II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:	State:	Zip:				
3. Site operator, if different than owner	Contact Person:						
	Telephone:						
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	☐ MA Chapter 21e; list RTN(s):	□ CERCLA					
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	□ NH Groundwater Management Permit or		☐ UIC Program				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
-		⊔ CWA S	VA Section 404				

В.	Receiving water information:	:
1 N	lame of receiving water(s).	

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	cation of receiving water(s):						
Receiving water is (check any that apply): \Box Outstar	nding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver						
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP.									
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.								
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No						
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?						
(check one): □ Yes □ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other							
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No					
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No					
D. Discharge information						
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)					
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:					
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:					
Has notification been provided to the owner of this system? (check one): ☐ Ye	•					
Has the operator has received permission from the owner to use such system for discharges? (check one): Yes No, if so, explain, with an estimated timeframe for obtaining permission:						
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No					
Provide the expected start and end dates of discharge(s) (month/year):						
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ☐ Yes ☐ No						

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

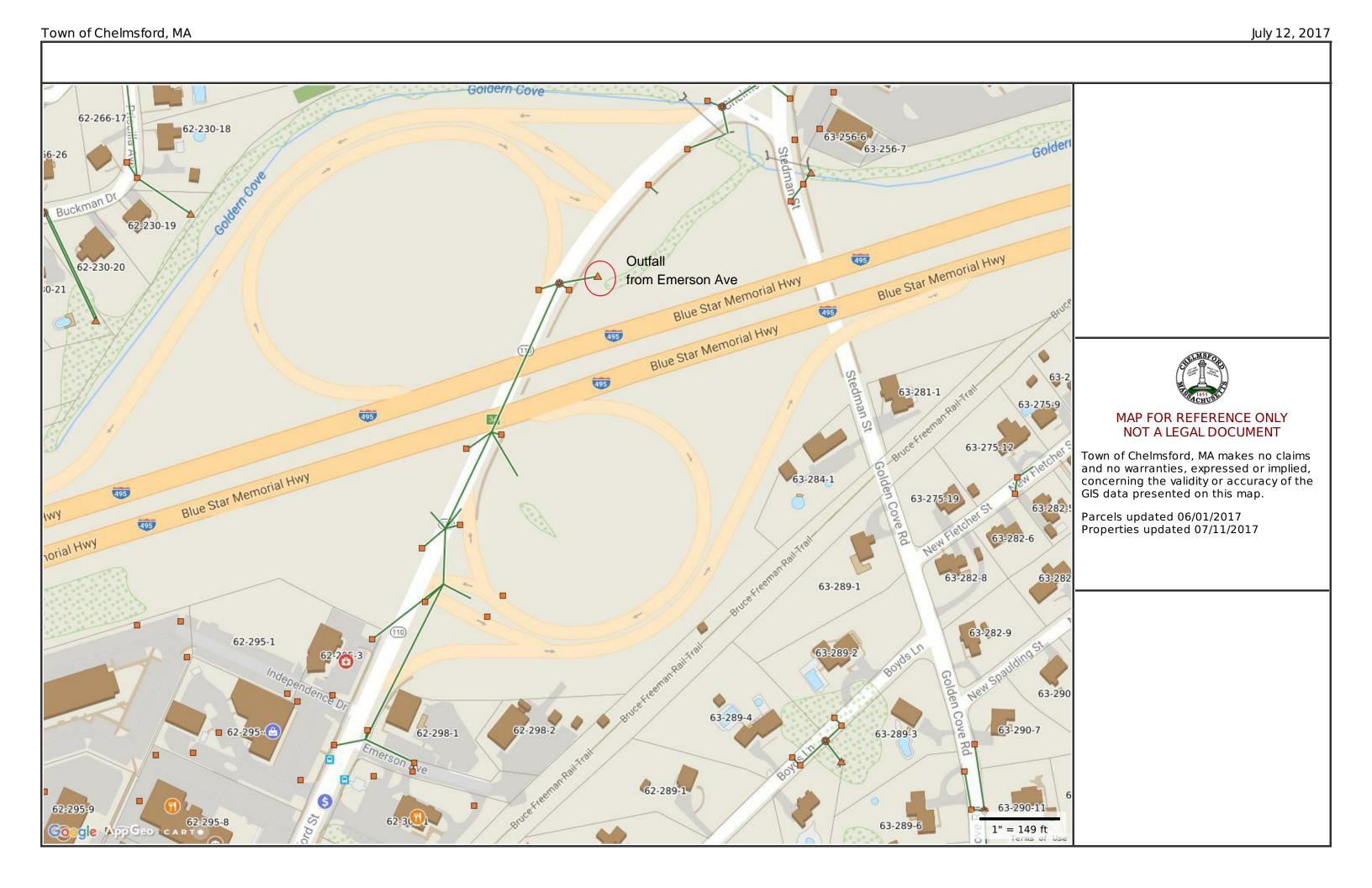
	Known	Known		75 5 4		Infl	uent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

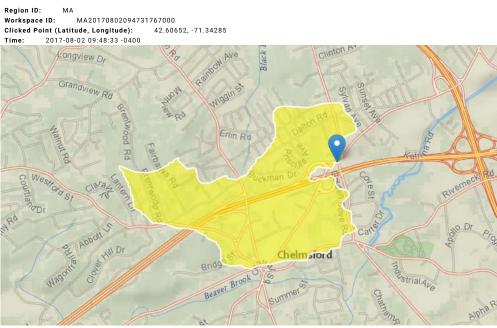
	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	or # of samples m	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify: pH Adjustment	
F	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	


F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:


□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, ar	he system, or those nd complete. I have
BMPP certification statement: BMPP meeting the requirements of this general permit will be developed and	implemented upon	initiation of discharge
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	№ □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes	No □ NA □
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes	No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes	No □ NA □
☐ Other; if so, specify:		
Signature: Da	te: 8//	19/17
Print Name and Title: Robert P. Coluccio, Senior Engineer	/	

Colonial Oil Chelmsford StreamStats Report

NOI for RGP to discharge to Golden Cove Stream

Basin Characteristics							
Parameter Code	Parameter Description	Value	Unit				
DRNAREA	Area that drains to a point on a stream	0.8	square miles				
BSLDEM250	Mean basin slope computed from 1:250K DEM		percent				
DRFTPERSTR	Area of stratified drift per unit of stream length		square mile per mile				
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless				
BSLDEM10M	Mean basin slope computed from 10 m DEM		percent				
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits		percent				
FOREST	Percentage of area covered by forest		percent				

arameter Code	Parameter Name	Val	ue Units	Min Limit	Max Limit
RNAREA	Drainage Area	0.8	square miles	1.61	149
SLDEM250	Mean Basin Slope from 250K DEM		percent	0.32	24.6
RFTPERSTR	Stratified Drift per Stream Length		square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Citations

8/2/17, 9:57 AM 1 of 3

Flow-Duration Statistics Parameters [Sta	tewide Low Flow WRIR00 4135]
--	------------------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.8	square miles	1.61	149
DRFTPERSTR	Stratified Drift per Stream Length		square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1
BSLDEM250	Mean Basin Slope from 250K DEM		percent	0.32	24.6

Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic Value Unit

Flow-Duration Statistics Citations

August Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.8	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM		percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length		square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

August Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic Value Unit

August Flow-Duration Statistics Citations

Bankfull Statistics Parameters [Bankfull Statewide SIR2013 5155]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.8	square miles	0.6	329
BSLDEM10M	Mean Basin Slope from 10m DEM		percent	2.2	23.9

Bankfull Statistics Flow Report [Bankfull Statewide SIR2013 5155]

Statistic Value Unit

Bankfull Statistics Citations

Probability Statistics Parameters [Perennial Flow Probability]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.8	square miles	0.01	1.99
PCTSNDGRV	Percent Underlain By Sand And Gravel		percent	0	100
FOREST	Percent Forest		percent	0	100
MAREGION	Massachusetts Region	0	dimensionless	0	1

Probability Statistics Flow Report [Perennial Flow Probability]

Statistic Value Unit

2 of 3 8/2/17, 9:57 AM

Probability Statistics Citations

3 of 3

Map Theme Legends

Storm Drain System

Storm Manhole

Catch Basin

▲ Outfall

Treatment Unit

Detention Basin

/ Drain Line

Culvert Line

/ Headwall

From: Ruan, Xiaodan (DEP) (DEP) <xiaodan.ruan@state.ma.us>

To: rpcoluccio < rpcoluccio@aol.com>
Subject: RE: StreamStat Report for Colonial Oil

Date: Tue, Aug 8, 2017 2:55 pm

Hi Bob,

Because the brook might become intermittent during low flow season, no dilution will be granted for the discharge and the dilution factor equals to 1. Please let me know if you have any questions.

Thank you. Xiaodan

From: rpcoluccio [mailto:rpcoluccio@aol.com]
Sent: Tuesday, August 08, 2017 12:16 PM

To: Ruan, Xiaodan (DEP)

Subject: RE: StreamStat Report for Colonial Oil

I only know that the town engineer, Christina Papadopoulos, told me that it might run dry.

Sent via the Samsung Galaxy S7, an AT&T 4G LTE smartphone

----- Original message -----

From: "Ruan, Xiaodan (DEP)" < xiaodan.ruan@state.ma.us>

Date: 8/8/17 11:29 AM (GMT-05:00) To: rpcoluccio < rpcoluccio@aol.com>

Subject: RE: StreamStat Report for Colonial Oil

Hi Bob,

I think we talked about this over the phone but could you remind me again if the brook goes dry during low flow season? Or does it have continuous flow?

Thanks, Xiaodan

From: rpcoluccio [mailto:rpcoluccio@aol.com]
Sent: Monday, August 07, 2017 10:36 AM

To: Ruan, Xiaodan (DEP)

Subject: Fwd: StreamStat Report for Colonial Oil

The site address is Colonial Oil, 8 Emerson Avenue, Chelmsford, Ma.

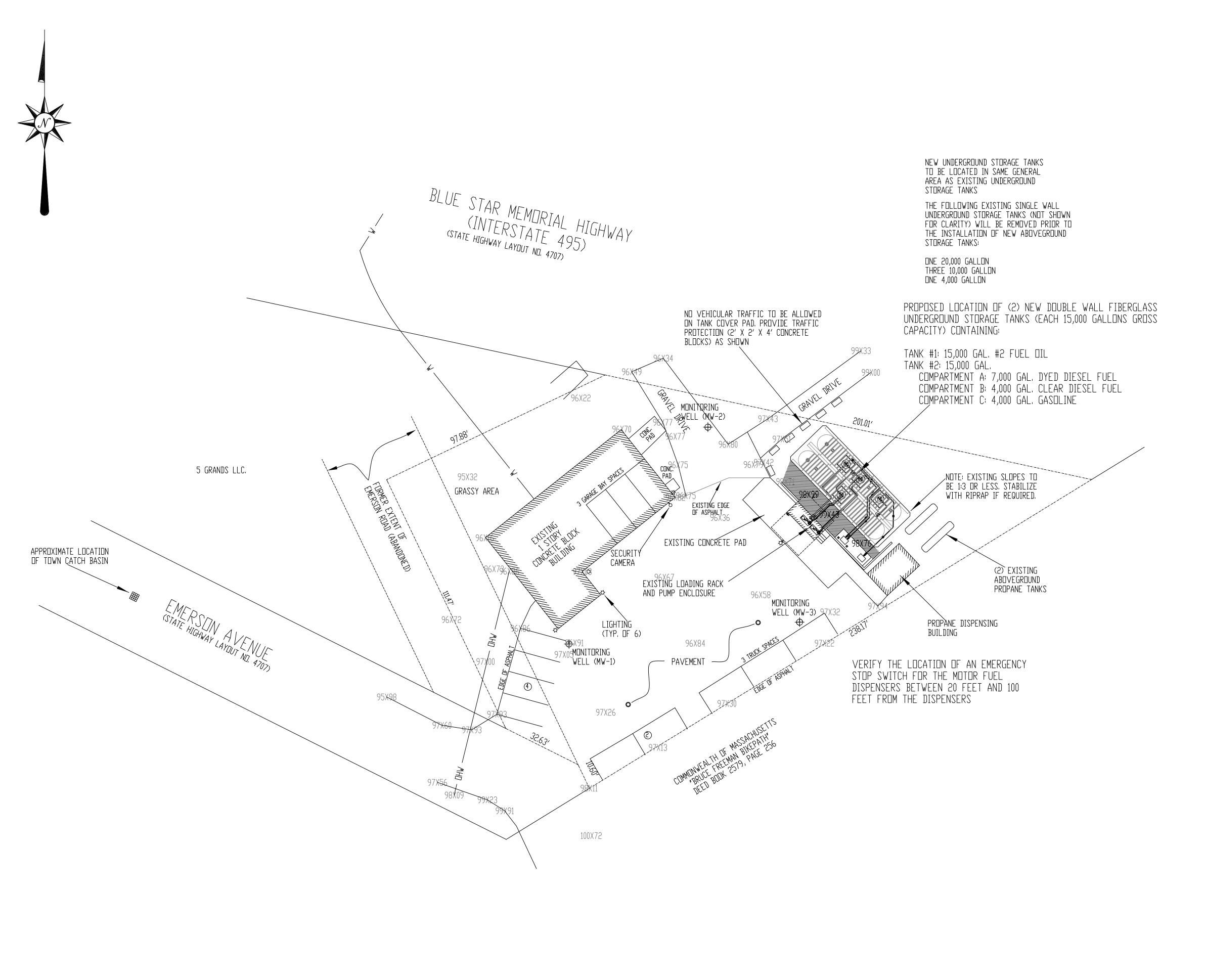
Can you confirm receipt even if you don't get to it right away?

Bob Coluccio Web Engineering 781.844.8323

Sent via the Samsung Galaxy S7, an AT&T 4G LTE smartphone

----- Original message ------From: rpcoluccio@aol.com

Date: 8/2/17 10:10 AM (GMT-05:00)


To: Catherine.Vakalopoulos@MassMail.State.MA.US

Subject: StreamStat Report

Cathy

Attached is a new StreamStat report. Is this something you can take a look at and let me know what you think? Strangely, it didn't give me any low flow data. Would that be because it is very low or because there is no data? Would I go with a dilution factor of 1?

1 of 2 8/8/17, 4:50 PM

96X80 EXISTING SPOT ELEVATION

XX.X PROPOSED SPOT ELEVATION (APPROX.)

DRAWING LIST:

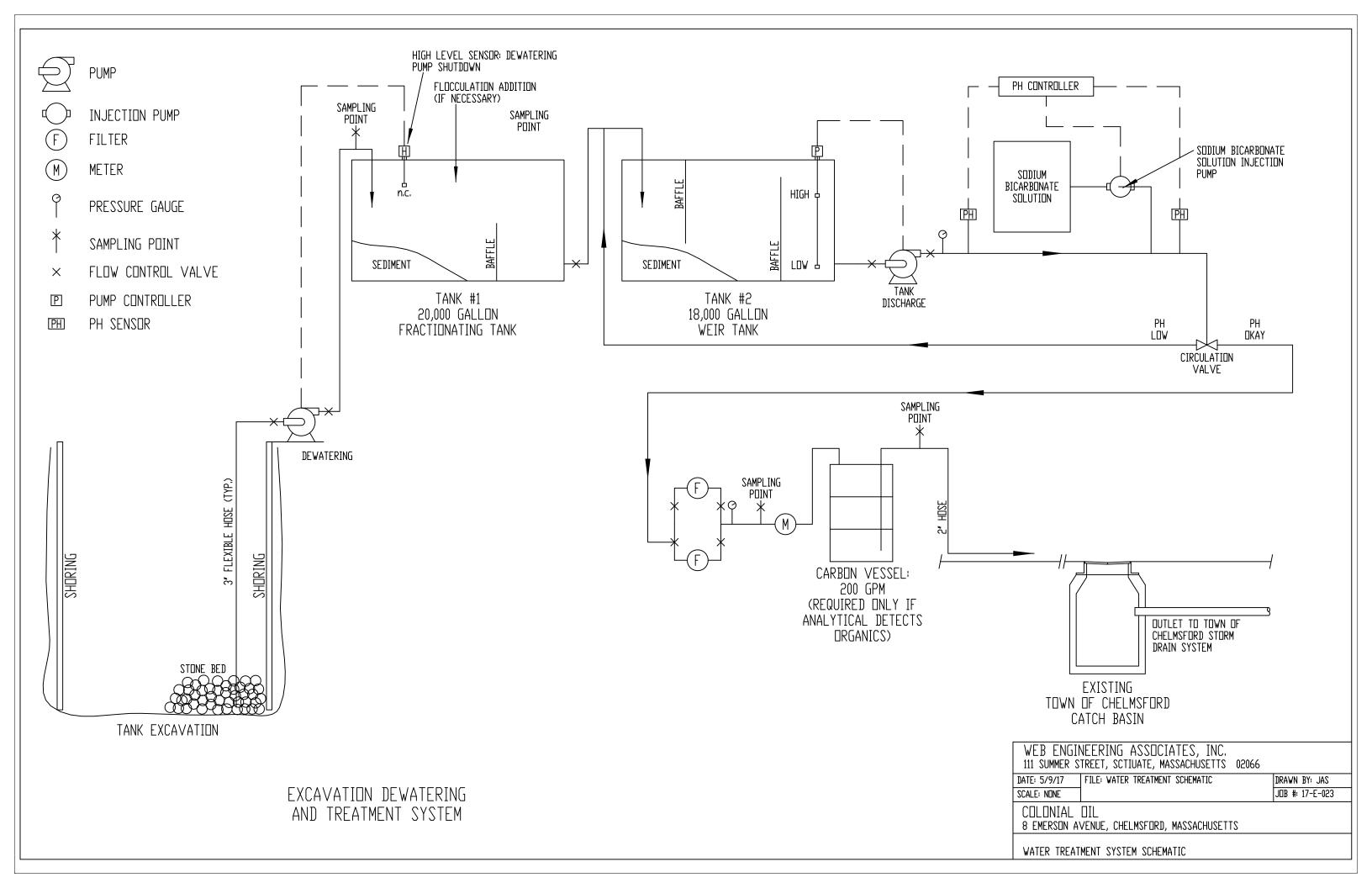
A-1 SITE PLAN - PROPOSED MODIFICATIONS
M-1 PIPING / MECHANICAL
M-2 TANK ELEVATIONS
S-1 CONCRETE

NOTE: ALL GASOLINE RELATED EQUIPMENT TO BE CARB APPROVED PER EXECUTIVE ORDER VR-401-E

GENERAL TESTING NOTES:

- 1) ALL SUMPS SHALL PASS A TIGHTNESS TEST AT INSTALLATION TO ENSURE THE SUMP IS LIQUID TIGHT BY USING VACUUM, PRESSURE, OR LIQUID TESTING. THE STANDARD FOR FAILING IS 1 INCH OR GREATER LOSS OF WATER WITHIN ONE HOUR.
- 2) AFTER INSTALLATION, BACKFILLING AND SURFACING TO GRADE, BUT PRIOR TO PUTTING REGULATED SUBSTANCE INTO THE TANK, EACH TANK AND ALL PIPING SHALL PASS A TIGHTNESS TEST PURSUANT TO 310 CMR 80.32.
- 3) ALL UST SYSTEMS SHALL BE INSPECTED BY THE PERSON, WHO PREPARES THE DRAWING OR AS-BUILT PLANS IN ACCORDANCE WITH 310 CMR 80.16(7), OR THEIR DESIGNATED REPRESENTATIVE, PRIOR TO BEING BACKFILLED, TO ENSURE THE UST SYSTEM IS INSTALLED IN ACCORDANCE WITH 310 CMR 80.14 THROUGH 80.22.
- 4) IF THE PERSON WHO PREPARES THE DRAWING OR AS-BUILT PLANS, OR THEIR DESIGNATED REPRESENTATIVE, DETERMINES THE UST SYSTEM IS NOT INSTALLED IN ACCORDANCE WITH 310 CMR 80.14 THROUGH 80.22, THE UST SYSTEM SHALL NOT BE BACKFILLED UNTIL THE OWNER OR OPERATOR OF THE UST SYSTEM COMPLIES WITH ALL REQUIREMENTS AT 310 CMR 80.14 THROUGH 80.22.
- 5) PROVIDE ENGINEER WITH TANK MANUFACTURER'S CHECKLIST COMPLETED BY CONTRACTOR.

GENERAL NOTES:


- 1) NEW TANKS TO BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH UL 1316 "GLASS-FIBER REINFORCED PLASTIC UNDERGROUND STORAGE TANKS FOR PETROLEUM PRODUCTS, ALCOHOLS, AND ALCOHOL-GASOLINE MIXTURES."
- 2) ALL CONSTRUCTION TO MEET OR EXCEED:
 - A) MASSACHUSETTS BUILDING CODES
 B) NFPA 1 "FIRE CODE"
 - C) NFPA 30 "FLAMMABLE AND COMBUSTIBLE LIQUIDS CODE"
 - D) NFPA 30A "CODE FOR MOTOR FUEL DISPENSING FACILITIES AND REPAIR GARAGES" E) 527 CMR 1.00 "MASSACHUSETTS COMPREHENSIVE FIRE SAFETY CODE"
 - E) NATIONAL ELECTRICAL CODE

 E) 25/ CMK 1.00 "MASSACHOSELIS COMPREHENZIVE FIRE SAFETY CODE"
 - G) THE LATEST STANDARD OF AISC (AMERICAN INSTITUTE OF STEEL CONSTRUCTION)
- 3) ELECTRICAL CLASSIFICATION: CLASS I DIV 1/2 AROUND GASOLINE AND PROPANE IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE. ELECTRICAL UNCLASSIFIED DUTSIDE THESE AREAS.
 4) ALL STRUCTURES TO MEET OR EXCEED THE LATEST REVISION OF AISC AND A58 SPECIFICATIONS.
 5) ALL STRUCTURES TO MEET OR EXCEED MASSACHUSETTS BUILDING CODES.
- 6) PIPING AND VENTING TO MEET OR EXCEED ASME B31 "PRESSURE PIPING CODE" AND API 2000 FOR "VENTING ATMOSPHERIC AND LOW PRESSURE STORAGE TANKS."
- 7) ALL TANKS TO BE EQUIPPED WITH FILL TERMINATION SET AT 95% CAPACITY.
- 8) TANKS TO BE EQUIPPED WITH INVENTORY CONTROL MONITOR WITH HIGH LEVEL ALARM SET AT 90%
- CAPACITY. AUDIBLE/VISIBLE HIGH LEVEL ALARM TO HAVE ACKNOWLEDGE SWITCH.

 9) ALL PIPING TO HAVE PRESSURE RELIEF AROUND ALL FLOW BLOCKING DEVICES (TO RELIEVE BACK TO UNDERGROUND TANKS.
- 10) TANKS TO BE LABELED FOR CONTENTS USING 2" MIN. LETTERING (COLOR TO CONTRAST TANK COLOR) AND WITH THE DOT FIRE RATING SYSTEM SYMBOL.
- 11) TANKS TO BE LABELED WITH MAXIMUM FILL HEIGHT IN PLAIN VIEW OF OFFLOADING OPERATIONS.
 12) THE SELF-SERVICE DISPENSING OF MOTOR FUELS BY THE PUBLIC IS PROHIBITED.

THIS DRAWING TAKEN FROM A PLAN OF LAND BY HANCOCK ASSOCIATES OF CHELMSFORD, MASSACHUSETTS, DATED MAY 23, 2017 AND SHOULD NOT BE USED FOR THE DETERMINATION OF PROPERTY LINES, METES, BOUNDS, ETC.

111 SUMMER STREET, SCITUATE, MASSACHUSETTS 02066	WEB ENGINEERING ASSOCIATES, INC. 111 SUMMER STREET, SCITUATE, MASSACHUSETTS 02066				
DATE: 5/9/17 FILE: PROPOSED F	DRAWN BY: JAS				
SCALE: 1" = 20' WEB ENGINEERING DRAWING NUMBER 1738	J□B #: 17-E-023				
COLONIAL OIL 8 EMERSON AVENUE, CHELMSFORD, MASSACHUSETTS					
SITE PLAN - PROPOSED MODIFICATIONS	DRAWING No: A-1				

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Chelmsford; Street No: 8; Street Name: emerson Ave; Resource Type(s): Area;

Inv. No. Property Name Street Town Year

Tuesday, August 1, 2017 Page 1 of 1

06/19/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

Web Engineering Associates, Inc.

Colonial Oil, 8 Emerson Street, Chelmsford, MA

17-E-026

SGS Accutest Job Number: MC50632

Sampling Date: 06/12/17

Web Engineering Associates P.O. Box 710 North Scituate, MA 02061 sesolutions1@comcast.net

ATTN: Andrew Brolowski

Total number of pages in report: 47

TNI LABORATOR

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

H. (Brad) Madadian Lab Director

Client Service contact: Daniel Axelrod 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) FL (E87579) NJ (MA926) PA (6801121) LA (A1171119) ND (R-188) NC (653) IL (002337) WI (399080220) DoD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

1 of 47
ACCUTEST
MC50632

Sections:

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	7
Section 4: Sample Results	8
4.1: MC50632-1: MW-2	9
4.2: MC50632-2: MW-3	12
Section 5: Misc. Forms	15
5.1: Parameter Certifications (MA)	16
5.2: Chain of Custody	17
5.3: MCP Form	19
5.4: MCP Form (SGS Accutest New Jersey)	20
5.5: VPH Form	21
5.6: Sample Tracking Chronicle	23
5.7: QC Evaluation: MA MCP Limits	24
Section 6: GC Volatiles - QC Data Summaries	25
6.1: Method Blank Summary	26
6.2: Blank Spike/Blank Spike Duplicate Summary	27
6.3: Surrogate Recovery Summaries	28
Section 7: General Chemistry - QC Data Summaries	29
7.1: Method Blank and Spike Results Summary	30
7.2: Blank Spike Duplicate Results Summary	31
Section 8: Misc. Forms (SGS Accutest New Jersey)	32
8.1: Chain of Custody	33
8.2: Sample Tracking Chronicle	35
8.3: QC Evaluation: MA MCP Limits	36
Section 9: Metals Analysis - QC Data (SGS Accutest New Jersey)	37
9.1: Prep QC MP1431: Sb,As,Cd,Cr,Cu,Fe,Pb,Ni,Ag,Zn	38
9.2: Prep QC MP1443: Hg	44
Section 10: General Chemistry - QC Data (SGS Accutest New Jersey)	46
10.1: Method Blank and Spike Results Summary	47

Sample Summary

Web Engineering Associates, Inc.

Job No: MC50632

Colonial Oil, 8 Emerson Street, Chelmsford, MA Project No: 17-E-026

Sample	Collected			Matr	ix	Client
Number	Date	Time By	Received	Code	Type	Sample ID
MC50632-1	06/12/17	12:30 AB	06/12/17	AQ	Ground Water	MW-2
MC50632-2	06/12/17	14:00 AB	06/12/17	AQ	Ground Water	MW-3

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Web Engineering Associates, Inc. Job No MC50632

Site: Colonial Oil, 8 Emerson Street, Chelmsford, MA Report Date 6/19/2017 3:11:23 PM

2 Sample(s) were collected on 06/12/2017 and were received at SGS Accutest New England on 06/12/2017 properly preserved, at 5.4 Deg. C and intact. These Samples received a job number of MC50632. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GC By Method MADEP VPH REV 1.1

Matrix: AQ Batch ID: GWX4077

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010C

Matrix: AQ Batch ID: N:MP1431

Analysis performed at SGS Accutest, Dayton, NJ.

Metals By Method SW846 7470A

Matrix: AQ Batch ID: N:MP1443

Mercury: Analysis performed at SGS Accutest, Dayton, NJ.

Wet Chemistry By Method EPA 1664A

Matrix: AQ Batch ID: N:GP6038

- MC50632-2 for HEM Oil and Grease: Analysis performed at SGS Accutest, Dayton, NJ.
- MC50632-1 for HEM Oil and Grease: Analysis performed at SGS Accutest, Dayton, NJ.

Wet Chemistry By Method EPA 300/SW846 9056A

Matrix: AQ Batch ID: N:GP5978

- MC50632-1 for Chloride: Analysis performed at SGS Accutest, Dayton, NJ.
- MC50632-2 for Chloride: Analysis performed at SGS Accutest, Dayton, NJ.

Wet Chemistry By Method SM21 4500HB/EPA150.1

Matrix: AQ Batch ID: GN55920

- MC50632-2 for pH: Analysis performed past the required 15 minutes of collection time/holding time.
- MC50632-1 for pH: Analysis performed past the required 15 minutes of collection time/holding time.

Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN55919

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Monday, June 19, 2017 Page 1 of 2

SGS Accutest New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Laboratory Director for SGS Accutest New England or assignee as verified by the signature on the cover page has authorized the release of this report(MC50632).

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: SGS Accutest New England Job No MC50632

Site: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA Report Date 6/19/2017 9:05:06 AM

On 06/13/2017, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS Accutest at a maximum corrected temperature of 4.3 C. Samples were intact and chemically preserved, unless noted below. A SGS Accutest Job Number of MC50632 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method SW846 6010C

Matrix: AO Batch ID: MP1431

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TD4626-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Chromium, Copper, Iron, Nickel, Silver, Zinc are outside control limits for sample MP1431-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Metals By Method SW846 7470A

Matrix: AO Batch ID: MP1443

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method EPA 1664A

Matrix: AO Batch ID: GP6038

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method EPA 300/SW846 9056A

Matrix: AQ Batch ID: GP5978

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

SGS Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS Accutest is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS Accutest indicated via signature on the report cover

Monday, June 19, 2017

Page 1 of 1

Section 4

Sample Results	
Report of Analysis	

Report of Analysis

Page 1 of 1

Client Sample ID: MW-2

 Lab Sample ID:
 MC50632-1
 Date Sampled:
 06/12/17

 Matrix:
 AQ - Ground Water
 Date Received:
 06/12/17

Percent Solids: n/a

Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	4.3 U	6.0	4.3	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Arsenic	2.7 U	3.0	2.7	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Cadmium	36.4	3.0	0.70	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Chromium	2.1 B	10	0.85	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Copper	4.1 B	10	3.2	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Iron	750	100	32	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Lead	2.6 U	3.0	2.6	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Mercury	0.083 U	0.20	0.083	ug/l	1	06/14/17	06/14/17 JA	SW846 7470A ¹	SW846 7470A ⁴
Nickel	8.0 B	10	1.3	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Silver	3.1 U	10	3.1	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Zinc	344	20	4.0	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³

Instrument QC Batch: MA42223
 Instrument QC Batch: MA42234

(3) Prep QC Batch: MP1431(4) Prep QC Batch: MP1443

Page 1 of 1

n/a

Report of Analysis

Client Sample ID: MW-2 Lab Sample ID: MC50632-1 **Date Sampled:** 06/12/17 Matrix: AQ - Ground Water **Date Received:** 06/12/17 Method: MADEP VPH REV 1.1 **Percent Solids:**

Colonial Oil, 8 Emerson Street, Chelmsford, MA **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	WX80826.D	1	06/14/17 21:46	AF	n/a	n/a	GWX4077
Run #2							

Purge Volume Run #1 5.0 mlRun #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	2,3,4-Trifluorotoluene	89%		70-130%
	2,3,4-Trifluorotoluene	93%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-2

Lab Sample ID: MC50632-1 **Date Sampled:** 06/12/17 Matrix: **Date Received:** 06/12/17 AQ - Ground Water

Percent Solids: n/a

WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA **Project:**

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chloride	1760	20	0.70	mg/l	10	06/15/17 10:14 TG EPA 300/SW846 9056A
HEM Oil and Grease	1.2 U	5.6	1.2	mg/l	1	06/15/17 14:00 TT EPA 1664A

Report of Analysis

Page 1 of 1

Client Sample ID: MW-3

Lab Sample ID: **Date Sampled:** 06/12/17 MC50632-2 Matrix: AQ - Ground Water **Date Received:** 06/12/17

Percent Solids: n/a

WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA **Project:**

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	4.3 U	6.0	4.3	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Arsenic	2.7 U	3.0	2.7	ug/1 ug/1	1	06/14/17	0 0, -0, -1	SW846 6010C ²	SW846 3010A 3
Cadmium	0.70 U	3.0	0.70	ug/l	1	06/14/17		SW846 6010C ²	SW846 3010A ³
Chromium	0.90 B	10	0.85	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Copper	3.2 U	10	3.2	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Iron	86.5 B	100	32	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Lead	2.6 U	3.0	2.6	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Mercury	0.083 U	0.20	0.083	ug/l	1	06/14/17	06/14/17 JA	SW846 7470A ¹	SW846 7470A ⁴
Nickel	1.3 U	10	1.3	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Silver	3.1 U	10	3.1	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³
Zinc	4.0 U	20	4.0	ug/l	1	06/14/17	06/15/17 AB	SW846 6010C ²	SW846 3010A ³

(1) Instrument QC Batch: MA42223 (2) Instrument QC Batch: MA42234

(3) Prep QC Batch: MP1431 (4) Prep QC Batch: MP1443

Page 1 of 1

Report of Analysis

Client Sample ID:MW-3Lab Sample ID:MC50632-2Date Sampled:06/12/17Matrix:AQ - Ground WaterDate Received:06/12/17Method:MADEP VPH REV 1.1Percent Solids:n/a

Project: Colonial Oil, 8 Emerson Street, Chelmsford, MA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	WX80827.D	1	06/14/17 22:24	AF	n/a	n/a	GWX4077
Run #2							

Purge Volume
Run #1 5.0 ml
Run #2

MA-VPH List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	2,3,4-Trifluorotoluene	89%		70-130%
	2,3,4-Trifluorotoluene	93%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-3

Lab Sample ID: MC50632-2 **Date Sampled:** 06/12/17 Matrix: **Date Received:** 06/12/17 AQ - Ground Water

Percent Solids: n/a

WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA **Project:**

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chloride	133	2.0	0.070	mg/l	1	06/14/17 14:03 TG EPA 300/SW846 9056A
HEM Oil and Grease	1.4 B	5.5	1.2	mg/l	1	06/15/17 14:00 TT EPA 1664A

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Parameter Certifications (MA)
- · Chain of Custody
- MCP Form
- MCP Form (SGS Accutest New Jersey)
- VPH Form
- Sample Tracking Chronicle
- QC Evaluation: MA MCP Limits

Parameter Certifications

Page 1 of 1

Job Number: MC50632

Account: WEBMAN Web Engineering Associates, Inc.
Project: Colonial Oil, 8 Emerson Street, Chelmsford, MA

The following parameters included in this report are certified by the state of MA.

Parameter	CAS#	Method	Mat	Certification Status
pH		SM21 4500HB/EPA150.1	AQ	Accutest is certified for this parameter.

G

	SGS ACCU	TEST	50 D'Angei		SGS Acceptage SG	cutest of Center W -6200 F. ww.accute	New Engl Vest, Build AX: 508-4 est.com	land ling One		eb, MA 01752	FED-EX	utest Qu	ole#			sgs	Order Co	ntrol#	L 0	55g
Compar	Client / Reporting Information	Project Name		Pro	ect Inf	ormatic	m				4	Requ	ested	Analy	rsis (se	e TEST	CODE	sheet)		Matrix Codes
	A Engineering Aci Time	Colo	aid Oi	1	Name of the last o															DW - Drinking Wate GW - Ground Wate
	ý ny me State Zip	8 Eme	isonst iford, A		Comp	Billing Int	formation	n (If diff	erent fron	Report to)										WW - Water SW - Surface Wate SO - Soil
Project	Hack, MA CZOGE Contact E-mail	Chelu.	sford, 1	LA_		Address					1		0							SL- Sludge SED-Sediment Ot - Oil
3rsk	west i secolations 1@ comeas	Client PO#	7-12-0	26	City			Stat	0	Zip	🖔	7	1	7						LIQ - Other Liquid AIR - Air SOL - Other Solid
781 Sampler	546, 2/6/ 2/92 (s) Name(s) Phone # 1 * List: 5082744228	Project Manager			Altent	lon:		PO#			- 7	991	PiH	J						WP - Wipe FB-Field Blank EB- Equipment Blan RB- Rinse Blank
Bro	leusk: 5082744228	Colu	CC1 O Collection					Nur	mber of press	rved Bottles	₹ ₩	67-16	AUPH4	d	-4					TB-Trip Blank
SGS Acculest Sample#	Field ID / Point of Collection	MEOH/DI Vial #	Dale	Time	Sampled by	Matrix	# of bottles	HC:	HZSO4	MEOH MEOH ENCORE		0	ર્	×	\$- -	•				LAB USE ONLY
~ (MW-フ		6/12/17	1230			١		V		X									
T	MW-2		N			***************************************	2	X I	Î			\forall								T
\top	MW-2						3	X	Î				X							1
\top	UW-2						1		V					X	1		\top			
\lor	NW-Z		V	1			Ĺ		X						X					9A
-2	Mw-3		6/2/17	14:00					XI X		X	7		1		\top				3E4
	46-3		È.	(2	X	X			X								
	MW-3						3	X	X			1	X							
	4W-3		1				11		X		·			\leq			NITIA	L ASE	ESSMEN	11 OK
1	MW-3		V	V					X						\times					
V				7	Flight														IFICATI	ON_V
	Turnaround Time (Business days) Std. 10 Business Days	Approved By (SGS	Accutest PM): / Date	:	区	Commerci	ai "A" (Lo ai "B" (Lo	evel 1) evel 2)	able Infor	NYASP Cate	gory B	-			urt		Aut,	mony	, Av ši	enic, Codu
Std. 5 Business Days (By Contract only) 5 Day RUSH						CT RCP	Level 3+4 UPH	unji		State Forms EDD Format Other		_ (throw Zin	u,u,	n(To	dai);	Cu, 1	-e, t	tg,N	y Silver,
Ì	☐ 2 Day EMERGENCY ☐ 1 Day EMERGENCY Emergency & Rush TIA data available VIA Lablink								A" = Results Results + Qi			C	2)U	PH	ver	205	est BTEX & mtbe			
			nple Custody mu	s be docum	ented be	low each				session, inc	luding co		delivery				red By:			
Sha	Resinquished by Sampler: Date Time:		Received By:	//				Relinquisl 2	ned By:				P	ate Time	13	2	red By:			
telinquisi	ned by Sampler: Date Time:		Received By:	7				Relinquis	ned By:				D	ste Time	κ	Receiv	red By:			***************************************

MC50632: Chain of Custody Page 1 of 2

SGS Accutest NE Sample Receipt Summary

Job Number:	MC50632	Clie	nt: WEB			Project: COLONIAL OIL			
Date / Time Received:	6/12/2017	3:10:00 PM	Delivery	Method:	Client	Airbill #'s:			
Cooler Temps (Initial/Adj	usted): ½	<u>‡1: (5.9/5.4);</u>	_						
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature	~	3. CO	C Present: ates/Time OK	<u>Y</u> or N ✓ □ □ ✓	Sample label Container lab	rity - Documentation Is present on bottles: beling complete: ainer label / COC agree:	Y V V	or N	
Temp criteria achieved: Thermometer ID: Cooler media: No. Coolers:	<u></u>		_ _ _		Sample recvo	s accounted for:	V	or N	
Quality Control Preserva 1. Trip Blank present / coole 2. Trip Blank listed on COC: 3. Samples preserved prope 4. VOCs headspace free:	er:	✓ ✓	N/A □ □		Analysis req Bottles recei Sufficient vo	rity - Instructions uested is clear: ived for unspecified tests lume recvd for analysis: g instructions clear:	Y	or N	N/A
Comments Collection date MW-2 6/12/17 MW-3 6/12/17	@ 12:30	not noted by clie	ent on COC. Dat	tes and times wer	e added per labels b				

MC50632: Chain of Custody

Page 2 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

WSC-CAM	Exhibit VII A
July 1, 2010	Revision No. 1
Final	

Exhibit VII A-2: MassDEP Analytical Protocol Certification Form

			1	Ма	ssDEP Analytical F	Protocol Certifica	itio	n Form				
Labo	ratory Name:		SGS Accutest- M	arll	oorough			Project #:	MC50	632		
Proje	ct Location:		Colonial Oil, 8 En	ners	son Street, Chelmsfo	ord, MA		MADEP RTN	None			
This f	form provides MC50632-1,I			ing	data set: list Labora	atory Sample ID Ni	um	bers(s)	•			
-			ater/Surface Water	(X)	Soil/Sediment ()	Drinking Water	()	Air ()			Other	()
CAM	Protocol (chec	k all that a	apply below):									
	8260 VOC CAM IIA	()	7470/7471 Hg CAM III B	(X)	MassDEP VPH (X) CAM IV A	8081 Pesticides CAM V B	()	7196 Hex Cr CAM VI B	(X)		Mass DEP APH CAM IX A	()
	8270 SVOC (()	7010 Metals	()		8151 Herbicides CAM V C	()		()		TO-15 VOC CAM IX B	()
	6010 Metals CAM III A	(X)	6020 Metals CAM III D	8082 PCB ()		()	6860 Perchlorate CAM VIII B	()		CAW IX B		
	Affirmative I	Respons	ses to Questions	A :	Through F are requ	ired for "Presum	pti	ve Certainty status	S			
Α	Affirmative Responses to Questions A Through F are required for "Presumptive Certainty status Were all samples received in a condition consistent with those described on the Chain-of Custody, Yes Properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?											
В	protocol(s) fo	llowed?	. ,		ciated QC requireme				4	Yes	☐ No	
С	protocol(s) in	nplement	ed for all identified	d pe	nalytical response ac erformance standard	non-conformance	s?		1	Yes	☐ No	
D	"Quality Assu Reporting of	ırance ar Analytica	nd Quality Control al Data"?		he reporting requirer idelines for the Acqu		CA	AM VII A,	4	Yes	☐ No	
E		, and AP	H Methods only:		s each method cond ethod(s) for a list of s	-			√	Yes	☐ No	
					complete analyte lis				√	Yes		
F			•		performance standa luding all "No" respo				4	Yes	☐ No	
			-		ow is required for ".							
G	<u>-</u>	orting lim	nits at or below all		M reporting limits sp	<u>-</u>		<u> </u>	4	Yes	□ No	1
	Data User N	ote: Dat	a that achieve "F		sumptive Certainty escribed in 310 CM				data	useak	oility	
Н	Were all QC	performa	ance standards sp	eci	fied in the CAM prote	ocol(s) achieved?			4	Yes		
I	Were results	reported	for the complete	ana	alyte list specified in t	he selected CAM	pro	otocol(s)?		Yes	✓ No	1
	All Negative	respons	ses must be addı	es	sed in an attached	Environmental La	abo	oratory case narra	tive.			
inqui	iry of those r	esponsil	ble for obtaining	the	penalties of perjur information, the m lge and belief, accu	naterial contained	l in					
Signa	ature: //	Medaelu	ín en			Position:	La	boratory Director				
Print	ed Name:		H. (Brad) Madad	ian	<u> </u>	Date:		19-Jun-17				

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

WSC-CAM	Exhibit VII A
July 1, 2010	Revision No. 1
Final	

Exhibit VII A-2: MassDEP Analytical Protocol Certification Form

	Ma	ssDEP Analytical F	rotocol Certification	n Form							
Laboratory Name:	Accutest Mid-Atlantic	<u> </u>		Project #:	MC50632	2					
Project Location:#01074,	WEBMAN: Colonial MA	Oil, 8 Emerson Stree	et, Chelmsford,	MADEP RTN	None						
This form provides certifica MC50632-1,MC5063	•	data set: list Labora	tory Sample ID Numi	bers(s)							
	water/Surface Water (X)	Soil/Sediment ()	Drinking Water ()	Air ()		Other ()					
CAM Protocol (check all tha	t apply below):		T	T							
8260 VOC ()	7470/7471 Hg (X)	()	8081 Pesticides ()	7196 Hex Cr	()	Mass DEP APH ()					
CAM IIA	CAM III B	CAM IV A	CAM V B	CAM VI B		CAM IX A					
8270 SVOC () CAM II B	CAM III C	MassDEP EPH () CAM IV B	8151 Herbicides () CAM V C	CAM VIII A	()	TO-15 VOC () CAM IX B					
6010 Metals (X) CAM III A	6020 Metals () CAM III D	8082 PCB () CAM V A	9014 Total () Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B	()						
Affirmative Respor	ses to Questions A	Through F are requi	red for "Presumptiv	e Certainty status	6						
Affirmative Responses to Questions A Through F are required for "Presumptive Certainty status Were all samples received in a condition consistent with those described on the Chain-of Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?											
Were the analytical in B protocol(s) followed?	method(s) and all asso	ciated QC requireme	ents specified in the s	selected CAM	✓ Y	es No					
Were all required co	rrective actions and ar		•	selected CAM		es No					
Does the laboratory	report comply with all t and Quality Control Gu	he reporting requirer	nents specified in CA	M VII A,	✓ Y	es No					
modification(s)? (Re	PH Methods only: Wa efer to the individual m	ethod(s) for a list of s	significant modificatio	ns).	Y	esNo					
	Methods only: Was the					es No					
	CAM protocol QC and aboratory narrative (inc				<u> </u>	esNo					
Responses to ques	stions G, H, and I belo	ow is required for "F	Presumptive Certain	nty" status							
G Were the reporting li selected CAM protoc	mits at or below all CA	M reporting limits sp	ecified in the		✓ Y	es No ¹					
	ata that achieve "Pres ness requirements de				data usea	ability					
H Were all QC perforn					✓ Y	es No 1					
1	ed for the complete and					es ✓ No ¹					
All Negative respon	nses must be addres	sed in an attached l	Environmental Labo	oratory case narra	tive.						
I the undersigned, attest inquiry of those respons analytical report is, to th	ible for obtaining the	information, the m	aterial contained in								
Signature:	mey +. Cole		Position: La	boratory Director							
Printed Name:	Nancy F. Cole		Date:	19-Jun-17							

MADEP VPH FORM												
Matrix	Aqueous 🗸	Soi		Sediment	Otl	her						
Containers	Satisfactory ✓	Brok	en 🗌	Leaking								
Aqueous Preservatives	N/A	pH <=		pH > 2								
Temperature	Received on Ice		Receive	d at 4 Deg. C	Otl	her	✓	Rec'd at 5.4	1 Deg. C			
Methanol	N/A		Client ID: M\	N/O		Lab	ID. M	C50632-1				
Method for Ranges:	MADEP VPH REV 1.1	Date	Collected: 6/		Date Re			12/2017				
Method for Target Analytes:	MADEP VPH REV 1.1		ite Extracted:						_			
VPH Surrogate Standards PID:		Da	N/A	First Da 6/14/				Last Date N/A	Run:			
FID:			% Solids:	Low Di				High Dilu	tion:			
			N/A	1				N/A				
Unadjusted Ranges	CAS	# <u>E</u>	Elution Range	<u>Units</u>	Res	<u>ult</u>		RDL	Q			
C5- C8 Aliphatics (Unadj.)			N/A	ug/l		ND ^a		50				
C9- C10 Aromatics (Unadj.)		N/A	ug/l		ND ^A		50				
C9- C12 Aliphatics (Unadj.)	ı		N/A	ug/l		ND ^A		50				
Target Analytes												
Ethylbenzene	100-4	1-4	C9-C12	ug/l		ND		2				
Toluene	108-88	3-3	C5-C8	ug/l		ND		2				
Methyl Tert Butyl Ether	1634-0	4-4	C5-C8	ug/l		ND		1				
Benzene	71-43		C5-C8	ug/l		ND		1				
Naphthalene	91-20		N/A	ug/l		ND		3				
o-Xylene	95-47	-6	C9-C12	ug/l		ND		2				
m,p-Xylene			C9-C12	ug/l		ND		2				
Adjusted Ranges												
C5- C8 Aliphatics			N/A	ug/l		ND ^B		50				
C9- C12 Aliphatics			N/A	ug/l		ND ^c		50				
Surrogate Recoveries							Acce	ptance Ranc	<u>1e</u>			
FID:2,3,4-Trifluorotoluene				%		93		70-130 %				
PID:2,3,4-Trifluorotoluene				%		89		70-130 %				
Footnotes A Hydrocarbon Range data exclude B Hydrocarbon Range data exclude the concentration of Target Analyte C Hydrocarbon Range data exclude conc of Target Analytes eluting in the	concentrations of any surrogate es eluting in that range. concentrations of any surrogate that range AND concentration of	(s) and/or	internal standards internal standards	eluting in that range.	•	-						
Z A 'J' qualifier indicates an estimate	u value											

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes 🗆	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Laboratory Director Signature Postition

H. (Brad) Madadian 6/19/2017 **Printed Name Date**

MADEP VPH FORM												
Matrix	Agueous ✓	So	il 🗌	Sediment	Othe	f						
Containers	Satisfactory ✓	Brok	ken 🗌	<u>Leaking</u>								
Aqueous Preservatives	N/A	pH <		pH > 2								
Temperature	Received on Ice		Receive	d at 4 Deg. C	Othe	r 🗸	Rec'd at 5.4	Deg. C				
Methanol	N/A	1	Client ID: M	\/\-3	La	h ID:	MC50632-2					
Method for Ranges:	MADER VPH REV 1.1	Date	e Collected: 6/		Date Rece							
Method for Target Analytes: VPH Surrogate Standards	MADEP VPH REV 1.1		ate Extracted:					D				
PID:			N/A		ate Run: /2017		Last Date N/A	Run:				
FID:			% Solids:		ilution:		High Dilu	tion:				
			N/A		1		N/A					
Unadjusted Ranges	CAS	#	Elution Range	<u>Units</u>	Result		RDL	<u>Q</u>				
C5- C8 Aliphatics (Unadj.)			N/A	ug/l	ND	A	50					
C9- C10 Aromatics (Unadj.)		N/A	ug/l	ND	A	50					
C9- C12 Aliphatics (Unadj.)	ı		N/A	ug/l	ND	A	50					
Target Analytes												
Ethylbenzene	100-4	1-4	C9-C12	ug/l	ND		2					
Toluene	108-8	3-3	C5-C8	ug/l	ND		2					
Methyl Tert Butyl Ether	1634-0	4-4	C5-C8	ug/l	ND		1					
Benzene	71-43	-2	C5-C8	ug/l	ND		1					
Naphthalene	91-20	-3	N/A	ug/l	ND		3					
o-Xylene	95-47	-6	C9-C12	ug/l	ND		2					
m,p-Xylene			C9-C12	ug/l	ND		2					
Adjusted Ranges												
C5- C8 Aliphatics			N/A	ug/l	ND	В	50					
C9- C12 Aliphatics			N/A	ug/l	ND	С	50					
Surrogate Recoveries						Acc	ceptance Rand	<u>1e</u>				
FID:2,3,4-Trifluorotoluene				%	93		70-130 %					
PID:2,3,4-Trifluorotoluene				%	89		70-130 %					
Footnotes A Hydrocarbon Range data exclude B Hydrocarbon Range data exclude the concentration of Target Analyte C Hydrocarbon Range data exclude conc of Target Analytes eluting in the	concentrations of any surrogate es eluting in that range. concentrations of any surrogate	(s) and/o	or internal standards or internal standards	eluting in that range.								
Z A 'J' qualifier indicates an estimate	d value											

Were all QA/QC procedures REQUIRED by the VPH Method followed?	✓ Yes 🗆	No- Details Attatched
Were all performance/acceptance standards for required QA/QC procedures achieved?	✓ Yes	No- Details Attatched
Were any significant modifications made to the VPH method, as specified in Sect. 11.3?	✓ No	Yes- Details Attatched

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Laboratory Director Signature Postition

H. (Brad) Madadian 6/19/2017 **Printed Name Date**

Internal Sample Tracking Chronicle

Web Engineering Associates, Inc.

MC50632 Job No:

Colonial Oil, 8 Emerson Street, Chelmsford, MA Project No: 17-E-026

Sample Number	Method	Analyzed	By	Prepped	Ву	Test Codes
Nullibei	Method	Anaryzeu	Бу	Ттеррец	Бу	Test Codes
MC50632-1 MW-2	Collected: 12-JUN-17	12:30 By: AB	Receiv	ved: 12-JUN-	-17 By:	TF
MC50632-1	SW846 7196A	13-IUN-17 10:00	EAL			XCR
	SM21 4500HB/EPA150		EAL			PH
	SW846 7470A		ANJ	14-JUN-17	ANJ	HG
	MADEP VPH REV 1.1		AF			VMAVPH
MC50632-1	SW846 6010C	15-JUN-17 04:11	ANJ	14-JUN-17	ANJ	AG,AS,CD,CR,CU,FE,NI,PB,S
MC50632-1	EPA 300/SW846 9056	A15-JUN-17 10:14	ANJ	15-JUN-17		CHL
MC50632-1	EPA 1664A	15-JUN-17 14:00	ANJ	15-JUN-17	ANJ	OG1664
MC50632-2 MW-3	Collected: 12-JUN-17	14:00 By: AB	Receiv	ved: 12-JUN-	-17 By:	: TF
MC50632-2	SW846 7196A	13-JUN-17 10:00	EAL			XCR
	SM21 4500HB/EPA150		EAL			PH
MC50632-2	SW846 7470A	14-JUN-17 11:27	ANJ	14-JUN-17	ANJ	HG
MC50632-2	EPA 300/SW846 9056	A14-JUN-17 14:03	ANJ	14-JUN-17		CHL
MC50632-2	MADEP VPH REV 1.1	1 14-JUN-17 22:24	AF			VMAVPH
MC50632-2	SW846 6010C	15-JUN-17 04:15	ANJ	14-JUN-17	ANJ	AG,AS,CD,CR,CU,FE,NI,PB,S
MC50632-2	EPA 1664A	15-JUN-17 14:00	ANJ	15-JUN-17	ANJ	OG1664

Page 1 of 1

QC Evaluation: MA MCP Limits

Job Number: MC50632

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Collected: 06/12/17

QC Sample ID CAS# Analyte Sample Result Result **Units Limits** Type Type

No Exceptions found.

^{*} Sample used for QC is not from job MC50632

Section 6

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Page 1 of 1

Method: MADEP VPH REV 1.1

Method Blank Summary

Job Number: MC50632

Account: WEBMAN Web Engineering Associates, Inc.
Project: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Sample GWX4077-MB	File ID WX80805.D	DF 1	Analyzed 06/14/17	By AF	Prep Date n/a	Prep Batch n/a	Analytical Batch GWX4077

The QC reported here applies to the following samples:

MC50632-1, MC50632-2

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	3.0	ug/l
108-88-3	Toluene	ND	2.0	ug/l
	m,p-Xylene	ND	2.0	ug/l
95-47-6	o-Xylene	ND	2.0	ug/l
	C5- C8 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C12 Aliphatics (Unadj.)	ND	50	ug/l
	C9- C10 Aromatics (Unadj.)	ND	50	ug/l
	C5- C8 Aliphatics	ND	50	ug/l
	C9- C12 Aliphatics	ND	50	ug/l

CAS No. Surrogate Recoveries Limits

2,3,4-Trifluorotoluene	104%	70-130%
2,3,4-Trifluorotoluene	99%	70-130%

6.2.

Page 1 of 1

Method: MADEP VPH REV 1.1

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC50632

Account: WEBMAN Web Engineering Associates, Inc.
Project: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
GWX4077-BSP	WX80806.D	1	06/14/17	AF	n/a	n/a	GWX4077
GWX4077-BSD	WX80807.D	1	06/14/17	AF	n/a	n/a	GWX4077

The QC reported here applies to the following samples:

MC50632-1, MC50632-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	50	52.3	105	53.7	107	3	70-130/25
100-41-4	Ethylbenzene	50	51.7	103	53.5	107	3	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	54.7	109	57.2	114	4	70-130/25
91-20-3	Naphthalene	50	52.9	106	55.3	111	4	70-130/25
108-88-3	Toluene	50	52.2	104	53.9	108	3	70-130/25
	m,p-Xylene	100	103	103	107	107	4	70-130/25
95-47-6	o-Xylene	50	51.8	104	53.7	107	4	70-130/25
	C5- C8 Aliphatics (Unadj.)	150	147	98	153	102	4	70-130/25
	C9- C12 Aliphatics (Unadj.)	150	129	86	130	87	1	70-130/25
	C9- C10 Aromatics (Unadj.)	50	52.6	105	54.5	109	4	70-130/25

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	2,3,4-Trifluorotoluene	103%	106%	70-130%
	2.3.4-Trifluorotoluene	96%	98%	70-130%

^{* =} Outside of Control Limits.

Page 1 of 1

Volatile Surrogate Recovery Summary

Job Number: MC50632

Account: WEBMAN Web Engineering Associates, Inc.
Project: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Method: MADEP VPH REV 1.1 Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab		
Sample ID	File ID	S1 a	S1 b
MC50632-1	WX80826.D	89	93
MC50632-2	WX80827.D	89	93
GWX4077-BSD	WX80807.D	106	98
GWX4077-BSP	WX80806.D	103	96
GWX4077-MB	WX80805.D	104	99

Surrogate Recovery Compounds Limits

S1 = 2,3,4-Trifluorotoluene 70-130%

(a) Recovery from GC signal #2

(b) Recovery from GC signal #1

Section 7

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

Login Number: MC50632 Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chromium, Hexavalent	GN55919	0.010	0.0	mg/l	.1	0.10	100.0	85-115%

Associated Samples: Batch GN55919: MC50632-1, MC50632-2 (*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC50632 Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	
Chromium, Hexavalent	GN55919	mg/l	.1	0.10	0.0	20%	

Associated Samples: Batch GN55919: MC50632-1, MC50632-2 (*) Outside of QC limits

Section 8

Misc. Forms

Custody Documents and Other Forms

(SGS Accutest New Jersey)

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- QC Evaluation: MA MCP Limits

CHAIN OF CUSTODY

Date Time:

Received By:

SGS ACCU			CHAIN	4 O	F C	UST	O	D'	Y												Pa	ge 1	of 1	
ACCU	JTEST	50 D'Angelo D	rive, 495 Techno	ology Cen	ter West,	Bldg One	, Ma	ırlbor	ough,	MA	0175	2		72	Tracking #	75/	6 7.	374		Bottle O	rder Cont	rol#	***************************************	
		*	TEL. 508	-481-620	FAX:	508-481-	7753							SGS Acc	utest Quoi	e#	0 .5 "			SGS Ac	cutest Joi	M	C50632	
Client / Reporting Information	1		Project	Informa	tion										Requ	ested	Analys	sis (se	e TEST	CODE	E shee	t)		Matrix Codes
ompany Name:	Project Name:																				T	T		
SGS Accutest		Colon	ial Oil, 8 Eme	rson Str	eet, Ch	elmsford	, M/	4						PB,										DW - Drinking Water GW - Ground Water
eet Address 50 D'Angelo Drive, 495 Technolgy Center West, BLDG One	Street					on (if diffe	rent	from	Repo	rt to)				061664										WW - Water SW - Surface Water SO - Soil
ty State Zip Marlbourough, MA 01752	City		State	Compan	y Name									HG .										SL- Sludge SED-Sediment OI - Oil
oject Contact E-mail Dan Axelrod Dan Axelrod@accutest.com	Project #			Street A	ddress									世										LIQ - Other Liquid AIR - Air
one # Fax # 508-481-6200	Client Purchase	Order#		City				State	e			Zip		OR, CU										SOL - Other Solid WP - Wipe FB-Field Blank
	e Project Manager			Attention	:									H,										EB-Equipment Blank RB- Rinse Blank
AB		T	Collection	L			1	Alex	mber o			D-wi-		8 .										TB-Trip Blank
GGS cutest			Conection	Sampled			L	П	HN03 H2SO4		Di Water			AS N										
Field ID / Point of Collection 1 MW-2	MEOH/Di Vial#	Date 6/12/17	12:30:00 PM	AB	Matrix	# of bottle:	후 x	+-+	¥ 2	2	ā	ME	8	X Ag Ag				-	-	-	-	-		LAB USE ONLY
2 MW-3		6/12/17	2:00:00 PM	AB	AQ	4	x	\vdash	×	x	Н	+	+	X			-	-	-		-			127
		0/12/1/	2.00.001101	7.0		+-	ŕ	Н	+	Ĥ	Н	+	+	+^				-	 		-			137
			 				\vdash	Н	+	+	Н	+	+					<u> </u>	-		+		-+	411 64673
							T	H	†	T	П	1	\dagger							-	1			0 9613
							Г	П																
									I															
							L	Ц	_	L					INI	ΓIAL A	SES	SMEN	T S1	100	1_			
							-	Н	_	+	Н	4	_		LAS	EL V	ERIFI	CATI	DAY /	m	Ţ			
						-	-	\mathbb{H}	+	+	Н	+	+	-					1.4	/	‡			
						-	-	H	+	+	Н	+	+						-		-		-	
Tumaround Time (Business days)					<u> </u>	Data	Deli	veral	ble Inf	forma	ation						L	1	Com	ments /	Specia	Instruc	ions	
Std. 10 Business Days	Approved By (SGS	Accutest PM): / Date	1:			cial "A" (L cial "B" (L					-			gory A gory B		Ship to	ALNJ	- 5 Da	y TAT					
5 Day RUSH				-		(Level 3+		21		_			orms	gory B										
3 Day EMERGENCY	***************************************			-	NJ Reduc		.,						ormat	******										
2 Day EMERGENCY					Commerc	cial "C"				X	Oti	ner [MAM	CP										
1 Day EMERGENCY						Commerc	ial "A	4" = R	esults	Only														
X other Due 6/19/2017 Emergency & Rush T/A data available VIA Lablink						Commerc NJ Reduc								l Raw data										
		Sample Cust	ody must be de	ocument	ed belov	w each ti					e po	sse	ssion	, includir	ng cour									
Relinquished by Sampler: Date Ti	12-15	Received By:	N				Reli	nquist	hed By	/ :	L	1:	711	\sim			Date Tin	10: / 7	097.	Receive	d By:	0		

4
Custody Seal # J8 Pecul Intact
Not intact
Not intact

TRS 6/13/17

Preserved where applicable

MC50632: Chain of Custody Page 1 of 2 **SGS Accutest New Jersey**

On Ice

Cooler Temp. 3,0 CLIN

SGS Accutest Sample Receipt Summary

Job Number: MC5	50632 Client:		Project:	
Date / Time Received: 6/13	3/2017 9:30:00 AM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measure Cooler Temps (Correcte	•			
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Quality Control Preservation: 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:	4. Smpl Date Y or N IR Gun Ice (Bag) 1 n Y or N N/A	resent:	Integrity - Documentation Y Ilabels present on bottles: er labeling complete: container label / COC agree: Integrity - Condition Trecvd within HT: Integrity - Instructions Is requested is clear: Is received for unspecified tests ent volume recvd for analysis: Instructions clear:	or N N/A or N N/A
Comments		5. Filtering	g instructions clear:	

SM089-02 Rev. Date 12/1/16

MC50632: Chain of Custody

Page 2 of 2

Job No:

MC50632

Internal Sample Tracking Chronicle

SGS Accutest New England

WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA Project No: 17-E-026

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC50632-1 MW-2	Collected: 12-JUN-17	12:30 By: AB	Receiv	ved: 12-JUN-	-17 By	: DDH
	SW846 7470A SW846 6010C	14-JUN-17 11:26 15-JUN-17 04:11	JA AB	14-JUN-17 14-JUN-17		HG AG,AS,CD,CR,CU,FE,NI,PB,S ZN
	EPA 300/SW846 90564 EPA 1664A	A15-JUN-17 10:14 15-JUN-17 14:00	TG TT	15-JUN-17 15-JUN-17		CHL OG1664
MC50632-2 MW-3	Collected: 12-JUN-17	14:00 By: AB	Receiv	ved: 12-JUN-	-17 By	: DDH
MC50632-2	2 SW846 7470A 2 EPA 300/SW846 9056 2 SW846 6010C	14-JUN-17 11:27 A14-JUN-17 14:03 15-JUN-17 04:15	JA TG AB	14-JUN-17 14-JUN-17 14-JUN-17	TG	HG CHL AG,AS,CD,CR,CU,FE,NI,PB,S ZN
MC50632-2	EPA 1664A	15-JUN-17 14:00	TT	15-JUN-17	TT	OG1664

Page 1 of 1

QC Evaluation: MA MCP Limits Job Number: MC50632

Account: SGS Accutest New England

Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Collected: 06/12/17

QC Sample ID CAS# Analyte Sample Result Result **Units Limits** Type Type

No Exceptions found.

^{*} Sample used for QC is not from job MC50632

Section 9

Metals Analysis

QC Data Summaries

(SGS Accutest New Jersey)

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC50632

Account: ALME - SGS Accutest New England
Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

QC Batch ID: MP1431 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:

06/14/17

Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	7.1	33		
Antimony	6.0	1.9	4.3	0.40	<6.0
Arsenic	3.0	1.5	2.7	1.5	<3.0
Barium	200	. 2	1.3		
Beryllium	1.0	.1	. 4		
Bismuth	20	2.6	5		
Boron	100	1.2	13		
Cadmium	3.0	.3	.7	0.30	<3.0
Calcium	5000	3.3	29		
Chromium	10	.8	.85	0.0	<10
Cobalt	50	.5	.72		
Copper	10	.9	3.2	0.20	<10
Iron	100	2.7	32	1.5	<100
Lead	3.0	2.2	2.6	1.7	<3.0
Lithium	50	3.1	15		
Magnesium	5000	17	64		
Manganese	15	.1	.42		
Molybdenum	20	. 4	1.4		
Nickel	10	. 4	1.3	2.1	<10
Palladium	50	1.7			
Phosphorus	50	2.1	13		
Potassium	10000	47	230		
Selenium	10	2.5	6.6		
Silicon	200	2.2	45		
Silver	10	1	3.1	0.80	<10
Sodium	10000	16	130		
Strontium	10	.1	.3		
Sulfur	50	4	15		
Thallium	2.0	1.9	1.6		
Tin	10	1.3	2.4		
Titanium	10	.6	1.8		
Tungsten	50	2	14		
Vanadium	50	.8	1.3		

Page 1

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC50632

Account: ALME - SGS Accutest New England
Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

QC Batch ID: MP1431 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

Prep Date: 06/14/17

Metal	RL	IDL	MDL	MB raw	final
nc	20	. 2	4	5.7	<20
Zirconium	10	.5	2		

Associated samples MP1431: MC50632-1, MC50632-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Login Number: MC50632

Account: ALME - SGS Accutest New England
Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

QC Batch ID: MP1431 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

Prep Date:			06/14/17			06/14/17			
Metal	BSP Result	Spikelot MPSPK2	% Rec	QC Limits	BSD Result	Spikelot MPSPK2	% Rec	BSD RPD	QC Limit
Aluminum	anr								
Antimony	2040	2000	102.0	80-120	2070	2000	103.5	1.5	20
Arsenic	2020	2000	101.0	80-120	2020	2000	101.0	0.0	20
Barium	anr								
Beryllium	anr								
Bismuth									
Boron									
Cadmium	2050	2000	102.5	80-120	2080	2000	104.0	1.5	20
Calcium	anr								
Chromium	2050	2000	102.5	80-120	2090	2000	104.5	1.9	20
Cobalt	anr								
Copper	2040	2000	102.0	80-120	2070	2000	103.5	1.5	20
Iron	26000	25000	104.0	80-120	26400	25000	105.6	1.5	20
Lead	2090	2000	104.5	80-120	2130	2000	106.5	1.9	20
Lithium									
Magnesium	anr								
Manganese	anr								
Molybdenum									
Nickel	2080	2000	104.0	80-120	2120	2000	106.0	1.9	20
Palladium									
Phosphorus									
Potassium	anr								
Selenium	anr								
Silicon									
Silver	257	250	102.8	80-120	261	250	104.4	1.5	20
Sodium	anr								
Strontium									
Sulfur									
Thallium	anr								
Tin									
Titanium									
Tungsten									
Vanadium	anr								
				P	age 1				

Login Number: MC50632

Account: ALNE - SGS Accutest New England
Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

QC Batch ID: MP1431 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

Prep Date:	06/14/17	06/14/17

Metal	BSP Result	Spikelot MPSPK2	: % Rec	QC Limits	BSD Result	Spikelot MPSPK2	% Rec	BSD RPD	QC Limit	
Zinc	2080	2000	104.0	80-120	2120	2000	106.0	1.9	20	<u>-</u>

Zirconium

Associated samples MP1431: MC50632-1, MC50632-2

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits
(anr) Analyte not requested

Page 2

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC50632 Account: ALME - SGS Accutest New England Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

QC Batch ID: MP1431 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

06/14/17 Prep Date:

riep bace.			00/14/1/	
Metal	TD4626-1 Original	SDL 1:5	%DIF	QC Limits
Aluminum	anr			
Antimony	0.00	0.00	NC	0-10
Arsenic	0.00	0.00	NC	0-10
Barium	anr			
Beryllium	anr			
Bismuth				
Boron				
Cadmium	0.00	0.00	NC	0-10
Calcium	anr			
Chromium	1.10	0.00	100.0(a)	0-10
Cobalt	anr			
Copper	2.30	5.30	130.4(a)	0-10
Iron	6.60	21.9	231.8(a)	0-10
Lead	0.00	0.00	NC	0-10
Lithium				
Magnesium	anr			
Manganese	anr			
Molybdenum				
Nickel	0.900	0.00	100.0(a)	0-10
Palladium				
Phosphorus				
Potassium	anr			
Selenium	anr			
Silicon				
Silver	1.00	0.00	100.0(a)	0-10
Sodium	anr			
Strontium				
Sulfur				
Thallium	anr			
Tin				
Titanium				
Tungsten				
Vanadium	anr			

ACCUTEST MC50632

Page 1

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC50632 Account: ALNE - SGS Accutest New England

Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

QC Batch ID: MP1431 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

06/14/17 Prep Date:

Zirconium

Associated samples MP1431: MC50632-1, MC50632-2

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits (anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

ACCUTEST

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC50632

Account: ALME - SGS Accutest New England
Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

QC Batch ID: MP1443 Methods: SW846 7470A Matrix Type: AQUEOUS Units: ug/l

06/14/17 Prep Date:

Associated samples MP1443: MC50632-1, MC50632-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC50632

Account: ALME - SGS Accutest New England
Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

QC Batch ID: MP1443 Methods: SW846 7470A Matrix Type: AQUEOUS Units: ug/l

06/14/17 06/14/17 Prep Date:

Metal	BSP Result	Spikelot HGPW3	% Rec	QC Limits	BSD Result	Spikelot HGPW3	% Rec	BSD RPD	QC Limit
Mercury	2.1	2	105.0	80-120	2.2	2	110.0	4.7	

Associated samples MP1443: MC50632-1, MC50632-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

ACCUTEST

Section 10

General Chemistry

QC Data Summaries

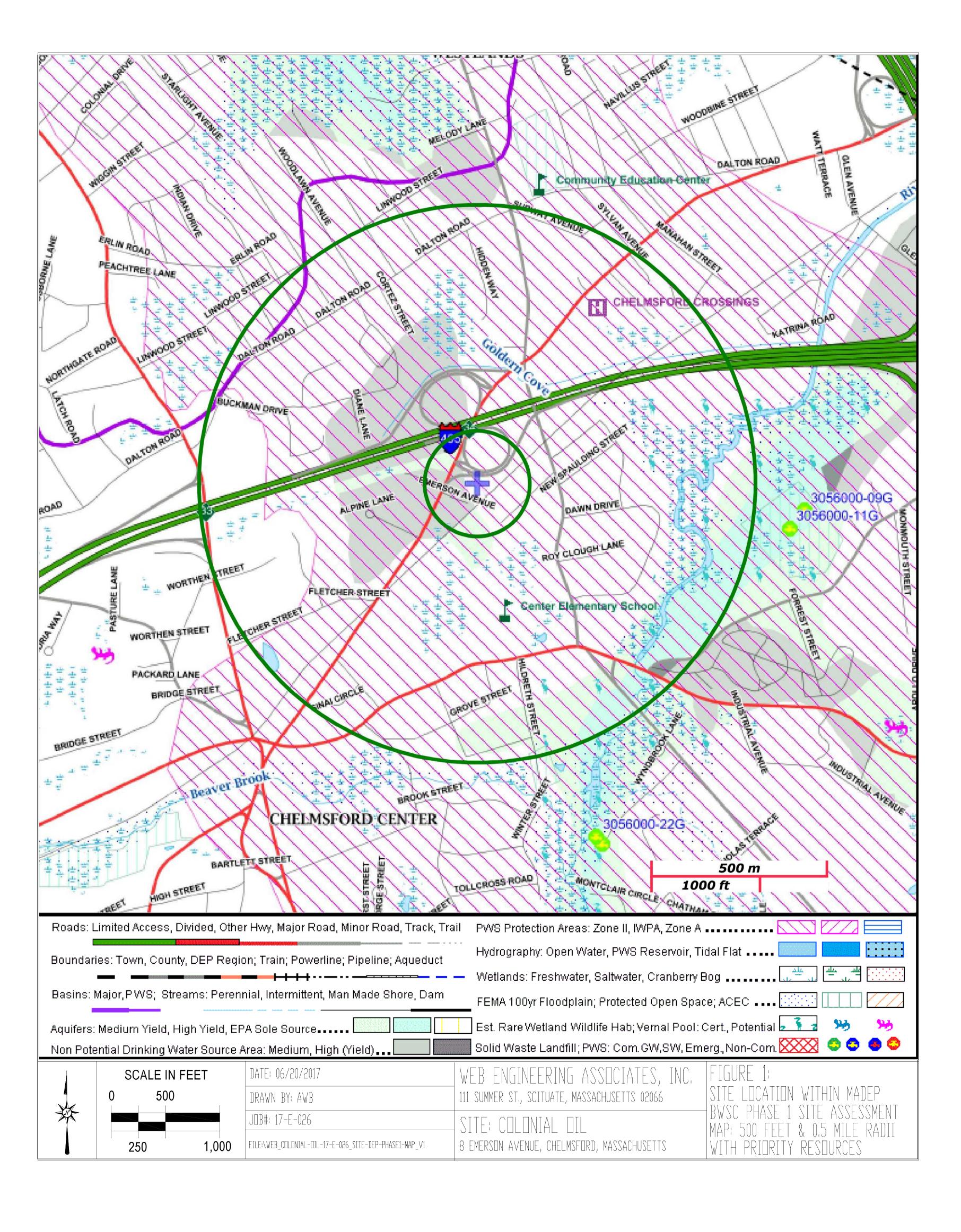
(SGS Accutest New Jersey)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC50632


Account: ALNE - SGS Accutest New England
Project: WEBMAN: Colonial Oil, 8 Emerson Street, Chelmsford, MA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chloride	GP5978/GN65565	2.0	0.30	mg/l	80	79.7	99.6	90-110%
Chloride	GP5978/GN65645	2.0	0.35	mg/l	80	79.8	99.8	90-110%
HEM Oil and Grease	GP6038/GN65642	5.0	0.0	mg/l	40.22	38.2	95.0	78-114%
Sulfate	GP5978/GN65565	10	0.0	mg/l	80	78.4	98.0	90-110%
Sulfate	GP5978/GN65645	10	0.0	mg/l	80	78.7	98.4	90-110%

Associated Samples:

Batch GP5978: MC50632-1, MC50632-2 Batch GP6038: MC50632-1, MC50632-2

(*) Outside of QC limits

ACCUTEST New Jersey

Reissue #1 08/21/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Technical Report for

Web Engineering Associates, Inc.

Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

17-E-026

SGS Accutest Job Number: JC48393

Sampling Date: 08/04/17

Web Engineering Associates 111 Summer Street Scituate, MA 02066

RPColuccio@AOL.com; wbaird65@aol.com;

rocklacrosse@hotmail.com ATTN: Bob Coluccio

Total number of pages in report: 47

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Maney +. Cole
Nancy Cole
Laboratory Director

Client Service contact: Rocus Peters 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

SGS

August 21, 2017

Mr. Bob Coluccio Web Engineering Associates 111 Summar Street Scituate, MA 02066

Re: SGS Accutest –Dayton, Jobs # JC48393 – Reissues

Dear Mr. Coluccio,

The final reports for SGS Accutest job number JC48393 has edited to reflect corrections to the data package. These edits have been incorporated into the revised report attached.

Specifically, the Method Detention Limits reporting has been made for the Metals section. The attached revised report incorporates these revisions.

SGS Accutest apologizes for this occurrence and for any inconvenience this situation may have caused. Please contact me at (732) 329-0200 if I can be of further assistance in this matter.

Sincerely,

SGS Accutest

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

SGS Accutest

Mid-Atlantic 2235 US Highway 130 Dayton, NJ 08810, USA **t** +1 (0)732 329 0200 www.sgs.com

Member of the SGS Group (SGS SA)

Sections:

-1-

Table of Contents

Section 1: Sample Summary	4
Section 2: Case Narrative/Conformance Summary	5
Section 3: Summary of Hits	8
Section 4: Sample Results	9
4.1: JC48393-1: GOLDEN COVE BROOK	10
4.2: JC48393-2: MW-3	12
Section 5: Misc. Forms	15
5.1: Certification Exceptions	16
5.2: Chain of Custody	17
5.3: MCP Form	20
5.4: MCP Form (SGS Accutest New England)	21
5.5: Sample Tracking Chronicle	22
5.6: QC Evaluation: MA MCP Limits	23
Section 6: Metals Analysis - QC Data Summaries	24
6.1: Prep QC MP2309: Sb,As,Cd,Cr,Cu,Fe,Pb,Ni,Se,Ag,Zn	25
6.2: Prep QC MP2321: Hg	31
Section 7: General Chemistry - QC Data Summaries	33
7.1: Method Blank and Spike Results Summary	
Section 8: Misc. Forms (SGS Accutest New England)	35
8.1: Chain of Custody	36
8.2: Sample Tracking Chronicle	39
8.3: QC Evaluation: MA MCP Limits	40
Section 9: GC Semi-volatiles - QC Data (SGS Accutest New England)	41
9.1: Method Blank Summary	42
9.2: Blank Spike/Blank Spike Duplicate Summary	43
9.3: Surrogate Recovery Summaries	44
Section 10: General Chemistry - QC Data (SGS Accutest New England)	45
10.1: Method Blank and Spike Results Summary	
10.2: Blank Spike Duplicate Results Summary	47

Sample Summary

Web Engineering Associates, Inc.

Job No: JC48393

Colonial Oil, 8 Emerson Avenue, Chelmsford, MA Project No: 17-E-026

Sample	Collected			Matr	ix	Client
Number	Date	Time By	Received	Code	Туре	Sample ID
JC48393-1	08/04/17	08:45 BC	08/04/17	AQ	Ground Water	GOLDEN COVE BROOK
JC48393-2	08/04/17	09:00 BC	08/04/17	AQ	Ground Water	MW-3

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Job No JC48393 Web Engineering Associates, Inc.

Site: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA Report Date 8/10/2017 4:47:20 PM

On 08/05/2017, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS Accutest at a maximum corrected temperature of 3.6 C. Samples were intact and chemically preserved, unless noted below. A SGS Accutest Job Number of JC48393 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Please refer to certification exceptions summary for additional certification information.

Extractables by GC By Method SW846 8100M

Matrix: AQ Batch ID: M:OP49867

- The data for SW846 8100M meets quality control requirements.
- JC48393-2: Analysis performed at SGS Accutest, Marlborough, MA.

Metals By Method SW846 6010C

Matrix: AO Batch ID: MP2309

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TD7118-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Copper, Iron, Nickel, Silver, Zinc are outside control limits for sample MP2309-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- JC48393-2 for Chromium: Elevated sample detection limit due to difficult sample matrix.
- JC48393-2 for Selenium: Elevated sample detection limit due to difficult sample matrix.
- JC48393-2 for Cadmium: Elevated sample detection limit due to difficult sample matrix.

Metals By Method SW846 7470A

Matrix: AQ Batch ID: MP2321

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SM21 4500CL F

Matrix: AO Batch ID: M:GN55981

- The data for SM21 4500CL F meets quality control requirements.
- JC48393-2 for Total Residual Chlorine: Analysis performed past the required 15 minutes of collection time/holding time. Analysis performed at SGS Accutest, Marlborough, MA.

Wet Chemistry By Method SM21 4500HB/EPA150.1

Batch ID: M:GN55982 Matrix: AO

- The data for SM21 4500HB/EPA150.1 meets quality control requirements.
- JC48393-2 for pH: Analysis performed past the required 15 minutes of collection time/holding time. Analysis performed at SGS Accutest, Marlborough, MA.
- JC48393-1 for pH: Analysis performed past the required 15 minutes of collection time/holding time. Analysis performed at SGS Accutest, Marlborough, MA.

Thursday, August 10, 2017

Page 1 of 2

Wet Chemistry By Method SM2340 C-11

Matrix: AQ Batch ID: GN67843

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SM2540 D-11

Matrix: AO Batch ID: GN67855

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SM4500NH3 H-11LACHAT

Matrix: AO Batch ID: GP7001

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SW846 6010/7196A M

Batch ID: Matrix: AO

- The data for SW846 6010/7196A M meets quality control requirements.
- JC48393-1 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Matrix: AQ Batch ID: R164836

- The data for SW846 6010/7196A M meets quality control requirements.
- JC48393-2 for Chromium, Trivalent: Calculated as: (Chromium) (Chromium, Hexavalent)

Wet Chemistry By Method SW846 7196A

Matrix: AO

- The data for SW846 7196A meets quality control requirements.
- JC48393-1 for Chromium, Hexavalent: Analysis performed at SGS Accutest, Marlborough, MA.
- JC48393-2 for Chromium, Hexavalent: Analysis performed at SGS Accutest, Marlborough, MA.

SGS Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS Accutest is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS Accutest indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Accutest New Jersey Job No JC48393

Site: WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA Report Date 8/10/2017 2:18:31 PM

2 Sample(s) were collected on 08/04/2017 and were received at SGS Accutest New England on 08/04/2017 properly preserved, at 1.4 Deg. C and intact. These Samples received a job number of JC48393. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Extractables by GC By Method SW846 8100M

Matrix: AQ Batch ID: OP49867

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SM21 4500CL F

Matrix: AQ Batch ID: GN55981

- All method blanks for this batch meet method specific criteria.
- JC48393-2 for Total Residual Chlorine: Analysis performed past the required 15 minutes of collection time/holding time.

Wet Chemistry By Method SM21 4500HB/EPA150.1

Matrix: AQ Batch ID: GN55982

- JC48393-2 for pH: Analysis performed past the required 15 minutes of collection time/holding time.
- JC48393-1 for pH: Analysis performed past the required 15 minutes of collection time/holding time.

Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN55979

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

SGS Accutest New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Laboratory Director for SGS Accutest New England or assignee as verified by the signature on the cover page has authorized the release of this report(JC48393).

Summary of Hits Job Number: JC48393

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Collected: 08/04/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC48393-1 GOLDEN COVE	BROOK				
Copper Iron Nickel Zinc Hardness, Total as CaCO3 pH a JC48393-2 MW-3	5.4 B 745 3.9 B 24.9 127 6.6	10 100 10 20 4.0	3.2 32 1.3 4.0 2.5	ug/l ug/l ug/l ug/l mg/l su	SW846 6010C SW846 6010C SW846 6010C SW846 6010C SM2340 C-11 SM21 4500HB/EPA150.1
Chromium ^b Chromium, Trivalent ^c Hardness, Total as CaCO3 Solids, Total Suspended Total Residual Chlorine ^a pH ^a	70.0 0.070 55.7 1740 0.10 5.9	50 0.060 4.0 4.0 0.050	4.3 0.0058 2.5 0.57 0.038	ug/l mg/l mg/l mg/l mg/l su	SW846 6010C SW846 6010/7196A M SM2340 C-11 SM2540 D-11 SM21 4500CL F SM21 4500HB/EPA150.1

⁽a) Analysis performed past the required 15 minutes of collection time/holding time. Analysis performed at SGS Accutest, Marlborough, MA.

⁽b) Elevated sample detection limit due to difficult sample matrix.

⁽c) Calculated as: (Chromium) - (Chromium, Hexavalent)

Section 4

Sample Results	
Domont of Analysis	
Report of Analysis	

Report of Analysis

Client Sample ID: GOLDEN COVE BROOK

Lab Sample ID: JC48393-1 **Date Sampled:** 08/04/17 Matrix: AQ - Ground Water **Date Received:** 08/04/17 **Percent Solids:** n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	4.3 U	6.0	4.3	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Arsenic	2.7 U	3.0	2.7	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Chromium	0.85 U	10	0.85	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Copper	5.4 B	10	3.2	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Iron	745	100	32	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Lead	2.6 U	3.0	2.6	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Mercury	0.083 U	0.20	0.083	ug/l	1	08/08/17	08/08/17 JA	SW846 7470A ¹	SW846 7470A ⁴
Nickel	3.9 B	10	1.3	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Selenium	6.6 U	10	6.6	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Silver	3.1 U	10	3.1	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³
Zinc	24.9	20	4.0	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ²	SW846 3010A ³

(1) Instrument QC Batch: MA42557 (2) Instrument QC Batch: MA42560 (3) Prep QC Batch: MP2309 (4) Prep QC Batch: MP2321

RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

ACCUTEST

MDL = Method Detection Limit

Report of Analysis

Page 1 of 1

Client Sample ID: GOLDEN COVE BROOK

Lab Sample ID:JC48393-1Date Sampled:08/04/17Matrix:AQ - Ground WaterDate Received:08/04/17Percent Solids:n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

4

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent ^a	0.0015 U	0.010	0.0015	mg/l	1	08/04/17 17:50 AMASW846 7196A
Chromium, Trivalent ^b	0.0024 U	0.020	0.0024	mg/l	1	08/08/17 18:39 ND SW846 6010/7196A M
Hardness, Total as CaCO3	127	4.0	2.5	mg/l	1	08/07/17 11:55 ST SM2340 C-11
Nitrogen, Ammonia	0.14 U	0.20	0.14	mg/l	1	08/07/17 11:55 BM SM4500NH3 H-11LACHAT
pH ^c	6.6			su	1	08/04/17 17:40 AMASM21 4500HB/EPA150.1

- (a) Analysis performed at SGS Accutest, Marlborough, MA.
- (b) Calculated as: (Chromium) (Chromium, Hexavalent)
- (c) Analysis performed past the required 15 minutes of collection time/holding time. Analysis performed at SGS Accutest, Marlborough, MA.

RL = Reporting Limit

MDL = Method Detection Limit B = Indicates a

B = Indicates a result > = MDL but < RL

U = Indicates a result < MDL

Report of Analysis

 Client Sample ID:
 MW-3

 Lab Sample ID:
 JC48393-2
 Date Sampled:
 08/04/17

 Matrix:
 AQ - Ground Water
 Date Received:
 08/04/17

 Method:
 SW846 8100M
 SW846 3510C
 Percent Solids:
 n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1 a CR5768.D
 1
 08/10/17 13:00
 AMA 08/09/17 14:30
 M:OP49867
 M:GCR1345

Run #2

Run #1 1000 ml 1.0 ml Run #2

CAS No. Compound Result RLUnits Q TPH (C8-C40) ND 0.25 mg/l CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 84-15-1 o-Terphenyl 72% 40-140%

(a) Analysis performed at SGS Accutest, Marlborough, MA.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-3 Lab Sample ID: JC48393-2

Lab Sample ID:JC48393-2Date Sampled:08/04/17Matrix:AQ - Ground WaterDate Received:08/04/17Percent Solids:n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium ^a	3.5 U	15	3.5	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ¹	SW846 3010A ²
Chromium ^a	70.0	50	4.3	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ¹	SW846 3010A ²
Selenium a	33 U	50	33	ug/l	1	08/07/17	08/08/17 ND	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA42560

(2) Prep QC Batch: MP2309

(a) Elevated sample detection limit due to difficult sample matrix.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

4

Client Sample ID: MW-3 Lab Sample ID: JC48393-2

Date Sampled: 08/04/17 Matrix: AQ - Ground Water **Date Received:** 08/04/17

Report of Analysis

Percent Solids: n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent ^a	0.0015 U	0.010	0.0015	mg/l	1	08/04/17 17:50 AMASW846 7196A
Chromium, Trivalent ^b	0.070	0.060	0.0058	mg/l	1	08/08/17 18:43 ND SW846 6010/7196A M
Hardness, Total as CaCO3	55.7	4.0	2.5	mg/l	1	08/07/17 11:55 ST SM2340 C-11
Nitrogen, Ammonia	0.14 U	0.20	0.14	mg/l	1	08/07/17 11:57 BM SM4500NH3 H-11LACHAT
Solids, Total Suspended	1740	4.0	0.57	mg/l	1	08/07/17 18:00 TZWSM2540 D-11
Total Residual Chlorine c	0.10	0.050	0.038	mg/l	1	08/04/17 18:31 AMASM21 4500CL F
pH ^c	5.9			su	1	08/04/17 17:45 AMASM21 4500HB/EPA150.1

(a) Analysis performed at SGS Accutest, Marlborough, MA.

(b) Calculated as: (Chromium) - (Chromium, Hexavalent)

(c) Analysis performed past the required 15 minutes of collection time/holding time. Analysis performed at SGS Accutest, Marlborough, MA.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- · Chain of Custody
- MCP Form
- MCP Form (SGS Accutest New England)
- Sample Tracking Chronicle
- QC Evaluation: MA MCP Limits

Parameter Certification Exceptions

Job Number: JC48393

Account: WEBMAN Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

The following parameters included in this report are exceptions to NELAC certification.

The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status
Character Triant		CVVO4C CO40/E40C4 NA	4.0	A

Chromium, Trivalent SW846 6010/7196A M AQ Accutest is not certified for this parameter.^a

(a) Lab cert for analyte not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

Certification exceptions shown are based on the New Jersey DEP certifications. Applicability in other states may vary. Please contact your laboratory representative if additional information is required for a specific regulatory program.

Page 1 of 1

N

ece is	۷		СНА					DY	Z					6	Ĵ			PΑ	ιGE		OF	F —	N. Y.
363	CCUTES	50 D'Ange	elo Drive/495 Te TEL	chnology 508-481		/est, Build AX: 508⊸	ding One		orough	, MA 01	752	FED-EX 72 SGS Acc	Tracking 73 utest Que	# 751	, 52	170		Order Cor	Ü	:TC	48	397	
Client / Reporting Information	,		Pro	ect Info								WARTE:					MAKKES YES	90000000		SERVICE CO.	(3/-3	85-81	45
contain Name Engineer	Project N		oil	ecc min	Jillalic								Requ	ested		is (see 1	EST C	ODE	sheet)		-	Matrix Codes W - Drinking Wate	1
111 Summer Str	/ Stroot:	Emerson 1	$\overline{}$												لق	opinany		þ		J		GW - Ground Wate WW - Water GW - Surface Wate	
City State Zin	066 City:	holmar Gr	1		Billing Int any Name	ormatio	n (If a	nerent	trom	Report	to)				3	Ą	İ	OC. NO		ij	ľ	SO - Soil SL- Sludge	
Bob Coluccio RPCOL	il Project#	Can	<u>e</u>	Street	Address											ű		7		الي' ا	.	SED-Sediment OI - Oil LIQ - Other Liquid	
Phone # Fex Fex	Client PO	onial oil		City			Sta	ate	Z	Zip		55			***	قل آيا		ر	8	외		AIR - Air SOL - Other Solid WP - Wipe	
Sampler(s) Name(s) Phor Bob Colucio 781-8		Bab Colv	c'io.	Attenti	ion:		PO#					ane	ંધુ		4	ح ک ر ا ر] .	Posia	8	alent		FB-Field Blank B- Equipment Blan RB- Rinse Blank	
	79-0 74 7	Collection				-	Nt	umber of	fpreserv	ed Bottle	98	رم	mooi	1	7	\tilde{z}	1 %		7	exeva		TB-Trip Blank	
SGS Accuriest Semple# Field ID / Point of Colle	ction MEOH/DIV	al# Date	Time	Sampled by	Matrix	# of bottles	E HOR	NO3	IONE	Water NEOH	NCORE	ゴ	(9	30	δ ₁ /2	1	Total	F	15	Γ.	45 HOT 6111 H	
1 Golden Cove		8/4	845	BC.	W	5	I Z	ĪĪ	3	2 2 1	n 6	X	\times	×	×:	× 1				Z		AB USE ONLY	
2 MW-3		8/4	920	BC	W	6	Н	11	4	44	\mathbb{H}	\times	×	X		X	X	X	X	X	_	631	
3							H		$\dagger \dagger$	+	+		\neg	\dashv	\mathcal{X}	+					\dashv		
														(É	No							
			-				-	\vdash	\vdash	+	+		-								\dashv		l
									$\dagger\dagger$	$\dagger\dagger$	$\dagger \dagger$			\dashv	+	-					+		
								Ц.	П		П	4		1					S	GS-A	CQU	TEST 8-4-	17
								H	+	+	\forall	-	+	+	-	-	-				7		
w w						Data	Delive	rable l	nform	ation						Comm	ents / s	Specia	ıl Instr	uctions			
Turnaround Time (Business da	ys)	y (SGS Accutest PM): / Date): :	_	Commerci Commerci					NYASP (•	L	E	<u>~a</u>	1.	res	ال	īs.	to			l
Std. 5 Business Days (By Contract 5 Day RUSH	only) L ASES SMENT 2	R Sau		 	FULLT1 (CT RCP	Level 3+4	1)		_	State Fo EDD Fo			_ L							Ic	<u>@</u>	AOL.	l
2 Day EMERGENCY	VERIFICATION	A. ()			MA MCP	Cor	mmercial	I "A" = F	_	Other _ Only		-	L							C,	<i>N</i>) '65	
1 Day EMERGENCY LABEL Emergency & Rush T/A data available VIA						Commer					•												ĺ
Relinquished by Sampler:	23 1/n: /n 1/	Sample Custody m	ust be docum	1	low eacl	n time sa	Relinqui		e poss	ession	, inclu	ding co	ourier c	In.	sto Timos	(1.44 c	Receive	d By:	//	1	- 11		ĺ
1 Remarkshed by Sampler;	Date yinte:	Received By:	1 sack				2 (Relinqui	ished By	CO.	<u>uu</u>					107	1640	2 Receive	<u>رگرسما</u> g By: 5		073	ell		
3 May Relinquished by:	Date Time:	3 FED T)				4 Custody	Seal#		2-	× E		ntact P	reserved	where ap	7:50 plicable	4	_	Dr. For	- (Cooler Te	mp.	!
5		5							6	15		7	ot intact	$-\bar{i}$	26				4	_	اسم	+2V	
																		21	جار	a.:	3°c	-13	

JC48393: Chain of Custody Page 1 of 3

SGS Accutest Sample Receipt Summary

Job Number: JC4	48393 C	lient: WEB Engi	ineering		Project: Colonial Oil			
Date / Time Received: 8/5	/2017 9:50:00 AM	Delivery I	Method:	FedEx	Airbill #'s : <u>727375165230</u>			
Cooler Temps (Raw Measu Cooler Temps (Correc	,	, ,						
Custody Seals Present:	✓ 4. Sm Y or N ✓ □ IR Gun Ice (Bag)	COC Present: pl Dates/Time OK	<u>Y or N</u> ☑ □	Sample labels Container labels Sample container Sample Integri Sample recvd All containers Condition of sample labels	iner label / COC agree: ity - Condition within HT: accounted for:	Y OI Y OI Y OI Y OI	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	 N/A
Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly VOCs headspace free:	: v .	Y		Analysis requ Bottles receiv Sufficient volu	ested is clear: red for unspecified tests ume recvd for analysis: instructions clear:	V		V
Comments				•				

SM089-02 Rev. Date 12/1/16

JC48393: Chain of Custody Page 2 of 3 -1,-2 proceed and run XCR out of hold.

Per Client Bob Collucio

JC48393: Chain of Custody Page 3 of 3

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

WSC-CAM	Exhibit VII A
July 1, 2010	Revision No. 1
Final	

Exhibit VII A-2: MassDEP Analytical Protocol Certification Form

	Ма	assDEP Analytical F	Protocol Certifica	tion Form									
Laboratory Name:	Accutest Mid-Atlanti	<u>c</u>		Project #:	JC4839	3							
Project Location:#01074,	Colonial Oil, 8 Emer	son Avenue, Chelmst		MADEP RTN	None								
This form provides certific JC48393-1,JC4839	· ·	data set: list Labora	tory Sample ID Nu	mbers(s)									
Test method: Refer	Test method: Refer to case narrative. Matrices: Groundwater/Surface Water (V) Scil/Sediment () Disking Water () Air () Other ()												
	dwater/Surface Water (X)	Soil/Sediment ()	Drinking Water	() Air ()	Other	()						
CAM Protocol (check all the	at apply below):												
8260 VOC ()	(X)	Mass DEP APH CAM IX A	()										
CAM IIA 8270 SVOC () CAM II B	CAM III B 7010 Metals () CAM III C	CAM IV A MassDEP EPH () CAM IV B	CAM V B 8151 Herbicides CAM V C	CAM VI B () 8330 Explosives CAM VIII A	()	TO-15 VOC CAM IX B	()						
6010 Metals (X) CAM III A	6020 Metals () CAM III D	8082 PCB () CAM V A		() 6860 Perchlorate CAM VIII B	()	, iii ii ii ii							
Affirmative Respo	nses to Questions A	Through F are requi	red for "Presump	tive Certainty status	5								
Affirmative Responses to Questions A Through F are required for "Presumptive Certainty status Were all samples received in a condition consistent with those described on the Chain-of Custody, Yes Properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?													
Were the analytical protocol(s) followed	Were the analytical method(s) and all associated QC requirements specified in the selected CAM												
	orrective actions and ar ented for all identified pe				7,	Yes □No							
Does the laboratory	report comply with all t and Quality Control Gu	the reporting requirem	nents specified in (✓ ,	Yes	ı						
	nd TO-15 only: APH Methods only: Wa Refer to the individual m		•			Yes □No	ı						
	Methods only: Was the					Yes No							
	CAM protocol QC and laboratory narrative (inc				✓ '	Yes □No							
Responses to que	estions G, H, and I belo	ow is required for "F	Presumptive Certa	ainty" status									
G Were the reporting selected CAM proto	limits at or below all CA	M reporting limits spe	ecified in the			Yes ☑ No	1						
Data User Note: D	Data that achieve "Preseness requirements de				data use	ability							
	mance standards speci			u woc-07-550.	√ ,	Yes	1						
	ed for the complete and			rotocol(s)?		Yes ☐ No	_						
¹ All Negative respo	onses must be addres	sed in an attached E	nvironmental La	boratory case narra	tive.								
I the undersigned, attes	t under the pains and	penalties of perjury	that, based upor	n my personal									
inquiry of those respon analytical report is, to the	•	•											
Signature:	Maney +.	Cole	Position:	Laboratory Director									
Printed Name:	Nancy F. Cole		Date:	10-Aug-17									

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

WSC-CAM	Exhibit VII A
July 1, 2010	Revision No. 1
Final	

Exhibit VII A-2: MassDEP Analytical Protocol Certification Form

		Ма	ssDEP Analytical F	rotocol Certifica	itior	n Form						
Labo	ratory Name:	SGS Accutest- Maril	<u>borough</u>			Project #:	JC483	393				
Proje	ct Location:	WEBMAN: Colonial MA	Oil, 8 Emerson Aven	ue, Chelmsford,		MADEP RTN	None					
This f	•	•	data set: list Labora	tory Sample ID Nu	ımb	ers(s)						
	Test method: Refer to	o case narrative.										
М	atrices: Groundy	vater/Surface Water (X)	Soil/Sediment ()	Drinking Water	()	Air ()			Other	()		
CAM	Protocol (check all that	apply below):										
	8260 VOC ()	• ()	. ,		` '		(X)		Mass DEP APH	()		
	8270 SVOC ()	7010 Metals ()	MassDEP EPH ()	8151 Herbicides	()	8330 Explosives	()		TO-15 VOC	()		
	6010 Metals () CAM III A	6020 Metals () CAM III D	8082 PCB () CAM V A				()		O/MVI IX B			
	Affirmative Respon	ses to Questions A	Through F are requi	red for "Presump	otiv	e Certainty status	;					
Α	Were all samples received in a condition consistent with those described on the Chain-of Custody, Yes V											
В		nethod(s) and all asso	ciated QC requireme	nts specified in the	e se	elected CAM	V	Yes	□ No			
This form provides certifications for the following data set: list Laboratory Sample ID Numbers(s) JC48393-1,JC48393-2 Test method: Refer to case narrative. Marrices: Groundwater/Surface Water (X) Soll/Sediment () Drinking Water () Air () Other (CAM Protocol (check all that apply below): 8260 VOC () 7470/7471 Hg () MassDEP VPH () 8081 Pesticides () 7196 Hex Cr (X) Mass DEP APH CAM IIA CAM III B CAM IIV A CAM V B CAM V B CAM V IB CAM IX A 8270 SVOC () 7010 Metals () MassDEP EPH () 8151 Herbicides () 8305 Explosives () T0-15 VOC CAM IIB CAM III B CAM III C CAM V B CAM V C CAM V III B CAM IX A 6010 Metals () 6020 Metals () 8082 PCB () 9014 Total () 18800 Perchiorate () CAM V C CAM V III A CAM III D CAM V C CAM V III B CAM V C CAM V III B Affirmative Responses to Questions A Through F are required for "Presumptive Certainty status Were all samples received in a condition consistent with those described on the Chain-of Custody, Yes V No properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times? Were the analytical method(s) and all associated QC requirements specified in the selected CAM Protocolis () followed? Were all required corrective actions and analytical response actions specified in the selected CAM Protocolis () followed? Were all required corrective actions and analytical response actions specified in the selected CAM Protocolis () followed? Were all required corrective actions and analytical response actions specified in the selected CAM Protocolis () followed? Were all aboratory report comply with all the reporting requirements specified in the selected CAM Protocolis () followed? Were all applicable CAM protocolis and performance standard non-conformances? VPH, EPH, APH, and TO-15 only; a search with the performance standard non-conformances dentified yers No Protocolis () followed? Protocolis implemented for all identified performance standard non-conformances dentified yers No No Reporting in the selected CAM Protocolis (
						M VII A,	_	res	INO			
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, D "Quality Assurance and Quality Control Guidelines for the Acquisition and V Yes No Reporting of Analytical Data"?												
D "Quality Assurance and Quality Control Guidelines for the Acquisition and												
	b. APH and TO-15 M	ethods only: Was the	e complete analyte list	reported for each	n me	ethod?						
F							✓	Yes	∐ No			
Project Location: WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MADEP RTN MA This form provides certifications for the following data set: list Laboratory Sample ID Numbers(s) JC48393-1,JC48393-2 Test method: Refer to case narrative. Matrices: Groundwater/Surface Water (X) Sol/Sedment () Drinking Water () Air () Other () CAM Protocol (check all that apply below): 8.260 VOC () 74707471 Hg () MassDEP VPH () 8081 Pesticides () 7196 Hex Cr (X) Mass DEP APH () CAM IIA CAM III B CAM IV A CAM V B CAM V B CAM V IB CAM V IB CAM IV B CAM IV B CAM V IB CAM IV B												
CAM Protocol (check all that apply below): 8260 VOC () 7470/7471 Hg () MassDEP VPH () 8081 Pesticides () 7196 Hex Cr (X) Mass DEP APH () CAM III B CAM III B CAM III B CAM IV A CAM V B CAM V B CAM V B CAM IV B												
	Data User Note: Da	ta that achieve "Pres					data u	ıseab	ility			
н					nd V	VSC-07-350.	√	Yes	No.	1		
Matrices: Groundwater/Surface Water (X) Soli/Sediment () Drinking Water () Air () Other () CAM Protocol (check all that apply below): 8260 VOC () 7470/7471 Hg () MassDEP VPH () 8081 Pesticides () 7196 Hex Cr (X) Mass DEP APH () CAM IIB CAM IIB CAM IIB CAM IV A CAM V B CAM V B CAM IV A 8270 SVOC () 7010 Metals () MassDEP EPH () 8151 Herbicides () 8330 Explosives () TO-15 VOC () CAM IIB CAM IIB CAM IIC CAM IIB CAM V C CAM V IIB CAM V C CAM III A CAM IIB CAM IIB CAM II C CAM V B CAM V C CAM V III A 6010 Metals () 6020 Metals () 8082 PCB () 9014 Total () 6860 Perchiorate () CAM V IIB CAM V C CAM III A CAM IIB CAM V C CAM V III B Affirmative Responses to Questions A Through F are required for "Presumptive Certainty status Were all samples received in a condition consistent with those described on the Chain-of Custody, Preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times? Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) Implemented for all identified performance standard non-conformances? Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? VPH, EPH, APH, and TO-15 only: VPH, EPH, APH, and TO-15 only: VPH, EPH, APH, and TO-15 only: Was each method conducted without significant Pressurptive Certainty and TO-15 only: Responses to questions G, H, and I below is required for "Presumptive Certainty" status Data User Note: Data that achieve "Presumptive Certainty" status Q Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s) Pata User Note: Data that achieve "Presumptive Certainty" status Q Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s) and Were all applicable CAM protocol QC and performance standard non-conformances identified Q Were the reporting limits at												
1	All Negative respon	ses must be addres	sed in an attached E	nvironmental La	boı	ratory case narrat	ive.					
I the	undersigned, attest	under the pains and	penalties of perjury	that, based upo	n m	y personal						
	•	•	•			this						
Signa	ature: Aplochel	lun	_	Position:	Lak	ooratory Director						
Print	ed Name:	H. (Brad) Madadian	1	Date:		10-Aug-17						

Internal Sample Tracking Chronicle

Web Engineering Associates, Inc.

Job No: JC48393

Colonial Oil, 8 Emerson Avenue, Chelmsford, MA Project No: 17-E-026

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes			
JC48393-1	Collected: 04-AUG-17	08:45 By: BC	Received: 04-AUG-17 By: DDH						
GOLDEN (COVE BROOK								
IC49202 1	SM21 4500HB/EPA150	004 AUC 17 17.40	A N // A			PHLAB			
	SW846 7196A	04-AUG-17 17:50				XCR			
	SM2340 C-11	07-AUG-17 11:55				HRD			
	SM4500NH3 H-11LAC			07-AUG-17	ВM	AMN			
	SW846 7470A			07-AUG-17 08-AUG-17		HG			
	SW846 6010C			07-AUG-17		AG, AS, CR, CU, FE, NI, PB, SB, SI			
JC+03/3-1	5 W 040 0010C	00-710-0-17 10.37	ND	07-710-17	CDI	ZN			
JC48393-1	SW846 6010/7196A M	08-AUG-17 18:39	ND			CR3			
JC48393-2 MW-3	Collected: 04-AUG-17	09:00 By: BC	Receiv	ed: 04-AUG	-17 By	: DDH			
1049202.2	CM21 4500HD/ED 4 150	004 AUC 17 17.45	A N 1/4			PHLAB			
	SM21 4500HB/EPA150 SW846 7196A	04-AUG-17 17:50				XCR			
	SM21 4500CL F	04-AUG-17 17:30				TRC			
	SM2340 C-11					HRD			
	SM4500NH3 H-11LAC			07-AUG-17	BM	AMN			
	SM2540 D-11			07 7100 17	Divi	TSS			
	SW846 6010C			07-AUG-17	CSF	CD,CR,SE			
	SW846 6010/7196A M			0. 1100 17	201	CR3			
	SW846 8100M			09-AUG-17	AMA				

QC Evaluation: MA MCP Limits

Job Number: JC48393

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Collected: 08/04/17

QC Sample ID CAS# Analyte Sample Result Result Units Limits
Type Type

No Exceptions found.

5.6

^{*} Sample used for QC is not from job JC48393

Section 6

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JC48393

Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Batch ID: MP2309 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:

08/07/17

Prep Date:					08/0//1/
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	7.1	33		
Antimony	6.0	1.9	4.3	1.4	<6.0
Arsenic	3.0	1.5	2.7	0.70	<3.0
Barium	200	. 2	1.3		
Beryllium	1.0	.1	. 4		
Bismuth	20	2.6	5		
Boron	100	1.2	13		
Cadmium	3.0	.3	.7	0.0	<3.0
Calcium	5000	3.3	29		
Chromium	10	.8	.85	0.0	<10
Cobalt	50	.5	.72		
Copper	10	.9	3.2	3.4	<10
Iron	100	2.7	32	4.1	<100
Lead	3.0	2.2	2.6	-1.1	<3.0
Lithium	50	3.1	15		
Magnesium	5000	17	64		
Manganese	15	.1	.42		
Molybdenum	20	. 4	1.4		
Nickel	10	. 4	1.3	0.30	<10
Phosphorus	50	2.1	13		
Potassium	10000	47	230		
Selenium	10	2.5	6.6	2.1	<10
Silicon	200	2.2	45		
Silver	10	1	3.1	0.60	<10
Sodium	10000	16	130		
Strontium	10	.1	.3		
Sulfur	50	4	15		
Thallium	2.0	1.9	1.6		
Tin	10	1.3	2.4		
Titanium	10	.6	1.8		
Tungsten	50	2	14		
Vanadium	50	.8	1.3		
Zinc	20	. 2	4	-0.30	<20

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JC48393

Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Batch ID: MP2309 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

08/07/17 Prep Date:

Zirconium 10 .5 2

Associated samples MP2309: JC48393-1, JC48393-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $% \left(\frac{1}{2}\right) =0$ (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JC48393 Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Troject. Colonial Oli, o Emergon Menae, chelmbrola, Phi

QC Batch ID: MP2309 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

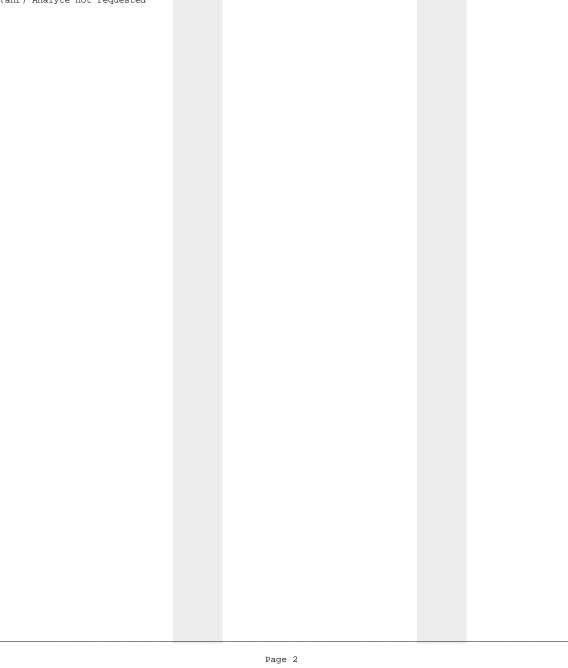
Prep Date:			08/07/17	,				08/07/17	7
Metal	BSP Result	Spikelot MPSPK2	% Rec	QC Limits	BSD Result	Spikelot MPSPK2	% Rec	BSD RPD	QC Limit
Aluminum	anr								
Antimony	2050	2000	102.5	80-120	2070	2000	103.5	1.0	20
Arsenic	2020	2000	101.0	80-120	2030	2000	101.5	0.5	20
Barium	anr								
Beryllium	anr								
Bismuth									
Boron									
Cadmium	2070	2000	103.5	80-120	2080	2000	104.0	0.5	20
Calcium	anr								
Chromium	2080	2000	104.0	80-120	2090	2000	104.5	0.5	20
Cobalt	anr								
Copper	2040	2000	102.0	80-120	2050	2000	102.5	0.5	20
Iron	25900	25000	103.6	80-120	26200	25000	104.8	1.2	20
Lead	2050	2000	102.5	80-120	2060	2000	103.0	0.5	20
Lithium									
Magnesium	anr								
Manganese	anr								
Molybdenum									
Nickel	2050	2000	102.5	80-120	2070	2000	103.5	1.0	20
Phosphorus									
Potassium	anr								
Selenium	2040	2000	102.0	80-120	2050	2000	102.5	0.5	20
Silicon									
Silver	263	250	105.2	80-120	263	250	105.2	0.0	20
Sodium	anr								
Strontium									
Sulfur									
Thallium	anr								
Tin									
Titanium									
Tungsten									
Vanadium	anr								
Zinc	2070	2000	103.5	80-120	2070	2000	103.5	0.0	20

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JC48393 Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Batch ID: MP2309 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

08/07/17 08/07/17 Prep Date:


	BSP	Spikelot		QC	BSD	Spikelot		BSD	QC
Metal	Result	MPSPK2	% Rec	Limits	Result	MPSPK2	% Rec	RPD	Limit

Zirconium

Associated samples MP2309: JC48393-1, JC48393-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\begin{tabular}{ll} \end{tabular}$

(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: JC48393 Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Batch ID: MP2309 Methods: SW846 6010C Matrix Type: AQUEOUS Units: ug/l

08/07/17 Prep Date:

Metal	TD7118-1 Original	SDL 1:5	%DIF	QC Limits
Aluminum	anr			
Antimony	0.00	0.00	NC	0-10
Arsenic	0.00	0.00	NC	0-10
Barium	anr			
Beryllium	anr			
Bismuth				
Boron				
Cadmium	0.00	0.00	NC	0-10
Calcium	anr			
Chromium	0.00	0.00	NC	0-10
Cobalt	anr			
Copper	4.00	38.3	857.5(a)	0-10
Iron	38.3	51.5	34.5 (a)	0-10
Lead	0.00	0.00	NC	0-10
Lithium				
Magnesium	anr			
Manganese	anr			
Molybdenum				
Nickel	1.30	2.20	69.2 (a)	0-10
Phosphorus				
Potassium	anr			
Selenium	0.00	0.00	NC	0-10
Silicon				
Silver	1.40	6.50	364.3(a)	0-10
Sodium	anr			
Strontium				
Sulfur				
Thallium	anr			
Tin				
Titanium				
Tungsten				
Vanadium	anr			
Zinc	5.60	16.4	192.9(a)	0-10

Page 1

SERIAL DILUTION RESULTS SUMMARY

Login Number: JC48393 Account: WEBMAN - Web Engineering Associates, Inc.

Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Batch ID: MP2309 Methods: SW846 6010C

Matrix Type: AQUEOUS Units: ug/l

Prep Date: 08/07/17

Zirconium

Associated samples MP2309: JC48393-1, JC48393-2

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits
(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

30 of 47
ACCUTEST
JC48393

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JC48393

Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Batch ID: MP2321 Methods: SW846 7470A Matrix Type: AQUEOUS Units: ug/1

Prep Date:

08/08/17

Associated samples MP2321: JC48393-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\begin{tabular}{ll} \end{tabular}$

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JC48393

Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Batch ID: MP2321 Methods: SW846 7470A Matrix Type: AQUEOUS Units: ug/l

08/08/17 08/08/17 Prep Date:

Metal	BSP Result	Spikelot HGPW3	% Rec	QC Limits	BSD Result	Spikelo HGPW3	t % Rec	BSD RPD	QC Limit
Mercury	2.0	2	100.0	80-120	2.1	2	105.0	4.9	

Associated samples MP2321: JC48393-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

Section 7

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC48393 Account: WEBMAN - Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Hardness, Total as CaCO3	GN67843	4.0	0.0	mg/l	160	163	101.9	80-120%
Hardness, Total as CaCO3	GN67843			mg/l	80	83.6	104.5	80-120%
Nitrogen, Ammonia	GP7001/GN67848	0.20	0.0	mg/l	1	1.00	100.0	80-120%
Solids, Total Suspended	GN67855	4.0	0.0	mg/l				

Associated Samples:

Batch GP7001: JC48393-1, JC48393-2 Batch GN67843: JC48393-1, JC48393-2 Batch GN67855: JC48393-2

(*) Outside of QC limits

Section 8

Misc. Forms

Custody Documents and Other Forms

(SGS Accutest New England)

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- QC Evaluation: MA MCP Limits

CHAIN OF CUSTODY

ACCUTEST

Project Name:

Client Purchase Order #

8/4/17

8/4/17

Approved By (SGS Accutest PM): / Date:

ceived By:

ate Time:

8:45:00 AM

9:00:00 AM

Project Manager

Client / Reporting Information

Field ID / Point of Collection GOLDEN COVE BROOK

Turnaround Time (Business days)

Std. 10 Business Days 5 Day RUSH

3 Day EMERGENCY 2 Day EMERGENCY
1 Day EMERGENCY

Relinquished by Sampler:

X other Due 8/14/2017
Emergency & Rush T/A data available V/A Lablink

NJ

SGS Accutest

Street Address 2235 Route 130

Project Contact michelle.jenkins@sgs.com

вс

2 MW-3

732-329-0200

2235 Route 130, Dayton, NJ 08810 TEL 732-329-0200 FAX 732-329-3499/3480 www.sgs.com

Project Information

Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Commercial "A" {Level 1}
Commercial "A" {Level 1}
Commercial "B" (Level 2)
FULLT1 (Level 3+4)
NJ Reduced
Commercial "C"

Commercial "A" = Results Only

Relinquished By:

Sample Custody must be documented below each time samples change possession, including courier delivery.

X Other MAMCP

Intact
Not intact

Commercial "B" = Results + QC Summary
NJ Reduced = Results + QC Summary + Partial Raw data

O	F C	UST	Ol	D.	Y															age	1 0	of 1	
Route 13	0. Davton	NJ 0881	0									FED-EX	Tracking	*				Bottle (order Cor	ritol #			
9-0200 FAX. 732-329-3499/3480 www.sgs.com						SGS Acsidest Quote #						SGS A	cutest Jo	b	JC4	3393							
nformation								Requested Analysis (see TES						CODE	chec	Matrix Codes							
131011116	LIOII			_							_		Tived	T	T	313 (30	T	T	T	1	\top	Т	Matrix Codes
on Ave	nue, Ch	elmsford	, M/	4																			DW - Drinking Water GW - Ground Water WW - Water
Billing I	nformatic	n (if differ	ent f	non	Rep	ort	to)																SW - Surface Water
Compan																							SO - Soil SL- Sludge SED-Sediment OI - Oil
Street A	idress											XCR.											LIQ - Other Liquid AIR - Air SOL - Other Solid
City				Stat	te				Zip			3,TRC											WP - Wipe FB-Field Blank EB-Equipment Blank
Attention		r										B8100TPH, PHLAB, TRC, XCR	S.										R8- Rinse Blank YB-Trip Blank
Number of preserved Bottles							id.	ı X															
Sampled by	Matrix	# of bottles	고 모	NaOH	HNO3	H2S04	NONE	DI Water	MEOH	ENCORE		B8100	PHLAB,XCR										LAB USE ONLY
BC	AQ												X		İ				<u> </u>				
BC	AQ											Х											
			П		-											T							
														1-	1		1	†	1	T	\top	1	
														† — —					Ť	1	+-	+	
				-										 	\vdash	 	t-	H		1	+	-	+
																							/98
										-											Т		130
			П	٦										İ				i	T	T	T	1	
			H	┪	1	7				7									T		\top		
			\vdash	1	\dashv	1				-	-			 	 		<u> </u>	\vdash	+	 	-	+-	1
			\forall	+	+	-			-	-	-			-	-		┼	-	-		+-	+	
		Data D) aline	912	ale !	ofor	mai	ion		1				l	<u> </u>	1	Com	ments /	Specie	Inetr	ctions	+	
\Box	Commerci	el "A" (Le	_		<i>J</i> ₁ (2 1)	1		******	ASP	Cat	ego	ry A		AL NE	kept vo	dume fr			Opacia		000113		
		ai"B" (Le				Ī	二			Cat				1,10145	Kept VI	ALLES E	, , ui (
	ULLT1 (Level 3+4)			Ī		Sta	te F	orm	9												
NJ Reduced EDD Format									at .												ļ		

ate Time:

Date Time:

ceived By:

JC48393: Chain of Custody
Page 1 of 3
SGS Accutest New England

											1	,					P	M,
ece	(24)		CHA	AIN OF			Y							PAG	E_	_ OF	=	E
-5105	ACCUT	EST 50 D'	ngelo Drive/495 T	SGS Accutest echnology Center EL. 508-481-5200	West, Bullo	ling One Ma	rlborough	, MA 01752	FED-E	Treaking #	516	5230	1	order Control (:50	C48	39'3] ,
Gigar Reposting into	rmation			www.acci pject-Informat	itest.com	S				cutest Quote		lysis (See		critaat Yop ii	_ _	C43-	385 %	1,5
Contract Name English	RR () NOA	Colonia	oil						38 200	IXEGUE	2		J	DESOE	(10000	Matrix Codes DW - Drinking Water	
Address Summer		8 Enerson	Δ1 10								1.0	12		Q	10) [GW - Ground Water WW - Water SW - Surface Water	r
City State	02066	" Chelina G	7	Company Nan	nformation ne	(If differe	int from i	(eport to)	1		3	4 1		olorine	li		SO - Soil SL- Sludge	
Project Contact		roject#	1.6	Street Address	;				\dashv		1,7	42				+ 1	SED-Sediment OI - Oil LIQ - Other Liquid	
Phone # 781-844-83	Fax#	lient PO#	1	City		State	Z	p	1 %		1	4		2	3 5		AIR - Air SOL - Other Solid WP - Wipe	
Sampler(s) Name(s)	Priorie #	olect Wayaged	1	Attention;		PO#			9	્રુ	4	4		Resid	exerciples	286	FB-Field Blank EB- Equipment Blank	
Bob Colucio 73	81-844-832	3 Rob Colo	CC10		T	Numbe	of preservi	ed Bottles	ard	Amoria	$\mathcal{I} \not \in$	Z	$\mathcal{K}_{\mathcal{L}}$		6 3		RB- Rinse Stank TB-Trip Stank	
SGS Accuted Semple# Field ID / Point of				Sampled		# # §	SO4 Water	MEOH	T	₫,	200	2	1	Total	1/2			
1 Golden Col		OH/DI Viai # Deta 8 / 4	845	BC W	# of bottles	¥ 2 £	13	₩ 155 a	X	X:	d X	× 4	E	1	<u> </u>		LAB USE ONLY	
2 MW-3		8/4	9 20	BCW	6	1	14		X	X	\) (>	X	\times	$\langle X \rangle$		6-31	
			- -	 			+	+++	+		+-/	\leftarrow	-		-	\vdash		
						++1	+	H		_	Ó	Na			+	\vdash		
						\prod												
						+ + +	+		+	+	+		+	-	-	\vdash		
							$\dagger \dagger$				+	_		\dashv	SGS-	ACQU	ITEST 8-4-	17
			-			\Box	\prod								141/	WEBE	<i>I</i> R	
					Date I	ieUverabje	Informat	1577	200			Солд	rents S	necial Ins	truction	<u> </u>		
Turnaround Time (Busin Std. 10 Business Days	iess days;	roved By (SGS Accutest PM): / D	ate:		iai "A" (Lev iai "B" (Lev			YASP Categ YASP Categ		L	En	1,=	resu	alts	to			
Std. 5 Business Days (By Co	ontract only) NITIAL ASESSMEN	- 70		FULLT1 (Level 3+4)			ate Forms DD Format		_ L						-@	AOL.	
2 Day EMERGENCY	ABSL VERIFICATION	A. []		MA MCP	Comm	nercial *A* =		her							C	0 N	1 0	
1 Day EMERGENCY Emergency & Rush T/A data availa						i *8* = Resu												
Relinquished by Sampler:	227/2/10	Sample Custody	11	ented below eac		ples chan Inquished B		ssion, incl	uding co	urier dell	7	1640	Received I	By:		- 11		
Te may shed by Sample;	87417	Received By:	X XXV		2 Ri	olinguished B	Like	ui_					2 Received I	Jege C	073	ell		
Relinquished by:	Date Time:	7 3 FED Received By:	b		4 Ct	stody Seal #	<u>_f</u>		<i>a</i> .	taci Prese	ved where :	29:50	4	T)		Cooler Yer	70.	
5		5		w-1	L		69	5		intact	76			ď			t-v	
											١	.42		a lel	2.	3°c	-12	
											,	747						

JC48393: Chain of Custody Page 2 of 3

SGS Accutest Sample Receipt Summary

Job Number:	: <u>JC483</u>	93		Client:	ALNJ				Project: COLONIAL OIL	-			
Date / Time Received:	8/4/20	17 4:4	10:00 PN	Л	Delivery	Method:	S	GS COURIER	Airbill #'s:				
Cooler Temps (Initial/Ad	djusted): <u>#1</u>	: (1.4/1.	<u>4);</u>									
Cooler Security	<u>Y</u> (or N					N_	Sample Integri	ty - Documentation	<u>Y</u>	<u>or</u>	N_	
1. Custody Seals Present:	✓			COC Pre		\checkmark		1. Sample labels	present on bottles:	✓			
2. Custody Seals Intact:	✓		4. Sr	npl Dates	/Time OK	\checkmark		2. Container labe	eling complete:	✓			
Cooler Temperature		<u>Y</u>	or N					3. Sample conta	iner label / COC agree:	\checkmark			
1. Temp criteria achieved:		✓						Sample Integr	ity - Condition	<u>Y</u>	or	N_	
2. Thermometer ID:		IR	GUN1;					Sample recvd	within HT:	✓			
3. Cooler media:		lc	e (Bag)					2. All containers		~			
4. No. Coolers:			1					3. Condition of s	ample:	_	Intact	t	
Quality Control Preserv	<u>ation</u>	<u>Y</u>	or N	N/A				Sample Integr	ity - Instructions	Υ	or	N	N/A
1. Trip Blank present / coo	ler:		✓					Analysis requ	ested is clear:	~			
2. Trip Blank listed on COO	C :		✓						ed for unspecified tests			✓	
3. Samples preserved prop	perly:	✓						Sufficient vol	ume recvd for analysis:	_ ✓			
4. VOCs headspace free:				✓					instructions clear:				\checkmark
		_						5. Filtering instr	uctions clear:				\checkmark
Comments								•					

JC48393: Chain of Custody Page 3 of 3

Internal Sample Tracking Chronicle

SGS Accutest New Jersey

Job No: JC48393

WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA Project No: 17-E-026

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
	Collected: 04-AUG-17 COVE BROOK	08:45 By: BC	Receiv	ed: 04-AUG	-17 By	: TF
	SM21 4500HB/EPA156 SW846 7196A					PHLAB XCR
JC48393-2 MW-3	Collected: 04-AUG-17	09:00 By: BC	Receiv	ed: 04-AUG	-17 By	: TF
JC48393-2	SM21 4500HB/EPA150 SW846 7196A SM21 4500CL F		EAL			PHLAB XCR TRC
JC48393-2	SW846 8100M	10-AUG-17 13:00	AP	09-AUG-17	AJ	B8100TPH

QC Evaluation: MA MCP Limits Job Number: JC48393

Account: SGS Accutest New Jersey

Project: WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Collected: 08/04/17

QC Sample ID CAS# Analyte Sample Result Result **Units Limits** Type Type

No Exceptions found.

^{*} Sample used for QC is not from job JC48393

Section 9

GC Semi-volatiles

QC Data Summaries

(SGS Accutest New England)

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Method: SW846 8100M

Method Blank Summary

Job Number: JC48393

Account: ALNJ SGS Accutest New Jersey

Project: WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample OP49867-MB	File ID CR5765.D	DF 1	Analyzed 08/10/17	By AP	Prep Date 08/09/17	Prep Batch OP49867	Analytical Batch GCR1345

The QC reported here applies to the following samples:

JC48393-2

 CAS No.
 Compound
 Result
 RL
 Units
 Q

 TPH (C8-C40)
 ND
 0.25
 mg/l

CAS No. Surrogate Recoveries Limits
84-15-1 o-Terphenyl 79% 40-140%

9.2.

Page 1 of 1

Method: SW846 8100M

46

Blank Spike/Blank Spike Duplicate Summary

Job Number: JC48393

Account: ALNJ SGS Accutest New Jersey

Project: WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample OP49867-BS OP49867-BSD	File ID CR5766.D CR5767.D	DF 1	Analyzed 08/10/17 08/10/17	By AP AP	Prep Date 08/09/17 08/09/17	Prep Batch OP49867 OP49867	Analytical Batch GCR1345 GCR1345

The QC reported here applies to the following samples:

JC48393-2

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (C8-C40)	0.70	0.74	106	0.59	84	23	60-120/30
CAS No.	Surrogate Recoveries	BSP	BSI	D	Limits			
84-15-1	o-Terphenyl	81%	63%	6	40-140%	ó		

^{* =} Outside of Control Limits.

Semivolatile Surrogate Recovery Summary

Job Number: JC48393

Account: ALNJ SGS Accutest New Jersey

Project: WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Method: SW846 8100M Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	S1 a
JC48393-2	CR5768.D	72
OP49867-BS	CR5766.D	81
OP49867-BSD	CR5767.D	63
OP49867-MB	CR5765.D	79

Surrogate Recovery Compounds Limits

S1 = o-Terphenyl 40-140%

(a) Recovery from GC signal #1

SGS

Section 10

General Chemistry

QC Data Summaries

(SGS Accutest New England)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC48393

Account: ALNJ - SGS Accutest New Jersey
Project: WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chromium, Hexavalent	GN55979	0.010	0.0	mg/l	.1	0.10	100.0	85-115%
Total Residual Chlorine	GN55981	0.050		mg/l	1.0	1.1	110.0	80-120%

Associated Samples: Batch GN55979: JC48393-1, JC48393-2 Batch GN55981: JC48393-2

(*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC48393

Account: ALNJ - SGS Accutest New Jersey
Project: WEBMAN: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	
Chromium, Hexavalent	GN55979	mg/l	.1	0.10	0.0	20%	

Associated Samples: Batch GN55979: JC48393-1, JC48393-2 (*) Outside of QC limits

ACCUTEST New Jersey

Reissue #1 08/18/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

Web Engineering Associates, Inc.

Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

SGS Accutest Job Number: JC48965

Sampling Date: 08/14/17

Report to:

Web Engineering Associates 111 Summer Street Scituate, MA 02066 sesolutions1@comcast.net; wbaird65@aol.com; rocklacrosse@hotmail.com

ATTN: Andrew Brolowski

Total number of pages in report: 465

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Maney +. Cole **Nancy Cole Laboratory Director**

Client Service contact: Rocus Peters 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

August 18, 2017

Mr. Andrew Brolowski Web Engineering Associates 111 Summer Street Scituate, MA 02066

Re: SGS Accutest –Dayton, Jobs # JC48965 – Reissues

Dear Mr. Brolowski,

The final reports for SGS Accutest job number JC48965 has edited to reflect corrections to the data package. These edits have been incorporated into the revised report attached.

Specifically, the project information has been revised to meet client's requirement. The attached revised report incorporates these revisions.

Please contact me at (732) 329-0200 if I can be of further assistance in this matter.

Sincerely,

SGS Accutest

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

Mid-Atlantic 2235 US Highway 130 Dayton, NJ 08810, USA **t** +1 (0)732 329 0200 www.sgs.com

Member of the SGS Group (SGS SA)

Decero

-1-

Table of Contents

Section 1: Sample Summary	4
Section 2: Case Narrative/Conformance Summary	5
Section 3: Summary of Hits	6
Section 4: Sample Results	7
4.1: JC48965-1: MW-3	8
Section 5: Misc. Forms	15
5.1: Chain of Custody	16
5.2: MCP Form	18
5.3: Sample Tracking Chronicle	19
5.4: Internal Chain of Custody	20
5.5: QC Evaluation: MA MCP Limits	21
Section 6: GC/MS Volatiles - QC Data Summaries	
6.1: Method Blank Summary	34
6.2: Blank Spike/Blank Spike Duplicate Summary	37
6.3: Instrument Performance Checks (BFB)	40
6.4: Internal Standard Area Summaries	42
6.5: Surrogate Recovery Summaries	43
6.6: Initial and Continuing Calibration Summaries	44
Section 7: GC/MS Volatiles - Raw Data	58
7.1: Samples	59
7.2: Method Blanks	61
7.3: Blank Spike/Blank Spike Duplicates	63
7.4: Instrument Performance Checks (BFB)	71
7.5: Initial and Continuing Calibrations	
7.6: Instrument Run Logs	123
Section 8: GC/MS Semi-volatiles - QC Data Summaries	126
8.1: Method Blank Summary	127
8.2: Blank Spike/Blank Spike Duplicate Summary	132
8.3: Instrument Performance Checks (DFTPP)	136
8.4: Internal Standard Area Summaries	145
8.5: Surrogate Recovery Summaries	148
8.6: Initial and Continuing Calibration Summaries	150
Section 9: GC/MS Semi-volatiles - Raw Data	177
9.1: Samples	178
9.2: Method Blanks	182
9.3: Blank Spike/Blank Spike Duplicates	188
9.4: Instrument Performance Checks (DFTPP)	210
9.5: Initial and Continuing Calibrations	262
9.6: Instrument Run Logs	454
9.7: Prep Logs	464

Sample Summary

Web Engineering Associates, Inc.

Job No: JC48965

Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample Number	Collected Date	Time By	Received	Matr	· 	Client Sample ID	
Number	Date	Time by	Received	Couc	туре	Sample 1D	
JC48965-1	08/14/17	11:30 RPC	08/14/17	AQ	Ground Water	MW-3	

SGS 4 of 465
ACCUTEST

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Web Engineering Associates, Inc. Job No JC48965

Site: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA Report Date 8/18/2017 12:32:43 P

On 08/14/2017, 1 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS Accutest at a maximum corrected temperature of 2.4 C. Samples were intact and chemically preserved, unless noted below. A SGS Accutest Job Number of JC48965 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260C

Matrix: AO Batch ID: VL8248

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- JC48965-1 for Trichlorofluoromethane: This compound in the associated CCV is outside the method criteria of 20%, biased high.

Extractables by GCMS By Method SW846 8270D

Matrix: AO Batch ID: OP5356

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- JC48965-1 for 2,4,6-Tribromophenol: This compound in CCV is outside method requirements (bias high)
- JC48965-1 for Pentachlorophenol: Quadratic regression was employed for this compound in associated ICAL.
- JC48965-1 for Benzoic Acid: Quadratic regression was employed for this compound in associated ICAL.
- JC48965-1 for 4,6-Dinitro-o-cresol: Quadratic regression was employed for this compound in associated ICAL.
- JC48965-1 for 2,4-Dinitrophenol: Quadratic regression was employed for this compound in associated ICAL.

Extractables by GCMS By Method SW846 8270D BY SIM

Matrix: AQ Batch ID: OP5356A

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- JC48965-1 for Acenaphthene: This compound is outside the MCP limits in the associated BSD biased low.
- JC48965-1 for Benzo(b)fluoranthene: This compound in CCV is outside method requirements (bias high)

SGS Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS Accutest is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS Accutest indicated via signature on the report cover

Page 1 of 1

Summary of Hits Job Number: JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Collected: 08/14/17

Lab Sample ID Client Sample ID Result/ Analyte Qual RL MDL Units Method

JC48965-1 MW-3

No hits reported in this sample.

C

Section 4

Sample Results	
Report of Analysis	
1	

Report of Analysis

Page 1 of 3

Client Sample ID: MW-3

Lab Sample ID: JC48965-1 Date Sampled: 08/14/17 **Matrix:** AQ - Ground Water **Date Received:** 08/14/17 Method: **Percent Solids:** SW846 8260C

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 L293615.D 1 08/15/17 20:23 JC VL8248 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA MCP List

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	10	5.0	ug/l
71-43-2	Benzene	ND	0.50	0.17	ug/l
108-86-1	Bromobenzene	ND	1.0	0.25	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l
75-25-2	Bromoform	ND	1.0	0.42	ug/l
74-83-9	Bromomethane	ND	2.0	1.4	ug/l
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l
104-51-8	n-Butylbenzene	ND	2.0	0.27	ug/l
135-98-8	sec-Butylbenzene	ND	2.0	0.27	ug/l
98-06-6	tert-Butylbenzene	ND	2.0	0.34	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l
75-00-3	Chloroethane	ND	1.0	0.59	ug/l
67-66-3	Chloroform	ND	1.0	0.29	ug/l
74-87-3	Chloromethane	ND	1.0	0.53	ug/l
95-49-8	o-Chlorotoluene	ND	2.0	0.30	ug/l
106-43-4	p-Chlorotoluene	ND	2.0	0.24	ug/l
108-20-3	Di-Isopropyl ether	ND	2.0	0.20	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	1.9	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

4

Report of Analysis

Client Sample ID: MW-3

 Lab Sample ID:
 JC48965-1
 Date Sampled:
 08/14/17

 Matrix:
 AQ - Ground Water
 Date Received:
 08/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

VOA MCP List

CAS No.	Compound	Result	RL	MDL	Units	Q
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.28	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.30	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.29	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l	
123-91-1	1,4-Dioxane	ND	130	52	ug/l	
60-29-7	Ethyl Ether	ND	2.0	0.41	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.22	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.34	ug/l	
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.24	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.25	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.45	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	ND	5.0	1.1	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.24	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-65-0	Tert Butyl Alcohol	ND	10	7.0	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.37	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.20	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.19	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l	
109-99-9	Tetrahydrofuran	ND	10	4.7	ug/l	
108-88-3	Toluene	ND	1.0	0.25	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane a	ND	2.0	0.60	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.47	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.24	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.62	ug/l	
	m,p-Xylene	ND	1.0	0.43	ug/l	
95-47-6	o-Xylene	ND	1.0	0.22	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 3 of 3

Report of Analysis

Client Sample ID: MW-3 Lab Sample ID: JC4896

 Lab Sample ID:
 JC48965-1
 Date Sampled:
 08/14/17

 Matrix:
 AQ - Ground Water
 Date Received:
 08/14/17

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

VOA MCP List

CAS No.	Compound	Result	RL	MDL	Units	Q
1330-20-7	Xylene (total)	ND	1.0	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	107%		81-1	24%	
2037-26-5	Toluene-D8	100%		80-1	20%	
460-00-4	4-Bromofluorobenzene	99%		80-1	20%	

(a) This compound in the associated CCV is outside the method criteria of 20%, biased high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 3

Report of Analysis

Client Sample ID: MW-3

Lab Sample ID: JC48965-1 **Date Sampled:** 08/14/17 **Matrix:** AQ - Ground Water **Date Received:** 08/14/17 Method: SW846 8270D SW846 3510C **Percent Solids:** n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 2M97172.D 1 08/16/17 05:03 CS 08/15/17 16:30 OP5356 E2M4319

Run #2

Final Volume Initial Volume

Run #1 1.0 ml 940 ml

Run #2

ABN Semivolatiles MCP list

Result	RL	MDL	Units	Q
ND	21	2.1	ug/l	
ND	5.3	0.87	ug/l	
ND	5.3	0.95	ug/l	
ND	2.1	1.4	ug/l	
ND	5.3	2.6	ug/l	
ND	11	1.6	ug/l	
ND	5.3	1.4	ug/l	
ND	2.1	0.94	ug/l	
ND	2.1	0.94	ug/l	
ND	5.3	1.0	ug/l	
ND	11	1.2	ug/l	
ND	4.3	1.5	ug/l	
ND	2.1	0.42	ug/l	
ND	5.3	1.4	ug/l	
ND	5.3	0.98	ug/l	
ND	1.1	0.20	ug/l	
ND	1.1	0.14	ug/l	
ND	2.1	0.22	ug/l	
ND	2.1	0.34	ug/l	
ND	1.1	0.22	ug/l	
ND	1.1	0.22	ug/l	
ND	1.1	0.23	ug/l	
ND	1.1	0.22	ug/l	
ND	1.1	0.36	ug/l	
ND	1.1	0.22	ug/l	
ND	2.1	0.43	ug/l	
ND	2.1	0.49	ug/l	
ND	2.1	0.25	ug/l	
ND	5.3	0.36	ug/l	
ND	1.1	0.19	ug/l	
ND	2.1	0.30	ug/l	
ND	2.1	0.26	ug/l	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 21 ND 5.3 ND 5.3 ND 2.1 ND 5.3 ND 11 ND 5.3 ND 2.1 ND 5.3 ND 11 ND 2.1 ND 5.3 ND 11 ND 5.3 ND 11 ND 4.3 ND 1.1 ND 5.3 ND 1.1 ND 2.1	ND 21 2.1 ND 5.3 0.87 ND 5.3 0.95 ND 2.1 1.4 ND 5.3 2.6 ND 11 1.6 ND 5.3 1.4 ND 2.1 0.94 ND 2.1 0.94 ND 2.1 0.94 ND 5.3 1.0 ND 11 1.2 ND 4.3 1.5 ND 2.1 0.42 ND 5.3 1.4 ND 5.3 0.98 ND 1.1 0.20 ND 1.1 0.20 ND 1.1 0.14 ND 2.1 0.22 ND 1.1 0.25 ND 1.1 0.25 ND 2.1 0.49 ND 2.1 0.25 ND 2.1 0.25 ND 5.3 0.36 ND 1.1 0.19 ND 2.1 0.30	ND 21 2.1 ug/l ND 5.3 0.87 ug/l ND 5.3 0.95 ug/l ND 2.1 1.4 ug/l ND 5.3 2.6 ug/l ND 11 1.6 ug/l ND 5.3 1.4 ug/l ND 2.1 0.94 ug/l ND 2.1 0.94 ug/l ND 5.3 1.0 ug/l ND 11 1.2 ug/l ND 5.3 1.0 ug/l ND 5.3 1.4 ug/l ND 5.3 1.0 ug/l ND 1.1 0.2 ug/l ND 5.3 0.98 ug/l ND 5.3 0.98 ug/l ND 1.1 0.20 ug/l ND 1.1 0.14 ug/l ND 2.1 0.34 ug/l ND 1.1 0.22 ug/l ND 1.1 0.22 ug/l ND 1.1 0.22 ug/l ND 1.1 0.22 ug/l ND 1.1 0.22 ug/l ND 1.1 0.22 ug/l ND 1.1 0.22 ug/l ND 1.1 0.22 ug/l ND 1.1 0.25 ug/l ND 1.1 0.25 ug/l ND 1.1 0.25 ug/l ND 2.1 0.49 ug/l ND 2.1 0.49 ug/l ND 5.3 0.36 ug/l ND 5.3 0.36 ug/l ND 5.3 0.36 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l ND 1.1 0.19 ug/l

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 3

Date Sampled: 08/14/17

08/14/17

n/a

Date Received:

Percent Solids:

Report of Analysis

Client Sample ID: MW-3 Lab Sample ID: JC48965-1

Matrix: AQ - Ground Water

Method: SW846 8270D SW846 3510C

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

ABN Semivolatiles MCP list

CAS No.	Compound	Result	RL	MDL	Units	Q
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.43	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.1	0.18	ug/l	
122-66-7	1,2-Diphenylhydrazine	ND	1.1	0.20	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.1	0.20	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.1	0.18	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.59	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.51	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.54	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.53	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.52	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l	
91-20-3	Naphthalene	ND	1.1	0.25	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.68	ug/l	
62-75-9	n-Nitrosodimethylamine	ND	2.1	0.87	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.51	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.24	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	
129-00-0	Pyrene	ND	1.1	0.23	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.1	0.27	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	27%		10-1	10%	
4165-62-2	Phenol-d5	19%		10-1	10%	
118-79-6	2,4,6-Tribromophenol	67% b		36-1	51%	
4165-60-0	Nitrobenzene-d5	71%		34-1	28%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

Date Sampled: 08/14/17

Report of Analysis

Client Sample ID: MW-3 Lab Sample ID: JC48965-1

 Matrix:
 AQ - Ground Water
 Date Received:
 08/14/17

 Method:
 SW846 8270D
 SW846 3510C
 Percent Solids:
 n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

ABN Semivolatiles MCP list

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	68%		38-119%
1718-51-0	Terphenyl-d14	42%		26-129%

(a) Quadratic regression was employed for this compound in associated ICAL.

(b) This compound in CCV is outside method requirements (bias high)

ND = Not detected MDL = Method Detection Limit J = In

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4

Report of Analysis

Page 1 of 1

Client Sample ID: MW-3

Lab Sample ID: JC48965-1 Date Sampled: 08/14/17 **Matrix:** AQ - Ground Water Date Received: 08/14/17 Method: SW846 8270D BY SIM SW846 3510C **Percent Solids:** n/a

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** 08/15/17 16:30 Run #1 3P61548.D 1 08/16/17 13:32 KM OP5356A E3P2895

Run #2

Final Volume Initial Volume

Run #1 1.0 ml 940 ml

Run #2

BN PAH List

Compound	Result	RL	MDL	Units	Q
Acenaphthene ^a	ND	0.11	0.026	ug/l	
Acenaphthylene	ND	0.11	0.022	ug/l	
Anthracene	ND	0.11	0.021	ug/l	
Benzo(a)anthracene	ND	0.053	0.024	ug/l	
Benzo(a)pyrene	ND	0.053	0.035	ug/l	
Benzo(b)fluoranthene b	ND	0.11	0.046		
Benzo(g,h,i)perylene	ND	0.11	0.038	-	
	ND	0.11	0.035	-	
Chrysene	ND	0.11	0.028	-	
Dibenzo(a,h)anthracene	ND	0.11	0.039	-	
Fluoranthene	ND	0.11	0.023	-	
Fluorene	ND	0.11	0.026	-	
Indeno(1,2,3-cd)pyrene	ND	0.11	0.040	-	
	ND	0.11	0.031	_	
Phenanthrene	ND	0.11	0.024	_	
Pyrene	ND	0.11	0.021	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Nitrobenzene-d5	76%		29-1	24%	
2-Fluorobiphenyl	62%		23-1	22%	
Terphenyl-d14	44%		22-1	30%	
	Acenaphthene a Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene b Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Surrogate Recoveries Nitrobenzene-d5 2-Fluorobiphenyl	Acenaphthene a ND Acenaphthylene ND Anthracene ND Benzo(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene b ND Benzo(g,h,i)perylene ND Benzo(k)fluoranthene ND Chrysene ND Dibenzo(a,h)anthracene ND Fluoranthene ND Fluoranthene ND Indeno(1,2,3-cd)pyrene ND Naphthalene ND Phenanthrene ND Phenanthrene ND Surrogate Recoveries Run# 1 Nitrobenzene-d5 76% 2-Fluorobiphenyl 62%	Acenaphthene a ND 0.11 Acenaphthylene ND 0.11 Anthracene ND 0.11 Benzo(a)anthracene ND 0.053 Benzo(a)pyrene ND 0.053 Benzo(b)fluoranthene b ND 0.11 Benzo(g,h,i)perylene ND 0.11 Benzo(k)fluoranthene ND 0.11 Chrysene ND 0.11 Dibenzo(a,h)anthracene ND 0.11 Fluoranthene ND 0.11 Fluorene ND 0.11 Indeno(1,2,3-cd)pyrene ND 0.11 Naphthalene ND 0.11 Phenanthrene ND 0.11 Pyrene ND 0.11 Surrogate Recoveries Run# 1 Run# 2 Nitrobenzene-d5 76% 2-Fluorobiphenyl 62%	Acenaphthene a ND 0.11 0.026 Acenaphthylene ND 0.11 0.022 Anthracene ND 0.11 0.021 Benzo(a)anthracene ND 0.053 0.024 Benzo(a)pyrene ND 0.053 0.035 Benzo(b)fluoranthene b ND 0.11 0.046 Benzo(g,h,i)perylene ND 0.11 0.038 Benzo(k)fluoranthene ND 0.11 0.035 Chrysene ND 0.11 0.028 Dibenzo(a, h)anthracene ND 0.11 0.028 Fluoranthene ND 0.11 0.023 Fluorene ND 0.11 0.023 Fluorene ND 0.11 0.040 Naphthalene ND 0.11 0.031 Phenanthrene ND 0.11 0.024 Pyrene ND 0.11 0.021 Surrogate Recoveries Run#1 Run#2 Lim Nitrobenzene-d5 76%	Acenaphthene a ND 0.11 0.026 ug/l Acenaphthylene ND 0.11 0.022 ug/l Anthracene ND 0.11 0.021 ug/l Benzo(a)anthracene ND 0.053 0.024 ug/l Benzo(a)pyrene ND 0.053 0.035 ug/l Benzo(b)fluoranthene ND 0.11 0.046 ug/l Benzo(g,h,i)perylene ND 0.11 0.038 ug/l Benzo(k)fluoranthene ND 0.11 0.038 ug/l Benzo(k)fluoranthene ND 0.11 0.035 ug/l Chrysene ND 0.11 0.028 ug/l Dibenzo(a,h)anthracene ND 0.11 0.028 ug/l Fluoranthene ND 0.11 0.023 ug/l Fluorene ND 0.11 0.023 ug/l Fluorene ND 0.11 0.026 ug/l Indeno(1,2,3-cd)pyrene ND 0.11 0.040 ug/l Naphthalene ND 0.11 0.031 ug/l Phenanthrene ND 0.11 0.024 ug/l Pyrene ND 0.11 0.024 ug/l Pyrene ND 0.11 0.021 ug/l Surrogate Recoveries Run# 1 Run# 2 Limits Nitrobenzene-d5 76% 29-124% 23-122%

(a) This compound is outside the MCP limits in the associated BSD biased low.

(b) This compound in CCV is outside method requirements (bias high)

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- MCP Form
- Sample Tracking Chronicle
- Internal Chain of Custody
- QC Evaluation: MA MCP Limits

1	GW	
SGS	۸۵۵۱	mint E

CHAIN OF CUSTODY

PAGE OF							
5572	Bottle Order Control # SGS Accutest Job #	48965					
ilysis (see	TEST CODE sheet)	Matrix Codes					
		DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water SO - Soil					

SGS A	CCUTEST		SGS Accutest of New E	ngland uilding One Marlborough, MA 01752	FED-E	X Tracking	#		Botti	le Order Control #		
^^	0001201		508-481-6200 FAX: 56 www.accutest.cor	8-481-7753		coutest Qu	375 ote#	655	7 <u>し</u> sgs	Accutest Job #	101	48965
Client / Reporting Information		Proje	ect Information			Reg	iesteri /	Analysis (see TEST	CODE shee		Matrix Codes
Company Name	Project Name	1101				. 4		yele (1		
Web Engineering Street Address	Street:	nial Oil				X	9					DW - Drinking Water GW - Ground Water
III Sunnyr Street	8 Eme	rson Aue	Billing Informa	tion (If different from Report to)								WW - Water SW - Surface Water SO - Soil
Scituate MA 020	060 Cheli	nsford MA	Company Name		0	5)	S					SL- Sludge SED-Sediment
Project Contact Box Caluccio BCCOLU	Project#	. 10.5	Street Address		8 260	8270	92					OI - Oil LIQ - Other Liquid
Phone # Fax #	Co A OL - Client PO#	nial Oil	City	State Zip	\\X	00	(>0					AIR - Air SOL - Other Solid
781 - 844 - 8323 Sampler(s) Name(s), Phone	con Col	onial Oil	Attention:	PO#	\ \ \	2	4					WP - Wipe FB-Field Blank
Sampler(s) Name(s) Phone	# Preject Manager	Colvicio	Attention:	ro#	Ü	Ñ	4					EB- Equipment Blank RB- Rinse Blank TB-Trip Blank
	1/20	Collection		Number of preserved Bottles	ŏ	5V0C	2					16-trip biatik
SGS Accutest			Sampled	HOSOH HOSOH HOSOH HOSOH HOSOH HOSOH HOSOH HOSOH HOSOH HOSOH HOSOH HOSOH		N	П					
Field ID / Point of Collec	tion MEOH/DI Vial #	8/4/17 1130	by Matrix # of bo			1	/					LAB USE ONLY
1 nw-3		8/19/11/11/2	BPC W 12	- ^	X			-		-	+-+	152
					+	1		-			+	16.52
					+-	1		_			++	(10300
					+	1	_					
						1						
										200		
										M/	ACCUT ARLBO	R 08/14/17
												001.77
Turnaround Time (Business day	Approved By (SG	5 Accutest PM): / Date:	Commercial "A"	ata Deliverable Information (Level 1) NYASP Cate	gory A		V) (omments	/ Special In	structions	1 .
Std. 10 Business Days Std. 5 Business Days (By Contract o		\mathcal{N}	Commercial "B"				*	eles	to	attact	0 d (Shain
5 Day RUSH [N]	ΓIAL ASESSMENT∠	Y JA	CT RCP	EDD Forma	t		0	FC	usto	In A	dder	dun
3 Day EMERGENCY 2 Day EMERGENCY	TEL VEDICIONATION	- .	MA MCP AN	Other EP	H)		
1 Day EMERGENCY	BEL VERIFICATION_	1	O de Com	mercial "B" = Results + QC Summary								
Emergency & Rush T/A data available VIA L	Sa	pple Custody must be docume	ented below each time	a samples change possession, inc	cluding	courier	delivery	•				
Relinguished by Sampler:	Date fime: 12:5	Preceived By	2 12:50	Relinguished By:	2/10	1/17		te Time;		nived By:	И	, al. 1.14; C
Relinquished by Sampler;	Date Time	Received By: 7 A7	1-00	Relinquished By:	#	41.7	y (Z)	te Time: 95	(2) Reci	Bived By:		08/14/11
3 MM J	08/14/17	3 FEDEX		4 FEDER	ПZ -	_	8	2-15-17	4	∇	<u></u>	
Relinquished by:	Date (Me:	Received By:		Custody Seal # / 722		Intact Not intact		where applica	sble	On A	lg#	Cooler Temp.
									***************************************			3.2 2
												3.2 C TA

JC48965: Chain of Custody

Page 1 of 2

SGS Accutest Sample Receipt Summary

Job Number: JC4896	5 Client:		Project:	
Date / Time Received: 8/15/20	17 9:40:00 AM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measured) Cooler Temps (Corrected)				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	r N 3. COC Pr 3. COC Pr 4. Smpl Date Y or N □ IR Gun Ice (Bag) 1	resent: ☑ ☐ 1. Sar 2. Co 3. Sam 1. Sam 2. All	mple labels present on bottles: ntainer labeling complete: mple container label / COC agree: ple Integrity - Condition mple recvd within HT: containers accounted for: ndition of sample:	Y or N ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓
Trip Blank present / cooler: Trip Blank listed on COC:		Samu 1. Ar 2. Bo 3. Su 4. Co	ple Integrity - Instructions halysis requested is clear: httles received for unspecified tests fficient volume recvd for analysis: https://doi.org/10.0000/10.000000000000000000000000000	Y or N N/A V
Comments		·		

SM089-02 Rev. Date 12/1/16

JC48965: Chain of Custody

Page 2 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

WSC-CAM	Exhibit VII A
July 1, 2010	Revision No. 1
Final	

Exhibit VII A-2: MassDEP Analytical Protocol Certification Form

	MassDEP Analytical Protocol Certification Form							
Laboratory Name: <u>Accutest Mid-Atlantic</u> Project				Project #:	JC48965			
	ct Location:	Colonial Oil, 8 Emers			MADEP RTN	None		
This	form provides certifica JC48965-1	ations for the following	data set: list Labora	tory Sample ID Num	bers(s)			
М	atrices: Groundy	vater/Surface Water (X)	Soil/Sediment ()	Drinking Water ()	Air ()		Other ()	
CAM	Protocol (check all that	apply below):						
	8260 VOC (X)	7470/7471 Hg ()	MassDEP VPH ()	8081 Pesticides ()	7196 Hex Cr	()	Mass DEP APH ()	
	CAM IIA	CAM III B	CAM IV A	CAM V B	CAM VI B	()	CAM IX A	
	8270 SVOC (X) CAM II B	7010 Metals () CAM III C	MassDEP EPH () CAM IV B	8151 Herbicides () CAM V C	CAM VIII A	()	TO-15 VOC () CAM IX B	
	6010 Metals () CAM III A	6020 Metals () CAM III D	8082 PCB () CAM V A	9014 Total () Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B	()		
	Affirmative Respon	ses to Questions A	Through F are requi	red for "Presumptiv	e Certainty status	5		
Α	properly preserved (i method holding times		in the field or labora	tory, and prepared/ar	nalyzed within	✓ Yes	s 🗌 No	
В	protocol(s) followed?			•		✓ Yes	s 🗌 No	
С		rrective actions and ar nted for all identified pe			selected CAM	✓ Yes	s 🗆 No	
D		report comply with all t and Quality Control Gu al Data"?			M VII A,	✓ Yes	s	
E	modification(s)? (Re	PH Methods only: Wa efer to the individual me	ethod(s) for a list of s	significant modificatio	ns).	☐ Yes	_	
		Methods only: Was the CAM protocol QC and				Yes	_	
F		boratory narrative (inc						
		tions G, H, and I belo	·-	<u> </u>	nty" status			
G	Were the reporting li selected CAM protoc	mits at or below all CA cols	M reporting limits sp	ecified in the		☐ Yes	S ✓ No ¹	
	Data User Note: Da	ata that achieve "Pres ness requirements de				data useab	ility	
Н	Were all QC perform	nance standards speci	fied in the CAM proto	ocol(s) achieved?		Yes		
1		d for the complete and			` '	Yes	S V No 1	
Libo		nses must be address				tive.		
inqu	ry of those respons	under the pains and ible for obtaining the e best of my knowled	information, the m	aterial contained in				
Sign	ature:	Maney +.	Cole	Position: La	boratory Director			
Print	ed Name:	Nancy F. Cole		Date:	18-Aug-17			

5.3

Internal Sample Tracking Chronicle

Web Engineering Associates, Inc.

Job No: JC48965

Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JC48965-1 MW-3	Collected: 14-AUG-17	11:30 By: RPC	Receiv	ed: 14-AUG	-17 By	: DDH
JC48965-1 JC48965-1 JC48965-1	SW846 8270D	15-AUG-17 20:23 16-AUG-17 05:03 16-AUG-17 13:32	CS	15-AUG-17 15-AUG-17		V8260MCP AB8270MCP B8270SIMPAH

SGS Accutest Internal Chain of Custody

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Received: 08/14/17

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JC48965-1.1	Secured Storage	Eric Barksdale	08/15/17 17:47	Retrieve from Storage
JC48965-1.1	Eric Barksdale	Secured Staging Area	08/15/17 17:47	Return to Storage
JC48965-1.1	Secured Staging Area	Ryan Fantasia	08/15/17 17:54	Retrieve from Storage
JC48965-1.1	Ryan Fantasia	·	08/16/17 00:11	Depleted
JC48965-1.1.1	Ryan Fantasia	Organics Prep	08/15/17 17:54	Extract from JC48965-1.1
JC48965-1.1.1	Organics Prep	Amanda Furka	08/15/17 23:49	Extract from JC48965-1.1
JC48965-1.1.1	Amanda Furka	Extract Storage	08/15/17 23:49	Return to Storage
JC48965-1.1.1	Extract Storage	Christopher Sowa	08/16/17 02:53	Retrieve from Storage
JC48965-1.1.1	Christopher Sowa	GCMS2M	08/16/17 02:53	Load on Instrument
JC48965-1.1.1	GCMS2M	Kristi Schollenberger	08/16/17 10:57	Unload from Instrument
JC48965-1.1.1	Kristi Schollenberger	Extract Freezer	08/16/17 10:57	Return to Storage
JC48965-1.1.1	Extract Freezer	Kevin Moyle	08/16/17 12:19	Retrieve from Storage
JC48965-1.1.1	Kevin Moyle	GCMS3P	08/16/17 12:19	Load on Instrument
JC48965-1.1.1	GCMS3P	Kevin Moyle	08/16/17 15:15	Unload from Instrument
JC48965-1.1.1	Kevin Moyle	Extract Freezer	08/16/17 15:15	Return to Storage
JC48965-1.3	Secured Storage	Maricela Delgaolillo	08/15/17 19:09	Retrieve from Storage
JC48965-1.3	Maricela Delgaolillo	GCMSL		Load on Instrument
JC48965-1.3	GCMSL	Jia-Min Chu	08/17/17 10:40	Unload from Instrument
JC48965-1.3	Jia-Min Chu	Secured Storage	08/17/17 10:40	Return to Storage
		-		-

Units Limits

Sample Result Result

QC Evaluation: MA MCP Limits

Job Number: JC48965

Account: Web Engineering Associates, Inc.

CAS#

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Analyte

Collected: 08/14/17

QC Sample ID

			Type	Type			
VL8248	SW846 8260	C					
VL8248	3 W 840 8200	C					
VL8248-BS	67-64-1	Acetone	BSP	REC	83	%	70-130
VL8248-BS	71-43-2	Benzene	BSP	REC	84	%	70-130
VL8248-BS	108-86-1	Bromobenzene	BSP	REC	92	%	70-130
VL8248-BS	74-97-5	Bromochloromethane	BSP	REC	93	%	70-130
VL8248-BS	75-27-4	Bromodichloromethane	BSP	REC	97	%	70-130
VL8248-BS	75-25-2	Bromoform	BSP	REC	96	%	70-130
VL8248-BS	74-83-9	Bromomethane	BSP	REC	111	%	70-130
VL8248-BS	78-93-3	2-Butanone (MEK)	BSP	REC	86	%	70-130
VL8248-BS	104-51-8	n-Butylbenzene	BSP	REC	98	%	70-130
VL8248-BS	135-98-8	sec-Butylbenzene	BSP	REC	97	%	70-130
VL8248-BS	98-06-6	tert-Butylbenzene	BSP	REC	100	%	70-130
VL8248-BS	75-15-0	Carbon disulfide	BSP	REC	91	%	70-130
VL8248-BS	56-23-5	Carbon tetrachloride	BSP	REC	101	%	70-130
VL8248-BS	108-90-7	Chlorobenzene	BSP	REC	92	%	70-130
VL8248-BS	75-00-3	Chloroethane	BSP	REC	99	%	70-130
VL8248-BS	67-66-3	Chloroform	BSP	REC	92	%	70-130
VL8248-BS	74-87-3	Chloromethane	BSP	REC	89	%	70-130
VL8248-BS	95-49-8	o-Chlorotoluene	BSP	REC	95	%	70-130
VL8248-BS	106-43-4	p-Chlorotoluene	BSP	REC	91	%	70-130
VL8248-BS	108-20-3	Di-Isopropyl ether	BSP	REC	80	%	70-130
VL8248-BS	96-12-8	1,2-Dibromo-3-chloropropane	BSP	REC	111	%	70-130
VL8248-BS	124-48-1	Dibromochloromethane	BSP	REC	95	%	70-130
VL8248-BS	106-93-4	1,2-Dibromoethane	BSP	REC	92	%	70-130
VL8248-BS	95-50-1	1,2-Dichlorobenzene	BSP	REC	93	%	70-130
VL8248-BS	541-73-1	1,3-Dichlorobenzene	BSP	REC	87	%	70-130
VL8248-BS	106-46-7	1,4-Dichlorobenzene	BSP	REC	92	%	70-130
VL8248-BS	75-71-8	Dichlorodifluoromethane	BSP	REC	119	%	70-130
VL8248-BS	75-34-3	1,1-Dichloroethane	BSP	REC	89	%	70-130
VL8248-BS	107-06-2	1,2-Dichloroethane	BSP	REC	98	%	70-130
VL8248-BS	75-35-4	1,1-Dichloroethene	BSP	REC	94	%	70-130
VL8248-BS	156-59-2	cis-1,2-Dichloroethene	BSP	REC	89	%	70-130
VL8248-BS	156-60-5	trans-1,2-Dichloroethene	BSP	REC	89	%	70-130
VL8248-BS	78-87-5	1,2-Dichloropropane	BSP	REC	83	%	70-130
VL8248-BS	142-28-9	1,3-Dichloropropane	BSP	REC	86	%	70-130
VL8248-BS	594-20-7	2,2-Dichloropropane	BSP	REC	98	%	70-130
VL8248-BS	563-58-6	1,1-Dichloropropene	BSP	REC	92	%	70-130
VL8248-BS	10061-01-5	cis-1,3-Dichloropropene	BSP	REC	90	%	70-130
VL8248-BS	10061-01-5	trans-1,3-Dichloropropene	BSP	REC	93	%	70-130
VL8248-BS	123-91-1	1,4-Dioxane	BSP	REC	106	%	70-130
VL8248-BS	60-29-7	Ethyl Ether	BSP	REC	86	%	70-130
VL8248-BS	100-41-4	Ethylbenzene	BSP	REC	91	%	70-130
VL8248-BS	87-68-3	Hexachlorobutadiene	BSP	REC	102	% %	70-130
v L0240-D3	07-00-3	HEAACHIOI ODULAUICHE	DOL	KEC	102	70	70-130

^{*} Sample used for QC is not from job JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Units	Limits
VI 0240 PG	501.70.6	2.11			0.5	0/	70.120
VL8248-BS	591-78-6	2-Hexanone	BSP	REC	85	%	70-130
VL8248-BS	98-82-8	Isopropylbenzene	BSP	REC	96	%	70-130
VL8248-BS	99-87-6	p-Isopropyltoluene	BSP	REC	98	%	70-130
VL8248-BS	1634-04-4	Methyl Tert Butyl Ether	BSP	REC	92	%	70-130
VL8248-BS	108-10-1	4-Methyl-2-pentanone(MIBK)	BSP	REC	88	%	70-130
VL8248-BS	74-95-3	Methylene bromide	BSP	REC	91	%	70-130
VL8248-BS	75-09-2	Methylene chloride	BSP	REC	87	%	70-130
VL8248-BS	91-20-3	Naphthalene	BSP	REC	108	%	70-130
VL8248-BS	103-65-1	n-Propylbenzene	BSP	REC	90	%	70-130
VL8248-BS	100-42-5	Styrene	BSP	REC	92	%	70-130
VL8248-BS	75-65-0	Tert Butyl Alcohol	BSP	REC	116	%	70-130
VL8248-BS	994-05-8	tert-Amyl Methyl Ether	BSP	REC	92	%	70-130
VL8248-BS	637-92-3	tert-Butyl Ethyl Ether	BSP	REC	92	%	70-130
VL8248-BS	630-20-6	1,1,1,2-Tetrachloroethane	BSP	REC	99	%	70-130
VL8248-BS	79-34-5	1,1,2,2-Tetrachloroethane	BSP	REC	96	%	70-130
VL8248-BS	127-18-4	Tetrachloroethene	BSP	REC	92	%	70-130
VL8248-BS	109-99-9	Tetrahydrofuran	BSP	REC	84	%	70-130
VL8248-BS	108-88-3	Toluene	BSP	REC	89	%	70-130
VL8248-BS	87-61-6	1,2,3-Trichlorobenzene	BSP	REC	111	%	70-130
VL8248-BS	120-82-1	1,2,4-Trichlorobenzene	BSP	REC	111	%	70-130
VL8248-BS	71-55-6	1,1,1-Trichloroethane	BSP	REC	103	%	70-130
VL8248-BS	79-00-5	1,1,2-Trichloroethane	BSP	REC	87	%	70-130
VL8248-BS	79-01-6	Trichloroethene	BSP	REC	91	%	70-130
VL8248-BS	75-69-4	Trichlorofluoromethane	BSP	REC	122	%	70-130
VL8248-BS	96-18-4	1,2,3-Trichloropropane	BSP	REC	103	%	70-130
VL8248-BS	95-63-6	1,2,4-Trimethylbenzene	BSP	REC	93	%	70-130
VL8248-BS	108-67-8	1,3,5-Trimethylbenzene	BSP	REC	96	%	70-130
VL8248-BS	75-01-4	Vinyl chloride	BSP	REC	87	%	70-130
VL8248-BS		m,p-Xylene	BSP	REC	91	%	70-130
VL8248-BS	95-47-6	o-Xylene	BSP	REC	91	%	70-130
VL8248-BS	1330-20-7	Xylene (total)	BSP	REC	91	%	70-130
VL8248-BS	1868-53-7	Dibromofluoromethane	BSP	SURR	105	%	70-130
VL8248-BS	2037-26-5	Toluene-D8	BSP	SURR	98	%	70-130
VL8248-BS	460-00-4	4-Bromofluorobenzene	BSP	SURR	100	%	70-130
VL8248-BSD	67-64-1	Acetone	BSD	REC	77	%	70-130
VL8248-BSD	67-64-1	Acetone	BSD	RPD	8	%	20
VL8248-BSD	71-43-2	Benzene	BSD	REC	82	%	70-130
VL8248-BSD	71-43-2	Benzene	BSD	RPD	2	%	20
VL8248-BSD	108-86-1	Bromobenzene	BSD	REC	94	%	70-130
VL8248-BSD VL8248-BSD	108-86-1	Bromobenzene	BSD	RPD	2	%	20
VL8248-BSD VL8248-BSD	74-97-5	Bromochloromethane	BSD	REC	89	%	70-130
VL8248-BSD VL8248-BSD	74-97-5 74-97-5	Bromochloromethane	BSD	RPD	4	%	20
VL8248-BSD VL8248-BSD	74-97-3 75-27-4	Bromodichloromethane	BSD	REC		% %	70-130
		Bromodichloromethane			92		
VL8248-BSD	75-27-4		BSD	RPD	5	%	20
VL8248-BSD	75-25-2	Bromoform	BSD	REC	92	%	70-130

^{*} Sample used for QC is not from job JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Units	Limits
VL8248-BSD	75-25-2	Bromoform	BSD	RPD	4	%	20
VL8248-BSD VL8248-BSD			BSD	REC	102		70-130
	74-83-9	Bromomethane				%	
VL8248-BSD	74-83-9	Bromomethane	BSD	RPD	8	%	20
VL8248-BSD	78-93-3	2-Butanone (MEK)	BSD	REC	84	%	70-130
VL8248-BSD	78-93-3	2-Butanone (MEK)	BSD	RPD	2	%	20
VL8248-BSD	104-51-8	n-Butylbenzene	BSD	REC	94	%	70-130
VL8248-BSD	104-51-8	n-Butylbenzene	BSD	RPD	4	%	20
VL8248-BSD	135-98-8	sec-Butylbenzene	BSD	REC	95	%	70-130
VL8248-BSD	135-98-8	sec-Butylbenzene	BSD	RPD	2	%	20
VL8248-BSD	98-06-6	tert-Butylbenzene	BSD	REC	98	%	70-130
VL8248-BSD	98-06-6	tert-Butylbenzene	BSD	RPD	2	%	20
VL8248-BSD	75-15-0	Carbon disulfide	BSD	REC	85	%	70-130
VL8248-BSD	75-15-0	Carbon disulfide	BSD	RPD	7	%	20
VL8248-BSD	56-23-5	Carbon tetrachloride	BSD	REC	93	%	70-130
VL8248-BSD	56-23-5	Carbon tetrachloride	BSD	RPD	8	%	20
VL8248-BSD	108-90-7	Chlorobenzene	BSD	REC	90	%	70-130
VL8248-BSD	108-90-7	Chlorobenzene	BSD	RPD	2	%	20
VL8248-BSD	75-00-3	Chloroethane	BSD	REC	91	%	70-130
VL8248-BSD	75-00-3	Chloroethane	BSD	RPD	8	%	20
VL8248-BSD	67-66-3	Chloroform	BSD	REC	88	%	70-130
VL8248-BSD	67-66-3	Chloroform	BSD	RPD	4	%	20
VL8248-BSD	74-87-3	Chloromethane	BSD	REC	81	%	70-130
VL8248-BSD	74-87-3	Chloromethane	BSD	RPD	9	%	20
VL8248-BSD	95-49-8	o-Chlorotoluene	BSD	REC	91	%	70-130
VL8248-BSD	95-49-8	o-Chlorotoluene	BSD	RPD	4	%	20
VL8248-BSD	106-43-4	p-Chlorotoluene	BSD	REC	90	%	70-130
VL8248-BSD	106-43-4	p-Chlorotoluene	BSD	RPD	1	%	20
VL8248-BSD	108-20-3	Di-Isopropyl ether	BSD	REC	77	%	70-130
VL8248-BSD	108-20-3	Di-Isopropyl ether	BSD	RPD	5	%	20
VL8248-BSD	96-12-8	1,2-Dibromo-3-chloropropane	BSD	REC	105	%	70-130
VL8248-BSD	96-12-8	1,2-Dibromo-3-chloropropane	BSD	RPD	5	%	20
VL8248-BSD	124-48-1	Dibromochloromethane	BSD	REC	94	%	70-130
VL8248-BSD	124-48-1	Dibromochloromethane	BSD	RPD	2	%	20
VL8248-BSD	106-93-4	1,2-Dibromoethane	BSD	REC	93	%	70-130
VL8248-BSD	106-93-4	1,2-Dibromoethane	BSD	RPD	1	%	20
VL8248-BSD	95-50-1	1,2-Dichlorobenzene	BSD	REC	91	%	70-130
VL8248-BSD	95-50-1	1,2-Dichlorobenzene	BSD	RPD	2	%	20
VL8248-BSD	541-73-1	1,3-Dichlorobenzene	BSD	REC	88	%	70-130
VL8248-BSD	541-73-1	1,3-Dichlorobenzene	BSD	RPD	1	%	20
VL8248-BSD	106-46-7	1,4-Dichlorobenzene	BSD	REC	89	%	70-130
VL8248-BSD	106-46-7	1,4-Dichlorobenzene	BSD	RPD	4	%	20
VL8248-BSD	75-71-8	Dichlorodifluoromethane	BSD	REC	102	%	70-130
VL8248-BSD	75-71-8 75-71-8	Dichlorodifluoromethane	BSD	RPD	102	% %	20
		1,1-Dichloroethane					
VL8248-BSD	75-34-3		BSD	REC	83	%	70-130
VL8248-BSD	75-34-3	1,1-Dichloroethane	BSD	RPD	7	%	20

^{*} Sample used for QC is not from job JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Units	Limits
VI 0240 DCD	107.06.2	1.2 Disklamathan			0.4	0/	70.120
VL8248-BSD	107-06-2	1,2-Dichloroethane	BSD	REC	94	%	70-130
VL8248-BSD	107-06-2	1,2-Dichloroethane	BSD	RPD	4	%	20
VL8248-BSD	75-35-4	1,1-Dichloroethene	BSD	REC	89	%	70-130
VL8248-BSD	75-35-4	1,1-Dichloroethene	BSD	RPD	6	%	20
VL8248-BSD	156-59-2	cis-1,2-Dichloroethene	BSD	REC	86	%	70-130
VL8248-BSD	156-59-2	cis-1,2-Dichloroethene	BSD	RPD	3	%	20
VL8248-BSD	156-60-5	trans-1,2-Dichloroethene	BSD	REC	83	%	70-130
VL8248-BSD	156-60-5	trans-1,2-Dichloroethene	BSD	RPD	7	%	20
VL8248-BSD	78-87-5	1,2-Dichloropropane	BSD	REC	82	%	70-130
VL8248-BSD	78-87-5	1,2-Dichloropropane	BSD	RPD	1	%	20
VL8248-BSD	142-28-9	1,3-Dichloropropane	BSD	REC	85	%	70-130
VL8248-BSD	142-28-9	1,3-Dichloropropane	BSD	RPD	0	%	20
VL8248-BSD	594-20-7	2,2-Dichloropropane	BSD	REC	88	%	70-130
VL8248-BSD	594-20-7	2,2-Dichloropropane	BSD	RPD	11	%	20
VL8248-BSD	563-58-6	1,1-Dichloropropene	BSD	REC	90	%	70-130
VL8248-BSD	563-58-6	1,1-Dichloropropene	BSD	RPD	3	%	20
VL8248-BSD	10061-01-5	cis-1,3-Dichloropropene	BSD	REC	89	%	70-130
VL8248-BSD	10061-01-5	cis-1,3-Dichloropropene	BSD	RPD	1	%	20
VL8248-BSD	10061-02-6	trans-1,3-Dichloropropene	BSD	REC	92	%	70-130
VL8248-BSD	10061-02-6	trans-1,3-Dichloropropene	BSD	RPD	0	%	20
VL8248-BSD	123-91-1	1,4-Dioxane	BSD	REC	98	%	70-130
VL8248-BSD	123-91-1	1,4-Dioxane	BSD	RPD	8	%	20
VL8248-BSD	60-29-7	Ethyl Ether	BSD	REC	84	%	70-130
VL8248-BSD	60-29-7	Ethyl Ether	BSD	RPD	2	%	20
VL8248-BSD	100-41-4	Ethylbenzene	BSD	REC	90	%	70-130
VL8248-BSD	100-41-4	Ethylbenzene	BSD	RPD	2	%	20
VL8248-BSD	87-68-3	Hexachlorobutadiene	BSD	REC	97	%	70-130
VL8248-BSD	87-68-3	Hexachlorobutadiene	BSD	RPD	4	%	20
VL8248-BSD	591-78-6	2-Hexanone	BSD	REC	87	%	70-130
VL8248-BSD	591-78-6	2-Hexanone	BSD	RPD	2	%	20
VL8248-BSD	98-82-8	Isopropylbenzene	BSD	REC	92	%	70-130
VL8248-BSD	98-82-8	Isopropylbenzene	BSD	RPD	4	%	20
VL8248-BSD	99-87-6	p-Isopropyltoluene	BSD	REC	95	%	70-130
VL8248-BSD	99-87-6	p-Isopropyltoluene	BSD	RPD	3	%	20
VL8248-BSD	1634-04-4	Methyl Tert Butyl Ether	BSD	REC	88	%	70-130
VL8248-BSD	1634-04-4	Methyl Tert Butyl Ether	BSD	RPD	4	%	20
VL8248-BSD	108-10-1	4-Methyl-2-pentanone(MIBK)	BSD	REC	86	%	70-130
VL8248-BSD	108-10-1	4-Methyl-2-pentanone(MIBK)	BSD	RPD	3	%	20
VL8248-BSD	74-95-3	Methylene bromide	BSD	REC	88	%	70-130
VL8248-BSD VL8248-BSD	74-95-3	Methylene bromide	BSD	RPD	3	%	20
VL8248-BSD VL8248-BSD	74-93-3 75-09-2	Methylene chloride	BSD	REC	84	%	70-130
VL8248-BSD VL8248-BSD	75-09-2 75-09-2	Methylene chloride	BSD	RPD	3	% %	20
					102	% %	
VL8248-BSD	91-20-3 91-20-3	Naphthalana	BSD	REC			70-130
VL8248-BSD		Naphthalene	BSD	RPD	6	%	20
VL8248-BSD	103-65-1	n-Propylbenzene	BSD	REC	88	%	70-130

^{*} Sample used for QC is not from job JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Units	s Limits
			Турс	Турс			
VL8248-BSD	103-65-1	n-Propylbenzene	BSD	RPD	2	%	20
VL8248-BSD	100-42-5	Styrene	BSD	REC	91	%	70-130
VL8248-BSD	100-42-5	Styrene	BSD	RPD	1	%	20
VL8248-BSD	75-65-0	Tert Butyl Alcohol	BSD	REC	96	%	70-130
VL8248-BSD	75-65-0	Tert Butyl Alcohol	BSD	RPD	18	%	20
VL8248-BSD	994-05-8	tert-Amyl Methyl Ether	BSD	REC	88	%	70-130
VL8248-BSD	994-05-8	tert-Amyl Methyl Ether	BSD	RPD	5	%	20
VL8248-BSD	637-92-3	tert-Butyl Ethyl Ether	BSD	REC	88	%	70-130
VL8248-BSD	637-92-3	tert-Butyl Ethyl Ether	BSD	RPD	4	%	20
VL8248-BSD	630-20-6	1,1,1,2-Tetrachloroethane	BSD	REC	96	%	70-130
VL8248-BSD	630-20-6	1,1,1,2-Tetrachloroethane	BSD	RPD	3	%	20
VL8248-BSD	79-34-5	1,1,2,2-Tetrachloroethane	BSD	REC	94	%	70-130
VL8248-BSD	79-34-5	1,1,2,2-Tetrachloroethane	BSD	RPD	2	%	20
VL8248-BSD	127-18-4	Tetrachloroethene	BSD	REC	94	%	70-130
VL8248-BSD	127-18-4	Tetrachloroethene	BSD	RPD	3	%	20
VL8248-BSD	109-99-9	Tetrahydrofuran	BSD	REC	80	%	70-130
VL8248-BSD	109-99-9	Tetrahydrofuran	BSD	RPD	6	%	20
VL8248-BSD	108-88-3	Toluene	BSD	REC	87	%	70-130
VL8248-BSD	108-88-3	Toluene	BSD	RPD	2	%	20
VL8248-BSD	87-61-6	1,2,3-Trichlorobenzene	BSD	REC	104	%	70-130
VL8248-BSD	87-61-6	1,2,3-Trichlorobenzene	BSD	RPD	7	%	25
VL8248-BSD	120-82-1	1,2,4-Trichlorobenzene	BSD	REC	103	%	70-130
VL8248-BSD	120-82-1	1,2,4-Trichlorobenzene	BSD	RPD	7	%	20
VL8248-BSD	71-55-6	1,1,1-Trichloroethane	BSD	REC	96	%	70-130
VL8248-BSD	71-55-6	1,1,1-Trichloroethane	BSD	RPD	7	%	20
VL8248-BSD	79-00-5	1,1,2-Trichloroethane	BSD	REC	87	%	70-130
VL8248-BSD	79-00-5	1,1,2-Trichloroethane	BSD	RPD	0	%	20
VL8248-BSD	79-01-6	Trichloroethene	BSD	REC	89	%	70-130
VL8248-BSD	79-01-6	Trichloroethene	BSD	RPD	3	%	20
VL8248-BSD	75-69-4	Trichlorofluoromethane	BSD	REC	110	%	70-130
VL8248-BSD	75-69-4	Trichlorofluoromethane	BSD	RPD	10	%	20
VL8248-BSD	96-18-4	1,2,3-Trichloropropane	BSD	REC	99	%	70-130
VL8248-BSD	96-18-4	1,2,3-Trichloropropane	BSD	RPD	5	%	20
VL8248-BSD	95-63-6	1,2,4-Trimethylbenzene	BSD	REC	90	%	70-130
VL8248-BSD	95-63-6	1,2,4-Trimethylbenzene	BSD	RPD	3	%	20
VL8248-BSD	108-67-8	1,3,5-Trimethylbenzene	BSD	REC	92	%	70-130
VL8248-BSD	108-67-8	1,3,5-Trimethylbenzene	BSD	RPD	4	%	20
VL8248-BSD	75-01-4	Vinyl chloride	BSD	REC	77	%	70-130
VL8248-BSD	75-01-4	Vinyl chloride	BSD	RPD	12	%	20
VL8248-BSD		m,p-Xylene	BSD	REC	88	%	70-130
VL8248-BSD		m,p-Xylene	BSD	RPD	4	%	20
VL8248-BSD	95-47-6	o-Xylene	BSD	REC	88	%	70-130
VL8248-BSD	95-47-6	o-Xylene	BSD	RPD	3	%	20
VL8248-BSD	1330-20-7	Xylene (total)	BSD	REC	88	%	70-130
VL8248-BSD	1330-20-7	Xylene (total)	BSD	RPD	4	%	20
00	1000 20 ,	, (,	252		•	,0	

Page 6 of 12

QC Evaluation: MA MCP Limits Job Number: JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

		Analyte	Туре	Type	Result	Cin	s Limits
VL8248-BSD	1868-53-7	Dibromofluoromethane	BSD	SURR	103	%	70-130
VL8248-BSD	2037-26-5	Toluene-D8	BSD	SURR	97	%	70-130
VL8248-BSD	460-00-4	4-Bromofluorobenzene	BSD	SURR	102	%	70-130
VL8248-MB	1868-53-7	Dibromofluoromethane	MB	SURR	104	%	70-130
VL8248-MB	2037-26-5	Toluene-D8	MB	SURR	100	%	70-130
VL8248-MB	460-00-4	4-Bromofluorobenzene	MB	SURR	94	%	70-130
JC48965-1	1868-53-7	Dibromofluoromethane	SAMP	SURR	102	%	70-130
JC48965-1	2037-26-5	Toluene-D8	SAMP	SURR	100	%	70-130
JC48965-1	460-00-4	4-Bromofluorobenzene	SAMP	SURR	99	%	70-130
OP5356	SW846 8270	D					
OP5356-BS1	65-85-0	Benzoic Acid	BSP	REC	40	%	30-130
OP5356-BS1	95-57-8	2-Chlorophenol	BSP	REC	66	%	30-130
OP5356-BS1	59-50-7	4-Chloro-3-methyl phenol	BSP	REC	75	%	30-130
OP5356-BS1	120-83-2	2,4-Dichlorophenol	BSP	REC	76	%	30-130
OP5356-BS1	105-67-9	2,4-Dimethylphenol	BSP	REC	88	%	30-130
OP5356-BS1	51-28-5	2,4-Dinitrophenol	BSP	REC	65	%	30-130
OP5356-BS1	534-52-1	4,6-Dinitro-o-cresol	BSP	REC	76	%	30-130
OP5356-BS1	95-48-7	2-Methylphenol	BSP	REC	68	%	30-130
OP5356-BS1)3 10 <i>1</i>	3&4-Methylphenol	BSP	REC	72	%	30-130
OP5356-BS1	88-75-5	2-Nitrophenol	BSP	REC	70	%	30-130
OP5356-BS1	100-02-7	4-Nitrophenol	BSP	REC	59	%	30-130
OP5356-BS1	87-86-5	Pentachlorophenol	BSP	REC	95	%	30-130
OP5356-BS1	108-95-2	Phenol	BSP	REC	39	%	30-130
OP5356-BS1	95-95-4	2,4,5-Trichlorophenol	BSP	REC	80	%	30-130
OP5356-BS1	88-06-2	2,4,6-Trichlorophenol	BSP	REC	84	%	30-130
OP5356-BS1	83-32-9	Acenaphthene	BSP	REC	79	%	40-140
OP5356-BS1	208-96-8	Acenaphthylene	BSP	REC	76	%	40-140
OP5356-BS1	98-86-2	Acetophenone	BSP	REC	74	%	40-140
OP5356-BS1	62-53-3	Aniline	BSP	REC	72	%	40-140
OP5356-BS1	120-12-7	Anthracene	BSP	REC	78	%	40-140
OP5356-BS1	56-55-3	Benzo(a)anthracene	BSP	REC	69	%	40-140
OP5356-BS1	50-33-3	Benzo(a)pyrene	BSP	REC	68	%	40-140
OP5356-BS1	205-99-2	Benzo(b)fluoranthene	BSP	REC	66	%	40-140
OP5356-BS1	191-24-2	` '	BSP	REC	73	%	40-140
OP5356-BS1	207-08-9	Benzo(g,h,i)perylene Benzo(k)fluoranthene	BSP	REC	68		40-140
						%	
OP5356-BS1	101-55-3	4-Bromophenyl phenyl ether	BSP BSP	REC REC	73	%	40-140
OP5356-BS1	85-68-7	Butyl benzyl phthalate 2-Chloronaphthalene			66	%	40-140
OP5356-BS1	91-58-7	*	BSP	REC	70	%	40-140
OP5356-BS1	106-47-8	4-Chloroaniline	BSP	REC	67 70	%	40-140
OP5356-BS1	218-01-9	Chrysene	BSP	REC	70 73	%	40-140
OP5356-BS1	111-91-1	bis(2-Chloroethoxy)methane	BSP	REC	73 76	%	40-140
OP5356-BS1	111-44-4	bis(2-Chloroethyl)ether	BSP	REC	76	%	40-140
OP5356-BS1	108-60-1	bis(2-Chloroisopropyl)ether	BSP	REC	74	%	40-140

^{*} Sample used for QC is not from job JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Unit	s Limits
OP5356-BS1	7005-72-3	4-Chlorophenyl phenyl ether	BSP	REC	72	%	40-140
OP5356-BS1	95-50-1	1,2-Dichlorobenzene	BSP	REC	60	%	40-140
OP5356-BS1	122-66-7	1,2-Diphenylhydrazine	BSP	REC	82	%	40-140
OP5356-BS1	541-73-1	1,3-Dichlorobenzene	BSP	REC	56	%	40-140
OP5356-BS1	106-46-7	1,4-Dichlorobenzene	BSP	REC	57	%	40-140
OP5356-BS1	121-14-2	2,4-Dinitrotoluene	BSP	REC	84	%	40-140
OP5356-BS1	606-20-2	2,6-Dinitrotoluene	BSP	REC	81	%	40-140
OP5356-BS1	91-94-1	3,3'-Dichlorobenzidine	BSP	REC	52	%	40-140
OP5356-BS1	53-70-3	Dibenzo(a,h)anthracene	BSP	REC	73	%	40-140
OP5356-BS1	132-64-9	Dibenzofuran	BSP	REC	73	%	40-140
OP5356-BS1	84-74-2	Di-n-butyl phthalate	BSP	REC	77	%	40-140
OP5356-BS1	117-84-0	Di-n-octyl phthalate	BSP	REC	58	%	40-140
OP5356-BS1	84-66-2	Diethyl phthalate	BSP	REC	81	%	40-140
OP5356-BS1	131-11-3	Dimethyl phthalate	BSP	REC	80	%	40-140
OP5356-BS1	117-81-7	bis(2-Ethylhexyl)phthalate	BSP	REC	65	%	40-140
OP5356-BS1	206-44-0	Fluoranthene	BSP	REC	83	%	40-140
OP5356-BS1	86-73-7	Fluorene	BSP	REC	78	%	40-140
OP5356-BS1	118-74-1	Hexachlorobenzene	BSP	REC	74	%	40-140
OP5356-BS1	87-68-3	Hexachlorobutadiene	BSP	REC	47	%	40-140
OP5356-BS1	77-47-4	Hexachlorocyclopentadiene	BSP	REC	52	%	40-140
OP5356-BS1	67-72-1	Hexachloroethane	BSP	REC	51	%	40-140
OP5356-BS1	193-39-5	Indeno(1,2,3-cd)pyrene	BSP	REC	70	%	40-140
OP5356-BS1	78-59-1	Isophorone	BSP	REC	72	%	40-140
OP5356-BS1	91-57-6	2-Methylnaphthalene	BSP	REC	65	%	40-140
OP5356-BS1	91-20-3	Naphthalene	BSP	REC	61	%	40-140
OP5356-BS1	98-95-3	Nitrobenzene	BSP	REC	68	%	40-140
OP5356-BS1	62-75-9	n-Nitrosodimethylamine	BSP	REC	41	%	40-140
OP5356-BS1	621-64-7	N-Nitroso-di-n-propylamine	BSP	REC	76	%	40-140
OP5356-BS1	86-30-6	N-Nitrosodiphenylamine	BSP	REC	76	%	40-140
OP5356-BS1	85-01-8	Phenanthrene	BSP	REC	77	%	40-140
OP5356-BS1	129-00-0	Pyrene	BSP	REC	71	%	40-140
OP5356-BS1	120-82-1	1,2,4-Trichlorobenzene	BSP	REC	53	%	40-140
OP5356-BS1	367-12-4	2-Fluorophenol	BSP	SURR	50	%	15-110
OP5356-BS1	4165-62-2	Phenol-d5	BSP	SURR	36	%	15-110
OP5356-BS1	118-79-6	2,4,6-Tribromophenol	BSP	SURR	91	%	15-110
OP5356-BS1	4165-60-0	Nitrobenzene-d5	BSP	SURR	72	%	30-130
OP5356-BS1	321-60-8	2-Fluorobiphenyl	BSP	SURR	76	%	30-130
OP5356-BS1	1718-51-0	Terphenyl-d14	BSP	SURR	86	%	30-130
OP5356-BSD	65-85-0	Benzoic Acid	BSD	REC	37	%	30-130
OP5356-BSD	65-85-0	Benzoic Acid	BSD	RPD	8	%	20
OP5356-BSD	95-57-8	2-Chlorophenol	BSD	REC	66	%	30-130
OP5356-BSD	95-57-8	2-Chlorophenol	BSD	RPD	1	%	20
OP5356-BSD	59-50-7	4-Chloro-3-methyl phenol	BSD	REC	74	%	30-130
OP5356-BSD	59-50-7	4-Chloro-3-methyl phenol	BSD	RPD	2	%	20
OP5356-BSD	120-83-2	2,4-Dichlorophenol	BSD	REC	76	%	30-130

^{*} Sample used for QC is not from job JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Unit	s Limits
OP5356-BSD	120-83-2	2,4-Dichlorophenol	BSD	RPD	1	%	20
OP5356-BSD	105-67-9	2,4-Dimethylphenol	BSD	REC	88	%	30-130
OP5356-BSD	105-67-9	2,4-Dimethylphenol	BSD	RPD	0	%	20
OP5356-BSD	51-28-5	2,4-Dinitrophenol	BSD	REC	67	%	30-130
OP5356-BSD	51-28-5	2,4-Dinitrophenol	BSD	RPD	3	%	20
OP5356-BSD	534-52-1	4,6-Dinitro-o-cresol	BSD	REC	76	%	30-130
OP5356-BSD	534-52-1	4,6-Dinitro-o-cresol	BSD	RPD	0	%	20
OP5356-BSD	95-48-7	2-Methylphenol	BSD	REC	68	%	30-130
OP5356-BSD	95-48-7	2-Methylphenol	BSD	RPD	1	%	20
OP5356-BSD		3&4-Methylphenol	BSD	REC	69	%	30-130
OP5356-BSD		3&4-Methylphenol	BSD	RPD	4	%	20
OP5356-BSD	88-75-5	2-Nitrophenol	BSD	REC	71	%	30-130
OP5356-BSD	88-75-5	2-Nitrophenol	BSD	RPD	1	%	20
OP5356-BSD	100-02-7	4-Nitrophenol	BSD	REC	50	%	30-130
OP5356-BSD	100-02-7	4-Nitrophenol	BSD	RPD	17	%	20
OP5356-BSD	87-86-5	Pentachlorophenol	BSD	REC	95	%	30-130
OP5356-BSD	87-86-5	Pentachlorophenol	BSD	RPD	0	%	20
OP5356-BSD	108-95-2	Phenol	BSD	REC	37	%	30-130
OP5356-BSD	108-95-2	Phenol	BSD	RPD	6	%	20
OP5356-BSD	95-95-4	2,4,5-Trichlorophenol	BSD	REC	79	%	30-130
OP5356-BSD	95-95-4	2,4,5-Trichlorophenol	BSD	RPD	1	%	20
OP5356-BSD	88-06-2	2,4,6-Trichlorophenol	BSD	REC	84	%	30-130
OP5356-BSD	88-06-2	2,4,6-Trichlorophenol	BSD	RPD	0	%	20
OP5356-BSD	83-32-9	Acenaphthene	BSD	REC	79	%	40-140
OP5356-BSD	83-32-9	Acenaphthene	BSD	RPD	0	%	20
OP5356-BSD	208-96-8	Acenaphthylene	BSD	REC	77	%	40-140
OP5356-BSD	208-96-8	Acenaphthylene	BSD	RPD	2	%	20
OP5356-BSD	98-86-2	Acetophenone	BSD	REC	73	%	40-140
OP5356-BSD	98-86-2	Acetophenone	BSD	RPD	2	%	20
OP5356-BSD	62-53-3	Aniline	BSD	REC	66	%	40-140
OP5356-BSD	62-53-3	Aniline	BSD	RPD	8	%	20
OP5356-BSD	120-12-7	Anthracene	BSD	REC	78	%	40-140
OP5356-BSD	120-12-7	Anthracene	BSD	RPD	1	%	20
OP5356-BSD	56-55-3	Benzo(a)anthracene	BSD	REC	72	%	40-140
OP5356-BSD	56-55-3	Benzo(a)anthracene	BSD	RPD	4	%	20
OP5356-BSD	50-32-8	Benzo(a)pyrene	BSD	REC	70	%	40-140
OP5356-BSD	50-32-8	Benzo(a)pyrene	BSD	RPD	3	%	20
OP5356-BSD	205-99-2	Benzo(b)fluoranthene	BSD	REC	70	%	40-140
OP5356-BSD	205-99-2	Benzo(b)fluoranthene	BSD	RPD	6	%	20
OP5356-BSD	191-24-2	Benzo(g,h,i)perylene	BSD	REC	86	%	40-140
OP5356-BSD	191-24-2	Benzo(g,h,i)perylene	BSD	RPD	16	%	20
OP5356-BSD	207-08-9	Benzo(k)fluoranthene	BSD	REC	70	%	40-140
OP5356-BSD	207-08-9	Benzo(k)fluoranthene	BSD	RPD	3	%	20
OP5356-BSD	101-55-3	4-Bromophenyl phenyl ether	BSD	REC	76	%	40-140
OP5356-BSD	101-55-3	4-Bromophenyl phenyl ether	BSD	RPD	3	%	20
O1 3330-D3D	101-33-3	- Diomophenyi phenyi emei	שטע	MD	J	/0	20

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

QC Sample ID	CAS#	Analyte	Sample Type	e Result Type	Result	Unit	ts Limits
OP5356-BSD	85-68-7	Butyl benzyl phthalate	BSD	REC	73	%	40-140
OP5356-BSD	85-68-7	Butyl benzyl phthalate	BSD	RPD	10	%	20
OP5356-BSD	91-58-7	2-Chloronaphthalene	BSD	REC	71	%	40-140
OP5356-BSD	91-58-7	2-Chloronaphthalene	BSD	RPD	2	%	20
OP5356-BSD	106-47-8	4-Chloroaniline	BSD	REC	60	%	40-140
OP5356-BSD	106-47-8	4-Chloroaniline	BSD	RPD	11	%	20
OP5356-BSD	218-01-9	Chrysene	BSD	REC	70	%	40-140
OP5356-BSD	218-01-9	Chrysene	BSD	RPD	0	%	20
OP5356-BSD	111-91-1	bis(2-Chloroethoxy)methane	BSD	REC	75	%	40-140
OP5356-BSD	111-91-1	bis(2-Chloroethoxy)methane	BSD	RPD	2	%	20
OP5356-BSD	111-44-4	bis(2-Chloroethyl)ether	BSD	REC	77	%	40-140
OP5356-BSD	111-44-4	bis(2-Chloroethyl)ether	BSD	RPD	2	%	20
OP5356-BSD	108-60-1	bis(2-Chloroisopropyl)ether	BSD	REC	76	%	40-140
OP5356-BSD	108-60-1	bis(2-Chloroisopropyl)ether	BSD	RPD	3	%	20
OP5356-BSD	7005-72-3	4-Chlorophenyl phenyl ether	BSD	REC	73	%	40-140
OP5356-BSD	7005-72-3	4-Chlorophenyl phenyl ether	BSD	RPD	1	%	20
OP5356-BSD	95-50-1	1,2-Dichlorobenzene	BSD	REC	63	%	40-140
OP5356-BSD	95-50-1	1,2-Dichlorobenzene	BSD	RPD	5	%	20
OP5356-BSD	122-66-7	1,2-Diphenylhydrazine	BSD	REC	84	%	40-140
OP5356-BSD	122-66-7	1,2-Diphenylhydrazine	BSD	RPD	3	%	20
OP5356-BSD	541-73-1	1,3-Dichlorobenzene	BSD	REC	59	%	40-140
OP5356-BSD	541-73-1	1,3-Dichlorobenzene	BSD	RPD	6	%	20
OP5356-BSD	106-46-7	1,4-Dichlorobenzene	BSD	REC	59	%	40-140
OP5356-BSD	106-46-7	1,4-Dichlorobenzene	BSD	RPD	5	%	20
OP5356-BSD	121-14-2	2,4-Dinitrotoluene	BSD	REC	84	%	40-140
OP5356-BSD	121-14-2	2,4-Dinitrotoluene	BSD	RPD	0	%	20
OP5356-BSD	606-20-2	2,6-Dinitrotoluene	BSD	REC	81	%	40-140
OP5356-BSD	606-20-2	2,6-Dinitrotoluene	BSD	RPD	1	%	20
OP5356-BSD	91-94-1	3,3'-Dichlorobenzidine	BSD	REC	49	%	40-140
OP5356-BSD	91-94-1	3,3'-Dichlorobenzidine	BSD	RPD	6	%	20
OP5356-BSD	53-70-3	Dibenzo(a,h)anthracene	BSD	REC	87	%	40-140
OP5356-BSD	53-70-3	Dibenzo(a,h)anthracene	BSD	RPD	18	%	20
OP5356-BSD	132-64-9	Dibenzofuran	BSD	REC	74	%	40-140
OP5356-BSD	132-64-9	Dibenzofuran	BSD	RPD	1	%	20
OP5356-BSD	84-74-2	Di-n-butyl phthalate	BSD	REC	79	%	40-140
OP5356-BSD	84-74-2	Di-n-butyl phthalate	BSD	RPD	2	%	20
OP5356-BSD	117-84-0	Di-n-octyl phthalate	BSD	REC	68	%	40-140
OP5356-BSD	117-84-0	Di-n-octyl phthalate	BSD	RPD	16	%	20
OP5356-BSD	84-66-2	Diethyl phthalate	BSD	REC	81	%	40-140
OP5356-BSD	84-66-2	Diethyl phthalate	BSD	RPD	0	%	20
OP5356-BSD	131-11-3	Dimethyl phthalate	BSD	REC	80	%	40-140
OP5356-BSD	131-11-3	Dimethyl phthalate	BSD	RPD	0	%	20
OP5356-BSD	117-81-7	bis(2-Ethylhexyl)phthalate	BSD	REC	71	%	40-140
OP5356-BSD	117-81-7	bis(2-Ethylhexyl)phthalate	BSD	RPD	8	%	20
OP5356-BSD	206-44-0	Fluoranthene	BSD	REC	78	%	40-140
O1 2220 DDD	200 17-0	1 Idol difficito	שטע	REC	, 0	/0	10 170

^{*} Sample used for QC is not from job JC48965

QC Evaluation: MA MCP Limits Job Number: JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Collected: 08/14/17

QC Sample ID CAS#		Analyte	Sample Type	Result Type	Result	Units	Limits
OP5356-BSD	206-44-0	Fluoranthene	BSD	RPD	6	%	20
OP5356-BSD	86-73-7	Fluorene	BSD	REC	79	%	40-140
OP5356-BSD	86-73-7	Fluorene	BSD	RPD	1	%	20
OP5356-BSD	118-74-1	Hexachlorobenzene	BSD	REC	76	%	40-140
OP5356-BSD	118-74-1	Hexachlorobenzene	BSD	RPD	3	%	20
OP5356-BSD	87-68-3	Hexachlorobutadiene	BSD	REC	51	%	40-140
OP5356-BSD	87-68-3	Hexachlorobutadiene	BSD	RPD	8	%	20
OP5356-BSD	77-47-4	Hexachlorocyclopentadiene	BSD	REC	56	%	40-140
OP5356-BSD	77-47-4	Hexachlorocyclopentadiene	BSD	RPD	7	%	20
OP5356-BSD	67-72-1	Hexachloroethane	BSD	REC	54	%	40-140
OP5356-BSD	67-72-1	Hexachloroethane	BSD	RPD	5	%	20
OP5356-BSD	193-39-5	Indeno(1,2,3-cd)pyrene	BSD	REC	82	%	40-140
OP5356-BSD	193-39-5	Indeno(1,2,3-cd)pyrene	BSD	RPD	15	%	20
OP5356-BSD	78-59-1	Isophorone	BSD	REC	74	%	40-140
OP5356-BSD	78-59-1	Isophorone	BSD	RPD	2	%	20
OP5356-BSD	91-57-6	2-Methylnaphthalene	BSD	REC	67	%	40-140
OP5356-BSD	91-57-6	2-Methylnaphthalene	BSD	RPD	2	%	20
OP5356-BSD	91-20-3	Naphthalene	BSD	REC	63	%	40-140
OP5356-BSD	91-20-3	Naphthalene	BSD	RPD	2	%	20
OP5356-BSD	98-95-3	Nitrobenzene	BSD	REC	69	%	40-140
OP5356-BSD	98-95-3	Nitrobenzene	BSD	RPD	2	%	20
OP5356-BSD	62-75-9	n-Nitrosodimethylamine	BSD	REC	41	%	40-140
OP5356-BSD	62-75-9	n-Nitrosodimethylamine	BSD	RPD	1	%	20
OP5356-BSD	621-64-7	N-Nitroso-di-n-propylamine	BSD	REC	77	%	40-140
OP5356-BSD	621-64-7	N-Nitroso-di-n-propylamine	BSD	RPD	1	%	20
OP5356-BSD	86-30-6	N-Nitrosodiphenylamine	BSD	REC	77	%	40-140
OP5356-BSD	86-30-6	N-Nitrosodiphenylamine	BSD	RPD	2	%	20
OP5356-BSD	85-01-8	Phenanthrene	BSD	REC	7 8	%	40-140
OP5356-BSD	85-01-8	Phenanthrene	BSD	RPD	1	%	20
OP5356-BSD	129-00-0	Pyrene	BSD	REC	73	%	40-140
OP5356-BSD	129-00-0	Pyrene	BSD	RPD	2	%	20
OP5356-BSD	120-82-1	1,2,4-Trichlorobenzene	BSD	REC	57	%	40-140
OP5356-BSD	120-82-1	1,2,4-Trichlorobenzene	BSD	RPD	6	%	20
OP5356-BSD	367-12-4	2-Fluorophenol	BSD	SURR	49	%	15-110
OP5356-BSD	4165-62-2	Phenol-d5	BSD	SURR	34	%	15-110
OP5356-BSD	118-79-6	2,4,6-Tribromophenol	BSD	SURR	89	%	15-110
OP5356-BSD	4165-60-0	Nitrobenzene-d5	BSD	SURR	71	%	30-130
OP5356-BSD	321-60-8	2-Fluorobiphenyl	BSD	SURR	75	%	30-130
OP5356-BSD	1718-51-0	Terphenyl-d14	BSD	SURR	82	%	30-130
OP5356-MB1	367-12-4	2-Fluorophenol	MB	SURR	44	%	15-110
OP5356-MB1	4165-62-2	Phenol-d5	MB	SURR	30	%	15-110
OP5356-MB1	118-79-6	2,4,6-Tribromophenol	MB	SURR	100	%	15-110
OP5356-MB1	4165-60-0	Nitrobenzene-d5	MB	SURR	73	%	30-130
OP5356-MB1	321-60-8	2-Fluorobiphenyl	MB	SURR	74	%	30-130
OP5356-MB1	1718-51-0	Terphenyl-d14	MB	SURR		%	30-130
O1 3330-WID1	1/10-51-0	1 of phony 1 di +	MID	JUNI	32	70	50-150

^{*} Sample used for QC is not from job JC48965

QC Evaluation: MA MCP Limits Job Number: JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Collected: 08/14/17

QC Sample ID	CAS# Analyte		Sample Type	Result Type	Result	Units	Limits
JC48965-1	367-12-4	2-Fluorophenol	SAMP	SURR	27	%	15-110
JC48965-1	4165-62-2	Phenol-d5	SAMP	SURR	19	%	15-110
JC48965-1	118-79-6	2,4,6-Tribromophenol	SAMP	SURR	67 ^a	%	15-110
JC48965-1	4165-60-0	Nitrobenzene-d5	SAMP	SURR	71	%	30-130
JC48965-1	321-60-8	2-Fluorobiphenyl	SAMP	SURR	68	%	30-130
JC48965-1	1718-51-0	Terphenyl-d14	SAMP	SURR	42	%	30-130
OP5356A	SW846 82701	D BY SIM					
OP5356A-BS12	83-32-9	Acenaphthene	BSP	REC	84	%	40-140
OP5356A-BS12	208-96-8	Acenaphthylene	BSP	REC	79	%	40-140
OP5356A-BS12	120-12-7	Anthracene	BSP	REC	82	%	40-140
OP5356A-BS12	56-55-3	Benzo(a)anthracene	BSP	REC	94	%	40-140
OP5356A-BS12	50-32-8	Benzo(a)pyrene	BSP	REC	78	%	40-140
OP5356A-BS12	205-99-2	Benzo(b)fluoranthene	BSP	REC	94	%	40-140
OP5356A-BS12	191-24-2	Benzo(g,h,i)perylene	BSP	REC	79	%	40-140
OP5356A-BS12	207-08-9	Benzo(k)fluoranthene	BSP	REC	77	%	40-140
OP5356A-BS12	218-01-9	Chrysene	BSP	REC	81	%	40-140
OP5356A-BS12	53-70-3	•		94	%	40-140	
OP5356A-BS12	206-44-0	Fluoranthene			89	%	40-140
OP5356A-BS12	86-73-7	Fluorene			90	%	40-140
OP5356A-BS12	193-39-5	Indeno(1,2,3-cd)pyrene	BSP	REC	90	%	40-140
OP5356A-BS12	91-20-3	Naphthalene	BSP	REC	79	%	40-140
OP5356A-BS12	85-01-8	Phenanthrene	BSP	REC	82	%	40-140
OP5356A-BS12	129-00-0	Pyrene	BSP	REC	92	%	40-140
OP5356A-BS12	4165-60-0	Nitrobenzene-d5	BSP	SURR	83	%	30-130
OP5356A-BS12	321-60-8	2-Fluorobiphenyl	BSP	SURR	68	%	30-130
OP5356A-BS12	1718-51-0	Terphenyl-d14	BSP	SURR	84	%	30-130
OP5356A-BSD12	83-32-9	Acenaphthene	BSD	REC	61	%	40-140
OP5356A-BSD12	83-32-9	Acenaphthene	BSD	RPD	31	%	30
OP5356A-BSD12	208-96-8	Acenaphthylene	BSD	REC	60	%	40-140
OP5356A-BSD12	208-96-8	Acenaphthylene	BSD	RPD	28	%	30
OP5356A-BSD12	120-12-7	Anthracene	BSD	REC	66	%	40-140
OP5356A-BSD12	120-12-7	Anthracene	BSD	RPD	21	%	30
OP5356A-BSD12	56-55-3	Benzo(a)anthracene	BSD	REC	76	%	40-140
OP5356A-BSD12	56-55-3	Benzo(a)anthracene	BSD	RPD	20	%	30
OP5356A-BSD12	50-32-8	Benzo(a)pyrene	BSD	REC	66	%	40-140
OP5356A-BSD12	50-32-8	Benzo(a)pyrene	BSD	RPD	16	%	30
OP5356A-BSD12	205-99-2	Benzo(b)fluoranthene	BSD	REC	83	%	40-140
OP5356A-BSD12	205-99-2	Benzo(b)fluoranthene	BSD	RPD	13	%	30
OP5356A-BSD12	191-24-2	Benzo(g,h,i)perylene	BSD	REC	67		40-140
OP5356A-BSD12	191-24-2	Benzo(g,h,i)perylene	BSD	RPD	16	%	30
OP5356A-BSD12	207-08-9	Benzo(k)fluoranthene	BSD	REC	60	%	40-140
OP5356A-BSD12	207-08-9	Benzo(k)fluoranthene	BSD	RPD	25	%	30
OP5356A-BSD12	218-01-9	Chrysene	BSD	REC	65		40-140

^{*} Sample used for QC is not from job JC48965

QC Evaluation: MA MCP Limits

Job Number: JC48965

Account: Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Collected: 08/14/17

QC Sample ID CAS#		Analyte Sa Ty		Result Type	Result	Unit	s Limits
OP5356A-BSD12	218-01-9	Chrysene	BSD	RPD	22	%	30
OP5356A-BSD12	53-70-3	Dibenzo(a,h)anthracene	BSD	REC	75	%	40-140
OP5356A-BSD12	53-70-3	Dibenzo(a,h)anthracene	BSD	RPD	22	%	30
OP5356A-BSD12	206-44-0	Fluoranthene	BSD	REC	71	%	40-140
OP5356A-BSD12	206-44-0	Fluoranthene	BSD	RPD	22	%	30
OP5356A-BSD12	86-73-7	Fluorene	BSD	REC	68	%	40-140
OP5356A-BSD12	86-73-7	Fluorene	BSD	RPD	27	%	30
OP5356A-BSD12	193-39-5	Indeno(1,2,3-cd)pyrene	BSD	REC	74	%	40-140
OP5356A-BSD12	193-39-5	Indeno(1,2,3-cd)pyrene	BSD	RPD	20	%	30
OP5356A-BSD12	91-20-3	Naphthalene	BSD	REC	59	%	40-140
OP5356A-BSD12	91-20-3	Naphthalene	BSD	RPD	29	%	30
OP5356A-BSD12	85-01-8	Phenanthrene	BSD	REC	65	%	40-140
OP5356A-BSD12	85-01-8	Phenanthrene	BSD	RPD	22	%	30
OP5356A-BSD12	129-00-0	Pyrene	BSD	REC	73	%	40-140
OP5356A-BSD12	129-00-0	Pyrene	BSD	RPD	23	%	30
OP5356A-BSD12	4165-60-0	Nitrobenzene-d5	BSD	SURR	63	%	30-130
OP5356A-BSD12	321-60-8	2-Fluorobiphenyl	BSD	SURR	52	%	30-130
OP5356A-BSD12	1718-51-0	Terphenyl-d14	BSD	SURR	70	%	30-130
OP5356A-MB1	4165-60-0	Nitrobenzene-d5	MB	SURR	76	%	30-130
OP5356A-MB1	4165-60-0	Nitrobenzene-d5	MB	SURR	78	%	30-130
OP5356A-MB1	321-60-8	2-Fluorobiphenyl	MB	SURR	76	%	30-130
OP5356A-MB1	321-60-8	2-Fluorobiphenyl	MB	SURR	64	%	30-130
OP5356A-MB1	1718-51-0	Terphenyl-d14	MB	SURR	81	%	30-130
OP5356A-MB1	1718-51-0	Terphenyl-d14	MB	SURR	93	%	30-130
JC48965-1	4165-60-0	Nitrobenzene-d5	SAMP	SURR	76	%	30-130
JC48965-1	321-60-8	2-Fluorobiphenyl	SAMP	SURR	62	%	30-130
JC48965-1	1718-51-0	Terphenyl-d14	SAMP	SURR	44	%	30-130

⁽a) This compound in CCV is outside method requirements (bias high)

^{*} Sample used for QC is not from job JC48965

Section 6

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Internal Standard Area Summaries
- Surrogate Recovery Summaries
- Initial and Continuing Calibration Summaries

Method: SW846 8260C

Method Blank Summary

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc. **Project:** Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample VL8248-MB	File ID L293597.D	DF 1	Analyzed 08/15/17	By JC	Prep Date n/a	Prep Batch n/a	Analytical Batch VL8248

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	10	5.0	ug/l
71-43-2	Benzene	ND	0.50	0.17	ug/l
108-86-1	Bromobenzene	ND	1.0	0.25	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.38	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l
75-25-2	Bromoform	ND	1.0	0.42	ug/l
74-83-9	Bromomethane	ND	2.0	1.4	ug/l
78-93-3	2-Butanone (MEK)	ND	10	4.8	ug/l
104-51-8	n-Butylbenzene	ND	2.0	0.27	ug/l
135-98-8	sec-Butylbenzene	ND	2.0	0.27	ug/l
98-06-6	tert-Butylbenzene	ND	2.0	0.34	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l
75-00-3	Chloroethane	ND	1.0	0.59	ug/l
67-66-3	Chloroform	ND	1.0	0.29	ug/l
74-87-3	Chloromethane	ND	1.0	0.53	ug/l
95-49-8	o-Chlorotoluene	ND	2.0	0.30	ug/l
106-43-4	p-Chlorotoluene	ND	2.0	0.24	ug/l
108-20-3	Di-Isopropyl ether	ND	2.0	0.20	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.16	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.21	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.50	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	1.9	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.21	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.47	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.50	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.40	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.24	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.28	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.30	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.29	ug/l

Page 2 of 3

Method: SW846 8260C

Method Blank Summary

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc.
Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample VL8248-MB	File ID L293597.D	DF 1	Analyzed 08/15/17	By JC	Prep Date n/a	Prep Batch n/a	Analytical Batch VL8248

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l
	trans-1,3-Dichloropropene	ND	1.0	0.22	ug/l
123-91-1	1,4-Dioxane	ND	130	52	ug/l
60-29-7	Ethyl Ether	ND	2.0	0.41	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.22	ug/l
87-68-3	Hexachlorobutadiene	ND	2.0	0.34	ug/l
591-78-6	2-Hexanone	ND	5.0	3.3	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.25	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.24	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.25	ug/l
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	3.0	ug/l
74-95-3	Methylene bromide	ND	1.0	0.45	ug/l
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l
91-20-3	Naphthalene	ND	5.0	1.1	ug/l
103-65-1	n-Propylbenzene	ND	2.0	0.24	ug/l
100-42-5	Styrene	ND	1.0	0.24	ug/l
75-65-0	Tert Butyl Alcohol	ND	10	7.0	ug/l
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.37	ug/l
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.20	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.19	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.17	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.50	ug/l
109-99-9	Tetrahydrofuran	ND	10	4.7	ug/l
108-88-3	Toluene	ND	1.0	0.25	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.24	ug/l
79-01-6	Trichloroethene	ND	1.0	0.27	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.60	ug/l
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.47	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.24	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.62	ug/l
05.45.5	m,p-Xylene	ND	1.0	0.43	ug/l
95-47-6	o-Xylene	ND	1.0	0.22	ug/l

Page 3 of 3

Method: SW846 8260C

Method Blank Summary

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample VL8248-MB	File ID L293597.D	DF 1	Analyzed 08/15/17	By JC	Prep Date n/a	Prep Batch n/a	Analytical Batch VL8248

The QC reported here applies to the following samples:

JC48965-1

CAS No.	Compound	Result	RL	MDL	Units Q

1330-20-7 Xylene (total) ND 1.0 0.22 ug/l

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	104%	80-120%
17060-07-0	1,2-Dichloroethane-D4	113%	81-124%
2037-26-5	Toluene-D8	100%	80-120%
460-00-4	4-Bromofluorobenzene	94%	80-120%

CAS No.	Tentatively Identified Compound	s R.T. l	Est. Conc.	Units (Q
---------	---------------------------------	----------	------------	---------	---

Total TIC, Volatile 0 ug/l

Method: SW846 8260C

Raw Data: L293598.D L293599.D

Blank Spike/Blank Spike Duplicate Summary

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc. **Project:** Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VL8248-BS	L293598.D	1	08/15/17	JC	n/a	n/a	VL8248
VL8248-BSD	L293599.D	1	08/15/17	JC	n/a	n/a	VL8248

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	200	166	83	153	77	8	42-150/22
71-43-2	Benzene	50	42.0	84	41.1	82	2	80-120/20
108-86-1	Bromobenzene	50	46.1	92	46.9	94	2	82-118/20
74-97-5	Bromochloromethane	50	46.6	93	44.7	89	4	84-121/20
75-27-4	Bromodichloromethane	50	48.4	97	46.1	92	5	83-120/20
75-25-2	Bromoform	50	48.2	96	46.2	92	4	76-129/20
74-83-9	Bromomethane	50	55.3	111	50.8	102	8	57-138/20
78-93-3	2-Butanone (MEK)	200	171	86	167	84	2	64-137/20
104-51-8	n-Butylbenzene	50	48.8	98	47.1	94	4	81-123/20
135-98-8	sec-Butylbenzene	50	48.3	97	47.3	95	2	84-121/20
98-06-6	tert-Butylbenzene	50	50.1	100	49.1	98	2	83-122/20
75-15-0	Carbon disulfide	50	45.5	91	42.4	85	7	64-137/20
56-23-5	Carbon tetrachloride	50	50.4	101	46.5	93	8	75-135/20
108-90-7	Chlorobenzene	50	46.1	92	45.2	90	2	84-117/20
75-00-3	Chloroethane	50	49.3	99	45.3	91	8	63-132/20
67-66-3	Chloroform	50	45.8	92	43.9	88	4	80-119/20
74-87-3	Chloromethane	50	44.3	89	40.5	81	9	46-136/20
95-49-8	o-Chlorotoluene	50	47.4	95	45.6	91	4	84-118/20
106-43-4	p-Chlorotoluene	50	45.4	91	45.1	90	1	83-116/20
108-20-3	Di-Isopropyl ether	50	40.2	80	38.4	77	5	73-128/20
96-12-8	1,2-Dibromo-3-chloropropane	50	55.6	111	52.7	105	5	72-127/20
124-48-1	Dibromochloromethane	50	47.7	95	46.9	94	2	80-123/20
106-93-4	1,2-Dibromoethane	50	46.2	92	46.7	93	1	84-117/20
95-50-1	1,2-Dichlorobenzene	50	46.4	93	45.5	91	2	84-119/20
541-73-1	1,3-Dichlorobenzene	50	43.7	87	44.1	88	1	81-117/20
106-46-7	1,4-Dichlorobenzene	50	46.0	92	44.3	89	4	82-117/20
75-71-8	Dichlorodifluoromethane	50	59.5	119	51.0	102	15	36-149/20
75-34-3	1,1-Dichloroethane	50	44.3	89	41.5	83	7	79-120/20
107-06-2	1,2-Dichloroethane	50	49.0	98	47.2	94	4	78-126/20
75-35-4	1,1-Dichloroethene	50	47.0	94	44.4	89	6	69-126/20
156-59-2	cis-1,2-Dichloroethene	50	44.4	89	43.1	86	3	80-120/20
156-60-5	trans-1,2-Dichloroethene	50	44.3	89	41.4	83	7	76-120/20
78-87-5	1,2-Dichloropropane	50	41.3	83	40.8	82	1	82-121/20
142-28-9	1,3-Dichloropropane	50	42.8	86	42.6	85	0	83-115/20
594-20-7	2,2-Dichloropropane	50	48.8	98	43.8	88	11	65-133/20
563-58-6	1,1-Dichloropropene	50	46.1	92	44.9	90	3	80-121/20

Page 2 of 3

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc. **Project:** Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Analytical Batch	Prep Batch	Prep Date	By	Analyzed	DF	File ID	Sample
VL8248	n/a	n/a	JC	08/15/17	1	L293598.D	VL8248-BS
VL8248	n/a	n/a	JC	08/15/17	1	L293599.D	VL8248-BSD
	π/ α	ii/ a	30	00/13/17	1	L2)33/).D	V E0240-B5D

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
10061-01-5	cis-1,3-Dichloropropene	50	45.2	90	44.6	89	1	83-120/20
	trans-1,3-Dichloropropene	50	46.4	93	46.2	92	0	82-121/20
123-91-1	1,4-Dioxane	1250	1320	106	1220	98	8	52-147/20
60-29-7	Ethyl Ether	50	42.8	86	42.1	84	2	78-124/20
100-41-4	Ethylbenzene	50	45.7	91	44.9	90	2	80-120/20
87-68-3	Hexachlorobutadiene	50	50.9	102	48.7	97	4	75-129/20
591-78-6	2-Hexanone	200	169	85	173	87	2	65-132/20
98-82-8	Isopropylbenzene	50	47.8	96	45.9	92	4	83-120/20
99-87-6	p-Isopropyltoluene	50	49.2	98	47.6	95	3	83-122/20
1634-04-4	Methyl Tert Butyl Ether	50	45.9	92	44.1	88	4	80-119/20
108-10-1	4-Methyl-2-pentanone(MIBK)	200	176	88	171	86	3	71-131/20
74-95-3	Methylene bromide	50	45.5	91	44.1	88	3	85-120/20
75-09-2	Methylene chloride	50	43.3	87	42.0	84	3	77-120/20
91-20-3	Naphthalene	50	53.9	108	51.0	102	6	73-131/20
103-65-1	n-Propylbenzene	50	44.8	90	44.0	88	2	82-119/20
100-42-5	Styrene	50	45.8	92	45.3	91	1	82-122/20
75-65-0	Tert Butyl Alcohol	250	290	116	241	96	18	78-126/20
994-05-8	tert-Amyl Methyl Ether	50	46.0	92	43.8	88	5	81-124/20
637-92-3	tert-Butyl Ethyl Ether	50	45.9	92	44.1	88	4	79-128/20
630-20-6	1,1,1,2-Tetrachloroethane	50	49.6	99	48.2	96	3	82-121/20
79-34-5	1,1,2,2-Tetrachloroethane	50	47.8	96	46.8	94	2	76-119/20
127-18-4	Tetrachloroethene	50	46.0	92	47.2	94	3	70-131/20
109-99-9	Tetrahydrofuran	50	42.2	84	39.8	80	6	64-129/20
108-88-3	Toluene	50	44.4	89	43.5	87	2	80-120/20
87-61-6	1,2,3-Trichlorobenzene	50	55.5	111	51.9	104	7	76-134/20
120-82-1	1,2,4-Trichlorobenzene	50	55.5	111	51.6	103	7	79-132/20
71-55-6	1,1,1-Trichloroethane	50	51.4	103	47.8	96	7	81-128/20
79-00-5	1,1,2-Trichloroethane	50	43.6	87	43.7	87	0	83-118/20
79-01-6	Trichloroethene	50	45.5	91	44.3	89	3	80-120/20
75-69-4	Trichlorofluoromethane	50	60.8	122	55.0	110	10	64-136/20
96-18-4	1,2,3-Trichloropropane	50	51.7	103	49.4	99	5	79-120/20
95-63-6	1,2,4-Trimethylbenzene	50	46.5	93	45.0	90	3	84-120/20
108-67-8	1,3,5-Trimethylbenzene	50	47.9	96	45.8	92	4	83-119/20
75-01-4	Vinyl chloride	50	43.7	87	38.7	77	12	51-135/20
	m,p-Xylene	100	91.2	91	88.0	88	4	80-120/20
95-47-6	o-Xylene	50	45.4	91	43.9	88	3	80-120/20

^{* =} Outside of Control Limits.

6.2.

Page 3 of 3

Method: SW846 8260C

Blank Spike/Blank Spike Duplicate Summary

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VL8248-BS	L293598.D	1	08/15/17	JC	n/a	n/a	VL8248
VL8248-BSD	L293599.D	1	08/15/17	JC	n/a	n/a	VL8248

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
1330-20-7	Xylene (total)	150	137	91	132	88	4	80-120/20

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	105%	103%	80-120%
17060-07-0	1,2-Dichloroethane-D4	107%	107%	81-124%
2037-26-5	Toluene-D8	98%	97%	80-120%
460-00-4	4-Bromofluorobenzene	100%	102%	80-120%

^{* =} Outside of Control Limits.

Instrument Performance Check (BFB)

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample: VL8203-BFB **Injection Date:** 07/12/17 Lab File ID: L292475.D **Injection Time:** 09:38

Instrument ID: GCMSL

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	15.0 - 40.0% of mass 95	20093	18.2	Pass
75	30.0 - 60.0% of mass 95	53275	48.3	Pass
95	Base peak, 100% relative abundance	110365	100.0	Pass
96	5.0 - 9.0% of mass 95	7435	6.74	Pass
173	Less than 2.0% of mass 174	0	0.00 (0.00) a	Pass
174	50.0 - 120.0% of mass 95	98413	89.2	Pass
175	5.0 - 9.0% of mass 174	7972	7.22 (8.10) a	Pass
176	95.0 - 101.0% of mass 174	96496	87.4 (98.1) a	Pass
177	5.0 - 9.0% of mass 176	6434	5.83 (6.67) ^b	Pass

⁽a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VL8203-IC8203	L292476.D	07/12/17	10:27	00:49	Initial cal 0.2
VL8203-IC8203	L292477.D	07/12/17	10:54	01:16	Initial cal 0.5
VL8203-IC8203	L292478.D	07/12/17	11:21	01:43	Initial cal 1
VL8203-IC8203	L292479.D	07/12/17	11:48	02:10	Initial cal 2
VL8203-IC8203	L292480.D	07/12/17	12:15	02:37	Initial cal 5
VL8203-IC8203	L292481.D	07/12/17	12:42	03:04	Initial cal 10
VL8203-IC8203	L292482.D	07/12/17	13:09	03:31	Initial cal 20
VL8203-ICC8203	L292483.D	07/12/17	13:36	03:58	Initial cal 50
VL8203-IC8203	L292484.D	07/12/17	14:04	04:26	Initial cal 100
VL8203-IC8203	L292485.D	07/12/17	14:31	04:53	Initial cal 200
VL8203-ICV8203	L292488.D	07/12/17	15:52	06:14	Initial cal verification 50
VL8203-ICV8203	L292489.D	07/12/17	16:19	06:41	Initial cal verification 50

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc. Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Sample: VL8248-BFB **Injection Date:** 08/15/17 Lab File ID: L293596A.D **Injection Time:** 09:11

Instrument ID: GCMSL

m/e	Ion Abundance Criteria	Raw Abundance	% Relativ Abundan	-	Pass/Fail
50	15.0 - 40.0% of mass 95	14453	17.3		Pass
75	30.0 - 60.0% of mass 95	40795	48.9		Pass
95	Base peak, 100% relative abundance	83413	100.0		Pass
96	5.0 - 9.0% of mass 95	4951	5.94		Pass
173	Less than 2.0% of mass 174	0	0.00	(0.00) a	Pass
174	50.0 - 120.0% of mass 95	77539	93.0		Pass
175	5.0 - 9.0% of mass 174	6377	7.65	(8.22) a	Pass
176	95.0 - 101.0% of mass 174	76688	91.9	(98.9) a	Pass
177	5.0 - 9.0% of mass 176	5056	6.06	(6.59) ^b	Pass

⁽a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
VL8248-CC8203	L293596.D	08/15/17	09:11	00:00	Continuing cal 20
VL8248-MB	L293597.D	08/15/17	10:03	00:52	Method Blank
VL8248-BS	L293598.D	08/15/17	10:40	01:29	Blank Spike
VL8248-BSD	L293599.D	08/15/17	11:07	01:56	Blank Spike Duplicate
ZZZZZZ	L293601.D	08/15/17	12:00	02:49	(unrelated sample)
ZZZZZZ	L293602.D	08/15/17	12:27	03:16	(unrelated sample)
ZZZZZZ	L293603.D	08/15/17	12:53	03:42	(unrelated sample)
ZZZZZZ	L293604.D	08/15/17	13:20	04:09	(unrelated sample)
ZZZZZZ	L293606.D	08/15/17	14:42	05:31	(unrelated sample)
JC48894-6	L293609.D	08/15/17	17:44	08:33	(used for QC only; not part of job JC48965)
JC48894-6	L293610.D	08/15/17	18:10	08:59	(used for QC only; not part of job JC48965)
JC48894-6MS	L293611.D	08/15/17	18:37	09:26	Matrix Spike
JC48894-6MSD	L293612.D	08/15/17	19:04	09:53	Matrix Spike Duplicate
ZZZZZZ	L293614.D	08/15/17	19:57	10:46	(unrelated sample)
JC48965-1	L293615.D	08/15/17	20:23	11:12	MW-3

⁽b) Value is % of mass 176

Volatile Internal Standard Area Summary

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc.

Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

 Check Std:
 VL8248-CC8203
 Injection Date:
 08/15/17

 Lab File ID:
 L293596.D
 Injection Time:
 09:11

Instrument ID: GCMSL Method: SW846 8260C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std	192506	7.50	199290	9.77	284393	10.70	256424	13.81	162733	16.12
Upper Limit ^a	385012	8.00	398580	10.27	568786	11.20	512848	14.31	325466	16.62
Lower Limit b	96253	7.00	99645	9.27	142197	10.20	128212	13.31	81367	15.62
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
VL8248-MB	201875	7.47	212946	9.77	302098	10.70	271603	13.81	179384	16.12
VL8248-BS	159379	7.48	186006	9.77	270240	10.70	246854	13.81	152254	16.12
VL8248-BSD	182687	7.49	208515	9.77	302411	10.71	274653	13.81	165623	16.11
ZZZZZZ	197297	7.48	205546	9.77	288620	10.70	285563	13.81	171678	16.11
ZZZZZZ	228770	7.48	225898	9.76	306363	10.70	295712	13.81	180996	16.11
ZZZZZZ	290040	7.49	245002	9.77	338722	10.70	304984	13.81	180200	16.11
ZZZZZZ	249975	7.49	245828	9.77	346267	10.70	275522	13.81	94013	16.12
ZZZZZZ	261887	7.51	222767	9.77	315579	10.70	251106	13.81	92503	16.11
JC48894-6	223248	7.50	233516	9.77	334653	10.70	298372	13.81	182881	16.12
JC48894-6	216350	7.50	256251	9.77	360252	10.70	322991	13.81	184867	16.11
JC48894-6MS	191759	7.53	221680	9.77	323038	10.70	298608	13.81	170737	16.11
JC48894-6MSD	184087	7.50	223695	9.76	328467	10.70	296943	13.81	176526	16.11
ZZZZZZ	201776	7.52	260352	9.77	366144	10.71	340738	13.81	211465	16.12
JC48965-1	209288	7.52	254988	9.77	364585	10.71	327103	13.81	208509	16.12

IS 1 = Tert Butyl Alcohol-D9
IS 2 = Pentafluorobenzene
IS 3 = 1,4-Difluorobenzene
IS 4 = Chlorobenzene-D5
IS 5 = 1,4-Dichlorobenzene-d4

(a) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Surrogate Recovery Summary

Job Number: JC48965

Account: WEBMAN Web Engineering Associates, Inc.
Project: Colonial Oil, 8 Emerson Avenue, Chelmsford, MA

Method: SW846 8260C Matrix: AQ

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1	S2	S3	S4
JC48965-1	L293615.D	102	107	100	99
VL8248-BS	L293598.D	105	107	98	100
VL8248-BSD	L293599.D	103	107	97	102
VL8248-MB	L293597.D	104	113	100	94

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 80-120%

 S2 = 1,2-Dichloroethane-D4
 81-124%

 S3 = Toluene-D8
 80-120%

 S4 = 4-Bromofluorobenzene
 80-120%

Date: 1/22/2008 Revision: 02

Material Safety Data Sheet

StormKlear: Liqui-Floc 1%

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

Manufacturer's Name: HaloSource, Inc.

Corporate Address: 1631 220th St. SE, Suite 100, Bothell, WA 98021 **Manufacturer's Telephone:** (425) 881-6464 (Monday-Friday, 8AM-5PM PDT)

Emergency Telephone: 800-424-9300 Chemtrec (24 Hours)

Material/Trade/Product Name: StormKlear: Liqui-Floc 1%

Synonyms: None

Chemical Name:Chitosan AcetateChemical Formula:Not availableCAS No.:Not applicable.EPA Registration #:Not applicable

Product Use: Flocculates soil contamination in storm water.

SECTION 2: COMPOSITION/INFORMATION ON INGREDIENTS

CAS NO.	COMPONENT	%	OSHA HAZARDOUS ?
64-19-7	Acetic Acid	1	YES
	All other components are non-hazardous.	99	NO

NOTE: See Section 8 for permissible exposure limits.

SECTION 3: HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

Clear to pale yellow viscous liquid with a pungent vinegar odor.

May be mildly irritating to eyes. Not likely to be hazardous to skin, respiratory tract, or by ingestion.

POTENTIAL HEALTH EFFECTS

EYE: May be mildly irritating to eyes.

SKIN: Not hazardous to skin.

INHALATION: Not likely to be hazardous by inhalation.

INGESTION: Not likely to be hazardous by ingestion.

StormKlear: Liqui-Floc 1% Page Number: 2 of 6

CHRONIC EXPOSURE/CARCINOGENICITY: None of the components present in this material at concentrations of equal to or greater than 0.1% are listed by IARC, NTP, OSHA or ACGIH as a carcinogen.

SIGNS AND SYMPTOMS OF OVEREXPOSURE: Eye irritation.

AGGRAVATION OF PRE-EXISTING CONDITIONS: None known.

POTENTIAL ENVIRONMENTAL EFFECTS: Material is 100% biodegradable and nontoxic.

SECTION 4: FIRST AID MEASURES

FIRST AID PROCEDURES

EYE CONTACT: Remove contact lenses (if applicable), flush with water for 15 minutes. Call a physician.

SKIN CONTACT: Cleansing the skin after exposure is advisable.

INHALATION: If large amounts of fumes are inhaled, remove to fresh air and consult a physician.

INGESTION: Consult a physician if necessary.

NOTE TO PHYSICIANS: None.

SECTION 5: FIRE FIGHTING MEASURES

FLASH POINT: Not available

UPPER FLAMMABLE LIMIT: Not available

LOWER FLAMMABLE LIMIT: Not available

FLAMMABLITY CLASS (OSHA): Not applicable FLAME PROPAGATION/BURNING RATE: Not available

UNIQUE FIRE PROPERTIES: None known.

HAZARDOUS COMBUSTION PRODUCTS: None.

EXTINGUISHING MEDIA: Does not burn. Use water, dry chemicals, carbon dioxide, sand or foam. Use extinguishing media appropriate for surrounding fire.

PROTECTION OF FIREFIGHTERS: Do not enter confined fire space without full bunker gear (helmet with face shield, bunker coat, gloves and rubber boots), including a positive pressure NIOSH approved self-contained breathing apparatus. Water may be used to keep fire-exposed containers cool until fire is out.

SECTION 6: ACCIDENTAL RELEASE MEASURES

PERSONAL PROTECTIVE EQUIPMENT: See Section 8 (Personal Protective Equipment).

ENVIRONMENTAL PRECAUTIONS: Material is 100% biodegradable and nontoxic.

METHODS FOR CLEANING UP: Dilute with water and hose down.

SECTION 7: HANDLING AND STORAGE

StormKlear: Liqui-Floc 1% Page Number: 3 of 6

SAFE HANDLING RECOMMENDATIONS

VENTILATION: General ventilation should be sufficient under normal conditions.

FIRE PREVENTION: Non-flammable, no special fire protection required.

SPECIAL HANDLING REQUIREMENTS: Avoid eye contact.

SAFE STORAGE RECOMMENDATIONS

CONTAINMENT: The container should be kept covered to prevent contamination.

STORAGE ROOM RECOMMENDATIONS: Store in a cool, dry, well-ventilated area away from direct heat.

INCOMPATIBLE MATERIALS: Strong oxidizing material and strong bases.

STORAGE CONDITIONS: 10-50°C recommended (will freeze @ ~3°C). Shelf life is indefinite but viscosity will decrease over time.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: General ventilation should be sufficient under normal conditions.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

EYE/FACE PROTECTION: Safety glasses recommended.

SKIN PROTECTION: For operations where skin contact can occur, wear impervious clothing such as apron, boots, or whole bodysuit.

HAND PROTECTION: For operations where hand contact can occur, rubber gloves recommended.

RESPIRATORY PROTECTION: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use. Respirator use is not required for this product.

GOOD HYGEIENE/WORK PRACTICES: Always follow good hygiene/work practices by avoiding vapors or mists and contact with eyes and skin. Thoroughly wash hands after handling and before eating or drinking. Always wear the appropriate PPE when repairing or performing maintenance on contaminated equipment.

EXPOSURE GUIDELINES

PERMISSIBLE EXPOSURE LIMITS						
INGREDIENT OSHA		HA	WISHA		ACGIH (TLV)	
CAS NO.	TWA	STEL	TWA	STEL	TWA	STEL
64-19-7	10 ppm	25 ppm	10 ppm	20 ppm	10 ppm	15 ppm

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

COLOR: Clear to pale yellow

SHAPE: Viscous liquid

PHYSICAL FORM: Viscous liquid

ODOR: Pungent vinegar odor

VAPOR PRESSURE: Not available

StormKlear: Liqui-Floc 1% Page Number: 4 of 6

BOILING POINT: 211°F

VAPOR DENSITY: Not available

MELTING POINT: Not available FREEZING POINT: Not available

SOLUBILITY IN WATER: Soluble **SPECIFIC GRAVITY OR DENSITY:** 1.0-1.1 g/mL

NOTE: These physical data are typical values based on material tested but may vary from sample to sample. Values should not be construed as a guaranteed analysis of any specific lot or as specifications.

SECTION 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: Stable.

CONDITIONS TO AVOID: Freezing temperatures or excess heat (for quality purposes).

MATERIALS TO AVOID (INCOMPATIBILITY): Strong oxidizing material and strong bases.

HAZARDOUS DECOMPOSITION PRODUCTS: Decomposition will not occur.

HAZARDOUS POLYMERIZATION: Will not occur.

SECTION 11: TOXICOLOGICAL INFORMATION

ORAL LD₅₀ (rat): Not available.

DERMAL LD₅₀ (rabbit): Not available.

SKIN IRRITATION: Not available.

EYE IRRITATION: Not available.

SKIN SENSITIZATION: Not available.

ADDITIONAL INFORMATION:

SECTION 12: ECOLOGICAL INFORMATION

ECOTOXICITY (in water):

Acute Toxicity

- Daphnia: LC50 13.7 mg/L
- Daphnia: LC25 Not Calculable
- Fathead Minnows: LC50 6.42 mg/L
- Fathead Minnows: LC25 Not Calculable
- Rainbow Trout: LC50 1.73 mg/L
- Rainbow Trout: LC25 1.29 mg/L

Chronic Toxicity

- Rainbow Trout: LC50 1.54 mg/L, 7 days
- Rainbow Trout: LC25 1.21 mg/L, 7 days
- Rainbow Trout: IC25 >2.50 mg/L, 7 days
- Fathead Minnows: LC50 >10 mg/L, 7 days
- Fathead Minnows: LC25 Not Calculable
- Fathead Minnows: IC25 6.88 mg/L, 7 days

StormKlear: Liqui-Floc 1% Page Number: 5 of 6

MOBILITY: Not available.

PERSISTENCE AND DEGRADABILITY: Not available.

BIOACCUMULATIVE POTENTIAL: Not available.

ADDITIONAL INFORMATION: Not available.

SECTION 13: DISPOSAL CONSIDERATIONS

If this product as supplied becomes a waste, it <u>does not</u> meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal regulations. Consult state and local regulations regarding the proper disposal of this material.

NOTE: Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate.

SECTION 14: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT):

Proper Shipping Name:
Hazard Class:
Identification Number (UN Number):
Packing Group (PG):

Not Regulated
Not Regulated
Not Regulated

SECTION 15: REGULATORY INFORMATION

TSCA STATUS: Listed

CERCLA REPORTABLE QUANTITY (RQ):

CHEMICAL NAME	RQ
Acetic Acid	5000 lbs

SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (EHS):

CHEMICAL NAME	TPQ	RQ
Not applicable	Not applicable	Not applicable

SARA TITLE III SECTION 311/312 HAZARD CATEGORIES: Does this product/material meet the definition of the following hazard classes according to the EPA 'Hazard Categories' promulgated under Sections 311 and 312 of SARA Title III?

ACUTE HEALTH HAZARD	CHRONIC HEALTH HAZARD	FIRE HAZARD	REACTIVE HAZARD	SUDDEN RELEASE OF PRESSURE
NO	NO	NO	NO	NO

StormKlear: Liqui-Floc 1% Page Number: 6 of 6

SARA TITLE III SECTION 313 TOXIC CHEMICALS INFORMATION:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

CALIFORNIA PROPOSITION 65: The following chemical(s) is/are known to the state of California to cause cancer or reproductive toxicity:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

SECTION 16: OTHER INFORMATION

REVISION INFORMATION:

MSDS sections(s) changed since last revision of document:

• Section 12, new Ecotoxicity data was updated.

DISCLAIMER:

**

The above information is based upon information HaloSource, Inc. believes to be reliable and is supplied for informational purposes only. HaloSource, Inc. disclaims any liability for damage which results from the use of the above information and nothing contained therein shall constitute a guarantee, warranty (including fitness for a particular purpose) or representation with respect to the accuracy or completeness of the data, the product described or their use for any specific purpose even if that purpose is known to HaloSource, Inc. The final determination of the suitability of the information, the manner of use of the information or product and potential infringement is the sole responsibility of the user.

**

MSDS PREPARED BY: Jeremy Heath, EH&S Specialist

Material Safety Data Sheet Sodium bicarbonate MSDS

Section 1: Chemical Product and Company Identification

Product Name: Sodium bicarbonate

Catalog Codes: SLS3241, SLS2446, SLS3868

CAS#: 144-55-8

RTECS: VZ0950000

TSCA: TSCA 8(b) inventory: Sodium bicarbonate

CI#: Not available.

Synonym: Baking Soda; Bicarbonate of soda; Sodium acid carbonate; Monosodium carbonate; Sodium hydrogen

carbonate: Carbonic acid monosodium salt

Chemical Name: Sodium Bicarbonate

Chemical Formula: NaHCO3

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247

International Sales: 1-281-441-4400
Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call:

1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS#	% by Weight
Sodium bicarbonate	144-55-8	100

Toxicological Data on Ingredients: Not applicable.

Section 3: Hazards Identification

Potential Acute Health Effects: Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation.

Potential Chronic Health Effects:

CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. Repeated or prolonged exposure is not known to aggravate medical condition.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention if irritation occurs.

Skin Contact:

Wash with soap and water. Cover the irritated skin with an emollient. Get medical attention if irritation develops. Cold water may be used.

Serious Skin Contact: Not available.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Serious Inhalation: Not available.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms appear.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Non-flammable.

Auto-Ignition Temperature: Not applicable.

Flash Points: Not applicable.

Flammable Limits: Not applicable.

Products of Combustion: Not available.

Fire Hazards in Presence of Various Substances: Not applicable.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions: Not applicable.

Special Remarks on Fire Hazards: When heated to decomposition it emits acrid smoke and irritating fumes.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

Use appropriate tools to put the spilled solid in a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Use a shovel to put the material into a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system.

Section 7: Handling and Storage

Precautions:

Do not ingest. Do not breathe dust. If ingested, seek medical advice immediately and show the container or the label. Keep away from incompatibles such as acids.

Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.

Personal Protection: Safety glasses. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Dust respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits: Not available.

Section 9: Physical and Chemical Properties

Physical state and appearance: Solid.

Odor: Odorless.

Taste: Saline. Alkaline.

Molecular Weight: 84.01g/mole

Color: White.

pH (1% soln/water): Not available.

Boiling Point: Not available. **Melting Point:** Not available.

Critical Temperature: Not available.

Specific Gravity: Density: 2.159 (Water = 1)

Vapor Pressure: Not applicable.

Vapor Density: Not available.

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available. Ionicity (in Water): Not available.

Dispersion Properties: See solubility in water.

Solubility:

Soluble in cold water. Slightly soluble in alcohol. Solubility in Water: 6.4, 7.6, 8.7, 10.0, 11.3, 12.7, 14.2, 16.5, 19.1 g/100 solution at 0, 10, 20, 30, 40, 50, 60, 80, adn 100 deg. C, respectively. Solubility in Water: 6.9, 8,2, 9.6, 11.1, 12.7, 14.5, 16.5, 19.7, and 23.6 g/100g water at 0, 10, 20, 30, 40, 50, 60, 80, 100 deg. C, respectively.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Incompatible materials, Moisture. Stable in dry air, but slowly decomposes in moist air.

Incompatibility with various substances: Reactive with acids.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity:

Reacts with acids to form carbon dioxide. Dangerous reaction with monoammonium phosphate or a sodium-potassium alloy.

Special Remarks on Corrosivity: Not available.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Inhalation. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 3360 mg/kg [Mouse].

Chronic Effects on Humans: Not available.

Other Toxic Effects on Humans: Slightly hazardous in case of skin contact (irritant), of ingestion, of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans:

Sodium Bicarbonate as produced genetic effects in rats (unscheduled DNA synthesis). However, no affects have been found in humans.

Special Remarks on other Toxic Effects on Humans:

Acute Potential Health Effects: Skin: May cause mild skin irritation. Eyes: May cause mild eye irritation. Inhalation: May cause respiratory tract irritation. Symptoms may include coughing and sneezing. Ingestion: Symptoms of overexposure to Sodium Bicarbonate include thirst, abdominal pain, gastroenteritis, and inflammation of the digestive tract. Chronic Potential Health Effects: Skin: Repeated or prolonged skin contact may cause irritation, drying or cracking of the skin. Ingestion and Inhalation: Chronic toxicity usually occurs within 4 to 10 days following ingestion of very large amounts. Repeated or prolonged ingestion or inhalation of large amounts may cause metabolic abnormalities, and sodium retention. Metabolic abnormalities such as acidosis, hypernatremia, hypochloremia, alkalosis, hypocalcemia, or sodium retention may affect the blood, kidneys, respiration (cyanosis, apnea secondary to metabolic acidosis or pulmonary edema), and cardiovascular system (tachycardia, hypotension). Severe toxicity may also affect behavior/central nervous system/nervous system. Neurological changes may result from metabolic abnormalities. These may include fatigue, irritability, dizziness, mental confusion, paresthesia, seizures, tetany, cerebral edema Medical Conditions Aggravated by Exposure: Persons with pre-existing skin conditions might have increased sensitivity. Predisposing conditions that contribute to a mild alkali syndrome include, renal disease, dehydration, adn electrolyte imbalance, hypertension, sarcoidosis, congestive heart failure, edema, or other sodium retaining conditions.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations: TSCA 8(b) inventory: Sodium bicarbonate

Other Regulations: Not available.

Other Classifications:

WHMIS (Canada): Not controlled under WHMIS (Canada).

DSCL (EEC):

This product is not classified according to the EU regulations. Not applicable.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 0 Reactivity: 0

Personal Protection: E

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 0

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Safety glasses.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:26 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.