

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

July 15, 2015

Ms. Keri Fitzpatrick Regional Environmental Manager Prolerized New England Company LLC 69 Rover Street - P.O. Box 49095 Everett, MA 02149

Re: Authorization to discharge under the Remediation General Permit (RGP) – for the Prolerized New England Company, LLC site located in Everett, Massachusetts; Authorization # MAG910690

Dear Ms. Fitzpatrick:

Based on the review of a Notice of Intent (NOI) you submitted along with supplemental information submitted on your behalf by Janelle Bonn of Woodard and Curran for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator, to discharge in accordance with the provisions of the RGP at this site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels (ML) established in Appendix VI of the RGP. Pursuant to Part I. Section C.7., of the RGP, dilution factors may be available for discharges to saline waters but only with approval of the flow modeling information from the State prior to the submission of the NOI. Since the receiving water is tidally influenced, a dilution factor may not be applied to establish limits for this RGP.

Based on the NOI submitted, the following limits apply: lead – 8.5 ug/l, iron - 1,000 ug/L, Total Suspended Solids (TSS) - 30 mg/l, Total Group I Polycyclic Aromatic Hydrocarbons – 10 ug/l, and pH range of 6.5 – 8.5 standard units (s.u.). Monitoring for chloride shall be conducted with no effluent limit.

This EPA general permit and authorization to discharge will expire on September 9, 2015. You have reported this project will terminate on December 15, 2015. Please be aware you are required to reapply for coverage after the EPA expired permit has been reissued. The reissuance date as well as the reapplication submittal date will be posted on the EPA web site at that time. Regardless of your project termination date, you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within thirty (30) days of the termination of the discharge.

Thank you in advance for your cooperation in this matter. Please contact George Papadopoulos at 617-918-1579 or Papadopoulos.George@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction

Mulma Murphy

Permits Section

Enclosure

cc: Janelle Bonn, Woodard and Curran

Robert Kubit, MassDEP

2010 Remediation General Permit Summary of Monitoring Parameters[1]

NPDES Authorization Number:		MAG910690					
Authorization Issued:	July :	15, 2015					
Facility/Site Name:		ized New England Company LLC					
Facility/Site Address:	address of owner: kfitzpatrick@schn.com						
Legal Name of Operat	or:	Prolerized New England Company LLC					
Operator contact name, title,		Keri Fitzpatrick, Regional Environmental Manager					
and Address:		Email:kfitzpatrick@schn.com					
Estimated date of The Completion:	Project	December 15, 2015					
Category and Sub-Cate	egory:	Contaminated Construction Dewatering Category– Known Contaminated Sites Subcategory					
RGP Termination Date		September 2015					
Receiving Water:	100	Mystic River					

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, Me#160.2/ML5ug/L
	Total Residual Chlorine (TRC)	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
46	Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) ^{2, 3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
-4-	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
694	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/
Ti-l	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
- 01	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
Ī,	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
15	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
√	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
\checkmark	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L,

lő (1	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
		Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
V	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
100	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
No.	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) 8, 9	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
√	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

		Total Recoverable Metal Limit H 10 = 50 mg/l CaCO3, Units = ug/l	Minimum level=ML ¹¹
	Metal Parameters	Saltwater Limits	
	39. Antimony	5.6	10
	40. Arsenic **	36	20
	41. Cadmium **	8.9	10
	42. Chromium III (trivalent) **	100	15
	43. Chromium VI (hexavalent) **	50.3	10
	44. Copper **	3.7	15
\checkmark	45. Lead **	8.5	20
	46. Mercury **	1.1	0.2
	47. Nickel **	8.2	20
	48. Selenium **	71	20
	49. Silver	2.2	10
	50. Zinc **	85.6	15
\checkmark	51. Iron	1,000	20

	Other Parameters	Limi <u>t</u>
\checkmark	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab12
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.5; 1/Month/Grab12
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab12
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹³
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹³
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹³
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹³
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹³
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹³
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹³
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹³

Footnotes:

¹ Although the maximum values for TRC are 11 ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

- ³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).
- ⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.
- ⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.
- ⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate. The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

 Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.
- ⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.
- ⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.
- ⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
- Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.
- Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).
- pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.
- ¹³ Temperature sampling per Method 170.1

Via Regular US Mail

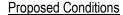
June 16, 2015

Mr. George Papadopoulos United States Environmental Protection Agency – Region 1 5 Post Office Square Mail Code: OEP Boston, MA 02109-3912

Re: Submittal of Remediation General Permit Notice of Intent

Construction Dewatering Activities
Prolerized New England Company, LLC

69 Rover Street Everett, Massachusetts


Dear Mr. Papadopoulos:

On behalf of Prolerized New England Company, LLC's (Prolerized) Everett facility, Woodard & Curran, Inc. (Woodard & Curran) has prepared this Notice of Intent (NOI) for application of a National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP), Permit No. MAG910000, for proposed construction dewatering activities at 69 Rover Street in Everett, Massachusetts (the Site). Temporary dewatering is planned in support of the construction of surficial and subsurface components of a stormwater treatment system at the Site. The suggested NOI Form presented in Appendix V of the RGP is provided as **Appendix A**.

Existing Conditions

The proposed project is located on a parcel identified by the Town of Everett Assessor's Office as H0-09-00149. Rover Street bounds the Site to the north, the Mystic River abuts the Site to the south, and industrial properties are present to the east and west. The southern property line ends at approximately the top of a steep embankment armored with rip-rap and runs from the southern property line to the Mystic River. The entire property is actively used as a metals processing facility and contains no vegetated areas or suitable wildlife habitat. Scrap metal recycling and ship loading operations occur throughout the Site, including the entirety of the riverfront area.

Stormwater flow across the Site is divided by two distinct onsite watershed areas that encompass the eastern and western portions of the Site. Stormwater currently generated from the eastern portion of the proposed project area is directed to two at-grade concrete trench sedimentation basins along the northern boundary of the Site and two at-grade concrete trench sedimentation basins along the eastern boundary. A 10,000-gallon water quality tank (oil-water separator) receives discharge from the sedimentation basins prior to connection to a closed conduit drainage system that discharges to the Mystic River via an active outfall (Outfall #1) located on the southeastern corner of the Site. Stormwater generated from the western portion of the Site is currently transported via overland flow to a low-lying area of the facility, accumulating in a pond where it is conveyed, as needed, to the eastern side treatment system components via portable surface pumps and hoses.

In order to better treat and manage stormwater generated at the Site, the proposed project will include construction of an active stormwater treatment system located on the eastern portion of the Site. The new treatment system will include two 248,000-gallon stormwater storage tanks and a 12,000-gallon per minute (gpm) stormwater lift station. One storage tank will be used for storage and sedimentation removal, while the other will be used to store treated stormwater for beneficial reuse. The treatment system will be incorporated into the existing closed conduit drainage system that services the eastern basin of the Site. Stormwater generated from the western portion of the Site will continue to be conveyed to the eastern portion of the Site through surface pumps and hoses for treatment in the new system.

Construction related excavation to install subsurface components of the stormwater treatment system will extend approximately 10 feet into the groundwater table, necessitating excavation dewatering activities. Groundwater levels are likely tidally influenced and are expected to fluctuate during excavation activities.

Figure 1 provides a Site Locus for the proposed work. **Figure 2** is an Existing Conditions Plan showing general Site boundaries, existing structures and wetland boundaries.

Site History

According to readily available documentation for the Site, the Site is located within a historically developed, heavily industrial area of Everett. The majority of the land area occupied by the Site was filled by others from approximately 1910 through 1950. Historic fill material at the Site has been observed to be greater than 25 feet in thickness. In the 1960's, Prolerized began acquiring parcels in the area of the Site to operate a metals processing facility. The Site is currently operating as a metals processing facility. Due to the historically industrial nature of the Site, soil quality beneath the Site is generally poor and has been subject to Massachusetts Contingency Plan (MCP) required management and reporting.

Groundwater Sampling

In order to obtain groundwater data representative of the proposed effluent that will be generated during construction dewatering activities, Woodard & Curran observed the installation of two temporary groundwater monitoring wells in the proposed excavation areas. Groundwater samples were collected from each monitoring well on May 1, 2015 and submitted to a laboratory for analysis for RGP Appendix III, Category III.B parameters. The results of the groundwater analyses demonstrated total suspended solids (TSS) in groundwater collected from both temporary monitoring wells above the RGP Appendix III, Category III.B effluent discharge limit. Additionally, benzo(a)anthracene was detected above the effluent discharge limit of 0.0038 ug/L in one of the monitoring wells. Laboratory analytical results are summarized in the table and laboratory report included in **Appendix B**.

<u>Dilution Factor Application for Metals and 7Q10 Determination</u>

Based on Woodard & Curran's telephone conversation with Mr. Victor Alvarez on June 2, 2015, no dilution factor is allowed for discharges to tidally influenced waters. As such, a dilution factor for metals was not calculated. During the same conversation, Mr. Alvarez agreed with Woodard & Curran's position that a 7Q10 calculation for the segment of the Mystic River proposed to receive discharged effluent was not possible due to tidal fluctuation of the river adjacent to the Site.

Groundwater Treatment

Based on the groundwater laboratory analytical results, construction dewatering groundwater will require treatment for TSS and benzo(a)anthracene prior to discharge into the Mystic River in order to meet RGP

2

Appendix III, Category III. B effluent limits. During excavation, encountered groundwater will be pumped into an onsite treatment system comprised of 21,000-gallon fractionation tanks, passed through a bag filtration system, discharged into the onsite sedimentation basin/oil-water separator, and ultimately discharged into the Mystic River. The final treatment system design is ultimately the responsibility of the Owner. The design will be based on commonly used equipment comprised of the components listed above based on Site conditions. Ultimately, the treatment system will be designed to remove TSS, consecutively treating benzo(a)anthracene, which is insoluble in water and was likely detected due to the presence of TSS in the groundwater samples. A schematic of the proposed treatment system is provided as **Appendix C**.

Environmental and Historic Determinations

Preparation of this NOI included a review of Appendix I "Areas of Critical Environmental Concern" (ACEC) and Appendix VII Endangered Species Act (ESA) and the National Historic Preservation Act (NHPA).

Based on information reviewed in Appendix I of the RGP and the Massachusetts Geographical Information Systems (MassGIS) Department of Environmental Protection (DEP) Priority Resource Map of Everett does not depict any ACECs exist on or surrounding the Site or proposed discharge location. Additionally, no Estimated Habitats of Rare Wildlife Areas are located on the Site or proximal to the proposed discharge location. The "Federally Listed Endangered and Threatened Species in Massachusetts" identified two listed species in Middlesex County. Because no endangered or threatened species or their designated critical habitat are likely to occur in proximity to the discharge related activities, permit eligibility meets "Criterion A" of Appendix VII. Related documentation regarding this determination is presented in **Appendix D**.

An electronic review of the Massachusetts Cultural Resource Information System database made available through the Massachusetts Historical Commission did not identify historical areas, buildings, objects, burial grounds, or structures on or in proximity to the Site. Therefore, under Appendix VII, the Site qualifies for permit eligibility under "Criterion 2". Related documentation regarding this determination is presented in **Appendix E**.

Construction Dewatering Discharge Timeframe

The proposed construction dewatering activities are scheduled to commence in mid-August 2015 and will terminate by the end of October 2015.

Woodard & Curran has prepared this NOI to satisfy discharge requirements under the RGP. Should you have any questions or comments concerning the information provided in the NOI please do not hesitate to contact the undersigned via telephone (401-273-1007, ext. 2032) or email: (ibonn@woodardcurran.com).

3

Sincerely,

WOODARD & CURRAN

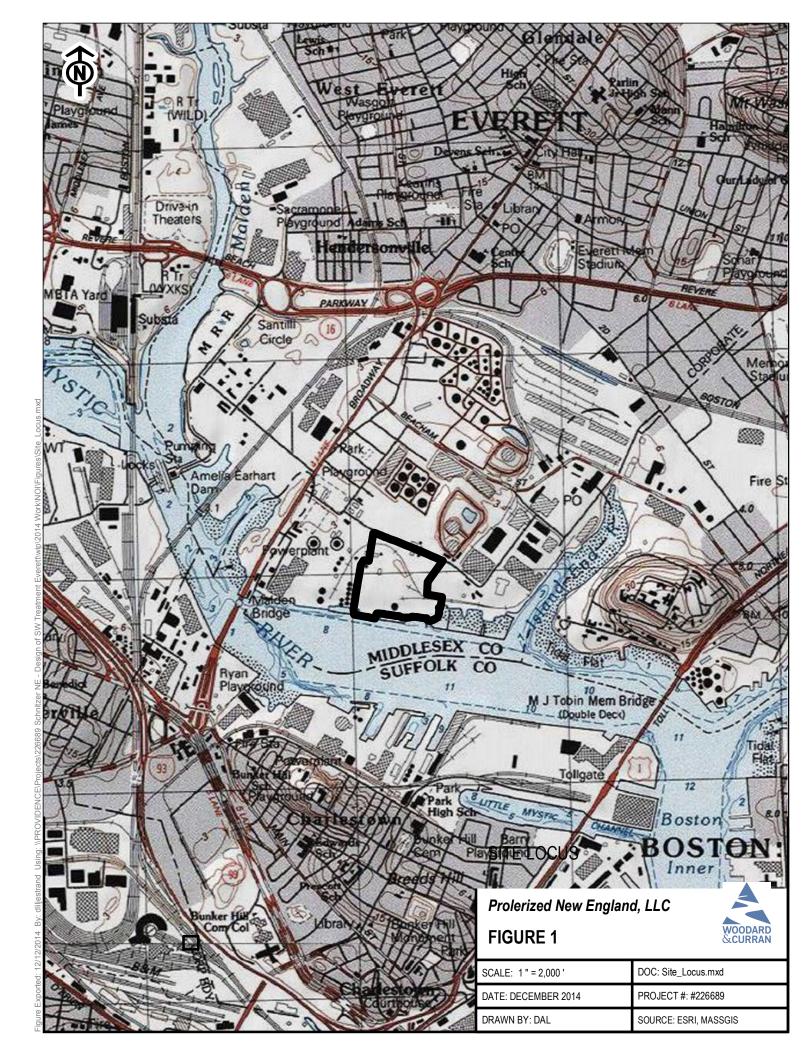
Janelle Bonn Project Scientist Enclosures

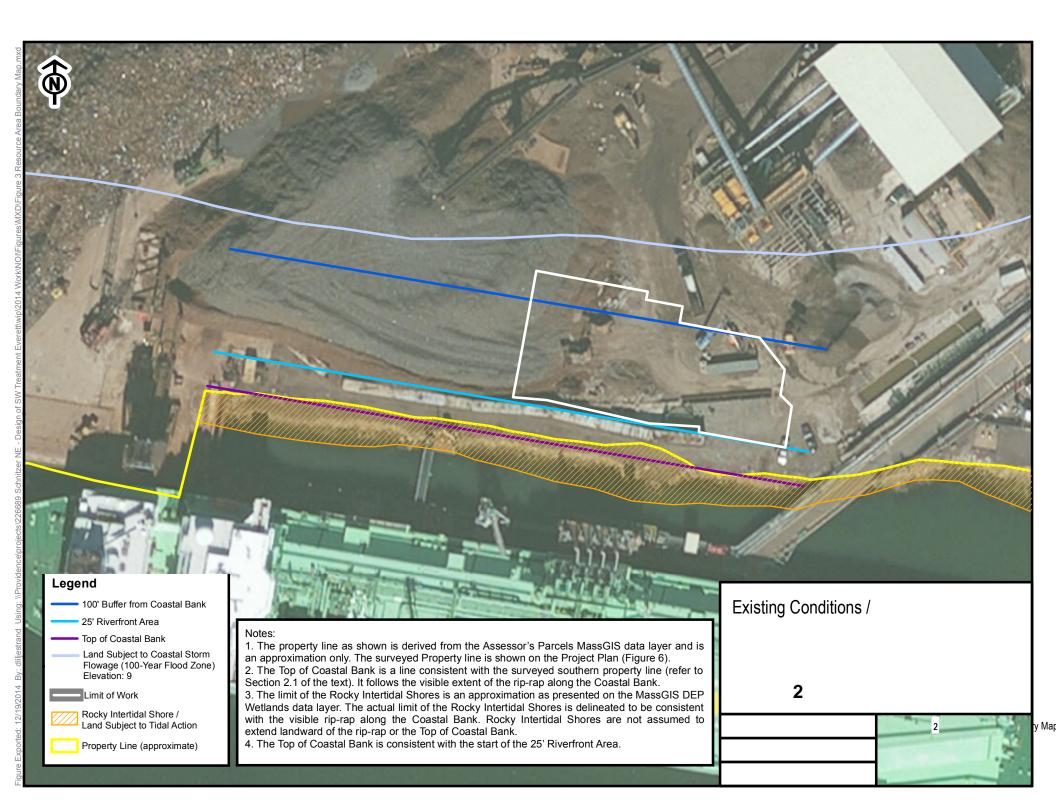
cc: Keri Fitzpatrick (Prolerized New England Company, LLC)

PN: 226689.01

FIGURES

APPENDIX A - NOI FORM




APPENDIX B – LABORATORY ANALYTICAL DATA

FIGURES

APPENDIX A - NOI FORM

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site: Prolerized New England Co., LLC a) Name of facility/site: Facility/site mailing address: Location of facility/site: Facility SIC Street: longitude: -71.063260 69 Rover Street code(s): P.O. Box 49095 5093 latitude: 42.391772 **Everett** b) Name of facility/site owner: Prolerized New England Co., LTown: Email address of facility/site owner: Zip: County: State: kfitzpatrick@schn.com MA 02149 Middlesex 617-389-8300 Telephone no. of facility/site owner: Fax no. of facility/site owner: 617-389-8030 Owner is (check one): 1. Federal O 2. State/Tribal O 3. Private • 4. Other • if so, describe: Address of **owner** (if different from site): Street: Town: State: Zip: County: 617-389-8300 Operator telephone no: c) Legal name of operator: Prolerized New England Co., LLC 617-389-8030 kfitzpatrick@schn.com Operator fax no. Operator email: Keri Fitzpatrick, Regional Environmental Manager Operator contact name and title: Address of operator (if different from Street: owner): Town: State: Zip: County:

Remediation General Permit Appendix V - NOI

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for to 2. Has a prior NPDES application (Form 1 & 2C) ever be Y O NO, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CF 4. For sites in Massachusetts, is the discharge covered und permitting? Y NO	en filed for the discharge?
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O N If Y, please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number:	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y NO, if Y, number: MAR05D005 2. Final Dewatering General Permit? Y NO, if Y, number: S. EPA Construction General Permit? Y NO, if Y, number: No, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number: S. any other water quality related individual or general permit? Y NO, if Y, number:
	al sampling data, identify the sub-category into which the potential
discharge falls.	an sampling data, recently the sub-category into which the potential
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites
	B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)
2. Discharge information. Please provide information	about the discharge, (attaching additional sheets as necessary) including
a) Describe the discharge activities for which the owner/a	applicant is seeking coverage:
Construction dewatering activities related to installation of subs	surface stormwater management structures.
b) Provide the following information about each discharge	e:
1) Number of discharge 2) What is the maximum a	and average flow rate of discharge (in cubic feet per second, ft ³ /s)?
	s maximum flow a design value? Y O N O estimate?
Average flow (include unit	ts) 3.3 Is average flow a design value or estimate? estimate
3) Latitude and longitude of each discharge within 100 fe	eet:
pt.1: lat 42.388 long -71.062 pt.2: lat.	
pt.3: lat long pt.4: lat.	
pt.5: lat long pt.6: lat.	long.
pt.7: lat long pt.8: lat.	long.; etc.
4) If hydrostatic testing, 5) Is the discharge intermit	ttent O or seasonal ?
total volume of the Is discharge ongoing? Y	
discharge (gals): N/A	
c) Expected dates of discharge (mm/dd/yy): start Aug 15, 20	ond Dec 15, 2015
d) Please attach a line drawing or flow schematic showing	• • • •
1. sources of intake water. 2. contributing flow from the	operation, 3, treatment units, and 4, discharge points and receiving
waters(s). See schematic provided with NOI application.	

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	CAS Number	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
Total Suspended Solids (TSS)			×	2	grab	2540 D	5 mg / L	51,000		50,500	
2. Total Residual Chlorine (TRC)		K		2	grab	4500 -CIE	10 ug / L				
Total Petroleum Hydrocarbons (TPH)	·	ĸ		2	grab	1664A	5 mg / L				
4. Cyanide (CN)	57125	ĸ		2	grab	4500 CN CE	5 ug / L				
5. Benzene (B)	71432	ĸ		2	grab	8260 B	1 ug / L				
6. Toluene (T)	108883	ĸ		2	grab	8260 B	1 ug / L				
7. Ethylbenzene (E)	100414	K		2	grab	8260 B	1 ug / L				
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	T		2	grab	8260 B	2 ug / L				
9. Total BTEX ²	n/a	ĸ		2	grab	8260 B	2 ug / L				
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934	r		2	grab	8011	0.015 ug / L				
11. Methyl-tert-Butyl Ether (MtBE)	1634044	ī		2	grab	8260 B	1 ug / L				
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	r		2	grab	8260B	25 ug/L				

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

2 BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

3 EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	Minimum	Maximum daily value		Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	ĸ		2	grab	8260 B	1.0 ug / L				
14. Naphthalene	91203	ĸ		2	grab	8260 B	1.0 ug/L				
15. Carbon Tetrachloride	56235	r		2	grab	8260 B	1.0 ug / L				
16. 1,2 Dichlorobenzene (o-DCB)	95501	E		2	grab	8260 B	1.0 ug / L				
17. 1,3 Dichlorobenzene (m-DCB)	541731	K		2	grab	8260 B	1.0 ug / L				
18. 1,4 Dichlorobenzene (p-DCB)	106467	r		2	grab	8260 B	1.0 ug / L				
18a. Total dichlorobenzene		r		2	grab	8260 B	1.0 ug / L				
19. 1,1 Dichloroethane (DCA)	75343	r		2	grab	8260 B	1.0 ug / L				
20. 1,2 Dichloroethane (DCA)	107062	r		2	grab	8260 B	1.0 ug / L				
21. 1,1 Dichloroethene (DCE)	75354	ĸ		2	grab	8260 B	1.0 ug / L				
22. cis-1,2 Dichloroethene (DCE)	156592	K		2	grab	8260 B	1.0 ug / L				
23. Methylene Chloride	75092	K		2	grab	8260 B	2.0 ug / L				
24. Tetrachloroethene (PCE)	127184	ĸ		2	grab	8260 B	1.0 ug / L				
25. 1,1,1 Trichloro-ethane (TCA)	71556	ĸ		2	grab	8260 B	1.0 ug / L				
26. 1,1,2 Trichloro-ethane (TCA)	79005	K		2	grab	8260 B	1.0 ug / L				
27. Trichloroethene (TCE)	79016	K		2	grab	8260 B	1.0 ug / L				

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	r		2	grab	8260 B	1.0 ug / L				
29. Acetone	67641	K		2	grab	8260 B	10 ug / L				
30. 1,4 Dioxane	123911		ĸ	2	grab	8270 D	0.2 ug / L	0.2		0.14	
31. Total Phenols	108952	ĸ		2	grab	420.1	0.10 ug / L				
32. Pentachlorophenol (PCP)	87865	r		2	grab	8270DSIM	0.84 ug / L				
33. Total Phthalates (Phthalate esters) ⁴		ĸ		2	grab	8270DSIM	2.34 ug / L				
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	r		2	grab	8270DSIM	2.34 ug / L				
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		Ī		2	grab	8270DSIM	0.05 ug / L				
a. Benzo(a) Anthracene	56553		ĸ	2	grab	8270DSIM	0.05 ug / L	0.02		0.02	
b. Benzo(a) Pyrene	50328	ĸ		2	grab	8270DSIM	0.05 ug / L				
c. Benzo(b)Fluoranthene	205992	ĸ		2	grab	8270DSIM	0.05 ug / L				
d. Benzo(k)Fluoranthene	207089	K		2	grab	8270DSIM	0.05 ug / L				
e. Chrysene	21801	K		2	grab	8270DSIM	0.05 ug / L				
f. Dibenzo(a,h)anthracene	53703	r		2	grab	8270DSIM	0.05 ug / L				
g. Indeno(1,2,3-cd) Pyrene	193395	r		2	grab	8270DSIM	0.05 ug / L				
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		r		2	grab	8270DSIM	0.19 ug / L				

⁴ The sum of individual phthalate compounds.

Remediation General Permit Appendix V - NOI

Page 15 of 22

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	CAS Number	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329	ĸ		2	grab	8270DSIM	0.19 ug / L				
i. Acenaphthylene	208968	ĸ		2	grab	8270DSIM	0.19 ug / L				
j. Anthracene	120127	ĸ		2	grab	8270DSIM	0.19 ug / L				
k. Benzo(ghi) Perylene	191242	ĸ		2	grab	8270DSIM	0.19 ug / L				
1. Fluoranthene	206440	ĸ		2	grab	8270DSIM	0.19 ug / L				
m. Fluorene	86737	r		2	grab	8270DSIM	0.19 ug / L				
n. Naphthalene	91203		ĸ	2	grab	8270DSIM	0.19 ug / L	0.05		0.45	
o. Phenanthrene	85018	ĸ		2	grab	8270DSIM	0.19 ug / L				
p. Pyrene	129000		ĸ	2	grab	8270DSIM	0.19 ug / L	0.02		0.02	
37. Total Polychlorinated Biphenyls (PCBs)	85687; 84742; 117840; 84662; 131113; 117817.	ĸ		2	grab	8082A	0.09 ug / L				
38. Chloride	16887006		ĸ								
39. Antimony	7440360	K		2	grab	7010	3.0 ug / L				
40. Arsenic	7440382	ĸ		2	grab	7010	6.0 ug / L				
41. Cadmium	7440439	ĸ		2	grab	7010	0.4 ug / L				
42. Chromium III (trivalent)	16065831	K		2	2	6010C	4.0 ug / L				
43. Chromium VI (hexavalent)	18540299	K									
44. Copper	7440508	ĸ		2	2	6010C	4.0 ug / L				
45. Lead	7439921		ĸ	2	2	7010	2.0 ug / L	3.2		3.2	
46. Mercury	7439976	ĸ		2	2	7470A	0.20 ug / L				
47. Nickel	7440020	ĸ		2	2	6010C	4.0 ug / L				
48. Selenium	7782492	ĸ		2	2	7010	4.0 ug / L				
49. Silver	7440224	ĸ		2	2	6010C	1.0 ug / L				
50. Zinc	7440666	ĸ		2	2	6010C	50 ug / L				
51. Iron	7439896		ĸ	2	2	6010C	200 ug / L	587		587	
Other (describe):											

					Sample A	Analytical	Minimum	Maximum daily value		Average daily valu	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	sent Samples (e.g., grab)		Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	ion mass (kg)	concentration (ug/l)	<u>ma</u> (k
b) For discharges who	ere metals a	re believe	d present, j	please fill o	out the follow	wing (attach	results of an	y calculation	ons):		
Step 1: Do any of the Appendix III (i.e., th					limits in	If yes, w	which metals	?			-
Step 2: For any metadilution factor (DF) instructions or as def What is the dilution Metal: Metal: Metal:	using the force termined by factor for ar	ormula in the State plicable r DF DF DF	Part I.A.3. prior to the	c (step 2) o	f the NOI	factor in influent effluent	Appendix thave the position in Apration above	IV. Do any otential to expendix IV	y of the meta xceed the con (i.e., is the in et at the calcu	responding	
Metal: Dilution not applicable in tidal waters											
A description of t See attached cover le	he treatmen	t system,	including a	schematic	of the propo	osed or exist			cluding:		
b) Identify each		ank 🖸 🛭	Air stripper	□ Oil/s	water separa	tor 🖪	Equalizati	on tanks 🗖	Bag filter E	GAC filter	
applicable treatment unit (check all that apply):	Chlori		De- hlorination		er (please de	scribe):					

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate(s) (gallons per minute) of the treatment system: Average flow rate of discharge 1000 gpm Maximum flow rate of treatment system gpm Design flow rate of treatment system gpm									
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):									
No additives will be or are planned to be used.									
5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:									
a) Identify the discharge pathway:	entify the discharge pathway: Direct to receiving water Within facility (sewer) Grain Wetlands Other (describe): Storm drain to outlet pipe to rive								
b) Provide a narrative description of									
Dewatering water will enter an onsite st	orm drain and exit	t an outfall to Mystic	River below Amelia	a Earhart Dam to co	onfluence with Chelsea River.				
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 									
d) Provide the state water quality classification of the receiving water SB (CSO)									
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water Not applicable; see letter Please attach any calculation sheets used to support stream flow and dilution calculations.									
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y N If yes, for which pollutant(s)?									
Is there a final TMDL? Y O N o If yes, for which pollutant(s)?									

6. ESA and NHPA Eligibility. Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.
a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A B D C D D E D F D b) If you selected Criterion D or F, has consultation with the federal services been completed? Y N Underway
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O N O
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 2 3 3
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
7. Supplemental information.
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.
See attached NOI submittal package.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Prolerized New England Company LCC - Everet, MA
Operator signature: Kun Jutypatiin
Printed Name & Title: Kevi Fitzpatrick, Regional Environmental Manager
Date: 6/12/2015

APPENDIX B – LABORATORY ANALYTICAL DATA

Summary of Groundwater Analytical Data Schnitzer Northeast Facility 69 Rover Street, Everett, MA May 1, 2015

Analyte	RGP Appendix III Effluent Limit	Units	TMW-1		TMW-2		Mystic-1
8011 1,2-Dibromoethane / 1,2-Dibror		ane					
1,2-Dibromoethane	0.05	ug/L	0.015	U	0.015	U	1
8082A Polychlorinated Biphenyls (Polychlorinated Biphenyls) Aroclor 1016	0.5	ug/L	0.09	U	0.09	U	_
Aroclor 1221	0.5	ug/L	0.09	U	0.09	U	-
Aroclor 1232	0.5	ug/L	0.09	U	0.09	U	-
Aroclor 1242	0.5	ug/L	0.09	U	0.09	U	-
Aroclor 1248	0.5 0.5	ug/L	0.09	U	0.09	U	-
Aroclor 1254 Aroclor 1260	0.5	ug/L ug/L	0.09	U	0.09	U	-
Aroclor 1262	0.5	ug/L	0.09	U	0.09	U	-
Aroclor 1268	0.5	ug/L	0.09	U	0.09	U	-
8260B Volatile Organic Compounds		ı		1		1	
1,1,1-Trichloroethane	200	ug/L	1	U	1	U	-
1,1,2-Trichloroethane 1,1-Dichloroethane	5 70	ug/L ug/L	1	U	<u>1</u> 1	U	-
1,1-Dichloroethene	3.2	ug/L ug/L	1	U	1	U	-
1,2-Dibromoethane	0.02	ug/L	1	Ū	1	Ü	-
1,2-Dichlorobenzene	600	ug/L	1	U	1	U	-
1,2-Dichloroethane	5	ug/L	1	U	1	U	-
1,3-Dichlorobenzene	320	ug/L	1	U	11	U	-
1,4-Dichlorobenzene Acetone	5 Monitor Only	ug/L	10	U	1 10	U	-
Benzene	5	ug/L ug/L	10	U	10	U	-
Carbon Tetrachloride	4.4	ug/L ug/L	1	U	1	U	-
cis-1,2-Dichloroethene	70	ug/L	1	Ü	1	Ü	
Ethylbenzene	700	ug/L	1	Ū	1	Ū	-
Methyl tert-Butyl Ether	70	ug/L	1	U	1	U	-
Methylene Chloride	4.6	ug/L	2	U	2	U	-
Naphthalene Tertiary-amyl methyl ether	20 Monitor Only	ug/L ug/L	1	U	<u>1</u> 1	U	-
Tertiary-amyl methyl ether Tertiary-butyl Alcohol	Monitor Only	ug/L ug/l	25	U	25	U	-
Tetrachloroethene	5	ug/L	1	Ü	1	U	-
Toluene	100	ug/L	1	Ü	1	Ü	-
Trichloroethene	5	ug/L	1	U	1	U	•
Vinyl Chloride	2	ug/L	1	U	1	U	-
Xylene O	100	ug/L	1	U	1	U	-
Xylene P,M	100	ug/L	2	U	2	U	-
8270D(SIM) Semi-Volatile Organic C	100	ua/l	0.19	U	0.19	U	_
Acenaphthene ² Acenaphthylene ²	100	ug/L ug/L	0.19	U	0.19	U	-
Anthracene ²	100	ug/L ug/L	0.19	U	0.19	U	-
Benzo(a)anthracene ¹	0.0038	ug/L	0.05	U	0.02	J	-
Benzo(a)pyrene ¹	0.0038	ug/L	0.05	U	0.05	U	-
Benzo(b)fluoranthene ¹	0.0038	ug/L	0.05	Ü	0.05	U	_
Benzo(g,h,i)perylene ²	100	ug/L	0.19	Ü	0.19	Ü	-
Benzo(k)fluoranthene ¹	0.0038	ug/L	0.05	Ū	0.05	Ū	-
bis(2-Ethylhexyl)phthalate	6	ug/L	2.34	Ü	2.34	Ü	-
Butylbenzylphthalate	3	ug/L	2.34	U	2.34	U	1
Chrysene ¹	0.0038	ug/L	0.05	U	0.05	U	-
Dibenzo(a,h)Anthracene ¹	0.0038	ug/L	0.05	U	0.05	U	1
Diethylphthalate	2000	ug/L	2.34	U	2.34	U	-
Dimethylphthalate	3	ug/L	2.34	U	2.34	U	-
Di-n-butylphthalate Di-n-octylphthalate	3 3	ug/L ug/L	2.34 2.34	U	2.34	U	-
Fluoranthene ²	100	ug/L ug/L	0.19	U	0.19	U	-
Fluorene2	100	ug/L	0.19	U	0.19	U	-
Indeno(1,2,3-cd)Pyrene ¹	0.0038	ug/L	0.05	Ü	0.05	Ü	-
Naphthalene	20	ug/L	0.05	J	0.04	J	
Pentachlorophenol	1	ug/L	0.84	U	0.84	U	1
Phenanthrene ²	100	ug/L	0.19	U	0.19	U	-
Pyrene ²	100	ug/L	0.19	U	0.02	J	-
8270D(SIM) Semi-Volatile Organic C					0.0		
1,4-Dioxane Classical Chemistry	Monitor Only	ug/L	0.08	J	0.2	J	-
Hexavalent Chromium	100	ug/L	10	U	10	U	_
Phenols	300	ug/L ug/L	0.1	U	0.1	U	-
Salinity	NA	ppt	-	-	-	-	9.5
Total Cyanide (LL)	10	ug/L	5	U	5	U	-
Total Petroleum Hydrocarbon	5	mg/L	5	U	5	U	-
Total Residual Chlorine	Monitor Only	ug/L	10	U	10	U	-
Total Suspended Solids Total Metals	30	mg/L	51		50	<u> </u>	-
Antimony	5.6	ug/L	3	EL, U, D	3	EL, U, D	_
Arsenic	36	ug/L ug/L	6	U, D	<u>3</u> 6	U, D	-
IAISEIIC		ug/L ug/L	0.4	EL, U, D	0.4	EL, U, D	-
Cadmium	8.9			U	4	U	
	8.9 -	ug/L	4				
Cadmium			10	U	10	U	-
Cadmium Chromium Chromium III Copper	- 100 3.7	ug/L ug/L ug/L	10 4	U U, D	10 4	U, D	-
Cadmium Chromium Chromium III Copper Iron	- 100 3.7 1000	ug/L ug/L ug/L ug/L	10 4 200	U U, D U, D	10 4 587	U, D	-
Cadmium Chromium Chromium III Copper Iron Lead	- 100 3.7 1000 8.5	ug/L ug/L ug/L ug/L ug/L	10 4 200 2	U U, D U, D EL, U, D	10 4 587 3.2	U, D D EL, D	
Cadmium Chromium Chromium III Copper Iron Lead Mercury	- 100 3.7 1000 8.5 1.1	ug/L ug/L ug/L ug/L ug/L ug/L	10 4 200 2 0.2	U U, D U, D EL, U, D U	10 4 587 3.2 0.2	U, D D EL, D	- - -
Cadmium Chromium Chromium III Copper Iron Lead Mercury Nickel	- 100 3.7 1000 8.5 1.1 8.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 4 200 2 0.2 4	U U, D U, D EL, U, D U	10 4 587 3.2 0.2 4	U, D D EL, D U	- - - -
Cadmium Chromium Chromium III Copper Iron Lead Mercury	- 100 3.7 1000 8.5 1.1	ug/L ug/L ug/L ug/L ug/L ug/L	10 4 200 2 0.2	U U, D U, D EL, U, D U	10 4 587 3.2 0.2	U, D D EL, D	- - -

- Notes:

 1. Maximum effluent limit is 0.0038 ug/L, but compliance limit is equal to the method reporting limit of the test method.

 2. Denotes a Group II PAH and is limited as a total of all Group II PAHs.

 BOLD values exceed RGP Appendix III Effluent Limits

 "-" indicates this sample was not analyzed for this analyte

 Total Benzene, Toluene, Ethyl Benzene, and Xylenes effluent limit is 100 ug/L

 D = Sample was diluted in order to obtain a value within the calibration range.

- E = Reported above the linear range; Estimated value.
- J = Value below the Method reporting Limit; Estimated value.
- U = Not Detected
- NA = Not Applicable

of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Janelle Bonn Woodard & Curran - RI 95 Cedar Street, Suite 100 Providence, RI 02903

RE: Schnitzer - RGP (229035)

ESS Laboratory Work Order Number: 1505022

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 6:29 pm, Jun 15, 2015

Laurer Stoudard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Service

ESS Laboratory Work Order: 1505022

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

SAMPLE RECEIPT

The following samples were received on May 01, 2015 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2010 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

Revision 1 May 15, 2015: This report has been revised to include Phenol and Tertiary Butyl Alcohol results.

Revision 2, May 28, 2015: This report has been revised to include Naphthalene results from the 8260 run instead of the 8270SIM run.

Revision 3, June 15, 2015: This report has been revised to include Naphthalene from both 8260 and 8270 SIM analyses.

Lab Number	Sample Name	Matrix	Analysis
1505022-01	TMW-1	Ground Water	1664A, 2540D, 420.1, 4500 CN CE, 4500-Cl E,
			6010C, 7010, 7196A, 7470A, 8011, 8082A, 8260B,
			8270D, 8270D SIM
1505022-02	TMW-2	Ground Water	1664A, 2540D, 420.1, 4500 CN CE, 4500-Cl E,
			6010C, 7010, 7196A, 7470A, 8011, 8082A, 8260B,
			8270D, 8270D SIM
1505022-03	Mystic-1	Ground Water	2520B

Fax: 401-461-4486

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

PROJECT NARRATIVE

8260B Volatile Organic Compounds

Blank Spike recovery is above upper control limit (B+). CE50506-BS1

Acetone (196% @ 70-130%)

CE50506-BSD1 Blank Spike recovery is above upper control limit (B+).

Acetone (214% @ 70-130%)

8270D(SIM) Semi-Volatile Organic Compounds

CE50406-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Acenaphthene (31% @ 20%), Acenaphthylene (31% @ 20%), Anthracene (26% @ 20%),

Benzo(a)anthracene (24% @ 20%), Benzo(a)pyrene (27% @ 20%), Benzo(b)fluoranthene (30% @ 20%), Benzo(g,h,i)perylene (28% @ 20%), Benzo(k)fluoranthene (28% @ 20%), Butylbenzylphthalate (21% @ 20%), Chrysene (29% @ 20%), Dibenzo(a,h)Anthracene (27% @ 20%), Diethylphthalate (27% @ 20%), Dimethylphthalate (26% @ 20%), Di-n-butylphthalate (25% @ 20%), Di-n-octylphthalate (29% @ 20%), Fluoranthene (26% @ 20%), Fluorene (28% @ 20%), Indeno(1,2,3-cd)Pyrene (29% @ 20%), Naphthalene

(29% @ 20%), Pentachlorophenol (122% @ 20%), Phenanthrene (26% @ 20%), Pyrene (26% @ 20%)

CYE0046-CCV1 Continuing Calibration recovery is above upper control limit (C+).

Di-n-octylphthalate (122% @ -%)

CYE0046-CCV1 Continuing Calibration recovery is below lower control limit (C-).

Pentachlorophenol (17% @ -%)

CYE0046-TUN1 **DDT breakdown > 20%**

CYE0061-CCV1 Continuing Calibration recovery is above upper control limit (C+).

Di-n-octylphthalate (125% @ -%)

CYE0061-TUN1 **DDT** breakdown > 20%

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

CYE0110-CCV1 Continuing Calibration recovery is above upper control limit (C+).

1,4-Dioxane-d8 (122% @ -%)

CYE0110-TUN1 **DDT breakdown > 20%**

Classical Chemistry

The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and 1505022-01

Residual Chlorine is fifteen minutes.

1505022-02 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Metals

1505022-01 Elevated Method Reporting Limits due to sample matrix (EL).

Antimony, Cadmium, Lead, Selenium

1505022-02 Elevated Method Reporting Limits due to sample matrix (EL).

Antimony, Cadmium, Lead, Selenium

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 Dependability **Ouality** Service

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

ESS Laboratory Work Order: 1505022

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-1 Date Sampled: 05/01/15 11:30

Percent Solids: N/A

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analys	st Analyz	zed	<u>I/V</u>	<u>F/V</u>	Batch
Antimony	EL ND (3.0)	7010		3	KJK	05/07/15	3:34	50	10	CE50424
Arsenic	ND (6.0)	7010		3	KJK	05/07/15	9:39	50	10	CE50424
Cadmium	EL ND (0.4)	7010		10	KJK	05/08/15 1	15:41	50	10	CE50424
Chromium	ND (4.0)	6010C		1	KJK	05/08/15 1	15:39	50	10	CE50802
Chromium III	ND (10)	6010C		1	JLK	05/08/15 1	15:39	1	1	[CALC]
Copper	ND (4.0)	6010C		2	JP	05/09/15 1	16:52	50	10	CE50802
Iron	ND (200)	6010C		10	KJK	05/08/15 1	17:21	50	10	CE50802
Lead	EL ND (2.0)	7010		5	KJK	05/05/15 2	22:28	50	10	CE50424
Mercury	ND (0.20)	7470A		1	RLA	05/06/15 1	16:00	20	40	CE50538
Nickel	ND (4.0)	6010C		1	KJK	05/08/15 1	15:39	50	10	CE50802
Selenium	EL ND (4.0)	7010		5	KJK	05/06/15 2	20:53	50	10	CE50424
Silver	ND (1.0)	6010C		1	KJK	05/08/15 1	15:39	50	10	CE50802
Zinc	ND (50.0)	6010C		5	KJK	05/08/15 1	15:53	50	10	CE50802

Service

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-1 Date Sampled: 05/01/15 11:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: TJ

Prepared: 5/4/15 10:35 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
Aroclor 1221	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
Aroclor 1232	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
Aroclor 1242	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
Aroclor 1248	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
Aroclor 1254	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
Aroclor 1260	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
Aroclor 1262	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
Aroclor 1268	ND (0.09)	0.03	8082A		1	05/04/15 13:34	CE50405
	9	%Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl		86 %		30-150			
Surrogate: Decachlorobiphenyl [2C]		84 %		30-150			
Surrogate: Tetrachloro-m-xylene		63 %		30-150			
Surrogate: Tetrachloro-m-xylene [2C]		69 %		30-150			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-1 Date Sampled: 05/01/15 11:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: ZLC

8260B Volatile Organic Compounds

Analyte 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	$\frac{\mathbf{MDL}}{0.2}$	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 05/04/15 20:32	Sequence CYE0051	Batch CE50506
1,1,2-Trichloroethane	ND (1.0) ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	05/04/15 20:32	CYE0051	CE50506
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	05/04/15 20:32	CYE0051	CE50506
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	05/04/15 20:32	CYE0051	CE50506
Acetone	ND (10.0)	2.7	8260B		1	05/04/15 20:32	CYE0051	CE50506
Benzene	ND (1.0)	0.1	8260B		1	05/04/15 20:32	CYE0051	CE50506
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	05/04/15 20:32	CYE0051	CE50506
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
Ethylbenzene	ND (1.0)	0.1	8260B		1	05/04/15 20:32	CYE0051	CE50506
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	05/04/15 20:32	CYE0051	CE50506
Methylene Chloride	ND (2.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
Naphthalene	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	05/04/15 20:32	CYE0051	CE50506
Tetrachloroethene	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
Toluene	ND (1.0)	0.1	8260B		1	05/04/15 20:32	CYE0051	CE50506
Trichloroethene	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
Vinyl Chloride	ND (1.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
Xylene O	ND (1.0)	0.1	8260B		1	05/04/15 20:32	CYE0051	CE50506
Xylene P,M	ND (2.0)	0.2	8260B		1	05/04/15 20:32	CYE0051	CE50506
	%;	Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		106 %		70-130				

Surrogate: 1,2-Dichloroethane-d4 106 % 70-130 Surrogate: 4-Bromofluorobenzene 109 % 70-130 Surrogate: Dibromofluoromethane 98 % 70-130 Surrogate: Toluene-d8 70-130 104 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-1 Date Sampled: 05/01/15 11:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 5/6/15 19:11

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) J 0.08 (0.2)	MDL 0.07	<u>Method</u> 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 05/07/15 21:23	Sequence CYE0110	Batch CE50624
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		71 %		15-115				

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-1 Date Sampled: 05/01/15 11:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 5/4/15 14:30

8270D(SIM) Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)		Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)	0.04	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Anthracene	ND (0.19)	0.03	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Benzo(a)anthracene	ND (0.05)	0.01	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Benzo(a)pyrene	ND (0.05)	0.01	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Benzo(b)fluoranthene	ND (0.05)	0.02	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Benzo(g,h,i)perylene	ND (0.19)	0.02	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
bis(2-Ethylhexyl)phthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Butylbenzylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Chrysene	ND (0.05)	0.01	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Diethylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Di-n-butylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Fluoranthene	ND (0.19)	0.02	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Fluorene	ND (0.19)	0.03	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Indeno(1,2,3-cd)Pyrene	ND (0.05)	0.02	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Naphthalene	J 0.05 (0.19)	0.04	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Phenanthrene	ND (0.19)	0.04	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
Pyrene	ND (0.19)	0.02	8270D SIM		1	05/06/15 4:40	CYE0060	CE50406
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		59 %		30-130				
Surrogate: 2,4,6-Tribromophenol		88 %		15-110				
Surrogate: 2-Fluorobiphenyl		68 %		30-130				
Surrogate: Nitrobenzene-d5		83 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Surrogate: p-Terphenyl-d14

Tel: 401-461-7181

Fax: 401-461-4486

Service

30-130

http://www.ESSLaboratory.com

79 %

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-1 Date Sampled: 05/01/15 11:30

Percent Solids: N/A

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-01

Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analy	st Analyzed	Units	Batch
Hexavalent Chromium	ND (10)		7196A		1	JLK	05/01/15 18:24	4 ug/L	CE50151
Phenols	ND (0.10)	0.03	420.1		1	JLK	05/15/15 12:18	8 mg/L	CE51522
Total Cyanide (LL)	ND (5.00)		4500 CN CE		1	JLK	05/06/15 0:00	ug/L	CE50631
Total Petroleum Hydrocarbon	ND (5)		1664A		1	JLK	05/07/15 16:00) mg/L	CE50630
Total Residual Chlorine	ND (10)		4500-C1 E		1	JLK	05/01/15 18:34	4 ug/L	CE50152
Total Suspended Solids	51 (5)		2540D		1	EEM	05/06/15 16:0:	5 mg/L	CE50614

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-1 Date Sampled: 05/01/15 11:30

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-01

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 5/6/15 16:10

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	Results (MRL) MDL ND (0.015)	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u> 1	Analyst Analyzed JXS 05/06/15 16:33	<u>Sequence</u>	Batch CE50643
	%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane	106 %		30-150				

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-2 Date Sampled: 05/01/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	DF	Analys	st Analyz	<u>ed</u>	<u>I/V</u>	F/V	Batch
Antimony	EL ND (3.0)	7010		3	KJK	05/07/15 3	3:40	50	10	CE50424
Arsenic	ND (6.0)	7010		3	KJK	05/07/15 9	9:45	50	10	CE50424
Cadmium	EL ND (0.4)	7010		10	KJK	05/08/15 15	5:47	50	10	CE50424
Chromium	ND (4.0)	6010C		1	KJK	05/08/15 15	5:45	50	10	CE50802
Chromium III	ND (10)	6010C		1	JLK	05/08/15 15	5:45	1	1	[CALC]
Copper	ND (4.0)	6010C		2	JP	05/09/15 16	6:58	50	10	CE50802
Iron	587 (100)	6010C		5	KJK	05/08/15 15	5:58	50	10	CE50802
Lead	EL 3.2 (2.0)	7010		5	KJK	05/05/15 22	2:23	50	10	CE50424
Mercury	ND (0.20)	7470A		1	RLA	05/06/15 16	6:02	20	40	CE50538
Nickel	ND (4.0)	6010C		1	KJK	05/08/15 15	5:45	50	10	CE50802
Selenium	EL ND (4.0)	7010		5	KJK	05/06/15 21	1:16	50	10	CE50424
Silver	ND (1.0)	6010C		1	KJK	05/08/15 15	5:45	50	10	CE50802
Zinc	ND (50.0)	6010C		5	KJK	05/08/15 15	5:58	50	10	CE50802

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-2 Date Sampled: 05/01/15 13:40

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: TJ

Prepared: 5/4/15 10:35 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence Batch
Aroclor 1016	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
Aroclor 1221	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
Aroclor 1232	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
Aroclor 1242	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
Aroclor 1248	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
Aroclor 1254	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
Aroclor 1260	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
Aroclor 1262	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
Aroclor 1268	ND (0.09)	0.03	8082A		1	05/04/15 13:53	CE50405
	9	%Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl		81 %		30-150			
Surrogate: Decachlorobiphenyl [2C]		76 %		30-150			
Surrogate: Tetrachloro-m-xylene		64 %		30-150			
Surrogate: Tetrachloro-m-xylene [2C]		69 %		30-150			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-2 Date Sampled: 05/01/15 13:40

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: ZLC

8260B Volatile Organic Compounds

Analyte	Results (MRL)	$\frac{MDL}{0.2}$	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
1,1,2-Trichloroethane	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
1,1-Dichloroethane	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
1,1-Dichloroethene	ND (1.0)	0.3	8260B		1	05/04/15 21:05	CYE0051	CE50506
1,2-Dibromoethane	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
1,2-Dichlorobenzene	ND (1.0)	0.1	8260B		1	05/04/15 21:05	CYE0051	CE50506
1,2-Dichloroethane	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
1,3-Dichlorobenzene	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
1,4-Dichlorobenzene	ND (1.0)	0.1	8260B		1	05/04/15 21:05	CYE0051	CE50506
Acetone	ND (10.0)	2.7	8260B		1	05/04/15 21:05	CYE0051	CE50506
Benzene	ND (1.0)	0.1	8260B		1	05/04/15 21:05	CYE0051	CE50506
Carbon Tetrachloride	ND (1.0)	0.1	8260B		1	05/04/15 21:05	CYE0051	CE50506
cis-1,2-Dichloroethene	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
Ethylbenzene	ND (1.0)	0.1	8260B		1	05/04/15 21:05	CYE0051	CE50506
Methyl tert-Butyl Ether	ND (1.0)	0.3	8260B		1	05/04/15 21:05	CYE0051	CE50506
Methylene Chloride	ND (2.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
Naphthalene	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
Tertiary-amyl methyl ether	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
Tertiary-butyl Alcohol	ND (25.0)	10.0	8260B		1	05/04/15 21:05	CYE0051	CE50506
Tetrachloroethene	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
Toluene	ND (1.0)	0.1	8260B		1	05/04/15 21:05	CYE0051	CE50506
Trichloroethene	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
Vinyl Chloride	ND (1.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
Xylene O	ND (1.0)	0.1	8260B		1	05/04/15 21:05	CYE0051	CE50506
Xylene P,M	ND (2.0)	0.2	8260B		1	05/04/15 21:05	CYE0051	CE50506
	0/	Daggioni,	Qualifier	Limita				

Qualifier Limits %Recovery Surrogate: 1,2-Dichloroethane-d4 104 % 70-130 Surrogate: 4-Bromofluorobenzene 70-130 110 % Surrogate: Dibromofluoromethane 99 % 70-130 Surrogate: Toluene-d8 70-130 104 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-2 Date Sampled: 05/01/15 13:40

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 5/6/15 19:11

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) J 0.2 (0.2)	MDL 0.07	Method 8270D	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 05/07/15 22:13	Sequence CYE0110	Batch CE50624
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		79 %		15-115				

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-2 Date Sampled: 05/01/15 13:40

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 5/4/15 14:30

8270D(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	$\frac{MDL}{0.04}$	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.19)	0.04	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Acenaphthylene	ND (0.19)	0.03	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Anthracene	ND (0.19)	0.03	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Benzo(a)anthracene	J 0.02 (0.05)	0.01	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Benzo(a)pyrene	ND (0.05)	0.01	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Benzo(b)fluoranthene	ND (0.05)	0.02	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Benzo(g,h,i)perylene	ND (0.19)	0.02	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Benzo(k)fluoranthene	ND (0.05)	0.02	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
bis(2-Ethylhexyl)phthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Butylbenzylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Chrysene	ND (0.05)	0.01	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Dibenzo(a,h)Anthracene	ND (0.05)	0.02	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Diethylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Dimethylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Di-n-butylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Di-n-octylphthalate	ND (2.34)	0.19	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Fluoranthene	ND (0.19)	0.02	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Fluorene	ND (0.19)	0.03	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Indeno(1,2,3-cd)Pyrene	ND (0.05)	0.02	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Naphthalene	J 0.04 (0.19)	0.04	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Pentachlorophenol	ND (0.84)	0.30	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Phenanthrene	ND (0.19)	0.04	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
Pyrene	J 0.02 (0.19)	0.02	8270D SIM		1	05/06/15 6:59	CYE0061	CE50406
	9	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		60 %		30-130				
Surrogate: 2,4,6-Tribromophenol		94 %		15-110				
Surrogate: 2-Fluorobiphenyl		72 %		30-130				

Surrogate: 2-Fluorobiphenyl 30-130 Surrogate: Nitrobenzene-d5 88 % 30-130 Surrogate: p-Terphenyl-d14 87 % 30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-2 Date Sampled: 05/01/15 13:40

Percent Solids: N/A

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-02

Sample Matrix: Ground Water

Classical Chemistry

Analyte Hexavalent Chromium	Results (MRL) ND (10)	MDL	<u>Method</u> 7196A	<u>Limit</u>	<u>DF</u>	Analy JLK	st Analyzed 05/01/15 18:2		Batch CE50151
Phenols	ND (0.10)	0.03	420.1		1	JLK	05/15/15 12:1	8 mg/L	CE51522
Total Cyanide (LL)	ND (5.00)		4500 CN CE		1	JLK	05/06/15 0:00	ug/L	CE50631
Total Petroleum Hydrocarbon	ND (5)		1664A		1	JLK	05/07/15 16:0	0 mg/L	CE50630
Total Residual Chlorine	ND (10)		4500-C1 E		1	JLK	05/01/15 18:3	4 ug/L	CE50152
Total Suspended Solids	50 (5)		2540D		1	EEM	05/06/15 16:0	5 mg/L	CE50614

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: TMW-2 Date Sampled: 05/01/15 13:40

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-02

Sample Matrix: Ground Water

Units: ug/L Analyst: JXS

Prepared: 5/6/15 16:10

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	<u>Results (MRL)</u> ND (0.015) <u>MDL</u>	<u>Method</u> 8011	<u>Limit</u>	<u>DF</u> 1	Analyst Analyzed JXS 05/06/15 18:26	Sequence Batch CE50643	ì
	%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane	111 %		30-150				

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

Client Sample ID: Mystic-1 Date Sampled: 05/01/15 10:55

Percent Solids: N/A

ESS Laboratory Work Order: 1505022 ESS Laboratory Sample ID: 1505022-03

Sample Matrix: Ground Water

Classical Chemistry

Results (MRL) **MDL Limit Analyte** Method Analyst Analyzed Units Batch Salinity 2520B EEM 05/06/15 15:20 **9.5** (0.1)

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	tals						
Batch CE50151 - [CALC]										
Blank										
Chromium III	ND	10	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
Batch CE50424 - 3005A/200.7										
Blank										
Antimony	ND	1.0	ug/L							
Arsenic	ND	2.0	ug/L							
Cadmium	ND	0.04	ug/L							
Lead	ND	0.4	ug/L							
Selenium	ND	0.8	ug/L							
LCS										
Antimony	290	50.0	ug/L	250.0		116	80-120			
Arsenic	279	100	ug/L	250.0		111	80-120			
Cadmium	125	50.0	ug/L	125.0		100	80-120			
Lead	266	20.0	ug/L	250.0		106	80-120			
Selenium	592	40.0	ug/L	500.0		118	80-120			
LCS Dup										
Antimony	294	50.0	ug/L	250.0		118	80-120	2	20	
Arsenic	280	100	ug/L	250.0		112	80-120	0.6	20	
Cadmium	125	50.0	ug/L	125.0		100	80-120	0.7	20	
Lead	263	20.0	ug/L	250.0		105	80-120	1	20	
Selenium	595	40.0	ug/L	500.0		119	80-120	0.6	20	
Batch CE50538 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	6.70	0.20	ug/L	6.000		112	80-120			
LCS Dup										
Mercury	6.81	0.20	ug/L	6.000		114	80-120	2	20	
Batch CE50802 - 3005A/200.7										
Blank										
Chromium	ND	4.0	ug/L							
Chromium III	ND	4	ug/L							
Copper	ND	2.0	ug/L							
Iron	ND	20.0	ug/L							
Nickel	ND	4.0	ug/L							
Silver	ND	1.0	ug/L							
Zinc	ND	10.0	ug/L							

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Met	als						

Batch CE50802 - 3005A/200.	7								
LCS									
Chromium	229	10.0	ug/L	250.0	92	80-120			
Chromium III	229	10	ug/L						
Copper	232	5.0	ug/L	250.0	93	80-120			
Iron	1140	50.0	ug/L	1250	91	80-120			
Nickel	229	10.0	ug/L	250.0	91	80-120			
Silver	115	2.5	ug/L	125.0	92	80-120			
Zinc	223	25.0	ug/L	250.0	89	80-120			
LCS Dup									
Chromium	245	10.0	ug/L	250.0	98	80-120	7	20	
Chromium III	245	10	ug/L						
Copper	246	5.0	ug/L	250.0	98	80-120	6	20	
Iron	1200	50.0	ug/L	1250	96	80-120	5	20	
Nickel	244	10.0	ug/L	250.0	98	80-120	7	20	
Silver	123	2.5	ug/L	125.0	98	80-120	7	20	
Zinc	238	25.0	ug/L	250.0	95	80-120	7	20	

8082A Polychlorinated Biphenyls (PCB)

Blank							
Aroclor 1016	ND	0.10	ug/L				
Aroclor 1221	ND	0.10	ug/L				
Aroclor 1232	ND	0.10	ug/L				
Aroclor 1242	ND	0.10	ug/L				
Aroclor 1248	ND	0.10	ug/L				
Aroclor 1254	ND	0.10	ug/L				
Aroclor 1260	ND	0.10	ug/L				
Aroclor 1262	ND	0.10	ug/L				
Aroclor 1268	ND	0.10	ug/L				
Surrogate: Decachlorobiphenyl	0.0463		ug/L	0.05000	93	30-150	
Surrogate: Decachlorobiphenyl [2C]	0.0447		ug/L	0.05000	89	30-150	
Surrogate: Tetrachloro-m-xylene	0.0287		ug/L	0.05000	57	30-150	
Surrogate: Tetrachloro-m-xylene [2C]	0.0353		ug/L	0.05000	71	30-150	
LCS							
Aroclor 1016	0.77	0.10	ug/L	1.000	77	40-140	
Aroclor 1260	0.90	0.10	ug/L	1.000	90	40-140	
Surrogate: Decachlorobiphenyl	0.0450		ug/L	0.05000	90	30-150	
Surrogate: Decachlorobiphenyl [2C]	0.0435		ug/L	0.05000	87	30-150	
Surrogate: Tetrachloro-m-xylene	0.0282		ug/L	0.05000	56	30-150	
Surrogate: Tetrachloro-m-xylene [2C]	0.0312		ug/L	0.05000	62	<i>30-150</i>	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	808	82A Polych	lorinated	l Bipheny	/ls (PCB)				
Batch CE50405 - 3510C										
Aroclor 1016	0.81	0.10	ug/L	1.000		81	40-140	5	20	
Aroclor 1260	0.91	0.10	ug/L	1.000		91	40-140	1	20	
Surrogate: Decachlorobiphenyl	0.0453		ug/L	0.05000		91	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0431		ug/L	0.05000		86	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene	0.0295		ug/L	0.05000		59	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0324	.0.400.14.1	ug/L	0.05000		65	30-150			
	8	3260B Vola	tile Orgai	nic Comp	ounds					
Batch CE50506 - 5030B										
Blank										
,1,1-Trichloroethane	ND	1.0	ug/L							
1,1,2-Trichloroethane	ND	1.0	ug/L							
1,1-Dichloroethane	ND	1.0	ug/L							
,1-Dichloroethene	ND	1.0	ug/L							
,2-Dibromoethane	ND	1.0	ug/L							
,2-Dichlorobenzene	ND	1.0	ug/L							
,2-Dichloroethane	ND	1.0	ug/L							
,3-Dichlorobenzene	ND	1.0	ug/L							
,4-Dichlorobenzene	ND	1.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.0	ug/L							
Carbon Tetrachloride	ND	1.0	ug/L							
sis-1,2-Dichloroethene	ND	1.0	ug/L							
thylbenzene	ND	1.0	ug/L							
Methyl tert-Butyl Ether	ND	1.0	ug/L							
Methylene Chloride	ND	2.0	ug/L							
Naphthalene	ND	1.0	ug/L							
Fertiary-amyl methyl ether	ND	1.0	ug/L							
Fertiary-butyl Alcohol	ND	25.0	ug/L							
Fetrachloroethene	ND	1.0	ug/L							
Foluene	ND	1.0	ug/L							
Frichloroethene	ND	1.0	ug/L							
/inyl Chloride	ND	1.0	ug/L ug/L							
Kylene O	ND	1.0	ug/L ug/L							
(ylene P,M	ND	2.0	ug/L ug/L							
•	25.0	2.0	ug/L	25.00		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	27.8		ug/L ug/L	25.00 25.00		111	70-130 70-130			
Surrogate: 4-Bromofluorobenzene	25.0		ug/L ug/L	<i>25.00</i>		100	70-130 70-130			
Surrogate: Dibromofluoromethane	26.5		ug/L ug/L	25.00 25.00		106	70-130 70-130			
Surrogate: Toluene-d8	20.0		ug/ L	20.00		700	70 130			
.cs			,,	40.00		0.	70.100			
,1,1-Trichloroethane	9.6		ug/L	10.00		96	70-130			
,1,2-Trichloroethane	10.2		ug/L	10.00		102	70-130			
1,1-Dichloroethane	9.9		ug/L	10.00		99	70-130			

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8	3260B Vola	tile Organ	ic Com _l	oounds					
Batch CE50506 - 5030B										
,1-Dichloroethene	10.2		ug/L	10.00		102	70-130			
,2-Dibromoethane	10.6		ug/L	10.00		106	70-130			
,2-Dichlorobenzene	10.6		ug/L	10.00		106	70-130			
,2-Dichloroethane	9.6		ug/L	10.00		96	70-130			
,3-Dichlorobenzene	10.6		ug/L	10.00		106	70-130			
,4-Dichlorobenzene	10.6		ug/L	10.00		106	70-130			
Acetone	97.9		ug/L	50.00		196	70-130			B+
Benzene	10.3		ug/L	10.00		103	70-130			
Carbon Tetrachloride	10.7		ug/L	10.00		107	70-130			
sis-1,2-Dichloroethene	10.0		ug/L	10.00		100	70-130			
Ethylbenzene	10.6		ug/L	10.00		106	70-130			
Methyl tert-Butyl Ether	10.4		ug/L	10.00		104	70-130			
Methylene Chloride	9.4		ug/L	10.00		94	70-130			
Naphthalene	10.6		ug/L	10.00		106	70-130			
Fertiary-amyl methyl ether	9.7		ug/L	10.00		97	70-130			
Fertiary-butyl Alcohol	59.3		ug/L	50.00		119	70-130			
Tetrachloroethene	9.0		ug/L	10.00		90	70-130			
Foluene	10.2		ug/L	10.00		102	70-130			
- Frichloroethene	10.2		ug/L	10.00		102	70-130			
/inyl Chloride	9.9		ug/L	10.00		99	70-130			
(ylene O	10.2		ug/L	10.00		102	70-130			
(ylene P,M	21.0		ug/L	20.00		105	70-130			
Surrogate: 1,2-Dichloroethane-d4	26.4		ug/L	25.00		106	70-130			
Surrogate: 4-Bromofluorobenzene	27.8		ug/L	25.00		111	70-130			
Surrogate: 4-bromofluoromethane	26.1		ug/L	25.00		105	70-130			
Surrogate: Toluene-d8	28.0		ug/L	25.00		112	70-130			
.CS Dup										
,1,1-Trichloroethane	9.4		ug/L	10.00		94	70-130	2	25	
,1,2-Trichloroethane	10.3		ug/L	10.00		103	70-130	0.8	25 25	
,1-Dichloroethane	9.6		ug/L	10.00		96	70-130	3	25	
,1-Dichloroethane	8.3		ug/L	10.00		83	70-130	20	25	
,, r-bichlor detherie	10.4		ug/L	10.00		104	70-130	2	25 25	
1,2-Dichlorobenzene	10.4		ug/L ug/L	10.00		104	70-130	3	25 25	
,,2-Dichloroethane	9.4			10.00				_		
,,3-Dichlorobenzene	9.4 10.4		ug/L ug/L	10.00		94 104	70-130 70-130	2 3	25 25	
			-							
,4-Dichlorobenzene	10.5 107		ug/L	10.00 50.00		105 214	70-130 70-130	0.3	25 25	B+
Acetone			ug/L					9		D+
Senzene Sarban Tatrashlarida	10.0		ug/L	10.00		100	70-130	2	25 25	
Carbon Tetrachloride	10.2		ug/L	10.00		102	70-130	5	25 25	
:is-1,2-Dichloroethene	9.8		ug/L	10.00		98	70-130	1	25 25	
Ethylbenzene	10.2		ug/L	10.00		102	70-130	4	25	
Methyl tert-Butyl Ether	10.4		ug/L	10.00		104	70-130	0.3	25	
Methylene Chloride	8.2		ug/L	10.00		82	70-130	14	25	

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Quality Control Data

60B Volatile Orgai	nic Comp	oounds					
-	10.00						
-	10.00						
	10.00		98	70-130	0.5	25	
ug/L	50.00		107	70-130	10	25	
ug/L	10.00		89	70-130	0.4	25	
ug/L	10.00		100	70-130	2	25	
ug/L	10.00		95	70-130	6	25	
ug/L	10.00		104	70-130	5	25	
ug/L	10.00		96	70-130	6	25	
ug/L	20.00		103	70-130	2	25	
ug/L	25.00		110	70-130			
ug/L	25.00		109	70-130			
ug/L	25.00		104	70-130			
ug/L	25.00		110	70-130			
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L 10.00 ug/L 10.00 ug/L 10.00 ug/L 10.00 ug/L 20.00 ug/L 25.00 ug/L 25.00 ug/L 25.00 ug/L 25.00 ug/L 25.00	ug/L 10.00 ug/L 10.00 ug/L 10.00 ug/L 10.00 ug/L 20.00 ug/L 25.00 ug/L 25.00 ug/L 25.00 ug/L 25.00 ug/L 25.00	ug/L 10.00 100 ug/L 10.00 95 ug/L 10.00 104 ug/L 10.00 96 ug/L 20.00 103 ug/L 25.00 110 ug/L 25.00 109 ug/L 25.00 104 ug/L 25.00 110	ug/L 10.00 100 70-130 ug/L 10.00 95 70-130 ug/L 10.00 104 70-130 ug/L 10.00 96 70-130 ug/L 20.00 103 70-130 ug/L 25.00 110 70-130 ug/L 25.00 109 70-130 ug/L 25.00 104 70-130	ug/L 10.00 100 70-130 2 ug/L 10.00 95 70-130 6 ug/L 10.00 104 70-130 5 ug/L 10.00 96 70-130 6 ug/L 20.00 103 70-130 2 ug/L 25.00 110 70-130 10 ug/L 25.00 104 70-130 10 ug/L 25.00 104 70-130 10 ug/L 25.00 110 70-130 10 ug/L 25.00 110 70-130 10	ug/L 10.00 100 70-130 2 25 ug/L 10.00 95 70-130 6 25 ug/L 10.00 104 70-130 5 25 ug/L 10.00 96 70-130 6 25 ug/L 20.00 103 70-130 2 25 ug/L 25.00 110 70-130 100 70-130 100 <t< td=""></t<>

Batch CE50624 - 3520C									
Blank									
1,4-Dioxane	ND	0.2	ug/L						
Surrogate: 1,4-Dioxane-d8	3.93		ug/L	5.000	79	15-115			
LCS									
1,4-Dioxane	8.3	0.2	ug/L	10.00	83	40-140			
Surrogate: 1,4-Dioxane-d8	3.89		ug/L	5.000	78	15-115			
LCS Dup									
1,4-Dioxane	8.6	0.2	ug/L	10.00	86	40-140	4	20	
Surrogate: 1,4-Dioxane-d8	4.14		ug/L	5.000	83	15-115			
5	82700	(SIM) Sam	i-Volatile	Organic Con	nnounds				

8270D(311VI)	Semi-voiatile	Organic	Compounds

Batch CE50406 - 3510C				
Blank				
Acenaphthene	ND	0.20	ug/L	
Acenaphthylene	ND	0.20	ug/L	
Anthracene	ND	0.20	ug/L	
Benzo(a)anthracene	ND	0.05	ug/L	
Benzo(a)pyrene	ND	0.05	ug/L	
Benzo(b)fluoranthene	ND	0.05	ug/L	
Benzo(g,h,i)perylene	ND	0.20	ug/L	
Benzo(k)fluoranthene	ND	0.05	ug/L	
bis(2-Ethylhexyl)phthalate	0.30	2.50	ug/L	J
Butylbenzylphthalate	ND	2.50	ug/L	
Chrysene	ND	0.05	ug/L	
Dibenzo(a,h)Anthracene	ND	0.05	ug/L	
Diethylphthalate	ND	2.50	ug/L	
Dimethylphthalate	ND	2.50	ug/L	
Di-n-butylphthalate	ND	2.50	ug/L	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

Dependability Service Quality

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	8270D	(SIM) Sem	ni-Volatile	Organic	Compo	unds				
Batch CE50406 - 3510C										
Di-n-octylphthalate	ND	2.50	ug/L							
Fluoranthene	ND	0.20	ug/L							
Fluorene	ND	0.20	ug/L							
ndeno(1,2,3-cd)Pyrene	ND	0.05	ug/L							
laphthalene	ND	0.20	ug/L							
Pentachlorophenol	ND	0.90	ug/L							
Phenanthrene	ND	0.20	ug/L							
Pyrene	ND	0.20	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	1.32		ug/L	2.500		53	30-130			
Surrogate: 2,4,6-Tribromophenol	3.00		ug/L	3.750		80	15-110			
Surrogate: 2-Fluorobiphenyl	1.52		ug/L	2.500		61	30-130			
Surregate: 1 Haerespherry Surregate: Nitrobenzene-d5	1.79		ug/L	2.500		72	30-130			
Surrogate: p-Terphenyl-d14	1.93		ug/L	2.500		77	30-130			
LCS										
Acenaphthene	2.97	0.20	ug/L	4.000		74	40-140			
Acenaphthylene	2.93	0.20	ug/L	4.000		73	40-140			
Anthracene	3.19	0.20	ug/L	4.000		80	40-140			
Benzo(a)anthracene	3.18	0.20	ug/L ug/L	4.000		79	40-140			
Benzo(a)pyrene	3.43	0.05	ug/L ug/L	4.000		86	40-140			
Benzo(b)fluoranthene	3.54	0.05	_	4.000		89	40-140			
	3.43	0.03	ug/L ug/L	4.000		86	40-140			
Benzo(g,h,i)perylene			-			87				
Senzo(k)fluoranthene	3.47	0.05	ug/L	4.000		99	40-140			
ois(2-Ethylhexyl)phthalate	3.95	2.50	ug/L	4.000			40-140			
Butylbenzylphthalate	3.78	2.50	ug/L	4.000		94	40-140			
Chrysene	3.20	0.05	ug/L	4.000		80	40-140			
Dibenzo(a,h)Anthracene	3.59	0.05	ug/L	4.000		90	40-140			
Diethylphthalate	3.12	2.50	ug/L	4.000		78	40-140			
Dimethylphthalate	3.13	2.50	ug/L	4.000		78	40-140			
Di-n-butylphthalate	3.50	2.50	ug/L	4.000		88	40-140			
Di-n-octylphthalate	4.06	2.50	ug/L	4.000		102	40-140			
Fluoranthene	3.38	0.20	ug/L	4.000		84	40-140			
luorene	2.98	0.20	ug/L	4.000		74	40-140			
ndeno(1,2,3-cd)Pyrene	3.64	0.05	ug/L	4.000		91	40-140			
Naphthalene	2.47	0.20	ug/L	4.000		62	40-140			
Pentachlorophenol	1.53	0.90	ug/L	4.000		38	30-130			
Phenanthrene	3.07	0.20	ug/L	4.000		77	40-140			
yrene	3.17	0.20	ug/L	4.000		79	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	1.66		ug/L	2.500		66	30-130			
Surrogate: 2,4,6-Tribromophenol	3.81		ug/L	3.750		101	15-110			
Surrogate: 2-Fluorobiphenyl	1.93		ug/L	2.500		77	30-130			
Surrogate: Nitrobenzene-d5	2.16		ug/L	2.500		86	30-130			
Surrogate: p-Terphenyl-d14	2.37		ug/L	2.500		95	30-130			
.CS Dup										
cenaphthene	2.18	0.20	ug/L	4.000		54	40-140	31	20	D+

Service

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	8270D	(SIM) Sem	i-Volatile	Organic	Compo	unds				
Batch CE50406 - 3510C										
Acenaphthylene	2.15	0.20	ug/L	4.000		54	40-140	31	20	D+
Anthracene	2.46	0.20	ug/L	4.000		62	40-140	26	20	D+
Benzo(a)anthracene	2.49	0.05	ug/L	4.000		62	40-140	24	20	D+
Benzo(a)pyrene	2.60	0.05	ug/L	4.000		65	40-140	27	20	D+
Benzo(b)fluoranthene	2.63	0.05	ug/L	4.000		66	40-140	30	20	D+
Benzo(g,h,i)perylene	2.60	0.20	ug/L	4.000		65	40-140	28	20	D+
Benzo(k)fluoranthene	2.61	0.05	ug/L	4.000		65	40-140	28	20	D+
pis(2-Ethylhexyl)phthalate	3.26	2.50	ug/L	4.000		81	40-140	19	20	
Butylbenzylphthalate	3.05	2.50	ug/L	4.000		76	40-140	21	20	D+
Chrysene	2.40	0.05	ug/L	4.000		60	40-140	29	20	D+
Dibenzo(a,h)Anthracene	2.74	0.05	ug/L	4.000		69	40-140	27	20	D+
Diethylphthalate	2.37	2.50	ug/L	4.000		59	40-140	27	20	D+, J
Dimethylphthalate	2.41	2.50	ug/L	4.000		60	40-140	26	20	D+, J
Di-n-butylphthalate	2.74	2.50	ug/L	4.000		68	40-140	25	20	D+
Di-n-octylphthalate	3.03	2.50	ug/L	4.000		76	40-140	29	20	D+
Fluoranthene	2.60	0.20	ug/L	4.000		65	40-140	26	20	D+
Fluorene	2.25	0.20	ug/L	4.000		56	40-140	28	20	D+
ndeno(1,2,3-cd)Pyrene	2.73	0.05	ug/L	4.000		68	40-140	29	20	D+
Naphthalene	1.84	0.20	ug/L	4.000		46	40-140	29	20	D+
Pentachlorophenol	0.368	0.90	ug/L	4.000		9	30-130	122	20	D+, J
Phenanthrene	2.38	0.20	ug/L	4.000		59	40-140	26	20	D+
Pyrene	2.44	0.20	ug/L	4.000		61	40-140	26	20	D+
Surrogate: 1,2-Dichlorobenzene-d4	1.18		ug/L	2.500		47	30-130			
Surrogate: 1,2-Dictilorobenzene-u4 Surrogate: 2,4,6-Tribromophenol	3.22		ug/L	3.750		86	15-110			
Surrogate: 2-Fluorobiphenyl	1.43		ug/L	2.500		57	30-130			
Surrogate: 2-Habiobiphenyi Surrogate: Nitrobenzene-d5	1.72		ug/L	2.500		69	30-130			
Surrogate: p-Terphenyl-d14	1.80		ug/L	2.500		72	30-130			
ourrogate. P respictlys as 4		Cla	ssical Che	emistry						
Batch CE50151 - General Preparation										
Blank										
Hexavalent Chromium	ND	10	ug/L							
_CS										
Hexavalent Chromium	0.5		mg/L	0.4998		98	90-110			
_CS Dup										
Hexavalent Chromium	0.5		mg/L	0.4998		99	90-110	0.3	20	
Batch CE50152 - General Preparation										
Blank	N.E.	4.2								
Fotal Residual Chlorine	ND	10	ug/L							
.cs										
Total Residual Chlorine	1		mg/L	0.9960		99	85-115			

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Cla	ssical Che	emistry						
Batch CE50612 - General Preparation										
LCS										
Salinity	1.0		ppt	1.000		97	85-115			
Batch CE50614 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	66		mg/L	68.80		96	80-120			
Batch CE50630 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	20	5	mg/L	19.38		104	66-114			
Batch CE50631 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	19.5	5.00	ug/L	20.06		97	90-110			
LCS										
Total Cyanide (LL)	155	5.00	ug/L	150.4		103	90-110			
LCS Dup										
Total Cyanide (LL)	156	5.00	ug/L	150.4		104	90-110	0.5	20	
Batch CE51522 - General Preparation										
Blank										
Phenols	ND	0.10	mg/L							
LCS										
Phenols	0.10	0.10	mg/L	0.1000		98	80-120			
LCS										
Phenols	1.00	0.10	mg/L	1.000		100	80-120			
	8011 1,2-Di	bromoetha	ne / 1,2-	Dibromo	o-3-chlo	ropropa	ne			
Batch CE50643 - 504/8011										
Blank										
1,2-Dibromoethane	ND	0.015	ug/L							
Surrogate: Pentachloroethane	0.187		ug/L	0.2000		93	30-150			
LCS										
1,2-Dibromoethane	0.176	0.015	ug/L	0.2000		88	60-140			
Surrogate: Pentachloroethane	0.185		ug/L	0.2000		92	30-150			
LCS			<u> </u>							

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8011 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Batch CE50643 - 504/8011							
1,2-Dibromoethane	0.091	0.015	ug/L	0.08000	114	60-140	
Surrogate: Pentachloroethane	0.0730		ug/L	0.08000	91	30-150	

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS Laboratory Work Order: 1505022

Notes and Definitions

U	Analyte included in	the analysis,	but not detected
---	---------------------	---------------	------------------

J Reported between MDL and MRL

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

Elevated Method Reporting Limits due to sample matrix (EL). EL

DDT DDT breakdown > 20%

D+Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

C+ Continuing Calibration recovery is above upper control limit (C+).

C-Continuing Calibration recovery is below lower control limit (C-). B+Blank Spike recovery is above upper control limit (B+).

Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes ND

drv Sample results reported on a dry weight basis

RPD Relative Percent Difference **MDL** Method Detection Limit MRL Method Reporting Limit Limit of Detection LOD Limit of Quantitation LOQ **Detection Limit**

DLInitial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.

Range result excludes the concentration of the C9-C10 aromatic range. 3

Results reported as a mathematical average. Avg No Recovery NR

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1505022

CERTIFICATE OF ANALYSIS

Client Name: Woodard & Curran - RI Client Project ID: Schnitzer - RGP

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) A2LA Accredited: Testing Cert# 2864.01 http://www.a2la.org/scopepdf/2864-01.pdf

> Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI0002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01 Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry) http://www.A2LA.org/dirsearchnew/newsearch.cfm

> CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

Yes

Yes

No

No

Yes

Νo

Yes No

Sample and Cooler Receipt Checklist

Client: Woodard & Curran

Client Project ID:

Shipped/Delivered Via: ESS Courier

ESS Project ID: 15050022

Date Project Due: 5/8/15

Days For Project: 5 Day

Items to be checked upon receipt:

 Air Bill Manifest Present?
--

Air No.:

2. Were Custody Seals Present?

3. Were Custody Seals Intact?

4. Is Radiation count < 100 CPM?

5. Is a cooler present?

Cooler Temp: 3.3

Iced With: Ice

6. Was COC included with samples?

7. Was COC signed and dated by client?

8. Does the COC match the sample

9. Is COC complete and correct?

* No

No

N/A

Yes Yes

Yes

Yes

Yes

Yes

10. Are the samples properly preserved?

11. Proper sample containers used?

12. Any air bubbles in the VOA vials?

13. Holding times exceeded?

14. Sufficient sample volumes?

15. Any Subcontracting needed?

16. Are ESS labels on correct containers? Yes|No

17. Were samples received intact?

ESS Sample IDs: _____

Sub Lab:

Analysis:

TAT: __ ____

18. Was there need to call project manager to discuss status? If yes, please explain.

Cr+6 split	+ preserved	M	5/.	·5 01740	w	5/1/	1,5
	-					77	

Who was called?:_____

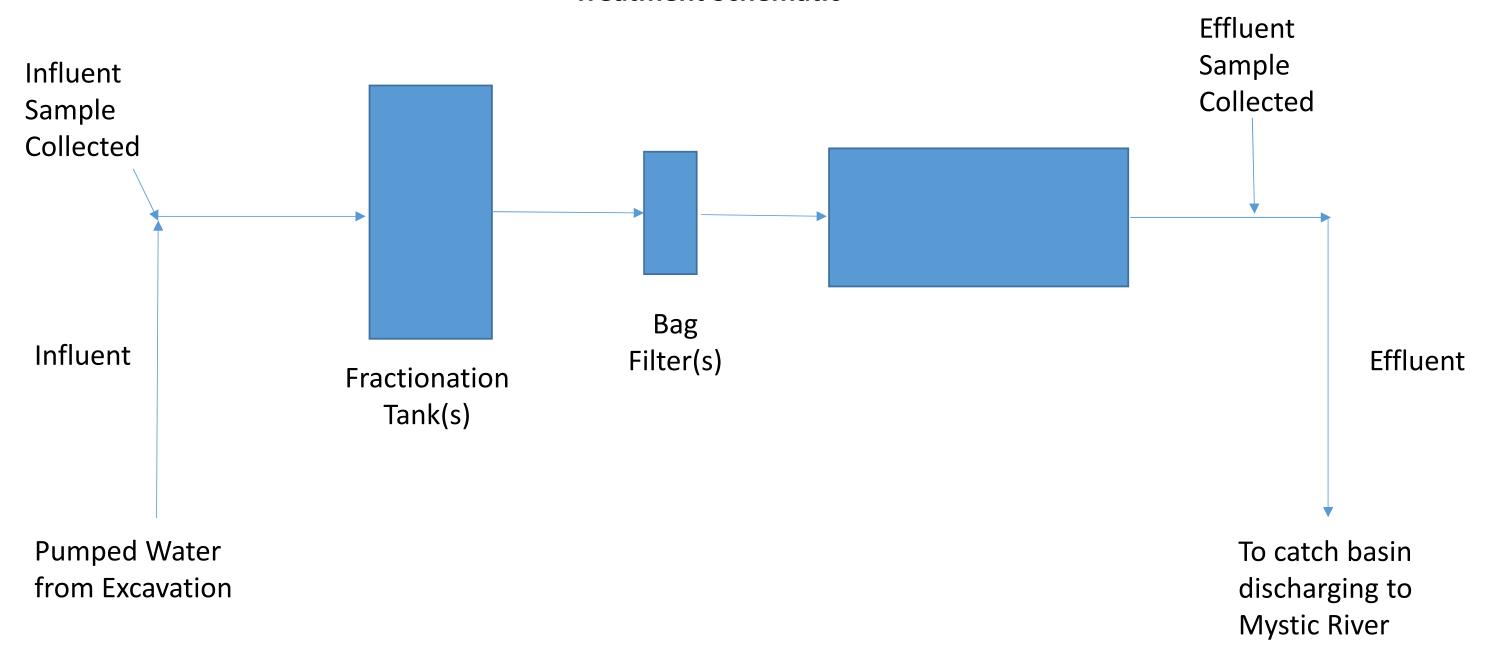
By whom? _____

Sample Number	Properly Preserved	Container Type	# of Containers	Preservative
1	Yes	1 L Glass	2	H2SO4
1	Yes	1 L Glass	6	NP
1	Yes	1 L Plastic	1	NP U / NP
1	Yes	250 ml Plastic	1	NaOH by = 11 myllights
1	Yes	250 ml Plastic	1	NaOH PH ₹ TII
1	Yes	250 ml Plastic	1	NP
1	Yes	40 ml - VOA	6	HCL
1	Yes	500 ml Plastic	1	HNO3
2	Yes	1 L Glass	2	H2SO4
2	Yes	1 L Glass	6	NP
2	Yes	1 L Plastic	1	NP
2	Yes	250 ml Plastic	1	
2	Yes	250 ml Plastic	1	HNO3 NaOH PA=11 W5/1/5 1940
2	Yes	250 ml Plastic	1	NP
2	Yes	40 ml - VOA	5	HCL
2	Yes	500 ml Plastic	1	HNO3
3	Yes	250 ml Glass	1	NP
Consideration 1 Marson	<u> </u>	- 5/1/5	- 17/11	

Completed By:_

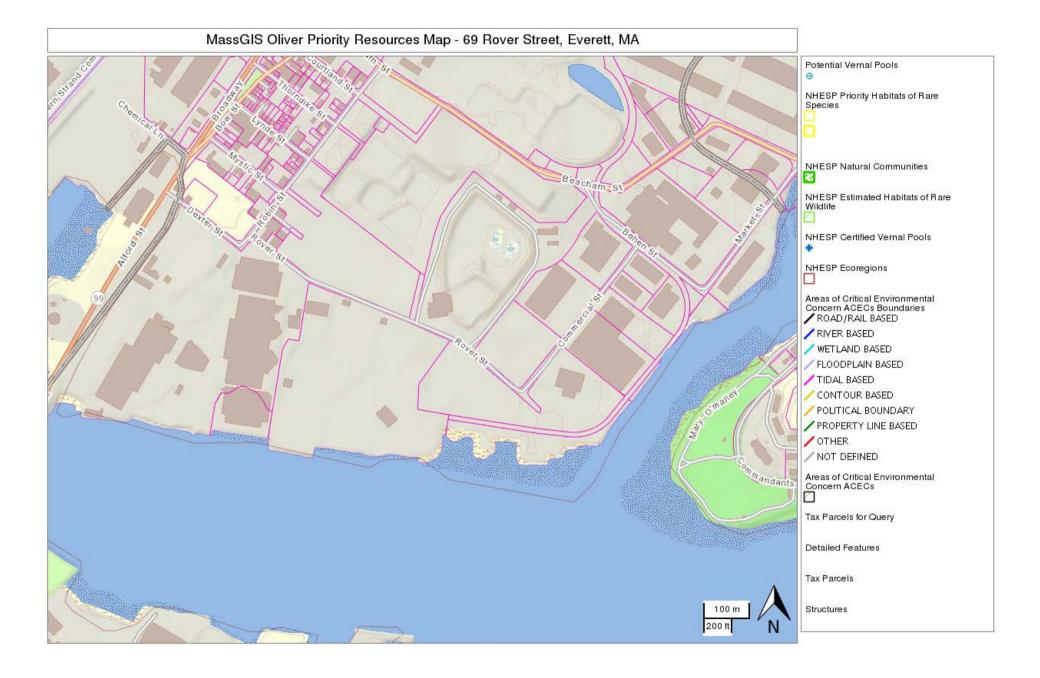
Reviewed By: Wang alles

Date/Time:_


Date/Time:

ESS Laboratory
Division of Thielsch Engineering, Inc. IN OF CUSTODY Page 1 Standard ESS LAB PROJECT ID Reporting Limits If faster than 5 days, prior approval by laboratory is required # 185 Frances Avenue, Cranston, RI 02910-2211 State where samples were collected from:
MA RI CT NH NJ NY ME MA RGP Appendix III Tel. (401) 461-7181 Fax (401) 461-4486 Other Electronic Deliverable Yes ____ No ____ www.esslaboratory.com Is this project for any of the following: Format: Excel Access PDF Other MA-MCP USACE Other Navy Co. Name Project # Project Name (20 Char. or less) Circle and/or Write Required Analysis Schnitzer Woodard : Curran 229035 Contact Person Address Janelle Bonn Number of Containers City Zip 450001 Providence 02903 8015 GRO Telephone # Fax # Email Address 401-273-1007 Joan @ wooderdeviron.com ESS LAB Date Collection MATRIX COMP Pres Code GRAB Sample Identification (20 Char. or less) Sample # Time I-WMT 5 18 1130 2 1340 3 1055 Container Type: P-Poly G-Glass S-Sterile V-VOA | Matrix: S-Soil SD-Solid D-Sludge WW-Waste Water GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters Yes No Cooler Present Internal Use Only Preservation Code 1- NP, 2- HC1, 3- H2SO4, 4- HNO3, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct, 9-Sampled by: J. Guerra No NA: Comments: Use 8270 SIM for pertuchlorophenol, the HULLS Broke VOL VOA in Rield-ICE KH [] Technicians 5 | Date/Time 5 | 13 | 1720 Received by: (Signature) Date/Time ed by: (Signature) Relinquished by: (Signature) Received by (Signature) Date/Time 51/15/1436 1729 Received by: (Signature) Relinquished by: (Signature) Religiuished by: (Signature) Date/Time Date/Time Date/Time

APPENDIX C - TREATMENT SYSTEM SCHEMATIC


69 Rover Street, Everett, MA Proposed Construction Dewatering Treatment Schematic

Details of treatment system may vary from the system indicated above. Specific means and methods of treatment are to be selected by the subcontractor. All water discharged at the effluent point shall meet required effluent standards as specified in Remediation General Permit.

APPENDIX D – ENVIRONMENTAL DETERMINATION

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
Dukes	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Hama dan	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Wilddiesex	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹ Threatened Coa		Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Proposed Endangered	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

Remediation General Permit Appendix I

Areas of Critical Environmental Concern (ACEC) in Massachusetts

This appendix presents the June 2009 list of Massachusetts ACECs, Towns with ACECs within their Boundaries, and a map showing ACECs. If the project proposed is located in one of the communities listed on the "Towns with ACECs within their Boundaries", the project may be located in an ACEC.

To confirm whether the project location is in an ACEC, contact the local Conservation Commission or the Massachusetts Department of Conservation & Recreation (DCR) ACEC program at:

Elizabeth Sorenson, Director ACEC Program Massachusetts Department of Conservation and Recreation Bureau of Planning and Resource Protection 251 Causeway St., Ste. 700, Boston, MA 02114-2104

Phone: 617-626-1394

Email: Elizabeth.Sorenson@state.ma.us

Fax: 617-626-1349

For further information, please reference the Massachusetts DCR ACEC Program Home website at: http://www.mass.gov/dcr/stewardship/acec/index.htm

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN June 2009

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

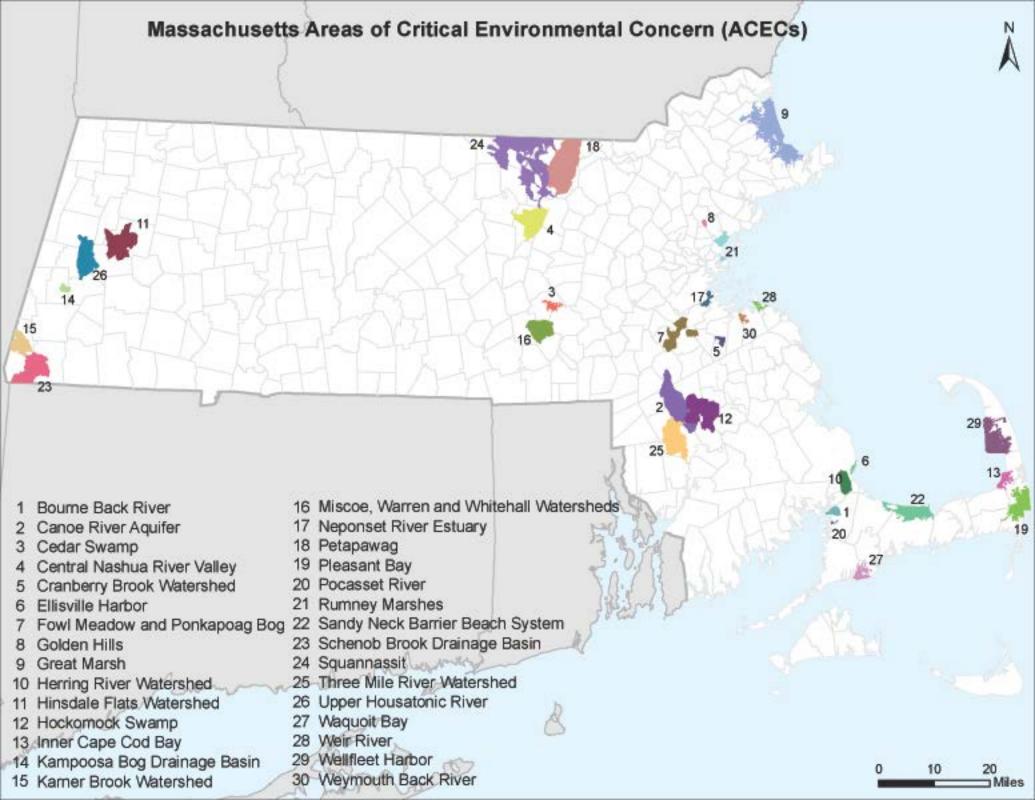
Towns wit	h ACECs within their Boundar	ies
TOWN	ACEC	TOWN
Ashby	Squannassit	Mt. Washingtor
Ayer	Petapawag	•
•	Squannassit	Newbury
Barnstable	Sandy Neck Barrier Beach System	Norton
Bolton	Central Nashua River Valley	
Boston	Rumney Marshes	
	Fowl Meadow and Ponkapoag Bog	Norwood
	Neponset River Estuary	Orleans
Bourne	Pocasset River	
	Bourne Back River	Pepperell
	Herring River Watershed	
Braintree	Cranberry Brook Watershed	Peru
Brewster	Pleasant Bay	Pittsfield
	Inner Cape Cod Bay	Plymouth
Bridgewater	Hockomock Swamp	·
Canton	Fowl Meadow and Ponkapoag Bog	Quincy
Chatham	Pleasant Bay	Randolph
Cohasset	Weir River	Raynham
Dalton	Hinsdale Flats Watershed	Revere
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley
Dighton	Three Mile River Watershed	Sandwich
Dunstable	Petapawag	Saugus
Fastham	Inner Cape Cod Bay	Gaagas
Laotham	Wellfleet Harbor	Sharon
Easton	Canoe River Aquifer	G.1.a. G.1
Lactori	Hockomock Swamp	Sheffield
Egremont	Karner Brook Watershed	Shirley
Essex	Great Marsh	Stockbridge
Falmouth	Waquoit Bay	Taunton
Foxborough	Canoe River Aquifer	radinon
Gloucester	Great Marsh	
Grafton	Miscoe-Warren-Whitehall	Truro
Granton	Watersheds	Townsend
Groton	Petapawag	Tyngsborough
Cioton	Squannassit	Upton
Harvard	Central Nashua River Valley	Ортоп
Tiaivaiu	Squannassit	Wakefield
Harwich	Pleasant Bay	Washington
Hingham	Weir River	wadiiiigtoii
rinigham	Weymouth Back River	Wellfleet
Hinsdale	Hinsdale Flats Watershed	W Bridgewater
Holbrook	Cranberry Brook Watershed	Westborough
Hopkinton	Miscoe-Warren-Whitehall	Westwood
Поркилоп	Watersheds	Weymouth
	Cedar Swamp	Winthrop
Hull	Weir River	windinop
Ipswich	Great Marsh	
Lancaster	Central Nashua River Valley	
Lancaster	Squannassit	
Lee	Kampoosa Bog Drainage Basin	
LGG	Upper Housatonic River	
Lenox	Upper Housatonic River	
Leominster	Central Nashua River Valley	
Lunenburg	Squannassit	
•	Rumney Marshes	
Lynn Mansfield		
Maabaaa	Canoe River Aquifer	

Waquoit Bay

Golden Hills

Fowl Meadow and Ponkapoag Bog

Neponset River Estuary


Mashpee

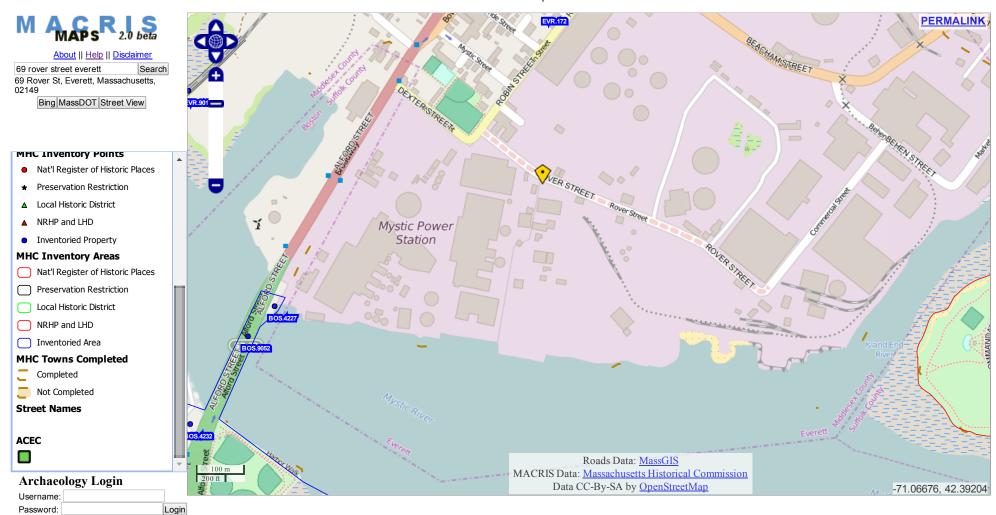
Melrose

Milton

ACEC Karner Brook Watershed Schenob Brook **Great Marsh** Hockomock Swamp Canoe River Aquifer Three Mile River Watershed Fowl Meadow and Ponkapoag Bog Inner Cape Cod Bay Pleasant Bay Petapawag Squannassit Hinsdale Flats Watershed Upper Housatonic River Herring River Watershed Ellisville Harbor Neponset River Estuary Fowl Meadow and Ponkapoag Bog Hockomock Swamp **Rumney Marshes** Great Marsh Sandy Neck Barrier Beach System Rumney Marshes Golden Hills Canoe River Aquifer Fowl Meadow and Ponkapoag Bog Schenob Brook Squannassit Kampoosa Bog Drainage Basin Hockomock Swamp Canoe River Aquifer Three Mile River Watershed Wellfleet Harbor Squannassit Petapawag Miscoe-Warren-Whitehall Watersheds Golden Hills Hinsdale Flats Watershed Upper Housatonic River Wellfleet Harbor Hockomock Swamp Cedar Swamp Fowl Meadow and Ponkapoag Bog Weymouth Back River Rumney Marshes

June 2009

APPENDIX E – HISTORIC DETERMINATION


Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Everett; Street No: 69; Street Name: Rover; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Tuesday, June 09, 2015 Page 1 of 1

MACRIS Maps Last Updated 06/05/2015

http://maps.mhc-macris.net/