

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

MAR 2 5 2015

Chris Pennie Senior Vice President-Operations Lee Kennedy Co. Inc. 122 Quincy Shore Drive Quincy, MA 02171

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Harvard Kennedy School site located at 79 John F. Kennedy Street, Cambridge, MA 02138 - 0000, Middlesex County; Authorization # MAG910668

Dear Mr. Pennie:

Based on the review of a Notice of Intent (NOI) submitted by Elizabeth J. Christmas from Haley & Aldrich on behalf of the Fellows of Harvard College, acting by and through Harvard Kennedy School, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes the pollutants total suspended solids (TSS) and iron which your consultant marked "Believed Present". If this information changes during the cleanup operations an adjustment on the list of the monitoring parameters is required using a notice of change (NOC). Also, please note that the metal iron (the only metal reported) is included on the checklist, this is a dilution dependent pollutant and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For this parameter the dilution factor 27 for this site is within a dilution range greater than ten to fifty (>10 to 50), established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for iron of 5,000 ug/L, is required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification because the operations at the site will result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported this project will terminate on April 1, 2017. Please be advised that in order for the site to continue discharging after the expiration date indicated above your consultant must seek a permit reissuance. A reapplication and reissuance notice will be indicated on the EPA website after the EPA Permit is reissued. Also, you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

the second barries and the second second

Sincerely,

Mulma Murphy

Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc: Robert Kubit, MassDEP Lisa Peterson, Commissioner Cambridge DPW Elizabeth J. Christmas, Haley and Aldrich

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:		MAG910668		
Authorization Issued:	March, 2015	rch, 2015		
Facility/Site Name:	Harvard Kennedy	School		
Facility/Site	79 John F. Kenned	y Street, Cambridge, MA 02138-0000		
Address:	Email address of	owner: arthi_kasetty@hks.harvard.edu		
Legal Name of Open	rator:	Lee Kennedy Co. Inc.		
Operator contact name, title, and Address:		Chris Pennie: Senior Vice President- Operation		
		Email: cpennie@leekennedy		
Estimated date of Th Completion:	ne Project	April 1, 2017		
Category and Sub- Category:	Category III-	Subcategory Contaminated Construction Dewatering. Subcategory A. an Fill Sites and B. Known Contaminated Sites.		
RGP Termination Da	te: September	September 2015		
Receiving Water: Charles Rive				

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)			
√	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L			
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L 5.0 mg/L/ Me# 1664A/ML 5.0 mg/L			
	3. Total Petroleum Hydrocarbons (TPH)				
	4. Cyanide (CN) 2, 3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L			
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L			
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L			
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L			
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L			

	 Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX)⁴ 	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
1	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
1.00	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
047	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
Ĩ ().	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
228	33. Total Phthalates	3.0 ug/L ** /Me#8270D/ML 5ug/L,
	(Phthalate esters) 6	Me#606/ML 10ug/L& Me#625/ML 5ug/L
	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
1	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L

	b. Benzo(a) Pyrene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
-	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L Me#610/ML 5ug/L& Me#625/ML 5ug/L
-	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L Me#610/ML 5ug/L& Me#625/ML 5ug/L
3	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	g. Indeno(1,2,3-cd) Pyrene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	k. Benzo(ghi) Perylene	X/Me#8270D/ML Sug/L,Me#610/ML Sug/L & Me#625/ML Sug/L
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
V	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

er and 2.5 and 1 to this by about the equation of the meaning the best that of the arts to 5.72 ages to all your these are restances interference for breat for 0 as symmetry. Therefore, and	Total Recoverable Metal Limit @ H ¹⁰ = 50 mg/l CaCO3 for discharges in <u>Massachusetts</u> (ug/l) ^{11/12}		<u>Minimum</u> level=ML	
Metal parameter	Freshwater	Option mu	NUCLEAR AND	ne purso si nestas
39. Antimony	5.6/ML	10	ML	10
40. Arsenic **	10/ML20	elle are	ML	20
41. Cadmium **	0.2/ML10	o barriegie	10 462 70	10
42. Chromium III (trivalent) **	48.8/ML15		W CONT	15
43. Chromium VI (hexavalent)	11.4		ML	10

	44. Copper **	5.2	ML	15
	45. Lead **	1.3	ML	20
	46. Mercury **	0.9	ML	0.2
	47. Nickel **	29	ML	20
	48. Selenium **	5	ML	20
	49. Silver	1.2	ML	10
	50. Zinc **	66.6	ML	15
\checkmark	51. Iron	1,000	ML	20

Other Parameters	Limit
 52. Instantaneous Flow	Site specific in CFS
 53. Total Flow	Site specific in CFS
 54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
 56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab13
57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
 62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
64. Maximum Change in Temperature in MA – Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds (not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

¹⁴ Temperature sampling per Method 170.1

Haley & Aldrich, Inc. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

24 February 2015 File No. 38247-005

US Environmental Protection Agency - Region 1 Industrial NPDES Permits (CIP) 5 Post Office Square Mail Code OEP06-4 Boston, Massachusetts 02109-3912

Attention: Remediation General Permit NOI Processing

Subject: Notice of Intent (NOI) for NPDES Remediation General Permit Temporary Construction Dewatering Harvard Kennedy School 79 John F. Kennedy Street Cambridge, Massachusetts

Ladies and Gentlemen:

On behalf of our client, The President and Fellows of Harvard College, acting by and through Harvard Kennedy School, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP.

SITE HISTORY

The subject site is located in the former marshland adjacent to the Charles River. The site was partially developed prior to 1854, at which time several dwellings existed at the northern portion of the property. By 1886, the site had been filled and was occupied by a rail yard, owned by Cambridge Railway Company. The rail yard was constructed on a concrete 1 to 5 ft thick concrete mat supported on wood piles. The rail yard included sheds, a storage warehouse, and a painting shed by 1900 and was owned by Boston Elevated Railway Company. Through 1950, the site remained primarily occupied by the rail yard, owned at that time by Metropolitan Transit Authority, and in 1960, an electric substation was present on the northern portion of the property (near the intersection of Eliot Street and JFK Street). The site was redeveloped in the late 1970s by the Harvard Kennedy School by placing fill up to existing grade on the rail yard concrete mat. The concrete mat was largely left in place with building foundations constructed through holes made in the concrete. The Littauer Center was completed in 1978, with additions added through 1989. The Belfer Center and David Rubenstein Building were constructed in 1983 and 1986, respectively. The Taubman Building was constructed in 1990.

US Environmental Protection Agency - Region 1 24 February 2015 Page 2

CURRENT SITE CONDITIONS

The site is currently the location of the Harvard Kennedy School Campus, occupied by four existing buildings (the Littauer Center, the Belfer Center, the David Rubenstein Building, and the Taubman Building). The buildings are positioned along the perimeter of the site and are typically steel structures with brick facades with a paved and landscaped courtyard in the center of the site. The site is approximately 2.9 acres in size. It is bordered by Eliot Street to the northeast, John F. Kennedy Street to the southwest, John F. Kennedy Park to the southeast, and by a pedestrian walkway followed by the Charles Hotel to the northwest. The north side of the site off of Eliot Street is at a higher elevation than the rest of the landscaped courtyard and slopes down toward Littauer. The general site location is shown on Figure 1, Site Locus.

PROPOSED CONSTRUCTION

The proposed buildings are 4-story additions with new classrooms, meeting rooms, offices and study areas. The existing courtyard level will be rebuilt at a higher elevation level with the Eliot Street entrance, creating a lower level for deliveries and service.

Some of the other features of the proposed development include:

- A suspended "Gateway" structure elevated over the current entrance to the courtyard from Eliot Street at the 4th floor level;
- A "Winter Garden" covered courtyard on the southwestern corner of the roof, adjacent to Rubenstein and Littauer existing buildings;
- Installation of new and relocation of existing subsurface utilities; and
- Underground storm water storage tanks within the courtyard.

REGULATORY BACKGROUND

Testing of soil samples collected during the soil precharacterization programs conducted at the Harvard-Kennedy School in October and December 2014 indicated the presence of contaminants in soils above the applicable Massachusetts Contingency Plan RCS-1 Reportable Concentrations for Soil. A Release Notification Form (RNF) will be submitted to MassDEP in March 2015, prior to the start of proposed construction in April 2015. Soil management will be conducted under a Release Abatement Measure (RAM) Plan.

GROUNDWATER SAMPLING AND ANALYSIS

In support of the NOI, Haley & Aldrich collected two field filtered groundwater samples from observation well HA-B6(OW) at the site on 31 October 2014 and 10 December 2014. The collected groundwater samples were submitted to Alpha Analytical, Inc. of Westborough, Massachusetts

US Environmental Protection Agency - Region 1 24 February 2015 Page 3

(Alpha Analytical), a MassDEP certified laboratory for analysis, for NPDES permit parameters including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total and dissolved metals, polychlorinated biphenyls (PCBs), pesticides, extractable petroleum hydrocarbons (EPH), volatile petroleum hydrocarbons (VPH), total suspended solids (TSS), total and residual chloride, total cyanide, and/or total phenolics.

The analytical results for the groundwater sample indicated that the tested compounds were below the applicable NPDES RGP Category III Effluent Limits and MCP RCGW-2 Reportable Concentrations, with the exception of total iron that exceeded the NPDES RGP Criteria at zero dilution. Although total iron exceeded NPDES RGP criteria, the dissolved concentration was below the NPDES RGP criteria. The results of water quality testing conducted for this NOI are summarized in Table I. The location of the observation well is shown on Figure 2.

MANAGEMENT OF DEWATERING EFFLUENT

During construction, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage and construction-generated water to enable construction in-the-dry. The excavations for the proposed construction will extend approximately 5 ft or more below the existing groundwater level. Construction and construction dewatering activities are currently anticipated to begin as early as April 2015. On average, we estimate effluent discharge rates of about 100 to 150 gallons per minute (gpm) or less, with occasional peak flows of approximately 300 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations.

As part of the dewatering, an effluent treatment system will be designed by the Contractor to meet NPDES RGP discharge criteria. Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter, at a minimum, to remove suspended solids and undissolved chemical constituents. The Proposed Treatment System Schematic is included as Figure 3.

Construction dewatering under this RGP NOI will include piping and discharging to storm drains near the site that are managed by the City of Cambridge and are routed under Memorial Drive that is maintained by the Department of Conservation and Recreation (DCR). The storm drains travel a short distance south and ultimately discharge into the Charles River. The proposed discharge routes are shown on Figure 4, Proposed Dewatering Discharge Route.

DISCHARGE START DATE AND LENGTH OF DISCHARGE

Site work and associated construction dewatering is currently anticipated to begin in April 2015 and is estimated to take up to 24 months to complete. Dewatering activities during below-grade construction are anticipated to be periodic and intermittent.

DILUTION FACTOR APPLICATION FOR METALS

A Dilution Factor (DF) was calculated for the detected levels of total metals greater than the applicable effluent limits. The DF was calculated using the following equation:

 $\mathsf{DF} = (\mathsf{Q}_d + \mathsf{Q}_s)/\mathsf{Q}_d$

where Q_d is the maximum discharge flow rate, assumed to be 300 gallons per minute (GPM) or approximately 0.67 cubic feet per second (cfs), and Q_s is the receiving water flow rate, minimum for 7 consecutive days with a recurrence interval of 10 years, assumed to be 17.7 cfs based on data collected by the United States Geological Survey (USGS) and published in the "Clean Charles 2005 Water Quality Report, 2003 Core Monitoring Report" prepared by the US EPA Office of Environmental Measurement and Evaluation dated November 2004. Using these assumed values, the DF is equal to 27.4.

Using a DF equal to 27.4 and according to Appendix IV of the Remediation General Permit, the ceiling limitation for the calculated dilution factor for iron is 5 mg/L, which would be sufficient to meet the necessary discharge criteria. If testing of the dewatering effluent indicates that iron concentration is greater than 5 mg/L, then additional pretreatment of the dewatering effluent will be included as necessary to remove dissolved metals as shown on Figure 3.

APPENDICES

The completed "Suggested Notice of Intent" (NOI) form as provided in the RGP is enclosed in Appendix A. The site owner is the Harvard Kennedy School. The site operator and the construction manager is Lee Kennedy Co Inc. (Lee Kennedy). Lee Kennedy will hire a subcontractor to conduct the Site work, including the dewatering activities. Haley & Aldrich will monitor the Contractor's dewatering activities on behalf of Harvard Kennedy School. In accordance with the requirements for this NOI submission, Harvard Kennedy School (as owner) and Lee Kennedy (as the construction manager) are listed as co-permittees for this NPDES RGP, and therefore both have signed the NOI form.

A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, is included in Appendix B. Appendices C and D include Endangered Species Act and National Register of Historic Places Documentation, respectively. Appendix E provides copies of the groundwater testing laboratory data reports for samples obtained by Haley & Aldrich. Appendix F provides the Permit Application to be submitted separately to the City of Cambridge.

US Environmental Protection Agency - Region 1 24 February 2015 Page 5

CLOSING

Thank you very much for your consideration of this NOI. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

(lizaluth (wistmas Elizabeth J. Christmas

Staff Engineer

Attachments:

Werne Bryan P. Sweeney, P.E.

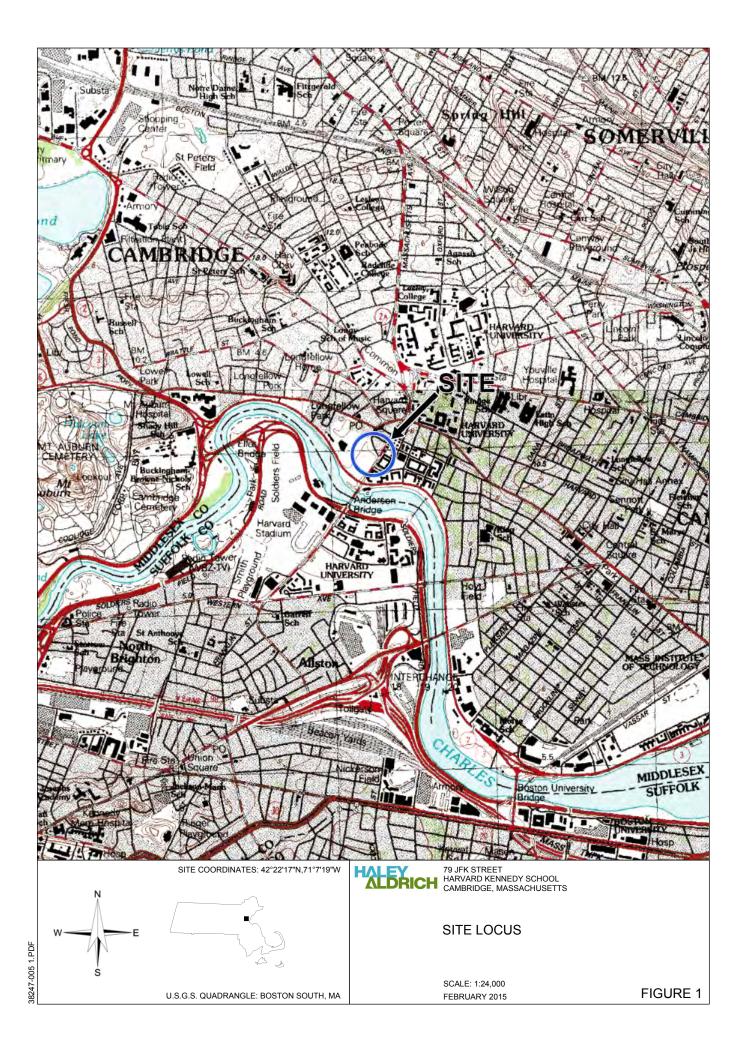
Senior Vice President

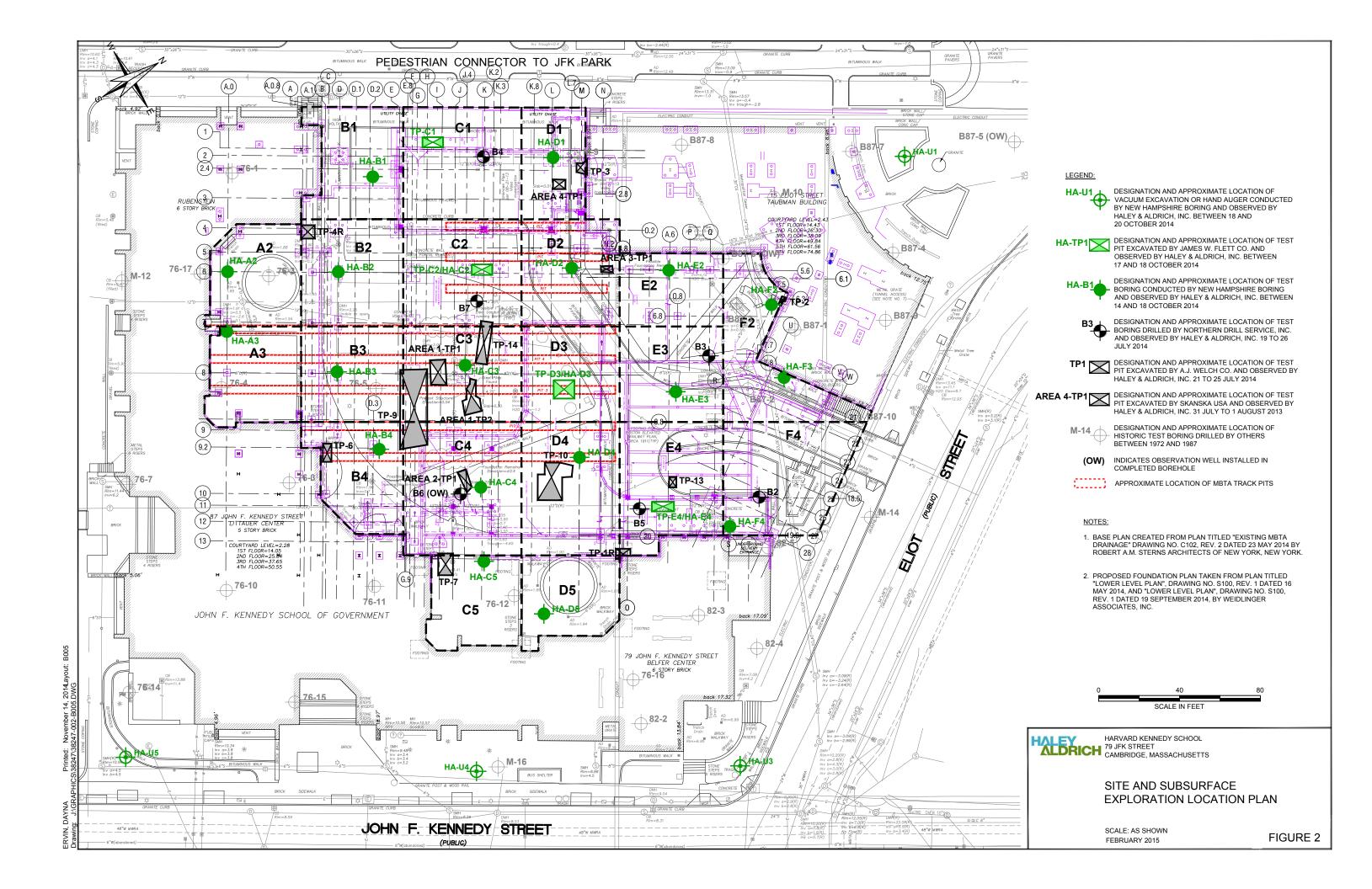
milents.	
Table I	Summary of Groundwater Quality Data
Figure 1	Site Locus
Figure 2	Site and Subsurface Exploration Location Plan
Figure 3	Proposed Treatment System Schematic
Figure 4	Proposed Dewatering Effluent Discharge Route (Parts 1 & 2)
Appendix A	Notice of Intent (NOI) for Remediation General Permit (RGP)
Appendix B	Best Management Practices Plan (BMPP)
Appendix C	Endangered Species Act Documentation
Appendix D	National Register of Historic Places and Massachusetts Historical
	Commission Documentation
Appendix E	Laboratory Data Reports
Appendix F	Copy of Cambridge Discharge and Dewatering Permit
Harvard Kenn	edy School; Attn: Arthi Kasetty
naivalu Kellii	בטץ שנווטטו, אננוו. או נווו המשבונץ

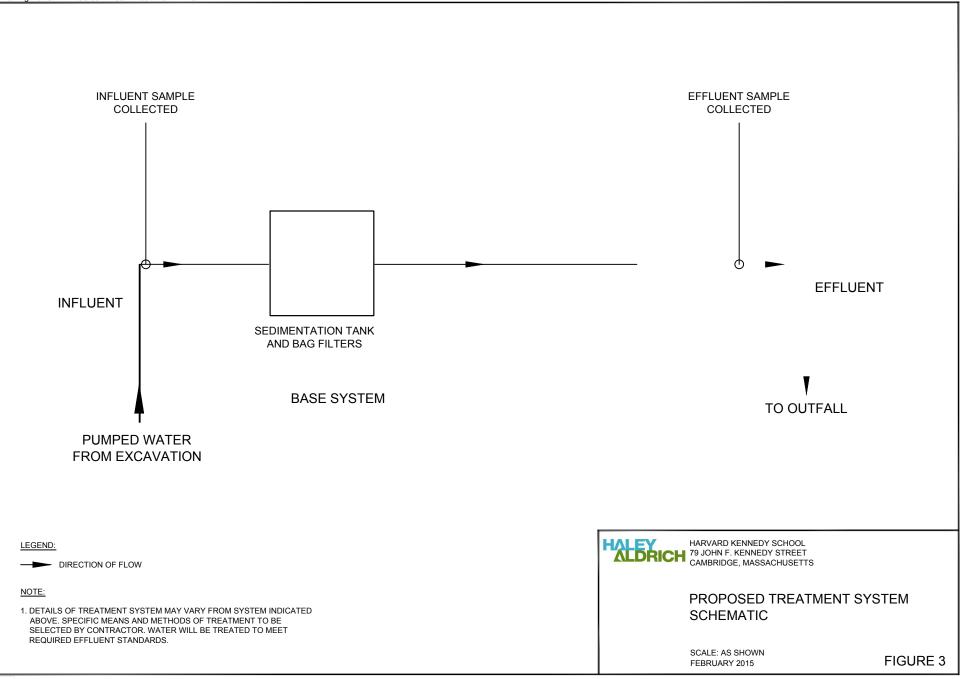
 c: Harvard Kennedy School; Attn: Arthi Kasetty Harvard EH&S; Attn: Kelly McQueeney, Bree Carlson CSL Consulting; Attn: Bryan Baldwin Lee Kennedy Co; Attn: Chris Pennie

G:\38247- JF Kennedy School\NPDES RGP\Text\2015-0224-HAI-HKS NPDES RGP NOI-F.docx

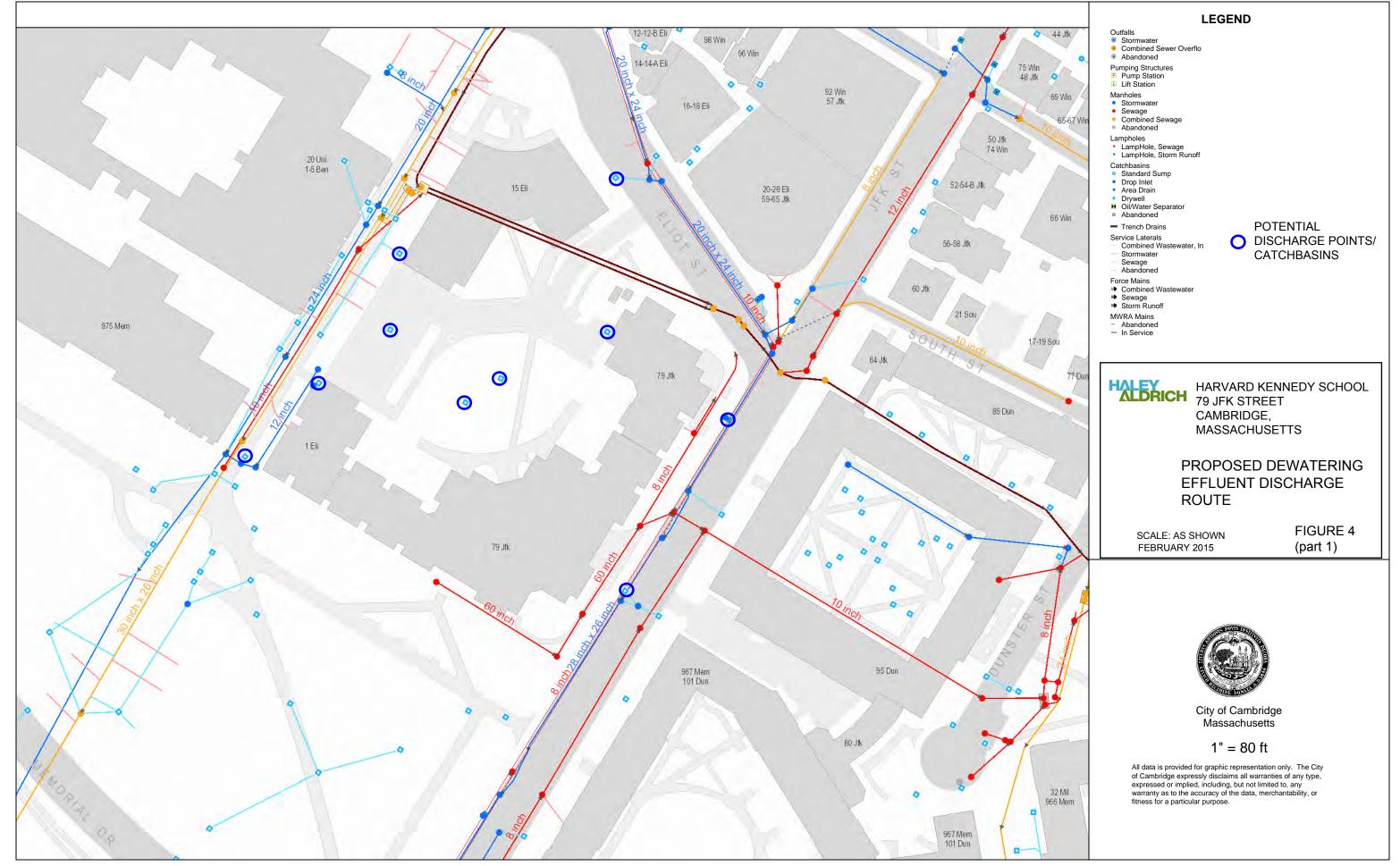
TABLE I


SUMMARY OF GROUNDWATER QUALITY DATA HARVARD KENNEDY SCHOOL OF GOVERNMENT 79 JOHN F. KENNEDY STREET CAMBRIDGE, MA FILE# 38247-005


Location Name	MCP 2014	NPDES	HA-B6	B6
Sample Name	RCGW-2	RGP	HA-BO	B6(OW)_12102014
Sample Name	Reportable	Category III		
Sample Date	Concentrations	Freshwater	10/31/2014	12/10/2014
	(mag at [])		L1426183-01 /	1 4 400 000 04
Lab Sample ID	(mg/l)	Criteria (mg/l)	L1427563-01	L1429682-01
VOCs (mg/L)				
Total BTEX	NA	0.1	ND	-
Total VOCs	NA	NA	ND	-
SVOCs (mg/L)	NIA	0.01	ND	
Total Group I PAHs Total Group II PAHs	NA NA	0.01 0.1	ND ND	-
Total SVOCs	INA	NA	ND	-
SVOCs (SIM) (mg/L)				
Total Group I PAHs	NA	0.01	ND	-
Total Group II PAHs	NA	0.1	ND	-
Total SVOCs	NA	NA	ND	-
EPH (mg/L)	_			
		NA	ND (0.1)	-
MADEP C19-C36 ALIPHATIC HYDROCARBO MADEP C9-C18 ALIPHATIC HYDROCARBON		NA NA	ND (0.1) ND (0.1)	-
MADER C9-C 10 ALIFTIATIC TTDROCARDON	5	NA NA	ND (0.1)	-
VPH (mg/L)				
MADEP C5-C8 ALIPHATIC HYDROCARBONS	3	NA	ND (0.05)	-
MADEP C9-C10 AROMATIC HYDROCARBON		NA	ND (0.05)	-
MADEP C9-C12 ALIPHATIC HYDROCARBON	5	NA	ND (0.05)	-
Pesticides (mg/l)				
Delta-BHC	1	1	ND(0.00001)	
Lindane	0.004	0.004	ND(0.00001)	-
Alpha-BHC	5	5	ND(0.00001)	-
Beta-BHC	1	1	ND(0.00001)	-
Heptachlor	0.001	0.001	ND(0.00001)	-
Aldrin Heptachlor epoxide	0.002 0.002	0.002 0.002	ND(0.00001) ND(0.00001)	-
Endrin	0.002	0.002	ND(0.00001) ND(0.00002)	-
Endrin ketone	0.005 NA	NA	````	-
Dieldrin	0.0005	0.0005	ND(0.00002) ND(0.00002)	
4,4'-DDE	0.4	0.4	ND(0.00002)	
4,4'-DDD	0.05	0.05	ND(0.00002)	-
4,4'-DDT	0.001	0.001	ND(0.00002)	_
Endosulfan I	0.002	0.002	ND(0.00001)	-
Endosulfan II	0.002	0.002	ND(0.00002)	-
Endosulfan sulfate	NA	NA	ND(0.00002)	-
Methoxychlor	0.01	0.01	ND(0.0001)	-
Chlordane	0.002	0.002	ND(0.0001)	-
Hexachlorobenzene	0.001	0.001	ND(0.00001)	-
Total Metals (mg/L)	0	0.0056		
Antimony	8 0.9	0.0056 0.01	ND (0.003)	-
Arsenic Barium	NA	NS	ND (0.005) 0.066	-
Beryllium	50	NA	ND (0.004)	-
Cadmium	0.2	0.0002	ND (0.004)	
Chromium	0.3	0.0488	ND (0.01)	-
Chromium VI (Hexavalent)	0.3	0.0114	-	ND (0.05)
Copper	100	0.0052	ND (0.01)	-
Iron	NA	1	1.5	-
Lead	0.01	0.0013	ND (0.01)	-
Mercury	0.02	0.0009	ND (0.0002)	-
Nickel	0.2	0.029	ND (0.025)	-
Selenium	0.1	0.005	ND (0.01)	-
Silver	0.007	0.0012	ND (0.007)	-
Thallium	3	NS	ND (0.0005)	-
Vanadium Zinc	4 0.9	NS 0.0666	ND (0.01) ND (0.05)	
	0.9	0.0000		
Dissolved Metals (mg/L)				
Antimony	8	0.0056	ND (0.003)	-
Arsenic	0.9	0.01	ND (0.005)	-
Barium	NA	NA	0.062	
Beryllium	50	NA	ND (0.004)	-
Cadmium	0.2	0.0002	ND (0.004)	-
Chromium	0.3	0.0488	ND (0.01)	-
lron Lead	NA 0.01	1 0.0013	0.85 ND (0.01)	-
Lead Mercury	0.01	0.0013	ND (0.01) ND (0.0002)	
Nickel	0.02	0.029	ND (0.0002) ND (0.025)	
Selenium	0.2	0.005	ND (0.01)	-
Silver	0.007	0.0012	ND (0.007)	-
Thallium	3	NA	ND (0.0005)	-
Vanadium	4	NA	ND (0.01)	-
Zinc	0.9	0.0666	ND (0.05)	-
PCBs (mg/L)	0.005	0.00000064		
Lotal DCDa	0.005	0.00000064	ND	-
Total PCBs		-	1	
Other (mg/L)	0.03	0 0052	ND (0.005)	-
Other (mg/L) Cyanide	0.03 0.03	0.0052 0.0052	ND (0.005) ND (0.01)	-
Other (mg/L) Cyanide Cyanide (amenable)	0.03 0.03 0.03	0.0052 0.0052 0.0052	ND (0.01)	
Other (mg/L) Cyanide	0.03	0.0052	. ,	- - - -
Other (mg/L) Cyanide Cyanide (amenable) Cyanide (available)	0.03 0.03	0.0052 0.0052	ND (0.01) ND (0.005)	- - - - ND (0.02)
Other (mg/L) Cyanide Cyanide (amenable) Cyanide (available) Chloride, Total	0.03 0.03 NA	0.0052 0.0052 Monitor Only	ND (0.01) ND (0.005)	- - - - - ND (0.02) -


Notes & Abbreviations:

mg/L - milligram per liter ND (1.0) - not detected, value is the reporting limit NA - not available/no standard


1. Bold values exceed applicable NPDES RGP Criteria at zero dilution.



LEGEND

- Lampholes

 LampHole, Sewage
 LampHole, Storm Runoff
- Trench Drains Service Laterals

Pumping St Pump Station Lift Station

- Combined Wastewater, In Stormwater
- Sewage Abandoned
- MWRA Mains
- Abandoned
 In Service
- Underground Structures
 Stormwater
 Sewage
 Combined Sewage

HARVARD KENNEDY SCHOOL 79 JFK STREET CAMBRIDGE, MASSACHUSETTS

PROPOSED DEWATERING EFFLUENT DISCHARGE ROUTE

SCALE: AS SHOWN FEBRUARY 2015

FIGURE 4 (part 2)

City of Cambridge Massachusetts

All data is provided for graphic representation only. The City of Cambridge expressly disclaims all warranties of any type, expressed or implied, including, but not limited to, any warranty as to the accuracy of the data, merchantability, or fitness for a particular purpose.

APPENDIX A

Notice of Intent (NOI) for Remediation General Permit (RGP)

<u>B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit</u>

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site :		Facility/site mailing address:		
Location of facility/site : longitude: latitude:	Facility SIC code(s):	Street:		
b) Name of facility/site owner: Ms. Arthi Kasetty		Town:		
Email address of facility/site owner:		State:	Zip:	County:
Telephone no. of facility/site owner:				
Fax no. of facility/site owner :		Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:		
Address of owner (if different from site):				
Street:				
Town: State:		Zip:	County:	
c) Legal name of operator :	Operator tele	lephone no:		
Operator fax		x no.: Operator email:		
Operator contact name and title:				
Address of operator (if different from owner):	Street:			
Town: State:		Zip:	County:	

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? YN, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? YN, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? YN 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? YN 			
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y N	 f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y N, 		
If Y, please list: 1. site identification # assigned by the state of NH or	D. FinaluDewatering General Permit? Y N,		
MA:	if. EPraucobastruction General Permit? YN,		
3. state agency contact information: name, location, and telephone number:	$\frac{\partial H}{\partial t}$		
-	f. Yn yw Whee water quality related individual or general permit? Y N, if Y, number:		
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? YN		
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential		
Activity Category	Activity Sub-Category		
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) 		
	C. Petroleum Sites with Additional Contamination		
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites		
	 B. VOC Sites with Additional Contamination		
III - Contaminated Construction Dewatering	A. General Urban Fill Sites		
	B. Known Contaminated Sites		

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge acti	ivities for which the owner/applicant is seeking coverage:
b) Provide the following info	rmation about each discharge:
1) Number of discharge points:	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Max. flow Is maximum flow a design value ? YN Average flow (include units) Is average flow a design value or estimate?
pt.1: latlong pt.3: latlong pt.5: latlong	each discharge within 100 feet: g; pt.2: lat long; g; pt.4: lat long; g; pt.6: lat long; g; pt.8: lat long;
4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent or seasonal? Is discharge ongoing? Y N?
c) Expected dates of discharg	e (mm/dd/yy): start end
	g or flow schematic showing water flow through the facility including: contributing flow from the operation, 3. treatment units, and 4. discharge points and receiving

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)											
2. Total Residual Chlorine (TRC)											
3. Total Petroleum Hydrocarbons (TPH)	EPH and VPH										
4. Cyanide (CN)	57125										
5. Benzene (B)	71432										
6. Toluene (T)	108883										
7. Ethylbenzene (E)	100414										
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207										
9. Total BTEX ²	n/a										
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934										
11. Methyl-tert-Butyl Ether (MtBE)	1634044										
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650										

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

 ² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
 ³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily value	
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of Test Method	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508										
14. Naphthalene	91203										
15. Carbon Tetrachloride	56235										
16. 1,2 Dichlorobenzene (o-DCB)	95501										
17. 1,3 Dichlorobenzene (m-DCB)	541731										
18. 1,4 Dichlorobenzene (p-DCB)	106467										
18a. Total dichlorobenzene											
19. 1,1 Dichloroethane (DCA)	75343										
20. 1,2 Dichloroethane (DCA)	107062										
21. 1,1 Dichloroethene (DCE)	75354										
22. cis-1,2 Dichloroethene (DCE)	156592										
23. Methylene Chloride	75092										
24. Tetrachloroethene (PCE)	127184										
25. 1,1,1 Trichloro-ethane (TCA)	71556										
26. 1,1,2 Trichloro-ethane (TCA)	79005										
27. Trichloroethene (TCE)	79016										

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of <u>Test</u> Method	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014										
29. Acetone	67641										
30. 1,4 Dioxane	123911										
31. Total Phenols	108952										
32. Pentachlorophenol (PCP)	87865										
33. Total Phthalates (Phthalate esters) ⁴											
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817										
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)											
a. Benzo(a) Anthracene	56553										
b. Benzo(a) Pyrene	50328										
c. Benzo(b)Fluoranthene	205992										
d. Benzo(k)Fluoranthene	207089										
e. Chrysene	21801										
f. Dibenzo(a,h)anthracene	53703										
g. Indeno(1,2,3-cd) Pyrene	193395										
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)											

⁴ The sum of individual phthalate compounds.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Sample</u> <u>Type</u> <u>(e.g.,</u> <u>grab)</u>	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
h. Acenaphthene	83329										
i. Acenaphthylene	208968										
j. Anthracene	120127										
k. Benzo(ghi) Perylene	191242										
1. Fluoranthene	206440										
m. Fluorene	86737										
n. Naphthalene	91203										
o. Phenanthrene	85018										
p. Pyrene	129000										
	85687; 84742; 117840; 84662;										
37. Total Polychlorinated	131113;										
Biphenyls (PCBs)	117817.										
38. Chloride	16887006										
39. Antimony	7440360										
40. Arsenic	7440382										
41. Cadmium	7440439										
42. Chromium III (trivalent)	16065831										
43. Chromium VI (hexavalent)	18540299										
44. Copper	7440508										
45. Lead	7439921										
46. Mercury	7439976										
47. Nickel	7440020										
48. Selenium	7782492										
49. Silver	7440224										
50. Zinc	7440666										
51. Iron	7439896										
Other (describe):											

				Sample	Analytical	Minimum	Maximum daily value		Average daily value			
	<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g.,	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? $Y_{N_{1}}$	If yes, which metals?
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF: Metal: DF:	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? YN If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

b) Identify each	Frac. tank	Air stripper	Oil/water separator	Equalization tanks	Bag filter	GAC filter
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge gpm Maximum flow rate of treatment system gpm Design flow rate of treatment system gpm								
d) A description of chemical additive	es being used or	r planned to be use	ed (attach MSDS s	heets):				
5. Receiving surface water(s). Pleas	se provide infor	mation about the r	receiving water(s),	using separate sh	eets as necessary:			
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain		Other (describe):			
b) Provide a narrative description of	the discharge p	athway, including	the name(s) of the	e receiving waters:				
c) Attach a detailed map(s) indicatin	g the site location	on and location of	the outfall to the r	receiving water:				

1. For multiple discharges, number the discharges sequentially.

2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water

The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.

d) Provide the state water quality classification of the receiving water___

f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y____ If yes, for which pollutant(s)?

Is there a final TMDL? Y N_____ If yes, for which pollutant(s)?___

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

A ____ B ____ C ____ D ____ E ____ F ____

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y____ N___ Underway____

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y____ N____

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit?

1 ____ 2 ____ 3 ____

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name:	Harvard Kennedy School
Operator signature:	Stahasett
Printed Name & Tit	le: Arthi Kasetty; Director - Facilities Mgmt. & Services; Harvard Kennedy School
Date: 2/11 201	5

Remediation General Permit Appendix V - NOI **8. Signature Requirements:** The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Harvard Kennedy School
Operator signature: Clint Pr
Printed Name & Title: Chris Pennie, Senior Vice President - Operations; Lee Kennedy Co Inc
Date: 2/3/15

APPENDIX B

Best Management Practices Plan (BMPP)

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM REMEDIATION GENERAL PERMIT TEMPORARY CONSTRUCTION DEWATERING HARVARD-KENNEDY SCHOOL 79 JOHN F. KENNEDY STREET CAMBRIDGE, MASSACHUSETTS

Best Management Practices Plan

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering planned to occur during the construction of the proposed Harvard Kennedy School located at 79 John F. Kennedy Street in Cambridge, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

Construction dewatering will be conducted using a combination of drainage ditches and sumps located inside the excavation. The treatment system will be designed by the Contractor. Prior to discharge, collected water will likely be routed through a sedimentation tank and bag filters, as required, to remove suspended solids and undissolved chemical constituents. Proposed Treatment System Schematic is shown on Figure 3. Construction dewatering under this RGP NOI will include piping and discharging to storm drains located in John F. Kennedy Street, Eliot Street, and the private road adjacent to the site. The storm drains travel short distance south/southeast before discharging to the Charles River.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted by the Contractor at the treated effluent as required by the RGP. This includes chemical testing required within the first month of discharging, and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the fractionization tanks, filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements. NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM REMEDIATION GENERAL PERMIT TEMPORARY CONSTRUCTION DEWATERING HARVARD-KENNEDY SCHOOL 79 JOHN F. KENNEDY STREET CAMBRIDGE, MASSACHUSETTS

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Operator.

Miscellaneous Items

It is anticipated that the excavation support system, erosion control measures, and the nature of the site and surrounding infrastructure will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control.

Site security for the treatment system will be covered within the overall site security plan.

No adverse affects of designated water uses of surrounding surface water bodies is anticipated. The Charles River is the nearest surface water body to the site located adjacent to the construction activities on site. Dewatering effluent will be pumped to a sedimentation tank, bag filters, and any other treatment components (as required), prior to discharge to the storm drains.

Management of Treatment System Materials

Groundwater analytical data for the site is below the applicable MCP RCGW-2 criteria. Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and sumps to minimize handling. The contractor will establish staging areas on the site for any equipment or materials storage which may be possible sources of pollution away from any dewatering activities.

Sediment from the fractionalization tank used in the treatment system will be characterized and disposed of as soil at an appropriate receiving facility in accordance with applicable laws and regulations. Bag filters will be placed in drums and manifested for off-site disposal.

G:\38247- JF Kennedy School\NPDES RGP\App B BMPP\2014-1118-HAI-HKS RGP BMPP.doc

APPENDIX C

Endangered Species Act Documentation

United States Department of the Interior

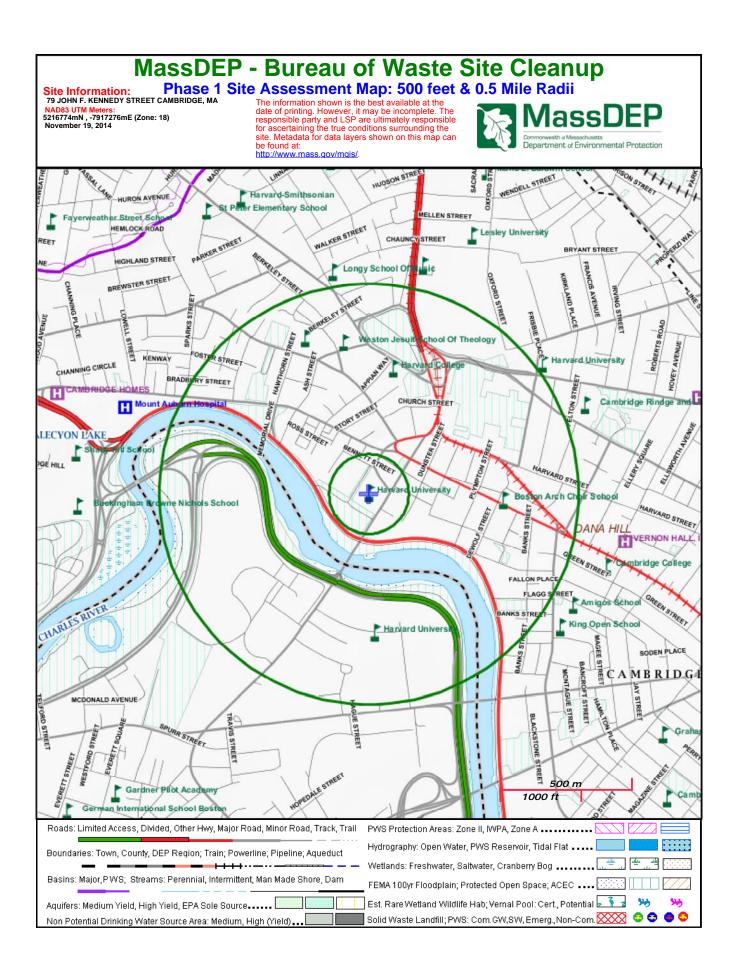
FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 7, 2014

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:


http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman Supervisor New England Field Office

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres Approximate acreage and designation date follow ACEC names below.

Bourne Back River (1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp (1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley (12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed (1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor (600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog (8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills (500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed (4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed (14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp (16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay (2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin (1,350 acres, 1995) Lee and Stockbridge Karner Brook Watershed (7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds (8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary (1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag (25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay (9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River (160 acres, 1980) Bourne

Rumney Marshes (2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System (9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin (13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

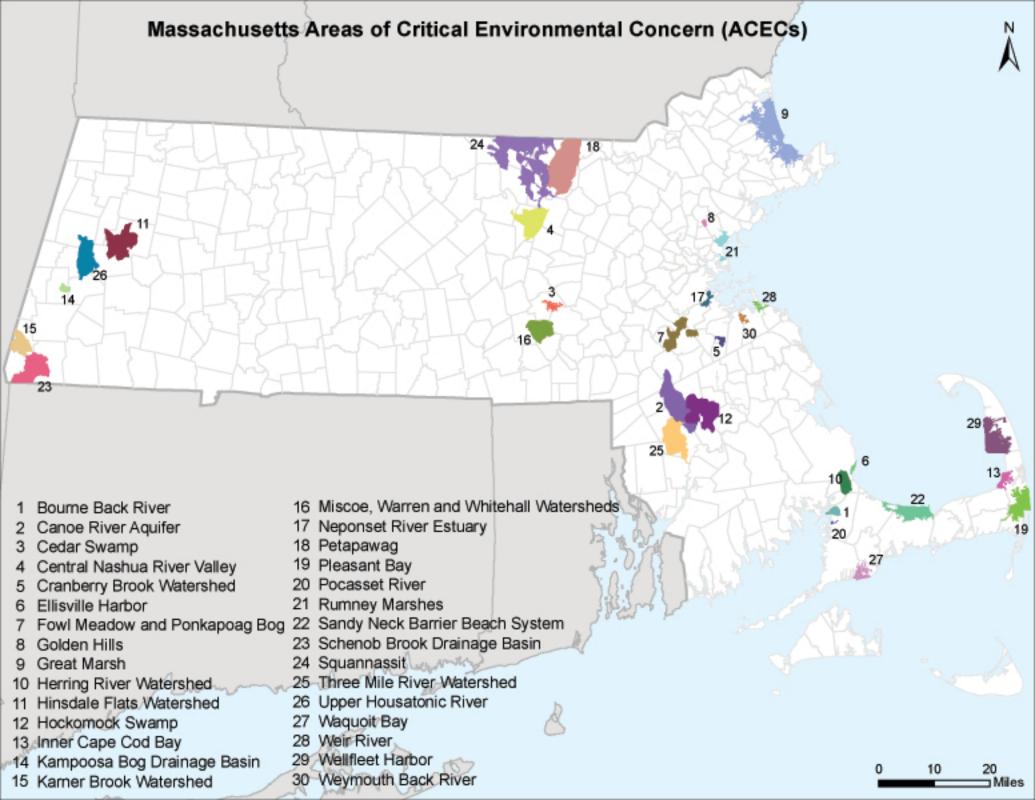
Upper Housatonic River (12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay (2,580 acres, 1979) Falmouth and Mashpee

Weir River (950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor (12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River (800 acres, 1982) Hingham and Weymouth


ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

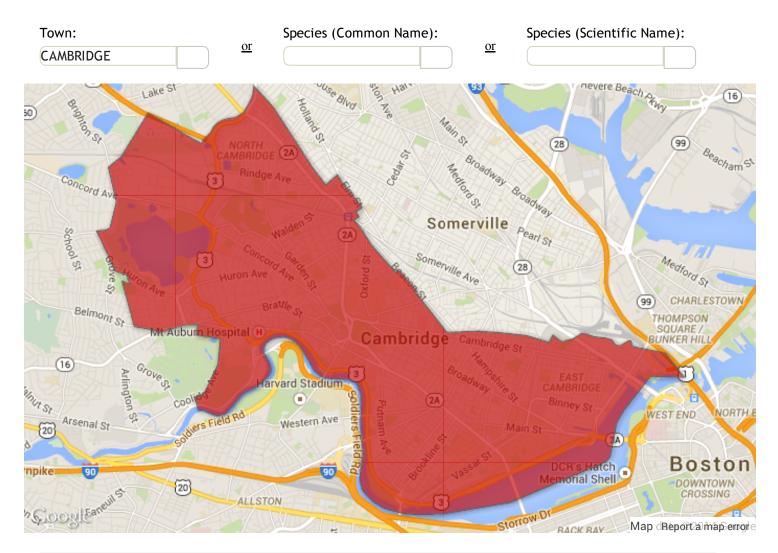
•

November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	Ŭ	Schenob Brook
,	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
Dooton	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	onouno	Pleasant Bay
Doume	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed		Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
DIEWSLEI		Plymouth	Herring River Watershed
Dridgowator	Inner Cape Cod Bay	riymouth	Ellisville Harbor
Bridgewater	Hockomock Swamp	Quinau	
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay		Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer		Fowl Meadow and Ponkapoag Bog
	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	Ū	Upper Housatonic River
3	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River	1-	,
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
Lancaster	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
200	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit Bumpoy Marchos		
Lynn Mansfield	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
	Dwarf wedgemussel	Endangered	Mill River	Whately
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
Suffolk	Piping Plover	Threatened	Coastal Beaches	Winthrop
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster


-Eastern cougar and gray wolf are considered extirpated in Massachusetts.

-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Showing 1 to 25 of	of 25 entries		Search:		
			First	Previous 1	Next Last
Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
CAMBRIDGE	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC	1917
CAMBRIDGE	Bird	Ammodramus henslowii	Henslow's Sparrow	Е	1871
CAMBRIDGE	Bird	Botaurus lentiginosus	American Bittern	Е	1906
CAMBRIDGE	Vascular Plant	Carex gracilescens	Slender Woodland Sedge	Е	1891
CAMBRIDGE	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger	SC	1932

http://www.mass.gov/eea/scripts/dfg/species-viewer.html

NHESP Town Species Viewer

			Beetle		
CAMBRIDGE	Bird	Cistothorus platensis	Sedge Wren	Е	1840
CAMBRIDGE	Vascular Plant	Cyperus engelmannii	Engelmann's Umbrella- sedge	Т	2008
CAMBRIDGE	Butterfly/Moth	Eacles imperialis	Imperial Moth	Т	Historic
CAMBRIDGE	Bird	Falco peregrinus	Peregrine Falcon	Е	2013
CAMBRIDGE	Bird	Gallinula chloropus	Common Moorhen	SC	1890
CAMBRIDGE	Vascular Plant	Gentiana andrewsii	Andrews' Bottle Gentian	Е	2013
CAMBRIDGE	Reptile	Glyptemys insculpta	Wood Turtle	SC	Historic
CAMBRIDGE	Vascular Plant	Isoetes lacustris	Lake Quillwort	Е	Historic
CAMBRIDGE	Bird	Ixobrychus exilis	Least Bittern	Е	1890
CAMBRIDGE	Mussel	Ligumia nasuta	Eastern Pondmussel	SC	1940
CAMBRIDGE	Segmented Worm	Macrobdella sestertia	New England Medicinal Leech	SC	Historic
CAMBRIDGE	Fish	Notropis bifrenatus	Bridle Shiner	SC	1928
CAMBRIDGE	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	Т	Historic
CAMBRIDGE	Vascular Plant	Potamogeton friesii	Fries' Pondweed	Е	1880
CAMBRIDGE	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	Т	1892
CAMBRIDGE	Vascular Plant	Scirpus longii	Long's Bulrush	Т	1913
CAMBRIDGE	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC	1912
CAMBRIDGE	Reptile	Terrapene carolina	Eastern Box Turtle	SC	1892
CAMBRIDGE	Bird	Tyto alba	Barn Owl	SC	Historic
CAMBRIDGE	Vascular Plant	Viola brittoniana	Britton's Violet	Т	1843
Show 25 ▼ e	entries				

Hide Additional Info

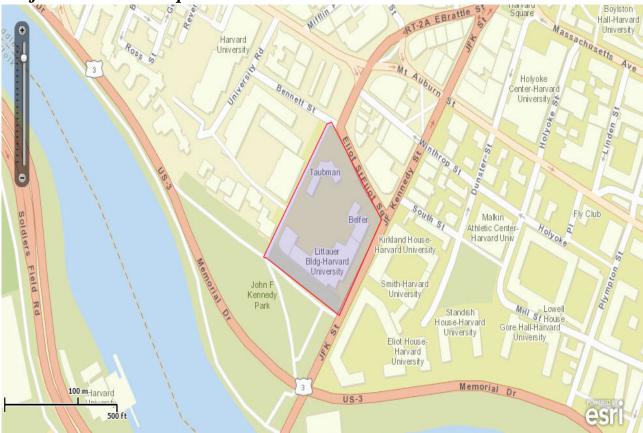
Status

• E = Endangered • T = Threatened • SC = Special Concern

Most Recent Observation

This field represents the most recent observation of that species in a town. However, because they are rare, many MESA-listed species are difficult to detect even when they are present. Natural Heritage does not have the resources to be able to conduct methodical species surveys in each town on a regular basis. Therefore, the fact that the 'Most Recent Observation' recorded for a species may be several years old should not be interpreted as meaning that the species no longer occurs in a town. However, Natural Heritage regards records older than twenty-five years historic.

For more information about a particular species, view the list of Natural Heritage Fact Sheets.



Trust Resources List

This resource list is to be used for planning purposes only — it is not an official species list.

Endangered Species Act species list information for your project is available online and listed below for the following FWS Field Offices:

New England Ecological Services Field Office 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 3301 (603) 223-2541 http://www.fws.gov/newengland

Project Location Map:

Trust Resources List

Project Counties:

Middlesex, MA

Geographic coordinates (Open Geospatial Consortium Well-Known Text, NAD83): MULTIPOLYGON (((-71.1231102 42.3710482, -71.1231424 42.3710482, -71.1220915 42.3723168, -71.1220164 42.3723326, -71.1211903 42.3714052, -71.1218877 42.3704933, -71.1231102 42.3710482)))

Project Type: Dredge / Excavation

Endangered Species Act Species List (<u>USFWS Endangered Species Program</u>). There are no listed species found within the vicinity of your project.

Critical habitats within your project area:

There are no critical habitats within your project area.

FWS National Wildlife Refuges (<u>USFWS National Wildlife Refuges Program</u>).

There are no refuges found within the vicinity of your project.

FWS Migratory Birds (USFWS Migratory Bird Program).

The protection of birds is regulated by the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA). Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. For more information regarding these Acts see: http://www.fws.gov/migratorybirds/RegulationsandPolicies.html.

All project proponents are responsible for complying with the appropriate regulations protecting birds when planning and developing a project. To meet these conservation obligations, proponents should identify potential or existing project-related impacts to migratory birds and their habitat and develop and implement conservation

Trust Resources List

measures that avoid, minimize, or compensate for these impacts. The Service's Birds of Conservation Concern (2008) report identifies species, subspecies, and populations of all migratory nongame birds that, without additional conservation actions, are likely to become listed under the Endangered Species Act as amended (16 U.S.C 1531 et seq.).

For information about Birds of Conservation Concern, go to: <u>http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/BCC.html</u>.

To search and view summaries of year-round bird occurrence data within your project area, go to the Avian Knowledge Network Histogram Tool links in the Bird Conservation Tools section at: <u>http://www.fws.gov/</u><u>migratorybirds/CCMB2.htm</u>.

For information about conservation measures that help avoid or minimize impacts to birds, please visit: <u>http://www.fws.gov/migratorybirds/CCMB2.htm</u>.

Migratory birds of concern that may be affected by your project:

There are **19** birds on your Migratory birds of concern list. The underlying data layers used to generate the migratory bird list of concern will continue to be updated regularly as new and better information is obtained. User feedback is one method of identifying any needed improvements. Therefore, users are encouraged to submit comments about any questions regarding species ranges (e.g., a bird on the USFWS BCC list you know does not occur in the specified location appears on the list, or a BCC species that you know does occur there is not appearing on the list). Comments should be sent to <u>the ECOS Help Desk</u>.

Species Name	Bird of Conservation Concern (BCC)	S p e c i e s Profile	Seasonal Occurrence in Project Area
American Oystercatcher (Haematopus palliatus)	Yes	species info	Breeding
American bittern (Botaurus lentiginosus)	Yes	species info	Breeding
Bald eagle (Haliaeetus leucocephalus)	Yes	species info	Year-round
Black-billed Cuckoo (Coccyzus erythropthalmus)	Yes	species info	Breeding
Blue-winged Warbler (Vermivora pinus)	Yes	species info	Breeding
Canada Warbler (<i>Wilsonia canadensis</i>)	Yes	species info	Breeding

Trust Resources List

Hudsonian Godwit (<i>Limosa</i> haemastica)	Yes	species info	Migrating
Least Bittern (Ixobrychus exilis)	Yes	species info	Breeding
Peregrine Falcon (Falco peregrinus)	Yes	species info	Breeding
Pied-billed Grebe (<i>Podilymbus podiceps</i>)	Yes	species info	Breeding
Prairie Warbler (Dendroica discolor)	Yes	species info	Breeding
Purple Sandpiper (Calidris maritima)	Yes	species info	Wintering
Saltmarsh Sparrow (Ammodramus caudacutus)	Yes	species info	Breeding
Seaside Sparrow (Ammodramus maritimus)	Yes	species info	Breeding
Short-eared Owl (Asio flammeus)	Yes	species info	Wintering
Snowy Egret (Egretta thula)	Yes	species info	Breeding
Upland Sandpiper (Bartramia longicauda)	Yes	species info	Breeding
Wood Thrush (Hylocichla mustelina)	Yes	species info	Breeding
Worm eating Warbler (<i>Helmitheros vermivorum</i>)	Yes	species info	Breeding

NWI Wetlands (<u>USFWS National Wetlands Inventory</u>).

The U.S. Fish and Wildlife Service is the principal Federal agency that provides information on the extent and status of wetlands in the U.S., via the National Wetlands Inventory Program (NWI). In addition to impacts to wetlands within your immediate project area, wetlands outside of your project area may need to be considered in any evaluation of project impacts, due to the hydrologic nature of wetlands (for example, project activities may affect local hydrology within, and outside of, your immediate project area). It may be helpful to refer to the USFWS National Wetland Inventory website. The designated FWS office can also assist you. Impacts to wetlands and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes. Project Proponents should discuss the relationship of these

Trust Resources List

requirements to their project with the Regulatory Program of the appropriate <u>U.S. Army Corps of Engineers</u> <u>District</u>.

Data Limitations, Exclusions and Precautions

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery and/or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Exclusions - Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Precautions - Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

IPaC is unable to display wetland information at this time.

APPENDIX D

National Register of Historic Places and Massachusetts Historical Commission Documentation

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Place: Harvard Square;

Inv. No.	Property Name	Street	Town	Year
CAM.AB	Harvard Square Historic District		Cambridge	
CAM.AD	Harvard Yard Historic District		Cambridge	
CAM.BE	Old Harvard Yard		Cambridge	
CAM.BG	Harvard Square Historic District		Cambridge	
CAM.1061	Harvard Catholic Student Center	20 Arrow St	Cambridge	c 1890
CAM.1062	Saint Paul's Church	24 Arrow St	Cambridge	r 1920
CAM.1063	Bicycle Exchange Building	3-7 Bow St	Cambridge	1901
CAM.1064		9 Bow St	Cambridge	1884
CAM.1066	Westmorly Court - Harvard University	15-29 Bow St	Cambridge	c 1898
CAM.12	Harvard Lampoon Building	44 Bow St	Cambridge	1909
CAM.1067	Randolph Hall - Harvard University	47-57 Bow St	Cambridge	1897
CAM.1068	Brattle Building	4 Brattle St	Cambridge	1913
CAM.1069	Atrium Building	9-11 Brattle St	Cambridge	1979
CAM.1071		12-16 Brattle St	Cambridge	1887
CAM.1070	Estes Block	13-15 Brattle St	Cambridge	1875
CAM.1072	Dow Block	17-35 Brattle St	Cambridge	c 1936
CAM.1073		18 Brattle St	Cambridge	1922
CAM.1074		26 Brattle St	Cambridge	1909
CAM.1075	Hadley Building	28-36 Brattle St	Cambridge	1974
CAM.1076	Cambridge Federal Savings Bank	38A Brattle St	Cambridge	1937
CAM.1077		39-41 Brattle St	Cambridge	1925
CAM.15	Brattle Hall	40 Brattle St	Cambridge	1889
CAM.1078		40A Brattle St	Cambridge	c 1925
CAM.16	Brattle, William House	42 Brattle St	Cambridge	c 1727
CAM.1079	Sage Building	43-45 Brattle St	Cambridge	1926
CAM.1080		44 Brattle St	Cambridge	1970
CAM.1081		46R Brattle St	Cambridge	1966
uesday, Nov	vember 18, 2014			Page 1 c

lnv. No.	Property Name	Street	Town	Year
CAM.1082		47-49 Brattle St	Cambridge	c 1926
CAM.1083	Design Research Building	48 Brattle St	Cambridge	1969
CAM.1084	Washington Court	51 Brattle St	Cambridge	1905
CAM.97	Memorial Hall	Cambridge St	Cambridge	r 1875
CAM.102	First Parish Church, Unitarian	1-3 Church St	Cambridge	1833
CAM.103		23-25 Church St	Cambridge	1936
CAM.1085		26-28 Church St	Cambridge	1857
CAM.104		27-29 Church St	Cambridge	1922
CAM.105	Cambridge Police Station	31-33 Church St	Cambridge	1864
CAM.1086	Oxford Grill	32-42 Church St	Cambridge	1931
CAM.1087	Hancock - Torrey House	53 Church St	Cambridge	1827
CAM.1088		54-56 Church St	Cambridge	1925
CAM.1089		59-63 Church St	Cambridge	1949
CAM.121	Second Cambridge Savings Bank Building	11-21 Dunster St	Cambridge	1897
CAM.1090	Union Railway Carbarn	25-33 Dunster St	Cambridge	1860
CAM.1091	Second D. U. Club	45 Dunster St	Cambridge	1930
CAM.1092	Metcalf, Eliab Wight House	46 Dunster St	Cambridge	1820
CAM.1093	Edwards, Abraham - Moore, Mary House	53 Dunster St	Cambridge	1841
CAM.1094	Alpha Sigma Phi Club	54 Dunster St	Cambridge	1900
CAM.122	Wyeth, Augustus House	69 Dunster St	Cambridge	1829
CAM.1095		71-77 Dunster St	Cambridge	1894
CAM.1096	Hotel Packard	10-14 Eliot St	Cambridge	1869
CAM.1097		14A Eliot St	Cambridge	1900
CAM.1098		16-18 Eliot St	Cambridge	1898
CAM.800	Old Burying Ground	Garden St	Cambridge	r 1750
CAM.193	Austin Hall	Harvard University	Cambridge	1881
CAM.178	Holden Chapel - Harvard University	Harvard Yard	Cambridge	1764
CAM.179	Sever Hall	Harvard Yard	Cambridge	1880
CAM.180	University Hall	Harvard Yard	Cambridge	1812
CAM.181	Harvard Hall - Harvard University	Harvard Yard	Cambridge	1764
CAM.182	Hollis Hall - Harvard University	Harvard Yard	Cambridge	1762
CAM.183	Massachusetts Hall	Harvard Yard	Cambridge	1718
CAM.184	Weld Hall - Harvard University	Harvard Yard	Cambridge	1870
CAM.185	Boylston Hall - Harvard University	Harvard Yard	Cambridge	1857
CAM.186	Holworthy Hall - Harvard University	Harvard Yard	Cambridge	1811
CAM.187	Grays Hall - Harvard University	Harvard Yard	Cambridge	1862
CAM.188	Lehman Hall - Harvard University	Harvard Yard	Cambridge	1924
CAM.189	Matthews House - Harvard University	Harvard Yard	Cambridge	1871
Tuesday No	vember 18, 2014		-	Page 2 of 6

Tuesday, November 18, 2014

Page 2 of 6

lnv. No.	Property Name	Street	Town	Year
CAM.190	Straus Hall - Harvard University	Harvard Yard	Cambridge	1926
CAM.191	Thayer Hall - Harvard University	Harvard Yard	Cambridge	1869
CAM.192	Wigglesworth Hall - Harvard University	Harvard Yard	Cambridge	1930
CAM.953	Harvard University - 1857 Gate	Harvard Yard	Cambridge	1901
CAM.954	Harvard University - 1870 Gate	Harvard Yard	Cambridge	1901
CAM.955	Harvard University - 1873 Tablet	Harvard Yard	Cambridge	1901
CAM.956	Harvard University - 1874 Gate	Harvard Yard	Cambridge	1901
CAM.957	Harvard University - 1875 Gate	Harvard Yard	Cambridge	1901
CAM.958	Harvard University - 1881 Gate	Harvard Yard	Cambridge	1906
CAM.959	Harvard University - 1885 Gate	Harvard Yard	Cambridge	1904
CAM.960	Harvard University - 1886 Gate	Harvard Yard	Cambridge	1901
CAM.961	Harvard University - 1887 Gate	Harvard Yard	Cambridge	1906
CAM.962	Harvard University - 1888 Gate	Harvard Yard	Cambridge	1906
CAM.963	Harvard University - 1889 Gate	Harvard Yard	Cambridge	1901
CAM.964	Harvard University - 1890 Gate	Harvard Yard	Cambridge	1901
CAM.965	Harvard University - 1880 Gate	Harvard Yard	Cambridge	1902
CAM.966	Harvard University - Bradley Fountain	Harvard Yard	Cambridge	1910
CAM.967	Harvard University - Chinese Steel	Harvard Yard	Cambridge	r 1810
CAM.968	Harvard University - Delivery Gate	Harvard Yard	Cambridge	1948
CAM.969	Harvard University - Driveway Gate	Harvard Yard	Cambridge	1948
CAM.970	Harvard University - 1908 Gate	Harvard Yard	Cambridge	1936
CAM.971	Harvard University - Emerson Gate	Harvard Yard	Cambridge	1936
CAM.972	Harvard University - Fire Station Gate	Harvard Yard	Cambridge	1970
CAM.973	Harvard University - Hollis Pump	Harvard Yard	Cambridge	1936
CAM.974	Harvard University - 1876 Gate	Harvard Yard	Cambridge	1901
CAM.975	Harvard University - Harvard, John Statue	Harvard Yard	Cambridge	1884
CAM.976	Harvard University - Johnston Gate	Harvard Yard	Cambridge	1889
CAM.977	Harvard University - Lamont Gate	Harvard Yard	Cambridge	1948
CAM.978	Harvard University - Gatehouse	Harvard Yard	Cambridge	1983
CAM.979	Harvard University - 1879 Gate	Harvard Yard	Cambridge	1891
CAM.980	Harvard University - Onion	Harvard Yard	Cambridge	1965
CAM.981	Harvard University - Porcellian Gate	Harvard Yard	Cambridge	1901
CAM.982	Harvard University - Reclining Figure	Harvard Yard	Cambridge	1972
CAM.983	Harvard University - Robinson Gate	Harvard Yard	Cambridge	1936
CAM.984	Harvard University - 1870 Sundial	Harvard Yard	Cambridge	1901
CAM.985	Harvard University - 1877 Gate	Harvard Yard	Cambridge	1901
CAM.1214	Harvard University - Canaday Hall	Harvard Yard	Cambridge	1973
CAM.1215	Harvard University - Emerson Hall	Harvard Yard	Cambridge	1904
Tuesday, Nov	ember 18, 2014			Page 3 of 6

Inv. No.	Property Name	Street	Town	Year
CAM.1216	Harvard University - Houghton Library	Harvard Yard	Cambridge	1941
CAM.1217	Harvard University - Lamont Library	Harvard Yard	Cambridge	1947
CAM.1218	Harvard University - Lionel Hall	Harvard Yard	Cambridge	1924
CAM.1219	Harvard University - Memorial Church	Harvard Yard	Cambridge	1931
CAM.1220	Harvard University - Mower Hall	Harvard Yard	Cambridge	1924
CAM.1221	Brooks, Phillips House - Harvard Univsersity	Harvard Yard	Cambridge	1898
CAM.1222	Harvard University - Pusey Library	Harvard Yard	Cambridge	1973
CAM.1223	Harvard University - Robinson Hall	Harvard Yard	Cambridge	1900
CAM.1224	Harvard University - Stoughton Hall	Harvard Yard	Cambridge	1804
CAM.1227	Harvard University - Widener Library	Harvard Yard	Cambridge	1913
CAM.1100	Fly Club	2 Holyoke Pl	Cambridge	c 1899
CAM.1101		9 Holyoke Pl	Cambridge	c 1930
CAM.1102		8-10 Holyoke St	Cambridge	1927
CAM.201	Hasty Pudding Club	12 Holyoke St	Cambridge	1887
CAM.1103	Apley Court	16 Holyoke St	Cambridge	1897
CAM.1104	Sawyer, Samuel F. House	20 Holyoke St	Cambridge	1818
CAM.1105		22 Holyoke St	Cambridge	1956
CAM.1106		24 Holyoke St	Cambridge	1963
CAM.1107	Owl Club	30 Holyoke St	Cambridge	1905
CAM.950	Winthrop Square Park	Kennedy St	Cambridge	1631
CAM.1108	Abbott Building	5 Kennedy St	Cambridge	1908
CAM.1109		9-25 Kennedy St	Cambridge	1887
CAM.1110	Farwell, Levi Tenant House	10-14 Kennedy St	Cambridge	c 1820
CAM.1111	Read Block	18-28 Kennedy St	Cambridge	1885
CAM.1112		29-41 Kennedy St	Cambridge	1971
CAM.1113		30 Kennedy St	Cambridge	1936
CAM.1114	Garage, The	34-42 Kennedy St	Cambridge	1924
CAM.1115	Fox Club	44 Kennedy St	Cambridge	1906
CAM.1116	Drayton Hall	48 Kennedy St	Cambridge	1901
CAM.1117		50 Kennedy St	Cambridge	1892
CAM.1118		52-54 Kennedy St	Cambridge	1884
CAM.1119	Galeria	55-57 Kennedy St	Cambridge	1974
CAM.1120		56 Kennedy St	Cambridge	1903
CAM.1121	S. A. E. Club	60 Kennedy St	Cambridge	1929
CAM.1122		63-65 Kennedy St	Cambridge	1984
CAM.1123		5-7 Linden St	Cambridge	c 1867
CAM.1124	Harvard Square Squash Court	8-10 Linden St	Cambridge	1908
CAM.1125	Delphic Club	9 Linden St	Cambridge	1902
Tuesday, Nov	vember 18, 2014		-	Page 4 of 6

Tuesday, November 18, 2014

Page 4 of 6

lnv. No.	Property Name	Street	Town	Year
CAM.219	Apthorp, Rev. East House	10 Linden St	Cambridge	c 1760
CAM.901	Harvard Square Subway Kiosk	Massachusetts Ave	Cambridge	1928
CAM.1136		1230 Massachusetts Ave	Cambridge	1907
CAM.1137		1234-1238 Massachusetts Ave	Cambridge	c 1894
CAM.1138	Hamden Hall	1246-1260 Massachusetts Ave	Cambridge	1902
CAM.1139	A. D. Club	1268-1270 Massachusetts Ave	Cambridge	1899
CAM.1140	Niles Building	1280 Massachusetts Ave	Cambridge	1984
CAM.234	Fairfax, The	1300-1306 Massachusetts Ave	Cambridge	1869
CAM.1141	Fairfax - Hilton Block	1310-1312 Massachusetts Ave	Cambridge	1883
CAM.1142	Fairfax - Hilton Block	1316 Massachusetts Ave	Cambridge	1885
CAM.235	Porcellian Club	1320-1324 Massachusetts Ave	Cambridge	1890
CAM.1143	Manter Hall	1325 Massachusetts Ave	Cambridge	1885
CAM.236	Wadsworth House	1341 Massachusetts Ave	Cambridge	1726
CAM.237	Holyoke Center	1350 Massachusetts Ave	Cambridge	1961
CAM.1144	Cambridge Savings Bank	1372-1376 Massachusetts Ave	Cambridge	1923
CAM.1145	Read, Joseph Stacey House	1380-1382 Massachusetts Ave	Cambridge	c 1783
CAM.1146	Bartlett, Joseph House	1384-1392 Massachusetts Ave	Cambridge	c 1800
CAM.1147	Harvard Coop Society	1400 Massachusetts Ave	Cambridge	1924
CAM.1148	Harvard Coop Society	1408-1410 Massachusetts Ave	Cambridge	1956
CAM.1149	Harvard Trust Company	1414 Massachusetts Ave	Cambridge	1923
CAM.1150	College House	1420-1442 Massachusetts Ave	Cambridge	1832
CAM.1151		11-15 Mifflin Pl	Cambridge	1901
CAM.1152		12-14 Mifflin Pl	Cambridge	1913
CAM.1153		17-19 Mifflin Pl	Cambridge	1972
CAM.1155	Speakers Club	43-45 Mount Auburn St	Cambridge	1845
CAM.1156		45 1/2 Mount Auburn St	Cambridge	1971
CAM.1157		47-49 Mount Auburn St	Cambridge	1926
CAM.1158	Claverly Hall	63 Mount Auburn St	Cambridge	1892
CAM.1159		65R Mount Auburn St	Cambridge	1957
CAM.1160	Ridgely Hall	65 Mount Auburn St	Cambridge	1904
CAM.1161	Manter Hall School	71-77 Mount Auburn St	Cambridge	1927
CAM.1162	Phoenix - S. K. Club	72 Mount Auburn St	Cambridge	1915
CAM.1163	Iroquois Club	74 Mount Auburn St	Cambridge	1916
CAM.1164	Spee Club	76 Mount Auburn St	Cambridge	1931
CAM.1165	Willard, Lucy House	78 Mount Auburn St	Cambridge	1839
CAM.1166	· · ·	90 Mount Auburn St	Cambridge	1971
CAM.1167		92-96 Mount Auburn St	Cambridge	1895
CAM.1168		95-97 Mount Auburn St	Cambridge	1920
	ember 18, 2014			Page 5 of

Tuesday, November 18, 2014

Page 5 of 6

lnv. No.	Property Name	Street	Town	Year
CAM.1169		99 Mount Auburn St	Cambridge	c 1919
CAM.1170	Cantabrigia Club	100 Mount Auburn St	Cambridge	c 1919
CAM.1171		102 Mount Auburn St	Cambridge	1869
CAM.1172		104 Mount Auburn St	Cambridge	1983
CAM.1173		110 Mount Auburn St	Cambridge	1959
CAM.9	Boston Elevated Railway Division 7 Headquarters	112 Mount Auburn St	Cambridge	c 1911
CAM.1175	Trinity Hall	114-120 Mount Auburn St	Cambridge	1892
CAM.1177	Waverly Hall	115 Mount Auburn St	Cambridge	1902
CAM.1178		119-123 Mount Auburn St	Cambridge	1988
CAM.1176		120R Mount Auburn St	Cambridge	1982
CAM.1126	U. S. Post Office - Cambridge Branch	125 Mount Auburn St	Cambridge	1953
CAM.1179	Coop Annex	18 Palmer St	Cambridge	1964
CAM.1180	Harvard Crimson Newspaper Office	14-18 Plympton St	Cambridge	1915
CAM.1181	Crimson Building Annex	22 Plympton St	Cambridge	1961
CAM.1182	Adams House Dining Hall	28 Plympton St	Cambridge	1930
CAM.1183	Russell Hall	28 Plympton St	Cambridge	1931
CAM.1184	Russell Hall	30-30A Plympton St	Cambridge	1887
CAM.986	Harvard University - Hallowell Gate	10 Quincy St	Cambridge	1928
CAM.952	Harvard University - Quincy Street Gate	17 Quincy St	Cambridge	1936
CAM.1213	Harvard University - President's House	17 Quincy St	Cambridge	1911
CAM.312	Stedman, Samuel House	17 South St	Cambridge	1826
CAM.1185	Harvard Advocate Building	21 South St	Cambridge	1956
CAM.1186		4-6 Story St	Cambridge	1966
CAM.1187		8-12 Story St	Cambridge	1969
CAM.1188		14-16 Story St	Cambridge	1970
CAM.316	Craigie Arms	2-6 University Rd	Cambridge	1897
CAM.1189	Metcalf, Lydia House	41 Winthrop St	Cambridge	1845
CAM.1190		65-67 Winthrop St	Cambridge	1887
CAM.1191	University Lutheran Church	66 Winthrop St	Cambridge	1950
CAM.1192		69 Winthrop St	Cambridge	r 1835
CAM.1193	Pi Eta Club	89 Winthrop St	Cambridge	r 1908
CAM.1194	Pi Eta Hall	95 Winthrop St	Cambridge	r 1896
CAM.1195	Hyde, Isaac - Taylor House	96 Winthrop St	Cambridge	1845
CAM.951	Winthrop Street Retaining Wall	98 Winthrop St	Cambridge	c 1725
CAM.1196	Dame School	106 Winthrop St	Cambridge	c 1800

Massachusetts Cultural Resource Information System

D 1	Cot Bocults in Bonort Format	14-155-1
Results	Get Results in Report Format	
	PDF Spreadsheet	
Below are the results of your s	earch, using the following search criteria:	
Town(s): Cambridge		
Street No: 79		
Street Name: Kennedy St		
	ding, Burial Ground, Object, Structure	
For more information about this	s page and how to use it, <mark>click here</mark>	
	No Results Found	

National Register of Historic Places 1 Follen St. 79000354 MASSACHUSETTS Middlesex Cambridge Abbot. Edwin. House 82001965 MASSACHUSETTS Middlesex Cambridge 1 Highland St. Noyes, J.A., House 82001985 MASSACHUSETTS Middlesex Cambridge Willis, Stillman, House 1 Potter Park 96000520 MASSACHUSETTS Middlesex Cambridge Beck--Warren House 1 Prescott St. 86001318 MASSACHUSETTS Middlesex Cambridge Withey, S. B., House 10 Appian Way Cambridge Bridgman, Percy, House 10 Buckingham Pl. 75000298 MASSACHUSETTS Middlesex 82001954 MASSACHUSETTS Middlesex Cambridge Kingsley, Chester, House 10 Chester St. 83000822 MASSACHUSETTS Middlesex Cambridge 10 Coolidge Hill Rd. Orne, Sarah, House 82001926 MASSACHUSETTS Middlesex Building at 10 Follen Street 10 Follen St. Cambridge 82001942 MASSACHUSETTS Middlesex Cambridge Frost, Walter, House 10 Frost St. 101 Brattle St. 70000681 MASSACHUSETTS Middlesex Cambridge Hastings, Oliver, House 83000833 MASSACHUSETTS Middlesex Cambridge Valentine Soap Workers Cottage 101 Pearl St. 83000790 MASSACHUSETTS Middlesex Cambridge Building at 102-104 Inman Street 102-104 Inman St. 83000796 MASSACHUSETTS Middlesex Cambridge cummings, e.e., House 104 Irving St. 83000789 MASSACHUSETTS Middlesex Cambridge Building at 104-106 Hancock Street 104-106 Hancock St. 66000049 MASSACHUSETTS Middlesex Cambridge Longfellow National Historic Site 105 Brattle St. 82001927 MASSACHUSETTS Middlesex Cambridge Building at 106-108 Inman St 106-108 Inman St. 83004030 MASSACHUSETTS Middlesex Cambridge Homer-Lovell House 11 Forest St. 82001959 MASSACHUSETTS Middlesex Mason, Josiah, Jr., House 11 Market St. Cambridge 82001978 MASSACHUSETTS Middlesex Cambridge Soule, Lawrence, House 11 Russell St. 83000781 MASSACHUSETTS Middlesex Cambridge Atwood, Ephraim, House 110 Hancock St. Buildings at 110-112 Inman St. 110-112 Inman St. 82001929 MASSACHUSETTS Middlesex Cambridge 86001315 MASSACHUSETTS Middlesex Cambridge Stickney--Shepard House 11--13 Remington St. 83000826 MASSACHUSETTS Middlesex Cambridge Second Cambridge Savings Bank Building 11-21 Dunster St. University Museum 11--25 Divinity Ave. 86002081 MASSACHUSETTS Middlesex Cambridge 82001979 MASSACHUSETTS Middlesex Cambridge **Taylor Square Firehouse** 113 Garden St. 86002071 MASSACHUSETTS Middlesex Cambridge **Divinity Hall** 12 Divinity Ave. Hasty Pudding Club 12 Holyoke St. 78000442 MASSACHUSETTS Middlesex Cambridge Dana--Palmer House 12--16 Quincy St. 86001682 MASSACHUSETTS Middlesex Cambridge 83000799 MASSACHUSETTS Middlesex Cambridge 123 Antrim St. Fay, Issac, House Middlesex 89002285 MASSACHUSETTS Cambridge Kennedy, F. A., Steam Bakery 129 Franklin St. 129 Magazine St. 83000800 MASSACHUSETTS Middlesex Cambridge Flentje, Ernst, House 1320-24 Massachusetts Ave. 83000824 MASSACHUSETTS Middlesex Cambridge Porcellian Club 82001953 MASSACHUSETTS Middlesex Cambridge Hoyt, Benjamin, House 134 Otis St. 82001971 MASSACHUSETTS Middlesex Cambridge Read, Cheney, House 135 Western Ave. Middlesex 86001283 MASSACHUSETTS Cambridge Gray Gardens East and West Historic District 1--37 Gray Gardens E, 3--24 Gray Gardens W, 91 Garden and 60 Raymond Sts. Middlesex Cambridge Day, Anna, House 139 Cushing St. 82001935 MASSACHUSETTS 87002543 MASSACHUSETTS Middlesex Cambridge Gale, George, House 14--16 Clinton St. 1--44 and 5--29 Follen St. 86001681 MASSACHUSETTS Middlesex Cambridge Follen Street Historic District 83000808 MASSACHUSETTS Middlesex Cambridge Holmes, Joseph, House 144 Coolidge Hill St. 82001976 MASSACHUSETTS Middlesex Sands, Ivory, House 145 Elm St. Cambridge Middlesex 82001952 MASSACHUSETTS Cambridge Kidder-Sargent-McCrehan House 146 Rindge Ave. 76001999 MASSACHUSETTS Middlesex Cambridge Richards, Theodore W., House 15 Follen St. 82001930 MASSACHUSETTS Middlesex Cambridge Buildings at 15-17 Lee St. 15-17 Lee St. 152 Vassal Lane 82001989 MASSACHUSETTS Middlesex Cambridge Wyeth-Smith House 82001906 MASSACHUSETTS Middlesex Cambridge American Net and Twine Company Factory 155 2nd St. 158 Auburn St. 83000798 MASSACHUSETTS Middlesex Cambridge Ellis, Asa, House 79000355 MASSACHUSETTS Middlesex Cambridge Hooper-Lee Nichols House 159 Brattle St. 86002070 MASSACHUSETTS Middlesex Cambridge Littlefield--Roberts House 16 Prescott St. 86001311 MASSACHUSETTS Middlesex Cambridge Montrose, The 1648 Massachusetts Ave. 86001279 MASSACHUSETTS Middlesex Cambridge Dunvegan, The 1654 Massachusetts Ave. 83000807 MASSACHUSETTS Middlesex Cambridge Hill, Aaron, House 17 Brown St. Middlesex 76000306 MASSACHUSETTS Cambridge Davis, William Morris, House 17 Francis St. 83000787 MASSACHUSETTS Middlesex Cambridge Building at 1707-1709 Cambridge Street 1707-1709 Cambridge St. 83000788 MASSACHUSETTS Middlesex Cambridge Building at 1715-1717 Cambridge Street 1715-1717 Cambridge St.

82001973 MASSACHUSETTS 86001265 MASSACHUSETTS 82001984 MASSACHUSETTS 83000819 MASSACHUSETTS 83000814 MASSACHUSETTS 94000546 MASSACHUSETTS 82001962 MASSACHUSETTS 78000435 MASSACHUSETTS 86001313 MASSACHUSETTS 82001972 MASSACHUSETTS 76000272 MASSACHUSETTS 83000828 MASSACHUSETTS 83000806 MASSACHUSETTS 82001919 MASSACHUSETTS 82001924 MASSACHUSETTS 82001947 MASSACHUSETTS 86002078 MASSACHUSETTS 72000124 MASSACHUSETTS 82001936 MASSACHUSETTS 82001917 MASSACHUSETTS 75000295 MASSACHUSETTS 82001956 MASSACHUSETTS 76000238 MASSACHUSETTS 82001961 MASSACHUSETTS 82001960 MASSACHUSETTS 82001939 MASSACHUSETTS 83000829 MASSACHUSETTS 82001963 MASSACHUSETTS 76000305 MASSACHUSETTS 82001940 MASSACHUSETTS 82001921 MASSACHUSETTS 83000795 MASSACHUSETTS 82001969 MASSACHUSETTS 82001958 MASSACHUSETTS 83000809 MASSACHUSETTS 05001209 MASSACHUSETTS 85002663 MASSACHUSETTS 83000786 MASSACHUSETTS 83000801 MASSACHUSETTS 86001575 MASSACHUSETTS 86001282 MASSACHUSETTS 83000831 MASSACHUSETTS 86001308 MASSACHUSETTS 82001948 MASSACHUSETTS 83000793 MASSACHUSETTS 82001938 MASSACHUSETTS 82001941 MASSACHUSETTS 86001319 MASSACHUSETTS 82001983 MASSACHUSETTS 83000813 MASSACHUSETTS 83000834 MASSACHUSETTS 66000364 MASSACHUSETTS 83000815 MASSACHUSETTS 82001987 MASSACHUSETTS 86002068 MASSACHUSETTS 83000802 MASSACHUSETTS Middlesex Cambridge Cambridge Middlesex Middlesex Cambridge Cambridge Middlesex Middlesex Cambridge Middlesex Cambridge

River Street Firehouse Berkeley Street Historic District (Boundary Increase) Watson, Abraham, House North Avenue Congregational Church Lovell Block Shell Oil Company "Spectacular" Sign Melvin, Isaac, House Carpenter Center for the Visual Arts Stanstead, The Reardon, Edmund, House Baldwin, Maria, House St. James Episcopal Church Hall Tavern Barnes, James B., House Bottle House Block Henderson Carriage Repository Treadwell--Sparks House Cooper-Frost-Austin House Deane-Williams House Athenaeum Press Birkhoff, George D., House Larches, The Sands, Hiram, House Mead, Alpheus, House McLean, Isaac, House Farwell, R.H., House St. John's Roman Catholic Church Newman, Andrew, House Daly, Reginald A., House Fresh Pond Hotel Beth Israel Synagogue Coolidge, Josiah, House **Opposition House** Lowell School Hooper-Eliot House New England Confectionery Company Factory Reversible Collar Company Building Building at 259 Mount Auburn Street Frost, David, House Craigie Arms Fogg Art Museum Urban Rowhouse Jarvis, The Higginson, Col. Thomas Wentworth, House Cloverden East Cambridge Savings Bank Frost, Robert, House Wood, J. A., House Urban Rowhouse Jones, William R., House Vinal, Albert, House Elmwood Lowell, The Wyeth Brickyard Superintendent's House Brooks, Luther, House Frost, Elizabeth, Tenanthouse

176 River St. 1--8 Berkeley Pl. 181-183 Sherman St. 183 Massachusetts Ave. 1853 Massachusetts Ave. 187 Magazine St. 19 Centre St. 19 Prescott St. 19 Ware St. 195 Erie St. 196 Prospect St. 1991 Massachusetts Ave. 20 Gray Gardens West St. 200 Monsignor O'Brien Hwy. 204-214 3rd St. 2067-2089 Massachusetts Ave. 21 Kirkland St. 21 Linnaean St. 21-23 Favette St. 215 1st St. 22 Craigie 22 Larch Rd. 22 Putnam Ave. 2200 Massachusetts Ave. 2218 Massachusetts Ave. 2222-2224 Massachusetts Ave. 2270 Massachusetts Ave. 23 Fairmont St. 23 Hawthorn St. 234 Lakeview Ave. 238 Columbia St. 24 Coolidge Hill Rd. 2-4 Hancock Pl. 25 Lowell St. 25 Reservoir Rd 250 Massachusetts Ave. 25--27 Mt. Auburn & 10--12 Arrow Sts. 259 Mt. Auburn St. 26 Gray St. 2--6 University Rd., 122 Mt. Auburn, and 6 Bennett Sts. 26--32 Quincy St. 26-32 River St 27 Everett St. 29 Buckingham St. 29 Fallen St. 292 Cambridge St. 29-35 Brewster St. 3 Sacramento St. 30-38 Pearl St. 307 Harvard St. 325 Harvard St. 33 Elmwood Ave. 33 Lexington Ave. 336 Rindge Ave. 34 Kirkland St. 35 Bowdoin St.

86001272 MASSACHUSETTS Middlesex Cambridge Middlesex Cambridge 83000784 MASSACHUSETTS 82001949 MASSACHUSETTS Middlesex Cambridge 86002076 MASSACHUSETTS Middlesex Cambridge Middlesex 86001284 MASSACHUSETTS Cambridge 83000835 MASSACHUSETTS Middlesex Cambridge 82001968 MASSACHUSETTS Middlesex Cambridge 82001925 MASSACHUSETTS Middlesex Cambridge 82001982 MASSACHUSETTS Middlesex Cambridge 82001883 MASSACHUSETTS Middlesex Cambridge 82001908 MASSACHUSETTS Middlesex Cambridge 86001312 MASSACHUSETTS Middlesex Cambridge 73000286 MASSACHUSETTS Middlesex Cambridge 82001928 MASSACHUSETTS Middlesex Cambridge Middlesex Cambridge 86001276 MASSACHUSETTS 78000440 MASSACHUSETTS Middlesex Cambridge 82001931 MASSACHUSETTS Middlesex Cambridge 82001923 MASSACHUSETTS Middlesex Cambridge 82001957 MASSACHUSETTS Middlesex Cambridge 90000142 MASSACHUSETTS Middlesex Cambridge 83000792 MASSACHUSETTS Middlesex Cambridge 86001280 MASSACHUSETTS Middlesex Cambridge 86001270 MASSACHUSETTS Middlesex Cambridge 82001967 MASSACHUSETTS Middlesex Cambridge 73000288 MASSACHUSETTS Middlesex Cambridge 82001988 MASSACHUSETTS Middlesex Cambridge 83000832 MASSACHUSETTS Middlesex Cambridge 75000254 MASSACHUSETTS Middlesex Cambridge Cambridge 83000818 MASSACHUSETTS Middlesex 82001943 MASSACHUSETTS Middlesex Cambridge 83000811 MASSACHUSETTS Middlesex Cambridge 86001317 MASSACHUSETTS Middlesex Cambridge 83000825 MASSACHUSETTS Middlesex Cambridge 86002075 MASSACHUSETTS Middlesex Cambridge 82001980 MASSACHUSETTS Middlesex Cambridge Middlesex Cambridge 02001189 MASSACHUSETTS 83000791 MASSACHUSETTS Middlesex Cambridge 82001974 MASSACHUSETTS Middlesex Cambridge Middlesex Cambridge 82004968 MASSACHUSETTS 82001937 MASSACHUSETTS Middlesex Cambridge 82001934 MASSACHUSETTS Middlesex Cambridge 71000686 MASSACHUSETTS Middlesex Cambridge 82001955 MASSACHUSETTS Middlesex Cambridge 82001977 MASSACHUSETTS Middlesex Cambridge 86001343 MASSACHUSETTS Middlesex Cambridge 82001918 MASSACHUSETTS Middlesex Cambridge 83000817 MASSACHUSETTS Middlesex Cambridge Middlesex Cambridge 66000655 MASSACHUSETTS 83000827 MASSACHUSETTS Middlesex Cambridge 89001246 MASSACHUSETTS Middlesex Cambridge 73000284 MASSACHUSETTS Middlesex Cambridge 82001933 MASSACHUSETTS Middlesex Cambridge Middlesex 86001310 MASSACHUSETTS Cambridge 82001970 MASSACHUSETTS Middlesex Cambridge 94000554 MASSACHUSETTS Middlesex Cambridge 04000249 MASSACHUSETTS Middlesex Cambridge

Bennink--Douglas Cottages Bradbury, William F., House Howells, William Dean, House Lovering, Joseph, House Hapgood, Richard, House Ware Hall Old Cambridge Baptist Church Brattle Hall Urban Rowhouse Aborn, John, House Almshouse Peabody Court Apartments Brattle, William, House Building at 42 Edward J. Lopez Avenue Brabrook, E. H., House Harvard Lampoon Building Cambridge Public Library Billings, Frederick, House Lechmere Point Corporation Houses DeRosay--McNamee House Church of the New Jerusalem Eliot Hall at Radcliffe College Bertram Hall at Radcliffe College Odd Fellows Hall Pratt, Dexter, House Wyeth, John, House Valentine Soap Workers Cottage Mount Auburn Cemetery Mount Auburn Cemetery Reception House Greek Revival Cottage Howe House Warren, Langford H., House Saunders, William, House Sears Tower--Harvard Observatory Union Railway Car Barn Cambridge Home for the Aged and Infirm Child, Francis J., House Sacred Heart Church, Rectory, School and Convent Colburn, Sarah Foster, House Dodge, Edward, House Cook, William, House Fuller, Margaret, House Lamson, Rufus, House Slowey, Patrick, House US Post Office--Central Square B and B Chemical Company Mason, W. A., House Gray, Asa, House Second Waterhouse House Stoughton, Mary Fisk, House Fort Washington Conventual Church of St. Mary and St. John Memorial Drive Apartments Historic District Prospect Congregational Church Walden Street Cattle Pass Alewife Brook Parkway

35--51 Walker St. 369 Harvard St. 37 Concord Ave. 38 Kirkland St. 382--392 Harvard St. 383 Harvard St. 398 Harvard St. 40 Brattle St. 40-48 Pearl St. 41 Orchard St. 41 Orchard St. 41--43 Linnaean St. 42 Brattle St. 42 Edward J. Lopez Ave. 42--44 Avon St. 44 Bow St. 449 Broadway St. 45 Orchard St. 45-51 Gore St. and 25 3rd St. 50 Mt. Vernon St. 50 Quincy St. 51 Shepard St. 53 Shepard St. 536 Massachusetts Ave. 54 Brattle St. 56 Aberdeen Ave. 5-7 Cottage St. 580 Mount Auburn St. 583 Mt. Auburn St. 59 Rice St. 6 Appleton St. 6 Garden Terr. 6 Prentiss St. 60 Garden St. 613-621 Cambridge St. 650 Concord Ave. 67 Kirkland St. 6th and Thorndike Sts. 7 Dana St. 70 Sparks St. 71 Appleton St. 71 Cherry St. 72-74 Hampshire St. 73 Bolton St. 770 Massachusetts Ave. 780 Memorial Dr. 87 Raymond St. 88 Garden St. 9 Follen St. 90 Brattle St. 95 Waverly St. 980 Memorial Dr. 983--984, 985--986, 987--989, and 992--993 Memorial Dr. 99 Prospect St. Adjacent to MBTA right-of-way at Walden St. Alewife Brook Parkway

82001916 MASSACHUSETTS	Middlesex	Cambridge	Ash Street Historic District	Ash St. and Ash St. Place between Brattle and Mount Auburn Sts.
82001920 MASSACHUSETTS	Middlesex	Cambridge	Berkeley Street Historic District	Berkeley St.
82001922 MASSACHUSETTS	Middlesex	Cambridge	Bigelow Street Historic District	Bigelow St.
78000436 MASSACHUSETTS	Middlesex	Cambridge	Charles River Basin Historic District	Both banks of Charles River from Eliot Bridge to Charles River Dam
97000561 MASSACHUSETTS	Middlesex	Cambridge	Blake and Knowles Steam Pump Company National Register District	Bounded by Third, Binney, Fifth, and Rogers Sts.
70000685 MASSACHUSETTS	Middlesex	Cambridge	Memorial Hall, Harvard University	Cambridge and Quincy Sts., Harvard University campus
83000820 MASSACHUSETTS	Middlesex	Cambridge	Old Cambridgport Historic District	Cherry, Harvard and Washington Sts.
82001981 MASSACHUSETTS	Middlesex	Cambridge	Upper Magazine Street Historic District	Cottage, Magazine, William and Perry Sts.
04001429 MASSACHUSETTS	Middlesex	Cambridge	Fresh Pond ParkwayMetropolitan Park System of Greater Boston	Fresh Pond Parkway
66000140 MASSACHUSETTS	Middlesex	Cambridge	Christ Church	Garden St.
73000281 MASSACHUSETTS	Middlesex	Cambridge	Cambridge Common Historic District	Garden, Waterhouse, Cambridge, and Peabody Sts., and Massachusetts Ave.
83000803 MASSACHUSETTS	Middlesex	Cambridge	Garfield Street Historic District	Garfield St. between Massachusetts Ave. and Oxford St.
82001951 MASSACHUSETTS	Middlesex	Cambridge	Inman Square Historic District	Hampshire, Cambridge, and Inman Sts.
82001945 MASSACHUSETTS	Middlesex	Cambridge	Harvard Street Historic District	Harvard St. Between Ellery and Hancock Sts.
72000128 MASSACHUSETTS	Middlesex	Cambridge	Austin Hall	Harvard University campus
66000769 MASSACHUSETTS	Middlesex	Cambridge	Massachusetts Hall, Harvard University	Harvard University Yard
70000732 MASSACHUSETTS	Middlesex	Cambridge	Sever Hall, Harvard University	Harvard Yard
70000736 MASSACHUSETTS	Middlesex	Cambridge	University Hall, Harvard University	Harvard Yard
82001950 MASSACHUSETTS	Middlesex	Cambridge	Hubbard Park Historic District	Hubbard Park, Mercer Circle and Sparks Sts.
83000821 MASSACHUSETTS	Middlesex	Cambridge	Old Cambridge Historic District	Irregular pattern along Brattle St.
86001683 MASSACHUSETTS	Middlesex	Cambridge	Kirkland Place Historic District	Kirkland Pl.
75000249 MASSACHUSETTS	Middlesex	Cambridge	First Baptist Church	Magazine and River Sts.
83000816 MASSACHUSETTS	Middlesex	Cambridge	Maple Avenue Historic District	Maple Ave. between Marie Ave. and Broadway
78000441 MASSACHUSETTS	Middlesex	Cambridge	Harvard Square Subway Kiosk	Massachusetts Ave. and Boylston St.
73000287 MASSACHUSETTS	Middlesex	Cambridge	Old Harvard Yard	Massachusetts Ave. and Cambridge St.
83004293 MASSACHUSETTS	Middlesex	Cambridge	Cambidge Common Historic District Amendment	Massachusetts Ave. and Garden, Waterhouse, Cambridge, and Peabody Sts.
82001932 MASSACHUSETTS	Middlesex	Cambridge	City Hall Historic District	Massachusetts Ave., Bigelow and Temple Sts, Inman and Richard Allen Dr.
82001944 MASSACHUSETTS	Middlesex	Cambridge	Harvard Square Historic District	Massachusetts Ave., Boylston and Brattle Sts.
76001970 MASSACHUSETTS	Middlesex	Cambridge	Little, Arthur D., Inc., Building	Memorial Dr.
82001964 MASSACHUSETTS	Middlesex	Cambridge	Norfolk Street Historic District	Norfolk St. between Suffolk and Austin Sts.
87000500 MASSACHUSETTS	Middlesex	Cambridge	Harvard Union	Quincy and Harvard Sts.
83000797 MASSACHUSETTS	Middlesex	Cambridge	East Cambridge Historic District	Roughly bounded by Cambridge, Hurley and 5th Sts.
				Roughly bounded by Harvard & Massachusetts Aves., Mt. Auburn, Winthrop, Bennett,
86003654 MASSACHUSETTS	Middlesex	Cambridge	Harvard Square Historic District (Boundary Increase)	Story & Church Sts.
				Roughly bounded by Mt. Auburn & Grant & Cowperwaite Sts., Banks St. & Putman Ave.,
86002073 MASSACHUSETTS	Middlesex	Cambridge	Harvard Houses Historic District	the Memorial River, & Boyleston St.
86001680 MASSACHUSETTS	Middlesex	Cambridge	Shady Hill Historic District	Roughly bounded by Museum, Beacon and Holden, and Kirkland Sts., and Francis Ave.
82001946 MASSACHUSETTS	Middlesex	Cambridge	Hastings Square Historic District	Roughly bounded by Rockingham, Henry, Chestnut and Brookline Sts.
				Roughly bounded by underpass, Broadway & Quincy Sts., Massachusetts Ave., &
87002137 MASSACHUSETTS	Middlesex	Cambridge	Harvard Yard Historic District	Peabody St.
90000128 MASSACHUSETTS	Middlesex	Cambridge	Central Square Historic District	Roughly Massachusetts Ave. from Clinton St. to Main St.
87000499 MASSACHUSETTS	Middlesex	Cambridge	Cambridge Common Historic District (Boundary Increase and Decrease)	Roughly NW of Waterhouse St. on Concord Ave. between Garden and Follen Sts.
82001975 MASSACHUSETTS	Middlesex	Cambridge	Salem-Auburn Streets Historic District	Salem and Auburn Sts.
83000782 MASSACHUSETTS	Middlesex	Cambridge	Avon Hill Historic District	Washington and Walnut Aves. and Agassiz, Humboldt, Arlington and Lancaster Sts.
82001986 MASSACHUSETTS	Middlesex	Cambridge	Winter Street Historic District	Winter St.

APPENDIX E

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number:	L1426183
Client:	Haley & Aldrich, Inc.
	465 Medford Street, Suite 2200
	Charlestown, MA 02129-1400
ATTN:	Kate Dilawari
Phone:	(617) 886-7458
Project Name:	HARVARD KENNEDY SCHOOL
Project Number:	38247-004
Report Date:	02/24/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_N	0:02241514:46
----------	---------------

Project Name:	HARVARD KENNEDY SCHOOL
Project Number:	38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1426183-01	HA-B6	WATER	Not Specified	10/31/14 09:40	10/31/14

L1426183

Project Name: HARVARD KENNEDY SCHOOL

Report Date: 02/24/15

Lab Number:

Project Number: 38247-004

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Case Narrative (continued)

Report Submission

This report replaces the report issued on November 07, 2014 and includes the results for Total Copper.

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1426183-01, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.00455), as well as the average response factor for 1,4-dioxane. In addition, a quadratic fit was utilized for acetone. The initial calibration verification is outside acceptance criteria for dichlorodifluoromethane (192%), but within overall method criteria. The continuing calibration standard, associated with L1426183-01, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard method to this report.

Pesticides

A copy of the Degradation Standards for 4,4'-DDT and Endrin breakdown products is included as an addendum.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP compounds per the Chain of Custody.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP compounds per the Chain of Custody.

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Case Narrative (continued)

Dissolved Metals

In reference to question H:

The WG737044-2 LCS recovery, associated with L1426183-01, is outside the acceptance criteria for mercury (289%). Re-analysis of the LCS yielded an unacceptable recovery of 250%. The LCSD recovery was within acceptance criteria for this analyte; therefore, no further action was taken. In addition, the LCS/LCSD RPD, associated with L1426183-01, is above the acceptance criteria (111%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

king l. Wister Lisa Westerlind

Title: Technical Director/Representative

Date: 02/24/15

ORGANICS

VOLATILES

		Serial_No	:02241514:46
Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183
Project Number:	38247-004	Report Date:	02/24/15
	SAMPLE	RESULTS	
Lab ID:	L1426183-01	Date Collected:	10/31/14 09:40
Client ID:	HA-B6	Date Received:	10/31/14
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	97,8260C		
Analytical Date:	11/05/14 17:02		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

					Ş	Serial_No:	:02241514:46
Project Name:	HARVARD KENNED	Y SCHOOL			Lab Nu	mber:	L1426183
Project Number:	38247-004				Report	Date:	02/24/15
•		SAMPI		5	•		02,21,10
Lab ID:	L1426183-01				Date Col	lected:	10/31/14 09:40
Client ID:	HA-B6				Date Red	ceived:	10/31/14
Sample Location:	Not Specified				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Orga	inics - Westborough La	b					
1,3-Dichlorobenzene		ND			1.0		4
1,3-Dichlorobenzene		ND		ug/l	1.0		1
Methyl tert butyl ether		ND		ug/l	2.0		1
p/m-Xylene		ND		ug/l	2.0		1
o-Xylene		ND		ug/l	1.0		1
				ug/l			
Xylene (Total)		ND		ug/l	1.0		1
cis-1,2-Dichloroethene	<u>\</u>	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane		ND		ug/l	2.0		1
1,2,3-Trichloropropane		ND		ug/l	2.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	2.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	2.0		1
2-Butanone		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	2.0		1
Tetrahydrofuran		ND		ug/l	2.0		1
2,2-Dichloropropane		ND		ug/l	2.0		1
1,2-Dibromoethane		ND		ug/l	2.0		1
1,3-Dichloropropane		ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethan	e	ND		ug/l	1.0		1
Bromobenzene		ND		ug/l	2.0		1
n-Butylbenzene		ND		ug/l	2.0		1
sec-Butylbenzene		ND		ug/l	2.0		1
tert-Butylbenzene		ND		ug/l	2.0		1
o-Chlorotoluene		ND		ug/l	2.0		1
p-Chlorotoluene		ND		ug/l	2.0		1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.0		1
Hexachlorobutadiene		ND		ug/l	0.60		1
Isopropylbenzene		ND		ug/l	2.0		1
p-Isopropyltoluene		ND		ug/l	2.0		1
Naphthalene		ND		ug/l	2.0		1
n-Propylbenzene		ND		ug/l	2.0		1
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1
				-			

						Serial_No	:02241514:46
Project Name:	HARVARD KENNE	DY SCHOOL			Lab Nu	umber:	L1426183
Project Number: 38247-004					Report	Date:	02/24/15
		SAMP		S			
Lab ID:	L1426183-01				Date Co	llected:	10/31/14 09:40
Client ID:	HA-B6				Date Re	ceived:	10/31/14
Sample Location:	Not Specified				Field Pre	əp:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Orga	anics - Westborough La	ab					
Ethyl ether		ND		ug/l	2.0		1
Isopropyl Ether		ND		ug/l	2.0		1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1
Tertiary-Amyl Methyl Eth	ier	ND		ug/l	2.0		1
					250		

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	120		70-130	

Project Name: HARVARD KENNEDY SCHOOL

Project Number:

38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/05/14 07:09Analyst:MM

arameter	Result	Qualifier	Units	RL	MDL	
CP Volatile Organics	- Westborough Lab for	sample(s):	01 Bate	ch: WG7376	643-3	
Methylene chloride	ND		ug/l	2.0		
1,1-Dichloroethane	ND		ug/l	1.0		
Chloroform	ND		ug/l	1.0		
Carbon tetrachloride	ND		ug/l	1.0		
1,2-Dichloropropane	ND		ug/l	1.0		
Dibromochloromethane	ND		ug/l	1.0		
1,1,2-Trichloroethane	ND		ug/l	1.0		
Tetrachloroethene	ND		ug/l	1.0		
Chlorobenzene	ND		ug/l	1.0		
Trichlorofluoromethane	ND		ug/l	2.0		
1,2-Dichloroethane	ND		ug/l	1.0		
1,1,1-Trichloroethane	ND		ug/l	1.0		
Bromodichloromethane	ND		ug/l	1.0		
trans-1,3-Dichloropropene	e ND		ug/l	0.50		
cis-1,3-Dichloropropene	ND		ug/l	0.50		
1,3-Dichloropropene, Tota	al ND		ug/l	0.50		
1,1-Dichloropropene	ND		ug/l	2.0		
Bromoform	ND		ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		
Benzene	ND		ug/l	0.50		
Toluene	ND		ug/l	1.0		
Ethylbenzene	ND		ug/l	1.0		
Chloromethane	ND		ug/l	2.0		
Bromomethane	ND		ug/l	2.0		
Vinyl chloride	ND		ug/l	1.0		
Chloroethane	ND		ug/l	2.0		
1,1-Dichloroethene	ND		ug/l	1.0		
trans-1,2-Dichloroethene	ND		ug/l	1.0		
Trichloroethene	ND		ug/l	1.0		

Project Name: HARVARD KENNEDY SCHOOL

Project Number:

38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/05/14 07:09Analyst:MM

Parameter	Result	Qualifier	Units		RL	MDL
ICP Volatile Organics -	Westborough Lab for s	ample(s):	01 E	Batch:	WG737	7643-3
1,2-Dichlorobenzene	ND		ug/l		1.0	
1,3-Dichlorobenzene	ND		ug/l		1.0	
1,4-Dichlorobenzene	ND		ug/l		1.0	
Methyl tert butyl ether	ND		ug/l		2.0	
p/m-Xylene	ND		ug/l		2.0	-
o-Xylene	ND		ug/l		1.0	-
Xylene (Total)	ND		ug/l		1.0	-
cis-1,2-Dichloroethene	ND		ug/l		1.0	-
1,2-Dichloroethene (total)	ND		ug/l		1.0	-
Dibromomethane	ND		ug/l		2.0	
1,2,3-Trichloropropane	ND		ug/l		2.0	-
Styrene	ND		ug/l		1.0	
Dichlorodifluoromethane	ND		ug/l		2.0	
Acetone	ND		ug/l		5.0	
Carbon disulfide	ND		ug/l		2.0	
2-Butanone	ND		ug/l		5.0	
4-Methyl-2-pentanone	ND		ug/l		5.0	
2-Hexanone	ND		ug/l		5.0	
Bromochloromethane	ND		ug/l		2.0	
Tetrahydrofuran	ND		ug/l		2.0	-
2,2-Dichloropropane	ND		ug/l		2.0	-
1,2-Dibromoethane	ND		ug/l		2.0	-
1,3-Dichloropropane	ND		ug/l		2.0	
1,1,1,2-Tetrachloroethane	ND		ug/l		1.0	
Bromobenzene	ND		ug/l		2.0	
n-Butylbenzene	ND		ug/l		2.0	
sec-Butylbenzene	ND		ug/l		2.0	
tert-Butylbenzene	ND		ug/l		2.0	
o-Chlorotoluene	ND		ug/l		2.0	

Project Name: HARVARD KENNEDY SCHOOL

Project Number:

38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:11/05/14 07:09Analyst:MM

arameter	Result	Qualifier	Unit	s	RL	MDL	
ICP Volatile Organics - Westborg	ough Lab for	sample(s):	01	Batch:	WG737	7643-3	
p-Chlorotoluene	ND		ug/	1	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/	1	2.0		
Hexachlorobutadiene	ND		ug/	1	0.60		
Isopropylbenzene	ND		ug/	(1	2.0		
p-Isopropyltoluene	ND		ug/	(1	2.0		
Naphthalene	ND		ug/	1	2.0		
n-Propylbenzene	ND		ug/	1	2.0		
1,2,3-Trichlorobenzene	ND		ug/	1	2.0		
1,2,4-Trichlorobenzene	ND		ug/	1	2.0		
1,3,5-Trimethylbenzene	ND		ug/	1	2.0		
1,2,4-Trimethylbenzene	ND		ug/	1	2.0		
Ethyl ether	ND		ug/	1	2.0		
Isopropyl Ether	ND		ug/	1	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/	1	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/	1	2.0		
1,4-Dioxane	ND		ug/	1	250		

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	108		70-130	

Batch Quality Control

Project Number: 38247-004

Lab Number: L1426183 Report Date: 02/24/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG737643-1 WG737643-2 Methylene chloride 112 112 70-130 20 0 1,1-Dichloroethane 107 105 70-130 2 20 Chloroform 108 109 70-130 20 1 Carbon tetrachloride 20 96 97 70-130 1 1,2-Dichloropropane 108 70-130 14 20 94 Dibromochloromethane 70-130 20 88 89 1 1,1,2-Trichloroethane 99 101 70-130 2 20 Tetrachloroethene 94 70-130 20 94 0 Chlorobenzene 70-130 20 99 100 1 Trichlorofluoromethane 70-130 20 108 106 2 109 108 70-130 20 1.2-Dichloroethane 1 1,1,1-Trichloroethane 105 104 70-130 1 20 Bromodichloromethane 106 107 70-130 20 1 trans-1,3-Dichloropropene 92 70-130 20 91 1 cis-1,3-Dichloropropene 70-130 20 99 96 3 1,1-Dichloropropene 70-130 20 107 106 1 Bromoform 78 80 70-130 3 20 1,1,2,2-Tetrachloroethane 97 100 70-130 3 20 70-130 20 Benzene 108 108 0 Toluene 70-130 20 99 100 1 Ethylbenzene 99 70-130 20 99 0

Batch Quality Control

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG737643-1 WG737643-2 106 102 70-130 20 Chloromethane 4 Bromomethane 107 100 70-130 20 7 Vinyl chloride 107 104 70-130 20 3 20 Chloroethane 114 116 70-130 2 1,1-Dichloroethene 108 70-130 3 20 111 70-130 20 trans-1.2-Dichloroethene 112 110 2 Trichloroethene 110 108 70-130 2 20 1.2-Dichlorobenzene 100 100 70-130 20 0 70-130 20 1.3-Dichlorobenzene 97 100 3 1,4-Dichlorobenzene 70-130 20 100 97 3 Methyl tert butyl ether 104 70-130 2 20 106 p/m-Xylene 98 99 70-130 1 20 o-Xylene 98 70-130 2 20 96 cis-1.2-Dichloroethene 70-130 20 108 109 1 Dibromomethane 70-130 20 109 108 1 1,2,3-Trichloropropane 96 70-130 20 94 2 Styrene 98 99 70-130 1 20 Dichlorodifluoromethane 97 93 70-130 4 20 Q Q 70-130 20 Acetone 145 131 10 Carbon disulfide 70-130 20 104 104 0 2-Butanone 123 125 70-130 20 2

Batch Quality Control

Project Number: 38247-004

Lab Number: L1426183 Report Date: 02/24/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG737643-1 WG737643-2 4-Methyl-2-pentanone 101 100 70-130 20 1 2-Hexanone 102 100 70-130 2 20 Bromochloromethane 110 70-130 20 110 0 Tetrahydrofuran 20 106 113 70-130 6 2,2-Dichloropropane 103 104 70-130 20 1 1.2-Dibromoethane 70-130 20 95 97 2 1,3-Dichloropropane 100 100 70-130 0 20 1,1,1,2-Tetrachloroethane 90 93 70-130 3 20 Bromobenzene 70-130 20 94 93 1 n-Butylbenzene 70-130 20 94 94 0 sec-Butylbenzene 94 70-130 2 20 92 tert-Butylbenzene 94 93 70-130 1 20 o-Chlorotoluene 92 70-130 2 20 90 70-130 20 p-Chlorotoluene 94 94 0 1,2-Dibromo-3-chloropropane 94 70-130 20 80 16 Hexachlorobutadiene 88 70-130 20 87 1 Isopropylbenzene 102 103 70-130 1 20 p-Isopropyltoluene 92 94 70-130 2 20 Naphthalene 70-130 2 20 98 100 n-Propylbenzene 70-130 20 92 93 1 1,2,3-Trichlorobenzene 92 93 70-130 20 1

Batch Quality Control

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits MCP Volatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG737643-1 WG737643-2 1,2,4-Trichlorobenzene 93 97 70-130 20 4 1,3,5-Trimethylbenzene 70-130 20 94 93 1 1,2,4-Trimethylbenzene 94 94 70-130 0 20 Ethyl ether 110 20 110 70-130 0 Isopropyl Ether 100 100 70-130 0 20 Ethyl-Tert-Butyl-Ether 97 98 70-130 20 1 Tertiary-Amyl Methyl Ether 70-130 20 98 99 1 Q 1,4-Dioxane 81 108 70-130 29 20

	LCS	LCS			Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	99		98		70-130	
Toluene-d8	95		95		70-130	
4-Bromofluorobenzene	98		97		70-130	
Dibromofluoromethane	105		106		70-130	

SEMIVOLATILES

		Serial_No:02241514:46
Project Name:	HARVARD KENNEDY SCHOOL	Lab Number: L1426183
Project Number:	38247-004	Report Date: 02/24/15
	SAMPLE RESULTS	
Lab ID:	L1426183-01	Date Collected: 10/31/14 09:40
Client ID:	HA-B6	Date Received: 10/31/14
Sample Location:	Not Specified	Field Prep: Not Specified
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	97,8270D	Extraction Date: 11/06/14 13:11
Analytical Date:	11/07/14 11:39	
Analyst:	RC	

Bis(2-chloroisopropyl)ether ND ug/l 2.0 - 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 - 1 Hexachlorobutadiene ND ug/l 2.0 1 texachlorobutadiene ND ug/l 2.0 1 texachlorobutadiene ND ug/l 2.0 1 texachlorobutadiene ND ug/l 2.0 1 sophorone ND ug/l 5.0 1 Naphthalene ND ug/l 2.0 1 Nitrobenzene ND ug/l 2.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 </th <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
LA-Trichlorobenzene ND ug/l 5.0 - 1 Hexachlorobenzene ND ug/l 2.0 1 Sig(2-chloroethyljether ND ug/l 2.0 1 2-Chloronaphthalene ND ug/l 2.0 1 2-Chlorobenzene ND ug/l 2.0 1 3-Dichlorobenzene ND ug/l 2.0 1 3-Dichlorobenzene ND ug/l 5.0 1 3-Dichlorobenzene ND ug/l 2.0 1 3-Dichorobenzene ND ug/l 2.0 1 3-Dichorobenzene ND ug/l 2.0 1	MCP Semivolatile Organics - Westb	orough Lab					
LA-Trichlorobenzene ND ug/l 5.0 - 1 Hexachlorobenzene ND ug/l 2.0 1 Sig(2-chloroethyljether ND ug/l 2.0 1 2-Chloronaphthalene ND ug/l 2.0 1 2-Chlorobenzene ND ug/l 2.0 1 3-Dichlorobenzene ND ug/l 2.0 1 3-Dichlorobenzene ND ug/l 5.0 1 3-Dichlorobenzene ND ug/l 2.0 1 3-Dichorobenzene ND ug/l 2.0 1 3-Dichorobenzene ND ug/l 2.0 1	Acenanhthana	ND		ug/l	2.0		1
ND ug/l 2.0 1 3is(2-chloroethyl)ether ND ug/l 2.0 1 2cChloroethyl)ether ND ug/l 2.0 1 2cChloroethyl)ether ND ug/l 2.0 1 2.2.Dichlorobenzene ND ug/l 2.0 1 3.3.Dichlorobenzene ND ug/l 5.0 1 3.3.Dichlorobenzidine ND ug/l 5.0 1 2.4.Dinitrotoluene ND ug/l 5.0 1 3.3.Dichlorobenzidine ND ug/l 2.0 1 2.4.Dinitrotoluene ND ug/l 2.0 1 3.4.Sobenzene ND ug/l 2.0 1 3.8.S(2-chlorostoprop/lyhether ND ug/l 2.0 1 3.8.S(2-chlorostoprop/lyhether ND ug/l 2.0 1 <	· · · · · · · · · · · · · · · · · · ·			-			
ND ug/l 2.0 1 2:Chloronaphthalene ND ug/l 2.0 1 2:Chloronaphthalene ND ug/l 2.0 1 1;2:Dichlorobenzene ND ug/l 2.0 1 1;4:Dichlorobenzene ND ug/l 2.0 1 3:A:Dichlorobenzene ND ug/l 5.0 1 3:A:Dichlorobenzene ND ug/l 5.0 1 3:A:Dichlorobenzene ND ug/l 5.0 1 2:A:Dintrotoluene ND ug/l 5.0 1 Azobenzene ND ug/l 2.0 1 Azobenzene ND				-			
Chloronaphhalene ND ug/l 2.0 1 1,2-Dichlorobenzene ND ug/l 2.0 1 1,3-Dichlorobenzene ND ug/l 2.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 3.3-Dichlorobenzidine ND ug/l 5.0 1 2.4-Dinitroluene ND ug/l 5.0 1 2.4-Dinitroluene ND ug/l 5.0 1 2.4-Dinitroluene ND ug/l 2.0 1				-			
A.Dichloroberzene ND ug/l 2.0 1 1,3-Dichloroberzene ND ug/l 2.0 1 1,4-Dichloroberzene ND ug/l 5.0 1 3,3-Dichloroberzidine ND ug/l 5.0 1 2,4-Dinitrocluene ND ug/l 5.0 1 2,6-Dinitrocluene ND ug/l 5.0 1 1,20charzene ND ug/l 2.0 1 1,20charzene ND<							
A)Dichlorobenzene ND ug/l 2.0 - 1 1,4-Dichlorobenzene ND ug/l 5.0 - 1 3,3-Dichlorobenzidine ND ug/l 5.0 - 1 2,4-Dinitrotoluene ND ug/l 5.0 - 1 2,6-Dinitrotoluene ND ug/l 5.0 - 1 1,2obenzene ND ug/l 5.0 - 1 1,2obenzene ND ug/l 2.0 - 1 1,2obezythinkalene ND ug/l <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
A-Dichlorobenzene ND ug/l 2.0 - 1 3.3-Dichlorobenzidine ND ug/l 5.0 - 1 2.4-Dinitrotoluene ND ug/l 5.0 - 1 2.6-Dinitrotoluene ND ug/l 5.0 - 1 2.6-Dinitrotoluene ND ug/l 2.0 - 1 1-Bronophenyl phenyl ether ND ug/l 2.0 - 1 1-Bronophenyl phenyl ether ND ug/l 2.0 - 1 2.6-Chlorotebroxy)methane ND ug/l 2.0 - 1 2.6-Chlorotebroxy)methane ND ug/l 2.0 - 1 2.6-Chlorotebroxy)methane ND ug/l 2.0 - 1 4exachlorotebrazidine ND ug/l 2.0 - 1 4exachlorotebrazidine ND ug/l 2.0 - 1 4exachlorotebrazidine ND ug/l 2.0 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
x3-Dichlorobenzidine ND ugl 5.0 1 2.4-Dinitrotoluene ND ugl 5.0 1 2.6-Dinitrotoluene ND ugl 5.0 1 2.6-Dinitrotoluene ND ugl 5.0 1 2.6-Dinitrotoluene ND ugl 2.0 1 No ugl 2.0 1 1 Floorophenyl phenyl ether ND ugl 2.0 1 Sig(2-chloroisopropyl)ether ND ugl 2.0 1 Sig(2-chloroethoxy)methane ND ugl 2.0 1 4exachlorobtatdiene ND ugl 2.0 1 4exachlorobtatdiene ND ugl 2.0 1 4exachlorobtateme ND ugl 2.0 1 4exachlorobtateme ND ugl 2.0 1 4exachlorobtateme ND ugl 2.0 1				-			
A-Dinitrotoluene ND ug/l 5.0 1 2,6-Dinitrotoluene ND ug/l 5.0 1 Zobenzene ND ug/l 2.0 1 Tuoranthene ND ug/l 2.0 1 E-bromophenyl phenyl ether ND ug/l 2.0 1 Bis(2-chlorostopropyl)ether ND ug/l 5.0 1 Bis(2-chlorostopropyl)ether ND ug/l 5.0 1 Bis(2-chlorostopropyl)ether ND ug/l 5.0 1 Hexachlorobtuadiene ND ug/l 2.0 1 Hexachlorobtuadiene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 Nitrobenzene ND ug/l 3.0 1 Sis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-otylphthalate ND ug/l 5.0 1				-			
k-Dinitrotoluene ND ug/l 5.0 1 k-zoberzene ND ug/l 2.0 1 Fluoranthene ND ug/l 2.0 1 Flooraphenyl phenyl ether ND ug/l 2.0 1 Bis(2-chlorosporpyl)ether ND ug/l 5.0 1 Bis(2-chlorosthoxy)methane ND ug/l 5.0 1 Hexachlorobthadiene ND ug/l 2.0 1 texachlorobthane ND ug/l 2.0 1 sophorone ND ug/l 5.0 1 Nitrobenzene ND ug/l 5.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-otylphthalate ND ug/l 5.0 1 Di-n-otylphthalate ND ug/l 5.0 1							
ND ug/l 2.0 1 Fluoranthene ND ug/l 2.0 1 Flooranthene ND ug/l 2.0 1 Flooranthene ND ug/l 2.0 1 Flooraphenyl phenyl ether ND ug/l 2.0 1 Sis(2-chlorostopopyl)ether ND ug/l 5.0 1 Fleoranthene ND ug/l 2.0 1 Fleoranthorostopopyl)ether ND ug/l 2.0 1 Fleoranthorostopopyliether ND ug/l 2.0 1 Sitorbopopyliether ND ug/l 5.0 1 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
FluorantheneNDug/l2.014-Bromophenyl phenyl etherNDug/l2.014-Bromophenyl phenyl etherNDug/l2.014-Bromophenyl phenyl etherNDug/l5.014-Bromophenyl phenyl etherNDug/l2.014-Bromophenyl phenyl etherNDug/l2.014-Bromophenyl etherNDug/l5.014-Bromophenyl etherNDug/l2.014-Bromophenyl etherNDug/l2.014-Bromophenyl etherNDug/l2.014-Bromophenyl etherNDug/l2.014-Bromophenyl etherNDug/l5.016-Bromophenyl etherNDug/l5.016-Bromophenyl etherNDug/l5.016-Drin-butylphthalateNDug/l5.016-Drin-butylphthalateNDug/l5.016-Drin-butylphthalateNDug/l5.016-Drin-butylphthalateNDug/l5.016-Drin-butylphthalateNDug/l5.016-Drin-butylphthalateNDug/l5.016-Drin-butylphthalateNDug/l5.016-Drin-butylph				-			
Harmonphenyl phenyl ether ND ug/l 2.0 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 4exachlorobtadiene ND ug/l 2.0 1 4exachlorobtadiene ND ug/l 2.0 1 4exachlorobtadiene ND ug/l 2.0 1 4exachlorobtadiene ND ug/l 5.0 1 4exachlorobtadiene ND ug/l 5.0 1 4exachlorobtadiene ND ug/l 2.0 1 4exachlorobtadiene ND ug/l 2.0 1 Vitrobenzene ND ug/l 3.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0							
Bis(2-chloroisopropyl)ether ND ug/l 2.0 - 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 - 1 Hexachlorobutadiene ND ug/l 2.0 1 texachlorobutadiene ND ug/l 2.0 1 texachlorobutadiene ND ug/l 2.0 1 texachlorobutadiene ND ug/l 2.0 1 sophorone ND ug/l 5.0 1 Naphthalene ND ug/l 2.0 1 Nitrobenzene ND ug/l 2.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>				-			
ND ug/l 5.0 1 Hexachloroethoxy)methane ND ug/l 2.0 1 Hexachloroethane ND ug/l 2.0 1 sophorone ND ug/l 2.0 1 sophorone ND ug/l 5.0 1 Naphthalene ND ug/l 2.0 1 Nitrobenzene ND ug/l 2.0 1 Sis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Sis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Sis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Dien-butylphthalat	4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Hexachlorobutadiene ND ug/l 2.0 1 Hexachloroethane ND ug/l 2.0 1 sophorone ND ug/l 5.0 1 Naphthalene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 Nitrobenzene ND ug/l 2.0 1 Sis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Sis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Sis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Sis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Dientyl phthalate ND ug/l 5.0 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
result ND ug/l 2.0 1 sophorone ND ug/l 5.0 1 Naphthalene ND ug/l 2.0 1 Nitrobenzene ND ug/l 2.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Dimethyl phthalate ND ug/l 5.0 1 Dimethyl phthalate ND ug/l 2.0 1 <	Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
ND ug/l 5.0 1 Naphthalene ND ug/l 2.0 1 Nitrobenzene ND ug/l 2.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-nethyl phthalate ND ug/l 5.0 1 Di-nethyl phthalate ND ug/l 2.0 1 Banzo(a	Hexachlorobutadiene	ND		ug/l	2.0		1
ND ug/l 2.0 1 Nitrobenzene ND ug/l 2.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 2.0 1 Banzo(a)anthracene ND ug/l 2.0 1	Hexachloroethane	ND		ug/l	2.0		1
ND ug/l 2.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1	Isophorone	ND		ug/l	5.0		1
Bis(2-Ethylhexyl)phthalate ND ug/l 3.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Bis(2-Ethylhexyl)phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-octylphthalate ND ug/l 5.0 1 Di-n-octylphthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Dimethyl phthalate ND ug/l 5.0 1 Barzo(a)anthracene ND ug/l 2.0 1 Barzo(a)pyrene ND ug/l 2.0 1	Naphthalene	ND		ug/l	2.0		1
ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-octylphthalate ND ug/l 5.0 1 Di-n-octylphthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Dimethyl phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1	Nitrobenzene	ND		ug/l	2.0		1
Di-n-butylphthalateNDug/l5.01Di-n-octylphthalateNDug/l5.01Diethyl phthalateNDug/l5.01Dimethyl phthalateNDug/l5.01Dimethyl phthalateNDug/l5.01Dimethyl phthalateNDug/l2.01Benzo(a)anthraceneNDug/l2.01Benzo(a)pyreneNDug/l2.01	Bis(2-Ethylhexyl)phthalate	ND		ug/l	3.0		1
Di-n-octylphthalateNDug/l5.01Diethyl phthalateNDug/l5.01Dimethyl phthalateNDug/l5.01Benzo(a)anthraceneNDug/l2.01Benzo(a)pyreneNDug/l2.01	Butyl benzyl phthalate	ND		ug/l	5.0		1
Diethyl phthalateNDug/l5.01Dimethyl phthalateNDug/l5.01Benzo(a)anthraceneNDug/l2.01Benzo(a)pyreneNDug/l2.01	Di-n-butylphthalate	ND		ug/l	5.0		1
Diethyl phthalate ND ug/l 5.0 1 Dimethyl phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1	Di-n-octylphthalate	ND		ug/l	5.0		1
Dimethyl phthalateNDug/l5.01Benzo(a)anthraceneNDug/l2.01Benzo(a)pyreneNDug/l2.01	Diethyl phthalate	ND			5.0		1
Benzo(a)anthraceneNDug/l2.01Benzo(a)pyreneNDug/l2.01	Dimethyl phthalate	ND			5.0		1
Benzo(a)pyrene ND ug/l 2.0 1	Benzo(a)anthracene	ND			2.0		1
-	Benzo(a)pyrene	ND		-	2.0		1
	Benzo(b)fluoranthene	ND		ug/l	2.0		1

			Serial_No:02241514:46				
Project Name:	HARVARD KENNE	DY SCHOOL			Lab Nu	umber:	L1426183
Project Number:	38247-004				Report	Date:	02/24/15
-		SAMP		S			
Lab ID: Client ID: Sample Location:	L1426183-01 HA-B6 Not Specified				Date Co Date Re Field Pre	ceived:	10/31/14 09:40 10/31/14 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborou	igh Lab					
Benzo(k)fluoranthene		ND		ug/l	2.0		1
Chrysene		ND		ug/l	2.0		1
Acenaphthylene		ND		ug/l	2.0		1
Anthracene		ND		ug/l	2.0		1
Benzo(ghi)perylene		ND		ug/l	2.0		1
Fluorene		ND		ug/l	2.0		1
Phenanthrene		ND		ug/l	2.0		1
Dibenzo(a,h)anthracene		ND		ug/l	2.0		1
Indeno(1,2,3-cd)Pyrene		ND		ug/l	2.0		1
Pyrene		ND		ug/l	2.0		1
Aniline		ND		ug/l	2.0		1
4-Chloroaniline		ND		ug/l	5.0		1
Dibenzofuran		ND		ug/l	2.0		1
2-Methylnaphthalene		ND		ug/l	2.0		1
Acetophenone		ND		ug/l	5.0		1
2,4,6-Trichlorophenol		ND		ug/l	5.0		1
2-Chlorophenol		ND		ug/l	2.0		1
2,4-Dichlorophenol		ND		ug/l	5.0		1
2,4-Dimethylphenol		ND		ug/l	5.0		1
2-Nitrophenol		ND		ug/l	10		1
4-Nitrophenol		ND		ug/l	10		1
2,4-Dinitrophenol		ND		ug/l	20		1
Pentachlorophenol		ND		ug/l	10		1
Phenol		ND		ug/l	5.0		1
2-Methylphenol		ND		ug/l	5.0		1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol		ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	55		15-110
Phenol-d6	37		15-110
Nitrobenzene-d5	81		30-130
2-Fluorobiphenyl	87		30-130
2,4,6-Tribromophenol	88		15-110
4-Terphenyl-d14	93		30-130

		Serial_No:02241514:46	
Project Name:	HARVARD KENNEDY SCHOOL	Lab Number: L1426183	
Project Number:	38247-004	Report Date: 02/24/15	
	SAMPLE RESULTS		
Lab ID:	L1426183-01	Date Collected: 10/31/14 09:40	
Client ID:	HA-B6	Date Received: 10/31/14	
Sample Location:	Not Specified	Field Prep: Not Specified	
Matrix:	Water	Extraction Method: EPA 3510C	
Analytical Method:	97,8270D-SIM	Extraction Date: 11/01/14 11:01	
Analytical Date:	11/03/14 12:23		
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics by SI	M - Westborough Lab					
Acenaphthene	ND		ug/l	0.20		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.20		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.20		1
Benzo(a)anthracene	ND		ug/l	0.20		1
Benzo(a)pyrene	ND		ug/l	0.20		1
Benzo(b)fluoranthene	ND		ug/l	0.20		1
Benzo(k)fluoranthene	ND		ug/l	0.20		1
Chrysene	ND		ug/l	0.20		1
Acenaphthylene	ND		ug/l	0.20		1
Anthracene	ND		ug/l	0.20		1
Benzo(ghi)perylene	ND		ug/l	0.20		1
Fluorene	ND		ug/l	0.20		1
Phenanthrene	ND		ug/l	0.20		1
Dibenzo(a,h)anthracene	ND		ug/l	0.20		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20		1
Pyrene	ND		ug/l	0.20		1
2-Methylnaphthalene	ND		ug/l	0.20		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

					Serial_No:02241514:46			
Project Name:	HARVARD KENNED	Y SCHOOL			Lab Nu	umber:	L1426183	
Project Number:	38247-004				Report	Date:	02/24/15	
		SAMP	LE RESULTS	6				
Lab ID:	L1426183-01				Date Co	llected:	10/31/14 09:40	
Client ID:	HA-B6				Date Re	ceived:	10/31/14	
Sample Location:	Not Specified				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Somivolatila	Organics by SIM Mas	thorough Lab						

MCP Semivolatile Organics by SIM - Westborough Lab

Surrogate	% Recovery	eptance riteria
2-Fluorophenol	32	15-110
Phenol-d6	23	15-110
Nitrobenzene-d5	74	30-130
2-Fluorobiphenyl	80	30-130
2,4,6-Tribromophenol	99	15-110
4-Terphenyl-d14	87	30-130

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183	
Project Number:	38247-004	Report Date:	02/24/15	
Method Blank Analysis				

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	11/03/14 09:49	Extraction Date:	11/01/14 11:01
Analyst:	KV		

arameter	Result	Qualifier	Units	RL		MDL	
CP Semivolatile Organics b	y SIM - Westboro	ugh Lab for	sample(s):	01	Batch:	WG736653-1	
Acenaphthene	ND		ug/l	0.20			
2-Chloronaphthalene	ND		ug/l	0.20			
Fluoranthene	ND		ug/l	0.20			
Hexachlorobutadiene	ND		ug/l	0.50			
Naphthalene	ND		ug/l	0.20			
Benzo(a)anthracene	ND		ug/l	0.20			
Benzo(a)pyrene	ND		ug/l	0.20			
Benzo(b)fluoranthene	ND		ug/l	0.20			
Benzo(k)fluoranthene	ND		ug/l	0.20			
Chrysene	ND		ug/l	0.20			
Acenaphthylene	ND		ug/l	0.20			
Anthracene	ND		ug/l	0.20			
Benzo(ghi)perylene	ND		ug/l	0.20			
Fluorene	ND		ug/l	0.20			
Phenanthrene	ND		ug/l	0.20			
Dibenzo(a,h)anthracene	ND		ug/l	0.20			
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20			
Pyrene	ND		ug/l	0.20			
2-Methylnaphthalene	ND		ug/l	0.20			
Pentachlorophenol	ND		ug/l	0.80			
Hexachlorobenzene	ND		ug/l	0.80			
Hexachloroethane	ND		ug/l	0.80			

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183
Project Number:	38247-004	Report Date:	02/24/15
	Method Blank Analysis Batch Quality Control		

Analytical Method:	97,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	11/03/14 09:49	Extraction Date:	11/01/14 11:01
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	-	MDL	
MCP Semivolatile Organics by SIM	- Westborou	ugh Lab foi	r sample(s):	01	Batch:	WG736653-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	37	15-110
Phenol-d6	25	15-110
Nitrobenzene-d5	75	30-130
2-Fluorobiphenyl	74	30-130
2,4,6-Tribromophenol	86	15-110
4-Terphenyl-d14	76	30-130

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183
Project Number:	38247-004	Report Date:	02/24/15
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	97,8270D	Extraction Method:	EPA 3510C
Analytical Date:	11/07/14 09:37	Extraction Date:	11/06/14 13:11
Analyst:	RC		

arameter	Result	Qualifier Units	RL	MDL
ICP Semivolatile Organics	- Westborough Lat	o for sample(s): 01	Batch:	WG738172-1
Acenaphthene	ND	ug/l	2.0	
1,2,4-Trichlorobenzene	ND	ug/l	5.0	
Hexachlorobenzene	ND	ug/l	2.0	-
Bis(2-chloroethyl)ether	ND	ug/l	2.0	
2-Chloronaphthalene	ND	ug/l	2.0	-
1,2-Dichlorobenzene	ND	ug/l	2.0	-
1,3-Dichlorobenzene	ND	ug/l	2.0	-
1,4-Dichlorobenzene	ND	ug/l	2.0	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	-
2,4-Dinitrotoluene	ND	ug/l	5.0	-
2,6-Dinitrotoluene	ND	ug/l	5.0	-
Azobenzene	ND	ug/l	2.0	
Fluoranthene	ND	ug/l	2.0	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	
Hexachlorobutadiene	ND	ug/l	2.0	
Hexachloroethane	ND	ug/l	2.0	
Isophorone	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.0	
Nitrobenzene	ND	ug/l	2.0	
Bis(2-Ethylhexyl)phthalate	ND	ug/l	3.0	
Butyl benzyl phthalate	ND	ug/l	5.0	
Di-n-butylphthalate	ND	ug/l	5.0	
Di-n-octylphthalate	ND	ug/l	5.0	
Diethyl phthalate	ND	ug/l	5.0	
Dimethyl phthalate	ND	ug/l	5.0	
Benzo(a)anthracene	ND	ug/l	2.0	
Benzo(a)pyrene	ND	ug/l	2.0	

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183	
Project Number:	38247-004	Report Date:	02/24/15	
Method Blank Analysis				

Batch Quality Control

Analytical Method:	97,8270D	Extraction Method:	EPA 3510C
Analytical Date:	11/07/14 09:37	Extraction Date:	11/06/14 13:11
Analyst:	RC		

arameter	Result	Qualifier Units	RL	MDL
CP Semivolatile Organics -	Westborough Lab	o for sample(s): 01	Batch:	WG738172-1
Benzo(b)fluoranthene	ND	ug/l	2.0	
Benzo(k)fluoranthene	ND	ug/l	2.0	
Chrysene	ND	ug/l	2.0	
Acenaphthylene	ND	ug/l	2.0	
Anthracene	ND	ug/l	2.0	
Benzo(ghi)perylene	ND	ug/l	2.0	
Fluorene	ND	ug/l	2.0	
Phenanthrene	ND	ug/l	2.0	
Dibenzo(a,h)anthracene	ND	ug/l	2.0	
Indeno(1,2,3-cd)Pyrene	ND	ug/l	2.0	
Pyrene	ND	ug/l	2.0	
Aniline	ND	ug/l	2.0	
4-Chloroaniline	ND	ug/l	5.0	
Dibenzofuran	ND	ug/l	2.0	
2-Methylnaphthalene	ND	ug/l	2.0	
Acetophenone	ND	ug/l	5.0	
2,4,6-Trichlorophenol	ND	ug/l	5.0	
2-Chlorophenol	ND	ug/l	2.0	
2,4-Dichlorophenol	ND	ug/l	5.0	
2,4-Dimethylphenol	ND	ug/l	5.0	
2-Nitrophenol	ND	ug/l	10	
4-Nitrophenol	ND	ug/l	10	
2,4-Dinitrophenol	ND	ug/l	20	
Pentachlorophenol	ND	ug/l	10	
Phenol	ND	ug/l	5.0	
2-Methylphenol	ND	ug/l	5.0	
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0	
2,4,5-Trichlorophenol	ND	ug/l	5.0	

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183
Project Number:	38247-004	Report Date:	02/24/15
	Method Blank Analysis Batch Quality Control		

Analytical Method:	97,8270D	Extraction Method:	EPA 3510C
Analytical Date:	11/07/14 09:37	Extraction Date:	11/06/14 13:11
Analyst:	RC		

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Semivolatile Organics - Wes	tborough La	b for sample	e(s): 01	Batch: W	/G738172-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	15-110
Phenol-d6	32	15-110
Nitrobenzene-d5	70	30-130
2-Fluorobiphenyl	79	30-130
2,4,6-Tribromophenol	85	15-110
4-Terphenyl-d14	95	30-130

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Qual Limits Limits Parameter Qual Qual MCP Semivolatile Organics by SIM - Westborough Lab Associated sample(s): 01 Batch: WG736653-2 WG736653-3 83 68 40-140 20 20 Acenaphthene 2-Chloronaphthalene 83 68 40-140 20 20 Fluoranthene 40-140 20 20 90 74 Hexachlorobutadiene 20 67 55 40-140 20 Naphthalene 63 40-140 Q 20 78 21 Benzo(a)anthracene 40-140 Q 20 95 77 21 Benzo(a)pyrene 101 82 40-140 21 Q 20 Benzo(b)fluoranthene 109 89 40-140 20 20 Benzo(k)fluoranthene 40-140 20 100 84 17 40-140 20 Chrysene 91 75 19 Acenaphthylene 62 40-140 19 20 75 Anthracene 84 67 40-140 23 Q 20 Benzo(ghi)perylene 103 83 40-140 Q 20 22 Fluorene 40-140 Q 20 90 73 21 Phenanthrene 40-140 Q 20 84 67 23 Dibenzo(a,h)anthracene 84 40-140 Q 20 104 21 Indeno(1,2,3-cd)Pyrene 104 85 40-140 20 20 Q Pyrene 89 72 40-140 21 20 2-Methylnaphthalene Q 20 86 70 40-140 21 30-130 Q 20 Pentachlorophenol 77 54 35 Hexachlorobenzene 83 67 40-140 Q 20 21

Project Name:	HARVARD KENNEDY SCHOOL
---------------	------------------------

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

	LCS LCSD %		%Recovery			RPD			
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
MCP Semivolatile Organics by SIM - Westbo	rough Lab Asso	ciated sample((s): 01 Batch:	WG736653-	-2 WG736653-3				
Hexachloroethane	69		56		40-140	21	Q	20	

LCS		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
43		37		15-110	
29		28		15-110	
85		70		30-130	
82		68		30-130	
95		64		15-110	
81		67		30-130	
	%Recovery 43 29 85 82 95	%Recovery Qual 43 29 85 43 82 95	%Recovery Qual %Recovery 43 37 29 28 85 70 82 68 95 64	%Recovery Qual %Recovery Qual 43 37 - <td>%Recovery Qual %Recovery Qual Criteria 43 37 15-110 29 28 15-110 85 70 30-130 82 68 30-130 95 64 15-110</td>	%Recovery Qual %Recovery Qual Criteria 43 37 15-110 29 28 15-110 85 70 30-130 82 68 30-130 95 64 15-110

Batch Quality Control

Project Number: 38247-004

Lab Number: L1426183 Report Date: 02/24/15

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual MCP Semivolatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG738172-2 WG738172-3 3 20 Acenaphthene 73 71 40-140 1,2,4-Trichlorobenzene 69 68 40-140 20 1 Hexachlorobenzene 40-140 20 77 74 4 Bis(2-chloroethyl)ether 20 66 62 40-140 6 2-Chloronaphthalene 72 40-140 20 75 4 40-140 20 1.2-Dichlorobenzene 63 60 5 1,3-Dichlorobenzene 60 58 40-140 3 20 1.4-Dichlorobenzene 62 58 40-140 20 7 3.3'-Dichlorobenzidine 40-140 20 84 79 6 2,4-Dinitrotoluene 40-140 20 85 80 6 2.6-Dinitrotoluene 40-140 20 83 79 5 Azobenzene 82 79 40-140 4 20 Fluoranthene 81 40-140 20 87 7 4-Bromophenyl phenyl ether 40-140 20 80 77 4 Bis(2-chloroisopropyl)ether 40-140 20 65 61 6 Bis(2-chloroethoxy)methane 40-140 20 70 66 6 Hexachlorobutadiene 65 64 40-140 2 20 Hexachloroethane 57 55 40-140 4 20 20 Isophorone 72 69 40-140 4 40-140 20 Naphthalene 67 65 3 65 40-140 20 Nitrobenzene 68 5

Batch Quality Control

Project Number: 38247-004

Lab Number: L1426183 Report Date: 02/24/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Semivolatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG738172-2 WG738172-3 Bis(2-Ethylhexyl)phthalate 89 85 40-140 5 20 Butyl benzyl phthalate 88 82 40-140 20 7 Di-n-butylphthalate 81 40-140 20 84 4 Di-n-octylphthalate 20 94 90 40-140 4 Diethyl phthalate 76 40-140 20 77 1 Dimethyl phthalate 40-140 20 79 76 4 Benzo(a)anthracene 82 79 40-140 4 20 Benzo(a)pyrene 82 79 40-140 20 4 Benzo(b)fluoranthene 40-140 20 82 81 1 Benzo(k)fluoranthene 40-140 20 80 75 6 77 40-140 20 Chrysene 80 4 Acenaphthylene 77 76 40-140 1 20 Anthracene 78 40-140 20 78 0 Benzo(ghi)perylene 77 40-140 20 80 4 40-140 20 Fluorene 79 76 4 Phenanthrene 76 40-140 20 79 4 Dibenzo(a,h)anthracene 83 81 40-140 2 20 Indeno(1,2,3-cd)Pyrene 84 79 40-140 6 20 Pyrene 40-140 20 85 80 6 Aniline Q 40-140 Q 20 42 30 33 4-Chloroaniline 54 40-140 Q 20 80 39

Batch Quality Control

Project Number: 38247-004

Lab Number: L1426183 Report Date: 02/24/15

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Qual Qual Qual Parameter MCP Semivolatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG738172-2 WG738172-3 Dibenzofuran 80 77 40-140 20 4 2-Methylnaphthalene 76 73 40-140 4 20 Acetophenone 78 72 40-140 8 20 2,4,6-Trichlorophenol 84 30-130 20 87 4 2-Chlorophenol 73 66 30-130 10 20 2,4-Dichlorophenol 81 30-130 20 84 4 2,4-Dimethylphenol 20 82 76 30-130 8 2-Nitrophenol 79 74 30-130 20 7 4-Nitrophenol 52 30-130 20 55 6 2,4-Dinitrophenol 86 30-130 20 88 2 Pentachlorophenol 84 81 30-130 20 4 Phenol 38 35 30-130 8 20 2-Methylphenol 70 66 30-130 20 6 3-Methylphenol/4-Methylphenol 66 61 30-130 8 20 2,4,5-Trichlorophenol 92 91 30-130 20 1

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Lab Number: L1426183

Report Date: 02/24/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Semivolatile Organics - Westborough I	_ab Associated s	ample(s): 0 [.]	1 Batch: WG73	38172-2	WG738172-3				

Acceptance Qual Criteria
15-110
15-110
30-130
30-130
15-110
30-130

PETROLEUM HYDROCARBONS

					Serial_No:02241514:46			
Project Name:	HARVARD KENNEDY	SCHOOL			Lab Number:		L1426183	
Project Number:	38247-004				Report Da	ate:	02/24/15	
		SAMPLE F	RESULTS					
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1426183-01 HA-B6 Water 100,VPH-04-1.1 11/03/14 17:19 BS				Date Collec Date Receiv Field Prep:		10/31/14 09:40 10/31/14 Not Specified	
		Quality Contro	I Informatio	on				
Condition of sample rece	eived:					Satisfactory		
Aqueous Preservative: Sample Temperature up	on receipt:				C	aboratory Pro Container Received on Ic	wided Preserved	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Petroleum	Hydrocarbons - West	borough Lab						
C5-C8 Aliphatics		ND		ug/l	50.0		1	
C9-C12 Aliphatics		ND		ug/l	50.0		1	
C9-C10 Aromatics		ND		ug/l	50.0		1	
C5-C8 Aliphatics, Adjuste	ed	ND		ug/l	50.0		1	
C9-C12 Aliphatics, Adjus	sted	ND		ug/l	50.0		1	
Surr	ogate	% Recove	ry Qua	alifier	Acceptance Criteria			

Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	112		70-130	
2,5-Dibromotoluene-FID	100		70-130	

		Serial_No:02	2241514:46
Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183
Project Number:	38247-004	Report Date:	02/24/15
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1426183-01 HA-B6 Water 98,EPH-04-1.1 11/07/14 14:18 SR	Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	10/31/14 09:40 10/31/14 Not Specified EPA 3510C 11/07/14 08:56 EPH-04-1 11/07/14

Quality Control Inf	ormation
Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserv Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbons - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	53		40-140	
o-Terphenyl	92		40-140	
2-Fluorobiphenyl	92		40-140	
2-Bromonaphthalene	95		40-140	

L1426183

02/24/15

Lab Number:

Report Date:

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Method Blank Analysis Batch Quality Control

Analytical Method:100,VPH-04-1.1Analytical Date:11/03/14 11:18Analyst:BS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Petroleum Hydrocarbons -	Westboroug	h Lab for s	ample(s):	01 Batch:	WG737272-3	
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	111		70-130	
2,5-Dibromotoluene-FID	100		70-130	

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183
Project Number:	38247-004	Report Date:	02/24/15
	Mathad Diaula Analysia		

Method Blank Analysis Batch Quality Control

Analytical Method:	98,EPH-04-1.1	Extraction
Analytical Date:	11/07/14 13:46	Extraction
Analyst:	SR	Cleanup M

Extraction Method:	EPA 3510C
Extraction Date:	11/07/14 08:56
Cleanup Method:	EPH-04-1
Cleanup Date:	11/07/14

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbon	s - Westbo	rough Lab f	or sample(s):	01	Batch: WG738467-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

•		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Chloro-Octadecane	74	40-140
o-Terphenyl	79	40-140
2-Fluorobiphenyl	80	40-140
2-Bromonaphthalene	82	40-140

Project Number: 38247-004 Lab Number: L1426183 Report Date: 02/24/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Petroleum Hydrocarbons - Westbo	orough Lab Associ	ated sample(s)	: 01 Batch:	WG737272-1	WG737272-2			
C5-C8 Aliphatics	106		95		70-130	11		25
C9-C12 Aliphatics	98		87		70-130	12		25
C9-C10 Aromatics	106		101		70-130	5		25
Benzene	115		108		70-130	6		25
Toluene	117		110		70-130	6		25
Ethylbenzene	118		110		70-130	7		25
p/m-Xylene	115		108		70-130	6		25
o-Xylene	115		108		70-130	6		25
Methyl tert butyl ether	109		107		70-130	2		25
Naphthalene	107		106		70-130	1		25
1,2,4-Trimethylbenzene	106		101		70-130	5		25
Pentane	104		93		70-130	11		25
2-Methylpentane	107		96		70-130	11		25
2,2,4-Trimethylpentane	106		95		70-130	11		25
n-Nonane	100		90		30-130	11		25
n-Decane	91		80		70-130	12		25
n-Butylcyclohexane	102		91		70-130	11		25

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Petroleum Hydrocarbons - Westborg	ough Lab Associa	ated sample(s): 01 Batch:	WG737272-1	WG737272-2				

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	103		99		70-130	
2,5-Dibromotoluene-FID	92		88		70-130	

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG738467-2 WG738467-3 C9-C18 Aliphatics 49 40-140 25 57 15 C19-C36 Aliphatics 60 77 40-140 25 25 C11-C22 Aromatics 40-140 24 25 89 70 25 Naphthalene 67 55 40-140 20 2-Methylnaphthalene 61 40-140 19 25 74 Acenaphthylene 40-140 25 72 59 20 Acenaphthene 76 62 40-140 20 25 Fluorene 78 64 40-140 20 25 Phenanthrene 40-140 25 82 70 16 40-140 25 Anthracene 88 75 16 73 40-140 14 25 Fluoranthene 84 Pyrene 88 76 40-140 15 25 Benzo(a)anthracene 72 40-140 25 84 15 Chrysene 77 40-140 25 90 16 Benzo(b)fluoranthene 40-140 25 89 73 20 Benzo(k)fluoranthene 40-140 25 83 75 10 Benzo(a)pyrene 91 78 40-140 15 25 Indeno(1,2,3-cd)Pyrene 70 61 40-140 14 25 Dibenzo(a,h)anthracene 40-140 25 82 72 13 Benzo(ghi)perylene 40-140 25 85 74 14 Nonane (C9) 42 46 30-140 25 9

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ractable Petroleum Hydrocarbons	- Westborough Lab Ass	ociated sampl	e(s): 01 Batch	n: WG73846	67-2 WG73846	7-3		
Decane (C10)	48		54		40-140	12		25
Dodecane (C12)	52		59		40-140	13		25
Tetradecane (C14)	54		63		40-140	15		25
Hexadecane (C16)	58		70		40-140	19		25
Octadecane (C18)	61		77		40-140	23		25
Nonadecane (C19)	61		79		40-140	26	Q	25
Eicosane (C20)	61		79		40-140	26	Q	25
Docosane (C22)	63		81		40-140	25		25
Tetracosane (C24)	63		82		40-140	26	Q	25
Hexacosane (C26)	64		82		40-140	25		25
Octacosane (C28)	62		80		40-140	25		25
Triacontane (C30)	62		80		40-140	25		25
Hexatriacontane (C36)	69		88		40-140	24		25

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	42		62		40-140	
o-Terphenyl	72		63		40-140	
2-Fluorobiphenyl	70		68		40-140	
2-Bromonaphthalene	74		69		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

PCBS

		Serial_No:0)2241514:46
Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183
Project Number:	38247-004	Report Date:	02/24/15
	SAMPLE RESULTS		
Lab ID:	L1426183-01	Date Collected:	10/31/14 09:40
Client ID:	HA-B6	Date Received:	10/31/14
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	97,8082	Extraction Date:	11/01/14 08:13
Analytical Date:	11/06/14 00:57	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	11/03/14
		Cleanup Method:	EPA 3660B
		Cleanup Date:	11/03/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
MCP Polychlorinated Biphenyls - West	borough Lab						
Aroclor 1016	ND		ug/l	0.250		1	A
Aroclor 1221	ND		ug/l	0.250		1	А
Aroclor 1232	ND		ug/l	0.250		1	А
Aroclor 1242	ND		ug/l	0.250		1	А
Aroclor 1248	ND		ug/l	0.250		1	А
Aroclor 1254	ND		ug/l	0.250		1	А
Aroclor 1260	ND		ug/l	0.250		1	А
Aroclor 1262	ND		ug/l	0.250		1	А
Aroclor 1268	ND		ug/l	0.250		1	А
PCBs, Total	ND		ug/l	0.250		1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	А
Decachlorobiphenyl	82		30-150	А
2,4,5,6-Tetrachloro-m-xylene	79		30-150	В
Decachlorobiphenyl	100		30-150	В

L1426183

02/24/15

Lab Number:

Report Date:

11/03/14

Project Name:

HARVARD KENNEDY SCHOOL Project Number: 38247-004

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8082
Analytical Date:	11/03/14 23:14
Analyst:	JT

Extraction Method:	EPA 3510C
Extraction Date:	11/01/14 08:13
Cleanup Method:	EPA 3665A
Cleanup Date:	11/03/14
Cleanup Method:	EPA 3660B
Cleanup Date:	11/03/14

Parameter	Result	Qualifier Units	RL	MDL	Column
MCP Polychlorinated Biphenyls	- Westborough	Lab for sample(s): 01 Batch:	WG736638-1	
Aroclor 1016	ND	ug/l	0.250		А
Aroclor 1221	ND	ug/l	0.250		А
Aroclor 1232	ND	ug/l	0.250		А
Aroclor 1242	ND	ug/l	0.250		А
Aroclor 1248	ND	ug/l	0.250		А
Aroclor 1254	ND	ug/l	0.250		А
Aroclor 1260	ND	ug/l	0.250		А
Aroclor 1262	ND	ug/l	0.250		А
Aroclor 1268	ND	ug/l	0.250		А
PCBs, Total	ND	ug/l	0.250		А

			Acceptance	;
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	43		30-150	A
Decachlorobiphenyl	57		30-150	А
2,4,5,6-Tetrachloro-m-xylene	47		30-150	В
Decachlorobiphenyl	64		30-150	В

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual %	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
MCP Polychlorinated Biphenyls - West	borough Lab Associate	ed sample(s): 0)1 Batch:	WG736638-2	WG736638-3				
Aroclor 1016	66		57		40-140	15		20	А
Aroclor 1260	75		61		40-140	19		20	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	61		52		30-150	А
Decachlorobiphenyl	80		63		30-150	А
2,4,5,6-Tetrachloro-m-xylene	66		55		30-150	В
Decachlorobiphenyl	89		68		30-150	В

PESTICIDES

	Serial_No:02241514:46				
Project Name:	HARVARD KENNEDY SCH	IOOL	Lab Number:	L1426183	
Project Number:	38247-004		Report Date:	02/24/15	
		SAMPLE RESULTS			
Lab ID:	L1426183-01		Date Collected:	10/31/14 09:40	
Client ID:	HA-B6		Date Received:	10/31/14	
Sample Location:	Not Specified		Field Prep:	Not Specified	
Matrix:	Water		Extraction Method:	EPA 3510C	
Analytical Method:	97,8081B		Extraction Date:	11/02/14 08:56	
Analytical Date:	11/04/14 14:28		Cleanup Method:	EPA 3620B	
Analyst:	TQ		Cleanup Date:	11/04/14	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
MCP Organochlorine Pesticides - W	MCP Organochlorine Pesticides - Westborough Lab										
Delta-BHC	ND		ug/l	0.020		1	A				
Lindane	ND		ug/l	0.020		1	А				
Alpha-BHC	ND		ug/l	0.020		1	А				
Beta-BHC	ND		ug/l	0.020		1	А				
Heptachlor	ND		ug/l	0.020		1	А				
Aldrin	ND		ug/l	0.020		1	А				
Heptachlor epoxide	ND		ug/l	0.020		1	А				
Endrin	ND		ug/l	0.040		1	А				
Endrin ketone	ND		ug/l	0.040		1	А				
Dieldrin	ND		ug/l	0.040		1	А				
4,4'-DDE	ND		ug/l	0.040		1	А				
4,4'-DDD	ND		ug/l	0.040		1	А				
4,4'-DDT	ND		ug/l	0.040		1	А				
Endosulfan I	ND		ug/l	0.020		1	А				
Endosulfan II	ND		ug/l	0.040		1	А				
Endosulfan sulfate	ND		ug/l	0.040		1	А				
Methoxychlor	ND		ug/l	0.200		1	А				
Chlordane	ND		ug/l	0.200		1	А				
Hexachlorobenzene	ND		ug/l	0.020		1	А				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	62		30-150	В
2,4,5,6-Tetrachloro-m-xylene	87		30-150	А
Decachlorobiphenyl	61		30-150	А

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1426183
Project Number:	38247-004	Report Date:	02/24/15

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8081B
Analytical Date:	11/04/14 13:49
Analyst:	TQ

Extraction Method:EPA 3510CExtraction Date:11/02/14 08:56Cleanup Method:EPA 3620BCleanup Date:11/04/14

Parameter	Result	Qualifier	Units		RL	MDL	Column
MCP Organochlorine Pesticides	- Westborough	Lab for sa	mple(s):	01	Batch:	WG736767-1	
Delta-BHC	ND		ug/l		0.020		А
Lindane	ND		ug/l		0.020		А
Alpha-BHC	ND		ug/l		0.020		А
Beta-BHC	ND		ug/l		0.020		А
Heptachlor	ND		ug/l		0.020		А
Aldrin	ND		ug/l		0.020		А
Heptachlor epoxide	ND		ug/l		0.020		А
Endrin	ND		ug/l		0.040		А
Endrin ketone	ND		ug/l		0.040		А
Dieldrin	ND		ug/l		0.040		А
4,4'-DDE	ND		ug/l		0.040		А
4,4'-DDD	ND		ug/l		0.040		А
4,4'-DDT	ND		ug/l		0.040		А
Endosulfan I	ND		ug/l		0.020		А
Endosulfan II	ND		ug/l		0.040		А
Endosulfan sulfate	ND		ug/l		0.040		А
Methoxychlor	ND		ug/l		0.200		А
Chlordane	ND		ug/l		0.200		А
Hexachlorobenzene	ND		ug/l		0.020		А

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В		
Decachlorobiphenyl	78		30-150	В		
2,4,5,6-Tetrachloro-m-xylene	78		30-150	А		
Decachlorobiphenyl	71		30-150	А		

Lab Control Sample Analysis Batch Quality Control

Project Number: 38247-004 Lab Number: L1426183 Report Date: 02/24/15

	LCS		LCSD		%Recovery		. .	RPD	
arameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
ICP Organochlorine Pesticides - Westborou	gh Lab Associa	ted sample(s):	01 Batch:	WG736767-2	WG736767-3				
Delta-BHC	78		85		40-140	8		30	А
Lindane	85		93		40-140	9		30	А
Alpha-BHC	77		84		40-140	9		30	А
Beta-BHC	83		92		40-140	10		30	А
Heptachlor	79		88		40-140	11		30	А
Aldrin	77		86		40-140	11		30	А
Heptachlor epoxide	79		89		40-140	11		30	А
Endrin	87		97		40-140	11		30	А
Endrin ketone	67		74		40-140	10		30	А
Dieldrin	84		93		40-140	11		30	А
4,4'-DDE	78		87		40-140	11		30	А
4,4'-DDD	82		92		40-140	12		30	А
4,4'-DDT	75		86		40-140	13		30	А
Endosulfan I	78		88		40-140	11		30	А
Endosulfan II	71		79		40-140	10		30	А
Endosulfan sulfate	74		80		40-140	8		30	А
Methoxychlor	68		75		40-140	10		30	А
Hexachlorobenzene	65		70		40-140	9		30	А

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Lab Number: L1426183

Report Date: 02/24/15

	LCS		LUUD		%Recovery			RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits		
MCP Organochlorine Pesticides - Westh	orough Lab Associat	ad sampla(s)· 01 Batch: \	NG736767-2	2 WG736767-3					

	LCS		LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	72		77		30-150	В	
Decachlorobiphenyl	73		81		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	72		82		30-150	А	
Decachlorobiphenyl	74		82		30-150	А	

METALS

							Serial_No:02241514:46				
Project Name:	HAR∖	ARD KEN	NEDY S	CHOOL			Lab Nun	nber:	L14261	83	
Project Number:	38247	7-004					Report I	Date:	02/24/1	5	
-				SAMPL	E RES	ULTS					
Lab ID:	L1426	6183-01					Date Col	lected:	10/31/14	4 09:40	
Client ID:	HA-B6	6					Date Red	ceived:	10/31/1	4	
Sample Location:	Not S	pecified					Field Pre	ep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals -	Westbor	ough Lab									
Antimony, Total	ND		mg/l	0.0030		1	11/03/14 14:54	11/04/14 13:11	EPA 3005A	97,6020A	KL
Arsenic, Total	ND		mg/l	0.0050		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Barium, Total	0.066		mg/l	0.010		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Beryllium, Total	ND		mg/l	0.004		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Cadmium, Total	ND		mg/l	0.004		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Chromium, Total	ND		mg/l	0.010		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Copper, Total	ND		mg/l	0.010		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Lead, Total	ND		mg/l	0.010		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Mercury, Total	ND		mg/l	0.0002		1	11/03/14 10:41	11/03/14 20:50	EPA 7470A	97,7470A	AK
Nickel, Total	ND		mg/l	0.025		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Selenium, Total	ND		mg/l	0.010		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Silver, Total	ND		mg/l	0.007		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Thallium, Total	ND		mg/l	0.0005		1	11/03/14 14:54	11/04/14 13:11	EPA 3005A	97,6020A	KL
Vanadium, Total	ND		mg/l	0.010		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
Zinc, Total	ND		mg/l	0.050		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT
MCP Dissolved Met	als - Wes	stborough L	.ab								
Antimony, Dissolved	ND		mg/l	0.0030		1	11/03/14 09:51	11/04/14 15:42	NA	97,6020A	KL
Arsenic, Dissolved	ND		mg/l	0.005		1	11/03/14 09:51	11/04/14 02:14	NA	97,6010C	BC
Barium, Dissolved	0.062		mg/l	0.010		1	11/03/14 09:51	11/04/14 02:14	NA	97,6010C	BC
Beryllium, Dissolved	ND		mg/l	0.004		1	11/03/14 09:51	11/04/14 02:14	NA	97,6010C	BC
Cadmium, Dissolved	ND		mg/l	0.004		1	11/03/14 09:51	11/04/14 02:14	NA	97,6010C	BC

Cadmium, Dissolved	ND	mg/l	0.004	 1	11/03/14 09:51 11/04/14 02:14	NA	97,6010C	BC
Chromium, Dissolved	ND	mg/l	0.01	 1	11/03/14 09:51 11/04/14 02:14	NA	97,6010C	BC
Lead, Dissolved	ND	mg/l	0.010	 1	11/03/14 09:51 11/04/14 02:14	NA	97,6010C	BC
Mercury, Dissolved	ND	mg/l	0.0002	 1	11/03/14 15:20 11/03/14 22:00	EPA 7470A	97,7470A	AK
Nickel, Dissolved	ND	mg/l	0.025	 1	11/03/14 09:51 11/04/14 02:14	NA	97,6010C	BC
Selenium, Dissolved	ND	mg/l	0.010	 1	11/03/14 09:51 11/04/14 02:14	NA	97,6010C	BC
Silver, Dissolved	ND	mg/l	0.007	 1	11/03/14 09:51 11/04/14 02:14	NA	97,6010C	BC
Thallium, Dissolved	ND	mg/l	0.0005	 1	11/03/14 09:51 11/04/14 15:42	NA	97,6020A	KL
Vanadium, Dissolved	ND	mg/l	0.010	 1	11/03/14 09:51 11/04/14 02:14	NA	97,6010C	BC
Zinc, Dissolved	ND	mg/l	0.050	 1	11/03/14 09:51 11/04/14 02:14	NA	97,6010C	BC

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab f	or sample	e(s): 01	Batch:	WG736913	3-1			
Antimony, Dissolved	ND	mg/l	0.0030		1	11/03/14 09:51	11/04/14 15:13	97,6020A	KL
Thallium, Dissolved	ND	mg/l	0.0005		1	11/03/14 09:51	11/04/14 15:13	97,6020A	KL

Prep Information

Digestion Method: NA

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Total Metals - We	stborough Lab for	sample(s):	01 Batc	h: WG	736914-1				
Mercury, Total	ND	mg/l	0.0002		1	11/03/14 10:41	11/03/14 20:14	97,7470A	AK

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - We	stborough Lab for sa	mple(s):	01 Bate	ch: WG	737014-1				
Arsenic, Total	ND	mg/l	0.005		1	11/03/14 14:54	11/05/14 19:23	97,6010C	тт
Barium, Total	ND	mg/l	0.010		1	11/03/14 14:54	11/05/14 19:23	97,6010C	TT
Beryllium, Total	ND	mg/l	0.004		1	11/03/14 14:54	11/05/14 19:23	97,6010C	TT
Cadmium, Total	ND	mg/l	0.004		1	11/03/14 14:54	11/05/14 19:23	97,6010C	ТТ
Chromium, Total	ND	mg/l	0.01		1	11/03/14 14:54	11/05/14 19:23	97,6010C	TT
Copper, Total	ND	mg/l	0.010		1	11/03/14 14:54	11/05/14 19:23	97,6010C	TT
Lead, Total	ND	mg/l	0.010		1	11/03/14 14:54	11/05/14 19:23	97,6010C	TT
Nickel, Total	ND	mg/l	0.025		1	11/03/14 14:54	11/05/14 19:23	97,6010C	ТТ
Selenium, Total	ND	mg/l	0.010		1	11/03/14 14:54	11/05/14 19:23	97,6010C	тт
Silver, Total	ND	mg/l	0.007		1	11/03/14 14:54	11/05/14 19:23	97,6010C	ТТ
Vanadium, Total	ND	mg/l	0.010		1	11/03/14 14:54	11/05/14 19:23	97,6010C	TT
Zinc, Total	ND	mg/l	0.050		1	11/03/14 14:54	11/05/14 19:23	97,6010C	TT

Serial_No:02241514:46

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - W	estborough Lab for	sample(s):	01 Batc	h: WG	737015-1				
Antimony, Total	ND	mg/l	0.0030		1	11/03/14 14:54	11/04/14 13:04	97,6020A	KL
Thallium, Total	ND	mg/l	0.0005		1	11/03/14 14:54	11/04/14 13:04	97,6020A	KL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	- Westborough Lab	for sample	(s): 01	Batch:	WG737044	-1			
Mercury, Dissolved	ND	mg/l	0.0002		1	11/03/14 15:20	11/03/14 21:07	97,7470A	AK

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	· Westborough Lab f	or sample	e(s): 01	Batch:	WG73704	7-1			
Arsenic, Dissolved	ND	mg/l	0.005		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Barium, Dissolved	ND	mg/l	0.010		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Beryllium, Dissolved	ND	mg/l	0.004		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Cadmium, Dissolved	ND	mg/l	0.004		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Chromium, Dissolved	ND	mg/l	0.01		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Lead, Dissolved	ND	mg/l	0.010		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Nickel, Dissolved	ND	mg/l	0.025		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Selenium, Dissolved	ND	mg/l	0.010		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Silver, Dissolved	ND	mg/l	0.007		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Vanadium, Dissolved	ND	mg/l	0.010		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC
Zinc, Dissolved	ND	mg/l	0.050		1	11/03/14 09:51	11/04/14 01:54	97,6010C	BC

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: NA

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004 Lab Number: L1426183 Report Date: 02/24/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual I	RPD Limits
MCP Dissolved Metals - Westborough Lab Ass	ociated sample(s)): 01 Batc	h: WG736913-2	WG736913	-3			
Antimony, Dissolved	92		90		80-120	2		20
Thallium, Dissolved	92		93		80-120	1		20
MCP Total Metals - Westborough Lab Associat	ed sample(s): 01	Batch: W	G736914-2 W	G736914-3				
Mercury, Total	96		99		80-120	3		20
MCP Total Metals - Westborough Lab Associat	ed sample(s): 01	Batch: W	G737014-2 W	G737014-3				
Arsenic, Total	111		110		80-120	1		20
Barium, Total	100		103		80-120	3		20
Beryllium, Total	103		106		80-120	3		20
Cadmium, Total	107		108		80-120	1		20
Chromium, Total	100		105		80-120	5		20
Copper, Total	102		103		80-120	1		20
Lead, Total	107		109		80-120	2		20
Nickel, Total	101		102		80-120	1		20
Selenium, Total	112		112		80-120	0		20
Silver, Total	103		104		80-120	1		20
Vanadium, Total	104		106		80-120	2		20
Zinc, Total	103		105		80-120	2		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004 Lab Number: L1426183 Report Date: 02/24/15

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ICP Total Metals - Westborough Lab Associat	ed sample(s): 01 Ba	tch: WG737015-2 WG73701	5-3		
Antimony, Total	88	96	80-120	9	20
Thallium, Total	97	99	80-120	2	20
ICP Dissolved Metals - Westborough Lab Ass	ociated sample(s): 01	Batch: WG737044-2 WG7	37044-3		
Mercury, Dissolved	289 Q	83	80-120	111	Q 20
ICP Dissolved Metals - Westborough Lab Ass	ociated sample(s): 01		37047-3 80-120	2	20
Arsenic, Dissolved Barium, Dissolved	96	105	80-120	2	20
Beryllium, Dissolved	97	101	80-120	4	20
Cadmium, Dissolved	102	104	80-120	2	20
Chromium, Dissolved	95	100	80-120	5	20
Lead, Dissolved	101	104	80-120	3	20
Nickel, Dissolved	95	98	80-120	3	20
Selenium, Dissolved	106	109	80-120	3	20
Silver, Dissolved	94	96	80-120	2	20
Vanadium, Dissolved	98	101	80-120	3	20
Zinc, Dissolved	99	102	80-120	3	20

INORGANICS & MISCELLANEOUS

Serial_No:02241514:46

L1426183

02/24/15

Lab Number:

Report Date:

Project Name:	HARVARD KENNEDY SCHOOL

Project Number: 38247-004

SAMPLE RESULTS

Lab ID:L1426183-01Date Collected:10/31/14 09:40Client ID:HA-B6Date Received:10/31/14Sample Location:Not SpecifiedField Prep:Not SpecifiedMatrix:WaterVaterVaterVater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemistry	- Westboroug	jh Lab								
Cyanide, Total	ND		mg/l	0.005		1	11/03/14 08:50	11/03/14 13:39	97,9014	JO
Cyanide, Physiologically Available	ND		mg/l	0.005		1	11/04/14 09:56	11/04/14 12:54	97,9014	JO
General Chemistry - Wes	stborough Lab)								
Solids, Total Suspended	31.		mg/l	5.0	NA	1	-	11/05/14 13:40	30,2540D	DW
Cyanide, Amenable	ND		mg/l	0.010		2	11/03/14 13:23	11/04/14 14:25	30,4500CN-G	SP
Chlorine, Total Residual	ND		mg/l	0.02		1	-	11/01/14 00:41	30,4500CL-D	MR
Chloride	560		mg/l	10		10	-	11/03/14 11:11	1,9251	LA
Phenolics, Total	ND		mg/l	0.03		1	11/04/14 10:45	11/04/14 16:50	1,9065	MP

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	porough Lab for san	nple(s): 01	Batch:	: WG73	6599-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	11/01/14 00:41	30,4500CL-D	MR
General Chemistry - Westl	porough Lab for san	nple(s): 01	Batch:	: WG73	86865-1				
Chloride	ND	mg/l	1.0		1	-	11/03/14 10:12	1,9251	LA
MCP General Chemistry -	Westborough Lab for	or sample(s): 01 E	Batch: \	WG736894-	-1			
Cyanide, Total	ND	mg/l	0.005		1	11/03/14 08:50	11/03/14 13:24	97,9014	JO
General Chemistry - West	porough Lab for san	nple(s): 01	Batch:	: WG73	37034-1				
Cyanide, Amenable	ND	mg/l	0.010		2	11/03/14 13:23	11/04/14 14:25	30,4500CN-G	SP
MCP General Chemistry -	Westborough Lab for	or sample(s): 01 E	Batch: \	WG737300-	-1			
Cyanide, Physiologically Available	ND	mg/l	0.005		1	11/04/14 09:56	11/04/14 12:50	97,9014	JO
General Chemistry - West	porough Lab for san	nple(s): 01	Batch:	: WG73	37302-1				
Phenolics, Total	ND	mg/l	0.03		1	11/04/14 10:45	11/04/14 16:48	1,9065	MP
General Chemistry - West	porough Lab for san	nple(s): 01	Batch:	: WG73	37620-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	11/05/14 13:40	30,2540D	DW

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01 Bato	h: WG736599-2						
Chlorine, Total Residual	97		-		90-110	-			
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01 Bato	h: WG736865-2						
Chloride	97		-		90-110	-			
MCP General Chemistry - Westborough Lab	Associated sam	ple(s): 01	Batch: WG736	894-2 V	VG736894-3				
Cyanide, Total	91		93		80-120	2		20	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01 Bato	h: WG737034-2	2					
Cyanide, Amenable	95		-			-			
MCP General Chemistry - Westborough Lab	Associated sam	ple(s): 01	Batch: WG737	300-2 V	VG737300-3				
Cyanide, Physiologically Available	88		91		80-120	3		20	
MCP General Chemistry - Westborough Lab N	IEGATIVE LCS	Associate	ed sample(s): 01	Batch:	WG737300-4				
Cyanide, Physiologically Available	1		-		0-10	-		20	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01 Bato	h: WG737302-2						
Phenolics, Total	98		-		70-130	-			

Matrix Spike Analysis Batch Quality Control

Project Name:	HARVARD KENNEDY SCHOOL	Batch Quality Control	Lab Number:	L1426183
Project Number:	38247-004		Report Date:	02/24/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD Q	RPD ual Limits
General Chemistry - West	oorough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG73686	5-4 QC	Sample: L142	25853-0	1 Client II	D: MS Sa	mple
Chloride	82	20	100	90		-	-		58-140	-	7
MCP General Chemistry - Sample	Westborough Lab	Associated	sample(s)	: 01 QC Batc	h ID: WG	736894-4	WG736894-5	QC S	ample: L142	25920-01	Client ID: MS
Cyanide, Total	0.774	0.2	0.992	109		0.987	106		75-125	7	20
General Chemistry - Westl	oorough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG73730)2-4 QC	Sample: L142	6183-0	1 Client I	D: HA-B6	
Phenolics, Total	ND	0.4	0.39	98		-	-		70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

Parameter		Nativ	ve S	ample	Duplicate Sa	mple	Units	RPD	Qua	al RPD	Limits
General Chemistry -	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG736599-3	QC Samp	le: L142618	33-01 Clie	ent ID:	HA-B6	
Chlorine, Total Reside	ual		ND		ND		mg/l	NC			20
General Chemistry -	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG736865-3	QC Samp	le: L14258	53-01 Clie	ent ID:	DUP Samp	ole
Chloride			82		84		mg/l	2			7
General Chemistry -	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG737034-3	QC Samp	le: L142618	33-01 Clie	ent ID:	HA-B6	
Cyanide, Amenable			ND		ND		mg/l	NC			
General Chemistry -	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG737302-3	QC Samp	le: L142618	33-01 Clie	ent ID:	HA-B6	
Phenolics, Total			ND		ND		mg/l	NC			20
General Chemistry -	Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG737620-2	QC Samp	le: L142584	44-01 Clie	ent ID:	DUP Samp	ole
Solids, Total Suspend	bed		73		85		mg/l	15			29

Serial_No:02241514:46

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

Lab Number: L1426183 Report Date: 02/24/15

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

В

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)
L1426183-01A	Vial HCI preserved	В	N/A	2.6	Y	Absent	MCP-8260-10(14)
L1426183-01B	Vial HCI preserved	В	N/A	2.6	Y	Absent	MCP-8260-10(14)
L1426183-01C	Vial HCI preserved	В	N/A	2.6	Y	Absent	MCP-8260-10(14)
L1426183-01D	Vial HCI preserved	В	N/A	2.6	Y	Absent	VPH-10(14)
L1426183-01E	Vial HCI preserved	В	N/A	2.6	Y	Absent	VPH-10(14)
L1426183-01F	Vial HCI preserved	В	N/A	2.6	Y	Absent	VPH-10(14)
L1426183-01G	Plastic 250ml HNO3 preserved	В	<2	2.6	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-PB-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S-10(180)
L1426183-01H	Plastic 250ml HNO3 preserved	В	<2	2.6	Y	Absent	MCP-CR-6010T-10(180),MCP- 7470T-10(28),MCP-AS-6010T- 10(180),MCP-CD-6010T- 10(180),MCP-CD-6010T- 10(180),MCP-AG-6010T- 10(180),MCP-ZN-6010T- 10(180),MCP-BE-6010T- 10(180),MCP-BE-6010T- 10(180),MCP-SB-6020T- 10(180),MCP-SB-6020T- 10(180),MCP-V-6010T- 10(180),MCP-NI-6010T- 10(180),MCP-PB-6010T- 10(180),MCP-PB-6010T- 10(180),MCP-PB-6010T- 10(180),MCP-PB-6010T- 10(180)
L1426183-01I	Plastic 250ml NaOH preserved	В	>12	2.6	Y	Absent	MCP-TCN9014-10(14),ACN- 4500(14),MCP-PACN9014- 10(14)
L1426183-01J	Plastic 500ml unpreserved	В	7	2.6	Y	Absent	CL-9251(28),TRC-4500(1)
L1426183-01K	Plastic 950ml unpreserved	В	7	2.6	Y	Absent	TSS-2540(7)

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

Lab Number: L1426183 Report Date: 02/24/15

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1426183-01L	Amber 500ml H2SO4 preserved	В	<2	2.6	Y	Absent	TPHENOL-9065(28)
L1426183-01M	Amber 1000ml unpreserved	В	7	2.6	Y	Absent	MCP-8081-10(7)
L1426183-01N	Amber 1000ml unpreserved	В	7	2.6	Y	Absent	MCP-8081-10(7)
L1426183-01O	Amber 1000ml unpreserved	В	7	2.6	Y	Absent	MCP-8082-10(365)
L1426183-01P	Amber 1000ml unpreserved	В	7	2.6	Y	Absent	MCP-8082-10(365)
L1426183-01Q	Amber 1000ml HCl preserved	В	<2	2.6	Y	Absent	EPH-10(14)
L1426183-01R	Amber 1000ml HCl preserved	В	<2	2.6	Y	Absent	EPH-10(14)
L1426183-01S	Amber 1000ml unpreserved	В	7	2.6	Y	Absent	MCP-8270-10(7),MCP- 8270SIM-10(7)
L1426183-01T	Amber 1000ml unpreserved	В	7	2.6	Y	Absent	MCP-8270-10(7),MCP- 8270SIM-10(7)

Container Comments

L1426183-01G

Serial_No:02241514:46

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Lab Number: L1426183

Report Date: 02/24/15

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: Data Usability Report

Serial_No:02241514:46

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Lab Number: L1426183

Report Date: 02/24/15

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1426183

 Report Date:
 02/24/15

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 100 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility EPA 8270D: Biphenyl. EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

HALEY&	Haley & A 465 Medfo Suite 2200 Boston, M	rd St., A 02129-1402			(CH	HAIN OF CUSTODY RECORD					Fax (617 Page	7) 886-7400 7) 886-7600 of							
H&A FILE NO.	3924	7-004				LABO	RATC	RY			A	pha A	nalytic	al					/2014	
PROJECT NAME	Harvard Ke	nnedy School				ADDR	RESS		Westb	orough	, MA						-	AROUND TIME Stan		
H&A CONTACT	. Dilawari					CONT	TACT		Gina H	Iall							PROJE	ECT MANAGER K. D	ilawari	
										An	alysis Re	equeste	<u>1</u>		· · · · ·				omments	
Sample No.	Dat	e Time	Depth	Туре	DMCP14	MCP14	ISS	CI, TRC/	HdA	ЕРН	TCN, ACN, PACN	Total Phenols	Pesticides	PCBs	SVOCs	8260	Number of Containers	(special instructions, p nur	recautions, additi nbers, etc.)	
HA-B6	10/31/			GW	X	x	X	X	X	X	X	x	x	X	X	x	20	Laboratory to use ap unless of	plicable DEP CAI herwise directed.	M methods,
							- 1 Wander A. V 1997 1													
<u> </u>							Name-10-1779 107079 274						-				· · · · · · · · · · · · · · · · · · ·			* :*
· · · · · · · · · · · · · · · · · · ·]						,								
	.,											,							•••••••••••••••••••••••••••••••••••••••	
анаараантану, калуут, т, тейкет келекти. Араку,			·	n Marine di pi porta ingener porte i data an can 1		and a chair of the Ad And "			-						-	-				
Sampled and Relinquished	by	Received by								_	LIQU	JID						Sampling Comments		
Sign aley hing		Sign M (CULTI)	\$					Į	X							X	VOA Vial	·		2 May 1 8 May 10 May 201 Aug 2
Print Alex Fleming		Print (M (My S)	A					ļ		X		X	\times	X	$\left X \right $		Amber Glass			
Firm Haley and Aldrich		Firm KAA			$ \times$		$\mid \times$	X			X						Plastic Bottle			·
Date 10/31/14 Time	1240	Date 60/3114	Time /b	30	AD	AD			AF	AF	AC	AE				AF	Preservative			
Relinquished by		Received by	11						<u> </u>					-		-	Volume	are w ge management and a decided of the gen of second second second second second second second second second	ter d'un more de calebrar d'artes pro y a reger calebra d'artes d	
Sign M. Willto		Sign M	m							_	SOL	JD.					-			
Print M Prysh		Printwayne	r flumm	بول					[VOA Vial			
Firm) KA		Firm Alpha						ļ							-		Amber Glass			
Date W/3114 _ Time	16.2	Date 10 31		1630													Clear Glass			
Relinquished by		Received by			141.010.011.00			1		1	I						Preservative	Evidence samples were	e tampered with?	YES NO
Sign Many		Sign Actions	Kluingin				······································				-				1]	Volume	If YES, please explain	in section below.	
Print wagne fim		Print Roo 54	nso Ro	main			,	<u> </u>		PRE	SERVA	TION	KEY						1	
1 18 18 18 18 18 18 18 18 18 18 18 18 18		Firm ALVHI	9-			smple ch	illed	·	NaOH		Е	H ₂ SO ₄		G	Metha	mol				
Firm Date 10 31/14 Time	1114	Date [: /3//1	y Time /	1913		ample fil			HNO3			HCL					O4 (circle)	and the property of the second s		
Date WISHIN This	1014	Date [-] #//(y may	Presun					(Labor				DEP (CAM m	ethods)					
Matrix Spike	ninimum field (C samples, as design or MCP Metals and	gnated in BWS /or Cyanide are	C CAM-VI	I have be nd identif	en or wi	ll be col	lected,	s approp	oriate, to	meet th	e requir					ty.	Required Reporting L Objectives RC-S1 RC-S2 RC-S2	imits and Data Q SI S2 S3	uality GW1 GW2 GW3
If this Chain o	f Custody Reco	rd identifies sample ld (specify if applic	es defined as D	rinking Wat _analyz	er Sampl	es, Trip	Blanks a	and Fie	! Duplic	ates are	include	d and id	entified	and ana	dysis of '	TICs ar	e required, as	$\square_{\text{RC-GW1}}$ $\square_{\text{RC-GW2}}$	– 33	— (JW)

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1426183

Instrument ID: Jack.i	Calibration Date: 05-NOV-2014	Time: 05:31
Lab File ID: 1105A02	<pre>Init. Calib. Date(s): 20-OCT-2</pre>	20-0CT-2
Sample No: 8260 CCAL	Init. Calib. Times : 16:38	21:32

Compound	RRF	RRF	MIN RRF	%D	MAX %D	
Compound	1			5D ======	-	
dichlorodifluoromethane	.47152				20	
chloromothano	.76147			6	20	
chloromethane	00466	.85919		7	20	
vinyl chloride	.4362	.46618			20	
bromomethane	.59149	.67456		14	20	
chloroethane trichlorofluoromethane	1 2052				20	
ethyl ether	1.3052	.34364			20	
ethyl ether 1,1,-dichloroethene	.77597	.86283			20	
asuban digulfida	1.8888				20	
carbon disulfide					20	
freon-113iodomethane	.70304	. /8540				_
10domethane	.73642	.39152			20	
acrolein methylene chloride	0/944	.08948			20	
methylene chloride	.84126				20	
acetone	100	145 .96695	.1		20	F.
trans-1,2-dichloroethene	.85908	.96695	.1		20	
methyl acetate	.27507				20	
methyl tert butyl ether	1.4800				20	
tert butyl alcohol	.03378	.02849			20	F.
Diisopropyl Ether	1.9803	1.9761			20	
1,1-dichloroethane	1.4968	1.6044			20	
acrylonitrile	.12875	.12826		0	20	
Halothane Ethyl-Tert-Butyl-Ether	.58558	.60141		3	20	
Ethyl-Tert-Butyl-Ether	1.7386	1.6933			20	
VINVI ACETATE	11.2424	11.1810		-5	20	
cis-1,2-dichloroethene	.95936	1.0416	.1		20	
2,2-dichloropropane	1.2826	1.3255	.05	3	20	
cyclohexane	1.2311	1.2479	.01		30	
cyclohexane bromochloromethane	.45592	.50235		10	20	
lchlorotorm	11 5399	1.6604		8	20	
carbontetrachloride tetrahydrofuran	1.3291	1.2832			20	
tetrahydrofuran	12649	.13453		6	20	
ethyl acetate	.38915			-3	20	
1,1,1-trichloroethane	1.4532	1.5224		5	20	
1,1-dichloropropene	1.2438	1.3286	.05		20	
2-butanone	16157	.19905			20	F
benzene	3.5635	3.8567	.5		20	
Tertiary-Amyl Methyl Ether	1.5862	1.5467	.05	-2	20	
1,2-dichloroethane	.94078	1.0230	.1	9	20	

FORM VII MCP-8260-10

- .

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1426183

Instrument ID: Jack.i	Calibration Date: 05-NOV-2014 Time: 05	5:31
Lab File ID: 1105A02	Init. Calib. Date(s): 20-0CT-2 20-0CT	[-2
Sample No: 8260 CCAL	Init. Calib. Times : 16:38 21:3	32

Compound	RRF	RRF	MIN RRF	%D	MAX %D	
=======================================		======				
methyl cyclohexane	1.3536	1.4249			30	
trichloroethene	.94745	1.0409			20	
dibromomethane1,2-dichloropropane	.45543				20	
1,2-dichloropropane	.94457			-6	20	
bromodichloromethane	.85767				20	
1,4-dioxane 2-chloroethylvinyl ether	.00426					F
2-chloroethylvinyl ether	.30946		.05	1	20	
cis-1,3-dichloropropene		1.3717	.2	-1	20	
toluene tetrachloroethene	2.7735				20	
tetrachloroethene	1.3676				20	
4-methyl-2-pentanone	.1427	.14364	.1		20	
trans-1,3-dichloropropene	1.2910	1.1739	.1	-9	20	
1,1,2-trichloroethane	.61425				20	
ethyl-methacrylate	.75969	.71128			30	
chlorodibromomethane		.85632	.1	-13	20	
1,3-dichloropropane	1.2718	1.2709	.05		20	
1,2-dibromoethane	.77342	.7351	.1	-5	20	
2-hexanone	.28007	.2866	.1		20	
chlorobenzene	3.2799	3.2414	.5		20	
lethvl benzene		5.5762		-1	20	
1,1,1,2-tetrachloroethane		1.0515	.05	-10	20	
p/m xylene	2.3747		.1	-2	20	
o xylene		2.0029			20	
bromoform	1.0047	.78359		-22	20	F
styrene	3.4045	3.3546		-1	20	
ISOPTOPVIDENZENE	11.630	11.900		2	20	
bromobenzene	2.5595	2.4052	.05		20	
bromobenzenen-propylbenzene	12.209	11.278	.05	-8	20	
1,4-dlchloroputane	1.6884		.01	-14	20	
1,1,2,2,-tetrachloroethane	1.4191	1.3812	.3	-3	20	
4-ethyltoluene	9.3299	8.5876	.05	-8	20	
2-chlorotoluene	8.1115		.05	-10	20	
1,2,3-trichloropropane	1.1671		.05	-6	20	
1,3,5-trimethybenzene		8.2800	.05	-7	20	
trans-1,4-dichloro-2-butene		.26156	.05	-15	20	
4-chorotoluene		6.6981	.05		20	
tert-butylbenzene	8.0231	7.5180	.05		20	
1,2,4-trimethylbenzene	8.8045		.05		20	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1426183

Instrument ID: Jack.i	Calibration Date: 05-NOV-2014	Fime: 05:31
Lab File ID: 1105A02	<pre>Init. Calib. Date(s): 20-OCT-2</pre>	20-0CT-2
Sample No: 8260 CCAL	Init. Calib. Times : 16:38	21:32

Compound	RRF	RRF	MIN RRF	%D	MAX %D	
		======			====	
sec-butylbenzene	11 652	10.748			20	
p-isopropyltoluene		9.2244	.01		20	
p-isopropyrcoruene		4.8351				
1,3-dichlorobenzene	4.9/81	4.8351	.6		20	
1,4-dichlorobenzene		4.9137			20	
p-diethylbenzene		4.4850			20	
n-butylbenzene		7.2930	.05	-6	20	
1,2-dichlorobenzene		4.3002	.4	0	20	
1,2,4,5-tetramethylbenzene		6.1543	.05	-6	20	
1,2-dibromo-3-chloropropane		.18474	.05	-20	20	F
1,3,5-trichlorobenzene	1.2352	1.2949	.05	5	20	
1,2,4-trichlorobenzene	2.1993	2.0472	.2	-7	20	
hexachlorobutadiene		.81702	.05		20	
naphthalene 1,2,3-trichlorobenzene	3.9408		.05	-2	20	
1,2,3-trichlorobenzene	1.6639	1.5327	.05	-8	20	
=====================================	======	======	=====	====	====	
dibromofluoromethane	.25895	.27318	.05	5	20	
1,2-dichloroethane-d4	.26757	.26563	.05	-1	20	
toluene-d8		1.1422	.01	-5	20	
4-bromofluorobenzene	.87181		.05	-2	20	
				-		
	·					
	·			·		
		·				
1					· ·	

FORM VII MCP-8260-10

I:\Pest15\141104a\15141104a-01.d

		Data File Name Data File Path Operator Date Acquired Acq. Method File Sample Name Instrument Name	pem141104a01,42ee,,deç
Name	Ret Time	Response	
4,4'-DDT	4.81	94554082.52	% Breakdown
4,4'-DDE	4.15	725824.18	
4,4'-DDD	4.61	604575.261	1.39%
Endrin	4.54	112525078.4	% Breakdown
Endrin Aldehyde	5.01	1435114.311	
Endrin Ketone	5.51	1347109.362	2.41%
1-br-2-nb_Pesticides #2			
4,4'-DDT #2	5.34	71117572.38	% Breakdown
4,4'-DDE #2	4.69	676197.752	
4,4'-DDD #2	5.12	550346.846	1.70%
Endrin #2 Endrin Aldehyde #2	5.04 5.45	83523922.59 2653639.75	% Breakdown
Endrin Ketone #2	0.00	0	3.08%

wg736767-1,2,3 L1426183-01

ANALYTICAL REPORT

Lab Number:	L1427563
Client:	Haley & Aldrich, Inc.
	465 Medford Street, Suite 2200
	Charlestown, MA 02129-1400
ATTN:	Kate Dilawari
Phone:	(617) 886-7458
Project Name:	HARVARD KENNEDY SCHOOL
Project Number:	38247-004
Report Date:	11/18/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_	No:11181419:06
---------	----------------

Project Name:	HARVARD KENNEDY SCHOOL
Project Number:	38247-004

 Lab Number:
 L1427563

 Report Date:
 11/18/14

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1427563-01	HA-B6	WATER	Not Specified	10/31/14 09:40	10/31/14

L1427563

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:
Project Number:	38247-004	Report Date:

Report Date: 11/18/14

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1427563

 Report Date:
 11/18/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1427563

 Report Date:
 11/18/14

Case Narrative (continued)

MCP Related Narratives

Total / Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

gnature: King l. Without Lisa Westerlind

Title: Technical Director/Representative

Date: 11/18/14

METALS

Serial_No:11181419:06

Project Name:	HARV	ARD KENN					Lab Nur	nber:	L14275	33		
-							Report Date:					
Project Number:	38247	-004					Report	Date:	11/18/14	4		
				SAMPL	E RES	ULTS						
Lab ID:	L1427	563-01					Date Co	llected:	10/31/14	10/31/14 09:40		
Client ID:	HA-B6	6					Date Received:			10/31/14		
Sample Location:	Not Sp	pecified					Field Pre	Field Prep:		Not Specified		
Matrix:	Water											
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
MCP Total Metals -	Westbord	ough Lab										
Iron, Total	1.5		mg/l	0.05		1	11/03/14 14:54	11/05/14 19:38	EPA 3005A	97,6010C	TT	
MCP Dissolved Met		sthorough L	ah									

Iron, Dissolved	0.85	mg/l	0.10	 2	11/03/14 09:51 11/14/14 16:18	NA	97,6010C	TT

 Lab Number:
 L1427563

 Report Date:
 11/18/14

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Met	als - Westborough Lab	for sample	e(s): 01	Batch:	WG74108	8-1			
Iron, Dissolved	ND	mg/l	0.05		1	11/03/14 09:51	11/14/14 16:29	97,6010C	TT
			Prep Inf	ormatio	on				
		Digestior	Method	: NA					
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals -	Westborough Lab for sa	ample(s):	01 Bat	ch: WG	741093-1				
Iron, Total	ND	mg/l	0.05		1	11/03/14 14:54	11/05/14 19:23	97,6010C	тт

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1427563

 Report Date:
 11/18/14

Parameter	LCS %Recovery Qua	LCSD I %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Westborough Lab	Associated sample(s): 01	Batch: WG741088-2	WG741088-3			
Iron, Dissolved	100	100	80-120	0		20
MCP Total Metals - Westborough Lab As	sociated sample(s): 01 Batc	ch: WG741093-2 WG7	41093-3			
Iron, Total	97	99	80-120	2		20

Project Name: Project Numbe		CHOOL					Lab Number: L1427563 Report Date: 11/18/14
	Sam	ple Rece	ipt an	d Conta	iner In	formation	
Were project sp	ecific reporting limits specified	d?	Y	ES			
Reagent H2O I	Preserved Vials Frozen on:	NA					
Cooler Informa	tion Custody Seal						
Cooler							
A	Absent						
Container Infor	mation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)

<2

2.6

Y Absent

А

L1427563-01A

Plastic 250ml HNO3 preserved

Serial_No:11181419:06

MCP-FE-6010S-10(180)

Serial_No:11181419:06

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Lab Number: L1427563

Report Date: 11/18/14

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentration field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: Data Usability Report

Serial_No:11181419:06

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Lab Number: L1427563

Report Date: 11/18/14

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1427563

 Report Date:
 11/18/14

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

HALEY&	Haley & Al 465 Medfor Suite 2200, Boston, MA	rd St.,			(CH	AIN	J . ()F	Cl	JSI	Г О	DY	'R	EC	: 0]	RD -		Fax (617 Page) 886-7400) 886-7600 of
I&A FILE NO.	38247	7-004				LABO	ORATOF	RY	_		A	lpha Ai	nalytics	al				ERY DATE <u>10/31/2</u>	· · · · · · · · · · · · · · · · · · ·	
ROJECT NAME	Harvard Ke	nnedy School				ADDI	RESS		Westbo	orough	ı, MA							ROUND TIME Standa		
I&A CONTACT K.	Dilawari					CON	ТАСТ		Gina E	Iall								CT MANAGER K. Dila	awari	-
							<u>т</u> т			Ana	alysis R	equeste	ā	ï			- Г	otal and	ents	
Sample No.	Date	Time	Depth	Туре	DMCP14	MCP14	132	CI, TRC	ΗdΛ	Hde	TCN, ACN, PACN	Total Phenols	Pesticides	PCBs	svocs	8460	Containers		itions, additio ers, etc.)	· .
HA-B6	10/31/2	014	a	GW	<u>×</u>	X	X	X	X	_X	- <u>x</u>	- X		<u> </u>	<u>-</u> X-	X	20	Laboratory to use appl unless othe	icable DEP CAN rwise directed.	A methods,
···· ·····							++					<u></u>		L						
· · ·												· · · · · · · · · · · · · · · · · · ·								· · ·
		an , a man and mate and the set of the set o												`·		, ,				
· · · · · · · · · · · · · · · · · · ·																				
· · ·				* * *****						····		ļ				þ			··· .	
د . ۱۹۹۰ - ۲۰۰۰ - منابعین میشون میشود میزود و ورد و ورد و میزود.			ļ			<u> </u>						ļ		Ļ						
				الاست ساملة والتروير ورور											` {					
												1								·
ampled and Relinquished t	у	Received by			1_								·	-				Sampling Comments		
ign aley thing		Sign M (UUU)	2						X				\sim			X	VOA Vial	s har en e general anna anna an a dh'ainte dh' a fhigh an s-ghaige an ann ann an ann an baile bh		1
rint Alex Fleming		Print on Augst	4					V		X		$ \times$	\times	X	$ \Delta $	1	Amber Glass Plastic Bottle			
irm Haley and Aldrich	-11-	Firm (69/A		_	X	X		Δ	AN	AF	X	4 5				٨٢	Preservative			
Date 10/31/14 Time	240	Date 60/31/14	Time /b/	60	$\frac{HV}{H}$	AD			141-	175	AC	AL	+		h	<u>r</u> r	Volume		/ /	
Relinquished by		Received by	the			1			1.		SOI					-	1010110	ант, на до соманието на сел 4 Асабиј / се, до 7 / Мальсон с на де на 4 с обла 4 с /	n maar dii adalaa di karaa ka aha ya aha " aha " i ada ah	
Sign M. autor		Sign M	01						T	1	1]				VOA Vial			
rint M pysk		Printwayne		u i												÷	Amber Glass	an and the set of the		
Firmi) KA	r ~)	Firm Alpha Date 10 31		680					-		•	-	-		-	•	Clear Glass	and a second and a second s	aan ah	
Date 10/31114	<u>022</u>	Received by	<u> </u>	<u>vu</u>					-	<u></u>				-			Preservative	Evidence samples were t	ampered with?	YES NO
Sign MMM		Sign Rachapto	1/wingin		-				-		-	-			-{	·	Volume	If YES, please explain in	section below.	
invalue firms	-	Print Roo 54	nso Ron	nain	\vdash		1 1	_	- <u>-</u>	PRE	SERVA	TION	KEY							
Firm Alpha		Firm ALVHR	۶ ۶		A S	ample c	hilled	· .(NaOH		Е	H ₂ SO	4.	G	Metha	nol				
Date 10 31/14 Time	1818	Date / . /3//1		818		ample fi		D	HNO₃		F	HCL		н	Water	/NaHSC	D4 (circle)			
	1.1			Presum	ptive C	ertaint	y Data Pa	ckage	(Labora	atory to	o use ap	plicable	DEP C	CAM m	ethods)				<u> </u>	
f Presumptive Certainty D	ata Package is	needed, initial all	sections:				-11.4 11						omanto d	of Brown	motiva	Containt	1/	Required Reporting Lin Objectives	nits and Data Qu	iality .
		C samples, as desig r MCP Metals and/						cied, i	s approp	a iate, to	a meet fr	ie requit	CHICHIS I	0111050	mpuvev	certault	J -	RC-S1		□ _{GW1}
This Chain of C			includes					fined :	s Drinki	ng Wate	er Sampl	les.						C-S2	\square S2	GW2
	-	d identifies sample																RC-GW1	🗆 _{S3}	🗆 GW3

ANALYTICAL REPORT

Lab Number:	L1429682
Client:	Haley & Aldrich, Inc.
	465 Medford Street, Suite 2200
	Charlestown, MA 02129-1400
ATTN:	Kate Dilawari
ATTN:	Kale Dilawan
Phone:	(617) 886-7458
Project Name:	HARVARD KENNEDY SCHOOL
Project Number:	38247-004
Report Date:	12/12/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Lab Number:
 L1429682

 Report Date:
 12/12/14

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1429682-01	B6(OW)_12102014	WATER	Not Specified	12/10/14 15:10	12/10/14
L1429682-02	B6(OW)_12102014 (FIELD FILTERED)	WATER	Not Specified	12/10/14 15:10	12/10/14

Lab Number: L1429682 Report Date: 12/12/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Lab Number:
 L1429682

 Report Date:
 12/12/14

Case Narrative (continued)

Chromium, Hexavalent

L1429682-01 has an elevated detection limit due to the dilution required by the sample matrix.

The WG747471-4 MS recovery (15%), performed on L1429682-01, is outside the acceptance criteria;

however, the associated LCS recovery is within overall method allowances. No further action was required.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 12/12/14

INORGANICS & MISCELLANEOUS

Serial	No:12121410:39

Project Name:	HARVARD KENNEDY SCHOOL	Lab Number:	L1429682
Project Number:	38247-004	Report Date:	12/12/14
	SAMPLE RESULTS		

Lab ID:	L1429682-01	Date Collected:	12/10/14 15:10
Client ID:	B6(OW)_12102014	Date Received:	12/10/14
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Chlorine, Total Residual	ND		mg/l	0.02		1	-	12/10/14 23:50	30,4500CL-D	LH
Chromium, Hexavalent	ND		mg/l	0.050		5	12/10/14 22:00	12/10/14 22:16	30,3500CR-D	MR

 Lab Number:
 L1429682

 Report Date:
 12/12/14

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab for san	nple(s): 01	Batch:	WG74	7471-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	12/10/14 22:00	12/10/14 22:15	30,3500CR-D	MR
General Chemistry -	- Westborough Lab for san	nple(s): 01	Batch:	WG74	7500-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	12/10/14 23:50	30,4500CL-D	LH

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

 Lab Number:
 L1429682

 Report Date:
 12/12/14

Parameter	LCS %Recovery Q		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Ass	sociated sample(s): 0	1 Batch: W	G747471-2						
Chromium, Hexavalent	98		-		85-115	-		20	
General Chemistry - Westborough Lab Ass	sociated sample(s): 0	1 Batch: W	G747500-2						
Chlorine, Total Residual	101		-		90-110	-			

		Matrix Spike Analysis Batch Quality Control		
Project Name:	HARVARD KENNEDY SCHOOL		Lab Number:	L1429682
Project Number:	38247-004		Report Date:	12/12/14

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou		Recovery y Qual Limits	RPD Qu	RPD _{ual} Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG747471-4	QC Sample: L14	429682-01 Client IE	D: B6(OW)_12102014
Chromium, Hexavalent	ND	0.5	0.074	15	Q		85-115	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:HARVARD KENNEDY SCHOOLProject Number:38247-004

 Lab Number:
 L1429682

 Report Date:
 12/12/14

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RF	PD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID	: WG747471-3	QC Sample: L14296	82-01 Clie	nt ID: B6(OW)	_12102014
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID	: WG747500-3	QC Sample: L14296	82-01 Clie	nt ID: B6(OW)	_12102014
Chlorine, Total Residual	ND	ND	mg/l	NC		20

Lab Number: L1429682 **Report Date:** 12/12/14

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Container Information

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1429682-01A	Plastic 950ml unpreserved	А	8	3.0	Y	Absent	HEXCR-3500(1)
L1429682-01B	Plastic 950ml unpreserved	А	8	3.0	Y	Absent	TRC-4500(1)
L1429682-02A	Plastic 950ml unpreserved	А	8	3.0	Y	Absent	HOLD-WETCHEM()

Serial_No:12121410:39

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Lab Number: L1429682

Report Date: 12/12/14

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: Data Usability Report

Serial_No:12121410:39

Project Name: HARVARD KENNEDY SCHOOL

Project Number: 38247-004

Lab Number: L1429682

Report Date: 12/12/14

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1429682

 Report Date:
 12/12/14

REFERENCES

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:12121410:39

B6 (OW) = 12102014 ISIN AQ X X AQ X X B6 (OW) = 12102014 ISIN AQ X X X AQ Interactory to use application of the second	-
B6 (OW) _ 12102014 / 510 - AQ X X X A I I I Total Residual Calo I I I I Total Residual Calo I I I I Total Residual Calo I I I I I I I I I I I I I I I I I I I	herwise directed. rine by Method 330,1 SM 3500
npled and Relinguished by Received by Rece	SM 3500
pled and Relinquished by Received by Scott Mexic Print Waxive Phone Phone	
pled and Relinquished by Received by Image: Sign Minimum Sampling Comments Scott Mes; Print Wayyee Plance Image: Sign Minimum Image: Sign Minimum	lent Cr. NTIL NOTIC
Image: Section of the sample is being section. Sampling Comments Subtraction. Sign MMMM	NTIL NOTI
Jed and Relinquished by Received by Sampling Comments Scott Must Sign MMMU VOA Vial VOA Vial Frint Wedgive Plums Image: Sign Ministry Plums Image: Sign Ministry Plums Image: Sign Ministry Plums	
Scott Mesi Print Way Plums	
Scott Mes. Print Wassie Phones	
Scott Mes. Print Wassie Pluns	•
Scott Mesi Print Way Plums	
Scott Mes; Print Wayire Plums	
$>_{0}TT$ /23, $\qquad \qquad \qquad$	ibmitted for NPDES RGP p
Haley & Aldrich, Inc. Firm Altonia X X X Plastic Boule Plastic Boule Plastic Boule detection levels	ate testing methods and min
12/12/14 Time 1630 Date 12 10/14 Time 68 A A A	for the RGP.
quished by Received by 1000 1000 1000 1000 Valume Margan Sign Margan Solid Solid Valume	
Winner Sign Lan lung Fran Solid VOA Vial Please provide Equis	DDs.
Amber Glass	
2 10 11 Time 824 Date 12/10/14 Time 1824 Clear Glass	
	ere tampered with? YES
Sign Volume If YES, please expla	n in section below.
Firm A Sample chilled C NaOH E H ₂ SO ₄ G Methanol Time Date Time B Sample filtered D HNO ₃ F HCL H Water/Na2S203	
Presumptive Certainty Data Package (Laboratory to use applicable DEP CAM methods)	
A The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty.	Limits and Data Quality

APPENDIX F

Copy of Cambridge Discharge and Dewatering Permit

PERMIT TO DEWATER

Location:

Owner:

Contractor:

Temporary

Permanent

The property owner, agrees to hold harmless and indemnify the City of Cambridge for any liability on the part of the City directly or indirectly arising out of the dewatering operation.

The issuance of this permit is based in part in the submission packet of the applicant with documentation as follows:

In addition, the application has been reviewed by the City under third party agreement as documented in the following reports:

All activities conducted in conjunction with the issuance of this permit must be in accordance with the provisions of the aforementioned reports. Any deviations in conditions must be reported to and approved by the Commissioner of Public Works.

This permit is in addition to any other street permit issued by the Department in connection with any street excavation or obstruction; and all conditions as specified in the Discharge Permit for Dewatering.

For the entire period of time the groundwater is being discharged to a storm drain, the property owner shall provide copies of each Discharge Monitoring Report Form submitted to the EPA, pursuant to the owner's discharge permit.

If in the future the EPA requires the City of Cambridge to bring existing stormwater drainage into compliance with EPA quality standards, as a condition to the continuation of discharge of that stormwater (also including groundwater) into an EPA regulated system into which the (property owner) drains, the owner will agree to maintain its water discharge with such EPA water quality standards.

The property owner and contractor shall at all times meet the conditions specified in the requisite legal agreement/affidavits.

All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces or property.

Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the

Contractor during the progress of work as directed by the Public Works Department.

Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.

Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.

Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.

Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.

This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.

The following special conditions as set forth below are part of the permit.

Not Applicable

City Manager

Date

City Solicitor

Date

Commissioner of Public

Date

Date

Contractor

CC: Engineering Supervisor of Sewer Maintenance and Engineering Superintendent of Streets Commissioner of Inspectional Services

Print Form

Property Manager: Corporate Entity President, General Partner or Trustee Trustee with Instrument of Authority

Date Chut

Lee Kennedy Co., Inc.

Contractor

2/3/15

Date