

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED APR 0 9 2015

Richard Moore, Acting Director Naval History and Heritage Command Detachment Boston Building #24, Charlestown Navy Yard Charlestown, MA 02129

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000; Boston National Historic Park in Charlestown, MA in Suffolk County; Authorization # MAG910674

Dear Mr. Moore:

Based on the review of a Notice of Intent (NOI) you submitted for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, and record keeping and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See the complete RGP and other information at: <u>http://www.epa.gov/region1/npdes/mass.html#dgp</u>.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which data was not provided or for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels (ML) established in Appendix VI of the RGP.

Based on the NOI submitted, the following limits apply: arsenic of 36 ug/L, copper of 3.7 ug/l, zinc of 85.6 ug/l, iron of 1,000 ug/L, Total Suspended Solids (TSS) of 30 mg/l and pH range of 6.5 – 8.5 standard units (s.u.).

The metals limits are based on saltwater criteria as shown in Appendix III of the RGP. The parameter of total zinc was not detected for the sampling conducted for the NOI. However, since the reporting limit (RL) used by the testing laboratory was 200 ug/l and is higher than the RGP's zinc limit of 85.6 ug/l and minimum level (ML) of 15 ug/l, the effluent limit of 85.6 ug/l has been established. The laboratory results did not detect TSS in the NOI sampling. However, the TSS limit was established because once the project begins, there are expected to be activities occurring which could introduce solids into the effluent which were not ongoing during the time of NOI sampling.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP.

This EPA general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project is expected to terminate on September 30, 2017. Please be aware you will be required to reapply for coverage after the expired RGP has been reissued. The reissuance date as well as the instructions for reapplying will be posted on the EPA website at that time. Also, regardless of your project termination date, you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within thirty (30) days of project completion.

Thank you in advance for your cooperation in this matter. Please contact George Papadopoulos at 617-918-1579 or Papadopoulos.George@epa.gov, if you have any questions.

Sincerely,

Shulma Nurphy

Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc:

Robert Kubit, MassDEP Rose Fennell, National Park Service Stephen Shea, BWSC

nggar) . Diggi of his sinteres, single situali parturaited with it editoriase from this we begind by his (RET) stated in homogenet land). Eggi (1961, 1 his mort Agent) with the same light " (10 11 his fille T) stated in homogenet land () fight (1961, 1 his mort Agent) with the same light () () is

2010 Remediation General Permit Summary of Monitoring Parameters

NPDES Authorization Number:	MAG910674					
Authorization Issued:	April 2015					
Facility/Site Name:	Boston National Historic Park					
10,000 10,000	Charlestown, MA					
Facility/Site Address:	Email address of owner: rose_fennell@nps.gov Phone: (617) 242-3358					
Legal Name of Operator:	Naval History and Heritage Command Detachment Boston					
Operator contact name, title, and Address:	Richard Moore, Acting Director, Building #24, Charlestown Navy Yard, Charlestown, MA 02129					
the state	Email: richard.c.moore5@navy/.mil					
Estimated date of The Project Completion:	September 30, 2017					
Category and Sub-Category:	Contaminated Construction Dewatering. Activity Sub-category A. General Urban Fill Sites					
RGP Termination Date:	September 9, 2015					
Receiving Water:	Boston Inner Harbor – Class SB					

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)				
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, Me#160.2/ML5ug/L				
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L				
	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L				
	4. Cyanide (CN) ^{2, 3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L 5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L (limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L				
	5. Benzene (B)					
	6. Toluene (T)					
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L				
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L				

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
19(1)	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
11	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/I
6	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
	31. Total Phenois	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
1	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
i i	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
U.	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	e. Chrysene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
ġ	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
0	g. Indeno(1,2,3-cd) Pyrene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
-	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

* Limits for systemic and mediation EPR swinter quility intents are excented and integrations of this Thank is consult a set with an EPA and the method in the constant therein and a systemic mark to receased.

	Analise of the state of the source of the	Total Recoverable			
	Metal Parameters	Saltwater Limits	Constant and a second		
	39. Antimony	5.6	10		
\checkmark	40. Arsenic **	36	20		
	41. Cadmium **	8.9	10		
	42. Chromium III (trivalent) **	100	15		
	43. Chromium VI (hexavalent) **	50.3	10		
\checkmark	44. Copper **	3.7	15		
	45. Lead **	8.5	20		
	46. Mercury **	1.1	02		
	47. Nickel **	8.2	20		
	48. Selenium **	71	20		
	49. Silver	2.2	10		
V	50. Zinc **	85.6	15		
\checkmark	51. Iron	1,000	20		

	Other Parameters	Limit
\checkmark	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab12
\checkmark	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.5; 1/Month/Grab12
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab12
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab13
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹³
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹³
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹³
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹³
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹³
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹³
	64. Maximum Change in Temperature in MA – Any Class SB water body - October to June	4°F; 1/Month/Grab ¹³

Footnotes:

¹ Although the maximum values for TRC are 11 ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratorydetermined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹²pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

¹³ Temperature sampling per Method 170.1

REMEDIATION GENERAL PERMIT FOR USS CONSTITUTION RESTORATION WORK DRY DOCK 1 BOSTON NATIONAL HISTORIC PARK MARCH 2015

- NOTICE OF INTENT FORM
- LOCUS PLAN
- LINE DRAWING
- LABORATORY RESULTS
- FEDERALLY LISTED AND ENDANGERED SPECIES IN MA

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

a) Name of facility/site: Boston National	Historic Park	Facility/site mailing address:						
Location of facility/site : longitude: latitude: 42.371	Facility SIC code(s): 799951	Street:	Rose Fennell, Acti National Park Ser 1 1st Ave	ting Superintendent ervice				
b) Name of facility/site owner:		Town:	Charlestown					
Email address of facility/site owner:		State:		Zip:	County:			
rose_fennell@nps.gov		MA		02129	Suffolk			
Telephone no. of facility/site owner:617-2	242-3358							
Fax no. of facility/site owner: 617-242-600	Owner is (check one): 1. Federal <u>O</u> 2. State/Tribal O							
			A 10 1					
Address of owner (if different from site):		3. Priv		er O if so, des				
and a subsection of a sub-		3. Priv		er O if so, des				
Address of owner (if different from site):	State:	3. Priv:		r O if so, des				
Address of owner (if different from site): Street:	State:	Zip:		County:				
Address of owner (if different from site): Street: Town: c) Legal name of operator:	State: Operator tel	Zip:	ate O 4. Othe	County:				
Address of owner (if different from site): Street: Town: c) Legal name of operator:	State: Operator tel Operator fa:	Zip: ephone r x no.: 617	ate O 4. Othe	County: Operator en	nail: richard.c.moore5@navy.mil			
Address of owner (if different from site): Street: Town: c) Legal name of operator: Naval History and Heritage Command Det Boston	State: Operator tel Operator fa: Moore, Acting Dire Street: B.N.H.F	Zip: ephone r x no.: 617 ector, Nava	ate O 4. Othe no: 617-337-2396 7-241-5232 al History and Herit	County: Operator en	nail: richard.c.moore5@navy.mil			

.......

Remediation General Permit Appendix V - NOI

Page 10 of 22

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for t 2. Has a prior NPDES application (Form 1 & 2C) ever be Y O N O, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CF 4. For sites in Massachusetts, is the discharge covered unpermitting? Y O N O 	en filed for the discharge?
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O N O If Y, please list: site identification # assigned by the state of NH or MA: permit or license # assigned: state agency contact information: name, location, and telephone number: 	 f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O NO, if Y, number: 2. Final Dewatering General Permit? Y O NO, if Y, number: 3. EPA Construction General Permit? Y O NO, if Y, number: 4. Individual NPDES permit? Y O NO, if Y, number: 5. any other water quality related individual or general permit? Y O NO, if Y, number:
	an Area of Critical Environmental Concern (ACEC)? Y_O_N_O_ al sampling data, identify the sub-category into which the potential
discharge falls.	ar sampring data, identify the sub category into which the potential
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. During Site of the Mitigan Constraints
II - Non Petroleum Site Remediation	C. Petroleum Sites with Additional Contamination A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites 🗵 B. Known Contaminated Sites 🔲

Remediation General Permit Appendix V - NOI

Page 11 of 22

IV - Miscellaneous Related Discharges	 A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:

Surface water discharge from Dry Dock floor via sump pump discharges into Boston Harbor

1) Number of di points:	scharge	Max. flow	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Max. flow 0.010 (6500 GPD) Is maximum flow a design value? Y O N O Average flow (include units) 0.007 (4800 GPD) Is average flow a design value or estimate? estimate							
3) Latitude and pt.1: lat 42.372 pt.3: lat pt.5: lat pt.7: lat	longitude of e long long long long long	-71.054	e within 100 feet: pt.2: lat. pt.4: lat. pt.6: lat. pt.8: lat.	long long long long	etc.					
 If hydrostatic total volume of discharge (gals) 	the		charge intermittent ongoing? Y N		ring work on USS Constitution only.					
1. sources of int	a line drawin ake water, 2.	g or flow sch contributing	ematic showing water flow from the operation	n. 3. treatment units, a	lity including: and 4. discharge points and receiving ater source is precipitation and groundwater infiltration.					

Remediation General Permit Appendix V - NOI Page 12 of 22

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

<u>Parameter *</u>					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
	CAS Number	Believed Absent	Believed Present	<u># of</u> Samples	Type (c.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids (TSS)		×									
2. Total Residual Chlorine (TRC)		×									
3. Total Petroleum Hydrocarbons (TPH)		×									
4. Cyanide (CN)	57125	×									
5. Benzene (B)	71432	×							1		
6. Toluene (T)	108883	×									
7. Ethylbenzene (E)	100414	×									
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×									
9. Total BTEX ²	n/a	×									
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934	×									
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×									
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×									

* Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the

Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.
 BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
 EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

Remediation General Permit Appendix V - NOI

Page 13 of 22

<u>Parameter *</u>	CAS Number		NO. D		Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
		Believed Absent		<u># of</u> <u>Samples</u>	<u>Type</u> (c.g., grab)	Method Used (method #)	Level (ML) of <u>Test</u> Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×									
14. Naphthalene	91203	×									
15. Carbon Tetrachloride	56235	×									
16. 1,2 Dichlorobenzene (o-DCB)	95501	×									
17. 1,3 Dichlorobenzene (m-DCB)	541731	×									
18. 1,4 Dichlorobenzene (p-DCB)	106467	×									
18a. Total dichlorobenzene		×									
19. 1,1 Dichloroethane (DCA)	75343	×									
20. 1,2 Dichloroethane (DCA)	107062	×									
21. 1,1 Dichloroethene (DCE)	75354	×									
22. cis-1,2 Dichloroethene (DCE)	156592	×									
23. Methylene Chloride	75092	×									
24. Tetrachloroethene (PCE)	127184	×									
25. 1,1,1 Trichloro-ethane (TCA)	71556	×									
26. 1,1,2 Trichloro-ethane (TCA)	79005	×									
27. Trichloroethene (TCE)	79016	×									

Remediation General Permit Appendix V - NOI Page 14 of 22

	1.1.1.1.1			Tot similar	Sample	Analytical	Minimum	Maximum dai	ly value	Average daily value	
Parameter *	<u>CAS</u> <u>Number</u>		Believed # of Present Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	mass (kg)	
28. Vinyl Chloride (Chloroethene)	75014	×									
29. Acetone	67641	×									
30. 1,4 Dioxane	123911	×									
31. Total Phenols	108952	×									
32. Pentachlorophenol (PCP)	87865	×									
33. Total Phthalates (Phthalate esters) ⁴		×									
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×									
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×									
a. Benzo(a) Anthracene	56553	×									
b. Benzo(a) Pyrene	50328	×									
c. Benzo(b)Fluoranthene	205992	×									
d. Benzo(k)Fluoranthene	207089	×									
e. Chrysene	21801	×									
f. Dibenzo(a,h)anthracene	53703	×									
g. Indeno(1,2,3-cd) Pyrene	193395	×									
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×									

⁴The sum of individual phthalate compounds.

Remediation General Permit Appendix V - NOI

Page 15 of 22

ALL SALVES	English				Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	CAS Number	Believed Absent	Believed Present	<u># of</u> <u>Samples</u>	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l) as noted	<u>mass</u> (kg)	concentration (ug/l) as noted	mass (kg)
h. Acenaphthene	83329	×									
i. Acenaphthylene	208968	×									
j. Anthracene	120127	×									
k. Benzo(ghi) Perylene	191242	×									
1. Fluoranthene	206440	×									
m. Fluorene	86737	×									
n. Naphthalene	91203	×									
o. Phenanthrene	85018	×									
p. Pyrene	129000	×				T					
37. Total Polychlorinated Biphenyls (PCBs)	85687; 84742; 117840; 84662; 131113; 117817.	×									
38. Chloride	16887006		×	1	grab	L-10-117-07-1-B	200 mg/L	9080 mg/L	492	9080 mg/L	363
39. Antimony	7440360	×									
40. Arsenic	7440382		×	1	grab	ICP-E200.7	0.100 mg?L	0.112 mg/L	0.00607	0.112 mg/L	0.00448
41. Cadmium	7440439	×									
42. Chromium III (trivalent)	16065831	×									
43. Chromium VI (hexavalent)	18540299	×									
44. Copper	7440508		×	1	grab	ICP-E200.7	0.0400 mg/L	0.0530 mg/L	0.00287	0.0530 mg/L	0.00212
45. Lead	7439921	×									
46. Mercury	7439976	×									
47. Nickel	7440020	×									
48. Selenium	7782492	×									
49. Silver	7440224	×									
50. Zinc	7440666	×									
51. Iron	7439896		×	1	grab	ICP-E200.7	0.120 mg/L	0.278 mg/L	0.0151	0.278 mg/L	0.0111
Other (describe):		×									

Remediation General Permit Appendix V - NOI

Page 16 of 22

		1000	(OUCLYCE)	<u># of</u> Samples	Sample <u>Type</u> (c.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum dai	ly value Average dail		value
<u>Parameter *</u>		Believed Absent						concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)

b) For discharges where metals are believed present, please fill out the following (attach results of any calculations):

	e metals in the influent exceed the effluent lin e limits set at zero dilution)? $Y O N O$	hits in If ves, which metals?
dilution factor (DF) instructions or as det	Is which exceed the Appendix III limits, calc using the formula in Part I.A.3.c (step 2) of t ermined by the State prior to the submission of factor for applicable metals? DF DF DF DF DF	he NOI factor in Appendix IV. Do any of the metals in the

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

Daily cleaning of dry dock floor, dispose of all wood particles and materials that are used for USS Constitution. Prevent any materials from entering sump area.

b) Identify each	Frac. tank 🛛 Air stripper 🗆		Oil/water separator	Equalization tanks	Bag filter 🗖	GAC filter
applicable treatment unit (check all that apply):	Chlorination	De- chlorination		cleaning, sweeping, removing f platforms	rom dry dock floo	r via lift/dump

Remediation General Permit Appendix V - NOI Page 17 of 22

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge N/A gpm Maximum flow rate of treatment system N/A gpm Design flow rate of treatment system N/A gpm
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):
N/A

5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:

a) Identify the discharge pathway:	Direct to receiving water 🗵	Within facility (sewer)	Storm drain	Wetlands	Other (describe)
b) Provide a narrative description of Discharge is direct into Boston Harbor	f the discharge	pathway, including	the name(s) of	the receiving waters	s:
 c) Attach a detailed map(s) indicatin 1. For multiple discharges, number 2. For indirect dischargers, indicate The map should also include the loc on USGS topographical mapping), s d) Provide the state water quality character 	the discharges the location of cation and dista such as surface	sequentially. The discharge to the unce to the nearest s waters, drinking w	e indirect conve anitary sewer a ater supplies, a	eyance and the disch s well as the locus o nd wetland areas.	
 e) Provide the reported or calculated Please attach any calculation sheets 	d seven day-ter	year low flow (7Q	(10) of the recei	iving water N/A	cfs
f) Is the receiving water a listed 303 Is there a final TMDL? Y O N				O_N_O_If yes, fo	or which pollutant(s)?

Remediation General Permit Appendix V - NOI

Page 18 of 22

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

A O B O C O D O E O F O

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y_O N_O Underway_O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y_O_N_O_

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 \odot 2 \bigcirc 3 \bigcirc

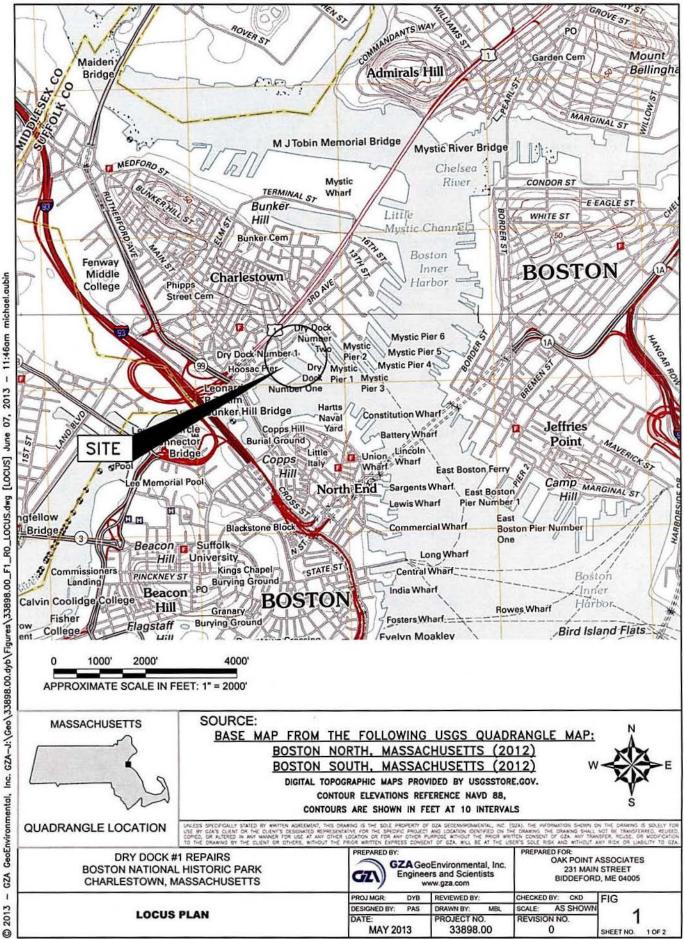
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

GeoLabs Analytical Report #1503004 is attached

Remediation General Permit Appendix V - NOI Page 19 of 22

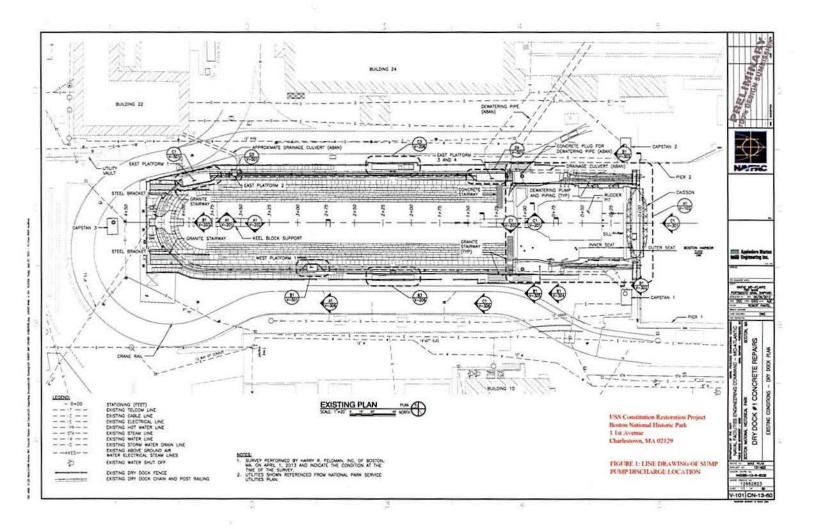

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Naval History and Heritage Command Detachment Boston performing work at Charlestown Navy Yard in Dry Dock
Operator signature: Public Thom
Printed Name & Title: Richard Moore, Director, Naval History and Heritage Command Detachment Boston
Date: March 25, 2015

Remediation General Permit Appendix V - NOI Page 20 of 22

LOCUS PLAN



11:46am ı 2013 07. June Inc. GZA-J:\Geo\33898.00.dyb\Figures\33898.00_F1_R0_L0CUS.dwg [L0CUS] GeoEnvironmental. GZA 1

LINE DRAWING

OF

PUMP DISCHARGE LOCATION

LABORATORY RESULTS

Tuesday, March 10, 2015

Richard Moore Naval History & Heritage Command USS Constitution Repair Facility Boston, MA

TEL: (617) 337-2396 FAX: (617) 241-5232

Project: Env. Permitting for Upcoming Dry Dock Location:

Order No.: 1503004

Dear Richard Moore:

GeoLabs, Inc. received 1 sample(s) on 3/2/2015 for the analyses presented in the following report.

The laboratory results in this report relate only to samples submitted.

All data for associated QC met method or laboratory specifications, except when noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

David Mick Laboratory Director

For current certifications, please visit our website at www.geolabs.com Certifications: CT (PH-0148) - MA (M-MA015) - NH (2508) - RI (LA000252)

GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184 Tele: 781 848 7844 Fax: 781 848 7811

Date: 10-Mar-15

CLIENT:	Naval History & Heritage Command	
Project:	Env. Permitting for Upcoming Dry Dock	CASE NARRATIVE
Lab Order:	1503004	

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

All extractable samples were extracted and analyzed and any Volatile samples were analyzed within method specified holding times and according to GeoLabs documented Standard Operating Procedure. No analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples.

SIGNATURE:

Mik

PRINTED NAME: David Mick

LAB DIRECTOR

DATE: 03/10/15

ANALYTIC.	AL KEI OKI					orted Date:		
CLIENT:	Naval History & H	Heritage Command	1	C	lient S	Sample ID:	Sample	
Lab Order:	1503004			× .	Colle	ction Date:	3/2/2015	5 11:30:00 AM
Project:	Env. Permitting for	or Upcoming Dry I	Dock		Date	Received:	3/2/2015	5
Lab ID:	1503004-001				Dutt	Matrix:		
Analyses	and the second second	Result	RL	Qual	Units	5	DF	Date Analyzed
TOTAL SUSP	ENDED SOLIDS - SM	2540D						Analyst: CR
	Prep Method:		F	Prep Da	te:			
Total Suspend	ded Solids	ND	5.00		mg/L		1	3/3/2015
POLYCHLOR	INATED BIPHENYLS	- SW8082						Analyst: KG
	Prep Method:	(SW3510B)	,	Prep Da	te:	3/5/2015 9:4	0:20 AM	
Aroclor 1016		ND	0.272		µg/L		1	3/5/2015
Aroclor 1221		ND	0.272		µg/L		1	3/5/2015
Aroclor 1232		ND	0.272		µg/L		1	3/5/2015
Aroclor 1242		ND	0.272		µg/L		1	3/5/2015
Aroclor 1248		ND	0.272		µg/L		1	3/5/2015
Aroclor 1254		ND	0.272		µg/L		1	3/5/2015
AIUG01 1234		IND						
Aroclor 1260	OLEUM HYDROCARE	ND	0.272		µg/L		1	3/5/2015 Analyst: KC
Aroclor 1260	Prep Method:	ND BONS - 8100M (8100M)	0.272	Prep Da	µg/L	3/5/2015 9:3	4:59 AM	Analyst: KC
Aroclor 1260		ND 30NS - 8100M	0.272	Prep Da	µg/L	3/5/2015 9:3		
Aroclor 1260 TOTAL PETR Total Petroleu	Prep Method:	ND BONS - 8100M (8100M)	0.272	Prep Da	µg/L	3/5/2015 9:3	4:59 AM	Analyst: KC
Aroclor 1260 TOTAL PETR Total Petroleu	Prep Method: Im Hydrocarbons	ND BONS - 8100M (8100M)	0.272	Prep Da Prep Da	µg/L tte: mg/L	3/5/2015 9:3 3/3/2015 10:	4:59 AM 1	Analyst: KC 3/5/2015 Analyst: QS
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND 30NS - 8100M (8100M) ND (200.7) ND	0.272 1 0.170 1 0.200		µg/L tte: mg/L		4:59 AM 1 25:29 AM 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND 30NS - 8100M (8100M) ND (200.7) ND 0.112	0.272 1 0.170 1 0.200 0.100		µg/L mg/L mg/L mg/L		4:59 AM 1 25:29 AM 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND 30NS - 8100M (8100M) ND (200.7) ND 0.112 ND	0.272 1 0.170 1 0.200		µg/L nte: mg/L ntg/L		4:59 AM 1 25:29 AM 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND ND ND ND	0.272 0.170 0.170 0.200 0.100 0.00400 0.100		ute: mg/L mg/L mg/L mg/L mg/L		4:59 AM 1 25:29 AM 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND ND 0.0530	0.272 0.170 0.170 0.200 0.100 0.00400 0.100 0.0400		ute: mg/L mg/L mg/L mg/L mg/L mg/L		4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.112 ND 0.0530 0.278	0.272 1 0.170 0.200 0.100 0.00400 0.100 0.0400 0.120		ute: mg/L mg/L mg/L mg/L mg/L mg/L mg/L		4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.0530 0.278 ND	0.272 0.170 0.170 0.200 0.100 0.00400 0.100 0.0400 0.120 0.0200		Hg/L tte: mg/L mg/L mg/L mg/L mg/L mg/L mg/L		4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead Nickel	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.0530 0.278 ND ND ND 0.0530 0.278 ND ND	0.272 0.170 0.170 0.200 0.100 0.00400 0.100 0.0400 0.120 0.0200 0.0200	Prep Da	Hg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead Nickel Selenium	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.112 ND 0.0530 0.278 ND ND ND ND ND ND ND ND ND ND	0.272 0.170 0.170 0.200 0.100 0.00400 0.100 0.0400 0.120 0.0200 0.0200 0.100	Prep Da	Hg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead Nickel Selenium Silver	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.0530 0.278 ND ND ND ND ND ND ND ND ND ND	0.272 0.170 0.170 0.200 0.100 0.00400 0.100 0.0200 0.120 0.0200 0.100 0.0200	Prep Da	Hg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead Nickel Selenium	Prep Method: um Hydrocarbons ALS BY ICP - E200.7	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.112 ND 0.0530 0.278 ND ND ND ND ND ND ND ND ND ND	0.272 0.170 0.170 0.200 0.100 0.00400 0.100 0.0400 0.120 0.0200 0.0200 0.100	Prep Da	Hg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead Nickel Selenium Silver	Prep Method: um Hydrocarbons ALS BY ICP - E200.7 Prep Method:	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.0530 0.278 ND ND ND ND ND ND ND ND ND ND	0.272 0.170 0.170 0.100 0.00400 0.100 0.0400 0.100 0.0200 0.0200 0.100 0.0200 0.200	Prep Da	Hg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	3/3/2015 10:	4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead Nickel Selenium Silver	Prep Method: am Hydrocarbons ALS BY ICP - E200.7 Prep Method: B Analyte detected in t	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.0530 0.278 ND ND ND ND ND ND ND ND ND ND	0.272 0.170 0.170 0.100 0.00400 0.100 0.0400 0.100 0.0200 0.0200 0.100 0.0200 0.200	Prep Da	Hg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	3/3/2015 10:	4:59 AM 1 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead Nickel Selenium Silver Zinc	Prep Method: Im Hydrocarbons ALS BY ICP - E200.7 Prep Method: B Analyte detected in the E Value above quantita	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.0530 0.278 ND ND ND ND ND ND ND ND ND ND	0.272 0.170 0.170 0.100 0.00400 0.100 0.0400 0.100 0.0200 0.0200 0.100 0.0200 0.200	Prep Da	Handler Handle	3/3/2015 10: elow Reporting	4:59 AM 1 2 25:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005
Aroclor 1260 TOTAL PETR Total Petroleu TOTAL META Antimony Arsenic Cadmium Chromium Copper Iron Lead Nickel Selenium Silver Zinc	Prep Method: Im Hydrocarbons ALS BY ICP - E200.7 Prep Method: B Analyte detected in the E Value above quantita	ND BONS - 8100M (8100M) ND (200.7) ND 0.112 ND 0.0530 0.278 ND ND ND ND ND ND ND ND ND ND	0.272 0.170 0.170 0.100 0.00400 0.100 0.0400 0.100 0.0200 0.0200 0.100 0.0200 0.200	Prep Da	Handler Handle	3/3/2015 10:	4:59 AM 1 2 2:29 AM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Analyst: KC 3/5/2015 Analyst: QS 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005 3/3/2005

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

Reported Date: 10-Mar-15

CLIENT: Lab Order: Project: Lab ID:	1503004	Heritage Command or Upcoming Dry Do	ck	Colle	Sample ID: Sample ction Date: 3/2/201 e Received: 3/2/201 Matrix: WATE	5 11:30:00 AM 5
Analyses		Result	RL (Qual Unit	s DF	Date Analyzed
TOTAL MERCU	JRY - E245.1					Analyst: EC
	Prep Method:	(SW7470A/E245.1)	Pr	ep Date:	3/3/2015 3:25:35 PM	
Mercury		ND	0.0005	mg/L	1	3/3/2015
×						
SEMIVOLATIL	E ORGANICS - SW8	270C				Analyst: ZYZ
	Prep Method:	(SW3510)	Pr	ep Date:	3/4/2015 9:07:55 AM	
1,2,4-Trichlorob	enzene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
1,2-Dichloroben	zene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
1,2-Dinitrobenzo	ene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
1,3-Dichlorober	zene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
1,3-Dinitrobenzo	ene	ND	3.47	µg/L	1	3/4/2015 3:08:00 PM
1,4-Dichloroben	zene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
1,4-Dinitrobenze	ene	ND	34.7	µg/L	1	3/4/2015 3:08:00 PM
2,3,4,6-Tetrachi	lorophenol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2,4,5-Trichlorop	henol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2,4,6-Trichlorop	henol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2,4-Dichlorophe	anol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2,4-Dimethylphe	enol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2,4-Dinitrophen		ND	34.7	µg/L	1	3/4/2015 3:08:00 PM
2,4-Dinitrotolue	ne	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2,6-Dinitrotolue	ne	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2-Chloronaphth	alene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2-Chlorophenol		ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2-Methylnaphth	alene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2-Methylphenol		ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2-Nitroaniline		ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
2-Nitrophenol		ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
3,3'-Dichlorobe	nzidine	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
3-Methylphenol	/4-Methylphenol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
3-Nitroaniline	na na serie de la forma de la construit de la forma de la construit de la construit de la construit de la const	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
4,6-Dinitro-2-Me	ethylphenol	ND	34.7	µg/L	1	3/4/2015 3:08:00 PM
4-Bromophenyl		ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
4-Chloro-3-Meti	and the second	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
4-Chloroaniline	1990 - 1997 -	ND	3.47	µg/L	1	3/4/2015 3:08:00 PM
4-Chlorophenyl	Phenyl Ether	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
4-Nitroaniline		ND	1.39	µg/L	1	3/4/2015 3:08:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside recovery limits

RL Reporting Limit

GeoLabs, Inc.

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

Reported Date: 10-Mar-15

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Lab ID:	1503004-001		Matrix:	WATE	R
Project:	Env. Permitting for Upcoming Dry Dock		Date Received:	3/2/20	15
Lab Order:	1503004		Collection Date:	3/2/20	15 11:30:00 AM
CLIENT:	Naval History & Heritage Command	(Client Sample ID:	Sample	•

SEMIVOLATILE ORGANICS - SW8270C

Analyst: ZYZ

Prep Method:	(SW3510)	Prep	Date:	3/4/2015 9:07:55 AM	
4-Nitrophenol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Acenaphthene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Acenaphthylene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Acetophenone	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Aniline	ND	6.94	µg/L	1	3/4/2015 3:08:00 PM
Anthracene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Azobenzene	ND	6.94	µg/L	1	3/4/2015 3:08:00 PM
Benz(a)Anthracene	ND	0.139	µg/L	1	3/4/2015 3:08:00 PM
Benzidine	ND	34.7	µg/L	1	3/4/2015 3:08:00 PM
Benzo(a)Pyrene	ND	0.139	µg/L	1	3/4/2015 3:08:00 PM
Benzo(b)Fluoranthene	ND	0.139	µg/L	1	3/4/2015 3:08:00 PM
Benzo(g,h,i)Perylene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Benzo(k)Fluoranthene	ND	0.139	µg/L	1	3/4/2015 3:08:00 PM
Benzyl Alcohol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Bls(2-Chloroethoxy)Methane	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Bis(2-Chloroethyl)Ether	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Bis(2-Chloroisopropyl)Ether	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Bis(2-Ethylhexyl)Phthalate	ND	34.7	µg/L	1	3/4/2015 3:08:00 PM
Butyl Benzyl Phthalate	ND	34.7	µg/L	1	3/4/2015 3:08:00 PM
Carbazole	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Chrysene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Dibenz(a,h)Anthracene	ND	0.139	µg/L	1	3/4/2015 3:08:00 PM
Dibenzofuran	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Diethyl Phthalate	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Dimethyl Phthalate	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Di-n-Butyl Phthalate	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Di-n-Octyl Phthalate	ND	34.7	µg/L	1	3/4/2015 3:08:00 PM
Fluoranthene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Fluorene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Hexachlorobenzene	ND	3.47	µg/L	1	3/4/2015 3:08:00 PM
Hexachlorobutadiene	ND	3.47	µg/L	1	3/4/2015 3:08:00 PM
Hexachloroethane	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Indeno(1,2,3-cd)Pyrene	ND	0.139	µg/L	1	3/4/2015 3:08:00 PM
Isophorone	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Naphthalene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Nitrobenzene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM

Qualifiers:

B Analyte detected in the associated Method Blank
 E Value above quantitation range

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits RL Reporting Limit ND Not Detected at the Reporting Limit

S Spike Recovery outside recovery limits

GeoLabs, Inc.

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

Analyses

Reported 1	Date: 1	0-Mar-15
------------	---------	----------

Naval History & Heritage Command	Clien
1503004	Col
Env. Permitting for Upcoming Dry Dock	Da
1503004-001	
	1503004 Env. Permitting for Upcoming Dry Dock

Result

Collection Date: 3/2/2015 11:30:00 AM Date Received: 3/2/2015 Matrix: WATER

DF

SEMIVOLATILE ORGANICS - SW8270C

Prep Method:	(SW3510)	Prep	Date: 3/4/2	015 9:07:55 AM	
N-Nitrosodimethylamine	ND	6.94	µg/L	1	3/4/2015 3:08:00 PM
N-Nitrosodi-n-Propylamine	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
N-Nitrosodiphenylamine	ND	6.94	µg/L	1	3/4/2015 3:08:00 PM
Pentachlorophenol	ND	34.7	µg/L	1	3/4/2015 3:08:00 PM
Phenanthrene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Phenol	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Pyrene	ND	1.39	µg/L	1	3/4/2015 3:08:00 PM
Pyridine	ND	6.94	µg/L	1	3/4/2015 3:08:00 PM

RL Qual Units

VOLATILE ORGANIC COMPOUNDS - SW8260B

Prep Method:		Prep	Date:		
1,1,1,2-Tetrachloroethane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,1,1-Trichloroethane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,1,2,2-Tetrachloroethane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,1,2-Trichloroethane	ND	2.00	μg/L	1	3/3/2015 1:44:00 AM
1,1-Dichloroethane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,1-Dichloroethene	ND	2.00	µg/L	- 1	3/3/2015 1:44:00 AM
1,1-Dichloropropene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,2,3-Trichlorobenzene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,2,3-Trichloropropane	ND	5.00	µg/L	1	3/3/2015 1:44:00 AM
1,2,4-Trichlorobenzene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,2,4-Trimethylbenzene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,2-Dibromo-3-Chloropropane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,2-Dibromoethane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,2-Dichlorobenzene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,2-Dichloroethane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,2-Dichloropropane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,3,5-Trimethylbenzene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,3-Dichlorobenzene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,3-Dichloropropane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
1,4-Dichlorobenzene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
2,2-Dichloropropane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
2-Butanone	ND	10.0	µg/L	1	3/3/2015 1:44:00 AM
2-Chloroethyl Vinyl Ether	ND	5.00	µg/L	1	3/3/2015 1:44:00 AM

Qualifiers: B Analyte

B Analyte detected in the associated Method BlankE Value above quantitation range

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

RL Reporting Limit

S Spike Recovery outside recovery limits

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

Analyst: Admir

Date Analyzed

Analyst: ZYZ

Reported Date: 10-Mar-15

Analyses	Result	RL	Oual	Units	DF	Date Analyzed
Lab ID:	1503004-001			Matrix:	WATER	
Project:	Env. Permitting for Upcoming Dry Dock			Date Received:	3/2/2015	
Lab Order:	1503004			Collection Date:	3/2/2015	11:30:00 AM
CLIENT:	Naval History & Heritage Command		С	lient Sample ID:	Sample	

VOLATILE ORGANIC COMPOUNDS - SW8260B

Prep Date: Prep Method: 2-Chlorotoluene ND 2.00 µg/L 1 3/3/2015 1:44:00 AM 2-Hexanone ND 10.0 µg/L 1 3/3/2015 1:44:00 AM ND 3/3/2015 1:44:00 AM 4-Chlorotoluene 2.00 1 µg/L 4-Isopropyitoluene ND 2.00 µg/L 1 3/3/2015 1:44:00 AM µg/L 4-Methyl-2-Pentanone ND 5.00 1 3/3/2015 1:44:00 AM ND 50.0 3/3/2015 1:44:00 AM Acetone µg/L 1 Acrolein ND 50.0 µg/L 1 3/3/2015 1:44:00 AM Acrylonitrile ND 50.0 µg/L 1 3/3/2015 1:44:00 AM Benzene ND 2.00 1 3/3/2015 1:44:00 AM µg/L Bromobenzene ND 2.00 1 3/3/2015 1:44:00 AM µg/L Bromochloromethane ND 2.00 µg/L 1 3/3/2015 1:44:00 AM Bromodichloromethane ND 2.00 1 µg/L 3/3/2015 1:44:00 AM Bromoform ND 2.00 µg/L 1 3/3/2015 1:44:00 AM µg/L Bromomethane ND 2.00 1 3/3/2015 1:44:00 AM Carbon Disulfide ND 2.00 µg/L 1 3/3/2015 1:44:00 AM Carbon Tetrachloride ND 2.00 µg/L 1 3/3/2015 1:44:00 AM Chlorobenzene ND 2.00 1 3/3/2015 1:44:00 AM µg/L Chloroethane ND 2.00 µg/L 1 3/3/2015 1:44:00 AM Chloroform ND 2.00 µg/L 3/3/2015 1:44:00 AM 1 Chloromethane ND 2.00 3/3/2015 1:44:00 AM µg/L 1 cis-1,2-Dichloroethene ND 2.00 1 3/3/2015 1:44:00 AM µg/L cis-1,3-Dichloropropene ND 2.00 µg/L 1 3/3/2015 1:44:00 AM Dibromochloromethane ND 2.00 3/3/2015 1:44:00 AM µg/L 1 Dibromomethane ND 2.00 µg/L 1 3/3/2015 1:44:00 AM Dichlorodifluoromethane ND 2.00 µg/L 1 3/3/2015 1:44:00 AM Ethylbenzene ND 2.00 3/3/2015 1:44:00 AM µg/L 1 2.00 Hexachlorobutadiene ND µg/L 1 3/3/2015 1:44:00 AM Isopropylbenzene 2:00 ND µg/L 1 3/3/2015 1:44:00 AM ND 2.00 Methyl Tert-Butyl Ether µg/L 1 3/3/2015 1:44:00 AM Methylene Chloride ND 5.00 µg/L 1 3/3/2015 1:44:00 AM Naphthalene ND 10.0 µg/L 1 3/3/2015 1:44:00 AM n-Butylbenzene ND 2.00 µg/L 1 3/3/2015 1:44:00 AM ND 2.00 n-Propylbenzene µg/L 1 3/3/2015 1:44:00 AM sec-Butylbenzene ND 2.00 3/3/2015 1:44:00 AM µg/L 1 ND 2.00 Styrene µg/L 1 3/3/2015 1:44:00 AM tert-Butylbenzene ND 2.00 µg/L 1 3/3/2015 1:44:00 AM

Qualifiers:

B

RL

Analyte detected in the associated Method Blank E Value above quantitation range

BRL Below Reporting Limit

Holding times for preparation or analysis exceeded H

J Analyte detected below quantitation limits

Reporting Limit

ND Not Detected at the Reporting Limit

S Spike Recovery outside recovery limits

GeoLabs, Inc.

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

Analyst: Admir

Reported Date: 10-Mar-15

ANALYTIC	AL REPORT					
CLIENT:	Naval History & Her	itage Command		Client Sampl	e ID: Sampl	e
Lab Order:	1503004			Collection I	Date: 3/2/20	15 11:30:00 AM
Project:	Env. Permitting for L	Jpcoming Dry Do	ock	Date Rece	ived: 3/2/20	15
Lab ID:	1503004-001			Ma	trix: WAT	ER
Analyses		Result	RL Q	ual Units	DF	Date Analyzed
VOLATILE O	RGANIC COMPOUNDS -	SW8260B				Analyst: Adm
	Prep Method:		Pre	p Date:		
Tetrachloroet	hene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
Toluene		ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
trans-1,2-Dick	hloroethene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
trans-1,3-Dick	hloropropene	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
Trichloroethe	ne	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
Trichlorofluor	omethane	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
Vinyl Chloride	3	ND	2.00	µg/L	1	3/3/2015 1:44:00 AM
Xylenes, Tota	al	ND	· 2.00	µg/L	1	3/3/2015 1:44:00 AM
CHLORIDE -	L-10-117-07-1-B					Analyst: RP
	Prep Method:		Pre	p Date:		
Chloride		9080	200	mg/L	200	3/3/2015
CYANIDE, TO	DTAL - SM4500-CN-C,E					Analyst: RP
	Prep Method:		Pre	p Date:		
Cyanide, Tot	al	ND	0.0200	mg/L	. 1	3/9/2015
TRIVALENT	CHROMIUM IN WATER -	6010C&3500				Analyst: RP
	Prep Method:		Pre	p Date:		
Trivalent Chr	omium,Cr3+	ND	0.050	mg/L	1	3/4/2015
HEXAVALEN	IT CHROMIUM - SW 846	7196A				Analyst: RP
	Prep Method:		Pre	p Date:		
Hexavalent (Chromium	ND	0.0100	mg/L	1	3/3/2015 9:30:00 AM
TOTAL RESI	DUAL CHLORINE - HACI	1 8167				Analyst: RP
	Prep Method:		Pre	p Date:		
						and the second
Qualifiers:	B Analyte detected in the a		ank		porting Limit	
	E Value above quantitation					ation or analysis exceeded
	J Analyte detected below of	quantitation limits			cted at the Repo	
	RL Reporting Limit			S Spike Rea	covery outside r	ecovery limits

GeoLabs, Inc.

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

Reported Date: 10-Mar-15

CLIENT:	Naval History & Heritage Command		C	Client Sample ID:	Sample	
Lab Order:	1503004			Collection Date:	3/2/2015	11:30:00 AM
Project:	Env. Permitting for Upcoming Dry Dock			Date Received:	3/2/2015	
Lab ID:	1503004-001			Matrix:	WATER	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
TOTAL RESID	UAL CHLORINE - HACH 8167					Analyst: RF
	Prep Method:	F	Prep Da	ite:		
Total Residual	Chlorine ND	0.200	н	mg/L	1	3/2/2015 1:00:00 PM

Qualifiers:

в

Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits

RL Reporting Limit

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside recovery limits

GeoLabs, Inc.

45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

									Salis - 1 -			l	50.	300	54				PAGE	1	OF	1
GeoLabs,	Geol Inc.) 45 Jo p 78	abs, Inc. E	, Braintree • f 781	TODY F al Laboratories 9, MA 02184 1.848.7811	s	D	Samp Filtrat Prese	ion	Di Ni La	one ot Need ab to do	choice ied b Y/N	(Metals - H	fg,Sk	a Asi	Speci Cd,C4	al Inst	Ni,	serz	n.Fe	Cr, A	9	*
	Turnaround	· circle one		Data I	Delivery: ci	cle ch	oice (s	3)	1		- Fordian	1	Require	ments:	circle c	hoice (s	5)					
1-day		3-day		Fax		(email		1 0	GW-1	м	CP Methods	C	r RCP (R	easonab	le Confi	dence P	rotocols)			
				Format:					5	S-1	D	EP	S	tate / Fe	d Program	m - Crite	eria					
2-day		(5/7-days		Excel		F	PDF		0	ac	0	ther										
Client:	pult	HStorut-	Horite	epairfo	Mand	Pho	ne:6	17-0	33	7-0	2396			Project	DN.F	erna	Hing	for U	pcom	ingl	DMD	rck
Address:	USSCa	BHIAH	ion R	epairFo	Cility	2010/200	SC SALES				5232									5	5	
-	Rosto	D. MA												Project								
Contact:	Rcha	amo	are.			ema	ull: <u>1 (</u>	cna	(0.0	<u>z.m</u>	Dresc.1	avy mi		nvoice	to *:							
												Preservative:				3	2	5		١]	
	COLLECTIO	N		Correction of the second se		CONT	AINER	8	•	1	1	•	*			Anal	ysis i	Reque	sted		Lab U	sè Onl
D A T E	T I M E	S A P B L Y E D		SAMPLE Location / ID)	T Y E	QUANITY	M A T R I X	C O M P	G R A B	GeoLabs Si	AMPLE NUMBER	3,0rb	hloride,	ŝ	H	* Slatow	2	689	3Hed	TEMPERATURE	L A B P H
2/15	1130	DJK	So	mple				w		X	3004	1-001	U X		X	X	X	X	\propto	X		
																						-
																				•		
																						L
																						-
	¢.																					
Matrix Co GW = Grou		DW = Drinkir	ng Water	S = Soil	A = Air		R	eceived	on Ice		Preservatives		= NaOH		= Other		Contai A = Amt	Der	B = Bag		0 = 0th	l
WW = Was	10.00.00.000.000	SL = Sludge	-	0 = 0il	OT = Other								= MEO)				G = Glas S = Sum		P = Plas V = Voa	UC		
Relinquish	ed by:				Date / Tir	ne					Received by:	11					Date /	and and the second	100	-		
										_	pile	tell	u_			3	2/1:	<u>></u>	123			
10730.J&P	C of CR.09/22	10 THANK YO	U - WE APPR	RECIATE YOUR B	USINESS AI	discount	ting will t	e remove	d after 9	0 days -	All Payment terms	are NET 30 Days. A	CT (PH-	0148)				NH (2	508) MA		5)	

fees and court costs, will be applied to balances that go beyond NET 30 days.

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

FEDERALLY LISTED	ENDANGERED AND	THREATENED SPECIES
	IN MASSACHUSET	rs

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Boume (north of the Cape Cod Canal)
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Raynham and Taunton
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towas
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Glocester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague
	Dwarf wedgemussel	Endangered	Mill River	Whately
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hadley, Hatfield, Amherst and Northamptor
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northem Red-bellied cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleberough, Carver, Plymouth Bourne, and Wareham
2.	Roseate Tern	Endangered	Coastal beaches and the Atlantic Occan	Plymouth, Marion, Wareham, and Mattapoisett.
Suffolk	Piping Plover	Threatened	Ceastal Beaches	Winthrop
Worcester	Small whorled Fogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster

-Eastern cougar and gray wolf are considered extirpated in Massachusetts. -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide. -Critical habitat for the Northern Red-bellied cooter is present in Plymouth County.

7/31/2008