

U.S. Environmental Protection Agency  
Office of Ecosystem Protection  
EPA/OEP RGP Applications Coordinator  
5 Post Office Square, Suite 100 (OEP06-01)  
Boston, MA 02109-3912

July 19, 2017  
File No. 4198.01

Re: Notice of Intent for Remediation General Permit  
Temporary Construction Dewatering for Elevator Construction  
Target Store  
564 Massachusetts Avenue  
Cambridge, MA

Dear Sir/Madam:

On behalf of Target Corporation (Applicant), Sanborn, Head & Associates, Inc. (Sanborn Head) is submitting this Notice of Intent (NOI) to the USEPA for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit MAG910000 (RGP).

This NOI supersedes a previous NOI submitted June 15, 2017 for coverage under the Dewatering General Permit (DGP). We respectfully request that USEPA suspend review of the June 15 DGP NOI, and respond to this NOI for coverage under the RGP.

This NOI will cover temporary dewatering activities during construction of an elevator pit in the basement of the existing Target store. The site is located at 564 Massachusetts Avenue in the Central Square area of Cambridge, MA as shown on Figure 1.

The completed NOI Form for the RGP is included in Appendix A. Discharge of treated water is scheduled to begin as early as August 1, 2017, pending authorization from USEPA and the City of Cambridge.

The Applicant previously submitted an application for a Permit to Dewater to the City of Cambridge. This NOI and supporting documentation will be submitted to the City of Cambridge to supplement the previous application. Municipal correspondence with the City of Cambridge is included in Appendix B.

Whiting-Turner Contracting Company (Whiting-Turner) will be the Operator and the general contractor for the project and will have direct responsibility for the subcontractors performing the dewatering activities at the site. Subcontractors working for Whiting-Turner on the project will be required to meet the requirements of this NOI and the RGP.

The construction activities will require the excavation of soil to a depth of approximately 5 to 6 feet below the basement floor level in a small area approximately 10 feet by 12 feet for

installation of the elevator pit. Groundwater is anticipated to be encountered about 1.5 feet below the basement floor level. Groundwater that flows into the excavation during construction will be treated prior to discharge to the City of Cambridge storm drain system to meet the effluent limits established by the permit. Figure 2 includes a schematic of the proposed dewatering treatment system.

The treated water will be discharged to the City of Cambridge storm drain system via a manhole along Pearl Street as shown on Figure 3. The final discharge point for the treated water will be the Endicott Street storm drain outfall at the Charles River as shown on Figure 4.

There are no known releases of contamination to soil and groundwater at the site or the abutting properties. The site is not regulated under the Massachusetts Contingency Plan (MCP).

According to the Massachusetts Geographical Information System (MassGIS), the proposed excavation activities are not located within Areas of Critical Environmental Concern (ACEC) or Habitats of Rare Wetland Wildlife. A review of information provided in an Information for Planning and Conservation Trust Resource Report (IPaC Report) prepared by the U.S. Fish and Wildlife Service for the subject site did not identify the presence of endangered species at or in the vicinity of the discharge location and/or discharge outfall. A June 1, 2017 letter from the National Oceanic and Atmospheric Administration (NOAA) states that no listed species are known to occur in the Charles River in the area of discharge. Documentation regarding environmental resources is provided in Appendix C.

The subject site is located within the Cambridge Central Square historical district which is listed on the National Register of Historic Places as shown on the map of historic places in Appendix D. Target Corporation has submitted a project notification form to the the Massachusetts Historic Commission (MHC) for the installation of the elevator pit and associated dewatering activities. Copies of documents related to historical significance and a copy of the project notification form submitted to MHC are provided in Appendix D.

A groundwater sample was collected from a sawcut opening in the basement floor at the proposed location of the elevator pit on May 15, 2017, and a supplemental sample was collected on July 13, 2017. The samples were submitted for laboratory analysis for the list of parameters outlined in Section 4.2 of the RGP. The groundwater quality data are summarized in Table 1 and the laboratory analytical reports are included in Appendix E.

Surface water samples were collected on July 13 and 14, 2017 from the Charles River upstream of the Elliot Street storm drain outfall at the approximate location shown on Figure 4. The samples were submitted for laboratory analysis for pH, temperature, hardness, ammonia and total recoverable metals as outlined in Section 4.2 of the RGP. The surface water quality data are summarized in Table 2 and the laboratory analytical data reports are included in Appendix E.

The Charles River is the receiving water body for the treated discharge. Information regarding the receiving water was obtained from the Massachusetts Year 2014 Integrated

List of Waters which is included in Appendix F. Dilution factor calculations and correspondence from DEP indicating their acceptance of the dilution factor are included in Appendix F.

The proposed treatment system will consist of one 10,000-gallon capacity settling tank and bag filters in series. However, should the effluent monitoring results indicate levels of parameters in excess of the effluent limits established in the RGP, additional treatment equipment will be implemented to meet the RGP effluent limits. Figure 2 includes a schematic of the proposed dewatering treatment system.

We trust this submittal provides the information required by USEPA. If you have any questions regarding the enclosed information, please contact the undersigned at [YKokosa@sanbornhead.com](mailto:YKokosa@sanbornhead.com) or (978) 392-0900.

Very truly yours,  
SANBORN, HEAD & ASSOCIATES, INC.



Kent B. Walker, P.E.  
*Project Manager*



Vernon R. Kokosa, P.E.  
*Principal/Sr. Vice President*

DMD/KBW/VRK/MPH: dmd

Encl. Table 1 – Summary of Groundwater Analytical Data  
Table 2 – Summary of Surface Water Quality  
Figure 1 – Locus Plan  
Figure 2 – Treatment System Schematic  
Figure 3 – City of Cambridge Storm Drain Map - Discharge  
Figure 4 – City of Cambridge Storm Drain Map – Outfall  
Appendix A – Notice of Intent (NOI) Form  
Appendix B – Municipal Correspondence  
Appendix C – Environmental Resources Documentation  
Appendix D – Historical Significance Documentation  
Appendix E – Analytical Laboratory Reports  
Appendix F – Dilution Factor Calculations and Supporting Information

cc: Genevieve McJilton ~ Target Corporation  
Kevin Kopek ~ Whiting-Turner Contracting Company

## **TABLES**

**Table 1**  
 Summary of Groundwater Quality Data  
 NPDES Remediation General Permit  
 564 Massachusetts Avenue  
 Cambridge, MA

| <b>Location</b>                        | <b>Analytical Method</b> | <b>Units</b> | <b>SH-101</b>    |                  |
|----------------------------------------|--------------------------|--------------|------------------|------------------|
|                                        |                          |              | <b>5/15/2017</b> | <b>7/13/2017</b> |
| <b>Sampling Date</b>                   |                          |              |                  |                  |
| <b>Anions by Ion Chromatography</b>    |                          |              |                  |                  |
| Chloride                               | CL-300                   | mg/l         | 735              | -                |
| <b>Dissolved Metals</b>                |                          |              |                  |                  |
| Antimony, Dissolved                    | 200.8                    | ug/l         | 2.2              | -                |
| Arsenic, Dissolved                     | 200.8                    | ug/l         | 2.9              | -                |
| Cadmium, Dissolved                     | 200.8                    | ug/l         | <0.2             | -                |
| Chromium, Dissolved                    | 200.8                    | ug/l         | <1               | -                |
| Copper, Dissolved                      | 200.8                    | ug/l         | 1.8              | -                |
| Iron, Dissolved                        | 200.7                    | ug/l         | <50              | -                |
| Lead, Dissolved                        | 200.8                    | ug/l         | <0.5             | -                |
| Mercury, Dissolved                     | 245.1                    | ug/l         | <0.2             | -                |
| Nickel, Dissolved                      | 200.8                    | ug/l         | 0.8              | -                |
| Selenium, Dissolved                    | 200.8                    | ug/l         | 3                | -                |
| Silver, Dissolved                      | 200.8                    | ug/l         | <0.4             | -                |
| Zinc, Dissolved                        | 200.8                    | ug/l         | <10              | -                |
| <b>Total Hardness by SM 2340B</b>      |                          |              |                  |                  |
| Hardness                               | 200.7                    | mg/l         | -                | 409              |
| <b>General Chemistry</b>               |                          |              |                  |                  |
| pH                                     | 4500H+                   | SU           | -                | 7.2              |
| Chromium, Trivalent                    | 107                      | ug/l         | <10              | -                |
| Solids, Total Suspended                | TSS-2540                 | mg/l         | 9.3              | -                |
| Cyanide, Total                         | TCN-4500                 | mg/l         | 0.005            | -                |
| Chlorine, Total Residual               | TRC-4500                 | ug/l         | <20              | -                |
| Nitrogen, Ammonia                      | 4500NH3                  | ug/l         | 62               | -                |
| TPH, SGT-HEM                           | TPH-1664                 | ug/l         | <4,000           | -                |
| Phenolics, Total                       | TPHENOL-420              | ug/l         | <30              | -                |
| Chromium, Hexavalent2                  | HEXCR-3500               | ug/l         | <10              | -                |
| <b>Pesticides</b>                      |                          |              |                  |                  |
| 1,2-Dibromoethane                      | 504                      | ug/l         | <0.011           | -                |
| 1,2-Dibromo-3-chloropropane            | 8260C                    | ug/l         | <0.011           | -                |
| <b>Polychlorinated Biphenyls by GC</b> |                          |              |                  |                  |
| Aroclor 1016                           | PCB-608                  | ug/l         | <0.25            | -                |
| Aroclor 1221                           | PCB-608                  | ug/l         | <0.25            | -                |
| Aroclor 1232                           | PCB-608                  | ug/l         | <0.25            | -                |
| Aroclor 1242                           | PCB-608                  | ug/l         | <0.25            | -                |
| Aroclor 1248                           | PCB-608                  | ug/l         | <0.25            | -                |
| Aroclor 1254                           | PCB-608                  | ug/l         | <0.25            | -                |
| Aroclor 1260                           | PCB-608                  | ug/l         | <0.2             | -                |
| Total PCBs                             | PCB-608                  | ug/l         | BDL              | -                |
| <b>Semivolatile Organics by GC/MS</b>  |                          |              |                  |                  |
| Benzidine                              | 8270D                    | ug/l         | <20              | -                |
| 1,2,4-Trichlorobenzene                 | 8270D                    | ug/l         | <5               | -                |
| Bis(2-chloroethyl)ether                | 8270D                    | ug/l         | <2               | -                |
| 1,2-Dichlorobenzene                    | 8270D                    | ug/l         | <2               | -                |
| 1,3-Dichlorobenzene                    | 8270D                    | ug/l         | <2               | -                |
| 1,4-Dichlorobenzene                    | 8270D                    | ug/l         | <2               | -                |

**Table 1**  
 Summary of Groundwater Quality Data  
 NPDES Remediation General Permit  
 564 Massachusetts Avenue  
 Cambridge, MA

| Location                      | Analytical Method | Units | SH-101    |           |
|-------------------------------|-------------------|-------|-----------|-----------|
|                               |                   |       | 5/15/2017 | 7/13/2017 |
| Sampling Date                 |                   |       |           |           |
| 3,3'-Dichlorobenzidine        | 8270D             | ug/l  | <5        | -         |
| 2,4-Dinitrotoluene            | 8270D             | ug/l  | <5        | -         |
| 2,6-Dinitrotoluene            | 8270D             | ug/l  | <5        | -         |
| Azobenzene                    | 8270D             | ug/l  | <2        | -         |
| 4-Chlorophenyl phenyl ether   | 8270D             | ug/l  | <2        | -         |
| 4-Bromophenyl phenyl ether    | 8270D             | ug/l  | <2        | -         |
| Bis(2-chloroisopropyl)ether   | 8270D             | ug/l  | <2        | -         |
| Bis(2-chloroethoxy)methane    | 8270D             | ug/l  | <5        | -         |
| Hexachlorocyclopentadiene     | 8270D             | ug/l  | <20       | -         |
| Isophorone                    | 8270D             | ug/l  | <5        | -         |
| Nitrobenzene                  | 8270D             | ug/l  | <2        | -         |
| NDPA/DPA                      | 8270D             | ug/l  | <2        | -         |
| n-Nitrosodi-n-propylamine     | 8270D             | ug/l  | <5        | -         |
| Bis(2-ethylhexyl)phthalate    | 8270D             | ug/l  | 1.4       | -         |
| Butyl benzyl phthalate        | 8270D             | ug/l  | <5        | -         |
| Di-n-butylphthalate           | 8270D             | ug/l  | <5        | -         |
| Di-n-octylphthalate           | 8270D             | ug/l  | <5        | -         |
| Diethyl phthalate             | 8270D             | ug/l  | <5        | -         |
| Dimethyl phthalate            | 8270D             | ug/l  | <5        | -         |
| Biphenyl                      | 8270D             | ug/l  | <2        | -         |
| Aniline                       | 8270D             | ug/l  | <2        | -         |
| 4-Chloroaniline               | 8270D             | ug/l  | <5        | -         |
| 2-Nitroaniline                | 8270D             | ug/l  | <5        | -         |
| 3-Nitroaniline                | 8270D             | ug/l  | <5        | -         |
| 4-Nitroaniline                | 8270D             | ug/l  | <5        | -         |
| Dibenzofuran                  | 8270D             | ug/l  | <2        | -         |
| n-Nitrosodimethylamine        | 8270D             | ug/l  | <2        | -         |
| 2,4,6-Trichlorophenol         | 8270D             | ug/l  | <5        | -         |
| p-Chloro-m-cresol             | 8270D             | ug/l  | <2        | -         |
| 2-Chlorophenol                | 8270D             | ug/l  | <2        | -         |
| 2,4-Dichlorophenol            | 8270D             | ug/l  | <5        | -         |
| 2,4-Dimethylphenol            | 8270D             | ug/l  | <5        | -         |
| 2-Nitrophenol                 | 8270D             | ug/l  | <10       | -         |
| 4-Nitrophenol                 | 8270D             | ug/l  | <10       | -         |
| 2,4-Dinitrophenol             | 8270D             | ug/l  | <20       | -         |
| 4,6-Dinitro-o-cresol          | 8270D             | ug/l  | <10       | -         |
| Phenol                        | 8270D             | ug/l  | <5        | -         |
| 2-Methylphenol                | 8270D             | ug/l  | <5        | -         |
| 3-Methylphenol/4-Methylphenol | 8270D             | ug/l  | <5        | -         |
| 2,4,5-Trichlorophenol         | 8270D             | ug/l  | <5        | -         |
| Benzoic Acid                  | 8270D             | ug/l  | <50       | -         |
| Benzyl Alcohol                | 8270D             | ug/l  | <2        | -         |
| Carbazole                     | 8270D             | ug/l  | <2        | -         |
| Pyridine                      | 8270D             | ug/l  | <3.5      | -         |

**Table 1**  
 Summary of Groundwater Quality Data  
 NPDES Remediation General Permit  
 564 Massachusetts Avenue  
 Cambridge, MA

| Location                                  | Analytical Method | Units | SH-101    |           |
|-------------------------------------------|-------------------|-------|-----------|-----------|
|                                           |                   |       | 5/15/2017 | 7/13/2017 |
| <b>Semivolatile Organics by GC/MS-SIM</b> |                   |       |           |           |
| Acenaphthene                              | 8270TCL-SIM       | ug/l  | <0.1      | -         |
| 2-Chloronaphthalene                       | 8270TCL-SIM       | ug/l  | <0.2      | -         |
| Fluoranthene                              | 8270TCL-SIM       | ug/l  | 0.1       | -         |
| Hexachlorobutadiene                       | 8270TCL-SIM       | ug/l  | <0.5      | -         |
| Naphthalene                               | 8270TCL-SIM       | ug/l  | 0.09      | -         |
| Benzo(a)anthracene                        | 8270TCL-SIM       | ug/l  | 0.09      | -         |
| Benzo(a)pyrene                            | 8270TCL-SIM       | ug/l  | 0.09      | -         |
| Benzo(b)fluoranthene                      | 8270TCL-SIM       | ug/l  | 0.12      | -         |
| Benzo(k)fluoranthene                      | 8270TCL-SIM       | ug/l  | 0.05      | -         |
| Chrysene                                  | 8270TCL-SIM       | ug/l  | 0.08      | -         |
| Acenaphthylene                            | 8270TCL-SIM       | ug/l  | <0.2      | -         |
| Anthracene                                | 8270TCL-SIM       | ug/l  | 0.04      | -         |
| Benzo(ghi)perylene                        | 8270TCL-SIM       | ug/l  | 0.08      | -         |
| Fluorene                                  | 8270TCL-SIM       | ug/l  | <0.2      | -         |
| Phenanthrene                              | 8270TCL-SIM       | ug/l  | 0.07      | -         |
| Dibeno(a,h)anthracene                     | 8270TCL-SIM       | ug/l  | <0.2      | -         |
| Indeno(1,2,3-cd)pyrene                    | 8270TCL-SIM       | ug/l  | 0.07      | -         |
| Pyrene                                    | 8270TCL-SIM       | ug/l  | 0.14      | -         |
| 1-Methylnaphthalene                       | 8270TCL-SIM       | ug/l  | <0.2      | -         |
| 2-Methylnaphthalene                       | 8270TCL-SIM       | ug/l  | <0.2      | -         |
| Pentachlorophenol                         | 8270TCL-SIM       | ug/l  | <0.8      | -         |
| Hexachlorobenzene                         | 8270TCL-SIM       | ug/l  | <0.8      | -         |
| Hexachloroethane                          | 8270TCL-SIM       | ug/l  | 0.05      | -         |
| <b>Total Metals</b>                       |                   |       |           |           |
| Antimony, Total                           | SB-6020T          | ug/l  | 0.92      | -         |
| Arsenic, Total                            | AS-6020T          | ug/l  | 2.49      | -         |
| Cadmium, Total                            | CD-6020T          | ug/l  | <1        | -         |
| Chromium, Total                           | CR-6020T          | ug/l  | 0.56      | -         |
| Copper, Total                             | CU-6020T          | ug/l  | 2.73      | -         |
| Iron, Total                               | FE-UI             | ug/l  | 281       | -         |
| Lead, Total                               | PB-6020T          | ug/l  | 3.41      | -         |
| Mercury, Total                            | HG-U              | ug/l  | <0.2      | -         |
| Nickel, Total                             | NI-6020T          | ug/l  | 0.86      | -         |
| Selenium, Total                           | SE-6020T          | ug/l  | 3.78      | -         |
| Silver, Total                             | AG-6020T          | ug/l  | <1        | -         |
| Zinc, Total                               | ZN-6020T          | ug/l  | <10       | -         |
| <b>Volatile Organics by GC/MS</b>         |                   |       |           |           |
| Methylene chloride                        | 8260C             | ug/l  | <3        | -         |
| 1,1-Dichloroethane                        | 8260C             | ug/l  | <0.75     | -         |
| Chloroform                                | 8260C             | ug/l  | <0.75     | -         |
| Carbon tetrachloride                      | 8260C             | ug/l  | <0.5      | -         |
| 1,2-Dichloropropane                       | 8260C             | ug/l  | <1.8      | -         |
| Dibromochloromethane                      | 8260C             | ug/l  | <0.5      | -         |
| 1,1,2-Trichloroethane                     | 8260C             | ug/l  | <0.75     | -         |
| Tetrachloroethene                         | 8260C             | ug/l  | <0.5      | -         |

**Table 1**  
 Summary of Groundwater Quality Data  
 NPDES Remediation General Permit  
 564 Massachusetts Avenue  
 Cambridge, MA

| <b>Location</b>            | <b>Analytical Method</b> | <b>Units</b> | <b>SH-101</b>    |                  |
|----------------------------|--------------------------|--------------|------------------|------------------|
|                            |                          |              | <b>5/15/2017</b> | <b>7/13/2017</b> |
| Chlorobenzene              | 8260C                    | ug/l         | <0.5             | -                |
| Trichlorofluoromethane     | 8260C                    | ug/l         | <2.5             | -                |
| 1,2-Dichloroethane         | 8260C                    | ug/l         | <0.5             | -                |
| 1,1,1-Trichloroethane      | 8260C                    | ug/l         | <0.5             | -                |
| Bromodichloromethane       | 8260C                    | ug/l         | <0.5             | -                |
| trans-1,3-Dichloropropene  | 8260C                    | ug/l         | <0.5             | -                |
| cis-1,3-Dichloropropene    | 8260C                    | ug/l         | <0.5             | -                |
| 1,3-Dichloropropene, Total | 8260C                    | ug/l         | <0.5             | -                |
| 1,1-Dichloropropene        | 8260C                    | ug/l         | <2.5             | -                |
| Bromoform                  | 8260C                    | ug/l         | <2               | -                |
| 1,1,2,2-Tetrachloroethane  | 8260C                    | ug/l         | <0.5             | -                |
| Benzene                    | 8260C                    | ug/l         | <0.5             | -                |
| Toluene                    | 8260C                    | ug/l         | <0.75            | -                |
| Ethylbenzene               | 8260C                    | ug/l         | <0.5             | -                |
| Chloromethane              | 8260C                    | ug/l         | <2.5             | -                |
| Bromomethane               | 8260C                    | ug/l         | <1               | -                |
| Vinyl chloride             | 8260C                    | ug/l         | <1               | -                |
| Chloroethane               | 8260C                    | ug/l         | <1               | -                |
| 1,1-Dichloroethene         | 8260C                    | ug/l         | <0.5             | -                |
| trans-1,2-Dichloroethene   | 8260C                    | ug/l         | <0.75            | -                |
| 1,2-Dichloroethene, Total  | 8260C                    | ug/l         | <0.5             | -                |
| Trichloroethene            | 8260C                    | ug/l         | <0.5             | -                |
| 1,2-Dichlorobenzene        | 8260C                    | ug/l         | <2.5             | -                |
| 1,3-Dichlorobenzene        | 8260C                    | ug/l         | <2.5             | -                |
| 1,4-Dichlorobenzene        | 8260C                    | ug/l         | <2.5             | -                |
| Methyl tert butyl ether    | 8260C                    | ug/l         | <1               | -                |
| p/m-Xylene                 | 8260C                    | ug/l         | <1               | -                |
| o-Xylene                   | 8260C                    | ug/l         | <1               | -                |
| Xylenes, Total             | 8260C                    | ug/l         | <1               | -                |
| cis-1,2-Dichloroethene     | 8260C                    | ug/l         | <0.5             | -                |
| Dibromomethane             | 8260C                    | ug/l         | <5               | -                |
| 1,4-Dichlorobutane         | 8260C                    | ug/l         | <5               | -                |
| 1,2,3-Trichloropropane     | 8260C                    | ug/l         | <5               | -                |
| Styrene                    | 8260C                    | ug/l         | <1               | -                |
| Dichlorodifluoromethane    | 8260C                    | ug/l         | <5               | -                |
| Acetone                    | 8260C                    | ug/l         | 5.2              | -                |
| Carbon disulfide           | 8260C                    | ug/l         | 0.32             | -                |
| 2-Butanone                 | 8260C                    | ug/l         | <5               | -                |
| Vinyl acetate              | 8260C                    | ug/l         | <5               | -                |
| 4-Methyl-2-pentanone       | 8260C                    | ug/l         | <5               | -                |
| 2-Hexanone                 | 8260C                    | ug/l         | <5               | -                |
| Ethyl methacrylate         | 8260C                    | ug/l         | <5               | -                |
| Acrylonitrile              | 8260C                    | ug/l         | <5               | -                |
| Bromochloromethane         | 8260C                    | ug/l         | <2.5             | -                |
| Tetrahydrofuran            | 8260C                    | ug/l         | <5               | -                |
| 2,2-Dichloropropane        | 8260C                    | ug/l         | <2.5             | -                |

**Table 1**  
 Summary of Groundwater Quality Data  
 NPDES Remediation General Permit  
 564 Massachusetts Avenue  
 Cambridge, MA

| <b>Location</b>                       | <b>Analytical Method</b> | <b>Units</b> | <b>SH-101</b>    |                  |
|---------------------------------------|--------------------------|--------------|------------------|------------------|
|                                       |                          |              | <b>5/15/2017</b> | <b>7/13/2017</b> |
| 1,2-Dibromoethane                     | 8260C                    | ug/l         | <2               | -                |
| 1,3-Dichloropropane                   | 8260C                    | ug/l         | <2.5             | -                |
| 1,1,1,2-Tetrachloroethane             | 8260C                    | ug/l         | <0.5             | -                |
| Bromobenzene                          | 8260C                    | ug/l         | <2.5             | -                |
| n-Butylbenzene                        | 8260C                    | ug/l         | <0.5             | -                |
| sec-Butylbenzene                      | 8260C                    | ug/l         | <0.5             | -                |
| tert-Butylbenzene                     | 8260C                    | ug/l         | <2.5             | -                |
| o-Chlorotoluene                       | 8260C                    | ug/l         | <2.5             | -                |
| p-Chlorotoluene                       | 8260C                    | ug/l         | <2.5             | -                |
| 1,2-Dibromo-3-chloropropane           | 8260C                    | ug/l         | <2.5             | -                |
| Hexachlorobutadiene                   | 8260C                    | ug/l         | <0.5             | -                |
| Isopropylbenzene                      | 8260C                    | ug/l         | <0.5             | -                |
| p-Isopropyltoluene                    | 8260C                    | ug/l         | <0.5             | -                |
| Naphthalene                           | 8260C                    | ug/l         | <2.5             | -                |
| n-Propylbenzene                       | 8260C                    | ug/l         | <0.5             | -                |
| 1,2,3-Trichlorobenzene                | 8260C                    | ug/l         | <2.5             | -                |
| 1,2,4-Trichlorobenzene                | 8260C                    | ug/l         | <2.5             | -                |
| 1,3,5-Trimethylbenzene                | 8260C                    | ug/l         | <2.5             | -                |
| 1,2,4-Trimethylbenzene                | 8260C                    | ug/l         | <2.5             | -                |
| trans-1,4-Dichloro-2-butene           | 8260C                    | ug/l         | <2.5             | -                |
| Ethyl ether                           | 8260C                    | ug/l         | <2.5             | -                |
| <b>Volatile Organics by GC/MS-SIM</b> |                          |              |                  |                  |
| 1,4-Dioxane                           | 8260-SIM                 | ug/l         | <3               | -                |

Notes:

1. The samples were collected by Sanborn, Head & Associates, Inc. personnel on the dates indicated and were submitted to Alpha Analytical, Inc. of Westborough, MA (Alpha) for analysis.
2. Values are compared to NPDES DGP Effluent Limits, which were taken from Part I of the DGP, and MCP Reportable Concentrations for GW-2 (RCGW-2). No exceedances of the MCP RCGW-2 criteria were indicated.

'<' = analytes not detected above laboratory reporting limits

'BDL' = indicates analyte is below detection limits

3. Abbreviations:

NPDES = National Pollution Discharge Elimination System

DGP = Dewatering General Permit

RGD = Remediation General Permit

MCP = Massachusetts Contingency Plan

**Table 2**  
 Summary of Surface Water Quality  
 NPDES Remediation General Permit  
 564 Massachusetts Avenue  
 Cambridge, Massachusetts

| LOCATION                          | Units | INSTREAM              |
|-----------------------------------|-------|-----------------------|
| SAMPLING DATE                     |       | 7/12/2017 & 7/13/17   |
| WATER BODY                        |       | Charles River         |
| SAMPLE TYPE                       |       | Surface Water         |
| SAMPLE LOCATION (LAT, LONG)       |       | 42.354888, -71.098079 |
| <b>General Chemistry</b>          |       |                       |
| pH (H)                            | SU    | 7.0                   |
| Nitrogen, Ammonia                 | mg/l  | 0.178                 |
| <b>Total Hardness by SM 2340B</b> |       |                       |
| Hardness                          | mg/l  | 122                   |
| <b>Total Metals</b>               |       |                       |
| Antimony, Total                   | ug/l  | <4                    |
| Arsenic, Total                    | ug/l  | 1.04                  |
| Cadmium, Total                    | ug/l  | <0.2                  |
| Chromium, Total                   | ug/l  | <1                    |
| Copper, Total                     | ug/l  | 4.24                  |
| Iron, Total                       | ug/l  | 696                   |
| Lead, Total                       | ug/l  | 2.97                  |
| Mercury, Total                    | ug/l  | <0.2                  |
| Nickel, Total                     | ug/l  | <2                    |
| Selenium, Total                   | ug/l  | <5                    |
| Silver, Total                     | ug/l  | <0.4                  |
| Zinc, Total                       | ug/l  | <10                   |

Notes:

1. The sample was collected by Sanborn, Head & Associates, Inc. on the dates indicated and were submitted for to Alpha Analytical Laboratories, Inc. of Westborough, Massachusetts for laboratory analysis.

2. Abbreviations:

mg/l = milligrams per liter

ug/l = micrograms per liter

"<" indicates the analyte was not detected above the laboratory reporting limits shown

## **FIGURES**



Drawn By: C.Green  
 Designed By: K.Walker  
 Reviewed By: V.Kokosa  
 Project No: 4198.01  
 Date: June 2017

SCALE: 1:25,000

SANBORN  HEAD



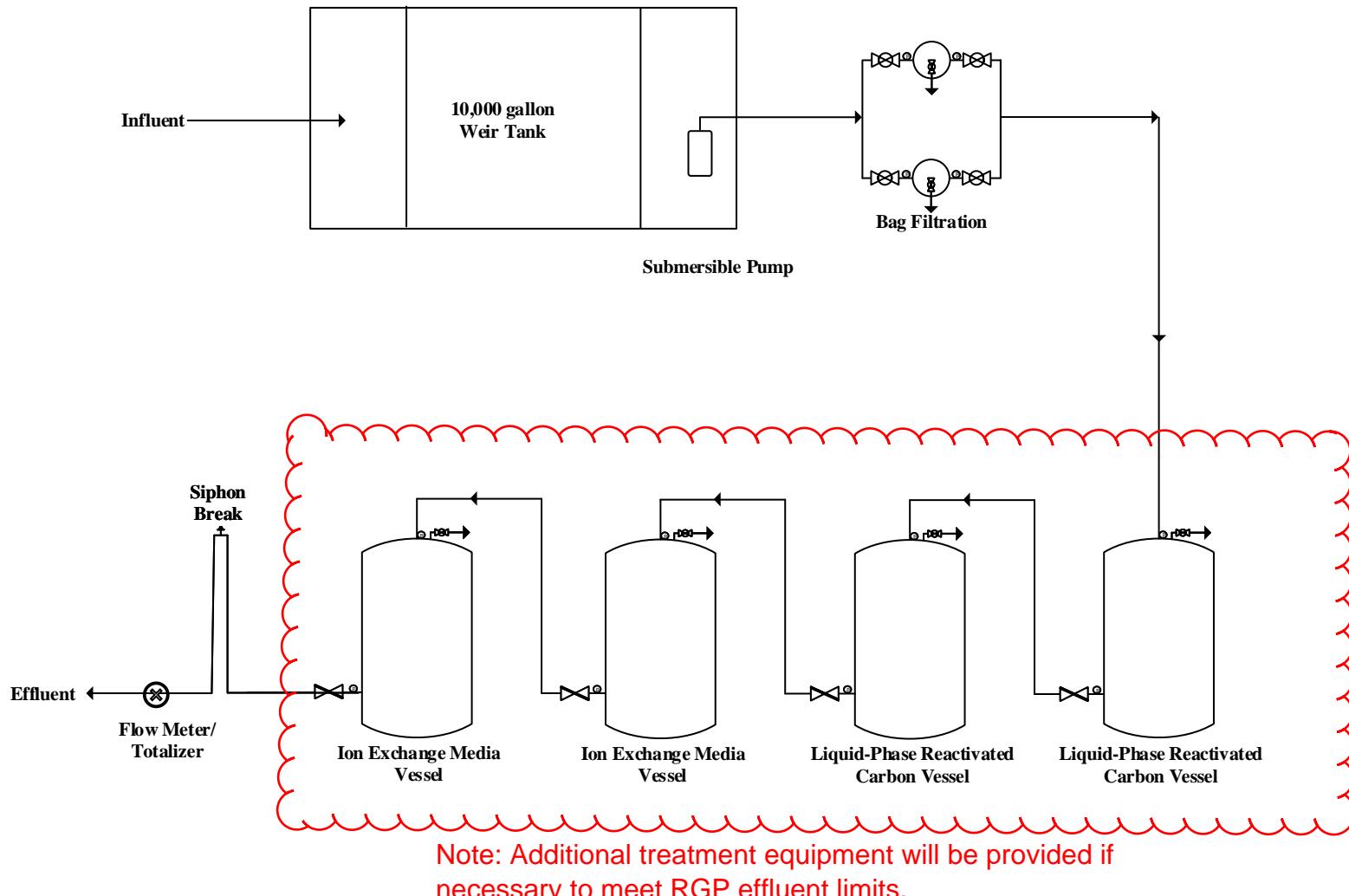

NOTES:  
 Base map was taken from the "Office of Geographic and Environmental Information (MassGIS), Commonwealth of Massachusetts Information Technology Division"  
 7.5 minute USGS Quadrangle Maps:  
 Cambridge, Massachusetts, REV: 1987

Figure 1

## Locus Plan

Notice of Intent (NOI)  
 Remediation General Permit

Target Store  
 Cambridge, Massachusetts



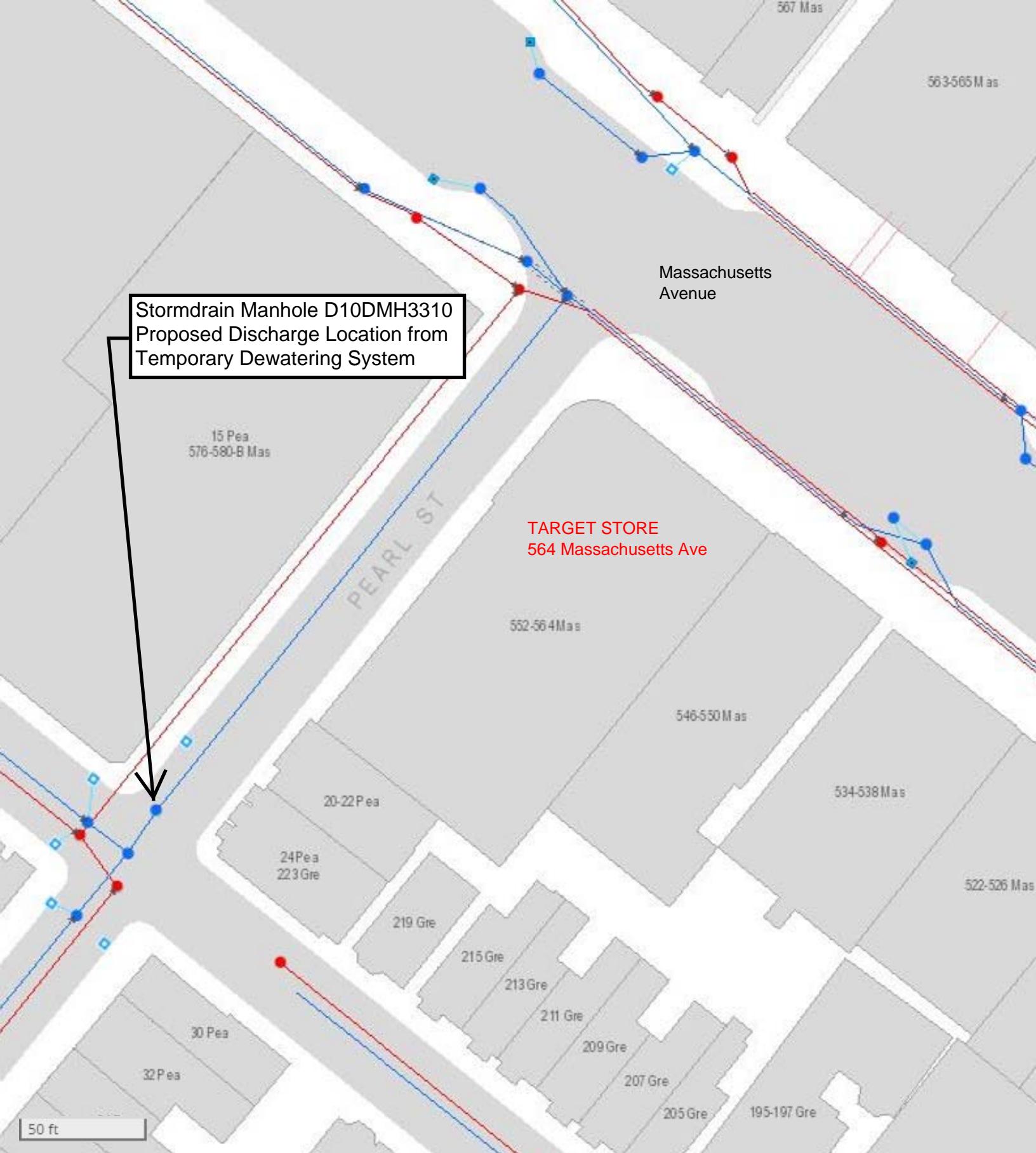
**Notes:**

- 1.) Figure is not to scale
- 2.) System is rated for 50 gallons per minute

**Key:**  
Piping/Hose →



Lockwood Remediation Technologies, LLC  
89 Crawford Street  
Leominster, MA 01453  
Office: 774-450-7177


DESIGNED BY: LRT  
CHECKED BY:

DRAWN BY: B. Watkins  
DATE:

## Water Treatment System Schematic

Target  
564 Massachusetts Avenue  
Cambridge, Massachusetts

PROJECT No. FIGURE No.



Notes:

1. This plan was printed from the City of Cambridge Sewer and Stormwater Cambridge CityViewer accessed on June 1, 2017.

Figure 3. Discharge Location

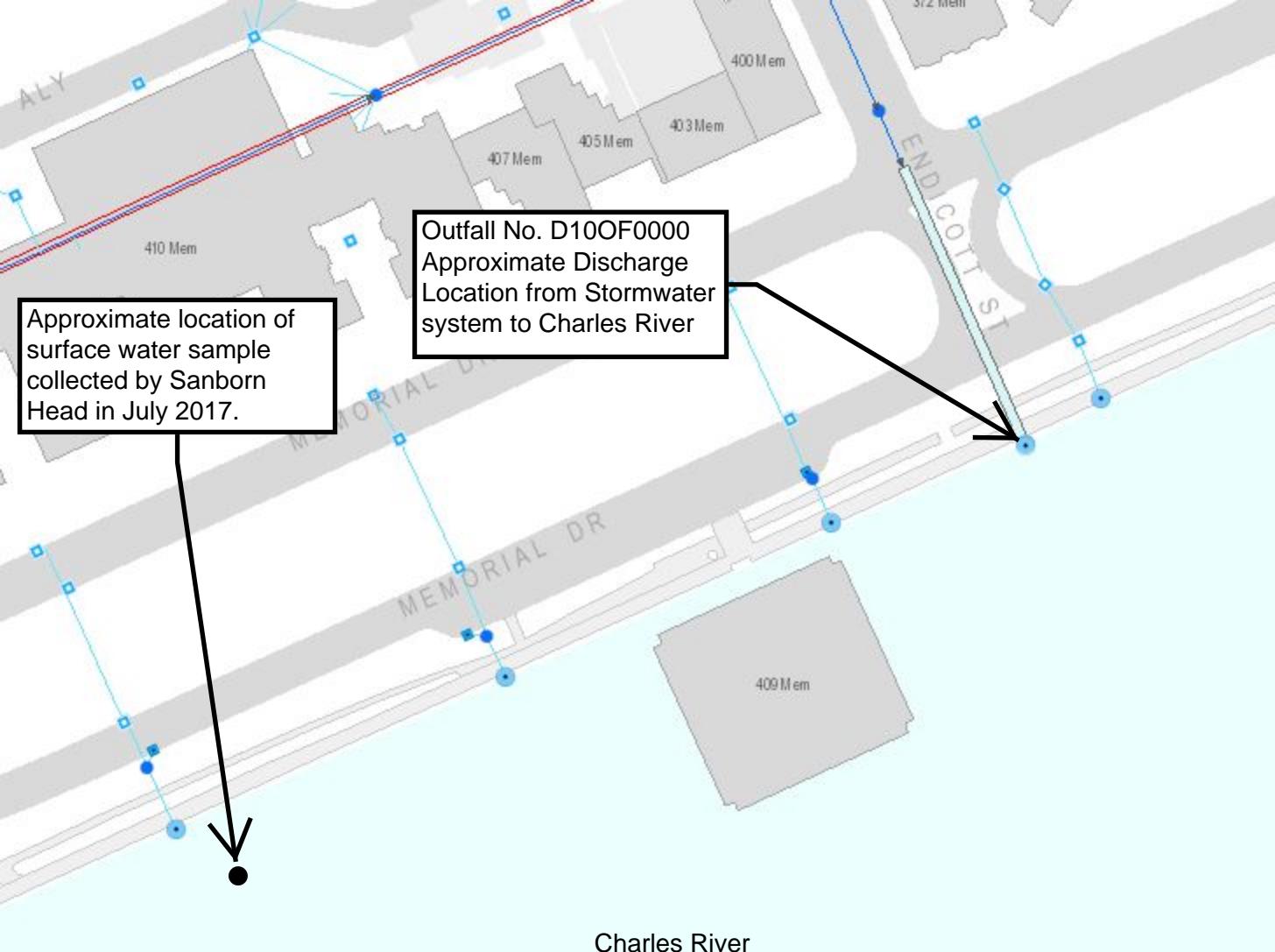



Figure 4. Outfall and Surface Water Sampling Locations

Notes:

1. This plan was printed from the City of Cambridge Sewer and Stormwater Cambridge CityViewer accessed on July 14, 2017.



**APPENDIX A**

**NOTICE OF INTENT (NOI) FORM**

## II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

### A. General site information:

|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. Name of site:<br><br>Target Cambridge                                                                                                                                                                                                                                                                       | Site address: 564 Massachusetts Avenue<br><br>Street:<br><br>City: Cambridge      State: MA      Zip: 02139                                                                                                                                                                                                                                                                                                                    |  |  |
| 2. Site owner<br><br>Target Corporation<br><br>Owner is (check one): <input type="checkbox"/> Federal <input type="checkbox"/> State/Tribal <input checked="" type="checkbox"/> Private<br><input type="checkbox"/> Other; if so, specify:                                                                     | Contact Person: Genevieve McJilton<br><br>Telephone: (617)761-5062      Email: Genevieve.McJilton@target.com<br><br>Mailing address: 50 South 10th Street<br><br>Street:<br><br>City: Minneapolis      State: MN      Zip: 55403                                                                                                                                                                                               |  |  |
| 3. Site operator, if different than owner<br><br>Whiting-Turner Contracting Corporation                                                                                                                                                                                                                        | Contact Person: Kevin Kopec<br><br>Telephone: (908)450-0388      Email: Kevin.Kopec@whiting-turner.com<br><br>Mailing address:<br><br>Street: 1140 Route 22 East, Suite 301<br><br>City: Bridgewater      State: NJ      Zip: 08807                                                                                                                                                                                            |  |  |
| 4. NPDES permit number assigned by EPA:<br><br>NPDES permit is (check all that apply: <input type="checkbox"/> RGP <input type="checkbox"/> DGP <input type="checkbox"/> CGP<br><input type="checkbox"/> MSGP <input type="checkbox"/> Individual NPDES permit <input type="checkbox"/> Other; if so, specify: | 5. Other regulatory program(s) that apply to the site (check all that apply):<br><br><input type="checkbox"/> MA Chapter 21e; list RTN(s): <input type="checkbox"/> CERCLA<br><br><input type="checkbox"/> NH Groundwater Management Permit or<br>Groundwater Release Detection Permit: <input type="checkbox"/> UIC Program<br><br><input type="checkbox"/> POTW Pretreatment<br><br><input type="checkbox"/> CWA Section 404 |  |  |

**B. Receiving water information:**

|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|
| 1. Name of receiving water(s):<br><b>Charles River</b>                                                                                                                                                                                                                                                                                                                               | Waterbody identification of receiving water(s):<br><b>MA72-38</b> | Classification of receiving water(s):<br><b>B</b> |
| Receiving water is (check any that apply): <input type="checkbox"/> Outstanding Resource Water <input type="checkbox"/> Ocean Sanctuary <input type="checkbox"/> territorial sea <input type="checkbox"/> Wild and Scenic River                                                                                                                                                      |                                                                   |                                                   |
| 2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No                                                                                                                                                                                                        |                                                                   |                                                   |
| Are sensitive receptors present near the site? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No                                                                                                                                                                                                                                                      |                                                                   |                                                   |
| If yes, specify:                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                                   |
| 3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. See Appendix F. |                                                                   |                                                   |
| 4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.                                                                                                                                                        |                                                                   | <b>15.96 MGD</b>                                  |
| 5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.                                                                                                                               |                                                                   | <b>222.7</b>                                      |
| 6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No<br>If yes, indicate date confirmation received: July 14, 2017, see Appendix F.                                                                                                      |                                                                   |                                                   |
| 7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No                                                                                                                                  |                                                                   |                                                   |

**C. Source water information:**

|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                |                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1. Source water(s) is (check any that apply):                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                |                                                                                 |
| <input checked="" type="checkbox"/> Contaminated groundwater<br><br>Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):<br><input checked="" type="checkbox"/> Yes <input type="checkbox"/> No | <input type="checkbox"/> Contaminated surface water<br><br>Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):<br><input type="checkbox"/> Yes <input type="checkbox"/> No | <input type="checkbox"/> The receiving water<br><br><input type="checkbox"/> A surface water other than the receiving water; if so, indicate waterbody:<br><br><input type="checkbox"/> Other; if so, specify: | <input type="checkbox"/> Potable water; if so, indicate municipality or origin: |

|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>Several compounds were detected above laboratory reporting limits, but below effluent limitations and applicable Massachusetts Contingency Plan (MCP) 2. Source water contaminants: Reportable Concentrations. A summary of the analytical results for the source water is included in Section D.4 and in Table 1.</p>                                                             |                                                                                                                                                                                                                                                                                                         |
| <p>a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in the RGP? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.</p> | <p>b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance with the instructions in Appendix VIII? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No</p> |
| <p>3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No</p>                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                         |

#### D. Discharge information

|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <p>1. The discharge(s) is a(n) (check any that apply): <input type="checkbox"/> Existing discharge <input checked="" type="checkbox"/> New discharge <input type="checkbox"/> New source</p>                                                                                                                                                                                             |                                                                             |
| <p>Outfall(s):<br/>City of Cambridge Outfall D10OF0000</p>                                                                                                                                                                                                                                                                                                                               | <p>Outfall location(s): (Latitude, Longitude)<br/>42.364166, -71.103055</p> |
| <p>Discharges enter the receiving water(s) via (check any that apply): <input type="checkbox"/> Direct discharge to the receiving water <input checked="" type="checkbox"/> Indirect discharge, if so, specify:<br/>Effluent will enter an existing storm water drainage system that discharges into the Charles River</p>                                                               |                                                                             |
| <p><input type="checkbox"/> A private storm sewer system <input checked="" type="checkbox"/> A municipal storm sewer system</p>                                                                                                                                                                                                                                                          |                                                                             |
| <p>If the discharge enters the receiving water via a private or municipal storm sewer system:</p>                                                                                                                                                                                                                                                                                        |                                                                             |
| <p>Has notification been provided to the owner of this system? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No</p>                                                                                                                                                                                                                                      |                                                                             |
| <p>Has the operator has received permission from the owner to use such system for discharges? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No, if so, explain, with an estimated timeframe for obtaining permission: City of Cambridge permit submitted on June 19, 2017 and is currently under review. To be authorized after EPA approval of NOI.</p> |                                                                             |
| <p>Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No</p>                                                                                                                                                                                       |                                                                             |
| <p>Provide the expected start and end dates of discharge(s) (month/year):<br/>Start: 8/1/2017 End: 7/31/2018</p>                                                                                                                                                                                                                                                                         |                                                                             |
| <p>Indicate if the discharge is expected to occur over a duration of: <input checked="" type="checkbox"/> less than 12 months <input type="checkbox"/> 12 months or more <input type="checkbox"/> is an emergency discharge</p>                                                                                                                                                          |                                                                             |
| <p>Has the operator attached a site plan in accordance with the instructions in D, above? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No</p>                                                                                                                                                                                                           |                                                                             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 2. Activity Category: (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3. Contamination Type Category: (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        |
| <input type="checkbox"/> I – Petroleum-Related Site Remediation<br><input type="checkbox"/> II – Non-Petroleum-Related Site Remediation<br><input checked="" type="checkbox"/> III – Contaminated Site Dewatering<br><input type="checkbox"/> IV – Dewatering of Pipelines and Tanks<br><input type="checkbox"/> V – Aquifer Pump Testing<br><input type="checkbox"/> VI – Well Development/Rehabilitation<br><input type="checkbox"/> VII – Collection Structure Dewatering/Remediation<br><input type="checkbox"/> VIII – Dredge-Related Dewatering | a. If Activity Category I or II: (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <input type="checkbox"/> A. Inorganics<br><input type="checkbox"/> B. Non-Halogenated Volatile Organic Compounds<br><input type="checkbox"/> C. Halogenated Volatile Organic Compounds<br><input type="checkbox"/> D. Non-Halogenated Semi-Volatile Organic Compounds<br><input type="checkbox"/> E. Halogenated Semi-Volatile Organic Compounds<br><input type="checkbox"/> F. Fuels Parameters                                                                                                                        |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <input checked="" type="checkbox"/> G. Sites with Known Contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <input type="checkbox"/> H. Sites with Unknown Contamination                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)<br><br><input checked="" type="checkbox"/> A. Inorganics<br><input checked="" type="checkbox"/> B. Non-Halogenated Volatile Organic Compounds<br><input type="checkbox"/> C. Halogenated Volatile Organic Compounds<br><input checked="" type="checkbox"/> D. Non-Halogenated Semi-Volatile Organic Compounds<br><input type="checkbox"/> E. Halogenated Semi-Volatile Organic Compounds<br><input type="checkbox"/> F. Fuels Parameters | d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply |

4. Influent and Effluent Characteristics

| Parameter                      | Known or believed absent | Known or believed present | # of samples | Test method (#) | Detection limit (µg/l) | Influent             |                      | Effluent Limitations |       |
|--------------------------------|--------------------------|---------------------------|--------------|-----------------|------------------------|----------------------|----------------------|----------------------|-------|
|                                |                          |                           |              |                 |                        | Daily maximum (µg/l) | Daily average (µg/l) | TBEL                 | WQBEL |
| <b>A. Inorganics</b>           |                          |                           |              |                 |                        |                      |                      |                      |       |
| Ammonia                        |                          | ✓                         | 1            | 4500            | 0.075                  | 0.062J               |                      | Report mg/L          | ---   |
| Chloride                       |                          | ✓                         | 1            | 300.0           | 25,000                 | 735,000              |                      | Report µg/l          | ---   |
| Total Residual Chlorine        | ✓                        |                           | 1            | 4500            | 0.02                   | <0.02                |                      | 0.2 mg/L             |       |
| Total Suspended Solids         |                          | ✓                         | 1            | 2540            | 5.0                    | 9.3                  |                      | 30 mg/L              | ---   |
| Antimony                       |                          | ✓                         | 1            | 200.8           | 4                      | 0.92J                |                      | 206 µg/L             |       |
| Arsenic                        |                          | ✓                         | 1            | 200.8           | 1                      | 2.49                 |                      | 104 µg/L             |       |
| Cadmium                        | ✓                        |                           | 1            | 200.8           | 1                      | <1                   |                      | 10.2 µg/L            |       |
| Chromium III                   | ✓                        |                           | 1            | 107             | 10                     | <10                  |                      | 323 µg/L             |       |
| Chromium VI                    | ✓                        |                           | 1            | 7196            | 10                     | <10                  |                      | 323 µg/L             |       |
| Copper                         |                          | ✓                         | 1            | 200.8           | 1                      | 2.73                 |                      | 242 µg/L             |       |
| Iron                           |                          | ✓                         | 1            | 200.7           | 50                     | 281                  |                      | 5,000 µg/L           |       |
| Lead                           |                          | ✓                         | 1            | 200.8           | 0.5                    | 3.41                 |                      | 160 µg/L             |       |
| Mercury                        | ✓                        |                           | 1            | 245.1           | 0.2                    | <0.2                 |                      | 0.739 µg/L           |       |
| Nickel                         |                          | ✓                         | 1            | 200.8           | 2                      | 0.86J                |                      | 1,450 µg/L           |       |
| Selenium                       |                          | ✓                         | 1            | 200.8           | 5                      | 3.78 J               |                      | 235.8 µg/L           |       |
| Silver                         | ✓                        |                           | 1            | 200.8           | 1                      | <1                   |                      | 35.1 µg/L            |       |
| Zinc                           | ✓                        |                           | 1            | 200.8           | 10                     | <10                  |                      | 420 µg/L             |       |
| Cyanide                        |                          | ✓                         | 1            | 4500            | 5                      | 5                    |                      | 178 mg/L             |       |
| <b>B. Non-Halogenated VOCs</b> |                          |                           |              |                 |                        |                      |                      |                      |       |
| Total BTEX                     | ✓                        |                           | 1            | 8260            | 3.75                   | <3.75                |                      | 100 µg/L             | ---   |
| Benzene                        | ✓                        |                           | 1            | 8260            | 0.5                    | <0.5                 |                      | 5.0 µg/L             | ---   |
| 1,4 Dioxane                    | ✓                        |                           | 1            | 8260SIM         | 3.0                    | <3.0                 |                      | 200 µg/L             | ---   |
| Acetone                        |                          | ✓                         | 1            | 8260            | 5.0                    | 5.2                  |                      | 7.97 mg/L            | ---   |
| Phenol                         | ✓                        |                           | 1            | 8260            | 5.0                    | <5.0                 |                      | 1,080 µg/L           |       |

| Parameter                       | Known or believed absent | Known or believed present | # of samples | Test method (#) | Detection limit (µg/l) | Influent             |                      | Effluent Limitations |       |
|---------------------------------|--------------------------|---------------------------|--------------|-----------------|------------------------|----------------------|----------------------|----------------------|-------|
|                                 |                          |                           |              |                 |                        | Daily maximum (µg/l) | Daily average (µg/l) | TBEL                 | WQBEL |
| <b>C. Halogenated VOCs</b>      |                          |                           |              |                 |                        |                      |                      |                      |       |
| Carbon Tetrachloride            | ✓                        |                           | 1            | 8260            | 0.5                    | <0.5                 |                      | 4.4 µg/L             |       |
| 1,2 Dichlorobenzene             | ✓                        |                           | 1            | 8260            | 2.5                    | <2.5                 |                      | 600 µg/L             | ---   |
| 1,3 Dichlorobenzene             | ✓                        |                           | 1            | 8260            | 2.5                    | <2.5                 |                      | 320 µg/L             | ---   |
| 1,4 Dichlorobenzene             | ✓                        |                           | 1            | 8260            | 2.5                    | <2.5                 |                      | 5.0 µg/L             | ---   |
| Total dichlorobenzene           | ✓                        |                           | 1            | 8260            | 7.5                    | <7.5                 |                      | 763 µg/L in NH       | ---   |
| 1,1 Dichloroethane              | ✓                        |                           | 1            | 8260            | 0.75                   | <0.75                |                      | 70 µg/L              | ---   |
| 1,2 Dichloroethane              | ✓                        |                           | 1            | 8260            | 0.5                    | <0.5                 |                      | 5.0 µg/L             | ---   |
| 1,1 Dichloroethylene            | ✓                        |                           | 1            | 8260            | 0.5                    | <0.5                 |                      | 3.2 µg/L             | ---   |
| Ethylene Dibromide              | ✓                        |                           | 1            | 540.1           | 2.0                    | <2.0                 |                      | 0.05 µg/L            | ---   |
| Methylene Chloride              | ✓                        |                           | 1            | 8260            | 3.0                    | <3.0                 |                      | 4.6 µg/L             | ---   |
| 1,1,1 Trichloroethane           | ✓                        |                           | 1            | 8260            | 0.5                    | <0.5                 |                      | 200 µg/L             | ---   |
| 1,1,2 Trichloroethane           | ✓                        |                           | 1            | 8260            | 0.75                   | <0.75                |                      | 5.0 µg/L             | ---   |
| Trichloroethylene               | ✓                        |                           | 1            | 8260            | 0.5                    | <0.5                 |                      | 5.0 µg/L             | ---   |
| Tetrachloroethylene             | ✓                        |                           | 1            | 8260            | 0.5                    | <0.5                 |                      | 5.0 µg/L             |       |
| cis-1,2 Dichloroethylene        | ✓                        |                           | 1            | 8260            | 0.5                    | <0.5                 |                      | 70 µg/L              | ---   |
| Vinyl Chloride                  | ✓                        |                           | 1            | 8260            | 1.0                    | <1.0                 |                      | 2.0 µg/L             | ---   |
| <b>D. Non-Halogenated SVOCs</b> |                          |                           |              |                 |                        |                      |                      |                      |       |
| Total Phthalates                |                          | ✓                         | 1            | 8270            | 28                     | 1.4                  |                      | 190 µg/L             |       |
| Diethylhexyl phthalate          |                          | ✓                         | 1            | 8270            | 3.0                    | 1.4                  |                      | 101 µg/L             |       |
| Total Group I PAHs              |                          | ✓                         | 1            | 8270            | 1.4                    | 0.5 J                |                      | 1.0 µg/L             | ---   |
| Benzo(a)anthracene              |                          | ✓                         | 1            | 8270            | 0.2                    | 0.09 J               |                      | As Total PAHs        |       |
| Benzo(a)pyrene                  |                          | ✓                         | 1            | 8270            | 0.2                    | 0.09 J               |                      |                      |       |
| Benzo(b)fluoranthene            |                          | ✓                         | 1            | 8270            | 0.2                    | 0.12 J               |                      |                      |       |
| Benzo(k)fluoranthene            |                          | ✓                         | 1            | 8270            | 0.2                    | 0.05 J               |                      |                      |       |
| Chrysene                        |                          | ✓                         | 1            | 8270            | 0.2                    | 0.08 J               |                      |                      |       |
| Dibenzo(a,h)anthracene          | ✓                        |                           | 1            | 8270            | 0.2                    | <0.2                 |                      |                      |       |
| Indeno(1,2,3-cd)pyrene          |                          | ✓                         | 1            | 8270            | 0.2                    | 0.07                 |                      |                      |       |



## E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

Adsorption/Absorption  Advanced Oxidation Processes  Air Stripping  Granulated Activated Carbon (“GAC”)/Liquid Phase Carbon Adsorption  
 Ion Exchange  Precipitation/Coagulation/Flocculation  Separation/Filtration  Other; if so, specify:

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

The first element to the treatment system will be a fractionalization tank where solids will settle out. The effluent will then be passed through a series of bag filters for sediment removal. If necessary to achieve effluent standards, additional treatment equipment will be added.

Identify each major treatment component (check any that apply):

Fractionation tanks  Equalization tank  Oil/water separator  Mechanical filter  Media filter  
 Chemical feed tank  Air stripping unit  Bag filter  Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

Chlorination  De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component: Sump pump

Is use of a flow meter feasible? (check one):  Yes  No, if so, provide justification:

50

Provide the proposed maximum effluent flow in gpm.

50

Provide the average effluent flow in gpm.

25

If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:

4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one):  Yes  No

## F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

Algaecides/biocides  Antifoams  Coagulants  Corrosion/scale inhibitors  Disinfectants  Flocculants  Neutralizing agents  Oxidants  Oxygen  scavengers  pH conditioners  Bioremedial agents, including microbes  Chlorine or chemicals containing chlorine  Other; if so, specify:  
None anticipated

2. Provide the following information for each chemical/additive, using attachments, if necessary:

- a. Product name, chemical formula, and manufacturer of the chemical/additive;
- b. Purpose or use of the chemical/additive or remedial agent;
- c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
- d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
- e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
- f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one):  Yes  No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one):  Yes  No

## G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

**FWS Criterion A:** No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the “action area”.

**FWS Criterion B:** Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are “not likely to adversely affect” listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one):  Yes  No; if no, is consultation underway? (check one):  Yes  No

**FWS Criterion C:** Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have “no effect” on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one)  the operator  EPA  Other; if so, specify:

**NMFS Criterion:** A determination made by EPA is affirmed by the operator that the discharges and related activities will have “no effect” or are “not likely to adversely affect” any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one):  Yes  No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one):  Yes  No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):  Yes  No; if yes, attach.

## **H. National Historic Preservation Act eligibility determination**

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- Criterion A:** No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B:** Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C:** Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one):  Yes  No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):  Yes  No

## **I. Supplemental information**

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one):  Yes  No

Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one):  Yes  No

**J. Certification requirement**

*I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.*

A BMPP meeting the requirements of this general permit will be developed and implemented upon BMPP certification statement: **initiation of discharge.**

Notification provided to the appropriate State, including a copy of this NOI, if required.

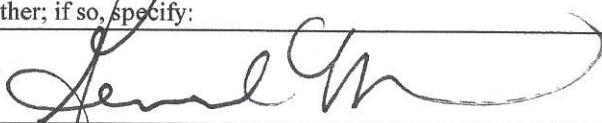
Check one: Yes  No

Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.

Check one: Yes  No

Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.

Check one: Yes  No  NA


Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.

See Section D.1  
Check one: Yes  No  NA

Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one):  RGP  DGP  CGP  MSGP  Individual NPDES permit  
 Other; if so, specify:

Check one: Yes  No  NA

Signature:



Date: July 18, 2017

Print Name and Title:

Genevieve McJilton, Sr. Project Manager

**APPENDIX B**

**MUNICIPAL CORRESPONDENCE**



## PERMIT TO DEWATER

|             |                                         |           |                                     |
|-------------|-----------------------------------------|-----------|-------------------------------------|
| Location:   | 564 Massachusetts Avenue, Cambridge, MA | Temporary | <input checked="" type="checkbox"/> |
| Owner:      | Target Corporation                      | Permanent | <input type="checkbox"/>            |
| Contractor: | The Whiting-Turner Contracting Company  |           |                                     |

The property owner, Target Corporation agrees to hold harmless and indemnify the City of Cambridge for any liability on the part of the City directly or indirectly arising out of the dewatering operation.

The issuance of this permit is based in part in the submission packet of the applicant with documentation as follows:

Notice of Intent for discharge pursuant to Massachusetts Dewatering General Permit MAG070000

In addition, the application has been reviewed by the City under third party agreement as documented in the following reports:

All activities conducted in conjunction with the issuance of this permit must be in accordance with the provisions of the aforementioned reports. Any deviations in conditions must be reported to and approved by the Commissioner of Public Works.

This permit is in addition to any other street permit issued by the Department in connection with any street excavation or obstruction; and all conditions as specified in the Discharge Permit for Dewatering.

For the entire period of time the groundwater is being discharged to a storm drain, the property owner shall provide copies of each Discharge Monitoring Report Form submitted to the EPA, pursuant to the owner's discharge permit.

If in the future the EPA requires the City of Cambridge to bring existing stormwater drainage into compliance with EPA quality standards, as a condition to the continuation of discharge of that stormwater (also including groundwater) into an EPA regulated system into which the

Target Corporation (property owner) drains, the owner will agree to maintain its water discharge with such EPA water quality standards.

The property owner and contractor shall at all times meet the conditions specified in the requisite legal agreement/affidavits.

All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces or property.

Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the

Contractor during the progress of work as directed by the Public Works Department.

Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.

Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.

Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.

Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.

This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.

The following special conditions as set forth below are part of the permit.

|  |
|--|
|  |
|--|

---

City Manager

---

Date

---

City Solicitor

---

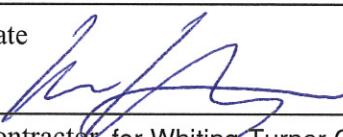
Date

---

Commissioner of Public

---

Date


CC:   Engineering  
         Supervisor of Sewer Maintenance and Engineering  
         Superintendent of Streets  
         Commissioner of Inspectional Services

---

Property Manager: Corporate Entity  
President, General Partner or Trustee  
Trustee with Instrument of Authority  
for Target Corporation

---

Date



Contractor for Whiting-Turner Contracting Company

---

6/12/17

---

Date

---

Not applicable  
Contractor

---

Not applicable  
Date

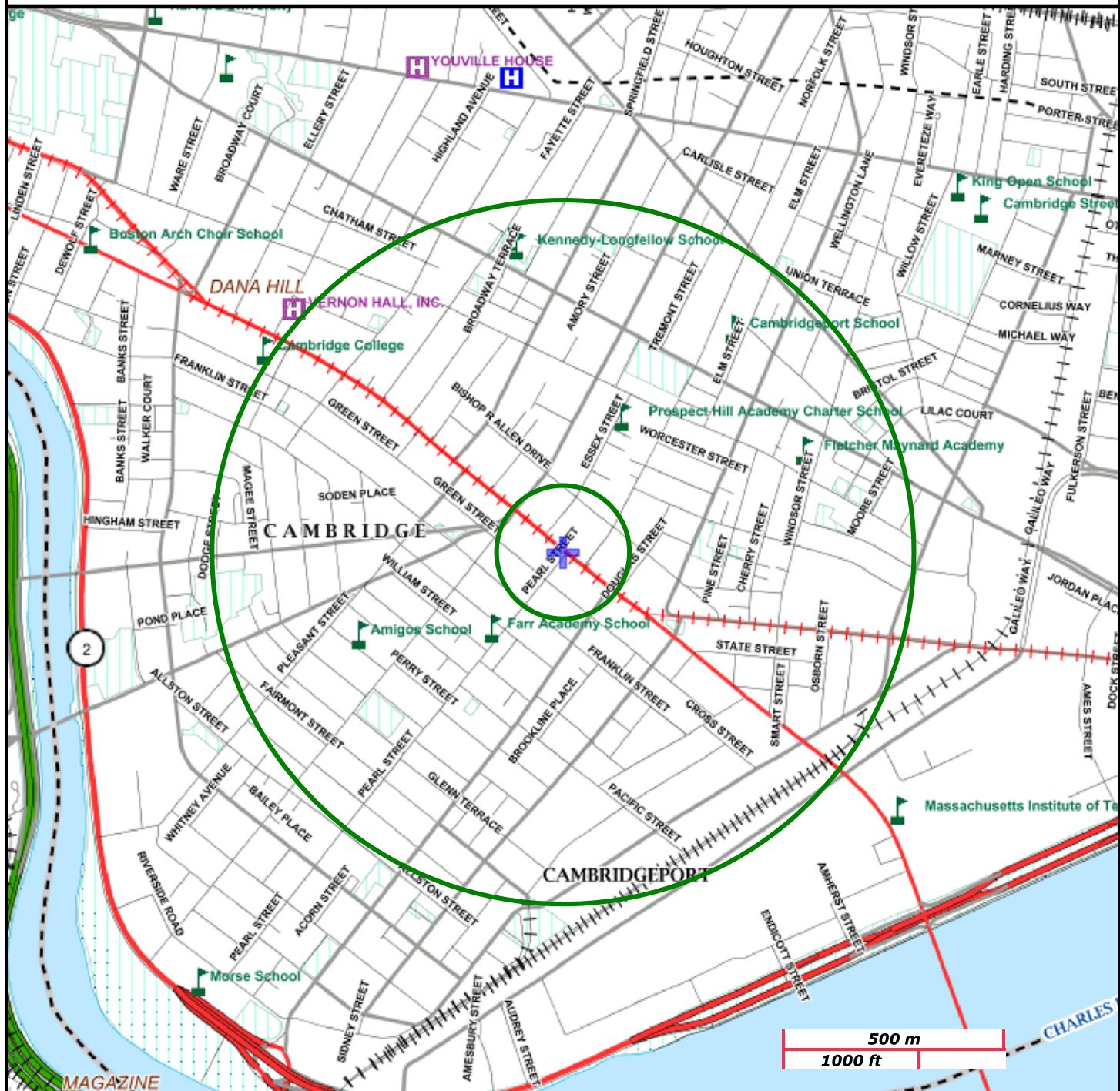
**APPENDIX C**

**ENVIRONMENTAL RESOURCES DOCUMENTATION**

# MassDEP - Bureau of Waste Site Cleanup

## Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

### Site Information:


564 MASSACHUSETTS AVENUE CAMBRIDGE, MA

NAD83 UTM Meters:  
4692413mN, 326856mE (Zone: 19)  
June 1, 2017

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: <http://www.mass.gov/mqis/>.



**MassDEP**  
Commonwealth of Massachusetts  
Department of Environmental Protection



Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail

PWS Protection Areas: Zone II, IWPA, Zone A

Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct

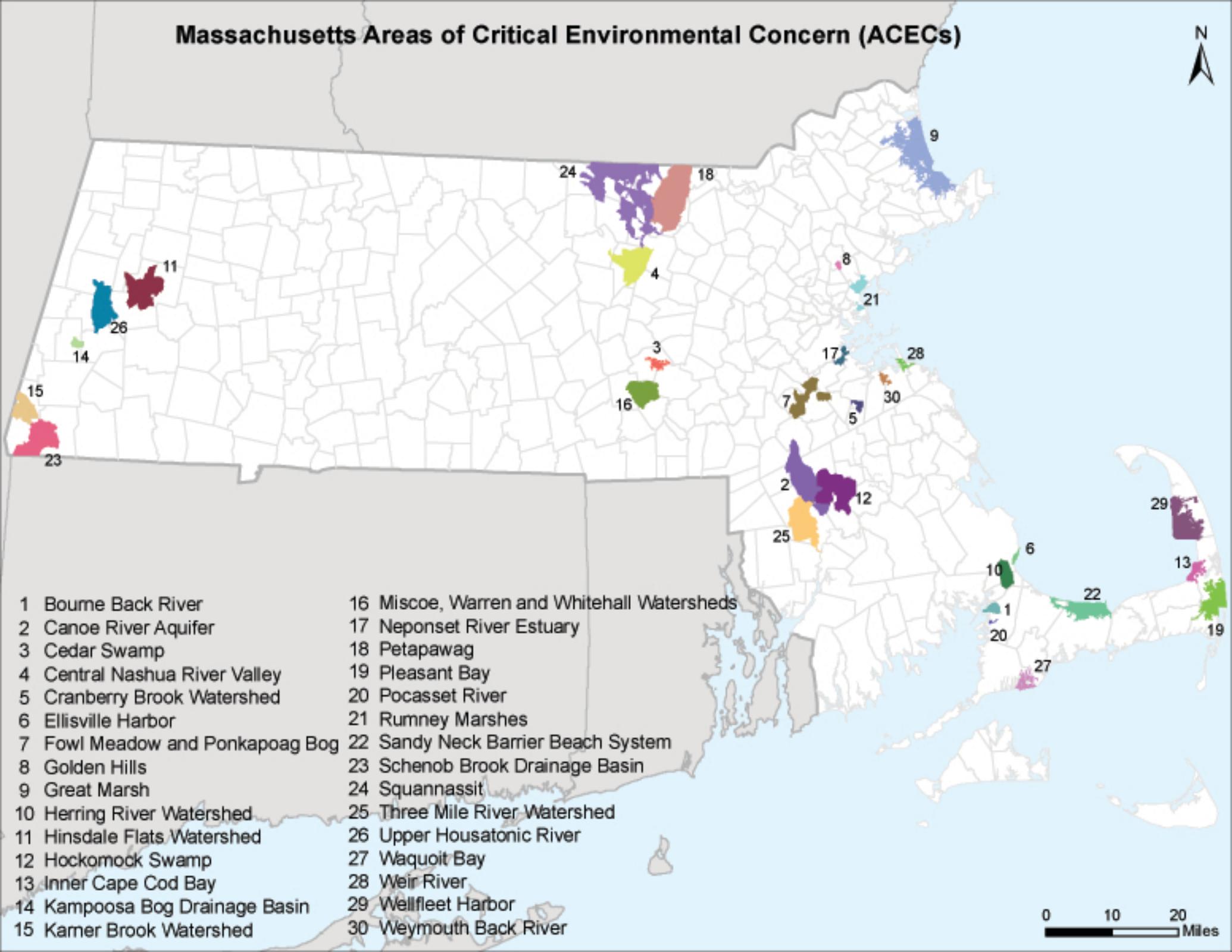
Hydrography: Open Water, PWS Reservoir, Tidal Flat

Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam

Wetlands: Freshwater, Saltwater, Cranberry Bog

Aquifers: Medium Yield, High Yield, EPA Sole Source

FEMA 100yr Floodplain; Protected Open Space; ACEC


Non Potential Drinking Water Source Area: Medium, High (Yield)

Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential

Non Potential Drinking Water Source Area: Medium, High (Yield)

Solid Waste Landfill; PWS: Com.GW,SW, Emerg., Non-Com.

## Massachusetts Areas of Critical Environmental Concern (ACECs)



# IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

## Location

Middlesex County, Massachusetts



## Local office

New England Ecological Services Field Office

📞 (603) 223-2541  
📠 (603) 223-0104

70 Commercial Street, Suite 300  
Concord, NH 03301-5094

<http://www.fws.gov/newengland>

## Endangered species

**This resource list is for informational purposes only and does not constitute an analysis of project level impacts.**

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

1. Draw the project location and click CONTINUE.
2. Click DEFINE PROJECT.
3. Log in (if directed to do so).
4. Provide a name and description for your project.

## 5. Click REQUEST SPECIES LIST.

Listed species<sup>1</sup> are managed by the [Endangered Species Program](#) of the U.S. Fish and Wildlife Service.

1. Species listed under the [Endangered Species Act](#) are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the [listing status page](#) for more information.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

## Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act<sup>1</sup> and the Bald and Golden Eagle Protection Act<sup>2</sup>.

Any activity that results in the take (to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct) of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service<sup>3</sup>. There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

1. The [Migratory Birds Treaty Act](#) of 1918.
2. The [Bald and Golden Eagle Protection Act](#) of 1940.
3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

- Birds of Conservation Concern <http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php>
- Conservation measures for birds <http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php>
- Year-round bird occurrence data <http://www.birdscanada.org/birdmon/default/datasummaries.jsp>

The migratory birds species listed below are species of particular conservation concern (e.g. [Birds of Conservation Concern](#)) that may be potentially affected by activities in this location. It is not a list of every bird species you may find in this location, nor a guarantee that all of the bird species on this list will be found on or near this location. Although it is important to try to avoid and minimize impacts to all birds, special attention should be made to avoid and minimize impacts to birds of priority concern. To view available data on other bird species that may occur in your project area, please visit the [AKN Histogram Tools](#) and [Other Bird Data Resources](#). To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

| NAME                                                                                                                                              | SEASON(S)           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| American Bittern <i>Botaurus lentiginosus</i><br><a href="https://ecos.fws.gov/ecp/species/6582">https://ecos.fws.gov/ecp/species/6582</a>        | On Land: Breeding   |
| American Oystercatcher <i>Haematopus palliatus</i><br><a href="https://ecos.fws.gov/ecp/species/8935">https://ecos.fws.gov/ecp/species/8935</a>   | On Land: Breeding   |
| Bald Eagle <i>Haliaeetus leucocephalus</i><br><a href="https://ecos.fws.gov/ecp/species/1626">https://ecos.fws.gov/ecp/species/1626</a>           | On Land: Year-round |
| Black-billed Cuckoo <i>Coccyzus erythrophthalmus</i><br><a href="https://ecos.fws.gov/ecp/species/9399">https://ecos.fws.gov/ecp/species/9399</a> | On Land: Breeding   |
| Blue-winged Warbler <i>Vermivora pinus</i>                                                                                                        | On Land: Breeding   |
| Canada Warbler <i>Wilsonia canadensis</i>                                                                                                         | On Land: Breeding   |
| Hudsonian Godwit <i>Limosa haemastica</i>                                                                                                         | At Sea: Migrating   |
| Least Bittern <i>Ixobrychus exilis</i><br><a href="https://ecos.fws.gov/ecp/species/6175">https://ecos.fws.gov/ecp/species/6175</a>               | On Land: Breeding   |
| Olive-sided Flycatcher <i>Contopus cooperi</i><br><a href="https://ecos.fws.gov/ecp/species/3914">https://ecos.fws.gov/ecp/species/3914</a>       | On Land: Breeding   |

|                                                                                                                                           |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Peregrine Falcon <i>Falco peregrinus</i><br><a href="https://ecos.fws.gov/ecp/species/8831">https://ecos.fws.gov/ecp/species/8831</a>     | On Land: Breeding  |
| Pied-billed Grebe <i>Podilymbus podiceps</i>                                                                                              | On Land: Breeding  |
| Prairie Warbler <i>Dendroica discolor</i>                                                                                                 | On Land: Breeding  |
| Purple Sandpiper <i>Calidris maritima</i>                                                                                                 | On Land: Wintering |
| Saltmarsh Sparrow <i>Ammodramus caudacutus</i>                                                                                            | On Land: Breeding  |
| Seaside Sparrow <i>Ammodramus maritimus</i>                                                                                               | On Land: Breeding  |
| Short-eared Owl <i>Asio flammeus</i><br><a href="https://ecos.fws.gov/ecp/species/9295">https://ecos.fws.gov/ecp/species/9295</a>         | On Land: Wintering |
| Snowy Egret <i>Egretta thula</i>                                                                                                          | On Land: Breeding  |
| Upland Sandpiper <i>Bartramia longicauda</i><br><a href="https://ecos.fws.gov/ecp/species/9294">https://ecos.fws.gov/ecp/species/9294</a> | On Land: Breeding  |
| Willow Flycatcher <i>Empidonax traillii</i><br><a href="https://ecos.fws.gov/ecp/species/3482">https://ecos.fws.gov/ecp/species/3482</a>  | On Land: Breeding  |
| Wood Thrush <i>Hylocichla mustelina</i>                                                                                                   | On Land: Breeding  |
| Worm Eating Warbler <i>Helmitheros vermivorum</i>                                                                                         | On Land: Breeding  |

#### What does IPaC use to generate the list of migratory bird species potentially occurring in my specified location?

##### Landbirds:

Migratory birds that are displayed on the IPaC species list are based on ranges in the latest edition of the National Geographic Guide, Birds of North America (6th Edition, 2011 by Jon L. Dunn, and Jonathan Alderfer). Although these ranges are coarse in nature, a number of U.S. Fish and Wildlife Service migratory bird biologists agree that these maps are some of the best range maps to date. These ranges were clipped to a specific Bird Conservation Region (BCR) or USFWS Region/Regions, if it was indicated in the 2008 list of Birds of Conservation Concern (BCC) that a species was a BCC species only in a particular Region/Regions. Additional modifications have been made to some ranges based on more local or refined range information and/or information provided by U.S. Fish and Wildlife Service biologists with species expertise. All migratory birds that show in areas on land in IPaC are those that appear in the 2008 Birds of Conservation Concern report.

##### Atlantic Seabirds:

Ranges in IPaC for birds off the Atlantic coast are derived from species distribution models developed by the National Oceanic and Atmospheric Association (NOAA) National Centers for Coastal Ocean Science (NCCOS) using the best available seabird survey data for the offshore Atlantic Coastal region to date. NOAANCCOS assisted USFWS in developing seasonal species ranges from their models for specific use in IPaC. Some of these birds are not BCC species but were of interest for inclusion because they may occur in high abundance off the coast at different times throughout the year, which potentially makes them more susceptible to certain types of development and activities taking place in that area. For more refined details about the abundance and richness of bird species within your project area off the Atlantic Coast, see the [Northeast Ocean Data Portal](#). The Portal also offers data and information about other types of taxa that may be helpful in your project review.

About the NOAANCCOS models: the models were developed as part of the NOAANCCOS project: [Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf](#). The models resulting from this project are being used in a number of decision-support/mapping products in order to help guide decision-making on activities off the Atlantic Coast with the goal of reducing impacts to migratory birds. One such product is the [Northeast Ocean Data Portal](#), which can be used to explore details about the relative occurrence and abundance of bird species in a particular area off the Atlantic Coast.

All migratory bird range maps within IPaC are continuously being updated as new and better information becomes available.

#### Can I get additional information about the levels of occurrence in my project area of specific birds or groups of birds listed in IPaC?

##### Landbirds:

The [Avian Knowledge Network \(AKN\)](#) provides a tool currently called the "Histogram Tool", which draws from the data within the AKN (latest, survey, point count, citizen science datasets) to create a view of relative abundance of species within a particular location over the course of the year. The results of the tool depict the frequency of detection of a species in survey events, averaged between multiple datasets within AKN in a particular week of the year. You may access the histogram tools through the [Migratory Bird Programs AKN Histogram Tools](#) webpage.

The tool is currently available for 4 regions (California, Northeast U.S., Southeast U.S. and Midwest), which encompasses the following 32 states: Alabama, Arkansas, California, Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, New Hampshire, New Jersey, New York, North, Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, West Virginia, and Wisconsin.

In the near future, there are plans to expand this tool nationwide within the AKN, and allow the graphs produced to appear with the list of trust resources generated by IPaC, providing you with an additional level of detail about the level of occurrence of the species of particular concern potentially occurring in your project area throughout the course of the year.

#### Atlantic Seabirds:

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the [Northeast Ocean Data Portal](#). The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOANCCOS [Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project](#) webpage.

## Facilities

### Wildlife refuges

Any activity proposed on [National Wildlife Refuge](#) lands must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGES AT THIS LOCATION.

### Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

## Wetlands in the National Wetlands Inventory

Impacts to [NWI wetlands](#) and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local [U.S. Army Corps of Engineers District](#).

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

#### Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

#### Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tubercid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

#### Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.





# United States Department of the Interior

FISH AND WILDLIFE SERVICE  
New England Ecological Services Field Office  
70 Commercial Street, Suite 300  
Concord, NH 03301-5094  
Phone: (603) 223-2541 Fax: (603) 223-0104  
<http://www.fws.gov/newengland>



In Reply Refer To:

June 01, 2017

Consultation Code: 05E1NE00-2017-SLI-1725

Event Code: 05E1NE00-2017-E-03779

Project Name: 564 Massachusetts Avenue

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

<http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF>

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan ([http://www.fws.gov/windenergy/eagle\\_guidance.html](http://www.fws.gov/windenergy/eagle_guidance.html)). Additionally, wind energy projects should follow the wind energy guidelines (<http://www.fws.gov/windenergy/>) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: <http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm>; <http://www.towerkill.com>; and <http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html>.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List

## Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

**New England Ecological Services Field Office**  
70 Commercial Street, Suite 300  
Concord, NH 03301-5094  
(603) 223-2541

## Project Summary

Consultation Code: 05E1NE00-2017-SLI-1725

Event Code: 05E1NE00-2017-E-03779

Project Name: 564 Massachusetts Avenue

Project Type: DEVELOPMENT

Project Description: Small dewatering project for focused excavation activities for building utilities.

Project Location:

Approximate location of the project can be viewed in Google Maps:

<https://www.google.com/maps/place/42.364381625838064N71.10266983657618W>



Counties: Middlesex, MA

## Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

## Critical habitats

There are no critical habitats within your project area.



## Summary of Essential Fish Habitat (EFH) Designation

### 10♦ x 10♦ Square Coordinates:

| Boundary   | North       | East        | South       | West        |
|------------|-------------|-------------|-------------|-------------|
| Coordinate | 42° 30.0♦ N | 71° 00.0♦ W | 42° 20.0♦ N | 71° 10.0♦ W |

**Square Description (i.e. habitat, landmarks, coastline markers):** Waters within the Atlantic Ocean within the square within Massachusetts Bay and within Boston Harbor affecting the following: South Boston, MA., Boston, MA., Chelsea River, Mystic River, Charles River, East Boston, MA., Chelsea, MA., Orient Heights, and most of Logan Airport.

| Species                                                  | Eggs | Larvae | Juveniles | Adults |
|----------------------------------------------------------|------|--------|-----------|--------|
| Atlantic cod ( <i>Gadus morhua</i> )                     | X    | X      | X         | X      |
| haddock ( <i>Melanogrammus aeglefinus</i> )              | X    | X      |           |        |
| pollock ( <i>Pollachius virens</i> )                     | X    | X      | X         | X      |
| whiting ( <i>Merluccius bilinearis</i> )                 | X    | X      | X         | X      |
| offshore hake ( <i>Merluccius albidus</i> )              |      |        |           |        |
| red hake ( <i>Urophycis chuss</i> )                      | X    | X      | X         | X      |
| white hake ( <i>Urophycis tenuis</i> )                   | X    | X      | X         | X      |
| redfish ( <i>Sebastes fasciatus</i> )                    | n/a  |        |           |        |
| witch flounder ( <i>Glyptocephalus cynoglossus</i> )     |      |        |           |        |
| winter flounder ( <i>Pseudopleuronectes americanus</i> ) | X    | X      | X         | X      |
| yellowtail flounder ( <i>Limanda ferruginea</i> )        | X    | X      | X         | X      |
| windowpane flounder ( <i>Scophthalmus aquosus</i> )      | X    | X      | X         | X      |
| American plaice ( <i>Hippoglossoides platessoides</i> )  | X    | X      | X         | X      |
| ocean pout ( <i>Macrozoarces americanus</i> )            | X    | X      | X         | X      |
| Atlantic halibut ( <i>Hippoglossus hippoglossus</i> )    | X    | X      | X         | X      |
| Atlantic sea scallop ( <i>Placopecten magellanicus</i> ) | X    | X      | X         | X      |
| Atlantic sea herring ( <i>Clupea harengus</i> )          |      | X      | X         | X      |
| monkfish ( <i>Lophius americanus</i> )                   |      |        |           |        |
| bluefish ( <i>Pomatomus saltatrix</i> )                  |      |        |           |        |
| long finned squid ( <i>Loligo pealeii</i> )              | n/a  | n/a    | X         | X      |
| short finned squid ( <i>Illex illecebrosus</i> )         | n/a  | n/a    | X         | X      |
| Atlantic butterfish ( <i>Dicologlossa pacifica</i> )     | v    | v      | v         | v      |

| Atlantic butterfish ( <i>Reprius triacanthus</i> ) | ▲   | ▲   | ▲ | ▲ |
|----------------------------------------------------|-----|-----|---|---|
| Atlantic mackerel ( <i>Scomber scombrus</i> )      | X   | X   | X | X |
| summer flounder ( <i>Paralichthys dentatus</i> )   |     |     |   | X |
| scup ( <i>Stenotomus chrysops</i> )                | n/a | n/a | X | X |
| black sea bass ( <i>Centropristes striata</i> )    | n/a |     | X | X |
| surf clam ( <i>Spisula solidissima</i> )           | n/a | n/a | X | X |
| ocean quahog ( <i>Artica islandica</i> )           | n/a | n/a |   |   |
| spiny dogfish ( <i>Squalus acanthias</i> )         | n/a | n/a |   |   |
| tilefish ( <i>Lopholatilus chamaeleonticeps</i> )  |     |     |   |   |
| bluefin tuna ( <i>Thunnus thynnus</i> )            |     |     | X | X |

**APPENDIX D**

**HISTORICAL SIGNIFICANCE DOCUMENTATION**



## National Register of Historic Places

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. Data last updated in April, 2014.

**Central Square Historic District**

Reference Number: 90000128

Resource Type: District

Address: Roughly Massachusetts Ave, from Clinton St. to Main St.

City: Cambridge

County: Middlesex

State: MASSACHUSETTS

Certification Date: 19900302

Multi Resource Name: Cambridge MRA

# of Contributing Buildings: 69

# of Contributing Properties: 2

Find a location  NPS Light

Disclaimer | Geocoding by Esri | © Mapbox © OpenStreetMap contributors

# Massachusetts Cultural Resource Information System

## MACRIS

### MACRIS Search Results

Search Criteria: Town(s): Cambridge; Street Name: massachusetts Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

| Inv. No. | Property Name                             | Street                    | Town      | Year   |
|----------|-------------------------------------------|---------------------------|-----------|--------|
| CAM.635  | Holmes Block II - Green Block             | 2-14 Central Sq           | Cambridge | 1798   |
| CAM.102  | First Parish Church, Unitarian            | 1-3 Church St             | Cambridge | 1833   |
| CAM.910  | Fitchburg Railroad Signal Bridge          | Fitchburg Railroad        | Cambridge | c 1930 |
| CAM.177  | Old Cambridge Baptist Church              | 398 Harvard St            | Cambridge | 1867   |
| CAM.260  | M. I. T. Alumni Swimming Pool Building    | Massachusetts Ave         | Cambridge | 1940   |
| CAM.261  | Kresge Auditorium                         | Massachusetts Ave         | Cambridge | 1953   |
| CAM.262  | M. I. T. Chapel                           | Massachusetts Ave         | Cambridge | 1954   |
| CAM.901  | Harvard Square Subway Kiosk               | Massachusetts Ave         | Cambridge | 1928   |
| CAM.905  | Massachusetts Avenue Bridge over Conrail  | Massachusetts Ave         | Cambridge | 1900   |
| CAM.916  | Central Square Subway Station             | Massachusetts Ave         | Cambridge | 1912   |
| CAM.921  | Harvard Bridge                            | Massachusetts Ave         | Cambridge | r 1890 |
| CAM.938  | Cambridge Common                          | Massachusetts Ave         | Cambridge | 1631   |
| CAM.939  | Cambridge Common South Traffic Island     | Massachusetts Ave         | Cambridge | 1976   |
| CAM.945  | Burying Ground Fence                      | Massachusetts Ave         | Cambridge | 1891   |
| CAM.946  | Flagstaff Park                            | Massachusetts Ave         | Cambridge | 1913   |
| CAM.947  | North Little Common                       | Massachusetts Ave         | Cambridge | c 1858 |
| CAM.949  | Central Square Street Pattern             | Massachusetts Ave         | Cambridge | c 1630 |
| CAM.334  | Cambridge Armory                          | 120 Massachusetts Ave     | Cambridge | 1902   |
| CAM.332  | Metropolitan Storage Warehouse            | 134 Massachusetts Ave     | Cambridge | 1895   |
| CAM.1366 | New England Confectionery Company Factory | 250 Massachusetts Ave     | Cambridge | 1927   |
| CAM.612  | Larson, The                               | 351-355 Massachusetts Ave | Cambridge | 1907   |
| CAM.614  | Lafayette Square Fire Station             | 378 Massachusetts Ave     | Cambridge | 1893   |
| CAM.613  | Shell Gas Station                         | 385 Massachusetts Ave     | Cambridge | 1948   |
| CAM.615  | Salvation Army - Cambridge Citadel        | 400-402 Massachusetts Ave | Cambridge | 1968   |
| CAM.604  |                                           | 401-409 Massachusetts Ave | Cambridge | 1966   |
| CAM.603  | Taylor, William A. House and Shop         | 411-413 Massachusetts Ave | Cambridge | 1887   |
| CAM.602  | Barkin and Gorfinkle Building             | 415-429 Massachusetts Ave | Cambridge | 1925   |

| Inv. No. | Property Name                                  | Street                    | Town      | Year   |
|----------|------------------------------------------------|---------------------------|-----------|--------|
| CAM.616  | Kennedy, Frank A. Store                        | 424 Massachusetts Ave     | Cambridge | 1896   |
| CAM.617  | Kutz, Issac Store                              | 428 Massachusetts Ave     | Cambridge | c 1910 |
| CAM.229  | Kennedy, The                                   | 430-442 Massachusetts Ave | Cambridge | 1890   |
| CAM.601  | Robbins Building                               | 433-447 Massachusetts Ave | Cambridge | 1923   |
| CAM.619  | Blanchard Building                             | 448-450 Massachusetts Ave | Cambridge | c 1886 |
| CAM.324  | South Row                                      | 452-458 Massachusetts Ave | Cambridge | 1807   |
| CAM.1393 | Dana Row - South Row                           | 452-458 Massachusetts Ave | Cambridge | 2003   |
| CAM.599  | Rogers, F. W. and G. M. Building               | 453-457 Massachusetts Ave | Cambridge | 1885   |
| CAM.620  | Freedman Building                              | 460-464 Massachusetts Ave | Cambridge | 1933   |
| CAM.598  | McDonald's Restaurant                          | 463-467 Massachusetts Ave | Cambridge | 1974   |
| CAM.621  | Central Square Realty Trust Building           | 468-480 Massachusetts Ave | Cambridge | 1929   |
| CAM.597  | Moller's Furniture Store                       | 485 Massachusetts Ave     | Cambridge | 1926   |
| CAM.622  | Longfellow, The                                | 492-498 Massachusetts Ave | Cambridge | 1893   |
| CAM.596  | Kane's Furniture Store                         | 493-507 Massachusetts Ave | Cambridge | 1916   |
| CAM.625  | Burger King Restaraunt                         | 506 Massachusetts Ave     | Cambridge | 1970   |
| CAM.1394 | Hovey, Phineas Building                        | 512-514 Massachusetts Ave | Cambridge | 1842   |
| CAM.595  | Central Trust Building                         | 515-527 Massachusetts Ave | Cambridge | 1927   |
| CAM.627  | Miller Store                                   | 520 Massachusetts Ave     | Cambridge | 1924   |
| CAM.628  | Rosenwald Realty Corporation Building          | 522-526 Massachusetts Ave | Cambridge | 1928   |
| CAM.230  | Odd Fellows Hall                               | 536 Massachusetts Ave     | Cambridge | 1884   |
| CAM.629  | Clark - Lamb Building                          | 546-550 Massachusetts Ave | Cambridge | c 1873 |
| CAM.630  | Albani Building                                | 552-566 Massachusetts Ave | Cambridge | 1925   |
| CAM.592  | Bullock, Charles Building                      | 567-569 Massachusetts Ave | Cambridge | 1859   |
| CAM.591  | Central Square Theater                         | 571-577 Massachusetts Ave | Cambridge | 1917   |
| CAM.631  | Ginsberg Building - Harvard Bazar              | 572-590 Massachusetts Ave | Cambridge | 1913   |
| CAM.590  | Morse, Asa P. Building                         | 579-587 Massachusetts Ave | Cambridge | 1893   |
| CAM.589  | Cambridgeport National Bank Building           | 593-597 Massachusetts Ave | Cambridge | 1869   |
| CAM.632  | Manhattan Market - Purity Supreme Super Market | 596-610 Massachusetts Ave | Cambridge | 1899   |
| CAM.588  | Morse, Asa Second Building                     | 599-601 Massachusetts Ave | Cambridge | 1905   |
| CAM.587  | Fisk and Coleman Building                      | 603-605 Massachusetts Ave | Cambridge | 1892   |
| CAM.633  | Prospect House                                 | 614-620 Massachusetts Ave | Cambridge | 1869   |
| CAM.586  | Corcoran, John H. Building                     | 615-627 Massachusetts Ave | Cambridge | 1927   |
| CAM.634  | Holmes Block I                                 | 624-638 Massachusetts Ave | Cambridge | 1915   |
| CAM.1395 | New Holmes Block                               | 624-638 Massachusetts Ave | Cambridge | 1998   |
| CAM.585  | Woolworth, F. W. Building                      | 633-641 Massachusetts Ave | Cambridge | 1950   |
| CAM.584  | Watriss Building                               | 643-649 Massachusetts Ave | Cambridge | 1880   |
| CAM.583  | Dowse, Thomas House                            | 653-655 Massachusetts Ave | Cambridge | 1814   |

| Inv. No. | Property Name                                    | Street                      | Town      | Year   |
|----------|--------------------------------------------------|-----------------------------|-----------|--------|
| CAM.581  | New England Gas and Electric Association II Bldg | 671-675 Massachusetts Ave   | Cambridge | 1966   |
| CAM.642  | Central Square Building                          | 674 Massachusetts Ave       | Cambridge | 1926   |
| CAM.643  | Chamberlain - Hyde Building                      | 684-688 Massachusetts Ave   | Cambridge | 1869   |
| CAM.580  | Cambridgeport Savings Bank                       | 689 Massachusetts Ave       | Cambridge | 1904   |
| CAM.644  | Dana Building                                    | 692-698 Massachusetts Ave   | Cambridge | 1872   |
| CAM.645  | Southwick Building                               | 700-706 Massachusetts Ave   | Cambridge | 1908   |
| CAM.646  | Norris Building                                  | 710-720 Massachusetts Ave   | Cambridge | 1916   |
| CAM.579  | Cambridge Electric Light Building                | 719 Massachusetts Ave       | Cambridge | 1912   |
| CAM.647  | Thayer Building I                                | 722-724 Massachusetts Ave   | Cambridge | 1863   |
| CAM.648  | Thayer Building II                               | 728-730 Massachusetts Ave   | Cambridge | 1868   |
| CAM.578  | Southwick Building                               | 731-751 Massachusetts Ave   | Cambridge | 1896   |
| CAM.649  | Dobbins and Draper Store                         | 736-750 Massachusetts Ave   | Cambridge | 1922   |
| CAM.650  | Dobbins and Draper Store                         | 736-750 Massachusetts Ave   | Cambridge | 1922   |
| CAM.231  | Cambridge Mutual Fire Insurance Company Building | 763 Massachusetts Ave       | Cambridge | 1888   |
| CAM.232  | Central Square Post Office                       | 770 Massachusetts Ave       | Cambridge | 1933   |
| CAM.233  | Cambridge City Hall                              | 795 Massachusetts Ave       | Cambridge | 1889   |
| CAM.651  | Cambridge Senior Center                          | 800-806 Massachusetts Ave   | Cambridge | 1925   |
| CAM.652  | Young Men's Christian Association Building       | 820-830 Massachusetts Ave   | Cambridge | 1896   |
| CAM.1396 | Brusch Medical Center                            | 825-831 Massachusetts Ave   | Cambridge | 1951   |
| CAM.653  | Saint Peter's Episcopal Church                   | 834 Massachusetts Ave       | Cambridge | 1867   |
| CAM.654  | Modern Manor Apartments                          | 842-864 Massachusetts Ave   | Cambridge | 1925   |
| CAM.900  | Houghton Beech Tree                              | 1000 Massachusetts Ave      | Cambridge |        |
| CAM.1127 | Brentford Hall                                   | 1137 Massachusetts Ave      | Cambridge | 1899   |
| CAM.1128 | Dunham, Israel Houses                            | 1156-1166 Massachusetts Ave | Cambridge | 1858   |
| CAM.1129 |                                                  | 1168 Massachusetts Ave      | Cambridge | c 1892 |
| CAM.1130 |                                                  | 1170-1174 Massachusetts Ave | Cambridge | c 1849 |
| CAM.1131 | Longfellow Court                                 | 1200 Massachusetts Ave      | Cambridge | 1916   |
| CAM.1132 | Gulf Gas Station                                 | 1201 Massachusetts Ave      | Cambridge | 1940   |
| CAM.1133 |                                                  | 1206 Massachusetts Ave      | Cambridge | 1965   |
| CAM.1134 |                                                  | 1208-1210 Massachusetts Ave | Cambridge | 1842   |
| CAM.1135 | Quincy Hall                                      | 1218 Massachusetts Ave      | Cambridge | 1891   |
| CAM.1136 |                                                  | 1230 Massachusetts Ave      | Cambridge | 1907   |
| CAM.1137 |                                                  | 1234-1238 Massachusetts Ave | Cambridge | c 1894 |
| CAM.1138 | Hamden Hall                                      | 1246-1260 Massachusetts Ave | Cambridge | 1902   |
| CAM.1139 | A. D. Club                                       | 1268-1270 Massachusetts Ave | Cambridge | 1899   |
| CAM.1140 | Niles Building                                   | 1280 Massachusetts Ave      | Cambridge | 1984   |

| Inv. No. | Property Name                              | Street                      | Town      | Year   |
|----------|--------------------------------------------|-----------------------------|-----------|--------|
| CAM.234  | Fairfax, The                               | 1300-1306 Massachusetts Ave | Cambridge | 1869   |
| CAM.1141 | Fairfax - Hilton Block                     | 1310-1312 Massachusetts Ave | Cambridge | 1883   |
| CAM.1142 | Fairfax - Hilton Block                     | 1316 Massachusetts Ave      | Cambridge | 1885   |
| CAM.235  | Porcellian Club                            | 1320-1324 Massachusetts Ave | Cambridge | 1890   |
| CAM.1143 | Manter Hall                                | 1325 Massachusetts Ave      | Cambridge | 1885   |
| CAM.236  | Wadsworth House                            | 1341 Massachusetts Ave      | Cambridge | 1726   |
| CAM.237  | Holyoke Center                             | 1350 Massachusetts Ave      | Cambridge | 1961   |
| CAM.1144 | Cambridge Savings Bank                     | 1372-1376 Massachusetts Ave | Cambridge | 1923   |
| CAM.1145 | Read, Joseph Stacey House                  | 1380-1382 Massachusetts Ave | Cambridge | c 1783 |
| CAM.1146 | Bartlett, Joseph House                     | 1384-1392 Massachusetts Ave | Cambridge | c 1800 |
| CAM.1147 | Harvard Coop Society                       | 1400 Massachusetts Ave      | Cambridge | 1924   |
| CAM.1148 | Harvard Coop Society                       | 1408-1410 Massachusetts Ave | Cambridge | 1956   |
| CAM.1149 | Harvard Trust Company                      | 1414 Massachusetts Ave      | Cambridge | 1923   |
| CAM.1150 | College House                              | 1420-1442 Massachusetts Ave | Cambridge | 1832   |
| CAM.342  | Gannett House                              | 1511 Massachusetts Ave      | Cambridge | 1838   |
| CAM.343  | Hemenway Gymnasium                         | 1517 Massachusetts Ave      | Cambridge | 1938   |
| CAM.344  | Hastings Hall                              | 1519 Massachusetts Ave      | Cambridge | 1888   |
| CAM.345  | Harvard Epworth Methodist Church           | 1555 Massachusetts Ave      | Cambridge | 1891   |
| CAM.1334 | Francis - Allyn House                      | 1564 Massachusetts Ave      | Cambridge | 1831   |
| CAM.1333 | Sawin - Cobb - Wilson House                | 1626 Massachusetts Ave      | Cambridge | 1868   |
| CAM.238  | Saunders, Charles Hicks House              | 1627 Massachusetts Ave      | Cambridge | 1862   |
| CAM.239  | Montrose, The                              | 1648 Massachusetts Ave      | Cambridge | 1898   |
| CAM.240  | Dunvegan, The                              | 1654 Massachusetts Ave      | Cambridge | 1898   |
| CAM.241  | Worcester, Frederick House                 | 1734 Massachusetts Ave      | Cambridge | 1886   |
| CAM.242  | North Avenue Congregational Church         | 1803 Massachusetts Ave      | Cambridge | 1845   |
| CAM.243  | Lovell Block                               | 1853 Massachusetts Ave      | Cambridge | 1882   |
| CAM.1385 | Cambridge Masonic Temple                   | 1950 Massachusetts Ave      | Cambridge | 1910   |
| CAM.244  | Saint James Episcopal Church               | 1991 Massachusetts Ave      | Cambridge | 1888   |
| CAM.245  | Henderson Carriage Repository              | 2067-2089 Massachusetts Ave | Cambridge | 1892   |
| CAM.246  | Cornerstone Baptist Church                 | 2114 Massachusetts Ave      | Cambridge | 1854   |
| CAM.247  | Mead, Alpheus House                        | 2200 Massachusetts Ave      | Cambridge | 1867   |
| CAM.248  | Snow, Daniel House                         | 2210 Massachusetts Ave      | Cambridge | 1868   |
| CAM.249  | McLean, Isaac House                        | 2218 Massachusetts Ave      | Cambridge | 1894   |
| CAM.250  | Farwell, R. H. Double House                | 2222-2224 Massachusetts Ave | Cambridge | 1891   |
| CAM.251  | Saint John's Roman Catholic Church         | 2270 Massachusetts Ave      | Cambridge | 1904   |
| CAM.1390 |                                            | 2557 Massachusetts Ave      | Cambridge |        |
| CAM.593  | Powers, Hannah - Ginsberg, Harris Building | 7-15 Norfolk St             | Cambridge | c 1894 |



## FEDERAL LANDS AND INDIAN RESERVATIONS

- Department of Defense (includes Army Corps of Engineers lakes)
- Fish and Wildlife Service / Wilderness
- National Park Service / Wilderness

Some small sites are not shown, especially in urban areas.

0 10 20 30 40  
MILES  
Albers equal area projection

Abbreviations  
NWR National Wildlife Refuge



950 CMR: OFFICE OF THE SECRETARY OF THE COMMONWEALTH

**APPENDIX A**  
MASSACHUSETTS HISTORICAL COMMISSION  
220 MORRISSEY BOULEVARD  
BOSTON, MASS. 02125  
617-727-8470, FAX: 617-727-5128

**PROJECT NOTIFICATION FORM**

Project Name: Target Store - New Elevator Installation

Location / Address: 564 Massachusetts Avenue

City / Town: Cambridge, MA

Project Proponent

Name: Target Corporation

Address: 50 South 10th Street

City/Town/Zip/Telephone: Minneapolis, MN 55403 Attn: Genevieve McJilton, Tel (612) 761-5265

Agency license or funding for the project (list all licenses, permits, approvals, grants or other entitlements being sought from state and federal agencies).

Agency Name

USEPA

Type of License or funding (specify)

National Pollution Discharge Elimination System  
Dewatering General Permit

**Project Description (narrative):**

Temporary dewatering operations for the installation of an elevator pit in the basement of the building on-site. A new elevator will be installed inside the existing building from the basement level to the second floor.  
**Does the project include demolition? If so, specify nature of demolition and describe the building(s) which are proposed for demolition.**

Saw cutting of floors and relocation of ductwork as necessary to install an elevator shaft from the basement level to the second floor inside the existing building.

**Does the project include rehabilitation of any existing buildings? If so, specify nature of rehabilitation and describe the building(s) which are proposed for rehabilitation.**

No.

**Does the project include new construction? If so, describe (attach plans and elevations if necessary).**  
The project includes the installation of an elevator inside the building.

950 CMR: OFFICE OF THE SECRETARY OF THE COMMONWEALTH

APPENDIX A (continued)

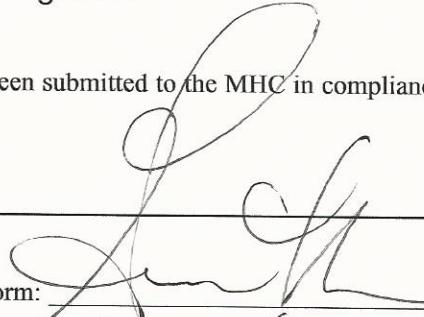
**To the best of your knowledge, are any historic or archaeological properties known to exist within the project's area of potential impact? If so, specify.**

According to the National Register of Historic Places, the site address is listed in the Historical Central Square District of Cambridge.

**What is the total acreage of the project area?**

|            |             |                                   |
|------------|-------------|-----------------------------------|
| Woodland   | _____ acres | Productive Resources:             |
| Wetland    | _____ acres | Agriculture _____ acres           |
| Floodplain | _____ acres | Forestry _____ acres              |
| Open space | _____ acres | Mining/Extraction _____ acres     |
| Developed  | 0.22 acres  | Total Project Acreage _____ acres |

**What is the acreage of the proposed new construction?** NA acres


**What is the present land use of the project area?**

Retail

**Please attach a copy of the section of the USGS quadrangle map which clearly marks the project location.**

See attached Locus Plan - Figure 1.

This Project Notification Form has been submitted to the MHC in compliance with 950 CMR 71.00.

\_\_\_\_\_  
  
Signature of Person submitting this form: Genevieve McJill Date: 6-14-17  
Name: Target Corporation, Genevieve McJill  
Address: 1000 Nicollet Mall  
City/Town/Zip: Minneapolis, MN 55402  
Telephone: 612-761-5265

**REGULATORY AUTHORITY**

950 CMR 71.00: M.G.L. c. 9, §§ 26-27C as amended by St. 1988, c. 254.



Drawn By: C.Green  
 Designed By: K.Walker  
 Reviewed By: V.Kokosa  
 Project No: 4198.01  
 Date: June 2017

SCALE: 1:25,000

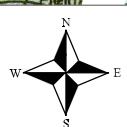
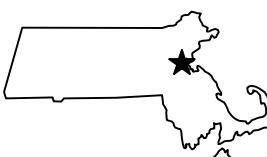


SANBORN  HEAD

Figure 1

## Locus Plan

Notice of Intent (NOI)  
Dewatering General Permit

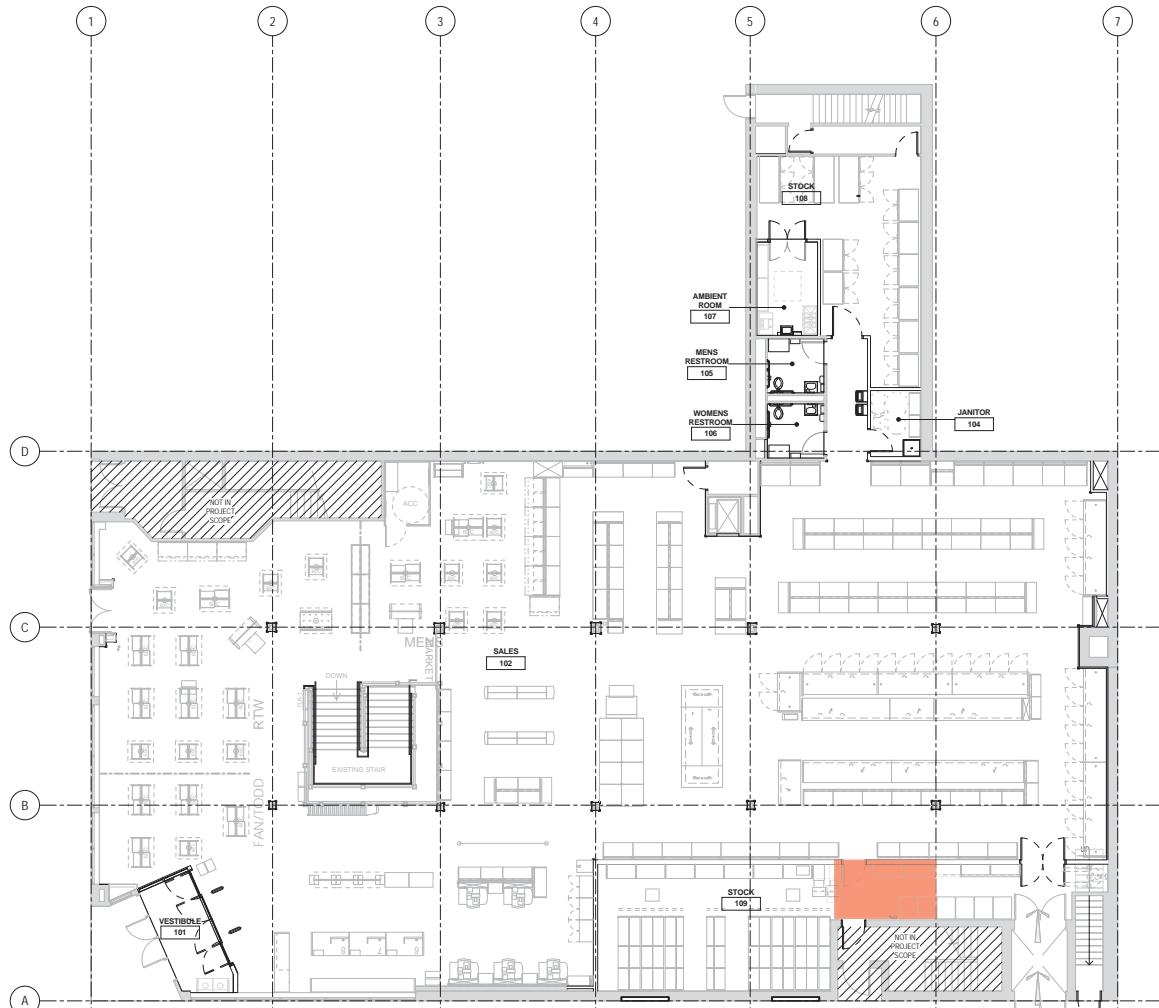
Target Store  
Cambridge, Massachusetts



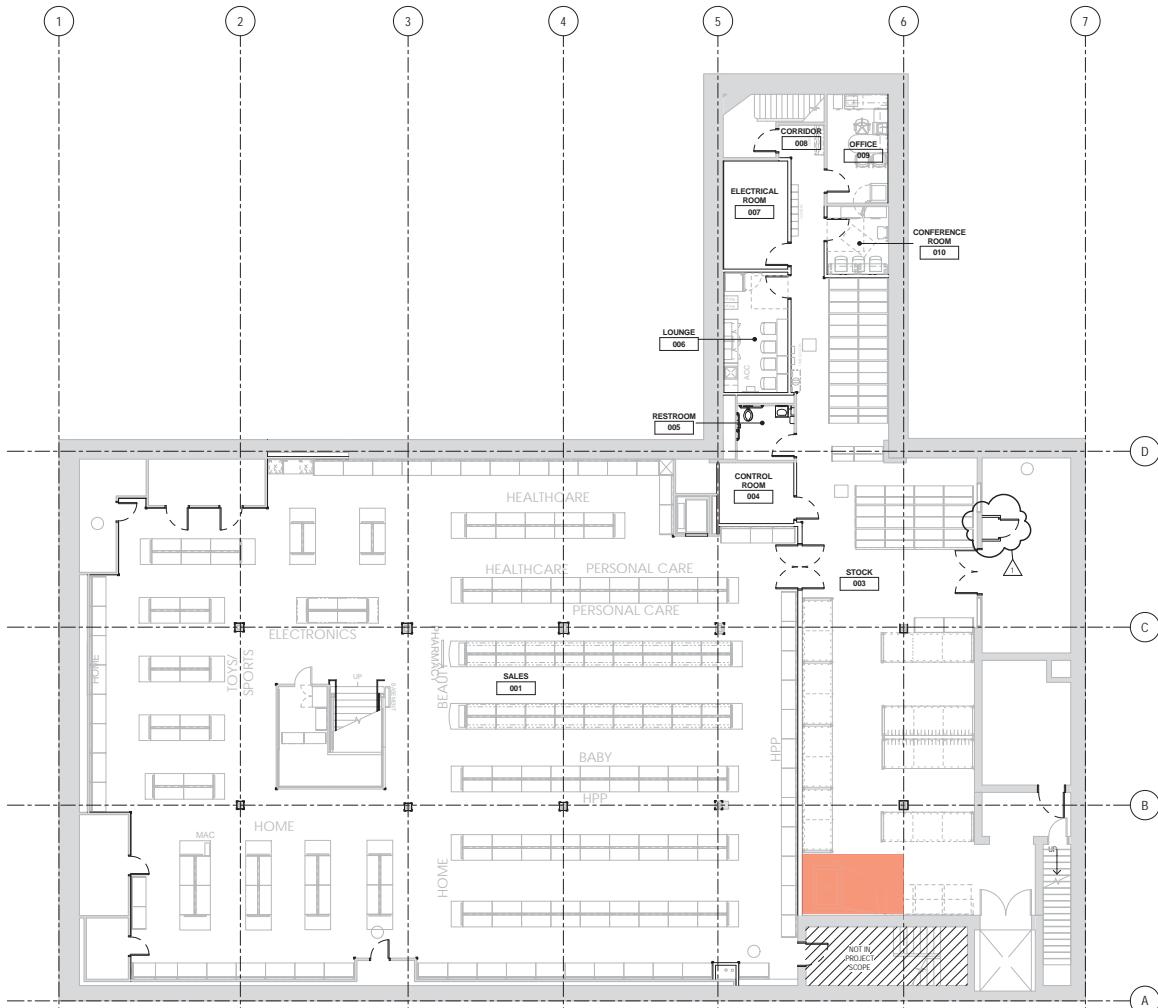
NOTES:  
 Base map was taken from the "Office of Geographic and Environmental Information (MassGIS), Commonwealth of Massachusetts Information Technology Division"  
 7.5 minute USGS Quadrangle Maps:  
 Cambridge, Massachusetts, REV: 1987



**TARGET®**  
1000 NICOLLET MALL  
MINNEAPOLIS, MN 55403


0 NICOLLET MALL  
MINNEAPOLIS, MN 55403

# ROWSTREET TECTURE & DESIGN


OFFICE SQUARE  
OOH  
I MA 02109  
3-5555  
rowstreet.com

## KEYPLAN

| . | Description |
|---|-------------|
|   | PERMIT SET  |
|   | DCN 1006003 |



2 GROUND LEVEL FIXTURE REFERENCE PLAN  
A112 SCALE: 1/8" = 1'-0"



1 LOWER LEVEL FIXTURE REFERENCE PLAN  
A112 SCALE: 1/8" = 1'-0"

# © TARGET

Central Square  
5564 Massachusetts Ave, Cambridge, MA 02139

T-3222  
Version:V13B Config:LL  
PJ/PW  
LM

## Fixture Reference Plans

A112



**APPENDIX E**

**ANALYTICAL LABORATORY REPORTS**



## ANALYTICAL REPORT

|                 |                                                                                   |
|-----------------|-----------------------------------------------------------------------------------|
| Lab Number:     | L1715771                                                                          |
| Client:         | Sanborn, Head & Associates, Inc.<br>1 Technology Park Drive<br>Westford, MA 01886 |
| ATTN:           | Kent Walker                                                                       |
| Phone:          | (978) 577-1003                                                                    |
| Project Name:   | TARGET RGP                                                                        |
| Project Number: | 4198.01                                                                           |
| Report Date:    | 07/13/17                                                                          |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

---

Eight Walkup Drive, Westborough, MA 01581-1019  
508-898-9220 (Fax) 508-898-9193 800-624-9220 - [www.alphalab.com](http://www.alphalab.com)



**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Alpha<br>Sample ID | Client ID  | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|------------|--------|--------------------|-------------------------|--------------|
| L1715771-01        | SH-101     | WATER  | CAMBRIDGE, MA      | 05/15/17 08:10          | 05/15/17     |
| L1715771-02        | TRIP BLANK | WATER  | CAMBRIDGE, MA      | 05/15/17 08:10          | 05/15/17     |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### Case Narrative (continued)

#### Report Submission

This report replaces the report issued May 19, 2017. At the client's request the Volatile Organics analyte list has been amended on L1715771-01 to include Tert-Butyl Alcohol and Tertiary-Amyl Methyl Ether.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

#### Semivolatile Organics

The WG1003935-2/3 LCS/LCSD recoveries, associated with L1715771-01, are below the acceptance criteria for benzidine (2%/3%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

#### Phenolics, Total

WG1003989: A Matrix Spike and Laboratory Duplicate were prepared with the sample batch, however, the native sample was not available for reporting; therefore, the matrix spike and laboratory duplicate results could not be reported.

#### Solids, Total Suspended

WG1004119: A laboratory duplicate could not be performed due to insufficient sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:


 Amita Naik

Title: Technical Director/Representative

Date: 07/13/17

# ORGANICS

# **VOLATILES**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

Serial\_No:07131716:39

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

Lab ID: L1715771-01  
Client ID: SH-101  
Sample Location: CAMBRIDGE, MA

Date Collected: 05/15/17 08:10  
Date Received: 05/15/17  
Field Prep: Field Filtered (Dissolved Metals)

Matrix: Water  
Analytical Method: 1,8260C  
Analytical Date: 05/18/17 12:15  
Analyst: MM

| Parameter                                           | Result | Qualifier | Units | RL   | MDL | Dilution Factor |
|-----------------------------------------------------|--------|-----------|-------|------|-----|-----------------|
| <b>Volatile Organics by GC/MS - Westborough Lab</b> |        |           |       |      |     |                 |
| Methylene chloride                                  | ND     | ug/l      | 3.0   | 0.68 | 1   |                 |
| 1,1-Dichloroethane                                  | ND     | ug/l      | 0.75  | 0.21 | 1   |                 |
| Chloroform                                          | ND     | ug/l      | 0.75  | 0.16 | 1   |                 |
| Carbon tetrachloride                                | ND     | ug/l      | 0.50  | 0.13 | 1   |                 |
| 1,2-Dichloropropane                                 | ND     | ug/l      | 1.8   | 0.14 | 1   |                 |
| Dibromochloromethane                                | ND     | ug/l      | 0.50  | 0.15 | 1   |                 |
| 1,1,2-Trichloroethane                               | ND     | ug/l      | 0.75  | 0.14 | 1   |                 |
| Tetrachloroethene                                   | ND     | ug/l      | 0.50  | 0.18 | 1   |                 |
| Chlorobenzene                                       | ND     | ug/l      | 0.50  | 0.18 | 1   |                 |
| Trichlorofluoromethane                              | ND     | ug/l      | 2.5   | 0.16 | 1   |                 |
| 1,2-Dichloroethane                                  | ND     | ug/l      | 0.50  | 0.13 | 1   |                 |
| 1,1,1-Trichloroethane                               | ND     | ug/l      | 0.50  | 0.16 | 1   |                 |
| Bromodichloromethane                                | ND     | ug/l      | 0.50  | 0.19 | 1   |                 |
| trans-1,3-Dichloropropene                           | ND     | ug/l      | 0.50  | 0.16 | 1   |                 |
| cis-1,3-Dichloropropene                             | ND     | ug/l      | 0.50  | 0.14 | 1   |                 |
| 1,3-Dichloropropene, Total                          | ND     | ug/l      | 0.50  | 0.14 | 1   |                 |
| 1,1-Dichloropropene                                 | ND     | ug/l      | 2.5   | 0.17 | 1   |                 |
| Bromoform                                           | ND     | ug/l      | 2.0   | 0.25 | 1   |                 |
| 1,1,2,2-Tetrachloroethane                           | ND     | ug/l      | 0.50  | 0.17 | 1   |                 |
| Benzene                                             | ND     | ug/l      | 0.50  | 0.16 | 1   |                 |
| Toluene                                             | ND     | ug/l      | 0.75  | 0.16 | 1   |                 |
| Ethylbenzene                                        | ND     | ug/l      | 0.50  | 0.17 | 1   |                 |
| Chloromethane                                       | ND     | ug/l      | 2.5   | 0.18 | 1   |                 |
| Bromomethane                                        | ND     | ug/l      | 1.0   | 0.26 | 1   |                 |
| Vinyl chloride                                      | ND     | ug/l      | 1.0   | 0.07 | 1   |                 |
| Chloroethane                                        | ND     | ug/l      | 1.0   | 0.13 | 1   |                 |
| 1,1-Dichloroethene                                  | ND     | ug/l      | 0.50  | 0.17 | 1   |                 |
| 1,2-Dichloroethene, Total                           | ND     | ug/l      | 0.50  | 0.16 | 1   |                 |
| Trichloroethene                                     | ND     | ug/l      | 0.50  | 0.18 | 1   |                 |



**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

|                  |               |                 |                                   |
|------------------|---------------|-----------------|-----------------------------------|
| Lab ID:          | L1715771-01   | Date Collected: | 05/15/17 08:10                    |
| Client ID:       | SH-101        | Date Received:  | 05/15/17                          |
| Sample Location: | CAMBRIDGE, MA | Field Prep:     | Field Filtered (Dissolved Metals) |

| Parameter                                    | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |
|----------------------------------------------|--------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westborough Lab |        |           |       |      |      |                 |
| 1,2-Dichlorobenzene                          | ND     |           | ug/l  | 2.5  | 0.18 | 1               |
| 1,3-Dichlorobenzene                          | ND     |           | ug/l  | 2.5  | 0.19 | 1               |
| 1,4-Dichlorobenzene                          | ND     |           | ug/l  | 2.5  | 0.19 | 1               |
| Methyl tert butyl ether                      | ND     |           | ug/l  | 1.0  | 0.17 | 1               |
| p/m-Xylene                                   | ND     |           | ug/l  | 1.0  | 0.33 | 1               |
| o-Xylene                                     | ND     |           | ug/l  | 1.0  | 0.33 | 1               |
| Xylenes, Total                               | ND     |           | ug/l  | 1.0  | 0.33 | 1               |
| cis-1,2-Dichloroethene                       | ND     |           | ug/l  | 0.50 | 0.19 | 1               |
| Dibromomethane                               | ND     |           | ug/l  | 5.0  | 0.36 | 1               |
| 1,4-Dichlorobutane                           | ND     |           | ug/l  | 5.0  | 0.46 | 1               |
| 1,2,3-Trichloropropane                       | ND     |           | ug/l  | 5.0  | 0.18 | 1               |
| Styrene                                      | ND     |           | ug/l  | 1.0  | 0.36 | 1               |
| Dichlorodifluoromethane                      | ND     |           | ug/l  | 5.0  | 0.24 | 1               |
| Acetone                                      | 5.2    |           | ug/l  | 5.0  | 1.5  | 1               |
| Carbon disulfide                             | 0.32   | J         | ug/l  | 5.0  | 0.30 | 1               |
| 2-Butanone                                   | ND     |           | ug/l  | 5.0  | 1.9  | 1               |
| Vinyl acetate                                | ND     |           | ug/l  | 5.0  | 0.31 | 1               |
| 4-Methyl-2-pentanone                         | ND     |           | ug/l  | 5.0  | 0.42 | 1               |
| 2-Hexanone                                   | ND     |           | ug/l  | 5.0  | 0.52 | 1               |
| Ethyl methacrylate                           | ND     |           | ug/l  | 5.0  | 0.61 | 1               |
| Acrylonitrile                                | ND     |           | ug/l  | 5.0  | 0.43 | 1               |
| Bromochloromethane                           | ND     |           | ug/l  | 2.5  | 0.15 | 1               |
| Tetrahydrofuran                              | ND     |           | ug/l  | 5.0  | 0.83 | 1               |
| 2,2-Dichloropropane                          | ND     |           | ug/l  | 2.5  | 0.20 | 1               |
| 1,2-Dibromoethane                            | ND     |           | ug/l  | 2.0  | 0.19 | 1               |
| 1,3-Dichloropropane                          | ND     |           | ug/l  | 2.5  | 0.21 | 1               |
| 1,1,1,2-Tetrachloroethane                    | ND     |           | ug/l  | 0.50 | 0.16 | 1               |
| Bromobenzene                                 | ND     |           | ug/l  | 2.5  | 0.15 | 1               |
| n-Butylbenzene                               | ND     |           | ug/l  | 0.50 | 0.19 | 1               |
| sec-Butylbenzene                             | ND     |           | ug/l  | 0.50 | 0.18 | 1               |
| tert-Butylbenzene                            | ND     |           | ug/l  | 2.5  | 0.18 | 1               |
| o-Chlorotoluene                              | ND     |           | ug/l  | 2.5  | 0.17 | 1               |
| p-Chlorotoluene                              | ND     |           | ug/l  | 2.5  | 0.18 | 1               |
| 1,2-Dibromo-3-chloropropane                  | ND     |           | ug/l  | 2.5  | 0.35 | 1               |
| Hexachlorobutadiene                          | ND     |           | ug/l  | 0.50 | 0.22 | 1               |
| Isopropylbenzene                             | ND     |           | ug/l  | 0.50 | 0.19 | 1               |
| p-Isopropyltoluene                           | ND     |           | ug/l  | 0.50 | 0.19 | 1               |
| Naphthalene                                  | ND     |           | ug/l  | 2.5  | 0.22 | 1               |

Project Name: TARGET RGP

Lab Number: L1715771

Project Number: 4198.01

Report Date: 07/13/17

**SAMPLE RESULTS**

Lab ID: L1715771-01  
 Client ID: SH-101  
 Sample Location: CAMBRIDGE, MA

Date Collected: 05/15/17 08:10  
 Date Received: 05/15/17  
 Field Prep: Field Filtered (Dissolved Metals)

| Parameter                                           | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |
|-----------------------------------------------------|--------|-----------|-------|------|------|-----------------|
| <b>Volatile Organics by GC/MS - Westborough Lab</b> |        |           |       |      |      |                 |
| n-Propylbenzene                                     | ND     |           | ug/l  | 0.50 | 0.17 | 1               |
| 1,2,3-Trichlorobenzene                              | ND     |           | ug/l  | 2.5  | 0.23 | 1               |
| 1,2,4-Trichlorobenzene                              | ND     |           | ug/l  | 2.5  | 0.22 | 1               |
| 1,3,5-Trimethylbenzene                              | ND     |           | ug/l  | 2.5  | 0.17 | 1               |
| 1,2,4-Trimethylbenzene                              | ND     |           | ug/l  | 2.5  | 0.19 | 1               |
| trans-1,4-Dichloro-2-butene                         | ND     |           | ug/l  | 2.5  | 0.18 | 1               |
| Ethyl ether                                         | ND     |           | ug/l  | 2.5  | 0.16 | 1               |
| Tert-Butyl Alcohol                                  | ND     |           | ug/l  | 10   | 1.4  | 1               |
| Tertiary-Amyl Methyl Ether                          | ND     |           | ug/l  | 2.0  | 0.28 | 1               |

| Surrogate             | % Recovery | Qualifier | Acceptance Criteria |
|-----------------------|------------|-----------|---------------------|
| 1,2-Dichloroethane-d4 | 88         |           | 70-130              |
| Toluene-d8            | 105        |           | 70-130              |
| 4-Bromofluorobenzene  | 116        |           | 70-130              |
| Dibromofluoromethane  | 91         |           | 70-130              |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

Serial\_No:07131716:39

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

Lab ID: L1715771-01  
Client ID: SH-101  
Sample Location: CAMBRIDGE, MA

Date Collected: 05/15/17 08:10  
Date Received: 05/15/17  
Field Prep: Field Filtered (Dissolved Metals)

Matrix: Water  
Analytical Method: 1,8260C-SIM(M)  
Analytical Date: 05/18/17 12:15  
Analyst: MM

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS-SIM - Westborough Lab |        |           |       |     |      |                 |
| 1,4-Dioxane                                      | ND     |           | ug/l  | 3.0 | 0.76 | 1               |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

Serial\_No:07131716:39

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

Lab ID: L1715771-01  
Client ID: SH-101  
Sample Location: CAMBRIDGE, MA

Date Collected: 05/15/17 08:10  
Date Received: 05/15/17  
Field Prep: Field Filtered (Dissolved Metals)  
Extraction Method: EPA 504.1  
Extraction Date: 05/17/17 13:25

Matrix: Water  
Analytical Method: 14,504.1  
Analytical Date: 05/17/17 16:27  
Analyst: NS

| Parameter                                 | Result | Qualifier | Units | RL    | MDL   | Dilution Factor | Column |
|-------------------------------------------|--------|-----------|-------|-------|-------|-----------------|--------|
| Microextractables by GC - Westborough Lab |        |           |       |       |       |                 |        |
| 1,2-Dibromoethane                         | ND     |           | ug/l  | 0.011 | 0.004 | 1               | A      |
| 1,2-Dibromo-3-chloropropane               | ND     |           | ug/l  | 0.011 | 0.005 | 1               | A      |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 14,504.1  
Analytical Date: 05/17/17 15:09  
Analyst: NS

Extraction Method: EPA 504.1  
Extraction Date: 05/17/17 13:25

| Parameter                                                                      | Result | Qualifier | Units | RL    | MDL   |
|--------------------------------------------------------------------------------|--------|-----------|-------|-------|-------|
| Microextractables by GC - Westborough Lab for sample(s): 01 Batch: WG1004336-1 |        |           |       |       |       |
| 1,2-Dibromoethane                                                              | ND     |           | ug/l  | 0.010 | 0.004 |
| 1,2-Dibromo-3-chloropropane                                                    | ND     |           | ug/l  | 0.010 | 0.005 |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8260C-SIM(M)  
Analytical Date: 05/18/17 10:01  
Analyst: MM

| Parameter                                                                             | Result | Qualifier | Units | RL  | MDL  |
|---------------------------------------------------------------------------------------|--------|-----------|-------|-----|------|
| Volatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 Batch: WG1004780-5 |        |           |       |     |      |
| 1,4-Dioxane                                                                           | ND     |           | ug/l  | 3.0 | 0.76 |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8260C  
Analytical Date: 05/18/17 10:01  
Analyst: MM

| Parameter                                                                         | Result | Qualifier | Units | RL   | MDL  |
|-----------------------------------------------------------------------------------|--------|-----------|-------|------|------|
| Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1004782-5 |        |           |       |      |      |
| Methylene chloride                                                                | ND     |           | ug/l  | 3.0  | 0.68 |
| 1,1-Dichloroethane                                                                | ND     |           | ug/l  | 0.75 | 0.21 |
| Chloroform                                                                        | ND     |           | ug/l  | 0.75 | 0.16 |
| Carbon tetrachloride                                                              | ND     |           | ug/l  | 0.50 | 0.13 |
| 1,2-Dichloropropane                                                               | ND     |           | ug/l  | 1.8  | 0.14 |
| Dibromochloromethane                                                              | ND     |           | ug/l  | 0.50 | 0.15 |
| 1,1,2-Trichloroethane                                                             | ND     |           | ug/l  | 0.75 | 0.14 |
| Tetrachloroethene                                                                 | ND     |           | ug/l  | 0.50 | 0.18 |
| Chlorobenzene                                                                     | ND     |           | ug/l  | 0.50 | 0.18 |
| Trichlorofluoromethane                                                            | ND     |           | ug/l  | 2.5  | 0.16 |
| 1,2-Dichloroethane                                                                | ND     |           | ug/l  | 0.50 | 0.13 |
| 1,1,1-Trichloroethane                                                             | ND     |           | ug/l  | 0.50 | 0.16 |
| Bromodichloromethane                                                              | ND     |           | ug/l  | 0.50 | 0.19 |
| trans-1,3-Dichloropropene                                                         | ND     |           | ug/l  | 0.50 | 0.16 |
| cis-1,3-Dichloropropene                                                           | ND     |           | ug/l  | 0.50 | 0.14 |
| 1,3-Dichloropropene, Total                                                        | ND     |           | ug/l  | 0.50 | 0.14 |
| 1,1-Dichloropropene                                                               | ND     |           | ug/l  | 2.5  | 0.17 |
| Bromoform                                                                         | ND     |           | ug/l  | 2.0  | 0.25 |
| 1,1,2,2-Tetrachloroethane                                                         | ND     |           | ug/l  | 0.50 | 0.17 |
| Benzene                                                                           | ND     |           | ug/l  | 0.50 | 0.16 |
| Toluene                                                                           | ND     |           | ug/l  | 0.75 | 0.16 |
| Ethylbenzene                                                                      | ND     |           | ug/l  | 0.50 | 0.17 |
| Chloromethane                                                                     | ND     |           | ug/l  | 2.5  | 0.18 |
| Bromomethane                                                                      | ND     |           | ug/l  | 1.0  | 0.26 |
| Vinyl chloride                                                                    | ND     |           | ug/l  | 1.0  | 0.07 |
| Chloroethane                                                                      | ND     |           | ug/l  | 1.0  | 0.13 |
| 1,1-Dichloroethene                                                                | ND     |           | ug/l  | 0.50 | 0.17 |
| 1,2-Dichloroethene, Total                                                         | ND     |           | ug/l  | 0.50 | 0.16 |
| Trichloroethene                                                                   | ND     |           | ug/l  | 0.50 | 0.18 |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8260C  
Analytical Date: 05/18/17 10:01  
Analyst: MM

| Parameter                                                                         | Result | Qualifier | Units | RL   | MDL  |
|-----------------------------------------------------------------------------------|--------|-----------|-------|------|------|
| Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1004782-5 |        |           |       |      |      |
| 1,2-Dichlorobenzene                                                               | ND     |           | ug/l  | 2.5  | 0.18 |
| 1,3-Dichlorobenzene                                                               | ND     |           | ug/l  | 2.5  | 0.19 |
| 1,4-Dichlorobenzene                                                               | ND     |           | ug/l  | 2.5  | 0.19 |
| Methyl tert butyl ether                                                           | ND     |           | ug/l  | 1.0  | 0.17 |
| p/m-Xylene                                                                        | ND     |           | ug/l  | 1.0  | 0.33 |
| o-Xylene                                                                          | ND     |           | ug/l  | 1.0  | 0.33 |
| Xylenes, Total                                                                    | ND     |           | ug/l  | 1.0  | 0.33 |
| cis-1,2-Dichloroethene                                                            | ND     |           | ug/l  | 0.50 | 0.19 |
| Dibromomethane                                                                    | ND     |           | ug/l  | 5.0  | 0.36 |
| 1,4-Dichlorobutane                                                                | ND     |           | ug/l  | 5.0  | 0.46 |
| 1,2,3-Trichloropropane                                                            | ND     |           | ug/l  | 5.0  | 0.18 |
| Styrene                                                                           | ND     |           | ug/l  | 1.0  | 0.36 |
| Dichlorodifluoromethane                                                           | ND     |           | ug/l  | 5.0  | 0.24 |
| Acetone                                                                           | ND     |           | ug/l  | 5.0  | 1.5  |
| Carbon disulfide                                                                  | ND     |           | ug/l  | 5.0  | 0.30 |
| 2-Butanone                                                                        | ND     |           | ug/l  | 5.0  | 1.9  |
| Vinyl acetate                                                                     | ND     |           | ug/l  | 5.0  | 0.31 |
| 4-Methyl-2-pentanone                                                              | ND     |           | ug/l  | 5.0  | 0.42 |
| 2-Hexanone                                                                        | ND     |           | ug/l  | 5.0  | 0.52 |
| Ethyl methacrylate                                                                | ND     |           | ug/l  | 5.0  | 0.61 |
| Acrylonitrile                                                                     | ND     |           | ug/l  | 5.0  | 0.43 |
| Bromochloromethane                                                                | ND     |           | ug/l  | 2.5  | 0.15 |
| Tetrahydrofuran                                                                   | ND     |           | ug/l  | 5.0  | 0.83 |
| 2,2-Dichloropropane                                                               | ND     |           | ug/l  | 2.5  | 0.20 |
| 1,2-Dibromoethane                                                                 | ND     |           | ug/l  | 2.0  | 0.19 |
| 1,3-Dichloropropane                                                               | ND     |           | ug/l  | 2.5  | 0.21 |
| 1,1,1,2-Tetrachloroethane                                                         | ND     |           | ug/l  | 0.50 | 0.16 |
| Bromobenzene                                                                      | ND     |           | ug/l  | 2.5  | 0.15 |
| n-Butylbenzene                                                                    | ND     |           | ug/l  | 0.50 | 0.19 |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8260C  
Analytical Date: 05/18/17 10:01  
Analyst: MM

| Parameter                                                                         | Result | Qualifier | Units | RL   | MDL  |
|-----------------------------------------------------------------------------------|--------|-----------|-------|------|------|
| Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1004782-5 |        |           |       |      |      |
| sec-Butylbenzene                                                                  | ND     |           | ug/l  | 0.50 | 0.18 |
| tert-Butylbenzene                                                                 | ND     |           | ug/l  | 2.5  | 0.18 |
| o-Chlorotoluene                                                                   | ND     |           | ug/l  | 2.5  | 0.17 |
| p-Chlorotoluene                                                                   | ND     |           | ug/l  | 2.5  | 0.18 |
| 1,2-Dibromo-3-chloropropane                                                       | ND     |           | ug/l  | 2.5  | 0.35 |
| Hexachlorobutadiene                                                               | ND     |           | ug/l  | 0.50 | 0.22 |
| Isopropylbenzene                                                                  | ND     |           | ug/l  | 0.50 | 0.19 |
| p-Isopropyltoluene                                                                | ND     |           | ug/l  | 0.50 | 0.19 |
| Naphthalene                                                                       | ND     |           | ug/l  | 2.5  | 0.22 |
| n-Propylbenzene                                                                   | ND     |           | ug/l  | 0.50 | 0.17 |
| 1,2,3-Trichlorobenzene                                                            | ND     |           | ug/l  | 2.5  | 0.23 |
| 1,2,4-Trichlorobenzene                                                            | ND     |           | ug/l  | 2.5  | 0.22 |
| 1,3,5-Trimethylbenzene                                                            | ND     |           | ug/l  | 2.5  | 0.17 |
| 1,2,4-Trimethylbenzene                                                            | ND     |           | ug/l  | 2.5  | 0.19 |
| trans-1,4-Dichloro-2-butene                                                       | ND     |           | ug/l  | 2.5  | 0.18 |
| Ethyl ether                                                                       | ND     |           | ug/l  | 2.5  | 0.16 |
| Tert-Butyl Alcohol                                                                | ND     |           | ug/l  | 10   | 1.4  |
| Tertiary-Amyl Methyl Ether                                                        | ND     |           | ug/l  | 2.0  | 0.28 |

| Surrogate             | %Recovery | Qualifier | Acceptance Criteria |
|-----------------------|-----------|-----------|---------------------|
| 1,2-Dichloroethane-d4 | 87        |           | 70-130              |
| Toluene-d8            | 107       |           | 70-130              |
| 4-Bromofluorobenzene  | 116       |           | 70-130              |
| Dibromofluoromethane  | 87        |           | 70-130              |

**Lab Control Sample Analysis**  
**Batch Quality Control**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| <b>Parameter</b>                                                                      | <i>LCS</i><br>%Recovery | <i>LCSD</i><br>%Recovery | <i>RPD</i> | <i>Qual</i> | <i>%Recovery</i><br>Limits | <i>RPD</i><br>Limits | <i>Column</i> |
|---------------------------------------------------------------------------------------|-------------------------|--------------------------|------------|-------------|----------------------------|----------------------|---------------|
|                                                                                       | <i>Qual</i>             | <i>Qual</i>              |            |             |                            |                      |               |
| Microextractables by GC - Westborough Lab Associated sample(s): 01 Batch: WG1004336-2 |                         |                          |            |             |                            |                      |               |
| 1,2-Dibromoethane                                                                     | 87                      | -                        | -          | -           | 70-130                     | -                    | A             |
| 1,2-Dibromo-3-chloropropane                                                           | 92                      | -                        | -          | -           | 70-130                     | -                    | A             |

**Lab Control Sample Analysis**  
**Batch Quality Control**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| <b>Parameter</b>                                                                                         | <i>LCS</i><br><i>%Recovery</i> | <i>Qual</i> | <i>LCSD</i><br><i>%Recovery</i> | <i>Qual</i> | <i>%Recovery</i><br><i>Limits</i> | <i>RPD</i> | <i>Qual</i> | <i>RPD</i><br><i>Limits</i> |
|----------------------------------------------------------------------------------------------------------|--------------------------------|-------------|---------------------------------|-------------|-----------------------------------|------------|-------------|-----------------------------|
|                                                                                                          |                                |             |                                 |             |                                   |            |             |                             |
| Volatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1004780-3 WG1004780-4 |                                |             |                                 |             |                                   |            |             |                             |
| 1,4-Dioxane                                                                                              | 100                            |             | 110                             |             | 70-130                            | 10         |             | 25                          |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                            | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|
| Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1004782-3 WG1004782-4 |                  |      |                   |      |                     |     |      |               |
| Methylene chloride                                                                                   | 130              |      | 120               |      | 70-130              | 8   |      | 20            |
| 1,1-Dichloroethane                                                                                   | 110              |      | 110               |      | 70-130              | 0   |      | 20            |
| Chloroform                                                                                           | 99               |      | 95                |      | 70-130              | 4   |      | 20            |
| Carbon tetrachloride                                                                                 | 74               |      | 76                |      | 63-132              | 3   |      | 20            |
| 1,2-Dichloropropane                                                                                  | 110              |      | 110               |      | 70-130              | 0   |      | 20            |
| Dibromochloromethane                                                                                 | 93               |      | 89                |      | 63-130              | 4   |      | 20            |
| 1,1,2-Trichloroethane                                                                                | 120              |      | 120               |      | 70-130              | 0   |      | 20            |
| Tetrachloroethene                                                                                    | 100              |      | 98                |      | 70-130              | 2   |      | 20            |
| Chlorobenzene                                                                                        | 100              |      | 98                |      | 75-130              | 2   |      | 25            |
| Trichlorofluoromethane                                                                               | 89               |      | 90                |      | 62-150              | 1   |      | 20            |
| 1,2-Dichloroethane                                                                                   | 90               |      | 89                |      | 70-130              | 1   |      | 20            |
| 1,1,1-Trichloroethane                                                                                | 85               |      | 82                |      | 67-130              | 4   |      | 20            |
| Bromodichloromethane                                                                                 | 92               |      | 92                |      | 67-130              | 0   |      | 20            |
| trans-1,3-Dichloropropene                                                                            | 110              |      | 110               |      | 70-130              | 0   |      | 20            |
| cis-1,3-Dichloropropene                                                                              | 100              |      | 100               |      | 70-130              | 0   |      | 20            |
| 1,1-Dichloropropene                                                                                  | 110              |      | 100               |      | 70-130              | 10  |      | 20            |
| Bromoform                                                                                            | 83               |      | 98                |      | 54-136              | 17  |      | 20            |
| 1,1,2,2-Tetrachloroethane                                                                            | 120              |      | 120               |      | 67-130              | 0   |      | 20            |
| Benzene                                                                                              | 120              |      | 110               |      | 70-130              | 9   |      | 25            |
| Toluene                                                                                              | 110              |      | 110               |      | 70-130              | 0   |      | 25            |
| Ethylbenzene                                                                                         | 110              |      | 110               |      | 70-130              | 0   |      | 20            |
| Chloromethane                                                                                        | 99               |      | 91                |      | 64-130              | 8   |      | 20            |
| Bromomethane                                                                                         | 130              |      | 120               |      | 39-139              | 8   |      | 20            |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                            | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|
| Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1004782-3 WG1004782-4 |                  |      |                   |      |                     |     |      |               |
| Vinyl chloride                                                                                       | 120              |      | 120               |      | 55-140              | 0   |      | 20            |
| Chloroethane                                                                                         | 130              |      | 130               |      | 55-138              | 0   |      | 20            |
| 1,1-Dichloroethene                                                                                   | 110              |      | 110               |      | 61-145              | 0   |      | 25            |
| Trichloroethene                                                                                      | 96               |      | 98                |      | 70-130              | 2   |      | 25            |
| 1,2-Dichlorobenzene                                                                                  | 96               |      | 100               |      | 70-130              | 4   |      | 20            |
| 1,3-Dichlorobenzene                                                                                  | 92               |      | 94                |      | 70-130              | 2   |      | 20            |
| 1,4-Dichlorobenzene                                                                                  | 92               |      | 98                |      | 70-130              | 6   |      | 20            |
| Methyl tert butyl ether                                                                              | 110              |      | 110               |      | 63-130              | 0   |      | 20            |
| p/m-Xylene                                                                                           | 110              |      | 100               |      | 70-130              | 10  |      | 20            |
| o-Xylene                                                                                             | 110              |      | 100               |      | 70-130              | 10  |      | 20            |
| cis-1,2-Dichloroethene                                                                               | 100              |      | 110               |      | 70-130              | 10  |      | 20            |
| Dibromomethane                                                                                       | 98               |      | 93                |      | 70-130              | 5   |      | 20            |
| 1,4-Dichlorobutane                                                                                   | 110              |      | 120               |      | 70-130              | 9   |      | 20            |
| 1,2,3-Trichloropropane                                                                               | 110              |      | 120               |      | 64-130              | 9   |      | 20            |
| Styrene                                                                                              | 110              |      | 105               |      | 70-130              | 5   |      | 20            |
| Dichlorodifluoromethane                                                                              | 100              |      | 100               |      | 36-147              | 0   |      | 20            |
| Acetone                                                                                              | 92               |      | 96                |      | 58-148              | 4   |      | 20            |
| Carbon disulfide                                                                                     | 110              |      | 110               |      | 51-130              | 0   |      | 20            |
| 2-Butanone                                                                                           | 90               |      | 96                |      | 63-138              | 6   |      | 20            |
| Vinyl acetate                                                                                        | 95               |      | 92                |      | 70-130              | 3   |      | 20            |
| 4-Methyl-2-pentanone                                                                                 | 130              |      | 120               |      | 59-130              | 8   |      | 20            |
| 2-Hexanone                                                                                           | 93               |      | 91                |      | 57-130              | 2   |      | 20            |
| Ethyl methacrylate                                                                                   | 140              | Q    | 140               | Q    | 70-130              | 0   |      | 20            |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                            | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|
| Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1004782-3 WG1004782-4 |                  |      |                   |      |                     |     |      |               |
| Acrylonitrile                                                                                        | 100              |      | 100               |      | 70-130              | 0   |      | 20            |
| Bromochloromethane                                                                                   | 94               |      | 91                |      | 70-130              | 3   |      | 20            |
| Tetrahydrofuran                                                                                      | 88               |      | 96                |      | 58-130              | 9   |      | 20            |
| 2,2-Dichloropropane                                                                                  | 94               |      | 94                |      | 63-133              | 0   |      | 20            |
| 1,2-Dibromoethane                                                                                    | 110              |      | 100               |      | 70-130              | 10  |      | 20            |
| 1,3-Dichloropropane                                                                                  | 130              |      | 120               |      | 70-130              | 8   |      | 20            |
| 1,1,1,2-Tetrachloroethane                                                                            | 93               |      | 90                |      | 64-130              | 3   |      | 20            |
| Bromobenzene                                                                                         | 90               |      | 95                |      | 70-130              | 5   |      | 20            |
| n-Butylbenzene                                                                                       | 110              |      | 94                |      | 53-136              | 16  |      | 20            |
| sec-Butylbenzene                                                                                     | 94               |      | 94                |      | 70-130              | 0   |      | 20            |
| tert-Butylbenzene                                                                                    | 87               |      | 92                |      | 70-130              | 6   |      | 20            |
| o-Chlorotoluene                                                                                      | 97               |      | 100               |      | 70-130              | 3   |      | 20            |
| p-Chlorotoluene                                                                                      | 100              |      | 100               |      | 70-130              | 0   |      | 20            |
| 1,2-Dibromo-3-chloropropane                                                                          | 92               |      | 100               |      | 41-144              | 8   |      | 20            |
| Hexachlorobutadiene                                                                                  | 97               |      | 99                |      | 63-130              | 2   |      | 20            |
| Isopropylbenzene                                                                                     | 92               |      | 94                |      | 70-130              | 2   |      | 20            |
| p-Isopropyltoluene                                                                                   | 91               |      | 91                |      | 70-130              | 0   |      | 20            |
| Naphthalene                                                                                          | 89               |      | 90                |      | 70-130              | 1   |      | 20            |
| n-Propylbenzene                                                                                      | 100              |      | 100               |      | 69-130              | 0   |      | 20            |
| 1,2,3-Trichlorobenzene                                                                               | 93               |      | 95                |      | 70-130              | 2   |      | 20            |
| 1,2,4-Trichlorobenzene                                                                               | 88               |      | 91                |      | 70-130              | 3   |      | 20            |
| 1,3,5-Trimethylbenzene                                                                               | 93               |      | 98                |      | 64-130              | 5   |      | 20            |
| 1,2,4-Trimethylbenzene                                                                               | 97               |      | 100               |      | 70-130              | 3   |      | 20            |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                            | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|
| Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1004782-3 WG1004782-4 |                  |      |                   |      |                     |     |      |               |
| trans-1,4-Dichloro-2-butene                                                                          | 100              |      | 110               |      | 70-130              | 10  |      | 20            |
| Ethyl ether                                                                                          | 130              |      | 130               |      | 59-134              | 0   |      | 20            |
| Tert-Butyl Alcohol                                                                                   | 102              |      | 116               |      | 70-130              | 13  |      | 20            |
| Tertiary-Amyl Methyl Ether                                                                           | 110              |      | 110               |      | 66-130              | 0   |      | 20            |

| Surrogate             | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|-----------------------|------------------|------|-------------------|------|------------------------|
| 1,2-Dichloroethane-d4 | 83               |      | 81                |      | 70-130                 |
| Toluene-d8            | 112              |      | 106               |      | 70-130                 |
| 4-Bromofluorobenzene  | 106              |      | 106               |      | 70-130                 |
| Dibromofluoromethane  | 87               |      | 84                |      | 70-130                 |

**Matrix Spike Analysis**  
*Batch Quality Control*

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                                               | Native Sample | MS Added | MS Found | MS %Recovery | Qual | MSD Found | MSD %Recovery | MSD Qual | Recovery Limits | RPD | RPD Qual | RPD Limits | Column |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|------|-----------|---------------|----------|-----------------|-----|----------|------------|--------|
| Microextractables by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1004336-3 QC Sample: L1715328-01 Client ID: MS Sample |               |          |          |              |      |           |               |          |                 |     |          |            |        |
| 1,2-Dibromoethane                                                                                                                       | ND            | 0.256    | 0.220    | 86           |      | -         | -             | -        | 65-135          | -   | 20       | A          |        |
| 1,2-Dibromo-3-chloropropane                                                                                                             | ND            | 0.256    | 0.228    | 89           |      | -         | -             | -        | 65-135          | -   | 20       | A          |        |

# **SEMIVOLATILES**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

Serial\_No:07131716:39

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

Lab ID: L1715771-01  
Client ID: SH-101  
Sample Location: CAMBRIDGE, MA

Date Collected: 05/15/17 08:10  
Date Received: 05/15/17  
Field Prep: Field Filtered (Dissolved Metals)  
Extraction Method: EPA 3510C  
Extraction Date: 05/16/17 13:26

Matrix: Water  
Analytical Method: 1,8270D  
Analytical Date: 05/18/17 09:18  
Analyst: SZ

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |     |      |                 |
| Benzidine                                        | ND     |           | ug/l  | 20  | 8.1  | 1               |
| 1,2,4-Trichlorobenzene                           | ND     |           | ug/l  | 5.0 | 0.66 | 1               |
| Bis(2-chloroethyl)ether                          | ND     |           | ug/l  | 2.0 | 0.67 | 1               |
| 1,2-Dichlorobenzene                              | ND     |           | ug/l  | 2.0 | 0.73 | 1               |
| 1,3-Dichlorobenzene                              | ND     |           | ug/l  | 2.0 | 0.69 | 1               |
| 1,4-Dichlorobenzene                              | ND     |           | ug/l  | 2.0 | 0.71 | 1               |
| 3,3'-Dichlorobenzidine                           | ND     |           | ug/l  | 5.0 | 1.4  | 1               |
| 2,4-Dinitrotoluene                               | ND     |           | ug/l  | 5.0 | 0.84 | 1               |
| 2,6-Dinitrotoluene                               | ND     |           | ug/l  | 5.0 | 1.1  | 1               |
| Azobenzene                                       | ND     |           | ug/l  | 2.0 | 0.75 | 1               |
| 4-Chlorophenyl phenyl ether                      | ND     |           | ug/l  | 2.0 | 0.62 | 1               |
| 4-Bromophenyl phenyl ether                       | ND     |           | ug/l  | 2.0 | 0.73 | 1               |
| Bis(2-chloroisopropyl)ether                      | ND     |           | ug/l  | 2.0 | 0.70 | 1               |
| Bis(2-chloroethoxy)methane                       | ND     |           | ug/l  | 5.0 | 0.63 | 1               |
| Hexachlorocyclopentadiene                        | ND     |           | ug/l  | 20  | 7.8  | 1               |
| Isophorone                                       | ND     |           | ug/l  | 5.0 | 0.60 | 1               |
| Nitrobenzene                                     | ND     |           | ug/l  | 2.0 | 0.75 | 1               |
| NDPA/DPA                                         | ND     |           | ug/l  | 2.0 | 0.64 | 1               |
| n-Nitrosodi-n-propylamine                        | ND     |           | ug/l  | 5.0 | 0.70 | 1               |
| Bis(2-ethylhexyl)phthalate                       | 1.4    | J         | ug/l  | 3.0 | 0.91 | 1               |
| Butyl benzyl phthalate                           | ND     |           | ug/l  | 5.0 | 1.3  | 1               |
| Di-n-butylphthalate                              | ND     |           | ug/l  | 5.0 | 0.69 | 1               |
| Di-n-octylphthalate                              | ND     |           | ug/l  | 5.0 | 1.1  | 1               |
| Diethyl phthalate                                | ND     |           | ug/l  | 5.0 | 0.63 | 1               |
| Dimethyl phthalate                               | ND     |           | ug/l  | 5.0 | 0.65 | 1               |
| Biphenyl                                         | ND     |           | ug/l  | 2.0 | 0.76 | 1               |
| Aniline                                          | ND     |           | ug/l  | 2.0 | 0.65 | 1               |
| 4-Chloroaniline                                  | ND     |           | ug/l  | 5.0 | 0.63 | 1               |
| 2-Nitroaniline                                   | ND     |           | ug/l  | 5.0 | 1.1  | 1               |



**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

|                  |               |                 |                                   |
|------------------|---------------|-----------------|-----------------------------------|
| Lab ID:          | L1715771-01   | Date Collected: | 05/15/17 08:10                    |
| Client ID:       | SH-101        | Date Received:  | 05/15/17                          |
| Sample Location: | CAMBRIDGE, MA | Field Prep:     | Field Filtered (Dissolved Metals) |

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|
| Semivolatile Organics by GC/MS - Westborough Lab |        |           |       |     |      |                 |
| 3-Nitroaniline                                   | ND     |           | ug/l  | 5.0 | 1.2  | 1               |
| 4-Nitroaniline                                   | ND     |           | ug/l  | 5.0 | 1.3  | 1               |
| Dibenzofuran                                     | ND     |           | ug/l  | 2.0 | 0.66 | 1               |
| n-Nitrosodimethylamine                           | ND     |           | ug/l  | 2.0 | 0.67 | 1               |
| 2,4,6-Trichlorophenol                            | ND     |           | ug/l  | 5.0 | 0.68 | 1               |
| p-Chloro-m-cresol                                | ND     |           | ug/l  | 2.0 | 0.62 | 1               |
| 2-Chlorophenol                                   | ND     |           | ug/l  | 2.0 | 0.63 | 1               |
| 2,4-Dichlorophenol                               | ND     |           | ug/l  | 5.0 | 0.77 | 1               |
| 2,4-Dimethylphenol                               | ND     |           | ug/l  | 5.0 | 1.6  | 1               |
| 2-Nitrophenol                                    | ND     |           | ug/l  | 10  | 1.5  | 1               |
| 4-Nitrophenol                                    | ND     |           | ug/l  | 10  | 1.8  | 1               |
| 2,4-Dinitrophenol                                | ND     |           | ug/l  | 20  | 5.5  | 1               |
| 4,6-Dinitro-o-cresol                             | ND     |           | ug/l  | 10  | 2.1  | 1               |
| Phenol                                           | ND     |           | ug/l  | 5.0 | 1.9  | 1               |
| 2-Methylphenol                                   | ND     |           | ug/l  | 5.0 | 1.0  | 1               |
| 3-Methylphenol/4-Methylphenol                    | ND     |           | ug/l  | 5.0 | 1.1  | 1               |
| 2,4,5-Trichlorophenol                            | ND     |           | ug/l  | 5.0 | 0.72 | 1               |
| Benzoic Acid                                     | ND     |           | ug/l  | 50  | 13.  | 1               |
| Benzyl Alcohol                                   | ND     |           | ug/l  | 2.0 | 0.72 | 1               |
| Carbazole                                        | ND     |           | ug/l  | 2.0 | 0.63 | 1               |
| Pyridine                                         | ND     |           | ug/l  | 3.5 | 1.9  | 1               |

| Surrogate            | % Recovery | Qualifier | Acceptance Criteria |
|----------------------|------------|-----------|---------------------|
| 2-Fluorophenol       | 41         |           | 21-120              |
| Phenol-d6            | 27         |           | 10-120              |
| Nitrobenzene-d5      | 63         |           | 23-120              |
| 2-Fluorobiphenyl     | 67         |           | 15-120              |
| 2,4,6-Tribromophenol | 65         |           | 10-120              |
| 4-Terphenyl-d14      | 68         |           | 41-149              |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

Serial\_No:07131716:39

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

Lab ID: L1715771-01  
Client ID: SH-101  
Sample Location: CAMBRIDGE, MA

Date Collected: 05/15/17 08:10  
Date Received: 05/15/17  
Field Prep: Field Filtered (Dissolved Metals)  
Extraction Method: EPA 3510C  
Extraction Date: 05/16/17 13:45

Matrix: Water  
Analytical Method: 1,8270D-SIM  
Analytical Date: 05/17/17 15:10  
Analyst: KL

| Parameter                                            | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |
|------------------------------------------------------|--------|-----------|-------|------|------|-----------------|
| Semivolatile Organics by GC/MS-SIM - Westborough Lab |        |           |       |      |      |                 |
| Acenaphthene                                         | ND     |           | ug/l  | 0.10 | 0.04 | 1               |
| 2-Chloronaphthalene                                  | ND     |           | ug/l  | 0.20 | 0.04 | 1               |
| Fluoranthene                                         | 0.10   | J         | ug/l  | 0.20 | 0.04 | 1               |
| Hexachlorobutadiene                                  | ND     |           | ug/l  | 0.50 | 0.04 | 1               |
| Naphthalene                                          | 0.09   | J         | ug/l  | 0.20 | 0.04 | 1               |
| Benzo(a)anthracene                                   | 0.09   | J         | ug/l  | 0.20 | 0.02 | 1               |
| Benzo(a)pyrene                                       | 0.09   | J         | ug/l  | 0.20 | 0.04 | 1               |
| Benzo(b)fluoranthene                                 | 0.12   | J         | ug/l  | 0.20 | 0.02 | 1               |
| Benzo(k)fluoranthene                                 | 0.05   | J         | ug/l  | 0.20 | 0.04 | 1               |
| Chrysene                                             | 0.08   | J         | ug/l  | 0.20 | 0.04 | 1               |
| Acenaphthylene                                       | ND     |           | ug/l  | 0.20 | 0.04 | 1               |
| Anthracene                                           | 0.04   | J         | ug/l  | 0.20 | 0.04 | 1               |
| Benzo(ghi)perylene                                   | 0.08   | J         | ug/l  | 0.20 | 0.04 | 1               |
| Fluorene                                             | ND     |           | ug/l  | 0.20 | 0.04 | 1               |
| Phenanthrene                                         | 0.07   | J         | ug/l  | 0.20 | 0.02 | 1               |
| Dibenzo(a,h)anthracene                               | ND     |           | ug/l  | 0.20 | 0.04 | 1               |
| Indeno(1,2,3-cd)pyrene                               | 0.07   | J         | ug/l  | 0.20 | 0.04 | 1               |
| Pyrene                                               | 0.14   | J         | ug/l  | 0.20 | 0.04 | 1               |
| 1-Methylnaphthalene                                  | ND     |           | ug/l  | 0.20 | 0.04 | 1               |
| 2-Methylnaphthalene                                  | ND     |           | ug/l  | 0.20 | 0.05 | 1               |
| Pentachlorophenol                                    | ND     |           | ug/l  | 0.80 | 0.22 | 1               |
| Hexachlorobenzene                                    | ND     |           | ug/l  | 0.80 | 0.03 | 1               |
| Hexachloroethane                                     | 0.05   | J         | ug/l  | 0.80 | 0.03 | 1               |

Project Name: TARGET RGP

Lab Number: L1715771

Project Number: 4198.01

Report Date: 07/13/17

**SAMPLE RESULTS**

Lab ID: L1715771-01  
 Client ID: SH-101  
 Sample Location: CAMBRIDGE, MA

Date Collected: 05/15/17 08:10  
 Date Received: 05/15/17  
 Field Prep: Field Filtered (Dissolved Metals)

| Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor |
|-----------|--------|-----------|-------|----|-----|-----------------|
|-----------|--------|-----------|-------|----|-----|-----------------|

Semivolatile Organics by GC/MS-SIM - Westborough Lab

| Surrogate            | % Recovery | Qualifier | Acceptance Criteria |
|----------------------|------------|-----------|---------------------|
| 2-Fluorophenol       | 36         |           | 21-120              |
| Phenol-d6            | 25         |           | 10-120              |
| Nitrobenzene-d5      | 61         |           | 23-120              |
| 2-Fluorobiphenyl     | 67         |           | 15-120              |
| 2,4,6-Tribromophenol | 75         |           | 10-120              |
| 4-Terphenyl-d14      | 74         |           | 41-149              |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8270D  
Analytical Date: 05/17/17 21:22  
Analyst: PS

Extraction Method: EPA 3510C  
Extraction Date: 05/16/17 13:26

| Parameter                                                                             | Result | Qualifier | Units | RL   | MDL |
|---------------------------------------------------------------------------------------|--------|-----------|-------|------|-----|
| Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1003935-1 |        |           |       |      |     |
| Acenaphthene                                                                          | ND     | ug/l      | 2.0   | 0.59 |     |
| Benzidine                                                                             | ND     | ug/l      | 20    | 8.1  |     |
| 1,2,4-Trichlorobenzene                                                                | ND     | ug/l      | 5.0   | 0.66 |     |
| Hexachlorobenzene                                                                     | ND     | ug/l      | 2.0   | 0.58 |     |
| Bis(2-chloroethyl)ether                                                               | ND     | ug/l      | 2.0   | 0.67 |     |
| 2-Chloronaphthalene                                                                   | ND     | ug/l      | 2.0   | 0.64 |     |
| 1,2-Dichlorobenzene                                                                   | ND     | ug/l      | 2.0   | 0.73 |     |
| 1,3-Dichlorobenzene                                                                   | ND     | ug/l      | 2.0   | 0.69 |     |
| 1,4-Dichlorobenzene                                                                   | ND     | ug/l      | 2.0   | 0.71 |     |
| 3,3'-Dichlorobenzidine                                                                | ND     | ug/l      | 5.0   | 1.4  |     |
| 2,4-Dinitrotoluene                                                                    | ND     | ug/l      | 5.0   | 0.84 |     |
| 2,6-Dinitrotoluene                                                                    | ND     | ug/l      | 5.0   | 1.1  |     |
| Azobenzene                                                                            | ND     | ug/l      | 2.0   | 0.75 |     |
| Fluoranthene                                                                          | ND     | ug/l      | 2.0   | 0.57 |     |
| 4-Chlorophenyl phenyl ether                                                           | ND     | ug/l      | 2.0   | 0.62 |     |
| 4-Bromophenyl phenyl ether                                                            | ND     | ug/l      | 2.0   | 0.73 |     |
| Bis(2-chloroisopropyl)ether                                                           | ND     | ug/l      | 2.0   | 0.70 |     |
| Bis(2-chloroethoxy)methane                                                            | ND     | ug/l      | 5.0   | 0.63 |     |
| Hexachlorobutadiene                                                                   | ND     | ug/l      | 2.0   | 0.72 |     |
| Hexachlorocyclopentadiene                                                             | ND     | ug/l      | 20    | 7.8  |     |
| Hexachloroethane                                                                      | ND     | ug/l      | 2.0   | 0.68 |     |
| Isophorone                                                                            | ND     | ug/l      | 5.0   | 0.60 |     |
| Naphthalene                                                                           | ND     | ug/l      | 2.0   | 0.68 |     |
| Nitrobenzene                                                                          | ND     | ug/l      | 2.0   | 0.75 |     |
| NDPA/DPA                                                                              | ND     | ug/l      | 2.0   | 0.64 |     |
| n-Nitrosodi-n-propylamine                                                             | ND     | ug/l      | 5.0   | 0.70 |     |
| Bis(2-ethylhexyl)phthalate                                                            | ND     | ug/l      | 3.0   | 0.91 |     |
| Butyl benzyl phthalate                                                                | ND     | ug/l      | 5.0   | 1.3  |     |
| Di-n-butylphthalate                                                                   | ND     | ug/l      | 5.0   | 0.69 |     |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8270D  
Analytical Date: 05/17/17 21:22  
Analyst: PS

Extraction Method: EPA 3510C  
Extraction Date: 05/16/17 13:26

| Parameter                                                                             | Result | Qualifier | Units | RL   | MDL |
|---------------------------------------------------------------------------------------|--------|-----------|-------|------|-----|
| Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1003935-1 |        |           |       |      |     |
| Di-n-octylphthalate                                                                   | ND     | ug/l      | 5.0   | 1.1  |     |
| Diethyl phthalate                                                                     | ND     | ug/l      | 5.0   | 0.63 |     |
| Dimethyl phthalate                                                                    | ND     | ug/l      | 5.0   | 0.65 |     |
| Benzo(a)anthracene                                                                    | ND     | ug/l      | 2.0   | 0.61 |     |
| Benzo(a)pyrene                                                                        | ND     | ug/l      | 2.0   | 0.54 |     |
| Benzo(b)fluoranthene                                                                  | ND     | ug/l      | 2.0   | 0.64 |     |
| Benzo(k)fluoranthene                                                                  | ND     | ug/l      | 2.0   | 0.60 |     |
| Chrysene                                                                              | ND     | ug/l      | 2.0   | 0.54 |     |
| Acenaphthylene                                                                        | ND     | ug/l      | 2.0   | 0.66 |     |
| Anthracene                                                                            | ND     | ug/l      | 2.0   | 0.64 |     |
| Benzo(ghi)perylene                                                                    | ND     | ug/l      | 2.0   | 0.61 |     |
| Fluorene                                                                              | ND     | ug/l      | 2.0   | 0.62 |     |
| Phenanthrene                                                                          | ND     | ug/l      | 2.0   | 0.61 |     |
| Dibenzo(a,h)anthracene                                                                | ND     | ug/l      | 2.0   | 0.55 |     |
| Indeno(1,2,3-cd)pyrene                                                                | ND     | ug/l      | 2.0   | 0.71 |     |
| Pyrene                                                                                | ND     | ug/l      | 2.0   | 0.57 |     |
| Biphenyl                                                                              | ND     | ug/l      | 2.0   | 0.76 |     |
| Aniline                                                                               | ND     | ug/l      | 2.0   | 0.65 |     |
| 4-Chloroaniline                                                                       | ND     | ug/l      | 5.0   | 0.63 |     |
| 1-Methylnaphthalene                                                                   | ND     | ug/l      | 2.0   | 0.67 |     |
| 2-Nitroaniline                                                                        | ND     | ug/l      | 5.0   | 1.1  |     |
| 3-Nitroaniline                                                                        | ND     | ug/l      | 5.0   | 1.2  |     |
| 4-Nitroaniline                                                                        | ND     | ug/l      | 5.0   | 1.3  |     |
| Dibenzofuran                                                                          | ND     | ug/l      | 2.0   | 0.66 |     |
| 2-Methylnaphthalene                                                                   | ND     | ug/l      | 2.0   | 0.72 |     |
| n-Nitrosodimethylamine                                                                | ND     | ug/l      | 2.0   | 0.67 |     |
| 2,4,6-Trichlorophenol                                                                 | ND     | ug/l      | 5.0   | 0.68 |     |
| p-Chloro-m-cresol                                                                     | ND     | ug/l      | 2.0   | 0.62 |     |
| 2-Chlorophenol                                                                        | ND     | ug/l      | 2.0   | 0.63 |     |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8270D  
Analytical Date: 05/17/17 21:22  
Analyst: PS

Extraction Method: EPA 3510C  
Extraction Date: 05/16/17 13:26

| Parameter                                                                             | Result | Qualifier | Units | RL   | MDL |
|---------------------------------------------------------------------------------------|--------|-----------|-------|------|-----|
| Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1003935-1 |        |           |       |      |     |
| 2,4-Dichlorophenol                                                                    | ND     | ug/l      | 5.0   | 0.77 |     |
| 2,4-Dimethylphenol                                                                    | ND     | ug/l      | 5.0   | 1.6  |     |
| 2-Nitrophenol                                                                         | ND     | ug/l      | 10    | 1.5  |     |
| 4-Nitrophenol                                                                         | ND     | ug/l      | 10    | 1.8  |     |
| 2,4-Dinitrophenol                                                                     | ND     | ug/l      | 20    | 5.5  |     |
| 4,6-Dinitro-o-cresol                                                                  | ND     | ug/l      | 10    | 2.1  |     |
| Pentachlorophenol                                                                     | ND     | ug/l      | 10    | 3.4  |     |
| Phenol                                                                                | ND     | ug/l      | 5.0   | 1.9  |     |
| 2-Methylphenol                                                                        | ND     | ug/l      | 5.0   | 1.0  |     |
| 3-Methylphenol/4-Methylphenol                                                         | ND     | ug/l      | 5.0   | 1.1  |     |
| 2,4,5-Trichlorophenol                                                                 | ND     | ug/l      | 5.0   | 0.72 |     |
| Benzoic Acid                                                                          | ND     | ug/l      | 50    | 13.  |     |
| Benzyl Alcohol                                                                        | ND     | ug/l      | 2.0   | 0.72 |     |
| Carbazole                                                                             | ND     | ug/l      | 2.0   | 0.63 |     |
| Pyridine                                                                              | ND     | ug/l      | 3.5   | 1.9  |     |

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8270D  
Analytical Date: 05/17/17 21:22  
Analyst: PS

Extraction Method: EPA 3510C  
Extraction Date: 05/16/17 13:26

| Parameter                                                                             | Result | Qualifier | Units | RL | MDL |
|---------------------------------------------------------------------------------------|--------|-----------|-------|----|-----|
| Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1003935-1 |        |           |       |    |     |

| Surrogate            | %Recovery | Qualifier | Acceptance Criteria |
|----------------------|-----------|-----------|---------------------|
| 2-Fluorophenol       | 37        |           | 21-120              |
| Phenol-d6            | 26        |           | 10-120              |
| Nitrobenzene-d5      | 57        |           | 23-120              |
| 2-Fluorobiphenyl     | 62        |           | 15-120              |
| 2,4,6-Tribromophenol | 61        |           | 10-120              |
| 4-Terphenyl-d14      | 71        |           | 41-149              |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8270D-SIM  
Analytical Date: 05/17/17 11:48  
Analyst: KL

Extraction Method: EPA 3510C  
Extraction Date: 05/16/17 13:45

| Parameter                                                                                 | Result | Qualifier | Units | RL   | MDL |
|-------------------------------------------------------------------------------------------|--------|-----------|-------|------|-----|
| Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 Batch: WG1003938-1 |        |           |       |      |     |
| Acenaphthene                                                                              | ND     | ug/l      | 0.10  | 0.04 |     |
| 2-Chloronaphthalene                                                                       | ND     | ug/l      | 0.20  | 0.04 |     |
| Fluoranthene                                                                              | ND     | ug/l      | 0.20  | 0.04 |     |
| Hexachlorobutadiene                                                                       | ND     | ug/l      | 0.50  | 0.04 |     |
| Naphthalene                                                                               | ND     | ug/l      | 0.20  | 0.04 |     |
| Benzo(a)anthracene                                                                        | ND     | ug/l      | 0.20  | 0.02 |     |
| Benzo(a)pyrene                                                                            | ND     | ug/l      | 0.20  | 0.04 |     |
| Benzo(b)fluoranthene                                                                      | ND     | ug/l      | 0.20  | 0.02 |     |
| Benzo(k)fluoranthene                                                                      | ND     | ug/l      | 0.20  | 0.04 |     |
| Chrysene                                                                                  | ND     | ug/l      | 0.20  | 0.04 |     |
| Acenaphthylene                                                                            | ND     | ug/l      | 0.20  | 0.04 |     |
| Anthracene                                                                                | ND     | ug/l      | 0.20  | 0.04 |     |
| Benzo(ghi)perylene                                                                        | ND     | ug/l      | 0.20  | 0.04 |     |
| Fluorene                                                                                  | ND     | ug/l      | 0.20  | 0.04 |     |
| Phenanthrene                                                                              | ND     | ug/l      | 0.20  | 0.02 |     |
| Dibenzo(a,h)anthracene                                                                    | ND     | ug/l      | 0.20  | 0.04 |     |
| Indeno(1,2,3-cd)pyrene                                                                    | ND     | ug/l      | 0.20  | 0.04 |     |
| Pyrene                                                                                    | ND     | ug/l      | 0.20  | 0.04 |     |
| 1-Methylnaphthalene                                                                       | ND     | ug/l      | 0.20  | 0.04 |     |
| 2-Methylnaphthalene                                                                       | ND     | ug/l      | 0.20  | 0.05 |     |
| Pentachlorophenol                                                                         | ND     | ug/l      | 0.80  | 0.22 |     |
| Hexachlorobenzene                                                                         | ND     | ug/l      | 0.80  | 0.03 |     |
| Hexachloroethane                                                                          | ND     | ug/l      | 0.80  | 0.03 |     |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 1,8270D-SIM  
Analytical Date: 05/17/17 11:48  
Analyst: KL

Extraction Method: EPA 3510C  
Extraction Date: 05/16/17 13:45

| Parameter                                                              | Result | Qualifier | Units | RL     | MDL         |
|------------------------------------------------------------------------|--------|-----------|-------|--------|-------------|
| Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 |        |           |       | Batch: | WG1003938-1 |

| Surrogate            | %Recovery | Qualifier | Acceptance Criteria |
|----------------------|-----------|-----------|---------------------|
| 2-Fluorophenol       | 37        |           | 21-120              |
| Phenol-d6            | 27        |           | 10-120              |
| Nitrobenzene-d5      | 62        |           | 23-120              |
| 2-Fluorobiphenyl     | 71        |           | 15-120              |
| 2,4,6-Tribromophenol | 93        |           | 10-120              |
| 4-Terphenyl-d14      | 101       |           | 41-149              |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|----------------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|
| Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1003935-2 WG1003935-3 |                  |      |                   |      |                     |     |      |               |
| Acenaphthene                                                                                             | 72               |      | 68                |      | 37-111              | 6   |      | 30            |
| Benzidine                                                                                                | 2                | Q    | 3                 | Q    | 10-75               | 58  | Q    | 30            |
| 1,2,4-Trichlorobenzene                                                                                   | 71               |      | 64                |      | 39-98               | 10  |      | 30            |
| Hexachlorobenzene                                                                                        | 72               |      | 68                |      | 40-140              | 6   |      | 30            |
| Bis(2-chloroethyl)ether                                                                                  | 75               |      | 65                |      | 40-140              | 14  |      | 30            |
| 2-Chloronaphthalene                                                                                      | 66               |      | 64                |      | 40-140              | 3   |      | 30            |
| 1,2-Dichlorobenzene                                                                                      | 68               |      | 62                |      | 40-140              | 9   |      | 30            |
| 1,3-Dichlorobenzene                                                                                      | 68               |      | 59                |      | 40-140              | 14  |      | 30            |
| 1,4-Dichlorobenzene                                                                                      | 68               |      | 60                |      | 36-97               | 13  |      | 30            |
| 3,3'-Dichlorobenzidine                                                                                   | 65               |      | 70                |      | 40-140              | 7   |      | 30            |
| 2,4-Dinitrotoluene                                                                                       | 80               |      | 75                |      | 48-143              | 6   |      | 30            |
| 2,6-Dinitrotoluene                                                                                       | 73               |      | 70                |      | 40-140              | 4   |      | 30            |
| Azobenzene                                                                                               | 75               |      | 71                |      | 40-140              | 5   |      | 30            |
| Fluoranthene                                                                                             | 77               |      | 74                |      | 40-140              | 4   |      | 30            |
| 4-Chlorophenyl phenyl ether                                                                              | 70               |      | 67                |      | 40-140              | 4   |      | 30            |
| 4-Bromophenyl phenyl ether                                                                               | 74               |      | 70                |      | 40-140              | 6   |      | 30            |
| Bis(2-chloroisopropyl)ether                                                                              | 75               |      | 67                |      | 40-140              | 11  |      | 30            |
| Bis(2-chloroethoxy)methane                                                                               | 79               |      | 71                |      | 40-140              | 11  |      | 30            |
| Hexachlorobutadiene                                                                                      | 57               |      | 55                |      | 40-140              | 4   |      | 30            |
| Hexachlorocyclopentadiene                                                                                | 53               |      | 50                |      | 40-140              | 6   |      | 30            |
| Hexachloroethane                                                                                         | 66               |      | 59                |      | 40-140              | 11  |      | 30            |
| Isophorone                                                                                               | 84               |      | 75                |      | 40-140              | 11  |      | 30            |
| Naphthalene                                                                                              | 64               |      | 61                |      | 40-140              | 5   |      | 30            |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|----------------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|
| Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1003935-2 WG1003935-3 |                  |      |                   |      |                     |     |      |               |
| Nitrobenzene                                                                                             | 76               |      | 68                |      | 40-140              | 11  |      | 30            |
| NDPA/DPA                                                                                                 | 76               |      | 71                |      | 40-140              | 7   |      | 30            |
| n-Nitrosodi-n-propylamine                                                                                | 80               |      | 71                |      | 29-132              | 12  |      | 30            |
| Bis(2-ethylhexyl)phthalate                                                                               | 74               |      | 72                |      | 40-140              | 3   |      | 30            |
| Butyl benzyl phthalate                                                                                   | 84               |      | 78                |      | 40-140              | 7   |      | 30            |
| Di-n-butylphthalate                                                                                      | 78               |      | 74                |      | 40-140              | 5   |      | 30            |
| Di-n-octylphthalate                                                                                      | 67               |      | 64                |      | 40-140              | 5   |      | 30            |
| Diethyl phthalate                                                                                        | 75               |      | 71                |      | 40-140              | 5   |      | 30            |
| Dimethyl phthalate                                                                                       | 71               |      | 68                |      | 40-140              | 4   |      | 30            |
| Benzo(a)anthracene                                                                                       | 73               |      | 69                |      | 40-140              | 6   |      | 30            |
| Benzo(a)pyrene                                                                                           | 80               |      | 75                |      | 40-140              | 6   |      | 30            |
| Benzo(b)fluoranthene                                                                                     | 77               |      | 74                |      | 40-140              | 4   |      | 30            |
| Benzo(k)fluoranthene                                                                                     | 78               |      | 74                |      | 40-140              | 5   |      | 30            |
| Chrysene                                                                                                 | 72               |      | 67                |      | 40-140              | 7   |      | 30            |
| Acenaphthylene                                                                                           | 71               |      | 67                |      | 45-123              | 6   |      | 30            |
| Anthracene                                                                                               | 72               |      | 68                |      | 40-140              | 6   |      | 30            |
| Benzo(ghi)perylene                                                                                       | 75               |      | 71                |      | 40-140              | 5   |      | 30            |
| Fluorene                                                                                                 | 72               |      | 69                |      | 40-140              | 4   |      | 30            |
| Phenanthrene                                                                                             | 69               |      | 66                |      | 40-140              | 4   |      | 30            |
| Dibenzo(a,h)anthracene                                                                                   | 78               |      | 74                |      | 40-140              | 5   |      | 30            |
| Indeno(1,2,3-cd)pyrene                                                                                   | 76               |      | 71                |      | 40-140              | 7   |      | 30            |
| Pyrene                                                                                                   | 78               |      | 73                |      | 26-127              | 7   |      | 30            |
| Biphenyl                                                                                                 | 74               |      | 70                |      | 40-140              | 6   |      | 30            |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|----------------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|
| Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1003935-2 WG1003935-3 |                  |      |                   |      |                     |     |      |               |
| Aniline                                                                                                  | 40               |      | 40                |      | 40-140              | 0   |      | 30            |
| 4-Chloroaniline                                                                                          | 47               |      | 54                |      | 40-140              | 14  |      | 30            |
| 1-Methylnaphthalene                                                                                      | 66               |      | 62                |      | 41-103              | 6   |      | 30            |
| 2-Nitroaniline                                                                                           | 75               |      | 71                |      | 52-143              | 5   |      | 30            |
| 3-Nitroaniline                                                                                           | 66               |      | 69                |      | 25-145              | 4   |      | 30            |
| 4-Nitroaniline                                                                                           | 75               |      | 73                |      | 51-143              | 3   |      | 30            |
| Dibenzofuran                                                                                             | 71               |      | 68                |      | 40-140              | 4   |      | 30            |
| 2-Methylnaphthalene                                                                                      | 66               |      | 62                |      | 40-140              | 6   |      | 30            |
| n-Nitrosodimethylamine                                                                                   | 47               |      | 42                |      | 22-74               | 11  |      | 30            |
| 2,4,6-Trichlorophenol                                                                                    | 73               |      | 70                |      | 30-130              | 4   |      | 30            |
| p-Chloro-m-cresol                                                                                        | 71               |      | 67                |      | 23-97               | 6   |      | 30            |
| 2-Chlorophenol                                                                                           | 76               |      | 68                |      | 27-123              | 11  |      | 30            |
| 2,4-Dichlorophenol                                                                                       | 82               |      | 72                |      | 30-130              | 13  |      | 30            |
| 2,4-Dimethylphenol                                                                                       | 77               |      | 64                |      | 30-130              | 18  |      | 30            |
| 2-Nitrophenol                                                                                            | 81               |      | 70                |      | 30-130              | 15  |      | 30            |
| 4-Nitrophenol                                                                                            | 48               |      | 46                |      | 10-80               | 4   |      | 30            |
| 2,4-Dinitrophenol                                                                                        | 68               |      | 61                |      | 20-130              | 11  |      | 30            |
| 4,6-Dinitro-o-cresol                                                                                     | 69               |      | 64                |      | 20-164              | 8   |      | 30            |
| Pentachlorophenol                                                                                        | 72               |      | 68                |      | 9-103               | 6   |      | 30            |
| Phenol                                                                                                   | 38               |      | 36                |      | 12-110              | 5   |      | 30            |
| 2-Methylphenol                                                                                           | 68               |      | 62                |      | 30-130              | 9   |      | 30            |
| 3-Methylphenol/4-Methylphenol                                                                            | 65               |      | 60                |      | 30-130              | 8   |      | 30            |
| 2,4,5-Trichlorophenol                                                                                    | 70               |      | 65                |      | 30-130              | 7   |      | 30            |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP

**Project Number:** 4198.01

**Lab Number:** L1715771

**Report Date:** 07/13/17

| Parameter                                                                                                | LCS       |      | LCSD      |      | %Recovery |    | RPD | Qual | RPD<br>Limits |
|----------------------------------------------------------------------------------------------------------|-----------|------|-----------|------|-----------|----|-----|------|---------------|
|                                                                                                          | %Recovery | Qual | %Recovery | Qual | Limits    |    |     |      |               |
| Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1003935-2 WG1003935-3 |           |      |           |      |           |    |     |      |               |
| Benzoic Acid                                                                                             | 34        |      | 34        |      | 10-164    | 0  |     |      | 30            |
| Benzyl Alcohol                                                                                           | 71        |      | 63        |      | 26-116    | 12 |     |      | 30            |
| Carbazole                                                                                                | 76        |      | 71        |      | 55-144    | 7  |     |      | 30            |
| Pyridine                                                                                                 | 20        |      | 12        |      | 10-66     | 50 | Q   |      | 30            |

| Surrogate            | LCS       |      | LCSD      |      | Acceptance<br>Criteria |
|----------------------|-----------|------|-----------|------|------------------------|
|                      | %Recovery | Qual | %Recovery | Qual |                        |
| 2-Fluorophenol       | 53        |      | 48        |      | 21-120                 |
| Phenol-d6            | 36        |      | 34        |      | 10-120                 |
| Nitrobenzene-d5      | 77        |      | 69        |      | 23-120                 |
| 2-Fluorobiphenyl     | 67        |      | 64        |      | 15-120                 |
| 2,4,6-Tribromophenol | 79        |      | 75        |      | 10-120                 |
| 4-Terphenyl-d14      | 76        |      | 70        |      | 41-149                 |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                    | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|--------------------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|
| Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1003938-2 WG1003938-3 |                  |      |                   |      |                     |     |      |               |
| Acenaphthene                                                                                                 | 71               |      | 66                |      | 37-111              | 7   |      | 40            |
| 2-Chloronaphthalene                                                                                          | 72               |      | 68                |      | 40-140              | 6   |      | 40            |
| Fluoranthene                                                                                                 | 87               |      | 79                |      | 40-140              | 10  |      | 40            |
| Hexachlorobutadiene                                                                                          | 60               |      | 58                |      | 40-140              | 3   |      | 40            |
| Naphthalene                                                                                                  | 61               |      | 59                |      | 40-140              | 3   |      | 40            |
| Benzo(a)anthracene                                                                                           | 86               |      | 78                |      | 40-140              | 10  |      | 40            |
| Benzo(a)pyrene                                                                                               | 90               |      | 80                |      | 40-140              | 12  |      | 40            |
| Benzo(b)fluoranthene                                                                                         | 90               |      | 79                |      | 40-140              | 13  |      | 40            |
| Benzo(k)fluoranthene                                                                                         | 86               |      | 77                |      | 40-140              | 11  |      | 40            |
| Chrysene                                                                                                     | 82               |      | 74                |      | 40-140              | 10  |      | 40            |
| Acenaphthylene                                                                                               | 80               |      | 75                |      | 40-140              | 6   |      | 40            |
| Anthracene                                                                                                   | 84               |      | 76                |      | 40-140              | 10  |      | 40            |
| Benzo(ghi)perylene                                                                                           | 89               |      | 80                |      | 40-140              | 11  |      | 40            |
| Fluorene                                                                                                     | 82               |      | 75                |      | 40-140              | 9   |      | 40            |
| Phenanthrene                                                                                                 | 78               |      | 70                |      | 40-140              | 11  |      | 40            |
| Dibenzo(a,h)anthracene                                                                                       | 93               |      | 83                |      | 40-140              | 11  |      | 40            |
| Indeno(1,2,3-cd)pyrene                                                                                       | 92               |      | 82                |      | 40-140              | 11  |      | 40            |
| Pyrene                                                                                                       | 87               |      | 79                |      | 26-127              | 10  |      | 40            |
| 1-Methylnaphthalene                                                                                          | 69               |      | 66                |      | 40-140              | 4   |      | 40            |
| 2-Methylnaphthalene                                                                                          | 68               |      | 65                |      | 40-140              | 5   |      | 40            |
| Pentachlorophenol                                                                                            | 91               |      | 80                |      | 9-103               | 13  |      | 40            |
| Hexachlorobenzene                                                                                            | 84               |      | 75                |      | 40-140              | 11  |      | 40            |
| Hexachloroethane                                                                                             | 47               |      | 46                |      | 40-140              | 2   |      | 40            |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| <b>Parameter</b>                                                                                             | <i>LCS</i><br>%Recovery | Qual | <i>LCSD</i><br>%Recovery | Qual | <i>%Recovery</i><br><i>Limits</i> | <i>RPD</i> | Qual | <i>RPD</i><br><i>Limits</i> |
|--------------------------------------------------------------------------------------------------------------|-------------------------|------|--------------------------|------|-----------------------------------|------------|------|-----------------------------|
| Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1003938-2 WG1003938-3 |                         |      |                          |      |                                   |            |      |                             |
| <b>Surrogate</b>                                                                                             |                         |      | <i>LCS</i><br>%Recovery  | Qual | <i>LCSD</i><br>%Recovery          | Qual       |      | <b>Acceptance Criteria</b>  |
| 2-Fluorophenol                                                                                               |                         |      | 39                       |      | 38                                |            |      | 21-120                      |
| Phenol-d6                                                                                                    |                         |      | 30                       |      | 29                                |            |      | 10-120                      |
| Nitrobenzene-d5                                                                                              |                         |      | 61                       |      | 59                                |            |      | 23-120                      |
| 2-Fluorobiphenyl                                                                                             |                         |      | 73                       |      | 69                                |            |      | 15-120                      |
| 2,4,6-Tribromophenol                                                                                         |                         |      | 97                       |      | 79                                |            |      | 10-120                      |
| 4-Terphenyl-d14                                                                                              |                         |      | 95                       |      | 87                                |            |      | 41-149                      |

**PCBS**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

Serial\_No:07131716:39

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

Lab ID: L1715771-01  
Client ID: SH-101  
Sample Location: CAMBRIDGE, MA

Date Collected: 05/15/17 08:10  
Date Received: 05/15/17  
Field Prep: Field Filtered (Dissolved Metals)  
Extraction Method: EPA 608  
Extraction Date: 05/17/17 20:47  
Cleanup Method: EPA 3665A  
Cleanup Date: 05/18/17  
Cleanup Method: EPA 3660B  
Cleanup Date: 05/18/17

Matrix: Water  
Analytical Method: 5,608  
Analytical Date: 05/18/17 07:29  
Analyst: JW

| Parameter                                                | Result | Qualifier | Units | RL    | MDL   | Dilution Factor | Column |
|----------------------------------------------------------|--------|-----------|-------|-------|-------|-----------------|--------|
| <b>Polychlorinated Biphenyls by GC - Westborough Lab</b> |        |           |       |       |       |                 |        |
| Aroclor 1016                                             | ND     |           | ug/l  | 0.250 | 0.042 | 1               | A      |
| Aroclor 1221                                             | ND     |           | ug/l  | 0.250 | 0.056 | 1               | A      |
| Aroclor 1232                                             | ND     |           | ug/l  | 0.250 | 0.024 | 1               | A      |
| Aroclor 1242                                             | ND     |           | ug/l  | 0.250 | 0.028 | 1               | A      |
| Aroclor 1248                                             | ND     |           | ug/l  | 0.250 | 0.028 | 1               | A      |
| Aroclor 1254                                             | ND     |           | ug/l  | 0.250 | 0.043 | 1               | A      |
| Aroclor 1260                                             | ND     |           | ug/l  | 0.200 | 0.045 | 1               | A      |

| Surrogate                    | % Recovery | Qualifier | Acceptance Criteria | Column |
|------------------------------|------------|-----------|---------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 78         |           | 30-150              | A      |
| Decachlorobiphenyl           | 51         |           | 30-150              | A      |

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

Analytical Method: 5,608  
Analytical Date: 05/18/17 07:54  
Analyst: JW

Extraction Method: EPA 608  
Extraction Date: 05/17/17 20:47  
Cleanup Method: EPA 3665A  
Cleanup Date: 05/18/17  
Cleanup Method: EPA 3660B  
Cleanup Date: 05/18/17

| Parameter                                                                              | Result | Qualifier | Units | RL    | MDL   | Column |
|----------------------------------------------------------------------------------------|--------|-----------|-------|-------|-------|--------|
| Polychlorinated Biphenyls by GC - Westborough Lab for sample(s): 01 Batch: WG1004528-1 |        |           |       |       |       |        |
| Aroclor 1016                                                                           | ND     |           | ug/l  | 0.250 | 0.042 | A      |
| Aroclor 1221                                                                           | ND     |           | ug/l  | 0.250 | 0.056 | A      |
| Aroclor 1232                                                                           | ND     |           | ug/l  | 0.250 | 0.024 | A      |
| Aroclor 1242                                                                           | ND     |           | ug/l  | 0.250 | 0.028 | A      |
| Aroclor 1248                                                                           | ND     |           | ug/l  | 0.250 | 0.028 | A      |
| Aroclor 1254                                                                           | ND     |           | ug/l  | 0.250 | 0.043 | A      |
| Aroclor 1260                                                                           | ND     |           | ug/l  | 0.200 | 0.045 | A      |

| Surrogate                    | %Recovery | Qualifier | Acceptance Criteria |        | Column |
|------------------------------|-----------|-----------|---------------------|--------|--------|
|                              |           |           | Criteria            | Column |        |
| 2,4,5,6-Tetrachloro-m-xylene | 76        |           | 30-150              |        | A      |
| Decachlorobiphenyl           | 72        |           | 30-150              |        | A      |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                     | LCS       | LCSD |           | %Recovery |        | RPD | Qual | RPD    | Column |
|-----------------------------------------------------------------------------------------------|-----------|------|-----------|-----------|--------|-----|------|--------|--------|
|                                                                                               | %Recovery | Qual | %Recovery | Qual      | Limits |     |      | Limits |        |
| Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01 Batch: WG1004528-2 |           |      |           |           |        |     |      |        |        |
| Aroclor 1016                                                                                  | 83        | -    | -         | -         | 30-150 | -   | -    | 30     | A      |
| Aroclor 1260                                                                                  | 83        | -    | -         | -         | 30-150 | -   | -    | 30     | A      |

| Surrogate                    | LCS       | LCSD |           | Acceptance Criteria | Column |
|------------------------------|-----------|------|-----------|---------------------|--------|
|                              | %Recovery | Qual | %Recovery | Qual                |        |
| 2,4,5,6-Tetrachloro-m-xylene | 78        | -    | -         | 30-150              | A      |
| Decachlorobiphenyl           | 74        | -    | -         | 30-150              | A      |

**Matrix Spike Analysis**  
*Batch Quality Control*

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                                                       | Native Sample | MS Added | MS Found | MS %Recovery | Qual | MSD Found | MSD %Recovery | MSD Qual | Recovery Limits | RPD | RPD Qual | RPD Limits | Column |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|------|-----------|---------------|----------|-----------------|-----|----------|------------|--------|
| Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1004528-3 QC Sample: L1706390-72 Client ID: MS Sample |               |          |          |              |      |           |               |          |                 |     |          |            |        |
| Aroclor 1016                                                                                                                                    | ND            | 3.12     | 2.52     | 81           |      | -         | -             | -        | 40-126          | -   | 30       | A          |        |
| Aroclor 1260                                                                                                                                    | ND            | 3.12     | 2.52     | 81           |      | -         | -             | -        | 40-127          | -   | 30       | A          |        |

| Surrogate                    | MS % Recovery | MS Qualifier | MSD % Recovery | MSD Qualifier | Acceptance Criteria | Column |
|------------------------------|---------------|--------------|----------------|---------------|---------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 75            |              |                |               | 30-150              | A      |
| Decachlorobiphenyl           | 67            |              |                |               | 30-150              | A      |

**Lab Duplicate Analysis**  
Batch Quality Control

Project Name: TARGET RGP  
Project Number: 4198.01

Lab Number: L1715771  
Report Date: 07/13/17

| Parameter                                                                                                                                        | Native Sample | Duplicate Sample | Units | RPD | Qual | RPD<br>Limits |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------|-----|------|---------------|
| Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1004528-4 QC Sample: L1706390-72 Client ID: DUP Sample |               |                  |       |     |      |               |
| Aroclor 1016                                                                                                                                     | ND            | ND               | ug/l  | NC  |      | 30 A          |
| Aroclor 1221                                                                                                                                     | ND            | ND               | ug/l  | NC  |      | 30 A          |
| Aroclor 1232                                                                                                                                     | ND            | ND               | ug/l  | NC  |      | 30 A          |
| Aroclor 1242                                                                                                                                     | ND            | ND               | ug/l  | NC  |      | 30 A          |
| Aroclor 1248                                                                                                                                     | ND            | ND               | ug/l  | NC  |      | 30 A          |
| Aroclor 1254                                                                                                                                     | ND            | ND               | ug/l  | NC  |      | 30 A          |
| Aroclor 1260                                                                                                                                     | ND            | ND               | ug/l  | NC  |      | 30 A          |

| Surrogate                    | %Recovery | Qualifier | %Recovery | Qualifier | Acceptance Criteria | Column |
|------------------------------|-----------|-----------|-----------|-----------|---------------------|--------|
| 2,4,5,6-Tetrachloro-m-xylene | 84        |           | 75        |           | 30-150              | A      |
| Decachlorobiphenyl           | 77        |           | 71        |           | 30-150              | A      |

## METALS

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

Lab ID: L1715771-01  
Client ID: SH-101  
Sample Location: CAMBRIDGE, MA  
Matrix: Water

Date Collected: 05/15/17 08:10  
Date Received: 05/15/17  
Field Prep: Field Filtered  
(Dissolved Metals)

| Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | Date Prepared | Date Analyzed | Prep Method | Analytical Method | Analyst |
|-----------|--------|-----------|-------|----|-----|-----------------|---------------|---------------|-------------|-------------------|---------|
|-----------|--------|-----------|-------|----|-----|-----------------|---------------|---------------|-------------|-------------------|---------|

#### Total Metals - Mansfield Lab

|                 |         |   |      |         |         |   |                |                |           |          |    |
|-----------------|---------|---|------|---------|---------|---|----------------|----------------|-----------|----------|----|
| Antimony, Total | 0.00092 | J | mg/l | 0.00400 | 0.00042 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Arsenic, Total  | 0.00249 |   | mg/l | 0.00100 | 0.00016 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Cadmium, Total  | ND      |   | mg/l | 0.00100 | 0.00005 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Chromium, Total | 0.00056 | J | mg/l | 0.00100 | 0.00017 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Copper, Total   | 0.00273 |   | mg/l | 0.00100 | 0.00038 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Iron, Total     | 0.281   |   | mg/l | 0.050   | 0.009   | 1 | 05/16/17 15:25 | 05/18/17 23:45 | EPA 3005A | 19,200.7 | AB |
| Lead, Total     | 0.00341 |   | mg/l | 0.00050 | 0.00034 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Mercury, Total  | ND      |   | mg/l | 0.00020 | 0.00006 | 1 | 05/16/17 14:21 | 05/18/17 14:24 | EPA 245.1 | 3,245.1  | MG |
| Nickel, Total   | 0.00086 | J | mg/l | 0.00200 | 0.00055 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Selenium, Total | 0.00378 | J | mg/l | 0.00500 | 0.00173 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Silver, Total   | ND      |   | mg/l | 0.00100 | 0.00026 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |
| Zinc, Total     | ND      |   | mg/l | 0.01000 | 0.00341 | 1 | 05/16/17 15:25 | 05/17/17 11:52 | EPA 3005A | 3,200.8  | AM |

#### General Chemistry - Mansfield Lab

|                     |    |  |      |       |       |   |  |                |    |       |
|---------------------|----|--|------|-------|-------|---|--|----------------|----|-------|
| Chromium, Trivalent | ND |  | mg/l | 0.010 | 0.010 | 1 |  | 05/17/17 11:52 | NA | 107,- |
|---------------------|----|--|------|-------|-------|---|--|----------------|----|-------|

#### Dissolved Metals - Mansfield Lab

|                     |        |   |      |         |         |   |                |                |           |          |    |
|---------------------|--------|---|------|---------|---------|---|----------------|----------------|-----------|----------|----|
| Antimony, Dissolved | 0.0022 | J | mg/l | 0.0040  | 0.0004  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Arsenic, Dissolved  | 0.0029 |   | mg/l | 0.0010  | 0.0002  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Cadmium, Dissolved  | ND     |   | mg/l | 0.0002  | 0.0001  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Chromium, Dissolved | ND     |   | mg/l | 0.0010  | 0.0002  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Copper, Dissolved   | 0.0018 |   | mg/l | 0.0010  | 0.0004  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Iron, Dissolved     | ND     |   | mg/l | 0.050   | 0.009   | 1 | 05/16/17 14:00 | 05/16/17 22:27 | EPA 3005A | 19,200.7 | AB |
| Lead, Dissolved     | ND     |   | mg/l | 0.0005  | 0.0003  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Mercury, Dissolved  | ND     |   | mg/l | 0.00020 | 0.00006 | 1 | 05/17/17 09:56 | 05/18/17 17:29 | EPA 245.1 | 3,245.1  | EA |
| Nickel, Dissolved   | 0.0008 | J | mg/l | 0.0020  | 0.0006  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Selenium, Dissolved | 0.0030 | J | mg/l | 0.0050  | 0.0017  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Silver, Dissolved   | ND     |   | mg/l | 0.0004  | 0.0003  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |
| Zinc, Dissolved     | ND     |   | mg/l | 0.0100  | 0.0034  | 1 | 05/16/17 14:00 | 05/17/17 15:29 | EPA 3005A | 3,200.8  | BV |



**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

## Method Blank Analysis Batch Quality Control

| Parameter                                                         | Result Qualifier | Units | RL     | MDL    | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-------------------------------------------------------------------|------------------|-------|--------|--------|-----------------|----------------|----------------|-------------------|---------|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1003910-1 |                  |       |        |        |                 |                |                |                   |         |
| Mercury, Total                                                    | ND               | mg/l  | 0.0002 | 0.0001 | 1               | 05/16/17 14:21 | 05/18/17 14:21 | 3,245.1           | MG      |

### Prep Information

Digestion Method: EPA 245.1

| Parameter                                                             | Result Qualifier | Units | RL    | MDL   | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-----------------------------------------------------------------------|------------------|-------|-------|-------|-----------------|----------------|----------------|-------------------|---------|
| Dissolved Metals - Mansfield Lab for sample(s): 01 Batch: WG1003941-1 |                  |       |       |       |                 |                |                |                   |         |
| Iron, Dissolved                                                       | ND               | mg/l  | 0.050 | 0.009 | 1               | 05/16/17 14:00 | 05/16/17 22:18 | 19,200.7          | AB      |

### Prep Information

Digestion Method: EPA 3005A

| Parameter                                                             | Result Qualifier | Units | RL     | MDL    | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |    |
|-----------------------------------------------------------------------|------------------|-------|--------|--------|-----------------|----------------|----------------|-------------------|---------|----|
| Dissolved Metals - Mansfield Lab for sample(s): 01 Batch: WG1003942-1 |                  |       |        |        |                 |                |                |                   |         |    |
| Antimony, Dissolved                                                   | ND               | mg/l  | 0.0040 | 0.0004 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |
| Arsenic, Dissolved                                                    | 0.0003           | J     | mg/l   | 0.0010 | 0.0002          | 1              | 05/16/17 14:00 | 05/17/17 13:00    | 3,200.8 | BV |
| Cadmium, Dissolved                                                    | ND               | mg/l  | 0.0002 | 0.0001 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |
| Chromium, Dissolved                                                   | ND               | mg/l  | 0.0010 | 0.0002 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |
| Copper, Dissolved                                                     | ND               | mg/l  | 0.0010 | 0.0004 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |
| Lead, Dissolved                                                       | ND               | mg/l  | 0.0005 | 0.0003 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |
| Nickel, Dissolved                                                     | ND               | mg/l  | 0.0020 | 0.0006 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |
| Selenium, Dissolved                                                   | ND               | mg/l  | 0.0050 | 0.0017 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |
| Silver, Dissolved                                                     | ND               | mg/l  | 0.0004 | 0.0003 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |
| Zinc, Dissolved                                                       | ND               | mg/l  | 0.0100 | 0.0034 | 1               | 05/16/17 14:00 | 05/17/17 13:00 | 3,200.8           | BV      |    |

### Prep Information

Digestion Method: EPA 3005A



**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

## Method Blank Analysis Batch Quality Control

| Parameter                                                         | Result Qualifier | Units | RL      | MDL     | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-------------------------------------------------------------------|------------------|-------|---------|---------|-----------------|----------------|----------------|-------------------|---------|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1003960-1 |                  |       |         |         |                 |                |                |                   |         |
| Antimony, Total                                                   | ND               | mg/l  | 0.00400 | 0.00042 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Arsenic, Total                                                    | ND               | mg/l  | 0.00100 | 0.00016 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Cadmium, Total                                                    | ND               | mg/l  | 0.00100 | 0.00005 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Chromium, Total                                                   | ND               | mg/l  | 0.00100 | 0.00017 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Copper, Total                                                     | ND               | mg/l  | 0.00100 | 0.00038 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Lead, Total                                                       | ND               | mg/l  | 0.00050 | 0.00034 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Nickel, Total                                                     | ND               | mg/l  | 0.00200 | 0.00055 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Selenium, Total                                                   | ND               | mg/l  | 0.00500 | 0.00173 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Silver, Total                                                     | ND               | mg/l  | 0.00100 | 0.00026 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |
| Zinc, Total                                                       | ND               | mg/l  | 0.01000 | 0.00341 | 1               | 05/16/17 15:25 | 05/17/17 11:40 | 3,200.8           | AM      |

### Prep Information

Digestion Method: EPA 3005A

| Parameter                                                         | Result Qualifier | Units | RL    | MDL   | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-------------------------------------------------------------------|------------------|-------|-------|-------|-----------------|----------------|----------------|-------------------|---------|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1003962-1 |                  |       |       |       |                 |                |                |                   |         |
| Iron, Total                                                       | ND               | mg/l  | 0.050 | 0.009 | 1               | 05/16/17 15:25 | 05/18/17 23:18 | 19,200.7          | AB      |

### Prep Information

Digestion Method: EPA 3005A

| Parameter                                                             | Result Qualifier | Units | RL      | MDL     | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-----------------------------------------------------------------------|------------------|-------|---------|---------|-----------------|----------------|----------------|-------------------|---------|
| Dissolved Metals - Mansfield Lab for sample(s): 01 Batch: WG1004274-1 |                  |       |         |         |                 |                |                |                   |         |
| Mercury, Dissolved                                                    | ND               | mg/l  | 0.00020 | 0.00006 | 1               | 05/17/17 09:56 | 05/18/17 17:25 | 3,245.1           | EA      |

### Prep Information

Digestion Method: EPA 245.1



# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                    | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1003910-2     |                  |      |                   |      |                     |     |      |            |
| Mercury, Total                                                               | 100              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1003941-2 |                  |      |                   |      |                     |     |      |            |
| Iron, Dissolved                                                              | 100              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1003942-2 |                  |      |                   |      |                     |     |      |            |
| Antimony, Dissolved                                                          | 94               | -    | -                 | -    | 85-115              | -   | -    | -          |
| Arsenic, Dissolved                                                           | 99               | -    | -                 | -    | 85-115              | -   | -    | -          |
| Cadmium, Dissolved                                                           | 101              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Chromium, Dissolved                                                          | 98               | -    | -                 | -    | 85-115              | -   | -    | -          |
| Copper, Dissolved                                                            | 104              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Lead, Dissolved                                                              | 105              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Nickel, Dissolved                                                            | 105              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Selenium, Dissolved                                                          | 101              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Silver, Dissolved                                                            | 101              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Zinc, Dissolved                                                              | 105              | -    | -                 | -    | 85-115              | -   | -    | -          |

# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                    | LCS<br>%Recovery | LCSD<br>%Recovery | %Recovery<br>Limits | RPD | RPD Limits |
|------------------------------------------------------------------------------|------------------|-------------------|---------------------|-----|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1003960-2     |                  |                   |                     |     |            |
| Antimony, Total                                                              | 97               | -                 | 85-115              | -   |            |
| Arsenic, Total                                                               | 104              | -                 | 85-115              | -   |            |
| Cadmium, Total                                                               | 108              | -                 | 85-115              | -   |            |
| Chromium, Total                                                              | 98               | -                 | 85-115              | -   |            |
| Copper, Total                                                                | 99               | -                 | 85-115              | -   |            |
| Lead, Total                                                                  | 105              | -                 | 85-115              | -   |            |
| Nickel, Total                                                                | 97               | -                 | 85-115              | -   |            |
| Selenium, Total                                                              | 114              | -                 | 85-115              | -   |            |
| Silver, Total                                                                | 94               | -                 | 85-115              | -   |            |
| Zinc, Total                                                                  | 100              | -                 | 85-115              | -   |            |
| Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1003962-2     |                  |                   |                     |     |            |
| Iron, Total                                                                  | 108              | -                 | 85-115              | -   |            |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1004274-2 |                  |                   |                     |     |            |
| Mercury, Dissolved                                                           | 104              | -                 | 85-115              | -   |            |

**Matrix Spike Analysis**  
**Batch Quality Control**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                                   | Native Sample | MS Added | MS Found | MS %Recovery | Qual | MSD Found | MSD %Recovery | Qual | Recovery Limits | RPD | Qual | RPD Limits |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|------|-----------|---------------|------|-----------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003910-3 QC Sample: L1715771-01 Client ID: SH-101     |               |          |          |              |      |           |               |      |                 |     |      |            |
| Mercury, Total                                                                                                              | ND            | 0.005    | 0.0049   | 98           | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003910-5 QC Sample: L1715810-01 Client ID: MS Sample  |               |          |          |              |      |           |               |      |                 |     |      |            |
| Mercury, Total                                                                                                              | ND            | 0.005    | 0.0049   | 98           | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003941-3 QC Sample: L1715771-01 Client ID: SH-101 |               |          |          |              |      |           |               |      |                 |     |      |            |
| Iron, Dissolved                                                                                                             | ND            | 1        | 1.02     | 102          | -    | -         | -             | -    | 75-125          | -   | -    | 20         |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003942-3 QC Sample: L1715771-01 Client ID: SH-101 |               |          |          |              |      |           |               |      |                 |     |      |            |
| Antimony, Dissolved                                                                                                         | 0.0022J       | 0.5      | 0.4782   | 96           | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Arsenic, Dissolved                                                                                                          | 0.0029        | 0.12     | 0.1308   | 106          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Cadmium, Dissolved                                                                                                          | ND            | 0.051    | 0.0545   | 107          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Chromium, Dissolved                                                                                                         | ND            | 0.2      | 0.2133   | 107          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Copper, Dissolved                                                                                                           | 0.0018        | 0.25     | 0.2583   | 102          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Lead, Dissolved                                                                                                             | ND            | 0.51     | 0.5735   | 112          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Nickel, Dissolved                                                                                                           | 0.0008J       | 0.5      | 0.5017   | 100          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Selenium, Dissolved                                                                                                         | 0.0030J       | 0.12     | 0.1308   | 109          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Silver, Dissolved                                                                                                           | ND            | 0.05     | 0.0521   | 104          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |
| Zinc, Dissolved                                                                                                             | ND            | 0.5      | 0.5251   | 105          | -    | -         | -             | -    | 70-130          | -   | -    | 20         |

**Matrix Spike Analysis**  
**Batch Quality Control**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                                   | Native Sample | MS Added | MS Found | MS %Recovery | MSD Found | MSD %Recovery | Recovery Limits | RPD | RPD Limits |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|-----------|---------------|-----------------|-----|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003960-3 QC Sample: L1715771-01 Client ID: SH-101     |               |          |          |              |           |               |                 |     |            |
| Antimony, Total                                                                                                             | 0.00092J      | 0.5      | 0.5135   | 103          | -         | -             | 70-130          | -   | 20         |
| Arsenic, Total                                                                                                              | 0.00249       | 0.12     | 0.1277   | 104          | -         | -             | 70-130          | -   | 20         |
| Cadmium, Total                                                                                                              | ND            | 0.051    | 0.05496  | 108          | -         | -             | 70-130          | -   | 20         |
| Chromium, Total                                                                                                             | 0.00056J      | 0.2      | 0.1995   | 100          | -         | -             | 70-130          | -   | 20         |
| Copper, Total                                                                                                               | 0.00273       | 0.25     | 0.2635   | 104          | -         | -             | 70-130          | -   | 20         |
| Lead, Total                                                                                                                 | 0.00341       | 0.51     | 0.5377   | 105          | -         | -             | 70-130          | -   | 20         |
| Nickel, Total                                                                                                               | 0.00086J      | 0.5      | 0.5070   | 101          | -         | -             | 70-130          | -   | 20         |
| Selenium, Total                                                                                                             | 0.00378J      | 0.12     | 0.1307   | 109          | -         | -             | 70-130          | -   | 20         |
| Silver, Total                                                                                                               | ND            | 0.05     | 0.04903  | 98           | -         | -             | 70-130          | -   | 20         |
| Zinc, Total                                                                                                                 | ND            | 0.5      | 0.5213   | 104          | -         | -             | 70-130          | -   | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003962-3 QC Sample: L1715771-01 Client ID: SH-101     |               |          |          |              |           |               |                 |     |            |
| Iron, Total                                                                                                                 | 0.281         | 1        | 1.29     | 101          | -         | -             | 75-125          | -   | 20         |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1004274-3 QC Sample: L1715771-01 Client ID: SH-101 |               |          |          |              |           |               |                 |     |            |
| Mercury, Dissolved                                                                                                          | ND            | 0.005    | 0.00491  | 98           | -         | -             | 75-125          | -   | 20         |

**Lab Duplicate Analysis**  
Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                                   | Native Sample | Duplicate Sample | Units | RPD | Qual | RPD Limits |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003910-4 QC Sample: L1715771-01 Client ID: SH-101     |               |                  |       |     |      |            |
| Mercury, Total                                                                                                              | ND            | ND               | mg/l  | NC  |      | 20         |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003941-4 QC Sample: L1715771-01 Client ID: SH-101 |               |                  |       |     |      |            |
| Iron, Dissolved                                                                                                             | ND            | 0.010J           | mg/l  | NC  |      | 20         |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003942-4 QC Sample: L1715771-01 Client ID: SH-101 |               |                  |       |     |      |            |
| Antimony, Dissolved                                                                                                         | 0.0022J       | 0.0018J          | mg/l  | NC  |      | 20         |
| Arsenic, Dissolved                                                                                                          | 0.0029        | 0.0028           | mg/l  | 3   |      | 20         |
| Cadmium, Dissolved                                                                                                          | ND            | ND               | mg/l  | NC  |      | 20         |
| Chromium, Dissolved                                                                                                         | ND            | ND               | mg/l  | NC  |      | 20         |
| Copper, Dissolved                                                                                                           | 0.0018        | 0.0019           | mg/l  | 3   |      | 20         |
| Lead, Dissolved                                                                                                             | ND            | ND               | mg/l  | NC  |      | 20         |
| Nickel, Dissolved                                                                                                           | 0.0008J       | 0.0009J          | mg/l  | NC  |      | 20         |
| Selenium, Dissolved                                                                                                         | 0.0030J       | 0.0028J          | mg/l  | NC  |      | 20         |
| Silver, Dissolved                                                                                                           | ND            | ND               | mg/l  | NC  |      | 20         |
| Zinc, Dissolved                                                                                                             | ND            | ND               | mg/l  | NC  |      | 20         |

**Lab Duplicate Analysis**  
Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                                   | Native Sample | Duplicate Sample | Units | RPD | RPD Limits |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------|-----|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003960-4 QC Sample: L1715771-01 Client ID: SH-101     |               |                  |       |     |            |
| Antimony, Total                                                                                                             | 0.00092J      | 0.00124J         | mg/l  | NC  | 20         |
| Arsenic, Total                                                                                                              | 0.00249       | 0.00258          | mg/l  | 4   | 20         |
| Cadmium, Total                                                                                                              | ND            | ND               | mg/l  | NC  | 20         |
| Chromium, Total                                                                                                             | 0.00056J      | 0.00052J         | mg/l  | NC  | 20         |
| Copper, Total                                                                                                               | 0.00273       | 0.00283          | mg/l  | 4   | 20         |
| Lead, Total                                                                                                                 | 0.00341       | 0.00356          | mg/l  | 5   | 20         |
| Nickel, Total                                                                                                               | 0.00086J      | 0.00075J         | mg/l  | NC  | 20         |
| Selenium, Total                                                                                                             | 0.00378J      | 0.00295J         | mg/l  | NC  | 20         |
| Silver, Total                                                                                                               | ND            | ND               | mg/l  | NC  | 20         |
| Zinc, Total                                                                                                                 | ND            | ND               | mg/l  | NC  | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1003962-4 QC Sample: L1715771-01 Client ID: SH-101     |               |                  |       |     |            |
| Iron, Total                                                                                                                 | 0.281         | 0.279            | mg/l  | 1   | 20         |
| Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1004274-4 QC Sample: L1715771-01 Client ID: SH-101 |               |                  |       |     |            |
| Mercury, Dissolved                                                                                                          | ND            | ND               | mg/l  | NC  | 20         |

# **INORGANICS & MISCELLANEOUS**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

### SAMPLE RESULTS

|                  |               |                 |                                      |
|------------------|---------------|-----------------|--------------------------------------|
| Lab ID:          | L1715771-01   | Date Collected: | 05/15/17 08:10                       |
| Client ID:       | SH-101        | Date Received:  | 05/15/17                             |
| Sample Location: | CAMBRIDGE, MA | Field Prep:     | Field Filtered<br>(Dissolved Metals) |
| Matrix:          | Water         |                 |                                      |

| Parameter                                             | Result | Qualifier | Units | RL    | MDL   | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-------------------------------------------------------|--------|-----------|-------|-------|-------|-----------------|----------------|----------------|-------------------|---------|
| <b>General Chemistry - Westborough Lab</b>            |        |           |       |       |       |                 |                |                |                   |         |
| Solids, Total Suspended                               | 9.3    |           | mg/l  | 5.0   | NA    | 1               | -              | 05/16/17 23:55 | 121,2540D         | JT      |
| Cyanide, Total                                        | 0.005  |           | mg/l  | 0.005 | 0.001 | 1               | 05/16/17 11:00 | 05/16/17 14:40 | 121,4500CN-CE     | LK      |
| Chlorine, Total Residual                              | ND     |           | mg/l  | 0.02  | 0.01  | 1               | -              | 05/15/17 18:15 | 121,4500CL-D      | AS      |
| Nitrogen, Ammonia                                     | 0.062  | J         | mg/l  | 0.075 | 0.022 | 1               | 05/16/17 14:20 | 05/16/17 21:01 | 121,4500NH3-BH    | AT      |
| TPH, SGT-HEM                                          | ND     |           | mg/l  | 4.00  | 1.24  | 1               | 05/16/17 17:30 | 05/16/17 23:00 | 74,1664A          | ML      |
| Phenolics, Total                                      | ND     |           | mg/l  | 0.030 | 0.010 | 1               | 05/16/17 13:45 | 05/16/17 16:37 | 4,420.1           | AW      |
| Chromium, Hexavalent                                  | ND     |           | mg/l  | 0.010 | 0.003 | 1               | 05/15/17 19:05 | 05/15/17 19:38 | 1,7196A           | AS      |
| <b>Anions by Ion Chromatography - Westborough Lab</b> |        |           |       |       |       |                 |                |                |                   |         |
| Chloride                                              | 735.   |           | mg/l  | 25.0  | 4.20  | 50              | -              | 05/15/17 23:50 | 44,300.0          | JC      |



**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Method Blank Analysis**  
**Batch Quality Control**

| Parameter                                                                           | Result Qualifier | Units | RL    | MDL   | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-------------------------------------------------------------------------------------|------------------|-------|-------|-------|-----------------|----------------|----------------|-------------------|---------|
| General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1003642-1            |                  |       |       |       |                 |                |                |                   |         |
| Chlorine, Total Residual                                                            | ND               | mg/l  | 0.02  | 0.01  | 1               | -              | 05/15/17 18:15 | 121,4500CL-D      | AS      |
| General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1003647-1            |                  |       |       |       |                 |                |                |                   |         |
| Chromium, Hexavalent                                                                | ND               | mg/l  | 0.010 | 0.003 | 1               | 05/15/17 19:05 | 05/15/17 19:38 | 1,7196A           | AS      |
| General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1003790-1            |                  |       |       |       |                 |                |                |                   |         |
| Nitrogen, Ammonia                                                                   | ND               | mg/l  | 0.075 | 0.022 | 1               | 05/16/17 14:20 | 05/16/17 20:50 | 121,4500NH3-BH    | AT      |
| General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1003848-1            |                  |       |       |       |                 |                |                |                   |         |
| Cyanide, Total                                                                      | ND               | mg/l  | 0.005 | 0.001 | 1               | 05/16/17 11:00 | 05/16/17 14:27 | 121,4500CN-CE     | LK      |
| General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1003989-1            |                  |       |       |       |                 |                |                |                   |         |
| Phenolics, Total                                                                    | ND               | mg/l  | 0.030 | 0.010 | 1               | 05/16/17 13:45 | 05/16/17 16:31 | 4,420.1           | AW      |
| General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1004043-1            |                  |       |       |       |                 |                |                |                   |         |
| TPH, SGT-HEM                                                                        | ND               | mg/l  | 4.00  | 1.24  | 1               | 05/16/17 17:30 | 05/16/17 23:00 | 74,1664A          | ML      |
| Anions by Ion Chromatography - Westborough Lab for sample(s): 01 Batch: WG1004104-1 |                  |       |       |       |                 |                |                |                   |         |
| Chloride                                                                            | ND               | mg/l  | 0.500 | 0.083 | 1               | -              | 05/15/17 23:02 | 44,300.0          | JC      |
| General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1004119-1            |                  |       |       |       |                 |                |                |                   |         |
| Solids, Total Suspended                                                             | ND               | mg/l  | 5.0   | NA    | 1               | -              | 05/16/17 23:55 | 121,2540D         | JT      |



# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                  | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|--------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1003642-2            |                  |      |                   |      |                     |     |      |            |
| Chlorine, Total Residual                                                                   | 101              |      | -                 |      | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1003647-2            |                  |      |                   |      |                     |     |      |            |
| Chromium, Hexavalent                                                                       | 103              |      | -                 |      | 85-115              | -   |      | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1003790-2            |                  |      |                   |      |                     |     |      |            |
| Nitrogen, Ammonia                                                                          | 96               |      | -                 |      | 80-120              | -   |      | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1003848-2            |                  |      |                   |      |                     |     |      |            |
| Cyanide, Total                                                                             | 94               |      | -                 |      | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1003989-2            |                  |      |                   |      |                     |     |      |            |
| Phenolics, Total                                                                           | 98               |      | -                 |      | 70-130              | -   |      |            |
| General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1004043-2            |                  |      |                   |      |                     |     |      |            |
| TPH                                                                                        | 86               |      | -                 |      | 64-132              | -   |      | 34         |
| Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 Batch: WG1004104-2 |                  |      |                   |      |                     |     |      |            |
| Chloride                                                                                   | 103              |      | -                 |      | 90-110              | -   |      |            |

**Matrix Spike Analysis**  
**Batch Quality Control**

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                                                    | Native Sample | MS Added | MS Found | MS %Recovery | MSD Qual | MSD Found | MSD %Recovery | MSD Qual | Recovery Limits | RPD Qual | RPD Qual | RPD Limits |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|----------|-----------|---------------|----------|-----------------|----------|----------|------------|
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1003642-4 QC Sample: L1715771-01 Client ID: SH-101               |               |          |          |              |          |           |               |          |                 |          |          |            |
| Chlorine, Total Residual                                                                                                                     | ND            | 0.248    | 0.26     | 105          | -        | -         | -             | -        | 80-120          | -        | -        | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1003647-4 QC Sample: L1715771-01 Client ID: SH-101               |               |          |          |              |          |           |               |          |                 |          |          |            |
| Chromium, Hexavalent                                                                                                                         | ND            | 0.1      | 0.101    | 101          | -        | -         | -             | -        | 85-115          | -        | -        | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1003790-4 QC Sample: L1715733-04 Client ID: MS Sample            |               |          |          |              |          |           |               |          |                 |          |          |            |
| Nitrogen, Ammonia                                                                                                                            | 0.063J        | 4        | 3.86     | 96           | -        | -         | -             | -        | 80-120          | -        | -        | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1003848-4 QC Sample: L1715808-02 Client ID: MS Sample            |               |          |          |              |          |           |               |          |                 |          |          |            |
| Cyanide, Total                                                                                                                               | 0.004J        | 0.2      | 0.198    | 99           | -        | -         | -             | -        | 90-110          | -        | -        | 30         |
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1004043-4 QC Sample: L1715771-01 Client ID: SH-101               |               |          |          |              |          |           |               |          |                 |          |          |            |
| TPH                                                                                                                                          | ND            | 20       | 17.7     | 88           | -        | -         | -             | -        | 64-132          | -        | -        | 34         |
| Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1004104-3 QC Sample: L1715734-02 Client ID: MS Sample |               |          |          |              |          |           |               |          |                 |          |          |            |
| Chloride                                                                                                                                     | 129.          | 100      | 238      | 109          | -        | -         | -             | -        | 90-110          | -        | -        | 18         |

**Lab Duplicate Analysis**  
Batch Quality Control

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

| Parameter                                                                                                                                     | Native Sample | Duplicate Sample | Units | RPD | Qual | RPD Limits |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------|-----|------|------------|
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1003642-3 QC Sample: L1715734-01 Client ID: DUP Sample            |               |                  |       |     |      |            |
| Chlorine, Total Residual                                                                                                                      | ND            | ND               | mg/l  | NC  |      | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1003647-3 QC Sample: L1715771-01 Client ID: SH-101                |               |                  |       |     |      |            |
| Chromium, Hexavalent                                                                                                                          | ND            | ND               | mg/l  | NC  |      | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1003790-3 QC Sample: L1715733-04 Client ID: DUP Sample            |               |                  |       |     |      |            |
| Nitrogen, Ammonia                                                                                                                             | 0.063J        | 0.062J           | mg/l  | NC  |      | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1003848-3 QC Sample: L1715808-01 Client ID: DUP Sample            |               |                  |       |     |      |            |
| Cyanide, Total                                                                                                                                | 0.004J        | 0.004J           | mg/l  | NC  |      | 30         |
| General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1004043-3 QC Sample: L1715328-01 Client ID: DUP Sample            |               |                  |       |     |      |            |
| TPH                                                                                                                                           | ND            | ND               | mg/l  | NC  |      | 34         |
| Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1004104-4 QC Sample: L1715734-02 Client ID: DUP Sample |               |                  |       |     |      |            |
| Chloride                                                                                                                                      | 129.          | 129              | mg/l  | 0   |      | 18         |

**Sample Receipt and Container Information**

Were project specific reporting limits specified? YES

**Cooler Information**

| <b>Cooler</b> | <b>Custody Seal</b> |
|---------------|---------------------|
| A             | Absent              |

**Container Information**

| <b>Container ID</b> | <b>Container Type</b>         | <b>Cooler</b> | <b>Initial pH</b> | <b>Final pH</b> | <b>Temp deg C</b> | <b>Pres</b> | <b>Seal</b> | <b>Frozen Date/Time</b> | <b>Analysis(*)</b>                                                                                                                                              |
|---------------------|-------------------------------|---------------|-------------------|-----------------|-------------------|-------------|-------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L1715771-01A        | Vial HCl preserved            | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | 8260-SIM(14),8260(14)                                                                                                                                           |
| L1715771-01B        | Vial HCl preserved            | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | 8260-SIM(14),8260(14)                                                                                                                                           |
| L1715771-01C        | Vial HCl preserved            | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | 8260-SIM(14),8260(14)                                                                                                                                           |
| L1715771-01D        | Vial Na2S2O3 preserved        | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | 504(14)                                                                                                                                                         |
| L1715771-01E        | Vial Na2S2O3 preserved        | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | 504(14)                                                                                                                                                         |
| L1715771-01F        | Plastic 950ml unpreserved     | A             | 7                 | 7               | 4.8               | Y           | Absent      |                         | CL-300(28),HEXCR-7196(1),TRC-4500(1)                                                                                                                            |
| L1715771-01G        | Plastic 500ml H2SO4 preserved | A             | <2                | <2              | 4.8               | Y           | Absent      |                         | NH3-4500(28)                                                                                                                                                    |
| L1715771-01H        | Plastic 250ml NaOH preserved  | A             | >12               | >12             | 4.8               | Y           | Absent      |                         | TCN-4500(14)                                                                                                                                                    |
| L1715771-01J        | Amber 1000ml HCl preserved    | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | TPH-1664(28)                                                                                                                                                    |
| L1715771-01K        | Amber 1000ml HCl preserved    | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | TPH-1664(28)                                                                                                                                                    |
| L1715771-01L        | Amber 950ml H2SO4 preserved   | A             | <2                | <2              | 4.8               | Y           | Absent      |                         | TPHENOL-420(28)                                                                                                                                                 |
| L1715771-01M        | Plastic 950ml unpreserved     | A             | 7                 | 7               | 4.8               | Y           | Absent      |                         | TSS-2540(7)                                                                                                                                                     |
| L1715771-01N        | Plastic 250ml HNO3 preserved  | A             | <2                | <2              | 4.8               | Y           | Absent      |                         | AG-2008S(180),CR-2008S(180),FE-RI(180),AS-2008S(180),PB-2008S(180),ZN-2008S(180),NI-2008S(180),SE-2008S(180),CD-2008S(180),CU-2008S(180),SB-2008S(180),HG-R(28) |
| L1715771-01P        | Plastic 250ml HNO3 preserved  | A             | <2                | <2              | 4.8               | Y           | Absent      |                         | CD-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),CR-2008T(180),PB-2008T(180),SB-2008T(180) |
| L1715771-01Q        | Amber 1000ml Na2S2O3          | A             | 7                 | 7               | 4.8               | Y           | Absent      |                         | PCB-608(7)                                                                                                                                                      |
| L1715771-01R        | Amber 1000ml Na2S2O3          | A             | 7                 | 7               | 4.8               | Y           | Absent      |                         | PCB-608(7)                                                                                                                                                      |
| L1715771-01S        | Amber 1000ml unpreserved      | A             | 7                 | 7               | 4.8               | Y           | Absent      |                         | 8270TCL(7),8270TCL-SIM(7)                                                                                                                                       |
| L1715771-01T        | Amber 1000ml unpreserved      | A             | 7                 | 7               | 4.8               | Y           | Absent      |                         | 8270TCL(7),8270TCL-SIM(7)                                                                                                                                       |
| L1715771-01X        | Vial HCl preserved            | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | ARCHIVE(0)                                                                                                                                                      |

\*Values in parentheses indicate holding time in days

**Container Information**

| <b>Container ID</b> | <b>Container Type</b>  | <b>Cooler</b> | <b>Initial pH</b> | <b>Final pH</b> | <b>Temp deg C</b> | <b>Pres</b> | <b>Seal</b> | <b>Frozen Date/Time</b> | <b>Analysis(*)</b> |
|---------------------|------------------------|---------------|-------------------|-----------------|-------------------|-------------|-------------|-------------------------|--------------------|
| L1715771-01Y        | Vial HCl preserved     | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | ARCHIVE(0)         |
| L1715771-01Z        | Vial HCl preserved     | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | ARCHIVE(0)         |
| L1715771-02A        | Vial HCl preserved     | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | HOLD-8260(14)      |
| L1715771-02B        | Vial HCl preserved     | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | HOLD-8260(14)      |
| L1715771-02C        | Vial Na2S2O3 preserved | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | HOLD-504/8011(14)  |
| L1715771-02D        | Vial Na2S2O3 preserved | A             | N/A               | N/A             | 4.8               | Y           | Absent      |                         | HOLD-504/8011(14)  |

\*Values in parentheses indicate holding time in days

**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

## GLOSSARY

### **Acronyms**

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.                                                                                                                                                                                                                                                  |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

### **Data Qualifiers**

**A** - Spectra identified as "Aldol Condensation Product".

**B** - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

**Report Format:** DU Report with 'J' Qualifiers



**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

**Data Qualifiers**

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C** - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D** - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E** - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G** - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H** - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I** - The lower value for the two columns has been reported due to obvious interference.
- M** - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ** - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P** - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q** - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedances are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R** - Analytical results are from sample re-analysis.
- RE** - Analytical results are from sample re-extraction.
- S** - Analytical results are from modified screening analysis.
- J** - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND** - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

*Report Format:* DU Report with 'J' Qualifiers



**Project Name:** TARGET RGP  
**Project Number:** 4198.01

**Lab Number:** L1715771  
**Report Date:** 07/13/17

## REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical - In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

## LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at its own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



## Certification Information

**The following analytes are not included in our Primary NELAP Scope of Accreditation:**

**Westborough Facility**

**EPA 624:** m/p-xylene, o-xylene

**EPA 8260C:** NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA 8270D:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

**EPA 300:** DW: Bromide

**EPA 6860:** NPW and SCM: Perchlorate

**EPA 9010:** NPW and SCM: Amenable Cyanide Distillation

**EPA 9012B:** NPW: Total Cyanide

**EPA 9050A:** NPW: Specific Conductance

**SM3500:** NPW: Ferrous Iron

**SM4500:** NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO<sub>2</sub>, NO<sub>3</sub>.

**SM5310C:** DW: Dissolved Organic Carbon

**Mansfield Facility**

**SM 2540D:** TSS

**EPA 3005A** NPW

**EPA 8082A:** NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

**EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

**Biological Tissue Matrix:** EPA 3050B

**The following analytes are included in our Massachusetts DEP Scope of Accreditation**

**Westborough Facility:**

**Drinking Water**

**EPA 300.0:** Nitrate-N, Fluoride, Sulfate; **EPA 353.2:** Nitrate-N, Nitrite-N; **SM4500NO3-F:** Nitrate-N, Nitrite-N; **SM4500F-C, SM4500CN-CE, EPA 180.1,**

**SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B**

**EPA 332:** Perchlorate; **EPA 524.2:** THMs and VOCs; **EPA 504.1:** EDB, DBCP.

**Microbiology:** **SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.**

**Non-Potable Water**

**SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.**

**EPA 624:** Volatile Halocarbons & Aromatics,

**EPA 608:** Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

**EPA 625:** SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045:** PCB-Oil.

**Microbiology:** **SM9223B-Colilert-QT; Enterolert-QT, SM9221E.**

**Mansfield Facility:**

**Drinking Water**

**EPA 200.7:** Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. **EPA 200.8:** Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. **EPA 245.1 Hg.**

**Non-Potable Water**

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

**EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

**EPA 245.1 Hg.**

**SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.



## CHAIN OF CUSTODY

PAGE        OF

Date Rec'd in Lab: 5/15/17

ALPHA Job #: L1715771

**Container Type**  
 P= Plastic  
 A= Amber glass  
 V= Vial  
 G= Glass  
 B= Bacteria cup  
 C= Cube  
 O= Other  
 E= Encore  
 D= BOD Bottle

**Preservative**  
 A = None  
 B = HCl  
 C =  $\text{HNO}_3$   
 D =  $\text{H}_2\text{SO}_4$   
 E = NaOH  
 F = MeOH  
 G = NaHSO<sub>4</sub>  
 H =  $\text{Na}_2\text{S}_2\text{O}_3$   
 I = Ascorbic Acid  
 J =  $\text{NH}_4\text{Cl}$   
 K = Zn Acetate  
 O = Other

|                |         |                   |
|----------------|---------|-------------------|
| Container Type | V A P P | A A A P P P P P V |
| Preservative   | B A C C | H B D A A P E H   |

Relinquished By:

Date/Time

Received By:

Date/Time

Received By: *John Doe* Date/time: *5-15-17 1545*  
Date/time: *5-17-17 1659* Received By: *John Doe* Date/time: *5-17-17 1659*

✓ All samples submitted are subject to Alpha's Terms and Conditions.  
See reverse side.



## ANALYTICAL REPORT

|                 |                                                                                   |
|-----------------|-----------------------------------------------------------------------------------|
| Lab Number:     | L1723630                                                                          |
| Client:         | Sanborn, Head & Associates, Inc.<br>1 Technology Park Drive<br>Westford, MA 01886 |
| ATTN:           | Kent Walker                                                                       |
| Phone:          | (978) 577-1003                                                                    |
| Project Name:   | TARGET CAMBRIDGE                                                                  |
| Project Number: | 4198.01                                                                           |
| Report Date:    | 07/14/17                                                                          |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

---

320 Forbes Boulevard, Mansfield, MA 02048-1806  
508-822-9300 (Fax) 508-822-3288 800-624-9220 - [www.alphalab.com](http://www.alphalab.com)

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

| <b>Alpha</b><br><b>Sample ID</b> | <b>Client ID</b> | <b>Matrix</b> | <b>Sample Location</b> | <b>Collection Date/Time</b> | <b>Receive Date</b> |
|----------------------------------|------------------|---------------|------------------------|-----------------------------|---------------------|
| L1723630-01                      | INSTREAM         | WATER         | CAMBRIDGE, MA          | 07/12/17 07:00              | 07/12/17            |

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

### Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

#### Case Narrative (continued)

##### Sample Receipt

The analyses performed were specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

 Amita Naik

Title: Technical Director/Representative

Date: 07/14/17

## METALS

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

**SAMPLE RESULTS**

Lab ID: L1723630-01  
Client ID: INSTREAM  
Sample Location: CAMBRIDGE, MA  
Matrix: Water

Date Collected: 07/12/17 07:00  
Date Received: 07/12/17  
Field Prep: Not Specified

| Parameter                                         | Result  | Qualifier | Units | RL      | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Prep Method | Analytical Method | Analyst |
|---------------------------------------------------|---------|-----------|-------|---------|-----|-----------------|----------------|----------------|-------------|-------------------|---------|
| <b>Total Metals - Mansfield Lab</b>               |         |           |       |         |     |                 |                |                |             |                   |         |
| Antimony, Total                                   | ND      |           | mg/l  | 0.00400 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Arsenic, Total                                    | 0.00104 |           | mg/l  | 0.00100 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Cadmium, Total                                    | ND      |           | mg/l  | 0.00020 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Chromium, Total                                   | ND      |           | mg/l  | 0.00100 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Copper, Total                                     | 0.00424 |           | mg/l  | 0.00100 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Iron, Total                                       | 0.696   |           | mg/l  | 0.050   | --  | 1               | 07/13/17 12:58 | 07/13/17 20:19 | EPA 3005A   | 19,200.7          | AB      |
| Lead, Total                                       | 0.00297 |           | mg/l  | 0.00050 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Mercury, Total                                    | ND      |           | mg/l  | 0.00020 | --  | 1               | 07/13/17 11:39 | 07/13/17 16:30 | EPA 245.1   | 3,245.1           | EA      |
| Nickel, Total                                     | ND      |           | mg/l  | 0.00200 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Selenium, Total                                   | ND      |           | mg/l  | 0.00500 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Silver, Total                                     | ND      |           | mg/l  | 0.00040 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| Zinc, Total                                       | ND      |           | mg/l  | 0.01000 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:14 | EPA 3005A   | 3,200.8           | AM      |
| <b>Total Hardness by SM 2340B - Mansfield Lab</b> |         |           |       |         |     |                 |                |                |             |                   |         |
| Hardness                                          | 122     |           | mg/l  | 0.660   | NA  | 1               | 07/12/17 13:10 | 07/12/17 22:41 | EPA 3005A   | 19,200.7          | AB      |

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

## Method Blank Analysis Batch Quality Control

| Parameter                                                         | Result Qualifier | Units | RL    | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-------------------------------------------------------------------|------------------|-------|-------|-----|-----------------|----------------|----------------|-------------------|---------|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1021817-1 |                  |       |       |     |                 |                |                |                   |         |
| Iron, Total                                                       | ND               | mg/l  | 0.050 | --  | 1               | 07/12/17 13:10 | 07/12/17 21:41 | 19,200.7          | AB      |

### Prep Information

Digestion Method: EPA 3005A

| Parameter                                                                       | Result Qualifier | Units | RL    | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|---------------------------------------------------------------------------------|------------------|-------|-------|-----|-----------------|----------------|----------------|-------------------|---------|
| Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01 Batch: WG1021817-1 |                  |       |       |     |                 |                |                |                   |         |
| Hardness                                                                        | ND               | mg/l  | 0.660 | NA  | 1               | 07/12/17 13:10 | 07/12/17 21:41 | 19,200.7          | AB      |

### Prep Information

Digestion Method: EPA 3005A

| Parameter                                                         | Result Qualifier | Units | RL     | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-------------------------------------------------------------------|------------------|-------|--------|-----|-----------------|----------------|----------------|-------------------|---------|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1022227-1 |                  |       |        |     |                 |                |                |                   |         |
| Mercury, Total                                                    | ND               | mg/l  | 0.0002 | --  | 1               | 07/13/17 11:39 | 07/13/17 16:27 | 3,245.1           | EA      |

### Prep Information

Digestion Method: EPA 245.1

| Parameter                                                         | Result Qualifier | Units | RL      | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|-------------------------------------------------------------------|------------------|-------|---------|-----|-----------------|----------------|----------------|-------------------|---------|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1022252-1 |                  |       |         |     |                 |                |                |                   |         |
| Antimony, Total                                                   | ND               | mg/l  | 0.00400 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8           | AM      |
| Arsenic, Total                                                    | ND               | mg/l  | 0.00100 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8           | AM      |
| Cadmium, Total                                                    | ND               | mg/l  | 0.00020 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8           | AM      |
| Chromium, Total                                                   | ND               | mg/l  | 0.00100 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8           | AM      |
| Copper, Total                                                     | ND               | mg/l  | 0.00100 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8           | AM      |
| Lead, Total                                                       | ND               | mg/l  | 0.00050 | --  | 1               | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8           | AM      |



**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

## Method Blank Analysis Batch Quality Control

|                 |    |      |         |    |   |                |                |         |    |
|-----------------|----|------|---------|----|---|----------------|----------------|---------|----|
| Nickel, Total   | ND | mg/l | 0.00200 | -- | 1 | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8 | AM |
| Selenium, Total | ND | mg/l | 0.00500 | -- | 1 | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8 | AM |
| Silver, Total   | ND | mg/l | 0.00040 | -- | 1 | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8 | AM |
| Zinc, Total     | ND | mg/l | 0.01000 | -- | 1 | 07/13/17 12:58 | 07/14/17 09:00 | 3,200.8 | AM |

### Prep Information

Digestion Method: EPA 3005A



# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

| Parameter                                                                              | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|----------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1021817-2               |                  |      |                   |      |                     |     |      |            |
| Iron, Total                                                                            | 97               | -    | -                 | -    | 85-115              | -   | -    | -          |
| Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 Batch: WG1021817-2 |                  |      |                   |      |                     |     |      |            |
| Hardness                                                                               | 105              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1022227-2               |                  |      |                   |      |                     |     |      |            |
| Mercury, Total                                                                         | 98               | -    | -                 | -    | 85-115              | -   | -    | -          |
| Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1022252-2               |                  |      |                   |      |                     |     |      |            |
| Antimony, Total                                                                        | 99               | -    | -                 | -    | 85-115              | -   | -    | -          |
| Arsenic, Total                                                                         | 96               | -    | -                 | -    | 85-115              | -   | -    | -          |
| Cadmium, Total                                                                         | 107              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Chromium, Total                                                                        | 108              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Copper, Total                                                                          | 107              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Lead, Total                                                                            | 107              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Nickel, Total                                                                          | 107              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Selenium, Total                                                                        | 95               | -    | -                 | -    | 85-115              | -   | -    | -          |
| Silver, Total                                                                          | 101              | -    | -                 | -    | 85-115              | -   | -    | -          |
| Zinc, Total                                                                            | 101              | -    | -                 | -    | 85-115              | -   | -    | -          |

**Matrix Spike Analysis**  
**Batch Quality Control**

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

| Parameter                                                                                                                                | Native Sample | MS Added | MS Found | MS %Recovery | MSD Qual | MSD Found | MSD %Recovery | MSD Qual | Recovery Limits | RPD | RPD Qual | RPD Limits |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|----------|-----------|---------------|----------|-----------------|-----|----------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1021817-3 QC Sample: L1722878-01 Client ID: MS Sample               |               |          |          |              |          |           |               |          |                 |     |          |            |
| Iron, Total                                                                                                                              | 1.51          | 1        | 2.50     | 99           | -        | -         | -             | -        | 75-125          | -   | -        | 20         |
| Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1021817-3 QC Sample: L1722878-01 Client ID: MS Sample |               |          |          |              |          |           |               |          |                 |     |          |            |
| Hardness                                                                                                                                 | 381           | 66.2     | 434      | 80           | -        | -         | -             | -        | 75-125          | -   | -        | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1021817-7 QC Sample: L1723304-01 Client ID: MS Sample               |               |          |          |              |          |           |               |          |                 |     |          |            |
| Iron, Total                                                                                                                              | 0.067         | 1        | 1.08     | 101          | -        | -         | -             | -        | 75-125          | -   | -        | 20         |
| Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1021817-7 QC Sample: L1723304-01 Client ID: MS Sample |               |          |          |              |          |           |               |          |                 |     |          |            |
| Hardness                                                                                                                                 | 1.69          | 66.2     | 70.1     | 103          | -        | -         | -             | -        | 75-125          | -   | -        | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1022227-3 QC Sample: L1723630-01 Client ID: INSTREAM                |               |          |          |              |          |           |               |          |                 |     |          |            |
| Mercury, Total                                                                                                                           | ND            | 0.005    | 0.0046   | 92           | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1022252-3 QC Sample: L1723630-01 Client ID: INSTREAM                |               |          |          |              |          |           |               |          |                 |     |          |            |
| Antimony, Total                                                                                                                          | ND            | 0.5      | 0.5897   | 118          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Arsenic, Total                                                                                                                           | 0.00104       | 0.12     | 0.1284   | 106          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Cadmium, Total                                                                                                                           | ND            | 0.051    | 0.05554  | 109          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Chromium, Total                                                                                                                          | ND            | 0.2      | 0.2108   | 105          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Copper, Total                                                                                                                            | 0.00424       | 0.25     | 0.2762   | 109          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Lead, Total                                                                                                                              | 0.00297       | 0.51     | 0.5932   | 116          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Nickel, Total                                                                                                                            | ND            | 0.5      | 0.5379   | 108          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Selenium, Total                                                                                                                          | ND            | 0.12     | 0.1272   | 106          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Silver, Total                                                                                                                            | ND            | 0.05     | 0.05069  | 101          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |
| Zinc, Total                                                                                                                              | ND            | 0.5      | 0.5208   | 104          | -        | -         | -             | -        | 70-130          | -   | -        | 20         |

**Matrix Spike Analysis**  
**Batch Quality Control**

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

| Parameter                                                                                                                  | Native Sample | MS Added | MS Found | MS %Recovery | MSD Found | MSD %Recovery | Recovery Limits | RPD | RPD Limits |
|----------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|-----------|---------------|-----------------|-----|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1022252-5 QC Sample: L1723800-01 Client ID: MS Sample |               |          |          |              |           |               |                 |     |            |
| Antimony, Total                                                                                                            | ND            | 0.5      | 0.5592   | 112          | -         | -             | 70-130          | -   | 20         |
| Arsenic, Total                                                                                                             | ND            | 0.12     | 0.1248   | 104          | -         | -             | 70-130          | -   | 20         |
| Cadmium, Total                                                                                                             | ND            | 0.051    | 0.05429  | 106          | -         | -             | 70-130          | -   | 20         |
| Chromium, Total                                                                                                            | ND            | 0.2      | 0.2101   | 105          | -         | -             | 70-130          | -   | 20         |
| Copper, Total                                                                                                              | 0.0043        | 0.25     | 0.2681   | 106          | -         | -             | 70-130          | -   | 20         |
| Lead, Total                                                                                                                | ND            | 0.51     | 0.5866   | 115          | -         | -             | 70-130          | -   | 20         |
| Nickel, Total                                                                                                              | ND            | 0.5      | 0.5248   | 105          | -         | -             | 70-130          | -   | 20         |
| Selenium, Total                                                                                                            | ND            | 0.12     | 0.1224   | 102          | -         | -             | 70-130          | -   | 20         |
| Silver, Total                                                                                                              | ND            | 0.05     | 0.05095  | 102          | -         | -             | 70-130          | -   | 20         |
| Zinc, Total                                                                                                                | ND            | 0.5      | 0.5082   | 102          | -         | -             | 70-130          | -   | 20         |

**Lab Duplicate Analysis**  
Batch Quality Control

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

| Parameter                                                                                                                   | Native Sample | Duplicate Sample | Units | RPD | Qual | RPD Limits |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1021817-8 QC Sample: L1723304-01 Client ID: DUP Sample |               |                  |       |     |      |            |
| Iron, Total                                                                                                                 | 0.067         | 0.073            | mg/l  | 8   |      | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1022227-4 QC Sample: L1723630-01 Client ID: INSTREAM   |               |                  |       |     |      |            |
| Mercury, Total                                                                                                              | ND            | ND               | mg/l  | NC  |      | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1022252-4 QC Sample: L1723630-01 Client ID: INSTREAM   |               |                  |       |     |      |            |
| Antimony, Total                                                                                                             | ND            | ND               | mg/l  | NC  |      | 20         |
| Arsenic, Total                                                                                                              | 0.00104       | 0.00113          | mg/l  | 8   |      | 20         |
| Cadmium, Total                                                                                                              | ND            | ND               | mg/l  | NC  |      | 20         |
| Chromium, Total                                                                                                             | ND            | ND               | mg/l  | NC  |      | 20         |
| Copper, Total                                                                                                               | 0.00424       | 0.00452          | mg/l  | 6   |      | 20         |
| Lead, Total                                                                                                                 | 0.00297       | 0.00297          | mg/l  | 0   |      | 20         |
| Nickel, Total                                                                                                               | ND            | ND               | mg/l  | NC  |      | 20         |
| Selenium, Total                                                                                                             | ND            | ND               | mg/l  | NC  |      | 20         |
| Silver, Total                                                                                                               | ND            | ND               | mg/l  | NC  |      | 20         |
| Zinc, Total                                                                                                                 | ND            | ND               | mg/l  | NC  |      | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1022252-6 QC Sample: L1723800-01 Client ID: DUP Sample |               |                  |       |     |      |            |
| Copper, Total                                                                                                               | 0.0043        | 0.00419          | mg/l  | 3   |      | 20         |
| Lead, Total                                                                                                                 | ND            | ND               | mg/l  | NC  |      | 20         |

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

Serial\_No:07141711:11  
**Lab Number:** L1723630  
**Report Date:** 07/14/17

**Sample Receipt and Container Information**

Were project specific reporting limits specified? YES

**Cooler Information**

| <b>Cooler</b> | <b>Custody Seal</b> |
|---------------|---------------------|
| A             | Absent              |

**Container Information**

| <b>Container ID</b> | <b>Container Type</b> | <b>Cooler</b> | <b>Initial pH</b> | <b>Final pH</b> | <b>Temp deg C</b> | <b>Pres</b> | <b>Seal</b> | <b>Frozen Date/Time</b> | <b>Analysis(*)</b> |
|---------------------|-----------------------|---------------|-------------------|-----------------|-------------------|-------------|-------------|-------------------------|--------------------|
|---------------------|-----------------------|---------------|-------------------|-----------------|-------------------|-------------|-------------|-------------------------|--------------------|

|              |                              |   |    |    |     |   |        |  |                                                                                                                                                                            |
|--------------|------------------------------|---|----|----|-----|---|--------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L1723630-01A | Plastic 250ml HNO3 preserved | A | <2 | <2 | 5.1 | Y | Absent |  | CD-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),HARDU(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),CR-2008T(180),PB-2008T(180),SB-2008T(180) |
|--------------|------------------------------|---|----|----|-----|---|--------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

## GLOSSARY

### **Acronyms**

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.                                                                                                                                                                                                                                                  |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

### **Data Qualifiers**

**A** - Spectra identified as "Aldol Condensation Product".

**B** - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

**Report Format:** Data Usability Report



**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

**Data Qualifiers**

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C** - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D** - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E** - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G** - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H** - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I** - The lower value for the two columns has been reported due to obvious interference.
- M** - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ** - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P** - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q** - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedances are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R** - Analytical results are from sample re-analysis.
- RE** - Analytical results are from sample re-extraction.
- S** - Analytical results are from modified screening analysis.
- J** - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND** - Not detected at the reporting limit (RL) for the sample.

*Report Format:* Data Usability Report



**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723630  
**Report Date:** 07/14/17

## REFERENCES

- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

## LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at its own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



## Certification Information

**The following analytes are not included in our Primary NELAP Scope of Accreditation:**

**Westborough Facility**

**EPA 624:** m/p-xylene, o-xylene

**EPA 8260C:** NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA 8270D:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

**EPA 300:** DW: Bromide

**EPA 6860:** NPW and SCM: Perchlorate

**EPA 9010:** NPW and SCM: Amenable Cyanide Distillation

**EPA 9012B:** NPW: Total Cyanide

**EPA 9050A:** NPW: Specific Conductance

**SM3500:** NPW: Ferrous Iron

**SM4500:** NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO<sub>2</sub>, NO<sub>3</sub>.

**SM5310C:** DW: Dissolved Organic Carbon

**Mansfield Facility**

**SM 2540D:** TSS

**EPA 3005A** NPW

**EPA 8082A:** NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

**EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

**Biological Tissue Matrix:** EPA 3050B

**The following analytes are included in our Massachusetts DEP Scope of Accreditation**

**Westborough Facility:**

**Drinking Water**

**EPA 300.0:** Nitrate-N, Fluoride, Sulfate; **EPA 353.2:** Nitrate-N, Nitrite-N; **SM4500NO3-F:** Nitrate-N, Nitrite-N; **SM4500F-C, SM4500CN-CE, EPA 180.1,**

**SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B**

**EPA 332:** Perchlorate; **EPA 524.2:** THMs and VOCs; **EPA 504.1:** EDB, DBCP.

**Microbiology:** **SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.**

**Non-Potable Water**

**SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.**

**EPA 624:** Volatile Halocarbons & Aromatics,

**EPA 608:** Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

**EPA 625:** SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045:** PCB-Oil.

**Microbiology:** **SM9223B-Colilert-QT; Enterolert-QT, SM9221E.**

**Mansfield Facility:**

**Drinking Water**

**EPA 200.7:** Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. **EPA 200.8:** Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. **EPA 245.1 Hg.**

**Non-Potable Water**

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

**EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

**EPA 245.1 Hg.**

**SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.



World Class Chemistry  
8 Walkup Drive  
Westboro, MA 01581  
Tel: 508-898-9220

# CHAIN OF CUSTODY

PAGE 1 OF 1

Date Rec'd in Lab:

7/12/17

ALPHA Job #:

L1723630

320 Forbes Blvd  
Mansfield, MA 02048  
Tel: 508-822-9300

## Client Information

Client: Sanborn Head  
Address: 1 Technology Park Dr  
Westford, MA 01886  
Phone: 978-577-1003  
Email: kwalker@sanbornhead.com

## Additional Project Information:

24-hr rush TAT → Ashley Kane

| ALPHA Lab ID<br>(Lab Use Only) | Sample ID | Collection |      | Sample Matrix | Sampler Initials |
|--------------------------------|-----------|------------|------|---------------|------------------|
|                                |           | Date       | Time |               |                  |

23630.01 Instream 7/12/17 0700 SW JWC

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                     |  |                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------|--|--------------------------------------------------------------------|--|
| Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  | Report Information - Data Deliverables                                              |  | Billing Information                                                |  |
| Project Name: <u>Target Cambridge</u><br>Project Location: <u>Cambridge, MA</u><br>Project #: <u>4198.01</u><br>Project Manager: <u>Kent Walker</u><br>ALPHA Quote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  | <input checked="" type="checkbox"/> ADEEx <input checked="" type="checkbox"/> EMAIL |  | <input checked="" type="checkbox"/> Same as Client info      PO #: |  |
| Regulatory Requirements & Project Information Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                                                                                     |  |                                                                    |  |
| <input type="checkbox"/> Yes <input type="checkbox"/> No MA MCP Analytical Methods <input type="checkbox"/> Yes <input type="checkbox"/> No CT RCP Analytical Methods<br><input type="checkbox"/> Yes <input type="checkbox"/> No Matrix Spike Required on this SDG? (Required for MCP Inorganics)<br><input type="checkbox"/> Yes <input type="checkbox"/> No GW1 Standards (Info Required for Metals & EPH with Targets)<br><input checked="" type="checkbox"/> Yes <input checked="" type="checkbox"/> No NPDES RGP<br><input type="checkbox"/> Other State /Fed Program      Criteria                                                                                                             |  |                                                                                     |  |                                                                    |  |
| <b>Turn-Around Time</b><br><input type="checkbox"/> Standard <input checked="" type="checkbox"/> RUSH (only confirmed if pre-approved)<br>Date Due: <u>24-hr</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                                                                     |  |                                                                    |  |
| <b>ANALYSIS</b><br><b>VOC:</b> <input type="checkbox"/> 8260 <input type="checkbox"/> 624 <input type="checkbox"/> 524.2<br><b>SVOC:</b> <input type="checkbox"/> ABN <input type="checkbox"/> PAH<br><b>METALS:</b> <input type="checkbox"/> MCP 13 <input type="checkbox"/> MCP 14 <input type="checkbox"/> RCP 15<br><b>EPH:</b> <input type="checkbox"/> RCRAs <input type="checkbox"/> RCRAs <input type="checkbox"/> PP 13<br><b>VPH:</b> <input type="checkbox"/> Ranges & Targets <input type="checkbox"/> Ranges Only<br><b>TPH:</b> <input type="checkbox"/> PCB <input type="checkbox"/> PEST <input type="checkbox"/> Ranges Only<br><b>Hardness</b> <input type="checkbox"/> Fingerprint |  |                                                                                     |  |                                                                    |  |
| <b>SAMPLE INFO</b><br><b>Filtration</b><br><input type="checkbox"/> Field <input type="checkbox"/> Lab to do<br><b>Preservation</b><br><input type="checkbox"/> Lab to do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |                                                                                     |  |                                                                    |  |
| Sample Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                     |  |                                                                    |  |

TOTAL # BOTTLES 1

Container Type  
P= Plastic  
A= Amber glass  
V= Vial  
G= Glass  
B= Bacteria cup  
C= Cube  
O= Other  
E= Encore  
D= BOD Bottle

Preservative  
A= None  
B= HCl  
C= HNO<sub>3</sub>  
D= H<sub>2</sub>SO<sub>4</sub>  
E= NaOH  
F= MeOH  
G= NaHSO<sub>4</sub>  
H= Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>  
I= Ascorbic Acid  
J= NH<sub>4</sub>Cl  
K= Zn Acetate  
O= Other

Container Type

P

Preservative

C

|                            |                      |                               |                                              |
|----------------------------|----------------------|-------------------------------|----------------------------------------------|
| Relinquished By:           | Date/Time            | Received By:                  | Date/Time                                    |
| <u>J. Bell</u><br>Dawn SPC | <u>7/12/17 10:00</u> | <u>Jamie O'F</u><br>Lin Chalk | <u>7/12/17 10:00</u><br><u>7/12/17 11:40</u> |

All samples submitted are subject to  
Alpha's Terms and Conditions.  
See reverse side.

FORM NO: 01-01 (rev. 12-Mar-2012)



## ANALYTICAL REPORT

|                 |                                                                                   |
|-----------------|-----------------------------------------------------------------------------------|
| Lab Number:     | L1723871                                                                          |
| Client:         | Sanborn, Head & Associates, Inc.<br>1 Technology Park Drive<br>Westford, MA 01886 |
| ATTN:           | Kent Walker                                                                       |
| Phone:          | (978) 577-1003                                                                    |
| Project Name:   | TARGET CAMBRIDGE                                                                  |
| Project Number: | 4198.01                                                                           |
| Report Date:    | 07/14/17                                                                          |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

---

Eight Walkup Drive, Westborough, MA 01581-1019  
508-898-9220 (Fax) 508-898-9193 800-624-9220 - [www.alphalab.com](http://www.alphalab.com)



**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

| <b>Alpha</b><br><b>Sample ID</b> | <b>Client ID</b> | <b>Matrix</b> | <b>Sample Location</b> | <b>Collection Date/Time</b> | <b>Receive Date</b> |
|----------------------------------|------------------|---------------|------------------------|-----------------------------|---------------------|
| L1723871-01                      | SH-101           | WATER         | CAMBRIDGE, MA          | 07/13/17 07:00              | 07/13/17            |
| L1723871-02                      | INSTREAM-1       | WATER         | CAMBRIDGE, MA          | 07/13/17 07:40              | 07/13/17            |

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

### Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

---

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

*Cristin Walker* Cristin Walker

Title: Technical Director/Representative

Date: 07/14/17

## METALS

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

### SAMPLE RESULTS

Lab ID: L1723871-01  
Client ID: SH-101  
Sample Location: CAMBRIDGE, MA  
Matrix: Water

Date Collected: 07/13/17 07:00  
Date Received: 07/13/17  
Field Prep: Not Specified

| Parameter                                  | Result | Qualifier | Units | RL    | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Prep Method | Analytical Method | Analyst |
|--------------------------------------------|--------|-----------|-------|-------|-----|-----------------|----------------|----------------|-------------|-------------------|---------|
| Total Hardness by SM 2340B - Mansfield Lab |        |           |       |       |     |                 |                |                |             |                   |         |
| Hardness                                   | 409    |           | mg/l  | 0.660 | NA  | 1               | 07/14/17 06:05 | 07/14/17 10:41 | EPA 3005A   | 19,200.7          | PS      |

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

## Method Blank Analysis Batch Quality Control

| Parameter                                                                       | Result Qualifier | Units | RL    | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|---------------------------------------------------------------------------------|------------------|-------|-------|-----|-----------------|----------------|----------------|-------------------|---------|
| Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01 Batch: WG1022482-1 |                  |       |       |     |                 |                |                |                   |         |
| Hardness                                                                        | ND               | mg/l  | 0.660 | NA  | 1               | 07/14/17 06:05 | 07/14/17 10:07 | 19,200.7          | PS      |

### Prep Information

Digestion Method: EPA 3005A



# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

| Parameter                                                                              | LCS       | LCSD |           | %Recovery |        | RPD | Qual | RPD Limits |
|----------------------------------------------------------------------------------------|-----------|------|-----------|-----------|--------|-----|------|------------|
|                                                                                        | %Recovery | Qual | %Recovery | Qual      | Limits |     |      |            |
| Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 Batch: WG1022482-2 |           |      |           |           |        |     |      |            |
| Hardness                                                                               | 104       | -    | -         | -         | 85-115 | -   | -    | -          |

**Matrix Spike Analysis**  
**Batch Quality Control**

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

| Parameter                                                                                                                                | Native Sample | MS Added | MS Found | MS %Recovery | MSD Qual | MSD Found | MSD %Recovery | MSD Qual | Recovery Limits | RPD | Qual | RPD | Qual | Limits |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|----------|-----------|---------------|----------|-----------------|-----|------|-----|------|--------|
| Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1022482-3 QC Sample: L1724041-01 Client ID: MS Sample |               |          |          |              |          |           |               |          |                 |     |      |     |      |        |
| Hardness                                                                                                                                 | 86.1          | 66.2     | 155      | 104          |          | -         | -             | -        | 75-125          | -   | -    | -   | -    | 20     |

# **INORGANICS & MISCELLANEOUS**

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

### SAMPLE RESULTS

Lab ID: L1723871-01 Date Collected: 07/13/17 07:00  
 Client ID: SH-101 Date Received: 07/13/17  
 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified  
 Matrix: Water

| Parameter                                  | Result | Qualifier | Units | RL | MDL | Dilution Factor | Date Prepared  | Date Analyzed | Analytical Method | Analyst |
|--------------------------------------------|--------|-----------|-------|----|-----|-----------------|----------------|---------------|-------------------|---------|
| <b>General Chemistry - Westborough Lab</b> |        |           |       |    |     |                 |                |               |                   |         |
| pH (H)                                     | 7.2    | SU        | -     | NA | 1   | -               | 07/13/17 17:08 | 121,4500H+-B  | AS                |         |

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

### SAMPLE RESULTS

Lab ID: L1723871-02  
Client ID: INSTREAM-1  
Sample Location: CAMBRIDGE, MA  
Matrix: Water

Date Collected: 07/13/17 07:40  
Date Received: 07/13/17  
Field Prep: Not Specified

| Parameter                                  | Result | Qualifier | Units | RL | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|--------------------------------------------|--------|-----------|-------|----|-----|-----------------|----------------|----------------|-------------------|---------|
| <b>General Chemistry - Westborough Lab</b> |        |           |       |    |     |                 |                |                |                   |         |
| pH (H)                                     | 7.0    | SU        | -     | NA | 1   | -               | 07/13/17 17:08 | 07/13/17 22:22 | 121,4500H+-BH     | AS      |
| Nitrogen, Ammonia                          | 0.178  | mg/l      | 0.075 | -- | 1   | 07/13/17 14:00  | 07/13/17 22:22 | 121,4500NH3-BH | AT                |         |



**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

**Method Blank Analysis**  
**Batch Quality Control**

| Parameter                                                                | Result Qualifier | Units | RL    | MDL | Dilution Factor | Date Prepared  | Date Analyzed  | Analytical Method | Analyst |
|--------------------------------------------------------------------------|------------------|-------|-------|-----|-----------------|----------------|----------------|-------------------|---------|
| General Chemistry - Westborough Lab for sample(s): 02 Batch: WG1022222-1 |                  |       |       |     |                 |                |                |                   |         |
| Nitrogen, Ammonia                                                        | ND               | mg/l  | 0.075 | --  | 1               | 07/13/17 14:00 | 07/13/17 22:15 | 121,4500NH3-BH    | AT      |



# Lab Control Sample Analysis

## Batch Quality Control

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

| Parameter                                                                          | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab Associated sample(s): 02 Batch: WG1022222-2    |                  |      |                   |      |                     |     |      |            |
| Nitrogen, Ammonia                                                                  | 101              |      | -                 |      | 80-120              | -   |      | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1022348-1 |                  |      |                   |      |                     |     |      |            |
| pH                                                                                 | 100              |      | -                 |      | 99-101              | -   |      | 5          |

**Matrix Spike Analysis**  
**Batch Quality Control**

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

| Parameter                                                                                                                         | Native Sample | MS Added | MS Found | MS %Recovery | MSD Qual | MSD Found | MSD %Recovery | MSD Qual | Recovery Limits | RPD Qual | RPD Qual Limits |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|--------------|----------|-----------|---------------|----------|-----------------|----------|-----------------|
| General Chemistry - Westborough Lab Associated sample(s): 02 QC Batch ID: WG1022222-4 QC Sample: L1722920-06 Client ID: MS Sample |               |          |          |              |          |           |               |          |                 |          |                 |
| Nitrogen, Ammonia                                                                                                                 | 2.44          | 4        | 6.41     | 99           | -        | -         | -             | -        | 80-120          | -        | 20              |

**Lab Duplicate Analysis**  
Batch Quality Control

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

| Parameter                                                                                                                          | Native Sample | Duplicate Sample | Units | RPD | Qual | RPD Limits |
|------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------|-----|------|------------|
| General Chemistry - Westborough Lab Associated sample(s): 02 QC Batch ID: WG1022222-3 QC Sample: L1722920-06 Client ID: DUP Sample |               |                  |       |     |      |            |
| Nitrogen, Ammonia                                                                                                                  | 2.44          | 2.49             | mg/l  | 2   |      | 20         |
| General Chemistry - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG1022348-2 QC Sample: L1723871-01 Client ID: SH-101  |               |                  |       |     |      |            |
| pH (H)                                                                                                                             | 7.2           | 7.1              | SU    | 1   |      | 5          |

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

Serial\_No:07141714:09  
**Lab Number:** L1723871  
**Report Date:** 07/14/17

**Sample Receipt and Container Information**

Were project specific reporting limits specified? YES

**Cooler Information**

| <b>Cooler</b> | <b>Custody Seal</b> |
|---------------|---------------------|
| A             | Absent              |

**Container Information**

| <b>Container ID</b> | <b>Container Type</b>                                  | <b>Cooler</b> | <b>Initial pH</b> | <b>Final pH</b> | <b>Temp deg C</b> | <b>Pres</b> | <b>Seal</b> | <b>Frozen Date/Time</b> | <b>Analysis(*)</b> |
|---------------------|--------------------------------------------------------|---------------|-------------------|-----------------|-------------------|-------------|-------------|-------------------------|--------------------|
| L1723871-01A        | Plastic 250ml HNO3 preserved                           | A             | <2                | <2              | 4.7               | Y           | Absent      |                         | HARDU(180)         |
| L1723871-01B        | Plastic 250ml unpreserved                              | A             | 7                 | 7               | 4.7               | Y           | Absent      |                         | PH-4500(.01)       |
| L1723871-02A        | Plastic 250ml unpreserved                              | A             | 7                 | 7               | 4.7               | Y           | Absent      |                         | PH-4500(.01)       |
| L1723871-02B        | Plastic 500ml H <sub>2</sub> SO <sub>4</sub> preserved | A             | <2                | <2              | 4.7               | Y           | Absent      |                         | NH3-4500(28)       |

**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

## GLOSSARY

### **Acronyms**

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.                                                                                                                                                                                                                                                  |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

### **Data Qualifiers**

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

**Report Format:** Data Usability Report



**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

**Data Qualifiers**

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C** - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D** - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E** - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G** - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H** - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I** - The lower value for the two columns has been reported due to obvious interference.
- M** - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ** - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P** - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q** - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedances are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R** - Analytical results are from sample re-analysis.
- RE** - Analytical results are from sample re-extraction.
- S** - Analytical results are from modified screening analysis.
- J** - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND** - Not detected at the reporting limit (RL) for the sample.

*Report Format:* Data Usability Report



**Project Name:** TARGET CAMBRIDGE  
**Project Number:** 4198.01

**Lab Number:** L1723871  
**Report Date:** 07/14/17

## REFERENCES

- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

## LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at its own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



## Certification Information

**The following analytes are not included in our Primary NELAP Scope of Accreditation:**

**Westborough Facility**

**EPA 624:** m/p-xylene, o-xylene

**EPA 8260C:** NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA 8270D:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

**EPA 300:** DW: Bromide

**EPA 6860:** NPW and SCM: Perchlorate

**EPA 9010:** NPW and SCM: Amenable Cyanide Distillation

**EPA 9012B:** NPW: Total Cyanide

**EPA 9050A:** NPW: Specific Conductance

**SM3500:** NPW: Ferrous Iron

**SM4500:** NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO<sub>2</sub>, NO<sub>3</sub>.

**SM5310C:** DW: Dissolved Organic Carbon

**Mansfield Facility**

**SM 2540D:** TSS

**EPA 3005A** NPW

**EPA 8082A:** NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

**EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

**Biological Tissue Matrix:** EPA 3050B

**The following analytes are included in our Massachusetts DEP Scope of Accreditation**

**Westborough Facility:**

**Drinking Water**

**EPA 300.0:** Nitrate-N, Fluoride, Sulfate; **EPA 353.2:** Nitrate-N, Nitrite-N; **SM4500NO3-F:** Nitrate-N, Nitrite-N; **SM4500F-C, SM4500CN-CE, EPA 180.1,**

**SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B**

**EPA 332:** Perchlorate; **EPA 524.2:** THMs and VOCs; **EPA 504.1:** EDB, DBCP.

**Microbiology:** **SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.**

**Non-Potable Water**

**SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.**

**EPA 624:** Volatile Halocarbons & Aromatics,

**EPA 608:** Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

**EPA 625:** SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045:** PCB-Oil.

**Microbiology:** **SM9223B-Colilert-QT; Enterolert-QT, SM9221E.**

**Mansfield Facility:**

**Drinking Water**

**EPA 200.7:** Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. **EPA 200.8:** Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. **EPA 245.1 Hg.**

**Non-Potable Water**

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

**EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

**EPA 245.1 Hg.**

**SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.



## CHAIN OF CUSTODY

PAGE 1 OF 1

Date Rec'd in Lab: 7/13/17

ALPHA Job #: U723871

| ALPHA<br>ANALYTICAL<br>WATER & CLIMATE CONSULTANTS                                                                                                                                                                        |  | CHAIN OF CUSTODY                                                                                                                                                                                                                                                           |  | PAGE <u>1</u> OF <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date Rec'd in Lab: <u>7/13/17</u> | ALPHA Job #: <u>U723871</u>                                                                                                  |                                                          |                                                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| 8 Walkup Drive<br>Westboro, MA 01581<br>Tel: 508-898-9220                                                                                                                                                                 |  | 320 Forbes Blvd<br>Mansfield, MA 02048<br>Tel: 508-822-9300                                                                                                                                                                                                                |  | Project Information<br>Project Name: <u>Target Cambridge</u><br>Project Location: <u>Cambridge MA</u><br>Project #: <u>4198.01</u><br>Project Manager: <u>Kent Walker</u><br>ALPHA Quote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Report Information - Data Deliverables<br><input checked="" type="checkbox"/> ADEX <input checked="" type="checkbox"/> EMAIL |                                                          | Billing Information<br><input checked="" type="checkbox"/> Same as Client info <input type="checkbox"/> PO #: |  |
| <b>Client Information</b><br>Client: <u>Sanborn Head &amp; Associates</u><br>Address: <u>1 Technology Park Drive</u><br><u>Westford MA 01886</u><br>Phone: <u>(978) 392-0900</u><br>Email: <u>kwalker@sanbornhead.com</u> |  | <b>Turn-Around Time</b><br><input type="checkbox"/> Standard <input checked="" type="checkbox"/> RUSH (only confirmed if pre-approved!)<br>Date Due: <u>24 hr TAT</u><br><u>(confirmed w/ A. Kane)</u>                                                                     |  | <b>Regulatory Requirements &amp; Project Information Requirements</b><br><input checked="" type="checkbox"/> Yes <input type="checkbox"/> No MA MCP Analytical Methods <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No CT RCP Analytical Methods<br><input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Matrix Spike Required on this SDG? (Required for MCP Inorganics)<br><input type="checkbox"/> Yes <input checked="" type="checkbox"/> No GW1 Standards (Info Required for Metals & EPH with Targets)<br><input type="checkbox"/> Yes <input checked="" type="checkbox"/> No NPDES RGP<br><input type="checkbox"/> Other State /Fed Program _____ Criteria _____ |                                   |                                                                                                                              |                                                          |                                                                                                               |  |
| Additional Project Information:                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                                                                                                              |                                                          |                                                                                                               |  |
| ALPHA Lab ID<br>(Lab Use Only)                                                                                                                                                                                            |  | Sample ID                                                                                                                                                                                                                                                                  |  | Collection<br>Date <u>7/13/17</u> Time <u>0700</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Matrix<br><u>GW</u>        | Sampler Initials<br><u>CES</u>                                                                                               |                                                          |                                                                                                               |  |
| <u>23871</u>                                                                                                                                                                                                              |  | <u>01</u> <u>ST-101</u><br><u>02</u> <u>Instream-1</u>                                                                                                                                                                                                                     |  | <u>7/13/17</u> <u>0740</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>SW</u>                         |                                                                                                                              |                                                          |                                                                                                               |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  | <u>↓</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>↓</u>                          |                                                                                                                              |                                                          |                                                                                                               |  |
| Container Type<br>P= Plastic<br>A= Amber glass<br>V= Vial<br>G= Glass<br>B= Bacteria cup<br>C= Cube<br>O= Other<br>E= Encore<br>D= BOD Bottle                                                                             |  | Preservative<br>A= None<br>B= HCl<br>C= HNO <sub>3</sub><br>D= H <sub>2</sub> SO <sub>4</sub><br>E= NaOH<br>F= MeOH<br>G= NaHSO <sub>4</sub><br>H= Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>I= Ascorbic Acid<br>J= NH <sub>4</sub> Cl<br>K= Zn Acetate<br>O= Other |  | Container Type<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  |                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <input type="checkbox"/><br>D <input type="checkbox"/>                                                                     | P <input type="checkbox"/><br>C <input type="checkbox"/> | P <input type="checkbox"/><br>A <input type="checkbox"/>                                                      |  |
|                                                                                                                                                                                                                           |  | </td                                                                                                                                                                                                                                                                       |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                                                                                                              |                                                          |                                                                                                               |  |

## **APPENDIX F**

### **DILUTION FACTOR CALCULATIONS AND SUPPORTING INFORMATION**

## Massachusetts Category 5 Waters "Waters requiring a TMDL"

| NAME                 | SEGMENT ID | DESCRIPTION                                                                                                                                           | SIZE    | UNITS | IMPAIRMENT CAUSE                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA TMDL NO.   |
|----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Charles River        | MA72-38    | Boston University Bridge, Boston/Cambridge to the New Charles River Dam, Boston (formerly part of segment MA72-08).                                   | 3.092   | MILES | (Other flow regime alterations*)<br>Chlorophyll-a<br>Combined Biota/Habitat Bioassessments<br>DDT<br>Dissolved oxygen saturation<br>Escherichia coli<br>Excess Algal Growth<br>Nutrient/Eutrophication Biological Indicators<br>Oil and Grease<br>Oxygen, Dissolved<br>PCB in Fish Tissue<br>Phosphorus (Total)<br>Salinity<br>Secchi disk transparency<br>Sediment Screening Value (Exceedence)<br>Taste and Odor<br>Temperature, water | 33826          |
| Fuller Brook         | MA72-18    | Headwater south of Route 135, Needham to confluence with Waban Brook, Wellesley.                                                                      | 4.282   | MILES | (Physical substrate habitat alterations*)<br>Escherichia coli<br>Nutrient/Eutrophication Biological Indicators<br>Sedimentation/Siltation                                                                                                                                                                                                                                                                                                | 32374<br>40317 |
| Jamaica Pond         | MA72052    | Boston                                                                                                                                                | 66.734  | ACRES | Oxygen, Dissolved<br>Phosphorus (Total)                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| Kendrick Street Pond | MA72055    | Needham                                                                                                                                               | 39.264  | ACRES | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Lake Winthrop        | MA72140    | Holliston                                                                                                                                             | 131.341 | ACRES | (Non-Native Aquatic Plants*)<br>2,3,7,8-Tetrachlorodibenzo-p-dioxin (only)<br>Aquatic Plants (Macrophytes)                                                                                                                                                                                                                                                                                                                               | 40319          |
| Mill River           | MA72-15    | Headwaters, outlet Bush Pond, Norfolk to confluence with the Charles River, Norfolk.                                                                  | 3.47    | MILES | Temperature, water                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| Mine Brook           | MA72-14    | Headwaters in Franklin State Forest, Franklin to the confluence with the Charles River, Franklin (through Mine Brook Pond, formerly segment MA72077). | 8.942   | MILES | (Habitat Assessment (Streams))*<br>Temperature, water                                                                                                                                                                                                                                                                                                                                                                                    |                |



**PURPOSE:**

To calculate the dilution factor (DF) for metal concentrations in a potential discharge from on-site construction dewatering activities.

**METHOD:**

$$DF = (Qd + Qs)/Qd$$

Where: DF = Dilution Factor

Qd = Design flow rate of the discharge in million gallons per day (MGD)

Qs = Receiving water 7Q10 flow (MGD) where 7Q10 is the minimum flow for 7 consecutive days with a recurrence interval of 10 years

**GIVEN:**

1.0 gpd = 0.000001 MGD

1.0 cfs = 0.64632 MGD

Qd = 72,000 gpd = 0.072 MGD

Qs = 24.7 cfs = 15.96 MGD of flow into the Charles River [Reference 1]

**CALCULATION:**

$$DF = (0.072 \text{ MGD} + 15.96 \text{ MGD}) / 0.072 \text{ MGD}$$

**DF = 222.7**

**RESULTS:**

The resulting dilution factor to be used when discharging to the Charles River is 222.7.

**REFERENCES:**

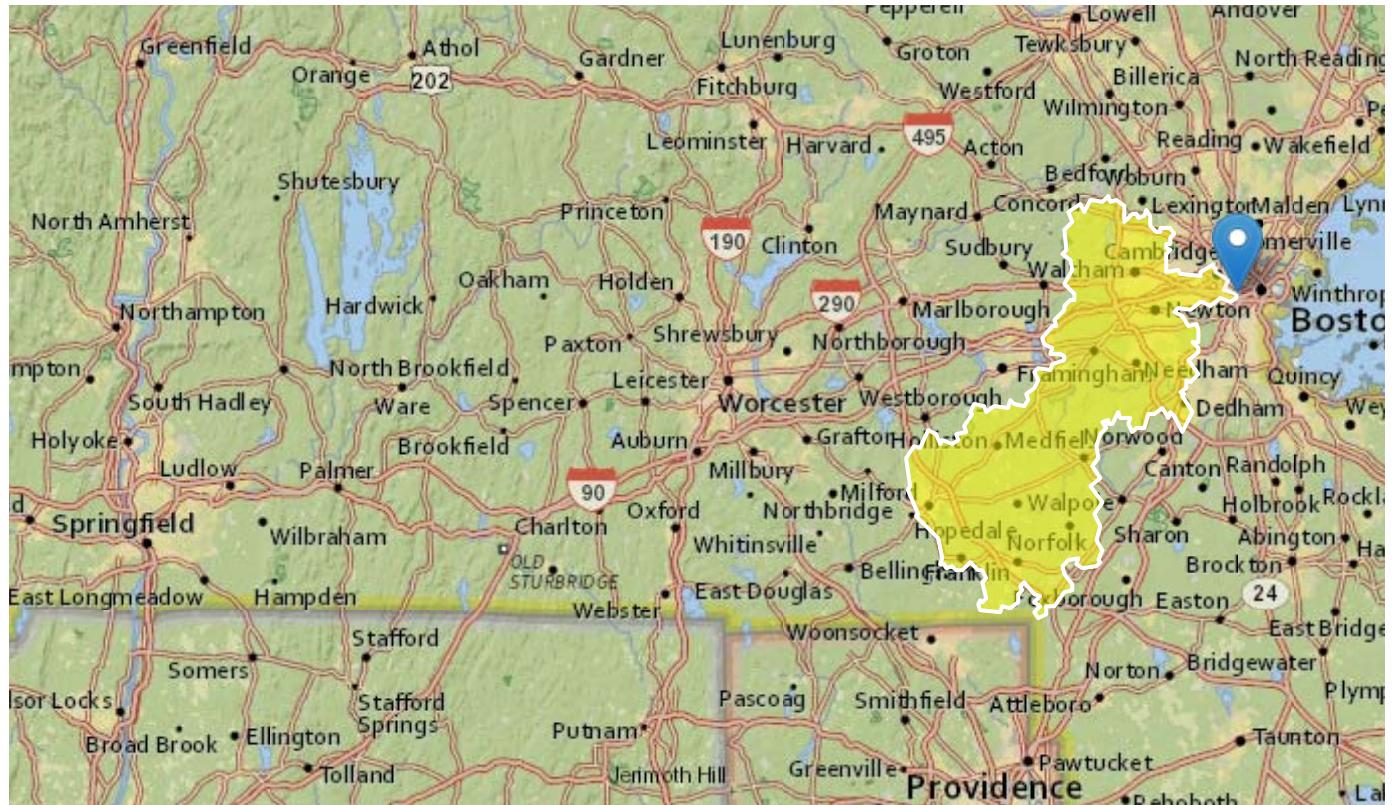
[1] StreamStats Report. Accessed online: <http://streamstatsags.cr.usgs.gov/streamstats/> (Refer to Attachment A)

# StreamStats Report

**Region ID:**

MA

**Workspace ID:**


MA20170712162616928000

**Clicked Point (Latitude, Longitude):**

42.35372, -71.09515

**Time:**

2017-07-12 16:27:04 -0400



## Basin Characteristics

### Parameter

| Code       | Parameter Description                                            | Value | Unit                 |
|------------|------------------------------------------------------------------|-------|----------------------|
| DRNAREA    | Area that drains to a point on a stream                          | 283   | square miles         |
| BSLDEM250  | Mean basin slope computed from 1:250K DEM                        | 2.326 | percent              |
| DRFTPERSTR | Area of stratified drift per unit of stream length               | 0.23  | square mile per mile |
| MAREGION   | Region of Massachusetts 0 for Eastern 1 for Western              | 0     | dimensionless        |
| PCTSNDGRV  | Percentage of land surface underlain by sand and gravel deposits | 47.9  | percent              |

| Parameter | Code | Parameter Description                | Value | Unit    |
|-----------|------|--------------------------------------|-------|---------|
| FOREST    |      | Percentage of area covered by forest | 42.01 | percent |

### Low-Flow Statistics Parameters [100 Percent (283 square miles) Statewide Low Flow WRIR00 4135]

| Parameter  | Code | Parameter Name                     | Value | Units                | Min Limit | Max Limit |
|------------|------|------------------------------------|-------|----------------------|-----------|-----------|
| DRNAREA    |      | Drainage Area                      | 283   | square miles         | 1.61      | 149       |
| BSLDEM250  |      | Mean Basin Slope from 250K DEM     | 2.326 | percent              | 0.32      | 24.6      |
| DRFTPERSTR |      | Stratified Drift per Stream Length | 0.23  | square mile per mile | 0         | 1.29      |
| MAREGION   |      | Massachusetts Region               | 0     | dimensionless        | 0         | 1         |

### Low-Flow Statistics Disclaimers [100 Percent (283 square miles) Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

### Low-Flow Statistics Flow Report [100 Percent (283 square miles) Statewide Low Flow WRIR00 4135]

| Statistic              | Value | Unit   |
|------------------------|-------|--------|
| 7 Day 2 Year Low Flow  | 49.6  | ft^3/s |
| 7 Day 10 Year Low Flow | 24.7  | ft^3/s |

### Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p.  
(<http://pubs.usgs.gov/wri/wri004135/>)

### Probability Statistics Parameters [100 Percent (283 square miles) Perennial Flow Probability]

| Parameter | Code | Parameter Name                       | Value | Units        | Min Limit | Max Limit |
|-----------|------|--------------------------------------|-------|--------------|-----------|-----------|
| DRNAREA   |      | Drainage Area                        | 283   | square miles | 0.01      | 1.99      |
| PCTSNDGRV |      | Percent Underlain By Sand And Gravel | 47.9  | percent      | 0         | 100       |

| Parameter |                      | Value | Units         | Min Limit | Max Limit |
|-----------|----------------------|-------|---------------|-----------|-----------|
| Code      | Parameter Name       |       |               |           |           |
| FOREST    | Percent Forest       | 42.01 | percent       | 0         | 100       |
| MAREGION  | Massachusetts Region | 0     | dimensionless | 0         | 1         |

### Probability Statistics Disclaimers [100 Percent (283 square miles) Perennial Flow Probability]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

### Probability Statistics Flow Report [100 Percent (283 square miles) Perennial Flow Probability]

| Statistic                              | Value | Unit |
|----------------------------------------|-------|------|
| Probability Stream Flowing Perennially | 1     | dim  |

### Probability Statistics Citations

**Bent, G.C., and Steeves, P.A., 2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006-5031, 107 p.**  
 ([http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR\\_2006-5031rev.pdf](http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf))

**From:** Vakalopoulos, Catherine (DEP)  
**To:** [Danielle M. DeWolfe](#)  
**Cc:** [Ruan, Xiaodan \(DEP\)](#)  
**Subject:** Re: Cambridge, MA RGP  
**Date:** Friday, July 14, 2017 10:34:01 AM

---

Hi Danielle,

Ok, I can confirm that the 7Q10 of 15.96 MGD (Charles River near Mass Ave Bridge) and using a design flow of 0.072 MGD, the dilution factor is 222.7 for this project located at 564 Mass Ave. in Cambridge are correct. You can attach this email to the NOI or write in today's date on the NOI where you have to check off that you have consulted with MassDEP. This will make it easier for Shauna Little when she is reviewing the NOI. Since the Charles River is not listed as an Outstanding Resource Water, you are all set from MassDEP.

Cathy

---

**From:** Danielle M. DeWolfe <[DDewolfe@sanbornhead.com](mailto:DDewolfe@sanbornhead.com)>  
**Sent:** Friday, July 14, 2017 9:40 AM  
**To:** Vakalopoulos, Catherine (DEP)  
**Subject:** RE: Cambridge, MA RGP

Hi Cathy,

Thanks. You are correct, the design flow is supposed to be 720,000 gpd.

Thanks again,

Danielle

--

**Danielle DeWolfe**  
Project Engineer

---

**SANBORN | HEAD & ASSOCIATES, INC.**

1 Technology Park Drive, Westford, MA 01886  
T 978.392.0900 D 978.577.1016 C 508.333.8695  
[www.sanbornhead.com](http://www.sanbornhead.com)

*Click here to follow us on [LinkedIn](#) / [Twitter](#) / [Facebook](#)*

---

*This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.*

---

**From:** Vakalopoulos, Catherine (DEP) [mailto:[Catherine.Vakalopoulos@MassMail.State.MA.US](mailto:Catherine.Vakalopoulos@MassMail.State.MA.US)]  
**Sent:** Thursday, July 13, 2017 6:05 PM  
**To:** Danielle M. DeWolfe <[DDewolfe@sanbornhead.com](mailto:DDewolfe@sanbornhead.com)>  
**Subject:** FW: Cambridge, MA RGP

Hi Danielle,

I can confirm that your 7Q10 of 15.96 MGD at this location on the Charles River near the Mass Ave. bridge is correct. However, I noticed a units issue in your design flow: 72,000 gpm is very high, are you sure it's not supposed to be gpd? The conversion you listed from gpd to MGD also makes me think perhaps the 72,000 gpm design flow is supposed to be gpd.

Please let me know which units to use and I will check your dilution factor calculation.

Thanks,

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection  
1 Winter St., Boston, MA 02108, 617-348-4026

 Please consider the environment before printing this e-mail

---

**From:** Danielle M. DeWolfe [<mailto:DDewolfe@sanbornhead.com>]

**Sent:** Wednesday, July 12, 2017 5:21 PM

**To:** Vakalopoulos, Catherine (DEP)

**Subject:** Cambridge, MA RGP

Good evening Cathy,

I am requesting information to be included as part of a Notice of Intent (NOI) for a Remediation General Report (RGP). The NOI is for construction dewatering during minor excavation activities at 564 Massachusetts Avenue in Cambridge, Massachusetts. Effluent will be discharged to the Charles River in Cambridge, Massachusetts, via a drain and outfall. The approximate lat/long of the outfall is 42.35372, -71.09515.

As part of the application to the USEPA for the RGP, Appendix V instructs that “the State must be contacted to confirm the critical low flow (7Q10) of the receiving water, dilution factor (DF), other appropriate hydrologic conditions, or to confirm site-specific limiting factors, including additional water quality-based effluent limitations (WQBELs).”

I have run the StreamStats application for this outfall location and I have attached the report. I have also attached calculations for the dilution factor, and came up with a DF of 222.7, using an anticipated discharge of 72,000 gpd (or 0.072 MGD).

Thank you in advance for your assistance, and please let me know if you require further information.

-Danielle

--  
**Danielle DeWolfe**  
Project Engineer

---

**SANBORN | HEAD & ASSOCIATES, INC.**  
1 Technology Park Drive, Westford, MA 01886  
T 978.392.0900 D 978.577.1016 C 508.333.8695

[www.sanbornhead.com](http://www.sanbornhead.com)

*Click here to follow us on [LinkedIn](#) / [Twitter](#) / [Facebook](#)*

---

*This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.*

**Enter number values in green boxes below**

Enter values in the units specified



|       |                                            |
|-------|--------------------------------------------|
| 15.96 | $Q_R$ = Enter upstream flow in <b>MGD</b>  |
| 0.072 | $Q_P$ = Enter discharge flow in <b>MGD</b> |
| 15.96 | Downstream 7Q10                            |

Enter a dilution factor, if other than zero



|       |
|-------|
| 222.7 |
|-------|

Enter values in the units specified



|     |                                                                         |
|-----|-------------------------------------------------------------------------|
| 409 | $C_d$ = Enter influent hardness in <b>mg/L</b> CaCO <sub>3</sub>        |
| 122 | $C_s$ = Enter receiving water hardness in <b>mg/L</b> CaCO <sub>3</sub> |

Enter **receiving water** concentrations in the units specified



|       |                                           |
|-------|-------------------------------------------|
| 7     | pH in <b>Standard Units</b>               |
| 23.4  | Temperature in <b>°C</b>                  |
| 0.178 | Ammonia in <b>mg/L</b>                    |
| 122   | Hardness in <b>mg/L</b> CaCO <sub>3</sub> |
| 0     | Salinity in <b>ppt</b>                    |
| 0     | Antimony in <b>µg/L</b>                   |
| 1.04  | Arsenic in <b>µg/L</b>                    |
| 0     | Cadmium in <b>µg/L</b>                    |
| 0     | Chromium III in <b>µg/L</b>               |
| 0     | Chromium VI in <b>µg/L</b>                |
| 4.24  | Copper in <b>µg/L</b>                     |
| 696   | Iron in <b>µg/L</b>                       |
| 2.97  | Lead in <b>µg/L</b>                       |
| 0     | Mercury in <b>µg/L</b>                    |
| 0     | Nickel in <b>µg/L</b>                     |
| 0     | Selenium in <b>µg/L</b>                   |
| 0     | Silver in <b>µg/L</b>                     |
| 0     | Zinc in <b>µg/L</b>                       |

Enter **influent** concentrations in the units specified

|       |                                        |
|-------|----------------------------------------|
| ↓     |                                        |
| 0     | TRC in <b>µg/L</b>                     |
| 0.062 | Ammonia in <b>mg/L</b>                 |
| 0.92  | Antimony in <b>µg/L</b>                |
| 2.49  | Arsenic in <b>µg/L</b>                 |
| 0     | Cadmium in <b>µg/L</b>                 |
| 0     | Chromium III in <b>µg/L</b>            |
| 0     | Chromium VI in <b>µg/L</b>             |
| 2.73  | Copper in <b>µg/L</b>                  |
| 281   | Iron in <b>µg/L</b>                    |
| 3.41  | Lead in <b>µg/L</b>                    |
| 0     | Mercury in <b>µg/L</b>                 |
| 0.86  | Nickel in <b>µg/L</b>                  |
| 3.78  | Selenium in <b>µg/L</b>                |
| 0     | Silver in <b>µg/L</b>                  |
| 0     | Zinc in <b>µg/L</b>                    |
| 5     | Cyanide in <b>µg/L</b>                 |
| 0     | Phenol in <b>µg/L</b>                  |
| 0     | Carbon Tetrachloride in <b>µg/L</b>    |
| 0     | Tetrachloroethylene in <b>µg/L</b>     |
| 1.4   | Total Phthalates in <b>µg/L</b>        |
| 1.4   | Diethylhexylphthalate in <b>µg/L</b>   |
| 0.09  | Benzo(a)anthracene in <b>µg/L</b>      |
| 0.09  | Benzo(a)pyrene in <b>µg/L</b>          |
| 0.12  | Benzo(b)fluoranthene in <b>µg/L</b>    |
| 0.05  | Benzo(k)fluoranthene in <b>µg/L</b>    |
| 0.08  | Chrysene in <b>µg/L</b>                |
| 0     | Dibenzo(a,h)anthracene in <b>µg/L</b>  |
| 0.07  | Indeno(1,2,3-cd)pyrene in <b>µg/L</b>  |
| 0     | Methyl-tert butyl ether in <b>µg/L</b> |

## **I. Dilution Factor Calculation Method**

### **A. 7Q10**

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

### **B. Dilution Factor**

Calculated as follows:

$$Df = \frac{Q_R + Q_P}{Q_P}$$

$$Q_R = 7Q10 \text{ in MGD}$$

$Q_P$  = Discharge flow, in MGD

## **II. Effluent Limitation Calculation Method**

### **A. Calculate Water Quality Criterion:**

Step 1. Downstream hardness, calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

$C_r$  = Downstream hardness in mg/L

$Q_d$  = Discharge flow in MGD

$C_d$  = Discharge hardness in mg/L

$Q_s$  = Upstream flow (7Q10) in MGD

$C_s$  = Upstream (receiving water) hardness in mg/L

$Q_r$  = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

$$\text{Total Recoverable Criteria} = \exp\{m_c [\ln(h)] + b_c\}$$

$m_c$  = Pollutant-specific coefficient ( $m_a$  for silver)

$b_c$  = Pollutant-specific coefficient ( $b_a$  for silver)

$\ln$  = Natural logarithm

$h$  = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

$$\text{WQC in } \mu\text{g/L} = \frac{\text{dissolved WQC in } \mu\text{g/L}}{\text{dissolved to total recoverable factor}}$$

## **B. Calculate WQBEL:**

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_d = \frac{Q_r C_r - Q_s C_s}{Q_d}$$

$C_r$  = Water quality criterion in  $\mu\text{g/L}$

$Q_d$  = Discharge flow in MGD

$C_d$  = WQBEL in  $\mu\text{g/L}$

$Q_s$  = Upstream flow (7Q10) in MGD

$C_s$  = Ustream (receiving water) concentration in  $\mu\text{g/L}$

$Q_r$  = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

$C_r$  = Water quality criterion in  $\mu\text{g/L}$

$Q_d$  = Discharge flow in MGD

$Q_r$  = Downstream receiving water flow in MGD

### **C. Determine if a WQBEL applies:**

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

$C_r$  = Downstream concentration in  $\mu\text{g/L}$

$Q_d$  = Discharge flow in MGD

$C_d$  = Influent concentration in  $\mu\text{g/L}$

$Q_s$  = Upstream flow (7Q10) in MGD

$C_s$  = Upstream (receiving water) concentration in  $\mu\text{g/L}$

$Q_r$  = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1 and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

**AND**

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

**AND**

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL

of Part 2.1.1 of the RGP for that parameter applies.

| Dilution Factor                 | 222.7                  |      |                         |                                   |      |
|---------------------------------|------------------------|------|-------------------------|-----------------------------------|------|
|                                 | TBEL applies if bolded |      | WQBEL applies if bolded | Compliance Level applies if shown |      |
| <b>A. Inorganics</b>            |                        |      |                         |                                   |      |
| Ammonia                         | <b>Report</b>          | mg/L | ---                     |                                   |      |
| Chloride                        | <b>Report</b>          | µg/L | ---                     |                                   |      |
| Total Residual Chlorine         | <b>0.2</b>             | mg/L | 2438                    | µg/L                              | ---  |
| Total Suspended Solids          | <b>30</b>              | mg/L | ---                     |                                   |      |
| Antimony                        | <b>206</b>             | µg/L | 141867                  | µg/L                              |      |
| Arsenic                         | <b>104</b>             | µg/L | 1986                    | µg/L                              |      |
| Cadmium                         | <b>10.2</b>            | µg/L | 0.3171                  | µg/L                              |      |
| Chromium III                    | <b>323</b>             | µg/L | 22760.0                 | µg/L                              |      |
| Chromium VI                     | <b>323</b>             | µg/L | 2534.7                  | µg/L                              |      |
| Copper                          | <b>242</b>             | µg/L | 1542.7                  | µg/L                              |      |
| Iron                            | <b>5000</b>            | µg/L | 67387                   | µg/L                              |      |
| Lead                            | <b>160</b>             | µg/L | 267.58                  | µg/L                              |      |
| Mercury                         | <b>0.739</b>           | µg/L | 200.80                  | µg/L                              |      |
| Nickel                          | <b>1450</b>            | µg/L | 13856.0                 | µg/L                              |      |
| Selenium                        | <b>235.8</b>           | µg/L | 1108.3                  | µg/L                              |      |
| Silver                          | <b>35.1</b>            | µg/L | 1211.9                  | µg/L                              |      |
| Zinc                            | <b>420</b>             | µg/L | 31835.6                 | µg/L                              |      |
| Cyanide                         | <b>178</b>             | mg/L | 1152.7                  | µg/L                              | ---  |
| <b>B. Non-Halogenated VOCs</b>  |                        |      |                         |                                   | µg/L |
| Total BTEX                      | <b>100</b>             | µg/L | ---                     |                                   |      |
| Benzene                         | <b>5.0</b>             | µg/L | ---                     |                                   |      |
| 1,4 Dioxane                     | <b>200</b>             | µg/L | ---                     |                                   |      |
| Acetone                         | <b>7970</b>            | µg/L | ---                     |                                   |      |
| Phenol                          | <b>1,080</b>           | µg/L | 66500                   | µg/L                              |      |
| <b>C. Halogenated VOCs</b>      |                        |      |                         |                                   |      |
| Carbon Tetrachloride            | <b>4.4</b>             | µg/L | 354.7                   | µg/L                              |      |
| 1,2 Dichlorobenzene             | <b>600</b>             | µg/L | ---                     |                                   |      |
| 1,3 Dichlorobenzene             | <b>320</b>             | µg/L | ---                     |                                   |      |
| 1,4 Dichlorobenzene             | <b>5.0</b>             | µg/L | ---                     |                                   |      |
| Total dichlorobenzene           | <b>---</b>             | µg/L | ---                     |                                   |      |
| 1,1 Dichloroethane              | <b>70</b>              | µg/L | ---                     |                                   |      |
| 1,2 Dichloroethane              | <b>5.0</b>             | µg/L | ---                     |                                   |      |
| 1,1 Dichloroethylene            | <b>3.2</b>             | µg/L | ---                     |                                   |      |
| Ethylene Dibromide              | <b>0.05</b>            | µg/L | ---                     |                                   |      |
| Methylene Chloride              | <b>4.6</b>             | µg/L | ---                     |                                   |      |
| 1,1,1 Trichloroethane           | <b>200</b>             | µg/L | ---                     |                                   |      |
| 1,1,2 Trichloroethane           | <b>5.0</b>             | µg/L | ---                     |                                   |      |
| Trichloroethylene               | <b>5.0</b>             | µg/L | ---                     |                                   |      |
| Tetrachloroethylene             | <b>5.0</b>             | µg/L | 731.5                   | µg/L                              |      |
| cis-1,2 Dichloroethylene        | <b>70</b>              | µg/L | ---                     |                                   |      |
| Vinyl Chloride                  | <b>2.0</b>             | µg/L | ---                     |                                   |      |
| <b>D. Non-Halogenated SVOCs</b> |                        |      |                         |                                   |      |
| Total Phthalates                | <b>190</b>             | µg/L | ---                     | µg/L                              |      |
| Diethylhexyl phthalate          | <b>101</b>             | µg/L | 487.7                   | µg/L                              |      |

|                          |            |      |        |      |     |      |
|--------------------------|------------|------|--------|------|-----|------|
| Total Group I Polycyclic |            |      |        |      |     |      |
| Aromatic Hydrocarbons    | <b>1.0</b> | µg/L | ---    |      |     |      |
| Benzo(a)anthracene       | <b>1.0</b> | µg/L | 0.8423 | µg/L | --- | µg/L |
| Benzo(a)pyrene           | <b>1.0</b> | µg/L | 0.8423 | µg/L | --- | µg/L |
| Benzo(b)fluoranthene     | <b>1.0</b> | µg/L | 0.8423 | µg/L | --- | µg/L |
| Benzo(k)fluoranthene     | <b>1.0</b> | µg/L | 0.8423 | µg/L | --- | µg/L |
| Chrysene                 | <b>1.0</b> | µg/L | 0.8423 | µg/L | --- | µg/L |
| Dibenzo(a,h)anthracene   | <b>1.0</b> | µg/L | 0.8423 | µg/L | --- | µg/L |
| Indeno(1,2,3-cd)pyrene   | <b>1.0</b> | µg/L | 0.8423 | µg/L | --- | µg/L |

#### Total Group II Polycyclic

|                       |            |      |     |  |  |  |
|-----------------------|------------|------|-----|--|--|--|
| Aromatic Hydrocarbons | <b>100</b> | µg/L | --- |  |  |  |
| Naphthalene           | <b>20</b>  | µg/L | --- |  |  |  |

#### E. Halogenated SVOCs

|                                 |                 |      |     |  |     |      |
|---------------------------------|-----------------|------|-----|--|-----|------|
| Total Polychlorinated Biphenyls | <b>0.000064</b> | µg/L | --- |  | 0.5 | µg/L |
| Pentachlorophenol               | <b>1.0</b>      | µg/L | --- |  |     |      |

#### F. Fuels Parameters

|                              |               |      |      |      |  |  |
|------------------------------|---------------|------|------|------|--|--|
| Total Petroleum Hydrocarbons | <b>5.0</b>    | mg/L | ---  |      |  |  |
| Ethanol                      | <b>Report</b> | mg/L | ---  |      |  |  |
| Methyl-tert-Butyl Ether      | <b>70</b>     | µg/L | 4433 | µg/L |  |  |
| tert-Butyl Alcohol           | <b>120</b>    | µg/L | ---  |      |  |  |
| tert-Amyl Methyl Ether       | <b>90</b>     | µg/L | ---  |      |  |  |