

HALEY & ALDRICH, INC. 465 Medford Street, Suite 2200 Boston, MA 02129 (617) 886.7400

20 September 2017 File No. 129168-007

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

Attention: EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent (NOI)

Temporary Construction Dewatering Harrison Albany Block Development

89 East Dedham Street Boston, Massachusetts

Dear Ms. Little:

On behalf of our client, MEPT/LMP Harrison/Albany Block LLC, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during construction activities at the Harrison Albany Block Development Site, located in Boston, Massachusetts.

Site Location

The subject Site is an approximately 3-acre block bounded by Harrison Avenue to the north, East Dedham Street to the east, East Canton Street to the west, and Thorn Street/rear of 575 Albany Street to the south. The alley formerly known as Thorn Street forms the southern Site boundary behind the three 1- to 3-story brick buildings at 587, 591 and 595 Albany Street (which are not part of the Site). Andrews Street also bisects the site in an approximate east-to-west direction with a connection to East Dedham Street and East Canton Street. The general Site locus and layout are shown on Figures 1 and 2, respectively.

Five buildings exist on the Site – four of the buildings are vacant including 75 East Dedham Street, the loading dock addition to 575 Albany Street, 100 East Canton Street and 123 East Dedham Street. The Gambro building at 660 Harrison Avenue is utilized for medical office and laboratory. The remainder of the Site is a paved surface parking lot. Expansion of the Gambro medical building at 660 Harrison

Avenue is planned for a future phase of the project, the current project Site includes the Gambro parking lot extending to Andrews Street. Renovation of the 575 Albany Street building is planned for a future phase of the project but the building footprint is not included within the current project limits. Existing grades generally range from El. 15 to El. 16 BCB north of Andrews Street; and El. 16 to El. 19 BCB south of Andrews Street. ¹

Historical Site Usage

General progression of landfilling occurred between 1795 and 1895 in the South End neighborhood where the Site is located. The original (circa 1630) shoreline crossed the site in the general area of Andrews Street, remaining relatively unchanged until about 1850. Between about 1850 and 1895, a period of major filling occurred that included that area of the site extending from Andrews Street to Albany Street and beyond towards the Fort Point Channel.

The earliest structure believed to be on the site is Urann's Wharf on which City stable buildings were built. In the late 1800's and early 1900's the site was mainly occupied by a combination of numerous lumber yards, tenement houses, a braid factory, paint shop, a wagon shed and vacant buildings.

In 1938, the lumber yard and stores no longer exist and have been replaced with a sheet metal fabricating building and a private garage building. In 1951, the major changes identified from the Sanborn maps are that the private garage along East Dedham Street was converted into a motor freight station. In 1964, a portion of the motor freight station was converted into a metal window manufacturing facility; storage buildings for plumbing and oil supplies and tires existed on East Dedham Street. The former filling station and most of the buildings north of Andrews Street were demolished and used for parking, scrap metal and junk storage.

In 1988, a building identified as the New England Nuclear (NEN) Corporation had been constructed along the southern portion of East Canton Street and East Dedham Street and integrated with the 575 Albany Street building. Surface parking areas extended north of the NEN facility to Harrison Avenue and a one-story building was constructed at the north end of East Canton Street. The 75 East Dedham Street residence was the only other building on the site at that time.

Sanborn Maps dated 1990, 1992, 1993, 1994, 1995, 1998, and 2002 indicate little change at the site between 1988 and 2002.

Proposed Activities

The proposed development currently involves demolition of four buildings (75 and 123 East Dedham Street, the loading dock addition to 575 Albany Street and 100 East Canton Street), and the construction of two new 11-story residential buildings within the middle of the 3-acre block – (referred to herein as Building 1 and Building 2). Other components to the development include numerous site improvements

¹ Elevations reported herein reference Boston City Base (BCB) Datum, wherein El. 0.0 BCB is 5.65 ft below the National Geodetic Vertical Datum (NGVD) 1929 and 6.46 ft below North American Vertical Datum (NAVD) 1988.

surrounding the buildings, including a courtyard between Buildings 1 and 2 connecting East Dedham Street to East Canton Street, relocation of Andrews Street and various new utilities.

Buildings 1 and 2 along with the ground level courtyard area will be sited over a single below grade parking garage of approximate dimensions 460 ft by 185 ft (85,100 sf), and which will include two (2) below grade parking levels. The garage will extend beneath the entirety of the new buildings and ground level courtyard area, as illustrated on Figure 2.

Construction of the underground parking garage and building foundations will require an excavation from current ground surface (avg. El. 17 BCB) down to approximately El. -15 to El. -17 BCB (about 32 to 34 ft below existing site grades); locally deeper excavations will be required at some interior column locations and other areas to achieve foundation bearing elevation in the natural, inorganic clay soils and remove unsuitable bearing soils (organics) beneath the planned lowest level garage slab.

MassDEP Regulatory Background

MassDEP Release Tracking Numbers (RTNs) 3-4734, 3-29425 and 3-2197 under the Massachusetts Contingency Plan, 310 CMR 40.0000, (MCP) currently apply to the Site. These RTNs previously achieved MCP compliance with the filing of Response Action Outcome Statements (RAOs) as described below.

- RTN 3-4734 is associated with the 660 Harrison Avenue parcel which extends south to the
 existing Andrews Street. A Class A-3 RAO which relies on an AUL was filed for RTN 3-4734 in
 March 1999. The AUL addressed metals in soils.
- RTN 3-2197 applies to a former underground storage tank (UST) in the loading dock at the rear
 of 575 Albany Street. A Class A-2 RAO which does not rely on an AUL was filed in 1996 for RTN
 3-2197.
- RTN 3-29425 covers the overall Parcel B (Andrews Street to Albany Street). A Class B-1 RAO was
 filed for the overall Parcel B (RTN 3-29425) on 25 August 2010, which indicates a condition of no
 significant risk existed without the need for remediation, but that contamination was not
 consistent with background. Chemical constituents detected at Parcel B included PAHs and
 metals attributed to urban fill and petroleum due to historic releases from former USTs.

Analytical data developed from preliminary site characterization in February 2016 indicated a new 120-day MCP reporting obligation for levels of lead and various polycyclic hydrocarbons (PAHs) detected in urban fill. A BWSC103 Release Notification Form (RNF) was submitted to MassDEP on 30 August 2016. MassDEP assigned RTN 3-33789 for these soil constituents.

A soil precharacterization program was performed in 2017 to support off-site transport of excavated soils during planned Site development. Results published in the Haley & Aldrich letter report entitled "Summary of Soil Precharacterization Program," dated 18 April 2017, indicated additional metals, SVOCs and total petroleum hydrocarbons (TPH) in soils at levels exceeding the RCS-1 Reportable Concentrations. The submission of the data contained in this report to MEPT/LMP Harrison/Albany

Block LLC on 18 April 2017 is considered to constitute the date "knowledge" was obtained of the release. A revised BWSC 103 RNF was submitted to MassDEP on 8 August 2017 under RTN 3-33789, satisfying these additional 120-day reporting obligations. An MCP Tier Classification was submitted to MassDEP on 18 August 2017, prior to the 1-year anniversary of the original RTN 3-33789 notification. An MCP Release Abatement Measure (RAM) Plan was also submitted to MassDEP on 18 August 2017 to cover soil and groundwater management during proposed construction under RTNs 3-33789 and 3-4734.

Massachusetts Department of Public Health (MassDPH)

Perkin Elmer previously occupied the buildings at 100 East Canton Street, 123 East Dedham Street and 575 Albany Street (abutting the southeast Site boundary) and held License No. 00-3200 for possession of radiological materials issued by Massachusetts Department of Public Health Radiation Control Program (MassDPH RCP). A fire occurred at the 575 Albany Street building in March 2005 that apparently dispersed tritium within the building and into the subsurface geologic profile as a result of firefighting activities.

Philotechnics, on behalf of Perkin Elmer, subsequently performed radiological surveys, remedial actions and radiological decommissioning within the 575 Albany Street building footprint during May 2005 to January 2009. Upon Perkin Elmer ceasing work at the property, license termination activities were performed which included Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) surveys of interior building surfaces and soil beneath the 575 Albany Street building.

Decommissioning activities at 575 Albany Street included excavation of 100 tons of soil from beneath the ground floor slab and off-site disposal as radioactive waste, and radiologic analyses of approximately 130 confirmatory soil samples. License termination activities for Buildings 100, 123, and 575 under RCP License No. 00-3200 were documented in Philotechnics Radiological Decontamination and Decommissioning Reports, dated 2007 and 2008, which were submitted to the MassDPH. The Perkin Elmer buildings were released from RCP License No. 00-3200 in April 2007 (100 East Canton Street and 123 East Dedham Street) and July 2009 (575 Albany Street).

Haley & Aldrich reviewed available radiological investigations that were performed on behalf of Perkin Elmer and others for the historical release at 575 Albany Street and prepared a report, dated 1 September 2016, which was submitted to MassDPH in connection with planned Site development. In summary, Haley & Aldrich concluded that residual radionuclides at the Project Site were below MassDPH limits and met the RCP regulations.

MassDPH reviewed the Haley & Aldrich report and issued a letter, dated 4 November 2016, which outlined requirements for further assessment of the Site under RCP regulations to increase spatial and vertical data coverage within the area of the proposed underground parking structure, and the footprint of 575 Albany Street. A meeting was also held with MassDPH, MassDEP, EPA, Haley & Aldrich and Radiation Safety & Control Services (RSCS) on 22 November 2016 to discuss site assessment requirements.

Work Plans, dated 5 January 2017 and 20 April 2017, were prepared by RSCS in conjunction with Haley & Aldrich to conduct the required radiological assessment of the underground parking structure site (designated Area 1) and the 575 Albany Street footprint and connecting loading dock (designated Area 2, Phases 1 and 2), respectively. These Work Plans were submitted to, and approved by, MassDPH. RSCS radiological test boring locations within the project Site are shown of Figure 2.

Results of these investigations were presented in the RCSC Reports entitled "Final Status Survey Release Report for Area 1 at the Harrison/Albany Block Development, Technical Support Document No. 17-011 Rev 00," dated 28 March 2017, and Final Status Survey Release Report for Area 2 at the Harrison/Albany Block Development, Technical Support Document No. 17-061 Rev 01," dated 25 July 2017. Reports discussed above were provided to Mr. Anthony Honnellio of the US EPA.

In summary, conclusions for the area of proposed construction activities, which excludes the 575 Albany Street footprint, were as follows:

- Tritium was not detected in soil above natural background.
- Tritium was not considered a contaminant of concern by MassDEP relative to in-state soil disposal
- Tritium concentrations detected in groundwater were significantly less than the EPA Maximum Contaminant Level (MCL) for drinking water, and
- Construction dewatering discharge could be permitted in accordance with the EPA NPDES Remediation General Permit (RGP) process.

Based on discussions in a 21 April 2017 meeting and subsequent communications, MassDPH, MassDEP and EPA verbally acknowledged concurrence with these findings. Written agreement with RSCS findings was issued in a letter from MassDPH dated 8 August 2017. In summary, MassDPH agreed that radiological controls were not required for "Area 1" corresponding to the proposed boundaries of RAM activities for the underground parking structure. It is understood that MassDEP will issue a companion letter concluding that radiological materials were not a contaminant of concern in soils and groundwater.

We understand from the above discussions and communications, Mr. Anthony Honnellio of the EPA concluded the following regarding application for a NPDES RGP permit:

- Groundwater tritium levels (ranging from 718 pCi/L to 1,020 pCi/L) are well below the EPA MCL for tritium in drinking water of 20,000 pCi/L within Area 1 and below the 105 CMR 120.296.
- Discharge of dewatering effluent to the storm drain system under the 105 CMR 120.296, is acceptable.
- EPA concurs that the tritium levels are below the referenced applicable criteria for discharge, and the project should submit a Notice of Intent (NOI) for discharge under the normal process for the EPA's NPDES RGP.

We also understand that Mr. Honnellio will discuss tritium discharge levels with the NOI technical reviewer and that, pending site water quality meeting other RGP discharge criteria, Mr. Honnellio did not expect the tritium to be an issue with obtaining NOI approval.

GROUNDWATER QUALITY DATA

Previous Groundwater Quality Data

Groundwater analytical data was obtained by Haley & Aldrich, Inc. during two sampling events in February and March 2016. Observation well B106(MW) was sampled in February 2016 for VOCs and gasoline range organics, as part of one of the tritium studies conducted at the Site. Observation well HA-2 (OW) was sampled in March 2016 for EPA 2010 NPDES Remediation General Permit (RGP) permit parameters. The analyses did not detect concentrations above applicable MCP concentrations. The data are included in the attached Table I, and the sampling locations are shown on Figure 2. Results of groundwater analysis conducted as part of the tritium studies completed at the site are summarized above. Full reports have been provided to Mr. Honnellio.

Recent Groundwater Quality Data

One groundwater sample was obtained from observation wells R-C6(OW) in June 2017. The collected sample was submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA, for chemical analysis of 2017 NPDES Remediation General Permit parameters including VOCs, SVOCs, PAHs, total metals, TPH, pesticides, PCBs, total suspended solids (TSS), chloride, total cyanide, total phenolics, and total residual chlorine.

Refer to Table I for a summary of groundwater analytical data. The recent groundwater analyses did not detect concentrations of chemical constituents above applicable MCP reportable concentrations. The construction dewatering effluent at the Site will be managed under a Remediation General Permit. The locations of the observation well R-C6(OW) is shown on Figure 2.

Ethanol Discussion

Ethanol sampling was conducted on the groundwater sample collected in October 2016 and analyzed via Method 8015D. The site history does not suggest that ethanol was stored at the property, or that a petroleum product containing ethanol was released at the site. Ethanol has been increasingly used in fuels since 2006 (according to the 2016 NOI Fact Sheet), and according to site history, the site has been used for commercial purposes and as a parking lot since the late 1980's, with no known fuel-related storage or handling activities conducted onsite.

Receiving Water Quality Information and Dilution Factor

On 9 June 2017, Haley & Aldrich collected a receiving water sample from the Fort Point Channel area using a disposable polyethylene bailer. The surface water sample was collected and submitted to Alpha for chemical analysis of pH, ammonia and salinity. Field parameters, including pH and temperature were

collected from surface water sample at the time of sampling. The results of water quality testing are summarized in Table I.

The pH and temperature readings collected in the field were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). It is our understanding that since the receiving water is a saltwater body, hardness does not need to be analyzed on either the effluent water or receiving water. We have additionally confirmed with the MassDEP that the dilution factor for the receiving waters is 1.

Effluent Criteria Determination

The EPA suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the site. Groundwater and Receiving Water data were input and the resulting criteria was tabulated in the attached Table I. As requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculation will be submitted to the EPA via email, for their review upon submission of this NOI.

Dewatering System and Off-site Discharge

During the remedial activities, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage and construction-generated water to enable remedial excavations in-the-dry. Dewatering activities are anticipated to start in September 2017 and is anticipated to be required for up to 18 months. On average, we estimate effluent discharge rates of about 50 gallons per minute (gpm), with occasional peak flows of approximately 100 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations or from dewatering wells installed at the site.

Construction dewatering includes piping and discharging to storm drains located on or near the site that discharge to the Boston Inner Harbor at the Fort Point Channel. An effluent treatment system has been designed by the Contractor to meet the 2017 NPDES RGP Discharge Effluent Criteria. Prior to discharge, collected water is routed through a sedimentation tank and a bag filter and other necessary treatment components, to remove suspended solids and undissolved chemical constituents, as shown on Figure 3.

NMFS Eligibility

Based on our review of the NMFS criterion, it is the opinion of Haley & Aldrich that related activities under the NPDES RGP are not likely to adversely affect federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and should not result in a take of listed species.

According to Appendix I: Endangered Species Act (ESA) Guidance and Eligibility Criteria in the NPDES RGP, and reference footnoted below2, the Atlantic Sturgeon and the Shortnose Sturgeon are the only ESA-listed species under the NMFS jurisdiction that may have a critical habitat in Massachusetts Bay. The Shortnose Sturgeon mainly occupy deep channel sections of large coastal rivers and nearshore marine waters.

² https://www3.epa.gov/region1/npdes/remediation/RGPNMFSletter.pdf

The outfall to be used for the Harrison Albany Block Development discharge is not situated adjacent to large coastal rivers and is not expected to affect the Shortnose Sturgeon population. The closest river to the outfall is the Charles River, which is approximately 1.25 miles from the site. Similarly, the Atlantic Sturgeon is more commonly found in large rivers and brackish waters; adults who live in coastal waters are typically found in shallow areas with sand and gravel substrates. The outfall proposed for discharge is not located in an area where Atlantic Sturgeon may be found, and the discharge is similarly not expected to affect its population. Furthermore, according the CRWA and NRWA references below3, resident populations of Sturgeon no longer exist in the Charles River.

Owner and Operator Information

Owner:

MEPT/LMP Harrison/Albany Block LLC c/o Leggat McCall Properties LLC 10 Post Office Square, Suite 1300 Boston, MA 02109

Contact: Sam Reiche

Operator:

Suffolk Construction Company 65 Allerton Street Boston, MA 02119 Contact: Douglas Kimble

Appendices

The completed "Suggested Notice of Intent" (NO)I form as provided in the RGP is enclosed in Appendix A. The site owner is the MEPT/LMP Harrison/Albany Block LLC. MEPT/LMP Harrison/Albany Block LLC has hired Suffolk Construction Company as the Contractor conducting the site work, including dewatering activities. The excavation subcontractor will operate the dewatering system. Haley & Aldrich is monitoring the Contractor's dewatering activities on behalf of MEPT/LMP Harrison/Albany Block LLC in accordance with the requirements for this NOI submission.

Appendices B and C include the National Register of Historic Places and Endangered Species Act Documentation, respectively. Appendix D provides a copy of the Boston Water and Sewer Dewatering Permit provided by the BWSC as part of the previous RGP submission. Copies of the groundwater testing laboratory data reports are provided in Appendix E. Appendix F provides the Site Contractor's dewatering submittal which includes details of the dewatering system. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

 $^{3 \} http://blog.crwa.org/blog/5-migratory-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish/planes-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish/planes-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/history-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watershed/natural-history-fish-found-in-the-charles-river-ecosystem \ https://www.neponset.org/your-watersh$

Closing

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Kenneth N. Alepidis

Senior Technical Specialist - Geology

Elliot I. Steinberg, P.E., LSP,

Senior Associate

Attachments:

Table I - Summary of Groundwater Quality Data

Figure 1 – Site Locus

Figure 2 – Site and Groundwater Monitoring Well Location Plan

Figure 3 – Proposed Treatment System Schematic

Figure 4 – Receiving Water Outfall

Appendix A – Notice of Intent (NOI) for Remediation General Permit (RGP)

Appendix B – National Register of Historic Places and Massachusetts Historical Commission Documentation

Appendix C – Endangered Species Act Documentation

Appendix D – BWSC Permit Application

Appendix E – Laboratory Data Reports

Appendix F – Contractor Dewatering Submittal

c: MEPT/LMP Harrison/Albany Block LLC; Attn: Sam Reiche, Harold Nash US Environmental Protection Agency; Anthony Honnellio

\\haleyaldrich.com\share\bos_common\129168 - Harrison-Albany\007 - Construction-Related Permit Support\NPDES RGP\Text\2017-0920-HAI-Harrison Albany NPDES RGP Text-F.docx

TABLE I SUMMARY OF WATER QUALITY DATA ALBANY-HARRISON BOSTON, MA FILE NO. 41737-017

LOCATION	2017 NPDES	MCP RCGW-2	P106 (MM)	HA-2 (OW)	R-C6 (OW)	RECEIVING
SAMPLING DATE	RGP Project-		B106 (MW) 2/1/2016	3/21/2016	09-JUN-17	WATER-060917 09-JUN-17
LAB SAMPLE ID	Specific Effluent Limits	Reportable Criteria	391208002	L1608112-01	L1719410-01	L1719411-01
LAB SAWIFLE ID	(mg/l)	mg/l	391200002	L1000112-01	L1719410-01	L1719411-01
VOCa by CC/MS						
VOCs by GC/MS Total VOCs by GC/MS	NA	NA	ND	ND	ND	
Total BTEX	0.1	NA NA	ND ND	ND ND	ND ND	
Total BTEX	0.1	INA	ND	IND	IND	_
VOCs by GC/MS-SIM (mg/l)						
1,4-Dioxane	0.2	6	-	ND(0.0015)	ND(0.0015)	-
0,400 1 00,440						
SVOCs by GC/MS	NA	NA	-	ND	ND	
Total SVOCs by GC/MS Total Phthalates	0.19	NA NA	-	ND ND	ND ND	-
Total Phinalates	0.19	NA	-	ND	ND	-
SVOCs by GC/MS-SIM						
Total Group I PAHs	0.001	NA	-	ND	ND	-
Acenaphthene	NA	10	-	ND(0.00005)	ND(0.00005)	-
Acenaphthylene	NA	0.04	-	ND(0.0001)	ND(0.00005)	-
Anthracene	NA	0.03	-	ND(0.0001)	ND(0.00005)	-
Benzo(ghi)perylene	NA	0.02	-	ND(0.0001)	ND(0.00005)	-
Fluoranthene	NA	0.2	-	ND(0.0001)	ND(0.00005)	-
Fluorene	NA	0.04	-	ND(0.0001)	ND(0.00005)	-
Naphthalene	0.02	0.7	-	ND(0.0001)	ND(0.00005)	-
Phenanthrene	NA	10	-	ND(0.0001)	ND(0.00005)	-
Pyrene Total Group II PAHs	NA 0.1	0.02 NA	-	ND(0.0001) ND	ND(0.00005) ND	-
Pentachlorophenol	0.1 0.001	0.2	-	ND(0.0004)	ND(0.0004)	-
Other SVOCs by GC/MS-SIM	NA	NA	-	ND	ND	-
Total Metals (mg/l)						
Antimony, Total	0.206	NA	-	0.00215	ND(0.002)	-
Arsenic, Total	0.104	NA	-	0.00327	0.00575	-
Cadmium, Total	0.0102	NA	-	ND(0.0001)	ND(0.0001)	-
Chromium, Total	0.323	NA	-	0.00396	0.00695	-
Chromium, Hexavalent	0.323	NA	-	ND(0.005)	ND(0.005)	-
Copper, Total	0.0037	NA	-	0.00607	ND(0.0005)	-
Iron, Total Lead, Total	5 0.16	NA NA	-	ND(0.025)	1.91 ND(0.00025)	-
Mercury, Total	0.000739	NA NA	-	ND(0.00025) ND(0.0001)	ND(0.00023)	
Nickel, Total	1.45	NA NA	-	ND(0.0001)	0.00438]
Selenium. Total	0.2358	NA	_	0.00663	ND(0.0025)	_
Silver, Total	0.0351	NA	-	ND(0.0002)	ND(0.0020)	_
Zinc, Total	0.42	NA	-	ND(0.005)	ND(0.005)	-
					,	
Dissolved Metals (mg/l)		_				
Antimony, Dissolved	NA	8	-	0.00225	-	-
Arsenic, Dissolved	NA	0.9	-	0.00339	-	· ·
Cadmium, Dissolved	NA	0.004	-	ND(0.0001)	-	· -
Chromium, Dissolved Copper, Dissolved	NA NA	0.3	-	0.00389	-	-
Iron, Dissolved	NA NA	100 NA		0.0058 ND(0.025)		1 [
Lead, Dissolved	NA NA	0.01	- -	ND(0.0025)	-	-
Mercury, Dissolved	NA NA	0.01	-	ND(0.00023)	-	I :
Nickel, Dissolved	NA NA	0.02	- -	ND(0.0001) ND(0.002)	-	
Selenium, Dissolved	NA NA	0.1	_	0.0067	_	
Silver, Dissolved	NA	0.007	-	ND(0.0002)	-	-
Zinc, Dissolved	NA	0.9	_	ND(0.005)	_	-

TABLE I SUMMARY OF WATER QUALITY DATA ALBANY-HARRISON BOSTON, MA FILE NO. 41737-017

LOCATION SAMPLING DATE LAB SAMPLE ID	2017 NPDES RGP Project- Specific Effluent Limits (mg/l)	MCP RCGW-2 Reportable Criteria mg/l	B106 (MW) 2/1/2016 391208002	HA-2 (OW) 3/21/2016 L1608112-01	R-C6 (OW) 09-JUN-17 L1719410-01	RECEIVING WATER-060917 09-JUN-17 L1719411-01
EDIT ((II)						
EPH (mg/l)	NIA	_		ND(0.05)		
C11-C22 Aromatics, Adjusted	NA	5	-	ND(0.05)	-	-
C19-C36 Aliphatics	NA	50	-	ND(0.05)	-	-
C9-C18 Aliphatics	NA	5	-	ND(0.05)	-	-
VPH (mg/l)						
C5-C8 Aliphatics, Adjusted	NA	3	-	ND(0.025)	-	-
C9-C10 Aromatics	NA	4	-	ND(0.025)	-	-
C9-C12 Aliphatics, Adjusted	NA	5	-	ND(0.025)	-	-
Microextractables by GC (mg/l)						
1,2-Dibromo-3-chloropropane	NA	1	_	ND(0.000005)	ND(0.000005)	_
1,2-Dibromoethane	NA	0.002	-	ND(0.000005)	ND(0.000005)	-
PCBs by GC (mg/l)						
Total PCBs	0.0005+	NA	-	ND	ND	-
General Chemistry (MG/L)						
Chlorine, Total Residual	0.05+	NA	-	ND(0.01)	ND(0.01)	-
Cyanide, Amenable	NA	NA	-	ND(0.005)	-	-
Cyanide, Physiologically Available	NA	0.03	-	ND(0.0025)	-	-
Cyanide, Total	0.005+	0.03	-	0.005	ND(0.0025)	-
Phenolics, Total	NA	NA	-	ND(0.015)	ND(0.015)	-
Chloride	Report Only	NA	-	1650	642	-
Solids, Total Suspended	30	NA	-	ND(2.5)	6.1	-
Gasoline Ranges Organics	NA	NA	22.1	- 1	-	
Salinity	NA	NA	-	-	ND	8.1
Hardness	NA	NA	-	-	135	-
pH (H)	NA	NA	-	-	7.1	7.4
Nitrogen, Ammonia	Report Only	NA	-	-	0.466	0.198
TPH	5	5	-	ND(2)	ND(2)	-

ABBREVIATIONS:

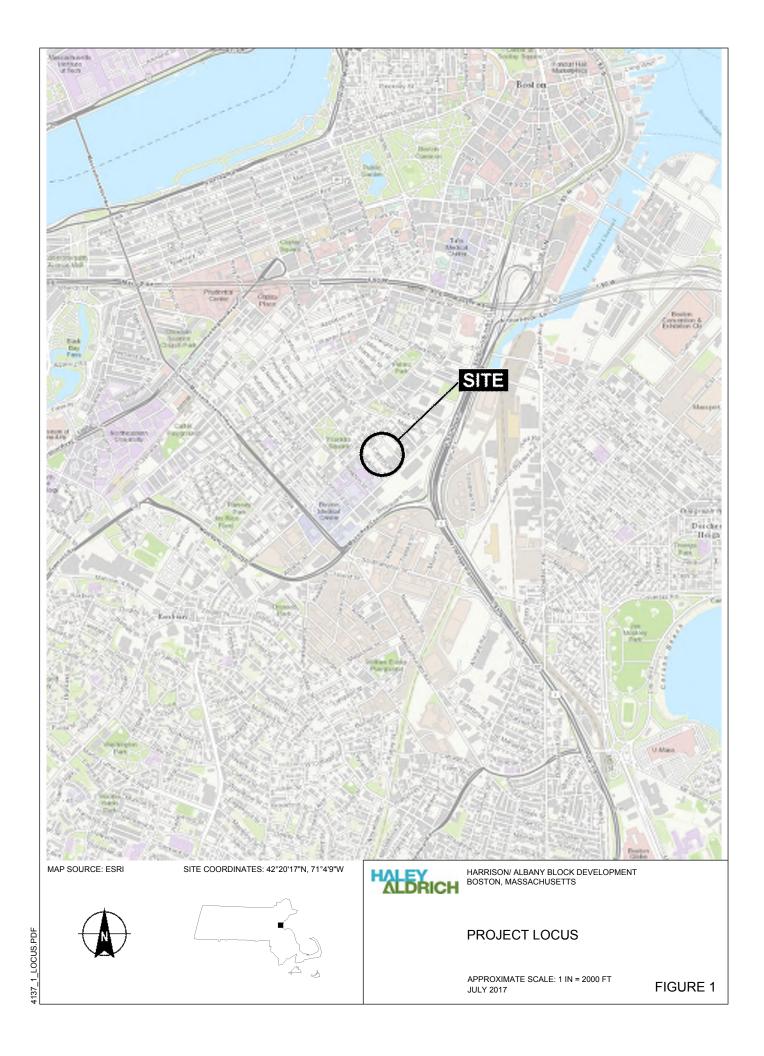
-: Not Analyzed

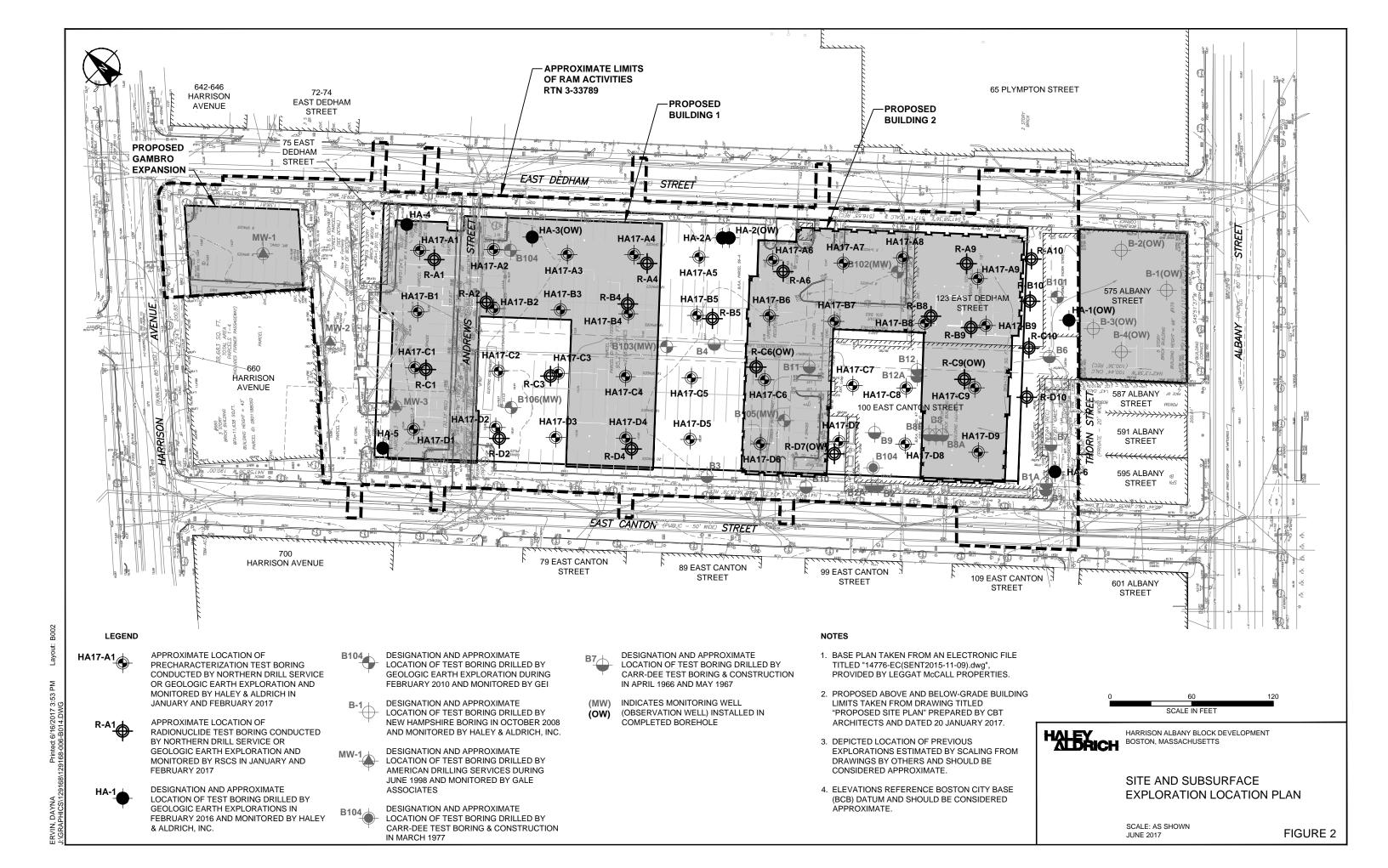
NA: Not applicable.

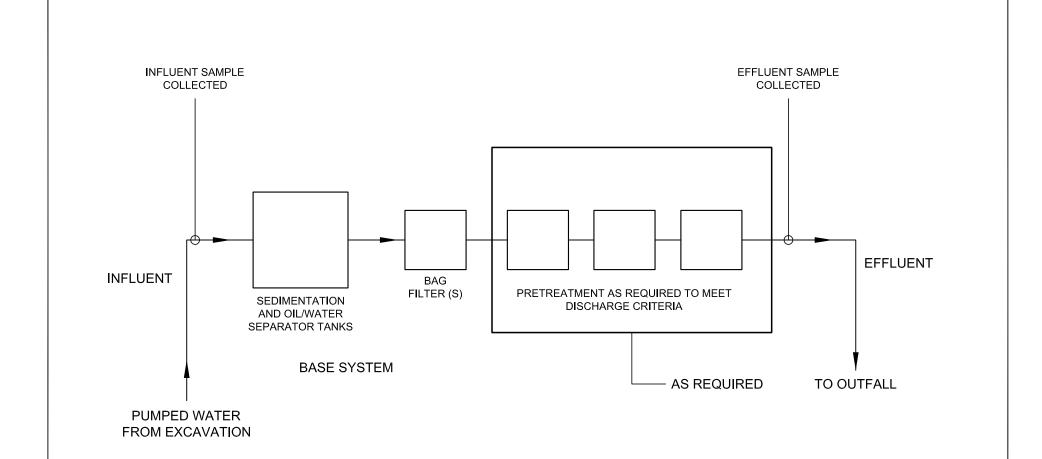
ND(2.5): Not detected; number in parenthesis is one-half the laboratory detection limit.

VOCs: Volatile Organic Compounds

SVOCs:Semivolatile Organic Compounds


EPH: Extractable Petroleum Hydrocarbons


VPH: Volatile Petroleum Hydrocarbons


PCBs: Polychlorinated Biphenyls TPH: Total Petroleum Hydrocarbons

NOTES

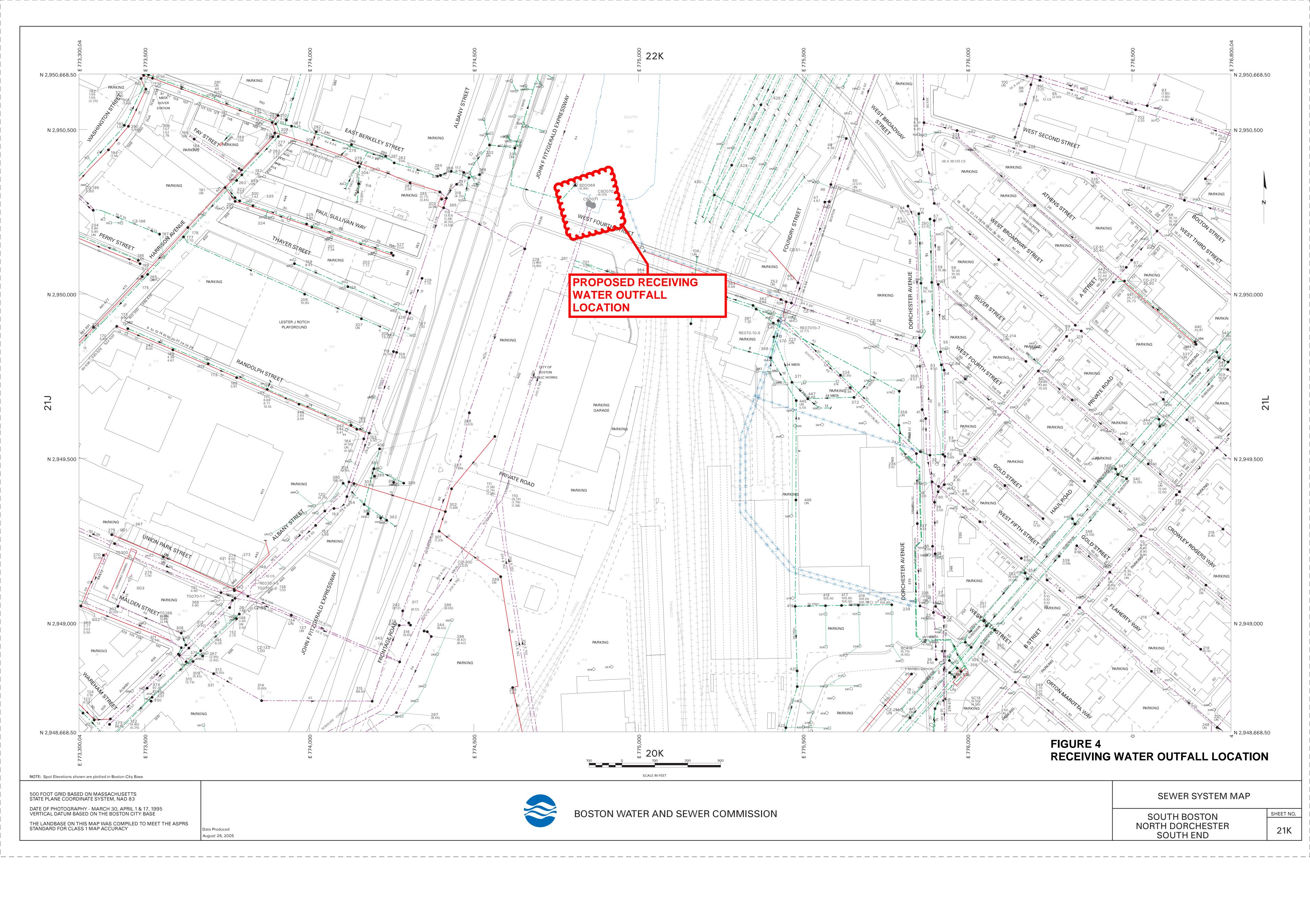
- 1. This table includes only those compounds detected on the dates indicated.
- 2. Gray shaded values indicate an exceedance of 2017 Project-Specific NPDES RGP effluent criteria.
- 3. +: Indicates compliance limits are equal to the minimum level (ML) of the test method

LEGEND:

→ DIRECTION OF FLOW

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.



HARRISON ALBANY BLOCK DEVELOPMENT BOSTON, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE JULY 2017

FIGURE 3

APPENDIX A

Notice of Intent (NOI) for Remediation General Permit (RGP)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: Harrison Albany Block	Site address:						
Development	Street: 89 East Dedham Street						
	City: Boston		State: MA	Zip: 02118			
2. Site owner	Contact Person: Sam Reiche						
MEPT/LMP Harrison/Albany Block LLC	Telephone: 617-422-7051	Email: sar	m.reiche@	@Imp.com			
	Mailing address: 10 Post Office Square, Suite 1300 Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ※ Private ☐ Other; if so, specify:	City: Boston		State:MA	Zip: 02109			
3. Site operator, if different than owner	Contact Person: Douglas Kimble						
Suffolk Construction Company	Telephone: 617-517-5277 Email:						
	Mailing address: 65 Allerton Street Street:						
	City: Boston		State: MA	Zip:02119			
4. NPDES permit number assigned by EPA: N/A	5. Other regulatory program(s) that apply to the site (c	check all tha	at apply):				
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	3-4734 □ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ CERCLA ☐ UIC Prog ☐ POTW F ☐ CWA Se	gram Pretreatment				

В.	Receiving	water	information:
----	-----------	-------	--------------

Destruction of the Lead Food Destruction		Classification of receiving water(s):						
Boston Inner Harbor/Fort Point Channel	MA70-02	SB						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River								
2. Has the operator attached a location map in accordance with	h the instructions in B, above? (check one): X Yes \square	No						
Are sensitive receptors present near the site? (check one): \square Y If yes, specify:	Are sensitive receptors present near the site? (check one): □ Yes ☒ No If yes, specify:							
3. Indicate if the receiving water(s) is listed in the State's Integpollutants indicated. Also, indicate if a final TMDL is available 4.6 of the RGP.	S							
4. Indicate the seven day-ten-year low flow (7Q10) of the received Appendix V for sites located in Massachusetts and Appendix V	e e e e e e e e e e e e e e e e e e e	tions in N/A - Receiving water is an ocean						
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.								
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ☐ Yes ☒ No If yes, indicate date confirmation received:								
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII?								
(check one): X Yes □ No								

C. Source water information:

1. Source water(s) is (check any that apply):								
☐ ☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:					
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other						
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:					
ĭ Yes □ No	□ Yes □ No							

2. Source water contaminants: Copper, total Cyanide	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes 🔀 No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resi	dual chlorine? (check one): ☐ Yes 🂢 No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply):	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
CSO071	42 20 35
	71 03 39
Discharges enter the receiving water(s) via (check any that apply): □ Direct d	ischarge to the receiving water X Indirect discharge, if so, specify:
☐ A private storm sewer system 🏿 A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sev	wer system:
Has notification been provided to the owner of this system? (check one): X Y	es □ No
Has the operator has received permission from the owner to use such system f obtaining permission: BWSC permit application being submittee	or discharges? (check one): ☐ Yes 🏿 No, if so, explain, with an estimated timeframe for d concurrently with this NOI
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): ▼ Yes □ No
Provide the expected start and end dates of discharge(s) (month/year): August 2017- December 2018	
Indicate if the discharge is expected to occur over a duration of: \Box less than	2 months ☐ 12 months or more ☐ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D,	above? (check one): ☐ Yes ☐ X o

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 		d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known	Test Det	D 4 4	Inf	fluent	Effluent Li	mitations	
Parameter	or believed absent	or believed present	# of samples	# of method	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		Χ	1 4	500NH3-B	н 75	466	466	Report mg/L	
Chloride		Х	2	300.0	25000	1650000	1146000	Report µg/l	
Total Residual Chlorine	Х		2	4500CL	20	ND	ND	0.2 mg/L	7.5 ug/L
Total Suspended Solids		Χ	2	2540D	5000	6100	6100	30 mg/L	_
Antimony Total		Χ	2	6020A	2	2.15	2.15	206 μg/L	640
Arsenic Total		Х	2	6020A	0.5	5.75	5.75	104 μg/L	36
Cadmium Total	X		2	6020A	0.2	ND	ND	10.2 μg/L	8.9
Chromium III		Χ	2	6020A	3	6.95	6.95	323 μg/L	100
Chromium VI	X		2	3500CR		ND	ND	323 μg/L	50
Copper Total		Х	2	6020A	1	6.07	6.07	242 μg/L	3.7
Iron Total		Χ	2	200.7	50	1.91	1.91	5,000 μg/L	
Lead Total	X		2	6020A	0.5	ND	ND	160 μg/L	8.5
Mercury Total	Х		2	245.1	0.2	ND	ND	0.739 μg/L	1.11
Nickel Total	X		2	6020A	2	4.38	4.38	1,450 µg/L	8.3
Selenium Total		Χ	2	6020A	5	6.63	6.63	235.8 μg/L	71
Silver Total	X		2	6020A	0.4	ND	ND	35.1 μg/L	2.2
Zinc Total	X		2	6020A	10	ND	ND	420 μg/L	86
Cyanide Total		Х	2	4500CN	5	5	5	178 mg/L	1.0
B. Non-Halogenated VOC	s								
Total BTEX	X		2	8260C	NA	ND	ND	100 μg/L	
Benzene	Х		2	8260C	0.5	ND	ND	5.0 μg/L	
1,4 Dioxane	X			8260C-S		ND	ND	200 μg/L	
Acetone	X		2	8260C	5.0	ND	ND	7.97 mg/L	
Phenol	Х		2	8270D	5.0	ND	ND	1,080 µg/L	300

	Known	Known		_		Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	Х		2	8260C	0.5	ND	ND	4.4 μg/L	1.6
1,2 Dichlorobenzene	Х		2	8260C	2.5	ND	ND	600 μg/L	
1,3 Dichlorobenzene	Х		2	8260C	2.5	ND	ND	320 μg/L	
1,4 Dichlorobenzene	X		2	8260C	2.5	ND	ND	5.0 μg/L	
Total dichlorobenzene	X		2	8260C	NA	NA	NA	763 µg/L in NH	
1,1 Dichloroethane	X		2	8260C	0.75	ND	ND	70 μg/L	
1,2 Dichloroethane	X		2	8260C	0.5	ND	ND	5.0 μg/L	
1,1 Dichloroethylene	X		2	8260C	0.5	ND	ND	3.2 μg/L	
Ethylene Dibromide	X		2	8260C	2.0	ND	ND	0.05 μg/L	
Methylene Chloride	X		2	8260C	3.0	ND	ND	4.6 μg/L	
1,1,1 Trichloroethane	X		2	8260C	0.5	ND	ND	200 μg/L	
1,1,2 Trichloroethane	X		2	8260C	0.75	ND	ND	5.0 μg/L	
Trichloroethylene	X		2	8260C	0.5	ND	ND	5.0 μg/L	
Tetrachloroethylene	X		2	8260C	0.5	ND	ND	5.0 μg/L	3.3
cis-1,2 Dichloroethylene	X		2	8260C	0.5	ND	ND	70 μg/L	
Vinyl Chloride	Х		2	8260C	1.0	ND	ND	2.0 μg/L	
D. Non-Halogenated SVOC	Cs								
Total Phthalates	X		2	8270D	NA	ND	ND	190 μg/L	
Diethylhexyl phthalate	Х		2	8270D	3.0	ND	ND	101 μg/L	2.2
Total Group I PAHs	X		2	8270D	NA	ND	ND	1.0 μg/L	
Benzo(a)anthracene	X		2	8270D	0.1	ND	ND		0.0038
Benzo(a)pyrene	Х		2	8270D	0.1	ND	ND		0.0038
Benzo(b)fluoranthene	X		2	8270D	0.1	ND	ND		0.0038
Benzo(k)fluoranthene	Х		2	8270D	0.1	ND	ND	As Total PAHs	0.0038
Chrysene	X		2	8270D	0.1	ND	ND		0.0038
Dibenzo(a,h)anthracene	Х		2	8270D	0.1	ND	ND		0.0038
Indeno(1,2,3-cd)pyrene	Х		2	8270D	0.1	ND	ND		0.0038

	Known	Known				Influent		Effluent Lin	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
Total Group II PAHs	Х		2	8270D	NA	ND	ND	100 μg/L		
Naphthalene	Χ		2	8260C	2.5	ND	ND	20 μg/L		
E. Halogenated SVOCs										
Total PCBs	Х		2	608	NA	ND	ND	0.000064 μg/L		
Pentachlorophenol	Χ		2	8270D	0.4	ND	ND	1.0 µg/L		
F. Fuels Parameters										
Total Petroleum Hydrocarbons	Х		2	1664A	NA	ND	ND	5.0 mg/L		
Ethanol								Report mg/L		
Methyl-tert-Butyl Ether	Χ		2	8260C	1.0	ND	ND	70 μg/L	20	
tert-Butyl Alcohol	X		2	8260C	10	ND	ND	120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether	Х		2	8260C	2	ND	ND	90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperature	, hardness,	salinity, LC	50, addition	al pollutan	ts present);	if so, specify:				
Hardness		Х	1	200.7	0.660	135	135			
Antimony, Dissolved		X	1	6020A	2	2.25	2.25			
Arsenic, Dissolved		X	1	6020A	0.5 3	3.39 3.89	3.39			
Chromium, Dissolved Copper, Dissolved		X	1	6020A			3.89			
Selenium, Dissolved		X	1	6020A	1	5.8 6.7	5.8			
pH		X	1	6020A	3	7.1	6.7 7.1			
р п See NOI text for RCP ir	formatic		I			7.1	7.1			
See NOI text for RCP II	normatior	l								
See Attached Table 1										

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)						
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ▼ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption						
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:						
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.						
Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter and other necessary trees.						
components (potentially: Ion exchange, GAC, oil/water seperator), to remove suspended solids and undissolved cher constituents, as shown on Figure 3 of the NPDES permit application.	nicai					
Identify each major treatment component (check any that apply):						
X Fractionation tanks□ Equalization tank X Oil/water separator □ Mechanical filter X Media filter						
\square Chemical feed tank \square Air stripping unit $ mathbb{X}$ Bag filter \square Other; if so, specify:						
Indicate if either of the following will occur (check any that apply):						
☐ Chlorination ☐ De-chlorination						
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.						
Indicate the most limiting component: 150 gpm						
Is use of a flow meter feasible? (check one): ☐ Yes ☐ No, if so, provide justification:						
Provide the proposed maximum effluent flow in gpm. 150 gpm						
Provide the average effluent flow in gpm. 50 gpm						
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:						
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☒ Yes □ No						

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants 🕱 Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers
2. Provide the following information for each chemical/additive, using attachments, if necessary:
 a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): 🛚 Yes 🗆 No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): Yes No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): X Yes 🗆 No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): 🛮 Yes 🗆 No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☑ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☒ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes X N/A
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): X Yes \(\subseteq \) No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): X Yes □ No
1

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or p persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	ersons who manage : lief, true, accurate, a	the system, or those nd complete. I have
BMPP certification statement: A BMPP meeting the requirements of this general permit will be implemented upon initiation	on of discharge.	
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □ N/A
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes 🕱	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ☒ Check one: Yes ☒	
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	CHECK OHC. 103 E	
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □ NA 🕱
Signature: Date	9-7-17	
Print Name and Title: Suffolk Construction Company Douglas KIMBLE - PROJECT FYE	CUINE	

APPENDIX B

National Register of Historic Places and Massachusetts Historical Commission Documentation Welcome to MACRIS http://mhc-macris.net/

Massachusetts Historical Commission

William Francis Galvin, Secretary of the Commonwealth

Home | Feedback | Contact Us

MHC Home

Massachusetts Cultural Resource Information System MACRIS

Scanned forms and photos now available for selected towns!

The Massachusetts Cultural Resource Information System (MACRIS) allows you to search the Massachusetts Historical Commission database for information on historic properties and areas in the Commonwealth.

Users of the database should keep in mind that it does not include information on all historic properties and areas in Massachusetts, nor does it reflect all the information on file on historic properties and areas at the Massachusetts Historical Commission.

Click here to begin your search of the MACRIS database.

Home | Search | Index | Feedback | Contact

1 of 1 6/21/17, 2:46 PM

7/21/2017 MACRIS Details

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

For more information about this page and how to use it, click here.

Inventory No: BOS.1455

Historic Name: Green, Samuel Building

Common Name:

Address: 575 Albany St

Albany and East Dedham Sts

City/Town: Boston
Village/Neighborhood: South End

Local No:

Year Constructed: R 1904

Architect(s): Goldstone, L. A.

Architectural Style(s): Classical Revival

Use(s): Other Industrial

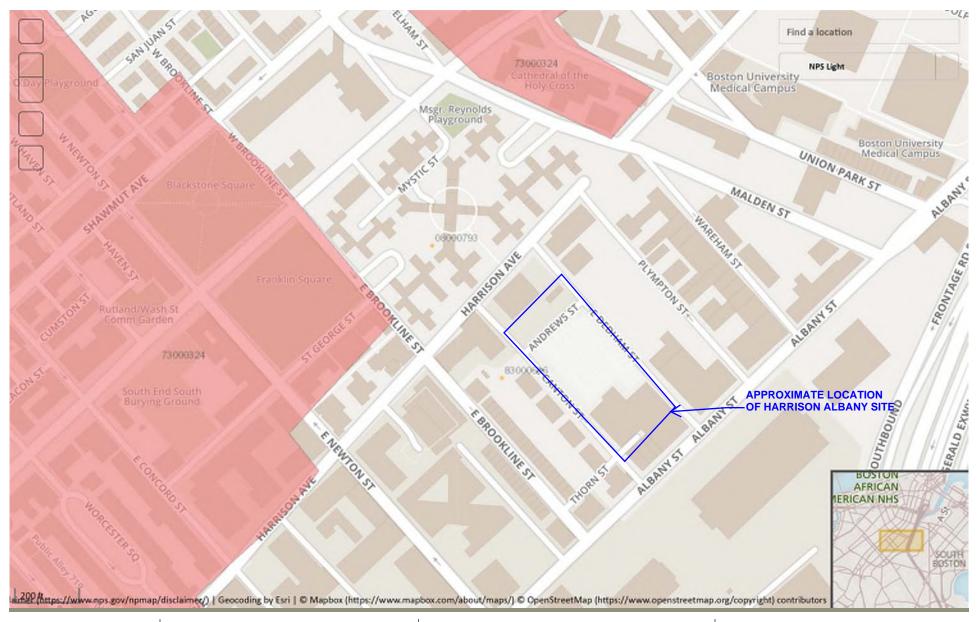
Significance: Architecture; Industry

Area(s): BOS.AD: South End Landmark District Protection Area

Designation(s):

Building Material(s): Wall: Brick; Stone, Cut

New Search Previous


MHC Home | MACRIS Home

Not Yet Available

National Register of Historic Places

National Park Service
U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. Data last updat...

Home (https://www.nps.gov/ | Frequently Asked Questions (https://www.nps.gov/faqs.htm) | Website Policies (https://www.nps.gov/aboutus/website-policies.htm) | Contact Us (https://www.nps.gov/contacts.htm)

1 of 2 6/21/17, 2:57 PM

2 of 2 6/21/17, 2:57 PM

Note: Not all properties are digitized

Reference State	County	City	Resource	Address	Listed	Text	Photos
Number			Name		Date	Click me	Cl;ick me
83000601 MASSACHUSETTS	Suffolk	Boston	Charles Street African Methodist Episcopal Church	551 Warren St.	19830901	<u>Text</u>	<u>Photos</u>
83000602 MASSACHUSETTS	Suffolk	Boston	Codman Square District	Norfolk, Talbot, Epping, Lithgow, Cer	19830623	<u>Text</u>	<u>Photos</u>
83000603 MASSACHUSETTS	Suffolk	Boston	Gardner, Isabella Stewart, Museum	280 The Fenway	19830127	<u>Text</u>	<u>Photos</u>
83000605 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Fire Station	16 Harvard Ave.	19830331	<u>Text</u>	<u>Photos</u>
83000606 MASSACHUSETTS	Suffolk	Boston	Lawrence Model Lodging Houses	79, 89, 99 and 109 E. Canton St.	19830922	Text	Photos
83000607 MASSACHUSETTS	Suffolk	Boston	Newspaper Row	322-328 Washington St., 5-23 Milk St	19830707	Text	Photos
82000486 MASSACHUSETTS	Suffolk	Boston	Wigglesworth Building	89-83 Franklin St.	19821021	Text	Photos
83004098 MASSACHUSETTS	Suffolk	Boston	Leather District	Roughly bounded by Atlantic Ave., K	19831221	Text	Photos
83004285 MASSACHUSETTS	Suffolk	Boston	Baker, Sarah J., School	33 Perrin St.	19830707	Text	Photos
79000370 MASSACHUSETTS	Suffolk	Boston	Washington Street Theatre District	511-559 Washington St.	19790319	Text	Photos
85000318 MASSACHUSETTS	Suffolk	Boston	Dorchester Pottery Works	101-105 Victory Rd.	19850221	<u>Text</u>	<u>Photos</u>
79000368 MASSACHUSETTS	Suffolk	Boston	Bedford Building	89-103 Bedford St.	19790821	<u>Text</u>	<u>Photos</u>
80000442 MASSACHUSETTS	Suffolk	Boston	Wirth, Jacob, Buildings	31-39 Stuart St.	19801209	<u>Text</u>	<u>Photos</u>
80000445 MASSACHUSETTS	Suffolk	Boston	Metropolitan Theatre	252-272 Tremont St.	19801209	<u>Text</u>	Photos
80000446 MASSACHUSETTS	Suffolk	Boston	Hayden Building	681-683 Washington St.	19801209	<u>Text</u>	Photos
80000448 MASSACHUSETTS	Suffolk	Boston	Dill Building	11-25 Stuart St.	19801209	<u>Text</u>	Photos
80000450 MASSACHUSETTS	Suffolk	Boston	Boylston Building	2-22 Boylston St.	19801209	<u>Text</u>	<u>Photos</u>
80000451 MASSACHUSETTS	Suffolk	Boston	Boston Young Men's Christian Union	48 Boylston St.	19801209	<u>Text</u>	<u>Photos</u>
80000453 MASSACHUSETTS	Suffolk	Boston	Boston Edison Electric Illuminating Company	25-39 Boylston St.	19801209	<u>Text</u>	Photos
80000455 MASSACHUSETTS	Suffolk	Boston	West Street District	West St.	19801209	<u>Text</u>	Photos
80000460 MASSACHUSETTS	Suffolk	Boston	Liberty Tree District	Roughly bounded by Harrison Ave., \	19801209	<u>Text</u>	Photos
80000462 MASSACHUSETTS	Suffolk	Boston	Beach-Knapp District	Roughly bounded by Harrison Ave., \	19801209	<u>Text</u>	<u>Photos</u>
80000465 MASSACHUSETTS	Suffolk	Boston	Oak Square School	35 Nonantum St.	19801110	<u>Text</u>	Photos
66000127 MASSACHUSETTS	Suffolk	Boston	Arnold Arboretum	22 Divinity Ave.	19661015	<u>Text</u>	<u>Photos</u>
73000313 MASSACHUSETTS	Suffolk	Boston	Arlington Street Church	Arlington and Boylston Sts.	19730504	Text	Photos
73000322 MASSACHUSETTS	Suffolk	Boston	Old Corner Bookstore	NW corner of Washington and School	19730411	<u>Text</u>	<u>Photos</u>
75000299 MASSACHUSETTS	Suffolk	Boston	South Station Headhouse	Atlantic Ave. and Summer St.	19750213	<u>Text</u>	<u>Photos</u>
74000392 MASSACHUSETTS	Suffolk	Boston	Winthrop Building	7 Water St.	19740418	<u>Text</u>	<u>Photos</u>
80000668 MASSACHUSETTS	Suffolk	Boston	United Shoe Machinery Corporation Building	138-164 Federal St.	19800819	<u>Text</u>	<u>Photos</u>
75000300 MASSACHUSETTS	Suffolk	Boston	St. Stephen's Church	Hanover St. between Clark and Harri	19750414	<u>Text</u>	<u>Photos</u>
80000669 MASSACHUSETTS	Suffolk	Boston	Union Wharf	295-353 Commercial St.	19800622	<u>Text</u>	<u>Photos</u>
80000670 MASSACHUSETTS	Suffolk	Boston	Suffolk County Jail	215 Charles St.	19800423	<u>Text</u>	<u>Photos</u>
80000674 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, School	20 Hutchings St.	19800416	<u>Text</u>	<u>Photos</u>
80001683 MASSACHUSETTS	Suffolk	Boston	Dillaway School	16-20 Kenilworth St.	19800409	<u>Text</u>	<u>Photos</u>
66000366 MASSACHUSETTS	Suffolk	Boston	Ether Dome, Massachusetts General Hospital	Fruit St.	19661015	<u>Text</u>	<u>Photos</u>
70000539 MASSACHUSETTS	Suffolk	Boston	Otis, (First) Harrison Gray, House	141 Cambridge St.	19701230	<u>Text</u>	<u>Photos</u>
73000314 MASSACHUSETTS	Suffolk	Boston	Armory of the First Corps of Cadets	97-105 Arlington St. and 130 Columb	19730522	<u>Text</u>	<u>Photos</u>
73000315 MASSACHUSETTS	Suffolk	Boston	Blackstone Block Historic District	Area bound by Union, Hanover, Blac	19730526	<u>Text</u>	<u>Photos</u>
72000145 MASSACHUSETTS	Suffolk	Boston	Crowninshield House	164 Marlborough St.	19720223	<u>Text</u>	<u>Photos</u>
72000146 MASSACHUSETTS	Suffolk	Boston	First Baptist Church	Commonwealth Ave. and Clarendon	19720223	<u>Text</u>	<u>Photos</u>
74000391 MASSACHUSETTS	Suffolk	Boston	John Adams Courthouse	Pemberton Sq.	19740508	<u>Text</u>	<u>Photos</u>
72000150 MASSACHUSETTS	Suffolk	Boston	Trinity Rectory	Clarendon and Newbury Sts.	19720223	<u>Text</u>	<u>Photos</u>
74000385 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Burial Ground	Charter, Snowhill, and Hull Sts.	19740418	<u>Text</u>	<u>Photos</u>
74000393 MASSACHUSETTS	Suffolk	Boston	Youth's Companion Building	209 Columbus Ave.	19740502	<u>Text</u>	<u>Photos</u>
66000764 MASSACHUSETTS	Suffolk	Boston	Harding, Chester, House	16 Beacon St.	19661015	<u>Text</u>	<u>Photos</u>
74002044 MASSACHUSETTS	Suffolk	Boston	Howe, Samuel Gridley and Julia Ward, House	13 Chestnut St.	19740913		<u>Photos</u>
74002045 MASSACHUSETTS	Suffolk	Boston	King's Chapel	Tremont and School Sts.	19740502		<u>Photos</u>
70000682 MASSACHUSETTS	Suffolk	Boston	Massachusetts General Hospital	Fruit Street	19701230	<u>Text</u>	<u>Photos</u>
80000678 MASSACHUSETTS	Suffolk	Boston	All Saints' Church	211 Ashmont St.	19800616		<u>Photos</u>
81000620 MASSACHUSETTS	Suffolk	Boston	Fields Corner Municipal Building	1 Arcadia St., 195 Adams St.	19811112		<u>Photos</u>
66000770 MASSACHUSETTS	Suffolk	Boston	Massachusetts Historical Society Building	1154 Boylston St.	19661015		<u>Photos</u>
66000771 MASSACHUSETTS	Suffolk	Boston	Massachusetts Statehouse	Beacon Hill	19661015	· ·	<u>Photos</u>
76001979 MASSACHUSETTS	Suffolk	Boston	Nell, William C., House	3 Smith Ct.	19760511		<u>Photos</u>
70000687 MASSACHUSETTS	Suffolk	Boston	Old City Hall	School and Providence Sts.	19701230		<u>Photos</u>
70000690 MASSACHUSETTS	Suffolk	Boston	Old South Church in Boston	645 Boylston St.	19701230		<u>Photos</u>
70000691 MASSACHUSETTS	Suffolk	Boston	Old West Church	131 Cambridge St.	19701230		<u>Photos</u>
66000782 MASSACHUSETTS	Suffolk	Boston	Parkman, Francis, House	50 Chestnut St.	19661015		<u>Photos</u>
80000444 MASSACHUSETTS	Suffolk	Boston	Shubert, Sam S., Theatre	263-265 Tremont St.	19801209		<u>Photos</u>
80000458 MASSACHUSETTS	Suffolk	Boston	Piano Row District	Boston Common, Park Sq., Boylston	19801209	· ·	<u>Photos</u>
80000443 MASSACHUSETTS	Suffolk	Boston	Wilbur Theatre	244-250 Tremont St.	19801209		<u>Photos</u>
66000765 MASSACHUSETTS	Suffolk	Boston	Headquarters House	55 Beacon St.	19661015		<u>Photos</u>
68000042 MASSACHUSETTS	Suffolk	Boston	Pierce-Hichborn House	29 North Sq.	19681124		<u>Photos</u>
66000784 MASSACHUSETTS	Suffolk	Boston	Quincy Market	S. Market St.	19661113	<u>rext</u>	<u>Photos</u>

70000730 MASSACHUSETTS	Suffolk	Boston	St. Paul's Church	136 Tremont St.	19701230 Text	Photos
70000730 MASSACHUSETTS	Suffolk	Boston	Sears, David, House	42 Beacon St.	19701230 <u>Text</u> 19701230 Text	Photos Photos
73001953 MASSACHUSETTS	Suffolk	Boston	Sumner, Charles, House	20 Hancock St.	19731107 Text	Photos
66000130 MASSACHUSETTS	Suffolk	Boston	Beacon Hill Historic District	Bounded by Beacon St., the Charles		Photos
73001955 MASSACHUSETTS	Suffolk	Boston	Otis, (Second) Harrison Gray, House	85 Mt. Vernon St.	19730727 Text	Photos
66000768 MASSACHUSETTS	Suffolk	Boston	Long Wharf and Customhouse Block	Foot of State St.	19661113 Text	Photos
66000132 MASSACHUSETTS	Suffolk	Boston	Boston Athenaeum	10 1/2 Beacon St.	19661015 <u>Text</u>	Photos
66000788 MASSACHUSETTS	Suffolk	Boston	Tremont Street Subway	Beneath Tremont, Boylston, and Wa		Photos
70000733 MASSACHUSETTS	Suffolk	Boston	Trinity Church	Copley Sq.	19700701 Text	Photos
82004456 MASSACHUSETTS	Suffolk	Boston	Adams-Nervine Asylum	990-1020 Centre St.	19820601 <u>Text</u>	Photos
79000369 MASSACHUSETTS	Suffolk	Boston	International Trust Company Building	39-47 Milk St.	19790910 <u>Text</u>	Photos
74000388 MASSACHUSETTS	Suffolk	Boston	Eliot Burying Ground	Eustis and Washington Sts.	19740625 <u>Text</u>	<u>Photos</u>
80000463 MASSACHUSETTS	Suffolk	Boston	Russia Wharf Buildings	518-540 Atlantic Ave., 270 Congress	19801202 <u>Text</u>	<u>Photos</u>
71000087 MASSACHUSETTS	Suffolk	Boston	African Meetinghouse	8 Smith St.	19711007 <u>Text</u>	<u>Photos</u>
85002015 MASSACHUSETTS	Suffolk	Boston	Building at 138142 Portland Street	138142 Portland St.	19850905 <u>Text</u>	<u>Photos</u>
84000421 MASSACHUSETTS	Suffolk	Boston	Vermont Building	6-12 Thacher St.	19841113 <u>Text</u>	<u>Photos</u>
75000301 MASSACHUSETTS	Suffolk	Boston	Symphony and Horticultural Halls	Massachusetts and Huntington Aves	19750530 <u>Text</u>	<u>Photos</u>
73000324 MASSACHUSETTS	Suffolk	Boston	South End District	South Bay area between Huntington	19730508 <u>Text</u>	<u>Photos</u>
74000390 MASSACHUSETTS	Suffolk	Boston	Park Street District	Tremont, Park, and Beacon Sts.	19740501 <u>Text</u>	<u>Photos</u>
73000319 MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets District	Fulton, Commercial, Mercantile, Lew	19730321 <u>Text</u>	<u>Photos</u>
84002875 MASSACHUSETTS	Suffolk	Boston	Fenway-Boylston Street District	Fenway, Boylston, Westland, and He	19840904 <u>Text</u>	<u>Photos</u>
78000473 MASSACHUSETTS	Suffolk	Boston	Fenway Studios	30 Ipswich St.	19780913 <u>Text</u>	<u>Photos</u>
73000318 MASSACHUSETTS	Suffolk	Boston	Cyclorama Building	543-547 Tremont St.	19730413 <u>Text</u>	<u>Photos</u>
83004097 MASSACHUSETTS	Suffolk	Boston	Codman Building	55 Kilby St.	19831019 <u>Text</u>	<u>Photos</u>
80000676 MASSACHUSETTS	Suffolk	Boston	Charles Playhouse	74-78 Warenton St.	19800616 <u>Text</u>	<u>Photos</u>
74000382 MASSACHUSETTS	Suffolk	Boston	Ames Building	1 Court St.	19740426 <u>Text</u>	<u>Photos</u>
77001541 MASSACHUSETTS	Suffolk	Boston	Appleton, Nathan, Residence	39-40 Beacon St.	19771222 <u>Text</u>	<u>Photos</u>
66000134 MASSACHUSETTS	Suffolk	Boston	Boston Naval Shipyard	E of Chelsea St., Charlestown	19661115 <u>Text</u>	<u>Photos</u>
66000050 MASSACHUSETTS	Suffolk	Boston	Dorchester Heights National Historic Site	South Boston	19661015 <u>Text</u>	<u>Photos</u>
74002222 MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Inner harbor at mouth of Charles Riv		<u>Photos</u>
66000785 MASSACHUSETTS	Suffolk	Boston	Revere, Paul, House	19 North Sq.	19661015 <u>Text</u>	<u>Photos</u>
66000776 MASSACHUSETTS	Suffolk	Boston	Old North Church	193 Salem St.	19661015 <u>Text</u>	<u>Photos</u>
66000778 MASSACHUSETTS	Suffolk	Boston	Old South Meetinghouse	Milk and Washington Sts.	19661015 <u>Text</u>	<u>Photos</u>
66000368 MASSACHUSETTS	Suffolk	Boston	Faneuil Hall	Dock Sq.	19661015 <u>Text</u>	<u>Photos</u>
66000779 MASSACHUSETTS	Suffolk	Boston	Old State House	Washington and State Sts.	19661015 <u>Text</u>	<u>Photos</u>
85003074 MASSACHUSETTS	Suffolk	Boston	Dudley Station Historic District	Washington, Warren, and Dudley Sts		<u>Photos</u>
86000140 MASSACHUSETTS	Suffolk	Boston	Christ Church	1220 River Rd.	19860130 <u>Text</u>	<u>Photos</u>
73000317 MASSACHUSETTS	Suffolk	Boston	Boston Public Library	Copley Sq.	19730506 <u>Text</u>	Photos
86001909 MASSACHUSETTS	Suffolk Suffolk	Boston	Filene's Department Store	426 Washington St. 2529 State St.	19860724 <u>Text</u>	<u>Photos</u>
86001913 MASSACHUSETTS 86001486 MASSACHUSETTS		Boston	Second Brazer Building		19860724 <u>Text</u>	Photos
86001504 MASSACHUSETTS	Suffolk Suffolk	Boston	Sears' Crescent and Sears' Block Richardson Block	3868 and 7072 Cornhill	19860809 <u>Text</u>	Photos
85003375 MASSACHUSETTS	Suffolk	Boston Boston	Engine House No. 34	113151 Pearl and 109119 High Sts 444 Western Ave.	19851024 <u>Text</u>	Photos Photos
80000671 MASSACHUSETTS	Suffolk	Boston	Stearns, R. H., House	140 Tremont St.	19800616 <u>Text</u>	Photos
86001911 MASSACHUSETTS	Suffolk	Boston	LockeOber Restaurant	34 Winter Pl.	19860724 <u>Text</u>	Photos
80000677 MASSACHUSETTS	Suffolk	Boston	Berger Factory	37 Williams St.	19800409 <u>Text</u>	Photos
85000316 MASSACHUSETTS	Suffolk	Boston	Bigelow School	350 W. 4th St.	19850221 Text	Photos
84002890 MASSACHUSETTS	Suffolk	Boston	Moreland Street Historic District	Roughly bounded by Kearsarge, Blue		Photos
70000921 MASSACHUSETTS	Suffolk	Boston	Fort Independence	Castle Island	19701015 Text	Photos
86000375 MASSACHUSETTS	Suffolk	Boston	Harriswood Crescent	6088 Harold St.	19860313 <u>Text</u>	Photos
66000789 MASSACHUSETTS	Suffolk	Boston	U.S.S. CONSTITUTION	Boston Naval Shipyard	19661015 <u>Text</u>	Photos
87000757 MASSACHUSETTS	Suffolk	Boston	Harvard Stadium	60 N. Harvard St.	19870227 Text	Photos
72000144 MASSACHUSETTS	Suffolk	Boston	Boston Common and Public Garden	Beacon, Park, Tremont, Boylston, an		Photos
87000760 MASSACHUSETTS	Suffolk	Boston	Boston Common	Beacon, Park, Tremont, Boylston, and		Photos
87000761 MASSACHUSETTS	Suffolk	Boston	Boston Public Garden	Beacon, Charles, Boylston, and Arling		Photos
87001128 MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Monument Sq.	19870602 Text	Photos
66000138 MASSACHUSETTS	Suffolk	Boston	Bunker Hill Monument	Breed's Hill	19661015 Text	Photos
86000274 MASSACHUSETTS	Suffolk	Boston	Bulfinch Triangle Historic District	Roughly bounded by Canal, Market,	19860227 <u>Text</u>	Photos
80000675 MASSACHUSETTS	Suffolk	Boston	Dorchester-Milton Lower Mills Industrial District	Both sides of Neponset River	19800402 <u>Text</u>	Photos
86000084 MASSACHUSETTS	Suffolk	Boston	USS CASSIN YOUNG (destroyer)	Charlestown Navy Yard	19860114 <u>Text</u>	<u>Photos</u>
66000133 MASSACHUSETTS	Suffolk	Boston	Boston Light	Little Brewster Island, Boston Harboi	19661015 <u>Text</u>	<u>Photos</u>
87001481 MASSACHUSETTS	Suffolk	Boston	Long Island Head Light	Long Island	19870615 <u>Text</u>	<u>Photos</u>
87001394 MASSACHUSETTS	Suffolk	Boston	New Riding Club	52 Hemenway St.	19870820 <u>Text</u>	<u>Photos</u>
87001396 MASSACHUSETTS	Suffolk	Boston	Congress Street Fire Station	344 Congress St.	19870903 <u>Text</u>	<u>Photos</u>
87000885 MASSACHUSETTS	Suffolk	Boston	Abbotsford	300 Walnut Ave.	19870916 <u>Text</u>	<u>Photos</u>
87001889 MASSACHUSETTS	Suffolk	Boston	Sumner Hill Historic District	Roughly bounded by Seaverns Ave.,	19871022 <u>Text</u>	<u>Photos</u>
87001771 MASSACHUSETTS	Suffolk	Boston	Bunker Hill School	65 Baldwin St.	19871015 <u>Text</u>	<u>Photos</u>
87001398 MASSACHUSETTS	Suffolk	Boston	House at 17 Cranston Street	17 Cranston St.	19871120 <u>Text</u>	<u>Photos</u>
87001399 MASSACHUSETTS	Suffolk	Boston	Hoxie, Timothy, House	135 Hillside St.	19871120 <u>Text</u>	<u>Photos</u>
87001495 MASSACHUSETTS	Suffolk	Boston	Saint Augustine Chapel and Cemetery	Dorchester St. between W. Sixth and	19870918 <u>Text</u>	<u>Photos</u>

07003540 1446546111155775	C ff all.	Dastan	District 12 Delice Station	20 Canadana Ava	10000310 Tout	Dhataa
87002549 MASSACHUSETTS 85003323 MASSACHUSETTS	Suffolk	Boston	District 13 Police Station	28 Seaverns Ave.	19880210 <u>Text</u>	Photos
	Suffolk Suffolk	Boston	Boston Harbor Islands Archeological District	Address Restricted	19851221 <u>Text</u>	Photos
82004448 MASSACHUSETTS	Suffolk	Boston	Roughan Hall	15-18 City Sq.	19820415 <u>Text</u>	Photos
82004450 MASSACHUSETTS	Suffolk	Boston	McKay, Donald, House	78-80 White St.	19820602 <u>Text</u>	Photos
82004453 MASSACHUSETTS 73000850 MASSACHUSETTS	Suffolk	Boston	Haffenreffer Brewery Town Hill District	Germania St.	19820502 <u>Text</u>	Photos
		Boston		Bounded roughly by Rutherford Ave.		Photos
74000907 MASSACHUSETTS	Suffolk	Boston	Phipps Street Burying Ground	Phipps St.	19740514 <u>Text</u>	Photos
74000911 MASSACHUSETTS	Suffolk	Boston	Clapp Houses	199 and 195 Boston St.	19740502 <u>Text</u>	Photos
74000915 MASSACHUSETTS	Suffolk	Boston	Dorchester North Burying Ground	Stroughton St. and Columbia Rd.	19740418 <u>Text</u>	<u>Photos</u>
80004396 MASSACHUSETTS	Suffolk	Boston	Boston African American National Historic Site	Museum of Afro American History, C		<u>Photos</u>
66000141 MASSACHUSETTS	Suffolk	Boston	Brook Farm	670 Baker St.	19661015 <u>Text</u>	<u>Photos</u>
73000856 MASSACHUSETTS	Suffolk	Boston	Roxbury High Fort	Beech Glen St. at Fort Ave.	19730423 <u>Text</u>	<u>Photos</u>
73000855 MASSACHUSETTS	Suffolk	Boston	Kittredge, Alvah, House	12 Linwood St.	19730508 <u>Text</u>	<u>Photos</u>
73000854 MASSACHUSETTS	Suffolk	Boston	John Eliot Square District	John Eliot Sq.	19730423 <u>Text</u>	<u>Photos</u>
66000653 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, House	125 Highland St.	19661015 <u>Text</u>	Photos
72000544 MASSACHUSETTS	Suffolk	Boston	Loring-Greenough House	12 South St.	19720426 <u>Text</u>	<u>Photos</u>
74000917 MASSACHUSETTS	Suffolk	Boston	Pierce House	24 Oakton Ave.	19740426 <u>Text</u>	<u>Photos</u>
70000540 MASSACHUSETTS	Suffolk	Boston	Fort Warren	Georges Island, Boston Harbor	19700829 <u>Text</u>	<u>Photos</u>
74002350 MASSACHUSETTS	Suffolk	Boston	Blake, James, House	735 Columbia Rd.	19740501 <u>Text</u>	<u>Photos</u>
83000604 MASSACHUSETTS	Suffolk	Boston	Loring, Harrison, House	789 E. Broadway St.	19830901 <u>Text</u>	<u>Photos</u>
88000908 MASSACHUSETTS	Suffolk	Boston	Goodwin, Ozias, House	7 Jackson Ave.	19880623 <u>Text</u>	<u>Photos</u>
88000957 MASSACHUSETTS	Suffolk	Boston	Greek Orthodox Cathedral of New England	520 Parker St.	19880630 <u>Text</u>	<u>Photos</u>
88000427 MASSACHUSETTS	Suffolk	Boston	Temple Place Historic District	1155, 2658 Temple Pl.	19880726 <u>Text</u>	<u>Photos</u>
88000959 MASSACHUSETTS	Suffolk	Boston	Eliot Hall	7A Eliot St.	19880715 <u>Text</u>	<u>Photos</u>
87001478 MASSACHUSETTS	Suffolk	Boston	Austin, Francis B., House	58 High St.	19881021 <u>Text</u>	<u>Photos</u>
89000004 MASSACHUSETTS	Suffolk	Boston	Mount Pleasant Historic District	Roughly bounded by Forest St. and N		<u>Photos</u>
89000147 MASSACHUSETTS	Suffolk	Boston	Roxbury Highlands Historic District	Roughly bounded by Dudley St., Was		<u>Photos</u>
73000325 MASSACHUSETTS	Suffolk	Boston	Hale, Edward Everett, House	12 Morley St.	19790321 <u>Text</u>	<u>Photos</u>
83004099 MASSACHUSETTS	Suffolk	Boston	LUNA (tugboat)	NDC Pier, Charles River	19831006 <u>Text</u>	<u>Photos</u>
89000974 MASSACHUSETTS	Suffolk	Boston	Massachusetts School of Art	364 Brookline Ave.	19890803 <u>Text</u>	<u>Photos</u>
89001747 MASSACHUSETTS	Suffolk	Boston	Mission Hill Triangle Historic District	Roughly bounded by Smith St., Wort		<u>Photos</u>
89002169 MASSACHUSETTS	Suffolk	Boston	St. Joseph's Roman Catholic Church Complex	Bounded by Circuit, Regent, Hulbert,		<u>Photos</u>
89002251 MASSACHUSETTS	Suffolk	Boston	Bellevue Standpipe	On Bellevue Hill at Washington St. ar		<u>Photos</u>
88000955 MASSACHUSETTS	Suffolk	Boston	First Church of Jamaica Plain	6 Eliot St.	19880715 <u>Text</u>	<u>Photos</u>
90000631 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Terrace	Between Commercial and Charter St		<u>Photos</u>
89002271 MASSACHUSETTS	Suffolk	Boston	Chestnut Hill Reservoir Historic District	Beacon St. and Commonwealth Ave.		<u>Photos</u>
90001095 MASSACHUSETTS	Suffolk	Boston	Calf Pasture Pumping Station Complex	435 Mount Vernon St.	19900802 <u>Text</u>	<u>Photos</u>
90001145 MASSACHUSETTS	Suffolk	Boston	Bowditch School	8082 Greene St.	19900803 <u>Text</u>	<u>Photos</u>
90001536 MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Roughly bounded by Jamaicaway, Pc		<u>Photos</u>
90001537 MASSACHUSETTS	Suffolk	Boston	Upham's Corner Market	600 Columbia Rd.	19901011 <u>Text</u>	<u>Photos</u>
89002125 MASSACHUSETTS	Suffolk	Boston	Roxbury Presbyterian Church		19910315 <u>Text</u>	<u>Photos</u>
90001992 MASSACHUSETTS	Suffolk	Boston	Sears Roebuck and Company Mail Order Store	309 Park Dr. and 201 Brookline Ave.		<u>Photos</u>
92000356 MASSACHUSETTS	Suffolk	Boston	Trinity Neighborhood House	406 Meridian St.	19920414 <u>Text</u>	<u>Photos</u>
73001948 MASSACHUSETTS	Suffolk	Boston	Back Bay Historic District	Roughly bounded by the Charles Rive		<u>Photos</u>
90001757 MASSACHUSETTS	Suffolk	Boston	Textile District	Roughly, Essex St. from Phillips Sq. to		<u>Photos</u>
93001489 MASSACHUSETTS	Suffolk	Boston	Massachusetts Mental Health Center	74 Fenwood Rd.	19940121 <u>Text</u>	<u>Photos</u>
93001573 MASSACHUSETTS	Suffolk	Boston	House at 1 Bay Street	1 Bay St.	19940209 <u>Text</u>	<u>Photos</u>
93001587 MASSACHUSETTS	Suffolk	Boston	Eliot Congregational Church	56 Dale St., corner 118120 Walnut!		<u>Photos</u>
85000317 MASSACHUSETTS	Suffolk	Boston	Dimock Community Health Center Complex		19850221 <u>Text</u>	<u>Photos</u>
80000672 MASSACHUSETTS	Suffolk	Boston	New England Conservatory of Music	290 Huntington Ave.	19800514 <u>Text</u>	<u>Photos</u>
94001494 MASSACHUSETTS	Suffolk	Boston	Lower Roxbury Historic District	Roughly, area surrounding Coventry,		<u>Photos</u>
94001492 MASSACHUSETTS	Suffolk	Boston	Faneuil, Peter, School	60 Joy St.	19941216 <u>Text</u>	<u>Photos</u>
95001450 MASSACHUSETTS	Suffolk	Boston	Riviera, The	•	19951207 <u>Text</u>	<u>Photos</u>
73000321 MASSACHUSETTS	Suffolk	Boston	Custom House District	Between J.F.K. Expwy. and Kirby St. a		<u>Photos</u>
96001063 MASSACHUSETTS	Suffolk	Boston	Douglass, Frederick, Square Historic District	Roughly bounded by Hammond St., (<u>Photos</u>
97000969 MASSACHUSETTS	Suffolk	Boston	Charlestown Heights	Roughly bounded by St. Martin, Bun		<u>Photos</u>
97000920 MASSACHUSETTS	Suffolk	Boston	Brighton Evangelical Congregational Church	_	19970821 <u>Text</u>	<u>Photos</u>
97000970 MASSACHUSETTS	Suffolk	Boston	Students House	96 The Fenway	19970911 <u>Text</u>	<u>Photos</u>
97000971 MASSACHUSETTS	Suffolk	Boston	North Terminal Garage	600 Commercial St.	19970911 <u>Text</u>	<u>Photos</u>
97001239 MASSACHUSETTS	Suffolk	Boston	Dorchester Temple Baptist Church	670 Washington St.	19980116 <u>Text</u>	<u>Photos</u>
97001377 MASSACHUSETTS	Suffolk	Boston	Allston Congregational Church	31-41 Quint Ave.	19971107 <u>Text</u>	<u>Photos</u>
97001472 MASSACHUSETTS	Suffolk	Boston	St. Luke's and St. Margaret's Church	5-7 St. Luke's Rd.	19971112 <u>Text</u>	<u>Photos</u>
98000149 MASSACHUSETTS	Suffolk	Boston	Eagle Hill Historic District	Roughly bounded by Border, Lexingt		<u>Photos</u>
98001082 MASSACHUSETTS	Suffolk	Boston	Boston Young Men's Christian Association	312-320 Huntington Ave.	19980820 <u>Text</u>	<u>Photos</u>
97001278 MASSACHUSETTS	Suffolk	Boston	ROSEWAY (schooner)	Boston Harbor	19970925 <u>Text</u>	<u>Photos</u>
98001292 MASSACHUSETTS	Suffolk	Boston	St. Mary's Episcopal Church	14-16 Cushing Ave.	19981030 <u>Text</u>	<u>Photos</u>
98001330 MASSACHUSETTS	Suffolk	Boston	Roslindale Baptist Church	52 Cummins Hwy.	19981105 <u>Text</u>	<u>Photos</u>
98001361 MASSACHUSETTS	Suffolk	Boston	Cathedral of St. George Historic District	517-523-525 E. Broadway	19981125 <u>Text</u>	<u>Photos</u>
98001381 MASSACHUSETTS	Suffolk	Boston	Baker Congregational Church	760 Saratoga St.	19981119 <u>Text</u>	<u>Photos</u>
99000593 MASSACHUSETTS	Suffolk	Boston	Woodbourne Historic District	Roughly bounded by Walk Hill, Good	19990604 <u>Text</u>	<u>Photos</u>

99000633 MASSACHUSETTS	Suffolk	Boston	Symphony Hall	301 Massachusetts Avenue	19990120 Text	Photos
99001302 MASSACHUSETTS	Suffolk	Boston		11 North Square	19991112 Text	Photos
99001304 MASSACHUSETTS	Suffolk	Boston	Congregation Adath Jeshurun	397 Blue Hill Ave.	19991112 <u>Text</u>	Photos
99001308 MASSACHUSETTS	Suffolk	Boston	First Congregational Church of Hyde Park	6 Webster St.	19991112 <u>Text</u>	<u>Photos</u>
99001614 MASSACHUSETTS	Suffolk	Boston	Church Green Buildings Historic District	101-113 Summer St.	19991230 <u>Text</u>	<u>Photos</u>
00000160 MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets Historic District (Boundary Incre	81-95 Richmond St.	20000303 <u>Text</u>	<u>Photos</u>
00000415 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Historic District	•	20000428 <u>Text</u>	<u>Photos</u>
00000871 MASSACHUSETTS	Suffolk	Boston		25 Ambrose St.	20000802 <u>Text</u>	<u>Photos</u>
01000088 MASSACHUSETTS	Suffolk	Boston	_	Academy Hill R., Chestnut Hill Ave., [<u>Photos</u>
01000872 MASSACHUSETTS	Suffolk	Boston	•	195-197 Ashmont St.	20010808 <u>Text</u>	<u>Photos</u>
01001048 MASSACHUSETTS	Suffolk	Boston		137 Beacon St.	20010807 <u>Text</u>	<u>Photos</u>
01001557 MASSACHUSETTS	Suffolk Suffolk	Boston	•	249 River St.	20020207 <u>Text</u>	Photos
02000081 MASSACHUSETTS 02000154 MASSACHUSETTS	Suffolk	Boston Boston	Frances and Isabella Apartments Greenwood Memorial United Methodist Church	430-432 and 434-436 Dudley St. 378A-380 Washington St.	20020222 <u>Text</u> 20020308 <u>Text</u>	Photos
02000134 MASSACHUSETTS	Suffolk	Boston	Bennington Street Burying Ground	Bennington St., bet. Swift and harmo		Photos Photos
02000348 MASSACHUSETTS	Suffolk	Boston	Paine Furniture Building	75-81 Arlington St.	20020322 <u>Text</u> 20020912 <u>Text</u>	Photos
02001099 MASSACHUSETTS	Suffolk	Boston	Harrison Square Historic District	Bounded by MBTA Braintree line em	20021022 Text	Photos
03000385 MASSACHUSETTS	Suffolk	Boston	Savin Hill Historic District	Roughly bounded by Savin Hill Ave.,	20030509 <u>Text</u>	Photos
03000645 MASSACHUSETTS	Suffolk	Boston		41-43 Union Street	20030527 Text	Photos
03000781 MASSACHUSETTS	Suffolk	Boston	·	40-44 Bromfield St.	20030820 Text	Photos
04000023 MASSACHUSETTS	Suffolk	Boston	, 3	150 Magnolia St.	20040211 <u>Text</u>	Photos
04000085 MASSACHUSETTS	Suffolk	Boston	Haskell, Edward H., Home for Nurses	220 Fisther Ave., 63 Parker Hill Ave.	20040226 Text	Photos
04000119 MASSACHUSETTS	Suffolk	Boston		140 Clarendon St.	20040303 Text	Photos
04000189 MASSACHUSETTS	Suffolk	Boston	Nix's Mate Daybeacon	Nubble Channel, The Narrows, Bosto		Photos
04000426 MASSACHUSETTS	Suffolk	Boston	•	224-236 Seaver St. and 1-8 Nazing Cc		Photos
04000534 MASSACHUSETTS	Suffolk	Boston		182-186 Dudley St.	20040602 <u>Text</u>	Photos
04000959 MASSACHUSETTS	Suffolk	Boston	Fort Point Channel Historic District	Necco Court, Thomson Place, A, Binfo	20040910 <u>Text</u>	Photos
04001219 MASSACHUSETTS	Suffolk	Boston	Forest Hills Cemetery	95 Forest Hills Ave.	20041117 <u>Text</u>	Photos
04001430 MASSACHUSETTS	Suffolk	Boston	Truman ParkwayMetropolitan Park System of Greater Bo	Truman Parkway	20050105 <u>Text</u>	Photos
04001432 MASSACHUSETTS	Suffolk	Boston	VFW Parkway, Metropolitan Park System of Greater Bostor	VFW Parkway, bet. Spring And Centr	20050105 <u>Text</u>	Photos
04001572 MASSACHUSETTS	Suffolk	Boston	Morton Street, Metropolitan Park System of Greater Bosto	Morton St.	20050124 <u>Text</u>	Photos
04001573 MASSACHUSETTS	Suffolk	Boston	Neponset Valley Parkway, Metorpolitan Park System of Gre	Neponset Valley Parkway	20050124 <u>Text</u>	<u>Photos</u>
05000459 MASSACHUSETTS	Suffolk	Boston	Ayer, Frederick, Mansion	395 Commonwealth Avenue	20050405 <u>Text</u>	Photos
05000559 MASSACHUSETTS	Suffolk	Boston	Collins Building	213-217 Washington St.	20050608 <u>Text</u>	Photos
05000879 MASSACHUSETTS	Suffolk	Boston	Home for Aged Couples	409, 419 Walnut Ave. and 2055 Colu	20050811 <u>Text</u>	<u>Photos</u>
05000936 MASSACHUSETTS	Suffolk	Boston	South Boston Boat Clubs Historic District	1793-1849 William J. Day Blvd.	20050901 <u>Text</u>	<u>Photos</u>
05001509 MASSACHUSETTS	Suffolk	Boston	Stony Brook Reservation Parkways, Metropolitan Park Syst	Dedham, Enneking, Turtle Pond Park	20060103 <u>Text</u>	<u>Photos</u>
06000127 MASSACHUSETTS	Suffolk	Boston	5	127 Marion St.	20060315 <u>Text</u>	<u>Photos</u>
01000304 MASSACHUSETTS	Suffolk	Boston	DorchesterMilton Lower Mills Industrial District (Boundar			<u>Photos</u>
07000510 MASSACHUSETTS	Suffolk	Boston		41 Ruggles St., 746-750 Shawmut Av		<u>Photos</u>
07000861 MASSACHUSETTS	Suffolk	Boston	· ·	15 Beacon St.	20070831 <u>Text</u>	<u>Photos</u>
08000089 MASSACHUSETTS	Suffolk	Boston	Dorchester Park	Bounded by Dorchester Ave., Richmo		<u>Photos</u>
08000693 MASSACHUSETTS	Suffolk	Boston	Old Harbor Reservation Parkways, Metropolitan Park Syste	•		<u>Photos</u>
08000793 MASSACHUSETTS	Suffolk	Boston	Joshua Bates School	731 Harrison Ave.	20080822 <u>Text</u>	<u>Photos</u>
08000795 MASSACHUSETTS	Suffolk	Boston	•	147 Wordsworth St.	20080819 <u>Text</u>	Photos
08001284 MASSACHUSETTS 09000612 MASSACHUSETTS	Suffolk Suffolk	Boston		159, 161-175 Devonshire St., 18-20 A 2060 Commonwealth Ave.	20081231 <u>Text</u> 20090814 <u>Text</u>	Photos
09000012 MASSACHUSETTS	Suffolk	Boston Boston	Evergreen Cemetery Fairview Cemetery	45 Fairview Ave.	20090814 <u>Text</u> 20090916 Text	<u>Photos</u> Photos
09000717 MASSACHUSETTS	Suffolk	Boston	Mount Hope Cemetery	355 Walk Hill St.	20090910 <u>Text</u> 20090924 Text	Photos
10000039 MASSACHUSETTS	Suffolk	Boston	·	Address Restricted	20101122 Text	Photos
10000300 MASSACHUSETTS	Suffolk	Boston		154-166 Terrace St	20100528 Text	Photos
10000391 MASSACHUSETTS	Suffolk	Boston		874, 876, 880 Beacon St	20100624 <u>Text</u>	Photos
10000506 MASSACHUSETTS	Suffolk	Boston	Charles River Reservation (Speedway)Upper Basin Headqu	• •	20100719 Text	Photos
10001066 MASSACHUSETTS	Suffolk	Boston	* * * * * * * * * * * * * * * * * * * *	3025 Washington St	20101227 <u>Text</u>	Photos
11000160 MASSACHUSETTS	Suffolk	Boston	United State Post Office, Courthouse, and Federal Building	G	20110408 <u>Text</u>	Photos
12000069 MASSACHUSETTS	Suffolk	Boston		24, & 2-4 Yawkey Wy., 64-76 Brooklii		Photos
12000099 MASSACHUSETTS	Suffolk	Boston	Terminal Storage Warehouse District	267-281 Medford St., 40 & 50 Termir	20120312 <u>Text</u>	Photos
12000783 MASSACHUSETTS	Suffolk	Boston	Saint Mark's Episcopal Church	73 Columbia Rd.	20140703 <u>Text</u>	Photos
12000978 MASSACHUSETTS	Suffolk	Boston	Sherman Apartments Historic District	544-546 Washington, 4-6, 12-14, 18 I	20121128 <u>Text</u>	Photos
12001012 MASSACHUSETTS	Suffolk	Boston	Central Congregational Church	67 Newbury St.	20121016 <u>Text</u>	Photos
12001162 MASSACHUSETTS	Suffolk	Boston	Commonwealth Pier Five	165 Northern Ave.	19791010 <u>Text</u>	<u>Photos</u>
13000621 MASSACHUSETTS		Boston		4228 Washington St.	20130827 <u>Text</u>	<u>Photos</u>
13000928 MASSACHUSETTS	Suffolk	Boston		3 Gaylord St.	20131218 <u>Text</u>	<u>Photos</u>
13000929 MASSACHUSETTS	Suffolk	Boston	Pilgrim Congregational Church	540-544 Columbia Rd.	20131218 <u>Text</u>	<u>Photos</u>
13000930 MASSACHUSETTS	Suffolk	Boston	Walton and Roslin Halls	702-708 & 710-726 Washington St., $\boldsymbol{\xi}$		<u>Photos</u>
14000272 MASSACHUSETTS	Suffolk	Boston		59 Temple Pl.	20140602 <u>Text</u>	<u>Photos</u>
14000365 MASSACHUSETTS	Suffolk	Boston	, 3	2095 Dorchester Ave.	20140627 <u>Text</u>	<u>Photos</u>
14000561 MASSACHUSETTS	Suffolk	Boston	6	825-829 Blue Hill Ave.	20140910 <u>Text</u>	<u>Photos</u>
14000698 MASSACHUSETTS	Suffolk	Boston	·	1439-1443 & 1447-1451 Blue Hill Ανε		<u>Photos</u>
14000974 MASSACHUSETTS	Suffolk	Boston	Gridley Street Historic District	Bounded by Congress, High, Pearl &	20141203 <u>Text</u>	<u>Photos</u>

14000975 MASSACH	IUSETTS	Suffolk	Boston	Lyman, Theodore, School	30 Gove St.	20141202 <u>Text</u>	<u>Photos</u>
14001095 MASSACH	IUSETTS	Suffolk	Boston	South End District (Boundary Increase)	200-224 Northampton St.	20141229 <u>Text</u>	<u>Photos</u>
15000048 MASSACH	IUSETTS	Suffolk	Boston	Boston Police Station Number OneTraffic Tunnel Adminis	128, 150 North & 130 -140 Richmonc	20150303 <u>Text</u>	<u>Photos</u>
15000195 MASSACH	IUSETTS	Suffolk	Boston	Boston National Historical Park	Charlestown Navy Yard	20150505 <u>Text</u>	<u>Photos</u>
86001378 MASSACH	IUSETTS	Suffolk	South Bosto	US Post Office Garage	135 A St.	19860626 <u>Text</u>	<u>Photos</u>

APPENDIX C

Endangered Species Act Documentation

IPaC Information for Planning and Consultation U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as trust resources) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300

6/21/17, 3:08 PM

Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act requires Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USEWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species 1 are managed by the 1 Ecological Services Program of the U.S. Fish and Wildlife Service.

1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.

The following species are potentially affected by activities in this location:

Birds

2 of 8

STATUS

Threatened

IPaC: Explore Location

NAME Red Knot Calidris canutus rufa

No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/1864

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any activity that results in the take (to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct) of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service3. There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and 2. The Bald and Golden Eagle Protection Act of 1940.

3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 6687 implementing appropriate conservation measures.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/ birds-of-conservation-concern.php
- Conservation measures for birds http://www.fws.gov/birds/management/project- assessment-tools-and-guidance/ conservation-measures.php
- Year-round bird occurrence data http://www.birdscanada.org/birdmon/default /datasummaries.jsp

The migratory birds species listed below are species of particular conservation concern (e.g. <u>Birds of Conservation Concern</u>) that may be potentially affected by activities in this location. It is not a list of every bird species you may find in this location, nor a guarantee that all of the

6/21/17, 3:08 PM 3 of 8

bird species on this list will be found on or near this location. Although it is important to try to avoid and minimize impacts to all birds, special attention should be made to avoid and minimize impacts to birds of priority concern. To view available data on other bird species that may occur in your project area, please visit the <u>AKN Histogram Tools</u> and <u>Other Bird Data Resources</u>. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

NAME	SEASON(S)
American Bittern Botaurus lentiginosus https://ecos.fws.gov/ecp/species/6582	On Land: Breeding
American Oystercatcher Haematopus palliatus https://ecos.fws.gov/ecp/species/8935	On Land: Breeding
Bald Eagle Haliaeetus leucocephalus https://ecos.fws.gov/ecp/species/1626	On Land: Year-round
Black-billed Cuckoo Coccyzus erythropthalmus https://ecos.fws.gov/ecp/species/9399	On Land: Breeding
Blue-winged Warbler Vermivora pinus	On Land: Breeding
Canada Warbler Wilsonia canadensis	On Land: Breeding
Hudsonian Godwit Limosa haemastica	At Seat Migrating
Least Bittern Ixobrychus exilis https://ecos.fws.gov/ecp/species/6175	On Land: Breeding
Olive-sided Flycatcher Contopus cooperi https://ecos.fws.gov/ecp/species/3914	On Land: Breeding
Peregrine Falcon Falco peregrinus https://ecos.fws.gov/ecp/species/8831	On Land: Wintering
Pied-billed Grebe Podilymbus podiceps	On Land: Breeding
Prairie Warbler Dendroica discolor	On Land: Breeding
Purple Sandpiper Calidris maritima	On Land: Wintering

4 of 8 6/21/17, 3:08 PM

Saltmarsh Sparrow Ammodramus caudacutus On Land: Breeding

Seaside Sparrow Ammodramus maritimus On Land: Breeding

Short-eared Owl Asio flammeus On Land: Wintering

https://ecos.fws.gov/ecp/species/9295

Snowy Egret Egretta thula On Land: Breeding

Upland Sandpiper Bartramia longicauda On Land: Breeding

https://ecos.fws.gov/ecp/species/9294

Willow Flycatcher Empidonax traillii On Land: Breeding

https://ecos.fws.gov/ecp/species/3482

Wood Thrush Hylocichla mustelina On Land: Breeding

Worm Eating Warbler Helmitheros vermivorum On Land: Breeding

What does IPaC use to generate the list of migratory bird species potentially occurring in my specified location?

Landbirds:

Migratory birds that are displayed on the (PaC species list are based on ranges in the latest edition of the National Geographic Guide, Birds of North America (6th Edition, 2011 by Jon L. Dunn, and Jonathan Alderfer). Although these ranges are coarse in nature, a number of U.S. Fish and Wildlife Service migratory bird biologists agree that these maps are some of the best range maps to date. These ranges were clipped to a specific Bird Conservation Region (BCR) or USFWS Region/Regions, if it was indicated in the 2008 list of Birds of Conservation Concern (BCC) that a species was a BCC species only in a particular Region/Regions. Additional modifications have been made to some ranges based on more local or refined range information and/or information provided by U.S. Fish and Wildlife Service biologists with species expertise. All migratory birds that show in areas on land in IPaC are those that appear in the 2008 Birds of Conservation Concern report.

Atlantic Seabirds:

Ranges in IPaC for birds off the Atlantic coast are derived from species distribution models developed by the National Oceanic and Atmospheric Association (NOAA) National Centers for Coastal Ocean Science (NCCOS) using the best available seabird survey data for the offshore Atlantic Coastal region to date. NOAANCCOS assisted USFWS in developing seasonal species ranges from their models for specific use in IPaC. Some of these birds are not BCC species but were of interest for inclusion because they may occur in high abundance off the coast at different times throughout the year, which potentially makes them more susceptible to certain types of development and activities taking place in that area. For more refined details about the abundance and richness of bird species within your project area off the Atlantic Coast, see the Northeast Ocean Data Portal. The Portal also offers data and information about other types of taxa that may be helpful

5 of 8 6/21/17, 3:08 PM

IPaC: Explore Location

in your project review.

About the NOAANCCOS models: the models were developed as part of the NOAANCCOS project: Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf. The models resulting from this project are being used in a number of decision-support/mapping products in order to help guide decision-making on activities off the Atlantic Coast with the goal of reducing impacts to migratory birds. One such product is the Northeast Ocean Data Portal, which can be used to explore details about the relative occurrence and abundance of bird species in a particular area off the Atlantic Coast.

All migratory bird range maps within IPaC are continuously being updated as new and better information becomes available.

Can I get additional information about the levels of occurrence in my project area of specific birds or groups of birds listed in IPaC?

Landbirds:

The <u>Avian Knowledge Network (AKN)</u> provides a tool currently called the "Histogram Tool", which draws from the data within the AKN (latest, survey, point count, citizen science datasets) to create a view of relative abundance of species within a particular location over the course of the year. The results of the tool depict the frequency of detection of a species in survey events, averaged between multiple datasets within AKN in a particular week of the year. You may access the histogram tools through the <u>Migratory Bird Programs AKN Histogram Tools</u> webpage.

The tool is currently available for 4 regions (California, Northeast U.S., Southeast U.S. and Midwest), which encompasses the following 32 states: Alabama, Arkansas, California, Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, New Hampshire, New Jersey, New York, North, Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, West Virginia, and Wisconsin.

In the near future, there are plans to expand this tool nationwide within the AKN, and allow the graphs produced to appear with the list of trust resources generated by IPaC, providing you with an additional level of detail about the level of occurrence of the species of particular concern potentially occurring in your project area throughout the course of the year.

Atlantic Seabirds:

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAANCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Facilities

Wildlife refuges

6 of 8 6/21/17, 3:08 PM

Any activity proposed on <u>National Wildlife Refuge</u> lands must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGES AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on the ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

7 of 8

IPaC: Explore Location

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

8 of 8

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened Coastal Reaches		Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
2011	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

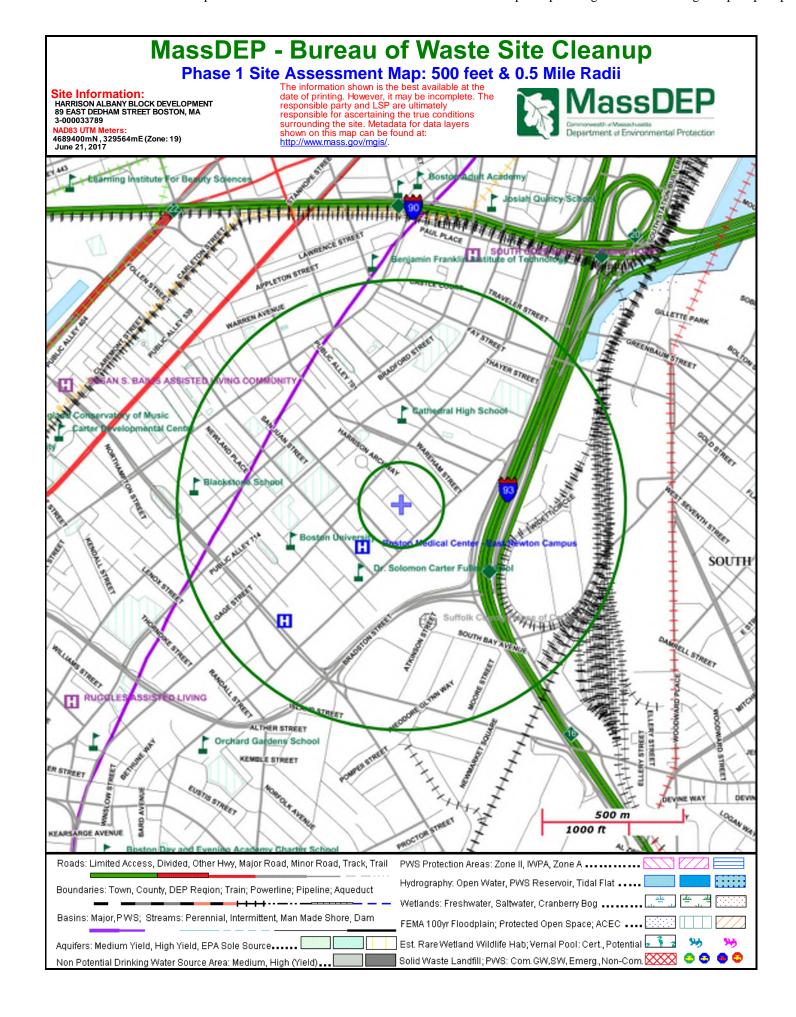
Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

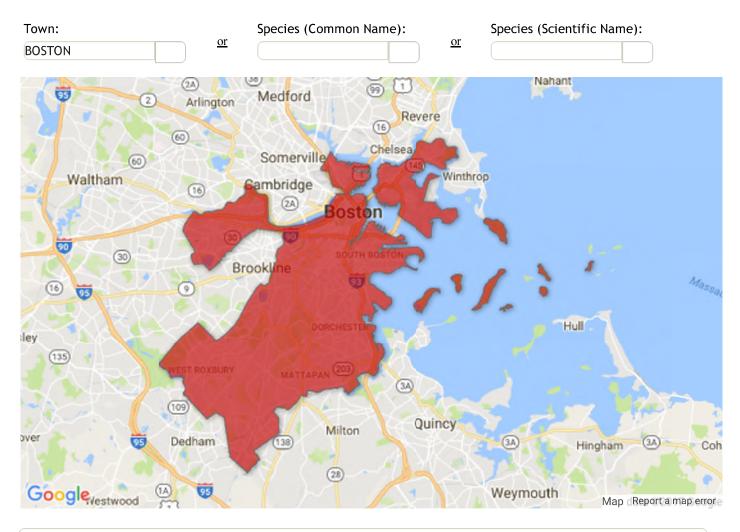
Weymouth Back River


(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

November 2010


TOWIIS WILL	II ACECS WILLIIII LITELI DOUTIGATIES		November 2010
TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag		Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River		Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed	_	Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp	0 :	Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay	Chavan	Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer	Sheffield	Fowl Meadow and Ponkapoag Bog Schenob Brook
Farament	Hockomock Swamp Karner Brook Watershed		
Egremont		Shirley Stockbridge	Squannassit Kampoosa Bog Drainage Basin
Essex Falmouth	Great Marsh	Taunton	Hockomock Swamp
Foxborough	Waquoit Bay Canoe River Aquifer	raunton	Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
Ciaiton	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
Citton	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley	Opton	Watersheds
riarvara	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	3.0	Upper Housatonic River
rinigriani	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River	•	•
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

1 of 1 6/21/17, 3:04 PM

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Showing 1	to 46 of 46 entries				
			First	Previous 1	Next Last
Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
BOSTON	Butterfly/Moth	Abagrotis nefascia	Coastal Heathland Cutworm	SC	2001
BOSTON	Vascular Plant	Ageratina aromatica	Lesser Snakeroot	E	1896
BOSTON	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC	2015
BOSTON	Bird	Ammodramus savannarum	Grasshopper Sparrow	T	1993
BOSTON	Butterfly/Moth	Apodrepanulatrix liberaria	New Jersey Tea Inchworm	E	Historic
BOSTON	Vascular Plant	Aristida purpurascens	Purple Needlegrass	T	Historic
BOSTON	Vascular Plant	Aristida tuberculosa	Seabeach Needlegrass	T	1877

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recen Obs
BOSTON	Vascular Plant	Asclepias verticillata	Linear-leaved Milkweed	T	1878
BOSTON	Bird	Bartramia longicauda	Upland Sandpiper	E	1993
BOSTON	Vascular Plant	Boechera missouriensis	Green Rock-cress	T	1930
BOSTON	Vascular Plant	Carex striata	Walter's Sedge	Е	Historic
BOSTON	Bird	Charadrius melodus	Piping Plover	T	2016
BOSTON	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger Beetle	SC	1910
BOSTON	Beetle	Cicindela purpurea	Cow Path Tiger Beetle	SC	1928
BOSTON	Beetle	Cicindela rufiventris hentzii	Eastern Red-bellied Tiger Beetle	T	1927
BOSTON	Vascular Plant	Desmodium cuspidatum	Large-bracted Tick-trefoil	T	1896
BOSTON	Vascular Plant	Eriophorum gracile	Slender Cottongrass	T	1885
BOSTON	Bird	Falco peregrinus	Peregrine Falcon	T	2014
BOSTON	Fish	Gasterosteus aculeatus	Threespine Stickleback	T	2014
BOSTON	Bird	Gavia immer	Common Loon	SC	1824
BOSTON	Vascular Plant	Houstonia longifolia	Long-leaved Bluet	E	1918
BOSTON	Vascular Plant	Liatris scariosa var. novae- angliae	New England Blazing Star	SC	1933
BOSTON	Mussel	Ligumia nasuta	Eastern Pondmussel	SC	1841
OSTON	Vascular Plant	Linum medium var. texanum	Rigid Flax	T	1909
OSTON	Vascular Plant	Lycopus rubellus	Gypsywort	E	1896
BOSTON	Vascular Plant	Malaxis unifolia	Green Adder's Mouth	T	1883
BOSTON	Butterfly/Moth	Metarranthis apiciaria	Barrens Metarranthis	E	1934
BOSTON	Vascular Plant	Myriophyllum alterniflorum	Alternate-flowered Water-milfoil	E	Historic
BOSTON	Vascular Plant	Ophioglossum pusillum	Adder's-tongue Fern	T	1884
OSTON	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	T	1908
BOSTON	Bird	Pooecetes gramineus	Vesper Sparrow	T	1985
OSTON	Butterfly/Moth	Pyrrhia aurantiago	Orange Sallow Moth	SC	1988
BOSTON	Vascular Plant	Ranunculus micranthus	Tiny-flowered Buttercup	E	1891
BOSTON	Vascular Plant	Rumex pallidus	Seabeach Dock	T	1984
BOSTON	Vascular Plant	Sanicula odorata	Long-styled Sanicle	T	Historic
BOSTON	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	T	1932
BOSTON	Vascular Plant	Scirpus longii	Long's Bulrush	T	1907
BOSTON	Vascular Plant	Setaria parviflora	Bristly Foxtail	SC	2001
BOSTON	Dragonfly/Damselfly	Somatochlora linearis	Mocha Emerald	SC	2009
BOSTON	Bird	Sterna hirundo	Common Tern	SC	2013
BOSTON	Bird	Sternula antillarum	Least Tern	SC	2014
BOSTON	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC	1909
BOSTON	Reptile	Terrapene carolina	Eastern Box Turtle	SC	1939
BOSTON	Bird	Tyto alba	Barn Owl	SC	1989
BOSTON	Bird	Vermivora chrysoptera	Golden-winged Warbler	Е	Historic
BOSTON	Vascular Plant	Viola brittoniana	Britton's Violet	T	1909

Show Additional Info

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

July 12, 2017

In Reply Refer To:

Consultation Code: 05E1NE00-2017-SLI-2128

Event Code: 05E1NE00-2017-E-04638

Project Name: Harrison/Albany

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2017-SLI-2128

Event Code: 05E1NE00-2017-E-04638

Project Name: Harrison/Albany

Project Type: DEVELOPMENT

Project Description: Construction dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.33797928420401N71.06870317443122W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

Birds

NAME STATUS

Red Knot (Calidris canutus rufa)

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/1864

Critical habitats

There are no critical habitats within your project area.

APPENDIX D

BWSC PERMIT

Haley & Aldrich, Inc. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

20 September 2017 File No. 129168-007

Boston Water and Sewer Commission Engineering Customer Services 900 Harrison Avenue Boston, MA 02119

Attention: Matthew Tuttle

Subject: Request for Approval of Temporary Construction Dewatering

Harrison Albany Block Development

89 East Dedham Street Boston, Massachusetts

Dear Mr. Tuttle:

On behalf of our client, MEPT/LMP Harrison/Albany Block LLC, this letter submits the Dewatering Discharge Permit Application in support of the proposed Harrison Albany Block Development Site located in Boston, Massachusetts.

Dewatering is necessary to enable construction excavations in-the-dry, and is anticipated to begin in September 2017 and continue for up to 18 months. Prior to discharge, collected water will be routed through a sedimentation tank and bag filter at minimum to remove suspended solids and undissolved chemical constituents. The proposed dewatering discharge route and BWSC outfall locations are shown on Figure 1.

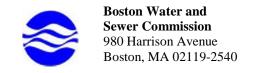
A submittal was provided to USEPA for discharge of the dewatering effluent under the Remediation General Permit (RGP). A copy of the submitted RGP application is attached. If you have any questions, please feel free to contact the undersigned at 617-886-7400.

Sincerely yours,

HALEY & ALDRICH, INC.

Elliot I. Steinberg, P.E., LŞ

Senior Associate


Boston Water and Sewer Commission 20 September 2017 Page 2

Attachments:

Dewatering Discharge Permit Application Figure 1 – Proposed Discharge Route Copy of NPDES RGP Permit Application

\\haleyaldrich.com\share\bos_common\129168 - Harrison-Albany\007 - Construction-Related Permit Support\NPDES RGP\Appendix D - BWSC Permit\2017-0920-HAI-Harrison Alabany NPDES BWSC Letter-F.docx

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

Company Name: MEPT/LMP Harriso	n/Albany Block LLC	Address: 10 Post Office Squ	uare, Suite 1300, Boston, MA			
Phone Number: 617-422-7000		Fax number:				
Contact person name: Sam Reich	ne	Title: Project Manag	er			
Cell number: 207-939-6308 Email address: sam.reiche@Imp.com						
•			ner (Specify):			
Owner's Information (if different						
Owner of property being dewatered	1:					
=			Phone number:			
Location of Discharge & Propose						
Street number and name: 89 Eas	st Dedham Street	Neighbor	hood South End, Boston			
Discharge is to a: ☐ Sanitary Sewer Describe Proposed Pre-Treatment S BWSC Outfall No. CSO071	Sedime System(s): <u>(refer to</u> Receiving	entation Tank, Bag Filter, o attached RGP Applicati g Waters Boston Inner Ha	and any other components as necessary on)			
		scharge): From September Tank Removal/Installation Test Pipe Hydrogeologic Testing Crawl Space/Footing Drain Non-contact/Uncontaminated Other;				
 Attach a Site Plan showing the source number, size, make and start reading. If discharging to a sanitary or combine 	of the discharge and the Note. All discharges to the ed sewer, attach a copy of n, attach a copy of EPA's enied or revoked if application. Boston Water and Sewer Engineering Customer Sewer 1980 Harrison Avenue, I	location of the point of discharge the Commission's sewer system with MWRA's Sewer Use Discharge is NPDES Permit or NOI application cant fails to obtain the necessary per Commission Services Boston, MA 02119 Ingineering Customer Service Corg Fax: 617-989-7716	i.e. the sewer pipe or catch basin). Include meter type, mete till be assessed current sewer charges. permit or application. on, or NPDES Permit exclusion letter for the discharge, as well			
Signature of Authorized Representative f	or Property Owner:		Date:			

APPENDIX E

Laboratory Data Reports

gel.com

February 24, 2016

Mr. Lee Vanzler Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, Massachusetts 02129

Re: Harrison Albany Block Work Order: 391208

Dear Mr. Vanzler:

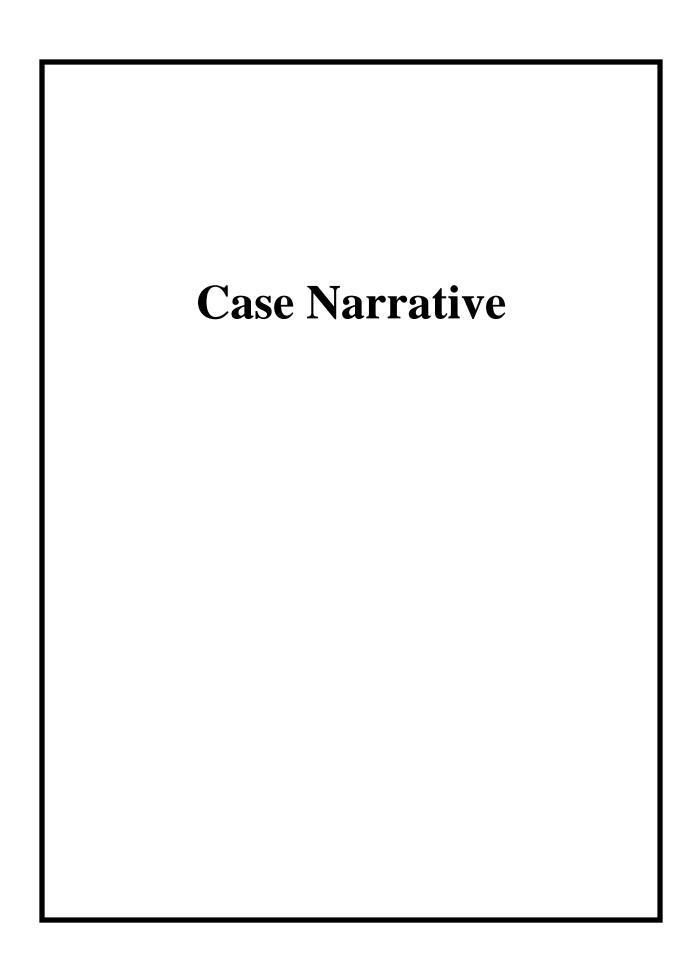
GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 11, 2016. This revised data report has been prepared and reviewed in accordance with GEL's standard operating procedures. The client requested a revision to the data package to remove information concerning another laboratory that was in an e-mail stream. The information is not applicable to the data package.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4453.

Sincerely,

Edith Kent Project Manager

Edikk M. That


Purchase Order: 41737-014-015 Chain of Custody: 259800

Enclosures

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Laboratory Certifications	9
Radiological Analysis	11
Case Narrative	12
Sample Data Summary	16
Ouality Control Summary	26

The client requested a revision to the data package to remove information concerning another laboratory that was in an e-mail stream. The information is not applicable to the data package.

Receipt Narrative for Haley & Aldrich, Inc. (Contract#) SDG: 391208

February 24, 2016

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

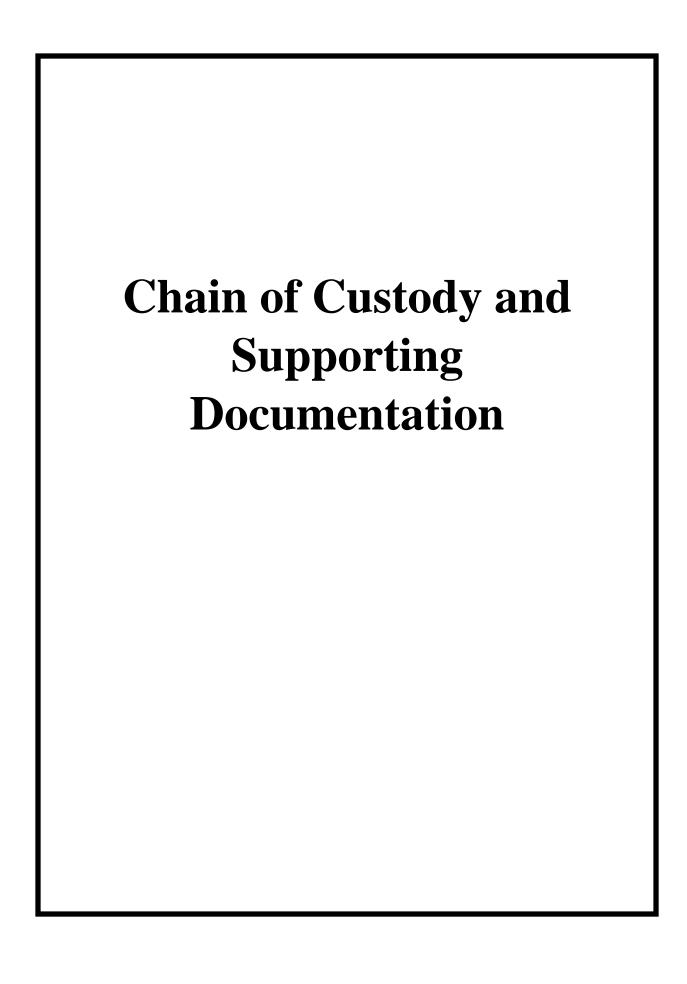
Summary:

Sample receipt: The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on February 11, 2016 for analysis. The samples were delivered with proper chain of custody documentation and signatures. The client was notified that sample 391208004(HA-5-0-5) was received broken but contained inside the bubble bag. The lab transferred the sample to another container. Sample 391208004(HA-5-0-5) was incorrectly noted on the chain as a water sample. Please refer to the attached e-mail for further details. The e-mail dated February 11, 2016 and addressed to Elliot Steinberg had an e-mail stream that contained information about another lab being used by the client. That information was not applicable to this data package so the client requested that part of the e-mail not be included in the data package.

Sample Identification: The laboratory received the following samples:

Laboratory ID	Client ID
391208001	HA-1-0-5
391208002	B106 (MW)
391208003	B4
391208004	HA-5-0-5
391208005	HA-3-0-5
391208006	HA-1-5-8.8
391208007	HA-2-5-10
391208008	HA-6-0-5
391208009	HA-2-0-5

Case Narrative:


Sample analyses were conducted using methodology as outlined in GEL's Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Radiochemistry.

GEL Laboratories LLC

Edikl M. Feet

Edith Kent Project Manager

Temperature on Receipt

⊘8

Drinking Water? Yes□

,	7000	ļ
0.0		THE LEADER IN ENVIRONMENTAL TESTING
4 50		THE LEADER IN E

208

Special Instructions/ Conditions of Receipt Chain of Custody Number 259800 (A tee may be assessed if samples are retained tonger than 1 month) page Date Analysis (Attach list if more space is needed) Lab Number Months Date Archive For OC Requirements (Specify) HOEN HOEN Disposal By Lab Containers & Preservatives 1. Received By 3. Received By 2. Received By Telephone Number (Area Code)/Fax Number Lab Contact EONH ¢OSZH ☐ Unknown ☐ Return To Client Sample Disposal 1105 Matrix Carrier/Waybill Number pas Project Manager Site Contact 1 7 Days 14 Days 21 Days Other 1145 1450 1475 1000 1250 22-16 1030 2-1-16 927 Time 7.1.16 936 73.10 21-12 2216 2-7-10 といい 21.10 ☐ Poison B Date 2. Relinquished By Zlp Code Sampte I.D. No. and Description Containers for each sample may be combined on one line) Skin Imitant State Non-Hazard 🔲 Flammable Contract/Purchase Order/Quote No. Project Name and Location (State) 24 Hours 🔲 48 Hours Possible Hazard Identification Turn Around Trime Required (N E) 11 2 5 10 11 4 - 6 - 5 HA-1-5-88 44-1-0-5 HA-3-0.5 1. Relinquished By 3. Retinquished By B106

Custody Record

SAMPLE RECEIPT & REVIEW FORM

Client: HAAL			SDC	SDG/AR/COC/Work Order: 35\\268					
Received By: M/C			Dat	e Received: 3 11/6					
Suspected Hazard Information	Yes	ž	*Lf l idve	Ver Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further stigation.					
COC/Samples marked as radioactive?				imum Net Counts Observed* (Observed Counts - Area Background Counts): (And O					
Classified Radioactive II or III by RSO?		4	H ye	ss. Were swipes taken of sample containers < action levels?					
COC/Samples marked containing PCBs? Package, COC, and/or Samples marked as	-	-							
berylhem or asbestos containing?		Ľ		ea, samples are to be segregated as Safety Controlled Samples, and opened by the GEL Safety Group.					
Shipped as a DOT Hazardous?		1	Haz	ard Class Shipped: UN#:					
Samples identified as Foreign Soil?	<u> </u>	1/	Ļ						
Sample Receipt Criteria	Ž	Ž,	ž	Comments/Qualifiers (Required for Non-Conforming Items)					
Shipping containers received intact and sealed?		Ĺ		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)					
2 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*		100		Prescryation Method: Ice bags Blue ico Dry ice None Other (describe) *all temperatures are recorded in Celsius					
2a Daily check performed and passed on if temperature gun?	C.			Temperature Device Serial #: 3,7,461 4/1 Secondary Temperature Device Serial # (sf Applicable):					
Chain of custody documents included with shipment?	/								
4 Sample containers intact and sealed?				Circle Applicable: Scale broken Damaged container Leaking container Other (describe)					
5 Samples requiring chemical preservation at proper pH?	,	,		Sample ID's, containers affected and observed pH: If Preservation added, Lotif:					
6 Do Low Level Perchlorate samples have headspace as required?	2	1		Sample ID's and containers affected:					
7 VOA vials contain acid preservation?		1	1.	(If unknown, select No)					
8 VOA vials free of headspace (defined as < 6mm bubble)?	,	V	T	Sample ID's and containers affected:					
9 Are Encore containers present?			/	(If yes, immediately deliver to Volatiles laboratory)					
10 Samples received within holding time?	3			III's and tests affected:					
Sample ID's on COC match ID's on bottles?	1			Sample ID's and containers affected:					
12 Date & time on COC match date & time on bottles?	9.00			Sample ID's affected:					
Number of containers received match number indicated on COC?	1			Sample ID's affected:					
14 Are sample containers identifiable as GEL provided?			/						
COC form is properly signed in relinquished/seceived sections?	1	1		Circle Applicable:					
16 Carrier and tracking number.				FedEx Air FedEx Ground UPS Field Services Courier Other 7 756 2323 7913					
Comments (Use Continuation Form if needed):									
* SAMPLE HA	- 5	- -	D ~	5 Received Broken - Soil CONTINED TO AG BOTTLE CAME, IN Date 2/11/16 Page LOF/ GL-CHL-SR-001 Rev 2					
BURR			\mathcal{B}	AG BOTTLE CAME, IN.					
PM (or PMA)	revie	v: Ini	itials	1301/06 CAMPA, IN Page 1 of 1 GL-CHL-SR-001 Rev 2					

```
Subject: RE: pick up for tomorrow has been scheduled
From: "Steinberg, Elliot" <ESteinberg@haleyaldrich.com>
Date: 2/11/2016 10:18 AM
To: Edie Kent <emk@gel.com>
CC: team.kent <team.kent@gel.com>, Joanne Harley <joanne.harley@gel.com>, "Atwood, Mike"
<MAtwood@haleyaldrich.com>, "Penwell, Lee" <LPenwell@haleyaldrich.com>
The chain has an error: HA5-05 should be soil. In summary B106 and B4 are water
samples. The other 7 samples are soil. All for tritium analyses.
As we discussed, what is the quickest turnaround time for the tritium.
Elliot I. Steinberg, P.E., LSP
Brownfields Program Manager | Vice President
Haley & Aldrich, Inc.
465 Medford Street, Suite 2200
Boston, MA 02129-1400
T: (617) 886.7454
C: (617) 908.0354
www.haleyaldrich.com
----Original Message----
From: Edie Kent [mailto:emk@gel.com]
Sent: Thursday, February 11, 2016 10:03 AM
To: Steinberg, Elliot
Cc: team.kent; Joanne Harley; Atwood, Mike; Penwell, Lee
Subject: Re: pick up for tomorrow has been scheduled
Elliot:
The chain is attached for the samples received today from Test America.
Edie
On 2/11/2016 9:44 AM, Edie Kent wrote:
 Elliot:
 We received the soils from TA. If you can get back to me as soon as
 possible on data package and EDD type, I would appreciate it. I need
 that info before I can log the samples.
 Thanks, Edie
 On 2/11/2016 8:02 AM, Steinberg, Elliot wrote:
  Thanks. Will get back to you later this morning with specifics on
  analyses and deliverables.
  Sent from my iPhone
  On Feb 11, 2016, at 7:59 AM, Edie Kent
  <emk@gel.com<mailto:emk@gel.com>> wrote:
  Elliot:
  I'll have our marketing put together a quote as soon as you send me
  the information on the other tests. What type of data package and
  EDD do you need for this work?
  Edie
```

Subject: Samples Received Today, 02/11/16 - Condition on Receipt

From: Edie Kent <emk@gel.com>

Date: 2/11/2016 3:13 PM

To: "Steinberg, Elliot" <ESteinberg@haleyaldrich.com>

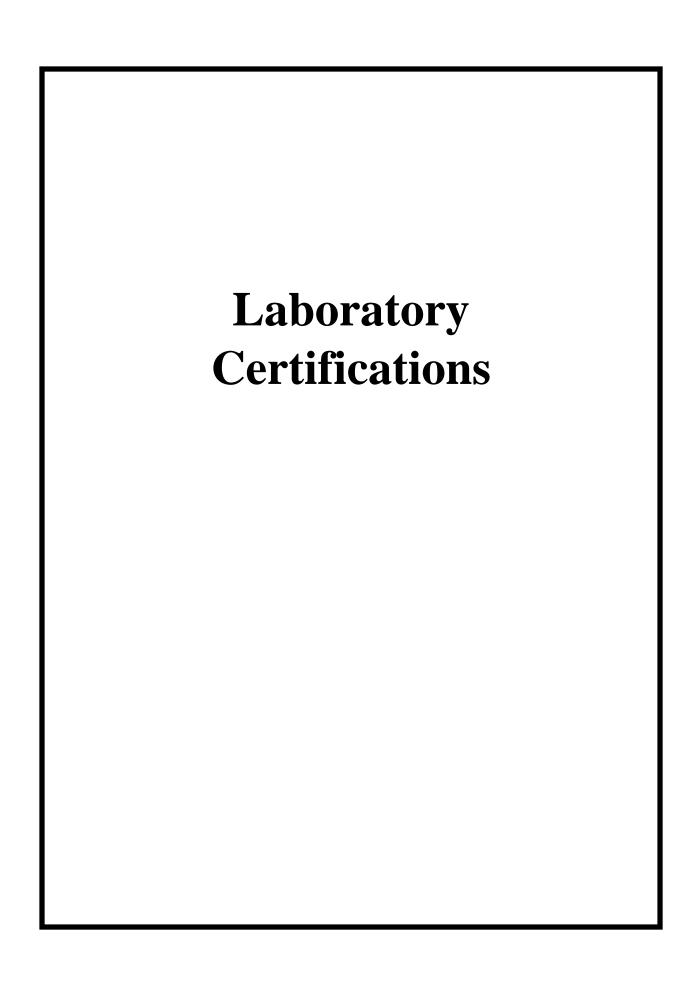
CC: "team.kent" <team.kent@gel.com>, Angela Johnson <aea@gel.com>

Elliot:

One of the samples, HA-5-0-5, was received broken but contained in the bubble bag. We have transferred the sample to another container.

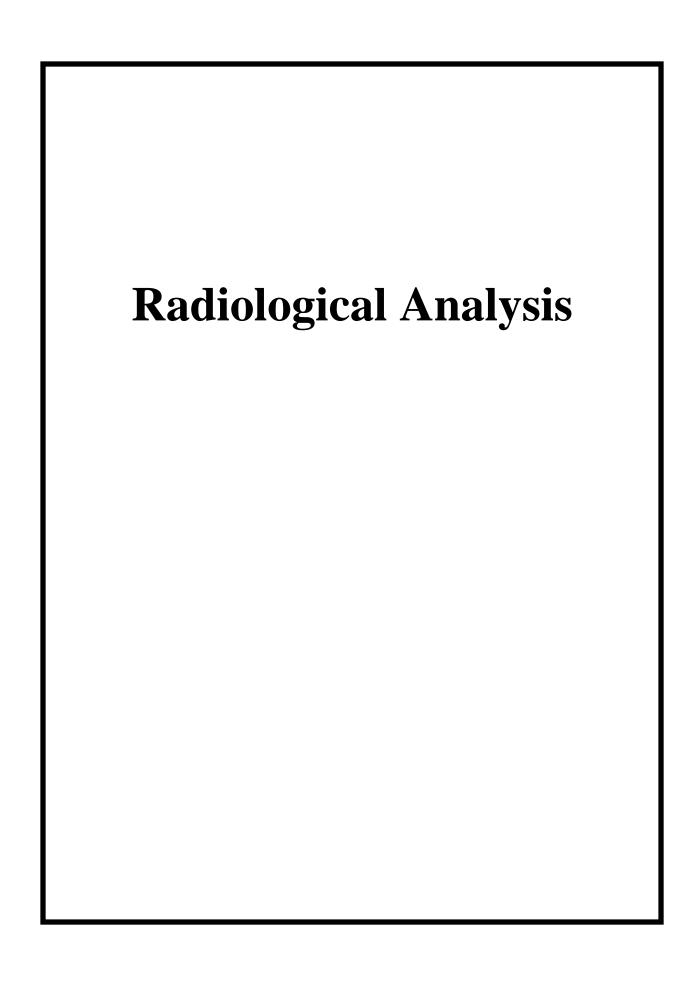
Edie

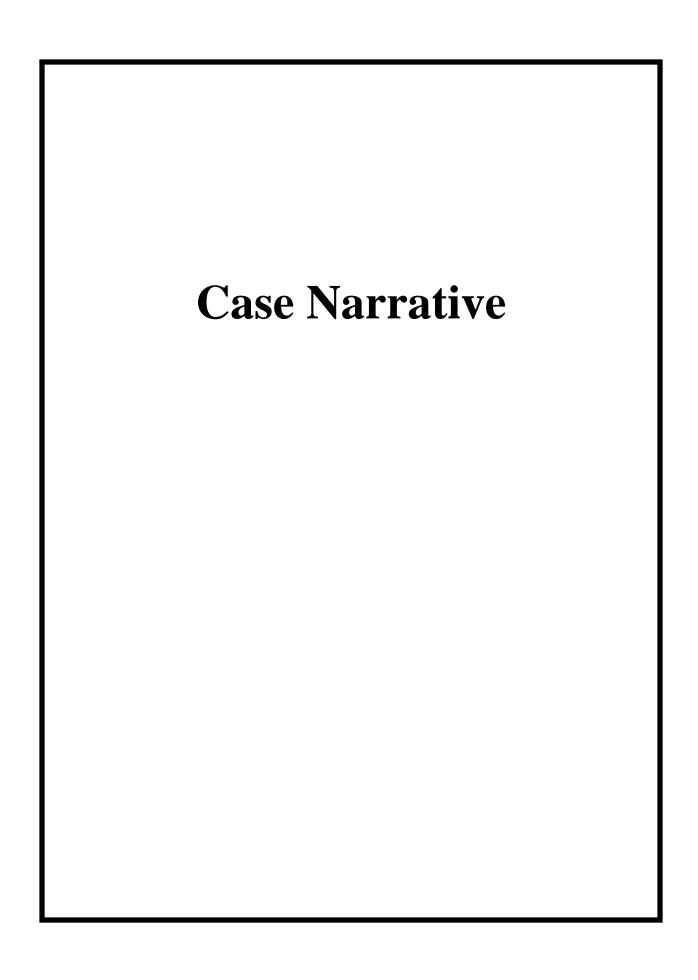
- -


Edith M. Kent Project Manager GEL Laboratories, LLC 2040 Savage Road Charleston, SC (USA) 29407

Direct: 843.769.7385 Main: 843.556.8171 x4453

Fax: 843.766.1178 E-mail: emk@gel.com


Team E-mail: team.kent@gel.com


Web: www.gel.com

List of current GEL Certifications as of 17 February 2016

State	Certification					
Alaska	UST-110					
Arkansas	88-0651					
CLIA	42D0904046					
California	2940 Interim					
Colorado	SC00012					
Connecticut	PH-0169					
Delaware	SC000122013-10					
DoD ELAP/ ISO17025 A2LA	2567.01					
Florida NELAP	E87156					
Foreign Soils Permit	P330-15-00283, P330-15-00253					
Georgia	SC00012					
Georgia SDWA	967					
Hawaii	SC000122013-10					
Idaho Chemistry	SC00012					
Idaho Radiochemistry	SC00012					
Illinois NELAP	200029					
Indiana	C-SC-01					
Kansas NELAP	E-10332					
Kentucky SDWA	90129					
Kentucky Wastewater	90129					
Louisiana NELAP	03046 (AI33904)					
Louisiana SDWA	LA150001					
Maryland	270					
Massachusetts	M-SC012					
Michigan	9976					
Mississippi	SC000122013-10					
Nebraska	NE-OS-26-13					
Nevada	SC000122016-1					
New Hampshire NELAP	2054					
New Jersey NELAP	SC002					
New Mexico	SC00012					
New York NELAP	11501					
North Carolina	233					
North Carolina SDWA	45709					
North Dakota	R-158					
Oklahoma	9904					
Pennsylvania NELAP	68-00485					
S.Carolina Radchem	10120002					
South Carolina Chemistry	10120001					
Tennessee	TN 02934					
Texas NELAP	T104704235-16-11					
Utah NELAP	SC000122016-20					
Vermont	VT87156					
Virginia NELAP	460202					
Washington	C780					
West Virginia	997404					

Radiochemistry Technical Case Narrative Haley & Aldrich, Inc. (HAAL) SDG #: 391208

Product: LSC, Tritium Dist, Liquid Analytical Method: EPA 906.0 Modified

Analytical Procedure: GL-RAD-A-002 REV# 21

Analytical Batch: 1544344

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
391208002	B106 (MW)
391208003	B4
1203487870	Method Blank (MB)
1203487871	391208002(B106 (MW)) Sample Duplicate (DUP)
1203487872	391208002(B106 (MW)) Matrix Spike (MS)
1203487873	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 1203487871 (B106 (MW)DUP), 391208002 (B106 (MW)) and 391208003 (B4) were recounted to verify sample results. The recount results are similar to the original results. Original results are reported.

<u>Product:</u> LSC, Tritium Dist, Solid Analytical Method: EPA 906.0 Modified

Analytical Procedure: GL-RAD-A-002 REV# 21

Analytical Batch: 1544362

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
391208001	HA-1-0-5
391208004	HA-5-0-5
391208005	HA-3-0-5
391208006	HA-1-5-8.8
391208007	HA-2-5-10
391208008	HA-6-0-5

391208009	HA-2-0-5
1203487918	Method Blank (MB)
1203487919	391208001(HA-1-0-5) Sample Duplicate (DUP)
1203487920	391208001(HA-1-0-5) Matrix Spike (MS)
1203487921	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 1203487919 (HA-1-0-5DUP) and 391208001 (HA-1-0-5) were recounted due to high relative percent difference/relative error ratio. The recounts are reported.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

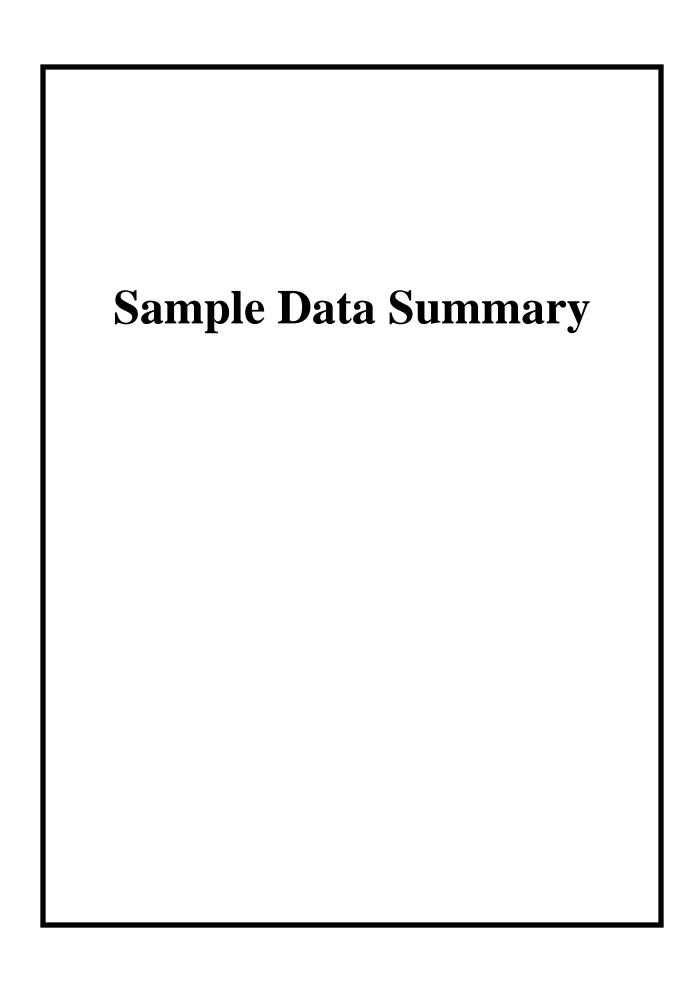
2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

HAAL001 Haley & Aldrich, Inc. (Contract#) Client SDG: 391208 GEL Work Order: 391208

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.


Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: 9 0 0 MC 4 Ty Name: Heather McCarty

Date: 17 FEB 2016 Title: Analyst II

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

1

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

Contact: Mr. Lee Vanzler
Project: Harrison Albany Block

Client Sample ID: HA-1-0-5 Sample ID: 391208001

Matrix: Soil

Collect Date: 01-FEB-16 09:30
Receive Date: 11-FEB-16
Collector: Client

Parameter Qualifier Result Uncertainty MDC RL Units DF Analyst Date Time Batch Method

Rad Liquid Scintillation Analysis

LSC, Tritium Dist, Solid "As Received"

Tritium U 0.754 +/-2.39 4.46 6.00 pCi/g TXJ1 02/17/16 0817 1544362

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 906.0 Modified

EFA 900.0 Modified

Notes:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

Contact: Mr. Lee Vanzler
Project: Harrison Albany Block

Client Sample ID: B106 (MW) Sample ID: 391208002

Matrix: Water

Collect Date: 01-FEB-16 09:27
Receive Date: 11-FEB-16
Collector: Client

Parameter	Qualifier	Result Uncertainty	MDC	RL	Units	DF Analyst Date	Time Batch Method

Rad Liquid Scintillation Analysis

LSC, Tritium Dist, Liquid "As Received"

Tritium 718 +/-408 636 700 pCi/L TXJ1 02/15/16 1619 1544344

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 906.0 Modified

Analyst Comments

2117,0010 111041110

Notes:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

Contact: Mr. Lee Vanzler Project: Harrison Albany Block

Client Sample ID: B4

Sample ID: 391208003 Matrix: Water

Collect Date: 01-FEB-16 14:50 Receive Date: 11-FEB-16 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	DF Analyst Date	e Time Batch Method
Rad Liquid Scintillation	n Analysis							
LSC, Tritium Dist, Liqu	iid "As Recei	ved"						
Tritium		1.06E+05	+/-2560	631	700	pCi/L	TXJ1 02/15/16	5 1635 1544344 1
The following Analytical Methods were performed:								

Method Description **Analyst Comments**

EPA 906.0 Modified

Notes:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

Contact: Mr. Lee Vanzler
Project: Harrison Albany Block

Client Sample ID: HA-5-0-5 Sample ID: 391208004

Matrix: Soil

Collect Date: 02-FEB-16 14:20 Receive Date: 11-FEB-16 Collector: Client

Parameter	Qualifier	Result Uncertainty	MDC	RL	Units	DF Analyst Date	Time Batch Method

Rad Liquid Scintillation Analysis

LSC, Tritium Dist, Solid "As Received"

Tritium U 1.60 +/-1.86 3.13 6.00 pCi/g TXJ1 02/16/16 1326 1544362

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 906.0 Modified

Analyst Comments

Notes:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

Contact: Mr. Lee Vanzler
Project: Harrison Albany Block

Client Sample ID: HA-3-0-5 Sample ID: 391208005

Matrix: Soil

Collect Date: 01-FEB-16 14:30
Receive Date: 11-FEB-16
Collector: Client

Parameter	Qualifier	Result Uncertainty	MDC	RL	Units	DF Analyst Date	Time Batch Method
Rad Liquid Scintillation Analysis							

Rad Liquid Scintillation Analysis

LSC, Tritium Dist, Solid "As Received"

Tritium U 1.51 +/-1.89 3.21 6.00 pCi/g TXJ1 02/16/16 1348 1544362

The following Analytical Methods were performed:

The 10h0 wing I mary dear with performed.							
Method	Description	Analyst Comments					
1	EPA 906.0 Modified	•					

Notes:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

Contact: Mr. Lee Vanzler

Project: Harrison Albany Block
Client Sample ID: HA-1-5-8.8

Sample ID: 391208006

Matrix: Soil

Collect Date: 03-FEB-16 10:00
Receive Date: 11-FEB-16
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	DF Analyst Date Time Batch Method
Rad Liquid Scintillation	n Analysis						
LSC, Tritium Dist, Soli	d "As Receiv	ed"					
Tritium	U	0.259	+/-1.67	3.15	6.00	pCi/g	TXJ1 02/16/16 1411 1544362 1
The following Analytical Methods were performed:							
M . 41 1	D					A	1

Method Description Analyst Comments

EPA 906.0 Modified

Notes:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

Contact: Mr. Lee Vanzler
Project: Harrison Albany Block

Client Sample ID: HA-2-5-10 Sample ID: 391208007

Matrix: Soil

Collect Date: 02-FEB-16 10:30
Receive Date: 11-FEB-16
Collector: Client

Parameter	Qualifier	Result Uncertainty	MDC	RL	Units	DF Analyst Date	Time Batch Method
Rad Liquid Scinti	Illation Analysis						
LSC Tritium Dis	t Solid "As Receiv	red"					

SC, Tritium Dist, Solid "As Received"

Tritium U 0.538 +/-1.67 3.07 6.00 pCi/g TXJ1 02/16/16 1434 1544362

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 906.0 Modified

Analyst Comments

Notes:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

Contact: Mr. Lee Vanzler
Project: Harrison Albany Block

Client Sample ID: HA-6-0-5 Sample ID: 391208008

Matrix: Soil

Collect Date: 02-FEB-16 12:50
Receive Date: 11-FEB-16
Collector: Client

Parameter	Qualifier	Result Uncertainty	MDC	RL	Units	DF Analyst Date	Time Batch Method

Rad Liquid Scintillation Analysis

LSC, Tritium Dist, Solid "As Received"

Tritium U -0.309 +/-1.54 3.08 6.00 pCi/g TXJ1 02/16/16 1456 1544362

The following Analytical Methods were performed:

	,,	
Method	Description	Analyst Comments
1	EPA 906.0 Modified	•

Notes:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

HAAL00116

HAAL001

Report Date: February 17, 2016

Company: Haley & Aldrich, Inc.

Address: 465 Medford Street, Suite 2200

Charlestown, Massachusetts 02129

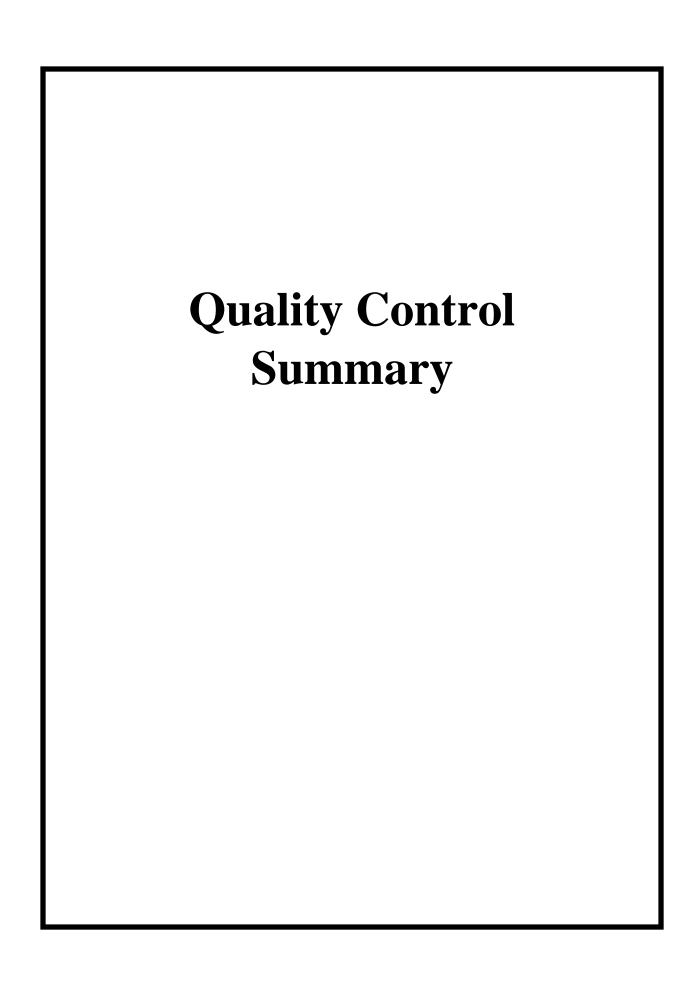
Contact: Mr. Lee Vanzler
Project: Harrison Albany Block

Client Sample ID: HA-2-0-5 Sample ID: 391208009

Matrix: Soil

Collect Date: 01-FEB-16 12:45
Receive Date: 11-FEB-16
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	RL	Units	DF Analyst Date	Time Batch Method
Rad Liquid Scintill	ation Analysis							
LSC, Tritium Dist,	Solid "As Receiv	ved"						
Tritium	II	1.06	+/-1.82	3.21	6.00	nCi/g	TXJ1 02/16/16	1519 1544362 1


The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 906.0 Modified

Analyst Comments

Notes:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: February 17, 2016

Page 1 of 2

Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, Massachusetts

Contact: Mr. Lee Vanzler

Workorder: 391208

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Liquid Scintillation Batch 1544344 ———										
QC1203487871 391208002 DUP										
Tritium		718		831	pCi/L	14.6		(0% - 100%)	TXJ1	02/15/16 17:08
	Uncertainty	+/-408		+/-417						
QC1203487873 LCS	•									
Tritium	2380			2940	pCi/L		124	(75%-125%)		02/15/16 17:40
	Uncertainty			+/-551						
QC1203487870 MB										
Tritium			U	-65	pCi/L					02/15/16 16:51
	Uncertainty			+/-344						
QC1203487872 391208002 MS										
Tritium	2380	718		3110	pCi/L		101	(75%-125%)		02/15/16 17:24
	Uncertainty	+/-408		+/-561						
Batch 1544362 ——										
QC1203487919 391208001 DUP										
Tritium	U	0.754	U	1.86	pCi/g	N/A		N/A	TXJ1	02/17/16 08:40
	Uncertainty	+/-2.39		+/-2.68						
QC1203487921 LCS										
Tritium	35.5			35.3	pCi/g		99.4	(75%-125%)		02/16/16 16:49
	Uncertainty			+/-4.57						
QC1203487918 MB										
Tritium			U	0.533	pCi/g					02/16/16 15:41
	Uncertainty			+/-1.67						
QC1203487920 391208001 MS										
Tritium	35.7 U	0.754		35.4	pCi/g		99.1	(75%-125%)		02/16/16 16:26
	Uncertainty	+/-2.39		+/-4.57						

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- ** Analyte is a Tracer compound
- < Result is less than value reported
- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low
- FA Failed analysis.
- H Analytical holding time was exceeded
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- $M \qquad REMP \ Result > MDC/CL \ and < RDL$

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

N/A RPD or %Recovery limits do not apply.

391208

N1 See case narrative

Workorder:

- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

ANALYTICAL REPORT

Lab Number: L1608112

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Mike Atwood Phone: (617) 886-7400

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Report Date: 03/27/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112 **Report Date:** 03/27/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1608112-01	HA-2 (OW)	WATER	Not Specified	03/21/16 11:10	03/21/16
L1608112-02	TRIP BLANK	WATER	Not Specified	03/21/16 00:00	03/21/16

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112 03/27/16

Project Number: 41737-014 **Report Date:**

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112
Project Number: 41737-014 Report Date: 03/27/16

Case Narrative (continued)

Semivolatile Organics

The WG876437-2/-3 LCS/LCSD recoveries, associated with L1608112-01 (HA-2 (OW)), are below the acceptance criteria for benzidine (2%/1%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

PCBs

WG876852: An LCS/LCSD was performed in lieu of a Matrix Spike and Laboratory Duplicate due to insufficient sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/27/16

600, Ilandow Kelly Stenstrom

ORGANICS

VOLATILES

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

SAMPLE RESULTS

Report Date: 03/27/16

Lab ID: L1608112-01

HA-2 (OW) Client ID: Sample Location: Not Specified

Field Prep:

03/21/16 11:10

L1608112

Date Received:

Date Collected:

Lab Number:

03/21/16 Field Filtered (Dissolved

Metals)

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 03/24/16 15:06

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1

Project Name: HARRISON AVE./ALBANY ST.

L1608112-01

Not Specified

HA-2 (OW)

Project Number: 41737-014

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 03/21/16 11:10

Date Received: 03/21/16

Lab Number:

Report Date:

Field Prep: Field Filtered (Dissolved

Metals)

L1608112

03/27/16

						ivietais)
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Methyl tert butyl ether	ND		ug/l	1.0		1
p/m-Xylene	ND		ug/l	1.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	5.0		1
1,4-Dichlorobutane	ND		ug/l	5.0		1
1,2,3-Trichloropropane	ND		ug/l	5.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	5.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	5.0		1
Vinyl acetate	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Ethyl methacrylate	ND		ug/l	5.0		1
Acrylonitrile	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.5		1
Tetrahydrofuran	ND		ug/l	5.0		1
2,2-Dichloropropane	ND		ug/l	2.5		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	2.5		1
n-Butylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	2.5		1
o-Chlorotoluene	ND		ug/l	2.5		1
p-Chlorotoluene	ND		ug/l	2.5		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	2.5		1

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

 Lab ID:
 L1608112-01
 Date Collected:
 03/21/16 11:10

 Client ID:
 HA-2 (OW)
 Date Received:
 03/21/16

Sample Location: Not Specified Field Prep: Field Filtered (Dissolved

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
n-Propylbenzene	ND		ug/l	0.50		1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1			
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1			
Ethyl ether	ND		ug/l	2.5		1			
Tert-Butyl Alcohol	ND		ug/l	10		1			
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	114		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	107		70-130	

Report Date:

L1608112

03/27/16

Project Name: HARRISON AVE./ALBANY ST. Lab Number:

Project Number: 41737-014

SAMPLE RESULTS

Lab ID: Date Collected: 03/21/16 11:10

Client ID: Date Received: 03/21/16

Sample Location: Not Specified Field Prep: Field Filtered (Dissolved

Metals)

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/24/16 07:36

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS-SIM - Westborough Lab									
1,4-Dioxane	ND		ug/l	3.0		1			

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 03/21/16 11:10

Client ID: HA-2 (OW) Date Received: 03/21/16

Sample Location: Not Specified Field Prep: Field Filtered (Dissolved

Metals)

Matrix: Water Extraction Method: EPA 8011
Analytical Method: 14,504.1 Extraction Date: 03/25/16 11:59

Analyst: AM

03/25/16 13:52

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab)						
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α

L1608112

03/27/16

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

SAMPLE RESULTS

Date Collected: 03/21/16 00:00

Lab Number:

Report Date:

Date Received: 03/21/16

Field Prep: Not Specified

Lab ID: L1608112-02
Client ID: TRIP BLANK
Sample Location: Not Specified
Matrix: Water

Analytical Method: 1,8260C Analytical Date: 03/24/16 14:41

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 03/21/16 00:00

Client ID: TRIP BLANK Date Received: 03/21/16
Sample Location: Not Specified Field Prep: Not Specified

Campio Eccationi Mot Opcomoa				1 1014 1 10	γ.	rtot opcomoa
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Methyl tert butyl ether	ND		ug/l	1.0		1
p/m-Xylene	ND		ug/l	1.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	5.0		1
1,4-Dichlorobutane	ND		ug/l	5.0		1
1,2,3-Trichloropropane	ND		ug/l	5.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	5.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	5.0		1
Vinyl acetate	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Ethyl methacrylate	ND		ug/l	5.0		1
Acrylonitrile	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.5		1
Tetrahydrofuran	ND		ug/l	5.0		1
2,2-Dichloropropane	ND		ug/l	2.5		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	2.5		1
n-Butylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	2.5		1
o-Chlorotoluene	ND		ug/l	2.5		1
p-Chlorotoluene	ND		ug/l	2.5		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	2.5		1
n-Propylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 03/21/16 00:00

Client ID: TRIP BLANK Date Received: 03/21/16
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	119		70-130	
Dibromofluoromethane	106		70-130	

03/21/16

Not Specified

Date Received:

Field Prep:

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 03/21/16 00:00

Client ID: TRIP BLANK
Sample Location: Not Specified

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/24/16 07:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - We	stborough Lab					
1,4-Dioxane	ND		ug/l	3.0		1

Project Name: Lab Number: HARRISON AVE./ALBANY ST. L1608112

Project Number: Report Date: 41737-014 03/27/16

SAMPLE RESULTS

03/25/16 14:07

Lab ID: L1608112-02 Date Collected: 03/21/16 00:00 Date Received: Client ID: TRIP BLANK 03/21/16 Not Specified Sample Location: Field Prep: Not Specified

Matrix: Extraction Method: EPA 8011 Water Analytical Method: 14,504.1 Extraction Date: 03/25/16 11:59

Analyst: ΑM

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α

Project Name: HARRISON AVE./ALBANY ST. **Lab Number:** L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 8011

Analytical Date: 03/25/16 13:05 Extraction Date: 03/25/16 11:59

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	r sample(s):	: 01-02	Batch:	WG877021-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α

Project Number: 41737-014 **Report Date:** 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/24/16 06:31

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM - '	Westborough	Lab for s	ample(s):	01-02	Batch:	WG877133-3	
1,4-Dioxane	ND		ug/l	3.0			

Project Number: 41737-014 **Report Date:** 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/24/16 08:48

Parameter	Result	Qualifier Unit	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lal	b for sample(s):	01-02 Batch:	WG877206-3	
Methylene chloride	ND	ug/	íl 3.0		
1,1-Dichloroethane	ND	ug/	l 0.75		
Chloroform	ND	ug/	l 0.75		
Carbon tetrachloride	ND	ug/	l 0.50		
1,2-Dichloropropane	ND	ug/	/l 1.8		
Dibromochloromethane	ND	ug/	l 0.50		
1,1,2-Trichloroethane	ND	ug/	l 0.75		
Tetrachloroethene	ND	ug/	l 0.50		
Chlorobenzene	ND	ug/	l 0.50		
Trichlorofluoromethane	ND	ug/	l 2.5		
1,2-Dichloroethane	ND	ug/	l 0.50		
1,1,1-Trichloroethane	ND	ug/	l 0.50		
Bromodichloromethane	ND	ug/	l 0.50		
trans-1,3-Dichloropropene	ND	ug/	l 0.50		
cis-1,3-Dichloropropene	ND	ug/	/I 0.50		
1,3-Dichloropropene, Total	ND	ug/	/I 0.50		
1,1-Dichloropropene	ND	ug/	l 2.5		
Bromoform	ND	ug/	l 2.0		
1,1,2,2-Tetrachloroethane	ND	ug/	l 0.50		
Benzene	ND	ug/	l 0.50		
Toluene	ND	ug/	l 0.75		
Ethylbenzene	ND	ug/	l 0.50		
Chloromethane	ND	ug/	l 2.5		
Bromomethane	ND	ug/	l 1.0		
Vinyl chloride	ND	ug/	l 1.0		
Chloroethane	ND	ug/	l 1.0		
1,1-Dichloroethene	ND	ug/	l 0.50		
1,2-Dichloroethene, Total	ND	ug/	l 0.50		
Trichloroethene	ND	ug/	1 0.50		

Project Number: 41737-014 **Report Date:** 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/24/16 08:48

Parameter	Result	Qualifier Unit	ts RL	MDL
Volatile Organics by GC/MS	- Westborough Lal	o for sample(s):	01-02 Batch	: WG877206-3
1,2-Dichlorobenzene	ND	ug	/I 2.5	
1,3-Dichlorobenzene	ND	ug	/I 2.5	
1,4-Dichlorobenzene	ND	ug	/I 2.5	
Methyl tert butyl ether	ND	ug	/I 1.0	
p/m-Xylene	ND	ug	/I 1.0	
o-Xylene	ND	ug	/l 1.0	
Xylenes, Total	ND	ug	/I 1.0	
cis-1,2-Dichloroethene	ND	ug	/I 0.50	
Dibromomethane	ND	ug	/I 5.0	
1,4-Dichlorobutane	ND	ug	/I 5.0	
1,2,3-Trichloropropane	ND	ug	/I 5.0	
Styrene	ND	ug	/I 1.0	
Dichlorodifluoromethane	ND	ug	/I 5.0	
Acetone	ND	ug	/I 5.0	
Carbon disulfide	ND	ug	/I 5.0	
2-Butanone	ND	ug	/I 5.0	
Vinyl acetate	ND	ug	/I 5.0	
4-Methyl-2-pentanone	ND	ug	/I 5.0	
2-Hexanone	ND	ug	/I 5.0	
Ethyl methacrylate	ND	ug	/I 5.0	
Acrylonitrile	ND	ug	/I 5.0	
Bromochloromethane	ND	ug	/I 2.5	
Tetrahydrofuran	ND	ug	/I 5.0	
2,2-Dichloropropane	ND	ug	/I 2.5	
1,2-Dibromoethane	ND	ug	/I 2.0	
1,3-Dichloropropane	ND	ug	/I 2.5	
1,1,1,2-Tetrachloroethane	ND	ug	/I 0.50	
Bromobenzene	ND	ug	/I 2.5	
n-Butylbenzene	ND	ug	/I 0.50	

Project Number: 41737-014 **Report Date:** 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/24/16 08:48

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02 Batch:	WG877206-3	
sec-Butylbenzene	ND	ug/	0.50		
tert-Butylbenzene	ND	ug/			
o-Chlorotoluene	ND	ug/	2.5		
p-Chlorotoluene	ND	ug/	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/	2.5		
Hexachlorobutadiene	ND	ug/	0.50		
Isopropylbenzene	ND	ug/	0.50		
p-Isopropyltoluene	ND	ug/	0.50		
Naphthalene	ND	ug/	2.5		
n-Propylbenzene	ND	ug/	0.50		
1,2,3-Trichlorobenzene	ND	ug/	2.5		
1,2,4-Trichlorobenzene	ND	ug/	2.5		
1,3,5-Trimethylbenzene	ND	ug/	2.5		
1,2,4-Trimethylbenzene	ND	ug/	2.5		
trans-1,4-Dichloro-2-butene	ND	ug/	2.5		
Ethyl ether	ND	ug/	2.5		
Tert-Butyl Alcohol	ND	ug/	10		
Tertiary-Amyl Methyl Ether	ND	ug/	2.0		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	125		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	82		70-130	
Dibromofluoromethane	106		70-130	

Project Name: HARRISON AVE./ALBANY ST.

Lab Number:

L1608112 03/27/16

Project Number: 41737-014

Report Date:

Parameter Microextractables by GC - Westborough La	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
1,2-Dibromoethane	114	1 - (-)	-	-	70-130	-		20	А
1,2-Dibromo-3-chloropropane	102		-		70-130	-		20	Α

Lab Number: L1608112

Project Number: 41737-014 Report Date:

03/27/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ted sample(s)	: 01-02 Batch:	WG877133	3-1 WG877133-2				
1,4-Dioxane	120		124		70-130	3		25	

Project Name:

HARRISON AVE./ALBANY ST.

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG877206-1	WG877206-2			
Methylene chloride	102		105		70-130	3	20	
1,1-Dichloroethane	113		114		70-130	1	20	
Chloroform	108		111		70-130	3	20	
Carbon tetrachloride	108		110		63-132	2	20	
1,2-Dichloropropane	112		117		70-130	4	20	
Dibromochloromethane	103		106		63-130	3	20	
1,1,2-Trichloroethane	112		109		70-130	3	20	
Tetrachloroethene	90		94		70-130	4	20	
Chlorobenzene	102		100		75-130	2	25	
Trichlorofluoromethane	110		113		62-150	3	20	
1,2-Dichloroethane	111		115		70-130	4	20	
1,1,1-Trichloroethane	108		112		67-130	4	20	
Bromodichloromethane	104		112		67-130	7	20	
trans-1,3-Dichloropropene	109		123		70-130	12	20	
cis-1,3-Dichloropropene	82		82		70-130	0	20	
1,1-Dichloropropene	99		101		70-130	2	20	
Bromoform	85		71		54-136	18	20	
1,1,2,2-Tetrachloroethane	90		78		67-130	14	20	
Benzene	106		106		70-130	0	25	
Toluene	93		95		70-130	2	25	
Ethylbenzene	110		112		70-130	2	20	

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG877206-1	WG877206-2				
Chloromethane	119		123		64-130	3		20	
Bromomethane	70		72		39-139	3		20	
Vinyl chloride	74		77		55-140	4		20	
Chloroethane	86		88		55-138	2		20	
1,1-Dichloroethene	107		103		61-145	4		25	
trans-1,2-Dichloroethene	103		107		70-130	4		20	
Trichloroethene	100		108		70-130	8		25	
1,2-Dichlorobenzene	92		97		70-130	5		20	
1,3-Dichlorobenzene	98		99		70-130	1		20	
1,4-Dichlorobenzene	96		97		70-130	1		20	
Methyl tert butyl ether	103		106		63-130	3		20	
p/m-Xylene	109		108		70-130	1		20	
o-Xylene	124		100		70-130	21	Q	20	
cis-1,2-Dichloroethene	105		106		70-130	1		20	
Dibromomethane	98		109		70-130	11		20	
1,2,3-Trichloropropane	88		84		64-130	5		20	
Styrene	114		98		70-130	15		20	
Dichlorodifluoromethane	110		104		36-147	6		20	
Acetone	104		98		58-148	6		20	
Carbon disulfide	107		109		51-130	2		20	
2-Butanone	100		102		63-138	2		20	

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG877206-1	WG877206-2				
4-Methyl-2-pentanone	82		80		59-130	2		20	
2-Hexanone	105		114		57-130	8		20	
Bromochloromethane	109		107		70-130	2		20	
Tetrahydrofuran	109		102		58-130	7		20	
2,2-Dichloropropane	120		121		63-133	1		20	
1,2-Dibromoethane	107		104		70-130	3		20	
1,3-Dichloropropane	118		120		70-130	2		20	
1,1,1,2-Tetrachloroethane	103		108		64-130	5		20	
Bromobenzene	93		69	Q	70-130	30	Q	20	
n-Butylbenzene	93		98		53-136	5		20	
sec-Butylbenzene	92		92		70-130	0		20	
tert-Butylbenzene	89		83		70-130	7		20	
o-Chlorotoluene	99		85		70-130	15		20	
p-Chlorotoluene	96		89		70-130	8		20	
1,2-Dibromo-3-chloropropane	86		89		41-144	3		20	
Hexachlorobutadiene	93		96		63-130	3		20	
Isopropylbenzene	86		96		70-130	11		20	
p-Isopropyltoluene	93		94		70-130	1		20	
Naphthalene	79		85		70-130	7		20	
n-Propylbenzene	97		79		69-130	20		20	
1,2,3-Trichlorobenzene	82		88		70-130	7		20	

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	Qual	_	LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02	Batch:	WG877206-1	WG877206-2				
1,2,4-Trichlorobenzene	82			92		70-130	11		20	
1,3,5-Trimethylbenzene	92			82		64-130	11		20	
1,2,4-Trimethylbenzene	92			90		70-130	2		20	
Ethyl ether	105			107		59-134	2		20	
Isopropyl Ether	113			116		70-130	3		20	
Ethyl-Tert-Butyl-Ether	107			110		70-130	3		20	
Tertiary-Amyl Methyl Ether	102			105		66-130	3		20	
1,4-Dioxane	91			81		56-162	12		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	107		108		70-130	
Toluene-d8	111		112		70-130	
4-Bromofluorobenzene	95		76		70-130	
Dibromofluoromethane	103		104		70-130	

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number:

L1608112

Report Date:

03/27/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ound	MSD %Recovery		ecovery Limits	RPD	RPD Qual Limits	6 Column
Microextractables by GC -	Westborough La	b Associated	sample(s): 01	-02 QC Bato	ch ID: WG877	7021-3	QC Sample:	L1608112	2-01 Cli	ient ID: I	HA-2 (OW)	
1,2-Dibromoethane	ND	0.256	0.303	118		-	-		70-130	-	20	Α
1,2-Dibromo-3-chloropropane	ND	0.256	0.271	106		-	-		70-130	-	20	Α

SEMIVOLATILES

Project Name: HARRISON AVE./ALBANY ST.

03/25/16 06:07

Project Number: 41737-014

SAMPLE RESULTS

Date Collected: 03/21/16 11:10

Lab Number:

Report Date:

Lab ID: L1608112-01 Date Received: Client ID: **HA-2 (OW)** 03/21/16

Not Specified Sample Location: Field Prep: Field Filtered (Dissolved

Metals)

L1608112

03/27/16

Extraction Method: EPA 3510C Matrix: Water Analytical Method: 1,8270D Extraction Date: 03/23/16 03:31

Analyst: PS

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1

Project Name: HARRISON AVE./ALBANY ST. **Lab Number:** L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

 Lab ID:
 L1608112-01
 Date Collected:
 03/21/16 11:10

 Client ID:
 HA-2 (OW)
 Date Received:
 03/21/16

Sample Location: Not Specified Field Prep: Field Filtered (Dissolved

Matala)

Metals)

			RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab				
Dibenzofuran	ND	ug/l	2.0		1
n-Nitrosodimethylamine	ND	ug/l	2.0		1
2,4,6-Trichlorophenol	ND	ug/l	5.0		1
p-Chloro-m-cresol	ND	ug/l	2.0		1
2-Chlorophenol	ND	ug/l	2.0		1
2,4-Dichlorophenol	ND	ug/l	5.0		1
2,4-Dimethylphenol	ND	ug/l	5.0		1
2-Nitrophenol	ND	ug/l	10		1
4-Nitrophenol	ND	ug/l	10		1
2,4-Dinitrophenol	ND	ug/l	20		1
4,6-Dinitro-o-cresol	ND	ug/l	10		1
Phenol	ND	ug/l	5.0		1
2-Methylphenol	ND	ug/l	5.0		1
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0		1
2,4,5-Trichlorophenol	ND	ug/l	5.0		1
Benzoic Acid	ND	ug/l	50		1
Benzyl Alcohol	ND	ug/l	2.0		1
Carbazole	ND	ug/l	2.0		1
Pyridine	ND	ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	57		21-120	
Phenol-d6	39		10-120	
Nitrobenzene-d5	86		23-120	
2-Fluorobiphenyl	82		15-120	
2,4,6-Tribromophenol	85		10-120	
4-Terphenyl-d14	95		41-149	

Project Name: Lab Number: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

SAMPLE RESULTS

Date Collected: 03/21/16 11:10

Report Date:

Lab ID: L1608112-01 Date Received: Client ID: **HA-2 (OW)** 03/21/16

Sample Location: Not Specified Field Prep: Field Filtered (Dissolved

Metals)

L1608112

03/27/16

Extraction Method: EPA 3510C Matrix: Water

Analytical Method: 1,8270D-SIM Extraction Date: 03/23/16 03:31 Analytical Date: 03/24/16 11:59

Analyst: K۷

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.20		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.20		1
Benzo(a)anthracene	ND		ug/l	0.20		1
Benzo(a)pyrene	ND		ug/l	0.20		1
Benzo(b)fluoranthene	ND		ug/l	0.20		1
Benzo(k)fluoranthene	ND		ug/l	0.20		1
Chrysene	ND		ug/l	0.20		1
Acenaphthylene	ND		ug/l	0.20		1
Anthracene	ND		ug/l	0.20		1
Benzo(ghi)perylene	ND		ug/l	0.20		1
Fluorene	ND		ug/l	0.20		1
Phenanthrene	ND		ug/l	0.20		1
Dibenzo(a,h)anthracene	ND		ug/l	0.20		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20		1
Pyrene	ND		ug/l	0.20		1
1-Methylnaphthalene	ND		ug/l	0.20		1
2-Methylnaphthalene	ND		ug/l	0.20		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

Project Name: Lab Number: HARRISON AVE./ALBANY ST. L1608112

Report Date: **Project Number:** 41737-014 03/27/16

SAMPLE RESULTS

Lab ID: L1608112-01 Date Collected: 03/21/16 11:10

Date Received: Client ID: **HA-2 (OW)** 03/21/16

Sample Location: Not Specified Field Prep: Field Filtered (Dissolved

Metals)

Qualifier RL Parameter Result Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	57	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	91	15-120
2,4,6-Tribromophenol	99	10-120
4-Terphenyl-d14	93	41-149

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112 **Report Date:** 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/25/16 01:00

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 03/23/16 03:31

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG876437-1	
Benzidine	ND		ug/l		20		
1,2,4-Trichlorobenzene	ND		ug/l		5.0		
Bis(2-chloroethyl)ether	ND		ug/l		2.0		
1,2-Dichlorobenzene	ND		ug/l		2.0		
1,3-Dichlorobenzene	ND		ug/l		2.0		
1,4-Dichlorobenzene	ND		ug/l		2.0		
3,3'-Dichlorobenzidine	ND		ug/l		5.0		
2,4-Dinitrotoluene	ND		ug/l		5.0		
2,6-Dinitrotoluene	ND		ug/l		5.0		
Azobenzene	ND		ug/l		2.0		
4-Chlorophenyl phenyl ether	ND		ug/l		2.0		
4-Bromophenyl phenyl ether	ND		ug/l		2.0		
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0		
Bis(2-chloroethoxy)methane	ND		ug/l		5.0		
Hexachlorocyclopentadiene	ND		ug/l		20		
Isophorone	ND		ug/l		5.0		
Nitrobenzene	ND		ug/l		2.0		
NDPA/DPA	ND		ug/l		2.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l		5.0		
Di-n-octylphthalate	ND		ug/l		5.0		
Diethyl phthalate	ND		ug/l		5.0		
Dimethyl phthalate	ND		ug/l		5.0		
Aniline	ND		ug/l		2.0		
4-Chloroaniline	ND		ug/l		5.0		
2-Nitroaniline	ND		ug/l		5.0		
3-Nitroaniline	ND		ug/l		5.0		
4-Nitroaniline	ND		ug/l		5.0		

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Report Date: 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/25/16 01:00

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 03/23/16 03:31

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01	Batch:	WG876437-1
Dibenzofuran	ND		ug/l		2.0	
n-Nitrosodimethylamine	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		5.0	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	57	21-120
Phenol-d6	41	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	95	41-149

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Report Date: 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 03/24/16 08:43

Analyst: KV

Extraction Method: EPA 3510C Extraction Date: 03/23/16 03:31

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/N	MS-SIM - Westbo	rough Lab	for sample((s): 01 l	Batch: WG876438	3-1
Acenaphthene	ND		ug/l	0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.20		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.20		
Benzo(a)anthracene	ND		ug/l	0.20		
Benzo(a)pyrene	ND		ug/l	0.20		
Benzo(b)fluoranthene	ND		ug/l	0.20		
Benzo(k)fluoranthene	ND		ug/l	0.20		
Chrysene	ND		ug/l	0.20		
Acenaphthylene	ND		ug/l	0.20		
Anthracene	ND		ug/l	0.20		
Benzo(ghi)perylene	ND		ug/l	0.20		
Fluorene	ND		ug/l	0.20		
Phenanthrene	ND		ug/l	0.20		
Dibenzo(a,h)anthracene	ND		ug/l	0.20		
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20		
Pyrene	ND		ug/l	0.20		
1-Methylnaphthalene	ND		ug/l	0.20		
2-Methylnaphthalene	ND		ug/l	0.20		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

L1608112

Lab Number:

Project Name: HARRISON AVE./ALBANY ST.

1,8270D-SIM

03/24/16 08:43

Project Number: 41737-014 **Report Date:** 03/27/16

Method Blank Analysis

Batch Quality Control

Analyst: KV

Analytical Method:

Analytical Date:

Extraction Method: EPA 3510C Extraction Date: 03/23/16 03:31

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):
 01
 Batch:
 WG876438-1

		Acceptance							
Surrogate	%Recovery	Qualifier	Criteria						
2-Fluorophenol	57		21-120						
Phenol-d6	36		10-120						
Nitrobenzene-d5	72		23-120						
2-Fluorobiphenyl	80		15-120						
2,4,6-Tribromophenol	92		10-120						
4-Terphenyl-d14	89		41-149						

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ugh Lab Associ	iated sample(s):	01 Batch:	WG876437-2	2 WG876437-3			
Benzidine	2	Q	1	Q	10-75	106	Q	30
1,2,4-Trichlorobenzene	54		64		39-98	17		30
Bis(2-chloroethyl)ether	69		72		40-140	4		30
1,2-Dichlorobenzene	53		61		40-140	14		30
1,3-Dichlorobenzene	50		59		40-140	17		30
1,4-Dichlorobenzene	52		60		36-97	14		30
3,3'-Dichlorobenzidine	46		56		40-140	20		30
2,4-Dinitrotoluene	89		91		24-96	2		30
2,6-Dinitrotoluene	90		94		40-140	4		30
Azobenzene	77		80		40-140	4		30
4-Chlorophenyl phenyl ether	77		81		40-140	5		30
4-Bromophenyl phenyl ether	83		86		40-140	4		30
Bis(2-chloroisopropyl)ether	70		75		40-140	7		30
Bis(2-chloroethoxy)methane	74		78		40-140	5		30
Hexachlorocyclopentadiene	55		66		40-140	18		30
Isophorone	72		77		40-140	7		30
Nitrobenzene	71		75		40-140	5		30
NDPA/DPA	82		83		40-140	1		30
Bis(2-ethylhexyl)phthalate	75		79		40-140	5		30
Butyl benzyl phthalate	82		85		40-140	4		30
Di-n-butylphthalate	83		85		40-140	2		30

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Associ	iated sample(s):	01 Batch:	WG876437-2	2 WG876437-3			
Di-n-octylphthalate	79		80		40-140	1		30
Diethyl phthalate	85		87		40-140	2		30
Dimethyl phthalate	84		86		40-140	2		30
Aniline	26	Q	37	Q	40-140	35	Q	30
4-Chloroaniline	55		67		40-140	20		30
2-Nitroaniline	90		95		52-143	5		30
3-Nitroaniline	63		80		25-145	24		30
4-Nitroaniline	84		88		51-143	5		30
Dibenzofuran	76		79		40-140	4		30
n-Nitrosodimethylamine	45		46		22-74	2		30
2,4,6-Trichlorophenol	76		78		30-130	3		30
p-Chloro-m-cresol	85		87		23-97	2		30
2-Chlorophenol	77		81		27-123	5		30
2,4-Dichlorophenol	84		86		30-130	2		30
2,4-Dimethylphenol	49		43		30-130	13		30
2-Nitrophenol	91		98		30-130	7		30
4-Nitrophenol	63		62		10-80	2		30
2,4-Dinitrophenol	117		120		20-130	3		30
4,6-Dinitro-o-cresol	115		115		20-164	0		30
Phenol	39		40		12-110	3		30
2-Methylphenol	66		69		30-130	4		30

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number:

L1608112

Report Date:

03/27/16

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s)	: 01 Batch:	WG876437-2	WG876437-3				
3-Methylphenol/4-Methylphenol	67		71		30-130	6		30	
2,4,5-Trichlorophenol	83		84		30-130	1		30	
Benzoic Acid	65		67		10-164	3		30	
Benzyl Alcohol	63		67		26-116	6		30	
Carbazole	84		85		55-144	1		30	
Pyridine	14		11		10-66	24		30	

9/ Bassyary	Ougl	LCSD	Ougl	Acceptance Criteria
%Recovery	Quai	%Recovery	Quai	— Criteria
58		61		21-120
42		45		10-120
82		87		23-120
72		77		15-120
81		83		10-120
90		91		41-149
	42 82 72 81	%Recovery Qual 58 42 82 72 81	%Recovery Qual %Recovery 58 61 42 45 82 87 72 77 81 83	%Recovery Qual %Recovery Qual 58 61 42 45 82 87 72 77 81 83

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Westl	oorough Lab As	ssociated sample(s): 01 Batch	: WG876438-2 WG876438	3-3	
Acenaphthene	78	78	37-111	0	40
2-Chloronaphthalene	76	77	40-140	1	40
Fluoranthene	78	79	40-140	1	40
Hexachlorobutadiene	67	63	40-140	6	40
Naphthalene	77	73	40-140	5	40
Benzo(a)anthracene	84	87	40-140	4	40
Benzo(a)pyrene	94	94	40-140	0	40
Benzo(b)fluoranthene	91	94	40-140	3	40
Benzo(k)fluoranthene	82	84	40-140	2	40
Chrysene	79	81	40-140	3	40
Acenaphthylene	79	80	40-140	1	40
Anthracene	80	80	40-140	0	40
Benzo(ghi)perylene	88	89	40-140	1	40
Fluorene	85	84	40-140	1	40
Phenanthrene	78	81	40-140	4	40
Dibenzo(a,h)anthracene	94	94	40-140	0	40
Indeno(1,2,3-cd)pyrene	93	93	40-140	0	40
Pyrene	74	74	26-127	0	40
1-Methylnaphthalene	80	76	40-140	5	40
2-Methylnaphthalene	77	72	40-140	7	40
Pentachlorophenol	90	93	9-103	3	40

Project Name: HARRISON AVE./ALBANY ST.

Lab Number: L1608112

Project Number: 41737-014

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab Ass	sociated samp	ole(s): 01 Batch	n: WG8764	138-2 WG876438	3-3		
Hexachlorobenzene	78		80		40-140	3	40	
Hexachloroethane	78		71		40-140	9	40	

LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
66		59		21-120	
41		38		10-120	
80		71		23-120	
94		91		15-120	
107		108		10-120	
95		94		41-149	
	%Recovery 66 41 80 94 107	%Recovery Qual 66 41 80 94 107	%Recovery Qual %Recovery 66 59 41 38 80 71 94 91 107 108	%Recovery Qual %Recovery Qual 66 59 41 38 80 71 94 91 107 108	%Recovery Qual %Recovery Qual Criteria 66 59 21-120 41 38 10-120 80 71 23-120 94 91 15-120 107 108 10-120

PETROLEUM HYDROCARBONS

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

Lab ID: L1608112-01 Date Collected: 03/21/16 11:10

Client ID: HA-2 (OW) Date Received: 03/21/16
Sample Location: Field Prep: Field Filtered

(Dissolved Metals)

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/24/16 21:14

Analyst: KD

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	93		70-130		
2,5-Dibromotoluene-FID	105		70-130		

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 03/21/16 11:10

Client ID: HA-2 (OW) Date Received: 03/21/16
Sample Location: Field Prep: Field Filtered

(Dissolved

Metals)

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/22/16 17:26
Analytical Date: 03/25/16 11:00 Cleanup Method1: EPH-04-1

Analyst: DV Cleanup Date1: 03/24/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough L	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

		Acceptance					
Surrogate	% Recovery	Qualifier	Criteria				
Chloro-Octadecane	82		40-140				
o-Terphenyl	59		40-140				
2-Fluorobiphenyl	66		40-140				
2-Bromonaphthalene	66		40-140				

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014 Lab Number: L1608112

Report Date: 03/27/16

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date:

98,EPH-04-1.1

Analyst:

03/24/16 11:33

SR

Extraction Method: EPA 3510C 03/22/16 17:26 Extraction Date: EPH-04-1 Cleanup Method:

Cleanup Date: 03/23/16

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocark	oons - Westbo	rough Lab	for sample(s):	01	Batch: WG876329-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
Chloro-Octadecane	68		40-140				
o-Terphenyl	58		40-140				
2-Fluorobiphenyl	67		40-140				
2-Bromonaphthalene	69		40-140				

Project Number: 41737-014 **Report Date:** 03/27/16

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/24/16 15:57

Analyst: KD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Petroleum Hydrocarbons	s - Westboroug	h Lab for	sample(s):	01 Batch:	WG877389-3	
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	90		70-130		
2,5-Dibromotoluene-FID	102		70-130		

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
ktractable Petroleum Hydrocarbons - Wes	stborough Lab Ass	ociated sample(s): 01 Bat	ch: WG876329-2 WG876329	9-3	
C9-C18 Aliphatics	61	58	40-140	5	25
C19-C36 Aliphatics	72	64	40-140	12	25
C11-C22 Aromatics	83	74	40-140	11	25
Naphthalene	75	68	40-140	10	25
2-Methylnaphthalene	80	73	40-140	9	25
Acenaphthylene	72	67	40-140	7	25
Acenaphthene	81	75	40-140	8	25
Fluorene	79	73	40-140	8	25
Phenanthrene	85	75	40-140	13	25
Anthracene	89	78	40-140	13	25
Fluoranthene	83	72	40-140	14	25
Pyrene	86	74	40-140	15	25
Benzo(a)anthracene	79	69	40-140	14	25
Chrysene	66	57	40-140	15	25
Benzo(b)fluoranthene	83	72	40-140	14	25
Benzo(k)fluoranthene	79	70	40-140	12	25
Benzo(a)pyrene	79	69	40-140	14	25
Indeno(1,2,3-cd)Pyrene	77	68	40-140	12	25
Dibenzo(a,h)anthracene	48	41	40-140	16	25
Benzo(ghi)perylene	58	51	40-140	13	25
Nonane (C9)	43	42	30-140	2	25

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated samp	e(s): 01 Batch:	WG876329-2 WG876329-3	3		
Decane (C10)	51		50	40-140	2		25
Dodecane (C12)	55		54	40-140	2		25
Tetradecane (C14)	56		56	40-140	0		25
Hexadecane (C16)	59		57	40-140	3		25
Octadecane (C18)	63		58	40-140	8		25
Nonadecane (C19)	64		58	40-140	10		25
Eicosane (C20)	66		59	40-140	11		25
Docosane (C22)	65		58	40-140	11		25
Tetracosane (C24)	67		59	40-140	13		25
Hexacosane (C26)	67		59	40-140	13		25
Octacosane (C28)	69		61	40-140	12		25
Triacontane (C30)	70		62	40-140	12		25
Hexatriacontane (C36)	74		66	40-140	11		25

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	92		61		40-140	
o-Terphenyl	103		72		40-140	
2-Fluorobiphenyl	91		78		40-140	
2-Bromonaphthalene	91		77		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Petroleum Hydrocarbons - Westborou	ıgh Lab Assoc	ated sample(s)	: 01 Batch: W	/G877389-1 WG877389-2			
C5-C8 Aliphatics	94		95	70-130	1	25	
C9-C12 Aliphatics	102		102	70-130	0	25	
C9-C10 Aromatics	105		105	70-130	0	25	
Benzene	96		97	70-130	1	25	
Toluene	98		98	70-130	1	25	
Ethylbenzene	99		99	70-130	0	25	
p/m-Xylene	99		99	70-130	0	25	
o-Xylene	101		101	70-130	0	25	
Methyl tert butyl ether	96		96	70-130	0	25	
Naphthalene	92		92	70-130	0	25	
1,2,4-Trimethylbenzene	105		105	70-130	0	25	
Pentane	91		91	70-130	1	25	
2-Methylpentane	96		96	70-130	0	25	
2,2,4-Trimethylpentane	96		95	70-130	0	25	
n-Nonane	97		97	30-130	0	25	
n-Decane	108		108	70-130	0	25	
n-Butylcyclohexane	106		106	70-130	0	25	

Lab Control Sample Analysis

HARRISON AVE./ALBANY ST.

Batch Quality Control

Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG877389-1 WG877389-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	80		80		70-130	
2,5-Dibromotoluene-FID	90		90		70-130	

Project Name:

PCBS

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

Lab ID: Date Collected: 03/21/16 11:10

Client ID: Date Received: 03/21/16
Sample Location: Not Specified Field Prep: Field Filtered (Disso

Field Filtered (Dissolved Metals)

Matrix: Water Extraction Method: EPA 608

Analytical Method: 5,608 Extraction Date: 03/24/16 05:07
Analytical Date: 03/25/16 10:47 Cleanup Method: EPA 3665A

Cleanup Date: 03/24/16 Cleanup Method: EPA 3660B Cleanup Date: 03/24/16

	.	o			MDI	50 d = 4	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

_			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	69		30-150	Α

Analyst:

JW

Project Name: HARRISON AVE./ALBANY ST.

44707.044

Lab Number:

L1608112

Project Number: 41737-014

Report Date:

03/27/16

Method Blank Analysis
Batch Quality Control

Analytical Method:

5,608

Analytical Date:

03/25/16 10:10

Analyst:

JW

Extraction Method: EPA 608

Extraction Date:

03/24/16 05:07

Cleanup Method: Cleanup Date: EPA 3665A 03/24/16

Cleanup Method: Cleanup Date: EPA 3660B 03/24/16

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestboroug	h Lab for s	ample(s):	01 Batch:	WG876852-1	
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		30-150	Α
Decachlorobiphenyl	72		30-150	Α

Project Name: HARRISON AVE./ALBANY ST.

Lab Number:

L1608112

Project Number: 41737-014

SITTIVE STREET OF.

Report Date:

03/27/16

Danamatan	LCS	01	LCSD	. 01	%Recovery	222	01	RPD	
Parameter	%Recovery	Qual	%Recover	/ Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ated sample(s)	: 01 Batcl	n: WG876852-2	WG876852-3				
Aroclor 1016	79		81		40-140	2		50	Α
Aroclor 1260	71		71		40-140	1		50	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		69		30-150	A
Decachlorobiphenyl	77		72		30-150	Α

METALS

Project Name: HARRISON AVE./ALBANY ST. **Lab Number:** L1608112

Project Number: 41737-014 **Report Date:** 03/27/16

SAMPLE RESULTS

 Lab ID:
 L1608112-01
 Date Collected:
 03/21/16 11:10

 Client ID:
 HA-2 (OW)
 Date Received:
 03/21/16

Sample Location: Not Specified Field Prep: Field Filtered

Matrix: Water (Dissolved Metals)

Dilution Date Date Prep Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Wes	tborough L	_ab									
Antimony, Total	0.00215		mg/l	0.00200		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Arsenic, Total	0.00327		mg/l	0.00050		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Cadmium, Total	ND		mg/l	0.00020		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Chromium, Total	0.00396		mg/l	0.00300		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Copper, Total	0.00607		mg/l	0.00100		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Iron, Total	ND		mg/l	0.05		1	03/24/16 09:20	03/25/16 02:05	EPA 3005A	19,200.7	FB
Lead, Total	ND		mg/l	0.00050		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Mercury, Total	ND		mg/l	0.00020		1	03/25/16 05:21	03/25/16 08:25	EPA 245.1	3,245.1	JH
Nickel, Total	ND		mg/l	0.00400		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Selenium, Total	0.00663		mg/l	0.00500		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Silver, Total	ND		mg/l	0.00040		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Zinc, Total	ND		mg/l	0.01000		1	03/24/16 09:20	03/25/16 12:17	EPA 3005A	1,6020A	KL
Dissolved Metals -	Westboro	ugh Lab									
Antimony, Dissolved	0.00225		mg/l	0.00200		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Arsenic, Dissolved	0.00339		mg/l	0.00050		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Cadmium, Dissolved	ND		mg/l	0.00020		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Chromium, Dissolved	0.00389		mg/l	0.00300		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Copper, Dissolved	0.00580		mg/l	0.00100		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Iron, Dissolved	ND		mg/l	0.05		1	03/24/16 12:20	03/25/16 02:42	EPA 3005A	19,200.7	FB
Lead, Dissolved	ND		mg/l	0.00050		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Mercury, Dissolved	ND		mg/l	0.00020		1	03/25/16 04:54	03/25/16 08:43	EPA 245.1	3,245.1	JH
Nickel, Dissolved	ND		mg/l	0.00400		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Selenium, Dissolved	0.00670		mg/l	0.00300		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Silver, Dissolved	ND		mg/l	0.00040		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL
Zinc, Dissolved	ND		mg/l	0.01000		1	03/24/16 12:20	03/25/16 14:00	EPA 3005A	1,6020A	KL

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number:

L1608112

Report Date: 03/27/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - West	borough Lab for samp	ole(s): 01	Batch: W	G8769 ⁻	12-1				
Antimony, Total	ND	mg/l	0.00200		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Arsenic, Total	ND	mg/l	0.00050		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Cadmium, Total	ND	mg/l	0.00020		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Chromium, Total	ND	mg/l	0.00300		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Copper, Total	ND	mg/l	0.00100		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Lead, Total	ND	mg/l	0.00050		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Nickel, Total	ND	mg/l	0.00400		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Selenium, Total	ND	mg/l	0.00500		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Silver, Total	ND	mg/l	0.00040		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL
Zinc, Total	ND	mg/l	0.01000		1	03/24/16 09:20	03/25/16 12:10	1,6020A	KL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Q	ualifier Units	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westborough Lab for sample(s): 01 Batch: WG876914-1									
Iron, Total	ND	mg/l	0.05		1	03/24/16 09:20	03/25/16 01:38	19,200.7	FB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - West	borough Lab for sar	nple(s): (01 Batch	n: WG8	376988-1				
Antimony, Dissolved	ND	mg/l	0.00200		1	03/24/16 12:20	03/25/16 13:52	1,6020A	KL
Arsenic, Dissolved	ND	mg/l	0.00050		1	03/24/16 12:20	03/25/16 13:52	1,6020A	KL
Cadmium, Dissolved	ND	mg/l	0.00020		1	03/24/16 12:20	03/25/16 13:52	2 1,6020A	KL
Chromium, Dissolved	ND	mg/l	0.00300		1	03/24/16 12:20	03/25/16 13:52	2 1,6020A	KL
Copper, Dissolved	ND	mg/l	0.00100		1	03/24/16 12:20	03/25/16 13:52	1,6020A	KL
Lead, Dissolved	ND	mg/l	0.00050		1	03/24/16 12:20	03/25/16 13:52	1,6020A	KL
Nickel, Dissolved	ND	mg/l	0.00400		1	03/24/16 12:20	03/25/16 13:52	1,6020A	KL

Project Name: HARRISON AVE./ALBANY ST.

Lab Number:

L1608112

Project Number: 41737-014

Report Date:

03/27/16

Method Blank Analysis Batch Quality Control

Selenium, Dissolved	ND	mg/l	0.00500	 1	03/24/16 12:20	03/25/16 13:52	1,6020A	KL
Silver, Dissolved	ND	mg/l	0.00040	 1	03/24/16 12:20	03/25/16 13:52	1,6020A	KL
Zinc, Dissolved	ND	mg/l	0.01000	 1	03/24/16 12:20	03/25/16 13:52	1,6020A	KL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - West	tborough Lab for sa	mple(s): 0	1 Batch	n: WG87	'6990-1				
Iron, Dissolved	ND	mg/l	0.05		1	03/24/16 12:20	03/25/16 02:33	19,200.7	FB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Dissolved Metals - Westh	orough l	_ab for san	nple(s): ()1 Batcl	h: WG8	377259-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	03/25/16 04:54	03/25/16 08:40	3,245.1	JH

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifi	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westborough Lab for sample(s): 01 Batch: WG877260-1									
Mercury, Total	ND	mg/l	0.00020		1	03/25/16 05:21	03/25/16 08:22	3,245.1	JH

Prep Information

Digestion Method: EPA 245.1

Project Name: HARRISON AVE./ALBANY ST.

Lab Number: L1608112

Project Number: 41737-014

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sam	nple(s): 01 Bat	tch: WG87	6912-2					
Antimony, Total	81		-		80-120	-		
Arsenic, Total	100		-		80-120	-		
Cadmium, Total	106		-		80-120	-		
Chromium, Total	96		-		80-120	-		
Copper, Total	99		-		80-120	-		
Lead, Total	106		-		80-120	-		
Nickel, Total	100		-		80-120	-		
Selenium, Total	112		-		80-120	-		
Silver, Total	95		-		80-120	-		
Zinc, Total	102		-		80-120	-		
Total Metals - Westborough Lab Associated sam	nple(s): 01 Ba	tch: WG87	6914-2					
Iron, Total	89		-		85-115	-		

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Westborough Lab Associate	d sample(s): 01	Batch: WG876988-2			
Antimony, Dissolved	96	-	80-120	-	
Arsenic, Dissolved	98	-	80-120	-	
Cadmium, Dissolved	102	-	80-120	-	
Chromium, Dissolved	95	-	80-120	-	
Copper, Dissolved	95	-	80-120	-	
Lead, Dissolved	100	-	80-120	-	
Nickel, Dissolved	98	-	80-120	-	
Selenium, Dissolved	111	-	80-120	-	
Silver, Dissolved	92	-	80-120	-	
Zinc, Dissolved	96	-	80-120	-	
Dissolved Metals - Westborough Lab Associate	d sample(s): 01	Batch: WG876990-2			
Iron, Dissolved	90	-	85-115	-	
Dissolved Metals - Westborough Lab Associate	d sample(s): 01	Batch: WG877259-2			
Mercury, Dissolved	113	-	85-115	-	
Total Metals - Westborough Lab Associated sal	mple(s): 01 Bate	ch: WG877260-2			
Mercury, Total	113	-	85-115	-	

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery C	Recovery Qual Limits	RPD Qua	RPD Limits
Total Metals - Westborough Lab	Associated	sample(s): 01	QC Bat	ch ID: WG876	912-4	QC Samp	ole: L1607676-13	Client ID: M	S Sample	
Antimony, Total	ND	0.5	0.5376	108		-	-	75-125	-	20
Arsenic, Total	ND	0.12	0.1239	103		-	-	75-125	-	20
Cadmium, Total	ND	0.051	0.05525	108		-	-	75-125	-	20
Chromium, Total	ND	0.2	0.1881	94		-	-	75-125	-	20
Copper, Total	ND	0.25	0.2387	95		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5469	107		-	-	75-125	-	20
Nickel, Total	ND	0.5	0.4908	98		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.121	101		-	-	75-125	-	20
Silver, Total	ND	0.05	0.04853	97		-	-	75-125	-	20
Zinc, Total	ND	0.5	0.4836	97		-	-	75-125	-	20
Гotal Metals - Westborough Lab	Associated :	sample(s): 01	QC Bat	ch ID: WG876	914-4	QC Samp	ole: L1600003-11	8 Client ID: N	/IS Sample	
Iron, Total	ND	1	0.88	88		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number:

L1608112

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Westbord	ough Lab Associa	ated sample	e(s): 01 QC	Batch ID: WG8	876988-4 Q	C Sample: L1608112-	01 Client ID:	HA-2 (OW)	
Antimony, Dissolved	0.00225	0.5	0.5852	116	-	-	75-125	-	20
Arsenic, Dissolved	0.00339	0.12	0.1358	110	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.05642	111	-	-	75-125	-	20
Chromium, Dissolved	0.00389	0.2	0.2100	103	-	-	75-125	-	20
Copper, Dissolved	0.00580	0.25	0.2718	106	-	-	75-125	-	20
Lead, Dissolved	ND	0.51	0.5832	114	-	-	75-125	-	20
Nickel, Dissolved	ND	0.5	0.5154	103	-	-	75-125	-	20
Selenium, Dissolved	0.00670	0.12	0.148	118	-	-	75-125	-	20
Silver, Dissolved	ND	0.05	0.05140	103	-	-	75-125	-	20
Zinc, Dissolved	ND	0.5	0.5308	106	-	-	75-125	-	20
Dissolved Metals - Westbord	ough Lab Associa	ated sample	e(s): 01 QC	Batch ID: WG	876990-4 Q	C Sample: L1608112-	01 Client ID:	HA-2 (OW)	
Iron, Dissolved	ND	1	0.87	87	-	-	75-125	-	20
Dissolved Metals - Westbord	ough Lab Associa	ated sample	e(s): 01 QC	Batch ID: WG	877259-4 Q	C Sample: L1608112-	01 Client ID:	HA-2 (OW)	
Mercury, Dissolved	ND	0.005	0.00516	103	-	-	75-125	-	20
Total Metals - Westborough	Lab Associated s	sample(s):	01 QC Bat	ch ID: WG8772	60-4 QC Sa	mple: L1608112-01	Client ID: HA-	2 (OW)	
Mercury, Total	ND	0.005	0.00511	102		-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014 Lab Number:

Report Date:

L1608112 03/27/16

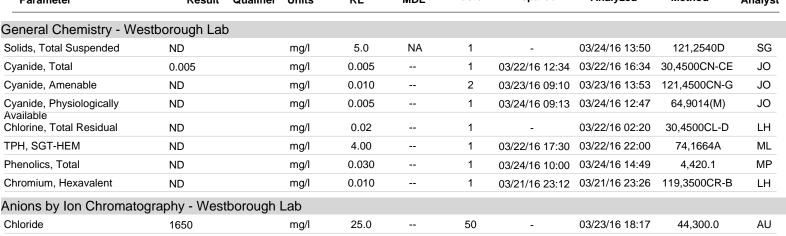
Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Westborough Lab Associated sample(s): 0	01 QC Batch ID: W	/G876912-3 QC Sample:	L1607676-13	Client ID:	DUP Sample
Antimony, Total	ND	ND	mg/l	NC	20
Total Metals - Westborough Lab Associated sample(s): 0	01 QC Batch ID: W	/G876914-3 QC Sample:	L1600003-11	8 Client ID	: DUP Sample
Iron, Total	ND	ND	mg/l	NC	20
Dissolved Metals - Westborough Lab Associated sample(s): 01 QC Batch I	D: WG876988-3 QC Sam	ple: L160811	2-01 Clien	t ID: HA-2 (OW)
Antimony, Dissolved	0.00225	0.00206	mg/l	9	20
Arsenic, Dissolved	0.00339	0.00336	mg/l	1	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Chromium, Dissolved	0.00389	0.00360	mg/l	8	20
Copper, Dissolved	0.00580	0.00577	mg/l	0	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Nickel, Dissolved	ND	ND	mg/l	NC	20
Selenium, Dissolved	0.00670	0.00664	mg/l	1	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
Dissolved Metals - Westborough Lab Associated sample(s): 01 QC Batch I	D: WG876990-3 QC Sam	ple: L160811	2-01 Clien	t ID: HA-2 (OW)
Iron, Dissolved	ND	ND	mg/l	NC	20
Dissolved Metals - Westborough Lab Associated sample(s): 01 QC Batch I	D: WG877259-3 QC Sam	ple: L160811	2-01 Clien	t ID: HA-2 (OW)
Mercury, Dissolved	ND	ND	mg/l	NC	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** HARRISON AVE./ALBANY ST. L1608112 **Project Number:** Report Date: 03/27/16 41737-014

Parameter Native Sample Duplicate Sample Units **RPD RPD Limits** Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG877260-3 QC Sample: L1608112-01 Client ID: HA-2 (OW) NC Mercury, Total ND ND mg/l 20

INORGANICS & MISCELLANEOUS


Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: Report Date: 03/27/16 41737-014

SAMPLE RESULTS

Lab ID: Date Collected: L1608112-01 03/21/16 11:10 HA-2 (OW) Client ID: Date Received: 03/21/16 Not Specified Field Filtered Sample Location: Field Prep: (Dissolved Metals) Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/24/16 13:50	121,2540D	SG
Cyanide, Total	0.005		mg/l	0.005		1	03/22/16 12:34	03/22/16 16:34	30,4500CN-CE	JO
Cyanide, Amenable	ND		mg/l	0.010		2	03/23/16 09:10	03/23/16 13:53	121,4500CN-G	JO
Cyanide, Physiologically	ND		mg/l	0.005		1	03/24/16 09:13	03/24/16 12:47	64,9014(M)	JO
Available Chlorine, Total Residual	ND		mg/l	0.02		1	-	03/22/16 02:20	30,4500CL-D	LH
TPH, SGT-HEM	ND		mg/l	4.00		1	03/22/16 17:30	03/22/16 22:00	74,1664A	ML
Phenolics. Total	ND		ma/l	0.030		1	03/24/16 10:00	03/24/16 14:49	4.420.1	MP

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number:

L1608112

Report Date: 03/27/16

Method Blank Analysis Batch Quality Control

Parameter Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough La	ab for san	nple(s): 01	Batch:	WG87	'6002-1				
Chromium, Hexavalent ND		mg/l	0.010		1	03/21/16 23:12	03/21/16 23:25	119,3500CR-B	LH
General Chemistry - Westborough La	ab for san	nple(s): 01	Batch:	WG87	6027-1				
Chlorine, Total Residual ND		mg/l	0.02		1	-	03/22/16 02:20	30,4500CL-D	LH
General Chemistry - Westborough La	ab for san	nple(s): 01	Batch:	WG87	6152-1				
Cyanide, Total ND		mg/l	0.005		1	03/22/16 12:34	03/22/16 15:50	30,4500CN-CE	JO
General Chemistry - Westborough La	ab for san	nple(s): 01	Batch:	WG87	76322-1				
TPH, SGT-HEM ND		mg/l	4.00		1	03/22/16 17:30	03/22/16 22:00	74,1664A	ML
General Chemistry - Westborough La	ab for san	nple(s): 01	Batch:	WG87	'6512-1				
Cyanide, Amenable ND		mg/l	0.010		2	03/23/16 09:10	03/23/16 13:53	121,4500CN-G	JO
General Chemistry - Westborough La	ab for san	nple(s): 01	Batch:	WG87	′6891-1				
Cyanide, Physiologically Available ND		mg/l	0.005		1	03/24/16 09:13	03/24/16 12:23	64,9014(M)	JO
General Chemistry - Westborough La	ab for san	nple(s): 01	Batch:	WG87	′6897-1				
Phenolics, Total ND		mg/l	0.030		1	03/24/16 10:00	03/24/16 14:45	4,420.1	MP
General Chemistry - Westborough La	ab for san	nple(s): 01	Batch:	WG87	'6925-1				
Solids, Total Suspended ND		mg/l	5.0	NA	1	-	03/24/16 13:50	121,2540D	SG
Anions by Ion Chromatography - We	stborough	Lab for sar	mple(s):	01 B	atch: WG8	77170-1			
Chloride ND		mg/l	0.500		1	-	03/23/16 16:53	44,300.0	AU

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number:

L1608112

Report Date:

03/27/16

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG876002-2				
Chromium, Hexavalent	99	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG876027-2				
Chlorine, Total Residual	105	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG876152-2				
Cyanide, Total	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG876322-2				
ТРН	90	-	64-132	-		34
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG876512-2				
Cyanide, Amenable	100	-	85-115	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG876891-2				
Cyanide, Physiologically Available	99	-	80-120	-		
General Chemistry - Westborough Lab	NEGATIVE LCS Associa	ated sample(s): 01 Batc	h: WG876891-3			
Cyanide, Physiologically Available	2	-	0-10	-		

Project Name: HARRISON AVE./ALBANY ST.

Lab Number: L1608112

Project Number: 41737-014

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG876897-2			
Phenolics, Total	92	-	70-130	-	
Anions by Ion Chromatography - West	tborough Lab Associated sar	mple(s): 01 Batch: WG87	7170-2		
Chloride	103	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number:

L1608112

Report Date:

03/27/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun	. 11100	Recovery ual Limits	RPD Qual	RPD Limits
General Chemistry - Westborou	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID:	WG876002-4	QC Sample: L16081	12-01 Client ID	: HA-2 (OW)	
Chromium, Hexavalent	ND	0.1	0.106	106	-	-	85-115	-	20
General Chemistry - Westborou	igh Lab Assoc	iated samp	le(s): 01	QC Batch ID:	WG876152-4	QC Sample: L16076	14-02 Client ID	: MS Sample	
Cyanide, Total	0.023	0.4	0.423	100		-	90-110	-	30
General Chemistry - Westborou	igh Lab Assoc	iated samp	le(s): 01	QC Batch ID:	WG876322-4	QC Sample: L16081	12-01 Client ID	: HA-2 (OW)	
TPH	ND	20.4	17.2	84	-	-	64-132	-	34
General Chemistry - Westborou	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID:	WG876891-5	QC Sample: L16081	12-01 Client ID	: HA-2 (OW)	
Cyanide, Physiologically Available	ND	0.2	0.168	84	-	-	75-125	-	20
General Chemistry - Westborou	igh Lab Assoc	ciated samp	le(s): 01	QC Batch ID:	WG876897-4	QC Sample: L16081	12-01 Client ID	: HA-2 (OW)	
Phenolics, Total	ND	0.4	0.38	95	-	-	70-130	-	20
Anions by Ion Chromatography	- Westboroug	h Lab Asso	ciated sar	nple(s): 01 Q	C Batch ID: WO	9877170-3 QC San	nple: L1608204-0	3 Client ID:	MS Sampl
Chloride	22.4	4	25.6	80	-	-	40-151	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number:

L1608112

Report Date:

03/27/16

Parameter	Nat	ive Sa	ample	Duplicate Sa	mple Uni	ts RP	D Qua	al RF	D Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG876002-3	QC Sample:	L1608112-01	Client ID:	HA-2 (O	W)
Chromium, Hexavalent		ND		ND	mg	/I NO			20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG876027-3	QC Sample:	L1608112-01	Client ID:	HA-2 (O	W)
Chlorine, Total Residual		ND		ND	mg	/I NO			20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG876152-3	QC Sample:	L1607614-01	Client ID:	DUP Sa	mple
Cyanide, Total		0.024	1	0.023	mg	/ 3			30
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG876322-3	QC Sample:	L1607914-02	Client ID:	DUP Sa	mple
ТРН		ND		ND	mg	/I NO			34
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG876512-3	QC Sample:	L1608112-01	Client ID:	HA-2 (O	W)
Cyanide, Amenable		ND		ND	mg	/I NO			20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG876891-4	QC Sample:	L1608112-01	Client ID:	HA-2 (O	W)
Cyanide, Physiologically Available		ND		ND	mg	/I NO			20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG876897-3	QC Sample:	L1608112-01	Client ID:	HA-2 (O	W)
Phenolics, Total		ND		ND	mg	/I NO)		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG876925-2	QC Sample:	L1607708-02	Client ID:	DUP Sa	mple
Solids, Total Suspended		630		700	mg	/ 11			29
Anions by Ion Chromatography - Westb Sample	orough Lab Associated	d sam	ple(s): 01 Q	C Batch ID: W	G877170-4 C	C Sample: L	1608204-0	3 Client	ID: DUP
Chloride		22.4		22.5	mg	/I 0			18

Project Name: HARRISON AVE./ALBANY ST.

Lab Number: L1608112 **Report Date:** 03/27/16 Project Number: 41737-014

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Information Temp											
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)				
L1608112-01A	Vial HCI preserved	Α	N/A	4.4	Υ	Absent	8260-SIM(14),8260(14)				
L1608112-01B	Vial HCl preserved	Α	N/A	4.4	Υ	Absent	8260-SIM(14),8260(14)				
L1608112-01C	Vial HCl preserved	Α	N/A	4.4	Υ	Absent	8260-SIM(14),8260(14)				
L1608112-01D	Vial HCl preserved	Α	N/A	4.4	Υ	Absent	VPH-10(14)				
L1608112-01E	Vial HCl preserved	Α	N/A	4.4	Υ	Absent	VPH-10(14)				
L1608112-01F	Vial HCl preserved	Α	N/A	4.4	Υ	Absent	VPH-10(14)				
L1608112-01G	Vial Na2S2O3 preserved	Α	N/A	4.4	Υ	Absent	504(14)				
L1608112-01H	Vial Na2S2O3 preserved	Α	N/A	4.4	Υ	Absent	504(14)				
L1608112-01I	Plastic 500ml HNO3 preserved	A	<2	4.4	Y	Absent	SE-6020T(180),CR- 6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180),HG- U(28),AS-6020T(180),SB- 6020T(180),AG-6020T(180),CD- 6020T(180)				
L1608112-01J	Plastic 500ml HNO3 preserved	Α	<2	4.4	Y	Absent	CU-6020S(180),FE-RI(180),SE-6020S(180),ZN-6020S(180),CR-6020S(180),NI-6020S(180),PB-6020S(180),AG-6020S(180),AS-6020S(180),HG-R(28),SB-6020S(180),CD-6020S(180)				
L1608112-01K	Plastic 250ml NaOH preserved	Α	>12	4.4	Υ	Absent	TCN-4500(14),ACN- 4500(14),PACN(14)				
L1608112-01K1	Plastic 250ml NaOH preserved	Α	>12	4.4	Υ	Absent	TCN-4500(14),PACN(14)				
L1608112-01L	Plastic 950ml unpreserved	Α	7	4.4	Y	Absent	CL-300(28),HEXCR- 3500(1),TRC-4500(1)				
L1608112-01M	Plastic 950ml unpreserved	Α	7	4.4	Υ	Absent	TSS-2540(7)				
L1608112-01N	Amber 950ml H2SO4 preserved	Α	<2	4.4	Υ	Absent	TPHENOL-420(28)				
L1608112-01O	Amber 1000ml HCl preserved	Α	<2	4.4	Υ	Absent	TPH-1664(28)				
L1608112-01P	Amber 1000ml HCl preserved	Α	<2	4.4	Υ	Absent	TPH-1664(28)				
L1608112-01Q	Amber 1000ml HCl preserved	Α	<2	4.4	Υ	Absent	EPH-10(14)				
L1608112-01R	Amber 1000ml HCl preserved	Α	<2	4.4	Υ	Absent	EPH-10(14)				
L1608112-01S	Amber 1000ml Na2S2O3	Α	7	4.4	Υ	Absent	PCB-608(7)				
L1608112-01T	Amber 1000ml Na2S2O3	Α	7	4.4	Υ	Absent	PCB-608(7)				
L1608112-01U	Amber 1000ml unpreserved	Α	7	4.4	Υ	Absent	8270TCL(7),8270TCL-SIM(7)				
L1608112-01V	Amber 1000ml unpreserved	Α	7	4.4	Υ	Absent	8270TCL(7),8270TCL-SIM(7)				

Project Name: HARRISON AVE./ALBANY ST.

Project Number: 41737-014

Lab Number: L1608112 **Report Date:** 03/27/16

Container Info	rmation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1608112-02A	Vial HCI preserved	Α	N/A	4.4	Υ	Absent	8260-SIM(14),8260(14)
L1608112-02B	Vial HCl preserved	Α	N/A	4.4	Υ	Absent	8260-SIM(14),8260(14)
L1608112-02C	Vial Na2S2O3 preserved	Α	N/A	4.4	Υ	Absent	504(14)
L1608112-02D	Vial Na2S2O3 preserved	Α	N/A	4.4	Υ	Absent	504(14)

Container Comments

L1608112-01T

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112

Project Number: 41737-014 Report Date: 03/27/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

TIC

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name:HARRISON AVE./ALBANY ST.Lab Number:L1608112Project Number:41737-014Report Date:03/27/16

Data Qualifiers

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: HARRISON AVE./ALBANY ST. Lab Number: L1608112
Project Number: 41737-014 Report Date: 03/27/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

- 119 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 21st Edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 6

Published Date: 2/3/2016 10:23:10 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

					_				_							_		1	
HALEY 46	aley & Aldri 5 Medford 5 ite 2200,					(СН	AI	N	OF	C	US	ТО	D	YF	REC	CORI	111111111111	hone (617) 886-7400 ax (617) 886-7600
Be	ston, MA 0	2129-1402																P	age of (
H&A FILE NO.	739 ~	014				LAB	ORAT	ORY			A1	pha					DELIVI	ERY DATE 3/≥ 1/6	
PROJECT NAME (+2)	mison	Ave.	1 Albo	my St		ADD	RESS			i	wi	Than	0				TURNA	ROUND TIME 57D	
H&A CONTACT		zle-		,		CON	TACT				6,						PROJE	CT MANAGER M. Atur	1 /L Utnzlan
	T		$\overline{}$	T	$\overline{}$							Reques	ited						
Sample No.	Date	Time	Depth	Туре	0	(2) (in)	0	FOR TO	S Comments	0	TO SERVICE SER	(Gladding)	0	0	0	(L)	Number of Containers	Comment (special instructions, precautions, addi	
HA-2 (OW)	3/21/16	1110	-	AQ	TX	X	×	X	X	X	X	X	×	X	×	X	23	Laboratory to use applicable DEP CA	
	41-11-	111		1.0	1		×	-	X								4	O Cr 16 - 390 TRC	
Trip blank					-	-	^	-	-	-		1	-	-	-		-		
	-				-	-	-	-				-			-	-		@ Total CN	(1) 8270 820 (1) W
											-							3 504	() () () () () ()
M. (.1 T.	.1 1 1	D' 1	1 NIDD	TC DCD	J	1 .												A TRIH EPH	(UPIT
Metals are To	tai and	Dissoive	ea NPD	ES KGP	Wie	tais					-		-					6 4260 / 8260 SEM	1 @ ACN PACN
			-			-	-			-		-				-		0 - Phenol 420	PACIO
		-			-	-	-		-		-		-		-	-		Q T Pheno	(A)
EPH and VP	'H are ra	inges on	ıly			L.,												E ACB GOS METELS	
												İ			1			6) DASOLKEL MCP14 Melsky	(EE)
				-						-								Breaker Letter	
Sampled and Relinquished by	Res	reived by									LIC	QUID						Sampling Comments	
sion of Prul	Sie	M, auto	*				×		1						×		VOA Vial		
Print S. Provencal		I M BUS					×	×	V	×	×			×	ж	-	Amber Glass		
A			7.0		X	×	1	- "	-	-	^	×	Se		-	V	Plastic Bottle		
Firm 1++/+		n HIP			Â	-	AT	40	Min	.1.				A.	Alg		Preservative		
Date 3/2:/10 Time	$\overline{}$	e 3/21/16	2 Time/	6'30	1					Ale									
Relinquished by	Res	reived by			11-	244	4000	14	dist	499,1			3000	14	HILL	\$ 10.01	Volume		
Sign Mulli	Sig			_							SC	LID							
Print M Burks	Prin	ML	TE 3h	>													VOA Vial		
Firm HOA	Pier	MI	,										_				Amber Glass		
Date 3/21/16 Time (6/3		3/2/16	Time	630						_	_						Clear Glass		
Relinquished by		elved by												-	-		Preservative	Evidence samples were tampered with?	VES NO
			ML	$\overline{}$		_	_			-					-	1	Volume	If YES, please explain in section below.	100 110
Sign /	→ ∞	unit.	-MCe	2	\vdash	_	_	_	_	mpr	eenv	ATION	vev	_	_	_		it 123, prease explain in section below.	
Print V	Pris	MICH	nuce		⊢	_	_			PAL	JERV.	AHON	KEI				0		
Firm AL	7- Fin	Ayel				mple chi		C	N ₈ OH		E	H ₂ SO ₄		G	Metha	nol 7	NASS		
Date 3/2 Time / 4	28 Dat	. 3 R1/L	(Time	(Hax	B Sar	mple filt	ered	D	HNO ₃		F	HCL		H	Water/	NaHSO	4 (circle)		
·					Presu	nptive (Certain	ty Data	Packag	ge (Labo	entory	y to use	applical	ble DE	P CAM	1 metho	ds)		
If Presumptive Certainty Data P	-																	Required Reporting Limits and Data Qu	ality Objectives
The required minimu								llected,	as appro	opriate, t	o meet	the req	uirement	s of Pro	esumpti	ve Certz	onty.	П посет	а. П
Matrix Spike (MS) sa																			S1 □ GW1 S2 □ GW2
/ This Chain of Custod	y Record (spe	cify)	includes	do	es not in	cinde sa	mples o	tefined :	as Drink	ing Wate	ar Same	ptes.							
If this Chain of Custo	ody Record ide	ntifies sample	s defined as	Drinking Wate	er Sampi	les, Trip	Blanks	and Fie	ld Dupli	icates are	includ	ded and	identifie	d and a	nalysis	of TICs	are required, as	RC-GW1	S3
appropriate. Laborat	ory should (sp	ecify if applica	able)	analyze														- KOGW2	
																_			

														_					_
HALEY 4	faley & Ald: 65 Medford uite 2200,						СН	AI	N	OF	C	US	ТО	D	Y F	RE	CORI	0 L1608112 Phone (617) 886-7400 Fax (617) 886-7600	_
ALDRICH B	loston, MA	02129-1402																Page of (
	1739 -	-014				LAB	ORAT	ORY			AI	pha					DELIVE	ERY DATE 3/21/16	
PROJECT NAME (+2	wigon	Ave.	1 A 160	my St		ADD	RESS					Tha	9				TURNA	ROUND TIME 57>	
H&A CONTACT		nele-		,		CON	TACT				6,	-4					PROJEC	CTMANAGER M. Atural / Lunzla	
	T	T	T	T						A		Reques	sted						
Sample No.	Date	Time	Depth	Туре	0	(2) (in)	0	(4) Visu	0	0	10	(Graduati)	0	0	0	(2)	Number of Containers	Comments (special instructions, precautions, additional method numbers, etc.	.)
H4-2(0W)	3/21/10	1110	-	AQ	X	X	×	X	×	X	X	X	×	X	×	×	23	Laboratory to use applicable DEP CAM methods, unless otherwis	e
70 H	Marilia	1111		110	1^	1	×	_	×	1	-		-	-	1	1	4	O Cott - 3500 TRC, chloride TS	5
Trip blank	-				-	-	^	-	^	-			-	-	-				
	-				-	-	-	-	-	-	-			-	-	-	-	@ Total CN (8270/27)	0
					-		-	-		-	-	_	_					(3) 50°4 (1) 11014 (1)	
								1						1				O UPH EPH O UPH	
																		A 4260 / 8260 SEM WACAI	
		-							1									1 - phase 420	
		-		-	+	-	+		-		-	-			-		-	/ AT/	
	-		-	-	-		-		-	1	-	-			-	-		Total MCP14 Metals	
					-					_	_				-	-	-	DAGGER MEPH Metals DAGGER MEPH Metals	
Sampled and Relinquished by	R	eceived by									LIC	QUID						Sampling Comments	
Sign of Prol	Si	mM, auto	the				N.		1						k		VOA Vial		
Print S. Provencal		in M Aus					×	×	V	×	×			×	×		Amber Glass		
Firm 1++/4		m HIP			X	×	-					×	Se		-	X	Plastic Bottle	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Date 3 /2 /10 Time		ate 3/21/16	6 Time/	10 PM	A	AC	AT	AP	Als	Ala	AI	Alp	Malp	N	Alg	ALC	Preservative		
Relinquished by	$\overline{}$	received Jry	o mine/	0 20	iL	24.1										250	Volume		
Sign MINUS		1		-	+	2 900	11.00	100		12.5		LID	3.	16				1	
Sign Privocor		an V. LA	- h	_	\vdash	_			_		04	LID		_		-	VOA Vial		
Print M Bueck	Pr	ME	JE SI	_	-	-	-	-	-		-	-	-	_					
Firm HOA		m 441				-			-	-	_	_			-		Amber Glass		
Date 3/21/16 Time (6		11.3/21/K	Time/	630	-					_							Clear Glass		_
Relinquished by		eceived by						_									Preservative	Evidence samples were tampered with? YES NO	
Sign Z	Si	mullia	- Me			-											Volume	If YES, please explain in section below.	
Print VM	Pr	in Willia	nuce	2						PRE	SERV	ATION	KEY						
Firm AC	rs.	m Mal	1		A Sa	mple ch	illed	С	NaOH		Ε	H ₂ SO ₄		G	Metha	nel :	ENASE'S		
Date 3/2/ Time /	728 0	3/21/0	Me Time	1201	B So	mple file	tered	D	HNO ₃		F	HCL					14 (circle)		
100		1.1.		11194.)	_			ty Date	Packa	ge (Lab			applical	ble DE	P CAM	1 metho	ods)		
If Presumptive Certainty Data I	Package is no	eded, initial a	Il sections:															Required Reporting Limits and Data Quality Objectives	Т
The required minim								llected,	as appr	opriate,	to meet	the req	uirement	ts of Pr	esumpti	ive Cert	ainty.		
Matrix Spike (MS) a																		□ RC-S1 □ S1 □ GWI	
/ This Chain of Custo	dy Record (sp	ecify)	includes	de	oes not in	schide sa	emples o	defined	as Drink	ting Wat	er Sam	ples.						□ RC-S2 □ S2 □ GW2	
If this Chain of Cust	tody Record id	lentifies sample	es defined as	Drinking Wat	ter Samp	les, Trip	Blanks	and Fie	eld Dupl	icates ar	e includ	fed and	identifie	d and a	nalysis	of TICs	are required, as	RC-GW1 S3 GW3	
appropriate. Labora	tory should (s	pecify if applic	able)	analyze														- KOGWZ	
				WHITE - Labo	esterv	-	CANARY	Y - Proje	et Manag	м	PIN	K - Ho	y & Aldri	ich Labo	votory			FEBRUARY 2016	_
										and the same of th			a service and a						

ANALYTICAL REPORT

Lab Number: L1719410

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Vanzler Phone: (617) 886-7561

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007 Report Date: 06/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

06/15/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1719410-01	R-C6 (OW)	WATER	89 EAST DEDHAM STREET, BOSTON, MA	06/09/17 13:35	06/09/17
L1719410-02	TRIP BLANK	WATER	89 EAST DEDHAM STREET, BOSTON, MA	06/09/17 00:00	06/09/17

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410

Project Number: 129168-007 **Report Date:** 06/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:HARRISON/ALBANY BLOCKLab Number:L1719410Project Number:129168-007Report Date:06/15/17

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were transported to the laboratory in a cooler with ice and delivered directly from the sampling site.

Semivolatile Organics

The WG1013173-3 LCSD recovery, associated with L1719410-01 (R-C6 (OW)), is below the acceptance criteria for benzidine (4%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

TPH, SGT-HEM

WG1011837: A laboratory duplicate could not be performed due to insufficient sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/15/17

600, Skalow Kelly Stenstrom

ΔLPHA

ORGANICS

VOLATILES

L1719410

06/15/17

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

SAMPLE RESULTS

Date Collected: 06/09/17 13:35

Lab Number:

Report Date:

Lab ID: L1719410-01 Client ID: Date Received: 06/09/17

R-C6 (OW)

Sample Location: Field Prep: 89 EAST DEDHAM STREET, BOSTON, MA Not Specified

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/12/17 14:01

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410

Project Number: 129168-007 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/09/17 13:35

Client ID: R-C6 (OW) Date Received: 06/09/17
Sample Location: 89 EAST DEDHAM STREET, BOSTON, MA Field Prep: Not Specified

Sample Location.	09 EAST DEDITAIN	SINCEI, DO	STOIN, IVIA		rieia Pie	ρ.	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	/ GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene		ND		ug/l	2.5		1
1,4-Dichlorobenzene		ND		ug/l	2.5		1
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	5.0		1
1,4-Dichlorobutane		ND		ug/l	5.0		1
1,2,3-Trichloropropane		ND		ug/l	5.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	5.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	2.5		1
Tetrahydrofuran		ND		ug/l	5.0		1
2,2-Dichloropropane		ND		ug/l	2.5		1
1,2-Dibromoethane		ND		ug/l	2.0		1
1,3-Dichloropropane		ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	2.5		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	2.5		1
o-Chlorotoluene		ND		ug/l	2.5		1
p-Chlorotoluene		ND		ug/l	2.5		1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	2.5		1
n-Propylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	2.5		1

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410

Project Number: 129168-007 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/09/17 13:35

Client ID: R-C6 (OW) Date Received: 06/09/17
Sample Location: 89 EAST DEDHAM STREET, BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	95	70-130	

Project Name: Lab Number: HARRISON/ALBANY BLOCK L1719410

Project Number: Report Date: 129168-007 06/15/17

SAMPLE RESULTS

Lab ID: L1719410-01 Date Collected: 06/09/17 13:35

Client ID: Date Received: 06/09/17 R-C6 (OW) Sample Location: Field Prep: 89 EAST DEDHAM STREET, BOSTON, MA Not Specified

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 06/12/17 14:01

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbore	ough Lab					
1,4-Dioxane	ND		ug/l	3.0		1

Project Name: Lab Number: HARRISON/ALBANY BLOCK L1719410

Project Number: Report Date: 129168-007 06/15/17

SAMPLE RESULTS

Lab ID: L1719410-01 Date Collected: 06/09/17 13:35

Client ID: Date Received: R-C6 (OW) 06/09/17

Sample Location: 89 EAST DEDHAM STREET, BOSTON, MA Field Prep: Not Specified

Extraction Method: EPA 504.1 Matrix: Water Extraction Date: 06/12/17 15:03

Analytical Method: 14,504.1 Analytical Date: 06/12/17 17:53

Analyst: NS

Parameter	Result Qualifier Units		Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	А
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α

Project Name: HARRISON/ALBANY BLOCK **Lab Number:** L1719410

Project Number: 129168-007 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 06/12/17 16:49 Extraction Date: 06/12/17 15:03

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbore	ough Lab fo	r sample(s)	: 01	Batch: WG101	2290-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410

Project Number: 129168-007 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 06/12/17 08:24

Analyst: MM

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - V	Vestborough	Lab for sa	ample(s):	01	Batch:	WG1012451-5	
1,4-Dioxane	ND		ug/l		3.0		

L1719410

Project Name: HARRISON/ALBANY BLOCK Lab Number:

Project Number: 129168-007 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/12/17 08:24

Analyst: MM

Volatile Organics by GC/MS - Westborough Lab for sample(s):Methylene chlorideNDug/l1,1-DichloroethaneNDug/lChloroformNDug/lCarbon tetrachlorideNDug/l1,2-DichloropropaneNDug/lDibromochloromethaneNDug/l1,1,2-TrichloroethaneNDug/lTetrachloroetheneNDug/lChlorobenzeneNDug/lTrichlorofluoromethaneNDug/l1,2-DichloroethaneNDug/l1,1,1-TrichloroethaneNDug/lBromodichloromethaneNDug/ltrans-1,3-DichloropropeneNDug/lcis-1,3-DichloropropeneNDug/l	01 Batch:	WG1012459-5
1,1-DichloroethaneNDug/lChloroformNDug/lCarbon tetrachlorideNDug/l1,2-DichloropropaneNDug/lDibromochloromethaneNDug/l1,1,2-TrichloroethaneNDug/lTetrachloroetheneNDug/lChlorobenzeneNDug/lTrichlorofluoromethaneNDug/l1,2-DichloroethaneNDug/l1,1,1-TrichloroethaneNDug/lBromodichloromethaneNDug/ltrans-1,3-DichloropropeneNDug/l	3.0	
Chloroform ND ug/l Carbon tetrachloride ND ug/l 1,2-Dichloropropane ND ug/l Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethene ND ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l		
Carbon tetrachloride ND ug/l 1,2-Dichloropropane ND ug/l Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethene ND ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l	0.75	
1,2-Dichloropropane ND ug/l Dibromochloromethane ND ug/l 1,1,2-Trichloroethane ND ug/l Tetrachloroethene ND ug/l Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l	0.75	
DibromochloromethaneNDug/l1,1,2-TrichloroethaneNDug/lTetrachloroetheneNDug/lChlorobenzeneNDug/lTrichlorofluoromethaneNDug/l1,2-DichloroethaneNDug/l1,1,1-TrichloroethaneNDug/lBromodichloromethaneNDug/ltrans-1,3-DichloropropeneNDug/l	0.50	
1,1,2-TrichloroethaneNDug/lTetrachloroetheneNDug/lChlorobenzeneNDug/lTrichlorofluoromethaneNDug/l1,2-DichloroethaneNDug/l1,1,1-TrichloroethaneNDug/lBromodichloromethaneNDug/ltrans-1,3-DichloropropeneNDug/l	1.8	
TetrachloroetheneNDug/lChlorobenzeneNDug/lTrichlorofluoromethaneNDug/l1,2-DichloroethaneNDug/l1,1,1-TrichloroethaneNDug/lBromodichloromethaneNDug/ltrans-1,3-DichloropropeneNDug/l	0.50	
Chlorobenzene ND ug/l Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l	0.75	
Trichlorofluoromethane ND ug/l 1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l	0.50	
1,2-Dichloroethane ND ug/l 1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l	0.50	
1,1,1-Trichloroethane ND ug/l Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l	2.5	
Bromodichloromethane ND ug/l trans-1,3-Dichloropropene ND ug/l	0.50	
trans-1,3-Dichloropropene ND ug/l	0.50	
100	0.50	
cis-1,3-Dichloropropene ND ug/l	0.50	
	0.50	
1,3-Dichloropropene, Total ND ug/l	0.50	
1,1-Dichloropropene ND ug/l	2.5	
Bromoform ND ug/l	2.0	
1,1,2,2-Tetrachloroethane ND ug/l	0.50	
Benzene ND ug/l	0.50	
Toluene ND ug/l	0.75	
Ethylbenzene ND ug/l	0.50	
Chloromethane ND ug/l	2.5	
Bromomethane ND ug/l	1.0	
Vinyl chloride ND ug/l	1.0	
Chloroethane ND ug/l	1.0	
1,1-Dichloroethene ND ug/l	0.50	
1,2-Dichloroethene, Total ND ug/l	0.50	
Trichloroethene ND ug/l	0.50	

L1719410

Project Name: HARRISON/ALBANY BLOCK Lab Number:

Project Number: 129168-007 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/12/17 08:24

Analyst: MM

arameter	Result	Qualifier Unit	s	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01	Batch:	WG1012459-5
1,2-Dichlorobenzene	ND	ug.	/I	2.5	
1,3-Dichlorobenzene	ND	ug	/I	2.5	
1,4-Dichlorobenzene	ND	ug	/I	2.5	
Methyl tert butyl ether	ND	ug	/I	1.0	
p/m-Xylene	ND	ug	/I	1.0	
o-Xylene	ND	ug	/I	1.0	
Xylenes, Total	ND	ug	/I	1.0	
cis-1,2-Dichloroethene	ND	ug	/I	0.50	
Dibromomethane	ND	ug	/I	5.0	
1,4-Dichlorobutane	ND	ug	/I	5.0	
1,2,3-Trichloropropane	ND	ug.	/I	5.0	
Styrene	ND	ug	/I	1.0	
Dichlorodifluoromethane	ND	ug	/I	5.0	
Acetone	ND	ug.	/I	5.0	
Carbon disulfide	ND	ug.	/I	5.0	
2-Butanone	ND	ug.	/I	5.0	
Vinyl acetate	ND	ug	/I	5.0	
4-Methyl-2-pentanone	ND	ug	/I	5.0	
2-Hexanone	ND	ug	/I	5.0	
Ethyl methacrylate	ND	ug	/I	5.0	
Acrylonitrile	ND	ug	/I	5.0	
Bromochloromethane	ND	ug	/I	2.5	
Tetrahydrofuran	ND	ug	/I	5.0	
2,2-Dichloropropane	ND	ug	/I	2.5	
1,2-Dibromoethane	ND	ug	/I	2.0	
1,3-Dichloropropane	ND	ug	/I	2.5	
1,1,1,2-Tetrachloroethane	ND	ug	/I	0.50	
Bromobenzene	ND	ug	/I	2.5	
n-Butylbenzene	ND	ug	/I	0.50	

Project Number: 129168-007

is

L1719410

Report Date: 06/15/17

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8260C 06/12/17 08:24

Analyst:

MM

arameter	Result	Qualifier Un	its	RL	MDL
olatile Organics by GC/MS - W	estborough La	b for sample(s)	: 01	Batch:	WG1012459-5
sec-Butylbenzene	ND	U:	g/l	0.50	
tert-Butylbenzene	ND	U.	g/l	2.5	
o-Chlorotoluene	ND	u.	g/l	2.5	
p-Chlorotoluene	ND	u,	g/l	2.5	
1,2-Dibromo-3-chloropropane	ND	u	g/l	2.5	
Hexachlorobutadiene	ND	u,	g/l	0.50	
Isopropylbenzene	ND	u	g/l	0.50	
p-Isopropyltoluene	ND	U.	g/l	0.50	
Naphthalene	ND	U:	g/l	2.5	
n-Propylbenzene	ND	U:	g/l	0.50	
1,2,3-Trichlorobenzene	ND	U:	g/l	2.5	
1,2,4-Trichlorobenzene	ND	U:	g/l	2.5	
1,3,5-Trimethylbenzene	ND	U:	g/l	2.5	
1,2,4-Trimethylbenzene	ND	U:	g/l	2.5	
trans-1,4-Dichloro-2-butene	ND	u	g/l	2.5	
Ethyl ether	ND	u	g/l	2.5	
Tert-Butyl Alcohol	ND	u	g/l	10	
Tertiary-Amyl Methyl Ether	ND	u	g/l	2.0	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	91	70-130	

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007 Lab Number:

L1719410

06/15/17

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough La	b Associated san	nple(s): 01	Batch: WG1012	2290-2					
1,2-Dibromoethane	75		-		70-130	-			Α
1,2-Dibromo-3-chloropropane	74		-		70-130	-			А

Project Name: HARRISON/ALBANY BLOCK

Lab Number:

L1719410

Project Number: 129168-007

Report Date:

06/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westborou	ugh Lab Associate	ed sample(s):	01 Batch	WG1012451-3	3 WG1012451-4			
1,4-Dioxane	97		92		70-130	5		25

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG1	012459-3	WG1012459-4		
Methylene chloride	94		78		70-130	19	20
1,1-Dichloroethane	90		85		70-130	6	20
Chloroform	85		84		70-130	1	20
Carbon tetrachloride	83		85		63-132	2	20
1,2-Dichloropropane	93		92		70-130	1	20
Dibromochloromethane	89		87		63-130	2	20
1,1,2-Trichloroethane	89		89		70-130	0	20
Tetrachloroethene	89		88		70-130	1	20
Chlorobenzene	93		88		75-130	6	25
Trichlorofluoromethane	86		87		62-150	1	20
1,2-Dichloroethane	86		92		70-130	7	20
1,1,1-Trichloroethane	86		88		67-130	2	20
Bromodichloromethane	90		93		67-130	3	20
trans-1,3-Dichloropropene	90		87		70-130	3	20
cis-1,3-Dichloropropene	100		100		70-130	0	20
1,1-Dichloropropene	92		93		70-130	1	20
Bromoform	84		82		54-136	2	20
1,1,2,2-Tetrachloroethane	79		83		67-130	5	20
Benzene	88		86		70-130	2	25
Toluene	91		90		70-130	1	25
Ethylbenzene	92		91		70-130	1	20
Chloromethane	69		71		64-130	3	20
Bromomethane	58		63		39-139	8	20

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG10	012459-3	WG1012459-4		
Vinyl chloride	82		79		55-140	4	20
Chloroethane	83		80		55-138	4	20
1,1-Dichloroethene	87		89		61-145	2	25
Trichloroethene	84		86		70-130	2	25
1,2-Dichlorobenzene	96		98		70-130	2	20
1,3-Dichlorobenzene	84		87		70-130	4	20
1,4-Dichlorobenzene	89		94		70-130	5	20
Methyl tert butyl ether	95		95		63-130	0	20
p/m-Xylene	110		105		70-130	5	20
o-Xylene	95		90		70-130	5	20
cis-1,2-Dichloroethene	85		88		70-130	3	20
Dibromomethane	86		89		70-130	3	20
1,4-Dichlorobutane	83		82		70-130	1	20
1,2,3-Trichloropropane	80		84		64-130	5	20
Styrene	100		95		70-130	5	20
Dichlorodifluoromethane	65		65		36-147	0	20
Acetone	100		98		58-148	2	20
Carbon disulfide	74		78		51-130	5	20
2-Butanone	100		100		63-138	0	20
Vinyl acetate	96		98		70-130	2	20
4-Methyl-2-pentanone	99		94		59-130	5	20
2-Hexanone	98		92		57-130	6	20
Ethyl methacrylate	100		98		70-130	2	20

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s): 0	1 Batch: WG1	012459-3	WG1012459-4		
Acrylonitrile	100		100		70-130	0	20
Bromochloromethane	85		82		70-130	4	20
Tetrahydrofuran	100		110		58-130	10	20
2,2-Dichloropropane	90		87		63-133	3	20
1,2-Dibromoethane	84		84		70-130	0	20
1,3-Dichloropropane	90		86		70-130	5	20
1,1,1,2-Tetrachloroethane	86		83		64-130	4	20
Bromobenzene	84		83		70-130	1	20
n-Butylbenzene	97		98		53-136	1	20
sec-Butylbenzene	84		91		70-130	8	20
tert-Butylbenzene	88		93		70-130	6	20
o-Chlorotoluene	95		95		70-130	0	20
p-Chlorotoluene	94		92		70-130	2	20
1,2-Dibromo-3-chloropropane	77		83		41-144	8	20
Hexachlorobutadiene	78		77		63-130	1	20
Isopropylbenzene	88		93		70-130	6	20
p-Isopropyltoluene	95		97		70-130	2	20
Naphthalene	88		96		70-130	9	20
n-Propylbenzene	90		94		69-130	4	20
1,2,3-Trichlorobenzene	90		98		70-130	9	20
1,2,4-Trichlorobenzene	97		91		70-130	6	20
1,3,5-Trimethylbenzene	96		97		64-130	1	20
1,2,4-Trimethylbenzene	97		100		70-130	3	20

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

06/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1012459-3	WG1012459-4			
trans-1,4-Dichloro-2-butene	77		77		70-130	0		20
Ethyl ether	96		93		59-134	3		20
Tert-Butyl Alcohol	112		106		70-130	6		20
Tertiary-Amyl Methyl Ether	100		100		66-130	0		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	88	93	70-130	
Toluene-d8	103	100	70-130	
4-Bromofluorobenzene	92	98	70-130	
Dibromofluoromethane	93	94	70-130	

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

06/15/17

	Native	MS	MS	MS		MSD	MSD		Recovery		=	RPD	
Parameter	Sample	Added	Found %	6Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual L	_imits	<u>Colum</u> n
Microextractables by GC -	Westborough Lab	Associate	ed sample(s): 01	QC Batch	ID: WG101	2290-3	QC Sample: I	_171867 [.]	1-01 Clie	nt ID: N	/IS Sample	е	
1,2-Dibromoethane	ND	0.262	0.244	93		-	-		65-135	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.262	0.234	89		-	-		65-135	-		20	A

SEMIVOLATILES

L1719410

06/15/17

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

SAMPLE RESULTS

Date Collected: 06/09/17 13:35

Lab Number:

Report Date:

Lab ID: L1719410-01 Client ID: R-C6 (OW)

Sample Location: 89 EAST DEDHAM STREET, BOSTON, MA

Date Received: 06/09/17
Field Prep: Not Specified
Extraction Method: EPA 3510C

Extraction Date: 06/14/17 18:18

Matrix: Water
Analytical Method: 1,8270D
Analytical Date: 06/15/17 07:47

Analyst: KV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	
2-Nitroaniline	ND		ug/l	5.0		1	
3-Nitroaniline	ND		ug/l	5.0		1	

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410

Project Number: 129168-007 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/09/17 13:35

Client ID: R-C6 (OW) Date Received: 06/09/17
Sample Location: 89 EAST DEDHAM STREET, BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Phenol	ND		ug/l	5.0		1
2-Methylphenol	ND		ug/l	5.0		1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol	ND		ug/l	5.0		1
Benzoic Acid	ND		ug/l	50		1
Benzyl Alcohol	ND		ug/l	2.0		1
Carbazole	ND		ug/l	2.0		1
Pyridine	ND		ug/l	3.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	29	21-120	
Phenol-d6	21	10-120	
Nitrobenzene-d5	61	23-120	
2-Fluorobiphenyl	63	15-120	
2,4,6-Tribromophenol	85	10-120	
4-Terphenyl-d14	72	41-149	

L1719410

06/15/17

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

SAMPLE RESULTS

Date Collected: 06/09/17 13:35

Lab Number:

Report Date:

Lab ID: L1719410-01 Client ID: R-C6 (OW)

Sample Location: 89 EAST DEDHAM STREET, BOSTON, MA

Date Received: 06/09/17
Field Prep: Not Specified

Extraction Method:EPA 3510C Extraction Date: 06/12/17 04:27

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 06/14/17 19:25

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - West	borough La	ab				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
1-Methylnaphthalene	ND		ug/l	0.10		1
2-Methylnaphthalene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

Project Name: Lab Number: HARRISON/ALBANY BLOCK L1719410

Project Number: Report Date: 129168-007 06/15/17

SAMPLE RESULTS

Lab ID: L1719410-01 Date Collected: 06/09/17 13:35

Date Received: Client ID: R-C6 (OW) 06/09/17 Sample Location: 89 EAST DEDHAM STREET, BOSTON, MA Field Prep: Not Specified RL Parameter Result Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	39	21-120
Phenol-d6	26	10-120
Nitrobenzene-d5	68	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	76	10-120
4-Terphenyl-d14	70	41-149

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8270D-SIM 06/14/17 13:32

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 06/12/17 04:27

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/M	S-SIM - Westbo	rough Lab	for sample	(s): 01	Batch: WG1012058-	1
Acenaphthene	ND		ug/l	0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.10		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
1-Methylnaphthalene	ND		ug/l	0.10		
2-Methylnaphthalene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

L1719410

Lab Number:

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007 Report Date: 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 06/14/17 13:32

Analyst: KL Extraction Method: EPA 3510C 06/12/17 04:27 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample(s)): 01	Batch: WG1012058-1

		Acceptance
Surrogate	%Recovery Qu	ualifier Criteria
2-Fluorophenol	38	21-120
Phenol-d6	26	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	84	10-120
4-Terphenyl-d14	81	41-149

Project Number: 129168-007

Lab Number: L1719410

Report Date: 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 06/15/17 02:43

Analyst: KV

Extraction Method: EPA 3510C Extraction Date: 06/14/17 18:18

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01	Batch:	WG1013173-1
Acenaphthene	ND		ug/l		2.0	
Benzidine	ND		ug/l		20	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	
Hexachlorobenzene	ND		ug/l		2.0	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	
2-Chloronaphthalene	ND		ug/l		2.0	
1,2-Dichlorobenzene	ND		ug/l		2.0	
1,3-Dichlorobenzene	ND		ug/l		2.0	
1,4-Dichlorobenzene	ND		ug/l		2.0	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	
2,4-Dinitrotoluene	ND		ug/l		5.0	
2,6-Dinitrotoluene	ND		ug/l		5.0	
Azobenzene	ND		ug/l		2.0	
Fluoranthene	ND		ug/l		2.0	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	
Hexachlorobutadiene	ND		ug/l		2.0	
Hexachlorocyclopentadiene	ND		ug/l		20	
Hexachloroethane	ND		ug/l		2.0	
Isophorone	ND		ug/l		5.0	
Naphthalene	ND		ug/l		2.0	
Nitrobenzene	ND		ug/l		2.0	
NDPA/DPA	ND		ug/l		2.0	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	
Butyl benzyl phthalate	ND		ug/l		5.0	
Di-n-butylphthalate	ND		ug/l		5.0	

Project Number: 129168-007

Lab Number: L1719410 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 06/15/17 02:43

Analyst: KV

Extraction Method: EPA 3510C Extraction Date: 06/14/17 18:18

arameter	Result	Qualifier	Units	F	RL	MDL
emivolatile Organics by GC/N	MS - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1013173-1
Di-n-octylphthalate	ND		ug/l	5	5.0	
Diethyl phthalate	ND		ug/l	5	5.0	
Dimethyl phthalate	ND		ug/l	5	5.0	
Benzo(a)anthracene	ND		ug/l	2	2.0	
Benzo(a)pyrene	ND		ug/l	2	2.0	
Benzo(b)fluoranthene	ND		ug/l	2	2.0	
Benzo(k)fluoranthene	ND		ug/l	2	2.0	
Chrysene	ND		ug/l	2	2.0	
Acenaphthylene	ND		ug/l	2	2.0	
Anthracene	ND		ug/l	2	2.0	
Benzo(ghi)perylene	ND		ug/l	2	2.0	
Fluorene	ND		ug/l	2	2.0	
Phenanthrene	ND		ug/l	2	2.0	
Dibenzo(a,h)anthracene	ND		ug/l	2	2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l	2	2.0	
Pyrene	ND		ug/l	2	2.0	
Biphenyl	ND		ug/l	2	2.0	
Aniline	ND		ug/l	2	2.0	
4-Chloroaniline	ND		ug/l	5	5.0	
1-Methylnaphthalene	ND		ug/l	2	2.0	
2-Nitroaniline	ND		ug/l	5	5.0	
3-Nitroaniline	ND		ug/l	5	5.0	
4-Nitroaniline	ND		ug/l	5	5.0	
Dibenzofuran	ND		ug/l	2	2.0	
2-Methylnaphthalene	ND		ug/l	2	2.0	
n-Nitrosodimethylamine	ND		ug/l	2	2.0	
2,4,6-Trichlorophenol	ND		ug/l	5	5.0	
p-Chloro-m-cresol	ND		ug/l	2	2.0	
2-Chlorophenol	ND		ug/l	2	2.0	

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 06/15/17 02:43

Analyst: KV

Extraction Method: EPA 3510C Extraction Date: 06/14/17 18:18

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1013173-1
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		3.5	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

L1719410

Lab Number:

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 06/15/17 02:43 Extraction Date: 06/14/17 18:18

Analyst: KV

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01	Batch:	WG1013173-1	

%Recovery	Acceptance Qualifier Criteria
25	21-120
19	10-120
48	23-120
49	15-120
76	10-120
78	41-149
	25 19 48 49 76

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	sociated sample(s): 01 Bat	ch: WG1012058-2 WG1012	058-3	
Acenaphthene	66	62	37-111	6	40
2-Chloronaphthalene	68	63	40-140	8	40
Fluoranthene	73	71	40-140	3	40
Hexachlorobutadiene	62	54	40-140	14	40
Naphthalene	66	58	40-140	13	40
Benzo(a)anthracene	72	71	40-140	1	40
Benzo(a)pyrene	73	71	40-140	3	40
Benzo(b)fluoranthene	75	75	40-140	0	40
Benzo(k)fluoranthene	70	71	40-140	1	40
Chrysene	69	67	40-140	3	40
Acenaphthylene	75	69	40-140	8	40
Anthracene	70	66	40-140	6	40
Benzo(ghi)perylene	75	75	40-140	0	40
Fluorene	70	66	40-140	6	40
Phenanthrene	67	65	40-140	3	40
Dibenzo(a,h)anthracene	73	74	40-140	1	40
Indeno(1,2,3-cd)pyrene	79	79	40-140	0	40
Pyrene	72	70	26-127	3	40
1-Methylnaphthalene	68	62	40-140	9	40
2-Methylnaphthalene	69	63	40-140	9	40
Pentachlorophenol	64	65	9-103	2	40
Hexachlorobenzene	71	68	40-140	4	40
Hexachloroethane	64	53	40-140	19	40

Project Name: HARRISON/ALBANY BLOCK

Lab Number:

L1719410

Project Number: 129168-007

Report Date:

06/15/17

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1012058-2 WG1012058-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	43	38	21-120
Phenol-d6	29	28	10-120
Nitrobenzene-d5	71	63	23-120
2-Fluorobiphenyl	71	65	15-120
2,4,6-Tribromophenol	84	80	10-120
4-Terphenyl-d14	72	72	41-149

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410

	%Recovery	Qual	%Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
nivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s)	: 01 Batch:	WG1013173-2	2 WG1013173-3			
Acenaphthene	62		63		37-111	2		30
Benzidine	21		4	Q	10-75	143	Q	30
1,2,4-Trichlorobenzene	49		54		39-98	10		30
Hexachlorobenzene	72		78		40-140	8		30
Bis(2-chloroethyl)ether	61		70		40-140	14		30
2-Chloronaphthalene	63		66		40-140	5		30
1,2-Dichlorobenzene	43		50		40-140	15		30
1,3-Dichlorobenzene	42		48		40-140	13		30
1,4-Dichlorobenzene	42		49		36-97	15		30
3,3'-Dichlorobenzidine	64		56		40-140	13		30
2,4-Dinitrotoluene	70		78		48-143	11		30
2,6-Dinitrotoluene	73		80		40-140	9		30
Azobenzene	74		79		40-140	7		30
Fluoranthene	67		73		40-140	9		30
4-Chlorophenyl phenyl ether	67		70		40-140	4		30
4-Bromophenyl phenyl ether	76		78		40-140	3		30
Bis(2-chloroisopropyl)ether	54		61		40-140	12		30
Bis(2-chloroethoxy)methane	68		77		40-140	12		30
Hexachlorobutadiene	44		49		40-140	11		30
Hexachlorocyclopentadiene	39	Q	42		40-140	7		30
Hexachloroethane	41		50		40-140	20		30
Isophorone	71		80		40-140	12		30
Naphthalene	55		60		40-140	9		30

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - \	Westborough Lab Associated	sample(s): 01 Batch:	WG1013173-2 WG1013173-3		
Nitrobenzene	70	81	40-140	15	30
NDPA/DPA	66	71	40-140	7	30
n-Nitrosodi-n-propylamine	65	77	29-132	17	30
Bis(2-ethylhexyl)phthalate	66	72	40-140	9	30
Butyl benzyl phthalate	68	74	40-140	8	30
Di-n-butylphthalate	64	70	40-140	9	30
Di-n-octylphthalate	69	74	40-140	7	30
Diethyl phthalate	65	71	40-140	9	30
Dimethyl phthalate	72	77	40-140	7	30
Benzo(a)anthracene	67	71	40-140	6	30
Benzo(a)pyrene	70	74	40-140	6	30
Benzo(b)fluoranthene	70	73	40-140	4	30
Benzo(k)fluoranthene	68	74	40-140	8	30
Chrysene	65	70	40-140	7	30
Acenaphthylene	67	70	45-123	4	30
Anthracene	64	70	40-140	9	30
Benzo(ghi)perylene	67	71	40-140	6	30
Fluorene	65	70	40-140	7	30
Phenanthrene	65	70	40-140	7	30
Dibenzo(a,h)anthracene	66	72	40-140	9	30
Indeno(1,2,3-cd)pyrene	68	72	40-140	6	30
Pyrene	67	71	26-127	6	30
Biphenyl	65	69	40-140	6	30

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	01 Batch:	WG1013173-2	2 WG1013173-3			
Aniline	41		27	Q	40-140	41	Q	30
4-Chloroaniline	62		56		40-140	10		30
1-Methylnaphthalene	61		64		41-103	5		30
2-Nitroaniline	84		90		52-143	7		30
3-Nitroaniline	67		59		25-145	13		30
4-Nitroaniline	72		82		51-143	13		30
Dibenzofuran	63		68		40-140	8		30
2-Methylnaphthalene	58		60		40-140	3		30
n-Nitrosodimethylamine	36		41		22-74	13		30
2,4,6-Trichlorophenol	80		88		30-130	10		30
p-Chloro-m-cresol	76		82		23-97	8		30
2-Chlorophenol	62		71		27-123	14		30
2,4-Dichlorophenol	71		80		30-130	12		30
2,4-Dimethylphenol	75		81		30-130	8		30
2-Nitrophenol	74		87		30-130	16		30
4-Nitrophenol	42		48		10-80	13		30
2,4-Dinitrophenol	86		94		20-130	9		30
4,6-Dinitro-o-cresol	89		95		20-164	7		30
Pentachlorophenol	67		75		9-103	11		30
Phenol	30		34		12-110	13		30
2-Methylphenol	61		70		30-130	14		30
3-Methylphenol/4-Methylphenol	63		70		30-130	11		30
2,4,5-Trichlorophenol	80		86		30-130	7		30

Lab Control Sample Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410

Report Date: 06/15/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - West	borough Lab Associa	ated sample(s):	01 Batch:	WG1013173-2	2 WG1013173-3				
Benzoic Acid	37		43		10-164	15		30	
Benzyl Alcohol	60		66		26-116	10		30	
Carbazole	65		69		55-144	6		30	
Pyridine	20		12		10-66	50	Q	30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
2-Fluorophenol	39	43	21-120
Phenol-d6	29	34	10-120
Nitrobenzene-d5	71	83	23-120
2-Fluorobiphenyl	69	72	15-120
2,4,6-Tribromophenol	80	85	10-120
4-Terphenyl-d14	67	72	41-149

PCBS

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410

Project Number: 129168-007 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/09/17 13:35

Client ID: R-C6 (OW) Date Received: 06/09/17
Sample Location: 89 EAST DEDHAM STREET, BOSTON, MA Field Prep: Not Specified

Extraction Method:EPA 608

 Matrix:
 Water
 Extraction Date:
 06/10/17 00:03

 Analytical Method:
 5,608
 Cleanup Method:
 EPA 3665A

 Analytical Date:
 06/12/17 17:06
 Cleanup Date:
 06/10/17

Analytical Date: 06/12/17 17:06 Cleanup Date: 06/10/17
Analyst: JW Cleanup Method: EPA 3660B

Cleanup Date: 06/10/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/l	0.250		1	Α				
Aroclor 1221	ND		ug/l	0.250		1	Α				
Aroclor 1232	ND		ug/l	0.250		1	Α				
Aroclor 1242	ND		ug/l	0.250		1	Α				
Aroclor 1248	ND		ug/l	0.250		1	Α				
Aroclor 1254	ND		ug/l	0.250		1	Α				
Aroclor 1260	ND		ug/l	0.200		1	Α				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70		30-150	Α
Decachlorobiphenyl	76		30-150	Α

L1719410

Lab Number:

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007 **Report Date:** 06/15/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 06/12/17 17:18

Analyst: JW

Extraction Method: EPA 608
Extraction Date: 06/10/17 00:03
Cleanup Method: EPA 3665A

Cleanup Date: 06/10/17
Cleanup Method: EPA 3660B
Cleanup Date: 06/10/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	n Lab for s	ample(s):	01 Batch:	WG1011776-	1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		А
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		А

	C Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
2,4,5,6-Tetrachloro-m-xylene	65		30-150	Α			
Decachlorobiphenyl	73		30-150	Α			

Lab Control Sample Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Lab Number:

L1719410

Project Number: 129168-007 Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associa	ted sample(s)	: 01 Batch:	WG1011776-2	2				
Aroclor 1016	67		-		30-150	-		30	Α
Aroclor 1260	69		-		30-150	-		30	А

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	67 75			30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recove	rv Qual	Recovery Limits	RPD Qua	RPD al Limits	Column
Polychlorinated Biphenyls by G					QC Batch ID			,	: L1718625-0	747 5	: MS Sampl	
Aroclor 1016	ND	3.12	2.14	68		-	-		40-126	-	30	А
Aroclor 1260	ND	3.12	2.00	64		-	-		40-127	-	30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А
Decachlorobiphenyl	63		30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab	Associated sample(s): 0	1 QC Batch ID: V	VG1011776-4	QC Sample:	L1718625-04	Client ID	: DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

			Acceptance	
Surrogate	%Recovery Qualifie	r %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74	76	30-150	Α
Decachlorobiphenyl	67	68	30-150	Α

METALS

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410 **Report Date:** 06/15/17

Project Number: 129168-007

SAMPLE RESULTS

Lab ID: L1719410-01 Client ID: R-C6 (OW)

Sample Location: 89 EAST DEDHAM STREET, BOSTON,

Matrix: Water Date Collected: 06/09/17 13:35

Date Received: 06/09/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00575		mg/l	0.00100		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Chromium, Total	0.00695		mg/l	0.00100		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Iron, Total	1.91		mg/l	0.050		1	06/12/17 14:4	0 06/13/17 22:39	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00050		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	06/12/17 14:4	4 06/12/17 21:25	EPA 245.1	3,245.1	EA
Nickel, Total	0.00438		mg/l	0.00200		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	06/12/17 14:4	0 06/13/17 15:10	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	B - Mansfiel	ld Lab								
Hardness	135		mg/l	0.660	NA	1	06/12/17 14:4	0 06/13/17 22:39	EPA 3005A	19,200.7	AB
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		06/13/17 15:10	NA	107,-	

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

06/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Batc	h: WG10	12236-	·1				
Antimony, Total	ND	mg/l	0.00400		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Lead, Total	ND	mg/l	0.0005		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	06/12/17 14:40	06/13/17 13:52	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	n: WG10	012245-	·1				
Iron, Total	ND	mg/l	0.050		1	06/12/17 14:40	06/13/17 20:59	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	for samp	ole(s): 01	Bato	h: WG101	2245-1			
Hardness	ND	mg/l	0.660	NA	1	06/12/17 14:40	06/13/17 20:59	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410

Project Number: 129168-007 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01 Batc	h: WG10	12267-	1				
Mercury, Total	ND	mg/l	0.00020		1	06/12/17 14:44	06/12/17 21:04	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

Parameter	LCS %Recovery Q	LCSD lual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: WG	31012236-2				
Antimony, Total	100	-	85-115	-		
Arsenic, Total	96	-	85-115	-		
Cadmium, Total	101	-	85-115	-		
Chromium, Total	99	-	85-115	-		
Copper, Total	97	-	85-115	-		
Lead, Total	100	-	85-115	-		
Nickel, Total	98	-	85-115	-		
Selenium, Total	94	-	85-115	-		
Silver, Total	101	-	85-115	-		
Zinc, Total	98	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: WG	31012245-2				
Iron, Total	104	-	85-115	-		
Fotal Hardness by SM 2340B - Mansfield Lab A	Associated sample(s)): 01 Batch: WG1012245	2			
Hardness	98	-	85-115	-		
Fotal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: WG	61012267-2				
Mercury, Total	94	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date: 06/15/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sar	mple(s): 01	QC Batch I	D: WG1012236	-3 (QC Sample:	L1718967-08	Clien	t ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.5356	107		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.1154	96		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05307	104		-	-		70-130	-		20
Chromium, Total	ND	0.2	0.1942	97		-	-		70-130	-		20
Copper, Total	ND	0.25	0.2350	94		-	-		70-130	-		20
Lead, Total	ND	0.51	0.5179	102		-	-		70-130	-		20
Nickel, Total	ND	0.5	0.4825	96		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1301	108		-	-		70-130	-		20
Silver, Total	ND	0.05	0.04912	98		-	-		70-130	-		20
Zinc, Total	ND	0.5	0.4913	98		-	-		70-130	-		20
Γotal Metals - Mansfield	Lab Associated sar	mple(s): 01	QC Batch I	D: WG1012236	-5 (QC Sample:	L1719224-01	Clien	t ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.5392	108		-	-		70-130	-		20
Arsenic, Total	0.0399	0.12	0.1467	89		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05255	103		-	-		70-130	-		20
Chromium, Total	0.0197	0.2	0.2119	96		-	-		70-130	-		20
Copper, Total	0.0064	0.25	0.2420	94		-	-		70-130	-		20
Lead, Total	0.0008	0.51	0.5093	100		-	-		70-130	-		20
Nickel, Total	0.0656	0.5	0.5384	94		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1171	98		-	-		70-130	-		20
Silver, Total	ND	0.05	0.04846	97		-	-		70-130	-		20
Zinc, Total	0.0269	0.5	0.5209	99		-	-		70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

06/15/17

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG1012245-3	QC Sample:	L1718967-08	Client ID: MS S	ample	
Iron, Total	0.056	1	1.09	103	-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield La	b Associate	ed sample(s)	: 01 QC Batch ID:	: WG1012245	-3 QC Samp	le: L1718967-08	Client ID:	MS Sample
Hardness	368	66.2	422	82	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch	ID: WG1012267-3	QC Sample:	L1719279-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00294	59 G	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

Parameter	Native Sample Du	plicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1012236-	4 QC Sample:	L1718967-08	Client ID: [OUP Sample	
Lead, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1012245-	4 QC Sample:	L1718967-08	Client ID: [OUP Sample	
Iron, Total	0.056	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1012267-	4 QC Sample:	L1719279-01	Client ID: [OUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410

Project Number: Report Date: 06/15/17 129168-007

SAMPLE RESULTS

Lab ID: Date Collected: L1719410-01 06/09/17 13:35

R-C6 (OW) Client ID: Date Received: 06/09/17

89 EAST DEDHAM STREET, BOSTON, Not Specified Sample Location: Field Prep: Matrix: Water

Analytical Method **Dilution** Date Date Factor **Prepared** Analyzed Result Qualifier Units MDL Analyst Parameter

	Result	Qualifier Utilis	KL	WIDL			7 tildiy20a		AllalySt
General Chemistry - We	stborough Lab								
SALINITY	ND	SU	2.0		1	-	06/14/17 19:05	121,2520B	AS
Solids, Total Suspended	6.1	mg/l	5.0	NA	1	-	06/10/17 05:10	121,2540D	VB
Cyanide, Total	ND	mg/l	0.005		1	06/12/17 11:05	06/12/17 14:17	121,4500CN-CE	LK
Chlorine, Total Residual	ND	mg/l	0.02		1	-	06/10/17 07:48	121,4500CL-D	KA
Nitrogen, Ammonia	0.466	mg/l	0.075		1	06/10/17 13:58	06/12/17 21:47	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND	mg/l	4.00		1	06/10/17 08:00	06/10/17 11:30	74,1664A	KZ
Phenolics, Total	ND	mg/l	0.030		1	06/13/17 11:11	06/13/17 16:33	4,420.1	AW
Chromium, Hexavalent	ND	mg/l	0.010		1	06/10/17 01:10	06/10/17 01:32	1,7196A	VB
Anions by Ion Chromato	graphy - Westl	oorough Lab							
Chloride	642.	mg/l	25.0		50	-	06/10/17 22:22	44,300.0	JC

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date: 06/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	or sam	ple(s): 01	Batch:	WG10	11785-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	06/10/17 01:10	06/10/17 01:31	1,7196A	VB
General Chemistry -	Westborough Lab	or sam	ple(s): 01	Batch:	WG10	11795-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/10/17 05:10	121,2540D	VB
General Chemistry -	Westborough Lab	or sam	ple(s): 01	Batch:	WG10	11837-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	06/10/17 08:00	06/10/17 11:30	74,1664A	KZ
General Chemistry -	Westborough Lab	or sam	ple(s): 01	Batch:	WG10	11855-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	06/10/17 07:48	121,4500CL-D	KA
General Chemistry -	Westborough Lab	or sam	ple(s): 01	Batch:	WG10	11885-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	06/10/17 13:58	06/12/17 21:21	121,4500NH3-B	H AT
Anions by Ion Chrom	atography - Westbo	orough I	Lab for sar	nple(s):	01 Ba	atch: WG1	012027-1			
Chloride	ND		mg/l	0.500		1	-	06/10/17 21:10	44,300.0	JC
General Chemistry -	Westborough Lab	or sam	ple(s): 01	Batch:	WG10	12162-1				
Cyanide, Total	ND		mg/l	0.005		1	06/12/17 11:05	06/12/17 14:18	121,4500CN-CE	E LK
General Chemistry -	Westborough Lab	or sam	ple(s): 01	Batch:	WG10	12584-1				
Phenolics, Total	ND		mg/l	0.030		1	06/13/17 11:11	06/13/17 16:27	4,420.1	AW

Lab Control Sample Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	associated sample(s):	01 E	Batch: WG1011785	2				
Chromium, Hexavalent	98		-		85-115	-		20
General Chemistry - Westborough Lab A	associated sample(s):	01 E	Batch: WG1011837-	2				
TPH	93		-		64-132	-		34
General Chemistry - Westborough Lab A	associated sample(s):	01 E	Batch: WG1011855	2				
Chlorine, Total Residual	101		-		90-110	-		
General Chemistry - Westborough Lab A	ssociated sample(s):	01 E	Batch: WG1011885	2				
Nitrogen, Ammonia	100		-		80-120	-		20
Anions by Ion Chromatography - Westbor	rough Lab Associated	d sam	ple(s): 01 Batch: \	VG10120	27-2			
Chloride	100		-		90-110	-		
General Chemistry - Westborough Lab A	associated sample(s):	01 E	Batch: WG1012162	-2				
Cyanide, Total	97		-		90-110	-		
General Chemistry - Westborough Lab A	associated sample(s):	01 E	Batch: WG1012584	2				
Phenolics, Total	87		-		70-130	-		

06/15/17

Lab Control Sample Analysis Batch Quality Control

HARRISON/ALBANY BLOCK

129168-007

Lab Number: L1719410

Report Date:

LCS **LCSD** %Recovery Limits %Recovery %Recovery **RPD RPD Limits** Parameter General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1013195-1 SALINITY 103

Project Name:

Project Number:

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date: 06/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD I %Recovery Qua	Recovery I Limits	RPD Qual	RPD Limits
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	WG1011785-4	QC Sample: L171941	0-01 Client II	D: R-C6 (OV	V)
Chromium, Hexavalent	ND	0.1	0.087	87	-	-	85-115	-	20
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	WG1011837-3	QC Sample: L171941	0-01 Client II	D: R-C6 (OV	V)
TPH	ND	20	14.6	73	-	-	64-132	-	34
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	WG1011855-4	QC Sample: L171924	5-01 Client II	D: MS Samp	le
Chlorine, Total Residual	ND	0.248	ND	0	Q -	-	80-120	-	20
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	WG1011885-4	QC Sample: L171897	'3-04 Client II	D: MS Samp	le
Nitrogen, Ammonia	2.09	4	5.90	95	-	-	80-120	-	20
Anions by Ion Chromatograp Sample	phy - Westboroug	h Lab Asso	ociated sar	mple(s): 01 Q(C Batch ID: WG	1012027-3 QC Samp	ole: L1719245-0	02 Client IE): MS
Chloride	596	100	684	88	Q -	-	90-110	-	18
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	NG1012162-4	QC Sample: L171819	4-01 Client II	D: MS Samp	le
Cyanide, Total	ND	0.2	0.190	95	-	-	90-110	-	30
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: V	NG1012584-4	QC Sample: L171924	5-01 Client II	D: MS Samp	le
Phenolics, Total	ND	0.4	0.46	114	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719410

Report Date: 06/15/17

Parameter	Native Sample	Duplicate Sam	ple Units RPI	Qual RPD Limits
General Chemistry - Westborough Lab Association	ted sample(s): 01 QC Batch ID:	WG1011785-3	QC Sample: L1719410-01	Client ID: R-C6 (OW)
Chromium, Hexavalent	ND	ND	mg/l NC	20
General Chemistry - Westborough Lab Associate	ted sample(s): 01 QC Batch ID:	WG1011795-2	QC Sample: L1719220-01	Client ID: DUP Sample
Solids, Total Suspended	64	55	mg/l 15	29
General Chemistry - Westborough Lab Associate	ted sample(s): 01 QC Batch ID:	WG1011855-3	QC Sample: L1719245-01	Client ID: DUP Sample
Chlorine, Total Residual	ND	ND	mg/l NC	20
General Chemistry - Westborough Lab Association	ted sample(s): 01 QC Batch ID:	WG1011885-3	QC Sample: L1718973-04	Client ID: DUP Sample
Nitrogen, Ammonia	2.09	2.11	mg/l 1	20
Anions by Ion Chromatography - Westborough L Sample	.ab Associated sample(s): 01 (QC Batch ID: WG	1012027-4 QC Sample: I	_1719245-02 Client ID: DUP
Chloride	596	597	mg/l 0	18
General Chemistry - Westborough Lab Association	ted sample(s): 01 QC Batch ID:	WG1012162-3	QC Sample: L1718194-01	Client ID: DUP Sample
Cyanide, Total	ND	ND	mg/l NC	30
General Chemistry - Westborough Lab Association	ted sample(s): 01 QC Batch ID:	WG1012584-3	QC Sample: L1719245-01	Client ID: DUP Sample
Phenolics, Total	ND	ND	mg/l NC	20
General Chemistry - Westborough Lab Associate	ted sample(s): 01 QC Batch ID:	WG1013195-2	QC Sample: L1719411-01	Client ID: DUP Sample
SALINITY	8.1	8.1	SU 0	

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number: L1719410
Report Date: 06/15/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1719410-01A	Vial HCI preserved	Α	NA		8.1	Υ	Absent		8260(14)
L1719410-01B	Vial HCl preserved	Α	NA		8.1	Υ	Absent		8260(14)
L1719410-01C	Vial HCl preserved	Α	NA		8.1	Υ	Absent		8260(14)
L1719410-01D	Vial HCl preserved	Α	NA		8.1	Υ	Absent		8260-SIM(14)
L1719410-01E	Vial HCl preserved	Α	NA		8.1	Υ	Absent		8260-SIM(14)
L1719410-01F	Vial HCl preserved	Α	NA		8.1	Υ	Absent		8260-SIM(14)
L1719410-01G	Vial Na2S2O3 preserved	Α	N/A	N/A	8.1	Υ	Absent		504(14)
L1719410-01H	Vial Na2S2O3 preserved	Α	N/A	N/A	8.1	Υ	Absent		504(14)
L1719410-01I	Plastic 250ml HNO3 preserved	A	<2	<2	8.1	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1719410-01J	Plastic 250ml HNO3 preserved	Α	<2	<2	8.1	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L1719410-01K	Plastic 500ml NaOH preserved	Α	>12	>12	8.1	Υ	Absent		TCN-4500(14)
L1719410-01L	Plastic 500ml H2SO4 preserved	Α	<2	<2	8.1	Υ	Absent		NH3-4500(28)
L1719410-01M	Plastic 950ml unpreserved	Α	7	7	8.1	Υ	Absent		TSS-2540(7)
L1719410-01N	Plastic 950ml unpreserved	Α	7	7	8.1	Υ	Absent		CL-300(28),HEXCR-7196(1),HOLD- WETCHEM(),SALINITY(28),TRC-4500(1)
L1719410-01O	Amber 950ml H2SO4 preserved	Α	<2	<2	8.1	Υ	Absent		TPHENOL-420(28)
L1719410-01P	Amber 1000ml HCl preserved	Α	NA		8.1	Υ	Absent		TPH-1664(28)
L1719410-01Q	Amber 1000ml HCl preserved	Α	NA		8.1	Υ	Absent		TPH-1664(28)
L1719410-01R	Amber 1000ml unpreserved	Α	7	7	8.1	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1719410-01S	Amber 1000ml unpreserved	Α	7	7	8.1	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1719410-01T	Amber 1000ml Na2S2O3	Α	7	7	8.1	Υ	Absent		PCB-608(7)
L1719410-01U	Amber 1000ml Na2S2O3	Α	7	7	8.1	Υ	Absent		PCB-608(7)

Lab Number: L1719410

Report Date: 06/15/17

Project Number: 129168-007

HARRISON/ALBANY BLOCK

Project Name:

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1719410-02A	Vial HCl preserved	Α	NA		8.1	Υ	Absent		HOLD-8260(14)
L1719410-02B	Vial HCl preserved	Α	NA		8.1	Υ	Absent		HOLD-8260(14)
L1719410-02C	Vial Na2S2O3 preserved	Α	N/A	N/A	8.1	Υ	Absent		HOLD-504/8011(14)
L1719410-02D	Vial Na2S2O3 preserved	Α	N/A	N/A	8.1	Υ	Absent		HOLD-504/8011(14)

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719410
Project Number: 129168-007 Report Date: 06/15/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:HARRISON/ALBANY BLOCKLab Number:L1719410Project Number:129168-007Report Date:06/15/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:HARRISON/ALBANY BLOCKLab Number:L1719410Project Number:129168-007Report Date:06/15/17

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Published Date: 1/16/2017 11:00:05 AM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

COC edits by Gina Hall AAL 6/14/17

Weethercoopt, MA 01881 8 Wandfeld, MA 02048 220 Factor Blvd TEL 608-822-8300 FAX: 508-868-9193 FAX: 508-822-3288 FAX: 50	Project Information Project Location: 8 Project & 1	stames, PA 1904: Harrison/Alba 99 East Dedh 129168-007 Project(J) Vanzler		ston MA	1	Begi	Email EQuis Other:	Lab S (1 FI : Requires a page	lo)	C Il reggr	EQuis		7							.01	ALPHA Job.s. Q U Billing intermation Same as Client Info PO # Clisposal Site Information Please identify below location of applicable facilities. Disposal Facility: NJ NY Other:	Gisposal
These samples have been previously analyzed to Other project specific requirements/comment "Field Filtered PLEASE RUN FOR FULL 2017 RGP SUITE, M Analyze using the EPA 2017 RGP Approved T Please specify Metals or TAL.	NUS ETHANOL					MO, TRC-4500	TCN-4500, 504	I260, 8260-SIM for Dioxane	HEXCR-3500, Trivalent Chremium	ScrotCL (also including Diethyhoxyphthalate).	B270TCL-SIM	als: Ag, As, Cd, Cr, Sb, Se, Zn, Fe, Hg	CL-300	Ammonia	Salinty, hardness	PH-1664, PCB-608, TPHENOL-420	OLD PACN	HOLD ACN	HOLD DISSOLVED METALS		Sample Filtration Done Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only) Sample)	Date (4/17	Time /335	Sample Matrix AQ	Sampler's Initials	-	x	~	X HEXCE	X 8270TC Diethy	x S	Cu, Ni, Pb, Sb, Se,							х		Sample Specific Comments	
Trip Blank		6/9/17	00:00			H)LD															
Parameter Code: Control Code:																					Planta and classic traible and consider	de .
Presservative Code:	Westboro: Certification Mansfield: Certification Relinguished	n No: MA015		/Time	Preservative	P A Receive	ρ Ε (M) By:		P A	AV B	A	P C	A	_	A A	A H Ime	PE	PE	P C		Please print clearly, legibly and complete Samples can not be logged in and turnant time clock will not start until any ambigui resolved. Alpha Analytoal's services under Chain of Custody shall be performed in acco with terms and conditions within Blanket Sc Agreements 2015-18-Alpha Analytical by an between Haley & Aldrich, Inc., its subsidiaria affiliates and Alpha Analytical.	ties are this ordance rvice

H&A Phone: 617-886-74 H&A Fax: H&A Email: Kalepidis, C	rd St IA 02129-1400 400 Gdayfor,Kchatterton	E749 Albany, NY Tonavanda, NY 14150 Project Name: Project A. (Use Project name Project Manager: ALPHAQuote #: Turn-Around Time Standam (only if pre approved	Harrison/Alb Harrison/Alb 89 East Ded 129168-007 as Projectal) L. Vanzier	oany Block Sham Street, B	loston MA	ge 1 of 1	Res MA	ir Verator Ema EQu Othe (Vatory NPDI	il iS (1 i ir: VReq. ES Agi	File)	_	yam/C		17	7								Billing Information Same as Client Info PO # Cisposal Stell Information Please identify below location of applicat facilities. Disposal Facility: NJ NY	1 (b
These samples have been	n previously analyzed b	y Alpha [_	LYSIS					_		_		_	_	_		_	_	Compts Citization	1
Other project specific re "Field Filtered PLEASE RUN FOR FULL Analyze using the EPA 2 Please specify Metals or	L 2017 RGP SUITE, MI 2017 RGP Approved To	NUS ETHANOL					2540, TRC-4500	CN-4500, 504	8260-SIM for Dioxane	HEXCR-3500, Trivalent Chromium	8270TCL (also including Diethythexyphthalate).	8270TCL-SIM	state: Ag, As, Cd, Cr. b, Sb, Se, Zn, Fe, Ho	00	Ammonia	Salinity, hardness	PH-1664, PCB-608, TPHENDL-420	HOLD PACN	HOLD YICK	"HOLD DISSOLVED METALS			Sample Filtration Done	
ALPHA Lab ID (Lab Use Only)	Sample	ID	Date	Time	Sample Matrix	Sampler's Initials	788		8000, B	HEX	S270 Dieth		Total Metals: A Cu, Ni, Pb, Sb,			Sa	TPH	-		PH.			Sample Specific Comments	
144100	R-C6(00)	04/09/17	1335	AQ	Dup	х	х	Х	X	х	х	×	х	х	х	x	x	х	х				-
-																								+
																								_
									\perp															
			_																					_
			_																					
Preservative Code: Cor	ntainer Code																							
B = HCI A = C = HNO ₃ V = C = H ₂ SO ₄ G =	1.46940	Westboro: Certificati Vansfield: Certificati			С	ontainer Type Preservative	P A	P	AY B	PA	AV	H	0	PA	P D	-	A H	P	PE	P	-	_	Please print clearly, legibly and complet Samples can not be logged in and turns time clock will not start until any ambigs resolved. Alpha Analytical's services und Chain of Custody shall be performed in ac-	around uities are
	Cube	Helipquisho	g/by:	Date	Time	-	Receiv	ed By:			2	11		2		ate/Ti	_	_	~		_	_	with terms and conditions within Blanket Si	ervice
f = Na ₂ S ₂ O ₃ E =	Encore BOD Bottle	LADS MIN	2	04/05/12	17:00	For	٤	Qu.	5 /	M	G	5/i	7-17	1:0		andrii	me						Agreement# 2015-18-Alpha Analytical by a between Haley & Aldrich, Inc., its subsidiar affiliates and Alpha Analytical.	and ries and
ocument ID: 20455 Rev 1 (1/2	28/2016)									_														

L17-048

June 8, 2017

Mr. Glen Breland Alpha Analytical Labs 8 Walkup Drive Westborough, MA 01581

Subject: Tritium Characterization Results, Harrison/Albany Block Project, Boston, MA

Dear Mr. Breland:

This letter documents the evaluation of radiological analysis results for the groundwater sample from the observation well (OW) located at grid location R-C6 as depicted on the attached Figure 1. Evaluation of the analytical data for the groundwater sample obtained at this location are non-detectable for tritium (H-3). The sample location (refer to Figure 1), sample collection date and results are provided in Table 1:

Table 1

SAMPLE RESULTS for R-C6 (OW)											
SAMPLE LOCATION	H-3 ACTIVITY										
R-C6	1-Feb-17	ND ^(*)									
		(*) ND=Non Detectable									

Note: The sample was analyzed for H-3 using Method EPA 906.0

Based on this radiological sample result, subsequent groundwater samples from R-C6 are acceptable for shipment to your non-licensed laboratory.

Please let me know if additional information is needed.

Sincerely,

Director of Radiological Services

Enclosure: Figure 1

Radiation Safety & Control Services, Inc. 91 Portsmouth Avenue, Stratham, NH 03885 Telephone: 800-525-8339 Fax: 603-778-6879

ANALYTICAL REPORT

Lab Number: L1719411

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Vanzler
Phone: (617) 886-7561

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007 Report Date: 06/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719411

Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1719411-01	RECEIVING WATER-060917	WATER	89 EAST DEDHAM STREET, BOSTON, MA	06/09/17 15:30	06/09/17

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719411

Project Number: 129168-007 **Report Date:** 06/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719411
Project Number: 129168-007 Report Date: 06/15/17

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were transported to the laboratory in a cooler with ice and delivered directly from the sampling site.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/15/17

Coolin Walker Cristin Walker

INORGANICS & MISCELLANEOUS

Serial_No:06151713:27

06/09/17 15:30

Not Specified

06/09/17

Date Collected:

Date Received:

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719411

Project Number: 129168-007 **Report Date:** 06/15/17

SAMPLE RESULTS

Lab ID: L1719411-01

Client ID: RECEIVING WATER-060917

Sample Location: 89 EAST DEDHAM STREET, BOSTON, Field Prep:

Matrix: Water

Parameter	Result Q	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab								
SALINITY	8.1	SU	2.0		1	-	06/14/17 19:05	121,2520B	AS
pH (H)	7.4	SU	-	NA	1	-	06/10/17 06:33	121,4500H+-B	KA
Nitrogen, Ammonia	0.198	mg/l	0.075		1	06/10/17 13:58	06/12/17 21:48	121,4500NH3-BH	AT

Serial_No:06151713:27

Project Name: HARRISON/ALBANY BLOCK Lab Number: L1719411

Project Number: 129168-007 **Report Date:** 06/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab for sam	ple(s): 01	Batch:	WG10)11885-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	06/10/17 13:58	06/12/17 21:21	121,4500NH3-E	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719411

Report Date:

06/15/17

Parameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits		Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1011885-2			
Nitrogen, Ammonia	100	-	80-120	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1013146-1			
рН	100	-	99-101	-	5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1013195-1			
SALINITY	103	-		-	

Matrix Spike Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719411

Report Date:

06/15/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery al Limits	RPD Q	RPD _{ual} Limits
General Chemistry - Westbord	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	WG1011885-4	QC Sample: L17189	73-04 Client	ID: MS Sa	ample
Nitrogen, Ammonia	2.09	4	5.90	95	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HARRISON/ALBANY BLOCK

Project Number: 129168-007

Lab Number:

L1719411 06/15/17

Report Date:

Parameter	Native Sample	Duplicate Sampl	le Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Ass	ociated sample(s): 01 QC Batch ID:	WG1011885-3 C	QC Sample: L17189	973-04 Clie	nt ID: DUP Sample
Nitrogen, Ammonia	2.09	2.11	mg/l	1	20
General Chemistry - Westborough Lab Ass	ociated sample(s): 01 QC Batch ID:	WG1013146-2 C	QC Sample: L17000	006-53 Clie	nt ID: DUP Sample
рН	8.4	8.4	SU	0	5
General Chemistry - Westborough Lab Asset 060917	ociated sample(s): 01 QC Batch ID:	WG1013195-2 C	QC Sample: L17194	111-01 Clie	nt ID: RECEIVING WATER-
SALINITY	8.1	8.1	SU	0	

Serial_No:06151713:27

Lab Number: L1719411

Project Number: 129168-007 Report Date: 06/15/17

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

HARRISON/ALBANY BLOCK

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Container Info	rmation	Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1719411-01A	Plastic 60ml unpreserved	Α	7	7	8.1	Υ	Absent		PH-4500(.01)
L1719411-01B	Amber 250ml unpreserved	Α	7	7	8.1	Υ	Absent		SALINITY(28)
L1719411-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	8.1	Υ	Absent		NH3-4500(28)

Project Name:HARRISON/ALBANY BLOCKLab Number:L1719411Project Number:129168-007Report Date:06/15/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

В

Project Name:HARRISON/ALBANY BLOCKLab Number:L1719411Project Number:129168-007Report Date:06/15/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:06151713:27

Project Name:HARRISON/ALBANY BLOCKLab Number:L1719411Project Number:129168-007Report Date:06/15/17

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:06151713:27

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

CHAIN OF CUSTODY	Service Centers Brews, ME 84412 Ports 97439 Albany, NY 12206 Tenewanda, NY 14150 Hole		Page	_			Rec'	d	C	19	1-	7						100		ALPHA JOB 17/0	14/1
Westborough, MA 91581 Manadeld, MA 92548	Project Information	TO TE			Delay	erables			-					-	7				Poten	g information	
# Walkup Dv. 220 Farbes Blvd TEL: 508-898-9220 TEL: 508-822-9300		arrison/Albany Block			0	Emai		_	П	Fax	_				-	_			2	Same as Client Info	-1-95
FAX: 508-898-9193 FAX: 508-822-3288		East Decham Street, Bo	neton MA		15		- IS (1 F	ide).			(4 File)								PO#	Same as Client Into	1
H&A Information		9168-007	NOOD SET		15	Othe				Educ	(41.00)								100		
H&A Client: MEPT/LMP Harrison/Albany Block					_		_	amarts	(Progra	m/Crise	180	000	1	100	7 -				Diam	osal See Information	Victory of
H&A Address 465 Medford St		Varizier			MA				1								_	_			
Boston, MA 02129-1400	ALPHAQuote #:				-														Notifi	ie identify below location of applicies.	cable disposal
H&A Phone: 617-886-7400	Turn-Around Time		7.37	57 70 1															Disas	eal Facility:	
H&A Fax:	Standard 🗹	Due Date	,		1														1	NJ NY	
H&A Email: Kalepidis, Gdaylor, Kchatterton	(only if pre approved)				Note:	Select S	tate fro	en men	i & identii	ly criteria									X	Other:	
These samples have been previously analyzed b	Aloha C				_	YSIS				,	_	_			_	_			Isam	ple Filtration	
Other project specific requirements/comment					-	T	1						\neg	\neg	_					ye ratiation	T
Analyze using the EPA 2017 RGP Approved T pH and Temperature readings to additionally			is.		Ammonia	£	Salnity												Prose	ione ab to do ervation ab to do se Specify below)	8 0
ALPHA Lab ID (Lab Use Only) Sample	ID	Collection Date Time	Sample Matrix	Sampler's initials															Sampl	le Specific Comments	- :
1911 10 Kereiving Wa	tu-06091200	6/09/17 /53	AQ	and	×	X	х					\neg	\neg	$^{-}$							3
1		,										\neg			\top						
													\neg								
															\Box						
												\neg	\neg	\top							
												\neg		\top		П					
												\neg		Т							
A CONTRACTOR OF THE PARTY OF TH														Т		П					
A = None P = Plastic B = HCI A = Amber Glass C = HNO ₃ V = Vial	Westboro: Certification N Mansfield: Certification N			ntainer Type	P	P	P						Ţ	T				1	Sample time cl	e print clearly, legibly and com- les can not be logged in and tu- lock will not start until any ami ed. Alpha Analytical's services u	rnaround biguities are
D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup				Preservative	D	A	A												Chain e	of Custody shall be performed in	accordance
F = MACH C = Cube G = NaHSO ₄ O = Other H = Na ₂ S ₂ O ₅ E = Encore K/E = Zn An/Na/OH D = BOD Buttle O = Other	Policy is racing	y: Dens - ΟΩ/09//	7 19:00		-	red By:		₩		191	(7	7:0		n/Time					Agreen	ims and conditions within Blanks merit 2015-18-Alpha Analytical I m Haley & Aldrich, Inc., its subsi is and Alpha Analytical.	by and
Document ID: 20455 Ray 1 (1/28/2016)							_							_		_			\dashv		

L17-048

June 8, 2017

Mr. Glen Breland Alpha Analytical Labs 8 Walkup Drive Westborough, MA 01581

Subject: Tritium Characterization Results, Harrison/Albany Block Project, Boston, MA

Dear Mr. Breland:

This letter documents the evaluation of radiological analysis results for the groundwater sample from the observation well (OW) located at grid location R-C6 as depicted on the attached Figure 1. Evaluation of the analytical data for the groundwater sample obtained at this location are non-detectable for tritium (H-3). The sample location (refer to Figure 1), sample collection date and results are provided in Table 1:

Table 1

1									
SAMPLE RESULTS for R-C6 (OW)									
SAMPLE LOCATION	COLLECTION DATE	H-3 ACTIVITY							
R-C6	1-Feb-17	$ND^{(\star)}$							
		(*) ND=Non Detectable							

Note: The sample was analyzed for H-3 using Method EPA 906.0

Based on this radiological sample result, subsequent groundwater samples from R-C6 are acceptable for shipment to your non-licensed laboratory.

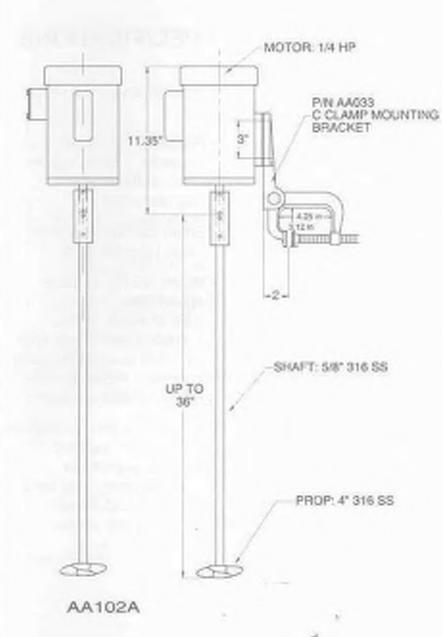
Please let me know if additional information is needed.

Sincerely,

Director of Radiological Services

Enclosure: Figure 1

Radiation Safety & Control Services, Inc. 91 Portsmouth Avenue, Stratham, NH 03885 Telephone: 800-525-8339 Fax: 603-778-6879


APPENDIX F

Contractor Dewatering Submittal

pH System Components

MADDEN

MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

pulsafeeder.com

The Pulsatron Series E Plus offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Twenty distinct models are available, having pressure capabilities to 300 PSIG (21 BAR) @ 3 GPD (0.5 lph), and flow capacities to 600 GPD (94.6 lph) @ 30 PSIG (2 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within \pm 2% of maximum capacity. Please refer to the reverse side for Series E PLUS specifications.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

• Turn-Down Ratio 10:1

4-20mADC Direct or External Pacing with Stop

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
- Process Controllers (PULSAblue, MicroVision)

PULSAtron[®] Series E Plus Electronic Metering Pumps

PULSAtron[®] Series E Plus

Specifications and Model Selection

MODEL		LPK2	LPB2	LPA2	LPD3	LPB3	LPA3	LPK3	LPF4	LPD4	LPB4	LPH4	LPG4	LPE4	LPK5	LPH5	LPH6	LPK7	LPH7	LPJ7	LPH8
Capacity	GPH	0.13	0.21	0.25	0.5	0.50	0.50	0.60	0.85	0.90	1.00	1.70	1.75	1.85	2.50	3.15	5.00	8.00	10.00	10.00	25.00
nominal	GPD	3	5	6	12	12	12	14	20	22	24	41	42	44	60	76	120	192	240	240	600
(max.)	LPH	0.5	0.8	0.9	1.9	1.9	1.9	2.3	3.2	3.4	3.8	6.4	6.6	7	9.5	11.9	18.9	30.3	37.9	37.9	94.6
Pressure	PSIG	300	250	150	250	150	100	100	250	150	100	250	150	100	150	150	100	50	35	80	30
(max.)	BAR	21	17	10	17	10	7	7	17	10	7	17	10	7	10	10	7	3.3	2.4	5.5	2
Connections	Tubing							D X 3/8 ID X 1/2								1/2"		ID X 1/2 4" OD (I	" OD LPH8 O	NLY)	
	Piping						1	4" FNP	Т									/4" FNF /2" FNF			

Engineering Data

Pump Head Materials Available: GFPPL

PVC PVDF 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Fittings Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE 316 SS

Alloy C GFPPL

> PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Tubing: Clear PVC White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS:

For viscosity up to 3000 CPS, select connection size 3, 4, B or C with 316SS ball material. Flow rate will determine connection/ball size. Greater than 3000 CPS require spring loaded ball checks. See Selection Guide for proper connection.

Stroke Frequency Max SPM: 125
Stroke Frequency Turn-Down Ratio: 10:1
Stroke Length Turn-Down Ratio: 10:1

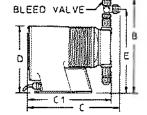
Power Input: 115 VAC/50-60 HZ/1 ph

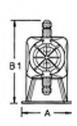
230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps:
 @ 230 VAC; Amps:
 Peak Input Power:
 Average Input Power @ Max SPM:
 1.0 Amps
 0.5 Amps
 300 Watts
 Average Input Power @ Max SPM:

Custom Engineered Designs – Pre-Engineered Systems




Pre-Engineered Systems

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

	Series E Plus Dimensions (inches)																
Model No.	А	8	Bí	С	C1	D	£	Shpg Wt	Model No.	А	В	81	¢	C1	D	E	Shpg Wt
LPA2	5.4	10.3	· ·	10.8	-	7.5	8.9	13	LPH4	6.2	10.9	-	11.2	-	8.2	9.5	21
LPA3	5.4	10.6	•	10.7	•	7.5	92	13	LPH5	6.2	11.3		11.2		8.2	9.9	21
LP82	5.4	10.3		10.8	-	7.5	8.9	13	LPH6	6.2	11.3		11.9		8.2	9.9	21
LP83	5.4	10.6		10.7	-	7.5	9.2	13	LPH7	6.1	11.7	-	11.9		8.2	10.3	21
LP84	5.4	10.6	-	10.7	-	7.5	9.2	13	LPH8	6.1	-	10.9		11.3	8.2	-	26
LPD3	5.4	10.6	•	11.2		7.5	92	15	LPK2	5.4	10.3		10.8		7.5	8.9	13
LPD4	5.4	10.6		11.2	-	7.5	9.2	15	LPK3	5.4	10.6	-	10.7	·	7.5	9.2	13
LPE4	5.4	10.6		11.2		7.5	9.2	15	LPK5	5.4	10.9	-	11.7	-	7.5	9.5	18
LPF4	5.4	10.6	-	11.7	-	7.5	9.2	18	LPK7	6.1	11.7	٠,	11.2	-	8.2	10.3	21
LPG4	5.4	10.6	7	11.7	-	7.5	9.2	18	LPJ7	6.1	10		10.7	-	-	-	21

NOTE: Inches X 2.54 = cm /* the LPH8 is designed without a bleed valve available

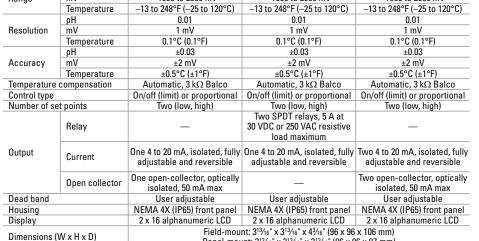
pH Control

+GF+® Signet pH/ORP Controllers

Versatile mounting options allow you to customize the installation for particular applications

- Large, scratch-resistant, self-healing display
- +GF+ Signet controllers are designed for broad application and ease of setup and operation. Multiple mounting options allow for installation best suited to your particular application. Intuitive software and four-button keypad arrangement make it easy to access important information such as measurement values, calibration data, relay setup menus, and more.

Optional universal mounting kit allows for mounting of field-mount units on pipes, tanks, and walls. RC filter kit prevents premature wearing of the relay outputs by providing protection from electrical noise. Order separately below.


Required System Components

- 1 Controller
- Preamplifier
- Electrode

Field-mount controller 56560-20

Specifications Meter only Meter only Model +GF+ Signet 8750-1 +GF+ Signet 8750-2 +GF+ Signet 8750-3 0.00 to 14.00 0.00 to 14.00 0.00 to 14.00 mV -1000 to 2000 mV -1000 to 2000 mV -1000 to 2000 mV Range Temperature -13 to 248°F (-25 to 120°C) -13 to 248°F (-25 to 120°C) -13 to 248°F (-25 to 120°C) рΗ 0.01 0.01 0.01 Resolution 1 mV 1 mV 1 mV 0.1°C (0.1°F) Temperature 0.1°C (0.1°F) 0.1°C (0.1°F) pН ±0.03 ±0.03 ±0.03 mV Accuracy ±2 mV ±2 mV ±2 mV Temperature ±0.5°C (±1°F) ±0.5°C (±1°F) ±0.5°C (±1°F) Temperature compensation Automatic, $3 \, k\Omega$ Balco Automatic, $3 \, k\Omega$ Balco Automatic, 3 kΩ Balco On/off (limit) or proportional On/off (limit) or proportional Control type On/off (limit) or proportional Number of set points Two (low, high) Two (low, high) Two (low, high) Two SPDT relays, 5 A at 30 VDC or 250 VAC resistive Relay load maximum One 4 to 20 mA, isolated, fully One 4 to 20 mA, isolated, fully Two 4 to 20 mA, isolated, fully Output Current adjustable and reversible adjustable and reversible adjustable and reversible Two open-collector, optically One open-collector, optically Open collector isolated, 50 mA max isolated, 50 mA max Dead band User adjustable User adjustable User adjustable NEMA 4X (IP65) front panel NEMA 4X (IP65) front panel Housing NEMA 4X (IP65) front panel 2 x 16 alphanumeric LCD Display 2 x 16 alphanumeric LCD 2 x 16 alphanumeric LCD Field-mount: 313/16" x 313/16" x 43/16" (96 x 96 x 106 mm) Dimensions (W x H x D) Panel-mount: 313/16" x 313/16" x 313/16" (96 x 96 x 97 mm) Power 12 to 24 VDC 12 to 24 VDC 12 to 24 VDC

Panel-mount controller 56560-30

DryLoc® pH and **ORP** electrodes

Controllers

Catalog number	Model	Mounting style	Price
S-56560-18	+GF+ Signet 8750-1	Field mount	
S-56560-28	+GF+ Signet 8750-1P	Panel mount, ¼ DIN	
S-56560-20	+GF+ Signet 8750-2	Field mount	
S-56560-30	+GF+ Signet 8750-2P	Panel mount, ¼ DIN	
S-56560-22	+GF+ Signet 8750-3	Field mount	
S-56560-32	+GF+ Signet 8750-3P	Panel mount, ¼ DIN	

S-05631-50 Universal mounting kit for field-mount units

S-19007-52 RC filter kit for relay use. Pack of 2

S-17106-20 NIST-traceable calibration

Preamplifiers

Preamplifiers protect the relatively weak output signal of the pH or ORP electrode from electrical interferences common in industrial environments and are required for initial system installation. Unique DryLoc® connectors allow you to quickly form robust assemblies for submersible and in-line applications.

Catalog number	Thread size	Price
S-56560-03 S-56560-04	¾" NPT(M) ISO 7-1 R¾"	

Electrodes

Feature-packed pH and ORP electrodes feature unique DryLoc connectors which offer resistance to intrusion from dirt and moisture. Extended reference path length extends electrode life over traditional combination electrodes. Electrode bodies are Ryton® PPS for added chemical resistance and feature a 34" NPT(M) or ISO 7-1 R34" threads for in-line installation. Flatsurface electrodes minimize abrasion and breakage problems by allowing sediment to sweep past the measurement surface. Bulb-style electrodes feature quick response and are well-suited to general-purpose applications. HF-resistant electrodes resist hydrofluoric acid in concentration less than 2%. LC-bulb electrodes are designed for ultrapure, low-conductivity water applications. All have a 3 k Ω Balco ATC element and measure 0 to 14 pH.

Catalog number	Туре	Thread size	Price
S-56561-02 S-56561-03	pH, flat surface	¾" NPT(M) ISO 7-1 R¾"	
S-56561-10 S-56561-11	pH, bulb style	¾" NPT(M) ISO 7-1 R¾"	
S-56561-06 S-56561-07	pH, HF-resistant bulb	¾" NPT(M) ISO 7-1 R¾"	
S-56561-14 S-56561-15	pH, LC bulb	¾" NPT(M) ISO 7-1 R¾"	
S-56561-16 S-56561-17	ORP, flat surface	¾" NPT(M) ISO 7-1 R¾"	

Material Safety Data Sheet

77% - 100% SULFURIC ACID

SECTION 1. PRODUCT IDENTIFICATION

Trade Name

Information Contact

77 % - 100 % Sulfuric Acid

Product Code

Manufacturers/Distributors

None NorFalco Inc., 6000 Lombardo Center, The Genesis Blg, suite 650 Seven Hills, OH 44131

NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2 André Auger, Administration Assistant

Canada 1-877-ERP-ACID (377-2243) U.S.A. 1-800-424-9300 CHEMTREC

Product Information 1-905-542-6901 (Mississauga)

Phone Number (Transportation Emergency)

Phone Number (Transportation Emergency) Phone Number (Medical Emergency)

Phone Number (Emergency)

Name / Chemical Formula

Synonyms

CANUTEC 1-613-996-6666

Dihydrogen Sulfate; Oil of Vitriol; Vitriol Brown Oil; Sulphuric Acid.

Acide sulfurique (French)

1-418-656-8090

Sulfuric Acid / H2SO4 Acid

Chemical Family

Utilization Manufacturers Chemical industries; Water treatment; Fertilizer; Pulp and Paper.

CEZinc on behalf of Noranda Income Limited Partnership, Salaberry-de-Valleyfield (Quebec) Canada J6T 6L4

Xstrata Copper, Home Smelter, Rouyn-Noranda (Quebec) J9X 5B6 Xstrata Zinc, Brunswick Smelting, Belledune, New Brunswick E0B 1G0 Xstrata Copper, Kidd Metallurgical Division, Timmins, Ontario P4N 7K1 Xstrata Nickel, Sudbury Operations, Falconbridge, Ontario P0M 1S0

SECTION 2. HAZARDS IDENTIFICATION

WHMIS (Canada)

CLASS D-1A: Very toxic material causing immediate and serious effects

CLASS E : Corrosive material

Labeling (EEC)

C Corrosive

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Name	CAS#	Percentage (%)	# CE	R Phrases ¹
Sulfuric (Acid)	7664-93-9	77 % to 100 %	231-639-5	R35
60 Deg Technical		77.7		-
66 Deg Technical		93.2		
1.835 Electrolyte		93.2		
98 % Technical		98		
99 % Technical		99		
100 % Technical		100		
Water	7732-18-5	0-22		

Note 1: See section 15 for the complete wording of risk phrases.

SECTION 4. FIRST-AID MEASURES

Eye Contact

Remove contact lenses if present. Immediately flush eyes with plenty of water, holding eyelids open for at least 15 minutes. Consult a physician. Possibility of conjonctivitis, severe irritation, severe burns, permanent eye damage.

Skin Contact

Remove contaminated clothing and shoes as quickly as possible protecting your hands and body. Place under a deluge shower for 15 minutes. Flush exposed skin gently and thoroughly with running water (Pay particular attention to: Folds, crevices, creases, groin). Call a physician if irritation persists. May irritate skin, cause burns (Highly corrosive) and possibility of some scarring.

Wash contaminated clothing before reusing. While the patient is being transported to a medical facility, continue the application of cold, wet compresses. If medical treatment must be delayed, repeat the flushing with cold water or soak the affected area with cold water to help remove the last traces of sulfuric acid. Creams or ointments SHOULD NOT be applied before or during the washing phase of treatment.

Inhalation

Take precautions to avoid secondary contamination by residual acids. Remove the person to fresh air. If not breathing, give artificial respiration. Difficult breathing: Give oxygen. Get immediate medical attention. Possibility of damage to the upper respiratory tract and lung tissues. Maintain observation of the patient for delayed onset of pulmonary oedema. May cause irritation to the upper respiratory tract : Coughing, sore throat, shortness of breath.

Ingestion

DO NOT INDUCE VOMITING. Conscious and alert person: Rinse mouth with water and give 1/2 to 1 cup of water or milk to dilute material. Spontaneous vomiting: Keep head below hips to prevent aspiration; Rinse mouth and give 1/2 to 1 cup of water or milk. UNCONSCIOUS person : DO NOT induce vomiting or give any liquid. Immediately obtain medical attention.

77% - 100% SULFURIC ACID

Notes to Physicians

Continued washing of the affected area with cold or iced water will be helpful in removing the last traces of sulfuric acid. Creams or aintments should not be applied before or during the washing phase of the treatment.

SECTION 5. FIRE-FIGHTING MEASURES

Flash Point

Not available

Flammable Limits Auto-Ignition Temperature

Not available

Products of Combustion

Releases of sulfur dioxide at extremely high temperatures.

Fire Hazard

Not flammable

Explosion Hazard

Reacts with most metals, especially when dilute: Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container.

Extinguishing media

ERG (Emergency Response Guidebook): Guide 137

When material is not involved in fire, do not use water on material itself.

Small fire: Dry chemical or CO2. Move containers from fire area if you can do it without risk.

Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If

insufficient water supply: knock down vapors only.

Fire involving Tanks or Car/Trailer Loads: Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices

or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.

Protective equipment

Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Spill

Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if

possible. Soak up small spills with dry sand, clay or diatomaceous earth.

Methods

Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment

system. Prevent liquid from entering sewers, waterways, or low areas.

If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases.

Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with cleanup. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up.

SECTION 7. HANDLING AND STORAGE

Handling

Do not get in eyes, on skin, or on clothing. Avoid breathing vapours or mist. Wear approved respirators if adequate ventilation cannot be provided. Wash thoroughly after handling. Ingestion or inhalation: Seek medical advice immediately and provide medical personnel with a copy of this MSDS.

Conditions for storage

Protective equipment

Sulfuric acid must be stored in containers or tanks that have been specially designed for use with sulfuric acid. **DO NOT** add water or other products to contents in containers as violent reactions will result with resulting high heat, pressure and/or generation of hazardous acid mists.

Keep containers away from heat, sparks, and flame. All closed containers must be safely vented before each opening. For more information on sulfuric acid tanks, track tanks and tank cars including safe unloading information

go to www.norfalco.com.

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

		ACGIH (U.S.A.) 2008	OSHA (U.S.A.)
Name	# CAS	TLV-TWA (mg/m³)	PEL - TWA (mg/m ³)
Sulfuric (Acid)	7664-93-9	0.2 (thoracic fr.)	1
60 Deg Technical	7664-93-9	0.2 (thoracic fr.)	1
66 Deg Technical	7664-93-9	0.2 (thoracic fr.)	1
1.835 Electrolyte	7664-93-9	0.2 (thoracic fr.)	1
98 % Technical	7664-93-9	0.2 (thoracic fr.)	1
99 % Technical	7664-93-9	0.2 (thoracic fr.)	1
100 % Technical	7664-93-9	0.2 (thoracic fr.)	1
Water	7732-18-5	Not established	Not established

ACGIH: American Conference of Governmental Imbestrial Hygienists, OSHA: Occupational Safety and Health Administration.

77% - 100% SULFURIC ACID

Sulfuric (Acid): Exposure limits may be different in other jurisdictions. NIOSH REL-TWA (≤10 hours): 1 mg/m3; 1DLH: 15 mg/m3. Consult local authorities for acceptable exposure limits.

Engineering Controls Individual protection

Good general ventilation should be provided to keep vapour and mist concentrations below the exposure limits. Chemical splash goggles; Full-length face shield/chemical splash goggles combination; Acid-proof gauntlet gloves, apron, and boots; Long sleeve wool, acrylic, or polyester clothing; Acid proof suit and hood; Appropriate NIOSH respiratory protection.

< 0.6 mm Hg @ 38°C (100 °F)

In case of emergency or where there is a strong possibility of considerable exposure, wear a complete acid suit with hood, boots, and gloves. If acid vapour or mist are present and exposure limits may be exceeded, wear appropriate NIOSH respiratory protection.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Odour Physical State and Appearance Liquid (Oily; Clear to turbid) Odourless Molecular Weight Colour Colourless to light grey Volatility < 1 (Butyl Acetate = 1.0) pH (1% soln/water) 193°C to 327 °C (379°F to 621°F) @ 760 mm Hg Vapour Density 3.4 **Boiling Point** Melting Point -35°C to 11°C (-31°F to 52°F) Dispersion Yes (Water) < 0.3 mm Hg @ 25°C (77 °F) Solubility Yes (Water) Vapour Pressure

GRADE	Boilin	g Point	Freezing Point		Specific Gravity	
	DEG °C	DEG °F	DEG °C	DEG °F		
60 DEG TECHNICAL	193	380	- 12	10	1.706	
66 DEG TECHNICAL	279	535	- 35	- 31	1.835	
1.835 ELECTROLYTE	279	535	- 35	- 31	1.835	
98 % TECHNICAL	327	621	-2	29	1.844	
99 % TECHNICAL	310	590	4	40	1.842	
100 % TECHNICAL	274	526	11	51	1.839	

SECTION 10. STABILITY AND REACTIVITY

Stability Yes (Under normal conditions of ambiant temperature)

Reactivity Reacts violently with water, organic substances and base solutions with evolution of heat and hazardous mists.

Conditions to avoid

Heat: Possibility of decomposition. Release of dangerous gases (Sulfur oxides SO2, SO3)

Polymerization Polymerization will not occur.

Vigorous reactions with: Water; alkaline solutions; Metals, metal powder; Carbides; Chlorates; Fulminates; Incompatibilities

nitrates; Picrates; Strong oxidizing, reducing, or combustible organic materials. Hazardous gases are evolved on

contact with chemicals such as cyanides, sulfides, and carbides.

Corrosivity

SECTION 11. TOXICOLOGICAL INFORMATION

Routes of Entry Ingestion. Inhalation. Skin and eye contacts.

Carcinogenicity Strong inorganic acid mists containing sulfuric acid (Occupational exposures) : PROVEN (Human, Group I,

IARC); SUSPECTED (Human, Group A2, ACGIH); Group X (NTP); Classification not applicable to sulfuric

acid and sulfuric acid solutions.

Mutagenicity Not applicable. Teratogenicity Not applicable.

ORAL (LD50): 2 140 mg/kg (Rat); INHALATION (LC50, 2 hours): 510 mg/m3 (Rat); 320 mg/m3 (Mouse). Acute toxicity

Acute Effects May be fatal if inhaled or ingested in large quantity. Liquids or acid mists: May produce tissue damage: Mucous

membranes (Eyes, mouth, respiratory tract). Extremely dangerous by eyes and skin contact (Corrosive). Severe irritant for eyes: Inflammation (Redness, watering, itching). Very dangerous in case of inhalation (Mists) at high concentrations: May produce severe irritation of respiratory tract (Coughing, shortness of breath, choking).

Chronic Effects Target organs for acute and chronic overexposure (NIOSH 90-117): Respiratory system, eyes, skin, teeth.

Acid mists: Overexposure to strong inorganic mists containing sulfuric acid: Possibility of laryngeal cancer (HSBD, IARC). Possibility of irritation of the nose and throat with sneezing, sore throat or runny nose. Headache, nausea and weakness. Gross overexposure: Possibility of irritation of nose, throat, and lungs with cough, difficulty breathing or shortness of breath. Pulmonary edema with cough, wheezing, abnormal lung sounds, possibly progressing to severe shortness of breath and bluish discoloration of the skin. Symptoms may be delayed. Repeated

or prolonged exposure to mists may cause: Corrosion of teeth.

Toxicity

Contact (Skin): Possibility of corrosion, burns or ulcers. Contact with a 1 % solution: Possibility of slight irritation with itching, redness or swelling. Repeated or prolonged exposure (Mist): Possibility of irritation with itching, burning, redness, swelling or rash.

Contact (Eye): Possibility of corrosion or ulceration (Blindness may result). Repeated or prolonged exposure (Mist): Possibility of eye irritation with tearing, pain or blurred vision.

Ingestion: Immediate effects of overexposure: Burns of the mouth, throat, esophagus and stomach, with severe pain, bleeding, vomiting, diarrhea and collapse of blood pressure. Damage may appear days after exposure.

Persons with the following pre-existing conditions warrant particular attention:

Sulfurie (Acid): Laryngeal irritation.

Eating, drinking and smoking must be prohibited in areas where this material is handled and processed. Wash hands and face before eating, drinking and smoking.

SECTION 12. ECOLOGICAL INFORMATION

Aquatic toxicity: Slightly to moderately toxic. Ecotoxicity

Bluegill Sunfish (LC50; 48 hours): 49 mg/l (Tap water, 20 °C, conditions of bioessay not specified).

(HSBD).

Flounder (LC50; 48 hours): 100-330 mg/l (Aerated water, conditions of bioessay not specified). (HSBD).

EYE: Concentrated compound is corrosive. 10 % solution: Moderate eye irritant. Toxicity to Animals SKIN: Concentrated compound is corrosive. 10 % solution: Slight skin irritant.

Single and repeated exposure: Irritation of the respiratory tract; Corrosion of the respiratory tract; Lung damage; Labored breathing; Altered respiratory rate; Pulmonary oedema. Repeated exposure: Altered

red blood cell count.

Easy soil seeping under rain action Mobility (Soil)

Sulfate ion: Ubiquitous in the environment. Metabolized by micro-organisms and plants. Persistence and degradability

Sulfate ion: Ubiquitous in the environment. Metabolized by micro-organisms and plants whitout Bioaccumulation

bioaccumulation.

Not available

Biodegradation Products

Not applicable Biodegradation Products (Toxicity)

Due to the product's composition, particular attention must be taken for transportation and storage. Protect Remarks on Environment

from rain because the run-off water will become acidic and may be harmful to flora and fauna.

Not available BOD5 and COD

SECTION 13. DISPOSAL CONSIDERATIONS

Cleaned-up material may be an hazardous waste on Resource Conservation and Recovery Act (RCRA) on Disposal methods

disposal due to the corrosivity characteristic. DO NOT flush to surface water or sanitary sewer system. Comply with Federal, State, and local regulations. If approved, neutralize and transfer to waste treatment

SECTION 14. TRANSPORT INFORMATION

CLASS 8 Corrosives TDG (Canada)

PG II UN1830 SULFURIC ACID PIN

Special Provisions (Transport)

SULFURIC ACID Proper Shipping Name DOT (U.S.A.)/IMO (Maritime)

Hazard Class 8 1830 UN Nº CORROSIVE DOT/IMO Label

Packing Group

Reportable Quantity 1000 lbs (454 kg)

Tank Cars, Tank Trucks, Vessel Shipping Containers

Guide 137

SECTION 15 REGULATORY INFORMATION

EU (Directive 67/548/EEC): Labeling (EEC)

Sulfuric (Acid): C Corrosive (Pictogram)

Annex I Index number: 016-020-00-8; EU Consolidated Inventories: EC Number 231-639-5

C≥15% C:R35; S2, 26, 30, 45.

R35- Causes severe burns Risk Phrases (EEC)

S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice Safety Phrases (EEC)

S30- Nerver add water to this product

\$36/37/39- Wear suitable protective clothing, gloves and eye/face protection

S45- In case of accident or if you feel unwell, seek medical advice immediately (show the label where

possible).

ERG

77% - 100% SULFURIC ACID

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA): On the Domestic Substances List CEPA DSL (CANADA)

(DSL); Acceptable for use under the provisions of CEPA

Sulfuric Acid is a Class B Drug Precursor under Health Canada's Controlled Drugs and Substances Act

and Precursor Control Regulations.

CERCLA Section 103 Hazardous substances (40 CFR 302.4); SARA Section 302 Extremely Hazardous Regulations (U.S.A.)

Substances (40 CFR 355): Yes; SARA Section 313, Toxic Chemicals (40 CFR 372.65); US: TSCA

Inventory : Listed :

Sulfuric (Acid) (Final RQ): 1 000 pounds (454 kg)

Sulfuric Acid is subject to reporting requirements of Section 313, Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA), 40 CFR Part 372.

Certain companies must report emissions of Sulfuric Acid as required under The Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA), 40 CFR Part 302.

For more information call the SARA Hotline 800-424-9346.

Strong Inorganic Acid Mists Containing Sulfuric Acid: Chemical listed effective March 14, 2003 to the State of California, Proposal 65,

U.S. FDA Food Bioterrorism Regulations: These regulations apply to Sulfuric Acid when being distributed, stored or used for Food or Food Processing.

Classifications HCS (U.S.A.)

Corrosive liquid

NFPA (National Fire Protection Association) (U.S.A.)

Fire Hazard Reactivity

0

Health

Special Hazard

ACID

NPCA- HMIS Rating Fire Hazard

Reactivity

2 Health

SECTION 16. OTHER INFORMATION

References

- TLVs and BEIs (2008). Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. ACGIH, Cincinnati, OH - http://www.acgih.org
- CCOHS (2008) Canadian Centre for Occupational Health and Safety http://www.ccohs.ca/
- CSST (2008) Commission de la Santé et de la Sécurité du Travail (Québec). Service du répertoire toxicologique http://www.reptox.csst.qc.ca/
- ERG (2008). Emergency Response Guidebook, Developed by the U.S. Department of Transportation, Transport Canada, and the Secretariat of Communications and Transportation of Mexico
- HSDB (2008) Hazardous Substances Data Bank. TOXNET® Network of databases on toxicology, hazardous chemicals, and environmental health. NLM Databases & Electronic Resources, U.S. National Library of Medicine, NHI, 8600 Rockville Pike, Bethesda, MD 20894 - http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (collection) http://www-cie.iarc.fr/
- Merck Index (1999). Merck & CO., Inc, 12th edition
- NIOSH U.S. (2008) Pocket Guide to Chemical Hazards http://www.cdc.gov/niosh/npg/
- Patty's Industrial Hygiene and Toxicology, 3rd Revised Edition
- Règlement sur les produits contrôlés (Canada)
- RTECS (2008). Registry of Toxic Effects of Chemical Substances, NIOSH, CDC
- Toxicologie industrielle & intoxication professionnelle, 3e édition, Lauwerys

Glossary

- CSST : Commission de la Santé et de la Sécurité du Travail (Québec).
- HSDB : Hazardous Substances Data Bank.
- IARC : International Agency for Research on Cancer. NIOSH: National Institute of Occupational Safety and Health.
- : U.S. National Toxicology Program. NTP
- RTECS : Registry of Toxic Effects of Chemical Substances

Note

For further information, see NorFalco Inc. Sulfuric Acid « Storage and Handling Bulletin ».

Because of its corrosive characteristics and inherent hazards, Sulfuric Acid should not be used in sewer or drain cleaners or any similar application; regardless of whether they are formulated for residential, commercial or industrial use. NorFalco will not knowingly sell sulfuric acid to individuals or companies who repackage the product for sale as sewer or drain cleaners, or any other similar use.

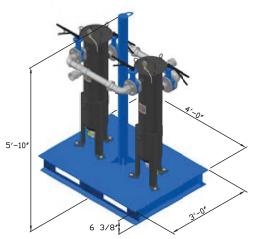
The data in this Material Safety Data Sheet relates only to the specific material designated herein and does not relate to use in combination with any other material or in any process.

For additional information, please visited our website: www.norfalco.com

Written by : Groupe STEM Consultants / NorFalco Sales Inc.

Complete revision: 2009-01-24 Partial review: None Previous complete revision: 2008-01-24

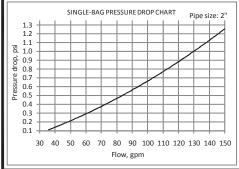
77% - 100% SULFURIC ACID


Verified by: Guy Desgagnés and Eric Kuraitis, Technical Representative - Sulfuric Acid

Request to: André Auger, Administration Assistant Tel.: (905) 542-6901 extension 0 Fax: (905) 542-6914 / 6924

NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2

Notice to Reader


Although reasonable precavious have been taken in the preparation of the data contained herein, it is offered solely for your information, consideration and investigation. NorFolco Sales Inc. extends no marranty and assumes no responsibility for the accuracy of the consent and expressly disclaims all liability for reliance thereon. This material sofety data sheet provides guidelines for the safe handling and processing of this product; it does not and connot advise on all possible simultons, therefore, your specific use of this product should be evaluated to determine if additional precautions are required, individuals exposed to this product should read and understand this information and be provided pertinent training prior to working with this product.

NOTE: THIS DRAWING DEPICTS A "TYPICAL" SKID. ACTUAL DETAILS AND DIMENSIONS MAY VARY.

ADDED SKID WEIGHT

REVISIONS

MODEL NUMBER & A: 8 (8.6") LEG BOLT CIRCLE F: Ø12.0"

B: 35.9" C: 6.0" D: 3.5" E: 2.0"

TYP.

DUPLEX SINGLE BAG FILTER SKID **STANDARD EQUIPMENT SPECIFICATION**

APPROVED BY: DRAWN BY: AAV 02/18/09

GROUND/WATER TREATMENT & TECHNOLOGY P.O. BOX 1174 DENVILLE, NJ 07834

02/18/09

THIS DRAWING IS THE PROPERTY OF GROUND/WATER TREATMENT & TECHNOLOGY, INC

Mirafi[®] 140N

Mirafi[®] 140N is a needlepunched nonwoven geotextile composed of polypropylene fibers, which are formed into a stable network such that the fibers retain their relative position. Mirafi[®] 140N is inert to biological degradation and resists naturally encountered chemicals, alkalis, and acids. Mirafi[®] 140N meets Aashto M288-06 Class 3 for elongation > 50%.

Mechanical Properties	Test Method	Unit	Minimum Average Roll Value		
-			MD	CD	
Grab Tensile Strength	ASTM D4632	lbs (N)	120 (534)	120 (534)	
Grab Tensile Elongation	ASTM D4632	%	50	50	
Trapezoid Tear Strength	ASTM D4533	lbs (N)	50 (223)	50 (223)	
CBR Puncture Strength	ASTM D6241	lbs (N)	310 (1380)		
Apparent Opening Size (AOS) ¹	ASTM D4751	U.S. Sieve (mm)	70 (0.212)		
Permittivity	ASTM D4491	sec ⁻¹	1.7		
Flow Rate	ASTM D4491	gal/min/ft ² (l/min/m ²)	135 (5500)		
UV Resistance (at 500 hours)	ASTM D4355	% strength retained	70		

¹ ASTM D4751: AOS is a Maximum Opening Diameter Value

Physical Properties	Unit	Typical Value 12.5 x 260 (2.8 x 110)		
Roll Dimensions (width x length)	ft (m)	12.5 x 360 (3.8 x 110)	15 x 360 (4.5 x 110)	
Roll Area	$yd^2 (m^2)$	500 (418)	600 (502)	
Estimated Roll Weight	lb (kg)	133 (60)	160 (72)	

Disclaimer: TenCate assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

© 2012 TenCate Geosynthetics Americas Mirafi[®] is a registered trademark of Nicolon Corporation

Lockwood Remediation Technologies, LLC

700 Series Floc Logs

Polyacrylamide Sediment and Turbidity Control Applicator Logs

700 Series Floc Logs are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Applied Polymer Systems, Inc. or your local distributor for free testing and site-specific application information.

Primary Applications

- · Mine tailings and waste pile ditches
- Stormwater drainage from construction and building sites
- Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- Dredging operations as a flocculent

Features and Benefits

- · Removes solubilized soils and clay from water
- · Prevents colloidal solutions in water within ditch systems
- · Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

Specifications / Compliances

- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (D. magna or O. mykiss)
- . 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

<u>Packaging</u>

700 Series Floc Logs are packaged in boxes of four (4)

Technical Information

Appearance - semi-solid block
Biodegradable internal coconut skeleton
Percent Moisture - 40% maximum
pH 0.5% Solution - 6-8
Shelf Life – up to 5 years when stored out of UV rays

Office: 774-450-7177 • Fax: 888-835-0617

89 Crawford Street • Leominster, MA 01453

Lockwood Remediation Technologies, LLC

Placement

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

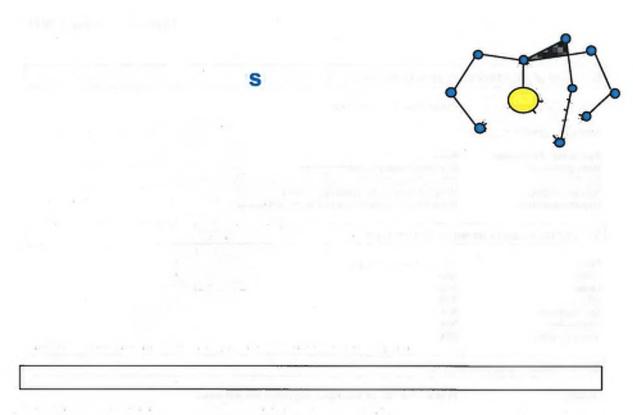
Directions for Use

(Water and Floc Log Mixing is Very Important!)

700 Series Floc Logs should be placed within the upper quarter to half of a stabilized ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.


Cleanup:

Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.

Precautions / Limitations

- 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will
 result and if water is necessary, use pressure washer.
- Floc Log will remain viable for up to 5 years when stored out of UV rays.
- 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.

The second secon 120

The state of the s

URE

AL TE

the contract of the contract of

The second secon

HEMI

And the second s

AZ DE

IVITY

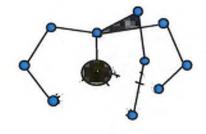
The sale of the sa

AL INF

AE /

INF

Circles etc. bereichtebeleite.


All the control of th

.

The subsection of the subsecti

And the second s

NT

NT

The time terminal and the second of the seco

AID ME

нт

RE RE

AND RA

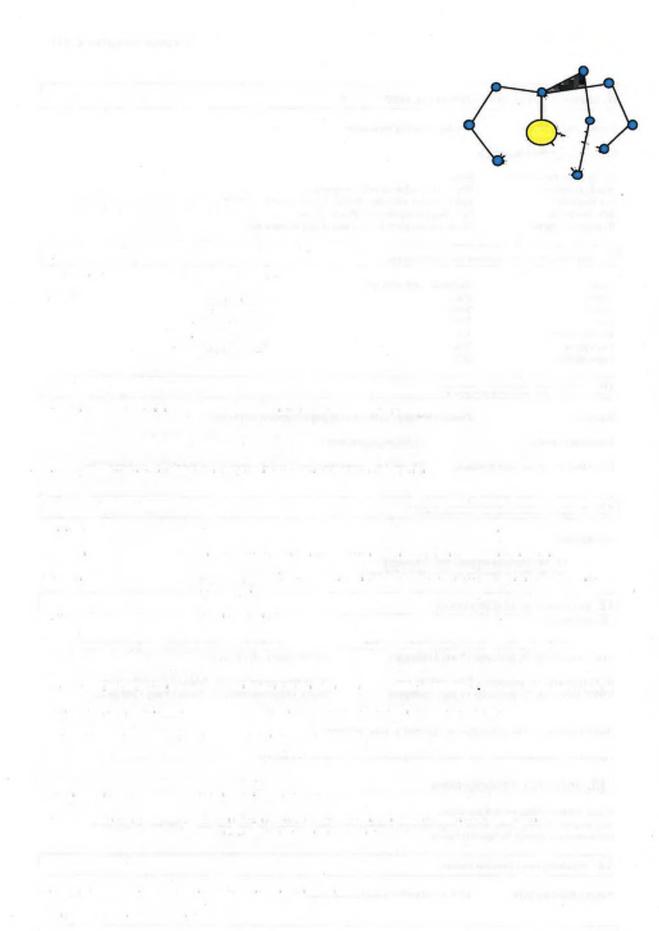
Draina

1

	10 1 10		* · · · · · · · · · · · · · · · · · · ·	18 8 8 9 1 1	
CALMERY TO BY BY BY					
	7 74 11 42 . 1				
31					
	H 4 1 2 2 1				
	1 1 2 7				
4.7					
A 003					
		4 7 7			
tic Kil K		APRICA A CALIF	2 20		
4.4	2 2 1		2 28		2
3					
3 +11			1 1		
0 202 5 5 18 1 3 14		a diam			
*					
Hall Brail at		a 15801 8 - 2 P		X 17 D	2 130 5
		a ISRITE E C			
	41	F1 17 (17)			

RE UL INF RMA

INF HMI


mma

HMI

TE .

Deedg

3

URE NT

The state of the s

HEMI

RE

dizan

INF RMA

g/L

(R:

RM

RA

Charac to the control of the control

Apprent Foryings singles inc.

Santa to a Databack

Consideration and the property and the control of t

material restriction of the contract of the co

See Heart

1

and removed the

provide and

CONTRACTOR OF STREET

conjugate action of the contract of part was an end agreement on a contract of the con-

Continue of the action of the continue of the

wastenskingen togethere. Mrs. - moltograft

contract of the first

Charles to the control of the contro

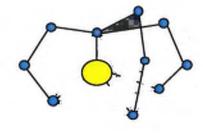
Company of the Compan

the calmid to get an indicate in an account where the country of the artifactor is sufficiently and the calmid to
the beginning a blanch of

CAMPBOOL THE SPECIAL CONTRACTOR

AND THE RESIDENCE OF THE PARTY
ryment to difference programment. The programment of the programment of the contract of the co

had pur reading taking at the control of the contro


Billion also the most area of a programment.

3

the manufacture of the property of the property of the second proper

The state of the Paris and the Trail

National Annual Angle Committee and Secretary South from Secretary County and Committee and Secretary Committee Committee and Co

CONTRACT THE PROPERTY OF STATE

ID ANY

www

NTIFI

MP

URE

The second secon

RE

ME URE

The state of the s

RE HT ASURE

AN

Charac

1

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use local exhaust if dusting occurs. Natural ventilation is adequate in absence of dust.

Personal protection equipment

Respiratory Protection:

Dust safety masks are recommended where dusting may occur.

Hand protection:

Dry cloth, leather or rubber gloves.

Eye Protection:

Safety glasses with side shields or face masks. Do not wear contact lenses.

Skin protection:

No special protective clothing required.

Hygiene measures:

Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form:

Granular solid

Color: Odor: pH: White None 7-8 N/A

Melting point: Flash point: Vapor density:

N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity:

(EPA/600/4-90/027F)

LD 50 / Rattus norvegicus / oral / > 5000 mg/kg LC 50 / Oncorhynchus mykiss / 96h / 530 mg/L LC 50 / Daphnia magna / 48h / >420mg/L

EC 50 / Selenastrum capricornutum / 96h / >500mg/L

12. ECOLOGICAL INFORMATION

Chronic Toxicity: (EPA/600/R-98/182)

IC25 (Survival) / P. promelas / 7 day / 358 ppm

NOEC (Survival) / P. promelas / 7 day / 840 ppm

IC₂₅ (Survival) / C. dubia / 7 day / 157.5 ppm NOEC (Survival) / C. dubia / 7 day / 105 ppm

IC₁₅ (Growth) / P. promelas / 7 day / 94 ppm NOEC (Growth) / P. promelas / 7 day / 105 ppm

IC₂₅ (Reproduction) / C. dubia / 7 day / 27.7 ppm NOEC (Reproduction) / C. dubia / 7 day / 26.25 ppm

Inhaiation:

The product is not expected to be toxic by inhalation.

Dermal:

The results of testing on rabbits showed no toxicity even at high dose levels.

Bioaccumulation:

The product is not expected to bioaccumulate.

Persistence / degradability:

Not readily biodegradable: (-40% after 28 days).

Chronic toxicity:

A 2 yr feeding study on rats did not reveal adverse health effects.

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311 / 312 Hazard Class:

Not concerned

RCRA Status:

Not RCRA bazardous

16. TRANSPORT AND REGULATORY INFORMATION

NFPA and HMIS ratings:

NFPA Health: 1 HMIS Health 1 Flammability: Flammability Reactivity: Reactivity 0

DATE EDITED: Oct. 29th 2015

Applied Polymer Systems, Inc.

APS

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 703d Floc Log®

Supplied:

Applied Polymer Systems, Inc.

519 Industrial Drive Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siitstop.com

2. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble Co-polymer gel

4. FIRST AID MEASURES

Inhalation:

Nane

Skin contact:

Contact with wet skin could cause dryness and chapping. Wash with water and soap.

Eye contact:

Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of persistent

irritation.

Ingestion:

Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:

Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions:

Floc Logs that become wet render surfaces extremely slippery.

Protective equipment for firefighters:

No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

Dry wipe as well as possible. Keep in suitable and closed containers for disposal.

After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling:

Avoid contact with skin and eyes. Wash hands after handling.

Sterage:

Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use dry handling areas only.

Personal protection equipment

Respiratory Protection:

None

Hand protection:

Dry cloth, leather or rubber gloves.

Eye Protection:

Safety glasses with side shields. Do not wear contact lenses.

Skin protection: Hygiene measures: No special protective clothing required. Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form: Color: Granular semi-solid gel

Odor: pH: Blue None 7.37

Melting point: Flash point: Vapor density: N/A N/A N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity (EPA/600/4-90/027F)

LD 50 / Rattus norvegicus / oral / > 5000 mg/kg LC 50 / Daphnia magna / 48h / >383mg/L LC 50 / Oncorhynchus mykiss / 96h / 1900 mg/L

Chronic toxicity (EPA/600/4-91/002)

IC 25 (Survival) / P. prometas / 7 day / 110 ppm NOEC (Survival) / P. prometas / 7 day/ 105 ppm IC 25 (Survival) / C. dubia / 7 day / 99.8 ppm NOEC (Survival) / C. dubia / 7 day/ 52.5 ppm

IC 25 (Growth) / P. promelas / 7 day / 130 ppm NOEC (Growth) / P. promelas / 7 day / 105 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 58.2 ppm NOEC (Reproduction) / C. dubia / 7 day / 105 ppm

12. ECOLOGICAL INFORMATION

Fish: LC 50 / Pimephales prometas / 96h />1000 mg/l Water Flea: LC 50 / Daphnia magna / 48h / 383 mg/l Algae: EC 50 / Selenastrum capricornutum / 96h />500 mg/l

Bioaccumulation: The product is not expected to bioaccumulate.

Persistence / degradability: Not readily biodegradable: (-85% after 180 days).

13. DISPOSAL INFORMATION

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311 / 312 Hazard Class: Not concerned RCRA Status: Not RCRA hazardous

16. OTHER INFORMATION

NFPA and HMIS ratings:

NFPA Health: 1 Flammability: 0 Reactivity: 0
HMIS Health 1 Flammability 0 Reactivity 0

DATE EDITED: Nov 4th 2015

the early to the article of the filter of the early like in the control of the carbon of the early control of

Technical Guidance for the Use of Polyacrylamides (PAM) and PAM Blends for Soil Erosion Control and Storm Water clarification

(Courtesy of Applied Polymer Systems, Inc.)

Practice Description

PAM is a water-soluble anionic polyacrylamide product used to minimize soil erosion caused by water and wind to decrease soil sealing by binding soil particles, especially clays, to hold them on site. In addition, these types of materials may also be used as a water treatment additive to remove suspended particles from runoff. When PAM is used on construction sites in the Southeast it is typically applied with temporary seeding and or mulching on areas where the timely establishment of temporary erosion control is so critical that seedings and mulching need additional reinforcement. It may be used alone on sites where no disturbances will occur until site work is continued and channel erosion is not a significant potential problem. Permanent grassing applications can be better established using PAM as a tackifier and soil conditioner.

PAMs are manufactured in various forms to be used on specific soil types, and are generally applied at a rate of up to 25 pounds/acre for dry products and 2 ½ gallons/acre of emulsion-liquid products. Using the wrong form of a PAM on a soil will result in some degree of performance failure, and increase the potential for this material to enter surface waters. PAM used alone may not reduce NTU values resulting in non-compliance water quality discharges or poor soil binding conditions. Site-specific soil-PAM testing must be performed. Exceeding the maximum application rates for this product does not increase the effectiveness of the product.

Block or Log forms of PAM and PAM blends are manufactured for specific use in drainage waterways to remove suspended particulates from runoff.

General Components of the Practice

Prior to the start of construction, a qualified professional should design the application of PAM and plans and specifications should be available to field personnel.

The application should conform to the design and specifications provided in the plans. Typical applications include the following components.

- Site Preparation
- Equipment Preparation
- PAM Application

Application

Site Preparation

Prepare site following design and specifications.

Equipment Preparation

If using a liquid application system, pump a surfactant through the injection system before and after injecting concentrated liquid PAM into sprinkler irrigation systems to help prevent valves and tubing from clogging.

PAM used in hydroseeding applications should be added as the last additive to the mix.

After their use, rinse all PAM mixing and application equipment thoroughly with water to avoid formation of PAM residues. Rinse residue should be applied to soil areas to create binding to the soil structure and increase erosion reduction.

PAM Application- Criteria for Land applied PAM Specifications

PAM shall be mixed and/or applied in accordance with all Occupational Safety and Health Administration (OSHA) Material Safety Data Sheet (MSDS) requirements and the manufacturer's recommendations for the specified use conforming to all federal, state and local laws, rules and regulations.

1.) Toxicity

All venders and suppliers of PAM, PAM mix or blends shall present or supply a written toxicity report which verifies that the PAM, PAM mix or blend exhibits acceptable toxicity parameters which meet or exceed the EPA requirements for the state and federal water quality standards. Whole effluent testing does not meet this requirement as primary reactions have occurred and toxic potentials have been reduced. Cationic forms of PAM, polymers and chitosan are not allowed for use under this guideline due to their high levels of toxicity to aquatic organisms. Emulsions shall never be applied directly to stormwater runoff or riparian waters due to surfactant toxicity.

2.) Performance

All venders and suppliers of PAM, PAM mix or blends shall supply written "site specific" testing results demonstrating that a performance of 95% or greater reduction of NTU or TSS from stormwater discharges.

Emulsion batches shall be mixed following recommendations of a testing laboratory that determines the proper product and rate to meet site requirements. Application method shall insure uniform coverage to the target area. (Emulsions shall never be applied directly to stormwater runoff or riparian waters)

Dry form (powder) may be applied by hand spreader or a mechanical spreader. Mixing with dry silica sand will aid in spreading. Pre-mixing of dry form PAM into fertilizer, seed or other soil amendments is allowed when specified in the design plan. Application method shall insure uniform coverage to the target area.

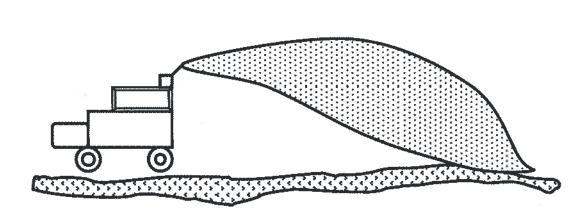
Block or Log forms shall be applied following site testing results to assure proper placement and performance and shall meet or exceed state and federal water quality requirements.

Common Problems

Consult with a registered design professional for assistance if any of the following occur:

Problems with application equipment clogging.

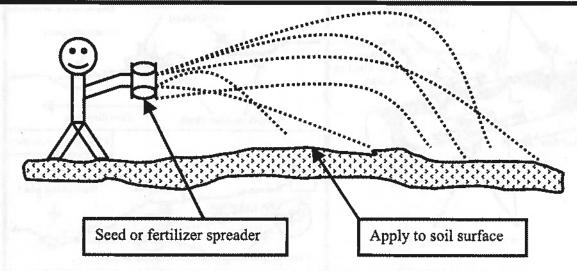
- PAM alone may not meet testing requirements for NTU reduction and soil stabilization. Site specific "blends" may be needed to meet these requirements.
- Application specifications for PAM cannot be met; alternatives may be required. Unapproved application techniques could lead to failure.
- Visible erosion occurs after application.


Maintenance

An operation and maintenance plan must be prepared for use by the operator responsible for PAM application. Plan items should include the following items.

- Reapply PAM to disturbed or tilled areas that require continued erosion control.
- Maintain equipment to provide uniform application rates.
- Rinse all PAM mixing and application equipment thoroughly with water to avoid formation of PAM
 residues and discharge rinse water to soil areas where PAM stabilization may be helpful.
- Downstream deposition from the use of PAM may require periodic sediment removal to maintain normal functions.

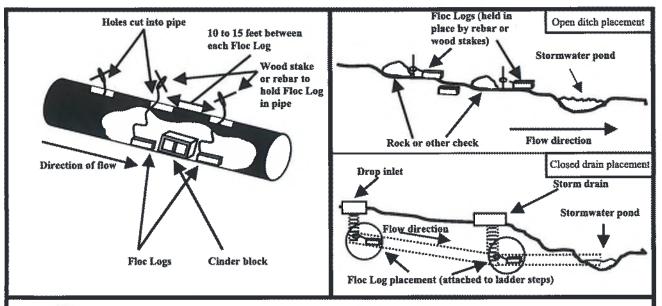
(Silt Stop Application of Temporary and Permanent Grassing)



Notes:

- 1) For use on all slope conditions which are not matted.
- 2) Application rate shall be 1.5 gallons of Silt Stop emulsion/acre or 10 pounds of Silt Stop powder/acre.
- 3) Silt Stop emulsion or powder shall be added to all hydroseeding mixes at a rate of 3000 gallons of mix/acre.
- 4) Silt Stop shall be the final additive to the hydroseeding mix.
- 5) Straw cover may be applied over the hydroseeded application.

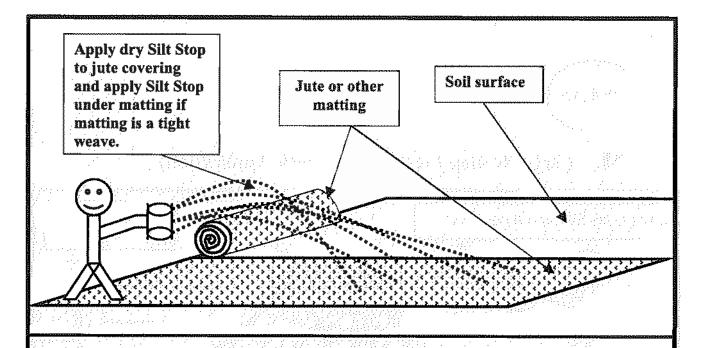
PM (Dry Silt Stop Form)



Notes:

- 1) Dry Silt Stop shall be applied using a seed or fertilizer spreader or may be mixed with other dry spread additives.
- 2) Dry Silt Stop shall be covered with straw, mulch, matting or jute.
- 3) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.
- 4) For use on all slope conditions.

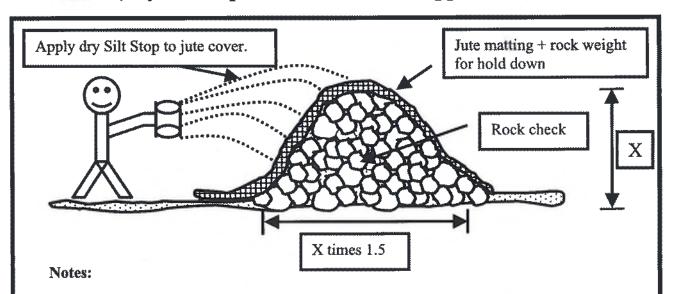
(Floc Log placement for pipes, ditch and storm drains)



Notes:

- Place Floc Logs far enough upstream in turbid flows to allow adequate mixing time. (Mixing time and Floc Log type are determined from the sample analysis.)
- 2) Floc Logs should be placed 10 to 15 feet apart in a row or at points of highest water velocity; whichever is most convenient.
- 3) The number of Floc Logs placed on the site is based on results from the sample analysis. Floc Logs shall be placed in <u>all</u> catch basins and after <u>all</u> downsides of rock checks.

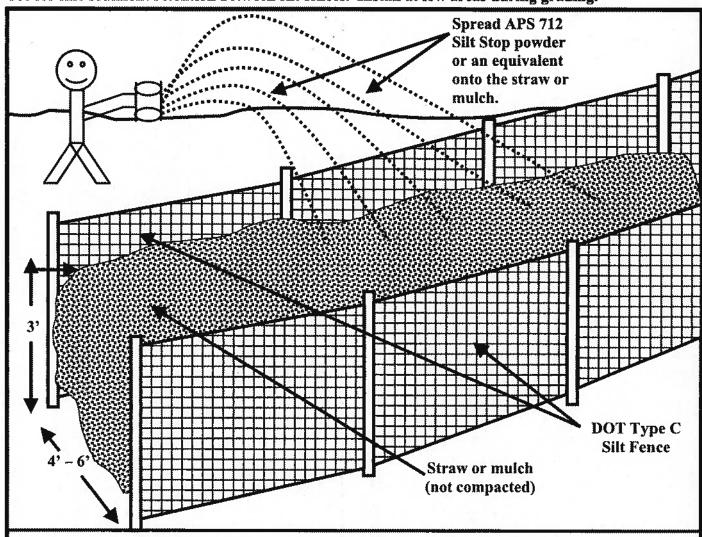
(Dry Silt Stop Form Soft Armoring Technique for Matting)



Notes:

- 1) For use on all slope conditions.
- 2) One layer of jute or other matting shall be applied to the surface of all exposed soil on 1:1 slopes.
- Dry Silt Stop shall be applied to the soil if tight weave matting is used and also to the jute or burlap matting cover using a seed or fertilizer spreader.
- 4) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.

PM (Dry Silt Stop Form Rock Check Application)



- 1) One layer of jute matting shall be applied to the surface of all rock checks.
- 2) Dry Silt Stop shall be applied to the jute cover using a seed or fertilizer spreader.
- 3) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.

(SRB) Sediment Retention Barrier

Use for fine sediment retention between silt fences. Install at low areas during grading.

- 1) Use in all low areas during the grading phase.
- 2) Place 2 rows of DOT type C silt fence 4 to 6 feet apart. Place straw or mulch 3 feet deep between the silt fences.
- 3) Dry Silt Stop powder or an equivalent should be spread throughout the straw or mulch using a seed or fertilizer spreader.