

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

AUG 1 3 2015

Angela Boyd, Project Manager Environmental Strategies and Management, Inc. 273 West Main Street Norton, MA 02766

Re: Authorization to discharge under the Remediation General Permit (RGP) – for the Whitten Street Park Groundwater Treatment Facility site located in Allenstown, New Hampshire; Authorization # NHG910070

Dear Ms. Boyd:

Based on the review of a Notice of Intent (NOI) you submitted on behalf of the owner of the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that were detected in your sampling and that may have exceeded Appendix III limits. Please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR). Since the discharge will be made to the confluence of the Suncook and Merrimack Rivers with a calculated dilution of factor of 4771, iron and arsenic will be subject to the ceiling value limits of 5000 ug/l and 540 ug/l, respectively. (See the RGP Appendix IV for New Hampshire facilities).

Therefore, the following limits will apply to the effluent from this treatment system: Total Suspended Solids (TSS) - 30 mg/l, Benzene- 5 ug/l, Total BTEX - 100 ug/l, naphthalene - 20 ug/l, total arsenic - 540 ug/l, total iron - 5,000 ug/l, and a pH range of 6.5 - 8.0 standard units (s.u.). There is also a monitoring requirement for toluene, ethylbenzene, xylenes, and total chloride.

This EPA general permit and authorization to discharge will expire on September 9, 2015. You have not provided a terminate date for this project. Please be aware that you are required to reapply for coverage after the EPA expired permit has been reissued, if your project is extended beyond the permit expiration date. The reissuance date as well as the reapplication submittal date will be posted on the EPA web site at that time. Also, regardless of your project termination date you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within thirty (30) days of the termination of the discharge.

Thank you in advance for your cooperation in this matter. Please contact George Papadopoulos at (617) 918-1579 or Papadopoulos.George@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction Permits Section

Numa Marphy

Enclosure

cc: Jeffrey G. Andrews, NHDES

Juan Somoano, Occidental Petroleum

2010 Remediation General Permit - Summary of Monitoring Parameters[1]

NPDES Authorization Number:		NHG910070					
Authorization Issued:	Augu	st 13, 2015					
Facility/Site Name:	ility/Site Name: Whitten Street Park Groundwater Treatment Facility - Allen						
		ry Street, Allenstown, NH 03275					
racility/Site Address:	Email	address of owner: juan somoano@oxy.com					
Legal Name of Operator:		Environmental Strategies and Management, Inc.					
Operator contact name	e, title,	Angela Boyd, Project Manager					
and Address:	10 30	Email: aboyd@esm-inc.com					
Estimated date of The Project Completion:	and land	Not known					
Category and Sub-Cate	egory:	Petroleum Related Site Remediation Category– Gasoline Only Sites Subcategory					
RGP Termination Date		September 2015					
Receiving Water:	THE W	Confluence of the Suncook and Merrimack Rivers					

Monitoring and Limits apply to those parameters with a checkmark. All samples are to be collected as grab samples.

	<u>Parameter</u>	Effluent Limit/Method#/ML (Effluent Limits are expressed as Daily Maximum Limits, unless denoted by a **, in which case they are Monthly Average Limits)
√	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, Me#160.2/ML5ug/L
	Total Residual Chlorine (TRC)	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
II KY	Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) 2, 3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
V	5. Benzene (B)	5ug/L / Me#8260C/ML 2 ug/L
√	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
√	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
√	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
√	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether	70.0 ug/l/Me#8260C/ML 10ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (Effluent Limits are expressed as Daily Maximum Limits, unless denoted by a **, in which case they are Monthly Average Limits)
una.	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
V	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m-DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
NAME OF	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene(PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
9 1	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
136	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates (Phthalate esters) 6	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
15	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L

		Effluent Limit/Method#/ML					
	The state of the s	(Effluent Limits are expressed as Daily					
	Parameter	Maximum Limits, unless denoted by a **,					
	AWILEUS .	in which case they are Monthly Average					
1.0	24. (10.540 A) (10.540 A) (10.540 A)	Limits)					
	d Bana (Is) Elementh and 7	0.0038 ug/L /Me#8270D/ ML 5ug/L,					
	d. Benzo(k)Fluoranthene ⁷	Me#610/ML 5ug/L& Me#625/ML 5ug/L					
	- Ch7	0.0038 ug/L /Me#8270D/ML 5ug/L,					
	e. Chrysene ⁷	Me#610/ML 5ug/L& Me#625/ML 5ug/L					
	6 Dibana (a b) a bbana 7	0.0038 ug/L /Me#8270D/ML 5ug/L,					
	f. Dibenzo(a,h)anthracene ⁷	Me#610/ML 5ug/L& Me#625/ML 5ug/L					
91	7 1 (4 2 2 1) 2 7	0.0038 ug/L /Me#8270D/ML 5ug/L,					
	g. Indeno(1,2,3-cd) Pyrene ⁷	Me#610/ML 5ug/L& Me#625/ML5ug/L					
7	36. Total Group II Polycyclic						
	Aromatic Hydrocarbons (PAH)	100 ug/L					
-		X/Me#8270D/ML 5ug/L,Me#610/ML					
	h. Acenaphthene	5ug/L & Me#625/ML 5ug/L					
		X/Me#8270D/ML 5ug/L,Me#610/ML					
1	i. Acenaphthylene	5ug/L & Me#625/ML 5ug/L					
ij.		X/Me#8270D/ML 5ug/L,Me#610/ML					
	j. Anthracene	5ug/L & Me#625/ML 5ug/L					
	1 5 (105 1	X/Me#8270D/ML 5ug/L,Me#610/ML					
	k. Benzo(ghi) Perylene	5ug/L & Me#625/ML 5ug/L					
	4 4	X/Me#8270D/ML 5ug/L,Me#610/ML					
	I. Fluoranthene	5ug/L & Me#625/ML 5ug/L					
12	NEW CONTROL OF THE CO	X/Me#8270D/ML 5ug/L,Me#610/ML					
	m. Fluorene	5ug/L & Me#625/ML 5ug/L					
	- Noubthalana 5	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML					
	n. Naphthalene ⁵	5ug/L & Me#625/ML 5ug/L					
Ind.	a Dhananthuana	X/Me#8270D/ML 5ug/L,Me#610/ML					
	o. Phenanthrene	5ug/L & Me#625/ML 5ug/L					
		X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L					
	p. Pyrene	& Me#625/ML 5ug/L					
	37. Total Polychlorinated	7741 1997					
	Biphenyls (PCBs) 8, 9	0.000064 ug/L/Me# 608/ ML 0.5 ug/L					
-/	38. Chloride	Monitor only/Me# 300.0/ ML 100					
V	30. Cilioride	ug/L					

		Total Recoverable Metal Limit H 10 = 50 mg/l CaCO3, Units = ug/l	Minimum level=ML ¹¹
	Metal Parameters	Freshwater Limits	
	39. Antimony	5.6	10
\checkmark	40. Arsenic **	540	20
	41. Cadmium **	0.2	10
	42. Chromium III (trivalent) **	17.1	15
	43. Chromium VI (hexavalent) **	11.4	10
	44. Copper **	5.2	15
	45. Lead **	1.3	20
	46. Mercury **	0.9	0.2
	47. Nickel **	29	20
	48. Selenium **	5	20
	49. Silver	1.2	10
	50. Zinc **	66.6	15
\checkmark	51. Iron	5000	20

	Other Parameters	Limi <u>t</u>		
√	52. Instantaneous Flow	Site specific in CFS		
\checkmark	53. Total Flow	Site specific in CFS		
	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab12		
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.5; 1/Month/Grab12		
V	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab12		
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹³		
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹³		
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹³		
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹³		
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹³		
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹³		
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹³		
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹³		

Footnotes:

¹ Although the maximum values for TRC are 11 ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

- ² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.
- ³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).
- ⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.
- ⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.
- ⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate. The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

 Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.
- ⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.
- ⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.
- ⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
- ¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.
- Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).
- ¹²pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.
- ¹³ Temperature sampling per Method 170.1

July 16, 2015

United States Environmental Protection Agency 5 Post Office Square, Suite 100 Boston, MA 02109-3912

Subject: Notice of Intent for Remediation General Permit

Whitten Street Park Groundwater Treatment Facility

Allenstown, NH

To whom it may concern:

Environmental Strategies & Management, Inc. (ES&M) has prepared the attached Notice of Intent package for a remediation general permit. The project is being conducted by Glenn Springs Holdings, Inc. A new Boys and Girls Club building is being constructed by the Town of Allenstown in Whitten Street Park, which is included in a groundwater management zone related to a historic release of gasoline. The foundation of the new building will be constructed below the water table, and will include a drainage system. Water drained from the building will require treatment prior to discharge to the Town's Stormwater system.

The water will be run through bag filters and carbon tanks, as shown on the attached piping and instrumentation diagram. After treatment, the water will be discharged to the town's storm drains, and ultimately to the confluence of the Suncook and Merrimac Rivers. A monitoring well (ESM-20) was installed near the location of the proposed drainage system, and groundwater samples were collected for laboratory analysis. The results were used to complete Section 3 of the NOI, and the full laboratory analytical report is attached.

The expected 7Q10 flow for the mixing zone of the Suncook and Merrimac Rivers was calculated by NHDES. NHDES also confirmed the accuracy of the dilution factor used for metals, which was calculated in accordance with the Permit Instructions.

Threatened and endangered species will not be impacted by this project. A review was conducted using methodology described on the United States Fish and Wildlife Service New England Field Office webpage. The four species listed in Appendix VIII of the Remediation General Permit are not present in Merrimac County. The United States Fish and Wildlife Service lists the small whorled pogonia, the Karner Blue Butterfly, and the northern long-eared bat as "know or believed" present in Merrimac County. Of these three species, only the small whorled pogonia is listed as having a general habitat in Allenstown. Since the pogonia is not an aquatic species, it will not be affected by this discharge. A no-species present letter and a fact sheet describing the Small whorled pogonia is included as documentation.

Since the project is located with a Historic District, ES&M consulted with the New Hampshire Department of Historical Resources. The conclusion of the review was that no historic properties would be affected. The review form is attached as documentation.

Please call us at 508-226-1800 if you have any questions.

Sincerely,

Environmental Strategies & Management, Inc.

Angela Boyd

Environmental Scientist

Enc.: Notice of Intent

Locus Map Figures 1 & 2

Letter from US Fish and Wildlife Service

Small Whorled Pogonia Fact Sheet

Letter from New Hampshire Department of Historical Resources

Laboratory Analytical Reports

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

<u> </u>									
a) Name of facility/site : Whitten Street Park Groundwa	iter Treatment Facility	Facility/site mailing address:							
Location of facility/site : longitude: 71° 27' 22.86" W latitude: 43° 07' 37.50" N	Facility SIC code(s):	Street:	9 Ferry Street						
b) Name of facility/site owner:		Town:	Allenstown						
Email address of facility/site owner: Juan_Somoano@oxy.com Telephone no. of facility/site owner: 972 68	State:		Zip: 03275		County: Merrimac				
Fax no. of facility/site owner : 972 687-7524 Address of owner (if different from site):	Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:								
Street: 5005 LBJ Freeway, Suite 1350									
Town: Dallas	State: TX	Zip: 75	244	County: Dallas					
c) Legal name of operator :	Operator tel	lephone no: (508) 226-1800							
Environmental Strategies & Management	Operator fax	no.: (50	8) 226-1811	Operator en	nail: al	boyd@esm-inc.com			
Operator contact name and title: Angela Bo	yd, Project Mana	ger							
Address of operator (if different from owner):	Street: 273 We	est Main Street							
Town: Norton	State: MA	Zip: 02	766	County: Brist	ol				

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for to the second seco	en filed for the discharge?
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y NO If Y, please list: 1. site identification # assigned by the state of NH or MA: 198400003 2. permit or license # assigned: GWP-198400003-A-003 3. state agency contact information: name, location, and telephone number: Andrew Fulton, New Hampshire Dept. of Environmental Services, PO Box 95, 29 Hazen Drive, Concord, NH 03302-0095 (603) 271-3899 g) Is the site/facility located within or does it discharge to	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O N O, 2. Final Dewatering General Permit? Y O N O, 3. EPA Construction General Permit? Y O N O, if Y, number: 4. Individual NPDES permit? Y O N O, 3. any other water quality related individual or general permit? Y O N O, if Y, number: 3. any other water quality related individual or general permit? Y O N O, if Y, number: 3. any other water quality related individual or general permit? Y O N O, if Y, number:
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)
2. Discharge information. Please provide information	about the discharge, (attaching additional sheets as necessary) including
a) Describe the discharge activities for which the owner/a	pplicant is seeking coverage:
, ,	Street Park. The first floor will be below the water table. Since groundwater has d water will be required prior to discharge to the town's stormwater conveyances.
b) Provide the following information about each discharge	e:
	and average flow rate of discharge (in cubic feet per second, ft ³ /s)? s maximum flow a design value? Y O N O s) Is average flow a design value or estimate? est
3) Latitude and longitude of each discharge within 100 fept.1: lat 43° 7'38.96"N long 71°27'50.54"W pt.2: lat.	long. ;
pt.3: lat long pt.4: lat.	long. ;
pt.5: lat long pt.6: lat.	long. ;
pt.7: lat long pt.8: lat.	long.; etc.
4) If hydrostatic testing, 5) Is the discharge intermit	tent O or seasonal O?
total volume of the Is discharge ongoing? Y	N ○
discharge (gals):	
c) Expected dates of discharge (mm/dd/yy): start Sep 10, 2015	end end
d) Please attach a line drawing or flow schematic showing	
	peration, 3. treatment units, and 4. discharge points and receiving
waters(s). See two attached drawings	

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. A ttach additional sheets as needed.

<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum dai	mass (kg)	Average daily concentration (ug/l)	walue mass (kg)
1. Total Suspended Solids (TSS)			×	1	grab	SM 2540D	4000	117,000		0	
2. Total Residual Chlorine (TRC)		×									
3. Total Petroleum Hydrocarbons (TPH)		×		1	grab	1664A	49000	0		0	
4. Cyanide (CN)	57125	×									
5. Benzene (B)	71432		×	1	grab	8260C	40	2000		0	
6. Toluene (T)	108883		×		grab	8260C	40	140		0	
7. Ethylbenzene (E)	100414		×	1	grab	8260C	40	360		0	
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207		×	1	grab	8260C	80	350		0	
9. Total BTEX ²	n/a		×	1	grab	8260C	200	2850		0	
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934	×		1	grab	8260C	40	0		0	
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	grab	8260C	40	0		0	
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×		1	grab	8260C	400	0		0	

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum dai	mass (kg)	Average daily concentration (ug/l)	walue mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	grab	8260C	40	0		0	
14. Naphthalene	91203		X	1	grab	8260C	40	97		0	
15. Carbon Tetrachloride	56235	×									
16. 1,2 Dichlorobenzene (o-DCB)	95501	×									
17. 1,3 Dichlorobenzene (m-DCB)	541731	×									
18. 1,4 Dichlorobenzene (p-DCB)	106467	×									
18a. Total dichlorobenzene		X									
19. 1,1 Dichloroethane (DCA)	75343	×									
20. 1,2 Dichloroethane (DCA)	107062	×									
21. 1,1 Dichloroethene (DCE)	75354	×									
22. cis-1,2 Dichloroethene (DCE)	156592	×									
23. Methylene Chloride	75092	×									
24. Tetrachloroethene (PCE)	127184	×									
25. 1,1,1 Trichloro-ethane (TCA)	71556	×									
26. 1,1,2 Trichloro-ethane (TCA)	79005	×									
27. Trichloroethene (TCE)	79016	×									

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	<u>value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	<u>Type</u> (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	×									
29. Acetone	67641	×									
30. 1,4 Dioxane	123911	×									
31. Total Phenols	108952	×									
32. Pentachlorophenol (PCP)	87865	×									
33. Total Phthalates (Phthalate esters) ⁴		×									
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×									
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		X									
a. Benzo(a) Anthracene	56553	×									
b. Benzo(a) Pyrene	50328	×									
c. Benzo(b)Fluoranthene	205992	×									
d. Benzo(k)Fluoranthene	207089	X									
e. Chrysene	21801	×									
f. Dibenzo(a,h)anthracene	53703	×									
g. Indeno(1,2,3-cd) Pyrene	193395	×									
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×									

⁴ The sum of individual phthalate compounds.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329	×									
i. Acenaphthylene	208968	×									
j. Anthracene	120127	×									
k. Benzo(ghi) Perylene	191242	×									
1. Fluoranthene	206440	×									
m. Fluorene	86737	×									
n. Naphthalene	91203	×									
o. Phenanthrene	85018	×									
p. Pyrene	129000	×									
	85687; 84742; 117840; 84662;	×									
37. Total Polychlorinated Biphenyls (PCBs)	131113; 117817.										
38. Chloride	16887006	×									
39. Antimony	7440360	×									
40. Arsenic	7440382	×									
41. Cadmium 42. Chromium III (trivalent)	7440439 16065831	×									
43. Chromium VI (hexavalent)	18540299	×									
44. Copper	7440508	×									
45. Lead	7439921	×		1	grab	6010C	10	0		0	
46. Mercury	7439976	×									
47. Nickel	7440020	×									
48. Selenium	7782492	×									
49. Silver	7440224	×									
50. Zinc	7440666	×									
51. Iron	7439896		×	1	grab	6010C	50	19500		0	
Other (describe):											

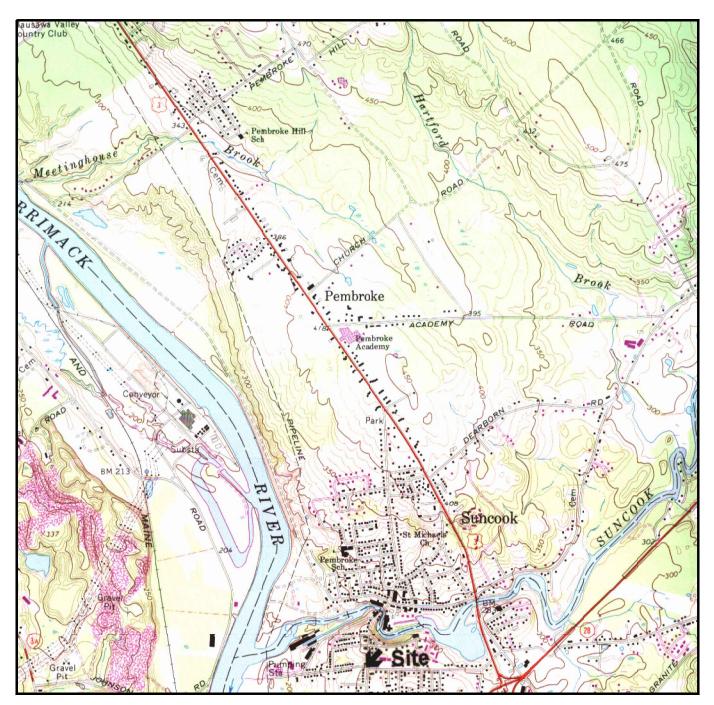
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum concentratio (ug/l)	on mass (kg)	Average daily concentration (ug/l)	walue mass (kg)
b) For discharges where metals are believed present, please fill out the following (attach results of any calculations): Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? Y O N O iron											
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF Metal: DF: Metal: Metal: Metal: Metal: DF: Metal: Met											
4. Treatment system					•	<u> </u>		-	uding:		\neg
a) A description of the treatment system, including a schematic of the proposed or existing treatment system: A wet well will be connected to the building's drainage system, and two submersible pumps will be deployed. Water will be pumped into an iron-settling tank, and then into one of three parallel treatment trains. The system will be equipped with telemetry, so that the operator can remotely switch between trains. Each treatment train will include one bag filter unit and two 500 pound carbon filtration units.											
b) Identify each	Frac. ta	ank 🔲 A	ir stripper	□ Oil/w	vater separat	or 🗆	Equalization	on tanks 🗵	Bag filter 🗵	GAC filter	×
applicable treatment unit (check all that apply):	Chlorin		De- hlorination		r (please des	scribe):					7

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge gpm Maximum flow rate of treatment system gpm Design flow rate of treatment system gpm									
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):									
5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:									
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain <u>⊠</u>	Wetlands	Other (describe):				
b) Provide a narrative description of discharge from treatment system will enter									
c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.									
d) Provide the state water quality cla	assification of th	e receiving water	3						
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water Please attach any calculation sheets used to support stream flow and dilution calculations.									
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O N O If yes, for which pollutant(s)? mercury, aquatic life									
Is there a final TMDL? Y O N O If yes, for which pollutant(s)? mercury (all fresh water in NH)									

6. ESA	and	N	HP.	A	Eli	igibili	ty	•
D1		4	. 1	0	11			-

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A O B O C O D O E O F O b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O Underway
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O NOA
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 O 2 O 3 O
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.


7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

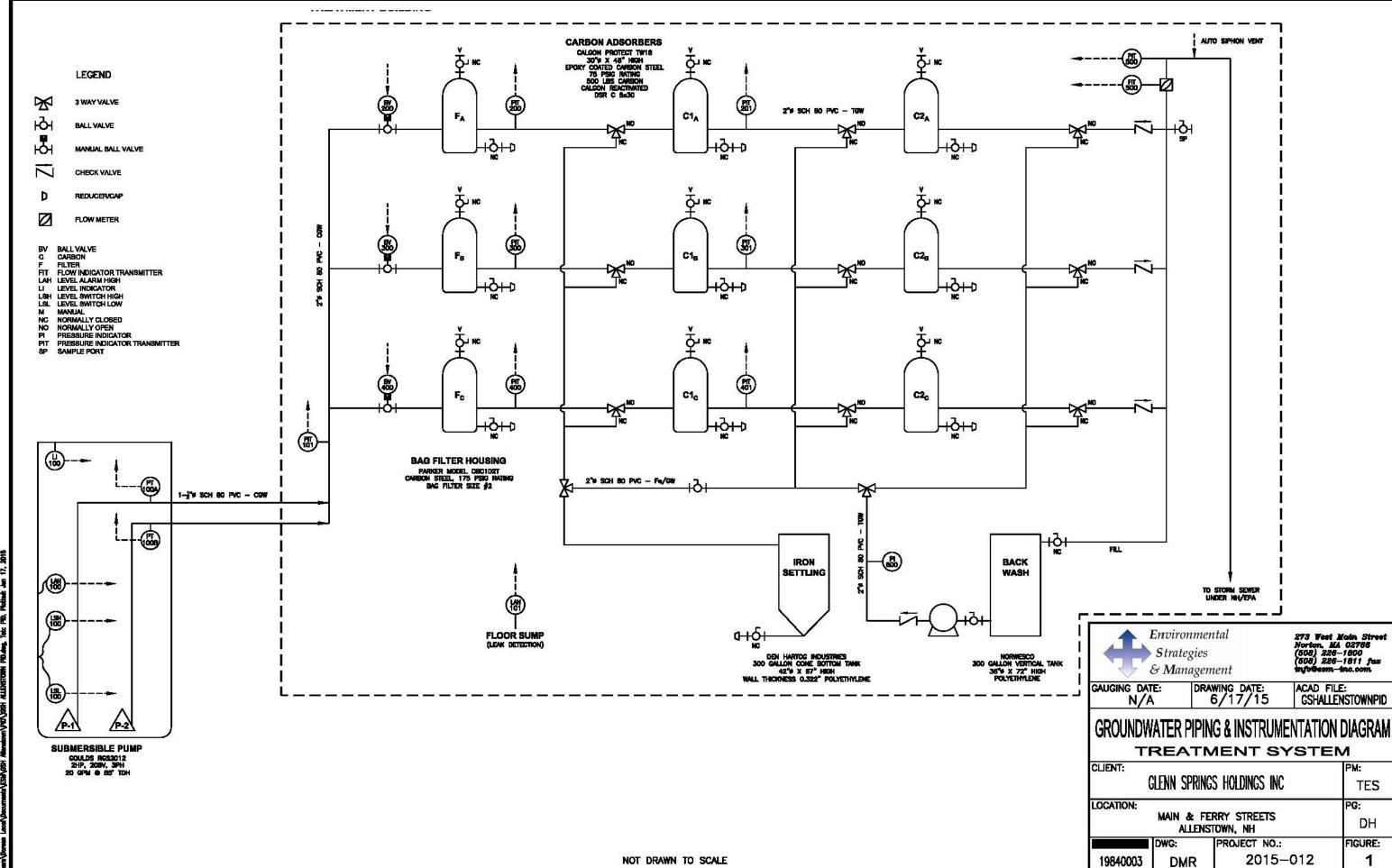
Facility/Site Name:	Whitten Street Park Groundwater Treatment System
Operator signature:	Anozela Boyd
Printed Name &Titl	e: Angela Boyd, Project Manager
Date: July 16, 2015	

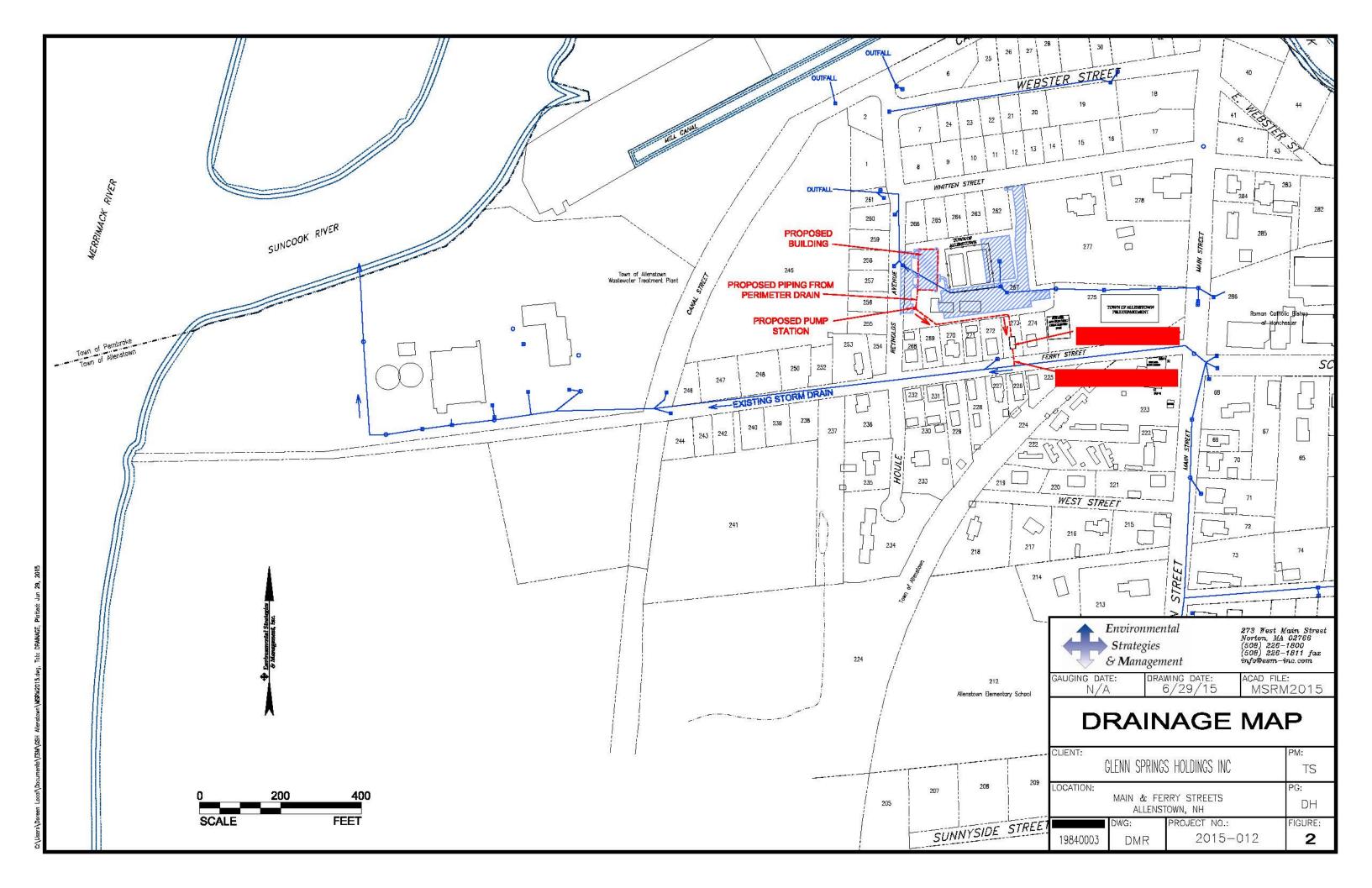
SOURCE: U.S.G.S. 7.5 x 15 MINUTE TOPOGRAPHIC QUADRANGLE SUNCOOK, NEW HAMPSHIRE SITE COORDINATES:

LAT: 43° 07' 32"N LON: 71° 27' 27"W

SCALE: 1:24,000

273 West Main Street Norton, MA 02766 (508) 226-1800 (508) 226-1811 fax info@esm-inc.com


DRAWING DATE: 12/16/13 N/A


ACAD FILE: LOCUS/AR-F1

LOCUS MAP

Site Status Summary Report

CLIENT:	GLENN SPRINGS HOLDINGS INC							
(AB							
LOCATION:	PG:							
	NHDES SITE #198400003 Main & Ferry Streets Allenstown, NH							
SITE ID:	DWG:	PROJECT NO.:	FIGURE:					
198400003	AB	2013-012	1					

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 7, 2015

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2015)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman

Supervisor

New England Field Office

U.S. Fish & Wildlife Service

Threatened and Endangered Species

Small Whorled Pogonia

Isotria medeoloides

States where the small whorled pogonia, an orchid, is found.

The small whorled pogonia is a threatened species. Threatened species are animals and plants that are likely to become endangered in the foreseeable future. Endangered species are animals and plants that are in danger of becoming extinct. Identifying, protecting, and restoring endangered and threatened species is the primary objective of the U.S. Fish and Wildlife Service's endangered species program.

What is the small whorled pogonia?

Appearance - The small whorled pogonia is a member of the orchid family. It usually has a single grayish-green stem that grows about 10 inches tall when in flower and about 14 inches when bearing fruit. The plant is named for the whorl of five or six leaves near the top of the stem and beneath the flower. The leaves are grayish-green, somewhat oblong and 1 to 3.5 inches long. The single or paired greenish-yellow flowers are about 0.5 to 1 inch long and appear in May or June. The fruit, an upright ellipsoid capsule, appears later in the year.

Range - Although widely distributed, the small whorled pogonia is rare. It is found in 17 eastern states and Ontario, Canada. Populations are typically small with less than 20 plants. It has been extirpated from Missouri, New York, Vermont, and Maryland.

Habitat - This orchid grows in older hardwood stands of beech, birch, maple, oak, and hickory that have an open understory. Sometimes it grows in stands of softwoods such as hemlock. It prefers acidic soils with a thick layer of dead leaves, often on slopes near small streams.

What is the small whorled pogonia? (continued)

Why is the small whorled pogonia threatened?

What Is being done to prevent extinction of the small whorled pogonia?

Reproduction - This pogonia flowers from mid-May to mid-June, with the flowers lasting only a few days to a week. It may not flower every year but when it does flower, one or two flowers are produced per plant. If pollinated, a capsule forms that contains several thousand minute seeds. The pogonia appears to self-pollinate by mechanical processes. The flower lacks both nectar guides and fragrance and insect pollination has not been observed.

Habitat Loss and Degradation - The primary threat to the small whorled pogonia is the past and continuing loss of populations when their habitat is developed for urban expansion. Some forestry practices eliminate habitat. Also, habitat may be degraded or individual plants lost because of recreational activities and trampling.

Collection - As with all rare orchids, the small whorled pogonia is vulnerable to collecting for commercial or personal use.

Listing - The small whorled pogonia was added to the U.S. List of Endangered and Threatened Wildlife and Plants in 1982 as an endangered species. In 1994 it was reclassified to threatened.

Recovery Plan - The U.S. Fish and Wildlife Service prepared a recovery plan and revised that plan in 1992. The Recovery Plan describes and prioritizes actions needed to help recover the species.

Research - Many small whorled pogonia populations are being monitored to determine long-term population trends. Habitat management techniques, such as reducing shade through selected tree removal are being investigated.

Habitat Protection - A variety of government and private conservation agencies are working to preserve the small whorled pogonia and its habitat. Voluntary protection agreements have also been made with some private landowners.

What can I do to help prevent extinction of species?

Learn - Learn more about the small whorled pogonia and other endangered and threatened species. Understand how the destruction of habitat leads to loss of endangered and threatened species and our nation's plant and animal diversity.

Volunteer - Volunteer at your local zoo, wildlife refuge or nature center. Work with their staff or other community members to maintain and restore local habitat.

Protect – Protect native plants by cleaning your shoes after hiking to avoid spreading invasive plants seeds and staying on trails if you are hiking in an area with rare plants in the the understory.

Grow Natives - Grow native plants in your lawn and garden but obtain the plants from local nurseries, do not dig up native plants from natural areas. Avoid using invasive, non-native plants in landscaping, such as purple loosestrife, bush honeysuckles and burning bush.

U.S. Fish & Wildlife Service 1 Federal Drive Fort Snelling, Minnesota 55111 612/713-5350 Please mail the completed form and required material to:

New Hampshire Division of Historical Resources State Historic Preservation Office Attention: Review & Compliance 19 Pillsbury Street, Concord, NH 03301-3570

RECEIVED JUN 2 9 2015

DHR Use Only	10.50
R&C#	6858
Log In Date	6,27,15
Response Date	7.8.15
Sent Date	7,9,15

Request for Project Review by the New Hampshire Division of Historical Resources

\boxtimes	This i	s a new	submitta	1							
П	This i	s additio	nal infor	mation	relating	to DHR	Review	& Comp	liance	(R&C)) #:

GENERAL PROJECT INFORMATION

Project Title Whitten Street Park Groundwater Treatment Facility

Project Location 9 Ferry Street

City/Town Allenstown

Tax Map 112

Lot # 273

NH State Plane - Feet Geographic Coordinates:

Easting 1040396

Northing 228612

(See RPR Instructions and R&C FAQs for guidance.)

Lead Federal Agency and Contact (if applicable) USEPA (Agency providing funds, licenses, or permits)

Permit Type and Permit or Job Reference # RGP

State Agency and Contact (if applicable) NHDES - Andy Fulton

Permit Type and Permit or Job Reference # GWP-198400003-A-003

APPLICANT INFORMATION

Applicant Name Glenn Springs Holdings, Inc.

Mailing Address 5005 LBJ Freeway, Suite 1350

Phone Number 972 687-7510

City Dallas

State TX

Zip 75244

Email Juan_Somoano@oxy.com

CONTACT PERSON TO RECEIVE RESPONSE

Name/Company Angela Boyd/ES&M

Mailing Address 273 West Main Street

Phone Number 508 226-1800

City Norton

State MA

Zip 02766

Email aboyd@esm-inc.com

This form is updated periodically. Please download the current form at www.nh.gov/nhdhr/review. Please refer to the Request for Project Review Instructions for direction on completing this form. Submit one copy of this project review form for each project for which review is requested. Include a self-addressed stamped envelope to expedite review response. Project submissions will not be accepted via facsimile or e-mail. This form is required. Review request form must be complete for review to begin. Incomplete forms will be sent back to the applicant without comment. Please be aware that this form may only initiate consultation. For some projects, additional information will be needed to complete the Section 106 review. All items and supporting documentation submitted with a review request, including photographs and publications, will be retained by the DHR as part of its review records. Items to be kept confidential should be clearly identified. For questions regarding the DHR review process and the DHR's role in it, please visit our website at: www.nh.gov/nhdhr/review or contact the R&C Specialist at <a href="mailto:charge-c

Protect Boundaries and Description		PROJECTS CANNOT BE PROCESSED WITHOUT THIS INFORMATION
### Altach a detailed narrative description of the proposed project Altach a detailed narrative description of the proposed project Attach a size plan. The site plan should include the project boundaries and areas of proposed excavation. Attach photos of the project area (overview of project boundaries and areas adjacent to project location, and specific areas of proposed impacts and disturbances. *## Altach a site plan. The site plan should include the project boundaries and areas adjacent to project location, and specific areas of proposed impacts and disturbances. *## Altach photos of the project area. Provide file review must be conducted to identify properties within or adjacent to the project area. Provide file review conducted on **Collecture** Arc there any buildings, structures (bridges, walls, culverts, etc.) objects, districts or landscapes within the project area? ** Yes □ No If no, skip to Archaeology section. If yes, submit all of the following information: Approximate age(s): 10 Photographs of ** each resources or streetscape located within the project area, with captions, along with a mapped photo key. ** Digital photographs are accepted. All photographs must be clear, crisp and focused.) If the project involves rehabilitation, demolition, additions, or alterations to existing buildings or structures, provide additional photographs showing detailed project work locations. (i.e. Detail photo of windows if window replacement is proposed.) **Archaeology** Does the proposed undertaking involve ground-disturbing activity? ** Yes □ No If yes, submit all of the following information: Description of current and previous land use and disturbances. Available information concerning known or suspected archaeological survey or other additional information may be needed to complete the Section 106 process. DHR Comment/Finding Recommendation ** This Space for Division of Historical Resources Use Only** If plans change or resources are discovered in the course of this project, you must contact the	<u>Project</u>	t Boundaries and Description
Are there any buildings, structures (bridges, walls, culverts, etc.) objects, districts or landscapes within the project area? Yes No If no, skip to Archaeology section. If yes, submit all of the following information: Approximate age(s): 10 Photographs of each resource or streetscape located within the project area, with captions, along with a mapped photo key. (Digital photographs are accepted. All photographs must be clear, crisp and focused) If the project involves rehabilitation, demolition, additions, or alterations to existing buildings or structures, provide additional photographs showing detailed project work locations. (i.e. Detail photo of windows if window replacement is proposed.) Archaeology Does the proposed undertaking involve ground-disturbing activity? Yes No If yes, submit all of the following information: Description of current and previous land use and disturbances. Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.) Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process. DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only Insufficient information to initiate review. Additional information is needed in order to complete review. No Potential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect Comments:	NAM (A)	defined project boundary. (See RPR Instructions and R&C FAQs for guidance.) Attach a detailed narrative description of the proposed project. Attach a site plan. The site plan should include the project boundaries and areas of proposed excavation. Attach photos of the project area (overview of project location and area adjacent to project location, and specific areas of proposed impacts and disturbances.) (Informative photo captions are requested.) A DHR file review must be conducted to identify properties within or adjacent to the project area. Provide file review results in Table 1. (Blank table forms are available on the DHR website.)
If no, skip to Archaeology section. If yes, submit all of the following information: Approximate age(s): 10 Photographs of each resource or streetscape located within the project area, with captions, along with a mapped photo key. (Digital photographs are accepted. All photographs must be clear, crisp and focused.) If the project involves rehabilitation, demolition, additions, or alterations to existing buildings or structures, provide additional photographs showing detailed project work locations. (i.e. Detail photo of windows if window replacement is proposed.) Archaeology Does the proposed undertaking involve ground disturbing activity? Yes No If yes, submit all of the following information: Description of current and previous land use and disturbances. Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.) Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process. DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only Insufficient information to initiate review. Additional information is needed in order to complete review. No Potential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect Comments: "If plans change or resources are discovered in the course of this project, you must contact the Division of Historical Resources as required by lederal law and regulation.	Arch	<u>uitecture</u>
Photographs of esch resource or streetscape located within the project area, with captions, along with a mapped photo key. (Digital photographs are accepted. All photographs must be clear, crisp and focused.) If the project involves rehabilitation, demolition, additions, or alterations to existing buildings or structures, provide additional photographs showing detailed project work locations. (i.e. Detail photo of windows if window replacement is proposed.) Archaeology Does the proposed undertaking involve ground disturbing activity? Yes \ No If yes, submit all of the following information: Description of current and previous land use and disturbances. Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.) Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process. DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only Insufficient information to initiate review. Additional information is needed in order to complete review. No Potential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect Comments:		project area? X Yes No
mapped photo key. (Digital photographs are accepted. All photographs must be clear, crisp and focused.) If the project involves rehabilitation, demolition, additions, or alterations to existing buildings or structures, provide additional photographs showing detailed project work locations. (i.e. Detail photo of windows if window replacement is proposed.) Archaeology Does the proposed undertaking involve ground disturbing activity? Yes No If yes, submit all of the following information: Description of current and previous land use and disturbances. Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.) Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process. DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only Insufficient information to initiate review. Additional information is needed in order to complete review. No Potential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect Comments:	Appr	eximate age(s): 10
Does the proposed undertaking involve ground disturbing activity? ☑ Yes ☐ No If yes, submit all of the following information: ☑ Description of current and previous land use and disturbances. ☑ Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.) Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process. DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only ☐ Insufficient information to initiate review. ☐ Additional information is needed in order to complete review. ☐ No Potential to cause Effects ☐ No Historic Properties Affected ☐ No Adverse Effect ☐ Adverse Effect Comments: ☐ Historical Resources are discovered in the course of this project, you must contact the Division of Historical Resources as required by federal law and regulation.	\bowtie	mapped photo key. (Digital photographs are accepted. All photographs must be clear, crisp and focused.) If the project involves rehabilitation, demolition, additions, or alterations to existing buildings or structures, provide additional photographs showing detailed project work locations. (i.e. Detail photo of
If yes, submit all of the following information: Description of current and previous land use and disturbances. Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.) Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process. DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only Insufficient information to initiate review. Additional information is needed in order to complete review. No Potential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect Comments: If plans change or resources are discovered in the course of this project, you must contact the Division of Historical Resources as required by federal law and regulation.	Archa	<u>aeology</u>
Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.) Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process. DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only Insufficient information to initiate review. Additional information is needed in order to complete review. No Potential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect Comments: If plans change or resources are discovered in the course of this project, you must contact the Division of Historical Resources as required by federal law and regulation.		
DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only Insufficient information to initiate review. Additional information is needed in order to complete review. No Potential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect Comments: If plans change or resources are discovered in the course of this project, you must contact the Division of Historical Resources as required by federal law and regulation.	\boxtimes	Available information concerning known or suspected archaeological resources within the project area
☐ Insufficient information to initiate review. ☐ Additional information is needed in order to complete review. ☐ No Potential to cause Effects ☐ No Historic Properties Affected ☐ No Adverse Effect ☐ Adverse Effect Comments: ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Please	
□ No Potential to cause Effects □ No Historic Properties Affected □ No Adverse Effect □ Adverse Effect Comments: □ If plans change or resources are discovered in the course of this project, you must contact the Division of Historical Resources as required by federal law and regulation.	DHE	R Comment/Finding Recommendation This Space for Division of Historical Resources Use Only
Historical Resources as required by federal law and regulation.	☐ No Po	otential to cause Effects No Historic Properties Affected No Adverse Effect Adverse Effect
Historical Resources as required by federal law and regulation.		
Historical Resources as required by federal law and regulation.		
Historical Resources as required by federal law and regulation.		
Historical Resources as required by federal law and regulation.	T.C1	
	Historica	al Resources as required by federal law and regulation.

ES&M QAQC Review Log

Lab	Project Number	Sample Date	Matrix	CAM Form Included?	Lab Presumptive Certainty?	QC Performance Standards Met?	Reporting Limits Achieved?	All Analytes Reported?	Data Usability Status
Test America	480-78248	4/8/2015	GW	No	NA	NA	NA	NA	Usable

Sample ID	Date	Lab ID	Matrix	Analysis
ESM-20 Eff	4/8/2015	480-78248-1	GW	metals
ESM-20 Mid	4/8/2015	480-78248-2	GW	metals
ESM-20 Inf	4/8/2015	480-78248-3	GW	metals, 8260C

New Hampshire Site - CAM does not apply

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 237148 recovered outside acceptance criteria, low biased, for 2-Butanone, Ethyl ether and Tetrahydrofuran. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated sample was non-detect for this analyte, the data have been reported.ESM-20 INF (480-78248-3)

All QAQC data, including surrogate, method blank, and laboratory control sample (LCS) results were reviewed. This report was deemed usable by Angela Boyd on 5/19/15.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-78248-1

Client Project/Site: ENV757, Former Bob's Citgo

Revision: 1

For:

Conestoga-Rovers & Associates, Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, New York 14304

Attn: Mr. Paul McMahon

Authorized for release by: 5/15/2015 4:35:40 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

4

O

<u>۾</u>

46

11

13

14

1

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-78248-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Buffalo

Page 3 of 20

5/15/2015

Case Narrative

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

Job ID: 480-78248-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-78248-1

Revision I

This report was revised in order to add Lead to the following samples: ESM-20 EFF (480-78248-1) and ESM-20 INF (480-78248-3).

Receipt

The samples were received on 4/11/2015 1:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

GC/MS VOA

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: ESM-20 INF (480-78248-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 237148 recovered outside acceptance criteria, low biased, for 2-Butanone, Ethyl ether and Tetrahydrofuran. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated sample was non-detect for this analyte, the data have been reported.ESM-20 INF (480-78248-3)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

7

10

12

13

14

15

Detection Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

Client Sample ID: ESM-20 EFF

TestAmerica Job ID: 480-78248-1

Lab Sample ID: 480-78248-1

No Detections.

Client Sample ID: ESM-20 MID Lab Sample ID: 480-78248-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	19.5		0.050		mg/L	1	_	6010C	Total/NA
Iron, Dissolved	18.7		0.050		mg/L	1		6010C	Dissolved

Client Sample ID: ESM-20 INF Lab Sample ID: 480-78248-3

Analyte	Result Qual	ifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,3,5-Trimethylbenzene	43	40		ug/L	40	_	8260C	Total/NA
Benzene	2000	40		ug/L	40		8260C	Total/NA
Ethylbenzene	360	40		ug/L	40		8260C	Total/NA
Naphthalene	97	40		ug/L	40		8260C	Total/NA
n-Propylbenzene	78	40		ug/L	40		8260C	Total/NA
Toluene	140	40		ug/L	40		8260C	Total/NA
Xylene (total)	350	80		ug/L	40		8260C	Total/NA
Iron	19.5	0.050		mg/L	1		6010C	Total/NA
Iron, Dissolved	19.3	0.050		mg/L	1		6010C	Dissolved

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

Client Sample ID: ESM-20 EFF

Date Collected: 04/08/15 11:30

Date Received: 04/11/15 01:20

TestAmerica Job ID: 480-78248-1

Lab Sample ID: 480-78248-1

Matrix: Water

Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Dil Fac Prepared Analyzed Iron ND 0.050 mg/L 04/14/15 12:00 04/14/15 21:31 Lead ND 0.010 04/14/15 12:00 04/14/15 21:31 mg/L

Method: 6010C - Metals (ICP) - Dissolved Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac Iron, Dissolved $\overline{\mathsf{ND}}$ 0.050 mg/L 04/13/15 08:20 04/14/15 19:40

Client Sample ID: ESM-20 MID Lab Sample ID: 480-78248-2 Date Collected: 04/08/15 11:35 **Matrix: Water**

Date Received: 04/11/15 01:20

Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit Dil Fac D Analyzed Prepared 0.050 04/14/15 12:00 04/14/15 21:33 Iron 19.5 mg/L

Method: 6010C - Metals (ICP) - Dissolved Result Qualifier RL MDL Unit Prepared Analyzed 0.050 mg/L 04/13/15 08:20 04/14/15 19:51 Iron, Dissolved 18.7

Client Sample ID: ESM-20 INF Lab Sample ID: 480-78248-3

Date Collected: 04/08/15 11:40 **Matrix: Water**

Date Received: 04/11/15 01:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		40		ug/L			04/19/15 20:20	40
1,1,1-Trichloroethane	ND		40		ug/L			04/19/15 20:20	40
1,1,2,2-Tetrachloroethane	ND		40		ug/L			04/19/15 20:20	40
1,1,2-Trichloroethane	ND		40		ug/L			04/19/15 20:20	40
1,1-Dichloroethane	ND		40		ug/L			04/19/15 20:20	40
1,1-Dichloroethylene	ND		40		ug/L			04/19/15 20:20	40
1,1-Dichloropropene	ND		40		ug/L			04/19/15 20:20	40
1,2,3-Trichlorobenzene	ND		40		ug/L			04/19/15 20:20	40
1,2,3-Trichloropropane	ND		40		ug/L			04/19/15 20:20	40
1,2,4-Trichlorobenzene	ND		40		ug/L			04/19/15 20:20	4(
1,2,4-Trimethylbenzene	ND		40		ug/L			04/19/15 20:20	40
1,2-Dichlorobenzene	ND		40		ug/L			04/19/15 20:20	40
1,2-Dichloroethane	ND		40		ug/L			04/19/15 20:20	40
1,2-Dichloropropane	ND		40		ug/L			04/19/15 20:20	40
1,3,5-Trichlorobenzene	ND		40		ug/L			04/19/15 20:20	40
1,3,5-Trimethylbenzene	43		40		ug/L			04/19/15 20:20	40
1,3-Dichlorobenzene	ND		40		ug/L			04/19/15 20:20	40
1,4-Dichlorobenzene	ND		40		ug/L			04/19/15 20:20	40
2,2-Dichloropropane	ND		40		ug/L			04/19/15 20:20	4(
2-Butanone	ND		400		ug/L			04/19/15 20:20	40
2-Chlorotoluene	ND		40		ug/L			04/19/15 20:20	40
2-Hexanone	ND		200		ug/L			04/19/15 20:20	40
4-Chlorotoluene	ND		40		ug/L			04/19/15 20:20	40
4-Methyl-2-pentanone (MIBK)	ND		200		ug/L			04/19/15 20:20	40
Acetone	ND		400		ug/L			04/19/15 20:20	4(

TestAmerica Buffalo

Page 6 of 20

5/15/2015

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

Client Sample ID: ESM-20 INF

Lab Sample ID: 480-78248-3

Date Collected: 04/08/15 11:40 Matrix: Water Date Received: 04/11/15 01:20

Method: 8260C - Volatile O Analyte		Qualifier	` RL	MDL (Unit	D	Prepared	Analyzed	Dil Fa
Benzene	2000		40	ī	ug/L			04/19/15 20:20	40
Bromobenzene	ND		40	ι	ug/L			04/19/15 20:20	40
Bromochloromethane	ND		40	ι	ug/L			04/19/15 20:20	40
Bromoform	ND		40	ι	ug/L			04/19/15 20:20	40
Bromomethane	ND		40	ι	ug/L			04/19/15 20:20	40
Carbon disulfide	ND		40	ι	ug/L			04/19/15 20:20	40
Carbon tetrachloride	ND		40	ι	ug/L			04/19/15 20:20	40
Chlorobenzene	ND		40	ι	ug/L			04/19/15 20:20	40
Chloroethane	ND		40	ι	ug/L			04/19/15 20:20	40
Chloroform	ND		40	ι	ug/L			04/19/15 20:20	40
Chloromethane	ND		40	ι	ug/L			04/19/15 20:20	40
cis-1,2-Dichloroethene	ND		40	ι	ug/L			04/19/15 20:20	40
cis-1,3-Dichloropropene	ND		40	ι	ug/L			04/19/15 20:20	40
Dibromochloromethane	ND		40	ι	ug/L			04/19/15 20:20	40
Dibromomethane	ND		40	ι	ug/L			04/19/15 20:20	40
Dichlorodifluoromethane	ND		40	ι	ug/L			04/19/15 20:20	40
Diethyl ether	ND		40	ι	ug/L			04/19/15 20:20	40
Diisopropyl ether	ND		40	l	ug/L			04/19/15 20:20	40
Ethyl tert-butyl ether	ND		40		ug/L			04/19/15 20:20	40
Ethylbenzene	360		40	ι	ug/L			04/19/15 20:20	40
Ethylene Dibromide	ND		40		ug/L			04/19/15 20:20	40
Isopropylbenzene	ND		40		ug/L			04/19/15 20:20	40
Methyl tert-butyl ether	ND		40	ι	ug/L			04/19/15 20:20	40
Methylene Chloride	ND		40		ug/L			04/19/15 20:20	40
Naphthalene	97		40		ug/L			04/19/15 20:20	40
n-Butylbenzene	ND		40	ι	ug/L			04/19/15 20:20	40
n-Propylbenzene	78		40		ug/L			04/19/15 20:20	40
p-Isopropyltoluene	ND		40	ι	ug/L			04/19/15 20:20	40
sec-Butylbenzene	ND		40	ι	ug/L			04/19/15 20:20	40
Styrene	ND		40	l	ug/L			04/19/15 20:20	40
tert-Butyl alcohol	ND		400	ι	ug/L			04/19/15 20:20	40
tert-Butylbenzene	ND		40		ug/L			04/19/15 20:20	40
tertiary-Amyl methyl ether	ND		40		ug/L			04/19/15 20:20	40
Tetrachloroethylene	ND		40		ug/L			04/19/15 20:20	40
Tetrahydrofuran	ND		200		ug/L			04/19/15 20:20	40
Toluene	140		40		ug/L			04/19/15 20:20	40
trans-1,2-Dichloroethene	ND		40		ug/L			04/19/15 20:20	40
trans-1,3-Dichloropropene	ND		40		ug/L			04/19/15 20:20	40
Trichloroethylene	ND		40		ug/L			04/19/15 20:20	40
Trichlorofluoromethane	ND		40		ug/L			04/19/15 20:20	40
Vinyl chloride	ND		40		ug/L			04/19/15 20:20	40
Xylene (total)	350		80		ug/L			04/19/15 20:20	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		66 - 137			-		04/19/15 20:20	40
4-Bromofluorobenzene (Surr)	96		73 - 120					04/19/15 20:20	40
Dibromofluoromethane (Surr)	99		60 - 140					04/19/15 20:20	40
Toluene-d8 (Surr)	93		71 - 126					04/19/15 20:20	40

TestAmerica Buffalo

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

Client Sample ID: ESM-20 INF

Date Collected: 04/08/15 11:40

Lab Sample ID: 480-78248-3

Matrix: Water

Date Received: 04/11/15 01:20

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	19.5		0.050		mg/L		04/14/15 12:00	04/14/15 21:36	1
Lead	ND		0.010		mg/L		04/14/15 12:00	04/14/15 21:36	1
					•				

Method: 6010C - Metals (ICP)	Method: 6010C - Metals (ICP) - Dissolved										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Iron, Dissolved	19.3		0.050		mg/L		04/13/15 08:20	04/14/15 19:54	1		

5

6

Q

10

12

11

Surrogate Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		12DCE	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(60-140)	(71-126)
480-78248-3	ESM-20 INF	93	96	99	93
LCS 480-237148/5	Lab Control Sample	94	92	95	91
MB 480-237148/7	Method Blank	88	92	93	87
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Buffalo

Page 9 of 20

TestAmerica Job ID: 480-78248-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-237148/7

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

•	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/19/15 13:59	1
1,1,1-Trichloroethane	ND		1.0	ug/L			04/19/15 13:59	1
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L			04/19/15 13:59	1
1,1,2-Trichloroethane	ND		1.0	ug/L			04/19/15 13:59	1
1,1-Dichloroethane	ND		1.0	ug/L			04/19/15 13:59	1
1,1-Dichloroethylene	ND		1.0	ug/L			04/19/15 13:59	1
1,1-Dichloropropene	ND		1.0	ug/L			04/19/15 13:59	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/19/15 13:59	1
1,2,3-Trichloropropane	ND		1.0	ug/L			04/19/15 13:59	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/19/15 13:59	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/19/15 13:59	1
1,2-Dichlorobenzene	ND		1.0	ug/L			04/19/15 13:59	1
1,2-Dichloroethane	ND		1.0	ug/L			04/19/15 13:59	1
1,2-Dichloropropane	ND		1.0	ug/L			04/19/15 13:59	1
1,3,5-Trichlorobenzene	ND		1.0	ug/L			04/19/15 13:59	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			04/19/15 13:59	1
1,3-Dichlorobenzene	ND		1.0	ug/L			04/19/15 13:59	1
1,4-Dichlorobenzene	ND		1.0	ug/L			04/19/15 13:59	1
2,2-Dichloropropane	ND		1.0	ug/L			04/19/15 13:59	1
2-Butanone	ND		10	ug/L			04/19/15 13:59	1
2-Chlorotoluene	ND		1.0	ug/L			04/19/15 13:59	1
2-Hexanone	ND		5.0	ug/L			04/19/15 13:59	1
4-Chlorotoluene	ND		1.0	ug/L			04/19/15 13:59	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	ug/L			04/19/15 13:59	1
Acetone	ND		10	ug/L			04/19/15 13:59	1
Benzene	ND		1.0	ug/L			04/19/15 13:59	1
Bromobenzene	ND		1.0	ug/L			04/19/15 13:59	1
Bromochloromethane	ND		1.0	ug/L			04/19/15 13:59	1
Bromoform	ND		1.0	ug/L			04/19/15 13:59	1
Bromomethane	ND		1.0	ug/L			04/19/15 13:59	1
Carbon disulfide	ND		1.0	ug/L			04/19/15 13:59	1
Carbon tetrachloride	ND		1.0	ug/L			04/19/15 13:59	1
Chlorobenzene	ND		1.0	ug/L			04/19/15 13:59	1
Chloroethane	ND		1.0	ug/L			04/19/15 13:59	1
Chloroform	ND		1.0	ug/L			04/19/15 13:59	1
Chloromethane	ND		1.0	ug/L			04/19/15 13:59	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			04/19/15 13:59	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			04/19/15 13:59	1
Dibromochloromethane	ND		1.0	ug/L			04/19/15 13:59	1
Dibromomethane	ND		1.0	ug/L			04/19/15 13:59	1
Dichlorodifluoromethane	ND		1.0	ug/L			04/19/15 13:59	1
Diethyl ether	ND		1.0	ug/L			04/19/15 13:59	1
Diisopropyl ether	ND		1.0	ug/L			04/19/15 13:59	
Ethyl tert-butyl ether	ND		1.0	ug/L			04/19/15 13:59	1
Ethylbenzene	ND		1.0	ug/L			04/19/15 13:59	1
Ethylene Dibromide	ND		1.0	ug/L			04/19/15 13:59	· · · · · · · · · · · · · · · · · · ·
Isopropylbenzene	ND		1.0	ug/L			04/19/15 13:59	
Methyl tert-butyl ether	ND		1.0	ug/L			04/19/15 13:59	1

TestAmerica Buffalo

Page 10 of 20

3

5

9

11

16

14

Le

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

10

1.0

1.0

1.0

5.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

Limits

66 - 137

73 - 120

60 - 140

71 - 126

MDL Unit

ug/L

D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB Result Qualifier

 $\overline{\mathsf{ND}}$

ND

88

92

93

87

%Recovery

MB MB

Qualifier

TestAmerica Job ID: 480-78248-1

Client Sample ID: Method Blank

Analyzed

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59 04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

04/19/15 13:59

Analyzed

04/19/15 13:59

Prep Type: Total/NA

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

Lab Sample ID: MB 480-237148/7

Matrix: Water

Methylene Chloride

Analyte

Styrene

Toluene

Naphthalene

n-Butylbenzene

n-Propylbenzene

p-Isopropyltoluene

sec-Butylbenzene

tert-Butyl alcohol

tert-Butylbenzene

Tetrachloroethylene

Tetrahydrofuran

Trichloroethylene

Vinyl chloride

Xylene (total)

Surrogate

tertiary-Amyl methyl ether

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 237148

Dil Fac

Dil Fac

04/19/15 13:59 04/19/15 13:59 04/19/15 13:59

Prepared

Lab Sample ID: LCS 480-237148/5

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 237148

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Alialysis Dalcil. 237 140							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	22.8		ug/L		91	76 - 122
1,1,1-Trichloroethane	25.0	22.6		ug/L		90	73 - 126
1,1,2,2-Tetrachloroethane	25.0	20.2		ug/L		81	70 - 126
1,1,2-Trichloroethane	25.0	21.0		ug/L		84	76 - 122
1,1-Dichloroethane	25.0	22.5		ug/L		90	71 - 129
1,1-Dichloroethylene	25.0	21.7		ug/L		87	58 - 121
1,1-Dichloropropene	25.0	21.9		ug/L		88	72 - 122
1,2,3-Trichlorobenzene	25.0	22.8		ug/L		91	63 - 138
1,2,3-Trichloropropane	25.0	21.9		ug/L		88	68 - 131
1,2,4-Trichlorobenzene	25.0	22.8		ug/L		91	70 - 122
1,2,4-Trimethylbenzene	25.0	21.5		ug/L		86	76 - 121
1,2-Dichlorobenzene	25.0	21.8		ug/L		87	80 - 124
1,2-Dichloroethane	25.0	21.1		ug/L		85	75 - 127
1,2-Dichloropropane	25.0	22.7		ug/L		91	76 - 120
1,3,5-Trichlorobenzene	25.0	23.6		ug/L		94	67 - 141
1,3,5-Trimethylbenzene	25.0	21.6		ug/L		86	77 - 121
1,3-Dichlorobenzene	25.0	22.2		ug/L		89	77 - 120

TestAmerica Buffalo

TestAmerica Job ID: 480-78248-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-237148/5

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 237148					Prep Type. Total
Analysis Baton. 207 140	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
1,4-Dichlorobenzene	25.0	21.4	ug/L	86	75 - 120
2,2-Dichloropropane	25.0	23.0	ug/L	92	63 - 136
2-Butanone	125	79.7	ug/L	64	57 ₋ 140
2-Chlorotoluene	25.0	22.0	ug/L	88	76 - 121
2-Hexanone	125	91.6	ug/L	73	65 - 127
4-Chlorotoluene	25.0	23.2	ug/L	93	77 - 121
4-Methyl-2-pentanone (MIBK)	125	94.4	ug/L	76	71 - 125
Acetone	125	75.6	ug/L	60	56 - 142
Benzene	25.0	21.8	ug/L	87	71 - 124
Bromobenzene	25.0	22.5	ug/L	90	78 ₋ 120
Bromochloromethane	25.0	23.0	ug/L	92	72 - 130
Bromoform	25.0	23.5	ug/L	94	52 ₋ 132
Bromomethane	25.0	25.1	ug/L	100	55 ₋ 144
Carbon disulfide	25.0	22.1	ug/L	89	59 ₋ 134
Carbon tetrachloride	25.0	23.0	ug/L	92	72 ₋ 134
Chlorobenzene	25.0	22.0	ug/L	88	72 - 120
Chloroethane	25.0	20.7	ug/L	83	69 - 136
Chloroform	25.0	21.9	ug/L	88	73 - 127
Chloromethane	25.0	22.1	ug/L	89	68 - 124
cis-1,2-Dichloroethene	25.0	22.9	ug/L	92	74 - 124
cis-1,3-Dichloropropene	25.0	23.8	ug/L	95	74 - 124
Dibromochloromethane	25.0	23.3	ug/L	93	75 ₋ 125
Dibromomethane	25.0	22.7	ug/L	91	76 - 127
Dichlorodifluoromethane	25.0	23.9	ug/L	96	59 ₋ 135
Diethyl ether	25.0	20.6	ug/L	82	76 ₋ 123
Diisopropyl ether	25.0	22.1	ug/L	88	75 - 125
Ethyl tert-butyl ether	25.0	22.3	ug/L	89	75 - 125 75 - 125
Ethylbenzene	25.0	21.3	ug/L	85	77 ₋ 123
Ethylene Dibromide	25.0	22.2	ug/L	89	77 - 120
Isopropylbenzene	25.0	21.4	ug/L	85	77 - 120 77 - 122
Methyl tert-butyl ether	25.0	22.6	ug/L	90	64 - 127
Methylene Chloride	25.0	21.9	ug/L	88	57 - 132
Naphthalene	25.0	21.5	ug/L	86	66 ₋ 125
n-Butylbenzene	25.0	21.3		85	71 - 128
n-Propylbenzene			ug/L		
	25.0	21.1	ug/L	84	75 ₋ 127
p-Isopropyltoluene	25.0	21.8	ug/L	87	73 - 120
sec-Butylbenzene	25.0	20.8	ug/L	83	74 - 127
Styrene	25.0	21.9	ug/L	88	70 - 130
tert-Butyl alcohol	250	212	ug/L	85	75 ₋ 125
tert-Butylbenzene	25.0	21.3	ug/L	85	75 - 123
tertiary-Amyl methyl ether	25.0	22.0	ug/L	88	75 - 125
Tetrachloroethylene	25.0	22.8	ug/L	91	74 - 122
Tetrahydrofuran	50.0	50.4	ug/L	101	62 - 132
Toluene	25.0	20.8	ug/L	83	80 - 122
trans-1,2-Dichloroethene	25.0	22.5	ug/L	90	73 - 127
trans-1,3-Dichloropropene	25.0	22.7	ug/L	91	72 - 123
Trichloroethylene	25.0	22.3	ug/L	89	74 - 123
Trichlorofluoromethane	25.0	21.4	ug/L	86	62 - 152

TestAmerica Buffalo

6

8

10

12

TestAmerica Job ID: 480-78248-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-237148/5 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 237148

	Эріке	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	25.0	21.2		ug/L		85	65 - 133	
Xylene (total)	50.0	43.7		ug/L		87	76 - 122	

LCS LCS Surrogate %Recovery Qualifier Limits 94 1,2-Dichloroethane-d4 (Surr) 66 - 137 4-Bromofluorobenzene (Surr) 92 73 - 120 Dibromofluoromethane (Surr) 95 60 - 140 Toluene-d8 (Surr) 91 71 - 126

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-235630/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 236218

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Iron, Dissolved	ND		0.050		mg/L		0	04/13/15 08:20	04/14/15 18:30	1

Lab Sample ID: LCS 480-235630/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 236218 Prep Batch: 235630** LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit Limits %Rec Iron. Dissolved 10.0 9.96 mg/L 100 80 - 120

Lab Sample ID: MB 480-235912/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Prep Batch: 235912 Analysis Batch: 236220**

MR MR

	IVID	IAID						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.050	mg/L		04/14/15 12:00	04/14/15 20:24	1
Lead	ND		0.010	mg/L	_	04/14/15 12:00	04/14/15 20:24	1

Lab Sample ID: LCS 480-235912/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 236220 Prep Batch: 235912**

	Spike	e LCS	LCS			%Rec.	
Analyte	Added	d Result	Qualifier	Unit D	%Rec	Limits	
Iron	 10.0	9.72		mg/L	97	80 - 120	
Lead	0.20	0.200		mg/L	100	80 - 120	

Prep Batch: 235630

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

GC/MS VOA

Analysis Batch: 237148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78248-3	ESM-20 INF	Total/NA	Water	8260C	
LCS 480-237148/5	Lab Control Sample	Total/NA	Water	8260C	
MB 480-237148/7	Method Blank	Total/NA	Water	8260C	

Metals

Prep Batch: 235630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78248-1	ESM-20 EFF	Dissolved	Water	3005A	
480-78248-2	ESM-20 MID	Dissolved	Water	3005A	
480-78248-3	ESM-20 INF	Dissolved	Water	3005A	
LCS 480-235630/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-235630/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 235912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78248-1	ESM-20 EFF	Total/NA	Water	3005A	
480-78248-2	ESM-20 MID	Total/NA	Water	3005A	
480-78248-3	ESM-20 INF	Total/NA	Water	3005A	
LCS 480-235912/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-235912/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 236218

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78248-1	ESM-20 EFF	Dissolved	Water	6010C	235630
480-78248-2	ESM-20 MID	Dissolved	Water	6010C	235630
480-78248-3	ESM-20 INF	Dissolved	Water	6010C	235630
LCS 480-235630/2-A	Lab Control Sample	Total/NA	Water	6010C	235630
MB 480-235630/1-A	Method Blank	Total/NA	Water	6010C	235630

Analysis Batch: 236220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-78248-1	ESM-20 EFF	Total/NA	Water	6010C	235912
480-78248-2	ESM-20 MID	Total/NA	Water	6010C	235912
480-78248-3	ESM-20 INF	Total/NA	Water	6010C	235912
LCS 480-235912/2-A	Lab Control Sample	Total/NA	Water	6010C	235912
MB 480-235912/1-A	Method Blank	Total/NA	Water	6010C	235912

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

10

Client Sample ID: ESM-20 EFF

Lab Sample ID: 480-78248-1

Matrix: Water

Date Collected: 04/08/15 11:30 Date Received: 04/11/15 01:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			235630	04/13/15 08:20	TAS	TAL BUF
Dissolved	Analysis	6010C		1	236218	04/14/15 19:40	LMH	TAL BUF
Total/NA	Prep	3005A			235912	04/14/15 12:00	TAS	TAL BUF
Total/NA	Analysis	6010C		1	236220	04/14/15 21:31	LMH	TAL BUF

Lab Sample ID: 480-78248-2

Client Sample ID: ESM-20 MID **Matrix: Water** Date Collected: 04/08/15 11:35

Date Received: 04/11/15 01:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			235630	04/13/15 08:20	TAS	TAL BUF
Dissolved	Analysis	6010C		1	236218	04/14/15 19:51	LMH	TAL BUF
Total/NA	Prep	3005A			235912	04/14/15 12:00	TAS	TAL BUF
Total/NA	Analysis	6010C		1	236220	04/14/15 21:33	LMH	TAL BUF

Lab Sample ID: 480-78248-3 Client Sample ID: ESM-20 INF

Date Collected: 04/08/15 11:40 **Matrix: Water**

Date Received: 04/11/15 01:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		40	237148	04/19/15 20:20	CDC	TAL BUF
Dissolved	Prep	3005A			235630	04/13/15 08:20	TAS	TAL BUF
Dissolved	Analysis	6010C		1	236218	04/14/15 19:54	LMH	TAL BUF
Total/NA	Prep	3005A			235912	04/14/15 12:00	TAS	TAL BUF
Total/NA	Analysis	6010C		1	236220	04/14/15 21:36	LMH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

2

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New Hampshire	NELAP		1	2337	11-17-15
The following analytes	s are included in this repo	rt, but certification is	s not offered by the g	governing authority:	
Analysis Method	Prep Method	Matrix	Analy	rte	
8260C		Water	1,2-D	ichloropropane	
8260C		Water	1,3,5	-Trichlorobenzene	
8260C		Water	2,2-D	ichloropropane	
8260C		Water	Brom	obenzene	
8260C		Water	Chlor	omethane	
8260C		Water	cis-1,	2-Dichloroethene	
8260C		Water	Dieth	yl ether	
8260C		Water	Diiso	propyl ether	
8260C		Water	Ethyl	tert-butyl ether	
8260C		Water	Methy	ylene Chloride	
8260C		Water	tert-B	utyl alcohol	
8260C		Water	Tetra	chloroethylene	
8260C		Water	Tetra	hydrofuran	

4

5

6

8

9

11

12

Method Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

6

9

1 0

12

. .

Sample Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-78248-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-78248-1	ESM-20 EFF	Water	04/08/15 11:30 04/11/15 01:20
480-78248-2	ESM-20 MID	Water	04/08/15 11:35 04/11/15 01:20
480-78248-3	ESM-20 INF	Water	04/08/15 11:40 04/11/15 01:20

2

6

8

9

11

12

. .

THE LEAL Drinking Water? Yes□ No⊡ Temperature on Receipt ... Chain of Custody Record TAL-4124 (1007)

Client		Project Manager	nager							1	biographic	1	1	hoin of Cuetode	Alimbor
Howard to the town of the desired	₹. 2.		4	17	7								5	276553	7.7.3
		Telephone Number (Area Code)/Fax Number	Number	Area Co.	e)/Fax N	umber					Lab Number	iber			
273 W. Mais St.			508-	7	0081-755	Ö								Pagei	of (
State Z	apa 2	Site Contact	ct.		Lab Contact	ntact A a Maxim	(-			An	Analysis (Attach list if nore space is needed	Analysis (Attach list if more space is needed)			
Project Name and Location (State)	02766	Carrier/Waybill Number	ybill Num	ber	1000	MANIGHT MEN		\$! ,	7	-				-	
ç			,						901	フ <i>o</i>				Specia	Special Instructions/
CRA- (SSH COHOLD SSAW EN(157_5359 INV-	157_535	g Pack	Matrix	ιķ		Containers & Preservatives	ers & atives		pay	938	·			Condition	Conditions of Receipt
I.D. No. and Desc sample may be con	Date	Time	snoenby	IIOS	rOSZH rseudur)	IOH EONH	HOBN VOANZ HOBN		≈s:Q 7°L	791					
ESM-20 ETT	4/8/15	11:30	×			4		×	×					Dissolved	d Iren
	4/8/15	11:35	×			٦		<u>×</u>	×					Samples	have been
ESM-20 1nf	4/8/15	11:40	×			23		<u>×</u>	×					उ <i>, P1></i> ;उ	12-6
age															
19 c															
of 20														NACS FU	喜
														list of VD(VDCs
Possible Hazard Identification Non-Hazard	☐ Poison B	П Ипкпомп	Sample Disposal Return To Client	isposal 1 To Clier		Disposal By Lab	8y Lab	Archive For	hive Fo		Months		ay be assess ian 1 month)	(A fee may be assessed if samples are retained longer than 1 month)	e retained
Tum Around Time Required 24 Hours	3 21 Days	Other_				Requirer	QC Requirements (Specify)	ecify)							
id By		Date 4//8/15		Time 18:00	1	1. Received By	K Co	E	\$					Date 4/8/15	Time 18:00
2. Relinquished By (MD) (I) MOS (I)		Date (10)	5	Time 13:15	,	2. Received By	1 /2	1 6	D//	1				Date 4. Nor 15	Time 13/5
3. Reimanished B/V)	Date		ime CDC	3.7	3. Received By	ABA BA							Date // MPR 15	Time O120
Summents 5									<u> </u>	10 H					

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 480-78248-1

Login Number: 78248 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Question Answer	Commer
Radioactivity either was not measured or, if measured, is at or below background	
The cooler's custody seal, if present, is intact.	
The cooler or samples do not appear to have been compromised or tampered with.	
Samples were received on ice.	
Cooler Temperature is acceptable. True	
Cooler Temperature is recorded. True	
COC is present. True	
COC is filled out in ink and legible.	
COC is filled out with all pertinent information.	
Is the Field Sampler's name present on COC?	
There are no discrepancies between the sample IDs on the containers and True the COC.	
Samples are received within Holding Time.	
Sample containers have legible labels.	
Containers are not broken or leaking.	
Sample collection date/times are provided.	
Appropriate sample containers are used.	
Sample bottles are completely filled. True	
Sample Preservation Verified True	
There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter.	
If necessary, staff have been informed of any short hold time or quick TAT True needs	
Multiphasic samples are not present. True	
Samples do not require splitting or compositing.	
Sampling Company provided. True	esm
Samples received within 48 hours of sampling.	
Samples requiring field filtration have been filtered in the field.	
Chlorine Residual checked. N/A	

Λ

5

7

9

4 4

12

4 1

ES&M QAQC Review Log

Lab	Project Number	Sample Date	Matrix	CAM Form Included?	Lab Presumptive Certainty?	QC Performance Standards Met?	Reporting Limits Achieved?	All Analytes Reported?	Data Usability Status
Test America	480-82925	6/24/2015	GW	No	NA	NA	NA	NA	Usable

Sample ID	Date	Lab ID	Matrix	Analysis
ESM-20	6/24/2015	480-82925-1	GW	TSS, TPH

New Hampshire Site - CAM does not apply

All QAQC data, including method blank, laboratory control sample (LCS) and matrix spike results were reviewed. This report was deemed usable by Angela Boyd on 7/14/15.

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-82925-1

Client Project/Site: ENV757, Former Bob's Citgo

For:

GHD Services Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, New York 14304

Attn: Mr. Paul McMahon

Authorized for release by: 7/13/2015 10:17:32 AM
Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

Definitions/Glossary

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-82925-1

Qualifiers

General Chemistry

Qualitier	Qualitier	Descrip	tion

F1 MS and/or MSD Recovery is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.					
n	Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery					
CFL	Contains Free Liquid					
CNF	Contains no Free Liquid					
DER	Duplicate error ratio (normalized absolute difference)					
Dil Fac	Dilution Factor					

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision level concentration

MDA Minimum detectable activity

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-82925-1

Job ID: 480-82925-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-82925-1

Receipt

The sample was received on 6/26/2015 2:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.8° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

6

4

5

6

8

10

11

40

Detection Summary

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-82925-1

Client Sample ID: ESM-20 Lab Sample ID: 480-82925-1

Analyte	Result Qualifier	RL	RL Unit	Dil Fac D Method	Prep Type
Total Suspended Solids	117	4.0	mg/L	1 SM 2540D	Total/NA

2

4

5

0

8

46

11

13

Client Sample Results

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-82925-1

Lab Sample ID: 480-82925-1

Matrix: Water

Date Collected: 06/24/15 14:00 Date Received: 06/26/15 02:00

Client Sample ID: ESM-20

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons (SGT-HEM)	ND	F1	4.9		mg/L		07/09/15 10:01	07/09/15 11:32	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	117		4.0		mg/L			06/29/15 12:01	1

Į

6

7

8

10

11

13

TestAmerica Job ID: 480-82925-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 252393

Project/Site: ENV757, Former Bob's Citgo

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 480-252393/1-A **Matrix: Water**

Analysis Batch: 252399

Client: GHD Services Inc.

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Analyte** 5.0 07/09/15 10:01 07/09/15 11:32 $\overline{\mathsf{ND}}$ mg/L Total Petroleum Hydrocarbons

Spike

Added

20.0

Spike

Added

9.80

Spike

Added

261

RL

1.0

LCS LCS

MS MS

7.35 F1

Result Qualifier

RL Unit

LCS LCS

261.6

Result Qualifier

mg/L

Unit

mg/L

Unit

mg/L

15.90

Result Qualifier

(SGT-HEM)

Lab Sample ID: LCS 480-252393/2-A

Matrix: Water

Analysis Batch: 252399

Analyte

Total Petroleum Hydrocarbons

(SGT-HEM)

Lab Sample ID: 480-82925-1 MS

Matrix: Water

Analysis Batch: 252399

Analyte Total Petroleum Hydrocarbons

(SGT-HEM)

Method: SM 2540D - Solids, Total Suspended (TSS)

Sample Sample

ND F1

Result Qualifier

MR MR

 $\overline{\mathsf{ND}}$

Result Qualifier

Lab Sample ID: MB 480-250732/1

Matrix: Water

Analysis Batch: 250732

Analyte

Lab Sample ID: LCS 480-250732/2

Matrix: Water

Total Suspended Solids

Analysis Batch: 250732

Analyte

Total Suspended Solids

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 252393**

%Rec. Limits

Unit D %Rec mg/L 80

D

64 - 132

Client Sample ID: ESM-20 Prep Type: Total/NA

Prep Batch: 252393

%Rec.

Limits %Rec

52 64 - 132

Client Sample ID: Method Blank

Prep Type: Total/NA

Prepared Analyzed Dil Fac

06/29/15 12:01

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

100

%Rec Limits 88 - 110

TestAmerica Buffalo

QC Association Summary

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

General Chemistry

Analysis Batch: 250732

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82925-1	ESM-20	Total/NA	Water	SM 2540D	
LCS 480-250732/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-250732/1	Method Blank	Total/NA	Water	SM 2540D	

Prep Batch: 252393

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82925-1	ESM-20	Total/NA	Water	1664A	
480-82925-1 MS	ESM-20	Total/NA	Water	1664A	
LCS 480-252393/2-A	Lab Control Sample	Total/NA	Water	1664A	
MB 480-252393/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 252399

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-82925-1	ESM-20	Total/NA	Water	1664A	252393
480-82925-1 MS	ESM-20	Total/NA	Water	1664A	252393
LCS 480-252393/2-A	Lab Control Sample	Total/NA	Water	1664A	252393
MB 480-252393/1-A	Method Blank	Total/NA	Water	1664A	252393

TestAmerica Job ID: 480-82925-1

Lab Chronicle

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-82925-1

Lab Sample ID: 480-82925-1

Matrix: Water

Client Sample ID: ESM-20 Date Collected: 06/24/15 14:00

Date Received: 06/26/15 02:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1664A			252393	07/09/15 10:01	LAW	TAL BUF
Total/NA	Analysis	1664A		1	252399	07/09/15 11:32	LAW	TAL BUF
Total/NA	Analysis	SM 2540D		1	250732	06/29/15 12:01	EKB	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

9

10

12

13

Certification Summary

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-82925-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New Hampshire	NELAP	<u>1</u>	2337	11-17-15

4

5

_

9

10

12

13

Method Summary

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-82925-1

Method	Method Description	Protocol	Laboratory
1664A	HEM and SGT-HEM	1664A	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF

Protocol References:

1664A = EPA-821-98-002

SM = "Standard Methods For The Examination Of Water And Wastewater",

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

G

3

4

J

7

8

11

4.0

Sample Summary

Client: GHD Services Inc.

Project/Site: ENV757, Former Bob's Citgo

TestAmerica Job ID: 480-82925-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-82925-1	ESM-20	Water	06/24/15 14:00	06/26/15 02:00

2

4

6

8

9

10

12

13

Chain of Custody Record

Temperature on Receipt

Drinking Water? Yes \(\) No \(\omega \)

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)																									
Client ES+M			Project Manager An exela Boy d										Dé	Date					CI	Chain of Custody Number 286720					
Address		Telephone Number (Area Code)/Fax Number									Lab Number								+		016	<u>_U</u>	-		
273 West Main St.				22					,								,,,,,,,,,,				P	age		of _	1
City State Zip C	Code	Site Co			~ 6		Lab Co	ontact			٠				nalysi ore sp						1				
NOVAM MA O	2766	Carrier		ab		$\Delta \perp$	j v f	611	<u>ا (رر</u>	1/	ryo_	┤┪			1 1	uoc .	10 110	Cacc	<u>". </u>	-		i			
6SH Allenstown		Camen	vvayı	om Num	Der																				/
Contract/Purchase Order/Quote No.	7			11-4				Con	taine	ers &		1												ons/ ceipt	
65H CRA SSOW ENV-75				Mat	rix					atives	;	ĺΫ	I		1										•
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	jį.	Aqueous Sed.	Soll		Unpres. H2SO4	HINO3	HCI	NaOH Za4ot	NaOH		4			т	480-8 	3292	5 Ch	ain of	f Cus	tody			
ESM-20	6/24/15 1	4:00		X			17	4				X	X,												
																1		T					·		,
	-														11		\top	Ť		1					
			\dashv			\dashv	+	†-					-		H	\top			+	+					
			+			\dashv	+	+-				\vdash				+	-	+	+	+	\vdash				
·			-+		\vdash	-	+			\vdash	-		-	+	+	+	-	+	+-	+	\vdash				
-					+	\dashv	+							_			_	\bot	\bot		\sqcup				
																\perp			\bot	_	Ш				
	·					ļ																			
							+								17	7		\top	T						
Possible Hazard Identification	<u> </u>	1	3	mple D	•				LI	LL	!	L F				1_		4 fee	mav	he as	50000	ed if sample	es are r	etained	
_	Poison B	Unknown		Retur	7 To C	lient		Bispo		-		Archi	ive F	or	A	Aonth.				1 mo					
Turn Around Time Required 24 Hours 48 Hours 7 Days 414 Days	s 🗌 21 Days	Oth	er					C Reg	uiren	nents ((Specify))													
1. Relinquished By		Date		- 1	ime	- ^	1.	Rece!	ived L	Ву												Date		Time	
2. Religious ped By				6/24/15 4:00					1. Received By 2. Received By							_						664/15 4.00			
A LIVE .		Datè	7		ime 21:	4 C		necei	vea t				/	_							- 1	Date	اسرز	Time []	2310
3. Helinquished By)	Date	الخ		ime			Refe	199	F.	10	\swarrow		\ \ \ \ \ \	مصد ۱			_	_			Date	 	Time	<u>-, 0</u>
Commerks		(3. k	<u>~</u>	<u>/</u>	17	2 -	1	¶U,		(4	411	<u>リ</u>	Ö	160	W	_	0	W	U		\perp				
							•											1).8			#	1		
DISTRIBUTION: MILITE . Poturned to Client with Penert: C	ANADY Stave with	the Com	10: 6	DINIK E	iold C	001/			,													/			

Login Sample Receipt Checklist

Client: GHD Services Inc. Job Number: 480-82925-1

Login Number: 82925 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ESM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

4

6

9

11

13