundation is made of granite.

The structure is articulated by round arch and rectangular windows, spaced evenly throughout the elevations. The central section of the main elevation is dominated by a huge round arch window, measuring 26 feet in diameter. This window is set directly above the large double doors which serve as the main entrance. The outer, one story sections each contain four rectangular windows. The fenestration of the rear elevation is similar to the front. This pattern continues on the sides of the lower section.

A prominent belt course at the second story of the central section becomes the cornice line of the intermediate section. It is highlighted by rough cut, exagerated dentils, giving the structure a castle-like appearance. Enhancing that sense are the castellated turrets which rise above the cornice line.

The ell housing the boiler room is one story with long rectangular windows along its length. A round arch loading bay is placed at the center of the ell. Remnants of the coal room, partially demolished in the 1940s, are clearly evident at the rear of the ell.

The gatehouse and filth hoist is a compact one story rectangular structure with a hipped roof. Copper flashing is visible on all elevations. It is constructed of rough hewn granite in a style similar to the pumping station. Each elevation, with the exception of the main elevation, is dominated by two large, round arch windows. The main elevation has a door in place of one window. A granite chimney rises above the cornice line.

The west shaft entrance is a rectangular building with a hipped roof. The rectangular structure has two windows on each side bay, one window on one end

National Register of Historic Places Continuation Sheet

Section	number	7	Page	2

Calf Pasture Pumping Station, Boston, (Dorchester), Massachusetts

bay and a door on the other. Unlike the other structures, it is built of brick with granite accents. Granite voissoirs over the round arch windows, a heavy granite beltcourse and clasping buttresses highlight the exterior.

The interior of the main engine room is large and spacious. Above the floor level are several wrought iron catwalks supported by decorative iron brackets. Reached by circular stairs in the turrets, these were originally constructed so that the steam pumps could be serviced. The engine room has partial flooring at the grade level; stairs lead down to where the pumps are now located, below grade. The interior features decorative red and buff brickwork in the upper central section of the engine room.

The only category of archaeological resources that may be present at the Calf Pasture Pumping Station property is prehistoric.

but no archaeological survey has yet been conducted. There is no specific documentation for potentially significant historic period archaeological remains.

In 1968, the majority of the windows were bricked in to prevent vandalism. Since that time, the rear coal storage room collapsed and was removed. A brick wall was erected at the end of the adjacent boiler room. In general, the structure has not been well maintained, evidenced in a leaking roof and rusting ironwork. Exterior and interior walls require cleaning as they have lost the distinction between light and darker colored granite.

Access to the pumping station is from Mount Vernon Street through the Harbor Point development, and via the University of Massachusetts access road which provides a route to all buildings on the eastern side of Columbia Road from Morrissey Boulevard.

(end)

8. Statement of Significance	Calf Pasture 1	Pumping	Station, 1	Boston	(Dorchester) Massachuset
Certifying official has considered the	significance of this p	property in	relation to oth	er propert	ies:	
	nationally	state	wide X	locally		
Applicable National Register Criteria	XA B X]C D				
Criteria Considerations (Exceptions)	_A _B _]CD	E	F G		
Areas of Significance (enter categorie	es from instructions)		Period of Sig			Significant Dates
Architecture		_	1883-19	05		1883
Community Planning and	Development	_				1905
Engineering		_				
Invention		_				
		_	Cultural Affili	ation		
		_		1	I/A	
		_				
Significant Person			Architect/Buil	lder		
N/A			Clough,	George	Albert	
		_				
			-			

State significance of property, and justify criteria, criteria considerations, and areas and periods of significance noted above.

The significance of the Calf Pasture Pumping Station is manifold. Historically, it is the first sewage pumping station in Boston, and represents the city's first major effort to establish a comprehensive public sewage system. It is an excellent example of Richardsonian Romanesque architecture, designed by City architect, George Clough and represents an evolving industrial building type to house innovative equipment. The pumping station is the only remaining 19th century building on Columbia Point. Calf Pasture Pumping Station retains integrity of location, design, setting, materials, workmanship, feeling and association, and therefore meets Criterion A and C of the National Register of Historic Places on the local level.

In 1872, the Board of Health for the City of Boston reported that "large territories have been at once and frequently enveloped in an atmosphere of stench so strong as to arouse the sleeping, terrify the weak and nauseate and exasperate everybody." Such conditions were prevalent in post-Civil War American cities with the increase of immigrant populations, living in close cramped quarters. Cholera and typhoid were two diseases which threatened the residents of poorer sections of the city as the public drinking water was contaminated by private sewer disposal pipes. With specific reference to the North End, a report entitled "The Sewage of Boston" found that this neighborhood had many "open mouthed" cesspools. Consequently, the report wrote, "no dispensary physician who has (the haymarket) district can have failed to notice the deleterious influence of such conditions upon the health of people who are absolutely powerless to help themselves."

Joseph P. Davis, the City Engineer, was sent to Europe in September, 1876, to examine the sewage systems of other major cities. After his return in 1878, he presented detailed suggestions for Boston's new system. Davis' plan recommended that all established sewer pipes be connected to a central, but distant point via a series of intermediate connecting pipes. At that central location, sewage would be pumped through pipes to holding tanks on Moon jisland and then discharged into the ocean with the retreating tide.

S

National Register of Historic Places Continuation Sheet

Section	number	8	Page	1
Cection	11411156		I AUG	

Calf Pasture Pumping Station, Boston, (Dorchester), Massachusetts

The Boston Improved Sewage Commission decided that the Old Harbor Point in Dorchester, with its salt marshes, low land values and remote location would be an ideal site for this main drainage center. The Old Harbor Point provided an intermediate route to Moon Island in Dorchester Bay, where sewage was to be stored until it could be released with the outgoing tide. In addition, it was close to the ocean, allowing coal-filled barges to have easy access to the building. Therefore, as planned, the Calf Pasture Pumping Station was built at the Old Harbor Point as the keystone of the sewage disposal network known as the Boston Improved Sewage System.

Between 1875 and 1883, a series of citywide intercepting sewers were built to receive sewage from existing pipes. The new sewage system, including two pumping engines cost \$6,551,064. The two great steam pumping engines were designed by Erasmus D. Leavitt of Cambridgeport, Massachusetts. Both engines raised sewage to 35 feet, a height which caused the sewage to flow to Moon Island by gravity. The Leavitt Pumps were the world's largest at the time, their fly wheels each weighing 72.5 tons and measuring 50 feet in diameter.

In April, 1882, the City Council was petitioned to allot extra funding to construct a pumphouse of fireproof quality to house this large equipment. The City Architect's department was given this commission and \$300,000 was allocated to the construction and design.

As designed, the layout consisted of an engine room, a coal room and two boiler rooms. The boiler rooms connected the larger engine and coal rooms, and thus created a square plan with a central courtyard. However, only the large engine room, one boiler room and a coal shed were built, hence the structure was shaped like an L rather than being square.

The structure had been designed to accommodate eight pumps with boilers. On January 1, 1884, when the station began pumping, only two pumps were in place. At that time, only three quaters of the engine room had been constructed. The northeast wing was added in 1905.

The plans for the Calf Pasture Pumping Station are dated August 1, 1881; when the structure was completed in 1883, several designed elements were not included. Originally the four turrets were designed with conical towers; however, they were built with castellated tops, most likely to accommodate a steam release ventilation system. The roof was more steeply pitched in the original design, and there was more detailing and articulation of the stone work.

At its completion in 1905, the Calf Pasture Pumping Station was a dramatic sight at Old Harbor Point. Its heavy proportions and castle-like silhouette dominated the slim peninsula. A gatehouse of compatible design and materials

National Register of Historic Places Continuation Sheet

		100		
Castlan	number	8-	Dage	2
Section	number		Page	

Calf Pasture Pumping Station, Boston, (Dorchester), Massachusetts

was built at the northwest side of the pumping station to house gates that controlled the flow of sewage into the station. The gatehouse also contained the filth hoists which measured the height of the sewage coming from the pipes to the pumping station and also screened the sewage for solids.

Another smaller structure, an entrance to the West Shaft, lies east of the pumping stations, along water's edge. A very narrow peninsula once stretched from the pumping station to this small building, but the area has since been landfilled. The structure covers the west shaft, which was used as an access way to the underground tunnel that carried sewage from Calf Pasture to Moon Island. This entrance allowed workers on small barges to scrape sludge from the bottom of the tunnel.

The plan and elevation of the structure indicates the functions which occur inside. The roof height is lower where two Worthington pumps, used in case of heavy rainfall, were originally placed, and taller to accommodate the Leavitt pumps. The decorative castellated turrets served as ventilation units, and the many windows provided adequate lighting for all areas on the interior.

Stylistically, the Calf Pasture Pumping Station responds to the eclectic nature of architectural design in the late 19th century. The steeply pitched roof and crenellated turrets appear to be inspired by medieval architecture whose elements were often used in the Queen Anne style. Also evident is the influence of Henry Hobson Richardson's Romanesque Revival style. Although lacking the polychromatic stonework, the structure's predominant features including supporting arches, rough cut granite and the heavy proportions indicate Richardson's influence.

In his book American City Planning, Mel Scott wrote that by 1915, Boston "had park, water supply and sanitation systems unmatched in the entire nation." Within 35 years of its construction, the Calf Pasture Pumping Station was the keystone of a sewage disposal system that was a model for the rest of the country.

The architectural significance of the Pumping Station has often been overshadowed by the industrial importance of the complex, as Boston's first sewage pumping station. The designer of the pumping station, City Architect, George Albert Clough, had previously designed parts of the fresh water system for Chestnut Hill and Framingham.

Clough was born on March 27, 1843, in Blue Hill Maine. He attended Blue Hill Academy and worked as a draftsman for his father, Asa Clough, a shipbuilder. In 1863, after his father's death, Clough went to Boston to study architecture in the office of Snell and Gregerson. He stayed with the firm until 1869 when he opened his own office in the City of Boston. An 1897 directory of Maine

National Register of Historic Places Continuation Sheet

Section number 8	per8 Page3	Calf Pasture Pumping Station,
	. 480	Boston, (Dorchester), Massachusett

business professionals, <u>Men of Progress</u>, wrote of Clough: "his lifelong and thorough training, combined with his natural aptitude for the profession, made him successful from the start."

Clough was appointed Boston's first City Architect in 1874, five years after leaving the firm of Snell and Gregerson. Under his ten-year direction of that office, Clough was responsible for an extensive number of public structures in Boston including the Latin and English High School, the Suffolk County Courthouse, the Prince School on Newbury Street, and the Congress Street Fire Station in the Fort Point Channel. He also provided the first plans accepted by the trustees of the Boston Public Library in 1880 and carried out the first restoration of the State House in 1881. Clough designed 85 school buildings in Maine, Massachusetts, New York and Pennsylvania.

The Calf Pasture Pumping Station appears to have brought an end to Clough's term as City Architect. City Council records consistently indicated that the construction of the pumping station should be carried out by laborers from the City of Boston. Clough created controversy when he dismissed all masons working on the project, claiming they were actually from Maine. He replaced them with men of his own choice; the City Council felt these men were poor craftsmen. The City Aldermen believed that the fired men were from Boston, and not Maine as Clough contended.

After being removed from his position as City Architect, Clough resumed his private practice with an office at 53 Tremont Street. He designed numerous public buildings and homes in Blue Hill, Maine. In 1905, Clough established a firm called Clough and Wardner, which designed several homes in Boston and Brookline. Clough died in Brookline, Massachusetts in January, 1911.

In 1940, one of the two Leavitt pumps cracked. As a result both the Leavitt and the Worthingon pumps were dismantled and removed. The entire system was changed from steam power to electric power. Today, the interior of the Pumping Station does not retain any of its historically significant engineering equipment, although the gatehouse retains its original filth hoist apparatus. After the 1940s, the station no longer required the enormous space designed to house the pumps and the coal room was no longer necessary. When the roof of the coal room collapsed in 1946, this section was demolished. In 1954, after numerous break-ins, the building's windows were bricked up. Until 1968, Calf Pasture Pumping Station was the system's headworks, handling all of the city's sewage.

A new sewage treatment plant was constructed on Deer Island in Boston Harbor in 1968. A new headworks near Columbia Circle was constructed as the primary gatherer of sewage to be transported to the new treatment plant. The new system proved to be inadequate, requiring that Calf Pasture and Moon Island

(--

National Register of Historic Places Continuation Sheet

Section number8	8 Page	4	Calf Pas	ture Pumping	Station,
section number			Boston,	(Dorchester),	Massachusetts

remain open, on a stand-by basis, in case of heavy rains.

Although little maintenance has been done in recent years, the Calf Pasture Pumping Station is reported to be structurally sound.

Administration of the pumping station passed from the Boston Improved Sewage Commission to the City's Street Department, later the Public Works Department. Sewage treatment and disposal were operated by Sewage Division of Public Works until 1977, when the Boston Water and Sewer Commission was established. At present, the Boston Water and Sewer Commission owns and operates Calf Pasture Pumping Station. With the new efforts of the Massachusetts Water Resources Authority to clean up Boston Harbor and update the Deer Island facilities, it is expected that the Calf Pasture Pumping Station will no longer be needed.

(end)

9. Major Bibliographical Reterences	
Archives, Boston Water and Sewer Commission, F-Collection of drawings of Calf Pasture Pump-Collection of Photographs -Collection of maps explaining history of se	oing Station
Book	
Clark, Eliot C., Main Drainage Works of the Ciand Churchill, 1885.	ity of Boston, Boston, Rockwell
	□ Constant in the state of the
Previous documentation on file (NPS):	x See continuation sheet
preliminary determination of individual listing (36 CFR 67) has been requested previously listed in the National Register previously determined eligible by the National Register designated a National Historic Landmark recorded by Historic American Buildings Survey # recorded by Historic American Engineering Record # 10. Geographical Data Acreage of property \$.5 Acres UTM References A 1 9 3 3 2 4 0 0 4 6 8 6 3 5 0 Zone Easting Northing C	Primary location of additional data: X State historic preservation office Other State agency Federal agency Y Local government University Other Specify repository: Massachusetts Historical Commission Boston Landmarks Commission Boston Landmarks Commission See continuation sheet
The nominated property conforms to the city of Ward 13, Precinct 3.	Boston Tax Assessor's parcel number 3413,
	See continuation sheet
Boundary Justification The bounaries for this complex encompass the phoist house, both of which have historically for a third structure which covered the west Shaft but is connected to the parcel via underground belonging to the pumping station complex was of	Tallen within the boundaries of this complex is no longer within the complex's parcel property rights. The parcel of land
11. Form Prepared By	
name/title Katherine L. Kottaridis, Boston Landma organization NR Director, Mass, Historical Commiss street & number 80 Boylston Street	date <u>February 3, 1988</u> telephone <u>617-727-8470</u>
city or town Boston	state Massachusetts zip code 02116

National Register of Historic Places Continuation Sheet

Section number9	Page1	*	i.	Calf Pa	sture Pumping	Station,
				Boston.	(Dorchester)	Massachusett

9. Major Bibliographical References (cont.)

Eliot, Samuel A., <u>Biographical History of Massachusetts</u>, Volume 3, Boston, Massachusetts Biographical Society, 1911.

Herndon, Richard, Men of Progress: Biographical Sketches of Leaders in Business and Professional Life in the State of Maine, Boston, New England Magazine, 1897.

Warner, Sam Bass, Streetcar Suburbs, Cambridge, Harvard University Press, 1978.

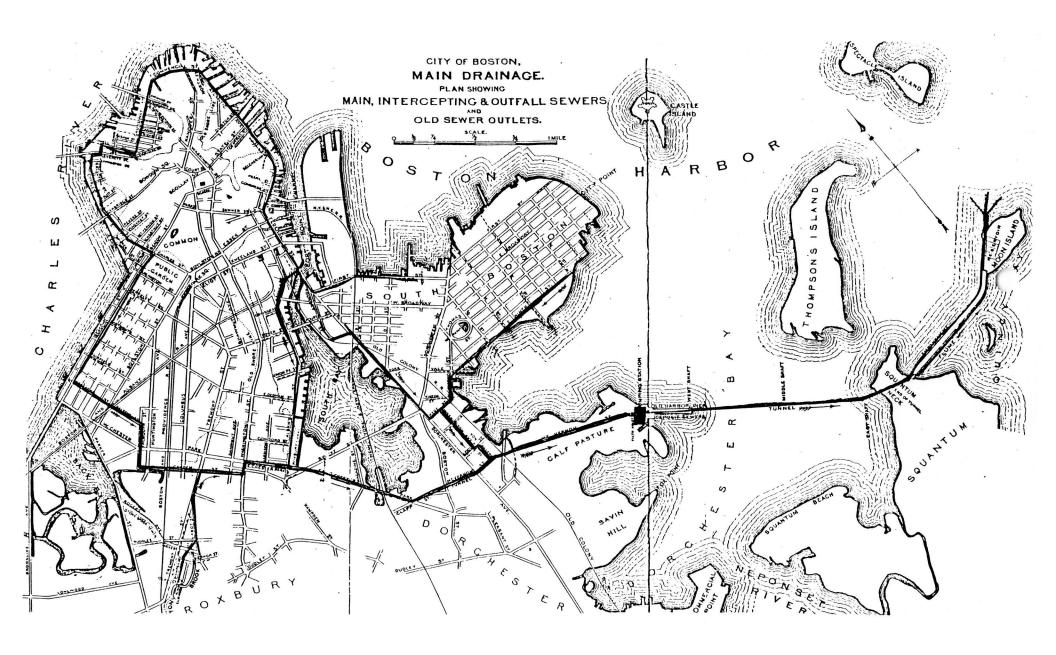
Periodicals

Engineering News, February 17, 1883.

Obituary of George Clough, Ellsworth (Maine) American, January 11, 1911, p.6.

Society for Industrial Archaeology, Thirteenth Annual Conference Tour Brochure: South Boston, Quincy, and Dorchester, Boston, 1984.

Reports


Boston City Council, Reports for the Municipal Years 1876, 1877, 1878, 1880, 1882, 1883, Boston, Rockwell and Churchill.

Massachusetts Water Resources Authority, <u>Calf Pasture/Moon Island Feasibility</u> Study Fact Sheet, Boston, April 25, 1986.

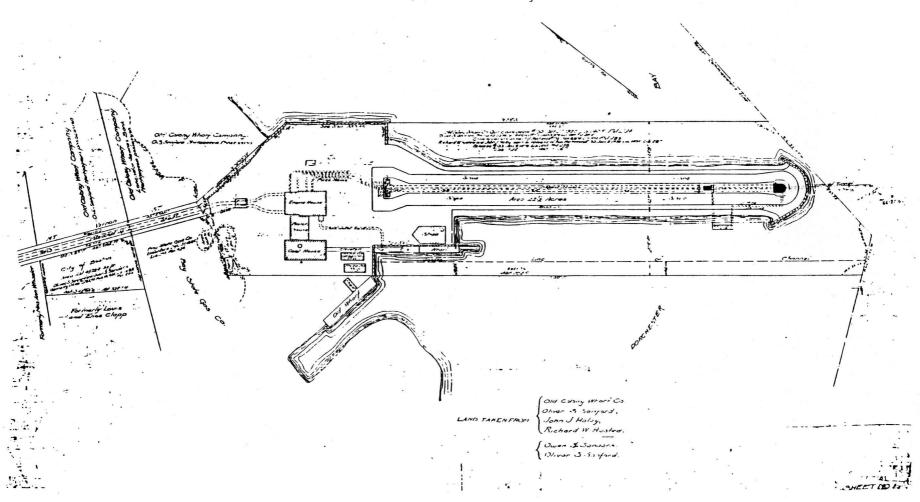
, Report of the Combined Sewerage Overflow Scheduling, Boston, February 27, 1987.

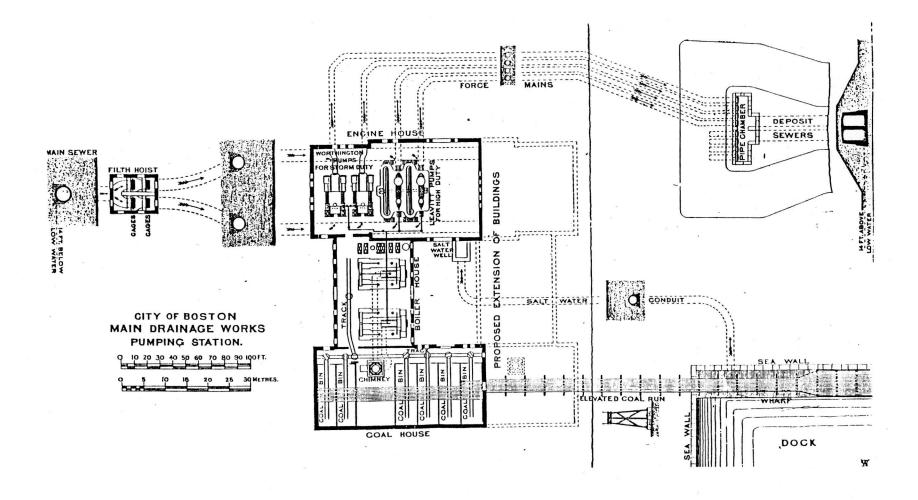
University of Massachusetts at Boston, Pumphouse Advisory Committee, $\frac{\text{The}}{\text{Pumphouse:}}$ A Proposal to Recycle the Calf Pasture Pumping Station at Columbia Point as a Community/University Center, 1975.

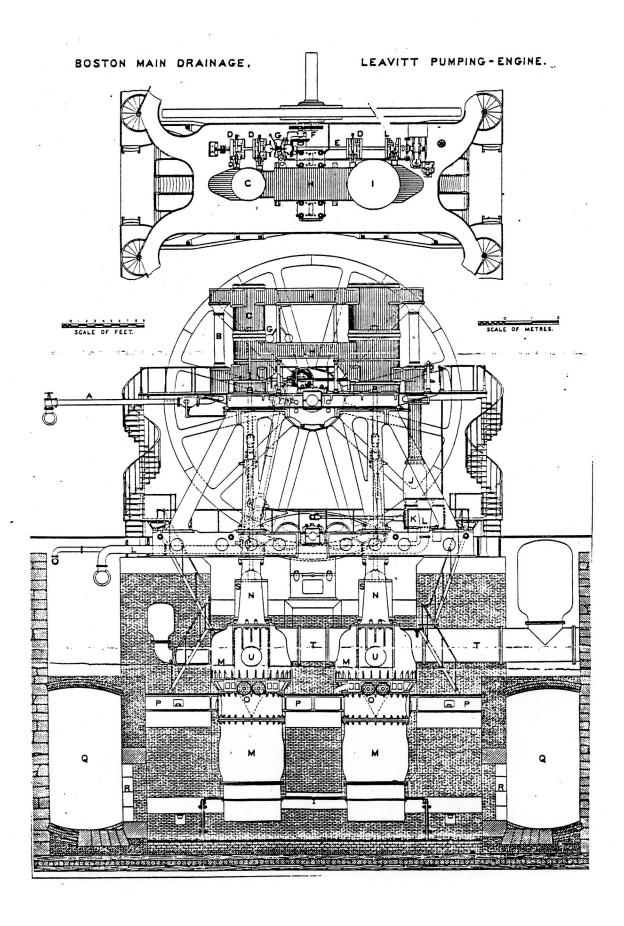
Weidlinger Associates, <u>Structural Evaluation of the Calf Pasture Pumping</u> Station, Cambridge, 1983.

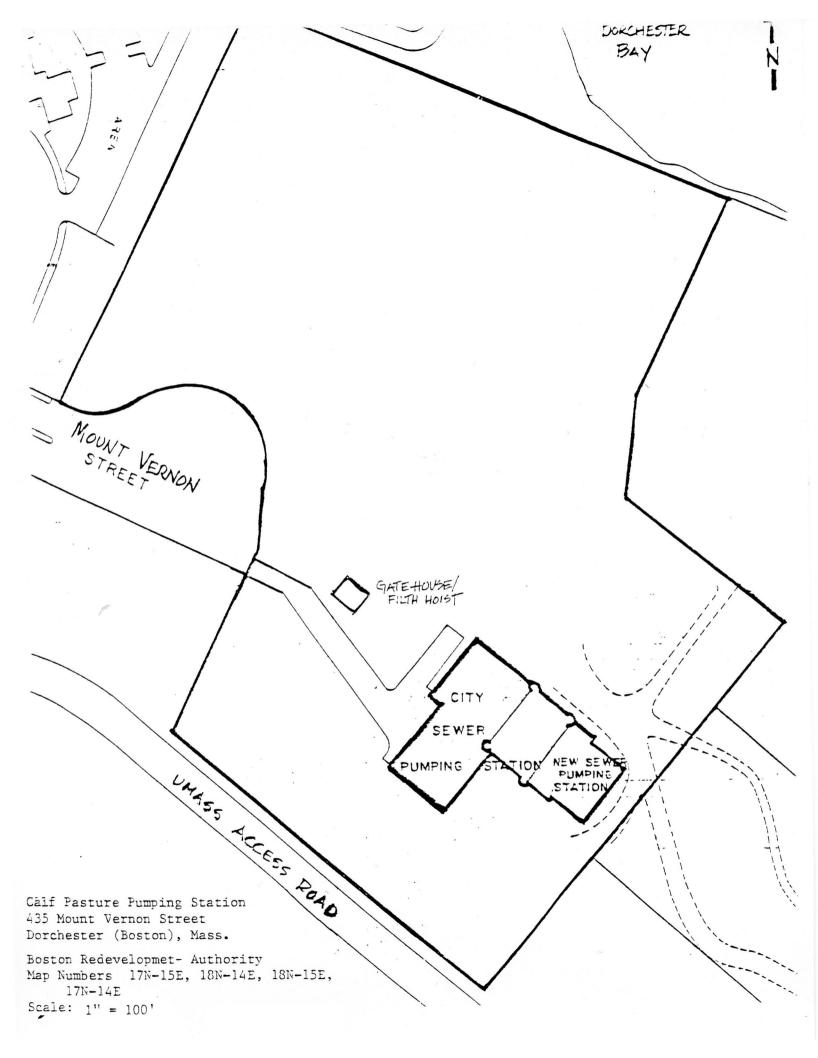
Town he thomas of discremen sin 24,19.9

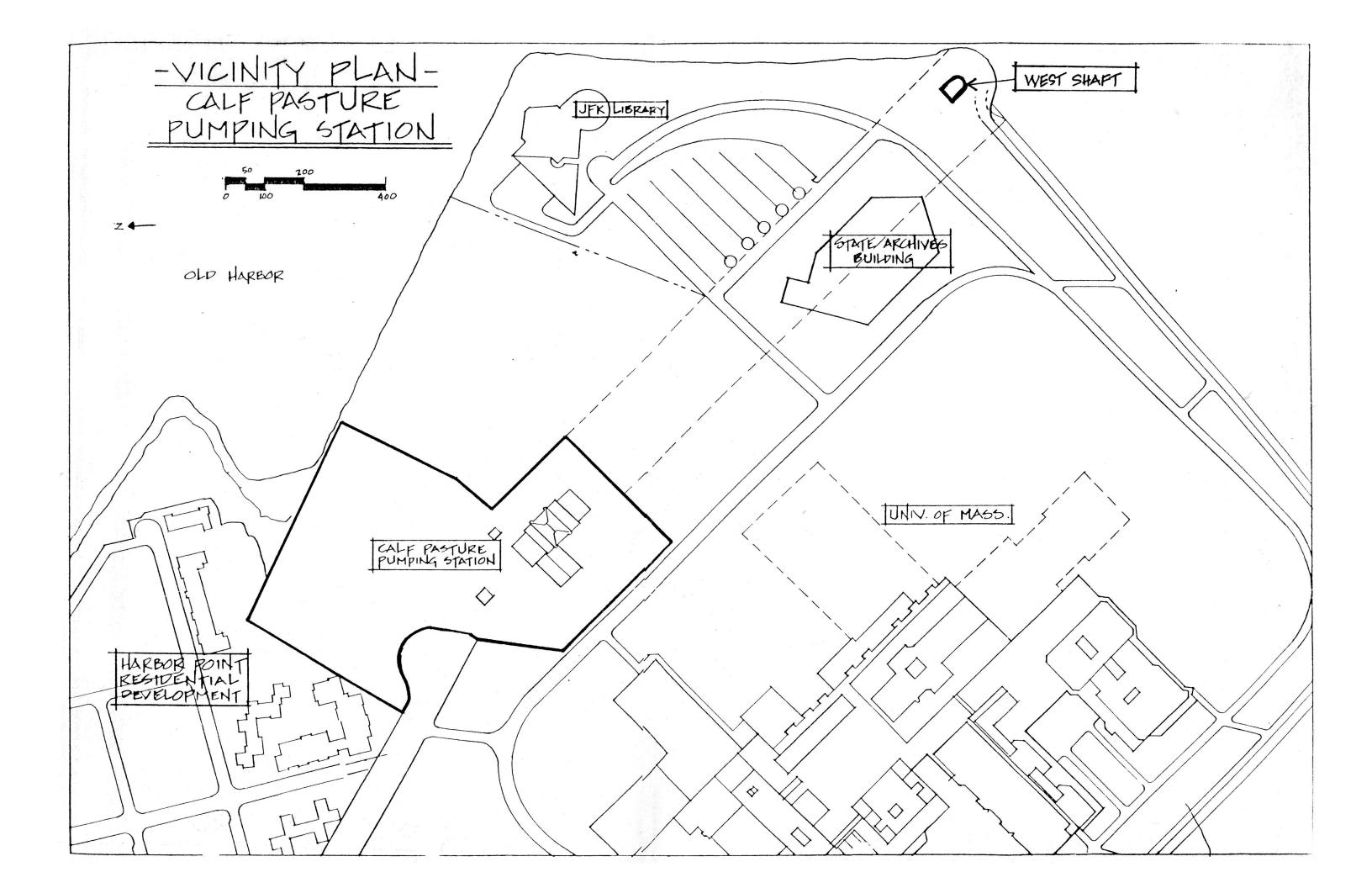
CITY OF BOSTON. IMPROVED SEWERAGE

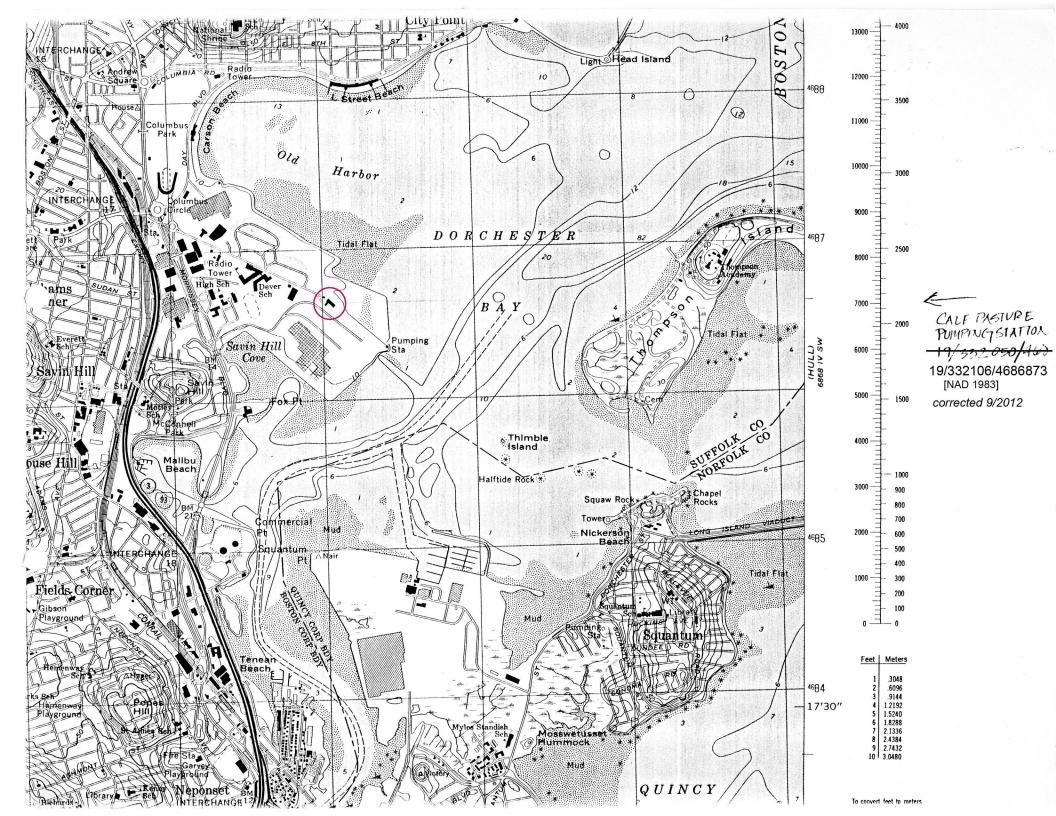

MAIN INTERCEPTING SEIVER


Note: Capad is amplian meas by Eint C. Clarke Oct 10,1577 and plans meas by WE Jockson New and June 1 1885


LAND PLAN.


Scole: 100 ft to on meh


Aug. 1820.



1. Calf Pasture Pumping Station. Camera facing north (Photograph: Katherine L. Kottaridis, February 1988)

2. Calf Pasture Pumping Station. Camera facing east (Photograph: Katherine L. Kottaridis, February 1988)

3. Interior, camera facing southwest (Photograph: Katherine L. Kottaridis, February 1988)

4. Interior, camera facing southwest (Photograph: Katherine L. Kottaridis, February 1988)

5. Interior ceiling (Photograph: Katherine L. Kottaridis, February 1988)

6. Calf Pasture Pumping Station: Gatehouse/filthhoist. Camera facing northwest (Photograph: Katherine L. Kottaridis, February 1988)

7. Calf Pasture Pumping Station: West Shaft Cover. Camera facing east. (Photograph: Katherine L. Kottaridis, February 1988)

United States Department of the Interior National Park Service

RECEIVED

National Register of Historic Places Continuation Sheet

AUG 13 1990

MASS. HIST. COMM.

SUPPLEMENTARY LIST	ING RECORD	
NRIS Reference Number: 90001095	Date Listed:	Ø8/Ø2/9Ø
Calf Pasture Pumping Station Complex Property Name	Suffolk County	Sta
N/A Multiple Name		
This property is listed in the Nation Places in accordance with the attaches subject to the following exceptions, notwithstanding the National Park Sein the nomination documentation.	ed nomination do exclusions, or	cumentation amendments,
Signature of the Keeper	8/9/90 Date of Action	on
Signature of the Keeper Amended Items in Nomination:	8/2/90 Date of Actio	on
	8/2/90 Date of Action	on ========
Amended Items in Nomination:	 roperty is owned public entity;	thus, under
Amended Items in Nomination: 4. State/Federal Agency Certification As clarified when resubmitted, the proposition of the prop	roperty is owned public entity; n is on a nomina	thus, under ation, not a
Amended Items in Nomination: 4. State/Federal Agency Certification As clarified when resubmitted, the public ownership the requested action determination of eligibility. This information was confirmed with	roperty is owned public entity; n is on a nomina	thus, under ation, not a

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Street Name: morrissey blvd; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

BOS.9656	Old Harbor Reservation Parkway - Columbia Circle	Columbia Rd	Boston	1924
BOS.9169	Old Colony Railroad Bridge (Milepost #4.33)	Morrissey Blvd	Boston	1926
BOS.9189	Dorchester Bay Bridge - Beades Memorial Bridge	Morrissey Blvd	Boston	1927
BOS.9500	Savin Hill Beach - Malibu Beach	Morrissey Blvd	Boston	1899
BOS.9501	Savin Hill Beach - Malibu Beach Playground	Morrissey Blvd	Boston	2000
BOS.13803	Savin Hill Beach - Malibu Beach Bath House	Morrissey Blvd	Boston	r 1985
BOS.16665	Kennedy, John F. Library and Museum	Morrissey Blvd	Boston	1977
BOS.15601	Hayes, Annie House	992 Morrissey Blvd	Boston	c 1918

Thursday, June 8, 2017 Page 1 of 1

Massachusetts Cultural Resource Information System

Scanned Record Cover Page

Inventory No: BOS.16665

Historic Name: Kennedy, John F. Library and Museum

Common Name: Smith, Stephen E. Center

Address: Morrissey Blvd

Mount Vernon St

City/Town: Boston

Village/Neighborhood: Dorchester; Dorchester Bay

Local No: 1303420000

Year Constructed: 1977

HNTB; Kiley, Dan; Mellon, Rachael; Pei, I. M. and

Architect(s): Partners; Prescott, Einhorn Yaffee; Tyndall, Ian; Walker,

Peter Ker

Architectural Style(s): International Style

Use(s): Library; Meeting Hall; Museum; Theater

Significance: Architecture; Community Planning; Education; Landscape

Architecture; Politics Government

Area(s):

Designation(s):

Roof: Asphalt Shingle

Building Materials(s): Wall: Cast Concrete; Glass; Steel

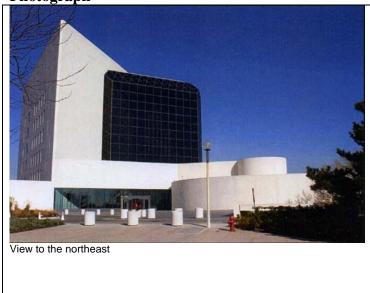
Foundation: Concrete Unspecified

The Massachusetts Historical Commission (MHC) has converted this paper record to digital format as part of ongoing projects to scan records of the Inventory of Historic Assets of the Commonwealth and National Register of Historic Places nominations for Massachusetts. Efforts are ongoing and not all inventory or National Register records related to this resource may be available in digital format at this time.

The MACRIS database and scanned files are highly dynamic; new information is added daily and both database records and related scanned files may be updated as new information is incorporated into MHC files. Users should note that there may be a considerable lag time between the receipt of new or updated records by MHC and the appearance of related information in MACRIS. Users should also note that not all source materials for the MACRIS database are made available as scanned images. Users may consult the records, files and maps available in MHC's public research area at its offices at the State Archives Building, 220 Morrissey Boulevard, Boston, open M-F, 9-5.

Users of this digital material acknowledge that they have read and understood the MACRIS Information and Disclaimer (http://mhc-macris.net/macrisdisclaimer.htm)

Data available via the MACRIS web interface, and associated scanned files are for information purposes only. THE ACT OF CHECKING THIS DATABASE AND ASSOCIATED SCANNED FILES DOES NOT SUBSTITUTE FOR COMPLIANCE WITH APPLICABLE LOCAL, STATE OR FEDERAL LAWS AND REGULATIONS. IF YOU ARE REPRESENTING A DEVELOPER AND/OR A PROPOSED PROJECT THAT WILL REQUIRE A PERMIT, LICENSE OR FUNDING FROM ANY STATE OR FEDERAL AGENCY YOU MUST SUBMIT A PROJECT NOTIFICATION FORM TO MHC FOR MHC'S REVIEW AND COMMENT. You can obtain a copy of a PNF through the MHC web site (www.sec.state.ma.us/mhc) under the subject heading "MHC Forms."


Commonwealth of Massachusetts
Massachusetts Historical Commission
220 Morrissey Boulevard, Boston, Massachusetts 02125
www.sec.state.ma.us/mhc

This file was accessed on: Thursday, June 8, 2017 at 2:05: PM

FORM B – BUILDING

MASSACHUSETTS HISTORICAL COMMISSION MASSACHUSETTS ARCHIVES BUILDING 220 MORRISSEY BOULEVARD BOSTON, MASSACHUSETTS 02125

Photograph

Locus Map

Recorded by: P. Stott **Organization:** MHC

Date (month / year): 14 Feb 2011; 23 Sept 2014

Assessor's Number	USGS Quad	Area(s)	Form Number	

1303420000 16665

Town/City: Boston

Place: (neighborhood or village): Columbia Point

Address: Mount Vernon Street (Assessor's Address)

Historic Name: John F. Kennedy Library and Museum

Uses: Present: Library and museum

Original: same

Date of Construction: 1977-1979; 1991

Source: J.F. Kennedy Library

Style/Form: International

Architect/Builder: I.M. Pei, architect;

Dan Kiley, Landscape architect Einhorn Yaffee Prescott (2009-11)

Exterior Material:

Foundation: concrete

Wall/Trim: white, pre-cast concrete panels, glass

Roof: asphalt

Outbuildings/Secondary Structures:

Major Alterations (with dates):

Stephen E. Smith Center completed 1991 New collections storage wing (2009-11)

Condition: Excellent

Moved: no \boxtimes yes \square Date:

Acreage: 545,557 sq ft (12.5 acres)

Setting: Northeast corner of Columbia Point, facing on the north and east, Dorchester Bay and Boston Harbor. To the south are the contemporary institutional buildings of the Massachusetts State Archives and the University of Massachusetts/Boston; to the west, the 1885 Calf Pastures

Pumping Station (NRIND 8/2/1990)

RECEIVED SEPT 23 2014 MASS, HIST, COMM.

BOSTON

MT. VERNON STREET
Assessor's address

Area(s) Form No.

BOS.16665

MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

 \boxtimes Recommended for listing in the National Register of Historic Places.

If checked, you must attach a completed National Register Criteria Statement form.

Use as much space as necessary to complete the following entries, allowing text to flow onto additional continuation sheets.

ARCHITECTURAL DESCRIPTION:

Describe architectural features. Evaluate the characteristics of this building in terms of other buildings within the community.

Text adopted in part from the web site of the JFK Library and Museum (See Bibliography, below):

The Kennedy Library was erected on a landfill site overlooking Boston, Dorchester Bay, and the ocean beyond. To overcome existing conditions, the site was raised 15 feet. Within a limited space and budget, the design had to fulfill a complex-mixed use program while symbolically remembering the late young president in terms both contemporary and timeless. A split-level design was developed, organizing museum spaces in a layer below ground, with key emotive elements dramatically isolated above.

Pei's solution consisted of a triangular nine-story tower housing archival, educational and administrative functions, a two-story base containing exhibition space and two 230-seat theaters, and a 115-foot high memorial pavilion, which gives coherence and focus to the whole. After viewing a film about President Kennedy's early life, visitors descend into linked exhibition areas highlighting the president's 1960 campaign, his administration, and his legacy. From this darkened setting they emerge into the sun-filled, silent void of the space-framed glass pavilion. Except for an enormous American flag suspended above, the space is empty to allow the viewer to contemplate what he has seen and experienced against a great panorama of sky, land and open sea.

The 115,000 square foot presidential library consists of a nine-story, stark white, precast concrete tower, 125 feet high, which is contiguous to a glass-and-steel contemplation pavilion measuring 80 feet long by 80 feet wide and 115 feet high. The upper floors of the tower contain office, research, and document storage facilities. The lower floors house two elliptical-shaped 230-seat theaters, and an 18,000 square foot exhibition area.

The precast panels cladding the concrete structural frame were cast in North Wilbraham, Massachusetts, trucked to the site, and fitted into place like a three-dimensional jigsaw puzzle. The space frames for the roof and walls of the Pavilion were first assembled on the ground and then lifted one at a time into place by crane, one entire space frame wall weighing no more than one of the larger precast wall panels.

The JFK Library, designed by I.M. Pei & Partners of New York, represents an important work of late modern architecture by an internationally renowned architect. With its space-framed, glass pavilion, and minimalist white concrete forms, it was the first of a series of signature buildings by the firm, which included the East Wing of the National Gallery in Washington, D.C., the Jacob Javits Center in New York, and the Louvre Museum addition in Paris. Though the JFK Library is the smallest of the projects, it is perhaps the most monumental, a composition of stark, platonic masses set on an isolated waterfront site at Columbia Point against a dramatic background of Boston's skyline to the north.

In 1991, the Kennedy Library added the 21,800 square foot Stephen E. Smith Center, also designed by I. M. Pei. Constructed in the same stark white precast concrete as the original building, the two-story addition contains spaces for lectures, conferences, and meetings as well as more archival storage. The new wing was named in honor of President Kennedy's brother-in-law who, as President of the John F. Kennedy Library Corporation, led the effort that resulted in the initial construction of the Library at Columbia Point.

The Library was expanded again in 2009-2011 to add a 30,000-square foot wing, designed by the Boston based firm of Einhorn Yaffee Prescott to house artifacts and documents previously stored off site. Renovations included archive and artifact storage areas, support space, offices, security areas, exhibit space, the main lobby and gift shop and some deferred maintenance.

BOSTON

MT. VERNON STREET
Assessor's address

Area(s) Form No.

BOS.16665

MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD, BOSTON, MASSACHUSETTS 02125

HISTORICAL NARRATIVE

Discuss the history of the building. Explain its associations with local (or state) history. Include uses of the building, and the role(s) the owners/occupants played within the community.

The following is adopted in part from "The Landscape Architecture Legacy of Dan Kiley" and from the web site of the JFK Library and Museum

Plans to build the John F. Kennedy Presidential Library and Museum were underway before Kennedy's assassination in 1963. President Kennedy had begun considering the structure of his library soon after taking office, and he wanted to include archives from his administration, a museum of personal items, and a political science institute. After the assassination, the list expanded to include a fitting memorial tribute to the slain president. Architect I.M. Pei of I.M. Pei & Associates was chosen to design the library, and the Kennedy family began planning for the Library with the architect in 1966. After a decade of financial and political setbacks, construction was finally begun on the site at Columbia Point in 1976. In 1978, Dan Kiley (1912-2004) of Kiley Tyndall Walker was hired to design the ten-acre grounds.

To prepare the site, a former landfill, the ground was covered with fifteen feet of topsoil. Because the bayside location was exposed to harsh winds, Kiley planted the entire site with hardy, native vegetation. The entry drive winds through swaths of American beach grass, beach plum, and bayberry. The drive's regular rhythm is established by closely-spaced white bollards along one side and Japanese black pines with more widely spaced Modernist street lighting along the opposite side. The drive culminates in a circle anchored with carefully pruned Sargent crabapples, then connects to a centralized parking area surrounded by rugosa rose groundcover and orthogonal rows of densely-planted Japanese black pines.

Kiley collaborated on the project with the Kennedy family, his partners Ian Tyndall and Peter Ker Walker, and philanthropist and horticulturalist Rachael "Bunny" Mellon. He took a minimalistic approach with the landscape design in order to highlight the dramatic architecture of Pei's building. He said: "Pei's beautiful building had to be revealed without screening its setting, without intrusion by irrelevant plantings. It had to be enhanced by the strength and structure of succinct plantings as they related spatially to the building, site and sea." In order to accomplish this he focused on the establishment of large massings of plantings that would highlight the structure.

A 1000-foot lawn, informally planted with groves of honey locusts, gradually slopes toward the water's edge, providing views to the Boston skyline. A narrow promenade meets the lawn at the waterfront and follows the seawall, which is edged with white concrete bollards and a heavy chain that evoke the waterfront's maritime past and Kennedy's interest in sailing. Entry to this walk is gained via a long set of sweeping stairs which wrap around the curve of Pei's building to an open overlook at the water's edge. This long concrete walk further connects the landscape to its surrounds providing visitors with open, panoramic views to the sea.

Upon completion in 1979 the Library included a 10-story triangular tower for administrative, research, and archival functions, a one-story circular base with two 330-seat theaters, and a below-grade museum, all connected to a 110-foot-high glazed pavilion facing north to the water. In 1991, the lower level was expanded to the west with the construction of the Smith Center, also designed by I.M. Pei, which included a large multifunction hall and smaller conference rooms. The Library was again renovated in 1992, at which time the museum spaces were completely reconfigured and upgraded under the architectural direction of HNTB of Kansas City. The most recent collections storage wing to the west, constructed in 2009-2011, was designed by the Boston-based firm, Einhorn Yaffee Prescott (EYP).

Landscape Architect Dan Kiley (1912-2004)

Dan Kiley was a "seminal landscape architect who combined modernist functionalism with classical design principles in more than 1,000 projects" (*New York Times* obituary 25 Feb 2004). Kiley's many notable projects, often done with the great architects of his time, included the Gateway Arch in St. Louis, where he worked with Eero Saarinen; the Ford Foundation's headquarters and Lincoln Center in Manhattan; and I. M. Pei's East Building, inside and out, for the National Gallery of Art in Washington. In addition to his work with the John F. Kennedy Library, other projects whose settings he enhanced included the Air Force Academy in Colorado; Rockefeller University in Manhattan, with its exquisite Scholar Garden; Dulles International Airport in Northern Virginia; the main pedestrian center of La Défense in Paris; and the four-acre Fountain Place in downtown Dallas.

BOSTON

MT. VERNON STREET
Assessor's address

Area(s) Form No.

BOS.1	16665

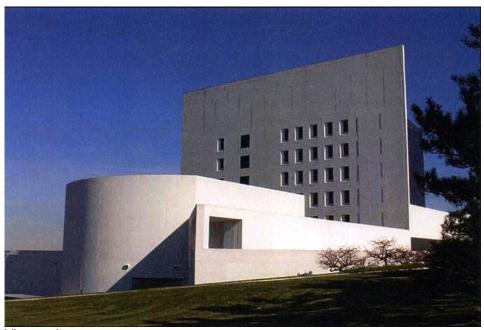
MASSACHUSETTS HISTORICAL COMMISSION 220 Morrissey Boulevard, Boston, Massachusetts 02125

Presidential Libraries

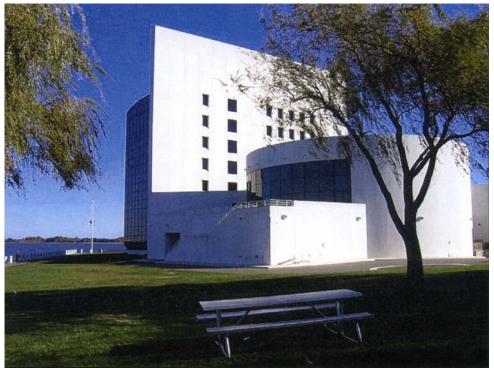
Since the passage of the Presidential Libraries Act in 1955 establishing a system of privately erected and federally maintained libraries, thirteen presidential libraries have been established, maintained and operated by the National Archives and Records Administration, representing every U.S. president since Herbert Hoover.

BIBLIOGRAPHY and/or REFERENCES

- "I.M. Pei, Architect," web page of John F. Kennedy Presidential Library and Museum, accessed 2/14/2011. http://www.jfklibrary.org/About-Us/About-the-JFK-Library/History/IM-Pei--Architect.aspx
- Epsilon Associates, Inc, Final Environmental Assessment, John F. Kennedy Presidential Library and Museum Addition and Renovation (May 2009)
- "John F. Kennedy Library," web page of the Cultural Landscape Foundation's, "The Landscape Architecture Legacy of Dan Kiley," accessed 9/23/2014. http://tclf.org/sites/default/files/microsites/kiley-legacy/JFKLibrary.html
- "Dan Kiley, Influential Landscape Architect, Dies at 91," New York Times, 25 February 2004,


BOSTON

MT. VERNON STREET Assessor's address


Area(s) Form No.

BOS.16665

MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD, BOSTON, MASSACHUSETTS 02125

View to the east

View to the southeast

BOSTON

MT. VERNON STREET Assessor's address

Area(s) Form No.

BOS.16665

MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD, BOSTON, MASSACHUSETTS 02125

View to the southeast showing 2009-2011 addition at right

Original yellow form: Eligibility file Copies: Inventory form Town file(w/corresp.) Macris

NR director ____ Community: BOSTON
MHC OPINION: ELIGIBILITY FOR NATIONAL REGISTER

Date Received: May 21, 2007 Date Reviewed: June 20, 2007 District (Attach map indicating boundaries) Type: X Individual Name: John F. Kennedy Library and Museum Inventory Form: BOS.16665 Address: Mount Vernon Street Requested by: National Archives and Records Administration (NARA) Action: Honor ITC Grant X R & C Other: Staff in charge of Review: AL Agency: NARA INDIVIDUAL PROPERTIES **DISTRICTS** X Eligible Eligible __ Eligible, also in district __ Ineligible __ Eligible only in district More information needed __ Ineligible ___ More information needed **CRITERIA:** X A XBX C D LEVEL: X Local X State X National

STATEMENT OF SIGNIFICANCE by Ann Lattinville

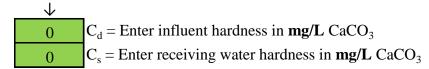
Planning for the JFK Library began in 1966, three years after the president's assassination, but it was not until 1976 that the site was selected and design of the building began. The library was to be both the repository for a collection of historical material from the Kennedy era as well as a memorial to the late president. Designed by I. M. Pei & Partners of New York, the JFK Library represents an important work of late modern architecture by an internationally renowned architect. With its space-framed glass pavilion and minimalist white concrete forms, it was the first of a series of signature buildings by the firm nationwide (others include the East Wing of the National Gallery in Washington, DC, the Jacob Javits Center in New York, and the Louvre Museum addition in Paris). The minimalist landscape design for the 12-acre site was by Dan Kiley, known for other landscape projects done in collaboration with prominent architects, including the Gateway Arch in St. Louis, Lincoln Center in Manhattan, and the National Gallery's East Wing in Washington, DC.

For its associations with President John F. Kennedy, with U.S. history in the mid 20th century, and as an important example of the work of architect I. M. Pei, the property is eligible for listing in the National Register under Criteria A, B, and C, as well as considerations F (commemorative) and G (less than 50 years old). The JFK Library is significant at the local, state, and national levels.

ATTACHMENT 7

WQBEL CALCULATION SPREADSHEET

Enter number values in green boxes below


Enter values in the units specified

\downarrow	_
0	$Q_R = Enter upstream flow in MGD$
0.216	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
8	pH in Standard Units
14.9	Temperature in °C
0	Ammonia in mg/L
0	Hardness in mg/L CaCO ₃
25.81	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L

Enter **influent** concentrations in the units specified

$\overline{}$	
0	TRC in µg/L
242	Ammonia in mg/L
32.4	Antimony in μg/L
6.7	Arsenic in μg/L
33.8	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
16.3	Copper in µg/L
9230	Iron in μg/L
36.3	Lead in µg/L
0	Mercury in µg/L
41.1	Nickel in µg/L
0	Selenium in µg/L
0	Silver in μg/L
977	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0.25	Benzo(a)anthracene in µg/L
0.25	Benzo(a)pyrene in µg/L
0.31	Benzo(b)fluoranthene in µg/L
0.11	Benzo(k)fluoranthene in µg/L
0.27	Chrysene in µg/L
0.05	Dibenzo(a,h)anthracene in µg/L
0.19	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

A. Inorganics	TBEL applies if bolded		WQBEL applies if b		
Ammonia	Report	mg/L			
Chloride	Report	μg/L			
Total Residual Chlorine	0.2	μg/L mg/L	7.5	μg/L	
Total Suspended Solids	30	mg/L		μg/L	
Antimony	206	_	640	~/I	
Arsenic		μg/L	36	μg/L	
	104	μg/L		μg/L	
Cadmium	10.2	μg/L	8.9	μg/L	
Chromium III	323	μg/L	100.0	μg/L	
Chromium VI	323	μg/L	50	μg/L	
Copper	242	$\mu g/L$	3.7	$\mu g/L$	
Iron	5000	$\mu g/L$		$\mu g/L$	
Lead	160	μg/L	8.5	μg/L	
Mercury	0.739	μg/L	1.11	μg/L	
Nickel	1450	μg/L	8.3	μg/L	
Selenium	235.8	μg/L	71	μg/L	
Silver	35.1	μg/L	2.2	μg/L	
Zinc	420	μg/L	86	μg/L	
Cyanide	178	mg/L	1.0	μg/L	
B. Non-Halogenated VOCs		C		. 0	
Total BTEX	100	$\mu g/L$			
Benzene	5.0	$\mu g/L$			
1,4 Dioxane	200	μ g/L			
Acetone	7.97	mg/L			
Phenol	1,080	μg/L	300	μg/L	
C. Halogenated VOCs	4.4		1.6	/T	
Carbon Tetrachloride	4.4	~/I	1.6	μg/L	
1,2 Dichlorobenzene1,3 Dichlorobenzene	600 320	μg/L μg/L			
1,4 Dichlorobenzene	5.0	μg/L μg/L			
Total dichlorobenzene		μg/L μg/L			
1,1 Dichloroethane	70	μg/L μg/L			
1,2 Dichloroethane	5.0	μg/L			
1,1 Dichloroethylene	3.2	μg/L			
Ethylene Dibromide	0.05	μg/L			
Methylene Chloride	4.6	μg/L			
1,1,1 Trichloroethane	200	μg/L			
1,1,2 Trichloroethane	5.0	$\mu g/L$			
Trichloroethylene	5.0	$\mu g/L$			
Tetrachloroethylene	5.0	$\mu g/L$	3.3	$\mu g/L$	
cis-1,2 Dichloroethylene	70	$\mu g/L$			

Vinyl Chloride	2.0	$\mu g/L$		
D. Non-Halogenated SVOCs				
Total Phthalates	190	$\mu g/L$		μg/L
Diethylhexyl phthalate	101	μg/L	2.2	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L
Chrysene	1.0	μg/L	0.0038	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

ATTACHMENT 8

CITY OF BOSTON NOTIFICATION

Proactive by Design

SEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.qza.com

Notification of Discharge under the 2016 Remediation General Permit

June 29, 2017 GZA File No. 03.0033930.08

Mr. Martin J. Walsh City of Boston Mayor 1 City Hall Square Boston, Massachusetts 02201

Re: Notification of Discharge under 2016 Remediation General Permit Umass-UCRR 100 Morrissey Boulevard Boston, Massachusetts

Dear Mr. Walsh:

Federal National Pollution Discharge Elimination System (NPDES) regulations require operators of discharges permitted under the 2016 Remediation General Permit (RGP) jointly administered by the United States Environmental Protection Agency (USEPA) and the Massachusetts Department of Environmental Protection (MassDEP), to notify the municipality of said discharge. These notice requirements are contained in Part 3.4(a) of the 2016 RGP. An electronic version of the 2016 RGP is available at https://www3.epa.gov/region1/npdes/rgp.html. In compliance with these requirements, GZA GeoEnvironmental, Inc. (GZA), on behalf of Umass Boston, is notifying the City of Boston of the discharge of treated water derived from the dewatering of utility excavations from the property located at 100 Morrissey Boulevard, in Boston Massachusetts.

A copy of the Notice of Intent (NOI) submitted to USEPA can be made available upon request.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Lawrence Feldman, LSP, Ph.D Senior Principal

ATTACHMENT 9

LABORATORY ANALYTICAL RESULTS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jason Ressler GZA GeoEnvironmental, Inc. 530 Broadway Providence, RI 02909

RE: UMASS Boston UCRR RGP (03.0033930.08 Task 1)

ESS Laboratory Work Order Number: 1706209

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 1:54 pm, Jun 22, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1706209

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

SAMPLE RECEIPT

The following samples were received on June 07, 2017 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

Revision 1 June 22, 2017: This report has been revised to include revised phthalate results.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1706209-01	UGW-701-1	Ground Water	200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr
			B-2009, 524.2, 625 SIM, 8270D SIM
1706209-02	UGW-702-1	Ground Water	200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr
			B-2009, 524.2, 625 SIM, 8270D SIM
1706209-03	UGW-703-1	Ground Water	200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr
			B-2009, 524.2, 625 SIM, 8270D SIM
1706209-04	UGW-9B-1	Ground Water	200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr
			B-2009, 524.2, 625 SIM, 8270D SIM
1706209-05	UDB-1-1	Surface Water	350.1

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

ESS Laboratory Work Order: 1706209

PROJECT NARRATIVE

524.2 Volatile Organic Compounds

CF70838-BSD1 Blank Spike recovery is above upper control limit (B+).

Tertiary-butyl Alcohol (132% @ 70-130%)

625(SIM) Semi-Volatile Organic Compounds

CF70834-BSD2 Relative percent difference for duplicate is outside of criteria (D+).

Dibenzo(a,h)Anthracene (23% @ 20%), Indeno(1,2,3-cd)Pyrene (24% @ 20%)

Total Metals

1706209-01 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Antimony, Copper, Iron, Silver

1706209-02 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Antimony

1706209-03 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Antimony

1706209-04 <u>Elevated Method Reporting Limits due to sample matrix (EL).</u>

Copper

CF70738-BSD1 Blank Spike recovery is above upper control limit (B+).

Cadmium (116% @ 85-115%)

CF70738-BSD1 Blank Spike recovery is below lower control limit (B-).

Silver (81% @ 85-115%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1706209

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace 7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO 8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-701-1 Date Sampled: 06/07/17 09:38

Percent Solids: N/A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	EL ND (50.0)		200.7		5	KJK	06/10/17 14:24	50	10	CF70738
Arsenic	ND (5.0)		3113B		5	KJK	06/09/17 16:47	50	10	CF70738
Cadmium	33.8 (10.0)		200.7		5	KJK	06/09/17 14:51	50	10	CF70738
Chromium	ND (4.0)		200.7		1	KJK	06/09/17 13:52	50	10	CF70738
Chromium III	ND (10.0)		200.7		1	JLK	06/09/17 13:52	1	1	[CALC]
Copper	EL ND (20.0)		200.7		10	BJV	06/12/17 14:32	50	10	CF70738
Iron	EL ND (200)		200.7		10	KJK	06/09/17 15:11	50	10	CF70738
Lead	12.0 (5.0)		3113B		5	KJK	06/10/17 2:19	50	10	CF70738
Mercury	ND (0.200)		245.1		1	MJV	06/09/17 14:32	20	40	CF70739
Nickel	41.1 (20.0)		200.7		5	KJK	06/09/17 14:51	50	10	CF70738
Selenium	ND (10.0)		3113B		5	KJK	06/09/17 21:12	50	10	CF70738
Silver	EL ND (5.0)		200.7		5	KJK	06/09/17 14:51	50	10	CF70738
Zinc	977 (50.0)		200.7		5	KJK	06/09/17 14:51	50	10	CF70738

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-701-1 Date Sampled: 06/07/17 09:38

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-01

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
1,1,2-Trichloroethane	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
1,1-Dichloroethane	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
1,1-Dichloroethene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
1,2-Dichlorobenzene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
1,2-Dichloroethane	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
1,3-Dichlorobenzene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
1,4-Dichlorobenzene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Acetone	ND (5.0)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Benzene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Carbon Tetrachloride	ND (0.3)		524.2		1	06/12/17 13:25	C7F0180	CF71237
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Ethylbenzene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Methylene Chloride	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Naphthalene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Tetrachloroethene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Toluene	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Trichloroethene	0.8 (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Vinyl Chloride	ND (0.2)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Xylene O	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237
Xylene P,M	ND (0.5)		524.2		1	06/12/17 13:25	C7F0180	CF71237

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 114 % 80-120

Surrogate: 4-Bromofluorobenzene 109 % 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-701-1 Date Sampled: 06/07/17 09:38

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 6/9/17 11:31

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method 625 SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/11/17 1:47	Sequence C7F0162	Batch CF70834
Acenaphthene	ND (0.19)				•		C7F0163	
Acenaphthylene	ND (0.19)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Anthracene	ND (0.19)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Benzo(a)anthracene	ND (0.05)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Benzo(a)pyrene	ND (0.05)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
bis(2-Ethylhexyl)phthalate	ND (0.93)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Butylbenzylphthalate	ND (2.34)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Chrysene	ND (0.05)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Diethylphthalate	ND (2.34)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Dimethylphthalate	ND (2.34)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Di-n-butylphthalate	ND (2.34)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Di-n-octylphthalate	ND (2.34)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Fluoranthene	ND (0.19)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Fluorene	ND (0.19)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Naphthalene	ND (0.19)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Pentachlorophenol	ND (0.84)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Phenanthrene	ND (0.19)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
Pyrene	ND (0.19)		625 SIM		1	06/11/17 1:47	C7F0163	CF70834
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		32 %		30-130				
Surrogate: 2,4,6-Tribromophenol		87 %		15-110				
Surrogate: 2-Fluorohinhenyl								

 Surrogate: 1,2-Dichlorobenzene-d4
 32 %
 30-130

 Surrogate: 2,4,6-Tribromophenol
 87 %
 15-110

 Surrogate: 2-Fluorobiphenyl
 45 %
 30-130

 Surrogate: Nitrobenzene-d5
 46 %
 30-130

 Surrogate: p-Terphenyl-d14
 63 %
 30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-701-1 Date Sampled: 06/07/17 09:38

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 6/8/17 14:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	MDL	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/09/17 1:17	Sequence C7F0138	Batch CF70831
	%	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		45 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-701-1 Date Sampled: 06/07/17 09:38

Percent Solids: N/A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)		350.1		1	JLK	06/12/17 17:52	mg/L	CF70923
Chloride	11800000 (5000000)		300.0		10000	EEM	06/12/17 14:25	ug/L	CF71222
Hexavalent Chromium	ND (10.0)		3500Cr B-2009		1	JLK	06/07/17 21:26	ug/L	CF70761
Total Suspended Solids	ND (5)		2540D		1	JLK	06/08/17 20:48	mg/L	CF70849

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-702-1 Date Sampled: 06/07/17 15:10

Percent Solids: N/A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	EL ND (50.0)		200.7		5	KJK	06/10/17 14:30	50	10	CF70738
Arsenic	ND (5.0)		3113B		5	KJK	06/09/17 16:52	50	10	CF70738
Cadmium	ND (0.50)		3113B		10	KJK	06/14/17 22:25	50	10	CF70738
Chromium	ND (4.0)		200.7		1	KJK	06/09/17 13:58	50	10	CF70738
Chromium III	ND (10.0)		200.7		1	JLK	06/09/17 13:58	1	1	[CALC]
Copper	15.6 (10.0)		200.7		5	KJK	06/10/17 14:30	50	10	CF70738
Iron	140 (100)		200.7		5	KJK	06/09/17 14:57	50	10	CF70738
Lead	32.9 (20.0)		200.7		5	KJK	06/09/17 14:57	50	10	CF70738
Mercury	ND (0.200)		245.1		1	MJV	06/09/17 14:34	20	40	CF70739
Nickel	ND (4.0)		200.7		1	KJK	06/09/17 13:58	50	10	CF70738
Selenium	ND (10.0)		3113B		5	KJK	06/09/17 21:35	50	10	CF70738
Silver	ND (1.0)		200.7		1	KJK	06/09/17 13:58	50	10	CF70738
Zinc	ND (50.0)		200.7		5	KJK	06/09/17 14:57	50	10	CF70738

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-702-1 Date Sampled: 06/07/17 15:10

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-02

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
1,1,2-Trichloroethane	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
1,1-Dichloroethane	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
1,1-Dichloroethene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
1,2-Dichlorobenzene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
1,2-Dichloroethane	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
1,3-Dichlorobenzene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
1,4-Dichlorobenzene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Acetone	ND (5.0)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Benzene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Carbon Tetrachloride	ND (0.3)		524.2		1	06/08/17 13:47	C7F0130	CF70838
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Ethylbenzene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Methylene Chloride	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Naphthalene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Tetrachloroethene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Toluene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Trichloroethene	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Vinyl Chloride	ND (0.2)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Xylene O	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838
Xylene P,M	ND (0.5)		524.2		1	06/08/17 13:47	C7F0130	CF70838

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 120 % 80-120

Surrogate: 4-Bromofluorobenzene 113 % 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-702-1 Date Sampled: 06/07/17 15:10

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 6/9/17 11:31

625(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) ND (0.19)	MDL	Method 625 SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/11/17 2:38	Sequence C7F0163	Batch CF70834
Acenaphthylene	ND (0.19)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Anthracene	ND (0.19)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Benzo(a)anthracene	ND (0.05)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Benzo(a)pyrene	ND (0.05)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
bis(2-Ethylhexyl)phthalate	ND (0.93)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Butylbenzylphthalate	ND (2.34)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Chrysene	ND (0.05)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Diethylphthalate	ND (2.34)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Dimethylphthalate	ND (2.34)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Di-n-butylphthalate	ND (2.34)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Di-n-octylphthalate	ND (2.34)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Fluoranthene	ND (0.19)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Fluorene	ND (0.19)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Naphthalene	ND (0.19)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Pentachlorophenol	ND (0.84)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Phenanthrene	ND (0.19)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834
Pyrene	ND (0.19)		625 SIM		1	06/11/17 2:38	C7F0163	CF70834

	70RECOVERY	Qualifiei	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	35 %		30-130
Surrogate: 2,4,6-Tribromophenol	81 %		15-110
Surrogate: 2-Fluorobiphenyl	43 %		30-130
Surrogate: Nitrobenzene-d5	48 %		30-130
Surrogate: p-Terphenyl-d14	62 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-702-1 Date Sampled: 06/07/17 15:10

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 6/8/17 14:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	Analyzed 06/09/17 1:54	Sequence C7F0138	Batch CF70831
	%	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		46 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-702-1 Date Sampled: 06/07/17 15:10

Percent Solids: N/A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	0.34 (0.10)		350.1		1	JLK	06/12/17 17:24	mg/L	CF70923
Chloride	12900000 (5000000)		300.0		10000	EEM	06/12/17 14:41	ug/L	CF71222
Hexavalent Chromium	ND (10.0)	3	500Cr B-2009		1	JLK	06/07/17 21:26	ug/L	CF70761
Total Suspended Solids	ND (5)		2540D		1	JLK	06/08/17 20:48	mg/L	CF70849

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-703-1 Date Sampled: 06/07/17 17:22

Percent Solids: N/A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	EL ND (20.0)		200.7		2	KJK	06/10/17 14:36	50	10	CF70738
Arsenic	6.7 (5.0)		3113B		5	KJK	06/09/17 16:58	50	10	CF70738
Cadmium	0.35 (0.25)		3113B		5	KJK	06/10/17 0:33	50	10	CF70738
Chromium	ND (4.0)		200.7		1	KJK	06/09/17 14:03	50	10	CF70738
Chromium III	ND (10.0)		200.7		1	JLK	06/09/17 14:03	1	1	[CALC]
Copper	16.3 (4.0)		200.7		2	KJK	06/10/17 14:36	50	10	CF70738
Iron	1460 (20.0)		200.7		1	KJK	06/09/17 14:03	50	10	CF70738
Lead	36.3 (5.0)		3113B		5	KJK	06/10/17 2:36	50	10	CF70738
Mercury	ND (0.200)		245.1		1	MJV	06/09/17 14:36	20	40	CF70739
Nickel	8.6 (4.0)		200.7		1	KJK	06/09/17 14:03	50	10	CF70738
Selenium	ND (10.0)		3113B		5	KJK	06/09/17 21:40	50	10	CF70738
Silver	ND (1.0)		200.7		1	KJK	06/09/17 14:03	50	10	CF70738
Zinc	69.8 (10.0)		200.7		1	KJK	06/09/17 14:03	50	10	CF70738

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-703-1 Date Sampled: 06/07/17 17:22

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Surrogate: 1,2-Dichlorobenzene-d4

Extraction Method: 524.2

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-03

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
1,1,2-Trichloroethane	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
1,1-Dichloroethane	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
1,1-Dichloroethene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
1,2-Dichlorobenzene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
1,2-Dichloroethane	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
1,3-Dichlorobenzene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
1,4-Dichlorobenzene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Acetone	6.7 (5.0)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Benzene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Carbon Tetrachloride	ND (0.3)		524.2		1	06/12/17 14:00	C7F0180	CF71237
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Ethylbenzene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Methylene Chloride	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Naphthalene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Tetrachloroethene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Toluene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Trichloroethene	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Vinyl Chloride	ND (0.2)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Xylene O	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237
Xylene P,M	ND (0.5)		524.2		1	06/12/17 14:00	C7F0180	CF71237

%Recovery Qualifier Limits

Surrogate: 4-Bromofluorobenzene 100 % 80-120

80-120

108 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-703-1 Date Sampled: 06/07/17 17:22

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 6/9/17 11:31

625(SIM) Semi-Volatile Organic Compounds

Acenaphthene 0.90 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Acenaphthylene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Anthracene 0.28 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Benzo(a)anthracene 0.25 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Benzo(a)pyrene 0.25 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Benzo(b)fluoranthene 0.31 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Benzo(k)fluoranthene 0.11 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Bis(2-Eithylhexyl)phthalate ND (9.3) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Chrysene 0.27 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 <	Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Anthracene 0.28 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Benzo(a)anthracene 0.25 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Benzo(a)pyrene 0.25 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Benzo(g), i)perylene 0.19 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Benzo(k), illucranthene 0.11 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Benzo(k), illucranthene 0.11 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Bis(2-Ethylhexyl) phthalate ND (0.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Bis(2-Ethylhexyl) phthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Bis(2-Ethylhexyl) phthalate 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Dibenzo(a,h) Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28<	Acenaphthene	0.90 (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Benzo(a)anthracene 0.25 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Benzo(a)pyrene 0.25 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Benzo(b)fluoranthene 0.31 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Benzo(k)fluoranthene 0.19 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Bis(2-Ethylhexyl)phthalate ND (0.93) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Butylbenzylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Chrysene 0.27 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Dibenzo(a,h)Phthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF7084 Dimentylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163	Acenaphthylene	ND (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Benzo(a)pyrene 0.25 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70843 Benzo(b)fluoranthene 0.31 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70843 Benzo(k)fluoranthene 0.19 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70843 Benzo(k)fluoranthene 0.11 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70843 Bis(2-Ethylhexyl)phthalate ND (0.93) 625 SIM 1 06/11/17 3:28 C7F0163 CF70843 Butylbenzylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70843 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70844 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70844 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70844 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17	Anthracene	0.28 (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Benzo(f)fluoranthene 0.31 (0.05) 625 SIM 1 06/11/17 3:28 7F0163 CF70834 Benzo(g), h)perylene 0.19 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Benzo(k)fluoranthene 0.11 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 bis(2-Ethylhexyl)phthalate ND (0.93) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Butylbenzylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Chrysene 0.27 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Diethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F	Benzo(a)anthracene	0.25 (0.05)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Benzo(g,h,i)perylene 0.19 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Benzo(k)fluoranthene 0.11 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 bis(2-Ethylhexyl)phthalate ND (0.93) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Butylbenzylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Chrysene 0.27 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Diethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 <td>Benzo(a)pyrene</td> <td>0.25 (0.05)</td> <td></td> <td>625 SIM</td> <td></td> <td>1</td> <td>06/11/17 3:28</td> <td>C7F0163</td> <td>CF70834</td>	Benzo(a)pyrene	0.25 (0.05)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Benzo(k)fluoranthene 0.11 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 bis(2-Ethylhexyl)phthalate ND (0.93) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Butylbenzylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Chrysene 0.27 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Diethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 <	Benzo(b)fluoranthene	0.31 (0.05)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Bis(2-Ethylhexyl)phthalate ND (0.93) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Butylbenzylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Chrysene 0.27 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Diethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dine-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.75 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.75 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.75 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.75 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 C	Benzo(g,h,i)perylene	0.19 (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Butylbenzylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Chrysene 0.27 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Diethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachloroph	Benzo(k)fluoranthene	0.11 (0.05)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Chrysene 0.27 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Diethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF708	bis(2-Ethylhexyl)phthalate	ND (0.93)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Dibenzo(a,h)Anthracene 0.05 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Diethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dimethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthr	Butylbenzylphthalate	ND (2.34)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Diethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Dimethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Naphthalene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene	Chrysene	0.27 (0.05)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Dimethylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Naphthalene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene	Dibenzo(a,h)Anthracene	0.05 (0.05)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Di-n-butylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Naphthalene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Diethylphthalate	ND (2.34)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Di-n-octylphthalate ND (2.34) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Naphthalene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Dimethylphthalate	ND (2.34)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Fluoranthene 0.60 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Naphthalene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Di-n-butylphthalate	ND (2.34)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Fluorene 0.49 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Naphthalene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Di-n-octylphthalate	ND (2.34)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Indeno(1,2,3-cd)Pyrene 0.19 (0.05) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Naphthalene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Fluoranthene	0.60 (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Naphthalene ND (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Fluorene	0.49 (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Pentachlorophenol ND (0.84) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834 Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Indeno(1,2,3-cd)Pyrene	0.19 (0.05)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Phenanthrene 0.73 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Naphthalene	ND (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
	Pentachlorophenol	ND (0.84)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
Pyrene 0.59 (0.19) 625 SIM 1 06/11/17 3:28 C7F0163 CF70834	Phenanthrene	0.73 (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834
	Pyrene	0.59 (0.19)		625 SIM		1	06/11/17 3:28	C7F0163	CF70834

	70Recovery	Qualifiei	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	46 %		30-130
Surrogate: 2,4,6-Tribromophenol	105 %		15-110
Surrogate: 2-Fluorobiphenyl	58 %		30-130
Surrogate: Nitrobenzene-d5	63 %		30-130
Surrogate: p-Terphenyl-d14	68 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-703-1 Date Sampled: 06/07/17 17:22

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 6/8/17 14:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	Analyzed 06/09/17 2:31	Sequence C7F0138	Batch CF70831
	%	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		42 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-703-1 Date Sampled: 06/07/17 17:22

Percent Solids: N/A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-03

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method	Limit	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	13.5 (0.50)	350.1		5	JLK	06/12/17 17:52	mg/L	CF70923
Chloride	264000 (50000)	300.0		100	EEM	06/08/17 17:55	ug/L	CF70815
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	06/07/17 21:26	ug/L	CF70761
Total Suspended Solids	46 (5)	2540D		1	JLK	06/08/17 20:48	mg/L	CF70849

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-9B-1 Date Sampled: 06/07/17 16:55

Percent Solids: N/A

Extraction Method: 3005A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-04

Sample Matrix: Ground Water

Units: ug/L

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	<u>F/V</u>	Batch
Antimony	32.4 (20.0)		200.7		2	KJK	06/10/17 14:41	50	10	CF70738
Arsenic	ND (5.0)		3113B		5	KJK	06/09/17 17:04	50	10	CF70738
Cadmium	ND (0.25)		3113B		5	KJK	06/14/17 22:19	50	10	CF70738
Chromium	ND (4.0)		200.7		1	KJK	06/09/17 14:09	50	10	CF70738
Chromium III	ND (10.0)		200.7		1	JLK	06/09/17 14:09	1	1	[CALC]
Copper	EL ND (4.0)		200.7		2	KJK	06/10/17 14:41	50	10	CF70738
Iron	9230 (20.0)		200.7		1	KJK	06/09/17 14:09	50	10	CF70738
Lead	ND (5.0)		3113B		5	KJK	06/10/17 2:41	50	10	CF70738
Mercury	ND (0.200)		245.1		1	MJV	06/09/17 14:39	20	40	CF70739
Nickel	ND (4.0)		200.7		1	KJK	06/09/17 14:09	50	10	CF70738
Selenium	ND (10.0)		3113B		5	KJK	06/09/17 22:08	50	10	CF70738
Silver	ND (1.0)		200.7		1	KJK	06/09/17 14:09	50	10	CF70738
Zinc	22.9 (10.0)		200.7		1	KJK	06/09/17 14:09	50	10	CF70738

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-9B-1 Date Sampled: 06/07/17 16:55

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-04

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)	·	524.2	· · · · · · · · · · · · · · · · · · ·	1	06/08/17 14:56	C7F0130	CF70838
1,1,2-Trichloroethane	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
1,1-Dichloroethane	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
1,1-Dichloroethene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
1,2-Dichlorobenzene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
1,2-Dichloroethane	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
1,3-Dichlorobenzene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
1,4-Dichlorobenzene	0.7 (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Acetone	ND (5.0)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Benzene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Carbon Tetrachloride	ND (0.3)		524.2		1	06/08/17 14:56	C7F0130	CF70838
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Ethylbenzene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Methylene Chloride	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Naphthalene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Tetrachloroethene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Toluene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Trichloroethene	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Vinyl Chloride	ND (0.2)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Xylene O	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838
Xylene P,M	ND (0.5)		524.2		1	06/08/17 14:56	C7F0130	CF70838

%Recovery Qualifier Limits
Surrogate: 1,2-Dichlorobenzene-d4 105 % 80-120

Surrogate: 4-Bromofluorobenzene 101 % 80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-9B-1 Date Sampled: 06/07/17 16:55

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-04

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 6/9/17 11:31

625(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	Results (MRL) MDL 4.98 (0.19)	Method 625 SIM	Limit DF	<u>Analyzed</u> 06/11/17 4:19	Sequence C7F0163	Batch CF70834
Acenaphthylene	ND (0.19)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Anthracene	0.92 (0.19)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Benzo(a)anthracene	0.12 (0.05)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Benzo(a)pyrene	0.05 (0.05)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Benzo(b)fluoranthene	0.06 (0.05)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Benzo(g,h,i)perylene	ND (0.19)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Benzo(k)fluoranthene	ND (0.05)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
bis(2-Ethylhexyl)phthalate	ND (0.93)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Butylbenzylphthalate	ND (2.34)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Chrysene	0.13 (0.05)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Dibenzo(a,h)Anthracene	ND (0.05)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Diethylphthalate	ND (2.34)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Dimethylphthalate	ND (2.34)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Di-n-butylphthalate	ND (2.34)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Di-n-octylphthalate	ND (2.34)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Fluoranthene	1.87 (0.19)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Fluorene	4.59 (0.19)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Indeno(1,2,3-cd)Pyrene	ND (0.05)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Naphthalene	ND (0.19)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Pentachlorophenol	ND (0.84)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Phenanthrene	2.29 (0.19)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834
Pyrene	1.22 (0.19)	625 SIM	1	06/11/17 4:19	C7F0163	CF70834

	MECOVERY	Qualifici	LIIIILS
Surrogate: 1,2-Dichlorobenzene-d4	42 %		30-130
Surrogate: 2,4,6-Tribromophenol	97 %		15-110
Surrogate: 2-Fluorobiphenyl	49 %		30-130
Surrogate: Nitrobenzene-d5	58 %		30-130
Surrogate: p-Terphenyl-d14	61 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-9B-1 Date Sampled: 06/07/17 16:55

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-04

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 6/8/17 14:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.904 (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/09/17 3:09	Sequence C7F0138	Batch CF70831
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		33 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UGW-9B-1 Date Sampled: 06/07/17 16:55

Percent Solids: N/A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-04

Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u>	Results (MRL)	MDL M	ethod Li	<u>imit</u> D	Analys	<u>Analyze</u>	d Units	Batch
Ammonia as N	24.2 (1.00)		50.1	1) JLK	06/12/17 17:		CF70923
Chloride	1030000 (1000000)	30	0.00	20	00 EEM	06/08/17 22:	14 ug/L	CF70815
Hexavalent Chromium	ND (10.0)	3500C	r B-2009	1	JLK	06/07/17 21:	26 ug/L	CF70761
Total Suspended Solids	14 (5)	25	40D	1	JLK	06/08/17 20:	48 mg/L	CF70849

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Client Sample ID: UDB-1-1 Date Sampled: 06/07/17 16:15

Percent Solids: N/A

ESS Laboratory Work Order: 1706209 ESS Laboratory Sample ID: 1706209-05

Sample Matrix: Surface Water

Classical Chemistry

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)		350.1		1	JLK	06/12/17 17:54	mg/L	CF70923

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Batch CF70738 - 3005A

ESS Laboratory Work Order: 1706209

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Tota	٠l	М	l A	+-	ı۰
I ULC	31	ľ		La	13

Blank									
Antimony	ND	10.0	ug/L						
Arsenic	ND	1.0	ug/L						
Cadmium	ND	2.00	ug/L						
Cadmium	ND	0.05	ug/L						
Chromium III	ND	4.00	ug/L						
Copper	ND	2.0	ug/L						
Iron	ND	20.0	ug/L						
Lead	ND	4.0	ug/L						
Lead	ND	1.0	ug/L						
Nickel	ND	4.0	ug/L						
Selenium	ND	2.0	ug/L						
Silver	ND	1.0	ug/L						
Zinc	ND	10.0	ug/L						
LCS									
Antimony	93.4	10.0	ug/L	100.0	93	85-115			
Arsenic	112	25.0	ug/L	100.0	112	85-115			
Cadmium	52.7	25.0	ug/L	50.00	105	85-115			
Cadmium	43.0	2.00	ug/L	50.00	86	85-115			
Chromium III	89.5	4.00	ug/L						
Copper	97.5	4.0	ug/L	100.0	98	85-115			
Iron	431	20.0	ug/L	500.0	86	85-115			
Lead	91.5	4.0	ug/L	100.0	91	85-115			
Lead	115	25.0	ug/L	100.0	115	85-115			
Nickel	93.4	10.0	ug/L	100.0	93	85-115			
Selenium	218	50.0	ug/L	200.0	109	85-115			
Silver	46.4	1.0	ug/L	50.00	93	85-115			
Zinc	90.2	10.0	ug/L	100.0	90	85-115			
LCS Dup									
Antimony	98.6	10.0	ug/L	100.0	99	85-115	5	20	
Arsenic	106	25.0	ug/L	100.0	106	85-115	5	20	
Cadmium	45.3	2.00	ug/L	50.00	91	85-115	5	20	
Cadmium	58.2	25.0	ug/L	50.00	116	85-115	10	20	B+
Chromium III	96.3	4.00	ug/L						
Copper	105	4.0	ug/L	100.0	105	85-115	8	20	
Iron	453	20.0	ug/L	500.0	91	85-115	5	20	
Lead	96.5	4.0	ug/L	100.0	97	85-115	5	20	
Lead	108	25.0	ug/L	100.0	108	85-115	7	20	
Nickel	99.1	10.0	ug/L	100.0	99	85-115	6	20	
Selenium	210	50.0	ug/L	200.0	105	85-115	4	20	
Silver	40.4	1.0	ug/L	50.00	81	85-115	14	20	B-
Zinc	96.4	10.0	ug/L	100.0	96	85-115	7	20	
Batch CF70739 - 245.1/7470A									

Blank

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

ESS Laboratory Work Order: 1706209

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
Batch CF70739 - 245.1/7470A										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	5.90	0.200	ug/L	6.000		98	85-115			
LCS Dup										
Mercury	5.83	0.200	ug/L	6.000		97	85-115	1	20	
Batch CF70761 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							

524.2 Volatile Organic Compounds

Blank							
1,1,1-Trichloroethane	ND	0.5	ug/L				
1,1,2-Trichloroethane	ND	0.5	ug/L				
1,1-Dichloroethane	ND	0.5	ug/L				
1,1-Dichloroethene	ND	0.5	ug/L				
1,2-Dichlorobenzene	ND	0.5	ug/L				
1,2-Dichloroethane	ND	0.5	ug/L				
1,3-Dichlorobenzene	ND	0.5	ug/L				
1,4-Dichlorobenzene	ND	0.5	ug/L				
Acetone	ND	5.0	ug/L				
Benzene	ND	0.5	ug/L				
Carbon Tetrachloride	ND	0.3	ug/L				
cis-1,2-Dichloroethene	ND	0.5	ug/L				
Ethylbenzene	ND	0.5	ug/L				
Methyl tert-Butyl Ether	ND	0.5	ug/L				
Methylene Chloride	ND	0.5	ug/L				
Naphthalene	ND	0.5	ug/L				
Tertiary-amyl methyl ether	ND	1.0	ug/L				
Tertiary-butyl Alcohol	ND	25.0	ug/L				
Tetrachloroethene	ND	0.5	ug/L				
Toluene	ND	0.5	ug/L				
Trichloroethene	ND	0.5	ug/L				
Vinyl Chloride	ND	0.2	ug/L				
Xylene O	ND	0.5	ug/L				
Xylene P,M	ND	0.5	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	5.41		ug/L	5.000	108	80-120	
Surrogate: 4-Bromofluorobenzene	5.28		ug/L	5.000	106	80-120	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Batch CF70838 - 524.2

ESS Laboratory Work Order: 1706209

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compounds
----------------	---------	-----------

Jatch Cr70030 - 324.2								
,1,1-Trichloroethane	11.0	ug/L	10.00	110	70-130			
,1,2-Trichloroethane	10.9	ug/L	10.00	109	70-130			
,1-Dichloroethane	10.6	ug/L	10.00	106	70-130			
,1-Dichloroethene	11.1	ug/L	10.00	111	70-130			
,2-Dichlorobenzene	11.0	ug/L	10.00	110	70-130			
,2-Dichloroethane	11.1	ug/L	10.00	111	70-130			
,3-Dichlorobenzene	10.7	ug/L	10.00	107	70-130			
,4-Dichlorobenzene	11.1	ug/L	10.00	111	70-130			
cetone	53.9	ug/L	50.00	108	70-130			
Benzene	10.7	ug/L	10.00	107	70-130			
Carbon Tetrachloride	11.1	ug/L	10.00	111	70-130			
is-1,2-Dichloroethene	10.7	ug/L	10.00	107	70-130			
thylbenzene	10.9	ug/L	10.00	109	70-130			
lethyl tert-Butyl Ether	10.5	ug/L	10.00	105	70-130			
lethylene Chloride	11.0	ug/L	10.00	110	70-130			
laphthalene	11.3	ug/L	10.00	113	70-130			
ertiary-amyl methyl ether	10.6	ug/L	10.00	106	70-130			
ertiary-butyl Alcohol	62.9	ug/L	50.00	126	70-130			
etrachloroethene	8.0	ug/L	10.00	80	70-130			
oluene	10.8	ug/L	10.00	108	70-130			
richloroethene	10.8	ug/L	10.00	108	70-130			
inyl Chloride	10.6	ug/L	10.00	106	70-130			
ylene O	10.3	ug/L	10.00	103	70-130			
ylene P,M	20.9	ug/L	20.00	105	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.54	ug/L	5.000	111	80-120			
Surrogate: 4-Bromofluorobenzene	5.33	ug/L	5.000	107	80-120			
CS Dup								
,1,1-Trichloroethane	10.9	ug/L	10.00	109	70-130	0.9	20	
,1,2-Trichloroethane	11.4	ug/L	10.00	114	70-130	4	20	
,1-Dichloroethane	10.6	ug/L	10.00	106	70-130	0.2	20	
,1-Dichloroethene	11.3	ug/L	10.00	113	70-130	2	20	
,2-Dichlorobenzene	11.2	ug/L	10.00	112	70-130	2	20	
,2-Dichloroethane	10.9	ug/L	10.00	109	70-130	2	20	
,3-Dichlorobenzene	10.9	ug/L	10.00	109	70-130	1	20	
,4-Dichlorobenzene	11.3	ug/L	10.00	113	70-130	2	20	
cetone	54.9	ug/L	50.00	110	70-130	2	20	
enzene	10.6	ug/L	10.00	106	70-130	0.9	20	
arbon Tetrachloride	11.4	ug/L	10.00	114	70-130	3	20	
is-1,2-Dichloroethene		ug/L	10.00	105	70-130	2	20	
thylbenzene	10.5		10.00			2		
•	11.2	ug/L		112	70-130		20	
1ethyl tert-Butyl Ether	11.1	ug/L	10.00	111	70-130	6	20	
lethylene Chloride	11.4	ug/L	10.00	114	70-130	3	20	
laphthalene	11.8	ug/L	10.00	118	70-130	4	20	
ertiary-amyl methyl ether	11.0	ug/L	10.00	110	70-130	3	20	
ertiary-butyl Alcohol	65.8	ug/L	50.00	132	70-130	5	25	B+

185 Frances Avenue, Cranston, RI 02910-2211

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

ESS Laboratory Work Order: 1706209

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		524.2 Vola	atile Organi	c Compou	unds					
Batch CF70838 - 524.2										
Tetrachloroethene	8.2		ug/L	10.00		82	70-130	3	20	
Toluene	11.0		ug/L	10.00		110	70-130	1	20	
Trichloroethene	10.9		ug/L	10.00		109	70-130	1	20	
Vinyl Chloride	10.6		ug/L	10.00		106	70-130	0.09	20	
Xylene O	10.4		ug/L	10.00		104	70-130	1	20	
Xylene P,M	20.8		ug/L	20.00		104	70-130	0.6	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.49		ug/L	5.000		110	80-120			
Surrogate: 4-Bromofluorobenzene	5.40		ug/L	5.000		108	80-120			
Batch CF71237 - 524.2										
Blank										
1,1,1-Trichloroethane	ND	0.5	ug/L							
1,1,2-Trichloroethane	ND	0.5	ug/L							
1,1-Dichloroethane	ND	0.5	ug/L							
1,1-Dichloroethene	ND	0.5	ug/L							
1,2-Dichlorobenzene	ND	0.5	ug/L							
1,2-Dichloroethane	ND	0.5	ug/L							
1,3-Dichlorobenzene	ND	0.5	ug/L							
1,4-Dichlorobenzene	ND	0.5	ug/L							
Acetone	ND	5.0	ug/L							
Benzene	ND	0.5	ug/L							
Carbon Tetrachloride	ND	0.3	ug/L							
cis-1,2-Dichloroethene	ND	0.5	ug/L							
Ethylbenzene	ND	0.5	ug/L							
Methyl tert-Butyl Ether	ND	0.5	ug/L							
Methylene Chloride	ND	0.5	ug/L							
Naphthalene	ND	0.5	ug/L							
Tertiary-amyl methyl ether	ND	1.0	ug/L							
Tertiary-butyl Alcohol	ND	25.0	ug/L							
Tetrachloroethene	ND	0.5	ug/L							
Toluene	ND	0.5	ug/L							
Trichloroethene	ND	0.5	ug/L							
Vinyl Chloride	ND	0.2	ug/L							
Xylene O	ND	0.5	ug/L							
Xylene P,M	ND	0.5	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	5.17		ug/L	5.000		103	80-120			
Surrogate: 4-Bromofluorobenzene	5.18		ug/L	5.000		104	80-120			
LCS										
1,1,1-Trichloroethane	10.5		ug/L	10.00		105	70-130			
1,1,2-Trichloroethane	9.9		ug/L	10.00		99	70-130			
1,1-Dichloroethane	10.0		ug/L	10.00		100	70-130			
1,1-Dichloroethene	10.6		ug/L	10.00		106	70-130			
1,2-Dichlorobenzene	9.7		ug/L	10.00		97	70-130			
1,2-Dichloroethane	10.6		ug/L	10.00		106	70-130			
1,3-Dichlorobenzene	9.8		ug/L	10.00		98	70-130			
1,4-Dichlorobenzene	10.1		ug/L	10.00		101	70-130			

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Batch CF71237 - 524.2

ESS Laboratory Work Order: 1706209

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

524.2 Volatile	Organic	Compound	S
----------------	---------	----------	---

Acetone	46.2	ug/L	50.00	92	70-130			
Benzene	9.9	ug/L	10.00	99	70-130			
Carbon Tetrachloride	10.1	ug/L	10.00	101	70-130			
cis-1,2-Dichloroethene	9.8	ug/L	10.00	98	70-130			
Ethylbenzene	10.0	ug/L	10.00	100	70-130			
Methyl tert-Butyl Ether	10.4	ug/L	10.00	104	70-130			
Methylene Chloride	9.5	ug/L	10.00	95	70-130			
Naphthalene	10.2	ug/L	10.00	102	70-130			
Tertiary-amyl methyl ether	10.7	ug/L	10.00	107	70-130			
Tertiary-butyl Alcohol	53.6	ug/L	50.00	107	70-130			
Tetrachloroethene	10.3	ug/L	10.00	103	70-130			
Toluene	9.8	ug/L	10.00	98	70-130			
Trichloroethene	9.8	ug/L	10.00	98	70-130			
Vinyl Chloride	9.6	ug/L	10.00	96	70-130			
Xylene O	9.6	ug/L	10.00	96	70-130			
Xylene P,M	19.3	ug/L	20.00	96	70-130			
	5.30	ug/L	5.000	106	80-120			
Surrogate: 1,2-Dichlorobenzene-d4 Surrogate: 4-Bromofluorobenzene	5.10	ug/L	5.000	102	80-120			
		-5/-						
LCS Dup	11.0		10.00	112	70 120		20	
1,1,1-Trichloroethane	11.2	ug/L	10.00	112	70-130	7	20	
1,1,2-Trichloroethane	10.6	ug/L	10.00	106	70-130	7	20	
1,1-Dichloroethane	11.1	ug/L	10.00	111	70-130	10	20	
1,1-Dichloroethene	11.1	ug/L	10.00	111	70-130	5	20	
1,2-Dichlorobenzene	10.4	ug/L	10.00	104	70-130	7	20	
1,2-Dichloroethane	11.4	ug/L	10.00	114	70-130	8	20	
1,3-Dichlorobenzene	10.4	ug/L	10.00	104	70-130	6	20	
1,4-Dichlorobenzene	10.7	ug/L	10.00	107	70-130	5	20	
Acetone	50.6	ug/L	50.00	101	70-130	9	20	
Benzene	10.8	ug/L	10.00	108	70-130	8	20	
Carbon Tetrachloride	11.2	ug/L	10.00	112	70-130	10	20	
cis-1,2-Dichloroethene	10.3	ug/L	10.00	103	70-130	5	20	
Ethylbenzene	10.6	ug/L	10.00	106	70-130	6	20	
Methyl tert-Butyl Ether	11.2	ug/L	10.00	112	70-130	8	20	
Methylene Chloride	9.9	ug/L	10.00	99	70-130	4	20	
Naphthalene	10.8	ug/L	10.00	108	70-130	6	20	
Tertiary-amyl methyl ether	11.1	ug/L	10.00	111	70-130	4	20	
Tertiary-butyl Alcohol	55.3	ug/L	50.00	111	70-130	3	25	
Tetrachloroethene	11.1	ug/L	10.00	111	70-130	7	20	
Toluene	10.2	ug/L	10.00	102	70-130	3	20	
Trichloroethene	10.7	ug/L	10.00	107	70-130	8	20	
Vinyl Chloride	10.0	ug/L	10.00	100	70-130	4	20	
Xylene O	10.1	ug/L	10.00	101	70-130	6	20	
Aylerie O	10.1							
Xylene P,M	20.4	ug/L	20.00	102	70-130	5	20	
		ug/L ug/L	20.00 <i>5.000</i>	102 <i>101</i>	70-130 <i>80-120</i>	5	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

Batch CF70834 - 3510C

ESS Laboratory Work Order: 1706209

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM) Semi-Volatile Organic Compounds

Blank							
Acenaphthene	ND	0.20	ug/L				
Acenaphthylene	ND	0.20	ug/L				
Anthracene	ND	0.20	ug/L				
Benzo(a)anthracene	ND	0.05	ug/L				
Benzo(a)pyrene	ND	0.05	ug/L				
Benzo(b)fluoranthene	ND	0.05	ug/L				
Benzo(g,h,i)perylene	ND	0.20	ug/L				
Benzo(k)fluoranthene	ND	0.05	ug/L				
pis(2-Ethylhexyl)phthalate	1.34	1.00	ug/L				
Butylbenzylphthalate	ND	2.50	ug/L				
Chrysene	ND	0.05	ug/L				
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	ND	2.50	ug/L				
luoranthene	ND	0.20	ug/L				
luorene	ND	0.20	ug/L				
ndeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
laphthalene	ND	0.20	ug/L				
entachlorophenol	ND	0.90	ug/L				
henanthrene	ND	0.20	ug/L				
yrene	ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	0.765		ug/L	2.500	31	30-130	
Surrogate: 2,4,6-Tribromophenol	2.57		ug/L	3.750	68	15-110	
Surrogate: 2-Fluorobiphenyl	1.04		ug/L	2.500	42	30-130	
Surrogate: Nitrobenzene-d5	1.33		ug/L	2.500	53	30-130	
- Surrogate: p-Terphenyl-d14	1.28		ug/L	2.500	51	30-130	
.cs							
cenaphthene	2.37	0.20	ug/L	4.000	59	40-140	
cenaphthylene	2.41	0.20	ug/L	4.000	60	40-140	
Anthracene	2.41	0.20	ug/L	4.000	60	40-140	
enzo(a)anthracene	2.44	0.05	ug/L	4.000	61	40-140	
Benzo(a)pyrene	2.72	0.05	ug/L	4.000	68	40-140	
Benzo(b)fluoranthene	2.64	0.05	ug/L	4.000	66	40-140	
Benzo(g,h,i)perylene	2.48	0.20	ug/L	4.000	62	40-140	
Benzo(k)fluoranthene	2.62	0.05	ug/L	4.000	65	40-140	
ois(2-Ethylhexyl)phthalate	3.92	2.50	ug/L	4.000	98	40-140	
Butylbenzylphthalate	2.95	2.50	ug/L	4.000	74	40-140	
Chrysene	2.42	0.05	ug/L	4.000	60	40-140	
) Dibenzo(a,h)Anthracene	2.46	0.05	ug/L	4.000	62	40-140	
Diethylphthalate	2.48	2.50	ug/L	4.000	62	40-140	
Dimethylphthalate	2.59	2.50	ug/L	4.000	65	40-140	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

ESS Laboratory Work Order: 1706209

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM)) Semi-Volatile	Organic	Compound	S
----------	-----------------	---------	----------	---

Batch CF70834 - 3510C									
Di-n-octylphthalate	3.26	2.50	ug/L	4.000	82	40-140			
Fluoranthene	2.56	0.20	ug/L	4.000	64	40-140			
Fluorene	2.51	0.20	ug/L	4.000	63	40-140			
Indeno(1,2,3-cd)Pyrene	2.56	0.05	ug/L	4.000	64	40-140			
Naphthalene	1.99	0.20	ug/L	4.000	50	40-140			
Pentachlorophenol	3.03	0.90	ug/L	4.000	76	30-130			
Phenanthrene	2.28	0.20	ug/L	4.000	57	40-140			
Pyrene	2.49	0.20	ug/L	4.000	62	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	1.01		ug/L	2.500	40	30-130			
Surrogate: 2,4,6-Tribromophenol	3.06		ug/L	3.750	81	<i>15-110</i>			
Surrogate: 2-Fluorobiphenyl	1.23		ug/L	2.500	49	30-130			
Surrogate: Nitrobenzene-d5	1.34		ug/L	2.500	54	30-130			
Surrogate: p-Terphenyl-d14	1.37		ug/L	2.500	55	30-130			
LCS Dup									
Acenaphthene	2.58	0.20	ug/L	4.000	64	40-140	8	20	
Acenaphthylene	2.61	0.20	ug/L	4.000	65	40-140	8	20	
Anthracene	2.58	0.20	ug/L	4.000	64	40-140	7	20	
Benzo(a)anthracene	2.72	0.05	ug/L	4.000	68	40-140	11	20	
Benzo(a)pyrene	3.07	0.05	ug/L	4.000	77	40-140	12	20	
Benzo(b)fluoranthene	3.20	0.05	ug/L	4.000	80	40-140	19	20	
Benzo(g,h,i)perylene	3.04	0.20	ug/L	4.000	76	40-140	20	20	
Benzo(k)fluoranthene	3.06	0.05	ug/L	4.000	76	40-140	16	20	
bis(2-Ethylhexyl)phthalate	3.50	2.50	ug/L	4.000	87	40-140	11	20	
Butylbenzylphthalate	3.36	2.50	ug/L	4.000	84	40-140	13	20	
Chrysene	2.63	0.05	ug/L	4.000	66	40-140	9	20	
Dibenzo(a,h)Anthracene	3.09	0.05	ug/L	4.000	77	40-140	23	20	D+
Diethylphthalate	2.68	2.50	ug/L	4.000	67	40-140	8	20	
Dimethylphthalate	2.73	2.50	ug/L	4.000	68	40-140	5	20	
Di-n-butylphthalate	3.03	2.50	ug/L	4.000	76	40-140	11	20	
Di-n-octylphthalate	3.83	2.50	ug/L	4.000	96	40-140	16	20	
Fluoranthene	2.79	0.20	ug/L	4.000	70	40-140	9	20	
Fluorene	2.66	0.20	ug/L	4.000	67	40-140	6	20	
Indeno(1,2,3-cd)Pyrene	3.25	0.05	ug/L	4.000	81	40-140	24	20	D+
Naphthalene	2.18	0.20	ug/L	4.000	54	40-140	9	20	
Pentachlorophenol	3.30	0.90	ug/L	4.000	83	30-130	9	20	
Phenanthrene	2.47	0.20	ug/L	4.000	62	40-140	8	20	
Pyrene	2.72	0.20	ug/L	4.000	68	40-140	9	20	
Surrogate: 1,2-Dichlorobenzene-d4	1.10		ug/L	2.500	44	30-130			
Surrogate: 2,4,6-Tribromophenol	3.29		ug/L	3.750	88	15-110			
Surrogate: 2-Fluorobiphenyl	1.31		ug/L	2.500	52	30-130			
Surrogate: Nitrobenzene-d5	1.52		ug/L	2.500	61	30-130			
Surrogate: p-Terphenyl-d14	1.43		ug/L	2.500	57	30-130			
- , , ,									

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

ESS Laboratory Work Order: 1706209

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8270D(SIM) S	Semi-Volatile	Organic Co	mpounds	w/ Isoto	pe Dilutio	on			
Batch CF70831 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	2.37		ug/L	5.000		47	15-115			
LCS										
1,4-Dioxane	8.30	0.250	ug/L	10.00		83	40-140			
Surrogate: 1,4-Dioxane-d8	2.90		ug/L	5.000		58	15-115			
LCS Dup										
1,4-Dioxane	8.20	0.250	ug/L	10.00		82	40-140	1	20	
Surrogate: 1,4-Dioxane-d8	2.89		ug/L	5.000		58	15-115			
		Cl	assical Che	mistry						
Patch CE70761 - Conoral Droparation										
Batch CF70761 - General Preparation										
Blank Hexavalent Chromium	ND	10.0	ug/L							
	ND	10.0	ug/L							
LCS	0.405			0.4000			00.110			
Hexavalent Chromium	0.495		mg/L	0.4998		99	90-110			
LCS Dup										
Hexavalent Chromium	0.495		mg/L	0.4998		99	90-110	0.1	20	
Batch CF70815 - General Preparation										
Blank										
Chloride	ND	500	ug/L							
ıcs										
Chloride	2		mg/L	2.500		93	90-110			
Batch CF70849 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	46		mg/L	43.50		106	80-120			
Batch CF70923 - General Preparation	46		IIIg/L	15150						
Blank	46		mg/L	.5.50						
	46		IIIg/L							
Ammonia as N	ND	0.10	mg/L							
		0.10								
LCS		0.10		0.09994		96	80-120			
LCS Ammonia as N	ND		mg/L			96	80-120			
LCS Ammonia as N LCS	ND		mg/L			96	80-120			
Ammonia as N LCS Ammonia as N LCS Ammonia as N Batch CF71222 - General Preparation	ND 0.10	0.10	mg/L	0.09994						
LCS Ammonia as N LCS Ammonia as N Batch CF71222 - General Preparation	ND 0.10	0.10	mg/L	0.09994						
LCS Ammonia as N LCS Ammonia as N Batch CF71222 - General Preparation Blank	ND 0.10	0.10	mg/L	0.09994						
LCS Ammonia as N LCS Ammonia as N	ND 0.10 1.13	0.10	mg/L mg/L	0.09994						

The Microbiology Division

of Thielsch Engineering, Inc.

BOS.16665

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

ESS Laboratory Work Order: 1706209

Notes and Definitions

U	Analyte included in the analysis, but not detected
EL	Elevated Method Reporting Limits due to sample matrix (EL).
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
B+	Blank Spike recovery is above upper control limit (B+).
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection

LOO Limit of Quantitation **Detection Limit** DL I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report §

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery [CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1706209

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: UMASS Boston UCRR RGP

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-718

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA - Providence, RI - GZA/HDM	ESS Project ID: 1706209	
Shipped/Delivered Via: Client	Date Received: 6/7/2017 Project Due Date: 6/14/2017 Days for Project: 5 Day	<u></u>
Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
2. Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 13.6 Iced with: Ice	9. Were labs informed about short holds & rushes?	Yes No / NA
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes No
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received? a. Air bubbles in aqueous VOAs? b. Does methanol cover soil completely?	Yes No Yes No Yes / No Y NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Sample Receiving Notes:	Time: By: Time: By:	
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	,	,
	<u>.</u>	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	139254	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
01	139261	Yes	NA	Yes	1L Amber - Unpres	ΝP	
01	139262	Yes	NA	Yes	1L Amber - Unpres	NP	
01	139267	Yes	NA	Yes	1L Amber - Unpres	NP	
01	139268	Yes	NA	Yes	1L Amber - Unpres	NP	
01	139272	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
01	139276	Yes	NA	Yes	250 mL Poly - Unpres	NP	
01	139286	Yes	No	Yes	VOA Vial - HCI	HCI	
01	139287	Yes	No	Yes	VOA Vial - HCl	HCI	
01	139288	Yes	No	Yes	VOA Vial - HCl	HCI	
01	139292	Yes	NA	Yes	1L Poly - Unpres	NP	
02	139253	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
02	139259	Yes	NA	Yes	1L Amber - Unpres	NP	
02	139260	Yes	NA	Yes	1L Amber - Unpres	NP	
02	139265	Yes	NA	Yes	1L Amber - Unpres	NP	
02	139266	Yes	NA	Yes	1L Amber - Unpres	NP	
02	139271	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
02	139275	Yes	NA	Yes	250 mL Poly - Unpres	NP	
02	139283	Yes	No	Yes	VOA Vial - HCI	HCI	
02	139284	Yes	No	Yes	VOA Vial - HCI	HCI	
02	139285	Yes	No	Yes	VOA Vial - HCI	HCI	
02	139291	Yes	NA	Yes	1L Poly - Unpres	NP	
03	139252	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
03	139257	Yes	NA	Yes	1L Amber - Unpres	NP	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GZA -	Providence	RI - GZAI	MDH	ESS Pro	oject ID:	1706209
_					Date R	eceived:	6/7/2017
03	139258	Yes	NA	Yes	1L Amber - Unpres	NP	
03	139270	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
03	139274	Yes	NA	Yes	250 mL Poly - Unpres	NP	
03	139280	Yes	No	Yes	VOA Vial - HCI	HCI	
03	139281	Yes	No	Yes	VOA Vial - HCI	HCI	
03	139282	Yes	No	Yes	VOA Vial - HCI	HCI	
04	139251	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
04	139255	Yes	NA	Yes	1L Amber - Unpres	NP	
04	139256	Yes	NA	Yes	1L Amber - Unpres	NP	
04	139263	Yes	NA	Yes	1L Amber - Unpres	NP	
04	139264	Yes	NA	Yes	1L Amber - Unpres	NP	
04	139269	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
04	139273	Yes	NA	Yes	250 mL Poly - Unpres	NP	
04	139277	Yes	No	Yes	VOA Vial - HCI	HCI	
04	139278	Yes	No	Yes	VOA Vial - HCI	HCI	
04	139279	Yes	No	Yes	VOA Vial - HCI	HCI	
04	139289	Yes	NA	Yes	1L Poly - Unpres	NP	
05	139250	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
		1					
2nd Review		111	0		Yes No		
Are barcode	labels of co	red contail	ners		Yes No	/	
Completed By:		VIII	1		Date & Time:	0 23	30
Reviewed By:		A			Date & Time:	7 23	42
Delivered By:	(,	A			أطئ	17 234	12

	aborate			CHAIN OF CUSTODY								ESS LAB PROJECT ID												
		Engineerin	_	Turn Tim	e X Standard Rush Approv	ved By:					Re	port	ing I							017 I	RGP	1		100
		nston, RI 029 Fax (401)		State whe	re samples were collected: MA						1													
, ,	aboratory.c	, ,	101 1100	Is this pro	ject for: Yes	Electonic							X_			_						1		
					RGP	Format:	Exc	el_X	_	Acc														
		:Jason R	Ressler		Project # 33930.08 task 1			Н		1		П	1	ı	Cr)				ı	RGP SVOC Log List 625-SIM		ı		
Company:	_GZA 530 Broad	way			Project Name: UMASS Boston UCRR RGE (hdm 6/9/1	Analysis	l	Н	ation	6695	급	Н	1	1	run T	Ш		1 524 IM		t 625-	# #			
Address.		ce, RI 02909				la	_	olved	alcul	ΣÍ.	4500 LL	Н	ů	, ,	UST	Ш		ng Lis	2	og Lis	me			
					PO #] ~	s Tota	s Diss	S (C	Ethanol AS IM D3695 Chloride 300.0*	Total Cyanide	4	TSS 2540D*	350.	Tri Cr (Calc. MUST run T	196A	20.1	RGP VOC Long List 524	1	OC LC	B Comment#			
ESS Lab	Date	Collection	Grab -G	Matrix	Sample Identification	# of	Meta	RGP Meta	Hardness	anol	al Cys	TPH 1664	3 254	monis	Cr (C	Hex Cr 7196A	Phenol 4	0 0 0	B 504	P SV	B 608			
Sample ID	Dute	Time	Composite-C		·	Containers	RGF	ã,	E i	- - - - - - - - - - - - - - - - - - -	Tot	Ŧ.	S E	Ą	Ë	Ŧ	Æ	. RG	E E	8	BCB BCB	-		
70	04/07/2	an-	G	GW	Influent Sample ID: UGW-701-1 Field Measured pH =	20	x			\ _x			×	x	x	x		x ,		_x	1.3	2		
V-701	0410 (11	9:30		GW	Field Measured temp. =	22 11	1			1 X			ľ	1	-	1		3 3	7	ž				1144
	1,0010	mD.			Influent Sample ID: UGW-702-1	M		П													12	1	Contact la lo ruming so from U-10	W pt
N-102	06/04/3	18:10	G	GW	Field Measured pH = Field Measured temp. =	92 11	X			X			X	j	×	X	-	x 3	×	ž	1,	2 '	V exces	u one
1		10			Influent Sample ID: UGW-703-1	-400	1	\vdash	+	+	+		*	'	\vdash		\dashv	-	-	\rightarrow	_	- 3	* Contact	will
0-763	4180100	014	G	GW	Field Measured pH =	838	x		1	×			Ó	x	х	x		x 3	K	×	1,:	2 1	2000 U-10	3
0-102		12:33			Field Measured temp. =	DA	1	Н	4	C	1	Н	0	1	-	ı	\dashv	5	1		+	'	le Do not 1	01
1.	nuloal	2012		GW	Influent Sample JD: USW-704-1 Field Measured pH =	2/2	/x	\setminus		×		\bigcap	x	l _x	x,	X	1	× :	x /	x	1.	,2	K Do not the sample voto 4	thom
A LOCAL	03.	12:37		3.00	Field Measured temp. =					\perp					\angle			1	1	Ш		1	V-704	
	1 0 10				Influent Sample ID: UGW-9B-1	is																		
11-715	06/04/	017 14:55	G	GW	Field Measured pH = Field Measured temp. =	32	X			1			X	X	X	X	-	3	À	S X	1,	1		
-		100				**	۴	\vdash	+	1	+	\vdash	+	+	\vdash	П					\top	1		
						-	+	\vdash	+	+	+	\vdash	+	+	+	\vdash	\vdash	+	+	+	+	-		
1 2	ددهم	40			Receiving Water Sample: UDB-1-1 Field Measured pH =			Н																
"Key	06/03/12	1017	G	SW	Field Measured temp. =	1		Ш				Ш		X								ı		
Outley.	The state of the s	16:15			Field measured salinity =		L	Ш	\perp	\perp		Ш	\perp	1				_		\sqcup	_	4		
Preservation	MARKOWS IN CONTRACTOR	THE RESERVE THE PROPERTY OF THE PARTY OF THE			OH, 7-Asorbic Acid, 8-ZnAct, 9		4			1 1 V F				1 3 P P						1 AG		+		
		Glass AG-Amb			er SW-Surface Water DW-Drinking Water O-Oil W-Wipe	s F-Filter] P	P	Р	V	1 1	AG	P	P		P	AG	V	V V	AG	40	\dashv		
Cooler Pre		Yes	N6	Sampled																		1		
1		No N			s: 1) RGP Metals include Sb, As, Cd, Cu, Fe, Pb	, Ni, Se, A	g ar	nd Zi	ı by	200	.7/2	00.9	and	Hg	by 2	45.	l					1		
		12.5 +		2) Param	eters in BOLD have Short hold-time	PERM	1IT	AT	TA(CHE	D							17			*			
		10	Date/Time	Received by:	C and CI taken from the same container Signature) (Relinquished by (Signature)	DISCH	T		Date/T		тт	WA	107	<u> 11</u>			by: (S		ire)			T		
	Signatura	5 06/01	110000		6717 2052		+		Date/T	Time		_			Rec	eived	by: (S	ignatu	ire)			\dashv		
Relinquished by	(olgnature)	20	Date/Time	received by:	,														27570			_		
					Please E-mail all changes to Chain of Custod	ly in writi	n;															Pa	age of	_

and delin-

5

	aborato				CHAIN OF CUSTOI						Reporting Limits - As required by 2017 RGP													
		Engineerin	_	Turn Tim	e X Standard Rush	Approve	ed By:					Re	port	ing L	imit	s - A	As re	equii	ed b	y 20)17 R	GP		146
		nston, RI 029 Fax (401)		State whe	ere samples were collected: MA																		1	
	aboratory.c		101 1100	Is this pro	eject for: Yes		Electonic						_	Χ_			_							
					RGP		Format:	Exc	el_X	_	Acc	ess_		PDF	_X_	_ 0	_							
Company:	_GZA_ _530 Broad	:Jason R way ce, RI 02909			Project # 33930.08 task 1 Project Name: UMASS Boston UCI PO #	RR	Analysis	otal	Dissolved	(Calculation)	Ethanol ASTM D3695 Chloride 300.0*	de 4500 LL		. CI E	50.1	Tri Cr (Calc. MUST run T. Cr)	16A	1	RGF VOC Long List 524 1,4-Dioxane 8270-SIM		RGP SVOC Log List 625-SIM	Comment #		
ESS Lab	Date	Collection	Grab -G	Matrix	Sample Identification		# of	P Metals 1	RGP Metals D	ardness	Ethanol A.	Total Cyanide	² H 1664	TSS 2540D*	nmonia 3	i Cr (Calc	Hex Cr 7196A	Phenol 420	4-Dioxan	JB 504.1	RGP SVOC	3		
Sample ID		Time	Composite-C				Containers	RG	S	Ϊį	ū δ	P	Ħ	<u> </u>	₹	Ë	Ĭ	ā i	7 -	Ш	œ à	+	1	
V-701	04/07/2	9:38	G	GW	Influent Sample ID: UGW-701-1 Field Measured pH = Field Measured temp. =		22	X			X			x 1	x 1	x ~	x		x 2		ž	1,2		. hald \$
N-403-	010043	18:10 012	G	GW	Influent Sample ID: UGW-702-1 Field Measured pH = Field Measured temp. =		92 11	x			×			×	×	×	X	2	x 3 3		×	1,2	K Contact to running	pay en
0-963	1180100	12:37	G	GW	Influent Sample ID: UGW-703-1 Field Measured pH = Field Measured temp. =		BR	x			×	3		₩ 6	x	×	x		x x		×	1,2	to running	sample
W JOH	ouloal	2017	G/	Gily	Influent Sample ID: USW-704-1 Field Measured pH = Field Measured temp. =		2,2	x		\	,			x	x	×	x		××	/	x	1,2	Sample V-704	- 170m
V-93	08/03/3	14:55		GW	Influent Sample ID: UGW-9B-1 Field Measured pH = Field Measured temp. =		32 11	x			2			x	x	×	×	-	x 3 3		×	1,2		
our felt.	०७१८३१२	n7 Wis	G	sw	Receiving Water Sample: UDB-1-1 Field Measured pH = Field Measured temp. = Field measured salinity =		1								x									
Preservation	Code: 1-NP, 2-	-HCl, 3-H2SO4	, 4-HNO3, 5-1	NaOH, 6-Me0	OH, 7-Asorbic Acid, 8-ZnAct, 9			4						1							1]	
		Glass AG-Amb						P	Р	Р	VF	Р	AG	P	P	-	Р	AG	VA	G V	AGA	G	-	
			Vastewater G	-	ter SW-Surface Water DW-Drinking Water O-Oil	W-Wipes	F-Filter					_				_				_	_	_	4	
	sent		N6	Sampled		E. D	NI C ·		17		200	7/2	0.00	and	He I	2	15 1			_			-	
		No N		Commen	ts: 1) RGP Metals include Sb, As, Cd, Cu eters in BOLD have Short hold-time	ı, Fe, Pb,	Ni, Se, A	g an 11T	d Zr	1 Dy ΓΑ(CHE	. //2 D	JU.9	and	rig t	y 2	4J. I					*		
Cooler Ter	nperature: _	12.5 +	13.6 12 a		C and Cl taken from the same contained.	er	LIM																_	
Religquished by	(Signature	S OULD	Date/Time	Received by:	(Signature) Relinquished by: (Si	ignature)				Date/T								by: (Si					-	
Relinquished by	(Signature)	20	MS Date/Time	Received by:	(Signature) Relinquished by: (Si	ignature)				Jait/ I	ane					, 100	_,,,,,,	٠, ر٥١	J	-/]	
		<u> </u>			Please E-mail all changes to Chain of	Custody	y in writir	1;														-	Pageof_	

5

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jason Ressler GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

RE: UMASS - Boston NOI Application (05.0033930.02) ESS Laboratory Work Order Number: 1410211

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED**

By ESS Laboratory at 10:57 am, Oct 22, 2014

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

SAMPLE RECEIPT

The following samples were received on October 08, 2014 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES).

The cooler temperature for sample 1410211-01 was not within the acceptance limit of <6°C, however, samples were delivered on ice on the day of sampling.

Lab Number 1410211-01	Sample Name U-6	Matrix Ground Water	Analysis 1664A, 2540D, 300.0, 420.1, 4500 CN CE, 4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011, 8082A, 8260B, 8270D, 8270D SIM, Calc
1410211-02	U-108	Ground Water	1664A, 2540D, 300.0, 420.1, 4500 CN CE, 4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011, 8082A, 8260B, 8270D, 8270D SIM, Calc
1410211-03	U-9B	Ground Water	1664A, 2540D, 300.0, 420.1, 4500 CN CE, 4500-Cl E, 6010C, 7010, 7196A, 7470A, 8011, 8082A, 8260B, 8270D, 8270D SIM, Calc
1410211-04	Trip Blank	Aqueous	8260B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

PROJECT NARRATIVE

8270C(SIM) Polynuclear Aromatic Hydrocarbons

CXJ0175-CCV1 Continuing Calibration recovery is above upper control limit (C+).

Di-n-octylphthalate (121% @ 80-120%)

Classical Chemistry

1410211-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1410211-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

1410211-03 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Metals

1410211-01 Elevated Method Reporting Limits due to sample matrix (EL).

Arsenic, Cadmium, Lead

1410211-03 Present in Method Blank (B).

Lead

CJ41607-BS1 Blank Spike recovery is below lower control limit (B-).

Silver (78% @ 80-120%)

CJ41607-BSD1 Blank Spike recovery is below lower control limit (B-).

Silver (76% @ 80-120%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP and Graphite Furnace Digestion

3020A - Aqueous ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-6

Date Sampled: 10/08/14 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte Antimony	Results (MRL) ND (2.5)	MDL	<u>Method</u> 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/16/14 16:19	<u>I/V</u> 50	<u>F/V</u> 25	Batch CJ40927
Arsenic	EL ND (25.0)		7010		10	KJK	10/09/14 22:40	50	25	CJ40927
Cadmium	EL ND (2.5)		6010C		1	KJK	10/10/14 15:02	50	25	CJ40927
Chromium	ND (10)		6010C		1	KJK	10/10/14 15:02	50	25	CJ40927
Copper	18.6 (5.00)		6010C		1	ICP	10/10/14 15:02	50	25	CJ40927
Iron	ND (500)		6010C		10	KJK	10/10/14 17:21	50	25	CJ40927
Lead	EL ND (10)		6010C		1	ICP	10/10/14 15:02	50	25	CJ40927
Mercury	ND (0.20)		7470A		1	HG	10/10/14 14:32	20	40	CJ40933
Nickel	ND (5)		6010C		1	ICP	10/10/14 15:02	50	25	CJ40927
Selenium	ND (5.0)		7010		1	KJK	10/10/14 16:42	50	25	CJ40927
Silver	ND (0.2)		7010		1	KJK	10/18/14 18:20	100	20	CJ41607
Zinc	96 (25)		6010C		1	KJK	10/10/14 15:02	50	25	CJ40927

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-6

Date Sampled: 10/08/14 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: [CALC]

Total Metals Aqueous

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedI/VF/VBatchChromium (III)ND (10)Calc1EEM10/08/14 16:5511I [CALC]

185 Frances Avenue, Cranston, RI 02910-2211

Dependability

Tel: 401-461-7181 lity • Quality Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-6

Date Sampled: 10/08/14 08:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-01

Sample Matrix: Ground Water

Units: ug/L Analyst: TAJ

Prepared: 10/10/14 9:40 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>		Sequence	Batch
Aroclor 1016	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913
Aroclor 1221	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913
Aroclor 1232	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913
Aroclor 1242	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913
Aroclor 1248	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913
Aroclor 1254	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913
Aroclor 1260	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913
Aroclor 1262	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913
Aroclor 1268	ND (0.09)		8082A		1	10/10/14 17:29		CJ40913

Qualifier

l imits

	Miccorery	Qualifici	Limes
Surrogate: Decachlorobiphenyl	<i>78</i> %		30-150
Surrogate: Decachlorobiphenyl [2C]	<i>82 %</i>		30-150
Surrogate: Tetrachloro-m-xylene	61 %		30-150
Surrogate: Tetrachloro-m-xylene [2C]	<i>66</i> %		30-150

%Recovery

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-6

Date Sampled: 10/08/14 08:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/09/14 20:51	Sequence CXJ0142	Batch CJ40945
, ,	ND (1.0)				_			
1,1,2-Trichloroethane	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
1,1-Dichloroethane	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
1,1-Dichloroethene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
1,2-Dichlorobenzene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
1,2-Dichloroethane	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
1,3-Dichlorobenzene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
1,4-Dichlorobenzene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Acetone	ND (10.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Benzene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Carbon Tetrachloride	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
cis-1,2-Dichloroethene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Ethylbenzene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Methyl tert-Butyl Ether	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Methylene Chloride	ND (2.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Naphthalene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Tertiary-amyl methyl ether	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Tertiary-butyl Alcohol	ND (25.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Tetrachloroethene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Toluene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Trichloroethene	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Vinyl Chloride	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Xylene O	ND (1.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945
Xylene P,M	ND (2.0)		8260B		1	10/09/14 20:51	CXJ0142	CJ40945

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	119 %		70-130
Surrogate: 4-Bromofluorobenzene	94 %		70-130
Surrogate: Dibromofluoromethane	113 %		70-130
Surrogate: Toluene-d8	101 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-6

Date Sampled: 10/08/14 08:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 10/10/14 11:06

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.2)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 10/15/14 5:25	Sequence CXJ0187	Batch CJ41006
		Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		81 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-6

Date Sampled: 10/08/14 08:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 10/9/14 15:17

8270C(SIM) Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL	Method 8270D SIM	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	Analyzed 10/14/14 21:20	Sequence CXJ0175	Batch CJ40911
Acenaphthene Acenaphthylene	ND (0.19)		8270D SIM 8270D SIM		1	10/14/14 21:20	CXJ0175 CXJ0175	CJ40911 CJ40911
Anthracene	ND (0.19)		8270D SIM 8270D SIM		1	10/14/14 21:20	CXJ0175 CXJ0175	CJ40911 CJ40911
	ND (0.19)				1			
Benzo(a)anthracene	ND (0.05)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Benzo(a)pyrene	ND (0.05)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Benzo(b)fluoranthene	ND (0.05)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Benzo(g,h,i)perylene	ND (0.19)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Benzo(k)fluoranthene	ND (0.05)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
bis(2-Ethylhexyl)phthalate	ND (2.34)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Butylbenzylphthalate	ND (2.34)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Chrysene	ND (0.05)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Dibenzo(a,h)Anthracene	ND (0.05)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Diethylphthalate	ND (2.34)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Dimethylphthalate	ND (2.34)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Di-n-butylphthalate	ND (2.34)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Di-n-octylphthalate	ND (2.34)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Fluoranthene	ND (0.19)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Fluorene	ND (0.19)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Indeno(1,2,3-cd)Pyrene	ND (0.05)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Naphthalene	ND (0.19)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Pentachlorophenol	ND (0.84)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Phenanthrene	ND (0.19)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911
Pyrene	ND (0.19)		8270D SIM		1	10/14/14 21:20	CXJ0175	CJ40911

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	<i>30 %</i>		30-130
Surrogate: 2,4,6-Tribromophenol	27 %		15-110
Surrogate: 2-Fluorobiphenyl	<i>33</i> %		30-130
Surrogate: Nitrobenzene-d5	43 %		30-130
Surrogate: p-Terphenyl-d14	44 %		<i>30-130</i>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-6

Date Sampled: 10/08/14 08:30

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Chloride	Results (MRL) 14500 (2500)	MDL <u>Method</u> 300.0	<u>Limit</u>	<u>DF</u> 5000	Analyst JLK	Analyzed 10/16/14 15:18	Units mg/L	Batch CJ41623
Hexavalent Chromium	ND (10)	7196A		1	EEM	10/08/14 16:55	ug/L	CJ40841
Phenols	ND (100)	420.1		1	JLK	10/15/14 15:42	ug/L	CJ41514
Total Cyanide (LL)	ND (5.0)	4500 CN CE		1	EEM	10/14/14 9:30	ug/L	CJ41417
Total Petroleum Hydrocarbon	ND (5)	1664A		1	CRR	10/16/14 0:00	mg/L	CJ41431
Total Residual Chlorine	ND (10)	4500-C1 E		1	EEM	10/08/14 17:00	ug/L	CJ40840
Total Suspended Solids	56 (5)	2540D		1	EEM	10/10/14 16:10	mg/L	CJ41011

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-6

Date Sampled: 10/08/14 08:30

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-01

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 10/11/14 12:30

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u> 1	Analyst JXS	Analyzed 10/11/14 13:06	Sequence	Batch CJ41101
	•	%Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		96 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-108 Date Sampled: 10/08/14 09:25

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>I/V</u>	F/V	Batch
Antimony	ND (2.5)		7010		1	KJK	10/16/14 16:25	50	25	CJ40927
Arsenic	ND (2.5)		7010		1	KJK	10/09/14 21:55	50	25	CJ40927
Cadmium	0.12 (0.05)		7010		1	JP	10/21/14 21:20	100	20	CJ41607
Chromium	ND (10)		6010C		1	KJK	10/10/14 13:24	50	25	CJ40927
Copper	6.38 (5.00)		6010C		1	ICP	10/10/14 13:24	50	25	CJ40927
Iron	18000 (50.0)		6010C		1	KJK	10/10/14 13:24	50	25	CJ40927
Lead	11 (10)		6010C		1	ICP	10/10/14 13:24	50	25	CJ40927
Mercury	ND (0.20)		7470A		1	HG	10/10/14 14:39	20	40	CJ40933
Nickel	ND (5)		6010C		1	ICP	10/10/14 13:24	50	25	CJ40927
Selenium	ND (5.0)		7010		1	KJK	10/10/14 16:12	50	25	CJ40927
Silver	ND (0.2)		7010		1	KJK	10/18/14 18:26	100	20	CJ41607
Zinc	37 (25)		6010C		1	KJK	10/10/14 13:24	50	25	CJ40927

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-108 Date Sampled: 10/08/14 09:25

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: [CALC]

Total Metals Aqueous

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedI/VF/VBatchChromium (III)ND (10)Calc1EEM10/08/14 16:5511I [CALC]

185 Frances Avenue, Cranston, RI 02910-2211

Dependability

Tel: 401-461-7181 lity • Quality Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-108 Date Sampled: 10/08/14 09:25

Percent Solids: N/A Initial Volume: 950

Final Volume: 1 Extraction Method: 3510C ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-02

Sample Matrix: Ground Water

Units: ug/L Analyst: TAJ

Prepared: 10/10/14 9:40 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522
Aroclor 1221	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522
Aroclor 1232	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522
Aroclor 1242	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522
Aroclor 1248	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522
Aroclor 1254	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522
Aroclor 1260	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522
Aroclor 1262	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522
Aroclor 1268	ND (0.11)		8082A		1	10/15/14 23:22		CJ41522

l imits

	20110001007	-	
Surrogate: Decachlorobiphenyl	66 %		30-150
Surrogate: Decachlorobiphenyl [2C]	64 %		30-150
Surrogate: Tetrachioro-m-xylene	60 %		30-150
Surrogate: Tetrachloro-m-xylene [2C]	<i>65</i> %		30-150

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-108 Date Sampled: 10/08/14 09:25

Percent Solids: N/A
Initial Volume: 5

Final Volume: 5 Extraction Method: 5030B ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/09/14 21:16	Sequence CXJ0142	Batch CJ40945
1,1,2-Trichloroethane	ND (1.0) ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142 CXJ0142	CJ40945
1,1-Dichloroethane	,		8260B		1	10/09/14 21:16	CXJ0142 CXJ0142	CJ40945
1,1-Dichloroethene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142 CXJ0142	CJ40945
,	ND (1.0)				_			
1,2-Dichlorobenzene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
1,2-Dichloroethane	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
1,3-Dichlorobenzene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
1,4-Dichlorobenzene	5.4 (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Acetone	ND (10.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Benzene	1.8 (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Carbon Tetrachloride	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
cis-1,2-Dichloroethene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Ethylbenzene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Methyl tert-Butyl Ether	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Methylene Chloride	ND (2.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Naphthalene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Tertiary-amyl methyl ether	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Tertiary-butyl Alcohol	ND (25.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Tetrachloroethene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Toluene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Trichloroethene	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Vinyl Chloride	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Xylene O	ND (1.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
Xylene P,M	ND (2.0)		8260B		1	10/09/14 21:16	CXJ0142	CJ40945
	9	6Recovery	Qualifier	Limits				
Surrogator 1 2-Dichlomothana-dd								

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	116 %		70-130
Surrogate: 4-Bromofluorobenzene	96 %		70-130
Surrogate: Dibromofluoromethane	113 %		70-130
Surrogate: Toluene-d8	101 %		70-130

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-108 Date Sampled: 10/08/14 09:25

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 10/10/14 11:06

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 0.2 (0.2)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/15/14 6:14	Sequence CXJ0187	<u>Batch</u> CJ41006
_	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		<i>76</i> %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-108 Date Sampled: 10/08/14 09:25

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 10/9/14 15:17

8270C(SIM) Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	1.13 (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Acenaphthylene	ND (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Anthracene	0.24 (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Benzo(a)anthracene	0.22 (0.05)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Benzo(a)pyrene	0.22 (0.05)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Benzo(b)fluoranthene	0.29 (0.05)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Benzo(g,h,i)perylene	ND (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Benzo(k)fluoranthene	0.07 (0.05)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
bis(2-Ethylhexyl)phthalate	ND (2.34)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Butylbenzylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Chrysene	0.24 (0.05)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Dibenzo(a,h)Anthracene	ND (0.05)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Diethylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Dimethylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Di-n-butylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Di-n-octylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Fluoranthene	0.61 (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Fluorene	0.72 (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Indeno(1,2,3-cd)Pyrene	0.15 (0.05)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Naphthalene	ND (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Pentachlorophenol	ND (0.84)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Phenanthrene	0.91 (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911
Pyrene	0.51 (0.19)		8270D SIM		1	10/14/14 22:09	CXJ0175	CJ40911

	70 Recovery	Qualifier	LIIIIG
Surrogate: 1,2-Dichlorobenzene-d4	<i>36</i> %		<i>30-130</i>
Surrogate: 2,4,6-Tribromophenol	31 %		<i>15-110</i>
Surrogate: 2-Fluorobiphenyl	<i>38</i> %		30-130
Surrogate: Nitrobenzene-d5	51 %		30-130
Surrogate: p-Terphenyl-d14	42 %		30-130

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-108 Date Sampled: 10/08/14 09:25

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte Chloride	Results (MRL) 1030 (250)	MDL <u>Method</u> 300.0	<u>Limit</u>	<u>DF</u> 500	Analyst JLK	Analyzed 10/16/14 13:23	Units mg/L	Batch CJ41623
Hexavalent Chromium	ND (10)	7196A		1	EEM	10/08/14 16:55	ug/L	CJ40841
Phenols	ND (100)	420.1		1	JLK	10/15/14 15:42	ug/L	CJ41514
Total Cyanide (LL)	ND (5.0)	4500 CN CE		1	EEM	10/14/14 9:30	ug/L	CJ41417
Total Petroleum Hydrocarbon	ND (5)	1664A		1	CRR	10/16/14 0:00	mg/L	CJ41431
Total Residual Chlorine	ND (10)	4500-C1 E		1	EEM	10/08/14 17:00	ug/L	CJ40840
Total Suspended Solids	70 (10)	2540D		1	EEM	10/10/14 16:10	mg/L	CJ41011

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-108 Date Sampled: 10/08/14 09:25

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-02

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 10/16/14 13:00

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u> 1	Analyst JXS 10	Analyzed 0/16/14 14:09	Sequence	Batch CJ41608
	94	Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		118 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Dependability

Tel: 401-461-7181 Quality Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-9B

Date Sampled: 10/08/14 11:10

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (2.5)		7010		1	KJK	10/16/14 16:31	50	25	CJ40927
Arsenic	ND (2.5)		7010		1	KJK	10/09/14 22:01	50	25	CJ40927
Cadmium	0.14 (0.05)		7010		1	JP	10/21/14 21:26	100	20	CJ41607
Chromium	ND (10)		6010C		1	KJK	10/10/14 15:18	50	25	CJ40927
Copper	4.04 (4.00)		6010C		1	ICP	10/20/14 19:11	100	20	CJ41607
Iron	7170 (50.0)		6010C		1	KJK	10/10/14 15:18	50	25	CJ40927
Lead	B 8.0 (1.0)		7010		1	JP	10/21/14 3:35	100	20	CJ41607
Mercury	ND (0.20)		7470A		1	HG	10/10/14 14:41	20	40	CJ40933
Nickel	ND (5)		6010C		1	ICP	10/10/14 15:18	50	25	CJ40927
Selenium	ND (5.0)		7010		1	KJK	10/10/14 16:18	50	25	CJ40927
Silver	ND (0.2)		7010		1	KJK	10/18/14 18:32	100	20	CJ41607
Zinc	93 (25)		6010C		1	KJK	10/10/14 15:18	50	25	CJ40927

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-9B Date Sampled: 10/08/14 11:10

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: [CALC]

Total Metals Aqueous

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedI/VF/VBatchChromium (III)ND (10)Calc1EEM10/08/14 16:5511I [CALC]

185 Frances Avenue, Cranston, RI 02910-2211

Dependability

Tel: 401-461-7181 lity • Quality Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-9B Date Sampled: 10/08/14 11:10

Percent Solids: N/A Initial Volume: 970 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-03

Sample Matrix: Ground Water

Units: ug/L Analyst: TAJ

Prepared: 10/10/14 9:40 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND(0.10)		8082A		1	10/15/14 23:40		CJ41522
Aroclor 1221	ND (0.10)		8082A		1	10/15/14 23:40		CJ41522
Aroclor 1232	ND (0.10)		8082A		1	10/15/14 23:40		CJ41522
Aroclor 1242	ND (0.10)		8082A		1	10/15/14 23:40		CJ41522
Aroclor 1248	ND (0.10)		8082A		1	10/15/14 23:40		CJ41522
Aroclor 1254	ND (0.10)		8082A		1	10/15/14 23:40		CJ41522
Aroclor 1260	ND (0.10)		8082A		1	10/15/14 23:40		CJ41522
Aroclor 1262	ND (0.10)		8082A		1	10/15/14 23:40		CJ41522
Aroclor 1268	ND (0.10)		8082A		1	10/15/14 23:40		CJ41522

Qualifier

l imits

	707.0007.0.7	&aaa	
Surrogate: Decachlorobiphenyl	<i>68 %</i>		30-150
Surrogate: Decachlorobiphenyl [2C]	62 %		30-150
Surrogate: Tetrachloro-m-xylene	<i>57</i> %		30-150
Surrogate: Tetrachloro-m-xylene [2C]	66 %		30-150

%Recovery

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-9B

Date Sampled: 10/08/14 11:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	MDL Methor	od <u>Limit</u> <u>DI</u>	Analyzed 10/09/14 21:42	Sequence CXJ0142	Batch CJ40945
1,1,2-Trichloroethane	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
1,1-Dichloroethane	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
1,1-Dichloroethene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
1,2-Dichlorobenzene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
1,2-Dichloroethane	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
1,3-Dichlorobenzene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
1,4-Dichlorobenzene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Acetone	ND (10.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Benzene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Carbon Tetrachloride	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
cis-1,2-Dichloroethene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Ethylbenzene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Methyl tert-Butyl Ether	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Methylene Chloride	ND (2.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Naphthalene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Tertiary-amyl methyl ether	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Tertiary-butyl Alcohol	ND (25.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Tetrachloroethene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Toluene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Trichloroethene	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Vinyl Chloride	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Xylene O	ND (1.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
Xylene P,M	ND (2.0)	8260B	1	10/09/14 21:42	CXJ0142	CJ40945
		Danning Over166	I touthe			

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	118 %		70-130
Surrogate: 4-Bromofluorobenzene	<i>95</i> %		70-130
Surrogate: Dibromofluoromethane	114 %		70-130
Surrogate: Toluene-d8	102 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-9B Date Sampled: 10/08/14 11:10

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 10/10/14 11:06

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) 1.0 (0.2)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/15/14 7:04	Sequence CXJ0187	Batch CJ41006
_	96	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		<i>72 %</i>		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-9B

Date Sampled: 10/08/14 11:10 Percent Solids: N/A

Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-03

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 10/9/14 15:17

8270C(SIM) Polynuclear Aromatic Hydrocarbons

Analyte Acenaphthene	Results (MRL) 4.33 (0.19)	MDL	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/14/14 22:58	Sequence CXJ0175	Batch CJ40911
Acenaphthylene	ND (0.19)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Anthracene	0.89 (0.19)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Benzo(a)anthracene	0.29 (0.05)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Benzo(a)pyrene	0.20 (0.05)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Benzo(b)fluoranthene	0.24 (0.05)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Benzo(g,h,i)perylene	ND (0.19)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Benzo(k)fluoranthene	0.07 (0.05)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
bis(2-Ethylhexyl)phthalate	ND (2.34)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Butylbenzylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Chrysene	0.30 (0.05)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Dibenzo(a,h)Anthracene	ND (0.05)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Diethylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Dimethylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Di-n-butylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Di-n-octylphthalate	ND (2.34)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Fluoranthene	2.10 (0.19)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Fluorene	4.31 (0.19)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Indeno(1,2,3-cd)Pyrene	0.13 (0.05)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Naphthalene	ND (0.19)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Pentachlorophenol	ND (0.84)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Phenanthrene	2.23 (0.19)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911
Pyrene	1.53 (0.19)		8270D SIM		1	10/14/14 22:58	CXJ0175	CJ40911

	70 Recovery	Qualifier	LIIIIG
Surrogate: 1,2-Dichlorobenzene-d4	<i>38 %</i>		<i>30-130</i>
Surrogate: 2,4,6-Tribromophenol	<i>37</i> %		<i>15-110</i>
Surrogate: 2-Fluorobiphenyl	41 %		30-130
Surrogate: Nitrobenzene-d5	<i>55</i> %		30-130
Surrogate: p-Terphenyl-d14	48 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-9B Date Sampled: 10/08/14 11:10

Percent Solids: N/A

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-03

Sample Matrix: Ground Water

Classical Chemistry

Analyte Chloride	Results (MRL) 820 (100)	MDL <u>Method</u> 300.0	<u>Limit</u>	<u>DF</u> 200	Analyst JLK	Analyzed 10/15/14 19:06	Units mg/L	<u>Batch</u> CJ41517
Hexavalent Chromium	ND (10)	7196A		1	EEM	10/08/14 16:55	ug/L	CJ40841
Phenols	ND (100)	420.1		1	JLK	10/15/14 15:42	ug/L	CJ41514
Total Cyanide (LL)	ND (5.0)	4500 CN CE		1	EEM	10/14/14 9:30	ug/L	CJ41417
Total Petroleum Hydrocarbon	ND (5)	1664A		1	CRR	10/16/14 0:00	mg/L	CJ41431
Total Residual Chlorine	ND (10)	4500-C1 E		1	EEM	10/08/14 17:00	ug/L	CJ40840
Total Suspended Solids	28 (5)	2540D		1	EEM	10/10/14 16:10	mg/L	CJ41011

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: U-9B Date Sampled: 10/08/14 11:10

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-03

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 10/11/14 12:30

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u>	Analyst JXS 1	Analyzed 0/11/14 14:59	Sequence	Batch CJ41101
	9	6Recovery	Qualifier	Limits					
Surrogate: Pentachloroethane		108 %		30-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application

Client Sample ID: Trip Blank

Date Sampled: 10/08/14 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1410211 ESS Laboratory Sample ID: 1410211-04

Sample Matrix: Aqueous

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
1,1,2-Trichloroethane	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
1,1-Dichloroethane	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
1,1-Dichloroethene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
1,2-Dichlorobenzene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
1,2-Dichloroethane	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
1,3-Dichlorobenzene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
1,4-Dichlorobenzene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Acetone	ND (10.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Benzene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Carbon Tetrachloride	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
cis-1,2-Dichloroethene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Ethylbenzene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Methyl tert-Butyl Ether	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Methylene Chloride	ND (2.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Naphthalene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Tertiary-amyl methyl ether	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Tertiary-butyl Alcohol	ND (25.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Tetrachloroethene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Toluene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Trichloroethene	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Vinyl Chloride	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Xylene O	ND (1.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945
Xylene P,M	ND (2.0)		8260B		1	10/09/14 17:04	CXJ0142	CJ40945

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	110 %		70-130
Surrogate: 4-Bromofluorobenzene	<i>93</i> %		70-130
Surrogate: Dibromofluoromethane	109 %		70-130
Surrogate: Toluene-d8	101 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Meta	als						
Satch CJ40927 - 3005A/200.7										
Blank										
Antimony	ND	2.5	ug/L							
Cadmium	ND	2.5	ug/L							
Chromium	ND	10	ug/L							
Copper	ND	5.00	ug/L							
ron	ND	50.0	ug/L							
ead	ND	10	ug/L							
Nickel	ND	5	ug/L							
Selenium	ND	5.0	ug/L							
linc	ND	25	ug/L							
Blank										
Arsenic	ND	5.0	ug/L							
LCS										
Antimony	233	50.0	ug/L	250.0		93	80-120			
Arsenic	270	50.0	ug/L	250.0		108	80-120			
Cadmium	117	2.5	ug/L	125.0		94	80-120			
Chromium	241	10	ug/L	250.0		97	80-120			
Copper	242	5.00	ug/L	250.0		97	80-120			
iron	1260	50.0	ug/L	1250		101	80-120			
_ead	249	10	ug/L	250.0		100	80-120			
Nickel	244	5	ug/L	250.0		98	80-120			
Selenium	502	100	ug/L	500.0		100	80-120			
Zinc	247	25	ug/L	250.0		99	80-120			
LCS Dup										
Antimony	235	50.0	ug/L	250.0		94	80-120	0.8	20	
Arsenic	281	50.0	ug/L	250.0		113	80-120	4	20	
Cadmium	119	2.5	ug/L	125.0		95	80-120	1	20	
Chromium	244	10	ug/L	250.0		98	80-120	1	20	
Copper	243	5.00	ug/L	250.0		97	80-120	0.4	20	
Iron	1260	50.0	ug/L	1250		101	80-120	0.4	20	
Lead	247	10	ug/L	250.0		99	80-120	0.5	20	
Nickel	246	5	ug/L	250.0		98	80-120	0.8	20	
Selenium	503	100	ug/L	500.0		101	80-120	0.2	20	
Zinc	244	25	ug/L	250.0		98	80-120	1	20	
Batch CJ40933 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	5.80	0.20	ug/L	6.000		97	80-120			
		-					-			
Mercury	5.81	0.20	ug/L	6.000		97	80-120	0.04	20	
	5.01	0.20	ug/L	3.000		<i></i>	00 120	0.0-1	20	
Batch CJ41607 - 3005A/200.7										

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
L			Total Met	als						
Batch CJ41607 - 3005A/200.7										
Cadmium	ND	0.05	ug/L							
Copper	ND	4.00	ug/L							
Lead	3.9	1.0	ug/L							
Silver	ND	0.2	ug/L							
LCS										
Cadmium	131	62.5	ug/L	125.0		105	80-120			
Lead	226	50.0	ug/L	250.0		91	80-120			
Silver	98.0	50.0	ug/L	125.0		78	80-120			B-
LCS Dup Cadmium	127	62.5	ug/L	125.0		102	80-120	3	20	
Lead	200	50.0	ug/L	250.0		80	80-120	12	20	
Silver	94.5	50.0	ug/L ug/L	125.0		76	80-120	4	20	B-
Siver	54.5				(DCD)	, 0	00 120		20	Б
		8082A Polyc	iniorinated	ыpnenyls	(LCR)					
Batch CJ40913 - 3510C										
Blank										
Aroclor 1016	ND	0.10	ug/L	<u> </u>	<u></u>			<u></u>		<u> </u>
Aroclor 1221	ND	0.10	ug/L							
Aroclor 1232	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Surrogate: Decachiorobiphenyl	0.0433		ug/L	0.05000		<i>87</i>	<i>30-150</i>			
Surrogate: Decachlorobiphenyl [2C]	0.0423		ug/L	0.05000		<i>85</i>	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene	0.0269		ug/L	0.05000		<i>54</i>	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene [2C]	0.0283		ug/L	0.05000		<i>57</i>	<i>30-150</i>			
LCS										
Aroclor 1016	0.74	0.10	ug/L	1.000	-	74	40-140			
Aroclor 1260	0.79	0.10	ug/L	1.000		79	40-140			
Surrogate: Decachlorobiphenyl	0.0394		ug/L	0.05000		<i>79</i>	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0413		ug/L	0.05000		83	30-150			
Surrogate: Tetrachloro-m-xylene	0.0266		ug/L	0.05000		53	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0275		ug/L	0.05000		<i>55</i>	30-150			
LCS Dup										
Aroclor 1016	0.70	0.10	ug/L	1.000		70	40-140	5	20	
Aroclor 1260	0.71	0.10	ug/L	1.000		71	40-140	11	20	
Surmasta: Darachlamhinhanul	0.0354		ug/L	0.05000		71	30-150			
Surrogate: Decachlorobiphenyl	0.0357		ug/L	0.05000		7 <u>1</u>	<i>30-150</i>			
Surrogate: Decachloroblphenyl [2C]	3,000,		~9/ L				100			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

185 Frances Avenue, Cranston, RI 02910-2211

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8082A Polyo	chlorinated	Biphenyls	(PCB)					
Batch CJ40913 - 3510C										
Surrogate: Tetrachloro-m-xylene [2C]	0.0260		ug/L	0.05000		52	30-150			
Batch CJ41522 - 3510C										
Blank										
Aroclor 1016	ND	0.10	ug/L							
Aroclor 1221	ND	0.10	ug/L							
Aroclor 1232	ND	0.10	ug/L							
Aroclor 1242	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0432		ug/L	0.05000		86	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0437		ug/L	0.05000		<i>87</i>	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene	0.0266		ug/L	0.05000		53	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene [2C]	0.0289		ug/L	0.05000		<i>58</i>	<i>30-150</i>			
LCS										
Aroclor 1016	0.83	0.10	ug/L	1.000		83	40-140			
Aroclor 1260	0.91	0.10	ug/L	1.000		91	40-140			
Surrogate: Decachlorobiphenyl	0.0439		ug/L	0.05000		88	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0 44 2		ug/L	0.05000		88	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene	0.0303		ug/L	0.05000		61	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene [2C]	0.0305		ug/L	0.05000		61	30-150			
LCS Dup										
Aroclor 1016	0.81	0.10	ug/L	1.000		81	40-140	2	20	
Aroclor 1260	0.86	0.10	ug/L	1.000		86	40-140	6	20	
Surrogate: Decachlorobiphenyl	0.0401		ug/L	0.05000		80	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0400		ug/L	0.05000		80	30-150			
Surrogate: Tetrachloro-m-xylene	0.0302		ug/L	0.05000		60	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene [2C]	0.0303		ug/L	0.05000		61	30-150			
		8260B Vol	atile Organ	ic Compou	unds					
Batch CJ40945 - 5030B										
Blank										
1,1,1-Trichloroethane	ND	1.0	ug/L							
1,1,2-Trichloroethane	ND	1.0	ug/L							
1,1-Dichloroethane	ND	1.0	ug/L							
1,1-Dichloroethene	ND	1.0	ug/L							
1,2-Dichlorobenzene	ND	1.0	ug/L							
1,2-Dichloroethane	ND	1.0	ug/L							
1,3-Dichlorobenzene	ND	1.0	ug/L							

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Batch CJ40945 - 5030B

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile	Organic	Compound	S
----------------	---------	----------	---

Batch CJ40945 - 5030B							
1,4-Dichlorobenzene	ND	1.0	ug/L				
Acetone	ND	10.0	ug/L				
Benzene	ND	1.0	ug/L				
Carbon Tetrachloride	ND	1.0	ug/L				
cis-1,2-Dichloroethene	ND	1.0	ug/L				
Ethylbenzene	ND	1.0	ug/L				
Methyl tert-Butyl Ether	ND	1.0	ug/L				
Methylene Chloride	ND	2.0	ug/L				
Naphthalene	ND	1.0	ug/L				
Tertiary-amyl methyl ether	ND	1.0	ug/L				
Tertiary-butyl Alcohol	ND	25.0	ug/L				
Tetrachloroethene	ND	1.0	ug/L				
Toluene	ND	1.0	ug/L				
Trichloroethene	ND	1.0	ug/L				
Vinyl Chloride	ND	1.0	ug/L				
Xylene O	ND	1.0	ug/L				
Xylene P,M	ND	2.0	ug/L				
Surrogate: 1,2-Dichloroethane-d4	<i>27.3</i>		ug/L	25.00	109	<i>70-130</i>	
Surrogate: 4-Bromofluorobenzene	23.2		ug/L	25.00	93	<i>70-130</i>	
Surrogate: Dibromofluoromethane	26.7		ug/L	25.00	107	<i>70-130</i>	
Surrogate: Toluene-d8	<i>24.8</i>		ug/L	25.00	99	<i>70-130</i>	
LCS							
1,1,1-Trichloroethane	10.5		ug/L	10.00	105	70-130	
1,1,2-Trichloroethane	10.0		ug/L	10.00	100	70-130	
1,1-Dichloroethane	9.9		ug/L	10.00	99	70-130	
1,1-Dichloroethene	10.0		ug/L	10.00	100	70-130	
1,2-Dichlorobenzene	10.0		ug/L	10.00	100	70-130	
1,2-Dichloroethane	10.0		ug/L	10.00	100	70-130	
1,3-Dichlorobenzene	10.1		ug/L	10.00	101	70-130	
1,4-Dichlorobenzene	10.2						
Acetone			ug/L	10.00	102	70-130	
	42.7		ug/L ug/L	10.00 50.00	102 85	70-130 70-130	
	42.7 10.3						
Benzene			ug/L	50.00	85	70-130	
Benzene Carbon Tetrachloride	10.3		ug/L ug/L	50.00 10.00	85 103	70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene	10.3 9.5		ug/L ug/L ug/L	50.00 10.00 10.00	85 103 95	70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene	10.3 9.5 10.2		ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00	85 103 95 102	70-130 70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether	10.3 9.5 10.2 10.6		ug/L ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00 10.00	85 103 95 102 106	70-130 70-130 70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride	10.3 9.5 10.2 10.6 9.8		ug/L ug/L ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00 10.00	85 103 95 102 106 98	70-130 70-130 70-130 70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene	10.3 9.5 10.2 10.6 9.8 10.1		ug/L ug/L ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00 10.00 10.00	85 103 95 102 106 98 101	70-130 70-130 70-130 70-130 70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene Tertiary-amyl methyl ether	10.3 9.5 10.2 10.6 9.8 10.1 9.0		ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00 10.00 10.00 10.00	85 103 95 102 106 98 101	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene Tertiary-amyl methyl ether Tertiary-butyl Alcohol	10.3 9.5 10.2 10.6 9.8 10.1 9.0 9.6		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	85 103 95 102 106 98 101 90	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene Tertiary-amyl methyl ether Tertiary-butyl Alcohol Tetrachloroethene	10.3 9.5 10.2 10.6 9.8 10.1 9.0 9.6 50.8		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 50.00	85 103 95 102 106 98 101 90 96	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene Tertiary-amyl methyl ether Tertiary-butyl Alcohol Tetrachloroethene Toluene Trichloroethene	10.3 9.5 10.2 10.6 9.8 10.1 9.0 9.6 50.8 10.2 10.8		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 50.00 10.00	85 103 95 102 106 98 101 90 96 102	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	
Benzene Carbon Tetrachloride cis-1,2-Dichloroethene Ethylbenzene Methyl tert-Butyl Ether Methylene Chloride Naphthalene Tertiary-amyl methyl ether Tertiary-butyl Alcohol Tetrachloroethene Toluene	10.3 9.5 10.2 10.6 9.8 10.1 9.0 9.6 50.8 10.2		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 50.00 10.00	85 103 95 102 106 98 101 90 96 102 102	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Vol	atile Organi	ic Compo	unds					-
Batch CJ40945 - 5030B										
Xylene P,M	21.5		ug/L	20.00		108	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.1		ug/L	25.00		96	70-130			
Surrogate: 4-Bromofluorobenzene	22.0		ug/L	25.00		88	70-130			
Surrogate: Dibromofluoromethane	24.7		ug/L	<i>25.00</i>		99 07	70-130			
Surrogate: Toluene-d8	24.2		ug/L	25.00		97	70-130			
.CS Dup										
1,1,1-Trichloroethane	10.6		ug/L	10.00		106	70-130	0.9	25	
1,1,2-Trichloroethane	10.0		ug/L	10.00		100	70-130	0.8	25	
1,1-Dichloroethane	10.0		ug/L	10.00		100	70-130	0.7	25	
,1-Dichloroethene	10.2		ug/L	10.00		102	70-130	2	25	
,2-Dichlorobenzene	10.0		ug/L	10.00		100	70-130	0.1	25	
,2-Dichloroethane	10.0		ug/L	10.00		100	70-130	0.7	25	
,3-Dichlorobenzene	10.0		ug/L	10.00		100	70-130	1	25	
,4-Dichlorobenzene	10.1		ug/L	10.00		101	70-130	1	25	
cetone	43.5		ug/L	50.00		87	70-130	2	25	
Benzene	10.4		ug/L	10.00		104	70-130	1	25	
Carbon Tetrachloride	9.6		ug/L	10.00		96	70-130	1	25	
is-1,2-Dichloroethene	10.3		ug/L	10.00		103	70-130	2	25	
thylbenzene	10.6		ug/L	10.00		106	70-130	0	25	
Methyl tert-Butyl Ether	10.0		ug/L	10.00		100	70-130	2	25	
1ethylene Chloride	10.2		ug/L	10.00		102	70-130	1	25	
Naphthalene	9.2		ug/L	10.00		92	70-130	2	25	
Fertiary-amyl methyl ether	9.4		ug/L	10.00		94	70-130	2	25	
ertiary-butyl Alcohol	50.7		ug/L	50.00		101	70-130	0.1	25	
etrachloroethene	10.0		ug/L	10.00		100	70-130	2	25	
oluene	10.7		ug/L	10.00		107	70-130	0.6	25	
richloroethene	10.0		ug/L	10.00		100	70-130	1	25	
inyl Chloride	11.2		ug/L	10.00		112	70-130	1	25	
ylene O	10.4		ug/L	10.00		104	70-130	3	25	
ylene P,M	21.0		ug/L	20.00		105	70-130	2	25	
Surrogate: 1,2-Dichloroethane-d4	25.0		ug/L	25.00		100	70-130			
Surrogate: 4-Bromofluorobenzene	22.6		ug/L	25.00		91	70-130			
Surrogate: Dibromofluoromethane	25.8		ug/L	25.00		103	<i>70-130</i>			
Purrogate: Toluene-d8	24.6		ug/L	25.00		98	70-130			

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Batch CJ41006 - 3520C							
Blank							
1,4-Dioxane	ND	0.2	ug/L				
Surrogate: 1,4-Dioxane-d8	3.24		ug/L	5.000	<i>65</i>	<i>15-115</i>	
LCS							
1,4-Dioxane	6.8	0.2	ug/L	10.00	68	40-140	
Surrogate: 1,4-Dioxane-d8	4.29		ug/L	5.000	86	<i>15-115</i>	
LCS Dup							

185 Frances Avenue, Cranston, RI 02910-2211

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

A l. 4-	5 "	MP	11. 9	Spike	Source	0/ 550	%REC	DDD	RPD	0
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	8270D(SIM) S	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Dilutio	on			
Batch CJ41006 - 3520C										
1,4-Dioxane	6.2	0.2	ug/L	10.00		62	40-140	9	20	
Surrogate: 1,4-Dioxane-d8	4.39		ug/L	5.000		88	<i>15-115</i>			
	8270	C(SIM) Poly	nuclear Arc	matic Hy	drocarbor	ns				
Batch CJ40911 - 3510C										
Blank										
Acenaphthene	ND	0.20	ug/L							
Acenaphthylene	ND	0.20	ug/L							
Anthracene	ND	0.20	ug/L							
Benzo(a)anthracene	ND	0.05	ug/L							
Benzo(a)pyrene	ND	0.05	ug/L							
Benzo(b)fluoranthene	ND	0.05	ug/L							
Benzo(g,h,i)perylene	ND	0.20	ug/L							
Benzo(k)fluoranthene	ND	0.05	ug/L							
bis(2-Ethylhexyl)phthalate	ND	2.50	ug/L							
Butylbenzylphthalate	ND	2.50	ug/L							
Chrysene	ND	0.05	ug/L							
Dibenzo(a,h)Anthracene	ND	0.05	ug/L							
Diethylphthalate	ND	2.50	ug/L							
Dimethylphthalate	ND	2.50	ug/L							
Di-n-butylphthalate	ND	2.50	ug/L							
Di-n-octylphthalate	ND	2.50	ug/L							
Fluoranthene	ND	0.20	ug/L							
Fluorene	ND	0.20	ug/L							
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L							
Naphthalene	ND	0.20	ug/L							
Pentachlorophenol	ND	0.90	ug/L							
Phenanthrene	ND	0.20	ug/L							
Pyrene	ND	0.20	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	1.04		ug/L	2.500		42	30-130			
Surrogate: 2,4,6-Tribromophenol	1.66		ug/L	3.750		44	15-110			
Surrogate: 2,4,0-11ibroniophenol Surrogate: 2-Fluorobiphenyl	1.29		ug/L	2.500		52	30-130			
Surrogate: Nitrobenzene-d5	1.88		ug/L	2.500		<i>75</i>	30-130			
Surrogate: p-Terphenyl-d14	1.65		ug/L	2.500		66	30-130			
LCS										
Acenaphthene	2.28	0.20	ug/L	4.000		57	40-140			
Acenaphthylene	2.36	0.20	ug/L	4.000		59	40-140			
Anthracene	2.67	0.20	ug/L	4.000		67	40-140			
Benzo(a)anthracene	2.50	0.05	ug/L	4.000		63	40-140			
Benzo(a)pyrene	2.75	0.05	ug/L	4.000		69	40-140			
Benzo(b)fluoranthene	2.74	0.05	ug/L	4.000		68	40-140			
Benzo(g,h,i)perylene	2.76	0.20	ug/L	4.000		69	40-140			
Benzo(k)fluoranthene	2.42	0.05	ug/L	4.000		61	40-140			
pis(2-Ethylhexyl)phthalate	4.00	2.50	ug/L	4.000		100	40-140			
Butylbenzylphthalate	3.23	2.50	ug/L ug/L	4.000		81	40-140			

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

82/0C(SIM) Polynuclear	Aromatic Hydrocarbons
------------------------	-----------------------

Chrysene 2.72 0.05 ug/L 4.000 68 40-140	
Diethylphthalate	
Dimethylphthalate	
Di-n-butylphthalate	
Directylphthalate 3.21 2.50 ug/L 4.000 80 40-140 7 1 1 1 1 1 1 1 1 1	
Fluoranthene 2.63 0.20 ug/L 4.000 66 40-140 Fluorene 2.55 0.20 ug/L 4.000 64 40-140 Fluorene 2.89 0.05 ug/L 4.000 72 40-140 Fluorene 7.000 7.0	
Fluorene 2.55 0.20 ug/L 4.000 64 40-140 14 14 14 14 14 15 14 15 16 16 16 16 16 16 16	
Indeno(1,2,3-cd)Pyrene 2.89 0.05 ug/L 4.000 72 40-140 72	
Naphthalene 2.02 0.20 ug/L 4.000 50 40-140 4-140 Pentachlorophenol 2.26 0.90 ug/L 4.000 56 30-130 40-140 4-140	
Pentachlorophenol 2.26 0.90 ug/L 4.000 56 30-130 Phenanthrene 2.63 0.20 ug/L 4.000 66 40-140 Pyrene 2.60 0.20 ug/L 4.000 65 40-140 Surrogate: 1,2-Dichlorobenzene-d4 1.28 ug/L 2.500 51 30-130 Surrogate: 2,4-6-Tribromophenol 1.94 ug/L 2.500 59 30-130 Surrogate: 2-Fluorobiphenyl 1.49 ug/L 2.500 59 30-130 Surrogate: Nitrobenzene-d5 1.99 ug/L 2.500 69 30-130 Surrogate: P-Terphenyl-d14 1.73 ug/L 2.500 69 30-130 ECS Dup 4.000 69 30-130 <td< td=""><td></td></td<>	
Phenanthrene 2.63 0.20 ug/L 4.000 66 40-140 Pyrene 2.60 0.20 ug/L 4.000 65 40-140 Pyrene 2.60 0.20 ug/L 4.000 65 40-140 Pyrene 2.500 51 30-130 Surrogate: 1,2-Dichlorobenzene-d4 1.28 ug/L 2.500 51 30-130 Surrogate: 2,4,6-Tribromophenol 1.94 ug/L 2.500 52 15-110 Surrogate: 2-Fluorobliphenyl 1.49 ug/L 2.500 59 30-130 Surrogate: Nitrobenzene-d5 1.99 ug/L 2.500 80 30-130 Surrogate: Prephenyl-d14 1.73 ug/L 2.500 69 30-130 Surrogate: Prephenyl-d14 1.73 ug/L 2.500 69 30-130 Surrogate: Prephenyl-d14 1.73 ug/L 4.000 58 40-140 1 20 4.000 4.0	
Pyrene 2.60 0.20 ug/L 4.000 65 40-140	
Surrogate: 1,2-Dichlorobenzene-d4 1.28 ug/L 2.500 51 30-130 Surrogate: 2,4,6-Tribromophenol 1.94 ug/L 3.750 52 15-110 Surrogate: 2-Fluorobiphenyl 1.49 ug/L 2.500 59 30-130 Surrogate: Nitrobenzene-d5 1.99 ug/L 2.500 69 30-130 Surrogate: p-Terphenyl-d14 1.73 ug/L 2.500 69 30-130 LCS Dup Acenaphthene 2.31 0.20 ug/L 4.000 58 40-140 1 20 Acenaphthylene 2.41 0.20 ug/L 4.000 60 40-140 2 20 Anthracene 2.69 0.20 ug/L 4.000 67 40-140 0.7 20 Benzo(a)anthracene 2.54 0.05 ug/L 4.000 64 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20	
Surrogate: 2,4,6-Tribromophenol 1.94 ug/L 3.750 52 15-110 Surrogate: 2,4,6-Tribromophenol 1.49 ug/L 2.500 59 30-130 Surrogate: Nitrobenzene d5 1.99 ug/L 2.500 80 30-130 Surrogate: p-Terphenyl-d14 1.73 ug/L 2.500 69 30-130 LCS Dup Acenaphthene 2.31 0.20 ug/L 4.000 58 40-140 1 20 Acenaphthylene 2.41 0.20 ug/L 4.000 60 40-140 2 20 Anthracene 2.69 0.20 ug/L 4.000 67 40-140 0.7 20 Benzo(a)anthracene 2.54 0.05 ug/L 4.000 64 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70	
Surrogate: 2,4,6-Tribromophenol 1.94 ug/L 3.750 52 15-110 Surrogate: 2-Fluorobiphenyl 1.49 ug/L 2.500 59 30-130 Surrogate: Ntrobenzene-d5 1.99 ug/L 2.500 80 30-130 Surrogate: p-Terphenyl-d14 1.73 ug/L 2.500 80 30-130 ECS Dup Acenaphthene 2.31 0.20 ug/L 4.000 58 40-140 1 20 Acenaphthylene 2.41 0.20 ug/L 4.000 60 40-140 2 20 Anthracene 2.69 0.20 ug/L 4.000 67 40-140 0.7 20 Benzo(a)anthracene 2.76 0.05 ug/L 4.000 64 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-14	
Surrogate: Nitrobenzene-d5 Surrogate: Nitrobenzene-d5 Surrogate: p-Terphenyl-d14 1.73 Ug/L 2.500 80 30-130 LCS Dup Acenaphthene 2.31 0.20 Ug/L 4.000 58 40-140 1 20 Acenaphthylene 2.41 0.20 Ug/L 4.000 60 40-140 2 20 Anthracene 8enzo(a)anthracene 2.69 0.20 Ug/L 4.000 67 40-140 0.7 20 Benzo(a)pyrene 2.76 0.05 Ug/L 4.000 69 40-140 2 20 Benzo(b)fluoranthene 2.73 0.05 Ug/L 4.000 68 40-140 0.62 20 Benzo(g,h,i)perylene 2.82 0.20 Ug/L 4.000 70 40-140 2 2 20	
Surrogate: p-Terphenyl-d14 1.73 ug/L 2.500 69 30-130 LCS Dup Acenaphthene 2.31 0.20 ug/L 4.000 58 40-140 1 20 Acenaphthylene 2.41 0.20 ug/L 4.000 60 40-140 2 20 Anthracene 2.69 0.20 ug/L 4.000 67 40-140 0.7 20 Benzo(a)anthracene 2.54 0.05 ug/L 4.000 64 40-140 2 20 Benzo(a)pyrene 2.76 0.05 ug/L 4.000 69 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 2 20	
LCS Dup Acenaphthene 2.31 0.20 ug/L 4.000 58 40-140 1 20 Acenaphthylene 2.41 0.20 ug/L 4.000 60 40-140 2 20 Anthracene 2.69 0.20 ug/L 4.000 67 40-140 0.7 20 Benzo(a)anthracene 2.54 0.05 ug/L 4.000 64 40-140 2 20 Benzo(a)pyrene 2.76 0.05 ug/L 4.000 69 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 0.2 20	
Acenaphthene 2.31 0.20 ug/L 4.000 58 40-140 1 20 Acenaphthylene 2.41 0.20 ug/L 4.000 60 40-140 2 20 Anthracene 2.69 0.20 ug/L 4.000 67 40-140 0.7 20 Benzo(a)anthracene 2.54 0.05 ug/L 4.000 64 40-140 2 20 Benzo(a)pyrene 2.76 0.05 ug/L 4.000 69 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 2 20	
Acenaphthylene 2.41 0.20 ug/L 4.000 60 40-140 2 20 Anthracene 2.69 0.20 ug/L 4.000 67 40-140 0.7 20 Benzo(a)anthracene 2.54 0.05 ug/L 4.000 64 40-140 2 20 Benzo(a)pyrene 2.76 0.05 ug/L 4.000 69 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 2 20	
Anthracene 2.69 0.20 ug/L 4.000 67 40-140 0.7 20 Benzo(a)anthracene 2.54 0.05 ug/L 4.000 64 40-140 2 20 Benzo(a)pyrene 2.76 0.05 ug/L 4.000 69 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 2 20	
Benzo(a)anthracene 2.54 0.05 ug/L 4.000 64 40-140 2 20 Benzo(a)pyrene 2.76 0.05 ug/L 4.000 69 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 2 20	
Benzo(a)pyrene 2.76 0.05 ug/L 4.000 69 40-140 0.6 20 Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 2 20	
Benzo(b)fluoranthene 2.73 0.05 ug/L 4.000 68 40-140 0.02 20 Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 2 20	
Benzo(g,h,i)perylene 2.82 0.20 ug/L 4.000 70 40-140 2 20	
Benzo(k)fluoranthene 2.41 0.05 ug/L 4.000 60 40-140 0.6 20	
bis(2-Ethylhexyl)phthalate 4.54 2.50 ug/L 4.000 113 40-140 12 20	
Butylbenzylphthalate 3.23 2.50 ug/L 4.000 81 40-140 0.001 20	
Chrysene 2.66 0.05 ug/L 4.000 67 40-140 2 20	
Dibenzo(a,h)Anthracene 2.91 0.05 ug/L 4.000 73 40-140 2 20	
Diethylphthalate 2.76 2.50 ug/L 4.000 69 40-140 0.4 20	
Dimethylphthalate 2.63 2.50 ug/L 4.000 66 40-140 0.3 20	
Di-n-butylphthalate 2.77 2.50 ug/L 4.000 69 40-140 3 20	
Di-n-octylphthalate 3.13 2.50 ug/L 4.000 78 40-140 2 20	
Fluoranthene 2.61 0.20 ug/L 4.000 65 40-140 0.7 20	
Fluorene 2.57 0.20 ug/L 4.000 64 40-140 0.7 20	
Indeno(1,2,3-cd)Pyrene 2.92 0.05 ug/L 4.000 73 40-140 0.9 20	
Naphthalene 1.93 0.20 ug/L 4.000 48 40-140 5 20	
Pentachlorophenol 2.22 0.90 ug/L 4.000 56 30-130 2 20	
Phenanthrene 2.60 0.20 ug/L 4.000 65 40-140 1 20	
Pyrene 2.62 0.20 ug/L 4.000 65 40-140 0.8 20	
Surrogate: 1,2-Dichlorobenzene-d4 1.12 ug/L 2.500 45 30-130	
Surrogate: 2,4,6-Tribromophenol 1.89 ug/L 3.750 50 15-110	
Surrogate: 2-Fluoroblphenyl 1.52 ug/L 2.500 61 30-130	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

				Critica	Course		0/. DEC		חחח	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		C(SIM) Poly								
Batch CJ40911 - 3510C										
Surrogate: Nitrobenzene-d5	1.83		ug/L	2.500		<i>73</i>	30-130			
Surrogate: p-Terphenyl-d14	1.84		ug/L	2.500		74	<i>30-130</i>			
		Cla	assical Che	mistry						
Batch CJ40840 - General Preparation										
Blank										
Total Residual Chlorine	ND	10	ug/L							
LCS										
Total Residual Chlorine	2		mg/L	2.250		100	85-115			
Batch CJ40841 - General Preparation										
Blank										
Hexavalent Chromium	ND	10	ug/L							
LCS										
Hexavalent Chromium	0.5		mg/L	0.4998		99	90-110			
LCS Dup										
Hexavalent Chromium	0.5		mg/L	0.4998		100	90-110	0.3	20	
Batch CJ41011 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	68		mg/L	68.80		99	80-120			
Batch CJ41417 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.0	ug/L							
LCS										
Total Cyanide (LL)	20.0	5.0	ug/L	20.06		100	90-110			
LCS Total Cyanide (LL)	140	5.0	110 M	150.4		99	90-110			
	148	5.0	ug/L	150.4		99	90-110			
LCS Dup Total Cyanide (LL)	149	5.0	ug/L	150.4		99	90-110	0.6	20	
	177	5.0	ug/L	130.7			50 110	0.0		
Batch CJ41431 - General Preparation										
Blank Total Petroleum Hydrocarbon	ND	5	mg/L							
	ND	J	my/L							
Total Petroleum Hydrocarbon	13	5	mg/L	19.38		69	66-114			
Batch CJ41514 - General Preparation	15	<u> </u>	mg/L	17.50			00 111			
Blank										
Phenols	ND	100	ug/L							
LCS										

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Quality Control Data

				Cniko	Source		0/ DEC		000	
Analyte	Result	MRL	Units	Spike Level	Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
<u> </u>		Cla	assical Che	mistry						
Batch CJ41514 - General Preparation										
Phenols	98	100	ug/L	100.0		98	80-120			
LCS										
Phenois	995	100	ug/L	1000		100	80-120			
Batch CJ41517 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.6		mg/L	2.500		106	90-110			
Batch CJ41623 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.6		mg/L	2.500		104	90-110			
	8011 1,2	2-Dibromoeth	ane / 1,2-[Dibromo-3	3-chloropr	opane				
Batch CJ41101 - 504/8011										
Batch CJ41101 - 504/8011 Blank										
Blank	ND	0.015	ug/L							
Blank 1,2-Dibromoethane	ND 0.198	0.015	ug/L ug/L	0.2000		99	30-150			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane		0.015		0.2000		99	30-150			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS		0.015		<i>0.2000</i>		99	30-150 60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane	0.198		ug/L ug/L							
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane Surrogate: Pentachloroethane	0.198		ug/L	0.2000		85	60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane Surrogate: Pentachloroethane	0.198		ug/L ug/L	0.2000		85	60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane Surrogate: Pentachloroethane LCS	0.198 0.170 0.179 0.069	0.015	ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000		85 90 86	60-140 30-150 60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane	0.198 0.170 0.179	0.015	ug/L ug/L ug/L	0.2000 <i>0.2000</i>		85 90	60-140 30-150			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane	0.198 0.170 0.179 0.069	0.015	ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000		85 90 86	60-140 30-150 60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane Batch CJ41608 - 504/8011 Blank	0.198 0.170 0.179 0.069	0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000		85 90 86	60-140 30-150 60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane Batch CJ41608 - 504/8011 Blank	0.198 0.170 0.179 0.069	0.015	ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000		85 90 86	60-140 30-150 60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane Burrogate: Pentachloroethane Surrogate: Pentachloroethane Batch CJ41608 - 504/8011 Blank 1,2-Dibromoethane	0.198 0.170 0.179 0.069	0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000		85 90 86	60-140 30-150 60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane Burrogate: Pentachloroethane Batch CJ41608 - 504/8011 Blank 1,2-Dibromoethane Surrogate: Pentachloroethane	0.198 0.170 0.179 0.069 0.0621	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000		85 90 86 78	60-140 30-150 60-140 30-150			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane Burrogate: Pentachloroethane Batch CJ41608 - 504/8011 Blank 1,2-Dibromoethane Surrogate: Pentachloroethane	0.198 0.170 0.179 0.069 0.0621	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000		85 90 86 78	60-140 30-150 60-140 30-150			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane Batch CJ41608 - 504/8011 Blank 1,2-Dibromoethane Surrogate: Pentachloroethane Batch CJ41608 - 504/8011 Blank 1,2-Dibromoethane LCS 1,2-Dibromoethane	0.198 0.170 0.179 0.069 0.0621 ND 0.187	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000		85 90 86 78	60-140 30-150 60-140 30-150			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane Batch CJ41608 - 504/8011 Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane	0.198 0.170 0.179 0.069 0.0621 ND 0.187	0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.2000		85 90 86 78 94	60-140 30-150 60-140 30-150 60-140			
	0.198 0.170 0.179 0.069 0.0621 ND 0.187	0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.2000		85 90 86 78 94	60-140 30-150 60-140 30-150 60-140			
Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane Batch CJ41608 - 504/8011 Blank 1,2-Dibromoethane Surrogate: Pentachloroethane Batch CJ41608 - 504/8011 Blank 1,2-Dibromoethane Surrogate: Pentachloroethane LCS 1,2-Dibromoethane LCS 1,2-Dibromoethane	0.198 0.170 0.179 0.069 0.0621 ND 0.187 0.252 0.208	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.2000 0.2000		85 90 86 78 94 126 104	30-150 60-140 30-150 30-150 60-140 30-150			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

Notes and Definitions

U	Analyte included in the analysis, but not detected
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual
	Chlorine is fifteen minutes.
EL	Elevated Method Reporting Limits due to sample matrix (EL).
D	Diluted.
C+	Continuing Calibration recovery is above upper control limit (C+).
В-	Blank Spike recovery is below lower control limit (B-).
В	Present in Method Blank (B).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

Sample results reported on a dry weight basis dry **RPD** Relative Percent Difference **MDL** Method Detection Limit MRL Method Reporting Limit

LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery Calculated Analyte [CALC]

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: UMASS - Boston NOI Application ESS Laboratory Work Order: 1410211

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)

A2LA Accredited: Testing Cert# 2864.01

http://www.a2la.org/scopepdf/2864-01.pdf

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: R10002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 <u>http://www.wadsworth.org/labcert/elap/comm.html</u>

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01
Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry)
http://www.A2LA.org/dirsearchnew/newsearch.cfm

CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

Sample and Cooler Receipt Checklist

Client: GZA GeoEnvironmental, Inc. Client Project ID: Client ESS Project ID: 14100211

Date Project Due: 10/15/2014\0/1/9 Days For Project: <u>5 Day</u>

Items to be checked upon receipt:

Shipped/Delivered Via:

1. Air Bill Manifest Present?	
Air No.:	
2. Were Custody Seals Present?	
3. Were Custody Seals Intact?	

No

10. Are the samples properly preserved?

16. Are ESS labels on correct containers?

11. Proper sample containers used?

4. Is Radiation count < 100 CPM?

N/A Yes

Yes

* No

12. Any air bubbles in the VOA vials? 13. Holding times exceeded?

14. Sufficient sample volumes?

Yes 10/01/14 No

Yes

Yes

Yes

5. Is a cooler present?

5.9,3,6

15. Any Subcontracting needed?

No Yes∤No

Cooler Temp: 13.1 Iced With: Ice

WB 1018114

17. Were samples received intact? ESS Sample IDs: _____

res No

7. Was COC signed and dated by client?

Yes

Yes

Sub Lab: _____

6. Was COC included with samples?

18. Was there need to call project manager to discuss status? If yes, please explain the Black has Ambubble Scenple#1 cane from (ooker w/13,1°, Sample Z creme for Scenple#3 come from land in the sample of the same from land.

Q 1537 MB10/8/14

Who was called?:_

By whom? _

Sample Number	Properly Preserved	Container Type	# of Containers	Preservative
1	Yes	1 L Glass	3	H2SO4
1	Yes	1 L Glass	6	NP
1	Yes	1 L Plastic	1	NP
1	Yes	250 ml Plastic	1	NAOHOH = 1 @ 1530 NAOHOH = 1 @ 1530 NP 10/8
1	Yes	250 ml Plastic	1	NaOHOK-11 CILLIP
1	Yes	250 ml Plastic	1	NP ' 10/8
1	Yes	40 ml - VOA	6	HCL
1	Yes	500 ml Plastic	1	HNO3
2	Yes	1 L Glass	4	H2SO4
2	Yes	1 L Glass	5	NP
2	Yes	1 L Plastic	1	NP
2	Yes	250 ml Plastic	1	HNO3 NaOH PH=12@15304
2	Yes	250 ml Plastic	1	NaOH DA STOCK
2	Yes	250 ml Plastic	1	NP '
2	Yes	40 ml - VOA	6	HCL ·
2	Yes	500 ml Plastic	1	HNO3
3	Yes	1 L Glass	3	H2SO4
3	Yes	1 L Glass	6	NP
3	Yes	1 L Plastic	1	NP
3	Yes	250 ml Plastic	1	
3	Yes	250 ml Plastic	1	HNO3 NaOH PH = 100 1530/
3	Yes	250 ml Plastic	1	NP
3	Yes	40 ml - VOA	6	HCL
3	Yes	500 ml Plastic	1	HNO3
. 4	Yes	40 ml - VOA	2	HCL

Sample and Cooler Receipt Checklist

Client: GZA GeoEnvironmental, Inc.

Completed By:

Reviewed By:

ESS Project ID: 14100211

Date/Time: 10/8/14 1545

Date/Time: 10/8/19 1550

ESS LAB PROJECT ID 1402 Reporting Limits -	Electonic Deliverable Yes No Format: Excel Access PDF Other	540D 1600-CL E Phenols 420.1 (Calc. MUST run T. Cr) 17 7196A VOC Long List 8260 oxane 8270	Total (Chloric Chloric	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							1 5 3 1 1 3 - 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			Se, Ag and Zn by 6010/6020/7010 and Hg by 7470Å PERMIT ATTACHED	Date/Time Received by: (Signature)	Date/Time Received by (Signature)	Page of
Turn Time Standard Rush Approved By:		Project # 33930.02 Project Name: (J-M ASS 80570 Contract Pricing WO#:	ication	50 0-6 BA	6w U-108	GW 0-9R	TO Blank Walshi				Me()H, 7-Asorbic Acid, 8-ZnAct, 9-	DA COLL W Minor E-Gillor	Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wips 1-1 mor	RGP Metals include Sb, As, Cd, Cu, Fe, Pb, Ni, in BOLD have Short hold-time	Received by: (Skingkire) / 6 / 1/2 / 22	Many Signature)	Please E-mail all changes to Chain of Custody in writing.
-2211		GZA Project Manager: Jason, Rasslar GZA GeoEnvironmental, Inc. Address: 530 Browk way , Pravidence	ESS Lab Date Collection Grab -G Sample ID Time Composite-C	9 08:8 HI/8/01	6						Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Ground	No NA: X	Date/Time	Relinquished by (Signature)	