

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1

5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

MAY 1 4 2015

Matthew Young Senior Project Manager Cumberland Farms, Inc. 100 Crossing Boulevard Farms, Inc. Framingham, MA 01702

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Cumberland Farms Inc. Station # 2094 site located at 114 State Road, Dartmouth, MA 02747, Bristol County; Authorization # MAG910681

Dear Mr. Young:

Based on the review of a Notice of Intent (NOI) submitted by Michael Bricher, from Environmental Compliance Services, Inc., on behalf of Cumberland Farms Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that your consultant marked "Believed Present". The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 5.16 for this site is within a dilution range greater than five

to ten (>5-10), established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for lead of 6.5 ug/L, and iron of 5,000 ug/L, are required to achieve permit compliance at your site.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on December 30, 2015. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction

Nulma Murphy

Permits Section

Enclosure

cc: Robert Kubit, MassDEP

David T. Hickox, Dartmouth MA, DPW

Michael Bricher, Environmental Compliances Inc.

10 Remediation General Permit Summary of Monitoring Parameters [1]

NPDES Authorizati	ion Number:	MAG910681				
Authorization Issued:	June, 2015	1.13 Late Amyal Machaya Ethian Libertal				
Facility/Site Name:	Cumberland Farm	s # 2094/V0893				
Facility/Site	114 State Road, Da	artmouth, MA RTN # 4-6034				
Address:	Email address of	f owner: myoung@cumberlandgulf.com				
Legal Name of Oper	rator:	Cumberland Farms, Inc.				
Operator contact name, title, and		Matthew Young, Senior Project Manager				
Address:	III TANKSHI SHITTA	Email: same as the owner				
Estimated date of The Completion:	ne Project	December 30, 2015				
Category and Sub- Category:		Petroleum Related site Remediation. Subcategory m sites with Additional Contamination				
RGP Termination Da	te: September	r 2015				
Receiving Water: Paskamanse						

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
7	Total Residual Chlorine (TRC)	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
	Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) 2,3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
√	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
√	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L

	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
√	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
√	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
tur	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
VIVE	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
P. K.	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
\checkmark	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/
	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
9.1	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
V	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
√	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
√	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L

√	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
V	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
√	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√.	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/Ml 5ug/L & Me#625/ML 5ug/L
√	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
V	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

✓	CIPT hereal recommendary and as subparted on the party of	Total Recove Metal Limit 50 mg/l Cat discharge Massachu (ug/l) 1	Minimum level=ML		
	Metal parameter	Freshwater	THE STREET	1 21	L levelles
	39. Antimony	5.6/ML	10	ML	10
	40. Arsenic **	10/ML20	CHITTE WATER	ML	20
	41. Cadmium **	0.2/ML10	bos Jely	dien II	10
	42. Chromium III (trivalent) **	48.8/ML15	s print to mi	וחדים ומיליוו	15
	43. Chromium VI (hexavalent)	11.4	Hermo 30 e Hermo 100	ML	10
brunty	44. Copper **	5.2	mili zarabili	ML	15
$\sqrt{}$	45. Lead **	6.5	I V SIDIES	ML	20
14.15	46. Mercury **	0.9		ML	0.2
	47. Nickel **	29	and reach ad	ML	20
	48. Selenium **	5	and James	ML	20

	49. Silver	1.2	ML	10
	50. Zinc **	66.6	ML	15
\checkmark	51. Iron	5,000	ML	20

	Other Parameters	Limit
/	52. Instantaneous Flow	Site specific in CFS
/	53. Total Flow	Site specific in CFS
V	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
лŃ	62. Maximum Change in Temperature in MA – Any Class SA water body – Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent

to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in

Appendix VI.

8 In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

10 Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness

Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000 μ L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 μ L; DF 2, then iron limit =1,000 x 2 =2,000 μ L, etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

14 Temperature sampling per Method 170.1

997 Millbury Street, Unit G, Worcester, MA 01607

tel 508 756 0151 fax 508 757 7063 www.ecsconsult.com

April 22, 2015 Project No. 03-222456

Mr. Victor Alvarez U.S. Environmental Protection Agency EPA-Region 1 5 Post Office Square Mail Code OEP06-4 Boston, MA 02109-3912

RE: **Notice of Intent for Remediation General Permit** Cumberland Farms #2094/V0893 114 State Road Dartmouth, Massachusetts **MassDEP RTN # 4-6034**

Dear Mr. Alvarez:

Environmental Compliance Services, Inc. (ECS) is pleased to provide supporting documentation for the Notice of Intent (NOI) for the Remediation General Permit (RGP) on behalf of Cumberland Farms, Inc. (CFI), for the above-referenced property. This NOI is being submitted in order to obtain a permit for the operation of a temporary groundwater recovery and treatment system (GWTS) at the Site. The GWTS is required to be operated at the Site in order to allow for the installation of new petroleum underground storage tanks (USTs) during site redevelopment. A Site Locus is provided as Figure 1, and a Site Plan depicting the dewatering discharge location is provided as Figure 2. A Flow Schematic of the dewatering treatment plan is included as Figure 3. A copy of the NOI form is provided as Attachment I.

System Design

The groundwater treatment system located on the Site will be composed of the following: Submersible pneumatic pumps that collect groundwater from the UST excavation area, then recovered groundwater will be pumped into two 20,000 gallon frac tank (to settle out solids) and then processed through particulate filters and two-1,000 lbs. liquid phase granular activated carbon (GAC) units for the treatment of recovered liquids. A line diagram of the groundwater treatment system is provided as Figure 3.

The proposed discharge location for treated groundwater is a catch basin located adjacent to the southern subject property boundary on State Road (US Route 6) (refer to Figure 2). This storm water catch basin (CB-1) discharges to a storm water drainage culvert running underneath State Road. The storm water drainage culvert discharges into an unnamed stream located north of State Road, and approximately 2,000 feet west of the subject property. This stream discharges into the Paskamanset River located approximately 3,500 feet west of the Site. Please refer to Figure 1 for a depiction of the unnamed stream located west of the subject property as well as Paskamanset River.

Average flow rate of discharge of treated groundwater from the system to the storm water line is expected to be approximately 50 gallons per minute (gpm). The design capacity of the groundwater treatment system is 75 gpm based upon data collected from comparable systems installed at other remedial sites operated/designed by ECS.

Influent Sample Analysis

Groundwater samples were collected from monitoring well MW-6S on September 9, 2014 and March 16, 2015. These samples were submitted to Spectrum Analytical, Inc. of Agawam, Massachusetts under standard chain of custody protocol for analysis of volatile petroleum hydrocarbons (VPH) and extractable petroleum hydrocarbons (EPH) by MassDEP method, volatile organic compounds (VOCs) by USEPA Method 8260B, semi-volatile organic compounds (SVOCs) by USEPA method 8270C, total metals (iron and lead) by USEPA Method 200.7, flashpoint, pH, and total suspended solids by SM2540D. A copy of the laboratory report and chains of custody record are provided as Attachment II.

Appendix III of the 2010 RGP under NPDES sets the effluent limitations for treatment system discharges. Groundwater analytical results of the samples collected from MW-6S on September 9, 2014 and March 16, 2015 were compared to the Appendix III effluent limitations (www.epa.gov/region1/npdes/rgp.html). These results indicate that the petroleum constituents (i.e., benzene, total benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tert butyl ether (MTBE), and naphthalene) were not detected in the sample at concentrations above the applicable EPA RGP Appendix III effluent limitations for Subcategory A-Petroleum Sites with additional contamination. Total iron did exceed the applicable EPA RGP Appendix III effluent limitations.

Receiving Waters Information

The receiving water for the treated groundwater discharge is the Paskamanset River, located approximately 3,500 feet west of the Site. ECS consulted the online United States Geological Survey (USGS) Streamstats program to determine the 7Q10 flow rate at the discharge location (http://ma.water.usgs.gov/streamstats/, accessed April 15, 2015). Data obtained from the online resource indicated that the 7Q10 flow rate for the Paskamanset River at USGS station #01105933 is 0.7 cubic feet per second (cfs). Based on data available, ECS calculated a 7Q10 flow rate for this area to be 42 cubic feet per minute.

Receiving Water Classification

ECS consulted the Massachusetts Department of Environmental Protection (MassDEP) Division of Water Pollution Control (http://www.mass.gov/eea/docs/dep/water/laws/i-thru-z/tblfig.pdf) to determine the classification for the receiving waters. The Paskamanset River is listed as Class B surface water.

Evaluation of Threatened or Endangered Species or Critical Habitat Located within **Receiving Waters**

According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), no Priority Habitat of Rare Species or Estimated Habitats of Rare Wildlife are located within the proposed at or immediately adjacent to the work zone area. The closest NHESP Estimated Habitats of Rare Wildlife in Wetland Areas/Protected Open Spaces are located approximately 3,000 feet southwest of the Site. Given the fact there will be an on-site dewatering treatment system, the potential discharge will not have an adverse affect on the NHESP Estimated Habitats of Rare Wildlife. MassGIS Resource Priority and NHESP Maps of the Site area is included in Attachment III.

Review of National Register of Historic Places

Listings of Historic Places within the Town of Walpole in the vicinity of the Site were obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc-macris.net/towns.aspx (accessed April 8, 2015). Copies of the MACRIS report are provided as Attachment IV. The database indicated that there are no historic places located in close proximity to the Site and proposed discharge area. This project does not involve the demolition or rehabilitation of historic properties.

Lastly, Post Response Action Outcome (RAO) environmental response actions are currently being conducted at this Site in accordance with the Massachusetts Contingency Plan (310 CMR 40.0000) under MassDEP 4-6034. Accordingly, discharges subject to the MCP do not require the completion of state application form BRPWM 12 or pay state fees.

Should you have any questions or concerns regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (508) 756-0151.

Sincerely,

ENVIRONMENTAL COMPLIANCE SERVICES, INC.

Michael C. Bricher, P.G., LSP

Senior Project Manager

Matthew Young, Cumberland Farms, Inc., 100 Crossing Blvd, Framingham, MA 01702 cc: Robert Kubit, MassDEP, Division of Watershed Management, 627 Main Street, Worcester, MA 01608

David Hickox, Director, Town of Dartmouth Department of Public Works, 759 Russells Mills Road, Dartmouth, MA 02748

Samuil Valkovski, MassDOT, 1000 County Street, Taunton, MA 02780

LIST OF ATTACHMENTS

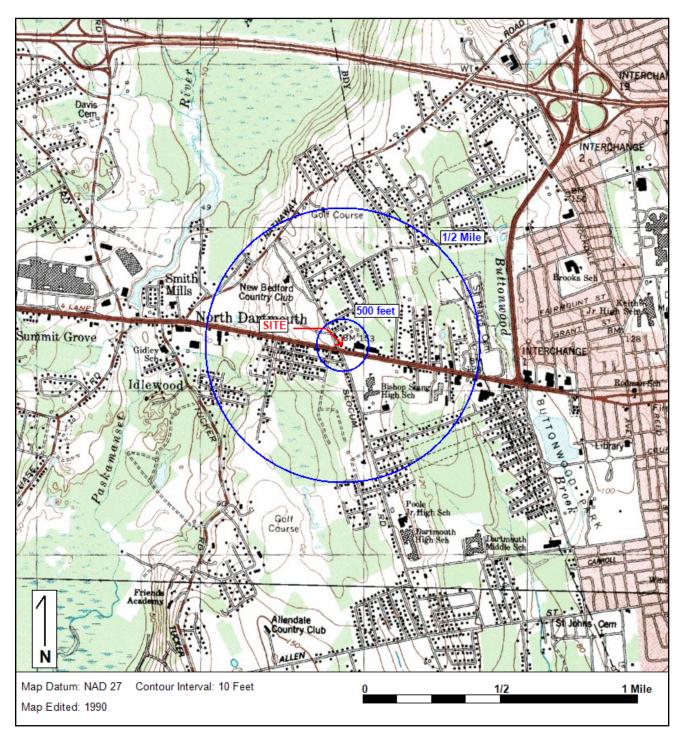
Figures

Figure 1: Site Locus Figure 2: Site Plan

Figure 3: Flow Schematic

Attachment I: NOI for the RGP

Attachment II: Laboratory Analytical Reports and Chain of Custody Records


Attachment III: MassGIS Resource Priority & NHESP Maps

Attachment IV: MACRIS Database Search Results

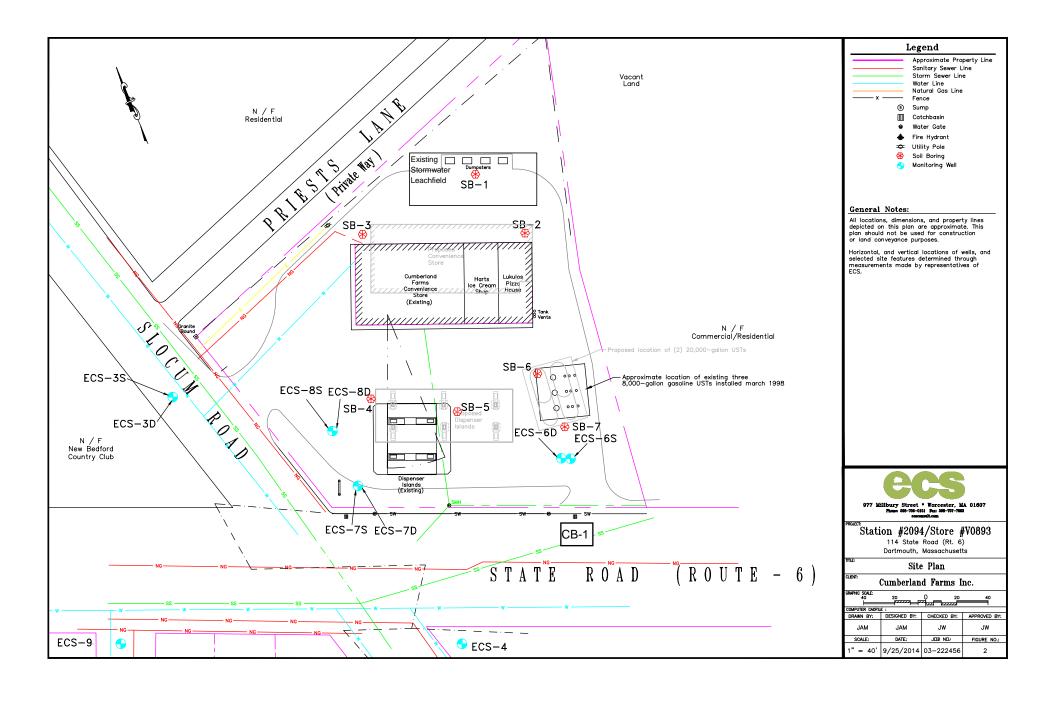
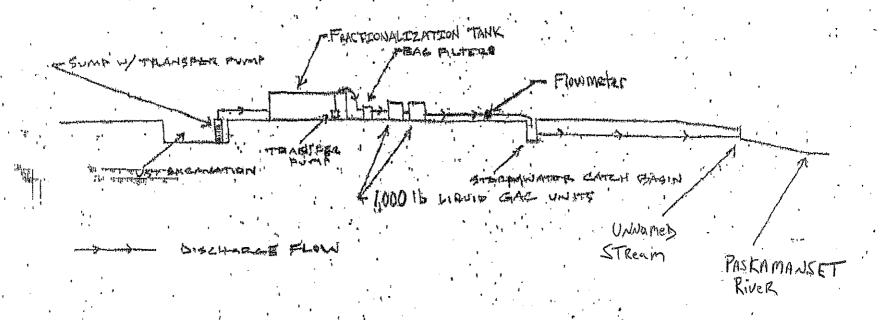

MA-2094-North Dartmouth-114 State Road 114 State Road Dartmouth, MA 02747-2921 Environmental Compliance Services, Inc. 997 Millbury Street, Unit G Worcester, MA 01607 Phone 508-756-0151 Fax 508-757-7063 www.ecsconsult.com

Figure 1: SITE LOCUS



Base Map: U.S. Geological Survey; Quadrangle Location: New Bedford North, MA

Lat/Lon: 41 38' 18.2868" NORTH, 70 58' 12.342" WEST - UTM Coordinates: 19 335917.2 EAST / 4611505.6 NORTH Generated By: Carol Farrington

Flow Schematic - Figure 3

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : Cumberland Farms Inc. # 2094				Facility/site mailing address:					
Location of facility/site : longitude: 705812.34 latitude: 413818.28	Facility code(s) 7549		Street:	114 State Road					
b) Name of facility/site owner:			Town: Dartmouth						
Email address of facility/site owner: myoung@cumberlandgulf.com Telephone no. of facility/site owner: 508-2	State:		Zip: 02747		County: Bristol				
Fax no. of facility/site owner : 781-459-0454 Address of owner (if different from site):				Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:					
Street: 100 Crossing Boulevard									
Town: Framingham	State:	MA	Zip: 0	1702	County:	Middlesex			
c) Legal name of operator :	Operat	tor tele	elephone no: 508-270-4477						
Cumberland Farms, Inc.	Operat	t or fax	no.: 78	1-459-0454	Operator email:		myoung@cumberlandgulf.co		
Operator contact name and title: Matthew	Young, S	enior P	Project Ma	anager					
Address of operator (if different from owner):	Street:								
Town:	State:		Zip:		County:				

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the second	en filed for the discharge?
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? YONO If Y, please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number:	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O N O, if. Final Dewatering General Permit? Y O N O, if. Individual: NPDES permit? Y O N O,
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y O N O
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks D. Long-Term Remediation of Contaminated Sumps and Dikes E. Short-term Contaminated Dredging Drain Back Waters (if not covered by 401/404 permit)
2. Discharge information. Please provide information	about the discharge, (attaching additional sheets as necessary) including
a) Describe the discharge activities for which the owner/a	pplicant is seeking coverage:
The petroleum station is upgrading their underground fuel stora discharge will be associated with the dewatering activities.	ge tanks and dewatering will be necessary to perform these upgrades. The
b) Provide the following information about each discharge	2:
points: Max flow 0.168	nd average flow rate of discharge (in cubic feet per second, ft ³ /s)? s maximum flow a design value ? Y O N O S 0.0117 cubic ft/s Is average flow a design value or estimate? Estimate
3) Latitude and longitude of each discharge within 100 feet pt.1: lat 413818.28 long 705812.34 pt.2: lat. pt.3: lat long pt.4: lat. pt.5: lat long pt.6: lat. pt.7: lat long pt.8: lat.	long. ; ; etc.
4) If hydrostatic testing, total volume of the discharge (gals): 5) Is the discharge intermitted in the discharge ongoing? Y	O N O
c) Expected dates of discharge (mm/dd/yy): start 7/1/2015	end 12/30/2015
d) Please attach a line drawing or flow schematic showing 1. sources of intake water, 2. contributing flow from the o	water flow through the facility including: peration, 3. treatment units, and 4. discharge points and receiving
waters(s). Flow Schematic is attached.	

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids (TSS)			×	1	Grab	SM2540D	5,000	<5,000		<5,000	
2. Total Residual Chlorine (TRC)		×									
3. Total Petroleum Hydrocarbons (TPH)		×		1	Grab	EPH	103	<103		<103	
4. Cyanide (CN)	57125	×									
5. Benzene (B)	71432		×	1	Grab	8260	1.0	2.7		2.7	
6. Toluene (T)	108883	×		1	Grab	8260	1.0	<1.0		<1.0	
7. Ethylbenzene (E)	100414	×		1	Grab	8260	1.0	<1.0		<1.0	
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		1	Grab	8260	1.0	<3.0		<3.0	
9. Total BTEX ²	n/a		×	1	Grab	8260/	1.0	2.7		2.7	
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934	×		1	Grab	8260	0.5	<0.5		<0.5	
11. Methyl-tert-Butyl Ether (MtBE)	1634044		×	1	Grab	8260	1.0	7.6		7.6	
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650		×	1	Grab	8260	10	166		166	

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					<u>Sample</u>	Analytical	Minimum Level	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	<u>Absent</u>	Believed Present	# of Samples	<u>Type</u> (e.g., grab)	Method Used (method #)	(ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	Grab	8260	1.0	<1.0		<1.0	
14. Naphthalene	91203	×		1	Grab	8260	1.0	<1.0		<1.0	
15. Carbon Tetrachloride	56235	×		1	Grab	8260	1.0	<1.0		<1.0	
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		1	Grab	8260	1.0	<1.0		<1.0	
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	Grab	8260	1.0	<1.0		<1.0	
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	Grab	8260	1.0	<1.0		<1.0	
18a. Total dichlorobenzene		×		1	Grab	8260	1.0	<1.0		<1.0	
19. 1,1 Dichloroethane (DCA)	75343	×		1	Grab	8260	1.0	<1.0		<1.0	
20. 1,2 Dichloroethane (DCA)	107062	×		1	Grab	8260	1.0	<1.0		<1.0	
21. 1,1 Dichloroethene (DCE)	75354	×		1	Grab	8260	1.0	<1.0		<1.0	
22. cis-1,2 Dichloroethene (DCE)	156592	×		1	Grab	8260	1.0	<1.0		<1.0	
23. Methylene Chloride	75092	×		1	Grab	8260	1.0	<1.0		<1.0	
24. Tetrachloroethene (PCE)	127184	×		1	Grab	8260	1.0	<1.0		<1.0	
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		1	Grab	8260	1.0	<1.0		<1.0	
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1	Grab	8260	1.0	<1.0		<1.0	
27. Trichloroethene (TCE)	79016	×		1	Grab	8260	1.0	<1.0		<1.0	

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	Grab	8260	1.0	<1.0		<1.0	
29. Acetone	67641		×	1	Grab	8260	10	12.6		12.6	
30. 1,4 Dioxane	123911	×		1	Grab	8260	20	<20		<20	
31. Total Phenols	108952	×		1	Grab	8270	5.38	<5.38		<5.38	
32. Pentachlorophenol (PCP)	87865	×		1	Grab	8270	21.5	<21.5		<21.5	
33. Total Phthalates (Phthalate esters) ⁴		×		0							
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×		1	Grab	8270	5.38	<5.38		<5.38	
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×		1	Grab	MADEP EPH	5.38	<5.38		<5.38	
a. Benzo(a) Anthracene	56553	×		1	Grab		5.38	<5.38		<5.38	
b. Benzo(a) Pyrene	50328	×		1	Grab		5.38	<5.38		<5.56	
c. Benzo(b)Fluoranthene	205992	×		1	Grab		5.38	<5.38		<5.38	
d. Benzo(k)Fluoranthene	207089	×		1	Grab		5.38	<5.38		<5.38	
e. Chrysene	21801	×		1	Grab		5.38	<5.38		<5.38	
f. Dibenzo(a,h)anthracene	53703	×		1	Grab		5.38	<5.38		<5.38	
g. Indeno(1,2,3-cd) Pyrene	193395	×		1	Grab		5.38	<5.38		<5.38	
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×		1	Grab	MADEP EPH	5.38	<5.38		<5.38	

⁴The sum of individual phthalate compounds.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329	×		1	Grab		5.38	<5.38			
i. Acenaphthylene	208968	×		1	Grab		5.38	<5.38			
j. Anthracene	120127	×		1	Grab		5.38	<5.38			
k. Benzo(ghi) Perylene	191242	×		1	Grab		5.38	<5.38			
1. Fluoranthene	206440	×		1	Grab		5.38	<5.38			
m. Fluorene	86737	×		1	Grab		5.38	<5.38			
n. Naphthalene	91203	×		1	Grab		5.38	<5.38			
o. Phenanthrene	85018	×		1	Grab		5.38	<5.38			
p. Pyrene	129000	×		1	Grab		5.38	<5.38			
37. Total Polychlorinated	85687; 84742; 117840; 84662; 131113;	×		0							
Biphenyls (PCBs)	117817.										
38. Chloride	16887006	×		0							
39. Antimony	7440360	×		1	grab	6010C	12	<12			
40. Arsenic	7440382	×		1	grab	6010C	8	<8			
41. Cadmium	7440439	×		1	grab	6010C	5	<5			
42. Chromium III (trivalent)	16065831	×		1	grab	6010C	10	<10			
43. Chromium VI (hexavalent)	18540299	×		1	grab	6010C	10	<10			
44. Copper	7440508	×		1	grab	6010C	10	<10			
45. Lead	7439921	×		1	grab	6010C	7.5	<7.5			
46. Mercury	7439976	×		1	grab	6010C	0.20	<0.20			
47. Nickel	7440020	×		1	grab	6010C	10	<10			
48. Selenium	7782492	X		1	grab	6010C	30	<30			
49. Silver	7440224	X		1	grab	6010C	10	<10			
50. Zinc	7440666	×		1	grab	6010C	10	<10			
51. Iron	7439896		×	1	grab	6010C	30	4,460		4,460	
Other (describe):											

<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	<u>Type</u> (e.g.,	Analytica Method Used method #	(ML) of	Maximum concentratio (ug/l)	daily value on mass (kg)	Average dail concentration (ug/l)	y va
b) For discharges whe Step 1: Do any of the Appendix III (i.e., the Step 2: For any metal dilution factor (DF) instructions or as dete What is the dilution factor (Metal: Iron Metal:	metals in the limits set at a set which excusing the formula dispersion of the set of th	ne influer at zero dil ceed the A ormula in the State plicable 1 DF: 5.19	at exceed th ution)? Y	e effluent le N O N O II limits, ca c (step 2) of	imits in alculate the f the NOI	If yes, Iron Look factor influe efflue concer factor	up the limit ca in Appendix ent have the po ent limits in Ap ntration above	? Ilculated at the IV. Do any otential to expendix IV (at the limit set)	he correspon of the metal ceed the corr i.e., is the in- t at the calcu	s in the responding fluent	
Metal: Metal: Etc.		DF: DF:	<u> </u>				N <u>⊚</u> If Y				
4. Treatment system					•	•			uding:		
a) A description of the The water from the UST granular activated carbot of the subject property. unnamed stream discharge.	excavation on vessels in the storm of	will be pur series, ar Irain locat	nped into tw d a flow met ed State Roa	o frac tanks er prior to di	for settling, the ischarge to the	n through	h two bag filter ainage manhole	units in paralle located on S	State Road, im	mediately soutl	
b) Identify each	Frac. ta	ınk 🗵 🛭	Air stripper	□ Oil/w	vater separator	r 🗖	Equalization	on tanks 🔲	Bag filter 🗵	GAC filter	×
applicable treatment unit (check all that apply):	Chlorin		De- hlorination		r (please desc	ribe):					

c) Proposed average and maximum the treatment system: Average flow rate of discharge 50 Design flow rate of treatment system	gpm N	lons per minute) f Aaximum flow rat gpm			v rate(s) (gallons per minute) of gpm
d) A description of chemical additiv	es being used or	planned to be use	ed (attach MSDS s	sheets):	
None					
5. Receiving surface water(s). Plea	se provide infor	mation about the r	eceiving water(s),	using separate sh	eets as necessary:
a) Identify the discharge pathway:	Direct to receiving water_	Within facility (sewer)	Storm drain 🗵	Wetlands	Other (describe):
b) Provide a narrative description of					
The storm drain located on State Road i	is discharged to a	unnamed stream w	nich subsequently	discharges to the Pa	askamanset River
c) Attach a detailed map(s) indicating 1. For multiple discharges, number to 2. For indirect dischargers, indicated The map should also include the loc on USGS topographical mapping), so	the discharges se the location of the ation and distan	equentially. he discharge to the ce to the nearest sa	e indirect conveya anitary sewer as w	nce and the discharell as the locus of	<u> </u>
d) Provide the state water quality cla	assification of th	e receiving water	В		
e) Provide the reported or calculated Please attach any calculation sheets	l seven day-ten y used to support	year low flow (7Q stream flow and d	10) of the receiving ilution calculation	ng water 0.7	cfs
f) Is the receiving water a listed 303	(d) water quality	impaired or limit	ed water? Y O	N_O_ If yes, for	r which pollutant(s)?
Is there a final TMDL? Y O N_0	O If yes, for w	hich pollutant(s)?			

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

 a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A O B O C D D E O F O b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway O
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? YONO
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

Based on a review of the MassDEP Resource Priority Map and the MassGIS Priority Habitat and Estimated Habitat Natural Heritage and Endangered Species Program Map, no areas of priority or estimated habitats or rare species were identified at the Site/work zone area relative to the proposed discharge (see attached maps). Therefore, it was determined that Criterion A in Section 6 (a) was applicable.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name:	Cumberland Farms Inc.
Operator signature:	Mat D. Jy
Printed Name &Tit	e: Matthew D. Young
Date: April 27, 2015	

ATTACHMENT II

Report Date: 20-Mar-15 09:40

☐ Final Report☐ Re-Issued Report☑ Revised Report

Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607

Worcester, MA 01607 Project #: 03-222456.00 Attn: Jason Ward

Project: CFI Dartmouth - 2094/V0893 - MA

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSB96280-01ECS-6SGround Water09-Sep-14 12:3412-Sep-14 15:25

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Ticolo Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 30 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrices	Ground Water		
Containers	✓ Satisfactory		
Sample Preservative	Aqueous (acid preserved)	N/A ✓ pH≤2 pH>2	
	Soil or	✓ N/A Samples not received in Methanol	ml Methanol/g soil
Sediment		Samples received in Methanol: covering soil/sediment not covering soil/sediment	1:1 +/-25% Other
		Samples received in air-tight container	
Temperature	Received on ice	Received at 4 ± 2 °C \checkmark Other: 0.9°C	

Were all QA/QC procedures followed as required by the VPH method? Yes

Were any significant modifications made to the VPH method as specified in section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrices	Ground Water				
Containers	✓ Satisfactory	y			
Aqueous Preservative	N/A	✓ pH <u><</u> 2	pH>2	pH adjusted to <2 in lab	
Temperature	✓ Satisfactory N/A ✓ pH≤2 Received on ice		Received at 4 ± 2 °C	✓ Other: 0.9°C	

Were all QA/QC procedures followed as required by the EPH method? Yes

Were any significant modifications made to the EPH method as specified in Section 11.3? No

Were all performance/acceptance standards for required QA/QC procedures achieved? Yes

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Nicole Leja Laboratory Director

Ricole Leja

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Spe	ectrum Analytical, Inc.		Project #: 03-222	456.00	
Proje	ct Location: CFI	Dartmouth - 2094/V08	393 - MA	RTN:		
This	form provides cei	rtifications for the foll	owing data set:	SB96280-01		
Matr	ices: Ground Wa	ater				
CAM	Protocol					
/	260 VOC AM II A	7470/7471 Hg CAM III B	✓ MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A
	270 SVOC AM II B	7010 Metals CAM III C	✓ MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
/	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative response	es to questions A through I	F are required for "Presu	amptive Certainty" status	
A	_		n consistent with those dese e field or laboratory, and pr			✓ Yes No
В	Were the analytic protocol(s) follow		ssociated QC requirements	specified in the selected	CAM	✓ Yes No
С	-		d analytical response action ed performance standard no	•	CAM	✓ Yes No
D			all the reporting requirements for the Acquisition and	-		✓ Yes No
Е		_	Was each method conducte the complete analyte list re	_	dification(s)?	✓ Yes No Yes No
F			and performance standard a uding all "No" responses to			✓ Yes No
		Responses to que	estions G, H and I below ar	re required for "Presump	tive Certainty" status	•
G	Were the reporting	ng limits at or below al	l CAM reporting limits spe	cified in the selected CA	M protocol(s)?	Yes ✓ No
		nt achieve "Presumptive n 310 CMR 40. 1056 (2)(.	Certainty" status may not neck) and WSC-07-350.	essarily meet the data usab	ility and representativeness	
Н	Were all QC peri	formance standards spe	ecified in the CAM protoco	l(s) achieved?		Yes ✓ No
I	Were results repo	orted for the complete	analyte list specified in the	selected CAM protocol(s)?	Yes ✓ No
All ne	gative responses are	e addressed in a case nar	rative on the cover page of th	is report.		
	0 ,		alties of perjury that, based u ical report is, to the best of my		1 0	ing the
					Nicole Leja Laboratory Director Date: 3/20/2015	

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

March 20, 2015 Report Revision Case Narrative:

This report has been revised to include analyses added as listed in the appendix at the end of this report.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 200.7/3005A/6010

Samples:

SB96280-01 ECS-6S

Field filtered. Laboratory preserved.

Filtration

SW846 6010C

Spikes:

1422079-MS1 Source: SB96280-01

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Iron

Duplicates:

1422079-DUP1 Source: SB96280-01

MRL raised to correlate to batch QC reporting limits.

Zinc

Samples:

This laboratory report is not valid without an authorized signature on the cover page.

SW846 6010C

Samples:

SB96280-01 ECS-6S

MRL raised to correlate to batch QC reporting limits.

Zinc

SW846 8260C

Calibration:

1409047

Analyte quantified by quadratic equation type calibration.

Chloromethane

This affected the following samples:

1421856-BLK1

1421856-BS1

1421856-BSD1

ECS-6S

S410258-ICV1

S410480-CCV1

Laboratory Control Samples:

1421856 BS/BSD

Bromomethane percent recoveries (67/77) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS-6S

Samples:

S410480-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,2-Trichlorotrifluoroethane (Freon 113) (30.5%)

1,1-Dichloroethene (20.1%)

Bromomethane (-33.3%)

trans-1,4-Dichloro-2-butene (-27.1%)

Trichlorofluoromethane (Freon 11) (25.5%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Chloromethane (25.0%)

This affected the following samples:

1421856-BLK1

1421856-BS1

1421856-BSD1

ECS-6S

Sample Acceptance Check Form

Client: Environmental Compliance Services - Worcester, MA

Project: CFI Dartmouth - 2094/V0893 - MA / 03-222456.00

Work Order: SB96280

Sample(s) received on: 9/12/2014

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>Yes</u>	<u>No</u>	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	✓		
Were samples refrigerated upon transfer to laboratory representative?	✓		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	√		
Did sample container labels agree with Chain of Custody document?	✓		
Were samples received within method-specific holding times?	\checkmark		

ECS-6S	### CAS No.				Project # 2456.00		<u>Matrix</u> Ground Wa		ection Date 9-Sep-14 12		Received 12-Sep-14		
CAS No.		Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Org	ganic Compounds by SW846 8260												
76-13-1	1,1,2-Trichlorotrifluoroetha			μg/l	1.0	0.7	1	SW846 8260C	17-Sep-14	18-Sep-14	JEG	1421856	
67-64-1		12.6		μg/l	10.0	3.6	1				"		
107-13-1	Acrylonitrile	< 0.5		μg/l	0.5	0.5	1				"		
71-43-2	Benzene	2.7		μg/l	1.0	0.3	1	п			"		
108-86-1	Bromobenzene	< 1.0		μg/l	1.0	0.3	1						
74-97-5	Bromochloromethane	< 1.0		μg/l	1.0	0.3	1						
75-27-4	Bromodichloromethane	< 0.5		μg/l	0.5	0.4	1						
75-25-2	Bromoform	< 1.0		μg/l	1.0	0.6	1						
74-83-9				μg/l	2.0	0.5	1	п			"		
78-93-3				μg/l	10.0	3.1	1				"		
104-51-8				μg/l	1.0	0.4	1						
135-98-8				μg/l	1.0	0.4	1				"		
98-06-6	•			μg/l	1.0	0.4	1						
75-15-0	-			μg/l	2.0	0.7	1						
56-23-5				μg/l	1.0	0.4	1						
				μg/I	1.0	0.3	1						
					2.0	0.7	1						
				μg/l			1						
				μg/l	1.0	0.5							
				μg/l	2.0	0.5	1				,,		
				μg/l	1.0	0.4	1						
				μg/l 	1.0	0.3	1						
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.0		μg/l	2.0	0.5	1		•			•	
124-48-1	Dibromochloromethane	< 0.5		μg/l	0.5	0.4	1				"		
106-93-4	1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5	0.3	1				"		
74-95-3	Dibromomethane	< 1.0		μg/l	1.0	0.4	1				"		
95-50-1	1,2-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1				"		
541-73-1	1,3-Dichlorobenzene	< 1.0		μg/l	1.0	0.4	1				"		
106-46-7	1,4-Dichlorobenzene	< 1.0		μg/l	1.0	0.5	1				"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0	0.6	1				"		
75-34-3	1,1-Dichloroethane	< 1.0		μg/l	1.0	0.3	1				"		
107-06-2	1,2-Dichloroethane	< 1.0		μg/l	1.0	0.3	1				"		
75-35-4	1,1-Dichloroethene	< 1.0		μg/l	1.0	0.5	1				"		
156-59-2	cis-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.4	1	н			"		
156-60-5	trans-1,2-Dichloroethene	< 1.0		μg/l	1.0	0.5	1				"		
78-87-5	1,2-Dichloropropane	< 1.0		μg/l	1.0	0.3	1				"		
142-28-9	1,3-Dichloropropane	< 1.0		μg/l	1.0	0.2	1				"		
594-20-7	2,2-Dichloropropane	< 1.0		μg/I	1.0	0.3	1						
563-58-6	1,1-Dichloropropene	< 1.0		μg/l	1.0	0.4	1				,		
10061-01-5	cis-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1				"		
10061-02-6	trans-1,3-Dichloropropene	< 0.5		μg/l	0.5	0.4	1				"		
100-41-4	Ethylbenzene	< 1.0			1.0	0.5	1						
	-			μg/l							"		
87-68-3	Hexachlorobutadiene	< 0.5		μg/l	0.5	0.4	1		_				
591-78-6	2-Hexanone (MBK)	< 10.0		μg/l	10.0	2.0	1	"		"	-		

CCS-6S		Client Project #		<u>Matrix</u>		Collection Date/Time			Red				
	396280-01		03-222	456.00		Ground Wa	one of the desired terms of th		1:34		2-Sep-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cei
	erganic Compounds								- F ·· · · ·				
	anic Compounds by SW846 8260												
-	by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.0		μg/l	1.0	0.5	1	SW846 8260C	17-Sep-14	18-Sep-14	JEG	1421856	
99-87-6	4-Isopropyltoluene	< 1.0		μg/l	1.0	0.5	1						
1634-04-4	Methyl tert-butyl ether	7.6		μg/l	1.0	0.4	1						
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0	2.5	1						
75-09-2	Methylene chloride	< 2.0		μg/l	2.0	0.5	1						
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.5	1						
103-65-1	n-Propylbenzene	< 1.0		μg/l	1.0	0.4	1						
100-42-5	Styrene	< 1.0		μg/l	1.0	0.4	1						
630-20-6	1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0	0.4	1						
79-34-5	1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5	0.5	1						
127-18-4	Tetrachloroethene	< 1.0		μg/l	1.0	0.6	1						
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1						
87-61-6	1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0	0.8	1						
120-82-1	1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0	0.4	1						
108-70-3	1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0	0.6	1						
1-55-6	1,1,1-Trichloroethane	< 1.0		μg/l	1.0	0.4	1						
9-00-5	1,1,2-Trichloroethane	< 1.0		μg/l	1.0	0.3	1						
79-01-6	Trichloroethene	< 1.0		μg/l	1.0	0.4	1						
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0	0.8	1						
96-18-4	1,2,3-Trichloropropane	< 1.0		μg/l	1.0	0.3	1						
95-63-6	1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0	0.3	1						
108-67-8	1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0	0.4	1						
75-01-4	Vinyl chloride	< 1.0		μg/l	1.0	1.0	1						
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1						
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.4	1						
109-99-9	Tetrahydrofuran	< 2.0		μg/l	2.0	0.8	1						
60-29-7	Ethyl ether	< 1.0		μg/l	1.0	0.5	1						
994-05-8	Tert-amyl methyl ether	< 1.0		μg/l	1.0	0.3	1						
637-92-3	Ethyl tert-butyl ether	< 1.0		μg/l	1.0	0.4	1						
108-20-3	Di-isopropyl ether	< 1.0		μg/l	1.0	0.3	1						
75-65-0	Tert-Butanol / butyl alcohol	166		μg/l	10.0	8.9	1						
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.6	1						
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.0		μg/l	5.0	1.0	1						
64-17-5	Ethanol	< 400		μg/l	400	80.8	1						
Surrogate rec	coveries:												
160-00-4	4-Bromofluorobenzene	98			70-13	0 %							
2037-26-5	Toluene-d8	99			70-13								
17060-07-0	1,2-Dichloroethane-d4	107			70-13								
1868-53-7	Dibromofluoromethane	98			70-13								
					, 0 10	- /-							

Sample Identification

ECS-6S SB96280	dentification				Project # 456.00		<u>Matrix</u> Ground Wa		ection Date 9-Sep-14 12			ceived Sep-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Organic Compounds												
MADEP VP													
Prepared	by method VPH - EPA 503	30C Water											
	C5-C8 Aliphatic Hydrocarbons	123	D	μg/l	75.0	6.62	5	MADEP VPH 5/2004 Rev. 1.1	17-Sep-14	18-Sep-14	mp	1421850	
	C9-C12 Aliphatic Hydrocarbons	< 25.0	D	μg/l	25.0	7.11	5						
	C9-C10 Aromatic Hydrocarbons	< 25.0	D	μg/l	25.0	1.78	5						
	Unadjusted C5-C8 Aliphatic Hydrocarbons	137	D	μg/l	75.0	7.93	5						
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0	D	μg/l	25.0	6.70	5						
71-43-2	Benzene	< 5.00	D	μg/l	5.00	1.16	5						
100-41-4	Ethylbenzene	< 5.00	D	μg/l	5.00	2.16	5						
1634-04-4	Methyl tert-butyl ether	9.24	D	μg/l	5.00	1.68	5						
91-20-3	Naphthalene	< 5.00	D	μg/l	5.00	1.80	5						
108-88-3	Toluene	< 5.00	D	μg/l	5.00	0.995	5						
179601-23-1	m,p-Xylene	< 10.0	D		10.0	4.13	5						
95-47-6	o-Xylene	< 5.00	D	μg/l μg/l	5.00	2.22	5						
		- 5.00		μ9/1	3.00	2.22							
Surrogate red													
615-59-8	2,5-Dibromotoluene (FID)	109			70-13								
615-59-8	2,5-Dibromotoluene (PID)	106			70-13	0 %							
	ole Petroleum Hydrocarbons												
MADEP EP Prepared	' <u>H</u> I by method SW846 3510C												
	C9-C18 Aliphatic Hydrocarbons	< 103		μg/l	103	26.4	1	MADEP EPH 5/2004 R	18-Sep-14	22-Sep-14	MWP	1421966	
	C19-C36 Aliphatic Hydrocarbons	< 103		μg/l	103	37.2	1						
	C11-C22 Aromatic Hydrocarbons	< 103		μg/l	103	60.7	1						
	Unadjusted C11-C22 Aromatic Hydrocarbons	< 103		μg/l	103	60.7	1						
91-20-3	Naphthalene	< 5.15		μg/l	5.15	2.13	1						
91-57-6	2-Methylnaphthalene	< 5.15		μg/l	5.15	2.08	1						
208-96-8	Acenaphthylene	< 5.15		μg/l	5.15	2.15	1						
83-32-9	Acenaphthene	< 5.15		μg/l	5.15	2.54	1						
86-73-7	Fluorene	< 5.15			5.15	2.25	1						
85-01-8	Phenanthrene	< 5.15		μg/l									
				μg/l /'	5.15	1.92	1						
120-12-7	Anthracene	< 5.15		μg/l	5.15	1.98	1						
206-44-0	Fluoranthene	< 5.15		μg/l	5.15	1.79	1						
129-00-0	Pyrene	< 5.15		μg/l	5.15	1.73	1						
56-55-3	Benzo (a) anthracene	< 5.15		μg/l	5.15	2.75	1						
218-01-9	Chrysene	< 5.15		μg/l	5.15	2.77	1						
205-99-2	Benzo (b) fluoranthene	< 5.15		μg/l	5.15	3.19	1						
207-08-9	Benzo (k) fluoranthene	< 5.15		μg/l	5.15	3.55	1						
50-32-8	Benzo (a) pyrene	< 5.15		μg/l	5.15	2.79	1						
193-39-5	Indeno (1,2,3-cd) pyrene	< 5.15		μg/I	5.15	3.19	1						
53-70-3	Dibenzo (a,h) anthracene	< 5.15		μg/l	5.15	3.03	1						
	Benzo (g,h,i) perylene	< 5.15		μg/l	5.15	3.16	1						

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1421850 - VPH - EPA 5030C Water										
Blank (1421850-BLK1)					Pre	pared: 17-Sep	-14 Analyzed	: 18-Sep-14		
C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0						
C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0						
C9-C10 Aromatic Hydrocarbons	< 25.0		μg/l	25.0						
Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0						
Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0						
Benzene	< 5.00		μg/l	5.00						
Ethylbenzene	< 5.00		μg/l	5.00						
Methyl tert-butyl ether	< 5.00		μg/l	5.00						
Naphthalene	< 5.00		μg/l	5.00						
Toluene	< 5.00		μg/l	5.00						
m,p-Xylene	< 10.0		μg/l	10.0						
o-Xylene	< 5.00		μg/l	5.00						
2-Methylpentane	< 5.00		μg/l	5.00						
n-Nonane	< 10.0		μg/l	10.0						
n-Pentane	< 10.0		μg/l	10.0						
1,2,4-Trimethylbenzene	< 5.00		μg/l	5.00						
2,2,4-Trimethylpentane	< 5.00		μg/l	5.00						
n-Butylcyclohexane	< 5.00		μg/l	5.00						
n-Decane	< 5.00		μg/l	5.00						
Surrogate: 2,5-Dibromotoluene (FID)	49.0		μg/l		50.0		98	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	48.8		μg/l		50.0		98	70-130 70-130		
	40.0		P9''			narad: 17 Can	-14 Analyzed:			
LCS (1421850-BS1) C5-C8 Aliphatic Hydrocarbons	40.4		//			pareu. 17-3ep	71	-		
•	42.4		μg/l		60.0			70-130		
C9-C12 Aliphatic Hydrocarbons	56.4		μg/l		60.0		94	70-130		
C9-C10 Aromatic Hydrocarbons	23.0		μg/l		20.0		115	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons	203		μg/l		200		102	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	79.4		μg/l		80.0		99	70-130		
Benzene	22.1		μg/l		20.0		110	70-130		
Ethylbenzene	23.1		μg/l		20.0		115	70-130		
Methyl tert-butyl ether	22.0		μg/l		20.0		110	70-130		
Naphthalene	23.6		μg/l		20.0		118	70-130		
Toluene	23.0		μg/l		20.0		115	70-130		
m,p-Xylene	46.9		μg/l		40.0		117	70-130		
o-Xylene	23.7		μg/l		20.0		118	70-130		
2-Methylpentane	18.1		μg/l		20.0		91	70-130		
n-Nonane	16.8		μg/l		20.0		84	70-130		
n-Pentane	17.4		μg/l		20.0		87	70-130		
1,2,4-Trimethylbenzene	23.8		μg/l		20.0		119	70-130		
2,2,4-Trimethylpentane	19.2		μg/l		20.0		96	70-130		
n-Butylcyclohexane	19.0		μg/l		20.0		95	70-130		
n-Decane	19.2		μg/l		20.0		96	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	57.1		μg/l		50.0		114	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	55.6		μg/l		50.0		111	70-130		
LCS Dup (1421850-BSD1)					<u>P</u> re	pared: 17-Sep	-14 Analyzed	: 18-Sep-14		
C9-C12 Aliphatic Hydrocarbons	61.4		μg/l		60.0		102	70-130	8	25
C5-C8 Aliphatic Hydrocarbons	43.2		μg/l		60.0		72	70-130	2	25
C9-C10 Aromatic Hydrocarbons	23.8		μg/l		20.0		119	70-130	3	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	214		μg/l		200		107	70-130	5	25
Unadjusted C9-C12 Aliphatic	85.2		μg/l		80.0		106	70-130	7	25
Hydrocarbons	00.£		μ 9 /1		00.0		100	, 5 100	,	23

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1421850 - VPH - EPA 5030C Water										
LCS Dup (1421850-BSD1)					Pre	pared: 17-Sep	o-14 Analyzed	: 18-Sep-14		
Benzene	22.5		μg/l		20.0		113	70-130	2	25
Ethylbenzene	24.9		μg/l		20.0		124	70-130	7	25
Methyl tert-butyl ether	22.2		μg/l		20.0		111	70-130	1	25
Naphthalene	25.2		μg/l		20.0		126	70-130	6	25
Toluene	23.9		μg/l		20.0		120	70-130	4	25
m,p-Xylene	51.5		μg/l		40.0		129	70-130	10	25
o-Xylene	25.9		μg/l		20.0		130	70-130	9	25
2-Methylpentane	18.1		μg/l		20.0		90	70-130	0.4	25
n-Nonane	20.5		μg/l		20.0		102	70-130	20	25
n-Pentane	17.8		μg/l		20.0		89	70-130	2	25
1,2,4-Trimethylbenzene	25.9				20.0		130	70-130	9	25
2,2,4-Trimethylpentane	19.5		μg/l		20.0		98	70-130	2	25
• •	22.7		μg/l				114			
n-Butylcyclohexane			μg/l		20.0			70-130	18	25
n-Decane	23.6		μg/l		20.0		118	70-130	21	25
Surrogate: 2,5-Dibromotoluene (FID)	59.9		μg/l		50.0		120	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	58.2		μg/l		50.0		116	70-130		
Batch 1421856 - SW846 5030 Water MS										
Blank (1421856-BLK1)					Pre	pared & Analy	/zed: 17-Sep-1	4		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.0		μg/l	1.0						
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.5		μg/l	0.5						
Benzene	< 1.0		μg/l	1.0						
Bromobenzene	< 1.0		μg/l	1.0						
Bromochloromethane	< 1.0		μg/l	1.0						
Bromodichloromethane	< 0.5		μg/l	0.5						
Bromoform	< 1.0		μg/l	1.0						
Bromomethane	< 2.0		μg/l	2.0						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.0		μg/l	1.0						
sec-Butylbenzene	< 1.0			1.0						
			μg/l	1.0						
tert-Butylbenzene	< 1.0		μg/l							
Carbon disulfide	< 2.0		μg/l	2.0						
Carbon tetrachloride	< 1.0		μg/l	1.0						
Chlorobenzene	< 1.0		μg/l	1.0						
Chloroethane	< 2.0		μg/l	2.0						
Chloroform	< 1.0		μg/l	1.0						
Chloromethane	< 2.0		μg/l	2.0						
2-Chlorotoluene	< 1.0		μg/l	1.0						
4-Chlorotoluene	< 1.0		μg/l	1.0						
1,2-Dibromo-3-chloropropane	< 2.0		μg/l	2.0						
Dibromochloromethane	< 0.5		μg/l	0.5						
1,2-Dibromoethane (EDB)	< 0.5		μg/l	0.5						
Dibromomethane	< 1.0		μg/l	1.0						
1,2-Dichlorobenzene	< 1.0		μg/l	1.0						
1,3-Dichlorobenzene	< 1.0		μg/l	1.0						
1,4-Dichlorobenzene	< 1.0		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	< 2.0		μg/l	2.0						
1,1-Dichloroethane	< 1.0		μg/l	1.0						
1,2-Dichloroethane	< 1.0		μg/l	1.0						
1,1-Dichloroethene	< 1.0		μg/l	1.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1421856 - SW846 5030 Water MS										
Blank (1421856-BLK1)					Pre	pared & Analy	zed: 17-Sep-14	ŀ		
trans-1,2-Dichloroethene	< 1.0		μg/l	1.0						
1,2-Dichloropropane	< 1.0		μg/l	1.0						
1,3-Dichloropropane	< 1.0		μg/l	1.0						
2,2-Dichloropropane	< 1.0		μg/l	1.0						
1,1-Dichloropropene	< 1.0		μg/l	1.0						
cis-1,3-Dichloropropene	< 0.5		μg/l	0.5						
trans-1,3-Dichloropropene	< 0.5		μg/l	0.5						
Ethylbenzene	< 1.0		μg/l	1.0						
Hexachlorobutadiene	< 0.5		μg/l	0.5						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.0		μg/l	1.0						
4-Isopropyltoluene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.0		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/l	10.0						
Methylene chloride	< 2.0		μg/l	2.0						
Naphthalene	< 1.0		μg/l	1.0						
n-Propylbenzene	< 1.0		μg/l	1.0						
Styrene	< 1.0		μg/l	1.0						
1,1,1,2-Tetrachloroethane	< 1.0		μg/l	1.0						
1,1,2,2-Tetrachloroethane	< 0.5		μg/l	0.5						
Tetrachloroethene	< 1.0		μg/l	1.0						
Toluene	< 1.0		μg/l	1.0						
1,2,3-Trichlorobenzene	< 1.0		μg/l	1.0						
1,2,4-Trichlorobenzene	< 1.0		μg/l	1.0						
1,3,5-Trichlorobenzene	< 1.0		μg/l	1.0						
1,1,1-Trichloroethane	< 1.0		μg/l	1.0						
1,1,2-Trichloroethane	< 1.0		μg/l	1.0						
Trichloroethene	< 1.0		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	< 1.0		μg/l	1.0						
1,2,3-Trichloropropane	< 1.0		μg/l	1.0						
1,2,4-Trimethylbenzene	< 1.0		μg/l	1.0						
1,3,5-Trimethylbenzene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.0		μg/l	1.0						
m,p-Xylene	< 2.0		μg/l	2.0						
o-Xylene	< 1.0		μg/l	1.0						
Tetrahydrofuran	< 2.0		μg/l	2.0						
Ethyl ether	< 1.0		μg/l	1.0						
Tert-amyl methyl ether	< 1.0		μg/l	1.0						
Ethyl tert-butyl ether	< 1.0		μg/l	1.0						
Di-isopropyl ether	< 1.0		μg/l	1.0						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.0		μg/l	5.0						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromofluorobenzene	49.2		μg/l		50.0		98	70-130		
Surrogate: Toluene-d8	49.2		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.8		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	47.5		μg/l		50.0		95	70-130		
LCS (1421856-BS1)					<u>Pre</u>	pared & Analy	zed: 17-Sep-14	<u>!</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	26.1		μg/l		20.0		130	70-130		
Acetone	19.4		μg/l		20.0		97	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1421856 - SW846 5030 Water MS										
LCS (1421856-BS1)					<u>Pre</u>	pared & Analy	zed: 17-Sep-14	ļ		
Acrylonitrile	21.3		μg/l		20.0		107	70-130		
Benzene	20.9		μg/l		20.0		104	70-130		
Bromobenzene	20.4		μg/l		20.0		102	70-130		
Bromochloromethane	19.6		μg/l		20.0		98	70-130		
Bromodichloromethane	19.6		μg/l		20.0		98	70-130		
Bromoform	16.1		μg/l		20.0		80	70-130		
Bromomethane	13.3		μg/l		20.0		67	70-130		
2-Butanone (MEK)	18.7		μg/l		20.0		94	70-130		
n-Butylbenzene	22.2		μg/l		20.0		111	70-130		
sec-Butylbenzene	22.4		μg/l		20.0		112	70-130		
tert-Butylbenzene	21.9		μg/l		20.0		110	70-130		
Carbon disulfide	21.4		μg/l		20.0		107	70-130		
Carbon tetrachloride	20.5		μg/l		20.0		102	70-130		
Chlorobenzene	20.6		μg/l		20.0		103	70-130		
Chloroethane	23.6		μg/l		20.0		118	70-130		
Chloroform	20.1		μg/l		20.0		100	70-130		
Chloromethane	25.0				20.0		125	70-130		
2-Chlorotoluene	21.3		μg/l		20.0		106	70-130		
			μg/l				105			
4-Chlorotoluene	21.0		μg/l		20.0			70-130		
1,2-Dibromo-3-chloropropane	18.4		μg/l		20.0		92	70-130		
Dibromochloromethane	17.6		μg/l		20.0		88	70-130		
1,2-Dibromoethane (EDB)	19.3		μg/l		20.0		96	70-130		
Dibromomethane	19.8		μg/l		20.0		99	70-130		
1,2-Dichlorobenzene	21.1		μg/l		20.0		106	70-130		
1,3-Dichlorobenzene	20.6		μg/l		20.0		103	70-130		
1,4-Dichlorobenzene	20.7		μg/l		20.0		103	70-130		
Dichlorodifluoromethane (Freon12)	21.3		μg/l		20.0		107	70-130		
1,1-Dichloroethane	20.3		μg/l		20.0		101	70-130		
1,2-Dichloroethane	20.6		μg/l		20.0		103	70-130		
1,1-Dichloroethene	24.0		μg/l		20.0		120	70-130		
cis-1,2-Dichloroethene	19.7		μg/l		20.0		99	70-130		
trans-1,2-Dichloroethene	20.2		μg/l		20.0		101	70-130		
1,2-Dichloropropane	19.7		μg/l		20.0		98	70-130		
1,3-Dichloropropane	20.1		μg/l		20.0		100	70-130		
2,2-Dichloropropane	19.1		μg/l		20.0		96	70-130		
1,1-Dichloropropene	22.7		μg/l		20.0		113	70-130		
cis-1,3-Dichloropropene	19.2		μg/l		20.0		96	70-130		
trans-1,3-Dichloropropene	18.8		μg/l		20.0		94	70-130		
Ethylbenzene	21.4		μg/l		20.0		107	70-130		
Hexachlorobutadiene	21.2		μg/l		20.0		106	70-130		
2-Hexanone (MBK)	17.3		μg/l		20.0		86	70-130		
Isopropylbenzene	21.9		μg/l		20.0		110	70-130		
4-Isopropyltoluene	22.4		μg/l		20.0		112	70-130		
Methyl tert-butyl ether	19.0		μg/l		20.0		95	70-130		
4-Methyl-2-pentanone (MIBK)	18.9		μg/l		20.0		95	70-130		
Methylene chloride	21.2		μg/l		20.0		106	70-130		
Naphthalene	17.6		μg/l		20.0		88	70-130		
n-Propylbenzene	21.9		μg/l		20.0		109	70-130		
Styrene	20.3		μg/l		20.0		101	70-130		
1,1,1,2-Tetrachloroethane	18.8		μg/l		20.0		94	70-130		
1,1,2,1-Tetrachloroethane	20.1		μg/I μg/I		20.0		100	70-130		
Tetrachloroethene	21.9		μg/l		20.0		100	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1421856 - SW846 5030 Water MS										
LCS (1421856-BS1)					Pre	pared & Analy	zed: 17-Sep-1	4		
Toluene	20.8		μg/l		20.0		104	70-130		
1,2,3-Trichlorobenzene	19.1		μg/l		20.0		95	70-130		
1,2,4-Trichlorobenzene	19.6		μg/l		20.0		98	70-130		
1,3,5-Trichlorobenzene	20.7		μg/l		20.0		103	70-130		
1,1,1-Trichloroethane	20.8		μg/l		20.0		104	70-130		
1,1,2-Trichloroethane	19.5		μg/l		20.0		98	70-130		
Trichloroethene	21.0		μg/l		20.0		105	70-130		
Trichlorofluoromethane (Freon 11)	25.1		μg/l		20.0		126	70-130		
1,2,3-Trichloropropane	20.0		μg/l		20.0		100	70-130		
1,2,4-Trimethylbenzene	21.2		μg/l		20.0		106	70-130		
1,3,5-Trimethylbenzene	21.7		μg/l		20.0		108	70-130		
Vinyl chloride	21.7		μg/l		20.0		108	70-130		
m,p-Xylene	21.1		μg/l		20.0		106	70-130		
o-Xylene	21.1		μg/l		20.0		106	70-130		
Tetrahydrofuran	17.3		μg/l		20.0		87	70-130		
Ethyl ether	21.6		μg/l		20.0		108	70-130		
Tert-amyl methyl ether	22.1		μg/l		20.0		110	70-130		
Ethyl tert-butyl ether	19.4		μg/l		20.0		97	70-130		
Di-isopropyl ether	19.6		μg/l		20.0		98	70-130		
Tert-Butanol / butyl alcohol	180		μg/l		200		90	70-130		
1,4-Dioxane	199				200		100	70-130		
trans-1,4-Dichloro-2-butene			μg/l				73	70-130		
	14.6		μg/l		20.0					
Ethanol	408		μg/l		400		102	70-130		
Surrogate: 4-Bromofluorobenzene	50.7		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	49.2		μg/l		50.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	48.4		μg/l		50.0		97	70-130		
LCS Dup (1421856-BSD1)					Pre	pared & Analy	zed: 17-Sep-1	<u>4</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.1		μg/l		20.0		125	70-130	4	20
Acetone	19.4		μg/l		20.0		97	70-130	0.3	20
Acrylonitrile	21.5		μg/l		20.0		108	70-130	0.8	20
Benzene	19.7		μg/l		20.0		99	70-130	6	20
Bromobenzene	20.0		μg/l		20.0		100	70-130	2	20
Bromochloromethane	19.0		μg/l		20.0		95	70-130	3	20
Bromodichloromethane	18.8		μg/l		20.0		94	70-130	4	20
Bromoform	16.0		μg/l		20.0		80	70-130	0.4	20
Bromomethane	15.3		μg/l		20.0		77	70-130	14	20
2-Butanone (MEK)	19.0		μg/l		20.0		95	70-130	1	20
n-Butylbenzene	20.8		μg/l		20.0		104	70-130	7	20
sec-Butylbenzene	21.5		μg/l		20.0		108	70-130	4	20
tert-Butylbenzene	21.1		μg/l		20.0		106	70-130	4	20
Carbon disulfide	20.1		μg/l		20.0		101	70-130	6	20
Carbon tetrachloride	19.5		μg/I		20.0		98	70-130	5	20
Chlorobenzene	19.8				20.0		99	70-130	4	20
Chloroethane	22.4		μg/l ug/l		20.0		112	70-130	5	20
Chloroform	19.3		μg/l				96			20
			μg/l		20.0			70-130	4	
Chloroteluone	23.4		μg/l		20.0		117	70-130	7	20
2-Chlorotoluene	20.5		μg/l		20.0		102	70-130	4	20
4-Chlorotoluene	20.2		μg/l		20.0		101	70-130	4	20
1,2-Dibromo-3-chloropropane	17.8		μg/l		20.0		89	70-130	4	20
Dibromochloromethane	17.0		μg/l		20.0		85	70-130	3	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1421856 - SW846 5030 Water MS										
LCS Dup (1421856-BSD1)					<u>Pre</u>	pared & Analy	zed: 17-Sep-14	<u>1</u>		
1,2-Dibromoethane (EDB)	19.0		μg/l		20.0		95	70-130	1	20
Dibromomethane	19.8		μg/l		20.0		99	70-130	0.2	20
1,2-Dichlorobenzene	20.2		μg/l		20.0		101	70-130	4	20
1,3-Dichlorobenzene	20.0		μg/l		20.0		100	70-130	3	20
1,4-Dichlorobenzene	20.0		μg/l		20.0		100	70-130	3	20
Dichlorodifluoromethane (Freon12)	20.2		μg/l		20.0		101	70-130	6	20
1,1-Dichloroethane	19.4		μg/l		20.0		97	70-130	5	20
1,2-Dichloroethane	20.0		μg/l		20.0		100	70-130	3	20
1,1-Dichloroethene	22.1		μg/l		20.0		111	70-130	8	20
cis-1,2-Dichloroethene	19.0		μg/l		20.0		95	70-130	4	20
trans-1,2-Dichloroethene	19.6		μg/l		20.0		98	70-130	3	20
1,2-Dichloropropane	18.6		μg/l		20.0		93	70-130	6	20
1,3-Dichloropropane	19.7		μg/l		20.0		99	70-130	2	20
2,2-Dichloropropane	18.6		μg/l		20.0		93	70-130	3	20
1,1-Dichloropropene	21.2		μg/l		20.0		106	70-130	6	20
cis-1,3-Dichloropropene	18.6		μg/l		20.0		93	70-130	3	20
trans-1,3-Dichloropropene	18.1		μg/l		20.0		91	70-130	4	20
Ethylbenzene	20.5		μg/l		20.0		102	70-130	4	20
Hexachlorobutadiene	20.4		μg/l		20.0		102	70-130	4	20
2-Hexanone (MBK)	17.1		μg/l		20.0		86	70-130	1	20
Isopropylbenzene	21.1		μg/l		20.0		105	70-130	4	20
4-Isopropyltoluene	20.9		μg/l		20.0		104	70-130	7	20
Methyl tert-butyl ether	18.5		μg/l		20.0		93	70-130	3	20
4-Methyl-2-pentanone (MIBK)	18.4		μg/l		20.0		92	70-130	3	20
Methylene chloride	20.7		μg/l		20.0		104	70-130	3	20
Naphthalene	17.8		μg/l		20.0		89	70-130	1	20
n-Propylbenzene	20.9		μg/I		20.0		104	70-130	5	20
Styrene	19.8		μg/I		20.0		99	70-130	2	20
1,1,1,2-Tetrachloroethane	18.5				20.0		93	70-130	2	20
1,1,2,2-Tetrachloroethane	19.8		μg/l		20.0		99	70-130	2	20
Tetrachloroethene	20.8		μg/l		20.0		104	70-130	5	20
Toluene			μg/l				104			
	19.9		μg/l		20.0			70-130	4	20
1,2,3-Trichlorobenzene	18.9		μg/l		20.0		95	70-130	0.9	20
1,2,4-Trichlorobenzene	19.3		μg/l		20.0		96	70-130	2	20
1,3,5-Trichlorobenzene	20.0		μg/l		20.0		100	70-130	4	20
1,1,1-Trichloroethane	20.1		μg/l		20.0		100	70-130	4	20
1,1,2-Trichloroethane	19.1		μg/l		20.0		95	70-130	2	20
Trichloroethene	19.5		μg/l		20.0		98	70-130	7	20
Trichlorofluoromethane (Freon 11)	24.1		μg/l		20.0		120	70-130	4	20
1,2,3-Trichloropropane	19.9		μg/l		20.0		99	70-130	0.7	20
1,2,4-Trimethylbenzene	20.4		μg/l		20.0		102	70-130	4	20
1,3,5-Trimethylbenzene	20.9		μg/l		20.0		105	70-130	4	20
Vinyl chloride	20.6		μg/l		20.0		103	70-130	5	20
m,p-Xylene	20.3		μg/l		20.0		101	70-130	4	20
o-Xylene	20.6		μg/l		20.0		103	70-130	3	20
Tetrahydrofuran	17.5		μg/l		20.0		88	70-130	1	20
Ethyl ether	21.2		μg/l		20.0		106	70-130	2	20
Tert-amyl methyl ether	21.0		μg/l		20.0		105	70-130	5	20
Ethyl tert-butyl ether	19.1		μg/l		20.0		96	70-130	1	20
Di-isopropyl ether	18.7		μg/l		20.0		93	70-130	5	20
Tert-Butanol / butyl alcohol	182		μg/l		200		91	70-130	1	20
1,4-Dioxane	203		μg/l		200		101	70-130	2	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1421856 - SW846 5030 Water MS										
LCS Dup (1421856-BSD1)					<u>Pre</u>	pared & Analy	zed: 17-Sep-1	<u>4</u>		
trans-1,4-Dichloro-2-butene	14.5		μg/l		20.0		72	70-130	0.8	20
Ethanol	416		μg/l		400		104	70-130	2	20
Surrogate: 4-Bromofluorobenzene	50.6		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	49.4		μg/l		50.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.8		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	48.8		μg/l		50.0		98	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1421966 - SW846 3510C										
Blank (1421966-BLK1)					<u>P</u> re	pared: 18-Sep	-14 Analyzed	: 19-Sep-14		
C9-C18 Aliphatic Hydrocarbons	< 100		μg/l	100						
C19-C36 Aliphatic Hydrocarbons	< 100		μg/l	100						
C11-C22 Aromatic Hydrocarbons	< 100		μg/l	100						
Unadjusted C11-C22 Aromatic	< 100		μg/l	100						
Hydrocarbons			. •							
Total Petroleum Hydrocarbons	< 300		μg/l	300						
Unadjusted Total Petroleum Hydrocarbons	< 300		μg/l	300						
Naphthalene	< 5.00		μg/l	5.00						
2-Methylnaphthalene	< 5.00		μg/l	5.00						
Acenaphthylene	< 5.00		μg/l	5.00						
Acenaphthene	< 5.00		μg/l	5.00						
Fluorene	< 5.00		μg/l	5.00						
Phenanthrene	< 5.00		μg/l	5.00						
Anthracene	< 5.00		μg/l	5.00						
Fluoranthene	< 5.00		μg/l	5.00						
Pyrene	< 5.00		μg/l	5.00						
Benzo (a) anthracene	< 5.00		μg/l	5.00						
Chrysene	< 5.00		μg/l	5.00						
Benzo (b) fluoranthene	< 5.00		μg/l	5.00						
Benzo (k) fluoranthene	< 5.00		μg/l	5.00						
Benzo (a) pyrene	< 5.00		μg/l	5.00						
Indeno (1,2,3-cd) pyrene	< 5.00		μg/l	5.00						
Dibenzo (a,h) anthracene	< 5.00		μg/l	5.00						
Benzo (g,h,i) perylene	< 5.00		μg/l	5.00						
n-Nonane (C9)	< 5.00		μg/l	5.00						
n-Decane	< 5.00		μg/l	5.00						
n-Dodecane	< 5.00		μg/l	5.00						
n-Tetradecane	< 5.00		μg/l	5.00						
n-Hexadecane	< 5.00		μg/l	5.00						
n-Octadecane	< 5.00		μg/l	5.00						
n-Nonadecane	< 5.00		μg/l	5.00						
n-Eicosane	< 5.00		μg/l	5.00						
n-Docosane	< 5.00		μg/l	5.00						
n-Tetracosane	< 5.00		μg/l	5.00						
n-Hexacosane	< 5.00		μg/l	5.00						
n-Octacosane	< 5.00		μg/l	5.00						
n-Triacontane	< 5.00		μg/l	5.00						
n-Hexatriacontane	< 5.00		μg/l	5.00						
Naphthalene (aliphatic fraction)	0.00		μg/l							
2-Methylnaphthalene (aliphatic fraction)	0.00		μg/l							
Surrogate: 1-Chlorooctadecane	24.8		μg/l		50.0		50	40-140		
Surrogate: Ortho-Terphenyl	35.8		μg/l		50.0		72	40-140		
Surrogate: 2-Fluorobiphenyl	26.5		μg/l		40.0		66	40-140		
LCS (1421966-BS1)			. •			pared: 18-Sen	-14 Analyzed			
C9-C18 Aliphatic Hydrocarbons	365		μg/l	100	600	<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	61	40-140		
C19-C36 Aliphatic Hydrocarbons	454		μg/I	100	800		57	40-140		
Unadjusted C11-C22 Aromatic Hydrocarbons	494		μg/l	100	680		73	40-140		
Naphthalene	21.5		μg/l	5.00	40.0		54	40-140		
2-Methylnaphthalene	23.8		μg/l	5.00	40.0		60	40-140		
Acenaphthylene	27.1		μg/l	5.00	40.0		68	40-140		
Acenaphthene	28.2		μg/I	5.00	40.0		70	40-140		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1421966 - SW846 3510C										
LCS (1421966-BS1)					<u>Pre</u>	pared: 18-Sep	-14 Analyzed	: 19-Sep-14		
Fluorene	30.7		μg/l	5.00	40.0		77	40-140		
Phenanthrene	29.6		μg/l	5.00	40.0		74	40-140		
Anthracene	30.1		μg/l	5.00	40.0		75	40-140		
Fluoranthene	34.0		μg/l	5.00	40.0		85	40-140		
Pyrene	35.8		μg/l	5.00	40.0		90	40-140		
Benzo (a) anthracene	31.7		μg/l	5.00	40.0		79	40-140		
Chrysene	39.2		μg/l	5.00	40.0		98	40-140		
Benzo (b) fluoranthene	30.0		μg/l	5.00	40.0		75	40-140		
Benzo (k) fluoranthene	42.6		μg/l	5.00	40.0		106	40-140		
Benzo (a) pyrene	30.6		μg/l	5.00	40.0		77	40-140		
Indeno (1,2,3-cd) pyrene	34.4		μg/l	5.00	40.0		86	40-140		
Dibenzo (a,h) anthracene	34.7		μg/l	5.00	40.0		87	40-140		
Benzo (g,h,i) perylene	33.6		μg/l	5.00	40.0		84	40-140		
n-Nonane (C9)	39.5		μg/l	5.00	100		39	30-140		
n-Decane	44.8		μg/l	5.00	100		45	40-140		
n-Dodecane	47.9		μg/l	5.00	100		48	40-140		
n-Tetradecane	60.3		μg/l	5.00	100		60	40-140		
n-Hexadecane	68.3		μg/l	5.00	100		68	40-140		
n-Octadecane	76.3		μg/l	5.00	100		76	40-140		
n-Nonadecane	75.8		μg/l	5.00	100		76	40-140		
n-Eicosane	78.6		μg/l	5.00	100		79	40-140		
n-Docosane	81.6		μg/l	5.00	100		82	40-140		
n-Tetracosane	81.5		μg/l	5.00	100		81	40-140		
n-Hexacosane	80.9		μg/l	5.00	100		81	40-140		
n-Octacosane	83.2			5.00	100		83	40-140		
n-Triacontane	82.6		μg/l	5.00	100		83	40-140		
n-Hexatriacontane	81.0		μg/l	5.00	100		81	40-140		
Naphthalene (aliphatic fraction)	0.00		μg/l	3.00	100		01			
2-Methylnaphthalene (aliphatic fraction)	0.00		μg/l μg/l					0-200 0-200		
Surrogate: 1-Chlorooctadecane	31.1		μg/l		50.0		62	40-140		
Surrogate: Ortho-Terphenyl	37.1		μg/l		50.0		74	40-140		
Surrogate: 2-Fluorobiphenyl	26.8		μg/l		40.0		67	40-140		
LCS (1421966-BS2)	20.0		P9'			pared: 18-Sep				
C9-C18 Aliphatic Hydrocarbons	362		μg/l	100	600	pareu. 10-3ep	60	40-140		
C19-C36 Aliphatic Hydrocarbons	576		μg/I μg/I	100	800		72	40-140		
Unadjusted C11-C22 Aromatic Hydrocarbons	482		μg/l	100	680		71	40-140		
Naphthalene	22.9		μg/l	5.00	40.0		57	40-140		
2-Methylnaphthalene	24.6		μg/l	5.00	40.0		62	40-140		
Acenaphthylene	27.0		μg/l	5.00	40.0		68	40-140		
Acenaphthene	27.9		μg/l	5.00	40.0		70	40-140		
Fluorene	29.5		μg/l	5.00	40.0		74	40-140		
Phenanthrene	29.1		μg/l	5.00	40.0		73	40-140		
Anthracene	30.2		μg/l	5.00	40.0		76	40-140		
Fluoranthene	32.9		μg/l	5.00	40.0		82	40-140		
Pyrene	35.2		μg/l	5.00	40.0		88	40-140		
Benzo (a) anthracene	32.3		μg/l	5.00	40.0		81	40-140		
Chrysene	40.2		μg/l	5.00	40.0		100	40-140		
Benzo (b) fluoranthene	29.9		μg/I μg/I	5.00	40.0		75	40-140		
Benzo (k) fluoranthene	41.0			5.00	40.0		102	40-140		
Benzo (a) pyrene	41.0 30.7		μg/l	5.00	40.0		77	40-140 40-140		
Delizo (a) pyrelie	30.7		μg/l	5.00	40.0		11	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result %REC	%REC Limits	RPD	RPI Lim
Batch 1421966 - SW846 3510C									
LCS (1421966-BS2)					Pre	pared: 18-Sep-14 Analyz	ed: 19-Sep-14		
Dibenzo (a,h) anthracene	34.8		μg/l	5.00	40.0	87	40-140		
Benzo (g,h,i) perylene	33.8		μg/l	5.00	40.0	84	40-140		
n-Nonane (C9)	46.4		μg/l	5.00	100	46	30-140		
n-Decane	50.1		μg/l	5.00	100	50	40-140		
n-Dodecane	50.1		μg/l	5.00	100	50	40-140		
n-Tetradecane	62.1		μg/l	5.00	100	62	40-140		
n-Hexadecane	72.0		μg/l	5.00	100	72	40-140		
n-Octadecane	76.4		μg/l	5.00	100	76	40-140		
n-Nonadecane	76.4		μg/l	5.00	100	76	40-140		
n-Eicosane	78.9		μg/l	5.00	100	79	40-140		
n-Docosane	80.5		μg/l	5.00	100	81	40-140		
n-Tetracosane	81.5		μg/l	5.00	100	81	40-140		
n-Hexacosane	79.8		μg/l	5.00	100	80	40-140		
n-Octacosane	82.4		μg/l	5.00	100	82	40-140		
n-Triacontane	80.9		μg/l	5.00	100	81	40-140		
n-Hexatriacontane	82.3		μg/l	5.00	100	82	40-140		
Naphthalene (aliphatic fraction)	0.00		μg/l				0-200		
2-Methylnaphthalene (aliphatic fraction)	0.00		μg/l				0-200		
Surrogate: 1-Chlorooctadecane	28.7		μg/l		50.0	57	40-140		
Surrogate: Ortho-Terphenyl	36.6		μg/l		50.0	73	40-140		
Surrogate: 2-Fluorobiphenyl	27.2		μg/l		40.0	68	40-140		
	27.2		P9/1			pared: 18-Sep-14 Analyz			
LCS Dup (1421966-BSD1) C9-C18 Aliphatic Hydrocarbons	394		ua/l	100	600	66	40-140	0	25
•			μg/l					8	
C19-C36 Aliphatic Hydrocarbons	404		μg/l	100	800	51	40-140	12	25
Unadjusted C11-C22 Aromatic Hydrocarbons	540		μg/l	100	680	79	40-140	9	25
Naphthalene	17.8		μg/l	5.00	40.0	44	40-140	19	25
2-Methylnaphthalene	22.3		μg/l	5.00	40.0	56	40-140	6	25
Acenaphthylene	27.3		μg/l	5.00	40.0	68	40-140	0.5	25
Acenaphthene	28.6		μg/l	5.00	40.0	72	40-140	1	25
Fluorene	30.3		μg/l	5.00	40.0	76	40-140	2	25
Phenanthrene	31.3		μg/l	5.00	40.0	78	40-140	6	25
Anthracene	33.8		μg/l	5.00	40.0	84	40-140	12	25
Fluoranthene	37.5		μg/l	5.00	40.0	94	40-140	10	25
Pyrene	40.7		μg/l	5.00	40.0	102	40-140	13	25
Benzo (a) anthracene	37.6		μg/l	5.00	40.0	94	40-140	17	25
Chrysene	45.8		μg/l	5.00	40.0	114	40-140	15	25
Benzo (b) fluoranthene	45.6 36.1		μg/I μg/I	5.00	40.0	90	40-140	19	25 25
Benzo (k) fluoranthene	49.8		μg/I	5.00	40.0	125	40-140	16	25
Benzo (a) pyrene	45.6 35.6		μg/I μg/I	5.00	40.0	89	40-140	15	25
Indeno (1,2,3-cd) pyrene	35.6 41.3		μg/I μg/I	5.00	40.0	103	40-140	18	25 25
Dibenzo (a,h) anthracene	41.5 41.5			5.00	40.0	103	40-140	18	25 25
Benzo (g,h,i) perylene	41.5 41.0		μg/l	5.00	40.0	102	40-140	20	25 25
n-Nonane (C9)	41.0 44.9		μg/l	5.00		45			
n-Nonane (C9) n-Decane	44.9 49.9		μg/l	5.00	100	45 50	30-140	13	25
n-Decane n-Dodecane			μg/l		100		40-140	11	25
	54.0		μg/l	5.00	100	54	40-140	12	25
n-Tetradecane	65.7		μg/l	5.00	100	66	40-140	8	25
n-Hexadecane	74.0		μg/l	5.00	100	74	40-140	8	25
n-Octadecane	80.2		μg/l	5.00	100	80	40-140	5	25
n-Nonadecane	79.9		μg/l	5.00	100	80	40-140	5	25
n-Eicosane	82.1 82.6		μg/l	5.00 5.00	100	82 83	40-140	4	25

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1421966 - SW846 3510C										
LCS Dup (1421966-BSD1)					<u>Pre</u>	pared: 18-Sep	-14 Analyzed	: 19-Sep-14		
n-Tetracosane	82.6		μg/l	5.00	100		83	40-140	1	25
n-Hexacosane	82.4		μg/l	5.00	100		82	40-140	2	25
n-Octacosane	82.9		μg/l	5.00	100		83	40-140	0.4	25
n-Triacontane	82.1		μg/l	5.00	100		82	40-140	0.6	25
n-Hexatriacontane	81.8		μg/l	5.00	100		82	40-140	1	25
Naphthalene (aliphatic fraction)	0.00		μg/l					0-200		200
2-Methylnaphthalene (aliphatic fraction)	0.00		μg/l					0-200		200
Surrogate: 1-Chlorooctadecane	30.5		μg/l		50.0		61	40-140		
Surrogate: Ortho-Terphenyl	38.1		μg/l		50.0		76	40-140		
Surrogate: 2-Fluorobiphenyl	24.7		μg/l		40.0		62	40-140		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1422072 - SW846 3005A										
Blank (1422072-BLK1)					Prei	pared: 19-Sep	-14 Analyzed	: 25-Sep-14		
Lead	< 0.0075		mg/l	0.0075		•	•	•		
LCS (1422072-BS1)			•		Pre	pared: 19-Sep	-14 Analyzed	: 25-Sep-14		
Lead	1.37		mg/l	0.0075	1.25	 	110	85-115		
LCS Dup (1422072-BSD1)			9			arod: 10 Son	-14 Analyzed			
Lead	1.35		ma/l	0.0075	1.25	Jaieu. 13-3ep	108	85-115	2	20
	1.35		mg/l	0.0073	1.23		100	00-110	2	20
atch 1422616 - SW846 3005A										
Blank (1422616-BLK1)					Pre	oared: 25-Sep	-14 Analyzed	: 26-Sep-14		
Iron	< 0.0300		mg/l	0.0300						
Silver	< 0.0100		mg/l	0.0100						
Selenium	< 0.0300		mg/l	0.0300						
Nickel	< 0.0100		mg/l	0.0100						
Copper	< 0.0100		mg/l	0.0100						
Zinc	< 0.0100		mg/l	0.0100						
Antimony	< 0.0120		mg/l	0.0120						
Chromium	< 0.0100		mg/l	0.0100						
Cadmium	< 0.0050		mg/l	0.0050						
Thallium	< 0.0100		mg/l	0.0100						
Beryllium	< 0.0040		mg/l	0.0040						
Arsenic	< 0.0080		mg/l	0.0080						
LCS (1422616-BS1)					Pre	oared: 25-Sep	-14 Analyzed	: 26-Sep-14		
Iron	2.82		mg/l	0.0300	2.50		113	85-115		
Thallium	2.67		mg/l	0.0100	2.50		107	85-115		
Arsenic	2.68		mg/l	0.0080	2.50		107	85-115		
Zinc	2.60		mg/l	0.0100	2.50		104	85-115		
Silver	2.46		mg/l	0.0100	2.50		98	85-115		
Beryllium	2.67		mg/l	0.0040	2.50		107	85-115		
Cadmium	2.57		mg/l	0.0050	2.50		103	85-115		
Chromium	2.66		mg/l	0.0100	2.50		106	85-115		
Copper	2.64		mg/l	0.0100	2.50		106	85-115		
Nickel	2.64		mg/l	0.0100	2.50		106	85-115		
Selenium	2.72		mg/l	0.0300	2.50		109	85-115		
Antimony	2.59		mg/l	0.0120	2.50		103	85-115		
·	2.00		mg/i	0.0120						
LCS Dup (1422616-BSD1)				0.0000		oared: 25-Sep	-14 Analyzed	•	•	00
Iron	2.77		mg/l	0.0300	2.50		111	85-115	2	20
Nickel	2.65		mg/l	0.0100	2.50		106	85-115	0.3	20
Cadmium	2.58		mg/l	0.0050	2.50		103	85-115	0.5	20
Zinc	2.59		mg/l	0.0100	2.50		103	85-115	0.5	20
Antimony	2.52		mg/l	0.0120	2.50		101	85-115	2	20
Selenium	2.76		mg/l	0.0300	2.50		110	85-115	1	20
Copper	2.64		mg/l	0.0100	2.50		106	85-115	0.2	20
Chromium	2.64		mg/l	0.0100	2.50		106	85-115	0.5	20
Silver	2.45		mg/l	0.0100	2.50		98	85-115	0.2	20
Arsenic	2.70		mg/l	0.0080	2.50		108	85-115	0.9	20
Beryllium	2.68		mg/l	0.0040	2.50		107	85-115	0.6	20
Thallium	2.67		mg/l	0.0100	2.50		107	85-115	0.2	20
<u>Duplicate (1422616-DUP1)</u>			Source: SE	<u>396280-01</u>	Pre	oared: 25-Sep	-14 Analyzed	: 26-Sep-14		
Iron	4.48		mg/l	0.0300		4.46			0.4	20
Silver	< 0.0100		mg/l	0.0100		BRL				20
Copper	< 0.0100		mg/l	0.0100		BRL				20
Arsenic	< 0.0080		mg/l	0.0080		BRL				20
Beryllium	< 0.0040		mg/l	0.0040		BRL				20

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1422616 - SW846 3005A										
Duplicate (1422616-DUP1)			Source: SE	<u>396280-01</u>	Pre	pared: 25-Sep	-14 Analyzed	: 26-Sep-14		
Cadmium	< 0.0050		mg/l	0.0050		BRL				20
Chromium	0.0028	J	mg/l	0.0100		0.0026			7	20
Selenium	< 0.0300		mg/l	0.0300		BRL				20
Thallium	< 0.0100		mg/l	0.0100		BRL				20
Antimony	< 0.0120		mg/l	0.0120		0.0064				20
Zinc	0.0075	J	mg/l	0.0100		0.0077			3	20
Nickel	< 0.0100		mg/l	0.0100		BRL				20
Matrix Spike (1422616-MS1)			Source: SE	396280-01	Pre	pared: 25-Sep	-14 Analyzed	: 26-Sep-14		
Iron	7.48		mg/l	0.0300	2.50	4.46	121	75-125		
Chromium	2.68		mg/l	0.0100	2.50	0.0026	107	75-125		
Cadmium	2.60		mg/l	0.0050	2.50	BRL	104	75-125		
Beryllium	2.74		mg/l	0.0040	2.50	BRL	110	75-125		
Antimony	2.65		mg/l	0.0120	2.50	0.0064	106	75-125		
Thallium	2.77		mg/l	0.0100	2.50	BRL	111	75-125		
Nickel	2.66		mg/l	0.0100	2.50	BRL	106	75-125		
Copper	2.73		mg/l	0.0100	2.50	BRL	109	75-125		
Zinc	2.62		mg/l	0.0100	2.50	0.0077	105	75-125		
Arsenic	2.85		mg/l	0.0080	2.50	BRL	114	75-125		
Silver	2.54		mg/l	0.0100	2.50	BRL	101	75-125		
Selenium	2.87		mg/l	0.0300	2.50	BRL	115	75-125		
Matrix Spike Dup (1422616-MSD1)			Source: SE	396280-01	Pre	pared: 25-Sep	-14 Analyzed	: 26-Sep-14		
Iron	7.09		mg/l	0.0300	2.50	4.46	105	75-125	5	20
Chromium	2.57		mg/l	0.0100	2.50	0.0026	103	75-125	4	20
Nickel	2.55		mg/l	0.0100	2.50	BRL	102	75-125	4	20
Zinc	2.50		mg/l	0.0100	2.50	0.0077	100	75-125	5	20
Antimony	2.54		mg/l	0.0120	2.50	0.0064	101	75-125	4	20
Thallium	2.65		mg/l	0.0100	2.50	BRL	106	75-125	4	20
Silver	2.42		mg/l	0.0100	2.50	BRL	97	75-125	5	20
Copper	2.60		mg/l	0.0100	2.50	BRL	104	75-125	5	20
Cadmium	2.49		mg/l	0.0050	2.50	BRL	100	75-125	4	20
Beryllium	2.62		mg/l	0.0040	2.50	BRL	105	75-125	4	20
Arsenic	2.74		mg/l	0.0080	2.50	BRL	110	75-125	4	20
Selenium	2.77		mg/l	0.0300	2.50	BRL	111	75-125	4	20
Post Spike (1422616-PS1)			Source: SE	396280-01	Pre		-14 Analyzed	: 26-Sep-14		
Iron	6.92		mg/l	0.0300	2.50	4.46	99	80-120		
Silver	2.41		mg/l	0.0100	2.50	BRL	96	80-120		
Antimony	2.57		mg/l	0.0120	2.50	0.0064	103	80-120		
Thallium	2.64		mg/l	0.0100	2.50	BRL	106	80-120		
Selenium	2.72		mg/l	0.0300	2.50	BRL	109	80-120		
Nickel	2.55		mg/l	0.0100	2.50	BRL	102	80-120		
Zinc	2.52		mg/l	0.0100	2.50	0.0077	101	80-120		
Copper	2.55		mg/l	0.0100	2.50	BRL	102	80-120		
Chromium	2.57		mg/l	0.0100	2.50	0.0026	103	80-120		
Cadmium	2.46		mg/l	0.0050	2.50	BRL	99	80-120		
Beryllium	2.60		mg/l	0.0040	2.50	BRL	104	80-120		
Arsenic	2.71		mg/l	0.0080	2.50	BRL	109	80-120		

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1422079 - SW846 3005A										
Blank (1422079-BLK1)					Pre	pared: 22-Sep	-14 Analyzed	: 26-Sep-14		
Iron	< 0.0150		mg/l	0.0150			•	·		
Antimony	< 0.0060		mg/l	0.0060						
Arsenic	< 0.0040		mg/l	0.0040						
Beryllium	< 0.0020		mg/l	0.0020						
Cadmium	< 0.0025		mg/l	0.0025						
Chromium	< 0.0050		mg/l	0.0050						
Copper	< 0.0050		mg/l	0.0050						
Nickel	< 0.0050		mg/l	0.0050						
Lead	< 0.0075		mg/l	0.0075						
Zinc	< 0.0450		mg/l	0.0450						
Thallium	< 0.0050		mg/l	0.0050						
Selenium	< 0.0150		mg/l	0.0150						
Silver	< 0.0050		-	0.0050						
	< 0.0030		mg/l	0.0030	_					
LCS (1422079-BS1)						oared: 22-Sep	-14 Analyzed	•		
Iron	1.32		mg/l	0.0150	1.25		106	85-115		
Selenium	1.36		mg/l	0.0150	1.25		109	85-115		
Copper	1.36		mg/l	0.0050	1.25		109	85-115		
Silver	1.33		mg/l	0.0050	1.25		106	85-115		
Arsenic	1.35		mg/l	0.0040	1.25		108	85-115		
Beryllium	1.34		mg/l	0.0020	1.25		108	85-115		
Zinc	1.36		mg/l	0.0450	1.25		109	85-115		
Chromium	1.35		mg/l	0.0050	1.25		108	85-115		
Thallium	1.32		mg/l	0.0050	1.25		105	85-115		
Nickel	1.34		mg/l	0.0050	1.25		107	85-115		
Lead	1.31		mg/l	0.0075	1.25		105	85-115		
Cadmium	1.30		mg/l	0.0025	1.25		104	85-115		
Antimony	1.30		mg/l	0.0060	1.25		104	85-115		
LCS Dup (1422079-BSD1)					Prei	pared: 22-Sep	-14 Analyzed	· 26-Sep-14		
Iron	1.34		mg/l	0.0150	1.25		107	85-115	1	20
Beryllium	1.36		mg/l	0.0020	1.25		109	85-115	1	20
Nickel	1.39		mg/l	0.0050	1.25		111	85-115	3	20
Arsenic	1.40		-	0.0030			112	85-115	4	20
			mg/l	0.0040	1.25		108			
Cadmium	1.35		mg/l		1.25			85-115	4	20
Chromium	1.39		mg/l	0.0050	1.25		111	85-115	3	20
Copper	1.37		mg/l	0.0050	1.25		109	85-115	0.3	20
Zinc	1.41		mg/l	0.0450	1.25		113	85-115	4	20
Thallium	1.32		mg/l	0.0050	1.25		106	85-115	0.3	20
Selenium	1.42		mg/l	0.0150	1.25		114	85-115	4	20
Antimony	1.36		mg/l	0.0060	1.25		109	85-115	5	20
Lead	1.36		mg/l	0.0075	1.25		109	85-115	4	20
Silver	1.40		mg/l	0.0050	1.25		112	85-115	5	20
Duplicate (1422079-DUP1)			Source: SE	<u>396280-01</u>	Pre	oared: 22-Sep	-14 Analyzed	: 26-Sep-14		
Iron	3.97		mg/l	0.0150		4.44			11	20
Copper	< 0.0050		mg/l	0.0050		BRL				20
Silver	< 0.0050		mg/l	0.0050		BRL				20
Arsenic	< 0.0040		mg/l	0.0040		BRL				20
Beryllium	< 0.0020		mg/l	0.0020		BRL				20
Cadmium	< 0.0025		mg/l	0.0025		BRL				20
Chromium	0.0020	J	mg/l	0.0050		0.0019			3	20
Nickel	< 0.0050		mg/l	0.0050		BRL			-	20
Lead	< 0.0075		9/1	0.0075		BRL				20

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1422079 - SW846 3005A										
<u>Duplicate (1422079-DUP1)</u>			Source: SE	<u>396280-01</u>	Pre	pared: 22-Sep	-14 Analyzed	: 24-Sep-14		
Antimony	< 0.0060		mg/l	0.0060		BRL				20
Selenium	< 0.0150		mg/l	0.0150		BRL				20
Thallium	< 0.0050		mg/l	0.0050		BRL				20
Zinc	0.0176	J,R06	mg/l	0.0450		0.0183			4	20
Matrix Spike (1422079-MS1)			Source: SE	<u>396280-01</u>	Pre	pared: 22-Sep	-14 Analyzed	: 26-Sep-14		
Iron	5.32	QM8	mg/l	0.0150	1.25	4.44	70	75-125		
Cadmium	1.28		mg/l	0.0025	1.25	BRL	103	75-125		
Antimony	1.35		mg/l	0.0060	1.25	BRL	108	75-125		
Copper	1.40		mg/l	0.0050	1.25	BRL	112	75-125		
Zinc	1.35		mg/l	0.0450	1.25	0.0183	106	75-125		
Selenium	1.41		mg/l	0.0150	1.25	BRL	113	75-125		
Lead	1.28		mg/l	0.0075	1.25	BRL	102	75-125		
Nickel	1.31		mg/l	0.0050	1.25	BRL	104	75-125		
Chromium	1.34		mg/l	0.0050	1.25	0.0019	107	75-125		
Beryllium	1.35		mg/l	0.0020	1.25	BRL	108	75-125		
Arsenic	1.42		mg/l	0.0040	1.25	BRL	113	75-125		
Silver	1.36		mg/l	0.0050	1.25	BRL	109	75-125		
Thallium	1.33		mg/l	0.0050	1.25	BRL	106	75-125		
Matrix Spike Dup (1422079-MSD1)			Source: SE	396280-01	Pre	pared: 22-Sep	-14 Analyzed	: 26-Sep-14		
Iron	5.70		mg/l	0.0150	1.25	4.44	101	75-125	7	20
Lead	1.29		mg/l	0.0075	1.25	BRL	104	75-125	1	20
Nickel	1.32		mg/l	0.0050	1.25	BRL	106	75-125	1	20
Silver	1.39		mg/l	0.0050	1.25	BRL	112	75-125	2	20
Arsenic	1.44		mg/l	0.0040	1.25	BRL	115	75-125	1	20
Beryllium	1.36		mg/l	0.0020	1.25	BRL	109	75-125	1	20
Cadmium	1.30		mg/l	0.0025	1.25	BRL	104	75-125	1	20
Chromium	1.36		mg/l	0.0050	1.25	0.0019	109	75-125	1	20
Antimony	1.37		mg/l	0.0060	1.25	BRL	110	75-125	2	20
Selenium	1.44		mg/l	0.0150	1.25	BRL	115	75-125	2	20
Zinc	1.37		mg/l	0.0450	1.25	0.0183	108	75-125	2	20
Thallium	1.31		mg/l	0.0050	1.25	BRL	105	75-125	1	20
Copper	1.39		mg/l	0.0050	1.25	BRL	111	75-125	0.6	20
Post Spike (1422079-PS1)			Source: SE	396280-01	Pre	pared: 22-Sep	-14 Analyzed	: 26-Sep-14		
Iron	5.55		mg/l	0.0150	1.25	4.44	89	80-120		
Nickel	1.31		mg/l	0.0050	1.25	BRL	105	80-120		
Silver	1.38		mg/l	0.0050	1.25	BRL	110	80-120		
Arsenic	1.43		mg/l	0.0040	1.25	BRL	114	80-120		
Beryllium	1.33		mg/l	0.0020	1.25	BRL	106	80-120		
Cadmium	1.29		mg/l	0.0025	1.25	BRL	103	80-120		
Copper	1.35		mg/l	0.0050	1.25	BRL	108	80-120		
Lead	1.29		mg/l	0.0075	1.25	BRL	103	80-120		
Antimony	1.36		mg/l	0.0060	1.25	BRL	109	80-120		
Selenium	1.43		mg/l	0.0150	1.25	BRL	114	80-120		
Thallium	1.28		mg/l	0.0050	1.25	BRL	102	80-120		
Zinc	1.36		mg/l	0.0450	1.25	0.0183	107	80-120		
Chromium	1.34		mg/l	0.0050	1.25	0.0019	107	80-120		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1421729 - General Preparation										
Blank (1421729-BLK1)					Pre	pared: 16-Sep-	14 Analyzed	: 17-Sep-14		
Total Suspended Solids	< 5.0		mg/l	5.0						
LCS (1421729-BS1)					Pre	pared: 16-Sep-	14 Analyzed	: 17-Sep-14		
Total Suspended Solids	465		mg/l	25.0	468		99	90-110		

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

Analyte(s)	Average RF	CCRF	% D	Limit	
Batch S410760					
Calibration Check (S410760-CCV2)					
C9-C18 Aliphatic Hydrocarbons	275106.7	224116.6	-1.8	25	
C19-C36 Aliphatic Hydrocarbons	1414275	428233.5	-7.0	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	39.93054	21.91247	4.9	25	
Naphthalene	7.148352	6.924914	-3.1	25	
2-Methylnaphthalene	4.850158	5.017831	3.5	25	
Acenaphthylene	6.68362	7.146433	6.9	25	
Acenaphthene	4.338901	4.500477	3.7	25	
Fluorene	4.686461	4.804997	2.5	25	
Phenanthrene	6.247175	6.17622	-1.1	25	
Anthracene	6.278451	6.664798	6.2	25	
Fluoranthene	6.212972	6.939638	11.7	25	
Pyrene	6.485136	7.446221	14.8	25	
Benzo (a) anthracene	5.485049	5.705291	4.0	25	
Chrysene	5.393285	5.796056	7.5	25	
Benzo (b) fluoranthene	5.388645	5.188975	-3.7	25	
Benzo (k) fluoranthene	5.245373	6.13189	16.9	25	
Benzo (a) pyrene	5.010513	5.618253	12.1	25	
Indeno (1,2,3-cd) pyrene	5.65421	6.810599	20.5	25	
Dibenzo (a,h) anthracene	4.808745	5.766135	19.9	25	
Benzo (g,h,i) perylene	4.881499	5.888755	20.6	25	
n-Nonane (C9)	219791.3	200440.8	-8.8	30	
n-Decane	220516	203459.2	-7.7	25	
n-Dodecane	220462.3	197236.2	-10.5	25	
n-Tetradecane	215696	209237.8	-3.0	25	
n-Hexadecane	210461.2	207021.6	-1.6	25	
n-Octadecane	203702.3	203541.8	-0.08	25	
n-Nonadecane	203702.3	193464.3	-5.0	25	
n-Eicosane	193691	182804.4	-5.6	25	
n-Docosane	185669.9	184575	-0.6	25	
n-Tetracosane	178695.8	178771.9	0.04	25	
n-Hexacosane	173797.3	163472.4	-5.9	25	
n-Octacosane	164182.1	164897.9	0.4	25	
n-Triacontane	165985.4	156650	-5.6	25	
n-Hexatriacontane	152289.2	142353	-6.5	25	
Calibration Check (S410760-CCV4)					
C9-C18 Aliphatic Hydrocarbons	275106.7	214808.5	-6.4	25	
C19-C36 Aliphatic Hydrocarbons	1414275	409179.3	-19.1	25	
Unadjusted C11-C22 Aromatic Hydrocarbons	39.93054	21.17468	0.6	25	
Naphthalene	7.148352	6.888693	-3.6	25	
2-Methylnaphthalene	4.850158	4.904579	1.1	25	
Acenaphthylene	6.68362	7.062133	5.7	25	
Acenaphthene	4.338901	4.436988	2.3	25	
Fluorene	4.686461	4.929456	5.2	25	
Phenanthrene	6.247175	6.129808	-1.9	25	
Anthracene	6.278451	6.719285	7.0	25	
Fluoranthene	6.212972	6.737384	8.4	25	
Pyrene	6.485136	7.226013	11.4	25	
Benzo (a) anthracene	5.485049	5.565361	1.5	25	
Chrysene	5.393285	5.972272	10.7	25	
Benzo (b) fluoranthene	5.388645	6.476163	20.2	25	
Benzo (k) fluoranthene	5.245373	6.381607	21.7	25	

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

analyte(s)	Average RF	CCRF	% D	Limit	
Batch S410760					
Calibration Check (S410760-CCV4)					
Benzo (a) pyrene	5.010513	5.434058	8.5	25	
Indeno (1,2,3-cd) pyrene	5.65421	6.544816	15.8	25	
Dibenzo (a,h) anthracene	4.808745	5.541621	15.2	25	
Benzo (g,h,i) perylene	4.881499	5.573284	14.2	25	
n-Nonane (C9)	219791.3	189371.3	-13.8	30	
n-Decane	220516	190443.7	-13.6	25	
n-Dodecane	220462.3	190814.6	-13.4	25	
n-Tetradecane	215696	202624.8	-6.1	25	
n-Hexadecane	210461.2	197293	-6.3	25	
n-Octadecane	203702.3	196101	-3.7	25	
n-Nonadecane	203702.3	191580.8	-6.0	25	
n-Eicosane	193691	184568	-4.7	25	
n-Docosane	185669.9	192617.1	3.7	25	
n-Tetracosane	178695.8	184599.9	3.3	25	
n-Hexacosane	173797.3	170214.9	-2.1	25	
n-Octacosane	164182.1	158025	-3.8	25	
n-Triacontane	165985.4	163901.4	-1.3	25	
n-Hexatriacontane	152289.2	150069.7	-1.5	25	

Volatile Organic Compounds - CCV Evaluation Report

	Average	00	0/ 5		
Analyte(s)	RF	CCRF	% D	Limit	
Batch S410515					
Calibration Check (S410515-CCV1)					
Benzene	155637.7	175095.8	12.5	25	
Ethylbenzene	89131.29	101938.3	14.4	25	
Methyl tert-butyl ether	82295.58	92055.2	11.9	25	
Naphthalene	38830.55	46140.25	18.8	25	
Toluene	119503.5	138183.3	15.6	25	
m,p-Xylene	96238.14	109271.6	13.5	25	
o-Xylene	80883.17	92561.55	14.4	25	
2-Methylpentane	12917.17	12785.65	-1.0	25	
n-Nonane	6159.395	4815.7	-21.8	30	
n-Pentane	12325.74	12169.15	-1.3	25	
1,2,4-Trimethylbenzene	59091.13	69067.3	16.9	25	
2,2,4-Trimethylpentane	11915.68	11486.55	-3.6	25	
n-Butylcyclohexane	5867.875	5033.65	-14.2	25	
n-Decane	3624.984	3021.85	-16.6	25	
Calibration Check (S410515-CCV2)					
Benzene	155637.7	172993.6	11.2	25	
Ethylbenzene	89131.29	103599.2	16.2	25	
Methyl tert-butyl ether	82295.58	91394.3	11.1	25	
Naphthalene	38830.55	47859.1	23.3	25	
Toluene	119503.5	141058.9	18.0	25	
m,p-Xylene	96238.14	110165.9	14.5	25	
o-Xylene	80883.17	93727.15	15.9	25	
2-Methylpentane	12917.17	12542.3	-2.9	25	
n-Nonane	6159.395	4830.3	-21.6	30	
n-Pentane	12325.74	12246.8	-0.6	25	
1,2,4-Trimethylbenzene	59091.13	70807.1	19.8	25	
2,2,4-Trimethylpentane	11915.68	10878.7	-8.7	25	
n-Butylcyclohexane	5867.875	4439.85	-24.3	25	
n-Decane	3624.984	2943.4	-18.8	25	

Notes and Definitions

D Data reported from a dilution

QM8 The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon

acceptable PS and /or LCS recovery.

R06 MRL raised to correlate to batch QC reporting limits.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly Anderson Nicole Leja

CHAIN OF CUSTODY RECORD

Page _

indord TAT - 7 to	Special	
10 husiness days	Handling:	

4) CO801695

	burnel	
	1	
-	5	
3	SO	
2	Rush	
-	bear.	
-		- 1
60	TAT - Date Needed:	
	-	
ŝs	200	
		- 3
	00	
	CON-	
2	0	
	1-1	
	~	
F	(0)	
2	Co	
5	50	
÷	0	
3	distribution of	
1		
	1	
	1	
8	1	
5	1	
All TATe and institute to to be material		
	10	

All I/A is subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructed.

@1565 Cons) / to-	20	Tu	0.	E-mail to:) I_	Observed		100	=	2	\$		tun.	8	A	En l	No.
	1		rmat:	EDD format:		Temp °C		Time:		Date:	>		Received by:			Relinquished by:	Relind
			613						FIG.							/	
-	П		31.9	10	-210			A CONTRACTOR)	
				- 19/										ata S pa			
				214			SH SH					gol		S DA			
			1918	I E	11167		161			199) BL	e jeso					
			1 10	70	E									The			
			iela	42					100	M	6			EST)			
			20				728	TEO.		kapa		6)C)					
			gle				33	= 1								.m	
		1	X.	X	X	X		W	Q	W	3	2:34 6	コン	9/9	65	188-	6962800
State-specific reporting standards:		-	8	V	E	II	los.	-	-	# of	-	Time:		Date:	Sample ID:	San	Lab ID:
]		55	26	PH PH 2G	PH	301	Щь	Clear		VOA	atrix	ype	C=Compsite	C=0		G= Grab	G
ASP A*	chlorin	>	0			Total	i Oje	N	er Glas	Vials			. X3=		X2=		X1=
Standard No QC	nated				17,210	10100 A	acj.		S			TITLE C	SG=Soil Gas		A=Indoor/Ambient Air	SL=Sludge	0=0il S0=Soil
MA DEP MCP CAM Report? Yes No			ysis	Analysis		1		Containers	Cont			WW=Waste Water	WW=W	SW=Surface Water		GW=Groundwater	DW=Dinking Water
aditional charges may apply	7	9	Y	9	るで	4 5	100						1 1				Setti
QA/QC Reporting Notes:		below:	e Code	List Preservative Code below:	List Pro					d.	rbic Aci =	NaOH 6=Ascorbic Acid	5=1	3O ₄ 4=HNO ₃	2=HCl 3=H ₂ SO ₄ zed Water 10=H ₃ PO ₄	1=Na ₂ S2Õ ₃ ISO ₄ 9=Deioniz	F=Field Filtered 1=Na ₂ S2Õ ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄
	1/8/2	14	(s):	Sampler(s):				QN: 	Quote/RQN:			P.O No.:			2	20.70	Telephone #: Project Mgr:
Lestance the State: MA	Location: 114 StateRec)	Sheet	1	Location								-		0	20873	7746	
2004/1083	12	四百	10	Site Name:													
6	-22245	03	1	Project No:		E pa			H	20		Invoice To:			Joseph	ECS L	Report To:
	-		The state of the s	Delivery district annual parties or party	-	-		-	-		-	And the second contract of the second contrac				A SECURE AND A SECURE AND ASSESSMENT OF THE PARTY OF THE	A STATE OF THE PARTY OF THE PAR

2089698

Corrected &

Condition upon receipt: ☐ Ambient ☐ Iced

Custody Seals:

☐ Present

Intact

☐ Broken

Refrigerated

☐ DI VOA Frozen

Soil Jar Frozen

Rev. Jan 2014

Q# 9

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SB96280-01	ECS-6S	Soluble Antimony by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Arsenic by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Beryllium by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Cadmium by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Chromium by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Copper by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Nickel by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Selenium by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Silver by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Thallium by ICP	3/17/2015
SB96280-01	ECS-6S	Soluble Zinc by ICP	3/17/2015
SB96280-01	ECS-6S	Total Antimony by ICP	3/17/2015
SB96280-01	ECS-6S	Total Arsenic by ICP	3/17/2015
SB96280-01	ECS-6S	Total Beryllium by ICP	3/17/2015
SB96280-01	ECS-6S	Total Cadmium by ICP	3/17/2015
SB96280-01	ECS-6S	Total Chromium by ICP	3/17/2015
SB96280-01	ECS-6S	Total Copper by ICP	3/17/2015
SB96280-01	ECS-6S	Total Nickel by ICP	3/17/2015
SB96280-01	ECS-6S	Total Selenium by ICP	3/17/2015
SB96280-01	ECS-6S	Total Silver by ICP	3/17/2015
SB96280-01	ECS-6S	Total Thallium by ICP	3/17/2015
SB96280-01	ECS-6S	Total Zinc by ICP	3/17/2015

Report Date: 24-Mar-15 12:49

Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607

Attn: Matt Lyne

Project: CFI Dartmouth - 2094/V0893 - MA

Project #: 03-222456.15

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC04465-01ECS6-SGround Water16-Mar-15 10:3017-Mar-15 15:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Ticolo Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 18 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Spe	ectrum Analytical, Inc.		Project #: 03-222	456.15				
Proje	ct Location: CFI	Dartmouth - 2094/V089	3 - MA	RTN:					
This	form provides cer	tifications for the follo	wing data set:	6C04465-01					
Matr	ices: Ground Wa	iter							
This form provides certifications for the following data set: SC04465-01 Matrices: Ground Water CAM Protocol \$260 VOC									
							I		
					-				
			TOT THE FORM THE FOLLOWING DATA SETS. TOT THE SETS SCO4465-01 TOT THE SETS SCO44 VE CAM VIB CAM VIB CAM VIB CAM IN CAM						
		Affirmative response	es to questions A through	F are required for Presu	mptive Certainty'status	_			
A	preserved (include					✓ Yes	No		
В	-		ociated QC requirements	specified in the selected (CAM	✓ Yes	No		
С				-	CAM	✓ Yes	No		
D				-	· · · · · ·	✓ Yes	No		
E					lification(s)?		No No		
F						✓ Yes	No		
		Responses to que	stions G, H and I below a	are required for P resump	tive Certainty'status				
G	Were the reporting	ng limits at or below all	CAM reporting limits spe	cified in the selected CAN	M protocol(s)?	✓ Yes	No		
				sarily meet the data usabilit	v and representativeness				
CAM Protocol 8200 VOC 74707471 Hg AssDEP VPH CAM IV A CAM IV B CAM VB CAM IV B CAM IV A CAM IV B CAM			No						
I	Were results repo	orted for the complete ar	alyte list specified in the	selected CAM protocol(s))?	✓ Yes	No		
All ne	gative responses are	e addressed in a case narro	ntive on the cover page of th	is report.					
1	_					ng the			
						ja			

Date: 3/24/2015

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 0.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8270D

Calibration:

1502045

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

4-Nitrophenol

Benzidine

Benzoic acid

Indeno (1,2,3-cd) pyrene

This affected the following samples:

1504866-BLK1

1504866-BS1

1504866-BSD1

ECS6-S

S501700-ICV1

S502422-CCV1

Laboratory Control Samples:

1504866 BS/BSD

4-Bromophenyl phenyl ether percent recoveries (48/36) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS6-S

SW846 8270D

Laboratory Control Samples:

1504866 BS/BSD

4-Nitrophenol percent recoveries (30/28) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS6-S

Aniline percent recoveries (39/51) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS6-S

Benzidine percent recoveries (10/29) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS6-S

Benzoic acid percent recoveries (16/18) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS6-S

N-Nitrosodimethylamine percent recoveries (41/39) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS6-S

Pentachlorophenol percent recoveries (26/19) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS6-S

Pyridine percent recoveries (20/28) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS6-S

1504866 BSD

4-Bromophenyl phenyl ether RPD 27% (20%) is outside individual acceptance criteria.

Aniline RPD 26% (20%) is outside individual acceptance criteria.

Benzidine RPD 101% (20%) is outside individual acceptance criteria.

Pentachlorophenol RPD 30% (20%) is outside individual acceptance criteria.

Pyridine RPD 33% (20%) is outside individual acceptance criteria.

1504866-BSD1

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

4-Bromophenyl phenyl ether

Aniline

Samples:

S502422-CCV1

SW846 8270D

Samples:

S502422-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

4-Nitroaniline (25.0%)
Benzo (b) fluoranthene (23.4%)
Dibenzo (a,h) anthracene (51.0%)
Di-n-octyl phthalate (21.1%)
Pentachlorophenol (-48.1%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

2,4-Dinitrophenol (-44.6%) 4,6-Dinitro-2-methylphenol (-27.5%) 4-Nitrophenol (-29.4%) Benzidine (62.3%) Benzoic acid (-61.4%) Indeno (1,2,3-cd) pyrene (34.5%)

This affected the following samples:

1504866-BLK1 1504866-BS1 1504866-BSD1 ECS6-S

Sample Acceptance Check Form

Client: Environmental Compliance Services - Worcester, MA

Project: CFI Dartmouth - 2094/V0893 - MA / 03-222456.15

Work Order: SC04465 Sample(s) received on: 3/17/2015

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>Yes</u>	<u>No</u>	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			✓
Were samples received at a temperature of $\leq 6^{\circ}$ C?	✓		
Were samples refrigerated upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	V		
Were samples accompanied by a Chain of Custody document?	✓		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?	✓	П	

Sample Id	dentification_			Cliant I	Project #		Motrix	Call	action Data	/Time	Do	positrod	
ECS6-S					Project # 2456.15		Matrix Ground W		ection Date 5-Mar-15 10			ceived Mar-15	
SC04465	-01			03-222	430.13		Ground w	atei 10	-Wai-13 10	7.30	1 /-	Mai-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	repared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS											
	tile Organic Compounds by method SW846 3510C												
83-32-9	Acenaphthene	< 5.38		μg/l	5.38	1.42	1	SW846 8270D	18-Mar-15	23-Mar-15	ML	1504866	.
208-96-8	Acenaphthylene	< 5.38		μg/l	5.38	1.44	1	"	" "	20 Mai 10	"	"	
62-53-3	Aniline	< 5.38		μg/l	5.38	1.91	1	"		"	"		
120-12-7	Anthracene	< 5.38		μg/l	5.38	1.51	1	"			"		
103-33-3	Azobenzene/Diphenyldiaz	< 5.38		μg/l	5.38	1.51	1			"	"		
	ene	10.00		µg/i	0.00	1.01							
92-87-5	Benzidine	< 5.38		μg/l	5.38	2.48	1	"	"	"	"	"	
56-55-3	Benzo (a) anthracene	< 5.38		μg/l	5.38	1.35	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	< 5.38		μg/l	5.38	1.42	1	"	"	"	"	"	
205-99-2	Benzo (b) fluoranthene	< 5.38		μg/l	5.38	1.77	1	"	"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 5.38		μg/l	5.38	1.60	1	"	"	"	"	"	
207-08-9	Benzo (k) fluoranthene	< 5.38		μg/l	5.38	1.43	1	"	"	"	"	"	
65-85-0	Benzoic acid	< 5.38		μg/l	5.38	1.51	1	u u	u	"		"	
100-51-6	Benzyl alcohol	< 5.38		μg/l	5.38	1.73	1	n n	"	"	"	"	
111-91-1	Bis(2-chloroethoxy)metha ne	< 5.38		μg/l	5.38	1.31	1	"	"	"	"	"	
111-44-4	Bis(2-chloroethyl)ether	< 5.38		μg/l	5.38	1.27	1	u u	u	"		"	
108-60-1	Bis(2-chloroisopropyl)ethe r	< 5.38		μg/l	5.38	1.23	1	"	n.	"	"	"	
117-81-7	Bis(2-ethylhexyl)phthalate	< 5.38		μg/l	5.38	1.44	1	n n	"	"	"	"	
101-55-3	4-Bromophenyl phenyl ether	< 5.38		μg/l	5.38	1.44	1	u	п	"	"	"	
85-68-7	Butyl benzyl phthalate	< 5.38		μg/l	5.38	1.41	1	"	"	"	"	"	
86-74-8	Carbazole	< 5.38		μg/l	5.38	2.05	1	"	"	"	"	"	
59-50-7	4-Chloro-3-methylphenol	< 5.38		μg/l	5.38	1.78	1	"	"	"	"	"	
106-47-8	4-Chloroaniline	< 5.38		μg/l	5.38	2.22	1	"	"	"	"	"	
91-58-7	2-Chloronaphthalene	< 5.38		μg/l	5.38	1.75	1	"	"	"	"	"	
95-57-8	2-Chlorophenol	< 5.38		μg/l	5.38	1.26	1	"	"	"	"	"	
7005-72-3	4-Chlorophenyl phenyl ether	< 5.38		μg/l	5.38	1.42	1	"	"	"	"	"	
218-01-9	Chrysene	< 5.38		μg/l	5.38	1.61	1	"	u u	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	< 5.38		μg/l	5.38	1.66	1	"	"	"	"	"	
132-64-9	Dibenzofuran	< 5.38		μg/l	5.38	1.41	1	"	"	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 5.38		μg/l	5.38	1.27	1	"	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	< 5.38		μg/l	5.38	1.23	1	"	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	< 5.38		μg/l	5.38	1.23	1	u u	u u	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	< 5.38		μg/l	5.38	1.72	1	n n	"	"	"	"	
120-83-2	2,4-Dichlorophenol	< 5.38		μg/l	5.38	1.40	1	"	"	"	"	"	
84-66-2	Diethyl phthalate	< 5.38		μg/l	5.38	1.38	1	II .	"	"	"	"	
131-11-3	Dimethyl phthalate	< 5.38		μg/l	5.38	1.47	1	II .	"	"	"	"	
105-67-9	2,4-Dimethylphenol	< 5.38		μg/l	5.38	1.43	1	II .	"	"	"	"	
84-74-2	Di-n-butyl phthalate	< 5.38		μg/l	5.38	1.67	1	II .	"	"	"	"	
534-52-1	4,6-Dinitro-2-methylphenol	< 5.38		μg/l	5.38	2.17	1	II .	"	"	"	"	
51-28-5	2,4-Dinitrophenol	< 5.38		μg/l	5.38	2.08	1	"	"	"	"	"	
121-14-2	2,4-Dinitrotoluene	< 5.38		μg/l	5.38	1.99	1	u u		"	"	"	
606-20-2	2,6-Dinitrotoluene	< 5.38		μg/l	5.38	1.56	1	u u	"	"	"	"	

Sample Identification ECS6-S SC04465-01				Client Project # 03-222456.15				lection Date/Time 6-Mar-15 10:30		Received 17-Mar-15			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	repared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 200 Serie	es Methods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00009	1	EPA 245.1/7470A	18-Mar-15	19-Mar-15	YR	1504925	X
Soluble M	letals by EPA 200/60	00 Series Methods											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/601 0			AAH	1504942	
Soluble M	letals by EPA 200 Se	ries Methods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00009	1	EPA 245.1/7470A	18-Mar-15	19-Mar-15	YR	1504924	X
General C	Chemistry Parameter	rs											
	Flashpoint	>150		°F			1	SW846 1010A	18-Mar-15	18-Mar-15	BD	1504931	
	pH	6.51	рН	pH Units			1	ASTM D 1293-99B	18-Mar-15 19:53	18-Mar-15 19:55	DJB	1504962	. X

Semivolatile Organic Compounds by GCMS - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1504866 - SW846 3510C										
Blank (1504866-BLK1)					Pre	epared: 18-	Mar-15 An	alyzed: 23-M	1ar-15	
Acenaphthene	< 5.00		μg/l	5.00						
Acenaphthylene	< 5.00		μg/l	5.00						
Aniline	< 5.00		μg/l	5.00						
Anthracene	< 5.00		μg/l	5.00						
Azobenzene/Diphenyldiazene	< 5.00		μg/l	5.00						
Benzidine	< 5.00		μg/l	5.00						
Benzo (a) anthracene	< 5.00		μg/l	5.00						
Benzo (a) pyrene	< 5.00		μg/l	5.00						
Benzo (b) fluoranthene	< 5.00		μg/l	5.00						
Benzo (g,h,i) perylene	< 5.00		μg/l	5.00						
Benzo (k) fluoranthene	< 5.00		μg/l	5.00						
Benzoic acid	< 5.00		μg/l	5.00						
Benzyl alcohol	< 5.00		μg/l	5.00						
Bis(2-chloroethoxy)methane	< 5.00		μg/l	5.00						
Bis(2-chloroethyl)ether	< 5.00		μg/l	5.00						
Bis(2-chloroisopropyl)ether	< 5.00		μg/l	5.00						
Bis(2-ethylhexyl)phthalate	< 5.00		μg/l	5.00						
4-Bromophenyl phenyl ether	< 5.00		μg/l	5.00						
Butyl benzyl phthalate	< 5.00		μg/l	5.00						
Carbazole	< 5.00		μg/l	5.00						
4-Chloro-3-methylphenol	< 5.00		μg/l	5.00						
4-Chloroaniline	< 5.00		μg/l	5.00						
2-Chloronaphthalene	< 5.00		μg/l	5.00						
2-Chlorophenol	< 5.00		μg/l	5.00						
4-Chlorophenyl phenyl ether	< 5.00		μg/l	5.00						
Chrysene	< 5.00		μg/l	5.00						
Dibenzo (a,h) anthracene	< 5.00		μg/l	5.00						
Dibenzofuran	< 5.00		μg/l	5.00						
1,2-Dichlorobenzene	< 5.00		μg/l	5.00						
1,3-Dichlorobenzene	< 5.00		μg/l	5.00						
1,4-Dichlorobenzene	< 5.00		μg/l	5.00						
3,3´-Dichlorobenzidine	< 5.00		μg/l	5.00						
2,4-Dichlorophenol	< 5.00		μg/l	5.00						
Diethyl phthalate	< 5.00		μg/l	5.00						
Dimethyl phthalate	< 5.00		μg/l	5.00						
2,4-Dimethylphenol	< 5.00		μg/l	5.00						
Di-n-butyl phthalate	< 5.00		μg/l	5.00						
4,6-Dinitro-2-methylphenol	< 5.00		μg/l	5.00						
2,4-Dinitrophenol	< 5.00		μg/l	5.00						
2,4-Dinitrotoluene	< 5.00		μg/l	5.00						
2,6-Dinitrotoluene	< 5.00		μg/l	5.00						
Di-n-octyl phthalate	< 5.00		μg/l	5.00						
Fluoranthene	< 5.00		μg/l	5.00						
Fluorene	< 5.00		μg/l	5.00						
Hexachlorobenzene	< 5.00		μg/l	5.00						
Hexachlorobutadiene	< 5.00		μg/l	5.00						
Hexachlorocyclopentadiene	< 5.00		μg/l	5.00						
Hexachloroethane	< 5.00		μg/l	5.00						
Indeno (1,2,3-cd) pyrene	< 5.00		μg/l	5.00						
Isophorone	< 5.00		μg/l	5.00						
2-Methylnaphthalene	< 5.00		μg/l	5.00						
2-Methylphenol	< 5.00		μg/l	5.00						

Semivolatile Organic Compounds by GCMS - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1504866 - SW846 3510C										
Blank (1504866-BLK1)					Pre	epared: 18-l	Mar-15 An	alyzed: 23-N	<u> 1ar-15</u>	
3 & 4-Methylphenol	< 10.0		μg/l	10.0				•		
Naphthalene	< 5.00		μg/l	5.00						
2-Nitroaniline	< 5.00		μg/l	5.00						
3-Nitroaniline	< 5.00		μg/l	5.00						
4-Nitroaniline	< 20.0		μg/l	20.0						
Nitrobenzene	< 5.00		μg/l	5.00						
2-Nitrophenol	< 5.00		μg/l	5.00						
4-Nitrophenol	< 20.0		μg/l	20.0						
N-Nitrosodimethylamine	< 5.00		μg/l	5.00						
N-Nitrosodi-n-propylamine	< 5.00		μg/l	5.00						
N-Nitrosodiphenylamine	< 5.00		μg/l	5.00						
Pentachlorophenol	< 20.0		μg/l	20.0						
Phenanthrene	< 5.00		μg/l	5.00						
Phenol	< 5.00		μg/l	5.00						
Pyrene	< 5.00		μg/l	5.00						
Pyridine	< 5.00		μg/l	5.00						
1,2,4-Trichlorobenzene	< 5.00		μg/l	5.00						
1-Methylnaphthalene	< 5.00		μg/l	5.00						
2,4,5-Trichlorophenol	< 5.00		μg/l	5.00						
2,4,6-Trichlorophenol	< 5.00		μg/l	5.00						
Pentachloronitrobenzene	< 5.00		μg/l	5.00						
1,2,4,5-Tetrachlorobenzene	< 5.00		μg/l	5.00						
Surrogate: 2-Fluorobiphenyl	32.8		μg/l		50.0		66	30-130		
Surrogate: 2-Fluorophenol	21.2		μg/l		50.0		42	15-110		
Surrogate: Nitrobenzene-d5	33.5		μg/l		50.0		67	30-130		
Surrogate: Phenol-d5	16.4		μg/l		50.0		33	15-110		
Surrogate: Terphenyl-dl4	28.5		μg/l		50.0		57	30-130		
Surrogate: 2,4,6-Tribromophenol	29.0		μg/l		50.0		58	15-110		
LCS (1504866-BS1)			. •		Pre	epared: 18-l	Mar-15 An	alyzed: 23-N	/lar-15	
Acenaphthene	30.2		μg/l	5.00	50.0		60	40-140		
Acenaphthylene	32.3		μg/l	5.00	50.0		65	40-140		
Aniline	19.6	QC2	μg/l	5.00	50.0		39	40-140		
Anthracene	41.5		μg/l	5.00	50.0		83	40-140		
Azobenzene/Diphenyldiazene	40.6		μg/l	5.00	50.0		81	40-140		
Benzidine	4.78	QC2	μg/l	5.00	50.0		10	40-140		
Benzo (a) anthracene	36.3		μg/l	5.00	50.0		73	40-140		
Benzo (a) pyrene	39.0		μg/l	5.00	50.0		78	40-140		
Benzo (b) fluoranthene	35.4		μg/l	5.00	50.0		71	40-140		
Benzo (g,h,i) perylene	39.3		μg/l	5.00	50.0		79	40-140		
Benzo (k) fluoranthene	35.9		μg/l	5.00	50.0		72	40-140		
Benzoic acid	8.18	QC1	μg/l	5.00	50.0		16	30-130		
Benzyl alcohol	28.2		μg/l	5.00	50.0		56	40-140		
Bis(2-chloroethoxy)methane	29.4		μg/l	5.00	50.0		59	40-140		
Bis(2-chloroethyl)ether	27.6		μg/l	5.00	50.0		55	40-140		
Bis(2-chloroisopropyl)ether	29.0		μg/l	5.00	50.0		58	40-140		
Bis(2-ethylhexyl)phthalate	39.7		μg/l	5.00	50.0		79	40-140		
4-Bromophenyl phenyl ether	23.9		μg/l	5.00	50.0		48	40-140		
Butyl benzyl phthalate	37.5		μg/l	5.00	50.0		75	40-140		
Carbazole	40.3		μg/l	5.00	50.0		81	40-140		
4-Chloro-3-methylphenol	35.1		μg/l	5.00	50.0		70	30-130		
4-Chloroaniline	27.3		μg/l	5.00	50.0		55	40-140		

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte(s)	Result	Tag	Onits	KDL	Level	Result	70KEC	Lillits	KI D	LIIIII
Batch 1504866 - SW846 3510C										
LCS (1504866-BS1)						epared: 18-l		alyzed: 23-N	<u>1ar-15</u>	
2-Chloronaphthalene	30.6		μg/l	5.00	50.0		61	40-140		
2-Chlorophenol	29.6		μg/l	5.00	50.0		59	30-130		
4-Chlorophenyl phenyl ether	32.8		μg/l	5.00	50.0		66	40-140		
Chrysene	32.5		μg/l	5.00	50.0		65	40-140		
Dibenzo (a,h) anthracene	50.4		μg/l "	5.00	50.0		101	40-140		
Dibenzofuran	32.8		μg/l 	5.00	50.0		66	40-140		
1,2-Dichlorobenzene	26.5		μg/l	5.00	50.0		53	40-140		
1,3-Dichlorobenzene	25.1		μg/l "	5.00	50.0		50	40-140		
1,4-Dichlorobenzene	26.1		μg/l	5.00	50.0		52	40-140		
3,3'-Dichlorobenzidine	37.1		μg/l	5.00	50.0		74	40-140		
2,4-Dichlorophenol	32.8		μg/l	5.00	50.0		66	30-130		
Diethyl phthalate	36.3		μg/l	5.00	50.0		73	40-140		
Dimethyl phthalate	35.2		μg/l	5.00 5.00	50.0		70 61	40-140 30-130		
2,4-Dimethylphenol	30.6		μg/l	5.00	50.0		61 77	30-130 40-140		
Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol	38.5 28.5		μg/l	5.00 5.00	50.0 50.0		7 <i>7</i> 57	40-140 30-130		
2,4-Dinitrophenol	26.5 19.7		μg/l μg/l	5.00	50.0		39	30-130		
2,4-Dinitrotoluene	37.9			5.00	50.0		76	40-140		
2,6-Dinitrotoluene	36.5		μg/l μg/l	5.00	50.0		73	40-140		
Di-n-octyl phthalate	40.0		μg/l	5.00	50.0		80	40-140		
Fluoranthene	38.1		μg/l	5.00	50.0		76	40-140		
Fluorene	33.8		μg/l	5.00	50.0		68	40-140		
Hexachlorobenzene	40.2		μg/l	5.00	50.0		80	40-140		
Hexachlorobutadiene	24.1		μg/l	5.00	50.0		48	40-140		
Hexachlorocyclopentadiene	28.0		μg/l	5.00	50.0		56	40-140		
Hexachloroethane	25.8		μg/l	5.00	50.0		52	40-140		
Indeno (1,2,3-cd) pyrene	47.1		μg/l	5.00	50.0		94	40-140		
Isophorone	30.9		μg/l	5.00	50.0		62	40-140		
2-Methylnaphthalene	30.7		μg/l	5.00	50.0		61	40-140		
2-Methylphenol	31.4		μg/l	5.00	50.0		63	30-130		
3 & 4-Methylphenol	31.0		μg/l	10.0	50.0		62	30-130		
Naphthalene	27.6		μg/l	5.00	50.0		55	40-140		
2-Nitroaniline	34.8		μg/l	5.00	50.0		70	40-140		
3-Nitroaniline	38.0		μg/l	5.00	50.0		76	40-140		
4-Nitroaniline	43.0		μg/l	20.0	50.0		86	40-140		
Nitrobenzene	29.1		μg/l	5.00	50.0		58	40-140		
2-Nitrophenol	29.8		μg/l	5.00	50.0		60	30-130		
4-Nitrophenol	15.0		μg/l	20.0	50.0		30	30-130		
N-Nitrosodimethylamine	20.3		μg/l	5.00	50.0		41	40-140		
N-Nitrosodi-n-propylamine	35.3		μg/l	5.00	50.0		71	40-140		
N-Nitrosodiphenylamine	44.1		μg/l	5.00	50.0		88	40-140		
Pentachlorophenol	13.0	QC2	μg/l	20.0	50.0		26	30-130		
Phenanthrene	35.5		μg/l	5.00	50.0		71	40-140		
Phenol	15.3		μg/l	5.00	50.0		31	30-130		
Pyrene	34.5		μg/l	5.00	50.0		69	40-140		
Pyridine	10.0	QC2	μg/l	5.00	50.0		20	40-140		
1,2,4-Trichlorobenzene	26.2		μg/l	5.00	50.0		52	40-140		
1-Methylnaphthalene	28.4		μg/l	5.00	50.0		57	40-140		
2,4,5-Trichlorophenol	32.5		μg/l	5.00	50.0		65	30-130		
2,4,6-Trichlorophenol	33.8		μg/l	5.00	50.0		68	30-130		
Pentachloronitrobenzene	36.7		μg/l	5.00	50.0		73	40-140		
1,2,4,5-Tetrachlorobenzene	26.3		μg/l	5.00	50.0		53	40-140		

Semivolatile Organic Compounds by GCMS - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1504866 - SW846 3510C										
LCS (1504866-BS1)					Pre	epared: 18-l	Mar-15 An	alyzed: 23-M	<u>1ar-15</u>	
Surrogate: 2-Fluorobiphenyl	33.0		μg/l		50.0		66	30-130		
Surrogate: 2-Fluorophenol	20.4		μg/l		50.0		41	15-110		
Surrogate: Nitrobenzene-d5	31.8		μg/l		50.0		64	30-130		
Surrogate: Phenol-d5	15.8		μg/l		50.0		32	15-110		
Surrogate: Terphenyl-dl4	23.2		μg/l		50.0		46	30-130		
Surrogate: 2,4,6-Tribromophenol	43.2		μg/l		50.0		86	15-110		
LCS Dup (1504866-BSD1)			F-9·			nared: 18-l		alyzed: 23-M	lar₋15	
Acenaphthene	28.4		μg/l	5.00	50.0	parca. To I	57	40-140	6	20
Acenaphthylene	30.3		μg/l	5.00	50.0		61	40-140	6	20
Aniline	25.5	QR9	μg/l	5.00	50.0		51	40-140	26	20
Anthracene	36.9	α. ισ	μg/l	5.00	50.0		74	40-140	12	20
Azobenzene/Diphenyldiazene	36.5		μg/l	5.00	50.0		73	40-140	11	20
Benzidine	14.6	QC2,	μg/l	5.00	50.0		73 29	40-140	101	20
Deliziulie	14.0	QR5	μg/i	5.00	50.0		29	40-140	101	20
Benzo (a) anthracene	35.6		μg/l	5.00	50.0		71	40-140	2	20
Benzo (a) pyrene	35.6		μg/l	5.00	50.0		71	40-140	9	20
Benzo (b) fluoranthene	30.1		μg/l	5.00	50.0		60	40-140	16	20
Benzo (g,h,i) perylene	35.2		μg/l	5.00	50.0		70	40-140	11	20
Benzo (k) fluoranthene	35.1		μg/l	5.00	50.0		70	40-140	2	20
Benzoic acid	8.90	QC1	μg/l	5.00	50.0		18	30-130	8	20
Benzyl alcohol	26.6		μg/l	5.00	50.0		53	40-140	6	20
Bis(2-chloroethoxy)methane	26.5		μg/l	5.00	50.0		53	40-140	10	20
Bis(2-chloroethyl)ether	25.2		μg/l	5.00	50.0		50	40-140	9	20
Bis(2-chloroisopropyl)ether	27.4		μg/l	5.00	50.0		55	40-140	6	20
Bis(2-ethylhexyl)phthalate	34.6		μg/l	5.00	50.0		69	40-140	14	20
4-Bromophenyl phenyl ether	18.1	QC2,	μg/l	5.00	50.0		36	40-140	27	20
Butyl benzyl phthalate	34.0	QR9	μg/l	5.00	50.0		68	40-140	10	20
Carbazole	36.3		μg/l	5.00	50.0		73	40-140	10	20
4-Chloro-3-methylphenol	32.0		μg/l	5.00	50.0		64	30-130	9	20
4-Chloroaniline	28.4		μg/l	5.00	50.0		57	40-140	4	20
2-Chloronaphthalene	29.8		μg/l	5.00	50.0		60	40-140	3	20
2-Chlorophenol	27.8		μg/l	5.00	50.0		56	30-130	6	20
4-Chlorophenyl phenyl ether	30.9		μg/l	5.00	50.0		62	40-140	6	20
Chrysene	28.8		μg/l	5.00	50.0		58	40-140	12	20
Dibenzo (a,h) anthracene	44.8		μg/l	5.00	50.0		90	40-140	12	20
Dibenzofuran	30.6			5.00	50.0		61	40-140	7	20
1,2-Dichlorobenzene			μg/l							
<i>'</i>	26.4		μg/l	5.00	50.0		53 51	40-140	0.2	20
1,3-Dichlorobenzene	25.3		μg/l	5.00	50.0		51	40-140	0.9	20
1,4-Dichlorobenzene	26.2		μg/l	5.00	50.0		52	40-140	0.6	20
3,3'-Dichlorobenzidine	34.0		μg/l	5.00	50.0		68	40-140	9	20
2,4-Dichlorophenol	29.6		μg/l	5.00	50.0		59	30-130	10	20
Diethyl phthalate	32.8		μg/l	5.00	50.0		66	40-140	10	20
Dimethyl phthalate	31.8		μg/l	5.00	50.0		64	40-140	10	20
2,4-Dimethylphenol	27.0		μg/l	5.00	50.0		54	30-130	13	20
Di-n-butyl phthalate	35.2		μg/l	5.00	50.0		70	40-140	9	20
4,6-Dinitro-2-methylphenol	26.7		μg/l	5.00	50.0		53	30-130	7	20
2,4-Dinitrophenol	19.0		μg/l	5.00	50.0		38	30-130	4	20
2,4-Dinitrotoluene	33.7		μg/l	5.00	50.0		67	40-140	12	20
2,6-Dinitrotoluene	32.7		μg/l	5.00	50.0		65	40-140	11	20
Di-n-octyl phthalate	35.7		μg/l	5.00	50.0		71	40-140	11	20
Fluoranthene	35.7		μg/l	5.00	50.0		71	40-140	6	20

Semivolatile Organic Compounds by GCMS - Quality Control

					Spike	Source		%REC		RPD	
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit	
atch 1504866 - SW846 3510C											
LCS Dup (1504866-BSD1)	Prepared: 18-Mar-15 Analyzed: 23-Mar-15										
Fluorene	31.5		μg/l	5.00	50.0		63	40-140	7	20	
Hexachlorobenzene	36.4		μg/l	5.00	50.0		73	40-140	10	20	
Hexachlorobutadiene	23.9		μg/l	5.00	50.0		48	40-140	0.8	20	
Hexachlorocyclopentadiene	27.4		μg/l	5.00	50.0		55	40-140	2	20	
Hexachloroethane	26.0		μg/l	5.00	50.0		52	40-140	0.5	20	
Indeno (1,2,3-cd) pyrene	41.8		μg/l	5.00	50.0		84	40-140	12	20	
Isophorone	28.1		μg/l	5.00	50.0		56	40-140	9	20	
2-Methylnaphthalene	29.9		μg/l	5.00	50.0		60	40-140	3	20	
2-Methylphenol	29.1		μg/l	5.00	50.0		58	30-130	8	20	
3 & 4-Methylphenol	29.0		μg/l	10.0	50.0		58	30-130	7	20	
Naphthalene	26.3		μg/l	5.00	50.0		53	40-140	5	20	
2-Nitroaniline	31.9		μg/l	5.00	50.0		64	40-140	9	20	
3-Nitroaniline	36.8		μg/l	5.00	50.0		74	40-140	3	20	
4-Nitroaniline	41.7		μg/l	20.0	50.0		83	40-140	3	20	
Nitrobenzene	26.7		μg/l	5.00	50.0		53	40-140	8	20	
2-Nitrophenol	27.7		μg/l	5.00	50.0		55	30-130	7	20	
4-Nitrophenol	14.2	QC2	μg/l	20.0	50.0		28	30-130	6	20	
N-Nitrosodimethylamine	19.3	QC2	μg/l	5.00	50.0		39	40-140	5	20	
N-Nitrosodi-n-propylamine	32.2		μg/l	5.00	50.0		64	40-140	9	20	
N-Nitrosodiphenylamine	38.9		μg/l	5.00	50.0		78	40-140	13	20	
Pentachlorophenol	9.65	QC2, QR5	μg/l	20.0	50.0		19	30-130	30	20	
Phenanthrene	31.9		μg/l	5.00	50.0		64	40-140	11	20	
Phenol	15.0		μg/l	5.00	50.0		30	30-130	2	20	
Pyrene	31.6		μg/l	5.00	50.0		63	40-140	9	20	
Pyridine	14.0	QC2, QR5	μg/l	5.00	50.0		28	40-140	33	20	
1,2,4-Trichlorobenzene	25.8		μg/l	5.00	50.0		52	40-140	2	20	
1-Methylnaphthalene	27.4		μg/l	5.00	50.0		55	40-140	4	20	
2,4,5-Trichlorophenol	29.3		μg/l	5.00	50.0		59	30-130	10	20	
2,4,6-Trichlorophenol	28.6		μg/l	5.00	50.0		57	30-130	17	20	
Pentachloronitrobenzene	33.0		μg/l	5.00	50.0		66	40-140	11	20	
1,2,4,5-Tetrachlorobenzene	25.4		μg/l	5.00	50.0		51	40-140	3	20	
Surrogate: 2-Fluorobiphenyl	29.4		μg/l		50.0		59	30-130			
Surrogate: 2-Fluorophenol	19.6		μg/l		50.0		39	15-110			
Surrogate: Nitrobenzene-d5	28.5		μg/l		50.0		57	30-130			
Surrogate: Phenol-d5	15.0		μg/l		50.0		30	15-110			
Surrogate: Terphenyl-dl4	25.1		μg/l		50.0		50	30-130			
Surrogate: 2,4,6-Tribromophenol	36.7		μg/l		50.0		73	15-110			

Total Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1504925 - EPA200/SW7000 Series										
Blank (1504925-BLK1)					<u>Pre</u>	pared: 18-	Mar-15 Aı	nalyzed: 19-M	lar-15	
Mercury	< 0.00020		mg/l	0.00020						
LCS (1504925-BS1)					<u>Pre</u>	pared: 18-	Mar-15 Aı	nalyzed: 19-M	lar-15	
Mercury	0.00481		mg/l	0.00020	0.00500		96	85-115		
<u>Duplicate (1504925-DUP1)</u>			Source: S	C04465-01	<u>Pre</u>	pared: 18-	Mar-15 Aı	nalyzed: 19-M	lar-15	
Mercury	< 0.00020		mg/l	0.00020		BRL				20
Matrix Spike (1504925-MS1)			Source: S	C04465-01	<u>Pre</u>	pared: 18-	Mar-15 Aı	nalyzed: 19-M	lar-15	
Mercury	0.00522		mg/l	0.00020	0.00500	BRL	104	80-120		
Matrix Spike Dup (1504925-MSD1)			Source: S	C04465-01	Pre	pared: 18-	Mar-15 Aı	nalyzed: 19-M	lar-15	
Mercury	0.00496		mg/l	0.00020	0.00500	BRL	99	80-120	5	20
Post Spike (1504925-PS1)			Source: S	C04465-01	<u>Pre</u>	pared: 18-	Mar-15 Aı	nalyzed: 19-M	lar-15	
Mercury	0.00487		mg/l	0.00020	0.00500	BRL	97	85-115		

Soluble Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1504924 - EPA200/SW7000 Series										
Blank (1504924-BLK1)					Pre	pared: 18-	Mar-15 <i>A</i>	Analyzed: 19-M	lar-15	
Mercury	< 0.00020		mg/l	0.00020						
LCS (1504924-BS1)					Pre	pared: 18-	Mar-15 <i>A</i>	Analyzed: 19-M	lar-15	
Mercury	0.00455		mg/l	0.00020	0.00500		91	85-115		
<u>Duplicate (1504924-DUP1)</u>			Source: S	C04465-01	<u>Pre</u>	pared: 18-	Mar-15 <i>A</i>	Analyzed: 19-M	lar-15	
Mercury	< 0.00020		mg/l	0.00020		BRL				20
Matrix Spike (1504924-MS1)			Source: S	C04465-01	Pre	pared: 18-	Mar-15 <i>A</i>	Analyzed: 19-M	lar-15	
Mercury	0.00477		mg/l	0.00020	0.00500	BRL	95	80-120		
Matrix Spike Dup (1504924-MSD1)			Source: S	C04465-01	<u>Pre</u>	pared: 18-	Mar-15 <i>A</i>	Analyzed: 19-M	lar-15	
Mercury	0.00486		mg/l	0.00020	0.00500	BRL	97	80-120	2	20
Post Spike (1504924-PS1)			Source: S	C04465-01	Pre	pared: 18-	Mar-15 <i>A</i>	Analyzed: 19-M	lar-15	
Mercury	0.00487		mg/l	0.00020	0.00500	BRL	97	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1504931 - General Preparation										
<u>Duplicate (1504931-DUP1)</u>			Source: SC	04465-01	Pre	epared & Ar	nalyzed: 18	-Mar-15		
Flashpoint	>150		°F			>150				20
Reference (1504931-SRM1)					Pre	epared & Ar	nalyzed: 18	-Mar-15		
Flashpoint	79		°F		81.0		98	95-105		
Batch 1504962 - General Preparation										
<u>Duplicate (1504962-DUP1)</u>			Source: SO	04465-01	Pre	epared & Ar	nalyzed: 18	-Mar-15		
рН	6.51		pH Units			6.51			0	5
Reference (1504962-SRM1)					Pre	epared & Ar	nalyzed: 18	-Mar-15		
рН	6.01		pH Units		6.00		100	97.5-102. 5		
Reference (1504962-SRM2)			Prepared & Analyzed: 18-Mar-15							
pH	6.07		pH Units		6.00		101	97.5-102. 5		

Notes and Definitions

QC1 Analyte out of acceptance range.

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QR5 RPD out of acceptance range.

QR9 RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as

soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

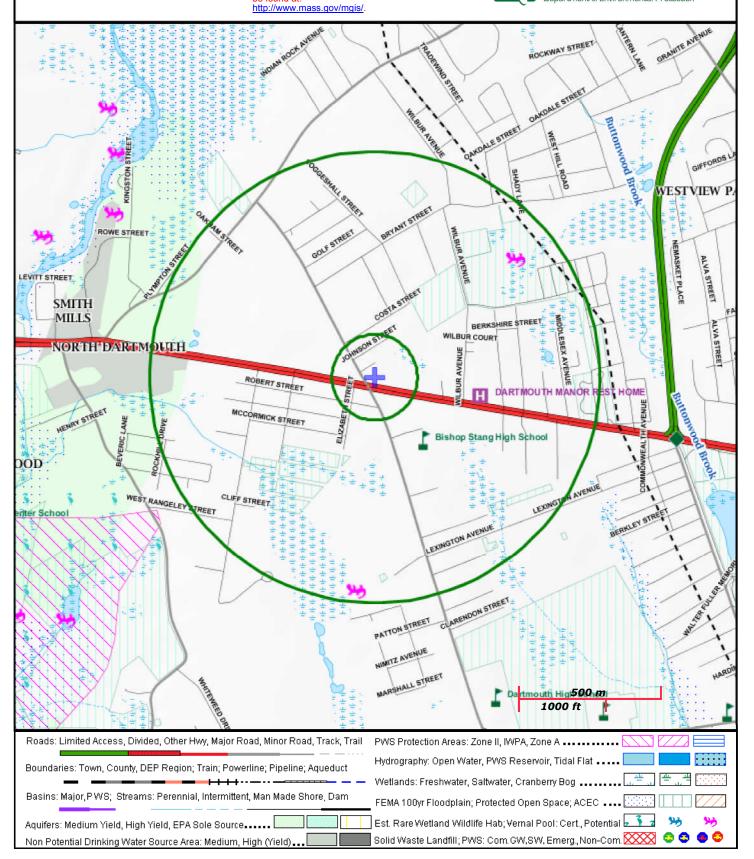
<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

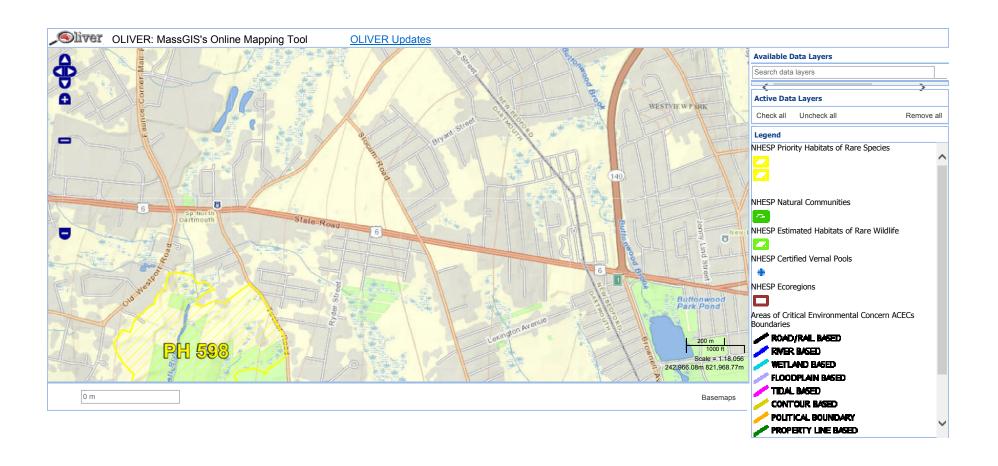
<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.


Validated by: Nicole Leja Rebecca Merz


MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:

CFI DARTMOUTH 114 STATE ROAD DARTMOUTH, MA NAD83 UTM Meters: 4611505mN , 335915mE (Zone: 19) October 22, 2014 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

Get Results in Report Format

OPDF

Oppress

Opp

Below are the results of your search, using the following search criteria:

Town(s): Dartmouth Street No: 114 Street Name: State

Resource Type(s): Area, Building, Burial Ground, Object, Structure

For more information about this page and how to use it, $\underline{\text{click here}}$

No Results Found.

New Search — Same Town(s)

Previous

MHC Home | MACRIS Home