

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1

5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

JUN 2 6 2015

Michael Rygiel Project Manager The Dow Company 112 Broadway Road Dracut, MA 01826

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. BWSC Storm Drain Replacement Project site located at Rena Park/140-156 Western Avenue, Allston, MA 02134, Suffolk County; Authorization # MAG910686

Dear Mr. Rygiel:

Based on the review of a Notice of Intent (NOI) submitted by Dana B. Himmel from CDM Smith Inc., on behalf of the President and Fellows of Harvard College, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters which your consultant marked "Believed Present".

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 41.08 for the Charles River for this site is within a dilution range greater than ten to fifty (>10 to 50), established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for antimony of 60 ug/L, arsenic of 100 ug/L, trivalent chromium of

489 ug/L, hexavalent chromium of 114 ug/L, copper of 52 ug/L, lead of 13 ug/L, nickel of 290 ug/L, zinc of 666 ug/L and iron of 5,000 ug/L, are required to achieve permit compliance at your site.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on October 7, 2015. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Mulma Murphy
Thelma Murphy, Chief

Storm Water and Construction

Permits Section

Enclosure

cc: Robert Kubit, MassDEP

Stephen Shea, Boston W&SC

Danna B. Himmel, CDM Smith Inc.

2010 Remediation General Permit Summary of Monitoring Parameters[1]

NPDES Authorization Number:		MAG910686				
Authorization Issued:	June,	2015 services and a service se				
Facility/Site Name:	BWSC	Storm Drain Replacement Project				
		Park /140-156 Western Avenue, Allston, MA 02134, Suffolk				
AND THE PARTY	Email	ail address of owner:Kelly_mcqueeney@harvard.edu				
Legal Name of Operat	or:	The Dow Company				
Operator contact name, title,		Michael Rygiel, Project Manager ;Ph: 978 682-1414				
and Address:	CIGS	Email:mrygiel@thedowcompany.com				
Estimated date of The Completion:	Project	October 7, 2017				
Category and Sub-Category:		Category III- Contaminated Construction Dewatering. Subcategory A. General Urban Fill Sites				
RGP Termination Date	T CUI	September 2015				
Receiving Water:		Charles River				
M WAS		OCHE TOURS				

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
	Total Residual Chlorine (TRC)	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
	Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) 2, 3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	(TSS) 2. Total Residual Chlorine (TRC) ¹ 3. Total Petroleum Hydrocarbons (TPH) 4. Cyanide (CN) ^{2, 3} 5. Benzene (B) 6. Toluene (T) 7. Ethylbenzene (E) 8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
Λ	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
100	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
,	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L

	Well Silbustiful San	Effluent Limit/Method#/ML
		(All Effluent Limits are shown as Daily
	Parameter	Maximum Limit, unless denoted by a **,
		in that case it will be a Monthly Average Limit)
	10. Ethylene Dibromide (EDB)	
	(1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
_	(TertiaryButanol)	Homes omy(ug/E)/He#0200C/HE 10ug/E
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
/	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
01	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
16	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
VZ ÇI	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
+	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
淮	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
3	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/
Ţ	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
H	31. Total Phenois	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
)()-(32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates	3.0 ug/L ** /Me#8270D/ML 5ug/L,
	(Phthalate esters) 6	Me#606/ML 10ug/L& Me#625/ML 5ug/L
00	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
2 Y	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L

oule	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)				
224.9	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
,	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L				
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L				
+	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/M 5ug/L & Me#625/ML 5ug/L				
-11	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
1.3	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
- 6	37. Total Polychlorinated Biphenyls (PCBs) 8, 9	0.000064 ug/L/Me# 608/ ML 0.5 ug/L				
√	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L				

	The state of the s	Total Recoverable Metal Limit @ H 10 50 mg/l CaCO3 for discharges in Massachusetts (ug/l) 11/12	E DOG STATE	out and the contract of the co
	Metal parameter	<u>Freshwater</u>	the the self the	GHA.
\checkmark	39. Antimony	60	ML	10
V	40. Arsenic **	100	ML	20

***	THE RESIDENCE OF THE PARTY OF T	Total Recove Metal Limit 50 mg/l Cat discharge Massachu (ug/l) 1	@ H ¹⁰ = CO3 for es in setts	Minimum level=ML		
	Metal parameter	Freshwater				
	41. Cadmium **	0.2	tomor delica	AOSEMINIO I	10	
/	42. Chromium III (trivalent) **	489		articular in	15	
/	43. Chromium VI (hexavalent) **	114	Magnage Rod	ML	10	
/	44. Copper **	52		ML	15	
/	45. Lead **	13	tobu / may	ML	20	
	46. Mercury **	0.9	rtina n e ja	ML	0.2	
/	47. Nickel **	290	real LT	ML	20	
	48. Selenium **	5	(hart lead)	ML	20	
	49. Silver	1.2		ML	10	
/	50. Zinc **	666		ML	15	
/	51. Iron	5,000		ML	20	

	Other Parameters	Limit
√	52. Instantaneous Flow	Site specific in CFS
	53. Total Flow	Site specific in CFS
\checkmark	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the OC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of

the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Aroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

¹⁴ Temperature sampling per Method 170.

6800 Old Collamer Road, Suite 3 East Syracuse, New York 13057

tel: 315 434-3200 fax: 315 463-0508

June 16, 2015

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912 ATTN: Remediation General Permit NOI Processing

Subject: Notice of Intent for Remediation General Permit

Temporary Dewatering for Replacement Drain Project

Rena Park/140-156 Western Avenue

Allston, Massachusetts

To Whom It May Concern:

On behalf of the President and Fellows of Harvard College, CDM Smith Inc. (CDM Smith) is providing this Notice of Intent (NOI) for the Remediation General Permit (RGP) for the Replacement Drain Project in Allston, Massachusetts (Figure 1). An RGP is required to allow for temporary dewatering activities associated with the replacement of a Boston Water and Sewer Commission (BWSC) storm water drain.

The work to be conducted in conjunction with the RGP consists of the installation of a replacement drain pipe through Rena Park from Oxford Street to the Harvard Allston Science Complex (HASC) foundation (Figure 2). The replacement drain will connect to an existing 72-inch reinforced concrete pipe (RCP) stub in Oxford Street. From Oxford Street to the Charles River Valley Sewer in Seattle Street, the replacement drain is a 58-inch high by 91-inch wide elliptical pipe. Crossing the Charles River Valley Sewer, the drain pipe becomes a 7-foot wide by 4-foot high box culvert. After crossing the sewer, the drain pipe becomes a 72-inch diameter RCP and ties into an existing 72-inch diameter pipe at the HASC foundation. A new 24-inch drain through Rena Park will tie into the elliptical pipe. Onsite catch basins at Rena Park will also tie into the elliptical pipe. Tee manholes will be located along the alignment of the pipe.

A portion of the drain pipe being installed is within a disposal site regulated under the Massachusetts Contingency Plan and assigned Release Tracking Number (RTN) 3-26932. This disposal site is related to contaminated soil associated with historic urban fill. A portion of the project is outside of RTN 3-26932 and located within the newly developed Rena Park. The discharge for this project is not covered under the MCP, thus a State Application Form BRPWM 12

United States Environmental Protection Agency June 16, 2015 Page 2

for permit application and a payment of \$950 is being submitted to the Massachusetts Department of Environmental Protection (MassDEP) concurrently with this NOI. A copy of the submittal to MassDEP is included as Attachment A.

On March 19, 2015, CDM Smith personnel visited the site in order to collect a groundwater sample from an existing groundwater monitoring well located within the proposed trench area that is representative of the expected influent to the treatment system (Figure 2). Per the RGP Appendix III, the groundwater samples were analyzed for parameters applicable to Category III – Contaminated Construction Dewatering, Sub-category A – General Urban Fill Sites. Contaminants believed present in the dewatered groundwater from the site include total suspended solids, 1,2-dichlorobenzene, chloride, antimony, arsenic, trivalent chromium, hexavalent chromium, copper, lead, nickel, zinc, iron, and chlorobenzene. The laboratory analytical report for the groundwater sample collected is included in Attachment B.

There are no surface water bodies on or immediately adjacent to the site. The storm drain being replaced for this project is part of a network of BWSC storm drains. The existing 36-inch storm drain will be cut and capped at the end where it currently connects to the 72-inch drain line adjacent to the HASC foundation. Water removed from the trench excavated for this project will be discharged to a sump, pumped to a treatment system consisting of a settling basin and a bag filter, and subsequently discharged to a manhole located at the connection point between the replacement drain line and the existing 72-inch diameter pipe adjacent to the HASC foundation (Figures 2, 3, and 4). Water discharged at this manhole subsequently flows through the storm drain pipe and ultimately discharges to the Charles River, approximately 0.5 miles northeast of the site (Figure 5).

This section of the Charles River at the outfall is a Class B water body and is listed as a 303(d) impaired waterbody. Final Total Maximum Daily Loads for pathogens and nutrients (phosphorus) have been established for this section of the Charles River. The nearest United States Geological Survey (USGS) river gauging station, located approximately 7.5 miles upstream of the discharge location on the Charles River, indicates that the 7Q10 flow of the Charles River at that location is 14.3 cubic feet per second. Using this information and the estimated maximum flow rate from the treatment system of 160 gallons per minute yields a dilution factor of approximately 41 for the site. The StreamStats information from the USGS gauging station and the dilution factor calculation are included in Attachment C.

According to Massachusetts Geographical Information Systems and the tables and maps shown in Appendix I of the RGP, the site and the discharge area are not located within any Massachusetts Department of Environmental Protection Jurisdictional Wetlands, Areas of Critical Environmental Concern, or Natural Heritage and Endangered Species Program (NHESP) Estimated Habitats of Rare Wildlife. The Massachusetts NHESP coordinates endangered species reviews and inventories in the

United States Environmental Protection Agency June 16, 2015 Page 3

state of Massachusetts. This program is inclusive of all federally listed species within Massachusetts. Therefore, the endangered species review is considered complete after consultation of available NHESP mapping. A copy of the letter from U.S. FWS indicating that there are no species or habitats of concern is included in Attachment D.

The National Register of Historic Places and the Massachusetts Cultural Resource Information System (MACRIS) systems were researched in reference to the project area. According to these databases, there are no designated historic sites within or adjacent the project area (See Figure 5). The project is replacing an existing drain pipe and no impacts to historical or cultural resources are anticipated as a result of this project.

If you have any questions on this NOI or require any additional information, please contact me at <a href="https://hittage.com

Sincerely,

Dana B. Himmel, P.G. Project Manager

Dana B. Himmel

CDM Smith Inc.

cc: MassDEP Division of Watershed Management Mayor Martin Walsh, City of Boston Bree Carlson, Harvard Health and Safety Kathleen Murphy, CDM Smith

Notice of Intent for the -

Remediation General Permit -

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : BWSC Storm Drain Re	placement Project						
Location of facility/site : longitude: -71.125152 latitude: 42.363375	Facility SIC code(s):	Street: Rena Park/140-1	56 Western Ave				
b) Name of facility/site owner:		Town: Allston					
Email address of facility/site owner: kelly_mcqueeney@harvard.edu Telephone no. of facility/site owner: (617)	495-9391	State:	Zip: 02134	County: Suffolk			
Fax no. of facility/site owner:	Owner is (check one): 1. Federal O 2. State/Tribal O 3. Private O 4. Other O if so, describe:						
Address of owner (if different from site):							
Street: 46 Blackstone Street							
Town: Cambridge	State: MA	Zip: 02139	County: Middlesex				
c) Legal name of operator:	Operator tel	lephone no: (978) 682-141					
The Dow Company	Operator far	x no.: (978) 654-5191	Operator email: mrygiel@thedowcompany.co				
Operator contact name and title: Michael F							
Address of operator (if different from owner):	Street: 1112 I	Broadway Road					
Town: Dracut	State: MA	Zip: 01826	County: Middlesex				

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for 12. Has a prior NPDES application (Form 1 & 2C) ever be Y O NO, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CF 4. For sites in Massachusetts, is the discharge covered unpermitting? Y O NO	en filed for the discharge?
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O NO If Y, please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number:	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O NO, if Y, number: 2. Final Dewatering General Permit? Y O NO, if Y, number: 3. EPA Construction General Permit? Y NO, if Y, number: not yet obtained but to be 4. Individual NPDES permit? Y O NO, if Y, number: 5. any other water quality related individual or general permit? Y O NO, if Y, number:
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y O N O
h) Based on the facility/site information and any historical discharge falls.	al sampling data, identify the sub-category into which the potential
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)
2. Discharge information. Please provide information	about the discharge, (attaching additional sheets as necessary) including
a) Describe the discharge activities for which the owner/a	pplicant is seeking coverage:
Dewatering trenches excavated to support 72-inch storm water	drain installation.
b) Provide the following information about each discharg	e:
	and average flow rate of discharge (in cubic feet per second, ft ³ /s)?
points: Max. flow 0.3568 Average flow (include unit	s maximum flow a design value? Y O N O Is average flow a design value or estimate? estimate
3) Latitude and longitude of each discharge within 100 fe	et:
pt.1: lat 42.361904 long -71.125893 pt.2: lat.	long;
pt.3: lat long pt.4: lat. pt.5: lat long pt.6: lat.	long.
pt.5: lat	long.; etc.
	tent o or seasonal ?
total volume of the Is discharge ongoing? Y	
discharge (gals):	
c) Expected dates of discharge (mm/dd/yy): start Jul 14, 201	
d) Please attach a line drawing or flow schematic showing	
waters(s). See Figure 2.	peration. 3. treatment units. and 4. discharge points and receiving
I warete(e)/II	

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ily value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
Total Suspended Solids (TSS)			×	1	Grab	2450D	5 mg/L	18,000	15.72	18,000	4.91
2. Total Residual Chlorine (TRC)		×		1	Grab	4500CL-D	200 ug/L	ND		ND	
Total Petroleum Hydrocarbons (TPH)		X		1	Grab	1664A	5 mg/L	ND		ND	
4. Cyanide (CN)	57125	×		1	Grab	4500CN-CE	NA	ND		ND	
5. Benzene (B)	71432	X		1	Grab	8260C	2 ug/L	ND		ND	
6. Toluene (T)	108883	×		1	Grab	8260C	2 ug/L	ND		ND	
7. Ethylbenzene (E)	100414	×		1	Grab	8260C	2 ug/L	ND		ND	
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		1	Grab	8260C	4 ug/L	ND		ND	
9. Total BTEX ²	n/a	×		1	Grab	8260C	2 ug/L	ND		ND	
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934	×		1	Grab	504.1	0.01 ug/L	ND		ND	
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	Grab	8260C	10 ug/L	ND		ND	
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×		1	Grab	8260C	10 ug/L	ND		ND	

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

		ı			Sample	Analytical	Minimum	Maximum da	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	Grab	8260C	10 ug/L	ND		ND	
14. Naphthalene	91203	×		1	Grab	8260C	2 ug/L	ND		ND	
15. Carbon Tetrachloride	56235	X		1.	Grab	8260C	5 ug/L	ND		ND	
16. 1,2 Dichlorobenzene (o-DCB)	95501		×	1	Grab	8260C	5 ug/L	2.7	2.36E-03	2.7	7.37E-0
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	Grab	8260C	5 ug/L	ND		ND	
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	Grab	8260C	5 ug/L	ND		ND	
18a. Total dichlorobenzene		X		1	Grab	8260C	NA	ND		ND	
19. 1,1 Dichloroethane (DCA)	75343	×		1	Grab	8260C	5 ug/L	ND		ND	
20. 1,2 Dichloroethane (DCA)	107062	×		1	Grab	8260C	5 ug/L	ND		ND	
21. 1,1 Dichloroethene (DCE)	75354	×		1	Grab	8260C	5 u g /L	ND		ND	
22. cis-1,2 Dichloroethene (DCE)	156592	×		1	Grab	8260C	5 ug/L	ND		ND	
23. Methylene Chloride	75092	X		1	Grab	8260C	5 ug/L	ND		ND	
24. Tetrachloroethene (PCE)	127184	X		1	Grab	8260C	5 ug/L	ND		ND	
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		1	Grab	8260C	5 ug/L	ND		ND	
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1.	Grab	8260C	5 ug/L	ND		ND	
27. Trichloroethene (TCE)	79016	X		1	Grab	8260C	5 ug/L	ND		ND	

					Sample	Analytical	Minimum	Maximum dai	<u>ly value</u>	Average daily	<u>value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	Grab	8260C	5 ug/L	ND		ND	
29. Acetone	67641	×		1	Grab	8260C	50 ug/L	ND		ND	
30. 1,4 Dioxane	123911	X		1	Grab	8260C SIM	NA	ND		ND	
31. Total Phenols	108952	×		1	Grab	420.1	2 ug/L	ND		ND	
32. Pentachlorophenol (PCP)	87865	×		1	Grab	8270D SIM	NA	ND		ND	
33. Total Phthalates (Phthalate esters) 4		×		1	Grab	8270D	NA	ND		ND	
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	X		1	Grab	8270D	5 ug/L	ND		ND	
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×		1	Grab	8270D SIM	NA	ND		ND	
a. Benzo(a) Anthracene	56553	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
b. Benzo(a) Pyrene	50328	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
c. Benzo(b)Fluoranthene	205992	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
d. Benzo(k)Fluoranthene	207089	X		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
e. Chrysene	21801	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
f. Dibenzo(a,h)anthracene	53703	X		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
g. Indeno(1,2,3-cd) Pyrene	193395	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×		1	Grab	8270D SIM	NA	ND		ND	

⁴ The sum of individual phthalate compounds.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ily value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
i. Acenaphthylene	208968	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
j. Anthracene	120127	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
k. Benzo(ghi) Perylene	191242	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
1. Fluoranthene	206440	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
m. Fluorene	86737	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
n. Naphthalene	91203	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
o. Phenanthrene	85018	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
p. Pyrene	129000	×		1	Grab	8270D SIM	0.1 ug/L	ND		ND	
37. Total Polychlorinated Biphenyls (PCBs)	85687; 84742; 117840; 84662; 131113; 117817.	×		1	Grab	608	0.5 ug/L	ND		ND	
38. Chloride	16887006		×	1	Grab	300.0	0.1 mg/L	194,000	169.44	194,000	52.95
39. Antimony	7440360		×	1	Grab	6020A	0.5 ug/L	5.11	4.46E-03	5.11	1.39E-03
40. Arsenic	7440382		×	1	Grab	6020A	1.0 ug/L	4.12	3.60E-03	4.12	1.12E-03
41. Cadmium	7440439	×		1	Grab	6020A	0.2 ug/L	ND		ND	
42. Chromium III (trivalent)	16065831		×	1	Grab	Calculation	NA	4.55	3.97E-03	4.55	1.24E-0
43. Chromium VI (hexavalent)	18540299		×	1	Grab	3500CR-B	NA	4.55	3.97E-03	4.55	1.24E-0
44. Copper	7440508		×	1	Grab	6020A	0.5 ug/L	8.55	7.47E-03	8.55	2.33E-03
45. Lead	7439921		×	1	Grab	6020A	0.2 ug/L	2.11	1.84E-03	2.11	5.76E-04
46. Mercury	7439976	×		1	Grab	245.1	0.2 ug/L	ND		ND:	
47. Nickel	7440020		X	1	Grab	6020A	0.2 ug/L	2.99	2.61E-03	2.99	8.16E-04
48. Selenium	7782492	×		1	Grab	6020A	2 ug/L	ND		ND	
49. Silver	7440224	×		1	Grab	6020A	0.2 ug/L	ND		ND	
50. Zinc	7440666		×	1	Grab	6020A	5 ug/L	12.8	1.12E-02	12.8	3.49E-03
51. Iron	7439896		X	1	Grab	200.7	50 ug/L	2,600	2.27	2,600	0.71
Other (describe):											

					Sample	Analytical	<u>Minimum</u>	Maximum daily value		Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
Chlorobenzene	108-90-7		×	1	Grab	8260C	NA	22	1.92E-02	22	6.00E-03

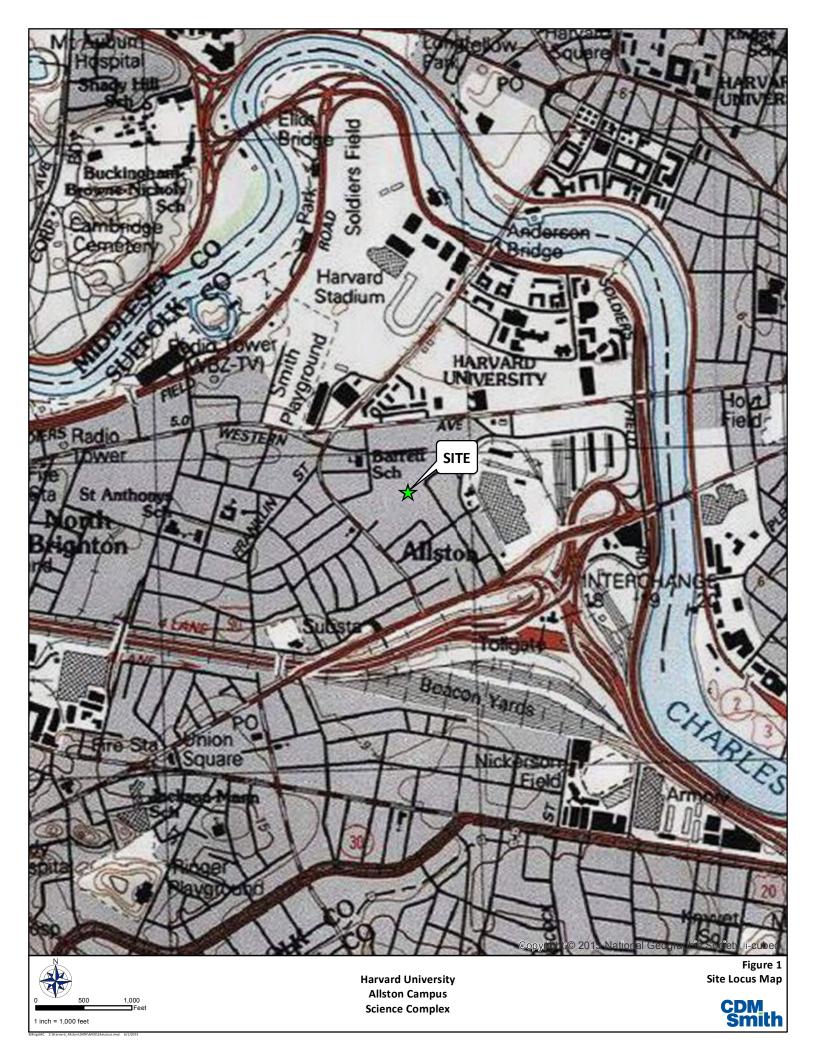
b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations): If yes, which metals? Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? Y O N O copper, lead, iron Step 2: For any metals which exceed the Appendix III limits, calculate the Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. influent have the potential to exceed the corresponding What is the dilution factor for applicable metals? effluent limits in Appendix IV (i.e., is the influent Metal copper DF:41.078 concentration above the limit set at the calculated dilution Metal lead DF:41.078 factor)? Metal: iron DF:41.078 YONO If Y, list which metals: Metal: DF: Etc. 4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including: a) A description of the treatment system, including a schematic of the proposed or existing treatment system: Treatment system to consist of a settling basin discharging to a bag filter and subsequently discharging to a manhole for a storm water drain line. See attached Figure 3 for a proposed schematic. GAC filter b) Identify each Frac. tank Air stripper Oil/water separator Equalization tanks Bag filter applicable treatment settling basin Other (please describe): De-Chlorination unit (check all that chlorination apply):

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate(s) (gallons per minute) of the treatment system: Average flow rate of discharge 50 gpm Maximum flow rate of treatment system 160 gpm Design flow rate of treatment system 160 gpm								
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):								
None.								
5. Receiving surface water(s). Plea	5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:							
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain □	Wetlands	Other (describe): manhole in storm water drain line			
b) Provide a narrative description of								
Discharge by pipe to manhole in storm w	rater drain line, tra	avel along storm dra	ain network (Figure	4), with outfall to the	o Charles River.			
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 								
d) Provide the state water quality cla	d) Provide the state water quality classification of the receiving water Class B							
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water 14.3 cfs Please attach any calculation sheets used to support stream flow and dilution calculations.								
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O N O If yes, for which pollutant(s)? Chlorophyll-a, DDT, Escherichia coli, fishes bioassessments, nutrient/eutrophication biological indicators, oil and grease, other, dissolved oxygen, PCB in fish tissue, high pH, total phosphorus, secchi disk transparency, sediment bioassays - acute toxicity treshwater Is there a final TMDL? Y O N O If yes, for which pollutant(s)? pathogens and nutrients (phosphorus)								

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts 1.A.4 and 1.A.5 Appendices II and VII.
a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A O B O C O D O E O F O b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O N O
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 0 2 0 3 0
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
7. Supplemental information.
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.
Copies of the State Application Form BRPWM 12 and the check are provided in Attachment A. Analytical data attached in Attachment B. StreamStats report used for 7Q10 flow and dilution factor calculation provided in Attachment C. A letter from the U.S. Fish and Wildlife indicating there are no species or habitats of concern present is included in Attachment D.

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000


8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: BWSC Storm Drain Replacement Project	
Operator signature:	
Printed Name &Title: Michael Rygiel, Project Manager	
Date: 6/10/2015	

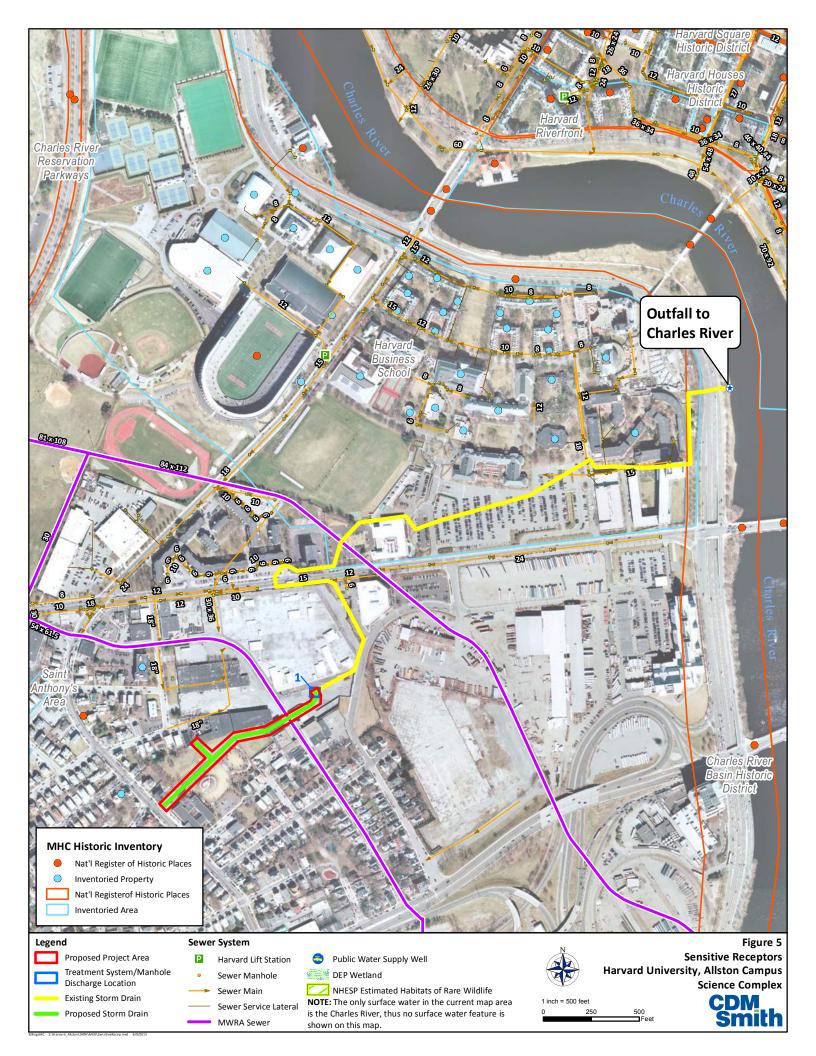
Figures -

ALLSTON, MASSACHUSETTS

FIGURE 2

SITE PLAN

TRENCH DEWATERING PUMP SUMP ALLSTON CAMPUS SCIENCE COMPLEX SUMP HARVARD UNIVERSITY INFLUENT FROM DEWATERING SETTLING BASIN BAG FILTER EFFLUENT FROM DEWATERING NOTICE OF INTENT FOR F INTENT FOR REMEDIATION GENERAL PERMIT FLOW SCHEMATIC MANHOLE TO EXIST. 72" DRAIN LINE DISCHARGE PIPE CHARLES RIVER **JUNE 2015** NOTE: NOT TO SCALE DATE FIGURE NO. ယ

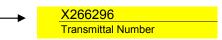

HARVARD UNIVERSITY ALLSTON CAMPUS SCIENCE COMPLEX

FROM EXCAVATION TRENCH SUMP SUMP INFLUENT SAMPLE PORT SETTLING BASIN BAG FILTER FLOW METER EFFLUENT SAMPLE PORT TO MANHOLE

NOTICE OF INTENT FOR REMEDIATION GENERAL PERMIT PROPOSED TREATMENT SYSTEM SCHEMATIC

MATIC	ON.
JUNE 2015	DATE
4	FIGURE NO.

NOTE: NOT TO SCALE



Attachment A -

State Application Form BRPWM 12 and Copy of Check

Enter your transmittal number

Your unique Transmittal Number can be accessed online: http://mass.gov/dep/service/online/trasmfrm.shtml Massachusetts Department of Environmental Protection

Transmittal Form for Permit Application and Payment

1. Please type or	A.	Permit Information										
print. A separate Transmittal Form		BRPWM12		NPDES Permits								
must be completed		Permit Code: 7 or 8 character code from permit instruction	ons	2. Name of Permit Ca	ategory							
for each permit		Request for Remediation General Permit Co	verage									
application.		3. Type of Project or Activity										
2. Make your												
check payable to	В.	Applicant Information - Firm or Ind	lividua	al								
the Commonwealth of Massachusetts		President and Fellows of Harvard College										
and mail it with a		Name of Firm - Or, if party needing this approval is a	n individu	al enter name below:								
copy of this form to		The second secon										
DEP, P.O. Box 4062, Boston, MA		2. Last Name of Individual	3. First	Name of Individual	-	4. MI						
02211.		46 Blackstone Street										
		5. Street Address										
3. Three copies of this form will be			MA	02139	(617) 495-9391							
needed.		•	7. State	8. Zip Code	9. Telephone #	10. Ext. #						
Copy 1 - the		Kelly McQueeney		kelly_mcqueeney								
original must		11. Contact Person		12. e-mail address (c	optional)							
accompany your	_	Figure 69 and design the figure		.								
permit application. Copy 2 must	C.	Facility, Site or Individual Requiring	g App	rovai								
accompany your		Replacement Drain Project										
fee payment.		Name of Facility, Site Or Individual										
Copy 3 should be		Rena Park/140-156 Western Avenue										
retained for your records		2. Street Address		00404	NI A							
			MA	02134	NA C. Talanhana #	7 5.4 #						
4. Both fee-paying and exempt			4. State	5. Zip Code	6. Telephone #	7. Ext. #						
applicants must mail a copy of this		8. DEP Facility Number (if Known)	9. Federa	al I.D. Number (if Know	vn) 10. BWSC Trackii	ng # (if Known)						
transmittal form to:	D.	Application Prepared by (if differen	t from	Section B)*								
MassDEP		CDM Smith		,								
P.O. Box 4062		1. Name of Firm Or Individual										
Boston, MA 02211		6800 Old Collamer Road, Suite 3										
V2211		2. Address										
***		East Syracuse	NY	13057	(315) 434-3224							
* Note: For BWSC Permits.			4. State	5. Zip Code	6. Telephone #	7. Ext. #						
enter the LSP.	1	Dana Himmel										
		8. Contact Person		9. LSP Number (BWS	SC Permits only)							
	_											
	E.	Permit - Project Coordination										
	1.	Is this project subject to MEPA review?	⊠ no									
	١.	If yes, enter the project's EOEA file number - assi		nen an								
		Environmental Notification Form is submitted to the										
	EOEA File Number											
	F.	Amount Due										
DEP Use Only	Sp	ecial Provisions:										
Dameit Mai	1.	Fee Exempt (city, town or municipal housing authori			r less).							
Permit No:	2.	There are no fee exemptions for BWSC permits, regardless of applicant status. ☐ Hardship Request - payment extensions according to 310 CMR 4.04(3)(c).										
Rec'd Date:	3.	☐ Alternative Schedule Project (according to 310 CMR										
ACC a Date.	4.											
Reviewer:		\$950.00										
		Check Number Dollar Amo	unt		Date							

Check Date: 06/15/2015

COMMONWEALTH OF MASSACHUSETTS, DEPARTMENT OF, ENVIRONMENTAL PROTECTION, P.O.BOX 4062, BOSTON, MA 02211-4062 Vendor No. 15562

Invoice	Description	Date	Gross Amount	Discount	Net Amount Paid
X266296	NSG8778/COMM OF MASS/06-09-2015	06/09/2015	\$950.00	\$0.00	\$950.00
		AL MA			
Detach at Perfor	ration Before Depositing Check	Grand Totals	\$950.00	\$0.00	\$950.00

Page 1 of 1

THE FACE OF THIS DOCUMENT HAS A COLORED BACKGROUND ON WHITE PAPER, A VOID PANTOGRAPH AND MICROPRINTING.

Bank of America 51-44/119

Check No. 1109020

Check Date 06/15/2015

Check Amount \$ ******950.00

PAY Nine Hundred Fifty AND 00/100

TO THE ORDER OF

15562

COMMONWEALTH OF MASSACHUSETTS **DEPARTMENT OF ENVIRONMENTAL PROTECTION** P.O.BOX 4062 BOSTON, MA 02211-4062

Ein a both

Attachment B -

Laboratory Analytical Report -

ANALYTICAL REPORT

Lab Number: L1505308

Client: CDM Smith, Inc.

75 State Street

Suite 701

Boston, MA 02109

ATTN: Jay McMullen Phone: (617) 452-6303

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Report Date: 03/27/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:03271516:06

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1505308-01	DL-SB/MW-07	WATER	ALLSTON, MA	03/19/15 12:40	03/19/15

Project Name: HARVARD - RENA DRAIN Lab Number: L1505308

Project Number: 101829 Report Date: 03/27/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:03271516:06

Project Name: HARVARD - RENA DRAIN Lab Number: L1505308

Project Number: 101829 Report Date: 03/27/15

Case Narrative (continued)

Semivolatile Organics

The WG770968-2/-3 LCS/LCSD recoveries, associated with L1505308-01, are below the acceptance criteria for benzoic acid (3%/3%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

Metals

The WG769655-2 LCS recovery, associated with L1505308-01, is above the acceptance criteria for cadmium (135%); however, the associated sample is non-detect for this target compound. The results of the original analysis are reported.

The WG769642-4 MS recovery, performed on L1505308-01, is outside the acceptance criteria for iron (70%). A post digestion spike was performed and was within acceptance criteria.

Chromium, Hexavalent

L1505308-01 has an elevated detection limit due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 03/27/15

ORGANICS

VOLATILES

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

SAMPLE RESULTS

Lab Number: L1505308

Report Date: 03/27/15

Lab ID: L1505308-01

Client ID: DL-SB/MW-07 Sample Location: ALLSTON, MA

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/24/15 10:31

Analyst: MM Date Collected: 03/19/15 12:40

Date Received: 03/19/15

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	3.0		1	
1,1-Dichloroethane	ND		ug/l	0.75		1	
Chloroform	ND		ug/l	0.75		1	
Carbon tetrachloride	ND		ug/l	0.50		1	
1,2-Dichloropropane	ND		ug/l	1.8		1	
Dibromochloromethane	ND		ug/l	0.50		1	
1,1,2-Trichloroethane	ND		ug/l	0.75		1	
Tetrachloroethene	ND		ug/l	0.50		1	
Chlorobenzene	22		ug/l	0.50		1	
Trichlorofluoromethane	ND		ug/l	2.5		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	0.50		1	
Bromodichloromethane	ND		ug/l	0.50		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.5		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	0.75		1	
Ethylbenzene	ND		ug/l	0.50		1	
Chloromethane	ND		ug/l	2.5		1	
Bromomethane	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	ND		ug/l	0.75		1	
1,2-Dichloroethene, Total	ND		ug/l	0.50		1	
Trichloroethene	ND		ug/l	0.50		1	
						W.	

L1505308

Project Name: HARVARD - RENA DRAIN Lab Number:

Project Number: Report Date: 101829 03/27/15

SAMPLE RESULTS

Lab ID: L1505308-01 Date Collected: 03/19/15 12:40

Client ID: DL-SB/MW-07 Date Received: 03/19/15 Sample Location: Field Prep: Not Specified ALLSTON, MA

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 2.5 1,2-Dichlorobenzene 2.7 1 ug/l 1,3-Dichlorobenzene ND ug/l 2.5 1,4-Dichlorobenzene ND ug/l 2.5 1 Methyl tert butyl ether ND 1.0 1 ug/l p/m-Xylene ND 1.0 1 ug/l o-Xylene ND 1.0 1 ug/l --Xylenes, Total ND 1.0 1 ug/l -cis-1,2-Dichloroethene ND 0.50 1 ug/l Dibromomethane ND 5.0 1 ug/l 1,4-Dichlorobutane ND 5.0 1 ug/l 1,2,3-Trichloropropane ND ug/l 5.0 1 Styrene ND 1.0 1 ug/l --Dichlorodifluoromethane ND 5.0 1 ug/l Acetone ND ug/l 5.0 1 Carbon disulfide ND 5.0 1 ug/l 2-Butanone ND 5.0 1 ug/l Vinyl acetate ND ug/l 5.0 1 ND 5.0 4-Methyl-2-pentanone 1 ug/l --2-Hexanone ND 5.0 1 ug/l Ethyl methacrylate ND 5.0 1 ug/l --Acrylonitrile ND 5.0 1 ug/l Bromochloromethane ND ug/l 2.5 1 ND 1 Tetrahydrofuran ug/l 5.0 --2,2-Dichloropropane ND 2.5 1 ug/l --1,2-Dibromoethane ND 2.0 1 ug/l 1,3-Dichloropropane ND 2.5 1 ug/l 1,1,1,2-Tetrachloroethane ND 0.50 1 ug/l Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND 0.50 1 ug/l -sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 ND 2.5 1 o-Chlorotoluene ug/l p-Chlorotoluene ND ug/l 2.5 1 ND 1,2-Dibromo-3-chloropropane ug/l 2.5 --1 Hexachlorobutadiene ND 0.50 1 ug/l --Isopropylbenzene ND 0.50 1 ug/l ND 0.50 1 p-Isopropyltoluene ug/l ND Naphthalene 2.5 1 ug/l n-Propylbenzene ND ug/l 0.50 1

Project Name: HARVARD - RENA DRAIN Lab Number: L1505308

Project Number: 101829 Report Date: 03/27/15

SAMPLE RESULTS

Lab ID: Date Collected: 03/19/15 12:40

Client ID: DL-SB/MW-07 Date Received: 03/19/15
Sample Location: ALLSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	89		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	109		70-130	

Project Name:HARVARD - RENA DRAINLab Number:L1505308

Project Number: 101829 Report Date: 03/27/15

SAMPLE RESULTS

Lab ID: Date Collected: 03/19/15 12:40

Client ID: DL-SB/MW-07 Date Received: 03/19/15
Sample Location: ALLSTON, MA Field Prep: Not Specified

Matrix: Water

Analytical Method: 1,8260C-SIM(M)

Analytical Date: 03/24/15 10:31

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - We	estborough Lab						
1,4-Dioxane	ND		ug/l	3.0		1	

Project Name: HARVARD - RENA DRAIN **Lab Number:** L1505308

Project Number: 101829 Report Date: 03/27/15

SAMPLE RESULTS

Lab ID: Date Collected: 03/19/15 12:40

Client ID: DL-SB/MW-07 Date Received: 03/19/15
Sample Location: ALLSTON, MA Field Prep: Not Specified

Matrix: Water

NS

Analyst:

Analytical Method: 14,504.1 Extraction Date: 03/24/15 10:00

Analytical Date: 03/24/15 11:54

Qualifier RL MDL **Parameter** Result Units **Dilution Factor** Column Microextractables by GC - Westborough Lab ND 1,2-Dibromoethane 0.010 1 ug/l Α ND 0.010 1,2-Dibromo-3-chloropropane ug/l 1 Α

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/24/15 08:52

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	01	Batch:	WG770373-3	
1,4-Dioxane	ND		ug/l		3.0		

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1

Analytical Date: 03/24/15 11:01 Extraction Date: 03/24/15 10:00

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westboro	ugh Lab for	sample(s)	: 01	Batch: WG77038	33-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/24/15 08:52

Parameter	Result	Qualifier U	nits	RL	MDL
/olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG770395-3
Methylene chloride	ND	ı	ug/l	3.0	
1,1-Dichloroethane	ND		ug/l	0.75	
Chloroform	ND		ug/l	0.75	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	1.8	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND	ı	ug/l	0.75	
2-Chloroethylvinyl ether	ND	-	ug/l	10	
Tetrachloroethene	ND	-	ug/l	0.50	
Chlorobenzene	ND	1	ug/l	0.50	
Trichlorofluoromethane	ND	1	ug/l	2.5	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND	1	ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
1,3-Dichloropropene, Total	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	2.5	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND	ı	ug/l	0.75	
Ethylbenzene	ND	ı	ug/l	0.50	
Chloromethane	ND	ı	ug/l	2.5	
Bromomethane	ND	ı	ug/l	1.0	
Vinyl chloride	ND	ı	ug/l	1.0	
Chloroethane	ND	ı	ug/l	1.0	
1,1-Dichloroethene	ND	l	ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.75	

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/24/15 08:52

arameter	Result	Qualifier Unit	ts RL	MDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s):	01 Batch:	WG770395-3	
1,2-Dichloroethene, Total	ND	ug	/I 0.50		
Trichloroethene	ND	ug	/l 0.50		
1,2-Dichlorobenzene	ND	ug	/l 2.5		
1,3-Dichlorobenzene	ND	ug	/l 2.5		
1,4-Dichlorobenzene	ND	ug	/l 2.5		
Methyl tert butyl ether	ND	ug	/l 1.0		
p/m-Xylene	ND	ug	/l 1.0		
o-Xylene	ND	ug	/l 1.0		
Xylenes, Total	ND	ug	/l 1.0		
cis-1,2-Dichloroethene	ND	ug	/I 0.50		
Dibromomethane	ND	ug	/l 5.0		
1,4-Dichlorobutane	ND	ug	/l 5.0		
lodomethane	ND	ug	/l 5.0		
1,2,3-Trichloropropane	ND	ug	/l 5.0		
Styrene	ND	ug	/l 1.0		
Dichlorodifluoromethane	ND	ug	/l 5.0		
Acetone	ND	ug	/l 5.0		
Carbon disulfide	ND	ug	/l 5.0		
2-Butanone	ND	ug	/l 5.0		
Vinyl acetate	ND	ug	/l 5.0		
4-Methyl-2-pentanone	ND	ug	/l 5.0		
2-Hexanone	ND	ug	/l 5.0		
Ethyl methacrylate	ND	ug	/l 5.0		
Acrolein	ND	ug	/l 5.0		
Acrylonitrile	ND	ug	/l 5.0		
Bromochloromethane	ND	ug	/l 2.5		
Tetrahydrofuran	ND	ug	/l 5.0		
2,2-Dichloropropane	ND	ug	/l 2.5		
1,2-Dibromoethane	ND	ug	/l 2.0		

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/24/15 08:52

Parameter	Result	Qualifier U	nits	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s	s): 01	Batch:	WG770395-3
1,3-Dichloropropane	ND		ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	2.5	
n-Butylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	2.5	
o-Chlorotoluene	ND		ug/l	2.5	
p-Chlorotoluene	ND		ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	
Hexachlorobutadiene	ND		ug/l	0.50	
Isopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	2.5	
n-Propylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	
1,3,5-Trichlorobenzene	ND		ug/l	2.0	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	
Halothane	ND		ug/l	2.5	
Ethyl ether	ND		ug/l	2.5	
Methyl Acetate	ND		ug/l	10	
Ethyl Acetate	ND		ug/l	10	
Isopropyl Ether	ND		_	2.0	
Cyclohexane	ND ND		ug/l	10	
•	ND ND		ug/l	10	
Tert-Butyl Alcohol	ND ND		ug/l	2.0	
Ethyl-Tert-Butyl-Ether			ug/l		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	

L1505308

Project Name: HARVARD - RENA DRAIN Lab Number:

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/24/15 08:52

Parameter	Result	Qualifier Un	its	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	b for sample(s)	: 01	Batch:	WG770395-3	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	u	g/l	10		
Methyl cyclohexane	ND	u	g/l	10		
p-Diethylbenzene	ND	u	g/l	2.0		
4-Ethyltoluene	ND	u	g/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	u	g/l	2.0		

Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	89		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	109		70-130	

Project Name: HARVARD - RENA DRAIN Lab Number:

L1505308 03/27/15

Project Number: 101829

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westbo	rough Lab Associa	ted sample(s):	: 01 Bat	ch: WG770373-	1 WG770373-2				
1.4-Dioxane	119		124		70-130	4		25	

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Lab Number:

L1505308

03/27/15

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lal	Associated san	nple(s): 01	Batch: WG7703	383-2					
1,2-Dibromoethane	100		-		70-130	-		20	Α
1,2-Dibromo-3-chloropropane	97		-		70-130	-		20	А

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (01 Batch: WG7	70395-1	WG770395-2		
Methylene chloride	113		106		70-130	6	20
1,1-Dichloroethane	106		108		70-130	2	20
Chloroform	110		111		70-130	1	20
Carbon tetrachloride	99		102		63-132	3	20
1,2-Dichloropropane	89		92		70-130	3	20
Dibromochloromethane	84		85		63-130	1	20
1,1,2-Trichloroethane	87		88		70-130	1	20
2-Chloroethylvinyl ether	61	Q	65	Q	70-130	6	20
Tetrachloroethene	92		93		70-130	1	20
Chlorobenzene	94		93		75-130	1	25
Trichlorofluoromethane	96		99		62-150	3	20
1,2-Dichloroethane	106		108		70-130	2	20
1,1,1-Trichloroethane	107		108		67-130	1	20
Bromodichloromethane	101		103		67-130	2	20
trans-1,3-Dichloropropene	82		83		70-130	1	20
cis-1,3-Dichloropropene	94		96		70-130	2	20
1,1-Dichloropropene	101		102		70-130	1	20
Bromoform	72		73		54-136	1	20
1,1,2,2-Tetrachloroethane	84		82		67-130	2	20
Benzene	104		106		70-130	2	25
Toluene	93		94		70-130	1	25

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

			%Recovery	Qual	Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01 Batch: WG7	70395-1	WG770395-2			
Ethylbenzene	94		95		70-130	1		20
Chloromethane	78		84		64-130	7		20
Bromomethane	75		81		39-139	8		20
Vinyl chloride	98		97		55-140	1		20
Chloroethane	108		110		55-138	2		20
1,1-Dichloroethene	105		112		61-145	6		25
trans-1,2-Dichloroethene	104		110		70-130	6		20
Trichloroethene	106		107		70-130	1		25
1,2-Dichlorobenzene	84		84		70-130	0		20
1,3-Dichlorobenzene	84		85		70-130	1		20
1,4-Dichlorobenzene	82		82		70-130	0		20
Methyl tert butyl ether	93		94		63-130	1		20
p/m-Xylene	94		95		70-130	1		20
o-Xylene	93		94		70-130	1		20
cis-1,2-Dichloroethene	113		113		70-130	0		20
Dibromomethane	100		104		70-130	4		20
1,4-Dichlorobutane	80		77		70-130	4		20
Iodomethane	41	Q	47	Q	70-130	14		20
1,2,3-Trichloropropane	82		81		64-130	1		20
Styrene	93		95		70-130	2		20
Dichlorodifluoromethane	87		89		36-147	2		20

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG7	770395-1	WG770395-2			
Acetone	78		74		58-148	5	20	
Carbon disulfide	95		99		51-130	4	20	
2-Butanone	82		80		63-138	2	20	
Vinyl acetate	90		91		70-130	1	20	
4-Methyl-2-pentanone	112		109		59-130	3	20	
2-Hexanone	85		80		57-130	6	20	
Ethyl methacrylate	91		92		70-130	1	20	
Acrolein	99		100		70-130	1	20	
Acrylonitrile	103		102		70-130	1	20	
Bromochloromethane	110		114		70-130	4	20	
Tetrahydrofuran	103		106		58-130	3	20	
2,2-Dichloropropane	102		106		63-133	4	20	
1,2-Dibromoethane	86		86		70-130	0	20	
1,3-Dichloropropane	87		88		70-130	1	20	
1,1,1,2-Tetrachloroethane	86		89		64-130	3	20	
Bromobenzene	82		82		70-130	0	20	
n-Butylbenzene	80		80		53-136	0	20	
sec-Butylbenzene	81		82		70-130	1	20	
tert-Butylbenzene	81		83		70-130	2	20	
o-Chlorotoluene	82		84		70-130	2	20	
p-Chlorotoluene	83		83		70-130	0	20	

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

Parameter	LCS %Recovery	Qual	LCSD %Recovery		ecovery .imits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	01 Batch: WG7	70395-1 WG770	0395-2			
1,2-Dibromo-3-chloropropane	67		71	4	11-144	6		20
Hexachlorobutadiene	80		87	6	63-130	8		20
Isopropylbenzene	85		85	7	70-130	0		20
p-Isopropyltoluene	83		83	7	70-130	0		20
Naphthalene	63	Q	70	7	70-130	11		20
n-Propylbenzene	83		83	6	69-130	0		20
1,2,3-Trichlorobenzene	71		77	7	70-130	8		20
1,2,4-Trichlorobenzene	75		79	7	70-130	5		20
1,3,5-Trimethylbenzene	83		82	6	64-130	1		20
1,3,5-Trichlorobenzene	83		85	7	70-130	2		20
1,2,4-Trimethylbenzene	82		82	7	70-130	0		20
trans-1,4-Dichloro-2-butene	79		76	7	70-130	4		20
Halothane	107		108	7	70-130	1		20
Ethyl ether	101		103	5	59-134	2		20
Methyl Acetate	100		100	7	70-130	0		20
Ethyl Acetate	93		94	7	70-130	1		20
Isopropyl Ether	91		92	7	70-130	1		20
Cyclohexane	100		103	7	70-130	3		20
Tert-Butyl Alcohol	91		94	7	70-130	3		20
Ethyl-Tert-Butyl-Ether	90		92	7	70-130	2		20
Tertiary-Amyl Methyl Ether	94		95	6	66-130	1		20

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L150

L1505308

Report Date:

03/27/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	Batch: WG	770395-1	WG770395-2				
1,1,2-Trichloro-1,2,2-Trifluoroethane	102		104		70-130	2		20	
Methyl cyclohexane	100		103		70-130	3		20	
p-Diethylbenzene	81		81		70-130	0		20	
4-Ethyltoluene	84		85		70-130	1		20	
1,2,4,5-Tetramethylbenzene	78		79		70-130	1		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	97		94		70-130	
Toluene-d8	92		92		70-130	
4-Bromofluorobenzene	93		97		70-130	
Dibromofluoromethane	106		110		70-130	

Matrix Spike Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

	Native	MS	_MS	MS		MSD	MSD		Recovery		RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Limits	<u>Colum</u> n
Microextractables by GC -	Westborough Lab	Associated	sample(s): 01	QC Batch II	D: WG7703	83-3 (QC Sample: L1	505308-	01 Client	ID: DL-	-SB/MW-07	
1,2-Dibromoethane	ND	0.251	0.267	106		-	-		70-130	-	20	Α
1,2-Dibromo-3-chloropropane	ND	0.251	0.248	98		-	-		70-130	-	20	Α

SEMIVOLATILES

L1505308

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

SAMPLE RESULTS

03/27/15

Report Date:

Lab Number:

Lab ID: L1505308-01 Client ID: DL-SB/MW-07

Sample Location: ALLSTON, MA Matrix: Water

Analytical Method: 1,8270D

Analytical Date: 03/26/15 14:25

Analyst: RC

Date Collected: 03/19/15 12:40 Date Received: 03/19/15 Field Prep: Not Specified Extraction Method: EPA 3510C **Extraction Date:** 03/26/15 02:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1

Project Name: HARVARD - RENA DRAIN Lab Number: L1505308

Project Number: 101829 Report Date: 03/27/15

SAMPLE RESULTS

Lab ID: Date Collected: 03/19/15 12:40

Client ID: DL-SB/MW-07 Date Received: 03/19/15
Sample Location: ALLSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
n-Nitrosodimethylamine	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	10		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
4,6-Dinitro-o-cresol	ND		ug/l	10		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	5.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	45		21-120	
Phenol-d6	27		10-120	
Nitrobenzene-d5	100		23-120	
2-Fluorobiphenyl	113		15-120	
2,4,6-Tribromophenol	123	Q	10-120	
4-Terphenyl-d14	129		41-149	

L1505308

03/27/15

03/26/15 02:41

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

SAMPLE RESULTS

Lab Number:

Report Date:

Extraction Date:

Lab ID: L1505308-01 Date Collected: 03/19/15 12:40

Client ID: Date Received: DL-SB/MW-07 03/19/15 Sample Location: Field Prep: ALLSTON, MA Not Specified Extraction Method: EPA 3510C

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 03/27/15 06:22

Analyst: MW

Semivolatile Organics by GC/MS-SIM - Westboth Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene	ND			
2-Chloronaphthalene Fluoranthene				
2-Chloronaphthalene Fluoranthene		ug/l	0.20	 1
	ND	ug/l	0.20	 1
Hexachlorobutadiene	ND	ug/l	0.20	 1
	ND	ug/l	0.50	 1
Naphthalene	ND	ug/l	0.20	 1
Benzo(a)anthracene	ND	ug/l	0.20	 1
Benzo(a)pyrene	ND	ug/l	0.20	 1
Benzo(b)fluoranthene	ND	ug/l	0.20	 1
Benzo(k)fluoranthene	ND	ug/l	0.20	 1
Chrysene	ND	ug/l	0.20	 1
Acenaphthylene	ND	ug/l	0.20	 1
Anthracene	ND	ug/l	0.20	 1
Benzo(ghi)perylene	ND	ug/l	0.20	 1
Fluorene	ND	ug/l	0.20	 1
Phenanthrene	ND	ug/l	0.20	 1
Dibenzo(a,h)anthracene	ND	ug/l	0.20	 1
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20	 1
Pyrene	ND	ug/l	0.20	 1
1-Methylnaphthalene	ND	ug/l	0.20	 1
2-Methylnaphthalene	ND	ug/l	0.20	 1
Pentachlorophenol	ND	ug/l	0.80	 1
Hexachlorobenzene	ND	ug/l	0.80	 1
Hexachloroethane	ND	ug/l	0.80	 1

Project Name: HARVARD - RENA DRAIN Lab Number: L1505308

Project Number: 101829 Report Date: 03/27/15

SAMPLE RESULTS

Lab ID: Date Collected: 03/19/15 12:40

Client ID: DL-SB/MW-07 Date Received: 03/19/15
Sample Location: ALLSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	43		21-120	
Phenol-d6	27		10-120	
Nitrobenzene-d5	105		23-120	
2-Fluorobiphenyl	109		15-120	
2,4,6-Tribromophenol	127	Q	10-120	
4-Terphenyl-d14	115		41-149	

L1505308

Lab Number:

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/26/15 13:01

Analyst: RC Extraction Method: EPA 3510C 03/26/15 02:43 Extraction Date:

Parameter	Result	Qualifier Un	its	RL	MDL
Semivolatile Organics by GC/MS -	Westborough	n Lab for samp	ole(s): 01	Batch:	WG770968-1
Benzidine	ND	U	ıg/l	20	
1,2,4-Trichlorobenzene	ND		ıg/l	5.0	
Bis(2-chloroethyl)ether	ND		ıg/l	2.0	
1,2-Dichlorobenzene	ND		ıg/l	2.0	
1,3-Dichlorobenzene	ND		ıg/l	2.0	
1,4-Dichlorobenzene	ND		ıg/l	2.0	
3,3'-Dichlorobenzidine	ND		ıg/l	5.0	
2,4-Dinitrotoluene	ND		ıg/l	5.0	
2,6-Dinitrotoluene	ND		ıg/l	5.0	
Azobenzene	ND	U	ıg/l	2.0	
4-Chlorophenyl phenyl ether	ND		ıg/l	2.0	
4-Bromophenyl phenyl ether	ND	u	ıg/l	2.0	
Bis(2-chloroisopropyl)ether	ND		ıg/l	2.0	
Bis(2-chloroethoxy)methane	ND		ıg/l	5.0	
Hexachlorocyclopentadiene	ND		ıg/l	20	
Isophorone	ND		ıg/l	5.0	
Nitrobenzene	ND	u	ıg/l	2.0	
NDPA/DPA	ND		ıg/l	2.0	
Bis(2-ethylhexyl)phthalate	ND		ıg/l	3.0	
Butyl benzyl phthalate	ND		ıg/l	5.0	
Di-n-butylphthalate	ND	U	ıg/l	5.0	
Di-n-octylphthalate	ND	U	ıg/l	5.0	
Diethyl phthalate	ND	U	ıg/l	5.0	
Dimethyl phthalate	ND	U	ıg/l	5.0	
Aniline	ND	U	ıg/l	2.0	
4-Chloroaniline	ND		ıg/l	5.0	
2-Nitroaniline	ND		ıg/l	5.0	
3-Nitroaniline	ND	u	ıg/l	5.0	
4-Nitroaniline	ND	u	ıg/l	5.0	

Extraction Method: EPA 3510C

L1505308

Lab Number:

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8270D 03/26/15 13:01

Ana

iaiyiicai Date.	03/26/15 13.01	Extraction Date:	03/26/15 02:43
nalyst:	RC		

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	01	Batch:	WG770968-1	
Dibenzofuran	ND		ug/l		2.0		
n-Nitrosodimethylamine	ND		ug/l		2.0		
2,4,6-Trichlorophenol	ND		ug/l		5.0		
p-Chloro-m-cresol	ND		ug/l		2.0		
2-Chlorophenol	ND		ug/l		2.0		
2,4-Dichlorophenol	ND		ug/l		5.0		
2,4-Dimethylphenol	ND		ug/l		5.0		
2-Nitrophenol	ND		ug/l		10		
4-Nitrophenol	ND		ug/l		10		
2,4-Dinitrophenol	ND		ug/l		20		
4,6-Dinitro-o-cresol	ND		ug/l		10		
Phenol	ND		ug/l		5.0		
2-Methylphenol	ND		ug/l		5.0		
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0		
2,4,5-Trichlorophenol	ND		ug/l		5.0		
Benzoic Acid	ND		ug/l		50		
Benzyl Alcohol	ND		ug/l		2.0		
Carbazole	ND		ug/l		2.0		
Pyridine	ND		ug/l		5.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	33	21-120
Phenol-d6	19	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	90	15-120
2,4,6-Tribromophenol	95	10-120
4-Terphenyl-d14	106	41-149

L1505308

Lab Number:

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Report Date: 03/27/15

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 03/27/15 05:57

Analyst: MW

Extraction Method: EPA 3510C Extraction Date: 03/26/15 02:41

Parameter	Result	Qualifier	Units	RL	I	MDL
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample(s): 01	Batch:	WG770969-1
Acenaphthene	ND		ug/l	0.20		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.20		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.20		
Benzo(a)anthracene	ND		ug/l	0.20		
Benzo(a)pyrene	ND		ug/l	0.20		
Benzo(b)fluoranthene	ND		ug/l	0.20		
Benzo(k)fluoranthene	ND		ug/l	0.20		
Chrysene	ND		ug/l	0.20		
Acenaphthylene	ND		ug/l	0.20		
Anthracene	ND		ug/l	0.20		
Benzo(ghi)perylene	ND		ug/l	0.20		
Fluorene	ND		ug/l	0.20		
Phenanthrene	ND		ug/l	0.20		
Dibenzo(a,h)anthracene	ND		ug/l	0.20		
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20		
Pyrene	ND		ug/l	0.20		
1-Methylnaphthalene	ND		ug/l	0.20		
2-Methylnaphthalene	ND		ug/l	0.20		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Lab Number:

L1505308

Report Date:

03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM 03/27/15 05:57

Analyst:

MW

Extraction Method: EPA 3510C

Extraction Date:

03/26/15 02:41

Parameter	Result	Qualifier	Units	RL	MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 Batch: WG770969-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
O Electronic and	00	04.400
2-Fluorophenol	32	21-120
Phenol-d6	20	10-120
Nitrobenzene-d5	86	23-120
2-Fluorobiphenyl	87	15-120
2,4,6-Tribromophenol	93	10-120
4-Terphenyl-d14	101	41-149

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s):	01 Batch:	WG770968-2	2 WG770968-3		
Benzidine	43		35		10-75	21	30
1,2,4-Trichlorobenzene	86		68		39-98	23	30
Bis(2-chloroethyl)ether	94		73		40-140	25	30
1,2-Dichlorobenzene	79		62		40-140	24	30
1,3-Dichlorobenzene	72		58		40-140	22	30
1,4-Dichlorobenzene	74		59		36-97	23	30
3,3'-Dichlorobenzidine	108		88		40-140	20	30
2,4-Dinitrotoluene	138	Q	107	Q	24-96	25	30
2,6-Dinitrotoluene	128		99		40-140	26	30
Azobenzene	102		80		40-140	24	30
4-Chlorophenyl phenyl ether	117		91		40-140	25	30
4-Bromophenyl phenyl ether	125		98		40-140	24	30
Bis(2-chloroisopropyl)ether	83		64		40-140	26	30
Bis(2-chloroethoxy)methane	99		75		40-140	28	30
Hexachlorocyclopentadiene	84		74		40-140	13	30
Isophorone	107		81		40-140	28	30
Nitrobenzene	82		64		40-140	25	30
NDPA/DPA	117		92		40-140	24	30
Bis(2-ethylhexyl)phthalate	136		105		40-140	26	30
Butyl benzyl phthalate	127		100		40-140	24	30
Di-n-butylphthalate	127		102		40-140	22	30

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Associ	iated sample(s)	: 01 Batch:	WG770968-2 WG770968-3			
Di-n-octylphthalate	142	Q	111	40-140	25		30
Diethyl phthalate	122		95	40-140	25		30
Dimethyl phthalate	121		95	40-140	24		30
Aniline	57		40	40-140	35	Q	30
4-Chloroaniline	90		68	40-140	28		30
2-Nitroaniline	124		97	52-143	24		30
3-Nitroaniline	80		67	25-145	18		30
4-Nitroaniline	110		88	51-143	22		30
Dibenzofuran	114		90	40-140	24		30
n-Nitrosodimethylamine	41		33	22-74	22		30
2,4,6-Trichlorophenol	119		91	30-130	27		30
p-Chloro-m-cresol	105	Q	81	23-97	26		30
2-Chlorophenol	86		66	27-123	26		30
2,4-Dichlorophenol	109		83	30-130	27		30
2,4-Dimethylphenol	97		72	30-130	30		30
2-Nitrophenol	113		85	30-130	28		30
4-Nitrophenol	46		33	10-80	33	Q	30
2,4-Dinitrophenol	99		76	20-130	26		30
4,6-Dinitro-o-cresol	128		99	20-164	26		30
Phenol	34		25	12-110	31	Q	30
2-Methylphenol	73		55	30-130	28		30

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1

L1505308

Report Date:

03/27/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	iated sample(s)	: 01 Batch:	WG770968-2	WG770968-3				
3-Methylphenol/4-Methylphenol	72		52		30-130	32	Q	30	
2,4,5-Trichlorophenol	122		94		30-130	26		30	
Benzoic Acid	3	Q	3	Q	10-164	3		30	
Benzyl Alcohol	68		52		26-116	27		30	
Carbazole	121		96		55-144	23		30	
Pyridine	31		24		10-66	25		30	

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
2-Fluorophenol	48		36		21-120
Phenol-d6	31		23		10-120
Nitrobenzene-d5	107		80		23-120
2-Fluorobiphenyl	123	Q	93		15-120
2,4,6-Tribromophenol	134	Q	106		10-120
4-Terphenyl-d14	134		107		41-149

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	sociated sample(s): 01 Batch	: WG770969-2 WG770969	9-3	
Acenaphthene	89	87	37-111	2	40
2-Chloronaphthalene	88	86	40-140	2	40
Fluoranthene	105	102	40-140	3	40
Hexachlorobutadiene	67	64	40-140	5	40
Naphthalene	81	75	40-140	8	40
Benzo(a)anthracene	105	102	40-140	3	40
Benzo(a)pyrene	104	102	40-140	2	40
Benzo(b)fluoranthene	104	105	40-140	1	40
Benzo(k)fluoranthene	102	95	40-140	7	40
Chrysene	95	91	40-140	4	40
Acenaphthylene	94	92	40-140	2	40
Anthracene	99	95	40-140	4	40
Benzo(ghi)perylene	101	98	40-140	3	40
Fluorene	95	96	40-140	1	40
Phenanthrene	98	94	40-140	4	40
Dibenzo(a,h)anthracene	106	102	40-140	4	40
Indeno(1,2,3-cd)Pyrene	105	102	40-140	3	40
Pyrene	105	101	26-127	4	40
1-Methylnaphthalene	88	84	40-140	5	40
2-Methylnaphthalene	89	85	40-140	5	40
Pentachlorophenol	60	65	9-103	8	40

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Semivolatile Organics by GC/MS-SIM -	Westborough Lab Asso	ciated samp	ele(s): 01 Bato	h: WG770	969-2 WG770969	9-3	
Hexachlorobenzene	91		92		40-140	1	40
Hexachloroethane	68		60		40-140	13	40

Surrogate	LCS %Recovery	LCSD Qual %Recovery	v Qual	Acceptance Criteria	
2-Fluorophenol	36	32		21-120	
Phenol-d6	24	21		10-120	
Nitrobenzene-d5	83	76		23-120	
2-Fluorobiphenyl	88	85		15-120	
2,4,6-Tribromophenol	105	104		10-120	
4-Terphenyl-d14	98	96		41-149	

PCBS

Serial_No:03271516:06

Project Name: HARVARD - RENA DRAIN Lab Number: L1505308

Project Number: 101829 Report Date: 03/27/15

SAMPLE RESULTS

Lab ID: L1505308-01
Client ID: DL-SB/MW-07
Sample Location: ALLSTON, MA

Matrix: Water Analytical Method: 5,608

Analytical Date: 03/26/15 11:30

Analyst: JT

Date Collected: 03/19/15 12:40 Date Received: 03/19/15 Field Prep: Not Specified Extraction Method: **EPA 608 Extraction Date:** 03/26/15 00:21 Cleanup Method: EPA 3665A Cleanup Date: 03/26/15 Cleanup Method: EPA 3660B

03/26/15

Cleanup Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by Go	C - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	Α
Decachlorobiphenyl	91		30-150	Α

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Lab Number:

L1505308

Report Date:

03/27/15

Method Blank Analysis Batch Quality Control

Analytical Method:

5,608

Analytical Date:

03/26/15 12:32

Analyst:

JT

Extraction Method: EPA 608

Extraction Date:

03/26/15 00:21 EPA 3665A

Cleanup Method: Cleanup Date:

03/26/15

Cleanup Method: Cleanup Date:

EPA 3660B

03/26/15

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - '	Westborougl	h Lab for s	ample(s):	01 Batch:	WG770950-1	
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75		30-150	А
Decachlorobiphenyl	105		30-150	Α

Matrix Spike Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

Parameter	Native Sample	MS Added	MS Found	MS %Recove	erv Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by	y GC - Westbor	ough Lab As	sociated sam	ple(s): 01	QC Batch ID	: WG7709			1505487-01		ID: MS		
Aroclor 1016	ND	1	2.76	88		-	-		40-140	-		50	А
Aroclor 1260	ND	1	2.61	84		-	-		40-140	-		50	Α

	MS	MS		SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82				30-150	Α
Decachlorobiphenyl	71				30-150	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - West	borough Lab Associa	ated sample(s):	01 Batch:	WG770950-2					
Aroclor 1016	73		-		40-140	-		50	А
Aroclor 1260	74		-		40-140	-		50	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72				30-150	Α
Decachlorobiphenyl	101				30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

Report Date: 03/27/15

rameter	Native Sample	Duplicate Sample Un		RPD	Qual	RPD Limits	
lychlorinated Biphenyls by GC - Westborough La Imple	b Associated sample(s): 0	1 QC Batch ID:	WG770950-4	QC Sample:	L1505487-01	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		50	Α
Aroclor 1221	ND	ND	ug/l	NC		50	Α
Aroclor 1232	ND	ND	ug/l	NC		50	Α
Aroclor 1242	ND	ND	ug/l	NC		50	Α
Aroclor 1248	ND	ND	ug/l	NC		50	Α
Aroclor 1254	ND	ND	ug/l	NC		50	Α
Aroclor 1260	ND	ND	ug/l	NC		50	Α

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		69		30-150	Α
Decachlorobiphenyl	64		63		30-150	Α

METALS

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Lab Number:

L1505308

Report Date:

03/27/15

SAMPLE RESULTS

Lab ID: Client ID: L1505308-01 DL-SB/MW-07 Date Collected: Date Received: 03/19/15 12:40 03/19/15

Sample Location:

ALLSTON, MA

Field Prep:

Not Specified

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - We	estborough l	_ab									
Antimony, Total	0.00511		mg/l	0.00500		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Arsenic, Total	0.00412		mg/l	0.00050		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Cadmium, Total	ND		mg/l	0.00020		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Chromium, Total	0.00455		mg/l	0.00100		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Copper, Total	0.00855		mg/l	0.00100		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Iron, Total	2.6		mg/l	0.05		1	03/20/15 11:2	0 03/21/15 12:57	EPA 3005A	19,200.7	ВС
Lead, Total	0.00211		mg/l	0.00050		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Mercury, Total	ND		mg/l	0.00020		1	03/20/15 14:1	1 03/20/15 19:17	EPA 245.1	3,245.1	AB
Nickel, Total	0.00299		mg/l	0.00050		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Selenium, Total	ND		mg/l	0.00500		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Silver, Total	ND		mg/l	0.00050		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ
Zinc, Total	0.01280		mg/l	0.01000		1	03/20/15 11:2	2 03/24/15 18:47	EPA 3005A	1,6020A	ВМ

Serial_No:03271516:06

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date: 03/27/15

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Wes	stborough Lab for sampl	e(s): 01	Batch: W	VG76964	42-1				
Iron, Total	ND	mg/l	0.05		1	03/20/15 11:20	03/21/15 12:01	19,200.7	ВС

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - West	borough Lab for samp	le(s): 01 l	Batch: W	G7696	55-1				
Antimony, Total	ND	mg/l	0.00500		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Arsenic, Total	ND	mg/l	0.00050		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Cadmium, Total	ND	mg/l	0.00020		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Chromium, Total	ND	mg/l	0.00100		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Copper, Total	ND	mg/l	0.00100		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Lead, Total	ND	mg/l	0.00050		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Nickel, Total	ND	mg/l	0.00050		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Selenium, Total	ND	mg/l	0.00500		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Silver, Total	ND	mg/l	0.00040		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ
Zinc, Total	ND	mg/l	0.01000		1	03/20/15 11:22	03/24/15 18:33	1,6020A	ВМ

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westboro	ugh Lab	for sample(s	s): 01	Batch: W	G76970)5-1				
Mercury, Total	ND		mg/l	0.0002		1	03/20/15 14:11	03/20/15 18:53	3,245.1	AB

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

Report Date: 03/27/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sam	nple(s): 01 Ba	tch: WG76	9642-2					
Iron, Total	98		-		85-115	-		
Total Metals - Westborough Lab Associated sam	nple(s): 01 Ba	tch: WG76	9655-2					
Antimony, Total	88		-		80-120	-		
Arsenic, Total	100		-		80-120	-		
Cadmium, Total	135	Q	-		80-120	-		
Chromium, Total	100		-		80-120	-		
Copper, Total	102		-		80-120	-		
Lead, Total	106		-		80-120	-		
Nickel, Total	102		-		80-120	-		
Selenium, Total	91		-		80-120	-		
Silver, Total	99		-		80-120	-		
Zinc, Total	109		•		80-120	-		
Total Metals - Westborough Lab Associated sam	nple(s): 01 Ba	tch: WG76	9705-2					
Mercury, Total	112		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number: L1505308

Report Date: 03/27/15

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery C	Recovery Qual Limits	RPD Qual	RPD Limits
otal Metals - Westborou	igh Lab Associated s	sample(s): 01	QC Bat	ch ID: WG769	642-4	QC Samp	ole: L1505308-01	Client ID: DL	-SB/MW-07	
Iron, Total	2.6	1	3.3	70	Q	-	-	75-125	-	20
otal Metals - Westborou	igh Lab Associated s	sample(s): 01	QC Bat	ch ID: WG769	655-4	QC Samp	ole: L1505308-01	Client ID: DL-	-SB/MW-07	
Antimony, Total	0.00511	0.5	0.5184	103		-	-	75-125	-	20
Arsenic, Total	0.00412	0.12	0.1421	115		-	-	75-125	-	20
Cadmium, Total	ND	0.051	0.05539	109		-	-	75-125	-	20
Chromium, Total	0.00455	0.2	0.2040	100		-	-	75-125	-	20
Copper, Total	0.00855	0.25	0.2882	112		-	-	75-125	-	20
Lead, Total	0.00211	0.51	0.5315	104		-	-	75-125	-	20
Nickel, Total	0.00299	0.5	0.5244	104		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.138	115		-	-	75-125	-	20
Silver, Total	ND	0.05	0.04867	97		-	-	75-125	-	20
Zinc, Total	0.01280	0.5	0.5907	116		-	-	75-125	-	20
otal Metals - Westborou	igh Lab Associated s	sample(s): 01	QC Bat	ch ID: WG769	705-4	QC Samp	ole: L1505269-01	Client ID: MS	Sample	
Mercury, Total	0.00039	0.005	0.0037	67	Q	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual I	RPD Limits
Total Metals - Westborough Lab Associated sample(s): 0	1 QC Batch ID:	WG769642-3 QC Sample:	L1505308-01	Client ID:	DL-SB/MW-0)7
Iron, Total	2.6	2.7	mg/l	4		20
Total Metals - Westborough Lab Associated sample(s): 0	1 QC Batch ID:	WG769655-3 QC Sample:	L1505308-01	Client ID:	DL-SB/MW-0)7
Antimony, Total	0.00511	ND	mg/l	NC		20
Arsenic, Total	0.00412	0.00399	mg/l	3		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00455	0.00475	mg/l	4		20
Copper, Total	0.00855	0.00743	mg/l	14		20
Lead, Total	0.00211	0.00203	mg/l	4		20
Nickel, Total	0.00299	0.00315	mg/l	5		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01280	0.01169	mg/l	9		20
Fotal Metals - Westborough Lab Associated sample(s): 0	1 QC Batch ID:	WG769705-3 QC Sample:	L1505269-01	Client ID:	DUP Sample)
Mercury, Total	0.00039	0.0003	mg/l	32	Q	20

INORGANICS & MISCELLANEOUS

Serial_No:03271516:06

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

SAMPLE RESULTS

Lab ID: L1505308-01

Client ID: Sample Location: ALLSTON, MA

DL-SB/MW-07

Matrix:

Water

Date Collected:

03/19/15 12:40

Date Received:

03/19/15

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total Suspended	18.		mg/l	5.0	NA	1	-	03/20/15 11:55	30,2540D	DW
Cyanide, Total	ND		mg/l	0.005		1	03/20/15 12:05	03/23/15 12:13	30,4500CN-CE	ML
Chlorine, Total Residual	ND		mg/l	0.02		1	-	03/19/15 18:45	30,4500CL-D	AS
TPH	ND		mg/l	4.40		1.1	03/20/15 17:30	03/21/15 17:00	74,1664A	KE
Phenolics, Total	ND		mg/l	0.030		1	03/23/15 10:30	03/23/15 13:41	4,420.1	MP
Chromium, Hexavalent	ND		mg/l	0.050		5	03/19/15 21:45	03/19/15 23:17	30,3500CR-B	AS
Anions by Ion Chromatog	graphy - West	borough	Lab							
Chloride	194.		mg/l	12.5		25	-	03/19/15 23:08	44,300.0	AU

Serial_No:03271516:06

L1505308

Lab Number:

Project Name: HARVARD - RENA DRAIN

Project Number: 101829 Report Date: 03/27/15

Method	Blank	Ana	lysi	3
Batch	Quality	Conti	rol	

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG76	9499-3				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	03/19/15 18:45	30,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG76	9516-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	03/19/15 21:45	03/19/15 22:02	30,3500CR-B	AS
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG76	9596-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/20/15 11:55	30,2540D	DW
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG76	9629-1				
Cyanide, Total	ND		mg/l	0.005		1	03/20/15 12:05	03/23/15 11:59	30,4500CN-CE	E ML
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG76	9767-1				
TPH	ND		mg/l	4.00		1	03/20/15 17:30	03/21/15 17:00	74,1664A	KE
Anions by Ion Chron	natography - Westb	orough	Lab for sar	mple(s):	01 B	atch: WG7	'69812-1			
Chloride	ND		mg/l	0.500		1	-	03/19/15 18:20	44,300.0	AU
General Chemistry -	Westborough Lab	for sam	nple(s): 01	Batch:	WG77	0129-1				
Phenolics, Total	ND		mg/l	0.030		1	03/23/15 10:30	03/23/15 13:38	4,420.1	MP

Lab Control Sample Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

	LCS		LCSD		%Recovery	222		DDD 11 11
Parameter	%Recovery (Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 Ba	atch: WG769499-1					
Chlorine, Total Residual	90		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Ba	atch: WG769516-2					
Chromium, Hexavalent	98		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Ba	atch: WG769629-2					
Cyanide, Total	107		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Ba	atch: WG769767-2					
ТРН	75		-		64-132	-		34
Anions by Ion Chromatography - Westbo	orough Lab Associated	sampl	e(s): 01 Batch: V	/G769812	2-2			
Chloride	107		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): (01 Ba	atch: WG770129-2					
Phenolics, Total	94		-		70-130	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date: 03/27/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westh	oorough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG7695′	16-4 C	QC Sample: L150	5308-0	1 Client ID:	: DL-SB/MW	/-07
Chromium, Hexavalent	ND	0.1	0.113	113		-	-		85-115	-	20
General Chemistry - Westb	oorough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG76962	29-4 C	QC Sample: L150	5308-0	1 Client ID:	DL-SB/MW	/-07
Cyanide, Total	ND	0.2	0.209	104		-	-		90-110	-	30
General Chemistry - Westh	oorough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG76976	67-4 C	QC Sample: L150	5147-0	3 Client ID:	: MS Sample	Э
TPH	6.40	20.4	17.1	52	Q	-	-		64-132	-	34
Anions by Ion Chromatogra	aphy - Westboroug	h Lab Asso	ociated sar	nple(s): 01 Q0	C Batch I	D: WG7	69812-3 QC S	ample:	L1505223-0	6 Client ID:	MS Sample
Chloride	258	100	358	100		-	-		40-151	-	18
General Chemistry - Westk	oorough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG77012	29-4 C	QC Sample: L150	5308-0	1 Client ID:	: DL-SB/MW	/-07
Phenolics, Total	ND	0.4	0.38	94		-	-		70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HARVARD - RENA DRAIN

Project Number: 101829

Lab Number:

L1505308

Report Date:

03/27/15

Parameter	Native Sample	Duplicate Sampl	le Units	RPD (Qual RPD Limits
General Chemistry - Westborough Lab Associated samp	le(s): 01 QC Batch ID:	WG769499-2 Q0	C Sample: L150529	98-01 Client	ID: DUP Sample
Chlorine, Total Residual	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated samp	le(s): 01 QC Batch ID:	WG769516-3 Q0	C Sample: L150530	08-01 Client	ID: DL-SB/MW-07
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated samp	le(s): 01 QC Batch ID:	WG769596-2 Q0	C Sample: L150525	55-02 Client	ID: DUP Sample
Solids, Total Suspended	290	280	mg/l	4	29
General Chemistry - Westborough Lab Associated samp	le(s): 01 QC Batch ID:	WG769629-3 Q0	C Sample: L150531	18-02 Client	ID: DUP Sample
Cyanide, Total	0.056	0.058	mg/l	3	30
General Chemistry - Westborough Lab Associated samp	le(s): 01 QC Batch ID:	WG769767-3 Q0	C Sample: L150530	08-01 Client	ID: DL-SB/MW-07
ТРН	ND	ND	mg/l	NC	34
Anions by Ion Chromatography - Westborough Lab Asso Sample	ciated sample(s): 01 (QC Batch ID: WG76	9812-4 QC Samp	ole: L150522	3-06 Client ID: DUP
Chloride	258	259	mg/l	0	18
General Chemistry - Westborough Lab Associated samp	le(s): 01 QC Batch ID:	WG770129-3 Q0	C Sample: L150530	08-01 Client	ID: DL-SB/MW-07
Phenolics, Total	ND	ND	mg/l	NC	20

Serial_No:03271516:06

Project Name: HARVARD - RENA DRAIN

Lab Number: L1505308 **Report Date:** 03/27/15 Project Number: 101829

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1505308-01A	Vial HCI preserved	Α	N/A	2.6	Υ	Absent	8260-SIM(14),8260(14)
L1505308-01B	Vial HCl preserved	Α	N/A	2.6	Υ	Absent	8260-SIM(14),8260(14)
L1505308-01C	Vial HCl preserved	Α	N/A	2.6	Υ	Absent	8260-SIM(14),8260(14)
L1505308-01D	Amber 1000ml unpreserved	Α	7	2.6	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1505308-01E	Amber 1000ml unpreserved	Α	7	2.6	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1505308-01F	Vial Na2S2O3 preserved	Α	N/A	2.6	Υ	Absent	504(14)
L1505308-01G	Vial Na2S2O3 preserved	Α	N/A	2.6	Υ	Absent	504(14)
L1505308-01H	Amber 1000ml Na2S2O3	Α	7	2.6	Υ	Absent	PCB-608(7)
L1505308-01I	Amber 1000ml Na2S2O3	Α	7	2.6	Υ	Absent	PCB-608(7)
L1505308-01J	Plastic 250ml HNO3 preserved	A	<2	2.6	Y	Absent	SE-6020T(180),CR- 6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180),HG- U(28),AS-6020T(180),SB- 6020T(180),AG-6020T(180),CD- 6020T(180)
L1505308-01K	Plastic 950ml unpreserved	Α	7	2.6	Υ	Absent	CL-300(28),HEXCR- 3500(1),TRC-4500(1)
L1505308-01L	Plastic 250ml NaOH preserved	Α	>12	2.6	Υ	Absent	TCN-4500(14)
L1505308-01M	Amber 1000ml HCl preserved	Α	N/A	2.6	Υ	Absent	TPH-1664(28)
L1505308-01N	Amber 1000ml HCl preserved	Α	N/A	2.6	Υ	Absent	TPH-1664(28)
L1505308-01O	Amber 950ml H2SO4 preserved	Α	<2	2.6	Υ	Absent	TPHENOL-420(28)
L1505308-01P	Plastic 950ml unpreserved	Α	7	2.6	Υ	Absent	TSS-2540(7)
L1505308-01Q	Vial HCl preserved	Α	N/A	2.6	Υ	Absent	8260-SIM(14),8260(14)
L1505308-01R	Vial HCI preserved	Α	N/A	2.6	Υ	Absent	8260-SIM(14),8260(14)
L1505308-01S	Vial HCI preserved	Α	N/A	2.6	Υ	Absent	8260-SIM(14),8260(14)

Project Name:HARVARD - RENA DRAINLab Number:L1505308Project Number:101829Report Date:03/27/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: Data Usability Report

Project Name:HARVARD - RENA DRAINLab Number:L1505308Project Number:101829Report Date:03/27/15

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J · Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:HARVARD - RENA DRAINLab Number:L1505308Project Number:101829Report Date:03/27/15

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate,

Azobenzene

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

							r	- T		tp			r/ n r/s/2000		to lateral	s	erial	No:03	271516	.06	30.00
APHA	CHA	AIN OF	CUSTO	DY	PAGE	of_ <u></u>	Dat	e Rec	'd in La	ь: Э	/\ 4	/)4			A	400	1/4	#._		\$30	8
World Class Chaminity	ADO Fark and Blue		oject Inform	ation			40	1 1 1 100	nform	111111111111111111111111111111111111111	12.00		1098	bles		Billing	Infor	mation			
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 1581 Mansfield, MA 0 20 Tel: 508-822-93	02048 800	oject Name:	arvard	-Roma T	orain	本	ADEx) X E	MAIL					Same	as Clie	nt info	PO #:		
Client Informatio	n	Pr	oject Location:	Allst	On, MA	-	Re	gulat	ory Re	quire	ments	s 8	Pi	oject	Info	matic	n Re	quiren	ents		
Client: DM <	mith	Pn	oject #: [0]	829					No MA						· ? (R			CT F		rtical Metho	ds
	state Street		oject Manager:	TAY	Mc Mi	illen	ΠY	es Æ) l	No GW	1 Stan	dards							n Target			
ROSTON U	A 02/09	A	LPHA Quote #:				ZEY CIC	es □ Other S	No NPI state /Fe	DESR ed Pro	GP gram_					(Oriteria -				
Phone: (017-	452-40	O 0	urn-Around	Time					T_{\perp}	\sum_{i}	e / E	$\int_{\mathbf{A}}$	7.	7 /	Z/	7,5	3/ /	7 7	77		
Email: MGMU117		ut can	Standard					/		2 5 7 5 7 6		/ ලි ද	Ranges Only	/	となって	ડે/ડે	/· /·	- /	/. /		
					nly confirmed if pre-ap	proved!)	ANALVE	<u> </u>	PAHPA7OTCL	CP 14 CR	ر کھ	Rang	g /	Print	77	3500/		///	/ / /		T
Additional P	roject Informat	ion:	Date Due: 3/	26/15			74/	10 53.	44 44 V	DMCP 14	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$Q = \int_{\mathcal{L}} \mathcal{L}$	i/		$/\frac{1}{5}/.$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		00/	SAI	MPLE INFO) . T
					•		4	77	$\bar{a}/$	تر ک ^ا م	, arge	, arge	/_/		S HEWE	25.40 25.40	Metals	45	/ Filtr	a <i>tion</i> ield	#
								A 2500		. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	/ g /	8 / S	L PEST	\$ \A		/7/	MC+	, / ,	'	ab to do	В
							/ 2	%2%0 %	S	/g/ g				The Dingerpring To	15/	ر بر /پ		04		servation ab to do	T
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	Date	ollection Time	Sample Matrix	Sampler Initials	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O _N	METALS: CMCP	METALS: DRCRAS	VPH; C. C. Panges & Targets C. P. P. 13	A PCB Targets C			-KC-450 HPVC	25/14 14/14 14/14	5/ - /	12/_	Sample	Comments	LES
0520461	DL-SBI	MW-07	3/19/1	5 12:40	GW	EJ/ES	X	X		Ť		X	X	XX	χ		X	X			101
		- <i>.</i>					,			-	1-1				`		,		. *		
					1				- -		1-1	-	_	+	+			_ -			+-
	<u> </u>						-	-	_	-	+ +	$-\frac{1}{2}$	$\overline{}$		+-	 	-+	_			+
		<u> </u>	_							 -	-			-	+	-					+-
					<u> </u>		-	+			-				+	+		-			+-
								- +	-	-	+ +		-	_	-						+
				· ·						-	+ -			_				_			+-
						 	-		-	+				-	+	-					
					-	 				<u> </u>	1				-			+			+-
		·					. 7	_		- 		<u>, </u>	_	Λ C	+			_	- ;-		
Container Type P= Plastic A= Amber glass	<i>Preservative</i> A= None B= HCI	• •			Conta	iner Type	V	A			-	1	47	HY	P	۲	7	V I			
V= Vlal G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH				 _	eservative	10	A		<u> </u>		H	<u>B</u>	DI	117	(と!	<u>H</u>	and make with	8 10 10 to 10 10 10 10 10 10 10 10 10 10 10 10 10	
C= Cube O= Other E= Encore	F= MeOH G= NaHSO₄	FMUL	Relinquished By	<u>/:</u>	Dat 31n11s	e/Time	1	y Cla	Reco	eived B	y: 1 /-	-2	- 10	Da کے کا ۔	te/Tim رزادر					d are subje	ct to
D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH ₄ CI K= Zn Acetate	In all	HAT FI			5:20	So	wh	ored	S.	the	<u> </u>		3/10	15		Эее	reverse	side.	onditions.	
Page 63 of 63	O= Othar	<u> </u>	<u> </u>		·	·										· -	FORM	1 NG: 01-0	1 (rev. 12-N	(ar-2012)	

Attachment C StreamStats Report and Dilution Factor Calculation

StreamStats Data-Collection Station Report

USGS Station Number

01104500

Station Name

CHARLES RIVER AT WALTHAM, MA

Click here to link to available data on NWIS-Web for this site.

Descriptive Information

Station Type

Streamgage, continuous record

Location

Gage

Regulation and Diversions

Regulated?

True

Period of Record

1931-present

Remarks

Flow affected by Mother Brook diversion, diversions to and from basin for municipal supplies,

and reservoir regulations.

Latitude (degrees NAD83)

42.3723186 -71.2336667

Longitude (degrees NAD83) Hydrologic unit code

01090001

County

017-Middlesex

HCDN2009

No

Physical Characteristics

Characteristic Name

Value

Units

Citation Number

Descriptive Information State_Code 25 dimensionless <u>30</u> Datum_of_Latitude_Longitude NAD83 dimensionless <u>30</u> <u>30</u> District_Code 25 dimensionless Begin_date_of_record 8/4/1931 days <u>41</u> End_date_of_record 9/30/2003 days <u>41</u> Number_of_days_of_record 26356 days <u>41</u> Number_of_days_GT_0 26356 <u>41</u> days Basin Dimensional Characteristics Drainage_Area 227 square miles <u>30</u>

Streamflow Statistics

			Citation		Years of	Standard Error,	Lower 95% Confidence	Upper 95%	
Statistic Name	Value	Units		Preferred?		,	Interval	Interval	Date Date Remarks
Low-Flow Statistics									
7_Day_2_Year_Low_Flow	34	cubic feet per second	<u>19</u>	Υ					
7_Day_10_Year_Low_Flow	14.3	cubic feet per second	<u>19</u>	Υ					
Flow-Duration Statistics									
1_Percent_Duration	1380	cubic feet per second	<u>41</u>	Υ	73				
5_Percent_Duration	880	cubic feet per second	<u>41</u>	Υ	73				
10_Percent_Duration	680	cubic feet per second	<u>41</u>	Υ	73				
20_Percent_Duration	495	cubic feet per second	<u>41</u>	Υ	73				
25_Percent_Duration	430	cubic feet per second	<u>41</u>	Υ	73				
30_Percent_Duration	377	cubic feet per	<u>41</u>	Υ	73				

		second			
40_Percent_Duration	292	cubic feet per second	41	Υ	73
50_Percent_Duration	222	cubic feet per second	41	Υ	73
60_Percent_Duration	167	cubic feet per second	<u>41</u>	Υ	73
70_Percent_Duration	118	cubic feet per second	<u>41</u>	Υ	73
75_Percent_Duration	97	cubic feet per second	<u>41</u>	Υ	73
80_Percent_Duration	77	cubic feet per second	<u>41</u>	Υ	73
90_Percent_Duration	44	cubic feet per second	<u>41</u>	Υ	73
95_Percent_Duration	30	cubic feet per second	<u>41</u>	Υ	73
99_Percent_Duration	7.9	cubic feet per second	<u>41</u>	Υ	73
General Flow Statistics					
Minimum_daily_flow	0.2	cubic feet per second	<u>41</u>	Υ	73
Maximum_daily_flow	2940	cubic feet per second	<u>41</u>	Υ	73
Std_Dev_of_daily_flows	296.365	cubic feet per second	<u>41</u>	Υ	73
Average_daily_streamflow	309.739	cubic feet per second	<u>41</u>	Υ	73
Base Flow Statistics					
$Number_of_years_to_compute_BFI$	72	years	<u>42</u>	Υ	73
Average_BFI_value	0.632	dimensionless	<u>42</u>	Υ	73
Std_dev_of_annual_BFI_values	0.087	dimensionless	<u>42</u>	Υ	73

Citations

Citation Number	Citation Name and URL
19	Wandle, S.W., Jr., 1984, Gazetteer of Hydrologic Characteristics of Streams in MassachusettsCoastal River Basins of the North Shore and Massachusetts Bay: U.S. Geological Survey Water-Resources Investigations Report 84-4281
30	Imported from NWIS file
41	Wolock, D.M., 2003, Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States: U.S. Geological Survey Open-File Report 03-146, digital data set
42	Wolock, D.M., 2003, Base-flow index grid for the conterminous United States: U.S. Geological Survey Open-File Report 03-263, digital data set

Dilution Factor Calculation Replacement Drain Project Rena Park/140-156 Western Avenue Allston, Massachusetts

$$DF = (Qd + Qs)/Qd$$

Where: DF = Dilution Factor

Qd = **Maximum flow rate of the discharge in cubic feet per second (cfs)**

(1.0 gpm = .00223 cfs)

Qs = Receiving water 7Q10 flow (cfs) where,

7Q10 = The minimum flow (cfs) for 7 consecutive days with a recurrence

interval of 10 years

$$Qd = 0.3568 cfs$$

 $Qs = 14.3 cfs$

$$DF = (0.3568 + 14.3)/0.3568$$

DF = 41.078

Attachment D

U.S. Fish and Wildlife Letter

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 7, 2015

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2015)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours

Thomas R. Chapman

Supervisor

New England Field Office