

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

JAN 2 6 2015

Russell Parkman Project Manager GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Joseph M. Smith Community Health Center site located at 1420 Soldiers Field Road, Brighton, MA 02134 Suffolk County; Authorization # MAG910656

Dear Mr. Parkman:

After having reviewed your Notice of Intent (NOI) submittal on behalf of Joseph M. Smith Community Health Center referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR), due to the ample dilution at the point of discharge (131) the DFR applicable for this pollutant is within a dilution range greater than one hundred (>100) established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limit for arsenic of 540 ug/L, cadmium of 10 ug/L, copper of 520 ug/L, lead of 132 ug/L, nickel of 2, 380 ug/L, and zinc of 1,480 ug/L shall not be exceeded in the discharge.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This EPA general permit and authorization to discharge will expire on September 9, 2015. You have not reported termination date for this site. Please be aware you are required to reapply for coverage after the EPA expired permit has been reissued. The reissuance date as well as the reapplication submittal date will be posted on the web at that time. Also, regardless of your project termination date you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

Milno Murphy

Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc: Robert Kubit, MassDEP Stephen Shea, BWSC

2

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:		MAG910656				
Authorization Issued:	Janua	ry, 2015				
Facility/Site Name:	Josep	h Smith Community Health Center				
Facility/Cite Address	1420	Soldiers Field Road, Brighton, MA 02134, Suffolk County				
Facility/Site Address:	Email	address of owner: ebrowne@jmchc.org				
Legal Name of Operat	or:	GZA GeoEnvironmental, Inc.				
Operator contact name, title, and Address:		Russell Parkman, Senior Project Manager located at 249 Vanderbilt Avenue Email: Not Provided. Telephone n.: 7812785831				
Estimated date of the s Completion:	site's	Not provided or unknown				
Category and Sub-Category:		Category II- Non Petroleum Site Remediation. Subcategory B. VOC Sites with Additional Contamination				
RGP Termination Date:		September 10, 2015				
Receiving Water:		Charles River				

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)				
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L				
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L				
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L				
	4. Cyanide (CN) ^{2, 3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L				
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L				
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L				
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L				
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L				
	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes	100 ug/L/ Me#8260C/ ML 2ug/L				

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
(B	TEX) ⁴	ibnutes notice
). Ethylene Dibromide (EDB) ,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	. Methyl-tert-Butyl Ether ItBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	2.tert-Butyl Alcohol (TBA) ertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
1	3. tert-Amyl Methyl Ether AME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
14	I. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
15	5. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	5. 1,2 Dichlorobenzene (o- CB)	600 ug/L /Me#8260C/ ML 5ug/L
	7. 1,3 Dichlorobenzene (m- CB)	320 ug/L /Me#8260C/ ML 5ug/L
	3. 1,4 Dichlorobenzene (p- CB)	5.0 ug/L /Me#8260C/ ML 5ug/L
18	Ba. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
19	9. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
20). 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
2:	1. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
1.000	2. cis-1,2 Dichloroethene DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	3. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
24	4. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	5. 1,1,1 Trichloro-ethane CA)	200 ug/L/Me#8260C/ ML 5ug/L
	5. 1,1,2 Trichloro-ethane CA)	5.0 ug/L /Me#8260C/ ML 5ug/L
2	7. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	3. Vinyl Chloride Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	9. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
/ 3	0. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
3	1. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
3	2. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	3. Total Phthalates Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
3 P P	4. Bis (2-Ethylhexyl) hthalate [Di- (ethylhexyl) hthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	5. Total Group I Polycyclic romatic Hydrocarbons (PAH)	10.0 ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)					
	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L					
-	b. Benzo(a) Pyrene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L					
	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L					
	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L					
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L					
	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L					
	g. Indeno(1,2,3-cd) Pyrene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L					
\checkmark	 a. Benzo(a) Anthracene ⁷ b. Benzo(a) Pyrene ⁷ c. Benzo(b)Fluoranthene ⁷ d. Benzo(k)Fluoranthene ⁷ e. Chrysene ⁷ f. Dibenzo(a,h)anthracene ⁷ 	100 ug/L					
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L					
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L					
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L					
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L					
1	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L					
199	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L					
\checkmark	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L					
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L					
	And the second sec	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L					
		0.000064 ug/L/Me# 608/ ML 0.5 ug/L					
\checkmark		Monitor only/Me# 300.0/ ML 100 ug/L					

	Let Voltanos Antonio Statistica Voltanos teremo Antico ter Voltanos teremo Antico ter Voltanos Anticidades a Lo Tiles a secono Voltanos	Total Recov <u>MA/Metal</u> <u>H¹⁰ = 50</u> <u>CaCO3, Ur</u> <u>ug/I</u> ⁽¹¹⁾	Minimum level=ML			
	Metal parameter	Freshwater Limits	sheerin	linA (o)our	68 a	
	39. Antimony	5.6		ML 10		
\checkmark	40. Arsenic **	10		ML	20	
\checkmark	41. Cadmium **	0.2	in the little of	ML	10	
	42. Chromium III (trivalent) **	48.8		ML	15	
	43. Chromium VI (hexavalent) **	11.4	ana tana	ML	10	
\checkmark	44. Copper **	5.2		ML	15	
\checkmark	45. Lead **	1.3		ML	20	
	46. Mercury **	0.9	and the second second	ML	02	
\checkmark	47. Nickel **	29		ML	20	
	48. Selenium **	5	edit S. (ber	ML	20	
	49. Silver	1.2		ML	10	
\checkmark	50. Zinc **	66.6		ML	15	
	51. Iron	1,000)	ML 20		

	Other Parameters	Limit
\checkmark	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
\checkmark	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab13
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
- Inter	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds (not including the #34, Bis (2-Ethylhexyl) Phthalate. The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Aroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

¹⁴ Temperature sampling per Method 170.1

GZA GeoEnvironmental, Inc.

Engineers and Scientists

January 7, 2015 File No. 18.0170852.10

GZN

372 Merrimac Street Newburyport Massachusetts 01950 781-278-4800 Phone 978-465-2640 FAX www.gza.com Mr. Victor Alvarez United States Environmental Protection Agency – Region 1 5 Post Office Square, Mail Code OEP06-4 Boston, Massachusetts, 02109-3912

Re: Submittal of Notice of Intent (NOI) Remedial General Permit Joseph Smith, 1420 Soldiers Field Road Brighton, Massachusetts

Dear Mr. Alvarez:

GZA GeoEnvironmental, Inc. (GZA) is submitting the attached Notice of Intent (NOI) form (Attachment 1) for the Remedial General Permit (RGP) for the Joseph M. Smith Community Health Center project (the Site) located in Brighton, Massachusetts.

BACKGROUND

The Site is located between Western Avenue and Soldiers Field Road in Brighton, Massachusetts. The subject property was most recently occupied by a Massachusetts State Police barracks and a Department of Conservation and Recreation (DCR) vehicle maintenance facility. A site locus plan is included as Figure 1 (Attachment 2), and a site plan is shown on Figure 2 (Attachment 3). The Owner is planning to construct a new medical facility on land granted from the Commonwealth of Massachusetts. The site is currently listed as an MCP disposal site under two open Release Tracking Numbers (RTNs). RTN 3-28635 was issued for a spill from a 10,000-gallon No. 2 fuel oil underground storage tank (UST) removed in 1998. This UST was located along the building wall between the salt storage shed and the southeast corner of the main Site building. RTN 3-28636 was assigned to the property for an apparently separate release of chlorinated solvents found in soil and groundwater at the Site; this release appears to have originated on the southeast portion of the 1420 Soldiers Field Road property.

During the implementation of remedial strategies, discharge of treated water will be required for the duration of the remediation project.

The remediation strategies at the Site include the use of a High Vacuum Extraction (HVE) system. HVE is performed by applying a relatively high vacuum to the selected wells for the purpose of simultaneously extracting groundwater, dense-non-aqueous phase liquid, and vapor. The HVE will include 8 extraction wells seen on the site plan in Figure 2 (Attachment 3).

The extracted groundwater will be pumped into a 20,000 gallon sedimentation tank before being treated with a bag house filter and liquid phase granulated carbon (LGAC). The flow rate of the LGAC system is designed to be 10 gpm. The bag filters and LGAC will be replaced periodically and the tank will be cleaned out when sediments accumulate to a depth equal to one-quarter of the liquid level. A flow meter will be installed so that the discharge quantity can be observed. Treatment schematics are attached in Figure 4 (Attachment 5). The treatment system will be accessible for maintenance, monitoring, and sampling purpose.

The proposed discharge point is the catch basin located in the northwestern corner of the 1420 Soldiers Field Road property. The approximate location of the catch basin is shown in Figure 2 (Attachment 3). This catch basin leads to storm drain lines owned by the Department of Conservation and Recreation (DCR). According to utility maps obtained from the DCR, the storm drain lines have been determined to ultimately outlet into the Charles River as shown in Figure 3 (Attachment 4).

The sedimentation tank will hold 20,000 gallons. The tank size was based on an assumed maximum pumping rate of 50 gallons per minute (gpm). The actual pumping rate may vary due to the size and depth of well/sumps and hydrogeologic characteristics of the soil/fill material. In addition to the sedimentation tank, water will be pumped through a bag filters and activated carbon units prior to discharge. The bag filters will be replaced periodically and the tank will be cleaned out when sediments accumulate to a depth equal to one-quarter of the liquid level. A flow meter will be installed so that the discharge quantity can be observed.

NOTICE OF INTENT

This NOI has included a review of literature pertaining to Areas of Critical Environmental Concern (ACEC), Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

- Review of Appendix I "Areas of Critical Environmental Concern" (June 2009) found that the Site does not discharge to an ACEC.
- Review of Appendix II "Federally Listed Endangered and Threatened Species in Massachusetts" (July 2008) found that there are no listed species in the Allston/ Brighton neighborhood of the City of Boston, Massachusetts.
- Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Allston shows that there are no ACECs and no habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. Therefore, permit eligibility meets "Criterion A." As shown on the map generated by the MassGIS online viewer, which can be found in Attachment 6, no ACECs or Estimated Habitats of Rare Wildlife areas are located within a half mile downstream of the discharge location.
- Review of the New England Field Office Division of Fisheries and Wildlife online database identified no threatened or endangered species at the point of discharge. Additionally, National Oceanic and Atmospheric Administration (NOAA) was contacted for information regarding oceanic fisheries and their response (Attachment 7) states that no listed species will be affected by the discharges into the Charles River.
- An electronic review of the Massachusetts Cultural Resource Information System database, made available through Massachusetts Historical Commission, found one listing for a historical building, Metropolitan District Commission Police Station, on the Site. The police station was decommissioned in 2013 and the building is currently undergoing demolition in preparation for construction of the Joseph Smith Community Health Center project. Additionally, the Charles River Speedway Buildings located adjacent to the Site are also listed as historical buildings. The documentation of this review can be found in Attachment 8. The water generated during the excavation for the new building foundation will be treated on-Site and then pumped directly into a catch basin located on-Site. The historical properties adjacent to the Site will not be affected by the discharge and, therefore, permit eligibility meets "Criterion 2."
- Laboratory analytical results shown in Part 3 of Attachment 1 are included as Attachment 9. Groundwater was tested on February 3, 2014. Groundwater samples were taken from TP-8, which is located to the east of the existing electrical shed within the footprint of the foundation area anticipated to require dewatering. It should be noted that a few of the results were not

reported to the required minimum level (ML) of the test method. However, we do not have reason to believe these parameters are present in the groundwater based on historical use. The only detected analytes which exceeded the effluent limits listed in Appendix III were arsenic, cadmium and copper. A dilution factor was calculated for the discharge point (Attachment 10) and used to compare to the corresponding effluent limits in Appendix IV. None of the analytes exceeded the limits set in Appendix IV.

Please do not hesitate to contact the undersigned at (617) 963-1014 if you have any questions or require further information.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Russell Parkman, P.E. Senior Project Manager

martillefice

Frank Vetere, LSP, P.E. Associate Principal

Attachments:	Attachment 1: NOI Form Attachment 2: Figure 1 – Site Locus Map Attachment 3: Figure 2 – Site Plan Attachment 4: Figure 3 – Storm Drain Outfall Location Attachment 5: Figure 4 – Process Flow Diagram Attachment 6: MassGIS DEP Priority Resources Map Attachment 7: Correspondence with NOAA Fisheries Service Attachment 8: MHC Report
	Attachment 8: MHC Report
	Attachment 9: Laboratory Analytical Results
	Attachment 10: Dilution Factor Calculation

cc: MassDEP - Northeastern Region

Z:\170800's\18.0170852.10 JMSCHC Turnkey Remediation\Work\RGP\NOI for GZA\NOI cover letter.docx

Lawrence Feldman Consultant/Reviewer

NOI FORM

٦

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

1. General facility/site information: 1 k		0						
a) Name of facility/site : Joseph M. Smith Cor	mmunity HEalth	Facility/site mailing add	dress:					
Location of facility/site : longitude: 71.14 latitude: 42.36	Facility SIC code(s):	Street: 1420 Soldiers Field Road						
b) Name of facility/site owner:		Town: Brighton	Town: Brighton					
Email address of facility/site owner: ebrowne@jmschc.org Telephone no. of facility/site owner :617-20	08-1511	State: MA	Zip: 2134	County:				
Fax no. of facility/site owner: Address of owner (if different from site):	Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:							
Street: 267 Western Avenue								
Town: Allston	State: MA	Zip: 02134	County:					
c) Legal name of operator :	Operator tel	lephone no:						
GZA GeoEnvironmental Inc.	Operator fav	ax no.: 781-278-5701 Operator email: 781-278-5831						
Operator contact name and title: Russell Pa	ırkman, Senior Pro	oject Manager						
Address of operator (if different from owner):	Street: 249 Var	nderbilt Avenue						
Town: Norwood	State: MA	Zip: 02062	County:					

Remediation General Permit Appendix V - NOI

Page 10 of 22

 d) Check Y for "yes" br N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y N, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y N, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y N 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y N 						
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O NO, is causing the generation of discharge? Y O NO, is causing the generation of discharge? Y O NO, if Y, number: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Is the site/facility covered by any other EPA permit, including: f) Induced and the permit, including:						
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y_O_N_O_					
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential					
Activity Category	Activity Sub-Category					
I - Petroleum Related Site Remediation A. Gasoline Only Sites □ B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) □ C. Petroleum Sites with Additional Contamination □						
II - Non Petroleum Site Remediation	 A. Volatile Organic Compound (VOC) Only Sites □ B. VOC Sites with Additional Contamination □X_ C. Primarily Heavy Metal Sites □ 					
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites					

Remediation General Permit Appendix V - NOI Page 11 of 22

IV - Miscellaneous Related Discharges	 A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:							
Discharge of extracted and treated groundwater for site remediation.							
b) Provide the following info	rmation about each discharge:						
1) Number of discharge points: 1	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft^3/s)? Max. flow 0.11 Is maximum flow a design value ? Y O NO Average flow (include units) 0.01 Is average flow a design value or estimate?						
	pt.6: latlong;						
4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent <u>o</u> or seasonal <u>O</u> ? Is discharge ongoing? Y <u>O</u> N <u>O</u>						
c) Expected dates of discharg	e (mm/dd/yy): start 10/15/2014 end						
	g or flow schematic showing water flow through the facility including: contributing flow from the operation. 3. treatment units. and 4. discharge points and receiving						

Remediation General Permit Appendix V - NOI Page 12 of 22

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)		×		1	Grab	2540D	5000	<5000			
2. Total Residual Chlorine (TRC)		×		1	Grab	4500-CL E	10.0	<10			
3. Total Petroleum Hydrocarbons (TPH)		×		1	Grab	1664A	5000	<5000			
4. Cyanide (CN)	57125	×		1	Grab	4500 CN CE	5.0	<5			
5. Benzene (B)	71432	×		1	Grab	8260B	2.0	<1.0			
6. Toluene (T)	108883	×		1	Grab	8260B	2.0	<1.0			
7. Ethylbenzene (E)	100414	×		1	Grab	8260B	2.0	<1.0			
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		1	Grab	8260B	4.0	<1.0			
9. Total BTEX ²	n/a	×				CALC	2.0	<1.0			
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934	×		1	Grab	504.1	0.01	<0.015			
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	Grab	8260B	10.0	<1.0			
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×		1	Grab	8260B	10.0	<25.0			

* Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.
 ² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
 ³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

Remediation General Permit Appendix V - NOI

Page 13 of 22

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	Believed Present	<u># of</u> Samples	<u>Tvpe</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	Grab	8260B	10.0	<1.0			
14. Naphthalene	91203	X		1	Grab	8260B	2.0	<1.0			
15. Carbon Tetrachloride	56235	×		1	Grab	8260B	5.0	<1.0			
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		1	Grab	8260B	5.0	<1.0			
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	Grab	8260B	5.0	<1.0			
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	Grab	8260B	5.0	<1.0			
18a. Total dichlorobenzene		×		1	Grab	CLAC		<1.0			
19. 1,1 Dichloroethane (DCA)	75343	×		1	Grab	8260B	5.0	<1.0			
20. 1,2 Dichloroethane (DCA)	107062	×		1	Grab	8260B	5.0	<1.0			
21. 1,1 Dichloroethene (DCE)	75354	×		1	Grab	8260B	5.0	<1.0			
22. cis-1,2 Dichloroethene (DCE)	156592	×		1	Grab	8260B	5.0	<1.0			
23. Methylene Chloride	75092	×		1	Grab	8260B	5.0	<2.0			
24. Tetrachloroethene (PCE)	127184	×		1	Grab	8260B	5.0	<1.0			
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		1	Grab	8260B	5.0	<1.0			
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1	Grab	8260B	5.0	<1.0			
27. Trichloroethene (TCE)	79016	×		1	Grab	8260B	5.0	<1.0			

Remediation General Permit Appendix V - NOI Page 14 of 22

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	Believed Present	<u># of</u> Samples	<u>Tvpe</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of <u>Test</u> Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	Grab	8260B	5.0	<1.0			
29. Acetone	67641		×	1	Grab	8260B	50.0	14.7			
30. 1,4 Dioxane	123911		×	1	Grab	8270D SIM	5.0	0.3			
31. Total Phenols	108952	×		1	Grab	420.1	2.0	<100			
32. Pentachlorophenol (PCP)	87865	×		1	Grab	8270C SIM	5.0	<0.84			
33. Total Phthalates (Phthalate esters) ⁴		×		1	Grab	8270C SIM		<2.34			
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×		1	Grab	8270C SIM	5.0	<2.34			
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×									
a. Benzo(a) Anthracene	56553	×		1	Grab	8270C SIM	5.0	<0.05			
b. Benzo(a) Pyrene	50328	×		1	Grab	8270C SI	5.0	<0.05			
c. Benzo(b)Fluoranthene	205992	×		1	Grab	8270C SIM	5.0	<0.05			
d. Benzo(k)Fluoranthene	207089	×		1	Grab	8270C SIM	5.0	<0.05			
e. Chrysene	21801	×		1	Grab	8270C SIM	5.0	<0.05			
f. Dibenzo(a,h)anthracene	53703	×		1	Grab	8270C SIM	5.0	<0.05			
g. Indeno(1,2,3-cd) Pyrene	193395	×		1	Grab	8270C SIM	5.0	<0.05			
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)			×								

⁴ The sum of individual phthalate compounds.

Remediation General Permit Page 15 of 22 Appendix V - NOI

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of Test Method	concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
h. Acenaphthene	83329	×		1	Grab	8270C SIM	5.0	<0.19			
i. Acenaphthylene	208968	×		1	Grab	8270C SIM	5.0	<0.19			
j. Anthracene	120127	×		1	Grab	8270C SIM	5.0	<0.19			
k. Benzo(ghi) Perylene	191242	×		1	Grab	8270C SIM	5.0	<0.19			
1. Fluoranthene	206440	×		1	Grab	8270C SIM	5.0	<0.19			
m. Fluorene	86737	×		1	Grab	8270C SIM	5.0	<0.19			
n. Naphthalene	91203		×	1	Grab	8270C SIM	5.0	<0.19			
o. Phenanthrene	85018	×		1	Grab	8270C SIM	5.0	<0.19			
p. Pyrene	129000	×		1	Grab	8270C SIM	5.0	<0.19			
37. Total Polychlorinated Biphenyls (PCBs)	85687; 84742; 117840; 84662; 131113; 117817.	×		1	Grab	8082A	0.5	<0.09			
38. Chloride	16887006		×	1	Grab	3000.0	100	2200000			
39. Antimony	7440360	×		1	Grab	6020A	0.5	<0.4			
40. Arsenic	7440382		×	1	Grab	6020A	1.0	25.7			
41. Cadmium	7440439		×	1	Grab	6020A	0.2	1.1			
42. Chromium III (trivalent)	16065831	×		1	Grab	CALC		<10			
43. Chromium VI (hexavalent)	18540299	×		1	Grab	7196A	10.0	<10			
44. Copper	7440508		×	1	Grab	6020A	0.5	18.6			
45. Lead	7439921		×	1	Grab	6020A	0.2	0.4			
46. Mercury	7439976	×		1	Grab	7470A	0.2	<0.20			
47. Nickel	7440020		×	1	Grab	6020A	0.2	21.6			
48. Selenium	7782492	×		1	Grab	6020A	2.0	<4.0			
49. Silver	7440224	×		1	Grab	6020A	0.2	<0.4			
50. Zinc	7440666		×	1	Grab	6010B	15	42			
51. Iron	7439896	×		1	Grab	6010B	20	<100			
Other (describe):											

Remediation General Permit Appendix V - NOI Page 16 of 22

				BelievedBelievedAbsentPresent	<u># of</u> Samples	<u>Sample</u> <u>Tvpe</u> (e.g., grab)	Analvtical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum daily value		Average daily value	
	Parameter *								concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
Γ												

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? $Y \odot N O$	If yes, which metals? Arsenic, Cadmium, Copper				
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF 214 Metal: Copper DF 214 Metal: DF 214	Look up the limit calculated at the corresponding dilution factor in Appendix IV . Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y_O_N_O_ If Y, list which metals:				

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

Extracted water will be treated with bag filters followed by GAC filters.

b) Identify each	Frac. tank 🗌	Air stripper 🗖	Oil/water separator \square	Equalization tanks \Box	Bag filter 🗵	GAC filter X
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

Remediation General Permit Appendix V - NOI Page 17 of 22

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge ⁵ gpm Maximum flow rate of treatment system ⁵⁰ gpm Design flow rate of treatment system ⁵⁰ gpm							
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):							
None Anticipated							
5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:							
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain 🗵	Wetlands	Other (describe):		
b) Provide a narrative description of	the discharge pa	athway, including	the name(s) of the	e receiving waters:		_	
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 							
d) Provide the state water quality cla	ssification of the	e receiving water	Class B				
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water 14.3 cfs Please attach any calculation sheets used to support stream flow and dilution calculations.							
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O If yes, for which pollutant(s)?							
Is there a final TMDL? Y O If yes, for which pollutant(s)? nutrients, phosphorus, pathogens							

Remediation General Permit Appendix V - NOI

1

Page 18 of 22

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

 $A \underline{\odot} B \underline{O} C \underline{\bullet} D \underline{\bullet} E \underline{O} F \underline{O}$

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y_O N_O Underway_O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y \bigcirc N \bigcirc

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 \bigcirc 2 \bigcirc 3 \bigcirc

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

Remediation General Permit Appendix V - NOI Page 19 of 22

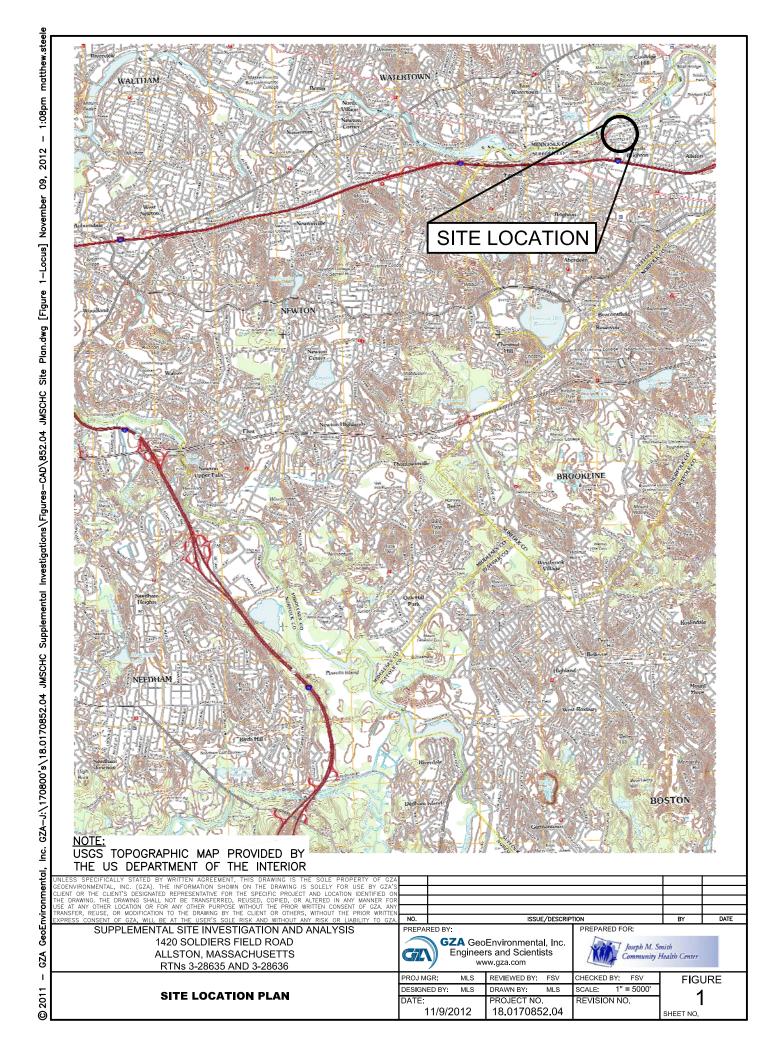
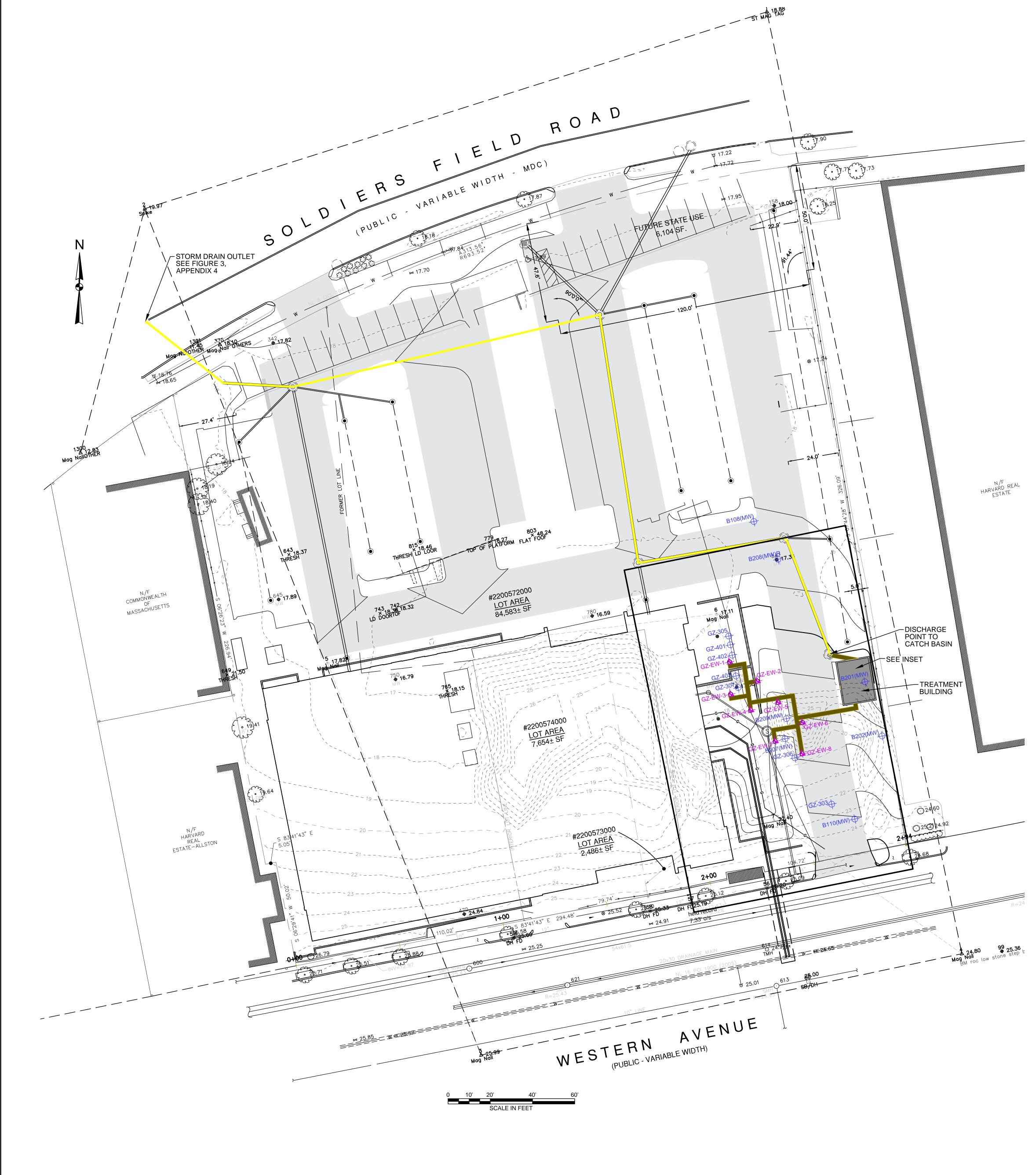
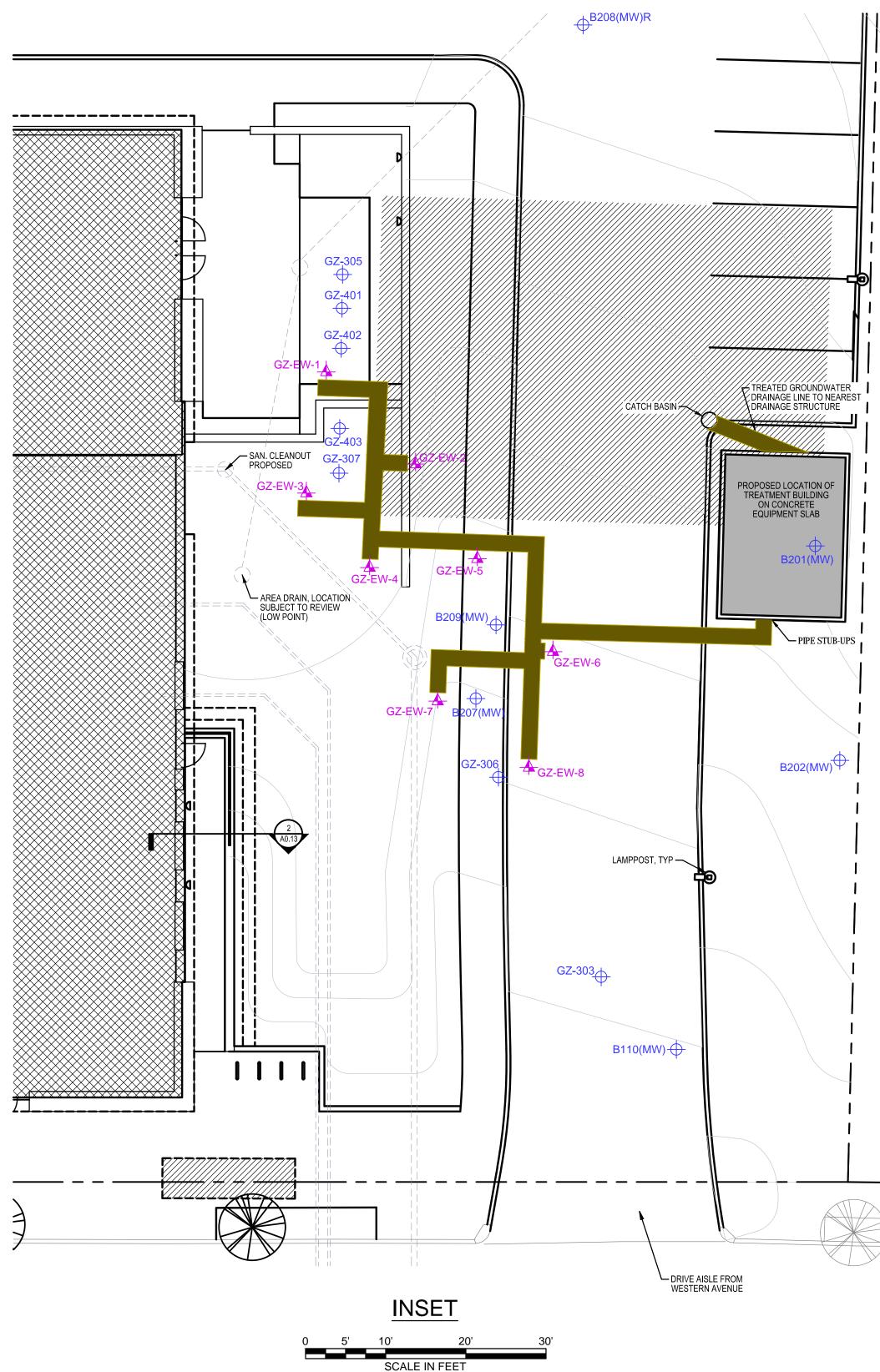
8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

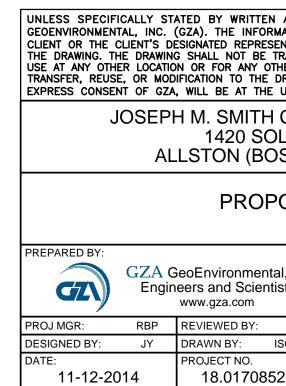
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name:	Joseph M Smith Community Health Center	
Operator signature:	Multic	
Printed Name & Titl	e: Russell Parkman, Senior Project Manager	
Date: 1/7/15		

Remediation General Permit Appendix V - NOI Page 20 of 22

FIGURE 1 – SITE LOCUS MAP


FIGURE 2 – SITE PLAN

- <u>LEGEND</u>

 - MONITORING WELL DEC EXTRACTION WELL TRENCH - 4' DEPTH TREATED WATER DISCHA
- SOURCE: 1. THE PLAN WAS DEVELOPED FROM ELEC LLC ENTITLED "CRAWL SPACE FLOOR P NO: A2.01, CAD FILE: A2-01.DWG

COMMISSIONED OR NOT FOUND					
ARGE					
ECTRONIC FILES PROVIDED BY ISGENUITY, PLAN", DATE ISSUED: AUGUST 1, 2013, PLAN					
I AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA MATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S ENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR THER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.					
COMMUNITY HEALTH CENTER OLDIERS FIELD ROAD OSTON), MASSACHUSETTS					
POSED SITE PLAN					
al, Inc. tists					
FSV CHECKED BY: RPB FIGURE ISGENUITY SCALE: AS SHOWN REVISION NO. 52.10					

FIGURE 3 – STORM DRAIN OUTFALL LOCATION

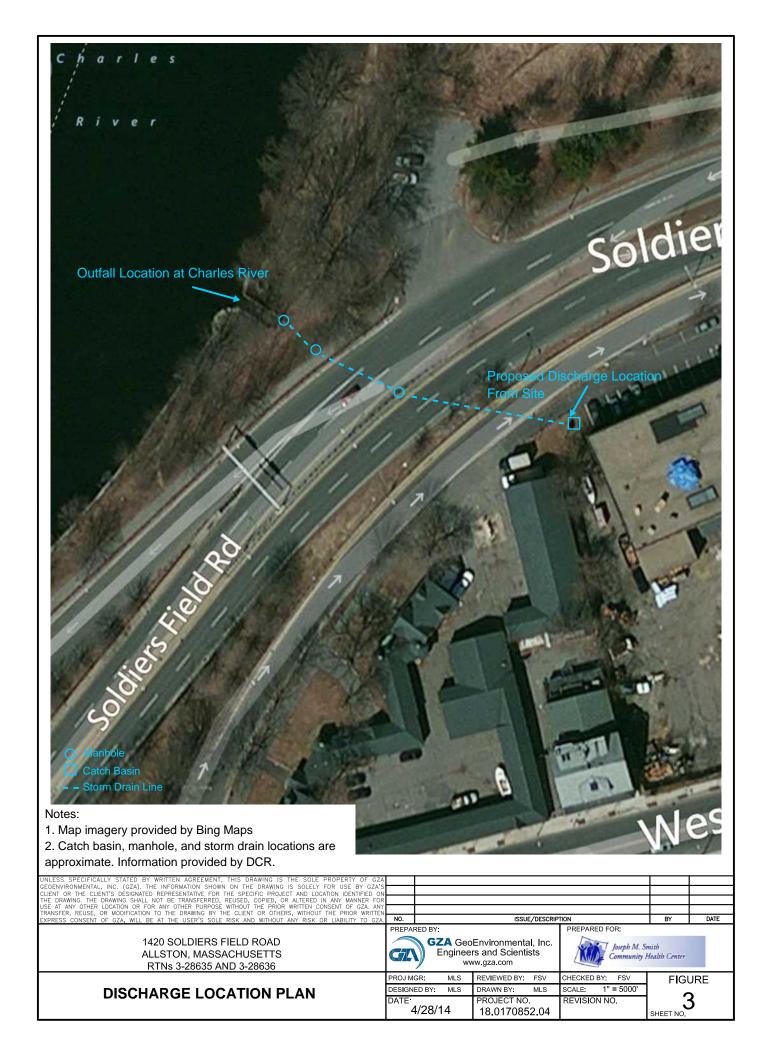
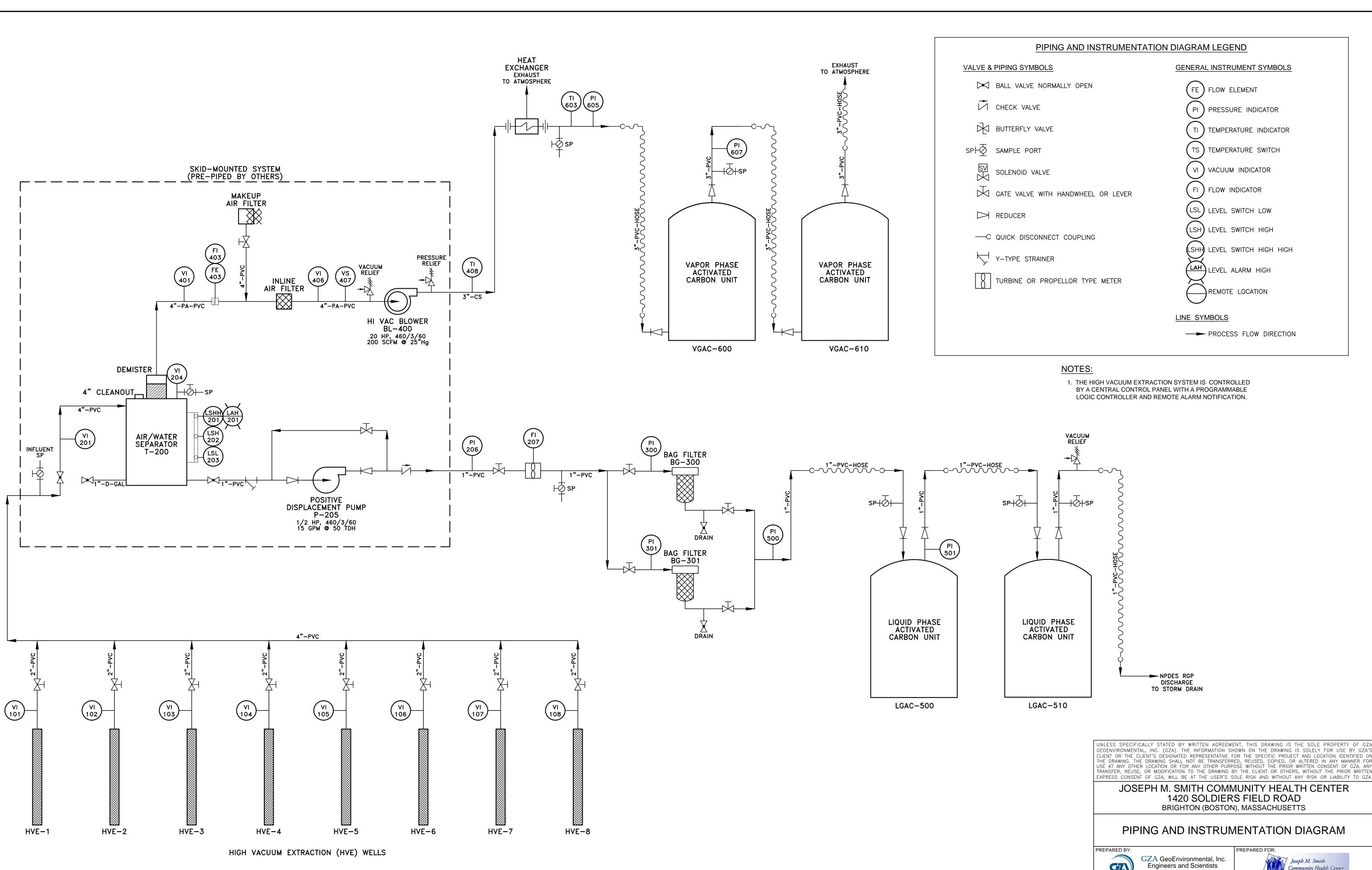
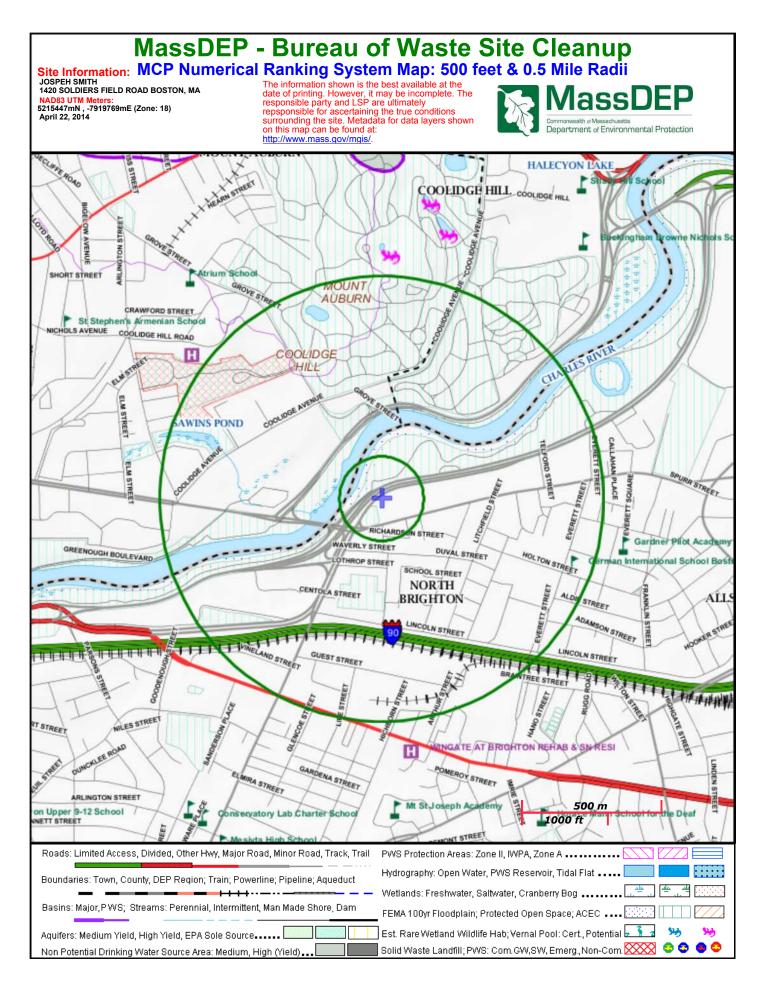




FIGURE 4 – PROCESS FLOW DIAGRAM

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.								
JOS	EPH N	/I. SMITH	I COMN	/UNIT	Y HE	EALTH	I CENTER	
		1420 SC		_				
	E	BRIGHTON					5	
PIF	PIPING AND INSTRUMENTATION DIAGRAM							
PREPARED BY:				PREPARED FOR:				
GZN	ental, Inc. entists		X		M. Smith nity Health Center			
PROJ MGR:	RBP	REVIEWED BY:	FSV	CHECKED) BY:	RBP	FIGURE	
DESIGNED BY:	JY	DRAWN BY:	VKGW/EMD	SCALE:	NOT TO	O SCALE	G	
DATE:		PROJECT NO.		REVISION	I NO.		Ŭ	
12-10-20)14	18.0170	852.10					

MASSGIS DEP PRIORITY RESOURCES MAP

CORRESPONDENCE WITH NOAA FISHERIES SERVICE

Jennifer McKechnie

From:	Christine Vaccaro - NOAA Federal < christine.vaccaro@noaa.gov>
Sent:	Tuesday, April 22, 2014 12:39 PM
То:	Jennifer McKechnie
Subject:	Re: Remediation General Permit Question

Hi there,

We do not expect any of our species to be affected by these discharges. As such, no consultation is required.

Cheers, Chris

Chris Vaccaro Fisheries Biologist Protected Resources Division NOAA Fisheries Gloucester, MA Phone: 978-281-9167 Email: <u>christine.vaccaro@noaa.gov</u>

On Tue, Apr 22, 2014 at 12:26 PM, Jennifer McKechnie <jennifer.mckechnie@gza.com</p>

Hi Christine,

GZA is submitting a Notice of Intent for a Remediation General Permit (RPG) for construction dewatering at 1420 Soldiers Field Road in Allston, MA. The effluent will be discharged to the Charles River. I have attached a map with the approximate location of the catch basin to which we will be discharging. We are currently working with DCR to determine the exact location of the discharge point into the Charles. For the RGP application we need to investigate whether the proposed temporary discharge has the potential to adversely affect any federally listed species in the Charles River downstream of this area. Do you have readily available information on this?

Thanks for your help.

Feel free to email or call me with any questions.

Jenn

Jennifer McKechnie

Assistant Project Manager

GZA GeoEnvironmental, Inc.

249 Vanderbilt Avenue

Norwood, Massachusetts 02062

781-278-3864

781-589-3866 (cell)

<u>781-278-5701</u> (fax)

jennifer.mckechnie@gza.com

PROACTIVE BY DESIGN.® Our Company Commitment.

This electronic message is intended to be viewed only by the individual or entity to which it is addressed and may contain privileged and/or confidential information intended for the exclusive use of the addressee(s). If you are not the intended recipient, please be aware that any disclosure, printing, copying, distribution or use of this information is prohibited. If you have received this message in error, please notify the sender immediately and destroy this message and its attachments from your system.

For information about GZA GeoEnvironmental, Inc. and its services, please visit our website at <u>www.gza.com</u>.

MHC REPORT

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Allston; Street Name: Soldiers Field Rd;

Inv. No.	Property Name	Street	Town	Year
BOS.8350	Harvard Business School - Kresge Hall	Soldiers Field Rd	Boston	1953
BOS.8351	Harvard Business School - Teele Hall	Soldiers Field Rd	Boston	1968
BOS.8352	Harvard Business School - Burden Hall	Soldiers Field Rd	Boston	1969
BOS.8353	Harvard Business School - Cumnock Hall	Soldiers Field Rd	Boston	1969
BOS.8354	Soldiers Field Park Apartments	Soldiers Field Rd	Boston	1974
BOS.8355	Harvard Business School - Shadd Gymnasium	Soldiers Field Rd	Boston	1990
BOS.8356	Harvard Business School Chapel	Soldiers Field Rd	Boston	1990
BOS.8357	Harvard Business School Dean's Residence	Soldiers Field Rd	Boston	1929
BOS.8358	Harvard Business School - Humphrey Hall	Soldiers Field Rd	Boston	1926
BOS.8359	Harvard Business School - McCullough Hall	Soldiers Field Rd	Boston	1926
BOS.8360	Harvard Business School - Glass Hall	Soldiers Field Rd	Boston	1926
BOS.8361	Harvard Business School - Mellon Hall	Soldiers Field Rd	Boston	1926
BOS.8362	Harvard Business School - Dillon Hall	Soldiers Field Rd	Boston	1926
BOS.8363	Harvard Business School - Chase Hall	Soldiers Field Rd	Boston	1926
BOS.8364	Harvard Business School Students Club	Soldiers Field Rd	Boston	1926
BOS.8365	Harvard Business School - Aldrich Hall	Soldiers Field Rd	Boston	1953
BOS.8366	Harvard Business School - Baker Library	Soldiers Field Rd	Boston	1927
BOS.8367	Harvard Business School - Hamilton Hall	Soldiers Field Rd	Boston	1926
BOS.8368	Harvard Business School Faculty Club	Soldiers Field Rd	Boston	1926
BOS.8369	Harvard Business School - Gallatin Hall	Soldiers Field Rd	Boston	1926
BOS.8370	Harvard Business School - Fowler Hall	Soldiers Field Rd	Boston	1926
BOS.8371	Harvard Business School - Morgan Hall	Soldiers Field Rd	Boston	1927
BOS.8372	Harvard Business School - Loeb Hall	Soldiers Field Rd	Boston	1926
BOS.8373	Harvard Business School - Morris Hall	Soldiers Field Rd	Boston	1926
BOS.8374	Harvard Business School - Sherman Hall	Soldiers Field Rd	Boston	1926
BOS.8376	Harvard University - Briggs Cage	Soldiers Field Rd	Boston	1926
BOS.8377	Harvard University - Dillon Field House	Soldiers Field Rd	Boston	1929
Tuesday, Apri	il 22, 2014			Page 1 of 2

Inv. No.	Property Name	Street	Town	Year
BOS.8378	Harvard University - Dixon, Palmer Tennis Courts	Soldiers Field Rd	Boston	1965
BOS.8379	Harvard University - Bright Hockey Center	Soldiers Field Rd	Boston	1950
BOS.8380	Harvard University Gordon Track and Tennis Center	Soldiers Field Rd	Boston	1950
BOS.9602	Charles River Reservation - Soldiers Field Road	Soldiers Field Rd	Boston	1899
BOS.9603	Soldiers Field Road Planted Median	Soldiers Field Rd	Boston	1920
BOS.9605	Soldiers Field Underpass at Western Avenue	Soldiers Field Rd	Boston	1954
BOS.9606	Soldiers Field Road - North Beacon Street Oval	Soldiers Field Rd	Boston	1958
BOS.8312	Harvard University - Newell Boat House	801-805 Soldiers Field Rd	Boston	1900
BOS.8063	Institute of Contemporary Art	1175 Soldiers Field Rd	Boston	1959
BOS.8064	Charles River Speedway Superintendent's Residence	1420-1440 Soldiers Field Rd	Boston	1899
BOS.9731	Charles River Speedway Courtyard	1420-1440 Soldiers Field Rd	Boston	1899
BOS.15893	Charles River Speedway Headquarters and Stable	1420-1440 Soldiers Field Rd	Boston	1899
BOS.15894	Metropolitan District Commission Police Station	1420-1440 Soldiers Field Rd	Boston	1904
BOS.15895	Charles River Speedway - South Shed	1420-1440 Soldiers Field Rd	Boston	1899
BOS.15896	Charles River Speedway - East Shed	1420-1440 Soldiers Field Rd	Boston	1899
BOS.15897	Charles River Speedway Garage	1420-1440 Soldiers Field Rd	Boston	1940
BOS.15898	Charles River Speedway Maintenance Garage	1420-1440 Soldiers Field Rd	Boston	1940

ATTACHMENT 9

LABORATORY ANALYTICAL RESULTS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Russell Parkman GZA GeoEnvironmental, Inc. 372 Merrimac Street Newburyport, MA 01950

RE: Joseph Smith (18.0170852.10) ESS Laboratory Work Order Number: 1402014

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 3:21 pm, Feb 12, 2014

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

SAMPLE RECEIPT

The following samples were received on February 03, 2014 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has performed and reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

For EPH soil samples, the aromatic range results have been corrected for identified cartridge contaminant in accordance with the CAM protocol.

Lab Number 1402014-01

Sample Name TP-8

Matrix Ground Water Analysis 1664A, 2540D, 300.0, 420.1, 4500 CN CE, 4500-Cl E, 504.1, 6010B, 6020A, 7196A, 7470A, 8082A, 8260B, 8270C SIM, 8270D, Calc

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

PROJECT NARRATIVE

Classical Chemistry

1402014-01The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and
Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015D - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith Client Sample ID: TP-8 Date Sampled: 02/03/14 12:45 Percent Solids: N/A

ESS Laboratory Work Order: 1402014 ESS Laboratory Sample ID: 1402014-01 Sample Matrix: Ground Water Units: ug/L

Extraction Method: 3005A

Total Metals Aqueous

Analyte Antimony	<u>Results (MRL)</u> ND (0.4)	<u>MDL</u>	<u>Method</u> 6020A	<u>Limit</u>	<u>DF</u> 4	Analyst LLZ	<u>t</u> <u>Analyzed</u> 02/10/14 14:09	$\frac{\mathbf{I/V}}{50}$	<u>F/V</u> 25	Batch CB40701
Arsenic	25.7 (0.2)		6020A		2	LLZ	02/07/14 14:31	50	25	CB40701
Cadmium	1.1 (0.4)		6020A		4	LLZ	02/10/14 14:09	50	25	CB40701
Chromium (III)	ND (10)		Calc		1	EEM	02/06/14 15:39	1	1	[CALC]
Copper	18.6 (0.2)		6020A		2	LLZ	02/07/14 14:31	50	25	CB40701
Iron	ND (100)		6010B		2	LLZ	02/07/14 11:19	50	25	CB40609
Lead	0.4 (0.4)		6020A		4	LLZ	02/10/14 14:09	50	25	CB40701
Mercury	ND (0.20)		7470A		1	NAR	02/07/14 10:13	20	40	CB40619
Nickel	21.6 (0.2)		6020A		2	LLZ	02/07/14 14:31	50	25	CB40701
Selenium	ND (4.0)		6020A		4	JP	02/10/14 20:04	50	25	CB40701
Silver	ND (0.4)		6020A		4	LLZ	02/10/14 14:09	50	25	CB40701
Zinc	42 (25)		6010B		1	JP	02/06/14 15:39	50	25	CB40609

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith Client Sample ID: TP-8 Date Sampled: 02/03/14 12:45 Percent Solids: N/A Initial Volume: 1070 Final Volume: 1 Extraction Method: 3510C

ESS Laboratory Work Order: 1402014 ESS Laboratory Sample ID: 1402014-01 Sample Matrix: Ground Water Units: ug/L Analyst: TAJ Prepared: 2/4/14 16:00 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

Analyte Aroclor 1016	<u>Results (MRL)</u> ND (0.09)	<u>MDL</u>	<u>Method</u> 8082A	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> <u>22/04/14</u> 21:14	Sequence	<u>Batch</u> CB40430
Aroclor 1221	ND (0.09)		8082A		1	02/04/14 21:14		CB40430
Aroclor 1232	ND (0.09)		8082A		1	02/04/14 21:14		CB40430
Aroclor 1242	ND (0.09)		8082A		1	02/04/14 21:14		CB40430
Aroclor 1248	ND (0.09)		8082A		1	02/04/14 21:14		CB40430
Aroclor 1254	ND (0.09)		8082A		1	02/04/14 21:14		CB40430
Aroclor 1260	ND (0.09)		8082A		1	02/04/14 21:14		CB40430
Aroclor 1262	ND (0.09)		8082A		1	02/04/14 21:14		CB40430
Aroclor 1268	ND (0.09)		8082A		1	02/04/14 21:14		CB40430
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		75 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		73 %		30-150				
Surrogate: Tetrachloro-m-xylene		55 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		66 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith Client Sample ID: TP-8 Date Sampled: 02/03/14 12:45 Percent Solids: N/A Initial Volume: 5 Final Volume: 5 Extraction Method: 5030B

ESS Laboratory Work Order: 1402014 ESS Laboratory Sample ID: 1402014-01 Sample Matrix: Ground Water Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u> 1,1,1-Trichloroethane	Results (MRL) ND (1.0)	<u>MDL</u>	<u>Method</u> 8260B	<u>Limit</u>	<u>DF</u> 1	Analyzed 02/05/14 14:02	Sequence CXB0038	<u>Batch</u> CB40520
1,1,2-Trichloroethane	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
1,1-Dichloroethane	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
1,1-Dichloroethene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
1,2-Dichlorobenzene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
1,2-Dichloroethane	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
1,3-Dichlorobenzene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
1,4-Dichlorobenzene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Acetone	14.7 (10.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Benzene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Carbon Tetrachloride	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
cis-1,2-Dichloroethene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Ethylbenzene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Methyl tert-Butyl Ether	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Methylene Chloride	ND (2.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Naphthalene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Tertiary-amyl methyl ether	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Tertiary-butyl Alcohol	ND (25.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Tetrachloroethene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Toluene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Trichloroethene	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Vinyl Chloride	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Xylene O	ND (1.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
Xylene P,M	ND (2.0)		8260B		1	02/05/14 14:02	CXB0038	CB40520
- 	•							
	%	Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		89 %		70-130				
Surrogate: 4-Bromofluorobenzene		99 %		70-130				
Surrogate: Dibromofluoromethane		90 %		70-130				
Surrogate: Toluene-d8		102 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith Client Sample ID: TP-8 Date Sampled: 02/03/14 12:45 Percent Solids: N/A Initial Volume: 1070 Final Volume: 1 Extraction Method: 3520C

ESS Laboratory Work Order: 1402014 ESS Laboratory Sample ID: 1402014-01 Sample Matrix: Ground Water Units: ug/L Analyst: EEB Prepared: 2/10/14 19:02

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	Results (MRL) MDL 0.3 (0.2)	<u>Method</u> 8270D	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/11/14 21:57	Sequence CXB0106	<u>Batch</u> CB41031
	%Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	85 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith Client Sample ID: TP-8 Date Sampled: 02/03/14 12:45 Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25 Extraction Method: 3510C

ESS Laboratory Work Order: 1402014 ESS Laboratory Sample ID: 1402014-01 Sample Matrix: Ground Water Units: ug/L Analyst: IBM Prepared: 2/6/14 10:45

8270C(SIM) Polynuclear Aromatic Hydrocarbons

<u>Analyte</u> Acenaphthene	<u>Results (MRL)</u> ND (0.19)	<u>MDL</u>	Method 8270C SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/07/14 0:02	Sequence CXB0055	<u>Batch</u> CB40602
Acenaphthylene	ND (0.19)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Anthracene	ND (0.19)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Benzo(a)anthracene	ND (0.05)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Benzo(a)pyrene	ND (0.05)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Benzo(b)fluoranthene	ND (0.05)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Benzo(g,h,i)perylene	ND (0.19)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Benzo(k)fluoranthene	ND (0.05)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
bis(2-Ethylhexyl)phthalate	ND (2.34)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Butylbenzylphthalate	ND (2.34)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Chrysene	ND (0.05)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Dibenzo(a,h)Anthracene	ND (0.05)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Diethylphthalate	ND (2.34)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Dimethylphthalate	ND (2.34)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Di-n-butylphthalate	ND (2.34)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Di-n-octylphthalate	ND (2.34)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Fluoranthene	ND (0.19)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Fluorene	ND (0.19)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Indeno(1,2,3-cd)Pyrene	ND (0.05)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Naphthalene	0.27 (0.19)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Pentachlorophenol	ND (0.84)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Phenanthrene	ND (0.19)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
Pyrene	ND (0.19)		8270C SIM		1	02/07/14 0:02	CXB0055	CB40602
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		57 %		30-130				
Surrogate: 2,4,6-Tribromophenol		90 %		15-110				
Surrogate: 2-Fluorobiphenyl		65 %		30-130				
Surrogate: Nitrobenzene-d5		77 %		30-130				
Surrogate: p-Terphenyl-d14		74 %		30-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith Client Sample ID: TP-8 Date Sampled: 02/03/14 12:45 Percent Solids: N/A

ESS Laboratory Work Order: 1402014 ESS Laboratory Sample ID: 1402014-01 Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u> Chloride	<u>Results (MRL)</u> 2200 (500)	MDL Method Limit	<u>DF</u> 1000	Analyst EEM 02/06/14		<u>Batch</u> CB40615
Hexavalent Chromium	ND (10)	7196A	1	EEM 02/03/14	17:50 ug/L	CB40329
Phenols	ND (0.10)	420.1	1	EEM 02/06/14	14:15 mg/L	CB40616
Total Cyanide (LL)	ND (0.0050)	4500 CN CE	1	JLK 02/06/14	12:45 mg/L	CB40621
Total Petroleum Hydrocarbon	ND (5)	1664A	1	CRR 02/06/14	10:20 mg/L	CB40613
Total Residual Chlorine	ND (0.01)	4500-Cl E	1	EEM 02/03/14	17:35 mg/L	CB40328
Total Suspended Solids	ND (5)	2540D	1	EEM 02/06/14	16:30 mg/L	CB40618

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith Client Sample ID: TP-8 Date Sampled: 02/03/14 12:45 Percent Solids: N/A Initial Volume: 35 Final Volume: 2 Extraction Method: 504/8011

ESS Laboratory Work Order: 1402014 ESS Laboratory Sample ID: 1402014-01 Sample Matrix: Ground Water Units: ug/L Analyst: ML Prepared: 2/7/14 14:30

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2-Dibromoethane	<u>Results (MRL)</u> ND (0.015)	<u>MDL</u>	<u>Method</u> 504.1	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/07/14 14:59	<u>Sequence</u>	<u>Batch</u> CB40708
	%	6Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		77 %		30-150				
Surrogate: Pentachloroethane [2C]		82 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		То	tal Metals A	queous						
Batch CB40609 - 3005A										
Blank										
Iron	ND	50	ug/L							
Zinc	ND	25	ug/L							
LCS										
Iron	1240	50	ug/L	1250		99	80-120			
Zinc	244	25	ug/L	250.0		98	80-120			
LCS Dup										
	1370	50	ug/L	1250		110	80-120	11	20	
Zinc	249	25	ug/L	250.0		100	80-120	2	20	
			49/2	20010		100	00 120	-	20	
Batch CB40619 - 245.1/	7470A									
Blank Mercury	ND	0.20	ug/L							
	IND	0.20	uy/L							
LCS		0.20		C 000		102	00 120			
Mercury	6.15	0.20	ug/L	6.000		102	80-120			
LCS Dup										
Mercury	6.23	0.20	ug/L	6.000		104	80-120	1	20	
Batch CB40701 - 3005A										
Blank										
Antimony	ND	0.5	ug/L							
Arsenic	ND	1.0	ug/L							
Cadmium	ND	0.2	ug/L							
Copper	0.5	0.5	ug/L							
_ead	ND	0.2	ug/L							
Nickel	ND	0.2	ug/L							
Selenium	ND	2.0	ug/L							
Silver	ND	0.2	ug/L							
LCS										
Antimony	26.7	0.5	ug/L	25.00		107	80-120			
Arsenic	26.4	1.0	ug/L	25.00		106	80-120			
Cadmium	24.9	0.2	ug/L	25.00		99	80-120			
Copper	27.5	0.5	ug/L	25.00		110	80-120			
Lead	26.8	0.2	ug/L	25.00		107	80-120			
Nickel	26.3	0.2	ug/L	25.00		105	80-120			
Selenium	26.1	2.0	ug/L	25.00		104	80-120			
Silver	25.7	0.2	ug/L	25.00		103	80-120			
LCS Dup										
Antimony	27.3	0.5	ug/L	25.00		109	80-120	2	20	
Arsenic	25.1	1.0	ug/L	25.00		100	80-120	5	20	
Cadmium	24.5	0.2	ug/L	25.00		98	80-120	1	20	
Copper	26.2	0.5	ug/L	25.00		105	80-120	5	20	
Lead	28.8	0.2	ug/L	25.00		115	80-120	7	20	
Nickel	25.1	0.2	ug/L	25.00		100	80-120	5	20	
			"			05	00 100	10		
Selenium	23.6	2.0	ug/L	25.00		95	80-120	10	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

Analyte atch CB40701 - 3005A ilver atch CB40430 - 3510C	Result 25.5	MRL	Units L Ital Metals Aque	Level	Result	%REC	Limits	RPD	Limit	Qualifier
ilver atch CB40430 - 3510C	25.5	10		JUUS						
ilver atch CB40430 - 3510C	25.5									
atch CB40430 - 3510C	25.5									
		0.2		25.00		102	80-120	0.9	20	
		8082A Poly	chlorinated Biph	nenyls	(PCB)					
lank										
roclor 1016	ND	0.10	ug/L							
roclor 1016 (1)	ND	0.10	ug/L							
roclor 1016 (1) [2C]	ND	0.10	ug/L							
roclor 1016 (2)	ND	0.10	ug/L							
roclor 1016 (2) [2C]	ND	0.10	ug/L							
roclor 1016 (3)	ND	0.10	ug/L							
roclor 1016 (3) [2C]	ND	0.10	ug/L							
roclor 1016 (4)	ND	0.10	ug/L							
roclor 1016 (4) [2C]	ND	0.10	ug/L							
roclor 1016 (5)	ND	0.10	ug/L							
roclor 1016 (5) [2C]	ND	0.10	ug/L							
roclor 1221	ND	0.10	ug/L							
roclor 1221 (1)	ND	0.10	ug/L							
roclor 1221 (1) [2C]	ND	0.10	ug/L							
roclor 1221 (2)	ND	0.10	ug/L							
roclor 1221 (2) [2C]	ND	0.10	ug/L							
roclor 1221 (3)	ND	0.10	ug/L							
roclor 1221 (3) [2C]	ND	0.10	ug/L							
roclor 1221 (4)	ND	0.10	ug/L							
roclor 1221 (4) [2C]	ND	0.10	ug/L							
roclor 1221 (5)	ND	0.10	ug/L							
roclor 1221 (5) [2C]	ND	0.10	ug/L							
roclor 1232	ND	0.10	ug/L							
roclor 1232 (1)	ND	0.10	ug/L							
roclor 1232 (1) [2C]	ND	0.10	ug/L							
roclor 1232 (2)	ND	0.10	ug/L							
roclor 1232 (2) [2C]	ND	0.10	ug/L							
roclor 1232 (3)	ND	0.10	ug/L							
roclor 1232 (3) [2C]	ND	0.10	ug/L							
roclor 1232 (4)	ND	0.10	ug/L							
roclor 1232 (4) [2C]	ND	0.10	ug/L							
roclor 1232 (5)	ND	0.10	ug/L							
roclor 1232 (5) [2C]	ND	0.10	ug/L							
roclor 1242	ND	0.10	ug/L							
roclor 1242 (1)	ND	0.10	ug/L							
roclor 1242 (1) [2C]	ND	0.10	ug/L							
roclor 1242 (2)	ND	0.10	ug/L							
roclor 1242 (2) [2C]	ND	0.10	ug/L							
roclor 1242 (3)	ND	0.10	ug/L							
roclor 1242 (3) [2C]	ND	0.10	ug/L							

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

A	Denut	MDI	11-2-	Spike	Source		%REC	DDD	RPD	Qualifian
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8082A Polyc	chlorinated	Biphenyls	s (PCB)					
Batch CB40430 - 3510C										
Aroclor 1242 (4)	ND	0.10	ug/L							
Aroclor 1242 (4) [2C]	ND	0.10	ug/L							
Aroclor 1242 (5)	ND	0.10	ug/L							
Aroclor 1242 (5) [2C]	ND	0.10	ug/L							
Aroclor 1248	ND	0.10	ug/L							
Aroclor 1248 (1)	ND	0.10	ug/L							
Aroclor 1248 (1) [2C]	ND	0.10	ug/L							
Aroclor 1248 (2)	ND	0.10	ug/L							
Aroclor 1248 (2) [2C]	ND	0.10	ug/L							
Aroclor 1248 (3)	ND	0.10	ug/L							
Aroclor 1248 (3) [2C]	ND	0.10	ug/L							
Aroclor 1248 (4)	ND	0.10	ug/L							
Aroclor 1248 (4) [2C]	ND	0.10	ug/L							
Aroclor 1248 (5)	ND	0.10	ug/L							
Aroclor 1248 (5) [2C]	ND	0.10	ug/L							
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 (1)	ND	0.10	ug/L							
roclor 1254 (1) [2C]	ND	0.10	ug/L							
roclor 1254 (2)	ND	0.10	ug/L							
roclor 1254 (2) [2C]	ND	0.10	ug/L							
roclor 1254 (3)	ND	0.10	ug/L							
roclor 1254 (3) [2C]	ND	0.10	ug/L							
Aroclor 1254 (4)	ND	0.10	ug/L							
roclor 1254 (4) [2C]	ND	0.10	ug/L							
Aroclor 1254 (5)	ND	0.10	ug/L							
roclor 1254 (5) [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
roclor 1260 (1)	ND	0.10	ug/L							
Aroclor 1260 (1) [2C]	ND	0.10	ug/L							
Aroclor 1260 (2)	ND	0.10	ug/L							
Aroclor 1260 (2) [2C]	ND	0.10	ug/L							
roclor 1260 (2) [20]	ND	0.10	ug/L							
Aroclor 1260 (3) [2C]	ND	0.10	ug/L							
roclor 1260 (4)	ND	0.10	ug/L							
roclor 1260 (4) [2C]	ND	0.10	ug/L							
vroclor 1260 (1) [20]	ND	0.10	ug/L							
roclor 1260 (5) [2C]	ND	0.10	ug/L							
roclor 1262	ND	0.10	ug/L							
roclor 1262 (1)	ND	0.10	ug/L ug/L							
Aroclor 1262 (1)		0.10	ug/L ug/L							
	ND									
Aroclor 1262 (2)	ND	0.10	ug/L							
Aroclor 1262 (2) [2C]	ND	0.10	ug/L							
Aroclor 1262 (3)	ND	0.10	ug/L							
Aroclor 1262 (3) [2C]	ND	0.10	ug/L							
Aroclor 1262 (4)	ND	0.10	ug/L							

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
•		8082A Polyc						-		
		,		. ,	. ,					
Batch CB40430 - 3510C										
Aroclor 1262 (4) [2C]	ND	0.10	ug/L							
Aroclor 1262 (5)	ND	0.10	ug/L							
Aroclor 1262 (5) [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 (1)	ND	0.10	ug/L							
Aroclor 1268 (1) [2C]	ND	0.10	ug/L							
Aroclor 1268 (2)	ND	0.10	ug/L							
Aroclor 1268 (2) [2C]	ND	0.10	ug/L							
Aroclor 1268 (3)	ND	0.10	ug/L							
Aroclor 1268 (3) [2C]	ND	0.10	ug/L							
Aroclor 1268 (4)	ND	0.10	ug/L							
Aroclor 1268 (4) [2C]	ND	0.10	ug/L							
Aroclor 1268 (5)	ND	0.10	ug/L							
Aroclor 1268 (5) [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0362		ug/L	0.05000		72	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0339		ug/L	0.05000		68	30-150			
Surrogate: Tetrachloro-m-xylene	0.0274		ug/L	0.05000		55	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0312		ug/L	0.05000		62	30-150			
			5,							
Aroclor 1016	0.77	0.10	ug/L	1.000		77	40-140			
Aroclor 1260	0.75	0.10	ug/L	1.000		75	40-140			
	0.0398		ug/L	0.05000		80	30-150			
Surrogate: Decachlorobiphenyl	0.0383		ug/L	0.05000		77	30-150 30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0312		ug/L	0.05000		62	30-150 30-150			
Surrogate: Tetrachloro-m-xylene	0.0358		ug/L	0.05000		72	30-150 30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0350		ug/L	0.03000		72	50-150			
LCS Dup	0.75	0.10		1 000		75	40.140	2	20	
Aroclor 1016	0.75	0.10	ug/L	1.000		75	40-140	3	20	
Aroclor 1260	0.74	0.10	ug/L	1.000		74	40-140	1	20	
Surrogate: Decachlorobiphenyl	0.0373		ug/L	0.05000		75	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0365		ug/L	0.05000		73	30-150			
Surrogate: Tetrachloro-m-xylene	0.0331		ug/L	0.05000		66	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0368		ug/L	0.05000		74	30-150			

Batch CB40520 - 5030B

Blank			
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Vol	atile Organi	ic Compo	unds					
atch CB40520 - 5030B										
,3-Dichlorobenzene	ND	1.0	ug/L							
,4-Dichlorobenzene	ND	1.0	ug/L							
cetone	ND	10.0	ug/L							
enzene	ND	1.0	ug/L							
arbon Tetrachloride	ND	1.0	ug/L							
s-1,2-Dichloroethene	ND	1.0	ug/L							
thylbenzene	ND	1.0	ug/L							
lethyl tert-Butyl Ether	ND	1.0	ug/L							
ethylene Chloride	ND	2.0	ug/L							
aphthalene	ND	1.0	ug/L							
ertiary-amyl methyl ether	ND	1.0	ug/L							
ertiary-butyl Alcohol	ND	25.0	ug/L							
etrachloroethene	ND	1.0	ug/L							
oluene	ND	1.0	ug/L							
richloroethene	ND	1.0	ug/L							
inyl Chloride	ND	1.0	ug/L							
ylene O	ND	1.0	ug/L							
/lene P,M	ND	2.0	ug/L							
urrogate: 1,2-Dichloroethane-d4	22.7		ug/L	25.00		91	70-130			
urrogate: 4-Bromofluorobenzene	24.9		ug/L	25.00		99	70-130			
urrogate: Dibromofluoromethane	22.8		ug/L	25.00		91	70-130			
urrogate: Toluene-d8	25.7		ug/L	25.00		103	70-130			
CS										
1,1-Trichloroethane	9.4		ug/L	10.00		94	70-130			
1,2-Trichloroethane	9.6		ug/L	10.00		96	70-130			
1-Dichloroethane	9.8		ug/L	10.00		98	70-130			
1-Dichloroethene	9.6		ug/L	10.00		96	70-130			
2-Dichlorobenzene	10.2		ug/L	10.00		102	70-130			
2-Dichloroethane	8.8		ug/L	10.00		88	70-130			
.3-Dichlorobenzene	10.4		ug/L	10.00		104	70-130			
.4-Dichlorobenzene	10.0		ug/L	10.00		100	70-130			
cetone	55.1		ug/L	50.00		110	70-130			
enzene	10.1		ug/L	10.00		101	70-130			
arbon Tetrachloride	9.6		ug/L	10.00		96	70-130			
s-1,2-Dichloroethene	9.7		ug/L	10.00		97	70-130			
hylbenzene	10.5		ug/L	10.00		105	70-130			
ethyl tert-Butyl Ether	9.7		ug/L	10.00		97	70-130			
ethylene Chloride	9.4		ug/L	10.00		94	70-130			
aphthalene	11.0		ug/L	10.00		110	70-130			
ertiary-amyl methyl ether	9.6		ug/L	10.00		96	70-130			
ertiary-butyl Alcohol	50.2		ug/L	50.00		100	70-130			
etrachloroethene	9.7		ug/L	10.00		97	70-130			
oluene	10.3		ug/L	10.00		103	70-130			
richloroethene	9.8		ug/L	10.00		98	70-130			
nyl Chloride	10.4		ug/L	10.00		104				

D-2211 Tel: 401-461-7181 Dependability • Quality

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

			Spike	Source		%REC		RPD	
Analyte	Result	MRL Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Volatile Orga	nic Compo	unds					
Batch CB40520 - 5030B									
(ylene O	10.8	ug/L	10.00		108	70-130			
(ylene P,M	21.2	ug/L	20.00		106	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.0	ug/L	25.00		96	70-130			
Surrogate: 4-Bromofluorobenzene	24.9	ug/L	25.00		100	70-130			
Surrogate: Dibromofluoromethane	24.6	ug/L	25.00		98	70-130			
Surrogate: Toluene-d8	25.8	ug/L	25.00		103	70-130			
.CS Dup									
.,1,1-Trichloroethane	9.5	ug/L	10.00		95	70-130	2	25	
.,1,2-Trichloroethane	9.4	ug/L	10.00		94	70-130	2	25	
.,1-Dichloroethane	9.4	ug/L	10.00		94	70-130	5	25	
,1-Dichloroethene	9.2	ug/L	10.00		92	70-130	5	25	
.,2-Dichlorobenzene	9.9	ug/L	10.00		99	70-130	3	25	
,2-Dichloroethane	8.9	ug/L	10.00		89	70-130	0.7	25	
,3-Dichlorobenzene	9.7	ug/L	10.00		97	70-130	7	25	
,4-Dichlorobenzene	9.6	ug/L	10.00		96	70-130	4	25	
Acetone	48.5	ug/L	50.00		97	70-130	13	25	
Benzene	10.2	ug/L	10.00		102	70-130	0.1	25	
Carbon Tetrachloride	9.3	ug/L	10.00		93	70-130	3	25	
is-1,2-Dichloroethene	9.6	ug/L	10.00		96	70-130	0.9	25	
thylbenzene	10.2	ug/L	10.00		102	70-130	3	25	
lethyl tert-Butyl Ether	9.6	ug/L	10.00		96	70-130	1	25	
1ethylene Chloride	9.3	ug/L	10.00		93	70-130	0.7	25	
laphthalene	10.6	ug/L	10.00		106	70-130	4	25	
ertiary-amyl methyl ether	9.5	ug/L	10.00		95	70-130	1	25	
ertiary-butyl Alcohol	50.6	ug/L	50.00		101	70-130	0.6	25	
etrachloroethene	9.0	ug/L	10.00		90	70-130	7	25	
oluene	10.2	ug/L	10.00		102	70-130	0.8	25	
richloroethene	9.4	ug/L	10.00		94	70-130	3	25	
/inyl Chloride	10.2	ug/L	10.00		102	70-130	3	25	
ylene O	10.4	ug/L	10.00		104	70-130	4	25	
íylene P,M	21.0	ug/L	20.00		105	70-130	0.7	25	
Surrogate: 1,2-Dichloroethane-d4	24.5	ug/L	25.00		98	70-130			
Surrogate: 4-Bromofluorobenzene	24.7	ug/L	25.00		99	70-130			
Surrogate: Dibromofluoromethane	23.7	ug/L	25.00		95	70-130			
Surrogate: Toluene-d8	25.3	ug/L	25.00		101	70-130			

Batch CB41031 - 3520C						
Blank						
1,4-Dioxane	ND	0.2	ug/L			
Surrogate: 1,4-Dioxane-d8	4.11		ug/L	5.000	82	15-115
LCS						
1,4-Dioxane	8.8	0.2	ug/L	10.00	88	40-140
Surrogate: 1,4-Dioxane-d8	3.68		ug/L	5.000	74	15-115

-2211 Tel: 401-461-7181 Fax: 401-461-4486 Dependability • Quality • Service http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8270D(SIM) 5	Semi-Volatile	Organic Co	ompounds	s w/ Isotoj	pe Diluti	on			
Batch CB41031 - 3520C										
LCS Dup										
1,4-Dioxane	8.4	0.2	ug/L	10.00		84	40-140	5	20	
Surrogate: 1,4-Dioxane-d8	4.41		ug/L	5.000		88	15-115			
	827	C(SIM) Poly	nuclear Arc	matic Hy	drocarbon	S				
Batch CB40602 - 3510C										
Blank										
Acenaphthene	ND	0.20	ug/L							
Acenaphthylene	ND	0.20	ug/L							
Anthracene	ND	0.20	ug/L							
Benzo(a)anthracene	ND	0.05	ug/L							
Benzo(a)pyrene	ND	0.05	ug/L							
Benzo(b)fluoranthene	ND	0.05	ug/L							
Benzo(g,h,i)perylene	ND	0.20	ug/L							
Benzo(k)fluoranthene	ND	0.05	ug/L							
bis(2-Ethylhexyl)phthalate	ND	2.50	ug/L							
Butylbenzylphthalate	ND	2.50	ug/L							
Chrysene	ND	0.05	ug/L							
Dibenzo(a,h)Anthracene	ND	0.05	ug/L							
Diethylphthalate	ND	2.50	ug/L							
Dimethylphthalate	ND	2.50	ug/L							
Di-n-butylphthalate	ND	2.50	ug/L							
Di-n-octylphthalate	ND	2.50	ug/L							
Fluoranthene	ND	0.20	ug/L							
Fluorene	ND	0.20	ug/L							
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L							
Naphthalene	ND	0.20	ug/L							
Pentachlorophenol	ND	0.90	ug/L							
Phenanthrene	ND	0.20	ug/L							
Pyrene	ND	0.20	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	1.51		ug/L	2.500		60	30-130			
Surrogate: 2,4,6-Tribromophenol	3.15		ug/L	3.750		84	15-110			
Surrogate: 2-Fluorobiphenyl	1.71		ug/L	2.500		68	30-130			
Surrogate: Nitrobenzene-d5	1.98		ug/L	2.500		79	30-130			
Surrogate: p-Terphenyl-d14	1.88		ug/L	2.500		75	30-130			
Acenaphthene	2.16	0.20	ug/L	4.000		54	40-140			
Acenaphthylene	2.10	0.20	ug/L	4.000		53	40-140			
Anthracene	2.62	0.20	ug/L	4.000		66	40-140			
Benzo(a)anthracene	2.81	0.05	ug/L	4.000		70	40-140			
Benzo(a)pyrene	2.54	0.05	ug/L	4.000		64	40-140			
Benzo(b)fluoranthene	2.87	0.05	ug/L	4.000		72	40-140			
Benzo(g,h,i)perylene	2.85	0.20	ug/L	4.000		71	40-140			
Benzo(k)fluoranthene	2.69	0.20	ug/L	4.000		67	40-140			
	2.05	0.00	-9/ L			57	.0 1 10			
185 Frances Av	venue, Cranston, RI 029	10-2211 Te	el: 401-461-71	181 Fa	ax: 401-461-	4486	http://www	.ESSLabor	ratory.com	

Dependability

Quality

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
	827	0C(SIM) Poly	nuclear Arc	matic Hy	drocarbor	าร				
atch CB40602 - 3510C										
is(2-Ethylhexyl)phthalate	3.09	2.50	ug/L	4.000		77	40-140			
Butylbenzylphthalate	3.51	2.50	ug/L	4.000		88	40-140			
hrysene	2.78	0.05	ug/L	4.000		70	40-140			
ibenzo(a,h)Anthracene	3.00	0.05	ug/L	4.000		75	40-140			
iethylphthalate	2.55	2.50	ug/L	4.000		64	40-140			
imethylphthalate	2.55	2.50	ug/L	4.000		64	40-140			
-n-butylphthalate	2.70	2.50	ug/L	4.000		67	40-140			
i-n-octylphthalate	3.21	2.50	ug/L	4.000		80	40-140			
uoranthene	2.99	0.20	ug/L	4.000		75	40-140			
uorene	2.37	0.20	ug/L	4.000		59	40-140			
deno(1,2,3-cd)Pyrene	2.95	0.05	ug/L	4.000		74	40-140			
aphthalene	2.06	0.20	ug/L	4.000		51	40-140			
entachlorophenol	3.13	0.90	ug/L	4.000		78	30-130			
nenanthrene	2.61	0.20	ug/L	4.000		65	40-140			
rrene	2.75	0.20	ug/L	4.000		69	40-140			
ırrogate: 1,2-Dichlorobenzene-d4	1.30		ug/L	2.500		52	30-130			
irrogate: 2,4,6-Tribromophenol	3.79		ug/L	3.750		101	15-110			
rrogate: 2-Fluorobiphenyl	1.58		ug/L	2.500		63	30-130			
rrogate: Nitrobenzene-d5	1.78		ug/L	2.500		71	30-130			
irrogate: p-Terphenyl-d14	1.85		ug/L	2.500		74	30-130			
CS Dup										
renaphthene	2.27	0.20	ug/L	4.000		57	40-140	5	20	
enaphthylene	2.22	0.20	ug/L	4.000		56	40-140	6	20	
thracene	2.74	0.20	ug/L	4.000		68	40-140	4	20	
nzo(a)anthracene	3.03	0.05	ug/L	4.000		76	40-140	8	20	
nzo(a)pyrene	2.70	0.05	ug/L	4.000		67	40-140	6	20	
nzo(b)fluoranthene	3.00	0.05	ug/L	4.000		75	40-140	4	20	
enzo(g,h,i)perylene	3.00	0.20	ug/L	4.000		75	40-140	5	20	
nzo(k)fluoranthene	2.86	0.05	ug/L	4.000		72	40-140	6	20	
s(2-Ethylhexyl)phthalate	3.18	2.50	ug/L	4.000		80	40-140	3	20	
utylbenzylphthalate	3.50	2.50	ug/L	4.000		88	40-140	0.3	20	
nysene	3.02	0.05	ug/L	4.000		75	40-140	8	20	
benzo(a,h)Anthracene	3.14	0.05	ug/L	4.000		78	40-140	5	20	
ethylphthalate	2.65	2.50	ug/L	4.000		66	40-140	4	20	
methylphthalate	2.69	2.50	ug/L	4.000		67	40-140	5	20	
-n-butylphthalate	2.83	2.50	ug/L	4.000		71	40-140	5	20	
-n-octylphthalate	3.35	2.50	ug/L	4.000		84	40-140	4	20	
Joranthene	3.08	0.20	ug/L	4.000		77	40-140	3	20	
Jorene	2.49	0.20	ug/L ug/L	4.000		62	40-140	5	20	
deno(1,2,3-cd)Pyrene	3.06	0.05	ug/L	4.000		76	40-140	4 7	20	
aphthalene	2.22	0.20	ug/L	4.000		55 74	40-140 30-130		20	
entachlorophenol	2.97	0.90	ug/L	4.000		74	30-130	5	20	
nenanthrene	2.68	0.20	ug/L	4.000		67	40-140	3	20	
vrene	3.05 <i>1.29</i>	0.20	ug/L	4.000		76 <i>51</i>	40-140	10	20	

 Tel: 401-461-7181
 Fax: 401-461-4486

 lity

 • Quality

 • Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	827	0C(SIM) Poly	nuclear Arc	omatic Hy	drocarbor	าร				
Batch CB40602 - 3510C										
Surrogate: 2,4,6-Tribromophenol	2.65		ug/L	3.750		71	15-110			
Surrogate: 2-Fluorobiphenyl	1.51		ug/L	2.500		60	30-130			
Surrogate: Nitrobenzene-d5	1.82		ug/L	2.500		73	30-130			
Surrogate: p-Terphenyl-d14	1.99		ug/L	2.500		80	30-130			
		Cl	assical Che	mistry						
3atch CB40328 - General Preparation										
Blank										
Total Residual Chlorine	ND	0.01	mg/L							
LCS										
Fotal Residual Chlorine	0.74		mg/L	0.7300		101	85-115			
Batch CB40329 - General Preparation										
Blank										
Hexavalent Chromium	ND	10	ug/L							
LCS										
Hexavalent Chromium	498	10	ug/L	499.8		100	90-110			
.CS Dup										
Hexavalent Chromium	496	10	ug/L	499.8		99	90-110	0.4	20	
Batch CB40613 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	13	5	mg/L	19.38		68	66-114			
Batch CB40615 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.4		mg/L	2.500		95	90-110			
Batch CB40616 - General Preparation										
Blank										
Phenols	ND	0.10	mg/L							
LCS										
Phenols	0.10	0.10	mg/L	0.1000		97	80-120			
LCS										
Phenols	1.03	0.10	mg/L	1.000		103	80-120			
Batch CB40618 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	66		mg/L	65.00		102	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
,		Cla	assical Che	mistry						
Batch CB40621 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	0.0050	mg/L							
LCS										
Total Cyanide (LL)	0.0195	0.0050	mg/L	0.02006		97	90-110			
LCS										
Total Cyanide (LL)	0.150	0.0050	mg/L	0.1504		99	90-110			
LCS Dup										
Total Cyanide (LL)	0.148	0.0050	mg/L	0.1504		99	90-110	0.7	20	
	504.1 1,2	2-Dibromoeth	nane / 1,2-l	Dibromo-3	-chloropr	opane				
Batch CB40708 - 504/8011										
Batch CB40708 - 504/8011 Blank										
-	ND	0.015	ug/L							
Blank	ND ND	0.015 0.015	ug/L ug/L							
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]				0.2000		77	30-150			
Blank 1,2-Dibromoethane	ND		ug/L	0.2000 0.2000		77 78	30-150 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND 0.154		ug/L ug/L							
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND 0.154		ug/L ug/L							
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	ND 0.154 0.156	0.015	ug/L ug/L ug/L	0.2000		78	30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND 0.154 0.156 0.192	0.015	ug/L ug/L ug/L ug/L	0.2000		<i>78</i> 96	<i>30-150</i> 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND 0.154 0.156 0.192 0.177	0.015	ug/L ug/L ug/L ug/L ug/L	0.2000		78 96 88	<i>30-150</i> 70-130 70-130			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND 0.154 0.156 0.192 0.177 0.165	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000		78 96 88 82	30-150 70-130 70-130 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND 0.154 0.156 0.192 0.177 0.165	0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000		78 96 88 82	30-150 70-130 70-130 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS LCS	ND 0.154 0.156 0.192 0.177 0.165 0.162	0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000		78 96 88 82 81	30-150 70-130 70-130 30-150 30-150			
Blank 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 2C] Surrogate: Pentachloroethane 2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane 2C] LCS 1,2-Dibromoethane 2C] LCS 1,2-Dibromoethane	ND 0.154 0.156 0.192 0.177 0.165 0.162 0.070	0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000		78 96 88 82 81 81 87	30-150 70-130 70-130 30-150 30-150 70-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

Notes and Definitions

U	Analyte included in the analysis, but not detected
HT	The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual
	Chlorine is fifteen minutes.
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Joseph Smith

ESS Laboratory Work Order: 1402014

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) A2LA Accredited: Testing Cert# 2864.01 http://www.a2la.org/scopepdf/2864-01.pdf

Rhode Island Potable and Non Potable Water: LAI00179 <u>http://www.health.ri.gov/find/labs/analytical/ESS.pdf</u>

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI0002 http://www.maine.gov/dep/blwq/topic/vessel/lab_list.pdf

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/labcert/labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

CHEMISTRY

A2LA Accredited: Testing Cert # 2864.01 Lead in Paint, Phthalates, Lead in Children's Metals Products (Including Jewelry) http://www.A2LA.org/dirsearchnew/newsearch.cfm

> CPSC ID# 1141 Lead Paint, Lead in Children's Metals Jewelry http://www.cpsc.gov/cgi-bin/labapplist.aspx

Sample and Cooler Receipt Checklist Client: GZA GeoEnvironmental, Inc. Client Project ID: Shipped/Delivered Via: <u>ESS Courier</u>	ESS Project ID: <u>14020014</u> Date Project Due: <u>2/10/14</u> Days For Project: 5 Day	
Items to be checked upon receipt:		
 Air Bill Manifest Present? Air No.: Were Custody Seals Present? Were Custody Seals Intact? Is Radiation count < 100 CPM? Is a cooler present? Cooler Temp: 2.6 Iced With: Ice 	 *No 10. Are the samples properly preserved? 11. Proper sample containers used? 12. Any air bubbles in the VOA vials? 13. Holding times exceeded? 14. Sufficient sample volumes? 15. Any Subcontracting needed? 16. Are ESS labels on correct containers? 17. Were samples received intact? 	Yes No No Yes No Yes No
 6. Was COC included with samples? 7. Was COC signed and dated by client? 8. Does the COC match the sample 9. Is COC complete and correct? 	Yes ESS Sample IDs: Yes Sub Lab: Yes Analysis: Yes TAT: ger to discuss status? If yes, please explain.	
18. Was there need to can project mana		

Who was called ?:__

______ **____**

By whom? _____

Sample Number	Properly Preserved	Container Type	# of Containers	Preservative	pf time
1 1 1 1 1 Completed By:	Yes Yes Yes Yes Yes Yes D	1 L Glass 1 L Glass 1 L Plastic 250 ml Plastic 250 ml Plastic 40 ml - VOA 500 ml Plastic Date/Time: <u>2/3/14</u> Date/Time: <u>3/3/14</u>	2 6 1 1 1 6 1 4 1723 7 730	H2SO4 NP HNO3 NaOH HCL NP	-10 1721 at 2/3/14

ESS Laboratory	ry			CHAIN OF CUSTODY	CUSTODY		ESS	ESS LAB PROJECT ID	CTID 77015		
Division of Thielsch Engineering, Inc.	ngineering, 1	Inc.	Turn Time	1 Standard Ruch	Ammanad Bur		Den	Arting Limite			Т
185 Frances Avenue, Cranston, RI 02910-2211	Cranston, RI	02910-2211					T				
Tel. (401) 461-7181 Fax (401) 461-4486	ax (401) 461	-4486	State where	~ V		ME Other					
www.esslaboratory.com	В		Is this projec MA-MCP	Is this project for any of the following: (MA-MCP CT-RCP (RGP) DOD	(please circle) Other	Electonic Deliverable Format: Excel Ac	/erable Access	Yes V sess PDF V	No No		
GZA Project Manager: Roge Harzer - Russ	fanager: Åð	981 11 23	ard- Russ	Parkma R^{roject #}	8.0170852.10		F		254	E	
		July and a second s		4		7)		57	U,		
5	530 Broadway	52A GEOLANITOIIMENTAI, IIIC 530 Broadway A	torizond	Newburypotts Mame: Sm	Smith CHC	eievle C	7 79	1000	4 870	# 1u:	
	Providence, RI 02909	RI 02909 '	0000			ע. יע ץ		YJ E	<	5 5	
	(401) 421-4140			Contract Pricing Special Pricing WO#:		25	ivs H) / ママ つ0	(D_) J N/S-	134	
ESS Lab Date Samp <u>le ID</u>	Collection Time	Grab -G Composite-C	Matrix	Sample Identification	ification	# of Containers		401 3 N	र्षः । ठिठी संग्री	ЭW	
h1-E-E (1)		grab.	GW	* 8* − <i>d</i> ⊥		<u>д</u>					1
)						~	¢				
	:					_	٩				
						3			-		Γ
						~		>			
						-		৸			
						6			G		
						6			છ		
						6			5		
	▶	>		\rightarrow		-				Р	
Preservation Code: 1-NP, 2-HCI, 3-H2SO4, 4-HNO3, 5-NaOH, 6-McOH, 7-Asorbic	31, 3-H2SO4, 4-H	NO3, 5-NaOH, 6	-MeOH, 7-Asort	bic Acid, 8-ZnAct, 9-			S S	2223	1 1	ر ک	
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	s AG-Amber Gl	ass S-Sterile V-V	VOA				_				-1
Matrix: S-Soil SD-Solid D-Sh	idge WW-Waste	water GW-Grour	idwater SW-Sur	ace Water DW-Drinking Water	O-Oil W-Wipes F-Filter						
Cooler Present	Yes	°Z	Sampled by :	: And y Sargent							-
Seals IntactYes Cooler Temperature:	2, 6 ° N	NA: NA:	Comments:	M and location	changes per client	e-mail	cmt 2/6	2/6/14			
Relinquistred by (Signature)		Date/Time	Received by: (Signature)	10 2/3//4 // 6/2 UN	Kouks) Sea by (Signature)	L 17:00 Date	Date/Time	Received by: (Signature) C	QL1 4/2	6
Relinquished by: (Signature)		Time	Receivéd by: (Sign		Relinquished by: (Signature)	Dat	Date/Time F	Received by: (Signature)	(aun		
			IA	Please E-mail all changes to Chain of Custody in writing.	Chain of Custody in wr	ting.		ä	Page(of	1

ESS Laboratory	CHAIN OF CUSTODY	Ш	ESS LAB PROJECT ID
Division of Thielsch Engineering, Inc.	Turn Time V Standard Rush Approved By:	R	Reporting Limits -
185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486	State where samples were collected: MA) RI CT		
www.esslaboratory.com	Is this project for any of the following: (please circle) MA-MCP CT-RCP (RGP DOD Other	Electonic Deliverable Format: Excel	le Yes // No Access PDF / Other
GZA Project Manager: Roger H	Haurd Project # 18,0170852,10	72 -	
GZA GeoEnvironmental, Inc 530 Broadway Drovidance Br 02000	Joruand Project Nan	sisylnn	# 1 UƏ I
(401) 421-4140	Odfl c Contract Pricing Special Pricing WO#:	-	
ESS Lab Date Collection Grab -G Sample ID Time Composite-C	Matrix	# of Containers	
56.01 41-2-0	C-M LANGE TP-8	d 1	
.)			
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-	H, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-		
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	V-VOA		
Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Gn	Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter		
Cooler Present Yes No	Sampled by: Andy Sarawt		
Seals Intact Yes No NA: V)	
e: <u> </u>	at he hald time for	ŀ	
Reinquisings of isignaugh	agained or responsible 23/12/16:00 responses of pagasures	3/4 17:00 Date/lime	Received by (Signature) (1/2/3/14 (720)
Kelinquished by: (Signature)	Received by: (Signature)	Date/Time	Received by: (Signature)
	Please E-mail all changes to Chain of Custody in writing.	ting.	Page of

Page 26 of 26

ATTACHMENT 10

DILUTION FACTOR CALCULATION

DILUTION FACTOR CALCULATIONS NOTICE OF INTENT FOR THE REMEDIATION GENERAL PERMIT 1420 Solders Field Road, Brighton, Massachusetts

$$DF = \frac{Q_d + Q_s}{Q_d}$$

Where,

DF = Dilution Factor

 Q_d = Maximum Flow Rate of the Discharge in cubic feet per second (cfs) (1.0 gpm = 0.00223 cfs)

 Q_s = Receiving Water 7Q10 Flow (cfs) where,

7Q10 = Minimum Flow (cfs) for 7 Consecutive Days with a Recurrence Interval of 10 Years.

 Q_d = 50 gpm = 0.11 cfs

 $Q_s = 23.4$ cfs (M7D10Y on attached USGS Streamstats Ungaged Site Report)

$$\therefore DF = \frac{Q_d + Q_s}{Q_d} = \frac{0.11 + 23.4}{0.11} = 214$$

\\GZANEWBURYPT\Jobs\170800's\18.0170852.10 JMSCHC Turnkey Remediation\Work\RGP\NOI for GZA\Attachment 10\Stream Flow Dilution Calculation.docx

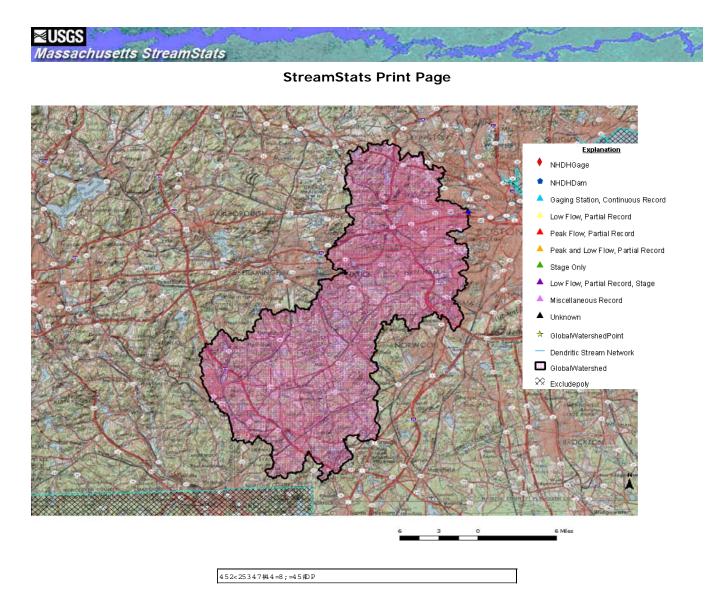
Massachusetts StreamStats

Streamstats Ungaged Site Report

Date: Tue Dec 9 2014 12:02:26 Mountain Standard Time Site Location: Massachusetts NAD27 Latitude: 42.3628 (42 21 46) NAD27 Longitude: -71.1467 (-71 08 48) NAD83 Latitude: 42.3629 (42 21 46) NAD83 Longitude: -71.1462 (-71 08 46) ReachCode: 0109001000111 Measure: 57.06 Drainage Area: 278 mi2 Percent Urban: 42.9 % Percent Impervious: 16.3 %

Low Flows Basin Characteristics			
100% Statewide Low Flow (278 mi2)			
Parameter	Value	Regression Equ	ation Valid Range
		Min	Max
Drainage Area (square miles)	278 (above max value 149)	1.61	149
Mean Basin Slope from 250K DEM (percent)	2.34	0.32	24.6
Stratified Drift per Stream Length (square mile per mile)	0.22	0	1.29
Massachusetts Region (dimensionless)	0	0	1

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.


100% Perennial Flow Probability (278 mi2)			
Parameter	Value	Regression Equ	ation Valid Range
Farameter		Min	Max
Drainage Area (square miles)	278 (above max value 1.99)	0.01	1.99
Percent Underlain By Sand And Gravel (percent)	47.10	0	100
Percent Forest (percent)	42.69	0	100
Massachusetts Region (dimensionless)	0	0	1

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Low Flo	ows Stream	nflow Statistics			
Chan interio			Equivalent	90-Percent Pre	diction Interval
Statistic	Flow (ft ^o /s)	Prediction Error (percent)	years of record	Minimum	Maximum
D50	297				
D60	244				
D70	167				
D75	136				
D80	106				
D85	84.5				
D90	65.4				
D95	44.1				
D98	29.4				
D99	24.4				
M7D2Y	47.4				
AUGD50	90.5				
M7D10Y	23.4				

The equation for estimating the probability of perennial flow is applicable for most areas of Massachusetts except eastern Buzzards Bay, Cape Cod, and the Island regions. The estimate obtained from the equation assumes natural flow conditions at the site. The equation also is best used for sites with drainage areas between 0.01 to 1.99 mi2, as errors beyond for basins beyond these bounds are unknown.

Probability	of Pe	rennial Flow Statistics
Statistic	Value	Standard Error (percent)
PROBPEREN	1	

