

September 26, 2017

The Vertex Companies, Inc.
One Congress Street, 10th Floor
Boston, MA 02114
PHONE 617.275.5407 | FAX 617.830.0298
www.vertexeng.com

Ms. Shauna Little
U.S. Environmental Protection Agency
Office of Ecosystem Protection
EPA/OEP RGP Applications Coordinator
5 Post Office Square – Suite 100 (OEP06-01)
Boston, MA 02109-3912

RE: Bulfinch WPB1 Owner LLC
Remediation General Permit
Boston, Massachusetts
Remediation General Permit (RGP) Notice of Intent

Dear Ms. Little,

The Vertex Companies, Inc. (VERTEX) is pleased to submit this Notice of Intent (NOI) for a National Pollutant Discharge Elimination System (NPDES) General Permit For the discharge of water under a Massachusetts Remediation General Permit (RGP) (MAG910000) on behalf of Bulfinch WPB1 Owner, LLC for the Site identified as One Congress Street located in Boston, Massachusetts (the "Site"). The general Site locus is shown on Figure 1. This RGP is to include the Site as shown on Figure 2. The NOI is attached.

A NPDES General Permit had been issued for this discharge on November 16, 2016, Permit No. MAG070431. As a requirement of the General Permit the discharge was subject to the 2010 NPDES RGP Discharge limits. This NOI is being submitted to officially transfer the water discharge regulatory framework from the NPDES General Permit to the NPDES RGP as requested by the United States Department of Environmental Protection (USEPA).

General Facility/Site Information

The site is located in an urban area of Boston, Massachusetts. According to the Boston South 2015 USGS Topographic Map, the Site is located in a densely developed urban area in downtown Boston, Massachusetts. Per the City of Boston Assessor's information, the Site is currently occupied by an 11 story, 1,355,000 square-foot building. Congress Street bisects the building into two sections, which are connected by floors 10 and 11. The first floor of the building consists of retail space, building maintenance, storage areas, an open-air parking garage, and a lobby that provides access to the office space sections of the building. The northeastern portion of the Site contains a surface Massachusetts Bay Transportation Authority (MBTA) bus station and access to the Haymarket MBTA subway station, which partially underlies the Site. Floors two through nine of the building are occupied by an open-air parking garage with vehicle access from New Chardon Street (northwest of the building) and Sudbury Street (northeast of the building) and egress from Bowker Street (south of the building). Floors 10 to 11 of the building contain commercial office space.

The Site is bounded to the northwest by New Chardon Street, beyond which are multiple commercial, government, and residential buildings. The Site is bounded to the northeast by the Rose Kennedy Greenway, beyond which is US Interstate Highway 93. The Site is bounded to the southeast by Sudbury Street, beyond which are a mixed-use parking garage and commercial building, and the John F. Kennedy Federal building. The Site is bordered to the southwest by Bowker Street and the Boston Police Department.

According to the Bureau of Waste Site Cleanup (BWSC) Map (attached), the Site is not located in a medium or high yield aquifer, Zone II, Interim Wellhead Protection Areas (IWPA) Zone A, Public Water Supply (PWS) Protection Area, or within 500 feet of the Site, respectively. Public or private drinking water wells were not identified at or within 500 feet of the Site. Estimated rare wetland, vernal pools, freshwater/saltwater wetlands, protected open spaces, or ACEC were not identified at the Site. A review of the City of Boston online mapping did not identify the area as a designated aquifer. The closest surface water body is Boston Harbor, located approximately 0.4 miles east of the Site.

APPLICABLE REGULATORY STANDARDS

Soil at the Site is considered RCS-1 with respect to the reporting requirements under the Massachusetts Contingency Plan (MCP) at 310 CMR 40.000. The RCS-1 standard is applicable based upon the presence of mixed use buildings that include residential units within 500 feet of the Site. Groundwater is considered RCGW-2 with respect to reporting requirements and GW-2/GW-3 with respect to cleanup criteria under the MCP, since it is not a current or potential source of drinking water.

Applicant/Operator

The applicant for the Notice of Intent-Remediation General Permit is:

Tishman Construction Corporation of Massachusetts One Federal Street, Floor #9 Boston, MA 02110 Attention: Peter Sheehan

Site Owner

WP-B1 Bulfinch WPB1 Owner LLC c/o The HYM Investment Group LLC One Congress Street, 11th Floor Boston, MA 02114

Summary of Subsurface Conditions

Results of subsurface investigations indicate that the subsurface soil across the Site consists of fill that is generally described as loose to dense, dark brown and gray coarse to fine sand with varying amounts of gravel, silt, ash, wood, and brick fragments. The urban fill generally ranges in thickness from 5 to

10 feet. Underlying the fill are native materials consisting of varying thickness of sand, silt and clay (locally known as the Boston Blue Clay) intermixed with horizons of fine sand and silt partings.

Fourteen soil samples were collected from the Site to evaluate soil conditions and analyzed for Volatile Organic Compounds (VOCs), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), metals, as well as general chemistry. No VOCs or PCBs were identified above applicable MCP Reportable Concentrations (RC) or the RCRA characteristic waste standards presented in 40 CFR 261. With regard to metals and SVOCs, with the exception of total lead in two samples and benzo(a)pyrene in one soil sample, metals and SVOCs were not detected above the MCP reportable concentrations. Total lead was detected in soil collected from boring VES-305 (0-5') at a concentration of 500 milligrams per kilogram (mg/kg) and in soil collected from boring VES-306 (0-5') at a concentration of 400 mg/kg, which exceed the applicable MCP RC of 200 mg/kg. Benzo(a)pyrene was detected in soil collected from boring VES-307 (0-8') at a concentration of 4 mg/kg, which exceeds the applicable MCP RC of 2 mg/kg. The soil samples collected from VES-305, 306 and 307 were observed to contain coal ash in the urban fill, which is considered to be an anthropogenic condition¹ and not reportable. Therefore the lead and benzo(a)pyrene are exempt from reporting under the MCP [310 CMR 40.0317(9)]. Although exempt from reporting, excavation, handling, and management of historic fill soil must be conducted as appropriate for soils containing the identified chemicals.

Groundwater is located at a depth of approximately 10 feet below existing grade within the Project Area. The majority of the water discharge from the Project Area will be municipal water used as part of the installation of pile grouting operation for the construction of the building. VERTEX estimates that municipal water will account for approximately 90% of the discharge from the Project Area.

Receiving Waters Information

The discharge location for the RGP is the Boston Water and Sewer Commission (BWSC) catch basin No. 143 located to the south of Site. Based upon a map of the BWSC subsurface utilities the discharge location will be Outfall No. 49 to the Charles River a Class B Waterbody.

Based on correspondence from Ms. Catherine Vakalopoulos of the MassDEP, the 7-day consecutive low flow discharge (7Q10) is calculated at 18.87 MGD. With a design flow of 100 gallons per minute (GPM) the dilution factor was calculated to be 132.

Applicable Standards

USEPA uses two standards to evaluate and calculate the effluent discharge standards. These are the technology-based effluent limitation, (TBEL) and the water quality-based effluent limitation (WQBEL) and are published in the RGP. In order to identify the applicable criteria (TBEL or WQBEL), USEPA developed a calculator spreadsheet. The calculation evaluates the water quality

¹ In accordance with 310 CMR 40.0006 (Anthropogenic Background definition (b)). Anthropogenic Background (b) is defined in the 310 CMR 40.0006 as levels of oil and hazardous material that would exist in the absence of the disposal site of concern attributed to Historic Fill.

of the receiving waters and the site contaminants, the dewatering system effluent flow rate, and stream flow rate to select analyte specific criteria.

On September 15, 2017, a grab water sample was collected from the Charles River at the location of Outfall 049. The water sample was submitted to Contest Analytical of East Longmeadow, Massachusetts for laboratory analysis of hardness, ammonia, and nitrogen as required by the RGP. In addition, pH and temperature were measured in the field. Representative groundwater samples were also collected from within the Site and are discussed under the Summary of Water Analytical Testing and Results section of this letter. Based upon the calculation, the select TBEL or WQBEL limits are the applicable discharge standards. A summary of the laboratory analytical data, the USEPA calculation sheets, and the laboratory analytical report are attached.

Summary of Water Analytical Testing and Results

Because a permit had been historically issued for the discharge of water from the project this NOI is being submitted using the water discharge data already existing for the project. Certain parameters (e.g., pH, temperature, etc.) were collected using field instrumentation at the time of sampling. None of the analyzed compounds exceed applicable MCP regulatory criteria Results of the water sampling and analyses are summarized in Table 1 and laboratory reports are included as an attachment..

Treatment System Information

The system will consist of a construction dewatering pump(s) as well as recirculated municipal water used in the installation of building subsurface support system. Water will be pumped from a municipal source to the Project Area. Water will be used as part of the installation of piles and subsequent grouting of those piles per the civil engineering specifications. Water used as part of the construction project will be recirculated on-site and used until a subsurface structural element is installed. Once complete, the resulting water will flow through a series of holding tanks, and through a series of filters (number will vary with the quantity of water being pumped) to remove suspended sediment.

Untreated water will in holding tanks to provide adequate storage while waiting for discharge. The maximum combined dewatering-effluent treatment system design-flow capacity will not exceed 100 GPM. Influent and effluent samples will be collected from the system as required. If the samples indicate additional treatment may be necessary, a Notice of Change (NOC) will be submitted prior to discharge. If a high concentration of fine particulates are detected in the samples, then precipitation/coagulation/flocculation treatment measures may be applied.

The proposed water treatment systems will be equipped with required fixtures, freeze protection, floats, switches, flow totalizer, and alarms to continuously operate the dewatering system. Sampling ports for influent and effluent will be installed. A schematic diagram of the proposed water treatment system is provided in Figure 3 and the connection location, storm water lines, and discharge location are shown on Figure 2.

The operator will notify and provide a municipality dewatering permit for its discharge, as needed.

Endangered Species Act Eligibility

Correspondence from the U.S. Fish and Wildlife Service (FWS) is attached. According to the FWS, there is one threatened species that should be evaluated within the Project Area, the Red Knot bird (*Calidris canutus rufa*). However, the FWS letter documentation indicates that there are no critical habitats identified within the Project Area.

National Historic Preservation Act Eligibility

A search for historic properties within the Site vicinity was performed on the National Register of Historic Places website. No listings were found for the Site; however, several listings were found within the vicinity of the Site. Historic Site information is attached.

Based on the location of the proposed discharge, the listed nearby historic properties will not be adversely impacted.

Best Management Practices Plan (BMPP)

A BMPP will be maintained onsite during dewatering activities and personnel will adhere to the guidance provided.

We trust that the above satisfies your present requirements. Please do not hesitate to contact us should you have any questions or require additional information.

Sincerely,

The Vertex Companies, Inc.

EN PL

Elizabeth Phelps

Assistant Project Manager

Jesse Freeman, PE Senior Project Manager

Jessica Fox. PE

Vice President of Operations – Environmental

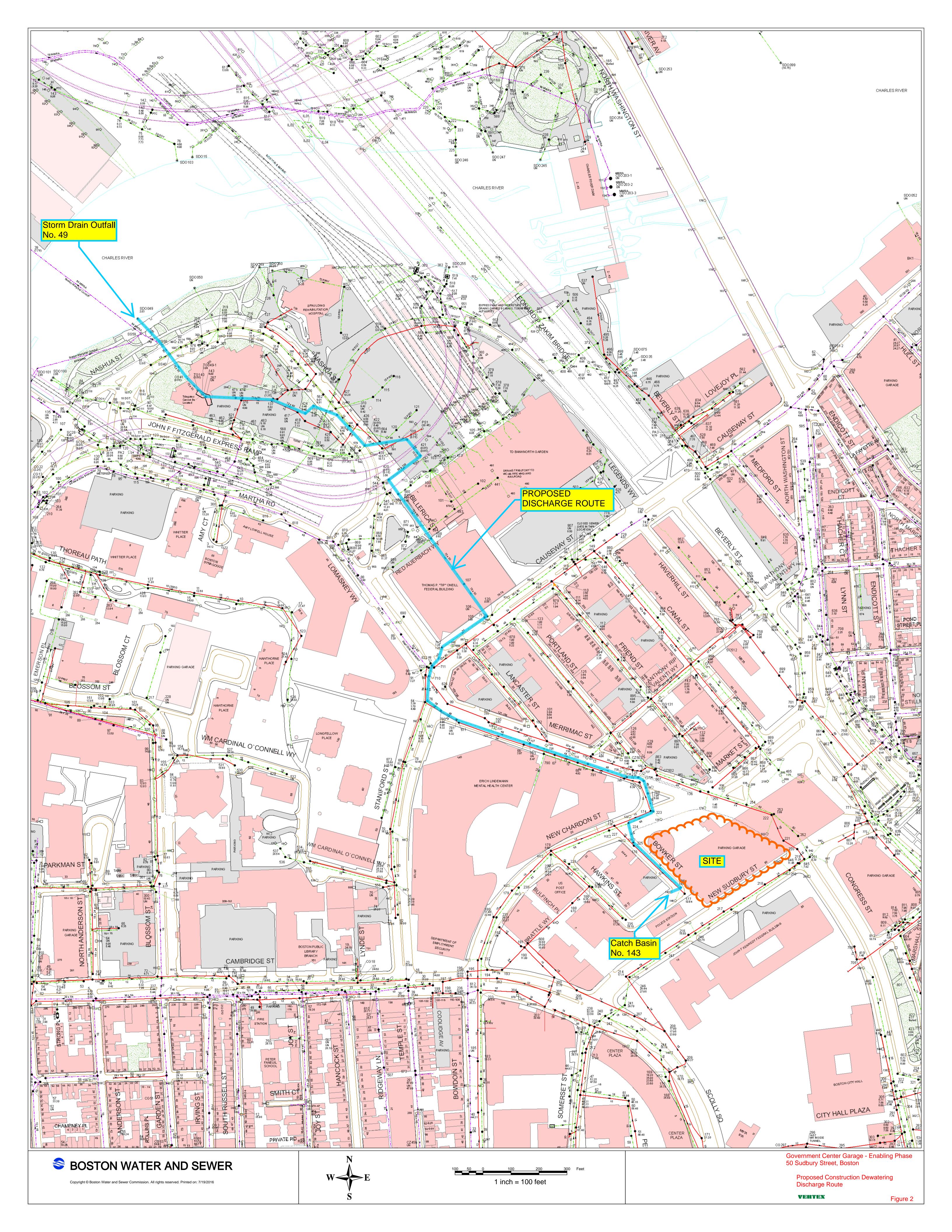
Attachments:

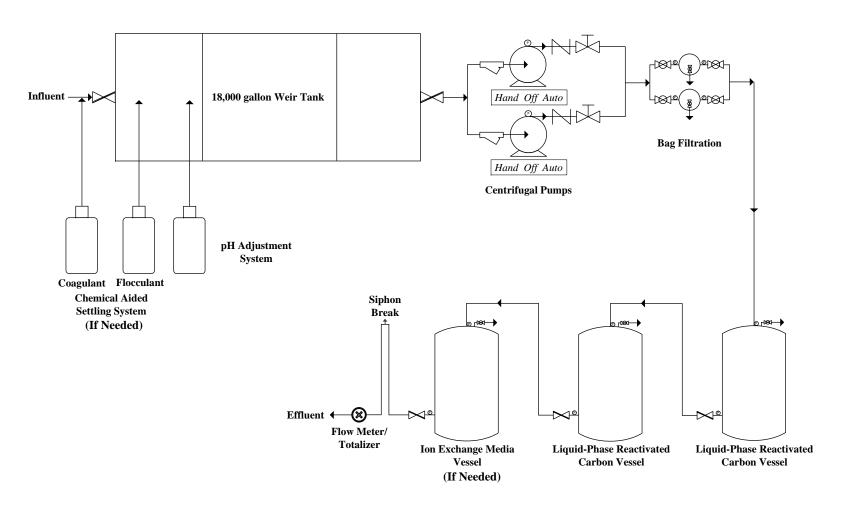
Figure 1: Site Locus

Figure 2: Site Plan and Outfall Location

Figure 3: Proposed Treatment System Schematic


Notice of Intent
Summary of NPDES Groundwater Analytical Results
USEPA WQBEL Calculation Sheet
Correspondence from the U.S. Fish and Wildlife Service
National Register of Historic Places and Massachusetts Historical Commission
Documentation
Laboratory Analytical Reports


cc: Massachusetts Department of Environmental Protection City of Boston Public Works



FIGURES

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 125 GPM
- 3.) Sampling ports located on all treatment system components

Key:
Piping/Hose

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Office: 774-450-7177

CHECKED BY:

DESIGNED BY: LRT DRAWN BY: B. Watkins

DATE:

Water Treatment System Schematic

Government Center Garage -Enabling Phase 50 Sudbury Street, Boston

NOTICE OF INTENT

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
	Street:							
	City:		State:	Zip:				
2. Site owner	Contact Person:							
	Telephone:							
	Mailing address:							
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:				
3. Site operator, if different than owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	5. Other regulatory program(s) that apply to the site (check all that						
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	.A					
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	□ UIC Pro	•					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment						
		☐ CWA Section 404						

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	Classification of receiving water(s):						
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver						
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.									
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-								
(check one): ☐ Yes ☐ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): \square Yes \square No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
	•
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	ischarge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): \Box Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

Parameter	Known	Known	# of samples	Test method (#)	Detection limit (µg/l)	Infl	uent	Effluent Limitations	
	or believed absent	or believed present				Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

Parameter	Known	Known	r # of eved samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
	or believed absent	or believed present				Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known		mathad	Detection limit (µg/l)	Inf	luent	Effluent Limitations	
Parameter	or believed absent	or believed present	or # of believed samples			Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP meeting the requirements of this general permit will be developed and implemented upon BMPP certification statement: initiation of discharge. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested, Check one: Yes ■ No □ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes □ No □ NA ■ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No □ NA ■ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP ■ CGP □ MSGP □ Individual NPDES permit Check one: Yes ■ No □ NA □ □ Other; if so, specify: Paul Crishli Guvers Ryprosentative Signature: Date: 9/26/2017 Print Name and Title:

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

TABLE 1 SUMMARY OF NPDES ANALYTICAL DATA ONE CONGRESS STREET BOSTON, MASSACHUSETTS VERTEX PROJECT NO. 27026

Sample Designation Sample Type Laboratory Sample ID Sample Date	CAS Number	MassDEP RCGW-2	MassDEP GW-3	USEPA RGP Effluent TBEL/WGBEL Limitations	Units	NPDES-T2-100 Influent 1606245-01 06/09/2016	Municipal FH Influent 1710704-01 06/09/2016	MWRA Influent	BOS-049 Receiving Water 17l0704-02 9/15/2017
1 1,2-Dibromoethane / 1,2-Dibro 1,2-Dibromoethane	mo-3-chloropro 106-93-4	pane 2	50,000		ug/L	ND(0.015)		***	ND(0.02)
Polychlorinated Biphenyls (PCB Aroclor 1016	12674-11-2	5	10		ug/L	ND(0.09)			ND(0.1)
Aroclor 1221 Aroclor 1232	11104-28-2 11141-16-5	5 5	10 10	-	ug/L ug/L	ND(0.09) ND(0.09)			ND(0.1) ND(0.1)
Aroclor 1242 Aroclor 1248	53469-21-9 12672-29-6	5	10		ug/L ug/L	ND(0.09) ND(0.09)			ND(0.1) ND(0.1)
Aroclor 1254 Aroclor 1260	11097-69-1 11096-82-5	5	10		ug/L ug/L	ND(0.09) ND(0.09)			ND(0.1) ND(0.1)
Aroclor 1262	37324-23-5	5	10	-	ug/L	ND(0.09)			ND(0.1)
Aroclor 1268 TOTAL PCBs	11100-14-4 Multiple	5 5	10 10	0.000064	ug/L ug/L	ND(0.09) ND(0.09)			ND(0.1) ND(0.1)
Organochlorine Pesticides 4,4'-DDD	72-54-8	50	50		ug/L	ND(0.05)	***		
4,4'-DDE 4,4'-DDT	72-55-9 50-29-3	400 1	400 1	-	ug/L ug/L	ND(0.05) ND(0.05)			
Aldrin alpha-BHC	309-00-2 319-84-6	5,000	30		ug/L ug/L	ND(0.05) ND(0.05)			
beta-BHC Chlordane (Total)	319-85-7 57-74-9	1,000	2		ug/L ug/L	ND(0.05) ND(0.47)			
delta-BHC Dieldrin	319-86-8 60-57-1	1,000 0.5	0.5		ug/L ug/L	ND(0.05) ND(0.05)			
Endosulfan I [2C] Endosulfan II	959-98-8 33213-65-9	2	2		ug/L ug/L	0.12 ND(0.05)			
Endosulfan Sulfate Endrin	1031-07-8 72-20-8	5	5		ug/L	ND(0.05) ND(0.05)			
Endrin Aldehyde	7421-93-4	1,000			ug/L ug/L	ND(0.05)			
gamma-BHC (Lindane) Heptachlor	58-89-9 76-44-8	1	1		ug/L ug/L	ND(0.05) ND(0.05)			
Heptachlor Epoxide Methoxychlor	1024-57-3 72-43-5	10	10		ug/L ug/L	ND(0.05) ND(0.05)			
Toxaphene trans-Chlordane	8001-35-2 5103-74-2	1,000		-	ug/L ug/L	ND(1.21)			
Endrin ketone Volatile Organic Compounds	53494-70-5	5	5		ug/L				
1,1,1,2-Tetrachloroethane 1,1-Dichloropropene	630-20-6 563-58-6	10	50,000		ug/L ug/L				
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	87-61-6 96-18-4	10,000			ug/L ug/L				
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	120-82-1 95-63-6	200		-	ug/L ug/L				
1,2-Dibromo-3-Chloropropane	96-12-8	1,000			ug/L				
1,2-Dibromoethane 1,2-Dichloroethene, Total	106-93-4 540-59-0	100			ug/L ug/L				ND(0.02)
1,3,5-Trimethylbenzene 1,3-Dichloropropane	108-67-8 142-28-9	1,000 50,000			ug/L ug/L				
1,3-Dichloropropene, Total 1,4-Dioxane	542-75-6 123-91-1	10 6,000	200 50,000	200	ug/L ug/L				ND(50)
2,2-Dichloropropane 2-Butanone	594-20-7 78-93-3	50,000	50,000		ug/L ug/L				
2-Chlorotoluene 2-Hexanone	591-78-6	10,000 10,000			ug/L ug/L				
4-Chlorotoluene 4-Isopropyltoluene		10,000			ug/L ug/L				
4-Methyl-2-Pentanone Acetone	108-10-1 67-64-1	50,000 50,000	50,000 50,000	7,970	ug/L				ND(50)
Bromobenzene Bromochloromethane	108-86-1 74-97-5	10,000			ug/L ug/L				
Carbon Disulfide	75-15-0	10,000			ug/L ug/L				
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	50,000 100,000			ug/L ug/L				
Diethyl Ether Di-isopropyl ether	60-29-7 108-20-3	10,000 10,000			ug/L ug/L				
Ethyl tertiary-butyl ether Hexachlorobutadiene	637-92-3 87-68-3	50	3,000		ug/L ug/L				
Isopropylbenzene Methyl tert-Butyl Ether	98-82-8 1634-04-4	100,000 5,000	50,000	70	ug/L ug/L		ND(2)		ND(2)
Naphthalene n-Butylbenzene	91-20-3 104-51-8	700	20,000		ug/L ug/L				
n-Propylbenzene sec-Butylbenzene	103-65-1 135-98-8	10,000		-	ug/L ug/L				
Styrene tert-Butylbenzene	100-42-5 98-06-6	100 10,000	6,000	-	ug/L				
Tertiary-amyl methyl ether Tetrahydrofuran	994-05-8 109-99-9	50,000		90	ug/L ug/L ug/L				ND(0.5)
Xylene O	95-47-6	3,000	5,000	-	ug/L				ND(2)
Xylene P,M Xylenes (Total)	179601-23-1 Multiple	3,000 3,000	5,000 5,000		ug/L ug/L				ND(2) ND(2)
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	4,000 9	20,000 50,000	200	ug/L ug/L	ND(1) ND(0.5)			ND(2)
1,1,2-Trichloroethane 1,1-Dichloroethane	79-00-5 75-34-3	900 2,000	50,000 20,000	5 70	ug/L ug/L	ND(1) ND(1)			ND(2) ND(2)
1,1-Dichloroethene 1,2-Dichlorobenzene	75-35-4 95-50-1	80 2,000	30,000 2,000	3 600	ug/L ug/L	ND(1) ND(1)			ND(2) ND(2)
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2 78-87-5	5	20,000 50,000	5	ug/L ug/L	ND(1) ND(1)			
1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	6,000 60	50,000 8,000	320 5	ug/L ug/L	ND(1) ND(1)			ND(2) ND(2)
2-Chloroethyl vinyl ether Acrolein - Screen	110-75-8 107-02-8	50,000 1,000			ug/L ug/L	ND(10) ND(5)			
Acrylonitrile - Screen Benzene	107-13-1 71-43-2	10,000	10,000	 5	ug/L ug/L	ND(5) ND(1)			 ND(1)
Bromodichloromethane Bromoform	75-27-4 75-25-2	6 700	50,000 50,000		ug/L ug/L	1.2 ND(1)			
Bromomethane Carbon Tetrachloride	74-83-9 56-23-5	700	800 5,000	4	ug/L	ND(1) ND(2) ND(1)			ND(2)
Chlorobenzene	108-90-7 75-00-3	200	1,000		ug/L ug/L	ND(1)			ND(2)
Chloroform	67-66-3	10,000 50	20,000	-	ug/L ug/L	ND(2) 3.9			
Chloromethane cis-1,2-Dichloroethene	74-87-3 156-59-2	10,000 20	50,000	70	ug/L ug/L	ND(2) ND(1)			ND(1)
cis-1,3-Dichloropropene Dibromochloromethane	10061-01-5 124-48-1	5 20	50,000		ug/L ug/L	ND(0.4) ND(1)			
Ethylbenzene Methylene Chloride	100-41-4 75-09-2	5,000 2,000	5,000 50,000	5	ug/L ug/L	ND(1) ND(4)			ND(2) ND(5)
Tetrachloroethene Toluene	127-18-4 108-88-3	50 40,000	30,000 40,000	5	ug/L ug/L	ND(1) ND(1)			ND(2) ND(1)
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	156-60-5 10061-02-6	80	50,000		ug/L ug/L	ND(1) ND(0.5)			
Trichloroethene Trichlorofluoromethane	79-01-6 75-69-4	5 100,000	5,000	5	ug/L ug/L	ND(1) ND(1)			ND(2)
Vinyl Chloride	75-09-4	2	50,000	2	ug/L ug/L	ND(1)			ND(2)

VERTEX Project No. 27026 Page 1 of 2

TABLE 1 SUMMARY OF NPDES ANALYTICAL DATA ONE CONGRESS STREET BOSTON, MASSACHUSETTS VERTEX PROJECT NO. 27026

0				LUCEDA DOD		NIDDEO TO 100	14''		D00.040
Sample Designation		MassDEP	MassDEP	USEPA RGP Effluent		NPDES-T2-100 Influent	Municipal FH Influent	MWRA Influent	BOS-049 Receiving Water
Sample Type Laboratory Sample ID	CAS Number	RCGW-2	GW-3	TBEL/WGBEL	Units	1606245-01	1710704-01	minuent	1710704-02
Sample Date				Limitations		06/09/2016	06/09/2016		9/15/2017
Semi-Volatile Organic Compound	ds					•		_	
1,2,4-Trichlorobenzene	120-82-1	200	50,000		ug/L	ND(9.7)			ND(5)
1,2-Dichlorobenzene	95-50-1	2,000	2,000		ug/L	ND(9.7)			ND(5)
1,3-Dichlorobenzene	541-73-1	6,000	50,000		ug/L	ND(9.7)			ND(5)
1,4-Dichlorobenzene	106-46-7	60	8,000		ug/L	ND(9.7)			ND(5)
2,4,5-Trichlorophenol	95-95-4	3,000	3,000		ug/L	ND(9.7)			ND(40)
2,4,6-Trichlorophenol	88-06-2	500	500		ug/L	ND(9.7)			ND(10)
2,4-Dichlorophenol 2,4-Dimethylphenol	120-83-2 105-67-9	2,000 40,000	2,000 50,000		ug/L	ND(9.7) ND(48.5)			ND(10) ND(10)
2,4-Dinitrophenol	51-28-5	20,000	20,000		ug/L ug/L	ND(48.5)			ND(10)
2,4-Dinitrotoluene	121-14-2	20,000	50,000		ug/L	ND(9.7)			ND(10)
2,6-Dinitrotoluene	606-20-2	10,000			ug/L	ND(9.7)			ND(10)
2-Chloronaphthalene	91-58-7	100,000			ug/L	ND(9.7)			ND(10)
2-Chlorophenol	95-57-8	7,000	7,000		ug/L	ND(9.7)			ND(10)
2-Methylphenol	95-48-7	50,000	-		ug/L	ND(9.7)			ND(10)
2-Nitrophenol	88-75-5	10,000			ug/L	ND(9.7)			ND(10)
3,3'-Dichlorobenzidine	91-94-1	2,000	2,000		ug/L	ND(19.4)			ND(10)
3+4-Methylphenol	106-44-5				ug/L	ND(19.4)			ND(10)
4-Bromophenyl-phenylether	101-55-3	10,000			ug/L	ND(9.7)			ND(10)
4-Chloroaniline	106-47-8	300	300		ug/L	ND(19.4)			ND(40)
4-Nitrophenol Acetophenone	100-02-7 98-86-2	10,000			ug/L ug/L	ND(48.5) ND(9.7)			ND(10)
Aniline	62-53-3	100,000			ug/L	ND(9.7)			
Azobenzene	103-33-3	5,000			ug/L	ND(19.4)			ND(10)
bis(2-Chloroethoxy)methane	111-91-1	50,000			ug/L	ND(9.7)			
bis(2-Chloroethyl)ether	111-44-4	30	50,000		ug/L	ND(9.7)			ND(10)
bis(2-chloroisopropyl)Ether	39638-32-9	100	50,000		ug/L	ND(9.7)			ND(10)
bis(2-Ethylhexyl)phthalate	117-81-7	50,000	50,000		ug/L	230			ND(10)
Butylbenzylphthalate	85-68-7	10,000			ug/L	11.7			ND(10)
Dibenzofuran	132-64-9	10,000			ug/L	ND(9.7)			
Diethylphthalate	84-66-2	9,000	9,000		ug/L	ND(9.7)			ND(10)
Dimethylphthalate	131-11-3	50,000	50,000		ug/L	ND(9.7)			ND(10)
Di-n-butylphthalate	84-74-2 117-84-0	5,000			ug/L	ND(9.7) ND(9.7)			ND(10) ND(10)
Di-n-octylphthalate Total phthalates	Multiple	100,000		190	ug/L ug/L	241.7			ND ND
Hexachlorobutadiene	87-68-3	50	3,000		ug/L	ND(9.7)			ND(10)
Hexachloroethane	67-72-1	100	50,000		ug/L	ND(4.9)			ND(10)
Isophorone	78-59-1	10,000			ug/L	ND(9.7)			ND(10)
Nitrobenzene	98-95-3	50,000			ug/L	ND(9.7)			ND(10)
N-Nitrosodimethylamine	62-75-9	NA	NA		ug/L	ND(9.7)			ND(10)
Phenol	108-95-2	2,000	2,000	1,080	ug/L	14.5			ND(10)
2-Methylnaphthalene	91-57-6	2,000	20,000		ug/L	ND(3.88)			ND(10)
Acenaphthene	83-32-9	6,000	10,000		ug/L	ND(3.88)			ND(5)
Acenaphthylene	208-96-8	40	40		ug/L	ND(3.88)			ND(5)
Anthracene	120-12-7	30	30	1	ug/L	ND(3.88) ND(0.97)			ND(5)
Benzo(a)anthracene	56-55-3 50-32-8	1,000 500	1,000 500	1	ug/L	ND(0.97) ND(0.97)			ND(0.05) ND(0.1)
Benzo(a)pyrene Benzo(b)fluoranthene	205-99-2	400	400	1	ug/L ug/L	ND(0.97)			ND(0.1)
Benzo(g,h,i)perylene	191-24-2	20	20	1	ug/L	ND(3.88)			ND(5)
Benzo(k)fluoranthene	207-08-9	100	100	1	ug/L	ND(0.97)			ND(0.2)
Chrysene	218-01-9	70	70	1	ug/L	ND(0.97)			ND(0.2)
Dibenzo(a,h)Anthracene	53-70-3	40	40	1	ug/L	ND(0.97)			ND(0.2)
Fluoranthene	206-44-0	200	200		ug/L	ND(3.88)			ND(5)
Fluorene	86-73-7	40	40		ug/L	ND(3.88)			ND(5)
Hexachlorobenzene	118-74-1	1	6,000		ug/L	ND(3.88)			ND(10)
Indeno(1,2,3-cd)Pyrene	193-39-5	100	100		ug/L	ND(0.97)			ND(0.2)
Naphthalene	91-20-3	700	20,000	20	ug/L	ND(3.88)			ND(5)
Pentachlorophenol Phenanthrene	87-86-5 85-01-8	200 10,000	200 10,000	1	ug/L	ND(17.5) ND(3.88)			ND(1) ND(5)
Pyrene Pyrene	129-00-0	10,000	20		ug/L ug/L	ND(3.88) ND(3.88)			ND(5) ND(5)
Group II PAHs	Multiple			100	ug/L	ND(3.00) ND			ND(5)
Classical Chemistry	Walipie			100		, NO			, NO
Hexavalent Chromium	18540-29-9	300	300		ug/L	ND(10)			ND(0.004)
Phenols	PHEN				ug/L	ND(100)			
Total Cyanide (LL)	57-12-5	30	30		ug/L	ND(5)			ND(0.005)
Total Petroleum Hydrocarbon	Multiple	5		5	mg/L	169			
Total Residual Chlorine				0.2	ug/L	280	2.1		0.028
Total Suspended Solids	TSS			30	mg/L	178	0.07		17
Corrosivity (pH) Ammonia		-		Papart	mc/l		9.37	0.42	7.66 0.063
Reactive Cyanide		-		Report	mg/L			0.42	0.003
		-							
Reactive Sulfide Conductivity		-							
		-							
Gasoline Range Organics									
Gasoline Range Organics Diesel Range Organics		-							
Gasoline Range Organics Diesel Range Organics % Solids	7440-36-0	-		206	ug/L	ND(10)			ND(1)
Gasoline Range Organics Diesel Range Organics % Solids Total Metals	7440-36-0 7440-38-2		8000		ug/L ug/L	ND(10) ND(10)			ND(1)
Gasoline Range Organics Diesel Range Organics % Solids Total Metals	7440-38-2 7440-43-9		8000 900 4	206 104 10.2	ug/L ug/L ug/L	ND(10) ND(1)			ND(1) ND(0.2)
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Antimony Arsenic Cadmium Chromium	7440-38-2 7440-43-9 7440-47-3		8000 900	206 104 10.2 323	ug/L ug/L ug/L	ND(10) ND(1) ND(20)			ND(1) ND(0.2) ND(10)
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Antimony Arsenic Cadmium Chromium Chromium III	7440-38-2 7440-43-9 7440-47-3 16065-83-1		8000 900 4 300	206 104 10.2 323 323	ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20)			ND(1) ND(0.2) ND(10) ND(0.01)
Gasoline Range Organics Dissel Range Organics % Solids Total Metals Antimony Arsenic Cadmium Chromium Chromium III Chopper	7440-38-2 7440-43-9 7440-47-3 16065-83-1 7440-50-8	 	8000 900 4 300 	206 104 10.2 323 323 1.9*	ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) ND(20) 55.6			ND(1) ND(0.2) ND(10) ND(0.01) 6.2
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Antimony Arsenic Cadmium Chromium Chromium Chopper	7440-38-2 7440-43-9 7440-47-3 16065-83-1 7440-50-8 7439-89-6		8000 900 4 300 	206 104 10.2 323 323 1.9* 5,000	ug/L ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) ND(20) 55.6 6,910			ND(1) ND(0.2) ND(10) ND(0.01) 6.2 0.13
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Antimony Arsenic Cadmium Chromium Chromium III Copper Iron	7440-38-2 7440-43-9 7440-47-3 16065-83-1 7440-50-8 7439-89-6 7439-92-1	 	8000 900 4 300 10	206 104 10.2 323 323 1.9* 5,000 0.31*	ug/L ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) 55.6 6,910			ND(1) ND(0.2) ND(10) ND(0.01) 6.2 0.13 1.5
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Antimory Arsenic Cadmium Chromium Chromium Chromium Copper Iron Lead	7440-38-2 7440-43-9 7440-47-3 16065-83-1 7440-50-8 7439-89-6 7439-92-1 7439-97-6		8000 900 4 300 10 20	206 104 10.2 323 323 1.9* 5,000 0.31* 0.739	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) S5.6 6,910 10 ND(0.2)			ND(1) ND(0.2) ND(10) ND(0.01) 6.2 0.13 1.5 ND(0.0001)
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Antimory Arsenic Cadmium Chromium Chromium Chromium Chromium Chender Generation Genera	7440-38-2 7440-43-9 7440-47-3 16065-83-1 7440-50-8 7439-89-6 7439-92-1 7439-97-6 7440-02-0		8000 900 4 300 10 20 20	206 104 10.2 323 323 1.9* 5,000 0.31* 0.739 1,450	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) ND(20) 55.6 6,910 10 ND(0.2) ND(0.2)			ND(1) ND(0.2) ND(10) ND(0.01) 6.2 0.13 1.5 ND(0.0001) ND(5)
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Artimory Artenic Cadmium Chromium Chromium Chromium Chromium Chromium Ropper Iron Lead Mercury Nickel Selenium	7440-38-2 7440-43-9 7440-47-3 16065-83-1 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2		8000 900 4 300 10 20 200 100	206 104 10.2 323 323 1.9* 5,000 0.31* 0.739 1,450 235.8	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) ND(20) S5.6 6,910 10 ND(0.2) ND(0.2) ND(0.2) ND(10)			ND(1) ND(0.2) ND(10) ND(0.01) 6.2 0.13 1.5 ND(0.0001) ND(5) 2.3
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Antimony Arsenic Cadmium Chromium Chromium Chromium Chromium Chomium Chomium Chromium Shromium Slickel Selenium Sliker	7440-38-2 7440-47-3 16065-83-1 7440-50-8 7439-89-6 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4		8000 900 4 300 10 20 200 100 7	206 104 10.2 323 323 1.9* 5,000 0.31* 0.739 1,450 235.8 21.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) ND(20) 55.6 6,910 10 ND(0.2) ND(0.2) ND(0.1) ND(0.1) ND(0.5)			ND(1) ND(0.2) ND(0.2) ND(10) ND(0.01) 6.2 0.13 1.5 ND(0.0001) ND(5) 2.3 ND(0.2)
Gasoline Range Organics Disesl Range Organics % Solids Total Metals Antimory Arsenic Cadmium Chromium Chromium III Copper Iron Lead Mercury Nickel Selenium Silver Zinc	7440-38-2 7440-43-9 7440-47-3 16065-83-1 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2		8000 900 4 300 10 20 200 100	206 104 10.2 323 323 1.9* 5,000 0.31* 0.739 1,450 235.8	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) ND(20) 55.6 6,910 10 ND(0.2) ND(20) ND(10) ND(10) ND(0.5) ND(50)			ND(1) ND(0.2) ND(10) ND(0.01) 6.2 0.13 1.5 ND(0.0001) ND(5) 2.3
Gasoline Range Organics Diesel Range Organics % Solids Total Metals Antimony Arsenic Cadmium Chromium Chromium Chromium Chromium Chomium Chomium Chromium Shromium Slickel Selenium Sliker	7440-38-2 7440-47-3 16065-83-1 7440-50-8 7439-89-6 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4		8000 900 4 300 10 20 200 100 7	206 104 10.2 323 323 1.9* 5,000 0.31* 0.739 1,450 235.8 21.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND(10) ND(1) ND(20) ND(20) ND(20) 55.6 6,910 10 ND(0.2) ND(0.2) ND(0.1) ND(0.1) ND(0.5)			ND(1) ND(0.2) ND(0.2) ND(10) ND(0.01) 6.2 0.13 1.5 ND(0.0001) ND(5) 2.3 ND(0.2)

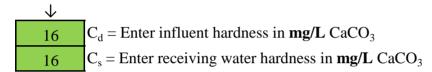
- Notes

 1. CAS Number = Chemical Abstract Service Number.
 2. Regulatory criteria are established under the Massachusetts Contingency Plan (MCP).
 3. MassDEP = Massachusetts Department of Environmental Protection.
 4. = No standard, or sample was not analyzed for specific analyte.
 5. ND = Not Detected above the laboratory reporting limit shown in parenthesis.
 6. µul. = micrograms per liter.
 7. mul. = militagrams per liter.
 8. mu CaCO31. = militagrams per liter.
 9. SU = Standard Units.
 10. † = Field Measured.
 11. TBEL = Technology-Based Effluent Limitation
 12. WQBEL Water Quality-based Effluent Limitation
 13. * = Calculated WQBEL value
 14. MWRA water quality data obtained from http://www.mwra.state.ma.us/monthly/wqupdate/qualSwq.htm. The result was calculated by averaging the available monthly data for 2017 (January June 2017)

VERTEX Project No. 27026 Page 2 of 2

USEPA WQBEL CALCULATION SHEET

Enter number values in green boxes below


Enter values in the units specified

	_
18.87	$Q_R = Enter upstream flow in MGD$
0.144	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

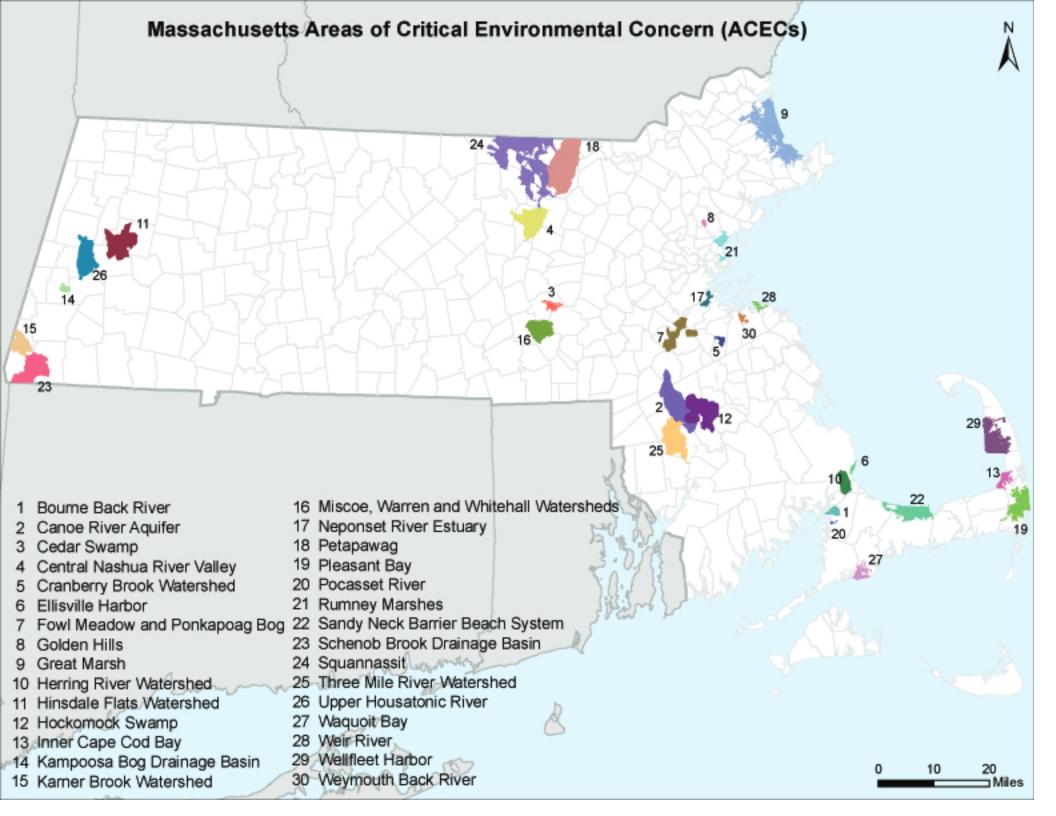
\downarrow	_
7.66	pH in Standard Units
22.99	Temperature in °C
0.063	Ammonia in mg/L
16	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
6.2	Copper in µg/L
0.13	Iron in μg/L
1.5	Lead in µg/L
0	Mercury in μg/L
0	Nickel in μg/L
2.3	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L

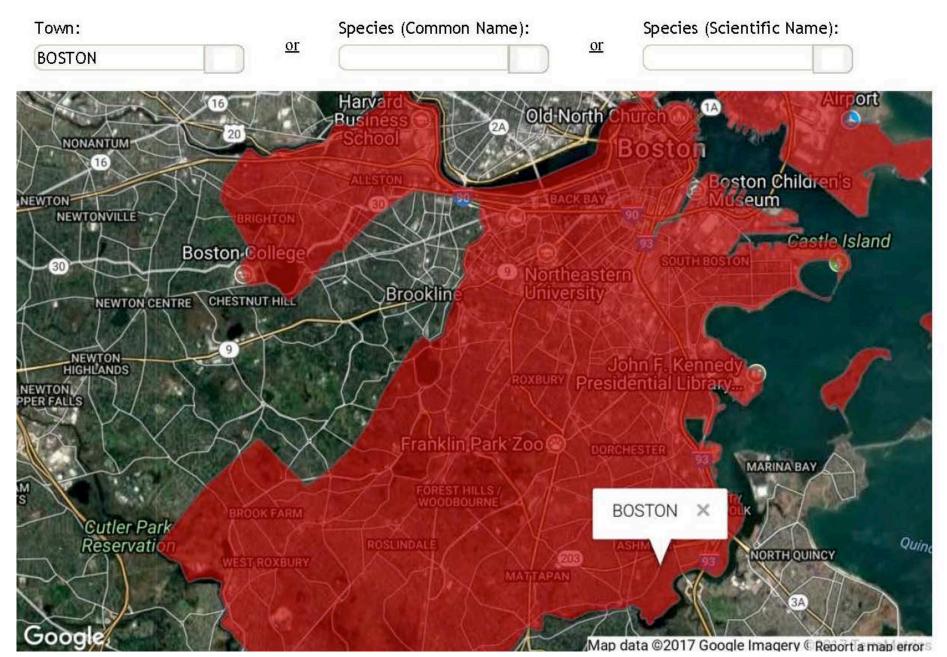
Enter **influent** concentrations in the units specified

2.1 TRC in µg/L 0.42 Ammonia in mg/L 0 Antimony in µg/L 0 Arsenic in µg/L 0 Cadmium in µg/L	
0 Antimony in μg/L 0 Arsenic in μg/L 0 Cadmium in μg/L	
0 Arsenic in μg/L 0 Cadmium in μg/L	
0 Cadmium in μg/L	
, 5	
CI I TITLI OT	
O Chromium III in μg/L	
0 Chromium VI in μg/L	
55.6 Copper in μg/L	
6910 Iron in µg/L	
10 Lead in μg/L	
0 Mercury in μg/L	
0 Nickel in μg/L	
0 Selenium in μg/L	
0 Silver in μg/L	
0 Zinc in μg/L	
O Cyanide in μg/L	
14.5 Phenol in μg/L	
0 Carbon Tetrachloride in μg/	L
0 Tetrachloroethylene in μg/L	ı
241.7 Total Phthalates in µg/L	
0 Diethylhexylphthalate in μg	/L
0 Benzo(a)anthracene in μg/L	,
0 Benzo(a)pyrene in μg/L	
0 Benzo(b)fluoranthene in μg	L
0 Benzo(k)fluoranthene in μg	L
O Chrysene in μg/L	
0 Dibenzo(a,h)anthracene in μ	g/L
0 Indeno(1,2,3-cd)pyrene in μ	g/L
0 Methyl-tert butyl ether in με	ŗ/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Downstream 7Q10 an optional entry for Q_R ; leave 0 if no entry


Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry


pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

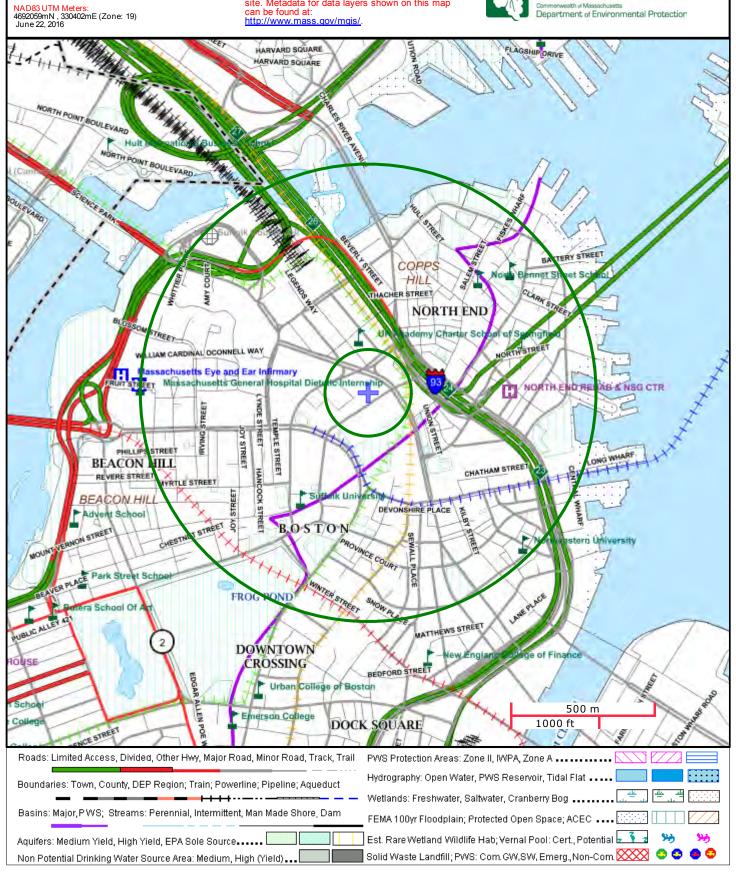
if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required **Dilution Factor** 132.0

A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	1452	μg/L		μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	84507	μg/L		
Arsenic	104	μg/L μg/L	1320	μg/L μg/L		
Cadmium			9.1920			
Chromium III	10.2	μg/L		μg/L		
	323	μg/L	2536.8	μg/L		
Chromium VI	323	μg/L	1509.8	μg/L		
Copper	242	μg/L	1.9	μg/L		
Iron	5000	$\mu g/L$	132025	μg/L		
Lead	160	$\mu g/L$	0.31	$\mu g/L$		
Mercury	0.739	$\mu g/L$	119.61	$\mu g/L$		
Nickel	1450	$\mu g/L$	1461.4	$\mu g/L$		
Selenium	235.8	$\mu g/L$	358.8	μg/L		
Silver	35.1	μg/L	21.4	μg/L		
Zinc	420	μg/L	3348.7	μg/L		
Cyanide	178	mg/L	686.6	μg/L		μg/L
B. Non-Halogenated VOCs	170	mg/L	000.0	μgL		ив/ В
Total BTEX	100	$\mu g/L$				
Benzene	5.0	$\mu g/L$				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L	20612	о/Т		
Phenol C. Halogenated VOCs	1,080	μg/L	39613	μg/L		
Carbon Tetrachloride	4.4	μg/L	211.3	μg/L		
1,2 Dichlorobenzene	600	μg/L		10		
1,3 Dichlorobenzene	320	$\mu g/L$				
1,4 Dichlorobenzene	5.0	$\mu g/L$				
Total dichlorobenzene	70	μg/L				
1,1 Dichloroethane 1,2 Dichloroethane	5.0	μg/L μg/L				
1,1 Dichloroethylene	3.2	μg/L μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	$\mu g/L$				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene Tetrachloroethylene	5.0 5.0	μg/L μg/L	435.7	μg/L		
cis-1,2 Dichloroethylene	70	μg/L μg/L		μg/L		
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	$\mu g/L$		μg/L		
Diethylhexyl phthalate	101	μg/L	290.5	μg/L		
Total Group I Polycyclic Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.5018	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.5018	μg/L		μg/L
Benzo(b)fluoranthene	1.0	$\mu g/L$	0.5018	$\mu g/L$		$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.5018	μg/L		μg/L
Chrysene	1.0	μg/L	0.5018	μg/L		μg/L
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	1.0 1.0	μg/L μg/L	0.5018 0.5018	μg/L μg/L		μg/L μg/L
Total Group II Polycyclic	1.0	MB/L	0.5010	μg/L		ив/ В
Aromatic Hydrocarbons	100	$\mu g/L$				
Naphthalene	20	$\mu g/L$				
E. Halogenated SVOCs	0.000024	~			0.5	/*
Total Polychlorinated Biphenyls	0.000064 1.0	μg/L			0.5	μg/L
Pentachlorophenol F. Fuels Parameters	1.0	μg/L				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	$\mu g/L$	2641	$\mu g/L$		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

CORRESPONDENCE FROM THE U.S. FISH AND WILDLIFE SERVICE

September 13, 2017 Town Species Viewer

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Federal Status	Most Recent Observation
BOSTON	Butterfly/Moth	Abagrotis nefascia	Coastal Heathland Cutworm	SC		2001
BOSTON	Bird	Accipiter striatus	Sharp-shinned Hawk	SC		1898
BOSTON	Vascular Plant	Ageratina aromatica	Lesser Snakeroot	Е		1896
BOSTON	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC		2013
BOSTON	Bird	Ammodramus savannarum	Grasshopper Sparrow	T		1993
BOSTON	Butterfly/Moth	Apodrepanulatrix liberaria	New Jersey Tea Inchworm	Е		Historic
BOSTON	Vascular Plant	Aristida purpurascens	Purple Needlegrass	T		1800s
BOSTON	Vascular Plant	Aristida tuberculosa	Seabeach Needlegrass	T		1877
BOSTON	Vascular Plant	Asclepias verticillata	Linear-leaved Milkweed	T		1878
BOSTON	Bird	Bartramia longicauda	Upland Sandpiper	Е		1993
BOSTON	Vascular Plant	Boechera missouriensis	Green Rock-cress	T		1930
BOSTON	Vascular Plant	Carex striata	Walter's Sedge	Е		Historic
BOSTON	Bird	Charadrius melodus	Piping Plover	Т	Т	2011
BOSTON	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger Beetle	SC		1910
BOSTON	Beetle	Cicindela purpurea	Cow Path Tiger Beetle	SC		1928
BOSTON	Beetle	Cicindela rufiventris hentzii	Eastern Red-bellied Tiger Beetle	T		1927
BOSTON	Vascular Plant	Desmodium cuspidatum	Large-bracted Tick-trefoil	Т		1896
BOSTON	Vascular Plant	Eriophorum gracile	Slender Cottongrass	Т		1885
BOSTON	Bird	Falco peregrinus	Peregrine Falcon	Е		2014
BOSTON	Fish	Gasterosteus aculeatus	Threespine Stickleback	Т		2014
BOSTON	Bird	Gavia immer	Common Loon	SC		1824
BOSTON	Vascular Plant	Houstonia longifolia	Long-leaved Bluet	Е		1918
BOSTON	Vascular Plant	Liatris scariosa var. novae-angliae	New England Blazing Star	SC		1933
BOSTON	Mussel	Ligumia nasuta	Eastern Pondmussel	SC		1841
BOSTON	Vascular Plant	Linum medium var. texanum	Rigid Flax	Т		1909
BOSTON	Vascular Plant	Lycopus rubellus	Gypsywort	Е		1896
BOSTON	Butterfly/Moth	Metarranthis apiciaria	Barrens Metarranthis	Е		1934
BOSTON	Vascular Plant	Myriophyllum alterniflorum	Alternate-flowered Water-milfoil	Е		Historic
BOSTON	Vascular Plant	Ophioglossum pusillum	Adder's-tongue Fern	Т		1884
BOSTON	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	Т		1908
BOSTON	Bird	Pooecetes gramineus	Vesper Sparrow	T		1985
BOSTON	Butterfly/Moth	Pyrrhia aurantiago	Orange Sallow Moth	SC		1988
BOSTON	Vascular Plant	Ranunculus micranthus	Tiny-flowered Buttercup	E		1891
BOSTON	Vascular Plant	Rumex pallidus	Seabeach Dock	T		1984
BOSTON	Vascular Plant	Sanicula odorata	Long-styled Sanicle	T		Historic
BOSTON	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	T		1932
BOSTON	Vascular Plant	Scirpus longii	Long's Bulrush	T		1907
BOSTON	Vascular Plant	Setaria parviflora	Bristly Foxtail	sc		2001
BOSTON	Dragonfly/Damselfly	Somatochlora linearis	Mocha Emerald	SC		2009
BOSTON	Bird	Sterna hirundo	Common Tern	SC		2013
BOSTON	Bird	Sternula antillarum	Least Tern	SC		2013
BOSTON	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC		1909
BOSTON	Reptile	Terrapene carolina	Eastern Box Turtle	SC		1909
BOSTON	Bird	Tyto alba	Barn Owl	SC		1939
BOSTON	Bird	Vermivora chrysoptera	Golden-winged Warbler	E		Historic
BOSTON		Viola brittoniana	Britton's Violet	T		1909
JUSTUN	Vascular Plant	viola Dilloillalla	סיוווטוופ אוטופו	ı		1909


MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: ONE CONGRESS STREET ONE CONGRESS STREET BOSTON, MA

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: http://www.mass.gov/mgis/.

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
2618	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 03301

PHONE: (603)223-2541 FAX: (603)223-0104 URL: www.fws.gov/newengland

June 22, 2016

Consultation Code: 05E1NE00-2016-SLI-1668

Event Code: 05E1NE00-2016-E-02416

Project Name: One Congress Street Development

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

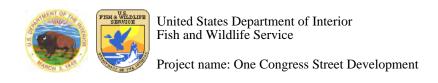
The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan


(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment

Official Species List

Provided by:

New England Ecological Services Field Office 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 03301 (603) 223-2541

http://www.fws.gov/newengland

Consultation Code: 05E1NE00-2016-SLI-1668

Event Code: 05E1NE00-2016-E-02416

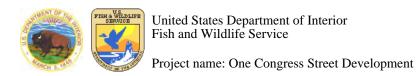
Project Type: DEVELOPMENT

Project Name: One Congress Street Development

Project Description: Renovation of the existing 11 story garage. The garage has 9 floors of parking and 2 floors of office space. The renovations in question will be the relocation of access ramps and drive lanes to provide access around future proposed construction.

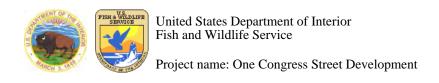
Please Note: The FWS office may have modified the Project Name and/or Project Description, so it may be different from what was submitted in your previous request. If the Consultation Code matches, the FWS considers this to be the same project. Contact the office in the 'Provided by' section of your previous Official Species list if you have any questions or concerns.

United States Department of Interior Fish and Wildlife Service


Project name: One Congress Street Development

Project Location Map:

Project Coordinates: MULTIPOLYGON (((-71.05850011110306 42.36325099040383, -71.06033205986023 42.36236906043124, -71.05977684259415 42.36196277391919, -71.05794221162796 42.36285858264135, -71.05850011110306 42.36325099040383)))


Project Counties: Suffolk, MA

Endangered Species Act Species List

There are a total of 1 threatened or endangered species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. Critical habitats listed under the **Has Critical Habitat** column may or may not lie within your project area. See the **Critical habitats within your project area** section further below for critical habitat that lies within your project. Please contact the designated FWS office if you have questions.

Birds	Status	Has Critical Habitat	Condition(s)
Red Knot (Calidris canutus rufa)	Threatened		

Critical habitats that lie within your project area

There are no critical habitats within your project area.

NATIONAL REGISTER OF HISTORIC PLACES AND MASSACHUSETTS HISTORICAL COMMISSION DOCUMENTATION

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Government Center; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.AV	Sears' Crescent and Sears' Block		Boston	
BOS.1508	McCormack, John W. State Office Building	1 Ashburton PI	Boston	1975
BOS.1509	Massachusetts Teachers Association Building	20 Ashburton PI	Boston	c 1965
BOS.1551	One Beacon Street	1 Beacon St	Boston	c 1969
BOS.1552	Lawyers Building	9 Beacon St	Boston	1922
BOS.1553	Boston Transit Commission Building	15 Beacon St	Boston	1903
BOS.1554	Hotel Bellevue	19-21B Beacon St	Boston	1899
BOS.1576	Beacon Hill Apartment House	126 Bowdoin St	Boston	c 1927
BOS.1577	Church of the New Jerusalem - Church On The Hill	140 Bowdoin St	Boston	1963
BOS.1578	Boston Society of the New Jerusalem Building	144 Bowdoin St	Boston	c 1925
BOS.1579	Way, Samuel A. Carriage House	146-150 Bowdoin St	Boston	1870
BOS.1904	Temporary Home for Women	40-50 Bowker St	Boston	1924
BOS.1582	Bradlee, James Bowdoin Building	50-54 Broad St	Boston	1853
BOS.917	Bowdoin Street Subway Station	Cambridge St	Boston	1916
BOS.918	Scollay Square Under Subway Station	Cambridge St	Boston	1916
BOS.922	Scollay Square - Government Center Subway Station	1 Cambridge St	Boston	1898
BOS.1575	New England Telephone and Telegraph Company	65 Cambridge St	Boston	1930
BOS.1616	Saltonstall, Leverett State Office Building	100 Cambridge St	Boston	1965
BOS.1618	Massachusetts Health, Welfare and Education Center	115 Cambridge St	Boston	r 1965
BOS.1645	One, Two and Three Center Plaza	1-3 Center Plaza	Boston	r 1965
BOS.1656	Kirstein Memorial Library	20 City Hall Ave	Boston	1930
BOS.1657	Boston City Hall	1 City Hall Sq	Boston	r 1965
BOS.1672	Sears' Crescent	38-68 Cornhill St	Boston	1816
BOS.1673	Sears' Block	70-72 Cornhill St	Boston	1848
Wednesday, S	September 13, 2017			Page 1 of 3

ıv. No.	Property Name	Street	Town	Year
OS.1674		38 Court Sq	Boston	1914
OS.1678	Ames Building, The	1 Court St	Boston	c 1889
OS.1671	Old Colony Trust Company	17 Court St	Boston	1923
OS.1679	Old Colony Trust Company Building	17 Court St	Boston	1908
OS.1680	City Bank and Trust Company Building	25 Court St	Boston	1967
OS.1676	Boston City Hall Annex	26 Court St	Boston	1912
OS.1677	Scollay Building	30-40 Court St	Boston	1914
OS.1614	Capital Bank Building	30 Hawkins St	Boston	1972
OS.948	Edison Electric Illuminating Substation	33 Hawkins St	Boston	1927
OS.1783	Overseers of Public Welfare Building	35 Hawkins St	Boston	1924
OS.1782	R. K. O. General Building	40 Hawkins St	Boston	1967
OS.1901	Bulfinch Building	15 New Chardon St	Boston	1968
OS.1902	Royal Globe Insurance Company	25 New Chardon St	Boston	1967
OS.1903	Jewish Family and Children's Service	31 New Chardon St	Boston	1967
OS.1617	Kennedy, John F. Federal Office Building	15 New Sudbury St	Boston	1966
OS.2023	Boston District #1 Police Station	40 New Sudbury St	Boston	1968
OS.2024	Government Center Parking Garage	50 New Sudbury St	Boston	1966
OS.938	Choate, Rufus Statue	Pemberton Sq	Boston	1898
OS.1573	Suffolk County Courthouse Addition	1 Pemberton Sq	Boston	c 1936
OS.1945	Adams, John Courthouse	1 Pemberton Sq	Boston	r 1885
OS.1675	Thompson's Spa	15 Pie Alley	Boston	1922
OS.1970	Boston Five Cents Savings Bank	10 School St	Boston	c 1972
OS.1974	Hunnewell, Horatio Hollis Building	13-15 School St	Boston	1888
OS.1975	Codman, Martha C. Building	19-21 School St	Boston	1917
OS.1976	Niles Building	23-29 School St	Boston	1915
OS.932	Franklin, Benjamin Statue	41-45 School St	Boston	1855
OS.936	Quincy, Josiah Statue	41-45 School St	Boston	1879
OS.1977	Old City Hall	41-45 School St	Boston	1862
OS.1979	Boston City Club	12-14 Somerset St	Boston	1913
OS.1980	Metropolitan District Commission Building	20 Somerset St	Boston	1932
OS.919	Devonshire - State Street Subway Station	State St	Boston	1904
OS.2107	Old State House	State St	Boston	1712
OS.803	King's Chapel Burying Ground	Tremont St	Boston	1630
OS.2064	Hemenway Building	2-16 Tremont St	Boston	1883
OS.2065	Kimball Building	18-28 Tremont St	Boston	1902
OS.2067	King's Chapel	58 Tremont St	Boston	r 1750
OS.2068	Tremont Building	67-81 Tremont St	Boston	1895
OS.2106	One Washington Mall	1 Washington Mall	Boston	1972

Wednesday, September 13, 2017

Inv. No.	Property Name	Street	Town	Year
BOS.2124	Boston Company Building, The	197-235 Washington St	Boston	1968
BOS.1569	Boston Company Building	201 Washington St	Boston	1970
BOS.2125	Coffman's Washington Street Garage	227-245 Washington St	Boston	1966
BOS.2126	Cunningham, Andrew House	277-279 Washington St	Boston	r 1725
BOS.2127	Old Corner Bookstore, The	277-285 Washington St	Boston	1718

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: West End;

Inv. No.	Property Name	Street	Town	Year
BOS.CA	Charles River Basin Historic District		Boston	
BOS.4156		23-25 Anderson St	Boston	1910
BOS.4186	Holiday Inn	5 Blossom St	Boston	1967
BOS.4158	West End House	16-18 Blossom St	Boston	1929
BOS.4159	Winchell Elementary School	24 Blossom St	Boston	1884
BOS.4190	Pratt, Dr. John W. House	Cambridge St	Boston	1892
BOS.9034	Longfellow Bridge - West Boston Bridge	Cambridge St	Boston	c 1900
BOS.4160		106 Cambridge St	Boston	1925
BOS.4161		116-120 Cambridge St	Boston	1928
BOS.4162		122-128 Cambridge St	Boston	1925
BOS.4182	Old West Church	131 Cambridge St	Boston	1806
BOS.4163		138 Cambridge St	Boston	1901
BOS.4183	Otis, First Harrison Gray House	141 Cambridge St	Boston	1796
BOS.4164		148 Cambridge St	Boston	c 1850
BOS.4184	Boston Public Library - West End Branch	155 Cambridge St	Boston	1968
BOS.4165		156-172 Cambridge St	Boston	1926
BOS.4185	Charles River Plaza	161-209 Cambridge St	Boston	1965
BOS.4166	McGauley Building	180 Cambridge St	Boston	1910
BOS.4167	Boston Ladder Company #24 Fire House	200 Cambridge St	Boston	1964
BOS.4168		204 Cambridge St	Boston	c 1928
BOS.4169		210 Cambridge St	Boston	c 1860
BOS.4170	Puffer, Alvin D. Commercial Building	214-218 Cambridge St	Boston	1896
BOS.4171		222-224 Cambridge St	Boston	r 1865
BOS.4172		226-234 Cambridge St	Boston	r 1865
BOS.4173		236-240 Cambridge St	Boston	r 1865
BOS.4187	Exxon Gas Station	239 Cambridge St	Boston	1937
BOS.4174		242 Cambridge St	Boston	1890
Wednesday,	September 13, 2017			Page 1 of 2

Inv. No.	Property Name	Street	Town	Year
BOS.9428		245 Cambridge St	Boston	c 1980
BOS.4175		248-270 Cambridge St	Boston	1925
BOS.4189	Mobil Gas Station	261 Cambridge St	Boston	c 1930
BOS.4176		272-274 Cambridge St	Boston	c 1910
BOS.4177		276-280 Cambridge St	Boston	c 1910
BOS.4178		282-284 Cambridge St	Boston	c 1910
BOS.4179		286-288 Cambridge St	Boston	c 1910
BOS.4191		295-299 Cambridge St	Boston	1912
BOS.4180	Sunoco Gas Station	296 Cambridge St	Boston	1941
BOS.4192		301-303 Cambridge St	Boston	c 1925
BOS.4193		305-307 Cambridge St	Boston	c 1895
BOS.4194		309-311 Cambridge St	Boston	c 1940
BOS.4181	Harvard Gardens Restaurant	310-316 Cambridge St	Boston	c 1925
BOS.4195		313 Cambridge St	Boston	1896
BOS.4196	Boston Edison Electric Company Substation	317-325 Cambridge St	Boston	1924
BOS.4197	Colonial Beacon Oil Company Lubritorium	327 Cambridge St	Boston	1937
BOS.4198	Charles Street Subway Station	Charles Circ	Boston	1932
BOS.927	Charles River Railroad Bridge at North Station	Charles River	Boston	1931
BOS.4200	Suffolk County Jail	215 Charles St	Boston	1851
BOS.9036	East Boston Tunnel Extension	East Boston Tunnel	Boston	1916
BOS.9041	Embankment Road	Embankment Rd	Boston	c 1949
BOS.4201	Massachusetts General Hospital - Bulfinch Building	Fruit St	Boston	c 1823
BOS.9037	Massachusetts General Hospital - Ether Dome	Fruit St	Boston	c 1823
BOS.9033	Beacon Hill Subway Tunnel	Lindall Pl	Boston	1909
BOS.4157		31 N Anderson St	Boston	c 1910
BOS.4202	Registry of Motor Vehicles Building	100 Nashua St	Boston	1932
BOS.9032	East Cambridge Viaduct - Lechmere Viaduct	O'Brien Hwy	Boston	1910
BOS.9039	Charles River Dam Bridge	O'Brien Hwy	Boston	1961
BOS.4203	State Service Center	25 Staniford St	Boston	1970
BOS.4204	Eye Research Institute	99 West Cedar St	Boston	1957
BOS.4205	Twelfth Congregational Church	68 Wm. C. O'Connell Way	Boston	1823
BOS.15230	Saint Joseph's Roman Catholic Church Rectory	70 Wm. C. O'Connell Way	Boston	c 1902

Wednesday, September 13, 2017 Page 2 of 2

LABORATY ANALYTICAL REPORTS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jesse Freeman The Vertex Companies 1 Congress St Boston, MA 02114

RE: 1 Congress St - NPDES (20026)

ESS Laboratory Work Order Number: 1606245

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 3:28 pm, Jun 21, 2016

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

SAMPLE RECEIPT

The following samples were received on June 09, 2016 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the Guidelines Establishing Test Procedures for the Analysis of Pollutants, 40 CFR Part 136, as amended.

Lab Number 1606245-01

Sample Name NPDES-T2-100 **Matrix** Waste Water Analysis

1664A, 245.1, 2540D, 420.1, 4500 CN CE, 4500-Cl E, 504.1, 6010C, 608, 624, 7010, 7196A, 8270D, 8270D SIM

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

PROJECT NARRATIVE

608 Polychlorinated Biphenyls (PCB)

1606245-01 Surrogate recovery(ies) outside of criteria. Reextraction/Reanalysis confirms results (SC).

Decachlorobiphenyl (20% @ 30-150%), Decachlorobiphenyl [2C] (12% @ 30-150%)

608/6630C Organochlorine Pesticides

1606245-01 Percent difference between primary and confirmation results exceeds 40% (P).

Endosulfan I [2C]

1606245-01 Surrogate recovery(ies) outside of criteria. Reextraction/Reanalysis confirms results (SC).

Decachlorobiphenyl (11% @ 30-150%)

CF61439-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Endrin Aldehyde (22% @ 20%)

CZF0252-CCV3 Continuing Calibration %Diff/Drift is above control limit (CD+).

Decachlorobiphenyl [2C] (16% @ 15%), delta-BHC [2C] (18% @ 15%), Endosulfan Sulfate [2C] (17%

@ 15%), Methoxychlor [2C] (36% @ 15%)

624 Volatile Organic Compounds

CF61028-BSD1 Blank Spike recovery is below lower control limit (B-).

Acrolein - Screen (29% @ 70-130%)

CF61028-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Acrolein - Screen (88% @ 25%), Tetrachloroethene (32% @ 25%)

8270C Semi-Volatile Organic Compounds

CZF0245-CCV1 Calibration required quadratic regression (Q).

2,4-Dinitrophenol (88% @ 80-120%), Di-n-octylphthalate (92% @ 80-120%)

CZF0247-CCV1 Calibration required quadratic regression (Q).

2,4-Dinitrophenol (98% @ 80-120%), Di-n-octylphthalate (89% @ 80-120%)

8270D(SIM) Semi-Volatile Organic Compounds

CZF0248-CCV1 <u>Calibration required quadratic regression (Q).</u>

Pentachlorophenol (120% @ 80-120%)

CZF0248-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

2,4,6-Tribromophenol (32% @ 20%)

Classical Chemistry

1606245-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

CF61020-BLK1 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

CF61020-BS1 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

<u>Definitions of Quality Control Parameters</u>

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L

Extraction Method: 3005A

All methods used are in accordance with 40 CFR 136.

Total Metals

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		7010		1	KJK	06/15/16 12:26	50	50	CF61019
Arsenic	ND (10.0)		7010		1	KJK	06/16/16 16:52	50	50	CF61019
Cadmium	ND (1.0)		7010		1	KJK	06/17/16 14:34	50	50	CF61019
Chromium	ND (20.0)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019
Chromium III	ND (20)		6010C		1	MJV	06/10/16 19:28	1	1	[CALC]
Copper	55.6 (10.0)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019
Iron	6910 (100)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019
Lead	10.0 (5.0)		7010		1	KJK	06/15/16 2:03	50	50	CF61019
Mercury	ND (0.20)		245.1		1	AA	06/10/16 12:26	20	40	CF60908
Nickel	ND (20.0)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019
Selenium	ND (10.0)		7010		1	KJK	06/14/16 21:35	50	50	CF61019
Silver	ND (0.5)		7010		1	DEL	06/20/16 13:37	50	50	CF61019
Zinc	ND (50.0)		6010C		1	KJK	06/10/16 19:28	50	50	CF61019

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: TJ

Prepared: 6/10/16 11:10

608 Polychlorinated Biphenyls (PCB)

Analyte Aroclor 1016	Results (MRL) ND (0.09)	MDL	Method 608	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/10/16 17:33	Sequence	Batch CF61011
Aroclor 1221	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1232	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1242	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1248	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1254	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1260	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1262	ND (0.09)		608		1	06/10/16 17:33		CF61011
Aroclor 1268	ND (0.09)		608		1	06/10/16 17:33		CF61011
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		20 %	SC	30-150				
Surrogate: Decachlorohinhenyl [20]		42.0/	SC	20.450				

 Surrogate: Decachlorobiphenyl
 20 %
 SC
 30-150

 Surrogate: Decachlorobiphenyl [2C]
 12 %
 SC
 30-150

 Surrogate: Tetrachloro-m-xylene
 66 %
 30-150

 Surrogate: Tetrachloro-m-xylene [2C]
 97 %
 30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 5

Extraction Method: 3510C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: TJ

Prepared: 6/14/16 15:32

608/6630C Organochlorine Pesticides

Analyte 4.4'-DDD	Results (MRL) ND (0.05)	<u>MDL</u>	Method 608	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/14/16 22:42	Sequence CZF0252	Batch CF61439
4,4′-DDE	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
4,4'-DDT	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Aldrin	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
alpha-BHC	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
beta-BHC	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Chlordane (Total)	ND (0.47)		608		1	06/14/16 22:42	CZF0252	CF61439
delta-BHC	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Dieldrin	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endosulfan I [2C]	P 0.12 (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endosulfan II	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endosulfan Sulfate	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endrin	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Endrin Aldehyde	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
gamma-BHC (Lindane)	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Heptachlor	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Heptachlor Epoxide	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Methoxychlor	ND (0.05)		608		1	06/14/16 22:42	CZF0252	CF61439
Toxaphene	ND (1.21)		608		1	06/14/16 22:42	CZF0252	CF61439

%RecoveryQualifierLimitsSurrogate: Decachlorobiphenyl11 %SC30-150Surrogate: Tetrachloro-m-xylene59 %30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

624 Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	MDL Method 624	Limit DF	<u>Analyzed</u> 06/10/16 14:35	Sequence CZF0192	Batch CF61028
1,1,2,2-Tetrachloroethane	ND (0.5)	624	1	06/10/16 14:35	CZF0192	CF61028
1,1,2-Trichloroethane	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
1,1-Dichloroethane	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
1,1-Dichloroethene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
1,2-Dichlorobenzene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
1,2-Dichloroethane	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
1,2-Dichloropropane	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
1,3-Dichlorobenzene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
1,4-Dichlorobenzene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
2-Chloroethyl vinyl ether	ND (10.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Acrolein - Screen	ND (5.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Acrylonitrile - Screen	ND (5.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Benzene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Bromodichloromethane	1.2 (0.6)	624	1	06/10/16 14:35	CZF0192	CF61028
Bromoform	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Bromomethane	ND (2.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Carbon Tetrachloride	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Chlorobenzene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Chloroethane	ND (2.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Chloroform	3.9 (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Chloromethane	ND (2.0)	624	1	06/10/16 14:35	CZF0192	CF61028
cis-1,2-Dichloroethene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
cis-1,3-Dichloropropene	ND (0.4)	624	1	06/10/16 14:35	CZF0192	CF61028
Dibromochloromethane	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Ethylbenzene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Methylene Chloride	ND (4.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Tetrachloroethene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
Toluene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
trans-1,2-Dichloroethene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028
trans-1,3-Dichloropropene	ND (0.5)	624	1	06/10/16 14:35	CZF0192	CF61028
Trichloroethene	ND (1.0)	624	1	06/10/16 14:35	CZF0192	CF61028

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: GEM

624 Volatile Organic Compounds

Analyte Trichlorofluoromethane Vinyl Chloride	Results (MRL) ND (1.0) ND (1.0)	MDL	Method 624 624	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/10/16 14:35 06/10/16 14:35	Sequence CZF0192 CZF0192	Batch CF61028 CF61028
-		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		98 %		70-130				
Surrogate: 4-Bromofluorobenzene		107 %		70-130				
Surrogate: Dibromofluoromethane		99 %		70-130				
Surrogate: Toluene-d8		93 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1030 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: IBM

Prepared: 6/13/16 19:04

8270C Semi-Volatile Organic Compounds

Analyte 1,2,4-Trichlorobenzene	Results (MRL) ND (9.7)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/15/16 8:29	Sequence CZF0247	Batch CF61340
1,2-Dichlorobenzene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
1,3-Dichlorobenzene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
1,4-Dichlorobenzene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4,5-Trichlorophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4,6-Trichlorophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4-Dichlorophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4-Dimethylphenol	ND (48.5)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4-Dinitrophenol	ND (48.5)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,4-Dinitrotoluene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2,6-Dinitrotoluene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2-Chloronaphthalene	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2-Chlorophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2-Methylphenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
2-Nitrophenol	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
3,3'-Dichlorobenzidine	ND (19.4)		8270D		1	06/15/16 8:29	CZF0247	CF61340
3+4-Methylphenol	ND (19.4)		8270D		1	06/15/16 8:29	CZF0247	CF61340
4-Bromophenyl-phenylether	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
4-Chloroaniline	ND (19.4)		8270D		1	06/15/16 8:29	CZF0247	CF61340
4-Nitrophenol	ND (48.5)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Acetophenone	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Aniline	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Azobenzene	ND (19.4)		8270D		1	06/15/16 8:29	CZF0247	CF61340
bis(2-Chloroethoxy)methane	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
bis(2-Chloroethyl)ether	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
bis(2-chloroisopropyl)Ether	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
bis(2-Ethylhexyl)phthalate	230 (5.8)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Butylbenzylphthalate	11.7 (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Dibenzofuran	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Diethylphthalate	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Dimethylphthalate	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340
Di-n-butylphthalate	ND (9.7)		8270D		1	06/15/16 8:29	CZF0247	CF61340

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1030 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: IBM

Prepared: 6/13/16 19:04

8270C Semi-Volatile Organic Compounds

Analyte Di-n-octylphthalate	Results (MRL) ND (9.7)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/15/16 8:29 Sequence CZF0247	Batch CF61340
Hexachlorobutadiene	ND (9.7)		8270D		1	06/15/16 8:29 CZF0247	CF61340
Hexachloroethane	ND (4.9)		8270D		1	06/15/16 8:29 CZF0247	CF61340
Isophorone	ND (9.7)		8270D		1	06/15/16 8:29 CZF0247	CF61340
Nitrobenzene	ND (9.7)		8270D		1	06/15/16 8:29 CZF0247	CF61340
N-Nitrosodimethylamine	ND (9.7)		8270D		1	06/15/16 8:29 CZF0247	CF61340
Phenol	14.5 (9.7)		8270D		1	06/15/16 8:29 CZF0247	CF61340

Qualifier

I imits

	MCCOVERY	Qualifici	LITTICS
Surrogate: 1,2-Dichlorobenzene-d4	49 %		30-130
Surrogate: 2,4,6-Tribromophenol	43 %		15-110
Surrogate: 2-Chlorophenol-d4	45 %		15-110
Surrogate: 2-Fluorobiphenyl	47 %		30-130
Surrogate: 2-Fluorophenol	35 %		15-110
Surrogate: Nitrobenzene-d5	51 %		30-130
Surrogate: Phenol-d6	46 %		15-110
Surrogate: p-Terphenyl-d14	55 %		30-130

%Recovery

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 1030 Final Volume: 0.25

Extraction Method: 3520C

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: IBM

Prepared: 6/13/16 19:04

All methods used are in accordance with 40 CFR 136.

8270D(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Acenaphthene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Acenaphthylene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Anthracene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Benzo(a)anthracene	ND (0.97)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Benzo(a)pyrene	ND (0.97)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Benzo(b)fluoranthene	ND (0.97)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Benzo(g,h,i)perylene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Benzo(k)fluoranthene	ND (0.97)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Chrysene	ND (0.97)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Dibenzo(a,h)Anthracene	ND (0.97)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Fluoranthene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Fluorene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Hexachlorobenzene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Indeno(1,2,3-cd)Pyrene	ND (0.97)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Naphthalene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Pentachlorophenol	ND (17.5)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Phenanthrene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340
Pyrene	ND (3.88)		8270D SIM		20	06/15/16 14:57	CZF0248	CF61340

%Recovery

Qualifier

Limits

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100

Date Sampled: 06/09/16 12:00

Percent Solids: N/A

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

All methods used are in accordance with 40 CFR 136.

Classical Chemistry

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u>	DF	Analyst	<u>Analyzed</u>	<u>Units</u>	Batch
Hexavalent Chromium	ND (10)	7196A		1	MJV	06/09/16 18:55	ug/L	CF60951
Phenols	ND (100)	420.1		1	EEM	06/16/16 13:35	ug/L	CF61630
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	06/16/16 11:40	ug/L	CF61628
Total Petroleum Hydrocarbon	169 (5)	1664A		1	CRR	06/15/16 14:52	mg/L	CF61440
Total Residual Chlorine	280 (10)	4500-Cl E		1	EEM	06/10/16 11:20	ug/L	CF61020
Total Suspended Solids	178 (10)	2540D		1	JLK	06/14/16 21:07	mg/L	CF61427

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

All methods used are in accordance with 40 CFR 136.

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES Client Sample ID: NPDES-T2-100 Date Sampled: 06/09/16 12:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1606245 ESS Laboratory Sample ID: 1606245-01

Sample Matrix: Waste Water

Units: ug/L Analyst: JXS

Prepared: 6/13/16 11:00

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) ND (0.015)	<u>MDL</u>	<u>Method</u> 504.1	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/13/16 14:03	<u>Sequence</u>	Batch CF61311
	9/	6Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		107 %		30-150				
Surrogate: Pentachloroethane [2C]		107 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Satch CF60908 - 245.1/747	70A									
Blank										
1ercury	ND	0.20	ug/L							
Blank										
Mercury	ND	0.20	ug/L							
Blank										
Mercury	ND	0.20	ug/L							
.cs										
Mercury	5.92	0.20	ug/L	6.000		99	85-115			
.CS Dup										
Mercury	5.85	0.20	ug/L	6.000		97	85-115	1	20	
	5.05	0.20	ug/ L	0.000			05 115			
Batch CF60951 - [CALC]										
Blank										
Chromium III	ND	10	ug/L							
LCS										
Chromium III	ND		ug/L							
.CS Dup										
Chromium III	ND		ug/L							
Batch CF61019 - 3005A										
Blank										
Antimony	ND	10.0	ug/L							
Arsenic	ND	10.0	ug/L							
Cadmium	ND	1.0	ug/L							
Chromium	ND	20.0	ug/L							
Chromium III	ND	20	ug/L							
Copper	ND	10.0	ug/L							
iron	ND	100	ug/L							
ead	ND	5.0	ug/L							
Nickel	ND	20.0	ug/L							
Selenium	ND	10.0	ug/L							
Silver	ND	0.5	ug/L							
Silver 	ND	5.0	ug/L							
Zinc	ND	50.0	ug/L							
LCS										
Antimony	464	250	ug/L	500.0		93	80-120			
Arsenic	578	250	ug/L	500.0		116	80-120			
Cadmium	253	500	ug/L	250.0		101	80-120			
Chromium	503	20.0	ug/L	500.0		101	80-120			
Chromium III	503	20	ug/L							
Copper	479	10.0	ug/L	500.0		96	80-120			
ron	2510	100	ug/L	2500		100	80-120			
Lead	493	125	ug/L	500.0		99	80-120			
Nickel Selenium	496	20.0	ug/L	500.0 1000		99	80-120 80-120			
APIPUULIM	1030	250	ug/L	1000		103	XU-170			

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Batch CF61019 - 3005A										
Silver	249	5.0	ug/L	250.0		100	80-120			
Silver	271	50.0	ug/L	250.0		108	80-120			
Zinc	563	50.0	ug/L	500.0		113	80-120			
LCS Dup										
Antimony	469	250	ug/L	500.0		94	80-120	1	20	
Arsenic	586	250	ug/L	500.0		117	80-120	1	20	
Cadmium	263	500	ug/L	250.0		105	80-120	4	20	
Chromium	492	20.0	ug/L	500.0		98	80-120	2	20	
Chromium III	492	20	ug/L							
Copper	473	10.0	ug/L	500.0		95	80-120	1	20	
Iron	2470	100	ug/L	2500		99	80-120	2	20	
Lead	496	125	ug/L	500.0		99	80-120	0.5	20	
Nickel	489	20.0	ug/L	500.0		98	80-120	2	20	
Selenium	1060	250	ug/L	1000		106	80-120	2	20	
Silver	244	5.0	ug/L	250.0		98	80-120	2	20	
Silver	268	50.0	ug/L	250.0		107	80-120	1	20	
Zinc	493	50.0	ug/L	500.0		99	80-120	13	20	

608 Polychlorinated Biphenyls (PCB)

Batch CF61011 - 3510C									
Blank									
Aroclor 1016	ND	0.10	ug/L						
Aroclor 1221	ND	0.10	ug/L						
Aroclor 1232	ND	0.10	ug/L						
Aroclor 1242	ND	0.10	ug/L						
Aroclor 1248	ND	0.10	ug/L						
Aroclor 1254	ND	0.10	ug/L						
Aroclor 1260	ND	0.10	ug/L						
Aroclor 1262	ND	0.10	ug/L						
Aroclor 1268	ND	0.10	ug/L						
Surrogate: Decachlorobiphenyl	0.0300		ug/L	0.05000	60	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0401		ug/L	0.05000	80	30-150			
Surrogate: Tetrachloro-m-xylene	0.0181		ug/L	0.05000	36	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0210		ug/L	0.05000	42	30-150			
LCS									
Aroclor 1016	0.62	0.10	ug/L	1.000	62	40-140			
Aroclor 1260	0.71	0.10	ug/L	1.000	71	40-140			
Surrogate: Decachlorobiphenyl	0.0346		ug/L	0.05000	69	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0395		ug/L	0.05000	<i>79</i>	30-150			
Surrogate: Tetrachloro-m-xylene	0.0211		ug/L	0.05000	42	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0229		ug/L	0.05000	46	30-150			
LCS Dup									
Aroclor 1016	0.65	0.10	ug/L	1.000	65	40-140	4	50	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

608 Polychlorinated Biphenyls (PCB)

Batch CF61011 - 3510C								
Aroclor 1260	0.72	0.10	ug/L	1.000	72	40-140	2	50
Surrogate: Decachlorobiphenyl	0.0343		ug/L	0.05000	69	30-150		
Surrogate: Decachlorobiphenyl [2C]	0.0410		ug/L	0.05000	<i>82</i>	30-150		
Surrogate: Tetrachloro-m-xylene	0.0211		ug/L	0.05000	42	30-150		
Surrogate: Tetrachloro-m-xylene [2C]	0.0231		ug/L	0.05000	46	30-150		

608/6630C Organochlorine Pesticides

		608/6630C	Organochlorine Pesticides	
Batch CF61439 - 3510C				
Blank				
4,4´-DDD	ND	0.05	ug/L	
4,4'-DDD [2C]	ND	0.05	ug/L	
4,4 '-DDE	ND	0.05	ug/L	
4,4'-DDE [2C]	ND	0.05	ug/L	
4,4´-DDT	ND	0.05	ug/L	
4,4'-DDT [2C]	ND	0.05	ug/L	
Aldrin	ND	0.05	ug/L	
Aldrin [2C]	ND	0.05	ug/L	
alpha-BHC	ND	0.05	ug/L	
alpha-BHC [2C]	ND	0.05	ug/L	
beta-BHC	ND	0.05	ug/L	
beta-BHC [2C]	ND	0.05	ug/L	
Chlordane (Total)	ND	0.50	ug/L	
Chlordane (Total) [2C]	ND	0.50	ug/L	
delta-BHC	ND	0.05	ug/L	
delta-BHC [2C]	ND	0.05	ug/L	
Dieldrin	ND	0.05	ug/L	
Dieldrin [2C]	ND	0.05	ug/L	
Endosulfan I	ND	0.05	ug/L	
Endosulfan I [2C]	ND	0.05	ug/L	
Endosulfan II	ND	0.05	ug/L	
Endosulfan II [2C]	ND	0.05	ug/L	
Endosulfan Sulfate	ND	0.05	ug/L	
Endosulfan Sulfate [2C]	ND	0.05	ug/L	
Endrin	ND	0.05	ug/L	
Endrin [2C]	ND	0.05	ug/L	
Endrin Aldehyde	ND	0.05	ug/L	
Endrin Aldehyde [2C]	ND	0.05	ug/L	
gamma-BHC (Lindane)	ND	0.05	ug/L	
gamma-BHC (Lindane) [2C]	ND	0.05	ug/L	
Heptachlor	ND	0.05	ug/L	
Heptachlor [2C]	ND	0.05	ug/L	
Heptachlor Epoxide	ND	0.05	ug/L	
Heptachlor Epoxide [2C]	ND	0.05	ug/L	
Methoxychlor	ND	0.05	ug/L	
•			- -	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		608/6630C	Organochlo	orine Pest	icides					
Batch CF61439 - 3510C										
Methoxychlor [2C]	ND	0.05	ug/L							
Toxaphene	ND	1.30	ug/L							
Toxaphene [2C]	ND	1.30	ug/L							
Surrogate: Decachlorobiphenyl	0.182		ug/L	0.2500		<i>73</i>	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.253		ug/L	0.2500		101	30-150			
Surrogate: Tetrachloro-m-xylene	0.0957		ug/L	0.2500		38	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0935		ug/L	0.2500		37	30-150			
LCS										
4,4´-DDD	0.24	0.05	ug/L	0.2500		98	40-140			
4,4 '-DDD [2C]	0.22	0.05	ug/L	0.2500		87	40-140			
4,4 ′-DDE	0.23	0.05	ug/L	0.2500		92	40-140			
4,4´-DDE [2C]	0.24	0.05	ug/L	0.2500		94	40-140			
1,4´-DDT	0.23	0.05	ug/L	0.2500		93	40-140			
4,4'-DDT [2C]	0.25	0.05	ug/L	0.2500		102	40-140			
Aldrin	0.14	0.05	ug/L	0.2500		56	40-140			
Aldrin [2C]	0.14	0.05	ug/L	0.2500		56	40-140			
alpha-BHC	0.24	0.05	ug/L	0.2500		94	40-140			
lpha-BHC [2C]	0.23	0.05	ug/L	0.2500		92	40-140			
peta-BHC	0.23	0.05	ug/L	0.2500		93	40-140			
peta-BHC [2C]	0.25	0.05	ug/L	0.2500		101	40-140			
delta-BHC	0.23	0.05	ug/L	0.2500		93	40-140			
lelta-BHC [2C]	0.26	0.05	ug/L	0.2500		105	40-140			
Dieldrin	0.25	0.05	ug/L	0.2500		100	40-140			
Dieldrin [2C]	0.28	0.05	ug/L	0.2500		110	40-140			
Endosulfan I	0.24	0.05	ug/L	0.2500		94	40-140			
Endosulfan I [2C]	0.25	0.05	ug/L	0.2500		99	40-140			
Endosulfan II	0.23	0.05	ug/L	0.2500		93	40-140			
Endosulfan II [2C]	0.25	0.05	ug/L	0.2500		100	40-140			
Endosulfan Sulfate	0.24	0.05	ug/L	0.2500		95	40-140			
Endosulfan Sulfate [2C]	0.31	0.05	ug/L	0.2500		122	40-140			
Endrin	0.26	0.05	ug/L	0.2500		104	40-140			
Endrin [2C]	0.28	0.05	ug/L	0.2500		110	40-140			
Endrin Aldehyde	0.24	0.05	ug/L	0.2500		95	40-140			
Endrin Aldehyde [2C]	0.23	0.05	ug/L	0.2500		92	40-140			
gamma-BHC (Lindane)	0.24	0.05	ug/L	0.2500		97	40-140			
gamma-BHC (Lindane) [2C]	0.26	0.05	ug/L	0.2500		105	40-140			
Heptachlor	0.16	0.05	ug/L	0.2500		64	40-140			
Heptachlor [2C]	0.17	0.05	ug/L	0.2500		67	40-140			
Heptachlor Epoxide	0.25	0.05	ug/L	0.2500		99	40-140			
Heptachlor Epoxide [2C]	0.26	0.05	ug/L	0.2500		104	40-140			
Methoxychlor	0.26	0.05	ug/L	0.2500		103	40-140			
Methoxychlor [2C]	0.31	0.05	ug/L	0.2500		125	40-140			
	0.51		-3/-							
Surrogate: Decachlorobiphenyl	0.185		ug/L	0.2500		74	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.225		ug/L	0.2500		90	30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

608/6630C Organochlorine Pesticides

Surrogate: Tetrachloro-m-xylene	0.139		ug/L	0.2500	<i>55</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.126		ug/L	0.2500	50	30-150			
LCS Dup			- 3,						
I,4´-DDD	0.22	0.05	ug/L	0.2500	86	40-140	13	20	
1,4´-DDD [2C]	0.20	0.05	ug/L	0.2500	80	40-140	9	20	
1,4´-DDE	0.21	0.05	ug/L	0.2500	82	40-140	12	20	
i,4 ´-DDE [2C]	0.20	0.05	ug/L	0.2500	81	40-140	15	20	
I,4´-DDT	0.20	0.05	ug/L	0.2500	80	40-140	15	20	
,4´-DDT [2C]	0.22	0.05	ug/L	0.2500	86	40-140	17	20	
ldrin	0.14	0.05	ug/L	0.2500	57	40-140	2	20	
ldrin [2C]	0.14	0.05	ug/L	0.2500	56	40-140	0.2	20	
Ipha-BHC	0.14			0.2500	83		13	20	
lpha-BHC [2C]	0.21	0.05 0.05	ug/L ug/L	0.2500	79	40-140 40-140	15 15	20	
eta-BHC	0.20	0.05	ug/L ug/L	0.2500	79 81	40-140	15	20	
	0.20				81 87		14 15	20	
eta-BHC [2C]		0.05	ug/L	0.2500		40-140			
elta-BHC	0.20	0.05	ug/L	0.2500	81	40-140	15	20	
elta-BHC [2C]	0.22	0.05	ug/L	0.2500	88	40-140	18	20	
ieldrin	0.21	0.05	ug/L	0.2500	86	40-140	16	20	
vieldrin [2C]	0.23	0.05	ug/L	0.2500	92	40-140	18	20	
ndosulfan I	0.20	0.05	ug/L	0.2500	79	40-140	18	20	
ndosulfan I [2C]	0.21	0.05	ug/L	0.2500	82	40-140	19	20	
ndosulfan II	0.20	0.05	ug/L	0.2500	81	40-140	13	20	
ndosulfan II [2C]	0.21	0.05	ug/L	0.2500	85	40-140	16	20	
ndosulfan Sulfate	0.20	0.05	ug/L	0.2500	78	40-140	19	20	
ndosulfan Sulfate [2C]	0.26	0.05	ug/L	0.2500	103	40-140	17	20	
ndrin	0.22	0.05	ug/L	0.2500	89	40-140	16	20	
ndrin [2C]	0.23	0.05	ug/L	0.2500	92	40-140	18	20	
ndrin Aldehyde	0.19	0.05	ug/L	0.2500	77	40-140	22	20	D+
indrin Aldehyde [2C]	0.19	0.05	ug/L	0.2500	77	40-140	18	20	
amma-BHC (Lindane)	0.21	0.05	ug/L	0.2500	84	40-140	15	20	
amma-BHC (Lindane) [2C]	0.22	0.05	ug/L	0.2500	89	40-140	17	20	
Heptachlor	0.16	0.05	ug/L	0.2500	62	40-140	3	20	
Heptachlor [2C]	0.16	0.05	ug/L	0.2500	64	40-140	5	20	
Heptachlor Epoxide	0.21	0.05	ug/L	0.2500	86	40-140	14	20	
leptachlor Epoxide [2C]	0.22	0.05	ug/L	0.2500	87	40-140	17	20	
lethoxychlor	0.22	0.05	ug/L	0.2500	89	40-140	15	20	
1ethoxychlor [2C]	0.27	0.05	ug/L	0.2500	106	40-140	16	20	
Surrogate: Decachlorobiphenyl	0.136		ug/L	0.2500	54	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.171		ug/L	0.2500	68	30-150			
Surrogate: Tetrachloro-m-xylene	0.116		ug/L	0.2500	47	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.110		ug/L	0.2500	44	30-150			

624 Volatile Organic Compounds

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

Batch CF61028 - 5030B

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

624	Vo	latile	Orgar	nic (Compo	unds
-----	----	--------	-------	-------	-------	------

Plank						
Blank	ND.	- 10				
,1,1-Trichloroethane	ND	1.0	ug/L			
,1,2,2-Tetrachloroethane	ND	0.5	ug/L			
,1,2-Trichloroethane	ND	1.0	ug/L			
,1-Dichloroethane	ND	1.0	ug/L			
,1-Dichloroethene	ND	1.0	ug/L			
,2-Dichlorobenzene	ND	1.0	ug/L			
,2-Dichloroethane	ND	1.0	ug/L			
,2-Dichloropropane	ND	1.0	ug/L			
,3-Dichlorobenzene	ND	1.0	ug/L			
,4-Dichlorobenzene	ND	1.0	ug/L			
-Chloroethyl vinyl ether	ND	10.0	ug/L			
crolein - Screen	ND	5.0	ug/L			
crylonitrile - Screen	ND	5.0	ug/L			
enzene	ND	1.0	ug/L			
romodichloromethane	ND	0.6	ug/L			
Bromoform	ND	1.0	ug/L			
romomethane	ND	2.0	ug/L			
arbon Tetrachloride	ND	1.0	ug/L			
hlorobenzene	ND	1.0	ug/L			
hloroethane	ND	2.0	ug/L			
hloroform	ND	1.0	ug/L			
hloromethane	ND	2.0	ug/L			
s-1,2-Dichloroethene	ND	1.0	ug/L			
s-1,3-Dichloropropene	ND	0.4	ug/L			
ibromochloromethane	ND	1.0	ug/L			
thylbenzene	ND	1.0	ug/L			
lethylene Chloride	ND	4.0	ug/L			
etrachloroethene	ND	1.0	ug/L			
oluene	ND	1.0	ug/L			
ans-1,2-Dichloroethene	ND	1.0	ug/L			
rans-1,3-Dichloropropene	ND	0.5	ug/L			
richloroethene	ND	1.0	ug/L			
richlorofluoromethane	ND	1.0	ug/L			
inyl Chloride	ND	1.0	ug/L			
	23.6		ug/L	25.00	94	<i>70-130</i>
Surrogate: 1,2-Dichloroethane-d4	26.6		ug/L	25.00	106	70-130
urrogate: 4-Bromofluorobenzene urrogate: Dibromofluoromethane	24.7		ug/L	25.00	99	70-130
Surrogate: Toluene-d8	23.3		ug/L	25.00	93	70-130
-			-51-			
1.1 Trichloroothano	10.1		11 m /1	10.00	101	70 120
,1,1-Trichloroethane	10.1		ug/L	10.00	101	70-130
,1,2,2-Tetrachloroethane	8.6		ug/L	10.00	86	70-130
1,2-Trichloroethane	8.5		ug/L	10.00	85	70-130
,1-Dichloroethane	9.1		ug/L	10.00	91	70-130
,1-Dichloroethene	10.4		ug/L	10.00	104	70-130

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
				Spike	Source		%REC		RPD	

	62	24 Volatile Organic	Compounds					
Batch CF61028 - 5030B								
1,2-Dichlorobenzene	10.6	ug/L	10.00	106	70-130			
1,2-Dichloroethane	9.8	ug/L	10.00	98	70-130			
1,2-Dichloropropane	8.3	ug/L	10.00	83	70-130			
1,3-Dichlorobenzene	10.4	ug/L	10.00	104	70-130			
1,4-Dichlorobenzene	10.4	ug/L	10.00	104	70-130			
2-Chloroethyl vinyl ether	46.2	ug/L	50.00	92	70-130			
Acrolein - Screen	7.5	ug/L	10.00	75	70-130			
Acrylonitrile - Screen	8.3	ug/L	10.00	83	70-130			
Benzene	9.6	ug/L	10.00	96	70-130			
Bromodichloromethane	9.4	ug/L	10.00	94	70-130			
Bromoform	9.1	ug/L	10.00	91	70-130			
Bromomethane	11.9	ug/L	10.00	119	70-130			
Carbon Tetrachloride	10.2	ug/L	10.00	102	70-130			
Chlorobenzene	11.0	ug/L	10.00	110	70-130			
Chloroethane	8.7	ug/L	10.00	87	70-130			
Chloroform	9.5	ug/L	10.00	95	70-130			
Chloromethane	8.4	ug/L	10.00	84	70-130			
cis-1,2-Dichloroethene	10.2	ug/L	10.00	102	70-130			
cis-1,3-Dichloropropene	9.9	ug/L	10.00	99	70-130			
Dibromochloromethane	10.8	ug/L	10.00	108	70-130			
Ethylbenzene	10.1	ug/L	10.00	101	70-130			
Methylene Chloride	9.2	ug/L	10.00	92	70-130			
Tetrachloroethene	10.0	ug/L	10.00	100	70-130			
Toluene	10.3	ug/L	10.00	103	70-130			
trans-1,2-Dichloroethene	9.9	ug/L	10.00	99	70-130			
trans-1,3-Dichloropropene	9.2	ug/L	10.00	92	70-130			
Trichloroethene	9.2	ug/L	10.00	92	70-130			
Trichlorofluoromethane	9.4	ug/L	10.00	94	70-130			
Vinyl Chloride	9.7	ug/L	10.00	97	70-130			
Surrogate: 1,2-Dichloroethane-d4	25.2	ug/L	25.00	101	70-130			
Surrogate: 4-Bromofluorobenzene	25.7	ug/L	25.00	103	70-130			
Surrogate: Dibromofluoromethane	25.4	ug/L	25.00	102	70-130			
Surrogate: Toluene-d8	24.6	ug/L	25.00	98	70-130			
LCS Dup								
1,1,1-Trichloroethane	9.6	ug/L	10.00	96	70-130	5	25	
1,1,2,2-Tetrachloroethane	9.8	ug/L	10.00	98	70-130	13	25	
1,1,2-Trichloroethane	9.4	ug/L	10.00	94	70-130	10	25	
1,1-Dichloroethane	9.7	ug/L	10.00	97	70-130	7	25	
1,1-Dichloroethene	9.7	ug/L	10.00	97	70-130	7	25	
1,2-Dichlorobenzene	10.4	ug/L	10.00	104	70-130	2	25	
1,2-Dichloroethane	9.8	ug/L	10.00	98	70-130	0.7	25	
1,2-Dichloropropane	8.8	ug/L	10.00	88	70-130	7	25	
1,3-Dichlorobenzene	10.3	ug/L	10.00	103	70-130	0.6	25	
1,4-Dichlorobenzene	10.1	ug/L	10.00	101	70-130	3	25	
2-Chloroethyl vinyl ether	52.2	ug/L	50.00	104	70-130	12	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		624 Vola	tile Organic	Compou	nds					
Batch CF61028 - 5030B										
Acrolein - Screen	2.9		ug/L	10.00		29	70-130	88	25	B-, D+

Dutch Cr 01010 S0S0B								
Acrolein - Screen	2.9	ug/L	10.00	29	70-130	88	25	B-, D+
Acrylonitrile - Screen	9.4	ug/L	10.00	94	70-130	12	20	
Benzene	10.2	ug/L	10.00	102	70-130	6	25	
Bromodichloromethane	9.8	ug/L	10.00	98	70-130	4	25	
Bromoform	9.9	ug/L	10.00	99	70-130	8	25	
Bromomethane	10.1	ug/L	10.00	101	70-130	16	25	
Carbon Tetrachloride	9.9	ug/L	10.00	99	70-130	3	25	
Chlorobenzene	10.4	ug/L	10.00	104	70-130	5	25	
Chloroethane	8.5	ug/L	10.00	85	70-130	2	25	
Chloroform	9.4	ug/L	10.00	94	70-130	2	25	
Chloromethane	8.2	ug/L	10.00	82	70-130	3	25	
cis-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130	1	25	
cis-1,3-Dichloropropene	9.9	ug/L	10.00	99	70-130	0.6	25	
Dibromochloromethane	10.0	ug/L	10.00	100	70-130	8	25	
Ethylbenzene	10.0	ug/L	10.00	100	70-130	0.3	25	
Methylene Chloride	10.4	ug/L	10.00	104	70-130	13	25	
Tetrachloroethene	7.3	ug/L	10.00	73	70-130	32	25	D+
Toluene	9.6	ug/L	10.00	96	70-130	7	25	
trans-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130	2	25	
trans-1,3-Dichloropropene	9.4	ug/L	10.00	94	70-130	2	25	
Trichloroethene	9.7	ug/L	10.00	97	70-130	5	25	
Trichlorofluoromethane	9.0	ug/L	10.00	90	70-130	5	25	
Vinyl Chloride	9.3	ug/L	10.00	93	70-130	4	25	
Surrogate: 1,2-Dichloroethane-d4	24.7	ug/L	25.00	99	70-130			
Surrogate: 4-Bromofluorobenzene	24.7	ug/L	25.00	99	70-130			
Surrogate: Dibromofluoromethane	24.7	ug/L	25.00	99	70-130			
Surrogate: Toluene-d8	24.6	ug/L	25.00	98	70-130			

8270C Semi-Volatile Organic Compounds

Batch CF61340 - 3520C		

Blank					
1,2,4-Trichlorobenzene	ND	10.0	ug/L		
1,2-Dichlorobenzene	ND	10.0	ug/L		
1,3-Dichlorobenzene	ND	10.0	ug/L		
1,4-Dichlorobenzene	ND	10.0	ug/L		
2,4,5-Trichlorophenol	ND	10.0	ug/L		
2,4,6-Trichlorophenol	ND	10.0	ug/L		
2,4-Dichlorophenol	ND	10.0	ug/L		
2,4-Dimethylphenol	ND	50.0	ug/L		
2,4-Dinitrophenol	ND	50.0	ug/L		
2,4-Dinitrotoluene	ND	10.0	ug/L		
2,6-Dinitrotoluene	ND	10.0	ug/L		
2-Chloronaphthalene	ND	10.0	ug/L		
2-Chlorophenol	ND	10.0	ug/L		
2-Methylphenol	ND	10.0	ug/L		

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C Semi-Volatile	Organic	Compound	S
---------------------	---------	----------	---

Batch CF61340 - 3520C							
2-Nitrophenol	ND	10.0	ug/L				
3,3 ´-Dichlorobenzidine	ND	20.0	ug/L				
3+4-Methylphenol	ND	20.0	ug/L				
4-Bromophenyl-phenylether	ND	10.0	ug/L				
4-Chloroaniline	ND	20.0	ug/L				
4-Nitrophenol	ND	50.0	ug/L				
Acetophenone	ND	10.0	ug/L				
Aniline	ND	10.0	ug/L				
Azobenzene	ND	20.0	ug/L				
bis(2-Chloroethoxy)methane	ND	10.0	ug/L				
bis(2-Chloroethyl)ether	ND	10.0	ug/L				
bis(2-chloroisopropyl)Ether	ND	10.0	ug/L				
bis(2-Ethylhexyl)phthalate	ND	6.0	ug/L				
Butylbenzylphthalate	ND	10.0	ug/L				
Dibenzofuran	ND	10.0	ug/L				
Diethylphthalate	ND	10.0	ug/L				
Dimethylphthalate	ND	10.0	ug/L				
Di-n-butylphthalate	ND	10.0	ug/L				
Di-n-octylphthalate	ND	10.0	ug/L				
Hexachlorobutadiene	ND	10.0	ug/L				
Hexachloroethane	ND	5.0	ug/L				
Isophorone	ND	10.0	ug/L				
Nitrobenzene	ND	10.0	ug/L				
N-Nitrosodimethylamine	ND	10.0	ug/L				
Phenol	ND	10.0	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	78.0		ug/L	100.0	<i>78</i>	30-130	
Surrogate: 2,4,6-Tribromophenol	113		ug/L	150.0	<i>75</i>	15-110	
Surrogate: 2-Chlorophenol-d4	116		ug/L	150.0	77	15-110	
Surrogate: 2-Fluorobiphenyl	79.9		ug/L	100.0	80	30-130	
Surrogate: 2-Fluorophenol	99.1		ug/L	150.0	66	15-110	
Surrogate: Nitrobenzene-d5	85.7		ug/L	100.0	86	30-130	
Surrogate: Phenol-d6	121		ug/L	150.0	81	15-110	
Surrogate: p-Terphenyl-d14	91.5		ug/L	100.0	91	30-130	
LCS							
1,2,4-Trichlorobenzene	75.1	10.0	ug/L	100.0	75	40-140	
1,2-Dichlorobenzene	70.1	10.0	ug/L	100.0	70	40-140	
1,3-Dichlorobenzene	66.6	10.0	ug/L	100.0	67	40-140	
1,4-Dichlorobenzene	66.6	10.0	ug/L	100.0	67	40-140	
2,4,5-Trichlorophenol	99.2	10.0	ug/L	100.0	99	30-130	
2,4,6-Trichlorophenol	89.8	10.0	ug/L	100.0	90	30-130	
2,4-Dichlorophenol	82.4	10.0	ug/L	100.0	82	30-130	
2,4-Dimethylphenol	77.3	50.0	ug/L	100.0	77	30-130	
2,4-Dinitrophenol	98.1	50.0	ug/L	100.0	98	30-130	
2,4-Dinitrotoluene	102	10.0	ug/L	100.0	102	40-140	
2,6-Dinitrotoluene	91.6	10.0	ug/L	100.0	92	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

Result

MRL

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

Analyte

Surrogate: 2-Chlorophenol-d4

Surrogate: 2-Fluorobiphenyl

Surrogate: 2-Fluorophenol

Surrogate: Nitrobenzene-d5

Surrogate: p-Terphenyl-d14

Surrogate: Phenol-d6

1.2.4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2,4-Dichlorophenol

2,4-Dimethylphenol

LCS Dup

ESS Laboratory Work Order: 1606245

%REC

%REC

Limits

RPD

Quality Control Data

Units

Spike

Level

Source

Result

8270C Semi-Volatile Organic Compounds										
Batch CF61340 - 3520C										
2-Chloronaphthalene	73.2	10.0	ug/L	100.0	73	40-140				
2-Chlorophenol	66.2	10.0	ug/L	100.0	66	30-130				
2-Methylphenol	75.6	10.0	ug/L	100.0	76	30-130				
2-Nitrophenol	77.8	10.0	ug/L	100.0	78	30-130				
3,3´-Dichlorobenzidine	98.6	20.0	ug/L	100.0	99	40-140				
3+4-Methylphenol	169	20.0	ug/L	200.0	85	30-130				
4-Bromophenyl-phenylether	90.4	10.0	ug/L	100.0	90	40-140				
4-Chloroaniline	78.9	20.0	ug/L	100.0	79	40-140				
4-Nitrophenol	91.9	50.0	ug/L	100.0	92	30-130				
Acetophenone	78.5	10.0	ug/L	100.0	79	40-140				
Aniline	59.1	10.0	ug/L	100.0	59	40-140				
Azobenzene	83.2	20.0	ug/L	100.0	83	40-140				
bis(2-Chloroethoxy)methane	75.1	10.0	ug/L	100.0	75	40-140				
bis(2-Chloroethyl)ether	70.7	10.0	ug/L	100.0	71	40-140				
bis(2-chloroisopropyl)Ether	74.6	10.0	ug/L	100.0	75	40-140				
bis(2-Ethylhexyl)phthalate	93.4	6.0	ug/L	100.0	93	40-140				
Butylbenzylphthalate	92.5	10.0	ug/L	100.0	92	40-140				
Dibenzofuran	85.9	10.0	ug/L	100.0	86	40-140				
Diethylphthalate	103	10.0	ug/L	100.0	103	40-140				
Dimethylphthalate	95.8	10.0	ug/L	100.0	96	40-140				
Di-n-butylphthalate	94.0	10.0	ug/L	100.0	94	40-140				
Di-n-octylphthalate	91.2	10.0	ug/L	100.0	91	40-140				
Hexachlorobutadiene	70.2	10.0	ug/L	100.0	70	40-140				
Hexachloroethane	63.3	5.0	ug/L	100.0	63	40-140				
Isophorone	77.6	10.0	ug/L	100.0	78	40-140				
Nitrobenzene	76.6	10.0	ug/L	100.0	77	40-140				
N-Nitrosodimethylamine	62.0	10.0	ug/L	100.0	62	40-140				
Phenol	66.5	10.0	ug/L	100.0	66	30-130				
Surrogate: 1,2-Dichlorobenzene-d4	70.6		ug/L	100.0	71	30-130				
Surrogate: 2,4,6-Tribromophenol	131		ug/L	150.0	87	15-110				

185 Frances Avenue, Cranston, RI 02910-2211

102

80.3

78.7

79.7

107

96.2

79.0

75.1

71.7

72.1

95.8

88.5

85.0

85.4

Tel: 401-461-7181

ug/L

10.0

10.0

10.0

10.0

10.0

10.0

10.0

50.0

Dependability

150.0

100.0

150.0

100.0

150.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

Quality

Fax: 401-461-4486 Service

68

80

52

80

72

79

75

72

72

96

88

85

15-110

30-130

15-110

30-130

15-110

30-130

40-140

40-140

40-140

40-140

30-130

30-130

30-130

30-130

10 http://www.ESSLaboratory.com

7

7

8

4

3

20

20

20

20

20

20

20

20

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270C Semi-Volatile	Organic	Compound	S
---------------------	---------	----------	---

Batch CF61340 - 3520C								
2,4-Dinitrophenol	92.3	50.0	ug/L	100.0	92	30-130	6	20
2,4-Dinitrotoluene	100	10.0	ug/L	100.0	100	40-140	2	20
2,6-Dinitrotoluene	87.6	10.0	ug/L	100.0	88	40-140	4	20
2-Chloronaphthalene	72.8	10.0	ug/L	100.0	73	40-140	0.5	20
2-Chlorophenol	74.7	10.0	ug/L	100.0	75	30-130	12	20
2-Methylphenol	81.0	10.0	ug/L	100.0	81	30-130	7	20
2-Nitrophenol	84.7	10.0	ug/L	100.0	85	30-130	8	20
3,3´-Dichlorobenzidine	102	20.0	ug/L	100.0	102	40-140	3	20
3+4-Methylphenol	177	20.0	ug/L	200.0	88	30-130	4	20
4-Bromophenyl-phenylether	87.6	10.0	ug/L	100.0	88	40-140	3	20
1-Chloroaniline	78.2	20.0	ug/L	100.0	78	40-140	0.9	20
4-Nitrophenol	92.2	50.0	ug/L	100.0	92	30-130	0.3	20
Acetophenone	81.6	10.0	ug/L	100.0	82	40-140	4	20
Aniline	59.4	10.0	ug/L	100.0	59	40-140	0.6	20
Azobenzene	80.0	20.0	ug/L	100.0	80	40-140	4	20
ois(2-Chloroethoxy)methane	76.9	10.0	ug/L	100.0	77	40-140	2	20
ois(2-Chloroethyl)ether	74.4	10.0	ug/L	100.0	74	40-140	5	20
ois(2-chloroisopropyl)Ether	78.7	10.0	ug/L	100.0	79	40-140	5	20
ois(2-Ethylhexyl)phthalate	92.4	6.0	ug/L	100.0	92	40-140	1	20
utylbenzylphthalate	91.4	10.0	ug/L	100.0	91	40-140	1	20
bibenzofuran	82.6	10.0	ug/L	100.0	83	40-140	4	20
piethylphthalate	99.5	10.0	ug/L	100.0	100	40-140	3	20
Dimethylphthalate	92.5	10.0	ug/L	100.0	92	40-140	3	20
Di-n-butylphthalate	94.1	10.0	ug/L	100.0	94	40-140	0.1	20
Di-n-octylphthalate	90.2	10.0	ug/L	100.0	90	40-140	1	20
Hexachlorobutadiene	74.7	10.0	ug/L	100.0	75	40-140	6	20
Hexachloroethane	69.1	5.0	ug/L	100.0	69	40-140	9	20
sophorone	78.7	10.0	ug/L	100.0	79	40-140	1	20
Nitrobenzene	80.1	10.0	ug/L	100.0	80	40-140	4	20
N-Nitrosodimethylamine	65.7	10.0	ug/L	100.0	66	40-140	6	20
Phenol	72.4	10.0	ug/L	100.0	72	30-130	8	20
Surrogate: 1,2-Dichlorobenzene-d4	74.5		ug/L	100.0	<i>75</i>	30-130		
Surrogate: 2,4,6-Tribromophenol	127		ug/L	150.0	85	15-110		
Surrogate: 2-Chlorophenol-d4	114		ug/L	150.0	76	15-110		
Surrogate: 2-Fluorobiphenyl	79.2		ug/L	100.0	<i>79</i>	30-130		
Surrogate: 2-Fluorophenol	94.3		ug/L	150.0	63	15-110		
Surrogate: Nitrobenzene-d5	81.6		ug/L	100.0	82	30-130		
Surrogate: Phenol-d6	117		ug/L	150.0	78	15-110		
Surrogate: p-Terphenyl-d14	92.8		ug/L	100.0	93	30-130		

8270D(SIM) Semi-Volatile Organic Compounds

Batch CF61340 - 3520C

 Blank

 2-Methylnaphthalene
 ND
 0.20
 ug/L

 Acenaphthene
 ND
 0.20
 ug/L

ND

0.20

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

Batch CF61340 - 3520C

Acenaphthylene

Phenanthrene

2-Methylnaphthalene

Benzo(a)anthracene

Benzo(b)fluoranthene

Acenaphthene

Acenaphthylene

Benzo(a)pyrene

Anthracene

Pyrene

LCS Dup

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D(SIM) Semi-Volatile Organic Compounds

ug/L

Anthracene	ND	0.20	ug/L			
Benzo(a)anthracene	ND	0.05	ug/L			
Benzo(a)pyrene	ND	0.05	ug/L			
Benzo(b)fluoranthene	ND	0.05	ug/L			
Benzo(g,h,i)perylene	ND	0.20	ug/L			
Benzo(k)fluoranthene	ND	0.05	ug/L			
Chrysene	ND	0.05	ug/L			
Dibenzo(a,h)Anthracene	ND	0.05	ug/L			
Fluoranthene	ND	0.20	ug/L			
Fluorene	ND	0.20	ug/L			
Hexachlorobenzene	ND	0.20	ug/L			
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L			
Naphthalene	ND	0.20	ug/L			
Pentachlorophenol	ND	0.90	ug/L			
Phenanthrene	ND	0.20	ug/L			
Pyrene	ND	0.20	ug/L			
LCS						
LCS						
2-Methylnaphthalene	80.2	4.00	ug/L	100.0	80	40-140
	80.2 84.0	4.00 4.00	ug/L ug/L	100.0 100.0	80 84	40-140 40-140
2-Methylnaphthalene						
2-Methylnaphthalene Acenaphthene	84.0	4.00	ug/L	100.0	84	40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene	84.0 83.4	4.00 4.00	ug/L ug/L	100.0 100.0	84 83	40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	84.0 83.4 85.2	4.00 4.00 4.00	ug/L ug/L ug/L	100.0 100.0 100.0	84 83 85	40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	84.0 83.4 85.2 88.8	4.00 4.00 4.00 1.00	ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0	84 83 85 89	40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	84.0 83.4 85.2 88.8 93.6	4.00 4.00 4.00 1.00	ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0	84 83 85 89 94	40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	84.0 83.4 85.2 88.8 93.6 92.6	4.00 4.00 4.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0 100.0	84 83 85 89 94	40-140 40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	84.0 83.4 85.2 88.8 93.6 92.6 96.7	4.00 4.00 4.00 1.00 1.00 1.00 4.00	ug/L ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0 100.0	84 83 85 89 94 93	40-140 40-140 40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	84.0 83.4 85.2 88.8 93.6 92.6 96.7 90.4	4.00 4.00 4.00 1.00 1.00 1.00 4.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0	84 83 85 89 94 93 97	40-140 40-140 40-140 40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	84.0 83.4 85.2 88.8 93.6 92.6 96.7 90.4 88.9	4.00 4.00 4.00 1.00 1.00 4.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	84 83 85 89 94 93 97 90	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)Anthracene	84.0 83.4 85.2 88.8 93.6 92.6 96.7 90.4 88.9	4.00 4.00 4.00 1.00 1.00 4.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	84 83 85 89 94 93 97 90 89	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)Anthracene Fluoranthene	84.0 83.4 85.2 88.8 93.6 92.6 96.7 90.4 88.9 98.2 91.8	4.00 4.00 1.00 1.00 1.00 4.00 1.00 1.00 4.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	84 83 85 89 94 93 97 90 89 98	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)Anthracene Fluoranthene Fluorene	84.0 83.4 85.2 88.8 93.6 92.6 96.7 90.4 88.9 98.2 91.8 91.4	4.00 4.00 1.00 1.00 1.00 4.00 1.00 1.00 4.00 4.00 4.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	84 83 85 89 94 93 97 90 89 98	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)Anthracene Fluoranthene Fluorene Hexachlorobenzene	84.0 83.4 85.2 88.8 93.6 92.6 96.7 90.4 88.9 98.2 91.8 91.4	4.00 4.00 4.00 1.00 1.00 1.00 4.00 1.00 1.00 4.00 4.00 4.00 4.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	84 83 85 89 94 93 97 90 89 98 92 91	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140

185 Frances Avenue, Cranston, RI 02910-2211

87.0

94.8

79.4

80.8

81.0

82.8

84.0

92.1

91.4

4.00

4.00

4.00

4.00

4.00

4.00

1.00

1.00

1.00

Dependability

Tel: 401-461-7181

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Fax: 401-461-4486

◆ Service

87

95

79

81

81

83

40-140

40-140

40-140

40-140

40-140

40-140

40-140

40-140

40-140

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

Quality

http://www.ESSLaboratory.com

1

4

3

3

6

2

20

20

20

20

20

20

20

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
L	827	70D(SIM) Ser	mi-Volatile (Organic C	ompound	S				
Batch CF61340 - 3520C										
Benzo(g,h,i)perylene	96.3	4.00	ug/L	100.0		96	40-140	0.5	20	
Benzo(k)fluoranthene	89.1	1.00	ug/L	100.0		89	40-140	2	20	
Chrysene	84.5	1.00	ug/L	100.0		85	40-140	5	20	
Dibenzo(a,h)Anthracene	95.7	1.00	ug/L	100.0		96	40-140	3	20	
Fluoranthene	88.6	4.00	ug/L	100.0		89	40-140	4	20	
Fluorene	86.7	4.00	ug/L	100.0		87	40-140	5	20	
Hexachlorobenzene	104	4.00	ug/L	100.0		104	40-140	4	20	
Indeno(1,2,3-cd)Pyrene	103	1.00	ug/L	100.0		103	40-140	6	20	
Naphthalene	74.2	4.00	ug/L	100.0		74	40-140	1	20	
Pentachlorophenol	119	18.0	ug/L	100.0		119	30-130	4	20	
Phenanthrene	83.5	4.00	ug/L	100.0		83	40-140	4	20	
Pyrene	89.9	4.00	ug/L	100.0		90	40-140	5	20	
		Cl	assical Che	mistry						
Batch CF60951 - General Preparation										
Blank										
Hexavalent Chromium	ND	10	ug/L							
LCS										
Hexavalent Chromium	0.5		mg/L	0.4998		98	90-110			
LCS Dup										
Hexavalent Chromium	0.5		mg/L	0.4998		99	90-110	0.1	20	
Batch CF61020 - General Preparation										
Blank										ŀ
Total Residual Chlorine	ND	10	ug/L							
LCS										H
Total Residual Chlorine	1		mg/L	1.360		101	85-115			
Batch CF61427 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	60		mg/L	60.60		99	80-120			
Batch CF61440 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS Total Patralaum Hydrocarbon	1.4	F	ma/l	10.20		71	66-114			
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		71	66-114			
Batch CF61628 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	21.0	5.00	ug/L	20.06		105	90-110			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cla	assical Che	mistry						
Batch CF61628 - TCN Prep										
LCS										
Total Cyanide (LL)	150	5.00	ug/L	150.4		100	90-110			
LCS Dup										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110	0.4	20	
Batch CF61630 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	99	100	ug/L	100.0		99	80-120			
ıcs										
Phenols	972	100	ug/L	1000		97	80-120			
Batch CF61311 - 504/8011										
Blank										
Blank 1 2-Dibromoethane	ND	0.015	ua/l							
1,2-Dibromoethane	ND ND	0.015 0.015	ug/L ug/L							
	ND ND	0.015 0.015	ug/L ug/L							
1,2-Dibromoethane				0.2000		96	30-150			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND		ug/L	0.2000 0.2000		96 95	30-150 30-150			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND 0.193		ug/L ug/L							
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	0.193 0.189	0.015	ug/L ug/L ug/L ug/L	0.2000			<i>30-150</i> 70-130			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND 0.193 0.189	0.015	ug/L ug/L ug/L	0.2000		95	30-150			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	0.193 0.189	0.015	ug/L ug/L ug/L ug/L	0.2000		<i>95</i> 97	<i>30-150</i> 70-130			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	0.193 0.189 0.194 0.187	0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000		95 97 94	70-130 70-130			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	0.193 0.189 0.194 0.187	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000		95 97 94 88	70-130 70-130 70-130			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	0.193 0.189 0.194 0.187	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000		95 97 94 88	70-130 70-130 70-130			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	0.193 0.189 0.194 0.187 0.177 0.173	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000		95 97 94 88 88	70-130 70-130 70-130 30-150 30-150			
1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C]	0.193 0.189 0.194 0.187 0.177 0.173	0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000		95 97 94 88 87	70-130 70-130 70-130 30-150 30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS Laboratory Work Order: 1606245

	Notes and Definitions
U	Analyte included in the analysis, but not detected
SC	Surrogate recovery(ies) outside of criteria. Reextraction/Reanalysis confirms results (SC).
Q	Calibration required quadratic regression (Q).
P	Percent difference between primary and confirmation results exceeds 40% (P).
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual
	Chlorine is fifteen minutes.
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation Detection Limit
DL I/V	Initial Volume
F/V	Final Volume
§ 1	Subcontracted analysis; see attached report
2	Range result excludes concentrations of surrogates and/or internal standards eluting in that range. Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.

Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1606245

CERTIFICATE OF ANALYSIS

Client Name: The Vertex Companies Client Project ID: 1 Congress St - NPDES

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: R100002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: The Vertex Companies - TB/CMT	ESS Project ID: 1606245	
Shipped/Delivered Via: ESS Courier	Date Received: 6/9/2016 Project Due Date: 6/16/2016	
	Days for Project: 5 Day	<u> </u>
1. Air bill manifest present? No NA	6. Does COC match bottles?	Yes
Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 2.1	9. Were labs informed about short holds & rushes?	(es) No / NA
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes /(ND)
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / No Yes / No Yes / No MA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOAs brought to freezer: Date: Date:	Time: By: Time: By:	
Sample Receiving Notes:		
14. Was there a need to contact Project Manager? Yes / Ma	•	
a. Was there a need to contact the client? Who was contacted? Date:		

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	42331	Yes	NA	Yes	1L Amber - Unpres	NP pest pitter	7 W 6/9/16 1730
01	42332	Yes	NA	Yes	1L Amber - Unpres	NP I	1 14 0/1/1
01	42333	Yes	NA	Yes	1L Amber - Unpres	NP	
01	42334	Yes	NA	Yes	1L Amber - Unpres	NP	
01	42335	Yes	NA	Yes	1L Amber - Unpres	NP	
01	42336	Yes	NA	Yes	1L Amber - Unpres	NP	
01	42337	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	42338	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	42339	Yes	NA	Yes	1L Poly - Unpres	NP	
01	42340	Yes	NA	Yes	250 mL Poly - Unpres	NP	
01	42341	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	~ 6/9/16 1130
01	42342	Yes	NA	Yes	250 mL Poly - NaOH	NaOH PH //2 "	6/9/16 1730
01	42343	Yes	No	Yes	VOA Vial - HCI	HCL	
01	42344	Yes	No	Yes	VOA Vial - HCl	HCL	
01	42345	Yes	No	Yes	VOA Vial - HCI	HCL	
01	42346	Yes	No	Yes	VOA Vial - HCI	HCL	•
01	42347	Yes	No	Yes	VOA Vial - HCI	HCL	
01	42348	Yes	No	Yes	VOA Vial - HCI	HCL	

2nd Review
Are barcode labels on correct containers?

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	The Vertex Companies - TB/CMT	_	ESS Project ID):	1606245	
			Date Received	ı:	6/9/2016	
Completed By:	I fight	Date & Time:	6/9/16	1731		
Reviewed By:	1/00/00	Date & Time;	6/9/16	1740	-	_
Delivered By:	Jul 200		6/9/16	1740	-	
_					_	_

ESS Lab# 1606245	Reporting Limits - \mathcal{NPDES}	Electonic Deliverables Excel Access PDF	か		1991 1991 1991 1991) - V	Vol of VOV 2 VOV 70 VOV							Matrix: S-Soil SD-Solid D-Sludge WM-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	Preservation Code: 1-NP, 2-HCl, 3-HZSO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-			1423 Received by (Signature, the & Time) 1423	Received by: (Signature, Date & Timp)	1 (White) Lab Copy 2 (Yellow) Client Receipt
CHAIN OF CUSTODY	Other JU NY ME Other	ng:(please circle) CT DEP (Other ハののころ	Project Name 2 Cang ress St		foot /	1	i i	18	· <u>-</u>					WW-Wastewater GW-Groundwater SW-S	: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-	Nicole Perlot		Repopulation by: (Signature, Pate & Time)	Relinquished by. (Signature, Date & Yime)	changes to Chain of Custody
CHAIN OF	Turn Time Standard Other Regulatory State: MA) RI CT NH NJ NY ME	t for any of the followi Navy USACE		Address 1 Congress St	hneo diz	email: J Freemant	Sample ID	1 NPDES- T2-100 4,23						Matrix: S-Soil SD-Solid D-Sludge V	Internal Use Only Preservation Code:	p Sampled by :	nician Comments:	Time)	1727 (6 1727	Please fax to the laboratory all changes to Chain of Custody
			Project#	Address	State MA	Fax.	Grab -G Matrix Composite-C	WW P						VOA	.No Internal	[4 Pickup	(I Tech	: (Signature,	Received by Sugnature, Date & Imme)	
ESS Laboratory		Tel. (401) 461-7181 Fax (401) 461-4486 <u>www.esslaboratory.com</u>	co. Name The Vertex Concenies	Contact Person Tree moin		Tel. 617-275-5407	ESS Lab ID Date Collection Time	1 6/9/216 12:00						Container Type: P-Poly G-Glass AG-Amber Glass S-Sterite V-VOA	Cooler Present Yes	Seals Intact Yes No NA:	77 BB	Relinquished by: (Signature, Date & Time) / / / / / / /	Registratified the Contract of Date & Tinge)	Lay direling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VIIA

September 25, 2017

Jesse Freeman Vertex Engineering - Weymouth 400 Libbey Parkway Weymouth, MA 02189

Project Location: One Congress St.

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 17I0704

Meghan S. Kelley

Enclosed are results of analyses for samples received by the laboratory on September 15, 2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Meghan E. Kelley Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	7
17I0704-01	7
17I0704-02	10
17I0704-03	21
Sample Preparation Information	22
QC Data	24
Volatile Organic Compounds by GC/MS	24
B186621	24
Semivolatile Organic Compounds by GC/MS	26
B186981	26
Semivolatile Organic Compounds by - GC/MS	27
B186688	27
Polychlorinated Biphenyls By GC/ECD	31
B186668	31
Metals Analyses (Total)	32
B186543	32
B186577	32
B186704	32
B186706	32
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	34
B186370	34
B186372	34
B186410	34

Table of Contents (continued)

B186770	34
Drinking Water Organics EPA 504.1	36
B186764	36
Flag/Qualifier Summary	37
Certifications	38
Chain of Custody/Sample Receipt	43

Vertex Engineering - Weymouth 400 Libbey Parkway Weymouth, MA 02189 ATTN: Jesse Freeman

REPORT DATE: 9/25/2017

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 17I0704

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: One Congress St.

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Municipal FH	17I0704-01	Water		EPA 200.7	
•				EPA 624	
				SM21-22 4500 CL G	
BOS-049	17I0704-02	Surface Water		-	NH NELAC 2539/ MA M-MA014/CT PH-0494 +others
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	NY11393/MA-MAI138/M A1110
				EPA 504.1	
				EPA 608	
				EPA 624	
				EPA 625	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SW-846 8270D	
				SW-846 9014	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Trip Blank	17I0704-03	Trip Blank Water		EPA 624	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only a select list of compounds was requested and reported.

EPA 625

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

2-Chloronaphthalene

17I0704-02[BOS-049], B186688-BLK1, B186688-BS1, B186688-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Fluorene

B186688-BSD1

Pyrene

B186688-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method

specified criteria.

Analyte & Samples(s) Qualified:

4,6-Dinitro-2-methylphenol

17I0704-02[BOS-049], B186688-BLK1, B186688-BS1, B186688-BSD1

17I0704-02[BOS-049], B186688-BLK1, B186688-BS1, B186688-BSD1

V-19

Initial calibration did not meet method specifications. Compound was calibrated using linear regression with correlation coefficient <0.99. Reduced precision and accuracy may be associated with reported result. Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

17I0704-02[BOS-049], B186688-BLK1, B186688-BS1, B186688-BSD1

V-20

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

17I0704-02[BOS-049], B186688-BLK1, B186688-BS1, B186688-BSD1

4,6-Dinitro-2-methylphenol

17I0704-02[BOS-049], B186688-BLK1, B186688-BS1, B186688-BSD1

SM21-22 2540D

Qualifications:

R-04

Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting

limit (RL).

Analyte & Samples(s) Qualified:

Total Suspended Solids

17I0704-02[BOS-049], B186410-DUP2

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017

Field Sample #: Municipal FH

Sampled: 9/15/2017 14:50

Sample ID: 17I0704-01
Sample Matrix: Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 23:23	EEH
Surrogates		% Reco	overy	Recovery Limit	S	Flag/Qual				
1,2-Dichloroethane-d4		98.2		70-130					9/20/17 23:23	
Toluene-d8		100		70-130					9/20/17 23:23	
4-Bromofluorobenzene		95.4		70-130					9/20/17 23:23	

Sample Description: Work Order: 1710704

Date Received: 9/15/2017

Field Sample #: Municipal FH

Project Location: One Congress St.

Sampled: 9/15/2017 14:50

Sample ID: 17I0704-01
Sample Matrix: Water

Metals Analyses (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hardness		16			mg/L	1		EPA 200 7	9/21/17	9/22/17 14:12	ONW

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017

Field Sample #: Municipal FH

Sample ID: 17I0704-01
Sample Matrix: Water

Sampled: 9/15/2017 14:50

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chlorine, Residual	2.1	0.10	mg/L	5		SM21-22 4500 CL G	9/15/17	9/15/17 23:15	DJM

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017
Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	4.9	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 23:50	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.11	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Benzene	ND	1.0	0.12	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 23:50	EEH
tert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
cis-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,4-Dioxane	ND	50	26	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Tetrachloroethylene	ND	2.0	0.27	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,1,1-Trichloroethane	ND	2.0	0.13	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
1,1,2-Trichloroethane	ND	2.0	0.24	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
m+p Xylene	ND	2.0	0.26	μg/L	1		EPA 624	9/20/17	9/20/17 23:50	EEH
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 23:50	EEH
Surrogates		% Reco	very	Recovery Limits	6	Flag/Qual				
1.2 D: 11 /1 14		00.6		70 120					0/20/17 22 50	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	98.6	70-130		9/20/17 23:50
Toluene-d8	100	70-130		9/20/17 23:50
4-Bromofluorobenzene	95.2	70-130		9/20/17 23:50

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017
Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Semivolatile	Ougania	Commounda	by CC/MC

			Semire	manie Organie Ce	ompounds by	GC/MB				
						TT 10 1		Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene	ND	0.050	0.050	$\mu g/L$	1		SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Benzo(a)pyrene	ND	0.10	0.10	μg/L	1		SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Benzo(b)fluoranthene	ND	0.050	0.050	μg/L	1		SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Benzo(k)fluoranthene	ND	0.20	0.20	μg/L	1		SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Bis(2-Ethylhexyl)phthalate	0.20	1.0	0.10	μg/L	1	J	SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Chrysene	ND	0.20	0.20	μg/L	1		SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Dibenz(a,h)anthracene	ND	0.20	0.20	μg/L	1		SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Indeno(1,2,3-cd)pyrene	ND	0.20	0.20	μg/L	1		SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Pentachlorophenol	ND	1.0	0.34	$\mu g/L$	1		SW-846 8270D	9/20/17	9/22/17 16:05	CJM
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		45.2		15-110					9/22/17 16:05	
Phenol-d6		29.9		15-110					9/22/17 16:05	
Nitrobenzene-d5		75.2		30-130					9/22/17 16:05	
2-Fluorobiphenyl		77.8		30-130					9/22/17 16:05	
2,4,6-Tribromophenol		70.6		15-110					9/22/17 16:05	
p-Terphenyl-d14		74.0		30-130					9/22/17 16:05	

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017
Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Semivolatile	Organic	Compounds	bv -	GC/MS
--------------	---------	-----------	------	-------

		S	Semivolatile Organic C	ompounds by	- GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Acenaphthylene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Anthracene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Benzidine	ND	20	$\mu g/L$	1	V-04	EPA 625	9/20/17	9/22/17 11:00	BGL
Benzo(g,h,i)perylene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
4-Bromophenylphenylether	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Butylbenzylphthalate	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
4-Chloro-3-methylphenol	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Bis(2-chloroethyl)ether	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
2-Chloronaphthalene	ND	10	$\mu g/L$	1	L-04	EPA 625	9/20/17	9/22/17 11:00	BGL
2-Chlorophenol	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
4-Chlorophenylphenylether	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Di-n-butylphthalate	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
1,3-Dichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
1,4-Dichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
1,2-Dichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
3,3-Dichlorobenzidine	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
2,4-Dichlorophenol	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Diethylphthalate	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
2,4-Dimethylphenol	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Dimethylphthalate	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1	V-04, V-20	EPA 625	9/20/17	9/22/17 11:00	BGL
2,4-Dinitrophenol	ND	10	μg/L	1	V-19, V-20	EPA 625	9/20/17	9/22/17 11:00	BGL
2,4-Dinitrotoluene	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
2,6-Dinitrotoluene	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Di-n-octylphthalate	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Fluoranthene	ND	5.0	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Fluorene	ND	5.0	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Hexachlorobenzene	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Hexachlorobutadiene	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Hexachlorocyclopentadiene	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Hexachloroethane	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Isophorone	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Naphthalene	ND	5.0	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Nitrobenzene	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
2-Nitrophenol	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
4-Nitrophenol	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
N-Nitrosodimethylamine	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
N-Nitrosodiphenylamine	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
N-Nitrosodi-n-propylamine	ND	10	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
2-Methylnaphthalene	ND	5.0	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
J 178 1 11 1 1	1112	5.5	MB/ E	1		21.1020	J, 20/1/	,,,, I I I	232

Page 12 of 44

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017
Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Comizzalatila	Ougania	Compoundo	h (CAME
Semivolatile	Organic	Compounds	bv - (TC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Phenanthrene	ND	5.0	μg/L	1		EPA 625	9/20/17	9/22/17 11:00	BGL
2-Methylphenol	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Phenol	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
3/4-Methylphenol	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Pyrene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
1,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
2,4,6-Trichlorophenol	ND	10	$\mu g/L$	1		EPA 625	9/20/17	9/22/17 11:00	BGL
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
2-Fluorophenol		44.7	15-110					9/22/17 11:00	
Phenol-d6		34.8	15-110					9/22/17 11:00	
Nitrobenzene-d5		76.4	30-130					9/22/17 11:00	
2-Fluorobiphenyl		71.1	30-130					9/22/17 11:00	
2,4,6-Tribromophenol		69.8	15-110					9/22/17 11:00	
p-Terphenyl-d14		78.6	30-130					9/22/17 11:00	

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017
Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.10	0.057	μg/L	1		EPA 608	9/20/17	9/21/17 18:08	KAL
Aroclor-1221 [1]	ND	0.10	0.062	$\mu g/L$	1		EPA 608	9/20/17	9/21/17 18:08	KAL
Aroclor-1232 [1]	ND	0.10	0.038	$\mu g/L$	1		EPA 608	9/20/17	9/21/17 18:08	KAL
Aroclor-1242 [1]	ND	0.10	0.054	$\mu g/L$	1		EPA 608	9/20/17	9/21/17 18:08	KAL
Aroclor-1248 [1]	ND	0.10	0.064	$\mu g/L$	1		EPA 608	9/20/17	9/21/17 18:08	KAL
Aroclor-1254 [1]	ND	0.10	0.071	$\mu g/L$	1		EPA 608	9/20/17	9/21/17 18:08	KAL
Aroclor-1260 [1]	ND	0.10	0.073	$\mu g/L$	1		EPA 608	9/20/17	9/21/17 18:08	KAL
Surrogates		% Reco	very	Recovery Limits	8	Flag/Qual				
Decachlorobiphenyl [1]		81.6		30-150					9/21/17 18:08	
Decachlorobiphenyl [2]		95.6		30-150					9/21/17 18:08	
Tetrachloro-m-xylene [1]		79.3		30-150					9/21/17 18:08	
Tetrachloro-m-xylene [2]		80.4		30-150					9/21/17 18:08	

Work Order: 17I0704

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: One Congress St. Sample Description:

Date Received: 9/15/2017

Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	9/20/17	9/21/17 6:15	МЈН
Arsenic	ND	1.0		μg/L	1		EPA 200.8	9/20/17	9/21/17 6:15	MJH
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	9/20/17	9/21/17 6:15	MJH
Chromium	ND	10		μg/L	1		EPA 200.8	9/19/17	9/20/17 9:43	WSD
Chromium, Trivalent	ND	0.010		mg/L	1		Tri Chrome Calc.	9/20/17	9/22/17 0:03	MJH
Copper	6.2	1.0		μg/L	1		EPA 200.8	9/20/17	9/21/17 6:15	MJH
Iron	0.13	0.050		mg/L	1		EPA 200.7	9/20/17	9/21/17 14:32	QNW
Lead	1.5	0.50		μg/L	1		EPA 200.8	9/20/17	9/21/17 6:15	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	9/19/17	9/20/17 9:25	TJK
Nickel	ND	5.0		μg/L	1		EPA 200.8	9/20/17	9/21/17 6:15	МЈН
Selenium	2.3	5.0	2.1	μg/L	1	J	EPA 200.8	9/20/17	9/21/17 6:15	МЈН
Silver	ND	0.20		μg/L	1		EPA 200.8	9/20/17	9/21/17 6:15	МЈН
Zinc	ND	20		ug/L	1		EPA 200.8	9/20/17	9/21/17 6:15	MJH

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017

Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chlorine, Residual	0.028	0.020	mg/L	1		SM21-22 4500 CL G	9/15/17	9/15/17 23:15	DJM
Hexavalent Chromium	ND	0.0040	mg/L	1		SM21-22 3500 Cr B	9/15/17	9/15/17 23:45	DJM
Total Suspended Solids	17	5.0	mg/L	1	R-04	SM21-22 2540D	9/18/17	9/18/17 14:05	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.6	mg/L	1		EPA 1664B	9/21/17	9/21/17 13:15	LL

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017
Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Drinking Water Organics EPA 504.1

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.020	$\mu g/L$	1		EPA 504.1	9/21/17	9/21/17 16:34	TG
Surrogates		% Recovery	Recovery Limit	S	Flag/Qual				
1,3-Dibromopropane (1)		82.0	70-130					9/21/17 16:34	
1.3-Dibromopropane (2)		85.2	70-130					9/21/17 16:34	

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017
Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.063	0.075	mg/L	1		SM19-22 4500 NH3 C		9/20/17 0:00	AAL
Cyanide		ND	0.005	mg/L	1		SW-846 9014		9/20/17 0:00	AAL

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017

Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Ethanol by 1671A

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ethanol		ND	2000	ug/L	1		1671A		9/21/17 0:00	TAN

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017

Field Sample #: BOS-049

Sampled: 9/15/2017 11:30

Sample ID: 17I0704-02
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride		501	20	mg/L	20		EPA 300.0		9/20/17 0:00	EURO

Project Location: One Congress St. Sample Description: Work Order: 1710704

Date Received: 9/15/2017

Field Sample #: Trip Blank

Sampled: 9/15/2017 00:00

Sample ID: 17I0704-03

Sample Matrix: Trip Blank Water

Volatile Organic	Compounds by	GC/MS
------------------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	4.9	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.11	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
tert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
cis-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,4-Dioxane	ND	50	26	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Ethylbenzene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Tetrachloroethylene	ND	2.0	0.27	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Toluene	ND	1.0	0.17	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,1,1-Trichloroethane	ND	2.0	0.13	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
1,1,2-Trichloroethane	ND	2.0	0.24	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Trichloroethylene	ND	2.0	0.20	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
m+p Xylene	ND	2.0	0.26	μg/L	1		EPA 624	9/20/17	9/20/17 21:09	EEH
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	9/20/17	9/20/17 21:09	EEH
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
1.2 D: 11 d 14		07.0		70.120					0/20/17 21 00	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	97.0	70-130		9/20/17 21:09
Toluene-d8	101	70-130		9/20/17 21:09
4-Bromofluorobenzene	94.6	70-130		9/20/17 21:09

Sample Extraction Data

EPA	1664B
-----	-------

17I0704-02 [BOS-049]

17I0704-03 [Trip Blank]

EPA 1664B					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
17I0704-02 [BOS-049]	B186770	900		09/21/17	
Down Made J. EDA 200 7 EDA 200 7					
Prep Method: EPA 200.7-EPA 200.7					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-02 [BOS-049]	B186704	50.0	50.0	09/20/17	
Prep Method: EPA 200.7-EPA 200.7					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
1710704-01 [Municipal FH]	B186801	50.0	50.0	09/21/17	
Prep Method: EPA 200.8-EPA 200.8					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-02 [BOS-049]	B186543	50.0	50.0	09/19/17	
Prep Method: EPA 200.8-EPA 200.8 Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
1710704-02 [BOS-049]	B186706	50.0	50.0	09/20/17	
· <u> </u>					
Prep Method: EPA 245.1-EPA 245.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-02 [BOS-049]	B186577	6.00	6.00	09/19/17	
Prep Method: EPA 504 water-EPA 504.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-02 [BOS-049]	B186764	34.9	35.0	09/21/17	
Prep Method: SW-846 3510C-EPA 608					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-02 [BOS-049]	B186668	1000	5.00	09/20/17	
Prep Method: SW-846 5030B-EPA 624					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
1710704-01 [Municipal FH]	B186621	5	5.00	09/20/17	

5

5

5.00

5.00

09/20/17

09/20/17

B186621

B186621

Sample Extraction Data

Prep Meth	od: SW-84	6 3510C	-EPA 625
-----------	-----------	---------	----------

17I0704-02 [BOS-049]

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-02 [BOS-049]	B186688	1000	1.00	09/20/17	
SM21-22 2540D					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
1710704-02 [BOS-049]	B186410	100		09/18/17	
SM21-22 3500 Cr B					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-02 [BOS-049]	B186370	50.0	50.0	09/15/17	
SM21-22 4500 CL G Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-01 [Municipal FH]	B186372	100	100	09/15/17	
17I0704-02 [BOS-049]	B186372	100	100	09/15/17	
Prep Method: SW-846 3510C-SW-846 8270D					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17I0704-02 [BOS-049]	B186981	1000	1.00	09/20/17	
Prep Method: SW-846 3005A-Tri Chrome Calc.					
Lab Number [Field ID]	Batch	Initial [mL]		Date	

1.00

B186740

09/20/17

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B186621 - SW-846 5030B										
lank (B186621-BLK1)				Prepared &	Analyzed: 09	/20/17				
cetone	ND	50	$\mu g/L$							
rt-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
enzene	ND	1.0	$\mu g/L$							
rt-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							
arbon Tetrachloride	ND	2.0	$\mu g/L$							
2-Dichlorobenzene	ND	2.0	$\mu \text{g/L}$							
3-Dichlorobenzene	ND	2.0	$\mu g/L$							
4-Dichlorobenzene	ND	2.0	$\mu g/L$							
2-Dichloroethane	ND	2.0	$\mu g/L$							
s-1,2-Dichloroethylene	ND	1.0	μg/L							
1-Dichloroethane	ND	2.0	$\mu \text{g/L}$							
1-Dichloroethylene	ND	2.0	$\mu g\!/\!L$							
4-Dioxane	ND	50	$\mu g/L$							
hylbenzene	ND	2.0	$\mu g/L$							
ethyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu g/L$							
lethylene Chloride	ND	5.0	$\mu g/L$							
etrachloroethylene	ND	2.0	$\mu \text{g/L}$							
oluene	ND	1.0	$\mu g/L$							
1,1-Trichloroethane	ND	2.0	$\mu g/L$							
1,2-Trichloroethane	ND	2.0	$\mu g/L$							
richloroethylene	ND	2.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	2.0	μg/L							
nrrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.0		99.8	70-130			
urrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
arrogate: 4-Bromofluorobenzene	23.6		μg/L	25.0		94.2	70-130			
CS (B186621-BS1)				Prepared &	Analyzed: 09	/20/17				
	61.8	50	μg/L	100		61.8	60-160			
cetone		0.50	μg/L	10.0		95.3	70-130			
	9.53	0.50				115	37-151			
rt-Amyl Methyl Ether (TAME)	9.53 11.5	1.0	$\mu g/L$	10.0		113				
rt-Amyl Methyl Ether (TAME) enzene	11.5		μg/L μg/L	10.0 100		68.5	40-160			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA)		1.0								
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride	11.5 68.5	1.0 20	μg/L	100		68.5	40-160			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene	11.5 68.5 10.8 11.6	1.0 20 2.0	μg/L μg/L μg/L	100 10.0		68.5 108	40-160 70-140			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene	11.5 68.5 10.8 11.6 11.4	1.0 20 2.0 2.0	μg/L μg/L	100 10.0 10.0		68.5 108 116	40-160 70-140 18-190			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene	11.5 68.5 10.8 11.6 11.4 10.8	1.0 20 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L	100 10.0 10.0 10.0 10.0		68.5 108 116 114 108	40-160 70-140 18-190 59-156 18-190			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichlorobenzene	11.5 68.5 10.8 11.6 11.4 10.8 9.40	1.0 20 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	100 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114	40-160 70-140 18-190 59-156 18-190 49-155			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0	1.0 20 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110	40-160 70-140 18-190 59-156 18-190 49-155 70-130			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethane	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3	1.0 20 2.0 2.0 2.0 2.0 2.0 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71	1.0 20 2.0 2.0 2.0 2.0 2.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71	1.0 20 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane hylbenzene	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71 99.4 10.9	1.0 20 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 50	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4 109	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130 37-162			
enzene ent-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane hylbenzene ethyl tert-Butyl Ether (MTBE)	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71 99.4 10.9	1.0 20 2.0 2.0 2.0 2.0 2.0 2.0 2.0 50 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4 109	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130 37-162 70-130			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane thylbenzene tethyl tert-Butyl Ether (MTBE) tethylene Chloride	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71 99.4 10.9 10.6 7.28	1.0 20 2.0 2.0 2.0 2.0 2.0 2.0 50 2.0 2.0 50	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4 109 106 72.8	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130 37-162 70-130 50-221			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane 4-Dioxane 4-Uioxane	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71 99.4 10.9 10.6 7.28 10.8	1.0 20 2.0 2.0 2.0 2.0 2.0 2.0 50 2.0 2.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4 109 106 72.8 108	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130 37-162 70-130 50-221 64-148			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane thylbenzene lethyl tert-Butyl Ether (MTBE) lethylene Chloride etrachloroethylene louene	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71 99.4 10.9 10.6 7.28 10.8	1.0 20 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 50 2.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4 109 106 72.8 108	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130 37-162 70-130 50-221 64-148 47-150			
cetone rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane thylbenzene lethyl tert-Butyl Ether (MTBE) lethylene Chloride etrachloroethylene 1,1-Trichloroethane 1,2-Trichloroethane	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71 99.4 10.9 10.6 7.28 10.8 10.5	1.0 20 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 50 2.0 2.0 1.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4 109 106 72.8 108 105 109	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130 37-162 70-130 50-221 64-148 47-150 52-162			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane thylbenzene lethyl tert-Butyl Ether (MTBE) lethylene Chloride etrachloroethylene 1,1-Trichloroethane 1,2-Trichloroethane	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71 99.4 10.9 10.6 7.28 10.8 10.5 10.9	1.0 20 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 50 2.0 2.0 2.0 2.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4 109 106 72.8 108 105 109	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130 37-162 70-130 50-221 64-148 47-150 52-162 52-150			
rt-Amyl Methyl Ether (TAME) enzene rt-Butyl Alcohol (TBA) arbon Tetrachloride 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane s-1,2-Dichloroethylene 1-Dichloroethylene 1-Dichloroethylene 4-Dioxane thylbenzene lethyl tert-Butyl Ether (MTBE) lethylene Chloride etrachloroethylene 1,1-Trichloroethane	11.5 68.5 10.8 11.6 11.4 10.8 9.40 11.0 12.3 7.71 99.4 10.9 10.6 7.28 10.8 10.5	1.0 20 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 50 2.0 2.0 1.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	100 10.0 10.0 10.0 10.0 10.0 10.0 10.0		68.5 108 116 114 108 94.0 110 123 77.1 99.4 109 106 72.8 108 105 109	40-160 70-140 18-190 59-156 18-190 49-155 70-130 59-155 20-234 40-130 37-162 70-130 50-221 64-148 47-150 52-162			

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD		ı
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	╛

Batch B186621 - SW-846 5030B						
LCS (B186621-BS1)				Prepared & Anal	yzed: 09/20/17	
o-Xylene	10.6	2.0	μg/L	10.0	106	70-130
Surrogate: 1,2-Dichloroethane-d4	24.6		μg/L	25.0	98.3	70-130
Surrogate: Toluene-d8	24.9		$\mu g/L$	25.0	99.6	70-130
Surrogate: 4-Bromofluorobenzene	24.5		$\mu g/L$	25.0	98.0	70-130

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B186981 - SW-846 3510C										
Blank (B186981-BLK1)				Prepared: 09	/20/17 Anal	yzed: 09/22/	17			
Benzo(a)anthracene	ND	0.050	$\mu g/L$							
Benzo(a)pyrene	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene	ND	0.20	$\mu g/L$							
Bis(2-Ethylhexyl)phthalate	0.13	1.0	$\mu g/L$							J
Chrysene	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene	ND	0.20	$\mu g/L$							
indeno(1,2,3-cd)pyrene	ND	0.20	$\mu g/L$							
Pentachlorophenol	ND	1.0	$\mu g/L$							
Surrogate: 2-Fluorophenol	77.6		μg/L	200		38.8	15-110			
Surrogate: Phenol-d6	49.0		μg/L	200		24.5	15-110			
Surrogate: Nitrobenzene-d5	69.9		μg/L	100		69.9	30-130			
Surrogate: 2-Fluorobiphenyl	74.5		μg/L	100		74.5	30-130			
Surrogate: 2,4,6-Tribromophenol	130		μg/L	200		65.2	15-110			
Surrogate: p-Terphenyl-d14	70.0		$\mu g/L$	100		70.0	30-130			
LCS (B186981-BS1)				Prepared: 09	/20/17 Anal	yzed: 09/22/	17			
Benzo(a)anthracene	78.9	1.2	μg/L	100		78.9	40-140			
Benzo(a)pyrene	82.4	2.5	μg/L	100		82.4	40-140			
Benzo(b)fluoranthene	83.2	1.2	μg/L	100		83.2	40-140			
Benzo(k)fluoranthene	80.7	5.0	μg/L	100		80.7	40-140			
Bis(2-Ethylhexyl)phthalate	82.2	25	μg/L	100		82.2	40-140			
Chrysene	78.5	5.0	μg/L	100		78.5	40-140			
Dibenz(a,h)anthracene	74.5	5.0	μg/L	100		74.5	40-140			
Indeno(1,2,3-cd)pyrene	75.2	5.0	μg/L	100		75.2	40-140			
Pentachlorophenol	44.7	25	μg/L	100		44.7	30-130			
Surrogate: 2-Fluorophenol	93.0		μg/L	200		46.5	15-110			
Surrogate: Phenol-d6	59.0		μg/L	200		29.5	15-110			
Surrogate: Nitrobenzene-d5	81.3		μg/L	100		81.3	30-130			
Surrogate: 2-Fluorobiphenyl	83.4		μg/L	100		83.4	30-130			
Surrogate: 2,4,6-Tribromophenol	101 73.6		μg/L	200 100		50.7 73.6	15-110 30-130			
Surrogate: p-Terphenyl-d14	73.6		μg/L	100		/3.6	30-130			
LCS Dup (B186981-BSD1)		1.0	/7	Prepared: 09	/20/17 Anal	*				
Benzo(a)anthracene	74.0	1.2	μg/L	100		74.0	40-140	6.44	20	
Benzo(a)pyrene	77.3	2.5	μg/L	100		77.3	40-140	6.39	20	
Benzo(b)fluoranthene	78.4	1.2	μg/L	100		78.4	40-140	5.82	20	
Benzo(k)fluoranthene	75.6	5.0	μg/L	100		75.6	40-140	6.59	20	
Bis(2-Ethylhexyl)phthalate	75.2	25	μg/L	100		75.2	40-140	8.83	20	
Chrysene	73.8	5.0	μg/L	100		73.8	40-140	6.10	20	
Dibenz(a,h)anthracene	69.0	5.0	μg/L	100		69.0	40-140	7.70	20	
Indeno(1,2,3-cd)pyrene	70.6	5.0	μg/L	100		70.6	40-140	6.35	50	
Pentachlorophenol	41.7	25	μg/L	100		41.7	30-130	6.95	50	
Surrogate: 2-Fluorophenol	90.4		$\mu g/L$	200		45.2	15-110			
Surrogate: Phenol-d6	56.4		$\mu g/L$	200		28.2	15-110			
Surrogate: Nitrobenzene-d5	73.0		$\mu g/L$	100		73.0	30-130			
Surrogate: 2-Fluorobiphenyl	76.3		$\mu g/L$	100		76.3	30-130			
Surrogate: 2,4,6-Tribromophenol	102		μg/L	200		50.9	15-110			
Surrogate: p-Terphenyl-d14	66.2		μg/L	100		66.2	30-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B186688 - SW-846 3510C										
Blank (B186688-BLK1)				Prepared: 09	9/20/17 Anal	yzed: 09/22/	17			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	μg/L							
Anthracene	ND	5.0	$\mu g/L$							
Benzidine	ND	20	$\mu g/L$							V-04
Benzo(g,h,i)perylene	ND	5.0	$\mu g/L$							
4-Bromophenylphenylether	ND	10	$\mu g/L$							
Butylbenzylphthalate	ND	10	$\mu g/L$							
4-Chloro-3-methylphenol	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	μg/L							
2-Chloronaphthalene	ND	10	μg/L							L-04
2-Chlorophenol	ND	10	μg/L							
4-Chlorophenylphenylether	ND	10	$\mu g/L$							
Di-n-butylphthalate	ND	10	$\mu g/L$							
1,3-Dichlorobenzene	ND	5.0	$\mu g/L$							
1,4-Dichlorobenzene	ND	5.0	$\mu g/L$							
1,2-Dichlorobenzene	ND	5.0	$\mu g/L$							
3,3-Dichlorobenzidine	ND	10	$\mu g/L$							
2,4-Dichlorophenol	ND	10	$\mu g/L$							
Diethylphthalate	ND	10	$\mu g/L$							
2,4-Dimethylphenol	ND	10	$\mu g/L$							
Dimethylphthalate	ND	10	$\mu g/L$							
4,6-Dinitro-2-methylphenol	ND	10	μg/L							V-04, V-20
2,4-Dinitrophenol	ND	10	$\mu g/L$							V-19, V-20
2,4-Dinitrotoluene	ND	10	$\mu g/L$							
2,6-Dinitrotoluene	ND	10	$\mu g/L$							
Di-n-octylphthalate	ND	10	$\mu g/L$							
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	$\mu g/L$							
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L							
Fluoranthene	ND	5.0	μg/L							
Fluorene	ND	5.0	μg/L							
Hexachlorobenzene	ND	10	μg/L							
Hexachlorobutadiene	ND	10	μg/L							
Hexachlorocyclopentadiene	ND	10	μg/L							
Hexachloroethane	ND	10	μg/L							
Isophorone	ND	10	μg/L							
Naphthalene	ND	5.0	μg/L							
Nitrobenzene	ND	10	μg/L							
2-Nitrophenol	ND	10	μg/L							
4-Nitrophenol	ND	10	$\mu g\!/\!L$							
N-Nitrosodimethylamine	ND	10	$\mu g\!/\!L$							
N-Nitrosodiphenylamine	ND	10	$\mu g \! / \! L$							
N-Nitrosodi-n-propylamine	ND	10	$\mu g \! / \! L$							
2-Methylnaphthalene	ND	5.0	μg/L							
Phenanthrene	ND	5.0	$\mu g/L$							
2-Methylphenol	ND	10	μg/L							
Phenol	ND	10	μg/L							
3/4-Methylphenol	ND	10	$\mu g \! / \! L$							
Pyrene	ND	5.0	$\mu g \! / \! L$							
1,2,4-Trichlorobenzene	ND	5.0	$\mu g \! / \! L$							
2,4,6-Trichlorophenol	ND	10	$\mu g/L$							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B186688 - SW-846 3510C										
Blank (B186688-BLK1)				Prepared: 09	9/20/17 Analy	zed: 09/22/	17			
Surrogate: Phenol-d6	63.2		μg/L	200		31.6	15-110			
Surrogate: Nitrobenzene-d5	71.3		$\mu g/L$	100		71.3	30-130			
Surrogate: 2-Fluorobiphenyl	66.6		$\mu g/L$	100		66.6	30-130			
Surrogate: 2,4,6-Tribromophenol	132		$\mu g/L$	200		65.9	15-110			
Surrogate: p-Terphenyl-d14	83.0		$\mu g/L$	100		83.0	30-130			
LCS (B186688-BS1)				Prepared: 09	9/20/17 Analy	zed: 09/22/	17			
Acenaphthene	62.4	5.0	$\mu \text{g/L}$	100		62.4	47-145			
Acenaphthylene	58.9	5.0	μg/L	100		58.9	33-145			
Anthracene	62.1	5.0	μg/L	100		62.1	27-133			
Benzidine	69.8	20	μg/L	100		69.8	40-140			V-04
Benzo(g,h,i)perylene	57.6	5.0	μg/L	100		57.6	1-219			
4-Bromophenylphenylether	64.8	10	μg/L	100		64.8	53-127			
Butylbenzylphthalate	76.6	10	μg/L	100		76.6	1-152			
4-Chloro-3-methylphenol	70.2	10	$\mu g \! / \! L$	100		70.2	22-147			
Bis(2-chloroethyl)ether	78.7	10	$\mu \text{g/L}$	100		78.7	12-158			
Bis(2-chloroisopropyl)ether	85.3	10	$\mu \text{g/L}$	100		85.3	36-166			
2-Chloronaphthalene	57.4	10	$\mu \text{g/L}$	100		57.4 *	60-118			L-04
2-Chlorophenol	69.6	10	$\mu \text{g/L}$	100		69.6	23-134			
4-Chlorophenylphenylether	63.9	10	$\mu g\!/\!L$	100		63.9	25-158			
Di-n-butylphthalate	70.6	10	$\mu g/L$	100		70.6	1-118			
1,3-Dichlorobenzene	66.3	5.0	μg/L	100		66.3	1-172			
1,4-Dichlorobenzene	67.3	5.0	μg/L	100		67.3	20-124			
1,2-Dichlorobenzene	67.9	5.0	$\mu g/L$	100		67.9	32-129			
3,3-Dichlorobenzidine	75.8	10	$\mu g/L$	100		75.8	1-262			
2,4-Dichlorophenol	68.6	10	$\mu g/L$	100		68.6	39-135			
Diethylphthalate	64.6	10	μg/L	100		64.6	1-114			
2,4-Dimethylphenol	65.4	10	$\mu g/L$	100		65.4	32-119			
Dimethylphthalate	65.1	10	$\mu g/L$	100		65.1	1-112			
4,6-Dinitro-2-methylphenol	86.3	10	$\mu g/L$	100		86.3	1-181			V-04, V-20
2,4-Dinitrophenol	84.8	10	$\mu g/L$	100		84.8	1-191			V-19, V-20
2,4-Dinitrotoluene	77.4	10	$\mu g/L$	100		77.4	39-139			
2,6-Dinitrotoluene	81.1	10	$\mu g/L$	100		81.1	50-158			
Di-n-octylphthalate	81.4	10	μg/L	100		81.4	4-146			
1,2-Diphenylhydrazine (as Azobenzene)	74.6	10	μg/L	100		74.6	40-140			
Bis(2-Ethylhexyl)phthalate	75.1	10	μg/L	100		75.1	8-158			
Fluoranthene	63.9	5.0	μg/L	100		63.9	26-137			
Fluorene	60.5	5.0	μg/L	100		60.5	59-121			
Hexachlorobenzene	63.6	10	μg/L	100		63.6	1-152			
Hexachlorobutadiene	58.7	10	μg/L	100		58.7	24-116			
Hexachlorocyclopentadiene	63.2	10	μg/L	100		63.2	40-140			
Hexachloroethane	69.6	10	$\mu g/L$	100		69.6	40-113			
Isophorone	77.5	10	μg/L	100		77.5	21-196			
Naphthalene	61.1	5.0	μg/L	100		61.1	21-133			
Nitrobenzene	71.1	10	$\mu g/L$	100		71.1	35-180			
2-Nitrophenol	74.9	10	$\mu g/L$	100		74.9	29-182			
4-Nitrophenol	36.6	10	μg/L	100		36.6	1-132			
N-Nitrosodimethylamine	44.4	10	μg/L	100		44.4	40-140			
N-Nitrosodiphenylamine	82.3	10	μg/L	100		82.3	40-140			
N-Nitrosodi-n-propylamine	76.4	10	μg/L	100		76.4	1-230			
2-Methylnaphthalene	65.2	5.0	μg/L	100		65.2	40-140			
Phenanthrene	61.9	5.0	μg/L	100		61.9	54-120			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B186688 - SW-846 3510C										
LCS (B186688-BS1)				Prepared: 09	0/20/17 Anal	yzed: 09/22/	17			
2-Methylphenol	67.0	10	$\mu g/L$	100		67.0	30-130			
Phenol	34.1	10	$\mu \text{g/L}$	100		34.1	5-112			
3/4-Methylphenol	63.1	10	$\mu \text{g/L}$	100		63.1	30-130			
Pyrene	64.6	5.0	$\mu g\!/\!L$	100		64.6	52-115			
1,2,4-Trichlorobenzene	64.2	5.0	μg/L	100		64.2	44-142			
2,4,6-Trichlorophenol	67.6	10	μg/L	100		67.6	37-144			
Surrogate: 2-Fluorophenol	101		μg/L	200		50.4	15-110			
Surrogate: Phenol-d6	71.3		$\mu g/L$	200		35.6	15-110			
Surrogate: Nitrobenzene-d5	78.3		$\mu g/L$	100		78.3	30-130			
Surrogate: 2-Fluorobiphenyl	69.2		$\mu g/L$	100		69.2	30-130			
Surrogate: 2,4,6-Tribromophenol	142		μg/L	200		70.8	15-110			
Surrogate: p-Terphenyl-d14	73.9		μg/L	100		73.9	30-130			
LCS Dup (B186688-BSD1)				Prepared: 09	0/20/17 Anal	yzed: 09/22/	17			
Acenaphthene	56.3	5.0	μg/L	100		56.3	47-145	10.2		
Acenaphthylene	53.7	5.0	$\mu \text{g/L}$	100		53.7	33-145	9.32		
Anthracene	55.8	5.0	$\mu \text{g/L}$	100		55.8	27-133	10.7		
Benzidine	56.0	20	$\mu \text{g}/L$	100		56.0	40-140	21.9		V-04
Benzo(g,h,i)perylene	51.1	5.0	$\mu g/L$	100		51.1	1-219	12.0		
1-Bromophenylphenylether	55.2	10	$\mu g/L$	100		55.2	53-127	15.9		
Butylbenzylphthalate	62.5	10	$\mu g/L$	100		62.5	1-152	20.2		
4-Chloro-3-methylphenol	61.3	10	$\mu g/L$	100		61.3	22-147	13.4		
Bis(2-chloroethyl)ether	64.7	10	$\mu g/L$	100		64.7	12-158	19.4		
Bis(2-chloroisopropyl)ether	69.8	10	μg/L	100		69.8	36-166	20.0		
2-Chloronaphthalene	53.0	10	μg/L	100		53.0 *	60-118	8.10		L-04
2-Chlorophenol	59.0	10	$\mu \text{g/L}$	100		59.0	23-134	16.6		
4-Chlorophenylphenylether	56.1	10	μg/L	100		56.1	25-158	12.9		
Di-n-butylphthalate	59.8	10	μg/L	100		59.8	1-118	16.5		
1,3-Dichlorobenzene	56.8	5.0	μg/L	100		56.8	1-172	15.3		
1,4-Dichlorobenzene	56.7	5.0	μg/L	100		56.7	20-124	17.0		
1,2-Dichlorobenzene	57.6	5.0	μg/L	100		57.6	32-129	16.4		
3,3-Dichlorobenzidine	67.9	10	μg/L	100		67.9	1-262	11.0		
2,4-Dichlorophenol	59.2	10	μg/L	100		59.2	39-135	14.7		
Diethylphthalate	56.0	10	μg/L	100		56.0	1-114	14.3		
2,4-Dimethylphenol	57.7	10	μg/L	100		57.7	32-119	12.6		
Dimethylphthalate	58.6	10	μg/L	100		58.6	1-112	10.6		
4,6-Dinitro-2-methylphenol	74.7	10	μg/L	100		74.7	1-181	14.5		V-04, V-20
2,4-Dinitrophenol	81.4	10	μg/L	100		81.4	1-191	4.20		V-19, V-20
2,4-Dinitrotoluene	69.4	10	μg/L	100		69.4	39-139	10.8		
2,6-Dinitrotoluene	72.8	10	μg/L	100		72.8	50-158	10.8		
Di-n-octylphthalate 1,2-Diphenylhydrazine (as Azobenzene)	67.5	10 10	μg/L μg/I	100		67.5	4-146	18.7		
Bis(2-Ethylhexyl)phthalate	64.8	10	μg/L μg/L	100		64.8	40-140	14.2		
Fluoranthene	59.3	5.0		100		59.3	8-158	23.4		
Fluorene	60.1	5.0	μg/L μg/L	100 100		60.1 54.9 *	26-137 59 121	6.09 9.60		L-07
Hexachlorobenzene	54.9 55.5	10	μg/L μg/L	100		54.9 * 55.5	59-121 1-152	13.5		L-U/
Hexachlorobutadiene	55.5	10	μg/L μg/L	100		50.3	24-116	15.5		
Hexachlorocyclopentadiene	50.3	10	μg/L μg/L	100		53.9	40-140	15.7		
Hexachloroethane	53.9	10	μg/L μg/L	100		58.8		16.9		
sophorone	58.8	10	μg/L μg/L				40-113			
·	66.8			100		66.8	21-196	14.8		
Naphthalene	53.7	5.0	μg/L	100		53.7	21-133	12.8		

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B186688 - SW-846 3510C										
LCS Dup (B186688-BSD1)				Prepared: 09	0/20/17 Anal	yzed: 09/22/	17			
2-Nitrophenol	66.7	10	μg/L	100		66.7	29-182	11.6		
4-Nitrophenol	35.0	10	$\mu g/L$	100		35.0	1-132	4.52		
N-Nitrosodimethylamine	40.8	10	$\mu g/L$	100		40.8	40-140	8.33		
N-Nitrosodiphenylamine	71.9	10	μg/L	100		71.9	40-140	13.6		
N-Nitrosodi-n-propylamine	62.0	10	μg/L	100		62.0	1-230	20.8		
2-Methylnaphthalene	56.8	5.0	μg/L	100		56.8	40-140	13.8	20	
Phenanthrene	56.1	5.0	$\mu g/L$	100		56.1	54-120	9.79		
2-Methylphenol	56.4	10	$\mu g/L$	100		56.4	30-130	17.2	20	
Phenol	28.8	10	$\mu g/L$	100		28.8	5-112	16.9		
3/4-Methylphenol	52.6	10	$\mu g/L$	100		52.6	30-130	18.2	20	
Pyrene	51.8	5.0	μg/L	100		51.8 *	52-115	22.0		L-07
,2,4-Trichlorobenzene	56.0	5.0	$\mu g/L$	100		56.0	44-142	13.7		
2,4,6-Trichlorophenol	60.5	10	$\mu g/L$	100		60.5	37-144	11.1		
Surrogate: 2-Fluorophenol	86.4		μg/L	200		43.2	15-110			
Surrogate: Phenol-d6	60.6		$\mu g/L$	200		30.3	15-110			
Surrogate: Nitrobenzene-d5	67.7		$\mu g/L$	100		67.7	30-130			
Surrogate: 2-Fluorobiphenyl	61.4		$\mu g/L$	100		61.4	30-130			
Surrogate: 2,4,6-Tribromophenol	125		$\mu g/L$	200		62.5	15-110			
Surrogate: p-Terphenyl-d14	56.3		$\mu g/L$	100		56.3	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B186668 - SW-846 3510C										
Blank (B186668-BLK1)				Prepared: 09	0/20/17 Anal	yzed: 09/21/	17			
Aroclor-1016	ND	0.10	μg/L							
Aroclor-1016 [2C]	ND	0.10	$\mu g \! / \! L$							
Aroclor-1221	ND	0.10	$\mu g \! / \! L$							
Aroclor-1221 [2C]	ND	0.10	$\mu g \! / \! L$							
Aroclor-1232	ND	0.10	$\mu g\!/\!L$							
Aroclor-1232 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1242	ND	0.10	$\mu g\!/\!L$							
Aroclor-1242 [2C]	ND	0.10	$\mu g\!/\!L$							
Aroclor-1248	ND	0.10	$\mu g\!/\!L$							
Aroclor-1248 [2C]	ND	0.10	$\mu g\!/\!L$							
Aroclor-1254	ND	0.10	$\mu g\!/\!L$							
Aroclor-1254 [2C]	ND	0.10	$\mu g\!/\!L$							
Aroclor-1260	ND	0.10	$\mu g\!/\!L$							
Aroclor-1260 [2C]	ND	0.10	$\mu g/L$							
Surrogate: Decachlorobiphenyl	1.90		μg/L	2.00		94.9	30-150			
Surrogate: Decachlorobiphenyl [2C]	2.15		$\mu g/L$	2.00		107	30-150			
Surrogate: Tetrachloro-m-xylene	1.93		$\mu g/L$	2.00		96.4	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.92		$\mu g/L$	2.00		96.2	30-150			
LCS (B186668-BS1)				Prepared: 09	0/20/17 Anal	yzed: 09/21/	17			
Aroclor-1016	0.51	0.20	μg/L	0.500		103	50-114			
Aroclor-1016 [2C]	0.52	0.20	μg/L	0.500		105	50-114			
Aroclor-1260	0.47	0.20	μg/L	0.500		93.8	8-127			
Aroclor-1260 [2C]	0.47	0.20	$\mu g/L$	0.500		94.1	8-127			
Surrogate: Decachlorobiphenyl	1.73		μg/L	2.00		86.5	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.95		$\mu g/L$	2.00		97.3	30-150			
Surrogate: Tetrachloro-m-xylene	1.83		$\mu g/L$	2.00		91.4	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.82		$\mu g/L$	2.00		91.2	30-150			
LCS Dup (B186668-BSD1)				Prepared: 09	9/20/17 Anal	yzed: 09/21/	17			
Aroclor-1016	0.52	0.20	μg/L	0.500		103	50-114	0.301		
Aroclor-1016 [2C]	0.54	0.20	$\mu g/L$	0.500		108	50-114	3.01		
Aroclor-1260	0.48	0.20	$\mu g/L$	0.500		96.9	8-127	3.22		
Aroclor-1260 [2C]	0.48	0.20	$\mu g/L$	0.500		95.2	8-127	1.16		
Surrogate: Decachlorobiphenyl	1.72		μg/L	2.00		85.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.95		μg/L	2.00		97.5	30-150			
Surrogate: Tetrachloro-m-xylene	1.82		μg/L	2.00		90.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.80		μg/L	2.00		90.2	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Perspared: 09/19/17 Analyzed: 09/20/17 Selection	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Propage 09/19/17 Analyzed 09/20/17		T.Court	2,,,,,,		20.01		,				
Chromium Nij 10 10 10 10 10 10 10 1	-				D 1.00	V/10/17 A 1	1 00/20	/15			
Perpared: 991917 Analyzed: 992917			10	a/I	Prepared: 09	9/19/17 Anai	yzed: 09/20/	/17			
Chromium So2	Cirollium	ND	10	μg/L							
Prepared: 09/19/17 Analyzed: 09/20/17 Section Se	LCS (B186543-BS1)				Prepared: 09	9/19/17 Anal	yzed: 09/20	/17			
Chromium 508 100	Chromium	502	100	$\mu g/L$	500		100	85-115			
March B186577 - EPA 245.1 Blank (B186577-BLA1)	LCS Dup (B186543-BSD1)				Prepared: 09	9/19/17 Anal	yzed: 09/20/	/17			
Prepared: 09/19/17 Analyzed: 09/20/17	Chromium	508	100	μg/L	500		102	85-115	1.12	20	
Mercury ND 0.00010 mg/L LCS (B186577-BS1) Prepared: 09/19/17 Analyzed: 09/20/17 Mercury 0.00186 0.00010 mg/L 0.00200 gg.9 85-115 Set 115 LCS Dup (B186577-BSD1) Prepared: 09/19/17 Analyzed: 09/20/17 Mercury 0.00190 0.00010 mg/L 0.00200 gg.8 85-115 gg.03 gg.0 20 Blank (B186704-BLK1) Prepared: 09/20/17 Analyzed: 09/21/17 Iron ND 0.050 mg/L Prepared: 09/20/17 Analyzed: 09/21/17 Set 115 LCS (B186704-BS1) Prepared: 09/20/17 Analyzed: 09/21/17 Set 115 LCS Dup (B186704-BSD1) Prepared: 09/20/17 Analyzed: 09/21/17 Iron 4.05 0.050 mg/L 4.00 10.1 mg/L 85-115 mg/L 1.32 mg/L 20 Blank (B186704-BSD1) Prepared: 09/20/17 Analyzed: 09/21/17 Set 115 mg/L	Batch B186577 - EPA 245.1										
Mercury ND 0.0010 mg/L	Blank (B186577-BLK1)				Prepared: 09	9/19/17 Anal	yzed: 09/20/	/17			
Mercury 0,00186 0,00010 mg/L 0,00200 92.9 85-115	Mercury	ND	0.00010	mg/L							
Mercury 0,00186 0,00010 mg/L 0,00200 92.9 85-115	LCS (B186577-BS1)				Prepared: 09	9/19/17 Anal	yzed: 09/20/	/17			
Mercury 0,00190 0,00010 mg/L 0,00200 94,8 85-115 2,03 20	· · · · · · · · · · · · · · · · · · ·	0.00186	0.00010	mg/L			-				
Mercury 0,00190 0,00010 mg/L 0,00200 94,8 85-115 2,03 20	LCS Dun (B186577-BSD1)				Prepared: 09	9/19/17 Anal	vzed: 09/20	/17			
Prepared: 09/20/17 Analyzed: 09/21/ Ana		0.00190	0.00010	mg/L		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2.03	20	
Prepared: 09/20/17 Analyzed: 09/21/17	Ratch R186704 - FPA 200 7										
Prepared: 09/20/17 Analyzed: 09/21/17 Analyzed: 09/21/17 Iron A.00 0.050 mg/L A.00 99.9 85-115 Section A.00 A.00 Batch B186704-BSD1) Prepared: 09/20/17 Analyzed: 09/21/17 Analyzed: 09/21/17 Iron A.05 0.050 mg/L A.00 101 85-115 1.32 20 Analyzed: 09/21/17 Analyzed: 09	-				D 1. 00)/20/17 A1	1. 00/21	/17			
Prepared: 09/20/17 Analyzed: 09/21/17 Analyze		ND	0.050	ma/I	Prepared: 05	9/20/1/ Anai	yzea: 09/21/	/1/			
Tron	non	ND	0.050	mg/L							
Prepared: 09/20/17 Analyzed: 09/21/17 Analyz	LCS (B186704-BS1)					9/20/17 Anal					
Record 10 10 10 10 10 10 10 1	Iron	4.00	0.050	mg/L	4.00		99.9	85-115			
Blank (B186706 - EPA 200.8 Blank (B186706-BLK1) Prepared: 09/20/17 Analyzed: 09/21/17 Antimony ND 1.0 μg/L Arsenic ND 1.0 μg/L Cadmium ND 0.20 μg/L Copper ND 1.0 μg/L Lead ND 0.50 μg/L Nickel ND 5.0 μg/L Selenium ND 5.0 μg/L Silver ND 0.20 μg/L	LCS Dup (B186704-BSD1)				Prepared: 09	9/20/17 Anal	yzed: 09/21	/17			
Blank (B186706-BLK1) Prepared: 09/20/17 Analyzed: 09/21/17 Antimony ND 1.0 μg/L Arsenic ND 1.0 μg/L Cadmium ND 0.20 μg/L Copper ND 1.0 μg/L Lead ND 0.50 μg/L Nickel ND 5.0 μg/L Selenium ND 5.0 μg/L Silver ND 0.20 μg/L	Iron	4.05	0.050	mg/L	4.00		101	85-115	1.32	20	
Antimony ND 1.0 μg/L Arsenic ND 1.0 μg/L Cadmium ND 0.20 μg/L Copper ND 1.0 μg/L Lead ND 0.50 μg/L Nickel ND 5.0 μg/L Selenium ND 5.0 μg/L Silver ND 0.20 μg/L	Batch B186706 - EPA 200.8										
Arsenic ND 1.0 μg/L Cadmium ND 0.20 μg/L Copper ND 1.0 μg/L Lead ND 0.50 μg/L Nickel ND 5.0 μg/L Selenium ND 5.0 μg/L Silver ND 0.20 μg/L	Blank (B186706-BLK1)				Prepared: 09	9/20/17 Anal	yzed: 09/21/	/17			
Cadmium ND 0.20 μg/L Copper ND 1.0 μg/L Lead ND 0.50 μg/L Nickel ND 5.0 μg/L Selenium ND 5.0 μg/L Silver ND 0.20 μg/L	Antimony	ND	1.0	μg/L							
Copper ND 1.0 μg/L Lead ND 0.50 μg/L Nickel ND 5.0 μg/L Selenium ND 5.0 μg/L Silver ND 0.20 μg/L	Arsenic	ND	1.0	$\mu g/L$							
Lead ND 0.50 μg/L Nickel ND 5.0 μg/L Selenium ND 5.0 μg/L Silver ND 0.20 μg/L	Cadmium	ND	0.20	$\mu \text{g}/L$							
Nickel ND 5.0 μ g/L Selenium ND 5.0 μ g/L Silver ND 0.20 μ g/L	Copper	ND	1.0	$\mu g/L$							
Selenium ND $5.0 \mu g/L$ Silver ND $0.20 \mu g/L$	Lead	ND	0.50	$\mu g\!/\!L$							
Silver ND $0.20 \mu g/L$	Nickel	ND	5.0	$\mu \text{g/L}$							
	Selenium	ND	5.0	$\mu g/L$							
	Silver		0.20	μg/L							
	Zinc		20								

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

	D. I	Reporting	TT :	Spike	Source	WREG	%REC	DDD	RPD	27.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B186706 - EPA 200.8										
LCS (B186706-BS1)				Prepared: 09	0/20/17 Anal	yzed: 09/21/	17			
Antimony	518	10	μg/L	500		104	85-115			
Arsenic	521	10	$\mu \text{g/L}$	500		104	85-115			
Cadmium	508	2.0	$\mu g/L$	500		102	85-115			
Copper	998	10	$\mu g/L$	1000		99.8	85-115			
Lead	517	5.0	$\mu g/L$	500		103	85-115			
Nickel	501	50	$\mu g/L$	500		100	85-115			
Selenium	519	50	$\mu g/L$	500		104	85-115			
Silver	486	2.0	$\mu g/L$	500		97.3	85-115			
Zinc	1070	200	$\mu g/L$	1000		107	85-115			
LCS Dup (B186706-BSD1)				Prepared: 09	0/20/17 Anal	yzed: 09/21/	17			
Antimony	533	10	μg/L	500		107	85-115	2.88	20	
Arsenic	543	10	$\mu g/L$	500		109	85-115	4.08	20	
Cadmium	524	2.0	$\mu g/L$	500		105	85-115	3.03	20	
Copper	1050	10	$\mu g/L$	1000		105	85-115	4.73	20	
Lead	537	5.0	$\mu g/L$	500		107	85-115	3.90	20	
Nickel	526	50	$\mu g/L$	500		105	85-115	4.78	20	
Selenium	544	50	$\mu g/L$	500		109	85-115	4.73	20	
Silver	502	2.0	$\mu g/L$	500		100	85-115	3.11	20	
Zinc	1110	200	$\mu g/L$	1000		111	85-115	3.61	20	

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)\ -\ Quality\ Control$

Marke h Bl86370 - SM21-22 3590 Cr B	Notes	RPD Limit	RPD		%REC Limits	%REC	Source Result	Spike Level	Units	Reporting Limit	Result	Analyta
Prepared & Analyzed: 09/15/17 Prepared & Analyzed: 09/15/17	140165	Emnt	KI D	,	Lillits	/UKEC	Result	LCVCI	Units	Limit	Result	
Reavalent Chromium ND 0.0040 mg/L Prepared & Analyzed: 09/15/17 Reavalent Chromium 0.098 0.0040 mg/L 0.100 97.8 86.6-115 Reavalent Chromium 0.098 0.0040 mg/L 0.100 97.8 86.6-115 Reavalent Chromium 0.10 0.0040 mg/L 0.100 100 86.6-115 2.47 6.61 Barch B186372 - SM21-22 4500 CL G												Batch B186370 - SM21-22 3500 Cr B
Prepared & Analyzed: 09/15/17 Prepared & Analyzed: 09/15/17						/15/17	Analyzed: 09/	Prepared &				<u> </u>
Hexavalent Chromium 0,098 0,0040 mg/L 0,100 97.8 86.6-115 1									mg/L	0.0040	ND	Hexavalent Chromium
Prepared & Analyzed: 09/15/17						/15/17	Analyzed: 09/	Prepared &				LCS (B186370-BS1)
Hexavalent Chromium 0.10 0.0040 mg/L 0.100 100 86.6-115 2.47 6.61				5	86.6-115	97.8		0.100	mg/L	0.0040	0.098	Hexavalent Chromium
Blatch B186372 - SM21-22 4500 CL G						/15/17	Analyzed: 09/	Prepared &				LCS Dup (B186370-BSD1)
Prepared & Analyzed: 09/15/17		6.61	2.47	5	86.6-115	100		0.100	mg/L	0.0040	0.10	Hexavalent Chromium
Chlorine, Residual ND 0.020 mg/L												Batch B186372 - SM21-22 4500 CL G
Prepared & Analyzed: 09/15/17 Chlorine, Residual 1.4 0.020 mg/L 1.30 109 82.5-130 LCS Dup (B186372-BSD1) Prepared & Analyzed: 09/15/17 Chlorine, Residual 1.4 0.020 mg/L 1.30 108 82.5-130 1.17 6.2 Chlorine, Residual 1.4 0.020 mg/L 1.30 108 82.5-130 1.17 6.2 Chlorine, Residual 1.4 0.020 mg/L 1.30 108 82.5-130 1.17 6.2 Chlorine, Residual 1.4 0.020 mg/L 1.30 108 82.5-130 1.17 6.2 Chlorine, Residual 1.4 0.020 mg/L 1.30 108 82.5-130 1.17 6.2 Chlorine, Residual 1.4 0.020 mg/L 1.30 108 82.5-130 1.17 6.2 Chlorine, Residual 1.4 Chlorine, Residual 1.5 Chlorine,						/15/17	Analyzed: 09/	Prepared &				Blank (B186372-BLK1)
Chlorine, Residual									mg/L	0.020	ND	Chlorine, Residual
Prepared & Analyzed: 09/15/17 Chlorine, Residual 1.4 0.020 mg/L 1.30 108 82.5-130 1.17 6.2						/15/17	Analyzed: 09/	Prepared &				LCS (B186372-BS1)
Chlorine, Residual				0	82.5-130	109		1.30	mg/L	0.020	1.4	Chlorine, Residual
Black B186410 - SM21-22 2540D						/15/17	Analyzed: 09/	Prepared &				LCS Dup (B186372-BSD1)
Prepared & Analyzed: 09/18/17 Total Suspended Solids ND 2.5 mg/L		6.2	1.17	0	82.5-130	108		1.30	mg/L	0.020	1.4	Chlorine, Residual
Total Suspended Solids												Batch B186410 - SM21-22 2540D
Prepared & Analyzed: 09/18/17 Total Suspended Solids 202 10 mg/L 200 101 66.7-117						/18/17	Analyzed: 09/	Prepared &				Blank (B186410-BLK1)
Total Suspended Solids 202 10 mg/L 200 101 66.7-117 Duplicate (B186410-DUP2) Source: 1710704-02 Prepared & Analyzed: 09/18/17 Prepared & Analyzed: 09/18/17 Total Suspended Solids 22 5.0 mg/L 17 25.6 * 5 Blank (B186770 - EPA 1664B Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) ND 1.4 mg/L LCS (B186770-BS1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) 8.9 mg/L 10.0 89.0 64-132									mg/L	2.5	ND	Total Suspended Solids
Duplicate (B186410-DUP2) Source: 1710704-02 Prepared & Analyzed: 09/18/17 Total Suspended Solids 22 5.0 mg/L 17 25.6 * 5 Batch B186770 - EPA 1664B Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) ND 1.4 mg/L LCS (B186770-BS1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) 8.9 mg/L 10.0 89.0 64-132						/18/17	Analyzed: 09/	Prepared &				LCS (B186410-BS1)
Total Suspended Solids 22 5.0 mg/L 17 25.6 * 5 Batch B186770 - EPA 1664B Blank (B186770-BLK1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) ND 1.4 mg/L LCS (B186770-BS1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) 8.9 mg/L 10.0 89.0 64-132				7	66.7-117	101		200	mg/L	10	202	Total Suspended Solids
Batch B186770 - EPA 1664B Blank (B186770-BLK1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) ND 1.4 mg/L LCS (B186770-BS1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) 8.9 mg/L 10.0 89.0 64-132						/18/17	Analyzed: 09/	Prepared &	2	ırce: 17I0704-0	Sou	Duplicate (B186410-DUP2)
Blank (B186770-BLK1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) ND 1.4 mg/L LCS (B186770-BS1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) 8.9 mg/L 10.0 89.0 64-132	R-04	5	25.6 *				17		mg/L	5.0	22	Total Suspended Solids
Silica Gel Treated HEM (SGT-HEM) ND 1.4 mg/L LCS (B186770-BS1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) 8.9 mg/L 10.0 89.0 64-132												Batch B186770 - EPA 1664B
LCS (B186770-BS1) Prepared & Analyzed: 09/21/17 Silica Gel Treated HEM (SGT-HEM) 8.9 mg/L 10.0 89.0 64-132						/21/17	Analyzed: 09/2	Prepared &				Blank (B186770-BLK1)
Silica Gel Treated HEM (SGT-HEM) 8.9 mg/L 10.0 89.0 64-132									mg/L	1.4	ND	Silica Gel Treated HEM (SGT-HEM)
						/21/17	Analyzed: 09/2	Prepared &				LCS (B186770-BS1)
D. W. C.				2	64-132	89.0		10.0	mg/L		8.9	Silica Gel Treated HEM (SGT-HEM)
Duplicate (B186770-DUP1) Source: 1710704-02 Prepared & Analyzed: 09/21/17						/21/17	Analyzed: 09/2	Prepared &	2	ırce: 17I0704-0	Sou	Duplicate (B186770-DUP1)
Silica Gel Treated HEM (SGT-HEM) ND 1.6 mg/L ND NC 18		18	NC			1	ND					

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B186770 - EPA 1664B

Matrix Spike (B186770-MS1)	Source: 17I	0704-02	!	Prepared & Anal	yzed: 09/21/17	
Silica Gel Treated HEM (SGT-HEM)	87	14	mg/L	100	ND 87.0	64-132

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B186764 - EPA 504 water										
Blank (B186764-BLK1)				Prepared &	Analyzed: 09	/21/17				
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
1,2-Dibromoethane (EDB) [2C]	ND	0.021	$\mu g \! / \! L$							
LCS (B186764-BS1)				Prepared &	Analyzed: 09	/21/17				
1,2-Dibromoethane (EDB)	0.168	0.021	μg/L	0.180		93.1	70-130			
1,2-Dibromoethane (EDB) [2C]	0.166	0.021	$\mu g \! / \! L$	0.180		92.0	70-130			
LCS Dup (B186764-BSD1)				Prepared &	Analyzed: 09	/21/17				
1,2-Dibromoethane (EDB)	0.176	0.021	μg/L	0.183		96.6	70-130	4.89		
1,2-Dibromoethane (EDB) [2C]	0.172	0.021	$\mu g/L$	0.183		94.3	70-130	3.73		

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit
DL	Method Detection Limit
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
R-04	Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting limit (RL).
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where
V-19	%RSD is outside of method specified criteria. Initial calibration did not meet method specifications. Compound was calibrated using linear regression with correlation coefficient <0.99. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Methyl tert-Butyl Ether (MTBE)

Methylene Chloride

Analyte	Certifications
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
EPA 608 in Water	
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
EPA 624 in Water	
Acetone	NH,NY
Benzene	CT,MA,NH,NY,RI,NC,ME,VA
Carbon Tetrachloride	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Ethylbenzene	CT,MA,NH,NY,RI,NC,ME,VA

NH,NY,NC

CT,MA,NH,NY,RI,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Bis (2-Ethylhexyl) phthalate

Certified Analyses included in this Report	
Analyte	Certifications
EPA 624 in Water	
Naphthalene	NC
Tetrachloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Toluene	CT,MA,NH,NY,RI,NC,ME,VA
1,2,4-Trichlorobenzene	NC
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Trichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Vinyl Chloride	CT,MA,NH,NY,RI,NC,ME,VA
m+p Xylene	CT,MA,NH,NY,RI,NC,VA
o-Xylene	CT,MA,NH,NY,RI,NC,VA
EPA 625 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(a)anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(a)pyrene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(b)fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(k)fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Chrysene	CT,MA,NH,NY,NC,RI,ME,VA
Dibenz(a,h)anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine (as Azobenzene)	NC

CT,MA,NH,NY,NC,RI,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Benzo(k)fluoranthene

Bis(2-chloroethyl)ether

Bis(2-chloroisopropyl)ether

Analyte	Certifications	
EPA 625 in Water		
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA	
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA	
Indeno(1,2,3-cd)pyrene	CT,MA,NH,NY,NC,RI,ME,VA	
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA	
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA	
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA	
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA	
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA	
N-Nitrosodiphenylamine	CT,MA,NH,NY,NC,RI,ME,VA	
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA	
Pentachlorophenol	CT,MA,NH,NY,NC,RI,ME,VA	
2-Methylnaphthalene	NC	
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA	
2-Methylphenol	NY,NC	
Phenol	CT,MA,NH,NY,NC,RI,ME,VA	
3/4-Methylphenol	NY,NC	
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA	
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA	
2-Fluorophenol	NC	
SM19-22 4500 NH3 C in Water		
Ammonia as N	NY,MA,CT,RI,VA,NC,ME	
SM21-22 2540D in Water		
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA	
SM21-22 3500 Cr B in Water		
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC	
SM21-22 4500 CL G in Water		
Chlorine, Residual	CT,MA,RI,ME	
SW-846 8270D in Water		
Acenaphthene	CT,NY,NC,ME,NH,VA,NJ	
Acenaphthylene	CT,NY,NC,ME,NH,VA,NJ	
Anthracene	CT,NY,NC,ME,NH,VA,NJ	
Benzidine	CT,NY,NC,ME,NH,VA,NJ	
Benzo(a)anthracene	CT,NY,NC,ME,NH,VA,NJ	
Benzo(a)pyrene	CT,NY,NC,ME,NH,VA,NJ	
Benzo(b)fluoranthene	CT,NY,NC,ME,NH,VA,NJ	
Benzo(g,h,i)perylene	CT,NY,NC,ME,NH,VA,NJ	

CT,NY,NC,ME,NH,VA,NJ

CT,NY,NC,ME,NH,VA,NJ

CT,NY,NC,ME,NH,VA,NJ

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270D in Water		
Bis(2-Ethylhexyl)phthalate	CT,NY,NC,ME,NH,VA,NJ	
4-Bromophenylphenylether	CT,NY,NC,ME,NH,VA,NJ	
Butylbenzylphthalate	CT,NY,NC,ME,NH,VA,NJ	
4-Chloro-3-methylphenol	CT,NY,NC,ME,NH,VA,NJ	
2-Chloronaphthalene	CT,NY,NC,ME,NH,VA,NJ	
2-Chlorophenol	CT,NY,NC,ME,NH,VA,NJ	
4-Chlorophenylphenylether	CT,NY,NC,ME,NH,VA,NJ	
Chrysene	CT,NY,NC,ME,NH,VA,NJ	
Dibenz(a,h)anthracene	CT,NY,NC,ME,NH,VA,NJ	
Di-n-butylphthalate	CT,NY,NC,ME,NH,VA,NJ	
1,2-Dichlorobenzene	CT,NY,NC,ME,NH,VA,NJ	
1,3-Dichlorobenzene	CT,NY,NC,ME,NH,VA,NJ	
1,4-Dichlorobenzene	CT,NY,NC,ME,NH,VA,NJ	
3,3-Dichlorobenzidine	CT,NY,NC,ME,NH,VA,NJ	
2,4-Dichlorophenol	CT,NY,NC,ME,NH,VA,NJ	
Diethylphthalate	CT,NY,NC,ME,NH,VA,NJ	
2,4-Dimethylphenol	CT,NY,NC,ME,NH,VA,NJ	
Dimethylphthalate	CT,NY,NC,ME,NH,VA,NJ	
4,6-Dinitro-2-methylphenol	CT,NY,NC,ME,NH,VA,NJ	
2,4-Dinitrophenol	CT,NY,NC,ME,NH,VA,NJ	
2,4-Dinitrotoluene	CT,NY,NC,ME,NH,VA,NJ	
2,6-Dinitrotoluene	CT,NY,NC,ME,NH,VA,NJ	
Di-n-octylphthalate	CT,NY,NC,ME,NH,VA,NJ	
1,2-Diphenylhydrazine (as Azobenzene)	NY,NC,ME	
Fluoranthene	CT,NY,NC,ME,NH,VA,NJ	
Fluorene	NY,NC,ME,NH,VA,NJ	
Hexachlorobenzene	CT,NY,NC,ME,NH,VA,NJ	
Hexachlorobutadiene	CT,NY,NC,ME,NH,VA,NJ	
Hexachlorocyclopentadiene	CT,NY,NC,ME,NH,VA,NJ	
Hexachloroethane	CT,NY,NC,ME,NH,VA,NJ	
Indeno(1,2,3-cd)pyrene	CT,NY,NC,ME,NH,VA,NJ	
Isophorone	CT,NY,NC,ME,NH,VA,NJ	
2-Methylnaphthalene	CT,NY,NC,ME,NH,VA,NJ	
2-Methylphenol	CT,NY,NC,NH,VA,NJ	
3/4-Methylphenol	CT,NY,NC,NH,VA,NJ	
Naphthalene	CT,NY,NC,ME,NH,VA,NJ	
Nitrobenzene	CT,NY,NC,ME,NH,VA,NJ	
2-Nitrophenol	CT,NY,NC,ME,NH,VA,NJ	
4-Nitrophenol	CT,NY,NC,ME,NH,VA,NJ	
N-Nitrosodimethylamine	CT,NY,NC,ME,NH,VA,NJ	
N-Nitrosodiphenylamine	CT,NY,NC,ME,NH,VA,NJ	
N-Nitrosodi-n-propylamine	CT,NY,NC,ME,NH,VA,NJ	
Pentachlorophenol	CT,NY,NC,ME,NH,VA,NJ	
Phenanthrene	CT,NY,NC,ME,NH,VA,NJ	
Phenol	CT,NY,NC,ME,NH,VA,NJ	
Pyrene	CT,NY,NC,ME,NH,VA,NJ	
1,2,4-Trichlorobenzene	CT,NY,NC,ME,NH,VA,NJ	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SW-846 8270D in Water

2,4,6-Trichlorophenol CT,NY,NC,ME,NH,VA,NJ

2-Fluorophenol NC,VA
Phenol-d6 VA
Nitrobenzene-d5 VA

SW-846 9014 in Water

Cyanide NY,CT,NH,NC,ME,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2018
CT	Connecticut Department of Publile Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2018
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2018
RI	Rhode Island Department of Health	LAO00112	12/30/2017
NC	North Carolina Div. of Water Quality	652	12/31/2017
NJ	New Jersey DEP	MA007 NELAP	06/30/2018
FL	Florida Department of Health	E871027 NELAP	06/30/2018
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2018
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2017
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2017
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2018
NC-DW	North Carolina Department of Health	25703	07/31/2018

Onemporte sphare Samples 2 Preservation Codes: X = Sodium Hydroxide S = Sulfuric Acid B = Sodium Bisulfate Musicipal Cotto DW = Drinking Water S = Summa Canister GW = Ground Water ³Container Codes 0 = Other (please WW = Waste Water 0 = Other (please 0 = Other (please Non Soxhlet A = Amber Glass PCB ONLY Soxhlet T = Tedlar Bag Preservation Code N = Nitric Acid Matrix Codes O Field Filtered O Field Filtered M = Methanol O Lab to Filter O Lab to Filter ST = Sterile Container Code S = Soil SL = Sludge Thiosulfate = Sodium P = Plastic SOL = Solid # of Containers G = Glass V = Vial H= HCL define) = |ced define) define) A = Air Please use the following codes to indicate possible sample concentration MELAC and Alfra. AP, ILC Accredited Chromatogram AIHA-LAP, LLC manuscoupeatiaba.com East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown ANALYSIS REQUESTED within the Conc Code column above: Other WRTA MA MCP Required МСР Certification Form Required CT RCP Required RCP Certification Form Required School MA State DW Required MWRA MBTA Special Requirements Hardness Email To: Jfreemon Protecopus 88 X CHAIN OF CUSTODY RECORD X 8 3 Municipality Brownfield **GISM**d 3-Day 4-Day PDF X EXCEL Grab CLP Like Data Pkg Required Composite Government Ending-1450 Due Date: 2/15/17/1/30 Fax To #: Format: Federal Other: 7-Day 2-Day 1-Day City Project Entity 11/5/6 Email: info@contestlabs.com Date/Time. 11 me 30 Client Sample ID / Description Phone: 413-525-2332 Munigoal FH bate/Time: Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: 115117 B05-049 Trip Blank]ate/] Jesse Freeman One Congress St Vartex 27076 Con-Test Quote Name/Number: catco COD-KSK Relinquished by: (signature) nquished by: (signature) eived by: (signature) Work Order# Con-Test nvoice Recipient: Project Manager: Project Location: Project Number: Sompany Name Sampled By: Comments: Address: Phone: Page 43 of 44

39 Spruce Street

Doc # 381 Rev 1_03242017

http://www.contestlabs.com

んのこの土し

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 www.contestlabs.com

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client		Vertex							
Receive	ed By	-AF		Date	9/15	17	Time	2030	
How were th	e samples	In Cooler	Ť	No Cooler		On Ice	T	No Ice	
receiv	ed?	Direct from Samp	ling	•		- Ambient		Melted Ice	
		•	By Gun #	(Actual Tem	0-42	•	
Were samp		T	By Blank #			Actual Tem			•
Temperatur			by blank #	1//~	ro Comple	s Tampered		w/A	
	•	eal Intact?		•		•	•		
	COC Relin	•	20 20 20	•	Chain Ag	ree With Sar	npies :		
		eaking/loose caps T	on any sam	-	nlac rocci	ived within ho	olding time?	~	
Is COC in inlining Did COC in	-	Client	ji	Analysis	ibies recei		er Name		
pertinent Infe		Project	<u> </u>	ID's	'		Dates/Times		
		d out and legible?	<u> </u>			- 00110011011	Dates/Times		
Are there Lat		***	NIA		Who wa	s notified?	NA		
Are there Ru		•	NIA			s notified?	N14		
Are there She			- XIV			s notified?	David		
Is there enou					VVIIO VVA	s nouneu:	<u>usia</u>		
	•	ere applicable?			MS/MSD?	. / A			
Proper Media	•	• • •				samples req	uired?	عماره	
Were trip bla					On COC?		uii eu :		
Do all sample		•		Acid	011 000:		Base	1	
•				Acid .			Dase .		
Vials	#	Contr s:	#	4 1 14	Disadia	#	16 0=	Anab	#
Unp- HCL-	·	1 Liter Amb. 500 mL Amb.	10	1 Liter l 500 mL			16 oz	b/Clear	
Meoh-	10	250 mL Amb.		250 mL		3		b/Clear	
Bisulfate-		Col./Bacteria		Flash				b/Clear	
DI-		Other Plastic		Other				core	
Thiosulfate-	5	SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziplo					
				Unused N					
Vials	#	Containers:	# 1	Ondsed n	ileula	# 1			# 1
Unp-		1 Liter Amb.		1 Liter I	Plastic	,	16 oz	Amb.	•
HCL-		500 mL Amb.		500 mL			8oz Am		
Meoh-		250 mL Amb.		250 mL	Plastic		4oz Am	b/Clear	
Bisulfate-		Col./Bacteria		Flash	point		2oz Am	b/Clear	
DI-		Other Plastic		Other	Glass		End	ore	
Thiosulfate-		SOC Kit		Plastic	: Bag		Frozen:		
Sulfuric-		Perchlorate		Ziplo	ock				
Comments:				************					