

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

100 NORTHERN AVENUE
BOSTON, MASSACHUSETTS

NOVEMBER 8, 2017

Prepared For:

U.S. Environmental Protection Agency
Office of Ecosystem Protection
5 Post Office Square – Suite 100
Mail Code OEP06-01
Boston, MA 02109-3912

On Behalf Of:

100 Northern Ave, LLC c/o CBRE New England One Marina Park Drive Boston, MA 02210

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

PROJECT NO. 4426

November 8, 2017

U.S. Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square – Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

Attention: To Whom It May Concern

Reference: 100 Northern Avenue, South Boston, Massachusetts

Notice of Intent for Dewatering Discharge Under

Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

On behalf of the 100 Northern Ave, LLC, McPhail Associates, LLC (McPhail) has prepared the attached Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 that has been prepared for the Commonwealth of Massachusetts for the discharge of permanent dewatering effluent into the Boston Inner Harbor via a private storm drainage system. The permanent discharge is located at 100 Northern Avenue in South Boston, Massachusetts (subject site). Refer to **Figure 1** entitled: "Project Location Plan" for the general site locus.

These services were performed and this permit application was prepared at the authorization of 100 Northern Ave, LLC. These services are subject to the limitations contained in **Appendix A**.

It is noted that this property has previously been assigned NPDES Permit Number MAG910606 by the EPA for a construction phase RGP permit. A copy of the signed letter of approval is included in **Appendix B**.

The required Notice of Intent Form contained in the RGP permit is included in **Appendix B** and supporting information is included in **Appendix C**.

Applicant/Operator

The applicant for the Notice of Intent-Dewatering General Permit is:

100 Northern Ave, LLC

Address: One Marina Park Drive Boston, MA 02210

Attention: Dave Martin Phone: (617) 295 0020

Email: dave.martin@cbre-ne.com

Site Location and Existing Conditions

The property located at 100 Northern Avenue occupies an approximate 67,400 square-foot rectangular plan area bounded by Building G to the west, parking lots to the east, Fan Pier Cove and the Institute of Contemporary Art (ICA) to the north, and Northern Avenue and existing parking areas to the south. A majority of the property is occupied by the footprint of a three level below-grade parking garage, the western portion of which is covered by an above-grade 17-story building. The footprint of the below-grade garage occupies an approximate 65,300 square-foot rectangular plan area, the lowest level slab which is located approximately 20 feet below ground surface. The limits of the subject site are depicted on **Figure 2**.

Groundwater Treatment and Permanent Dewatering

A permanent under slab drainage system has been installed beneath the lowest level slab of the garage to manage groundwater. Groundwater that is collected within the under slab drainage is passed through a treatment prior to being discharged off-site. The design of the treatment system is based in part upon the results of groundwater testing, which is further discussed below, that indicate the presence of elevated levels of metals and cyanide in groundwater at the property. The treatment system that is currently in operation at the property consists of one 900 gallon settling tank, two 5 micron bag filters, and two 1 micron ion media resin filters and has a maximum flow rate of gallons per minute capacity (gpm) of 35. The filters are changed out weekly/monthly or as needed in the case of the ion media resin. The water treatment system schematic is provided in the attached **Figure 3**.

Site Environmental Setting and Surrounding Historical Places

Based on an on-line edition of the Massachusetts Geographic Information Systems DEP Priority Resources Map (GIS Map) viewed on August 10, 2017, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the subject site identified the presence of one (1) endangered species at or in the vicinity of the discharge location and/or discharge outfall. IPaC indicates the Red Knot is a threatened species with respect to the proposed discharge, however, the report did not identify the presence of a critical habitat in the vicinity of the discharge outfall and/or discharge location. Furthermore, information obtained from an ornithology database, the Red Knot has not been observed in the vicinity of the discharge outfall and/or discharge location in approximately 100 years of data collection. Based upon the above, the site is considered a criterion C pursuant to Appendix

IV of the RGP. A copy of the IPaC Trust Resource Report and correspondence are included in **Appendix C**.

The GIS Map indicates that there are no water bodies or wetland areas on the subject site, but Boston Inner Harbor is located approximately 75 feet from the subject site. The map indicates that there are no known Protected Open Space within 0.5 miles of the subject site. A copy of the Massachusetts GIS Priority Resources Map is included in **Appendix C**.

A review of available subgrade sanitary and storm sewer system plans accessed from the BWSC indicates the presence of a private dedicated stormwater drain system located on the subject site. Records supplied by BWSC indicate a single discharge flow path adjacent to the site flow to a primary discharge outfall location. The primary discharge location is an outfall pipe listed SDO15 according to the BWSC. Multiple discharge locations and discharge flow paths are shown on the enclosed **Figure 2.**

A review of the online Massachusetts Cultural Resource Information System (MACRIS) and the National Register of Historical Places for Suffolk County in Boston, Massachusetts did not identify records or addresses of historic places that exist in the immediate vicinity of the subject site and/or outfall location. A copy of the MACRIS Report is included in **Appendix C**.

MCP Regulatory Status

Based upon pre-characterization chemical testing was completed in 1999, the entire 21-acre Fan Pier property, including the subject site, was listed as an MCP site under Release Tracking Number (RTN) 3-19647 on June 14, 2000. Reportable concentrations consisted of the presence of total petroleum hydrocarbons (TPH) and hazardous materials (lead, PCBs, and PAHs) in historical urban fill and underlying organic soils at the site at concentrations exceeding RCS-1 reportable concentrations. To satisfy the 120-day reporting obligation, a Release Notification Form (RNF) was prepared and submitted to Massachusetts Department of Environmental Protection (DEP) on June 14, 2000. A second RNF was filed with the DEP on October 4, 2013 for the presence of PCBs above the RCS-1 Standard of 2 milligrams per kilogram (mg/kg). DEP assigned RTN 3-31799 to this release.

According to Release Abatement Measure (RAM) Plans associated with RTNs 3-19647 and 3-31799, contaminated material was excavated from within the limits of the property and removed off-site. In addition to contaminated soil, construction of the below grade parking garage included the excavation and off-site removal of non-contaminated soil to a depth of approximately 25 feet below ground surface. Based upon the RAM activities that were completed at the property, a Class A2 Release Action Outcome (RAO) was filed with the DEP on June 14, 2004 for RTN 3-19647 and a Permanent Solution Statement was filed on September 26, 2014 for RTN 3-31799.

Summary of Groundwater Analysis

On June 28, 2017, an influent groundwater sample was collected and submitted for laboratory analysis for the parameters required by the previous RGP Authorization MAG910606. The results of this laboratory testing is summarized in **Table 1** and the laboratory report is included **Appendix D**. In conjunction with the updated 2017 NPDES RGP, a sample of water from the Boston Inner Harbor was obtained and analyzed for recoverable metals, ammonia, pH, and salinity, the results of which are summarized in **Table 2** and the laboratory data report is included in **Appendix E**.

In summary, ammonia, cyanide, arsenic, cadmium, copper, chloride, iron, lead, nickel, and zinc were detected in the influent sample obtained that was obtained prior to treatment. These detected concentrations were utilized in Appendix V of the 2017 RGP, to determine if Water Quality-Based Effluent Limitations (WQBELs) for specific inorganics apply. For discharging to saltwater with a dilution factor of 0, WQBELs apply for copper. It is noted that a Compliance Level for total polychlorinated biphenyls is indicated on the Appendix V calculations worksheet, the compliance level does not apply because no SVOCs were detected in the influent water sample and is therefore not applicable to the discharge. The Appendix V calculations also indicate Technology-Based Effluent Limitations (TBELs) apply for other Inorganics. A copy of the TBEL and WQBEL calculations is attached in **Appendix C**.

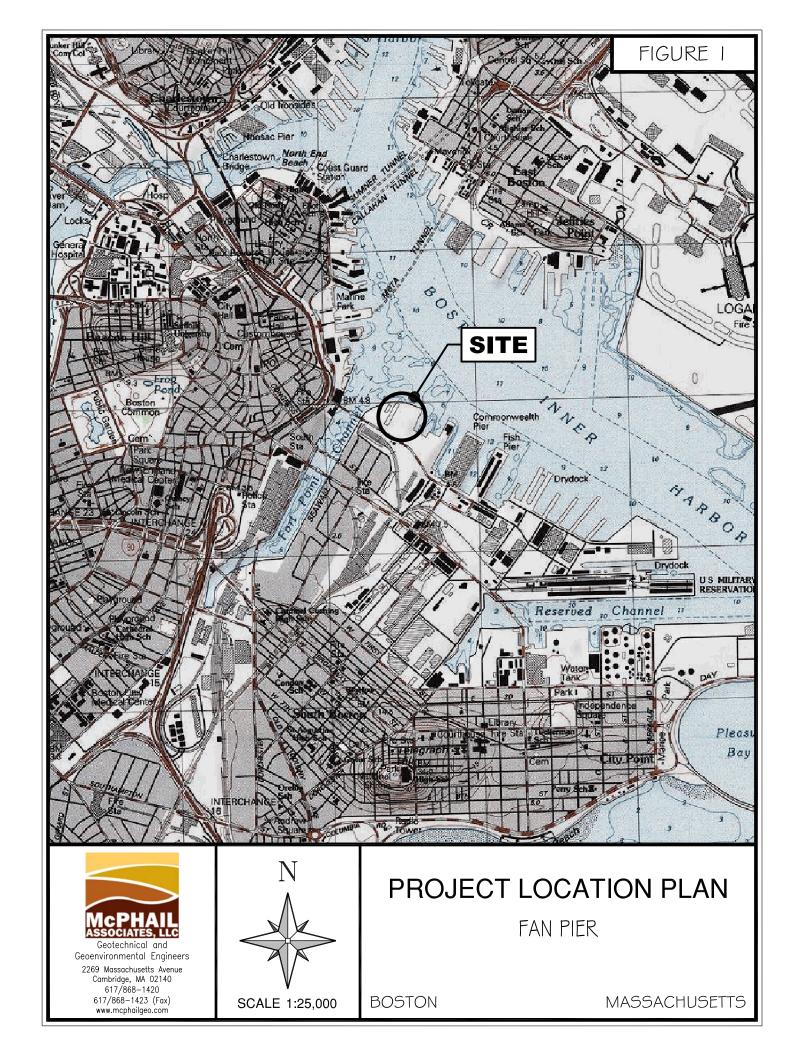
Summary and Conclusions

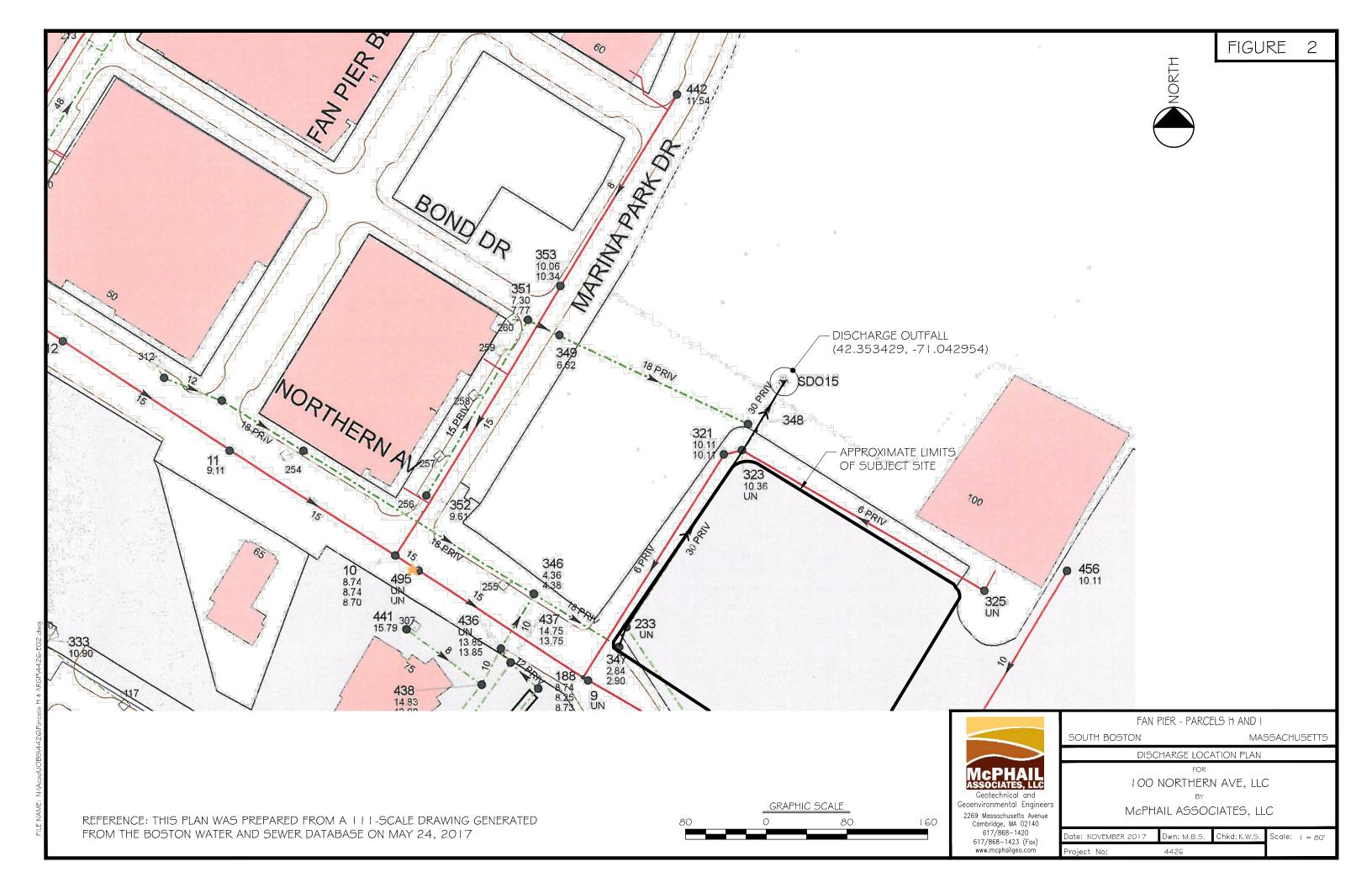
The purpose of this report is to assess site environmental conditions and groundwater data to support an application for a Massachusetts Remediation General Permit for off-site discharge of dewatered groundwater which is generated from the under-slab drainage system of Parcels H&I located at 88-110 Northern Avenue in South Boston, Massachusetts

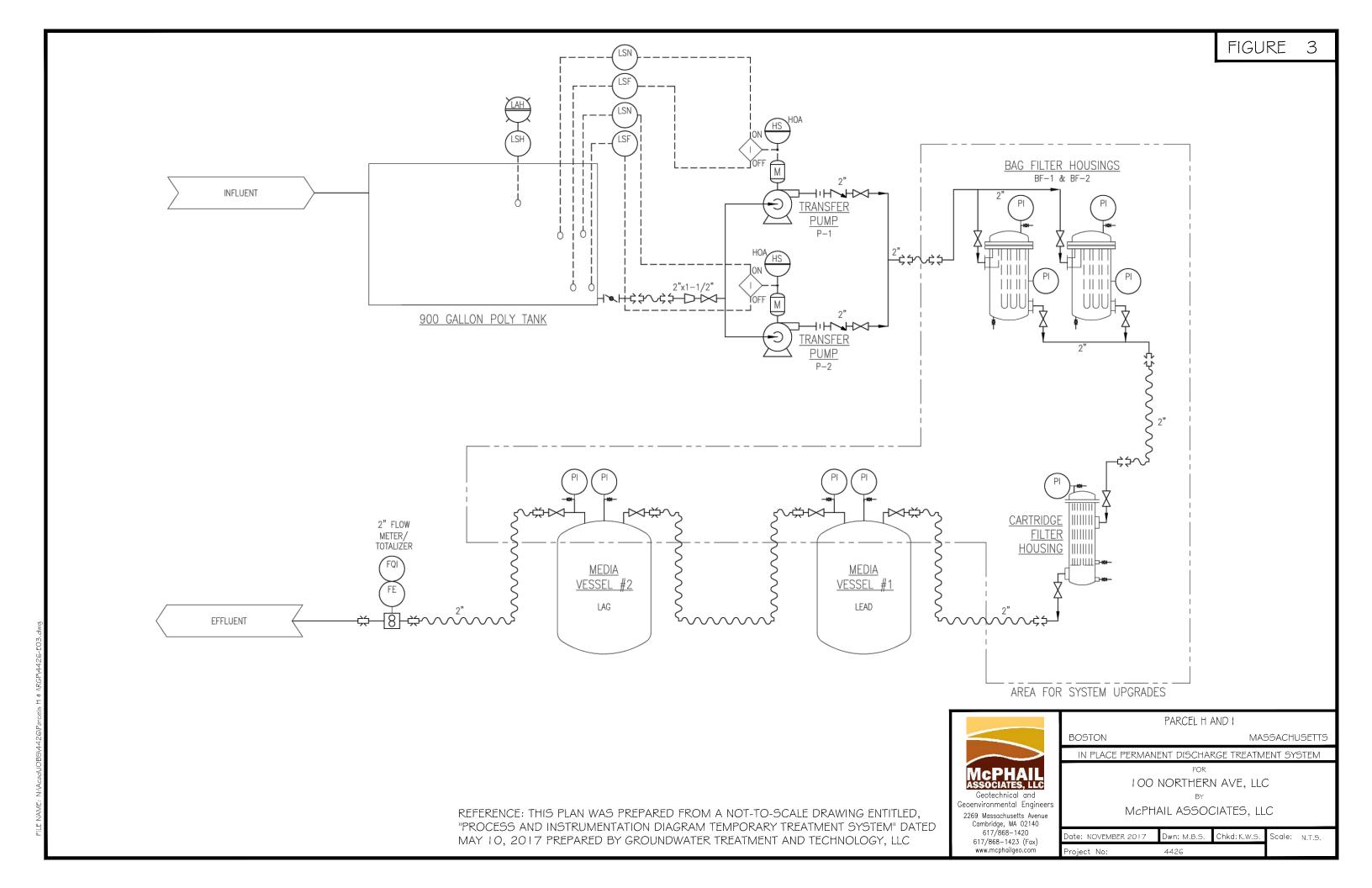
Based on the results of the above referenced groundwater analyses, the ongoing treatment of under slab drainage effluent is necessary to meet allowable WQBELs for copper as well as allowable TBELs for other inorganics established by the US EPA prior to off-site discharge. The current effluent treatment system consists of one 900 gallon settling tank, two 5 micron bag filters, and two 1 micron ion media resin filters and has a max gallons per minute capacity (gpm) of 35. Treatment of the effluent water will continue under the provisions of the new 2017 RGP (MAG9100000)

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Sincerely,


McPHAIL ASSOCIATES, LLC


Kirk W. Seaman


William J. Burns, L.S.P.

N:\Working Documents\Reports\4426 Parcel H&I_RGP_090717 Rev 1docx.docx

KWS/bed/wjb

TABLE 1

Analytical Test Results - Groundwater

100 Northern Avenue Boston, Massachusetts Project No. 4426

LOCATION	NPDES RGP	Parcel H&I
SAMPLING DATE	Limits	6/27/2017
LAB SAMPLE ID		L1721071-01
pН	6.5-8.3	7.4
Arsenic	36	5.002
Cadmium	8.9	<.2
Copper	3.7	82.6
Lead	8.5	1.08
Nickel	8.2	4.41
Zinc	85.6	1516
Selenium	71	<5.0
Iro n	1,000	320
Chloride	Monitor Only	2670
Cyanide	0.001	0.003
Acetone	Monitor Only	<5.0
Salinity	Monitor Only	4.6
Ammonia	Monitor Only	0.33
Total Suspended Solids	30	<5.0
Total Petroleum Hydrocarbons (TPH), Silica		
Gel Treated HEM (SGT-HEM)	5.0	<4.0
Polychlorinated Biphenyls (PCB's)	0.5	<.25
PolyCyclic Aromatic Hydrocarbons Part 1 (PAH)	10.0	
a. Benzo (a) Anthracene	0.0038	<0.10
b. Benzo (a) Pyrene	0.0038	<0.10
c. Benzo (b) Fluoranthene	0.0038	<0.10
d. Benzo (k) Flouranthene	0.0038	<0.10
e. Chrysene	0.0038	<0.10
f. Dibenzo (a,h) anthracene	0.0038	<0.10
g. Indeno (1,2,3-cd) Pyrene	0.0038	<0.10
PolyCyclic Aromatic Hydrocarbons Part 2 (PAH)	100.0 (total)	-
h. Acenaphthene	5.0	<0.10
i. Acenaphthylene	5.0	<0.10
j. Anthracene	5.0	<0.10
k. Benzo(ghi) Perylene	5.0	<0.10
l. Fluorathene	5.0	<0.10
m. Fluorene	5.0	<0.10
n. Naphthalene	5.0	<0.10
o. Phenanthrene	5.0	<0.10

TABLE 2 Analytical Test Results - Surface Water

100 Northern Avenue Boston, Massachusetts Project No. 4426

		BOSTON INNER
	O C A TITON	
L	OCATION	HARBOR
SA	AMPLING DATE	5/11/2017
L	AB SAMPLE ID	L1715446-01
		Results
General Chemistry	(SU & ug/l)	
S	ALINITY	20
N	itrogen, Ammonia	95
Total Metals (ug/l)		
A	rsenic, Total	ND
С	opper, Total	ND
Iro	on, Total	136
Le	ead, Total	ND
Zi	inc, Total	ND

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present a summary of environmental conditions, including the results of testing of groundwater samples obtained from a sump pit located on the property located at 100 Northern Ave in Boston, Massachusetts in support of an application for approval of permanent discharge of groundwater into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon analytical data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of 100 Northern Ave, LLC and CBRE of New England. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than the submission to relevant governmental agencies, nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT - NPDES REMEDIATION GENERAL PERMIT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1

5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

JAN 2 8 2014

The Fallon Company

James Heighton Senior Project Manager One Marina Park Drive Boston, MA 02210

JAN 28 2014

Received

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Fan Pier Parcels H and I site located at 88-110 Northern Avenue, Boston, MA 02210, Suffolk County; Authorization # MAG910606

Dear Mr. Heighton:

Based on the review of a Notice of Intent (NOI) submitted by McPhail Associates, LLC, on behalf of Two Harbor Shore LLC, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters based on the history of pollution at the site.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. With the absence of dilution of freshwater into tidal water, EPA determined that the Dilution Factor Range (DFR) for each parameter for this site is in the one and five (1-5) range. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for arsenic of 36 ug/L, trivalent chromium of 100 ug/L, copper of 3.7 ug/L, lead of 8.5 ug/L, nickel of 8.2 ug/L, zinc of 85.6 ug/L and iron of 1,000 ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on September 1, 2015. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction

Permits Section

Enclosure

cc: Robert Kubit, MassDEP

Paul Canavan, Boston, BWSC

2010 Remediation General Permit Summary of Monitoring Parameters $^{[1]}$

	MAG910606
Januai	ry, 2014
Fan Pi	erce Parcels H and I
88-11	0 Northern Ave. Boston, MA 02210, Suffolk County
Email	address of owner: <u>iheighton@falloncompany.com</u>
r:	Two Harbor Shore LLC
title,	James Heighton, Senior Project Manager Address same as Owner
	Email: Same as the Owner
Estimated date of the Site's work completion: September 1, 2015	
Category and Sub-Category: Category III- Contaminated Construction Dewatering. Subcategory B. Known Contaminated Sites	
Termination Date: September 10, 2015	
	Boston Harbor
	Email r: title,

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = .5 ug/L **/ Me#330.5/ML 20ug/L
√	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) 2, 3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L

	Ti -	
	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	 Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) 4 	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
✓]=-14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m-DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride	2.0 ug/L /Me#8260C/ ML 5ug/L
	(Chloroethene)	
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
<u> </u>	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates	3.0 ug/L ** /Me#8270D/ML 5ug/L,
	(Phthalate esters) ⁶	Me#606/ML 10ug/L& Me#625/ML 5ug/L
	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
<u></u>	Prichalace]	J DUG/L

		Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily
S	<u>Parameter</u>	Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
✓	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
✓	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
✓	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
✓	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
✓	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
✓	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	1. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
7	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
√	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

	Total Recoverable	
	MA/Metal Limit	
	$H^{10} = 50 \text{ mg/l CaCO3}$	<u>Minimum</u>
<u>Metal Parameters</u>	$Units = uq/l^{(11/12)}$	level=ML

		Saltwater <u>Limits</u>		
	39. Antimony	5.6	ML	10
✓	40. Arsenic **	36	ML	20
	41. Cadmium **	8.9	ML	10
\checkmark	42. Chromium III (trivalent) **	100	ML	15
	43. Chromium VI (hexavalent) **	50.3	ML	10
\checkmark	44. Copper **	3.7	ML	15
√	45. Lead **	8.5	ML	20
	46. Mercury **	1.1	ML	02
√	47. Nickel **	8.2	ML	20
	48. Selenium **	71	ML	20
	49. Silver	2.2	ML	10
✓	50. Zinc **	85.6	ML	15
_√	51. Iron	1,000	ML	20

	Other Parameters	Limi <u>t</u>
✓	52. Instantaneous Flow	Site specific in CFS
	53. Total Flow	Site specific in CFS
	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

- ³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).
- ⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.
- ⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.
- ⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.
- Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.
- ⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.
- ⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.
- ⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

 ¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.
- ¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.
- Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).
- "pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.
- Temperature sampling per Method 170.1

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Name of site: 100 Northern Ave	Site address: 88-110 Northern Avenue Street:			
	City: Boston		State: MA	^{Zip:} 02210
2. Site owner 100 Northern Ave, LLC	Contact Person: James Heighton			
100 11011117110, 220	Telephone: 617 737 4100 Email: jhe		ighton@fall	oncompany.com
	Mailing address: One Marina Park Drive Street:			
Owner is (check one): Federal State/Tribal Private Other; if so, specify:	City: Boston		State: MA	Zip: ₀₂₂₁₀
3. Site operator, if different than owner	Contact Person: Dave Martin			
CBRE/ New England	Telephone: 617-295-0020	Email: dav	ve.martin@cbre-ne.com	
	Mailing address: One Marina Park Drive Street:			
	City: Boston		State: MA	Zip: 02210
4. NPDES permit number assigned by EPA: MAG910606	5. Other regulatory program(s) that apply to the site (check all that apply):			
	■ MA Chapter 21e; list RTN(s): 3-19647 & □ CERCLA 3-31799			
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or	☐ UIC Program ☐ POTW Pretreatment		İ
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:		VA Section 404	

B. Receiving water information:					
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classi	fication of receiving water(s):		
Boston Inner Harbor	MA70-02	SB			
Receiving water is (check any that apply): Outstan	ding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic	River		
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: ■ Yes □ No			
Are sensitive receptors present near the site? (check of If yes, specify:	ne): □ Yes ■ No				
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Charles River MA72-36 - See Appendix C for further information					
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.					
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.					
If yes, indicate date confirmation received: 0	6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ■ Yes □ No If yes, indicate date confirmation received: 0				
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	e instruction in Appendix VIII?		
(check one): ■ Yes □ No		<u></u>			
C. Source water information:					
1. Source water(s) is (check any that apply):					
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:		
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other			
in accordance with the instruction in Appendix VIII? (check one):	th the instruction in Appendix RGP in accordance with the instruction in		f Other; if so, specify:		
■ Yes □ No	□ Yes □ No				

2. Source water contaminants: TSS, Chloride, Arsenic, Chromium, Copper, Iron, Lead, and Zinc				
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance			
the RGP? (check one): Yes No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No			
3. Has the source water been previously chlorinated or otherwise contains resid	ual chlorine? (check one): ☐ Yes ■ No			
D. Discharge information				
1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	discharge New source			
Outfall(s): SDO 15	Outfall location(s): (Latitude, Longitude) 42.353429, -71.042954			
Discharges enter the receiving water(s) via (check any that apply): Direct discharge to the receiving water Indirect discharge, if so, specify:				
Discharge outfall direct into Boston Inner Harbor				
■ A private storm sewer system □ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system:				
Has notification been provided to the owner of this system? (check one): ■ Yes □ No				
Has the operator has received permission from the owner to use such system for discharges? (check one): Yes No, if so, explain, with an estimated timeframe for obtaining permission:				
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ■ No				
Provide the expected start and end dates of discharge(s) (month/year): Permanent System				
Indicate if the discharge is expected to occur over a duration of: ☐ less than 12 months ■ 12 months or more ☐ is an emergency discharge				
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ■ Yes □ No				

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	ompounds Organic Compounds			
☐ I – Petroleum-Related Site Remediation ☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing 	G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
□ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

	Known	Known	ļ	T	B	In	fluent	Effluent Lii	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	t	44350.1	75	0.33	0.33	Report mg/L	
Chloride		. 1	1	443000	500	2670	2670	Report μg/l	
Total Residual Chlorine	1		1	121,4500C	20	<di.< td=""><td><di.< td=""><td>0.2 mg/L</td><td></td></di.<></td></di.<>	<di.< td=""><td>0.2 mg/L</td><td></td></di.<>	0.2 mg/L	
Total Suspended Solids	1		1	1212540D	5000	<di< td=""><td><di.< td=""><td>30 mg/L</td><td></td></di.<></td></di<>	<di.< td=""><td>30 mg/L</td><td></td></di.<>	30 mg/L	
Antimony	/		1	1.6020A	4	<di.< td=""><td><dl< td=""><td>206 μg/L</td><td></td></dl<></td></di.<>	<dl< td=""><td>206 μg/L</td><td></td></dl<>	206 μg/L	
Arsenic		1	1	1,6020A	0.5	5.002	5.002	104 μg/L	
Cadmium	•		1	1.6020A	2	<di.< td=""><td><di.< td=""><td>10.2 μg/L</td><td></td></di.<></td></di.<>	<di.< td=""><td>10.2 μg/L</td><td></td></di.<>	10.2 μg/L	
Chromium III	1		1	1,6020A	1	<di.< td=""><td><di.< td=""><td>323 μg/L</td><td></td></di.<></td></di.<>	<di.< td=""><td>323 μg/L</td><td></td></di.<>	323 μg/L	
Chromium VI	1		1	1.6020A	1	<di.< td=""><td><di.< td=""><td>323 μg/L</td><td></td></di.<></td></di.<>	<di.< td=""><td>323 μg/L</td><td></td></di.<>	323 μg/L	
Copper		1	1	1.6020A	L	82.6	82.6	242 μg/L	
Iron		1	1	19200.7	500	320	320	5,000 μg/L	_
Lead		✓	1	1,6020A	0.5	1.08	1.08	160 μg/L	
Mercury	1		1	3,245.1	0,2	<di.< td=""><td><di< td=""><td>0.739 μg/L</td><td></td></di<></td></di.<>	<di< td=""><td>0.739 μg/L</td><td></td></di<>	0.739 μg/L	
Nickel		1		1,6020A	0,5	4 41	441	1,450 μg/L	
Selenium	1		1	1,6020A	5	<dl< td=""><td><di.< td=""><td>235.8 μg/L</td><td></td></di.<></td></dl<>	<di.< td=""><td>235.8 μg/L</td><td></td></di.<>	235.8 μg/L	
Silver	1		1	1,6020A	0.4	<dl:< td=""><td><di.< td=""><td>35.1 μg/L</td><td></td></di.<></td></dl:<>	<di.< td=""><td>35.1 μg/L</td><td></td></di.<>	35.1 μg/L	
Zinc		✓	1	1.6020A	10.	1516	1516	420 μg/L	
Cyanide		1	1	121,4500C	5	0.003	0.003	178 mg/L	-
B. Non-Halogenated VOC	s								
Total BTEX	1		0			<di.:< td=""><td><dl:< td=""><td>100 μg/L</td><td>***</td></dl:<></td></di.:<>	<dl:< td=""><td>100 μg/L</td><td>***</td></dl:<>	100 μg/L	***
Benzene	1		0			<d1.< td=""><td><di.< td=""><td>5.0 μg/L</td><td></td></di.<></td></d1.<>	<di.< td=""><td>5.0 μg/L</td><td></td></di.<>	5.0 μg/L	
1,4 Dioxane	1		0			<di.< td=""><td><di.< td=""><td>200 μg/L</td><td></td></di.<></td></di.<>	<di.< td=""><td>200 μg/L</td><td></td></di.<>	200 μg/L	
Acetone	1		0			<dl< td=""><td><dl< td=""><td>7.97 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>7.97 mg/L</td><td></td></dl<>	7.97 mg/L	
Phenol	-		0			<dl< td=""><td><dl:< td=""><td>1,080 µg/L</td><td></td></dl:<></td></dl<>	<dl:< td=""><td>1,080 µg/L</td><td></td></dl:<>	1,080 µg/L	

-	Known	Known	1	<u> </u>	<u> </u>	In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
C. Halogenated VOCs	·		-						
Carbon Tetrachloride	1		1	18260C	0.5	<di :<="" td=""><td><dl< td=""><td>4.4 μg/L</td><td></td></dl<></td></di>	<dl< td=""><td>4.4 μg/L</td><td></td></dl<>	4.4 μg/L	
1,2 Dichlorobenzene	1		1	18260C	2.5	<dl< td=""><td><di.< td=""><td>600 μg/L</td><td></td></di.<></td></dl<>	<di.< td=""><td>600 μg/L</td><td></td></di.<>	600 μg/L	
1,3 Dichlorobenzene	1		1	18260C_	2.5	<dl< td=""><td><dl< td=""><td>320 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>320 μg/L</td><td></td></dl<>	320 μg/L	
1,4 Dichlorobenzene	1		1	18260C	2.5	<di.< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></di.<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Total dichlorobenzene	1		1	18260C	2.5	<dl< td=""><td><di.< td=""><td>763 μg/L in NH</td><td></td></di.<></td></dl<>	<di.< td=""><td>763 μg/L in NH</td><td></td></di.<>	763 μg/L in NH	
1,1 Dichloroethane	1		ı	18260C	0.5	<dl< td=""><td><di.< td=""><td>70 μg/L</td><td>***</td></di.<></td></dl<>	<di.< td=""><td>70 μg/L</td><td>***</td></di.<>	70 μg/L	***
1,2 Dichloroethane	1		1	18260C	0.5	<di:< td=""><td><di.< td=""><td>5.0 μg/L</td><td></td></di.<></td></di:<>	<di.< td=""><td>5.0 μg/L</td><td></td></di.<>	5.0 μg/L	
1,1 Dichloroethylene	1	Ì	0					3.2 μg/L	
Ethylene Dibromide	1		0					0.05 μg/L	
Methylene Chloride	1		1	18260C	3.0	<dl< td=""><td><dl< td=""><td>4.6 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.6 μg/L</td><td></td></dl<>	4.6 μg/L	
1,1,1 Trichloroethane	1		ı	18260C	0.75	<dl< td=""><td><di.< td=""><td>200 μg/L</td><td></td></di.<></td></dl<>	<di.< td=""><td>200 μg/L</td><td></td></di.<>	200 μg/L	
1,1,2 Trichloroethane	✓		1	18260C	0.75	<dl.< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></dl.<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Trichloroethylene	1		0					5.0 μg/L	
Tetrachloroethylene	✓		1	18260C	0,5	<dl< td=""><td><dl:< td=""><td>5.0 μg/L</td><td></td></dl:<></td></dl<>	<dl:< td=""><td>5.0 μg/L</td><td></td></dl:<>	5.0 μg/L	
cis-1,2 Dichloroethylene	1		0					70 μg/L	
Vinyl Chloride	1		1	18260C	1.0	<di< td=""><td><di:< td=""><td>2.0 μg/L</td><td></td></di:<></td></di<>	<di:< td=""><td>2.0 μg/L</td><td></td></di:<>	2.0 μg/L	
D. Non-Halogenated SVOC	ı _e					- ;,,	()		
Total Phthalates	.5		l ₁	18270D-SI	5.0	<dl< td=""><td><dl< td=""><td>190 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>190 μg/L</td><td></td></dl<>	190 μg/L	
Diethylhexyl phthalate	1		i	18270D-SI		<dl< td=""><td><d1.< td=""><td>101 μg/L</td><td></td></d1.<></td></dl<>	<d1.< td=""><td>101 μg/L</td><td></td></d1.<>	101 μg/L	
Total Group I PAHs	1		li .	18270D-SI	1	<dl< td=""><td><d1.< td=""><td>1.0 μg/L</td><td></td></d1.<></td></dl<>	<d1.< td=""><td>1.0 μg/L</td><td></td></d1.<>	1.0 μg/L	
Benzo(a)anthracene	1		ı	18270D-SI		<dl:< td=""><td><d1< td=""><td>1</td><td></td></d1<></td></dl:<>	<d1< td=""><td>1</td><td></td></d1<>	1	
Benzo(a)pyrene	1		li	18270D-SI		∠DL.	<di< td=""><td>1 </td><td></td></di<>	1	
Benzo(b)fluoranthene	1		i i	18270D-SI	1	<dl< td=""><td><dl< td=""><td>1 </td><td></td></dl<></td></dl<>	<dl< td=""><td>1 </td><td></td></dl<>	1	
Benzo(k)fluoranthene	1		li	18270D-SI		<dl< td=""><td><dl< td=""><td>As Total PAHs</td><td></td></dl<></td></dl<>	<dl< td=""><td>As Total PAHs</td><td></td></dl<>	As Total PAHs	
Chrysene	1	<u> </u>	li	18270D-SI	T	<dl< td=""><td><dl.< td=""><td>1 </td><td></td></dl.<></td></dl<>	<dl.< td=""><td>1 </td><td></td></dl.<>	1	
Dibenzo(a,h)anthracene	1		i	18270D-SI		<di< td=""><td><di.< td=""><td>] </td><td></td></di.<></td></di<>	<di.< td=""><td>] </td><td></td></di.<>]	
Indeno(1,2,3-cd)pyrene	1		1	18270D-SI	ľ	<dl< td=""><td><di.< td=""><td>] </td><td></td></di.<></td></dl<>	<di.< td=""><td>] </td><td></td></di.<>]	

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	1		1	18270D-SI	0.10	<di.< td=""><td><di.< td=""><td>100 μg/L</td><td></td></di.<></td></di.<>	<di.< td=""><td>100 μg/L</td><td></td></di.<>	100 μg/L	
Naphthalene	1		1	18270D-SI	2.5	<di.< td=""><td><dl< td=""><td>20 μg/L</td><td></td></dl<></td></di.<>	<dl< td=""><td>20 μg/L</td><td></td></dl<>	20 μg/L	
E. Halogenated SVOCs									
Total PCBs			1	5.608	0.250	<di.< td=""><td><dl< td=""><td>0.000064 μg/L</td><td></td></dl<></td></di.<>	<dl< td=""><td>0.000064 μg/L</td><td></td></dl<>	0.000064 μg/L	
Pentachlorophenol	1		1	18270D-SI		<di.< td=""><td><dl< td=""><td>1.0 μg/L</td><td></td></dl<></td></di.<>	<dl< td=""><td>1.0 μg/L</td><td></td></dl<>	1.0 μg/L	
F. Fuels Parameters Total Petroleum		 I		1	1			· · · · · · · · · · · · · · · · · · ·	
Hydrocarbons	/		1	74.1664A	400	<di.< td=""><td><di:< td=""><td>5.0 mg/L</td><td></td></di:<></td></di.<>	<di:< td=""><td>5.0 mg/L</td><td></td></di:<>	5.0 mg/L	
Ethanol	1		0					Report mg/L	
Methyl-tert-Butyl Ether			1	1.8260C	1.0	<di.< td=""><td><di.< td=""><td>70 μg/L</td><td></td></di.<></td></di.<>	<di.< td=""><td>70 μg/L</td><td></td></di.<>	70 μg/L	
tert-Butyl Alcohol	1		1	1.8260C	10	<di< td=""><td><di;< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></di;<></td></di<>	<di;< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></di;<>	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	V		1	1,8260C	2.0	<di< td=""><td><di :<="" td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></di></td></di<>	<di :<="" td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></di>	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	e, hardness, s	salinity, LC	50, addition	ıal pollutan	ts present);	if so, specify:			
nH - Influent		✓]	121,4500H		7			
Salinity - Influent		✓	1	YSI	660	14.46			
Temp - Influent		_ ✓	1	YSI		12.84 C			_
pH - Receiving Water		1	,	121 450011					
Salinity - Receiving Water		7	1,	121,4500H YSI		20			
Temp - Receiving Water		1		YSI				<u> </u>	
renth - Receiving water			-	191		11.68 C			
-									

12. I Calificht avalett intofination	E.	Treatment	system	information
--------------------------------------	----	------------------	--------	-------------

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge, Settling tank and bag filters, and Ion exchange resin filter	
 Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply): ☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Frac Tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	35
Provide the proposed maximum effluent flow in gpm.	35
Provide the average effluent flow in gpm.	5
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F.	Chemical	and	additive	information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers \square pH conditioners \square Bioremedial agents, including microbes \square Chlorine or chemicals containing chlorine \square Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
 a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☐ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
☐ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): Yes No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): 🗆 Yes 🗏 No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. NMFS Supporting Information
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one):
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those

persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	elief, true, accurate, and complete. I have e significant penalties for submitting false
A BMPP Statement has been implemented in accordance with good 6 BMPP certification statement: Part 2.5 of the RGP.	engineering practices following
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■ No □ NA □ Check one: Yes □ No □ NA ■
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify: MAG 910606	Check one: Yes ■ No □ NA □
Signature: Date	c: (1/8/17
Print Name and Title: JAMES L. HEIGHTON SENIOR VICE RESIDENT	

APPENDIX C:

DEP PRIORITY RESOURCES MAP USGS STREAMFLOW STATISTICS REPORT DILUTION FACTOR AND WQBEL CALCULATIONS ADDITIONAL NOI SUPPORT INFORMATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

May 24, 2017

In Reply Refer To:

Consultation Code: 05E1NE00-2017-SLI-1624

Event Code: 05E1NE00-2017-E-03281

Project Name: Parcel H&I

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2017-SLI-1624

Event Code: 05E1NE00-2017-E-03281

Project Name: Parcel H&I

Project Type: DEVELOPMENT

Project Description: <1 Acre

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.351568873126425N71.0436029895875W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 2 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

Birds

NAME STATUS

Red Knot (Calidris canutus rufa) Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/1864

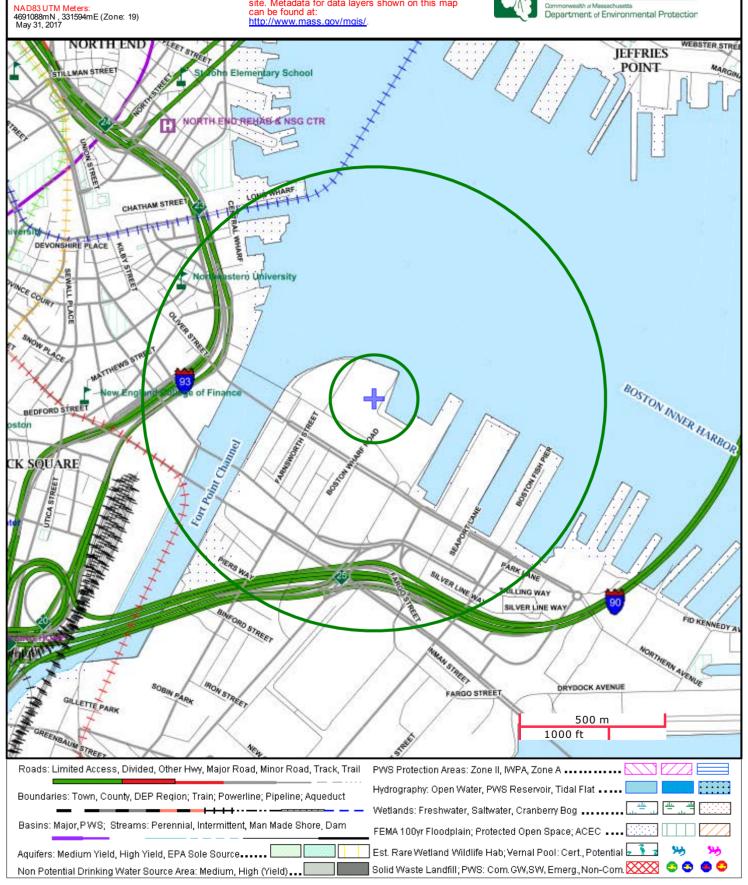
Roseate Tern (Sterna dougallii dougallii) Endangered

Population: northeast U.S. nesting pop.

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/2083

Critical habitats

There are no critical habitats within your project area.


MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:

60 NORTHERN AVE BOSTON, MA

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: South Boston East; Street No: 110; Street Name: Northern Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Wednesday, May 31, 2017 Page 1 of 1

APPENDIX D: LABORATORY ANALYTIC DATA - GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1722001

Client: Ground/Water Treatment & Technology

39 River Street Millbury, MA 01527

ATTN: TJ McGoff

Phone: (508) 755-7075

Project Name: FAN PIER
Project Number: 16-3194
Report Date: 07/07/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FAN PIER **Project Number:** 16-3194

Lab Number: Report Date: L1722001

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1722001-01	INF-BLDG (H&I)	WATER	100 NORTHERN AVE.	06/27/17 10:45	06/28/17
L1722001-02	EFF-BLDG (H&I)	WATER	100 NORTHERN AVE.	06/27/17 10:30	06/28/17
L1722001-03	INF-BLDG (H&I)	WATER	100 NORTHERN AVE.	06/27/17 10:45	06/29/17

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Solids, Total Suspended

WG1018668: A laboratory duplicate could not be performed due to insufficient sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/07/17

600, Shawow Kelly Stenstrom

ORGANICS

VOLATILES

Project Name: FAN PIER Lab Number: L1722001

Project Number: 16-3194 Report Date: 07/07/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/27/17 10:45

Client ID: INF-BLDG (H&I) Date Received: 06/28/17
Sample Location: 100 NORTHERN AVE. Field Prep: Not Specified

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/06/17 18:32

Analyst: NL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	_ab					
Acetone	ND		ug/l	5.0	1.5	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	99	70-130	

Project Name: FAN PIER Lab Number: L1722001

Project Number: 16-3194 Report Date: 07/07/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/27/17 10:30

Client ID: EFF-BLDG (H&I) Date Received: 06/28/17 Sample Location: 100 NORTHERN AVE. Field Prep: Not Specified

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/06/17 19:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	_ab					
Acetone	ND		ug/l	5.0	1.5	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	100	70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/06/17 10:15

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02 Batch: WG1020160-5 Methylene chloride ND ug/l 3.0 0.68 1,1-Dichloroethane ND ug/l 0.75 0.21 Chloroform ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobertylivinyl ether ND ug/l 0.50 0.18 Tetrachloroethene ND ug/l 0.50 0.18 Chloroberzene ND ug/l 0.50 0.18 Trichlorofluoromethane ND ug/l 0.50 0.18 Trichlorofluoromethane ND ug/l 0.50 0.16 Bromodichloromethane ND </th <th>Parameter</th> <th>Result</th> <th>Qualifier Units</th> <th>s RL</th> <th>MDL</th>	Parameter	Result	Qualifier Units	s RL	MDL
1,1-Dichloroethane	/olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1020160-5
Chloroform ND ug/l 0.75 0.16 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.8 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.75 0.14 2-Chloroethylvinyl ether ND ug/l 0.50 0.18 2-Chloroethylvinyl ether ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Trichloroethane ND ug/l 0.50 0.18 Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.16 brankloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND	Methylene chloride	ND	ug/l	3.0	0.68
Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.8 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.75 0.14 2-Chloroethylvinyl ether ND ug/l 10 0.40 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Trichloroftuoromethane ND ug/l 0.50 0.18 Trichloroethane ND ug/l 0.50 0.18 1,1-1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.16 Bromodichloropropene ND ug/l 0.50 0.16 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-1-Dichloropropene	1,1-Dichloroethane	ND	ug/l	0.75	0.21
1,2-Dichloropropane ND	Chloroform	ND	ug/l	0.75	0.16
Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.75 0.14 2-Chloroethylvinyl ether ND ug/l 10 0.40 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Trichlorofluoromethane ND ug/l 0.50 0.18 Trichlorofluoromethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.16 Bromodichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-1,1-Trichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 0.50 0.14 1,1-1,2-Trichloroethan	Carbon tetrachloride	ND	ug/l	0.50	0.13
1,1,2-Trichloroethane	1,2-Dichloropropane	ND	ug/l	1.8	0.14
2-Chloroethylvinyl ether ND ug/l 10 0.40 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Trichlorofluoromethane ND ug/l 0.50 0.16 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.5 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Ethylbenzene ND ug/l	Dibromochloromethane	ND	ug/l	0.50	0.15
Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Trichlorofluoromethane ND ug/l 0.50 0.16 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene, Total ND ug/l 2.5 0.17 Bromoform ND ug/l 2.5 0.17 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td>ug/l</td><td>0.75</td><td>0.14</td></t<>	1,1,2-Trichloroethane	ND	ug/l	0.75	0.14
Chlorobenzene ND ug/l 0.50 0.18 Trichlorofluoromethane ND ug/l 2.5 0.16 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.5 0.17 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l	2-Chloroethylvinyl ether	ND	ug/l	10	0.40
Trichlorofluoromethane ND ug/l 2.5 0.16 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.5 0.17 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.	Tetrachloroethene	ND	ug/l	0.50	0.18
1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.5 0.17 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 0.50	Chlorobenzene	ND	ug/l	0.50	0.18
1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.0 0.25 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l	Trichlorofluoromethane	ND	ug/l	2.5	0.16
Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.0 0.25 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	1,2-Dichloroethane	ND	ug/l	0.50	0.13
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.0 0.25 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	1,1,1-Trichloroethane	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.0 0.25 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	Bromodichloromethane	ND	ug/l	0.50	0.19
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.0 0.25 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
1,1-Dichloropropene ND ug/l 2.5 0.17 Bromoform ND ug/l 2.0 0.25 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform ND ug/l 2.0 0.25 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	1,1-Dichloropropene	ND	ug/l	2.5	0.17
Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	Bromoform	ND	ug/l	2.0	0.25
Toluene ND ug/l 0.75 0.16 Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Ethylbenzene ND ug/l 0.50 0.17 Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	Benzene	ND	ug/l	0.50	0.16
Chloromethane ND ug/l 2.5 0.18 Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	Toluene	ND	ug/l	0.75	0.16
Bromomethane ND ug/l 1.0 0.26 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	Ethylbenzene	ND	ug/l	0.50	0.17
Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	Chloromethane	ND	ug/l	2.5	0.18
Chloroethane ND ug/l 1.0 0.13 1,1-Dichloroethene ND ug/l 0.50 0.17	Bromomethane	ND	ug/l	1.0	0.26
1,1-Dichloroethene ND ug/l 0.50 0.17	Vinyl chloride	ND	ug/l	1.0	0.07
·	Chloroethane	ND	ug/l	1.0	0.13
	1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene ND ug/l 0.75 0.16	trans-1,2-Dichloroethene	ND	ug/l	0.75	0.16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/06/17 10:15

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS	Westborough Lab	for sample(s):	01-02 Batch:	WG1020160-5	
1,2-Dichloroethene, Total	ND	ug/l	0.50	0.16	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.18	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.19	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.19	
Methyl tert butyl ether	ND	ug/l	1.0	0.17	
p/m-Xylene	ND	ug/l	1.0	0.33	
o-Xylene	ND	ug/l	1.0	0.33	
Xylenes, Total	ND	ug/l	1.0	0.33	
cis-1,2-Dichloroethene	ND	ug/l	0.50	0.19	
Dibromomethane	ND	ug/l	5.0	0.36	
1,4-Dichlorobutane	ND	ug/l	5.0	0.46	
lodomethane	ND	ug/l	5.0	0.25	
1,2,3-Trichloropropane	ND	ug/l	5.0	0.18	
Styrene	ND	ug/l	1.0	0.36	
Dichlorodifluoromethane	ND	ug/l	5.0	0.24	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	0.30	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	0.31	
4-Methyl-2-pentanone	ND	ug/l	5.0	0.42	
2-Hexanone	ND	ug/l	5.0	0.52	
Ethyl methacrylate	ND	ug/l	5.0	0.61	
Acrolein	ND	ug/l	5.0	0.44	
Acrylonitrile	ND	ug/l	5.0	0.43	
Bromochloromethane	ND	ug/l	2.5	0.15	
Tetrahydrofuran	ND	ug/l	5.0	0.83	
2,2-Dichloropropane	ND	ug/l	2.5	0.20	
1,2-Dibromoethane	ND	ug/l	2.0	0.19	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/06/17 10:15

Parameter	Result	Qualifier Units	RL RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1020160-5	
1,3-Dichloropropane	ND	ug/l	2.5	0.21	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	0.16	
Bromobenzene	ND	ug/l	2.5	0.15	
n-Butylbenzene	ND	ug/l	0.50	0.19	
sec-Butylbenzene	ND	ug/l	0.50	0.18	
tert-Butylbenzene	ND	ug/l	2.5	0.18	
o-Chlorotoluene	ND	ug/l	2.5	0.17	
p-Chlorotoluene	ND	ug/l	2.5	0.18	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.35	
Hexachlorobutadiene	ND	ug/l	0.50	0.22	
Isopropylbenzene	ND	ug/l	0.50	0.19	
p-Isopropyltoluene	ND	ug/l	0.50	0.19	
Naphthalene	ND	ug/l	2.5	0.22	
n-Propylbenzene	ND	ug/l	0.50	0.17	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.23	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.22	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.17	
1,3,5-Trichlorobenzene	ND	ug/l	2.0	0.14	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.19	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.18	
Halothane	ND	ug/l	2.5	0.29	
Ethyl ether	ND	ug/l	2.5	0.16	
Methyl Acetate	ND	ug/l	10	0.23	
Ethyl Acetate	ND	ug/l	10	0.72	
Isopropyl Ether	ND	ug/l	2.0	0.42	
Cyclohexane	ND	ug/l	10	0.27	
Tert-Butyl Alcohol	ND	ug/l	10	1.4	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	0.18	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/06/17 10:15

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westk	orough Lab	for sample	(s): 01-02	Batch:	WG1020160-5
1,4-Dioxane	ND		ug/l	250	61.
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	10	0.15
Methyl cyclohexane	ND		ug/l	10	0.40
p-Diethylbenzene	ND		ug/l	2.0	0.39
4-Ethyltoluene	ND		ug/l	2.0	0.34
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54

		Acceptance	
Surrogate	%Recovery Qualif	ier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	99	70-130	

Project Name: FAN PIER

Project Number:

16-3194

Lab Number: L1722001

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	01-02 Batch: \	NG1020160-3	WG1020160-4			
Methylene chloride	100		88		70-130	13		20
1,1-Dichloroethane	97		88		70-130	10		20
Chloroform	98		90		70-130	9		20
Carbon tetrachloride	97		92		63-132	5		20
1,2-Dichloropropane	99		99		70-130	0		20
Dibromochloromethane	91		89		63-130	2		20
1,1,2-Trichloroethane	97		95		70-130	2		20
2-Chloroethylvinyl ether	77		79		70-130	3		20
Tetrachloroethene	96		92		70-130	4		20
Chlorobenzene	95		94		75-130	1		25
Trichlorofluoromethane	94		89		62-150	5		20
1,2-Dichloroethane	95		95		70-130	0		20
1,1,1-Trichloroethane	97		93		67-130	4		20
Bromodichloromethane	100		100		67-130	0		20
trans-1,3-Dichloropropene	89		86		70-130	3		20
cis-1,3-Dichloropropene	91		90		70-130	1		20
1,1-Dichloropropene	97		95		70-130	2		20
Bromoform	91		87		54-136	4		20
1,1,2,2-Tetrachloroethane	97		97		67-130	0		20
Benzene	98		96		70-130	2		25
Toluene	97		96		70-130	1		25
Ethylbenzene	100		99		70-130	1		20
Chloromethane	80		79		64-130	1		20

Project Name: FAN PIER

Project Number:

16-3194

Lab Number: L1722001

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	01-02 Batch:	WG1020160-3	3 WG1020160-4				
Bromomethane	83		80		39-139	4		20	
Vinyl chloride	88		83		55-140	6		20	
Chloroethane	100		97		55-138	3		20	
1,1-Dichloroethene	97		82		61-145	17		25	
trans-1,2-Dichloroethene	98		84		70-130	15		20	
Trichloroethene	95		92		70-130	3		25	
1,2-Dichlorobenzene	94		94		70-130	0		20	
1,3-Dichlorobenzene	95		94		70-130	1		20	
1,4-Dichlorobenzene	93		93		70-130	0		20	
Methyl tert butyl ether	110		95		63-130	15		20	
p/m-Xylene	100		100		70-130	0		20	
o-Xylene	100		95		70-130	5		20	
cis-1,2-Dichloroethene	98		84		70-130	15		20	
Dibromomethane	94		95		70-130	1		20	
1,4-Dichlorobutane	96		96		70-130	0		20	
Iodomethane	33	Q	44	Q	70-130	29	Q	20	
1,2,3-Trichloropropane	91		91		64-130	0		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	84		78		36-147	7		20	
Acetone	100		92		58-148	8		20	
Carbon disulfide	78		65		51-130	18		20	
2-Butanone	100		87		63-138	14		20	
Vinyl acetate	110		99		70-130	11		20	

Project Name: FAN PIER

Project Number:

16-3194

Lab Number: L1722001

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	01-02 Batch: \	WG1020160-3	WG1020160-4			
4-Methyl-2-pentanone	91		91		59-130	0		20
2-Hexanone	92		88		57-130	4		20
Ethyl methacrylate	100		100		70-130	0		20
Acrolein	93		85		70-130	9		20
Acrylonitrile	92		84		70-130	9		20
Bromochloromethane	97		90		70-130	7		20
Tetrahydrofuran	90		87		58-130	3		20
2,2-Dichloropropane	130		120		63-133	8		20
1,2-Dibromoethane	100		98		70-130	2		20
1,3-Dichloropropane	95		94		70-130	1		20
1,1,1,2-Tetrachloroethane	99		98		64-130	1		20
Bromobenzene	96		95		70-130	1		20
n-Butylbenzene	100		99		53-136	1		20
sec-Butylbenzene	100		99		70-130	1		20
tert-Butylbenzene	100		97		70-130	3		20
o-Chlorotoluene	99		97		70-130	2		20
p-Chlorotoluene	98		99		70-130	1		20
1,2-Dibromo-3-chloropropane	81		78		41-144	4		20
Hexachlorobutadiene	94		89		63-130	5		20
Isopropylbenzene	100		100		70-130	0		20
p-Isopropyltoluene	100		98		70-130	2		20
Naphthalene	92		93		70-130	1		20
n-Propylbenzene	100		100		69-130	0		20

Project Name: FAN PIER

Project Number: 16-3194

Lab Number: L1722001

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RP Qual Lim	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG1020160-	3 WG1020160-4			
1,2,3-Trichlorobenzene	97		99		70-130	2	20)
1,2,4-Trichlorobenzene	90		91		70-130	1	20)
1,3,5-Trimethylbenzene	100		100		64-130	0	20)
1,3,5-Trichlorobenzene	90		90		70-130	0	20)
1,2,4-Trimethylbenzene	100		100		70-130	0	20)
trans-1,4-Dichloro-2-butene	96		90		70-130	6	20)
Halothane	95		82		70-130	15	20)
Ethyl ether	94		96		59-134	2	20)
Methyl Acetate	93		82		70-130	13	20)
Ethyl Acetate	91		83		70-130	9	20)
Isopropyl Ether	93		84		70-130	10	20)
Cyclohexane	93		88		70-130	6	20)
Tert-Butyl Alcohol	100		84		70-130	17	20)
Ethyl-Tert-Butyl-Ether	160	Q	150	Q	70-130	6	20)
Tertiary-Amyl Methyl Ether	110		110		66-130	0	20)
1,4-Dioxane	90		74		56-162	20	20)
1,1,2-Trichloro-1,2,2-Trifluoroethane	92		85		70-130	8	20)
Methyl cyclohexane	96		89		70-130	8	20)
p-Diethylbenzene	97		94		70-130	3	20)
4-Ethyltoluene	100		96		70-130	4	20)
1,2,4,5-Tetramethylbenzene	98		96		70-130	2	20)

Project Name: FAN PIER

Lab Number:

L1722001

Project Number: 16-3194

Report Date:

07/07/17

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1020160-3 WG1020160-4

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	98	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	101	102	70-130
Dibromofluoromethane	101	98	70-130

SEMIVOLATILES

Project Name: FAN PIER Lab Number: L1722001

Project Number: 16-3194 Report Date: 07/07/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/27/17 10:45

Client ID: INF-BLDG (H&I) Date Received: 06/28/17
Sample Location: 100 NORTHERN AVE. Field Prep: Not Specified Extraction Method:EPA 3510C

Matrix: Water Extraction Method: EPA 3510C

Extraction Method: EPA 3510C

Extraction Date: 06/30/17 07:04

Analytical Method: 1,8270D-SIM
Analytical Date: 06/30/17 07:04

Result	Qualifier	Units	RL	MDL	Dilution Factor	
0						
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.20	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.02	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.02	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.02	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.04	1	
ND		ug/l	0.10	0.05	1	
	ND N	ND N	ND	ND	ND	ND

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	80		23-120	
2-Fluorobiphenyl	85		15-120	
4-Terphenyl-d14	79		41-149	

Project Name: FAN PIER Lab Number: L1722001

Project Number: 16-3194 Report Date: 07/07/17

SAMPLE RESULTS

Lab ID: Date Collected: 06/27/17 10:30

Client ID: EFF-BLDG (H&I) Date Received: 06/28/17
Sample Location: 100 NORTHERN AVE. Field Prep: Not Specified
Extraction Method:EPA 3510C

Matrix: Water Extraction Method: EPA 3510C

Extraction Method: EPA 3510C

Extraction Date: 06/30/17 07:04

Analytical Method: 1,8270D-SIM
Analytical Date: 07/06/17 16:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
PAHs by GC/MS-SIM - Westborough La	ab						
Acenaphthene	ND		ug/l	0.10	0.04	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1	
Fluoranthene	ND		ug/l	0.10	0.04	1	
Naphthalene	ND		ug/l	0.10	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1	
Chrysene	ND		ug/l	0.10	0.04	1	
Acenaphthylene	ND		ug/l	0.10	0.04	1	
Anthracene	ND		ug/l	0.10	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1	
Fluorene	ND		ug/l	0.10	0.04	1	
Phenanthrene	ND		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1	
Pyrene	ND		ug/l	0.10	0.04	1	
1-Methylnaphthalene	ND		ug/l	0.10	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.05	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	84		15-120	
4-Terphenyl-d14	79		41-149	

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 07/04/17 15:41

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 06/30/17 07:04

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/M	S-SIM - Westbo	orough Lab	for sample	e(s): 01-02	Batch:	WG1018705-1
Acenaphthene	ND		ug/l	0.10	0.04	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	
Fluoranthene	0.08	J	ug/l	0.10	0.04	
Naphthalene	ND		ug/l	0.10	0.04	
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.04	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	
Chrysene	ND		ug/l	0.10	0.04	
Acenaphthylene	ND		ug/l	0.10	0.04	
Anthracene	ND		ug/l	0.10	0.04	
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	
Fluorene	ND		ug/l	0.10	0.04	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	
Pyrene	0.06	J	ug/l	0.10	0.04	
1-Methylnaphthalene	ND		ug/l	0.10	0.04	
2-Methylnaphthalene	ND		ug/l	0.10	0.05	

		Acceptance	
Surrogate	%Recovery Qual	ifier Criteria	
Nitrobenzene-d5	36	23-120	
2-Fluorobiphenyl	46	15-120	
4-Terphenyl-d14	50	41-149	

Project Name: FAN PIER

16-3194

Project Number:

Lab Number: L1722001

Report Date:

ate: 07/07/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ry RF	PD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM - W	estborough Lab A	ssociated samp	ole(s): 01-02	Batch: \	VG1018705-2	WG1018705	-3			
Acenaphthene	52		53		37-111		2		40	
2-Chloronaphthalene	55		56		40-140		2		40	
Fluoranthene	53		55		40-140		4		40	
Naphthalene	46		49		40-140		6		40	
Benzo(a)anthracene	48		49		40-140		2		40	
Benzo(a)pyrene	45		46		40-140		2		40	
Benzo(b)fluoranthene	46		48		40-140		4		40	
Benzo(k)fluoranthene	43		45		40-140		5		40	
Chrysene	45		47		40-140		4		40	
Acenaphthylene	56		58		40-140		4		40	
Anthracene	51		52		40-140		2		40	
Benzo(ghi)perylene	45		48		40-140		6		40	
Fluorene	57		58		40-140		2		40	
Phenanthrene	49		50		40-140		2		40	
Dibenzo(a,h)anthracene	44		47		40-140		7		40	
Indeno(1,2,3-cd)pyrene	47		50		40-140		6		40	
Pyrene	52		54		26-127		4		40	
1-Methylnaphthalene	51		53		40-140		4		40	
2-Methylnaphthalene	50		52		40-140		4		40	

Project Name: FAN PIER

16-3194

Lab Number: L1722001

Report Date:

9: 07/07/17

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1018705-2 WG1018705-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	48	52	23-120
2-Fluorobiphenyl	55	56	15-120
4-Terphenyl-d14	56	57	41-149

Project Number:

PCBS

Project Name: FAN PIER Lab Number: L1722001

Project Number: 16-3194 Report Date: 07/07/17

SAMPLE RESULTS

 Lab ID:
 L1722001-01
 Date Collected:
 06/27/17 10:45

 Client ID:
 INF-BLDG (H&I)
 Date Received:
 06/28/17

Sample Location: 100 NORTHERN AVE. Field Prep: Not Specified

Matrix: Extraction Method:EPA 608
Extraction Date: 07/01/17 00:04

Analytical Method: 5,608

Analytical Date: 07/05/17 15:58

Cleanup Method: EPA 3665A

Cleanup Date: 07/01/17

Cleanup Method: EPA 3660B

Cleanup Date: 07/02/17

Parameter	Result	Result Qualifier Units		RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250	0.042	1	Α
Aroclor 1221	ND		ug/l	0.250	0.056	1	Α
Aroclor 1232	ND		ug/l	0.250	0.024	1	Α
Aroclor 1242	ND		ug/l	0.250	0.028	1	Α
Aroclor 1248	ND		ug/l	0.250	0.028	1	Α
Aroclor 1254	ND		ug/l	0.250	0.043	1	Α
Aroclor 1260	ND		ug/l	0.200	0.045	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	Α
Decachlorobiphenyl	62		30-150	Α

Project Name: FAN PIER Lab Number: L1722001

Project Number: 16-3194 Report Date: 07/07/17

SAMPLE RESULTS

 Lab ID:
 L1722001-02
 Date Collected:
 06/27/17 10:30

 Client ID:
 EFF-BLDG (H&I)
 Date Received:
 06/28/17

Sample Location: 100 NORTHERN AVE. Field Prep: Not Specified Extraction Method: EPA 608

 Matrix:
 Water
 Extraction Date:
 07/01/17 00:04

 Analytical Method:
 5,608
 Cleanup Method:
 EPA 3665A

 Analytical Date:
 07/05/17 16:10
 Cleanup Date:
 07/01/17

Analytical Date: 07/05/17 16:10 Cleanup Date: 07/01/17

Analyst: HT Cleanup Method: EPA 3660B

Cleanup Date: 07/02/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/l	0.250	0.042	1	Α			
Aroclor 1221	ND		ug/l	0.250	0.056	1	Α			
Aroclor 1232	ND		ug/l	0.250	0.024	1	Α			
Aroclor 1242	ND		ug/l	0.250	0.028	1	Α			
Aroclor 1248	ND		ug/l	0.250	0.028	1	Α			
Aroclor 1254	ND		ug/l	0.250	0.043	1	Α			
Aroclor 1260	ND		ug/l	0.200	0.045	1	Α			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	Α
Decachlorobiphenyl	65		30-150	Α

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 07/05/17 14:56

Analyst: HT

Extraction Method: EPA 608
Extraction Date: 07/01/17 00:04
Cleanup Method: EPA 3665A
Cleanup Date: 07/01/17
Cleanup Method: EPA 3660B
Cleanup Date: 07/02/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01-02 Batch	: WG101	9020-1
Aroclor 1016	ND		ug/l	0.250	0.042	А
Aroclor 1221	ND		ug/l	0.250	0.056	Α
Aroclor 1232	ND		ug/l	0.250	0.024	Α
Aroclor 1242	ND		ug/l	0.250	0.028	Α
Aroclor 1248	ND		ug/l	0.250	0.028	Α
Aroclor 1254	ND		ug/l	0.250	0.043	Α
Aroclor 1260	ND		ug/l	0.200	0.045	Α

		Column Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
2,4,5,6-Tetrachloro-m-xylene	69		30-150	Α		
Decachlorobiphenyl	65		30-150	Α		

Project Name: FAN PIER

Lab Number: L1722001

Project Number: 16-3194

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - West	tborough Lab Associa	ted sample(s)	: 01-02 Batch:	WG1019	9020-2				
Aroclor 1016	75		-		30-150	-		30	А
Aroclor 1260	73		-		30-150	-		30	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	71 65				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: FAN PIER **Project Number:** 16-3194

Lab Number:

L1722001

Report Date:

07/07/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by G	GC - Westbor	ough Lab	Associated san	nple(s): 01-02	QC Batc	h ID: WG1	019020-3 C	QC Sam	ple: L172200	03-01	Client ID): MS Sa	ample
Aroclor 1016	ND	3.12	2.38	76		-	-		40-126	-		30	Α
Aroclor 1260	ND	3.12	2.29	73		-	-		40-127	-		30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	А
Decachlorobiphenyl	61		30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: FAN PIER **Project Number:** 16-3194

Lab Number:

L1722001

Report Date:

07/07/17

Parameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1-02 QC Batch ID:	WG1019020-4	QC Sample:	L1722003-	02 Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

			Acceptance	
Surrogate	%Recovery Qualifie	r %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75	73	30-150	Α
Decachlorobiphenyl	64	65	30-150	Α

METALS

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

SAMPLE RESULTS

Lab ID: L1722001-01
Client ID: INF-BLDG (H&I)
Sample Location: 100 NORTHERN AVE.

Matrix: Water

Date Collected: 06/27/17 10:45
Date Received: 06/28/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00502		mg/l	0.00050	0.00016	1	07/06/17 12:00	07/07/17 18:46	EPA 3005A	1,6020A	BV
Cadmium, Total	0.00009	J	mg/l	0.00020	0.00005	1	07/06/17 12:00	07/07/17 18:46	EPA 3005A	1,6020A	BV
Copper, Total	0.08260		mg/l	0.00100	0.00038	1	07/06/17 12:00	07/07/17 18:46	EPA 3005A	1,6020A	BV
Iron, Total	0.320		mg/l	0.050	0.009	1	07/06/17 12:00	07/06/17 20:06	EPA 3005A	19,200.7	AB
Lead, Total	0.00108		mg/l	0.00050	0.00034	1	07/06/17 12:00	07/07/17 18:46	EPA 3005A	1,6020A	BV
Nickel, Total	0.00441		mg/l	0.00200	0.00055	1	07/06/17 12:00	07/07/17 18:46	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	07/06/17 12:00	07/07/17 18:46	EPA 3005A	1,6020A	BV
Zinc, Total	1.516		mg/l	0.01000	0.00341	1	07/06/17 12:00	07/07/17 18:46	EPA 3005A	1,6020A	BV

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

SAMPLE RESULTS

Lab ID:L1722001-02Date Collected:06/27/17 10:30Client ID:EFF-BLDG (H&I)Date Received:06/28/17Sample Location:100 NORTHERN AVE.Field Prep:Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nefield Lah										
Total Metals - Ma	ansheid Lab										
Arsenic, Total	0.00495		mg/l	0.00050	0.00016	1	07/06/17 12:00	07/07/17 18:49	EPA 3005A	1,6020A	BV
Cadmium, Total	0.00009	J	mg/l	0.00020	0.00005	1	07/06/17 12:00	07/07/17 18:49	EPA 3005A	1,6020A	BV
Copper, Total	0.04813		mg/l	0.00100	0.00038	1	07/06/17 12:00	07/07/17 18:49	EPA 3005A	1,6020A	BV
Iron, Total	0.239		mg/l	0.050	0.009	1	07/06/17 12:00	07/06/17 20:11	EPA 3005A	19,200.7	AB
Lead, Total	0.00089		mg/l	0.00050	0.00034	1	07/06/17 12:00	07/07/17 18:49	EPA 3005A	1,6020A	BV
Nickel, Total	0.00284		mg/l	0.00200	0.00055	1	07/06/17 12:00	07/07/17 18:49	EPA 3005A	1,6020A	BV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	07/06/17 12:00	07/07/17 18:49	EPA 3005A	1,6020A	BV
Zinc, Total	0.1311		mg/l	0.01000	0.00341	1	07/06/17 12:00	07/07/17 18:49	EPA 3005A	1,6020A	BV

Project Name: FAN PIER
Project Number: 16-3194

Lab Number: L1722001 **Report Date:** 07/07/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfiel	d Lab for sample(s):	01-02 I	Batch: W0	G10200	68-1				
Iron, Total	ND	mg/l	0.050	0.009	1	07/06/17 12:00	07/06/17 18:43	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	01-02 B	atch: WO	3102008	30-1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	07/06/17 12:00	07/07/17 17:34	1,6020A	BV
Cadmium, Total	ND	mg/l	0.00020	0.00005	5 1	07/06/17 12:00	07/07/17 17:34	1,6020A	BV
Copper, Total	ND	mg/l	0.00100	0.00038	3 1	07/06/17 12:00	07/07/17 17:34	1,6020A	BV
Lead, Total	ND	mg/l	0.00050	0.00034	1	07/06/17 12:00	07/07/17 17:34	1,6020A	BV
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	07/06/17 12:00	07/07/17 17:34	1,6020A	BV
Selenium, Total	ND	mg/l	0.00500	0.00173	1	07/06/17 12:00	07/07/17 17:34	1,6020A	BV
Zinc, Total	ND	mg/l	0.01000	0.00341	1	07/06/17 12:00	07/07/17 17:34	1,6020A	BV

Prep Information

Digestion Method: EPA 3005A

07/07/17

Lab Control Sample Analysis Batch Quality Control

Project Name: FAN PIER **Project Number:** 16-3194

Lab Number: L1722001

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Asso	ciated sample(s): 01-02 Ba	tch: WG102	20068-2					
Iron, Total	102		-		85-115	-		
Total Metals - Mansfield Lab Asso	ciated sample(s): 01-02 Ba	itch: WG102	20080-2					
Arsenic, Total	102		-		80-120	-		
Cadmium, Total	104		-		80-120	-		
Copper, Total	101		-		80-120	-		
Lead, Total	113		-		80-120	-		
Nickel, Total	103		-		80-120	-		
Selenium, Total	97		-		80-120	-		
Zinc, Total	97		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: FAN PIER **Project Number:** 16-3194

Lab Number: L1722001

Report Date: 07/07/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG102	0068-3	QC Sam	ple: L1721821-02	Client ID: M	S Sample	
Iron, Total	0.772	1	1.71	94		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG102	0068-7	QC Sam	ple: L1722072-01	Client ID: M	S Sample	
Iron, Total	0.845	1	1.88	104		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG102	0080-3	QC Sam	ple: L1722072-01	Client ID: M	S Sample	
Arsenic, Total	0.00463	0.12	0.1248	100		-	-	75-125	-	20
Cadmium, Total	0.0001J	0.051	0.05294	104		-	-	75-125	-	20
Copper, Total	0.0073	0.25	0.2685	104		-	-	75-125	-	20
Lead, Total	0.0015	0.51	0.5794	113		-	-	75-125	-	20
Nickel, Total	0.0009J	0.5	0.5388	108		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.108	90		-	-	75-125	-	20
Zinc, Total	0.04468	0.5	0.5238	96		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: FAN PIER **Project Number:** 16-3194

Lab Number:

L1722001

Report Date:

07/07/17

Parameter	ameter		Duplicat	te Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID:	WG1020068-8	QC Sample:	L1722072-01	Client ID:	DUP Samp	le
Iron, Total		0.845	0.	849	mg/l	0		20
Total Metals - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID:	WG1020080-4	QC Sample:	L1722072-01	Client ID:	DUP Samp	le
Arsenic, Total		0.00463	0.0	0433	mg/l	7		20
Zinc, Total		0.04468	0.0	4262	mg/l	5		20

INORGANICS & MISCELLANEOUS

Project Name: FAN PIER Lab Number: L1722001 Project Number: 16-3194

Report Date: 07/07/17

SAMPLE RESULTS

Lab ID: L1722001-01 Date Collected: 06/27/17 10:45 INF-BLDG (H&I) Client ID: Date Received: 06/28/17

Sample Location: 100 NORTHERN AVE. Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	ab								
SALINITY	4.6		SU	2.0	2.0	1	-	07/05/17 19:04	121,2520B	AS
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/30/17 05:55	121,2540D	VB
Cyanide, Total	0.003	J	mg/l	0.005	0.001	1	06/29/17 13:00	06/29/17 15:27	121,4500CN-CE	LK
Nitrogen, Ammonia	0.330		mg/l	0.075	0.022	1	07/03/17 23:00	07/05/17 13:38	121,4500NH3-BH	l JO
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	06/29/17 16:45	06/29/17 22:20	74,1664A	ML

Project Name: FAN PIER Lab Number: L1722001 Project Number: 16-3194

Report Date: 07/07/17

SAMPLE RESULTS

Lab ID: L1722001-02 Date Collected: 06/27/17 10:30 EFF-BLDG (H&I) Client ID: Date Received: 06/28/17 Sample Location: 100 NORTHERN AVE. Not Specified Field Prep:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	ab								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/30/17 05:55	121,2540D	VB
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	06/29/17 13:00	06/29/17 15:28	121,4500CN-CE	LK
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	06/29/17 16:45	06/29/17 22:20	74,1664A	ML
Anions by Ion Chromato	graphy - We	stborough	Lab							
Chloride	2660		mg/l	50.0	8.39	100	-	07/03/17 01:14	44,300.0	JC

Project Name: FAN PIER Lab Number: L1722001 Project Number: 16-3194

Report Date: 07/07/17

SAMPLE RESULTS

Lab ID: L1722001-03 Date Collected: 06/27/17 10:45 INF-BLDG (H&I) Client ID: Date Received: 06/29/17

Sample Location: 100 NORTHERN AVE. Not Specified Field Prep:

Parameter	Result Qualific	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Anions by Ion Chro	matography - Westboroug	h Lab							
Chloride	2670	mg/l	50.0	8.39	100	-	07/03/17 01:26	44,300.0	JC

Project Name: FAN PIER
Project Number: 16-3194

Lab Number: L1722001 **Report Date:** 07/07/17

Method Blank Analysis Batch Quality Control

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor		Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab for	sample(s): 01	-02 Ba	tch: WC	91018398	3-1			
Cyanide, Total	ND	mg/l	0.005	0.001	1	06/29/17 13:00	06/29/17 15:24	121,4500CN-CE	E LK
General Chemistry - We	estborough Lab for	sample(s): 01	-02 Ba	tch: WC	§1018514	l-1			
TPH, SGT-HEM	ND	mg/l	4.00	1.24	1	06/29/17 16:45	06/29/17 22:20	74,1664A	ML
General Chemistry - We	estborough Lab for	sample(s): 01	-02 Ba	tch: WC	31018668	3-1			
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	06/30/17 05:55	121,2540D	VB
Anions by Ion Chromato	ography - Westboro	ugh Lab for sa	ample(s)	: 02-03	Batch:	WG1019266-1			
Chloride	ND	mg/l	0.500	0.083	1	-	07/02/17 16:13	44,300.0	JC
General Chemistry - We	estborough Lab for	sample(s): 01	Batch:	: WG10	19534-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.022	1	07/03/17 23:00	07/05/17 13:20	121,4500NH3-BI	н јо

Lab Control Sample Analysis Batch Quality Control

Project Name: FAN PIER

Project Number: 16-3194 Lab Number: L1722001

Report Date:

07/07/17

Parameter	LCS %Recovery Q	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	•		Batch: WG1018			=	Quui	
Cyanide, Total	107		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	01-02	Batch: WG1018	514-2				
TPH	88		-		64-132	-		34
Anions by Ion Chromatography - Westbo	prough Lab Associated	sample	(s): 02-03 Bato	h: WG101	9266-2			
Chloride	98		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0)1 Bat	ch: WG1019534	-2				
Nitrogen, Ammonia	90		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0)1 Bat	ch: WG1019854	-1				
SALINITY	90		-			-		

L1722001

Matrix Spike Analysis Batch Quality Control

Project Name: FAN PIER **Project Number:** 16-3194

Lab Number:

Report Date: 07/07/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits		Qual	RPD Limits
General Chemistry - Westboroug	gh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG10	018398-4	QC Sample:	L17220	031-02 C	lient ID:	MS Sar	nple
Cyanide, Total	0.009	0.2	0.205	98		-	-		90-110	-		30
General Chemistry - Westboroug	gh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG10	018514-4	QC Sample:	L17218	328-01 C	lient ID:	MS Sar	nple
TPH	13.1	20	31.6	92		-	-		64-132	-		34
Anions by Ion Chromatography - Sample	- Westborou	gh Lab Asso	ociated samp	ole(s): 02-03	QC Bat	ch ID: WG	G1019266-3	QC Sar	mple: L172	2298-01	Client	ID: MS
Chloride	ND	4	3.91	98		-	-		90-110	-		18
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01 C	QC Batch ID: V	NG1019	534-4 C	QC Sample: L17	721419	-01 Clier	nt ID: MS	S Sample	Э
Nitrogen, Ammonia	0.128	4	3.79	92		-	-		80-120	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: FAN PIER **Project Number:** 16-3194

Lab Number: L1722001 **Report Date:** 07/07/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated s	sample(s): 01-02 QC Batch	ID: WG1018398-3	QC Sample: L	1722031-01	Client ID:	DUP Sample
Cyanide, Total	0.008	0.008	mg/l	1		30
General Chemistry - Westborough Lab Associated	sample(s): 01-02 QC Batch	ID: WG1018514-3	QC Sample: L	.1721828-01	Client ID:	DUP Sample
TPH	13.1	9.30	mg/l	34		34
Anions by Ion Chromatography - Westborough Lab Sample	Associated sample(s): 02-03	QC Batch ID: WG	1019266-4 Q	C Sample: L	.1722298-0	1 Client ID: DUP
Chloride	ND	ND	mg/l	NC		18
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1019534-3 QC	C Sample: L172	21419-01 CI	lient ID: DL	IP Sample
Nitrogen, Ammonia	0.128	0.122	mg/l	5		20
General Chemistry - Westborough Lab Associated s	sample(s): 01 QC Batch ID:	WG1019854-2 QC	C Sample: L172	22085-01 CI	lient ID: DL	IP Sample
SALINITY	ND	ND	SU	NC		

Project Name: **FAN PIER** Lab Number: L1722001 Project Number: 16-3194

Report Date: 07/07/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent Absent В С Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1722001-01A	Vial HCI preserved	С	NA		3.7	Υ	Absent		8260(14)
L1722001-01B	Vial HCl preserved	С	NA		3.7	Υ	Absent		8260(14)
L1722001-01C	Vial HCl preserved	С	NA		3.7	Υ	Absent		8260(14)
L1722001-01E	Plastic 250ml NaOH preserved	В	>12	>12	4.1	Υ	Absent		TCN-4500(14)
L1722001-01F	Plastic 250ml HNO3 preserved	В	<2	<2	4.1	Υ	Absent		SE-6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE-UI(180),PB- 6020T(180),AS-6020T(180),CD-6020T(180)
L1722001-01G	Plastic 950ml unpreserved	С	7	7	3.7	Υ	Absent		TSS-2540(7)
L1722001-01H	Amber 1000ml unpreserved	С	7	7	3.7	Υ	Absent		PAHTCL-SIM(7)
L1722001-01I	Amber 1000ml unpreserved	С	7	7	3.7	Υ	Absent		PAHTCL-SIM(7)
L1722001-01J	Amber 1000ml Na2S2O3	С	7	7	3.7	Υ	Absent		PCB-608(7)
L1722001-01K	Amber 1000ml Na2S2O3	В	7	7	4.1	Υ	Absent		PCB-608(7)
L1722001-01L	Amber 1000ml HCl preserved	С	NA		3.7	Υ	Absent		TPH-1664(28)
L1722001-01M	Amber 1000ml HCl preserved	С	NA		3.7	Υ	Absent		TPH-1664(28)
L1722001-01X	Amber 250ml unpreserved split	С	7	7	3.7	Υ	Absent		SALINITY(28)
L1722001-01Y	Plastic 250ml H2SO4 preserved split	С	7	<2	3.7	N	Absent		NH3-4500(28)
L1722001-02A	Vial HCl preserved	С	NA		3.7	Υ	Absent		8260(14)
L1722001-02B	Vial HCl preserved	С	NA		3.7	Υ	Absent		8260(14)
L1722001-02C	Vial HCl preserved	С	NA		3.7	Υ	Absent		8260(14)
L1722001-02D	Plastic 250ml unpreserved	С	7	7	3.7	Υ	Absent		CL-300(28)
L1722001-02E	Plastic 250ml NaOH preserved	С	>12	>12	3.7	Υ	Absent		TCN-4500(14)

Lab Number: L1722001

Report Date: 07/07/17

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1722001-02F	Plastic 250ml HNO3 preserved	С	<2	<2	3.7	Υ	Absent		SE-6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE-UI(180),PB- 6020T(180),AS-6020T(180),CD-6020T(180)
L1722001-02G	Plastic 950ml unpreserved	С	7	7	3.7	Υ	Absent		TSS-2540(7)
L1722001-02H	Amber 1000ml unpreserved	С	7	7	3.7	Υ	Absent		PAHTCL-SIM(7)
L1722001-02I	Amber 1000ml unpreserved	С	7	7	3.7	Υ	Absent		PAHTCL-SIM(7)
L1722001-02J	Amber 1000ml Na2S2O3	С	7	7	3.7	Υ	Absent		PCB-608(7)
L1722001-02K	Amber 1000ml Na2S2O3	В	7	7	4.1	Υ	Absent		PCB-608(7)
L1722001-02L	Amber 1000ml HCl preserved	В	NA		4.1	Υ	Absent		TPH-1664(28)
L1722001-02M	Amber 1000ml HCl preserved	В	NA		4.1	Υ	Absent		TPH-1664(28)
L1722001-03A	Plastic 60ml unpreserved	Α	NA		3.0	Υ	Absent		CL-300(28)

Project Name:

Project Number: 16-3194

FAN PIER

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:FAN PIERLab Number:L1722001Project Number:16-3194Report Date:07/07/17

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	CUSTO	DY	DIOE I	o= 1	D	ate Rec'	dinla	h.		1	1.		T				1	
ALPH	A	The second		PAGE /	OF	-				6	28		<u> </u>					1722001	
World Class Chem		Project Info	rmation			100	eport FAX	Intor	matio		ta De EMAIL		bles	1			natior		
							ADEx								Same	as Clie	ent info	PO #: 16-3194-TJ	
Westborough, MA TEL: 508-898-9220	Mansfield, MA TEL: 508-822-9300	Project Name:	Fan Pier			The same of				-		Delivera							
FAX: 508-898-9193	FAX: 508-822-3288		100 Nort	h 2 - 2	Aug		egulat ate/Fed			remer	ts/Re	eport	Limit						
Client Informat	ion	Project Location	on: One Marin	a Park Driv	e		ale/Feu	riogra	1111					Crit	eria				
Client: Ground/Wa	ater & Treatment Technology	Project #: 16-3				M	CP PR	RESU	MPTI	VE CE	RTA	INTY-	CT R	ASC	DNAE	LEC	ONFI	DENCE PROTOCO	IS
Address: 39 River	Street	Project Manag	er: TJ McGoff	:		\neg \sqcup	Yes		⊠ No)	Are	MCP A	nalytica	al Meth	nods Re	equired	1?		
Millbury, MA 0152	7	ALPHA Quote				-	Yes	210	⊠ No)	Are	CTRC	P (Rea	sonabl	e Confi	dence	Protoco	ols) Required?	
Phone: (508)755-7	7075	Turn-Around		+		A	VALYS	010	1	T	Γ	Г	1	Г	T			SAMPLE HANDLING	T 0 T
Fax: (508)755-720	6	☐ Standard	and the later of the Paper State of the Con-	sh toni v is p	RE-APPROVED)													Filtration	A
Email: tmcgoff@gv	vttllc.com	Otandard		SII (ONLY IF PI	RE-APPROVED)													☐ Done ☐ Not Needed	#
	been Previously analyzed by Alpha	Due Date:	Time:									5						☐ Lab to do	В
	ecific Requirements/Comments					4						Sez						Preservation ☐ Lab to do	0 7
(dsullivan@gwttllc.	com)	Dotootion Einn							,			N.						(Please specify below)	ר ב
ELL AMI 3	00m) 40@22.4°C 24@21.8°C											uFe						1,	ES
	00889895.0	(2)	10 45 A	u t			199	1270	80			CdC							
ALPHA Lab ID	Sample ID		ection	Sample	Complete	8260C	TPH-1664	PAHs-8270	PCBs-608	S	z	Total AsCdCuFeNiPbSeZn	8						
(Lab Use Only)		Date	Time	Matrix	Sampler's Initials	826	1 6	PA	5	TSS	TCN	T _{ot}	CI-300					Sample Specific Comments	
22001-01	INF-BLDG (H&I)	6/27/17	1045 AM	GW	CGT ED									П	, 	, [, 		
-02	EFF-BLDG (H&I)	6/27/17	1030 Au	GW	COT EST										H	H	분		13
											H				H	H	님		13
									1		ᆔ	H	一十	౼		H			
																H			
																			_
																			_
DI FASE ANSWED C	QUESTIONS ABOVE!							Ш											
LEAGE ANSWER	SOES HONS ABOVE!				ntainer Type	V	Α	Α	Α	Р	Р	Р	Р	-	-	-	-		
IS YOUR	PROJECT			-	Preservative	В	В	Α	н	A	E	С	Α	-		-	-	Please print clearly, legibly and completely. Samples ca	ın
	or CT RCP?	Shill.	Relinqu	ished By:	12/10	300p	ite/Time		1/	Par	Rećeive	of By:	1/1 -		Da	ate/Time		not be logged in and turnaround time clock will not start until any ambiguities are	t
FORM NO: 01-01(I) (rev. 5-JAN-12)	OI CI KCP!	LA STA	1/4	6/2	0/17	710	40		1	MI	(IL	X	17	4	25/1	1/0		resolved. All samples submitted are subject to	,
V	- 1 MARCON	111	- L PV		Charlet Charlet	17	10		V	W	<u></u>	N		- (12 600 1	7194	10	Alpha's Payment Terms.	

	CHAIN OF	CUSTO	YC	PAGE OF	-	Date	Rec'd	in Lab:		61	29	17		ALP	'HA J	ob #:	L	1777001	
ALPHA		Project Inform	nation				ort I	ıform	ation	$\overline{}$		verab	les		ng In		ation		The second
Westborough, MA Ma	ansfield, MA	Project Name: F	an Pier							_	MAIL				Same a	s Client	info	PO #: 16-3194-TJ	
	EL: 508-822-9300 AX: 508-822-3288	1 rojest ramer r					ADEx				dd'l De			No are	89.87/8				67
Client Informatio	n de la companya de	Project Location	: 100 Northe	ern Ave			julato e/Fed P			ment	s/Rep	ort L	imits	Criter	ria				
Client: GroundWater	r & tretment Technology	Project #: 16-319	94			THE RESERVE OF THE PERSON NAMED IN	White Street, etc., in such	A STATE OF THE PARTY OF THE PAR		E CEI	RTAIN	ITY-C	T RE	-		E CC	NFID	ENCE PROTOCOLS	
Address: 39 River st	treet	Project Manager	: TJ McGoff	<u> </u>					⊠ No ⊠ No				-		ods Red				
Millbury, MA 01527		ALPHA Quote #	2015518	obali i karan		Y			XI No		T							yes see note in Comments) s) Required?	
Phone: 508 755-707	75	Turn-Around	Time				ALYS	IS										Ţ	1000
Fax:		_ Standard	Ru	sh (ONLY IF PR	E-APPROVED)													SAMPLE HANDLING T Filtration A	
Email: tmcgoff@gwt	ttllc.com	_ Stay																□ Done □ Not Needed #	
	been Previously analyzed by Alpha	Due Date:	Time:									_						☐ Lab to do B	
	ecific Requirements/Comment , indicate in Sample Specific (nd what tes	ts MS to be							SeZı						Preservation 0 ☐ Lab to do	
performed. (Note	: All CAM methods for inorga											NiPb						(Please specify L below) E	
(dsullivan@gwttlc.co	om)											uFe						S	
			2021100				994	3270	808			scdc							
ALPHA Lab ID	Sample ID		ection	Sample	Sampler's	8260C	TPH-1664	PAHs-8270	PCBs-608	rss	Z	Total AsCdCuFeNiPbSeZn	CL-300					Sample Specific	
(Lab Use Only)		Date	Time	Matrix	Initials	82	브	4	A	13	TCN	٥	\					Comments	
22001-03	INF-BLDG (H&I)	6/22/17	1045	GW	CGT			Ц					A						
				GW			님	片	片			屵		片					_
							H	H		$\frac{\sqcup}{\Box}$	H	\exists	H	H	H	H	H		-
						H	H	H	H	\exists	H	П	Н	H	H	H	П		-
								同						ō					-
	<u></u>					Ц.	Ш	Ш	Ш	Ц	Ш	Ш	Ш	Ш	Ш	Ш	Ш		
PLEASE ANSWER	QUESTIONS ABOVE!			C	Ontainer Type	-	-	-	-	-		-	-	-	-	-	-	Please print clearly, legibly	
IS VOUD	PROJECT		Reli	nguished By:	Preservative	D:	ate/Tim	е.			Receiv	ed By:				ate/Tim	ne l	and completely. Samples can not be logged in and turnaround time clock will not	
	or CT RCP?	P	4	.qaionou by.			7, /3				-	оч Бу.			0	19/1-	,	start until any ambiguities are resolved. All samples	
FORM NO: 01-01(I) (rev. 20-JAN-2010)	OI OI KOF!	M				=/29/l	7/	34/	N.	In	Our	an	- X	12	4/29		347	submitted are subject to Alpha's Payment Terms.	
		1/-	Buile	man	AAL	4/29/	77/	840	U	d	7	2	1		6R	rhale	LU		

APPENDIX E: LABORATORY ANALYTICAL DATA – SURFACE WATER

ANALYTICAL REPORT

Lab Number: L1715446

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7
Report Date: 05/16/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7

Lab Number:

L1715446

Report Date:

05/16/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1715446-01	BOSTON INNER HARBOR	WATER	399 CONGRESS	05/11/17 13:30	05/11/17

L1715446

Project Name: 399 CONGRESS ST Lab Number:

Project Number: 4540.2.D7 Report Date: 05/16/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

۲	'lease	contact	Client	Services	at	800-	624-9	9220	with	any	questic	ns.

Serial_No:05161710:36

L1715446

Project Name: 399 CONGRESS ST Lab Number:

Project Number: 4540.2.D7 **Report Date:** 05/16/17

Case Narrative (continued)

Metals

L1715446-01, WG1002864-4: The internal standard (IS) response(s) for Arsenic, Copper, Lead, and Zinc were outside the acceptance criteria due to sample matrix interference; however, the criteria were achieved upon re-analysis on dilution. The results of the re-analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

King L. Wistors Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 05/16/17

METALS

Serial_No:05161710:36

Project Name: Lab Number: 399 CONGRESS ST L1715446

Project Number: 4540.2.D7 **Report Date:** 05/16/17

SAMPLE RESULTS

Lab ID: L1715446-01

Date Collected: 05/11/17 13:30 Client ID: **BOSTON INNER HARBOR** Date Received: 05/11/17

Sample Location: Not Specified 399 CONGRESS Field Prep:

D	Daniell	0	11-26-	D.	MDI	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	A
Parameter	Result	Qualifier	Units	RL	MDL	1 40101	Терагса	Analyzea	Wethou	ou	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	ND		mg/l	0.01000		10	05/12/17 11:15	5 05/13/17 12:44	EPA 3005A	3,200.8	BV
Copper, Total	ND		mg/l	0.01000		10	05/12/17 11:15	05/13/17 12:44	EPA 3005A	3,200.8	BV
Iron, Total	0.136		mg/l	0.050		1	05/12/17 11:15	5 05/12/17 17:57	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.01000		10	05/12/17 11:15	05/13/17 12:44	EPA 3005A	3,200.8	BV
Zinc, Total	ND		mg/l	0.1000		10	05/12/17 11:15	05/13/17 12:44	EPA 3005A	3,200.8	BV

Serial_No:05161710:36

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7

Lab Number:

L1715446

Report Date: 05/16/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG10	002863-	1				
Iron, Total	ND	mg/l	0.050		1	05/12/17 11:15	05/12/17 17:33	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter Total Metals - Mansfield	Result Qualifier Lab for sample(s):	Units 01 Batc	RL h: WG10	MDL 02864-	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Arsenic, Total	ND	mg/l	0.00100		1	05/12/17 11:15	05/13/17 10:13	3,200.8	BV
Copper, Total	ND	mg/l	0.00100		1	05/12/17 11:15	05/13/17 10:13	3,200.8	BV
Lead, Total	ND	mg/l	0.00100		1	05/12/17 11:15	05/13/17 10:13	3,200.8	BV
Zinc, Total	ND	mg/l	0.01000		1	05/12/17 11:15	05/13/17 10:13	3,200.8	BV

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7

Lab Number: L1715446

Report Date: 05/16/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG100286	33-2					
Iron, Total	105		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG100286			85-115			
Copper, Total	101		-		85-115	-		
Lead, Total	107		-		85-115	-		
Zinc, Total	99		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7

Lab Number: L1715446

Report Date: 05/16/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch II	D: WG100286	3-3	QC Sample:	L1715446-01	Client I	D: BOST	ON INN	IER HA	ARBOR
Iron, Total	0.136	1	1.08	94		-	-		75-125	-		20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch II	D: WG100286	3-7	QC Sample:	L1715328-01	Client I	D: MS Sa	mple		
Iron, Total	17.0	1	17.0	0	Q	-	-		75-125	-		20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch II	D: WG100286	4-3	QC Sample:	L1715446-01	Client I	D: BOST	ON INN	IER HA	ARBOR
Arsenic, Total	ND	0.12	0.1326	110		-	-		70-130	-		20
Copper, Total	ND	0.25	0.2733	109		-	-		70-130	-		20
Lead, Total	ND	0.51	0.5631	110		-	-		70-130	-		20
Zinc, Total	ND	0.5	0.5660	113		-	-		70-130	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7

Lab Number:

L1715446

Report Date:

05/16/17

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1002863	-4 QC Sample:	L1715446-01	Client ID:	BOSTON INNE	ER HARBOR
Iron, Total	0.136	0.124	mg/l	9		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1002863	-8 QC Sample:	L1715328-01	Client ID:	DUP Sample	
Iron, Total	17.0	17.4	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1002864	-4 QC Sample:	L1715446-01	Client ID:	BOSTON INNE	ER HARBOR
Arsenic, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:05161710:36

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7

Lab Number:

L1715446

Report Date:

05/16/17

SAMPLE RESULTS

Lab ID: L1715446-01

Client ID: BOSTON INNER HARBOR

Sample Location: 399 CONGRESS

Matrix: Water

Date Collected:

05/11/17 13:30

Date Received:

05/11/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
SALINITY	20		SU	2.0		1	-	05/15/17 16:30	121,2520B	AS
Nitrogen, Ammonia	0.095		mg/l	0.075		1	05/12/17 14:38	05/12/17 21:45	121,4500NH3-BH	AT

Serial_No:05161710:36

L1715446

Lab Number:

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7 **Report Date:** 05/16/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab for sam	ple(s): 01	Batch	: WG10	002792-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	05/12/17 14:38	05/12/17 21:23	121,4500NH3-E	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: 399 CONGRESS ST

Lab Number:

L1715446

Project Number: 4540.2.D7

Report Date: 05/16/17

Parameter	LCS %Recovery Qu	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1002792	2					
Nitrogen, Ammonia	98	-		80-120	-		20	
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1003620	1					
SALINITY	96	-			-			

Matrix Spike Analysis Batch Quality Control

Project Name: 399 CONGRESS ST

Project Number:

4540.2.D7

Lab Number:

L1715446

Report Date:

05/16/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery I Limits	RPD Qu	RPD _{ual} Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1002792-4	QC Sample: L171507	1-01 Client	ID: MS Sa	ample
Nitrogen, Ammonia	0.076	4	3.92	96	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 399 CONGRESS ST

Project Number: 4540.2.D7

Lab Number:

L1715446

Report Date:

05/16/17

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab As	ssociated sample(s): 01 QC Batch	ID: WG1002792-3	QC Sample: L1715	071-01 C	lient ID: I	DUP Sample	
Nitrogen, Ammonia	0.076	ND	mg/l	NC		20	
General Chemistry - Westborough Lab As HARBOR	ssociated sample(s): 01 QC Batch	ID: WG1003620-2	QC Sample: L1715	5446-01 C	lient ID: I	BOSTON INNER	
SALINITY	20	22	SU	10			

Serial_No:05161710:36

Project Name: 399 CONGRESS ST

Lab Number: L1715446

Project Number: 4540.2.D7 Report Date: 05/16/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1715446-01A	Plastic 250ml HNO3 preserved	А	<2	5.3	Υ	Absent	ZN-2008T(180),CU- 2008T(180),FE-UI(180),AS- 2008T(180),PB-2008T(180)
L1715446-01B	Plastic 250ml H2SO4 preserved	Α	<2	5.3	Υ	Absent	NH3-4500(28)
L1715446-01C	Amber 500ml unpreserved	Α	7	5.3	Υ	Absent	SALINITY(28)
L1715446-01D	Vial MeOH preserved	Α	N/A	5.3	Υ	Absent	ARCHIVE(0)
L1715446-01E	Vial water preserved	Α	N/A	5.3	Υ	Absent	ARCHIVE(0)
L1715446-01F	Vial water preserved	Α	N/A	5.3	Υ	Absent	ARCHIVE(0)

Project Name: 399 CONGRESS ST Lab Number: L1715446

Project Number: 4540.2.D7 Report Date: 05/16/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:399 CONGRESS STLab Number:L1715446Project Number:4540.2.D7Report Date:05/16/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:05161710:36

Project Name:399 CONGRESS STLab Number:L1715446Project Number:4540.2.D7Report Date:05/16/17

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05161710:36

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

mg 5/15/17 IVIC	J/BFM- updated	COC											- 00	J. 1. 4	0.00101710.0	50	
ΔLPHA	CHA	AIN OF C	USTODY	PAGE	_ OF	Date R	ec'd in La	ab: 51	nli	7		AL	РНА	Job#	:4715	946	
8 Walkup Drive	320 Forbes Blvo		ct Information			Repo	rt Inform	nation - D	ata De	liveral	oles		Billing Information				
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA (2048 Projec	t Name: 399 (DV	yress	5+	D KAD	Ex		AIL.			□s	ame a	s Client	info PO#:		
Client Information	n	Projec	t Location: Z GU	Corane	= 5	Regul	atory Re	equireme	nts &	& Pro	oject I	nforn	natior	n Requ	irements		
Client: McPhail	Associates,	LLL Project	t Location: 399 t#: 4540) A.D	フ			MCP Anal							CT RCP Analytica Inorganics)	al Methods	
Address: 2269	M9539ch45e445	AVERUE Projec	t Manager: w J		/	☐ Yes	No GW	/1 Standar	ds (Info								
	MA 02140		IA Quote #:					DES RGP ed Progra					Cr	iteria			
Phone: 617 - 80	68-1420	Turr	-Around Time				//	75	2/3	/_/				///	1.//		
Email:	44	□ Sta	andard Sa RUSH (Samble Samples & Targets D Ranges Only Total Metals Total Metals Samples AMALYSIS AMALYSIS AMALYSIS AMALYSIS AMALYSIS Savoc: D8260 D624 D8242 AMALYSIS AMALYSIS AMALYSIS AMALYSIS Savoc: D8260 D624 D8242 AMALYSIS											
			_	nly confirmed if pre-a	approved!)	VOC: D8260 D624 D524.2 NETALS: DMCP 13 DMCP 14 DI EPH: DRanges & Targets D Ranges UPH: DQuant Omy DFingerprint TOTAL MCPALS TOTAL MCPA						/ /	' / /				
Additional Pr	oject Informat	ion:	Due: 3	day		ANALYSIS	PAH DS	J.M.C.	ts D		Finge	-R60	/ /	/ /	SAMPI	LE INFO	
** Motals List:	As, CU, FE,PB a	and 7n Only				A 4		5 2 L	rarge Targe	5/ /	0 4	3/ /	/ /		/ Filtration		
Wetais List. /	A3, OO, I L,I D 8	and Zir Omy				990	ABN	RCR.	Jes &	PES IT OF	leta.	61	X2	×//	/ Lab	to do	
						^[] 8260		LS: C	Ran	J Out	1	non	the state of the s		Preserv □ Lab t	100	
ALPHA Lab ID (Lab Use Only)	Sam	ple ID	Collection Date Time	Sample Matrix	Sampler	VOC: D8260 D624 D524.2 SVOC: DABN DPAH METALS: DMCP 13 DMCP 14 DRCP 15 FPH: DRanges & Targets D Ranges Only DPCB DBCC BAN C PCB DBCC BAN ANALYSIS BAN BAN BAN C PCB DBCC ANALYSIS BAN C PCB DBCC BAN C PCB DBCC C PC		Ha	Potal Metale	Scaling			Samula Ca				
15416-01	Boston Inn	2- 11	5/11/17 1:30		-					,	ZX	X	K 1		/ Sample Cor	mments	
12-116-01	1005101 Inn	er liturbox	3/11/1/11/50	SW	JRS					/			ec. 1				
							1										
							-	+			-		+				
		7.2		_	-												
				-													
	2																
Container Type P= Plastic	Preservative A= None			Conta	ainer Type					F	P	A					
A= Amber glass V= Vial G= Glass	= Amber glass			Pr	eservative					C	D	A					
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH	Relinquished By:			e/Time	10	Ŕece	iyed By:	^ /		Date	/Time		All ====		- 1	
E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	Danger	1	5/11/1	7 2:45	Jant Kill Som			7/1	2	Alpha's	oles submitted are Terms and Condi					
Page 22 of 23	J = NH₄CI K= Zn Acetate O= Other	25) 11	+ h	31111	\ R.,	ner	den in 51			אויוני	, loc	See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)					

ALPHA	CHA	IN OF CL	JSTODY	PAGE	_ OF	Date Re	c'd in Lab	:510	117			ALPH	IA Job #	#: 47 K	5946	
8 Walkup Drive	320 Forbes Blvd		t Information			Report	Informa	tion - Da	ta Deliv	erable			g Inform			
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02	Project	Name: 399 (po Location: 399 #: 454	ngress	5+	DXADE:	<	□ EMAIL	-			□ Sam	e as Clien	t info PO#:		
Client Information	on	Project	Location: Z GO	Covance	= 5	Regula	tory Req	uiremen	ts &	Proje	ct In	format	ion Requ	uirements		
Client: McPhail	Associates, 1	LLL Project	#: 454	OAD	フ			ICP Analyt			DG2	□ Y (Requir	es No	CT RCP Analyt P Inorganics)	ical Methods	i
Address: 2269	M9559ch45c++5	AVENUE, Project		TB	/	☐ Yes 🖫	No GW1	Standards								
Combridge,	MA 02140		A Quote #:	<i>J</i>		Yes Other		ES RGP Program					Criteria			
Phone: 617 - 8		Turn-	Around Time				/ /		7.7	1		7 /	/ /	1.//		12.5
Email:	-						/ /	DRCP 15	10/0	700		/ /				
		□Star	ndard RUSH	(only confirmed if pre-a	pproved!)	Sys	7/	4 0	anges nges	'/ /	ļu, /	5			- 1	Т
Additional P	roject Informati	on: Date	Due:	day		ANALYSIS	7 AH	DRCRA8	7 2 2 E	/ /.	- P.	3//	' / /	SAM	IPLE INFO	O T
				Gery		₹ / ²	D PAH		gets	OF	1	/ /		Filtra		A L
						0/	1 43 Et 43	# 7a1	& Tal	My	2	_/.		/ Dis	eld ab to do	#
						D 8260	ABN CP	DRC nges	nges D PE	ant C	Z z	13	The sale	/ /	ervation	В
			Collection	-			1/3/2	i / 2 /	L Ra	00/	Ammon Met	16/11/19		/	b to do	T
ALPHA Lab ID (Lab Use Only)	Sam	ple ID	Sample Matrix	Sampler Initials	SVOC.	METALS: DINCP 13	EPH: DRanges & Tanges. VPU.	C PCB C PEST Targets C Ranges Only TPH.	Total Deliant Only Dein	Ammon Metals	N		Sample C	Comments	L E S	
15416-01	Boston Inn	er Hil	5/11/17 1:30	EW	TRS					×		XX	-1/1	- Gample C		5
13/10/01	_ 1003100 JAN	er war box	3/11/1/	5W	JA					/\		***	lar			6 3
							-				-	_	-			
			ļ													
		· · · · · · · · · · · · · · · · · · ·	_					-				+		 		_
																_
											-	_				
	1000															
Container Type P= Plastic A= Amber glass	Preservative A= None			Conta	ainer Type					P	PA	4				
V= Vial G= Glass	B= HCI C= HNO ₃ D= H_2 SO ₄			Pre	eservative					C	DA	F				
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relinqu	uished By:		e/Time	10	Receive	ed By:	1		Date/T	ime	Alleam	ples submitted a	are subject to	
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	Bygge		5/11/1		To JY	MAC	XIM	L_	50	Ma	1800	Alpha's	Terms and Con		
Page 23 of 23	J = NH₄CI K≈ Zn Acetate O= Other	25)11	211/2 81 0			ver	den un Slille				·tte	See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)				