

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

JAN 2 6 2015

Thomas J. Denney Vice President Hanover RS Construction LLC 2 Seaport Lane, 11th Floor Boston, MA 02210

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Construction of Parking Garage and Residential Development at 130 and 150 Cambridgepark Drive, Cambridge, MA 02140; Authorization # MAG910657

Dear Mr. Denney:

Based on the review of a Notice of Intent (NOI) submitted by Corinne McKenzie from Haley & Aldrich, Inc., on behalf of Hanover RS Construction LLC, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that your consultant has marked "Believed Present". The checklist also includes other parameters that may be found at the site based on historic contamination.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 5.48 for this site is within a dilution range greater than five to ten (>5 - 10), established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for arsenic of 50 ug/l,

lead of 6.5 ug/L, nickel of 145 ug/L, zinc of 333 g/L and iron of 5,000ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This EPA general permit and authorization to discharge will expire on September 9, 2015. You have reported this project will terminate on January1, 2017. Please be aware you are required to reapply for coverage after the EPA expired permit has been reissued. The reissuance date as well as the reapplication submittal date will be posted on the EPA web site at that time. Also, regardless of your project termination date you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

Mulna Murphy

Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc: Robert Kubit, MassDEP Lisa Peterson, Cambridge PWD Corinne McKenzie, Haley& Aldrich, Inc.

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorizatior Number:		MAG910657				
Authorization Issued:	Janua	ry, 2015				
Facility/Site Name:		ruction of Parking and Residential Development				
Encility/Cito Address	130 a	nd 150 Cambridgepark Drive, Cambridge, MA 02140.				
Facility/Site Address:	Email	address of owner: kbinford@hanoverco.com				
Legal Name of Operat	or:	Hanover RS Construction LLC				
Operator contact name, title,		Thomas J. Denney, 2 Seaport Lane, 11th Floor, Boston, MA 02140.				
and Address:		Email: TDenney@hanoverco.com				
Estimated date of the s Completion:	site's	January 15, 2017				
Category and Sub-Cate	egory:	Category III. Contaminated Construction Dewatering. Sub- category A. General Urban Fill Sites				
RGP Termination Date:		September 10, 2015				
Receiving Water:		Alewife Brook				

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)				
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L				
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L				
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L				
	4. Cyanide (CN) ^{2,3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L				
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L				
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L				
5	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L				
3	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L				

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
¥	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
1.19	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
R	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
365.0	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
der	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
Y6	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
÷.	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
45	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
310	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
\checkmark	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
1	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
100	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates	3.0 ug/L ** /Me#8270D/ML 5ug/L,
	(Phthalate esters) 6	Me#606/ML 10ug/L& Me#625/ML 5ug/L
V	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)				
\checkmark	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L				
\checkmark	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
V	b. Benzo(a) Pyrene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
\checkmark	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
V	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
\checkmark	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
\checkmark	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L				
\checkmark	g. Indeno(1,2,3-cd) Pyrene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L				
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L				
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
5.40	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	n. Naphthalene 5	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L				
	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L				
V	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L				

	1273 There Routs United & America Hereit en involue ene contral Preside 17 a - Ve lassonale contral VIII and Spectral - Involut e of the Chinese (Presid	11 - 501	Minimum level=ML		
	Metal parameter	Freshwater Limits		aan 1	1484
	39. Antimony	5.6	an tanan	ML	10
\checkmark	40. Arsenic **	50		ML	20
	41. Cadmium **	0.2	Die H	ML	10
	42. Chromium III (trivalent) **	48.8		ML	15
1	43. Chromium VI (hexavalent) **	11.4	ion di internet	ML	10
	44. Copper **	5.2	i stanič testal	ML	15
	45. Lead **	1.3		ML	20
	46. Mercury **	0.9		ML	02
\checkmark	47. Nickel **	145	0	ML	20
	48. Selenium **	5	The Countral	ML	20
	49. Silver	1.2		ML	10
\checkmark	50. Zinc **	333		ML	15
\checkmark	51. Iron	5,000	askel III	ML	20

Other Parameters	<u>Limit</u>
52. Instantaneous Flow	Site specific in CFS
53. Total Flow	Site specific in CFS
54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab13
57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
64. Maximum Change in Temperature in MA – Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴
	 52. Instantaneous Flow 53. Total Flow 54. pH Range for Class A & Class B Waters in MA 55. pH Range for Class SA & Class SB Waters in MA 56. pH Range for Class B Waters in NH 57. Daily maximum temperature - Warm water fisheries 58. Daily maximum temperature - Cold water fisheries 59. Maximum Change in Temperature in MA - Any Class A water body 60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water 61. Maximum Change in Temperature in MA - Any Class B water body - Cold water and Lakes/Ponds 62. Maximum Change in Temperature in MA - Any Class SA water body - Coastal 63. Maximum Change in Temperature in MA - Any Class SB water body - Coastal 64. Maximum Change in Temperature in MA - Any Class

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l). ² Limits for cyanide are based on EPA's water quality criteria expressed as

micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds (not including the #34, Bis (2-Ethylhexyl) Phthalate. The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Aroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

¹⁴ Temperature sampling per Method 170.1

NOTICE OF INTENT (NOI) TEMPORARY CONSTRUCTION DEWATERING PROPOSED PARKING GARAGE AND RESIDENTIAL DEVELOPMENT 130 AND 150 CAMBRIDGEPARK DRIVE CAMBRIDGE, MASSACHUSETTS

by

Haley & Aldrich, Inc. Boston, Massachusetts

on behalf of

Hanover RS Construction LLC Boston, Massachusetts

for

US Environmental Protection Agency Boston, Massachusetts

> File No. 35060-243 December 2014

Haley & Aldrich, Inc. 465 Medford St. Suite 2200 Boston, MA 02129

Tel: 617.886.7400 Fax: 617.886.7600 HaleyAldrich.com

16 December 2014 File No. 35060-243

US Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02109-3912

Attention: Ms. Shelly Puleo

Subject: Notice of Intent (NOI) Temporary Construction Dewatering Proposed Parking Garage and Residential Development 130 and 150 CambridgePark Drive Cambridge, Massachusetts

Dear Ms. Puleo:

On behalf of Hanover RS Construction LLC, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. Temporary dewatering is planned in support of the construction of the proposed parking garage at 150 CambridgePark Drive and the proposed 5-story residential building located at 130 CambridgePark Drive both in Cambridge, Massachusetts, as shown on Figure 1, Project Locus. Although no below grade space is planned, we anticipate construction dewatering will be conducted, as necessary, during open excavations located inside the proposed garage and residential building footprints.

The site is bounded by MBTA commuter rail to the south, the 160 Cambridgepark Drive residential development to the east, the 100 and 150 Cambridgepark Drive commercial office buildings to the north and northeast, beyond which is Cambridgepark Drive, and an at grade bituminous parking lot to the west. The site is currently a paved parking lot with minimal landscape features. Site grades are relatively flat, ranging from about El. 17 at the southern property limit to about EL. 18.5 at the northern property limit Cambridge City Base (CCB) Datum.

SITE HISTORY

Historic site use was evaluated based on a review of historical Sanborn Fire Insurance maps dated 1986, 1990, 1992, 1995, 2003, 2004, 2005, and 2006 and aerial photographs dated 1938, 1955, 1960, 1969, 1978, 1980, 1987, 1995, 2006, 2008, 2010, and 2012. Generally, the site was vacant land prior to development of the West End Iron Works Company buildings circa 1947, then redevelopment into the current surface parking lot for the 150 Cambridgepark Drive office building in the early 1980s. According to a previous environmental report for the site, prior to 1947 the site was vacant and owned by the Boston & Maine Railroad. In 1947, West End Iron Works Company purchased the subject site and constructed several buildings for steel fabrication and scrap metal storage. According to a previous

U.S. Environmental Protection Agency 16 December 2014 Page 2

report, some paints, solvents, and lubrication oils were used at the Iron Works. Use as a metal fabrication and scrap metal storage reportedly continued at the site until 1983, at which point the Iron Works buildings were demolished in preparation for development the current office building and parking lot at 130 and 150 Cambridgepark Drive in 1986. Aerial photographs and Sanborn maps do not indicate significant changes at the subject site since 1987.

PROPOSED CONSTRUCTION

The proposed development will include construction of a 6-story parking structure on the western portion of the Site at 150 Cambridgepark Drive and a 5-story residential building on the eastern portion of the Site at 130 Cambridgepark Drive. No below-grade space is currently planned.

MASSACHUSETTS MCP REGULATORY BACKGROUND

The Site is part of a larger Disposal Site that was previously reported to MassDEP under RTN 3-1411 for elevated concentrations of VOCs in soil (attributed to a limited dried paint waste release) and PAHs in soil (attributed to urban fill). Previous investigations conducted at the site in the early 1990's concluded that conditions at that time did not pose risk for unrestricted future use (residential). A Phase II MCP report and a Class B-1 Response Action Outcome (RAO) Statement were submitted to MassDEP on 1 June 1995. Accordingly, the release site reached regulatory closure without remedial action or implementation of an Activity and Use Limitation (AUL).

RTN 3-30779 was assigned in 2012 and covers a small area of the northern portion of the Site. The release is associated with the detection of metals, PAHs and petroleum hydrocarbons in fill soils at concentrations higher than those previously detected in association with RTN 3-1411 (see below). According to the Phase II Comprehensive Site Assessment, the fill within the limits of the RTN 3-30779 Disposal Site (refer to Figure 2) is of different composition and quality (higher percentage of debris and trash) than fill observed elsewhere on the site. Groundwater testing did not indicate chemical concentrations above Method 1 GW-2 or GW-3 values. A Class A-3 Response Action Outcome (RAO) was filed for RTN 3-30779 in March 2014. The RAO indicates a permanent solution has been achieved in which contamination has not been reduced to background and an Activity and Use Limitation (AUL) is required to maintain a condition of No Significant Risk.

The AUL applies to the portion of the site within the limits of the RTN 3-30779 Disposal Site (refer to Figure 2). Permitted activities and uses include commercial and industrial use, emergency utility work, subsurface work with Licensed Site Professional (LSP) oversight, landscaping, and other activities and uses that do not present greater risk of harm to health, safety, public welfare, or the environment. Activities and uses considered inconsistent with the AUL include use as a residence, day care, playground, educational, or outdoor recreational facility; use to grow fruits, vegetables, or other agricultural products; and subsurface work activities conducted without the oversight of an LSP. Construction activities for the proposed garage will be conducted under a Release Abatement Measure (RAM) Plan in accordance with the MCP. As such, soil and groundwater management activities will be conducted with LSP oversight.

TEMPORARY CONSTRUCTION DEWATERING NOTICE OF INTENT

In support of the NOI and as part of a limited subsurface exploration program conducted at the Site in January 2014, Haley & Aldrich sampled one (1) existing observation well, designated HA-7(OW). The groundwater sample was submitted to Alpha Analytical, Inc. of Westborough, Massachusetts (Alpha) for analysis of VOCs, SVOCs, total petroleum hydrocarbons (TPH), total metals, dissolved metals, pesticides, PCBs, Total Suspended Solids (TSS), chloride, total cyanide, total phenolics, total residual chlorine, and pH.

Results of the analysis indicate total and dissolved iron, total zinc, and dissolved selenium concentrations above NPDES RGP effluent limits for Category III sites, but below the applicable RCGW-2 Reportable Concentrations in the MCP. The results of water quality testing are summarized in Table I. The location of the observation well is shown on Figure 2.

Dewatering will be conducted from open excavations located inside the proposed garage footprint at 150 Cambridgepark Drive and inside the proposed building footprint at 130 Cambridgepark Drive. Construction activities are scheduled to begin on or about 15 January 2015. Construction dewatering effluent will be recharged on-site to the extent possible. If necessary, excess water will be discharged to the storm drain under this NOI.

Prior to discharge under this NOI, collected water will be routed through a sedimentation tank and/or bag filters, at a minimum, to remove suspended solids and undissolved chemical constituents. Supplemental pretreatment may be required to meet discharge criteria as shown in the Proposed Treatment System Schematic included in Figure 3. Supplemental pretreatment may include Oil/Water Separators, Ion Exchange, granular activated carbon, and/or other treatment technologies as required to meet the NPDES discharge criteria. Construction dewatering under this RGP NOI will include piping and will discharge to storm drains located near the site. The storm drains are on the Site as indicated in Figure 2 and travel east beneath the paved parking at 130 Cambridgepark Drive before traveling north and discharging from outfall "D45" to a drainage ditch leading to Alewife Brook.

DILUTION FACTOR APPLICATION FOR METALS

A Dilution Factor (DF) was calculated for the detected levels of total metals greater than the applicable effluent limits. The DF is applicable to iron, zinc and selenium and the calculated DF was used to find the appropriate Dilution Range concentrations for these metals. The DF was calculated using the following equation:

$DF = (Q_d + Q_s)/Q_d$

Where Q_d is the maximum discharge flow rate, estimated to be 100 gallons per minute (GPM) or approximately 0.223 cubic feet per second (cfs), and Q_s is the receiving water flow rate, minimum for 7 consecutive days with a recurrence interval of 10 years, calculated to be 1.0 cfs. Using these estimated/calculated values, the DF is equal to 5.5. According to Appendix IV of the Remediation General Permit, the ceiling limitation for the calculated dilution factor of 5.5 for iron is 5,000 ug/L, zinc is 333 ug/L, and selenium is 25 ug/L. If testing of the dewatering effluent indicates that the iron, zinc or selenium concentrations are greater than 5,000, 333 or 25 ug/L, respectively, pretreatment of the dewatering effluent will include an ion exchange unit or other technology to remove dissolved metals as shown on Figure 3.

U.S. Environmental Protection Agency 16 December 2014 Page 4

APPENDICES

The completed "Suggested Notice of Intent" NOI form as provided in the RGP is enclosed in Appendix A. The operator conducting the Site work, including dewatering activities, is Hanover RS Construction LLC. Haley & Aldrich, Inc. will monitor the Contractor's dewatering activities on behalf of the operator in accordance with the requirements for this NOI submission.

A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, is included in Appendix B. Appendices C and D include the National Register of Historic Places and Endangered Species Act Documentation, respectively. Appendix E provides the City of Cambridge Dewatering Permit Application to be submitted separately to the City of Cambridge. A copy of the groundwater testing laboratory results are provided in Appendix F.

CLOSING

Thank you very much for your consideration of this NOI. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Man.

Corinne M. McKenzie Senior Scientist

Keith E. Johnson, P.E., LSP Vice President

Attachments:

Table I – Summary of Groundwater Quality Data
Figure 1 – Site Locus
Figure 2 –Subsurface Exploration and Discharge Location Plan
Figure 3 – Proposed Treatment System Schematic
Appendix A – Notice of Intent (NOI) for Remediation General Permit (RGP)
Appendix B – Best Management Practices Plan (BMPP)
Appendix C – Endangered Species Act Documentation
Appendix D – National Register of Historic Places and Massachusetts Historical Commission Documentation
Appendix E – Copy of City of Cambridge Dewatering Permit Application
Appendix F – Laboratory Data Reports

c: City of Cambridge; Attn: Department of Public Works

G:\35060\200 Series - 150 CPD\243 - NPDES Dewatering\NPDES Permit\Text\2014-1216-150 CPD-NPDES RGP Application-F.docx

TABLES

TABLE I SUMMARY OF GROUNDWATER QUALITY DATA 130 AND 150 CAMBRIDGE PARK DRIVE CAMBRIDGE, MASSACHUSETTS FILE NO. 35060-230

SAMPLE DESIGNATION SAMPLING DATE	MCP 2008 RCGW-2	NPDES RGP	HA-7 (OW) 1/6/2014
	Reportable	Category III	L1400799-01
LAB SAMPLE ID	Concentrations	Freshwater	L1400799-01 R1
		Criteria	
	(ug/l)	(ug/l)	
Total VOCs (ug/l)	NA	NA	ND
Total SVOCs (ug/l)	NA	NA	ND
Microextractables (ug/l) 1,2-Dibromoethane	2	0.05	ND(0.005)
TPH (ug/l)	5000	5000	ND(2000)
Total metals (ug/l)			
Antimony, Total	8000	5.6	ND(0.5)
Arsenic, Total	900	10	7.45
Cadmium, Total	4	0.2	ND(0.1)
Chromium, Total	300	60.2	3.09
Chromium, Hexavalent	300	11.4	ND(5)
Copper, Total	100000	5.2	2.42
Iron, Total	NA	1000	6600
Lead, Total	10	1.3	0.97
Mercury, Total	20	0.9	ND(0.1)
Nickel, Total	200	29	2.04
Selenium, Total	100	5	ND(2.5)
Silver, Total Zinc, Total	7 900	1.2 66.6	ND(0.2) 283.7
	900	00.0	203.7
Dissolved metals (ug/l)			
Antimony, Dissolved	8000	5.6	1.41
Arsenic, Dissolved	900	10	6.65
Cadmium, Dissolved	4	0.2	ND(0.1)
Chromium, Dissolved	300	60.2	2.18
Copper, Dissolved	100000	5.2	ND(0.5)
Iron, Dissolved	NA	1000	6300
Lead, Dissolved	10	1.3	ND(0.25)
Mercury, Dissolved	20	0.9	ND(0.1)
Nickel, Dissolved	200	29	1.06
Selenium, Dissolved	100	5	9.84
Silver, Dissolved	7 900	1.2 66.6	ND(0.2) 10.87
Zinc, Dissolved	900	00.0	10.87
Total PCBs (ug/l)	NA	0.000064	ND
General Chemistry (ug/l)			
Solids, Total Suspended	NA	30000	ND(5000)
Chloride	NA	Monitor only	328000
Cyanide, Total	30	5.2	ND(2.5)
Chlorine, Total Residual	NA	11	ND(10)
Phenolics, Total	NA	300	ND(15)

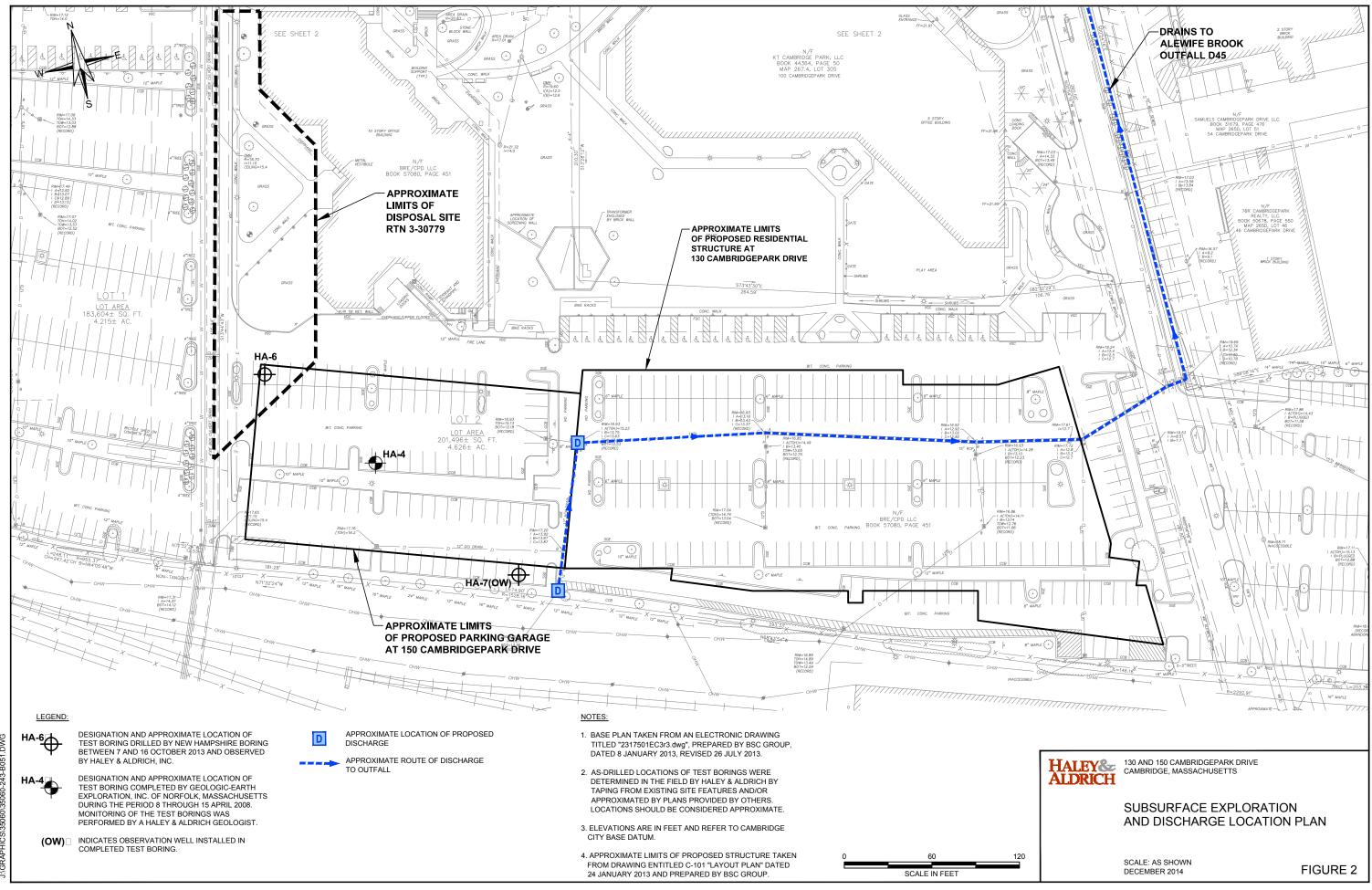
ABBREVIATIONS:

NA: Not applicable

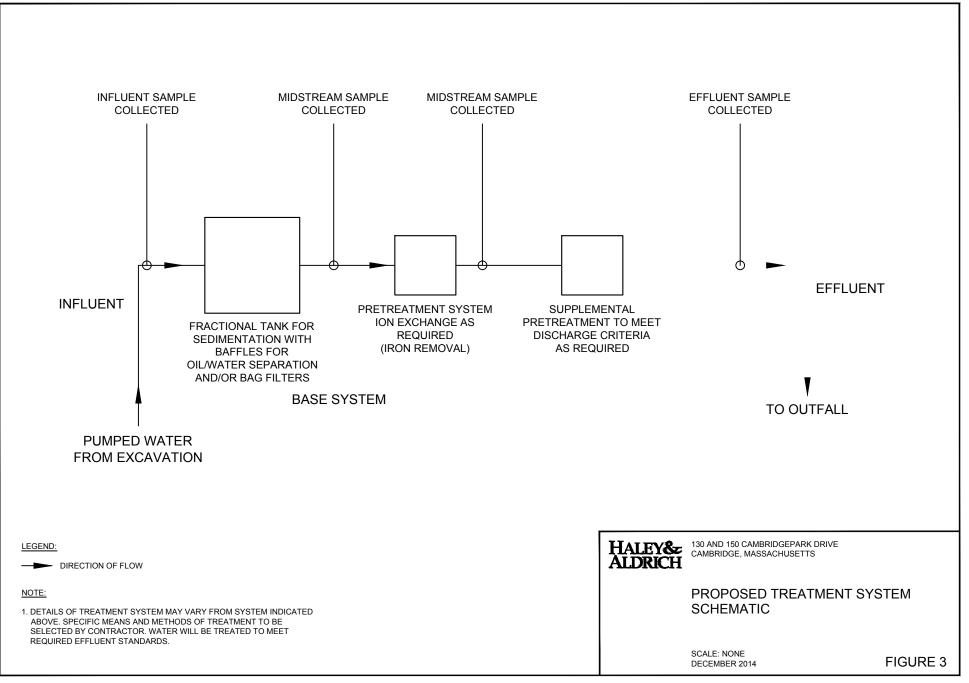
- : Not analyzed

ND(2.5): Not detected; number in parentheses is one-half the laboratory reporting limit.


NOTES:


1. This table includes only those compounds detected on the dates indicated.

2. Bold values detected values exceeding RCGW-2 criteria.


3. Blue Bold values detected values exceeding NPDES RGP Category III Criteria.

FIGURES

J:\GRAPHICS\35060\35060-243-A052.DWG

APPENDIX A

Notice of Intent (NOI) for Remediation General Permit (RGP)

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : 130 and 150 Cambrid	Facility/site mailing address:						
Location of facility/site : longitude: 71°8'46" W latitude: 42°23'38" N	Facility SIC code(s):	Street:	130 and 150 Cambr				
b) Name of facility/site owner: 130 CPD A Limited Pa	Town:	Town: Cambridge					
Email address of facility/site owner: kbinford@hanoverco.com Telephone no. of facility/site owner :713.58	State: MA		Zip: 02140	County: Suffolk			
Fax no. of facility/site owner:713.267.2145Address of owner (if different from site):			Owner is (check one): 1. Federal O 2. State/Tribal O 3. Private O 4. Other O if so, describe:				
Street: 5847 San Felipe, Suite 3600							
Town: Houston	State: TX	Zip: 77	057	County: Harris			
c) Legal name of operator :	Operator tel	lephone no: 8574000682					
Hanover RS Construction LLC	Operator fax	x no.:		Operator email:	TDenney@hanoverco.com		
Operator contact name and title: Tom Denr	iey						
Address of operator (if different from owner):	ort Lane, 1	1th Floor					
Town: Boston	State: MA	Zip: 022	210	County: Suffolk			

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y O N O, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y O N O, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y O N O 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y O_N O 							
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O N O If Y, please list: site identification # assigned by the state of NH or MA:	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? $Y \bigcirc N \odot$, if. Final Dewatering General Permit? $Y \bigcirc N \odot$, if. EPA Obsetruction General Permit? $Y \bigcirc N \odot$, if. Yndividual: NPDES permit? $Y \bigcirc N \odot$, if. Yndividual: NPDES permit? $Y \bigcirc N \odot$, if. Yndividual: NPDES permit? $Y \bigcirc N \odot$, if. Yndividual: $Y \bigcirc N \odot$, if. Yndividual: $Y \bigcirc O \odot$,						
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y_O_N_O_						
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential						
Activity Category	Activity Sub-Category						
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) 						
	C. Petroleum Sites with Additional Contamination						
II - Non Petroleum Site Remediation	 A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites 						
III - Contaminated Construction Dewatering	 A. General Urban Fill Sites <u>■</u> B. Known Contaminated Sites <u>■</u> 						

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:							
Temporary Construction Dewatering							
b) Provide the following information about each discharge:							
1) Number of discharge 2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? points: 2 Description 2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Is maximum flow a design value ? Y ON O Average flow (include units) 0.1 cfs Is average flow a design value or estimate? estimate							
3) Latitude and longitude of each discharge within 100 feet: pt.1: lat $42^{\circ}23'36.8"N$ long $71^{\circ}08'45.4"N$ pt.2: lat. $42^{\circ}23'37.7"N$ long $71^{\circ}08'44.9"N$; pt.3: lat long pt.4: lat. long ; pt.5: lat long pt.6: lat. long ;; pt.7: lat long pt.8: lat. long ;; etc.							
4) If hydrostatic testing, total volume of the discharge (gals): ^{NA} 5) Is the discharge intermittent <u>●</u> or seasonal <u>●</u> ? Is discharge ongoing? Y <u>●</u> N <u>●</u>							
c) Expected dates of discharge (mm/dd/yy): start 1/15/2015 end 1/15/2017							
 d) Please attach a line drawing or flow schematic showing water flow through the facility including: 1. sources of intake water. 2. contributing flow from the operation. 3. treatment units. and 4. discharge points and receiving waters(s). See Figures 2 and 3 							
Waterst's the conduction of th							

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	Believed Present	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of <u>Test</u> Method	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)		×		1	GRAB	30, 2540D	10,000	ND		ND	
2. Total Residual Chlorine (TRC)		×		1	GRAB	30, 4500CL-D	20	ND		ND	
3. Total Petroleum Hydrocarbons (TPH)		×		1	GRAB	1664A	400	ND		ND	
4. Cyanide (CN)	57125	×		1	GRAB	4500CN-CE	5	ND		ND	
5. Benzene (B)	71432	×		1	GRAB	8260C	0.5	ND		ND	
6. Toluene (T)	108883	×		1	GRAB	8260C	0.75	ND		ND	
7. Ethylbenzene (E)	100414	×		1	GRAB	8260C	0.5	ND		ND	
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		1	GRAB	8260C	1	ND		ND	
9. Total BTEX ²	n/a	×		1	GRAB	8260C	NA	ND		ND	
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934	×		1	GRAB	8260C	0.01	ND		ND	
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	GRAB	8260C	1	ND		ND	
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×		1	GRAB	8260C	10	ND		ND	

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

 $^{^{2}}$ BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes. 3 EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	GRAB	8260C	2	ND		ND	
14. Naphthalene	91203	×		1	GRAB	8260C	2.5	ND		ND	
15. Carbon Tetrachloride	56235	×		1	GRAB	8260C	0.5	ND		ND	
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		1	GRAB	8260C	2.5	ND		ND	
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	GRAB	8260C	2.5	ND		ND	
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	GRAB	8260C	2.5	ND		ND	
18a. Total dichlorobenzene		×		1	GRAB	8260C	NA	ND		ND	
19. 1,1 Dichloroethane (DCA)	75343	×		1	GRAB	8260C	0.75	ND		ND	
20. 1,2 Dichloroethane (DCA)	107062	×		1	GRAB	8260C	0.5	ND		ND	
21. 1,1 Dichloroethene (DCE)	75354	×		1	GRAB	8260C	0.5	ND		ND	
22. cis-1,2 Dichloroethene (DCE)	156592	×		1	GRAB	8260C	0.5	ND		ND	
23. Methylene Chloride	75092	×		1	GRAB	8260C	3	ND		ND	
24. Tetrachloroethene (PCE)	127184	×		1	GRAB	8260C	0.5	ND		ND	
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		1	GRAB	8260C	0.5	ND		ND	
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1	GRAB	8260C	0.75	ND		ND	
27. Trichloroethene (TCE)	79016	×		1	GRAB	8260C	0.5	ND		ND	

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	Believed Present	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	GRAB	8260C	1	ND		ND	
29. Acetone	67641	×		1	GRAB	8260C	5	ND		ND	
30. 1,4 Dioxane	123911	×		1	GRAB	8260C-SIM	3	ND		ND	
31. Total Phenols	108952	×		1	GRAB	420.1	30	ND		ND	
32. Pentachlorophenol (PCP)	87865	×		1	GRAB	8270D	0.8	ND		ND	
33. Total Phthalates (Phthalate esters) ⁴		×		1	GRAB	8270D	NA	ND		ND	
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×		1	GRAB	8270D	3	ND		ND	
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×		1	GRAB			ND		ND	
a. Benzo(a) Anthracene	56553	×		1	GRAB	8270D-SIM	0.2	ND		ND	
b. Benzo(a) Pyrene	50328	×		1	GRAB	8270D-SIM	0.2	ND		ND	
c. Benzo(b)Fluoranthene	205992	×		1	GRAB	8270D-SIM	0.2	ND		ND	
d. Benzo(k)Fluoranthene	207089	×		1	GRAB	8270D-SIM	0.2	ND		ND	
e. Chrysene	21801	×		1	GRAB	8270D-SIM	0.2	ND		ND	
f. Dibenzo(a,h)anthracene	53703	×		1	GRAB	8270D-SIM	0.2	ND		ND	
g. Indeno(1,2,3-cd) Pyrene	193395	×		1	GRAB	8270D-SIM	0.2	ND		ND	
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×		1	GRAB			ND		ND	

⁴ The sum of individual phthalate compounds.

Parameter *	<u>CAS</u> Number	Believed Absent	Believed Present	<u># of</u> Samples	<u>Sample</u> <u>Type</u> <u>(e.g.,</u>	<u>Analytical</u> <u>Method</u> Used	Minimum Level (ML) of	<u>Maximum dai</u>	<u>ly value</u> <u>mass</u>	<u>Average daily</u> concentration	value mass
			<u>1 resent</u>	Samples	<u>(e.g.,</u> grab)	<u>(method #)</u>	<u>Test</u> <u>Method</u>	<u>(ug/l)</u>	<u>(kg)</u>	<u>(ug/l)</u>	<u>(kg)</u>
h. Acenaphthene	83329	×		1	GRAB	8270D-SIM	0.2	ND		ND	
i. Acenaphthylene	208968	×		1	GRAB	8270D-SIM	0.2	ND		ND	
j. Anthracene	120127	×		1	GRAB	8270D-SIM	0.2	ND		ND	
k. Benzo(ghi) Perylene	191242	×		1	GRAB	8270D-SIM	0.2	ND		ND	
1. Fluoranthene	206440	×		1	GRAB	8270D-SIM	0.2	ND		ND	
m. Fluorene	86737	×		1	GRAB	8270D-SIM	0.2	ND		ND	
n. Naphthalene	91203	×		1	GRAB	8270D-SIM	0.2	ND		ND	
o. Phenanthrene	85018	×		1	GRAB	8270D-SIM	0.2	ND		ND	
p. Pyrene	129000	×		1	GRAB	8270D-SIM	0.2	ND		ND	
	85687; 84742; 117840; 84662;	×		1	GRAB	608	0.25	ND		ND	
37. Total PolychlorinatedBiphenyls (PCBs)38. Chloride	131113; 117817. 16887006		×	1	GRAB	300.0	25000	228000		328000	
39. Antimony		×		1		<u> </u>		328000			
40. Arsenic	7440360 7440382		×	1	GRAB GRAB	6020 6020	02	ND 4.34		ND 4.34	
40. Arsenic 41. Cadmium		×		1	GRAB	6020	0.2	4.34 ND		4.34 ND	
41. Cadinium 42. Chromium III	7440439			1	GRAB	6020	0.2				
(trivalent)	16065831	×		1	GRAB	6020	1	ND		ND	
43. Chromium VI (hexavalent)	18540299	×		1	GRAB	3500CR-D	10	ND		ND	
44. Copper	7440508	×		1	GRAB	6020	1	ND		ND	
45. Lead	7439921		×	1	GRAB	6020	0.2	0.85		0.85	
46. Mercury	7439976	×		1	GRAB	245.1	0.2	ND		ND	
47. Nickel	7440020		×	1	GRAB	6020	0.2	1.87		1.87	
48. Selenium	7782492	×		3	GRAB	1632A	5	ND		ND	
49. Silver	7440224	×		1	GRAB	6020	0.4	ND		ND	
50. Zinc	7440666		×	1	GRAB	6020	5	18.28		18.28	
51. Iron	7439896		×	1	GRAB	200.7	50	1700		1700	
Other (describe):											

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? $Y \odot N O$	If yes, which metals? Iron, Zinc, Selenium				
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: Iron DF 5.5 Metal: Selenium DF 5.5 Metal: DF Etc. DF	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y \bigcirc N \bigcirc If Y, list which metals: Iron				

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

See Attached Figure 3

b) Identify each	Frac. tank 🗵	Air stripper 🗖	Oil/water separator ⊠	Equalization tanks \Box	Bag filter 🗵	GAC filter 🗵
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):	itional pretreatment as nec harge Criteria.	essary to meet NPI	DES RGP

Remediation General Permit Appendix V - NOI Page 17 of 22

cfs

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge 50 gpm Maximum flow rate of treatment system 100 gpm Design flow rate of treatment system 100 gpm								
d) A description of chemical additive	es being used or	planned to be use	d (attach MSDS s	heets):				
N/A								
5. Receiving surface water(s). Pleas	se provide infor	mation about the r	eceiving water(s),	using separate sh	eets as necessary:			
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain_⊠	Wetlands	Other (describe)			
b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: Effluent will be discharged to storm drains which discharge to a drainage ditch leading to Alewife Brook. Alewife Brook is a tributary to the Mystic River.								
 iffluent will be discharged to storm drains which discharge to a drainage ditch leading to Alewife Brook. Alewife Brook is a tributary to the Mystic River. c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 								

d) Provide the state water quality classification of the receiving water B

e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water 1.	0
Please attach any calculation sheets used to support stream flow and dilution calculations.	

f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O If yes, for which pollutant(s)?

Is there a final TMDL? Y O N O If yes, for which pollutant(s)? Phosphorus (Total); Lead; Oxygen, Dissolved.; Foam/Flocs/Scum/Oil Slicks; Fecal Coliform; Copper

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

 $A \underbrace{\odot} B \underbrace{O} C \underbrace{O} D \underbrace{O} E \underbrace{O} F \underbrace{O}$

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y \bigcirc N \bigcirc

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit?

 $1 \circ 2 \circ 3 \circ$

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

Laboratory Data is provided in Appendix F

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: 130 and 150 Cambridgepark Drive
Operator signature: Thomas & Menney
Printed Name & Title: Thomas J. Senney - Vice President
Date: 1/5/15

Remediation General Permit Appendix V - NOI

APPENDIX B

Best Management Practices Plan (BMPP)

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM REMEDIATION GENERAL PERMIT TEMPORARY CONSTRUCTION DEWATERING PROPOSED PARKING GARAGE 150 CAMBRIDGEPARK DRIVE CAMBRIDGE, MASSACHUSETTS

Best Management Practices Plan

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering planned to occur during the construction of the proposed parking garage located at 150 Cambridgepark Drive in Cambridge, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

Construction dewatering will be conducted using a combination of drainage ditches and sumps located inside the excavation. The treatment system will be designed by the Contractor. Prior to discharge, collected water will likely be routed through a sedimentation tank with baffles for oil/water separation, bag filters, and granular activated carbon (GAC), as required, to remove suspended solids and undissolved chemical constituents. Supplemental pretreatment may be required to meet discharge criteria as shown on the Proposed Treatment System Schematic included in Figure 3. Construction dewatering under this RGP NOI will include piping and discharging to storm drains located near the site. The storm drains travel east beneath paved parking at 130 Cambridgepark Drive before traveling north and discharging from outfall "D45" to a drainage ditch leading to Alewife Brook.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted by the Contractor at the treated effluent as required by the RGP. This includes chemical testing required within the first month of discharging, and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM REMEDIATION GENERAL PERMIT TEMPORARY CONSTRUCTION DEWATERING PROPOSED PARKING GARAGE 150 CAMBRIDGEPARK DRIVE CAMBRIDGE, MASSACHUSETTS

fractionization tanks, filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Operator.

Miscellaneous Items

It is anticipated that the excavation support system, erosion control measures, and the nature of the site and surrounding infrastructure will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control.

Site security for the treatment system will be covered within the overall site security plan. .

No adverse affects of designated water uses of surrounding surface water bodies is anticipated. Old Harbor is the nearest surface water body to the site located approximately 0.3 miles from the construction activities on site. Dewatering effluent will be pumped to a sedimentation tank with baffles for oil/water separation, bag filters, and GAC, as required, prior to discharge to the storm drains.

Management of Treatment System Materials

Groundwater analytical data for the site is below the applicable MCP RCGW-2 criteria but above the NPDES RGP criteria for total and dissolved iron, total and dissolved zinc and dissolved selenium. Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and sumps to minimize handling. The contractor will establish staging areas on the site for any equipment or materials storage which may be possible sources of pollution away from any dewatering activities.

Sediment from the fractionalization tank used in the treatment system will be characterized and disposed of as soil at an appropriate receiving facility in accordance with applicable laws and regulations. GAC will be recycled and/or removed from the site to an appropriate receiving facility. Bag filters will be placed in drums and manifested for off-site disposal.

G:\35060\200 Series - 150 CPD\230 - MCP Reg and Permitting\NPDES\APP B - BMPP\2014-1020-HAI-150 CPD RGP BMPP.doc

APPENDIX C

Endangered Species Act Documentation

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres Approximate acreage and designation date follow ACEC names below.

Bourne Back River (1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp (1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley (12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed (1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor (600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog (8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills (500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed (4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed (14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp (16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay (2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin (1,350 acres, 1995) Lee and Stockbridge Karner Brook Watershed (7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds (8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary (1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag (25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay (9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River (160 acres, 1980) Bourne

Rumney Marshes (2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System (9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin (13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

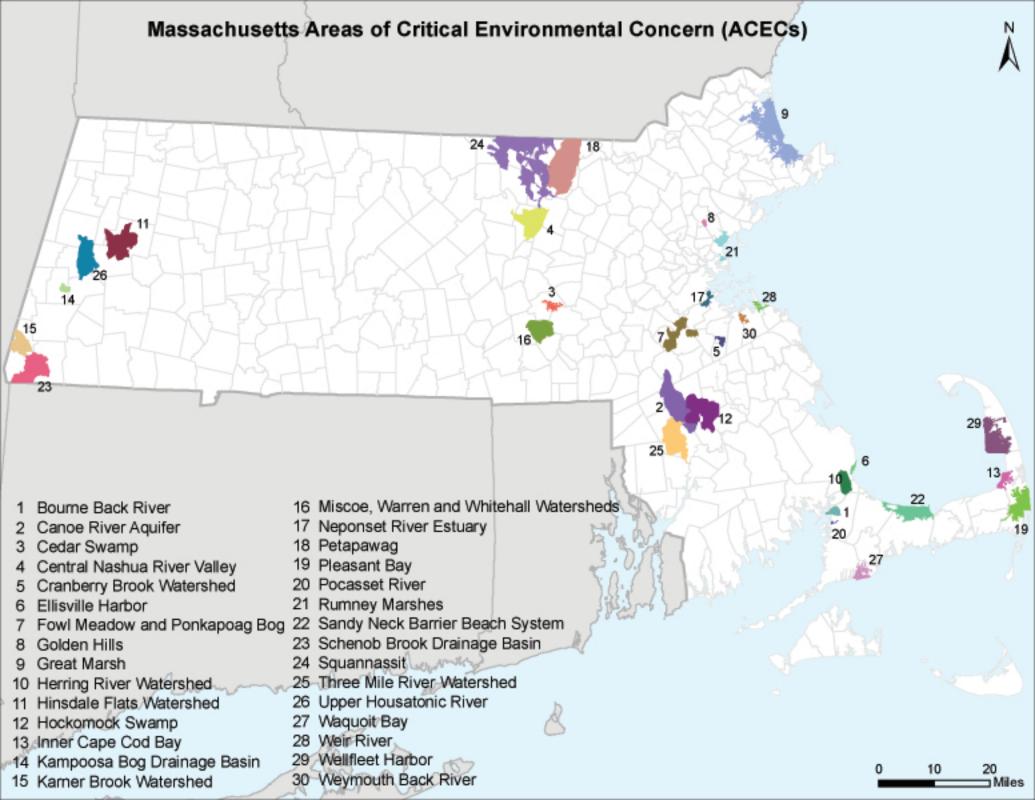
Upper Housatonic River (12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay (2,580 acres, 1979) Falmouth and Mashpee

Weir River (950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor (12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River (800 acres, 1982) Hingham and Weymouth


ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

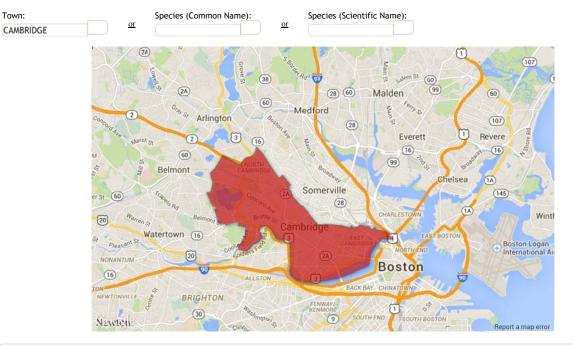
•

November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	0	Schenob Brook
,	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River		Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed		Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp		Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay		Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer		Fowl Meadow and Ponkapoag Bog
	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River		Upper Housatonic River
	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
lpswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
	Dwarf wedgemussel	Endangered	Mill River	Whately
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
Suffolk	Piping Plover	Threatened	Coastal Beaches	Winthrop
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster


-Eastern cougar and gray wolf are considered extirpated in Massachusetts.

-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

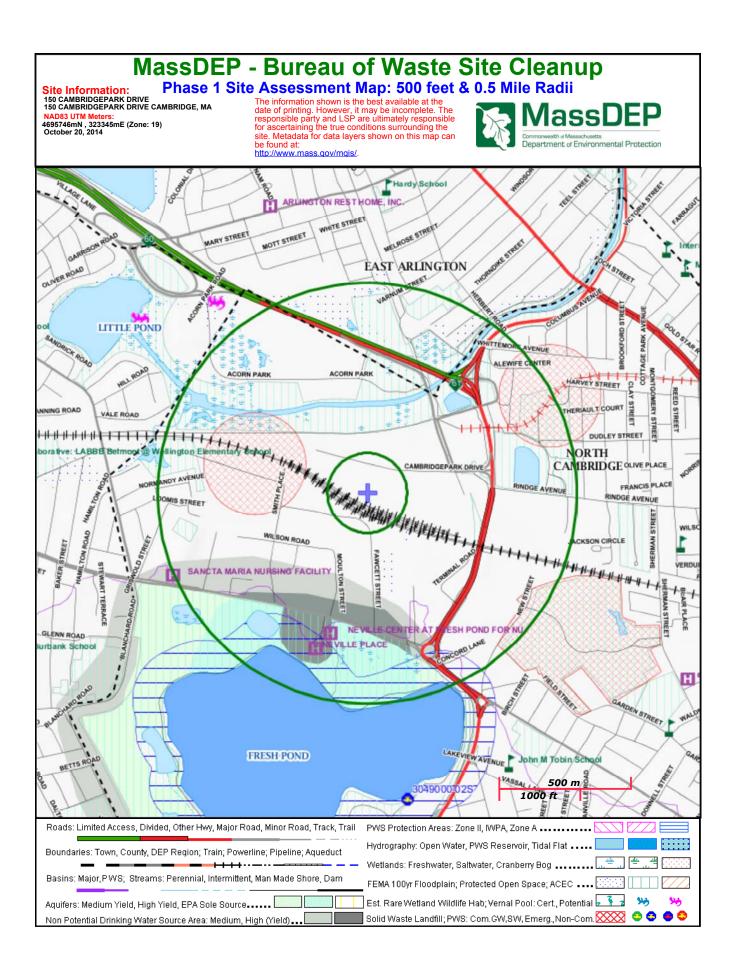
The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Showing 1 to 25 of 25 entries

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
CAMBRIDGE	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC	1917
CAMBRIDGE	Bird	Ammodramus henslowii	Henslow's Sparrow	E	1871
CAMBRIDGE	Bird	Botaurus lentiginosus	American Bittern	E	1906
CAMBRIDGE	Vascular Plant	Carex gracilescens	Slender Woodland Sedge	E	1891
CAMBRIDGE	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger Beetle	SC	1932
CAMBRIDGE	Bird	Cistothorus platensis	Sedge Wren	E	1840
CAMBRIDGE	Vascular Plant	Cyperus engelmannii	Engelmann's Umbrella-sedge	Т	2008
CAMBRIDGE	Butterfly/Moth	Eacles imperialis	Imperial Moth	Т	Historic
CAMBRIDGE	Bird	Falco peregrinus	Peregrine Falcon	E	2013
CAMBRIDGE	Bird	Gallinula chloropus	Common Moorhen	SC	1890
CAMBRIDGE	Vascular Plant	Gentiana andrewsii	Andrews' Bottle Gentian	E	2013
CAMBRIDGE	Reptile	Glyptemys insculpta	Wood Turtle	SC	Historic
CAMBRIDGE	Vascular Plant	Isoetes lacustris	Lake Quillwort	E	Historic
CAMBRIDGE	Bird	Ixobrychus exilis	Least Bittern	E	1890
CAMBRIDGE	Mussel	Ligumia nasuta	Eastern Pondmussel	SC	1940
CAMBRIDGE	Segmented Worm	Macrobdella sestertia	New England Medicinal Leech	SC	Historic
CAMBRIDGE	Fish	Notropis bifrenatus	Bridle Shiner	SC	1928
CAMBRIDGE	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	Т	Historic
CAMBRIDGE	Vascular Plant	Potamogeton friesii	Fries' Pondweed	E	1880
CAMBRIDGE	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	Т	1892
CAMBRIDGE	Vascular Plant	Scirpus longii	Long's Bulrush	Т	1913
AMBRIDGE	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC	1912
AMBRIDGE	Reptile	Terrapene carolina	Eastern Box Turtle	SC	1892
CAMBRIDGE	Bird	Tyto alba	Barn Owl	SC	Historic
CAMBRIDGE	Vascular Plant	Viola brittoniana	Britton's Violet	Т	1843

Hide Additional Info


Status

• E = Endangered • T = Threatened • SC = Special Concern

Search

This field represents the most recent observation of that species in a town. However, because they are rare, many MESA-listed species are difficult to detect even when they are present. Natural Heritage does not have the resources to be able to conduct methodical species surveys in each town on a regular basis. Therefore, the fact that the 'Most Recent Observation' recorded for a species may be several years old should not be interpreted as meaning that the species no longer occurs in a town. However, Natural Heritage regards records older than twenty-five years historic.

For more information about a particular species, view the list of <u>Natural Heritage Fact Sheets</u>.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 7, 2014

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman Supervisor New England Field Office

APPENDIX D

National Register of Historic Places and Massachusetts Historical Commission Documentation

Massachusetts Historical Commission

William Francis Galvin, Secretary of the Commonwealth

Home | Feedback | Contact Us

MHC Home

Massachusetts Cultural Resource Information System

Scanned forms and photos now available for selected towns!

The Massachusetts Cultural Resource Information System (MACRIS) allows you to search the Massachusetts Historical Commission database for information on historic properties and areas in the Commonwealth.

Users of the database should keep in mind that it does not include information on all historic properties and areas in Massachusetts, nor does it reflect all the information on file on historic properties and areas at the Massachusetts Historical Commission.

Click here to begin your search of the MACRIS database.

Home | Search | Index | Feedback | Contact

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Street Name: cambridgepark; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
----------	---------------	--------	------	------

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Place: North Cambridge; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
CAM.101	Kingsley, Chester House	10 Chester St	Cambridge	1866
CAM.910	Fitchburg Railroad Signal Bridge	Fitchburg Railroad	Cambridge	c 1930
CAM.1383	Chadwick, Samuel E. House	10 Hollis St	Cambridge	1853
CAM.245	Henderson Carriage Repository	2067-2089 Massachusetts Ave	Cambridge	1892
CAM.247	Mead, Alpheus House	2200 Massachusetts Ave	Cambridge	1867
CAM.248	Snow, Daniel House	2210 Massachusetts Ave	Cambridge	1868
CAM.249	McLean, Isaac House	2218 Massachusetts Ave	Cambridge	1894
CAM.250	Farwell, R. H. Double House	2222-2224 Massachusetts Ave	Cambridge	1891
CAM.251	Saint John's Roman Catholic Church	2270 Massachusetts Ave	Cambridge	1904
CAM.301		59 Rice St	Cambridge	1847
CAM.306	Soule, Lawrence Porter House	11 Russell St	Cambridge	1879

National Register Documentation on Listed Properties

Note: Not all National Register properties have been digitized yet

Reference Number	State	City	Resource Name	Address
79000354	MASSACHUSETTS	Cambridge	Abbot, Edwin, House	1 Follen St.
82001883	MASSACHUSETTS	Cambridge	Aborn, John, House	41 Orchard St.
04000249	MASSACHUSETTS	Cambridge	Alewife Brook Parkway	Alewife Brook Parkway
82001908	MASSACHUSETTS	Cambridge	Almshouse	41 Orchard St.
82001906	MASSACHUSETTS	Cambridge	American Net and Twine Company Factory	155 2nd St.
82001916	MASSACHUSETTS	Cambridge	Ash Street Historic District	Ash St. and Ash St. Place between Brattle and Mount Auburn Sts.
82001917	MASSACHUSETTS	Cambridge	Athenaeum Press	215 1st St.
83000781	MASSACHUSETTS	Cambridge	Atwood, Ephraim, House	110 Hancock St.
72000128	MASSACHUSETTS	Cambridge	Austin Hall	Harvard University campus
83000782	MASSACHUSETTS	Cambridge	Avon Hill Historic District	Washington and Walnut Aves. and Agassiz, Humboldt, Arlington and Lanca
82001918	MASSACHUSETTS	Cambridge	B and B Chemical Company	780 Memorial Dr.
76000272	MASSACHUSETTS	Cambridge	Baldwin, Maria, House	196 Prospect St.
82001919	MASSACHUSETTS	Cambridge	Barnes, James B., House	200 Monsignor O'Brien Hwy.
96000520	MASSACHUSETTS	Cambridge	BeckWarren House	1 Prescott St.
86001272	MASSACHUSETTS	Cambridge	BenninkDouglas Cottages	3551 Walker St.
82001920	MASSACHUSETTS	Cambridge	Berkeley Street Historic District	Berkeley St.
86001265	MASSACHUSETTS	Cambridge	Berkeley Street Historic District (Boundary Increase)	18 Berkeley Pl.
86001200	MASSACHUSETTS	Cambridge	Bertram Hall at Radcliffe College	53 Shepard St.
82001921	MASSACHUSETTS	Cambridge	Beth Israel Synagogue	238 Columbia St.
82001922	MASSACHUSETTS	Cambridge	Bigelow Street Historic District	Bigelow St.
82001923	MASSACHUSETTS	0		45 Orchard St.
		Cambridge	Billings, Frederick, House	
75000295	MASSACHUSETTS	Cambridge	Birkhoff, George D., House	22 Craigie
97000561	MASSACHUSETTS	Cambridge	Blake and Knowles Steam Pump Company National Register District	Bounded by Third, Binney, Fifth, and Rogers Sts.
82001924	MASSACHUSETTS	Cambridge	Bottle House Block	204-214 3rd St.
86001276	MASSACHUSETTS	Cambridge	Brabrook, E. H., House	4244 Avon St.
83000784	MASSACHUSETTS	Cambridge	Bradbury, William F., House	369 Harvard St.
82001925	MASSACHUSETTS	Cambridge	Brattle Hall	40 Brattle St.
73000286	MASSACHUSETTS	Cambridge	Brattle, William, House	42 Brattle St.
75000298	MASSACHUSETTS	Cambridge	Bridgman, Percy, House	10 Buckingham Pl.
86002068	MASSACHUSETTS	Cambridge	Brooks, Luther, House	34 Kirkland St.
82001926	MASSACHUSETTS	Cambridge	Building at 10 Follen Street	10 Follen St.
83000790	MASSACHUSETTS	Cambridge	Building at 102-104 Inman Street	102-104 Inman St.
83000789	MASSACHUSETTS	Cambridge	Building at 104-106 Hancock Street	104-106 Hancock St.
82001927	MASSACHUSETTS	Cambridge	Building at 106-108 Inman St	106-108 Inman St.
83000787	MASSACHUSETTS	Cambridge	Building at 1707-1709 Cambridge Street	1707-1709 Cambridge St.
83000788	MASSACHUSETTS	Cambridge	Building at 1715-1717 Cambridge Street	1715-1717 Cambridge St.
83000786	MASSACHUSETTS	Cambridge	Building at 259 Mount Auburn Street	259 Mt. Auburn St.
82001928	MASSACHUSETTS	Cambridge	Building at 42 Edward J. Lopez Avenue	42 Edward J. Lopez Ave.
82001929	MASSACHUSETTS	Cambridge	Buildings at 110-112 Inman St.	110-112 Inman St.
82001930	MASSACHUSETTS	Cambridge	Buildings at 15-17 Lee St.	15-17 Lee St.
83004293	MASSACHUSETTS	Cambridge	Cambidge Common Historic District Amendment	Massachusetts Ave. and Garden, Waterhouse, Cambridge, and Peabody S
73000281	MASSACHUSETTS	Cambridge	Cambridge Common Historic District	Garden, Waterhouse, Cambridge, and Peabody Sts., and Massachusetts A
87000499	MASSACHUSETTS	Cambridge	Cambridge Common Historic District (Boundary Increase and Decrease)	Roughly NW of Waterhouse St. on Concord Ave. between Garden and Foll
02001189	MASSACHUSETTS	Cambridge	Cambridge Home for the Aged and Infirm	650 Concord Ave.
82001931	MASSACHUSETTS	Cambridge	Cambridge Public Library	449 Broadway St.
78000435	MASSACHUSETTS	Cambridge	Carpenter Center for the Visual Arts	19 Prescott St.
90000128	MASSACHUSETTS	Cambridge	Central Square Historic District	Roughly Massachusetts Ave. from Clinton St. to Main St.
78000436	MASSACHUSETTS	Cambridge	Charles River Basin Historic District	Both banks of Charles River from Eliot Bridge to Charles River Dam
83000791	MASSACHUSETTS	Cambridge	Child, Francis J., House	67 Kirkland St.
66000140	MASSACHUSETTS	Cambridge	Christ Church	Garden St.
83000792	MASSACHUSETTS	Cambridge	Church of the New Jerusalem	50 Quincy St.
82001932	MASSACHUSETTS	Cambridge	City Hall Historic District	Massachusetts Ave., Bigelow and Temple Sts, Inman and Richard Allen Dr
83000793	MASSACHUSETTS	Cambridge	Cloverden	29 Fallen St.
82004968	MASSACHUSETTS	Cambridge	Colburn, Sarah Foster, House	7 Dana St.
82001933	MASSACHUSETTS	Cambridge	Conventual Church of St. Mary and St. John	980 Memorial Dr.
82001934	MASSACHUSETTS	Cambridge	Cook, William, House	71 Appleton St.
		-		

ancaster Sts.

ly Sts. ts Ave. Follen Sts.

Dr.

Listed Date

National Register Documentation on Listed Properties

Note: Not all National Register properties have been digitized yet

Reference Number	State	City	Resource Name	Address
83000795	MASSACHUSETTS	Cambridge	Coolidge, Josiah, House	24 Coolidge Hill Rd.
72000124	MASSACHUSETTS	Cambridge	Cooper-Frost-Austin House	21 Linnaean St.
86001575	MASSACHUSETTS	Cambridge	Craigie Arms	26 University Rd., 122 Mt. Auburn, and 6 Bennett Sts.
83000796	MASSACHUSETTS	Cambridge	cummings, e.e., House	104 Irving St.
76000305	MASSACHUSETTS	Cambridge	Daly, Reginald A., House	23 Hawthorn St.
86001682	MASSACHUSETTS	Cambridge	DanaPalmer House	1216 Quincy St.
76000306	MASSACHUSETTS	Cambridge	Davis, William Morris, House	17 Francis St.
82001935	MASSACHUSETTS	Cambridge	Day, Anna, House	139 Cushing St.
82001936	MASSACHUSETTS	Cambridge	Deane-Williams House	21-23 Fayette St.
90000142	MASSACHUSETTS	Cambridge	DeRosayMcNamee House	50 Mt. Vernon St.
86002071	MASSACHUSETTS	Cambridge	Divinity Hall	12 Divinity Ave.
82001937	MASSACHUSETTS	Cambridge	Dodge, Edward, House	70 Sparks St.
86001279	MASSACHUSETTS	Cambridge	Dunvegan, The	1654 Massachusetts Ave.
83000797	MASSACHUSETTS	Cambridge	East Cambridge Historic District	Roughly bounded by Cambridge, Hurley and 5th Sts.
82001938	MASSACHUSETTS	Cambridge	East Cambridge Savings Bank	292 Cambridge St.
86001280	MASSACHUSETTS	Cambridge	Eliot Hall at Radcliffe College	51 Shepard St.
83000798	MASSACHUSETTS	Cambridge	Ellis, Asa, House	158 Auburn St.
66000364	MASSACHUSETTS	Cambridge	Elmwood	33 Elmwood Ave.
82001939	MASSACHUSETTS	Cambridge	Farwell, R.H., House	2222-2224 Massachusetts Ave.
83000799	MASSACHUSETTS	Cambridge	Fay, Issac, House	123 Antrim St.
75000249	MASSACHUSETTS	Cambridge	First Baptist Church	Magazine and River Sts.
83000800	MASSACHUSETTS	Cambridge	Flentje, Ernst, House	129 Magazine St.
86001282	MASSACHUSETTS	Cambridge	Fogg Art Museum	2632 Quincy St.
86001681	MASSACHUSETTS	Cambridge	Follen Street Historic District	144 and 529 Follen St.
73000284	MASSACHUSETTS	Cambridge	Fort Washington	95 Waverly St.
82001940	MASSACHUSETTS	Cambridge	Fresh Pond Hotel	234 Lakeview Ave.
04001429	MASSACHUSETTS	Cambridge	Fresh Pond ParkwayMetropolitan Park System of Greater Boston	Fresh Pond Parkway
83000801	MASSACHUSETTS	Cambridge	Frost, David, House	26 Gray St.
83000802	MASSACHUSETTS	Cambridge	Frost, Elizabeth, Tenanthouse	35 Bowdoin St.
82001941	MASSACHUSETTS	Cambridge	Frost, Robert, House	29-35 Brewster St.
82001942	MASSACHUSETTS	Cambridge	Frost, Walter, House	10 Frost St.
71000686	MASSACHUSETTS	Cambridge	Fuller, Margaret, House	71 Cherry St.
87002543	MASSACHUSETTS	Cambridge	Gale, George, House	1416 Clinton St.
83000803	MASSACHUSETTS	Cambridge	Garfield Street Historic District	Garfield St. between Massachusetts Ave. and Oxford St.
86001283	MASSACHUSETTS	Cambridge	Gray Gardens East and West Historic District	137 Gray Gardens E, 324 Gray Gardens W, 91 Garden and 60 Raymond S
66000655	MASSACHUSETTS	Cambridge	Gray, Asa, House	88 Garden St.
82001943	MASSACHUSETTS	Cambridge	Greek Revival Cottage	59 Rice St.
83000806	MASSACHUSETTS	Cambridge	Hall Tavern	20 Gray Gardens West St.
86001284	MASSACHUSETTS	Cambridge	Hapgood, Richard, House	382392 Harvard St.
86002073	MASSACHUSETTS	Cambridge	Harvard Houses Historic District	Roughly bounded by Mt. Auburn & Grant & Cowperwaite Sts., Banks St. & Put
78000440	MASSACHUSETTS	Cambridge	Harvard Lampoon Building	44 Bow St.
82001944	MASSACHUSETTS	Cambridge	Harvard Square Historic District	Massachusetts Ave., Boylston and Brattle Sts.
86003654	MASSACHUSETTS	Cambridge	Harvard Square Historic District (Boundary Increase)	Roughly bounded by Harvard & Massachusetts Aves., Mt. Auburn, Winthrop, E
78000441	MASSACHUSETTS	Cambridge	Harvard Square Subway Kiosk	Massachusetts Ave. and Boylston St.
82001945	MASSACHUSETTS	Cambridge	Harvard Street Historic District	Harvard St. Between Ellery and Hancock Sts.
87000500	MASSACHUSETTS	Cambridge	Harvard Union	Quincy and Harvard Sts.
87002137	MASSACHUSETTS	Cambridge	Harvard Yard Historic District	Roughly bounded by underpass, Broadway & Quincy Sts., Massachusetts Ave
82001946	MASSACHUSETTS	Cambridge	Hastings Square Historic District	Roughly bounded by Rockingham, Henry, Chestnut and Brookline Sts.
70000681	MASSACHUSETTS	Cambridge	Hastings, Oliver, House	101 Brattle St.
78000442	MASSACHUSETTS	Cambridge	Hasty Pudding Club	12 Holyoke St.
82001947	MASSACHUSETTS	Cambridge	Henderson Carriage Repository	2067-2089 Massachusetts Ave.
82001948	MASSACHUSETTS	Cambridge	Higginson, Col. Thomas Wentworth, House	29 Buckingham St.
83000807	MASSACHUSETTS	Cambridge	Hill, Aaron, House	17 Brown St.
83000808	MASSACHUSETTS	Cambridge	Holmes, Joseph, House	144 Coolidge Hill St.
83004030	MASSACHUSETTS	Cambridge	Homer-Lovell House	11 Forest St.
83000809	MASSACHUSETTS	Cambridge	Hooper-Eliot House	25 Reservoir Rd.
79000355	MASSACHUSETTS	Cambridge	Hooper-Lee Nichols House	159 Brattle St.

	Listed
	Date
	19830630
	19720922
	19860710
	19830630
	19760107
	19860519
	19760107
	19820413
	19820413
	19900302
	19860912
	19820413
	19860519
	19830630
	19820413
	19860519
	19830630
	19661015
	19820413
	19830630
	19750414
	19730414
	19860519
	19860519
	19730403
	19820413
	20050105
	19830630
	19830630
	19820413
	19820413
	19710702
	19880210
	19830630
0 Raymond Sts.	19860519
	19661015
	19820413
	19830630
	19860519
anks St. & Putman Ave., the Memorial River, & Boyleston	
	19780330
	19820413
n, Winthrop, Bennett, Story & Church Sts.	19880728
	19780130
	19820413
	19870126
achusetts Ave., & Peabody St.	19871214
e Sts.	19820413
	19701230
	19780109
	19820413
	19820413
	19830630
	19830630
	19831222
	19830630
	19790615

National Register Documentation on Listed Properties

Note: Not all National Register properties have been digitized yet

Reference Number	State	City	Resource Name	Address
83000811	MASSACHUSETTS	Cambridge	Howe House	6 Appleton St.
82001949	MASSACHUSETTS	Cambridge	Howells, William Dean, House	37 Concord Ave.
82001953	MASSACHUSETTS	Cambridge	Hoyt, Benjamin, House	134 Otis St.
82001950	MASSACHUSETTS	Cambridge	Hubbard Park Historic District	Hubbard Park, Mercer Circle and Sparks Sts.
82001951	MASSACHUSETTS	Cambridge	Inman Square Historic District	Hampshire, Cambridge, and Inman Sts.
86001308	MASSACHUSETTS	Cambridge	Jarvis, The	27 Everett St.
83000813	MASSACHUSETTS	Cambridge	Jones, William R., House	307 Harvard St.
89002285	MASSACHUSETTS	Cambridge	Kennedy, F. A., Steam Bakery	129 Franklin St.
82001952	MASSACHUSETTS	Cambridge	Kidder-Sargent-McCrehan House	146 Rindge Ave.
82001954	MASSACHUSETTS	Cambridge	Kingsley, Chester, House	10 Chester St.
86001683	MASSACHUSETTS	Cambridge	Kirkland Place Historic District	Kirkland Pl.
82001955	MASSACHUSETTS	Cambridge	Lamson, Rufus, House	72-74 Hampshire St.
82001955	MASSACHUSETTS	Cambridge	Larrison, Ruids, House	22 Larch Rd.
82001957	MASSACHUSETTS	Cambridge	Lechmere Point Corporation Houses	45-51 Gore St. and 25 3rd St.
76001970	MASSACHUSETTS	Cambridge	Little, Arthur D., Inc., Building	Memorial Dr.
86002070	MASSACHUSETTS	Cambridge	LittlefieldRoberts House	16 Prescott St.
66000049	MASSACHUSETTS	-		105 Brattle St.
		Cambridge	Longfellow National Historic Site Lovell Block	1853 Massachusetts Ave.
83000814 86002076	MASSACHUSETTS MASSACHUSETTS	Cambridge		
		Cambridge	Lovering, Joseph, House Lowell School	38 Kirkland St. 25 Lowell St.
82001958	MASSACHUSETTS	Cambridge		
83000815	MASSACHUSETTS	Cambridge	Lowell, The Maple Avenue Historic District	33 Lexington Ave.
83000816	MASSACHUSETTS	Cambridge	I Contraction of the second	Maple Ave. between Marie Ave. and Broadway
82001959	MASSACHUSETTS	Cambridge	Mason, Josiah, Jr., House	11 Market St.
83000817	MASSACHUSETTS	Cambridge	Mason, W. A., House	87 Raymond St.
66000769	MASSACHUSETTS	Cambridge	Massachusetts Hall, Harvard University	Harvard University Yard
82001960	MASSACHUSETTS	Cambridge	McLean, Isaac, House	2218 Massachusetts Ave.
82001961	MASSACHUSETTS	Cambridge	Mead, Alpheus, House	2200 Massachusetts Ave.
82001962	MASSACHUSETTS	Cambridge	Melvin, Isaac, House	19 Centre St.
86001310	MASSACHUSETTS	Cambridge	Memorial Drive Apartments Historic District	983984, 985986, 987989, and 992993 Memorial Dr.
70000685	MASSACHUSETTS	Cambridge	Memorial Hall, Harvard University	Cambridge and Quincy Sts., Harvard University campus
86001311	MASSACHUSETTS	Cambridge	Montrose, The	1648 Massachusetts Ave.
75000254	MASSACHUSETTS	Cambridge	Mount Auburn Cemetery	580 Mount Auburn St.
83000818	MASSACHUSETTS	Cambridge	Mount Auburn Cemetery Reception House	583 Mt. Auburn St.
05001209	MASSACHUSETTS	Cambridge	New England Confectionery Company Factory	250 Massachusetts Ave.
82001963	MASSACHUSETTS	Cambridge	Newman, Andrew, House	23 Fairmont St.
82001964	MASSACHUSETTS	Cambridge	Norfolk Street Historic District	Norfolk St. between Suffolk and Austin Sts.
83000819	MASSACHUSETTS	Cambridge	North Avenue Congregational Church	183 Massachusetts Ave.
82001965	MASSACHUSETTS	Cambridge	Noyes, J.A., House	1 Highland St.
82001967	MASSACHUSETTS	Cambridge	Odd Fellows Hall	536 Massachusetts Ave.
82001968	MASSACHUSETTS	Cambridge	Old Cambridge Baptist Church	398 Harvard St.
83000821	MASSACHUSETTS	Cambridge	Old Cambridge Historic District	Irregular pattern along Brattle St.
83000820	MASSACHUSETTS	Cambridge	Old Cambridgport Historic District	Cherry, Harvard and Washington Sts.
73000287	MASSACHUSETTS	Cambridge	Old Harvard Yard	Massachusetts Ave. and Cambridge St.
82001969	MASSACHUSETTS	Cambridge	Opposition House	2-4 Hancock PI.
83000822	MASSACHUSETTS	Cambridge	Orne, Sarah, House	10 Coolidge Hill Rd.
86001312	MASSACHUSETTS	Cambridge	Peabody Court Apartments	4143 Linnaean St.
83000824	MASSACHUSETTS	Cambridge	Porcellian Club	1320-24 Massachusetts Ave.
73000288	MASSACHUSETTS	Cambridge	Pratt, Dexter, House	54 Brattle St.
82001970	MASSACHUSETTS	Cambridge	Prospect Congregational Church	99 Prospect St.
82001971	MASSACHUSETTS	Cambridge	Read, Cheney, House	135 Western Ave.
82001972	MASSACHUSETTS	Cambridge	Reardon, Edmund, House	195 Erie St.
85002663	MASSACHUSETTS	Cambridge	Reversible Collar Company Building	2527 Mt. Auburn & 1012 Arrow Sts.
76001999	MASSACHUSETTS	Cambridge	Richards, Theodore W., House	15 Follen St.
82001973	MASSACHUSETTS	Cambridge	River Street Firehouse	176 River St.
82001974	MASSACHUSETTS	Cambridge	Sacred Heart Church, Rectory, School and Convent	6th and Thorndike Sts.
82001975	MASSACHUSETTS	Cambridge	Salem-Auburn Streets Historic District	Salem and Auburn Sts.
76000238	MASSACHUSETTS	Cambridge	Sands, Hiram, House	22 Putnam Ave.

	Listed Date 19830630
	19820413
	19820413
	19820413
	19860519
	19830630
	19900104
	19820413
	19820413
	19860519
	19820413
	19820413
	19820413
19820413	19761208
	19860912
	19661015
	19830630
	19860912 19820413
	19820413
	19830630
	19820413
	19830630
	19661015
	19820413
	19820413
	19820413
	19860519
	19860519
	19750421
	19830630
	20051109
	19820413
	19830630
19701230	19820413
	19820413
	19820413
	19830630
	19730206
	19820413
	19830630
	19830630
10020/12	19730508
19820413	19820413
	19820413
10820620	19850927
19830630	19760107
	19820413
	19820413
	19820413
	19760430

National Register Documentation on Listed Properties

Note: Not all National Register properties have been digitized yet

Reference	State	City	Resource	Add
Number			Name	
82001976	MASSACHUSETTS	Cambridge	Sands, Ivory, House	145
83000825	MASSACHUSETTS	Cambridge	Saunders, William, House	6 Pi
86002075	MASSACHUSETTS	Cambridge	Sears TowerHarvard Observatory	60 0
83000826	MASSACHUSETTS	Cambridge	Second Cambridge Savings Bank Building	11-2
83000827	MASSACHUSETTS	Cambridge	Second Waterhouse House	9 Fo
70000732	MASSACHUSETTS	Cambridge	Sever Hall, Harvard University	Har
86001680	MASSACHUSETTS	Cambridge	Shady Hill Historic District	Rou
94000546	MASSACHUSETTS	Cambridge	Shell Oil Company "Spectacular" Sign	187
82001977	MASSACHUSETTS	Cambridge	Slowey, Patrick, House	73 E
82001978	MASSACHUSETTS	Cambridge	Soule, Lawrence, House	11 F
83000828	MASSACHUSETTS	Cambridge	St. James Episcopal Church	199
83000829	MASSACHUSETTS	Cambridge	St. John's Roman Catholic Church	227
86001313	MASSACHUSETTS	Cambridge	Stanstead, The	19 \
86001315	MASSACHUSETTS	Cambridge	StickneyShepard House	11
89001246	MASSACHUSETTS	Cambridge	Stoughton, Mary Fisk, House	90 E
82001979	MASSACHUSETTS	Cambridge	Taylor Square Firehouse	113
86002078	MASSACHUSETTS	Cambridge	TreadwellSparks House	21 k
82001980	MASSACHUSETTS	Cambridge	Union Railway Car Barn	613
70000736	MASSACHUSETTS	Cambridge	University Hall, Harvard University	Har
86002081	MASSACHUSETTS	Cambridge	University Museum	11
82001981	MASSACHUSETTS	Cambridge	Upper Magazine Street Historic District	Cot
83000831	MASSACHUSETTS	Cambridge	Urban Rowhouse	26-3
82001982	MASSACHUSETTS	Cambridge	Urban Rowhouse	40-4
82001983	MASSACHUSETTS	Cambridge	Urban Rowhouse	30-3
86001343	MASSACHUSETTS	Cambridge	US Post OfficeCentral Square	770
83000832	MASSACHUSETTS	Cambridge	Valentine Soap Workers Cottage	5-7
83000833	MASSACHUSETTS	Cambridge	Valentine Soap Workers Cottage	101
83000834	MASSACHUSETTS	Cambridge	Vinal, Albert, House	325
94000554	MASSACHUSETTS	Cambridge	Walden Street Cattle Pass	Adja
83000835	MASSACHUSETTS	Cambridge	Ware Hall	383
86001317	MASSACHUSETTS	Cambridge	Warren, Langford H., House	6 G
82001984	MASSACHUSETTS	Cambridge	Watson, Abraham, House	181
82001985	MASSACHUSETTS	Cambridge	Willis, Stillman, House	1 Pc
82001986	MASSACHUSETTS	Cambridge	Winter Street Historic District	Win
86001318	MASSACHUSETTS	Cambridge	Withey, S. B., House	10 <i>A</i>
86001319	MASSACHUSETTS	Cambridge	Wood, J. A., House	3 Sa
82001987	MASSACHUSETTS	Cambridge	Wyeth Brickyard Superintendent's House	336
82001988	MASSACHUSETTS	Cambridge	Wyeth, John, House	56 A
82001989	MASSACHUSETTS	Cambridge	Wyeth-Smith House	152

ddress

45 Elm St. Prentiss St. 0 Garden St. 1-21 Dunster St. Follen St. larvard Yard oughly bounded by Museum, Beacon and Holden, and Kirkland Sts., and Francis Ave. 87 Magazine St. 3 Bolton St. Russell St. 991 Massachusetts Ave. 270 Massachusetts Ave. 9 Ware St. 1--13 Remington St. 0 Brattle St. 13 Garden St. Kirkland St. 13-621 Cambridge St. larvard Yard 1--25 Divinity Ave. ottage, Magazine, William and Perry Sts. 6-32 River St. 0-48 Pearl St. 0-38 Pearl St. 70 Massachusetts Ave. -7 Cottage St. 01 Pearl St. 25 Harvard St. djacent to MBTA right-of-way at Walden St. 83 Harvard St. Garden Terr. 81-183 Sherman St. Potter Park Vinter St. 0 Appian Way Sacramento St. 36 Rindge Ave. 6 Aberdeen Ave. 52 Vassal Lane

19890629

19820413

19820413

19820413

19820413

APPENDIX E

Copy of City of Cambridge Dewatering Permit Application

PERMIT TO DEWATER

Location:

Owner:

Contractor:

Temporary

Permanent

The property owner, agrees to hold harmless and indemnify the City of Cambridge for any liability on the part of the City directly or indirectly arising out of the dewatering operation.

The issuance of this permit is based in part in the submission packet of the applicant with documentation as follows:

In addition, the application has been reviewed by the City under third party agreement as documented in the following reports:

All activities conducted in conjunction with the issuance of this permit must be in accordance with the provisions of the aforementioned reports. Any deviations in conditions must be reported to and approved by the Commissioner of Public Works.

This permit is in addition to any other street permit issued by the Department in connection with any street excavation or obstruction; and all conditions as specified in the Discharge Permit for Dewatering.

For the entire period of time the groundwater is being discharged to a storm drain, the property owner shall provide copies of each Discharge Monitoring Report Form submitted to the EPA, pursuant to the owner's discharge permit.

If in the future the EPA requires the City of Cambridge to bring existing stormwater drainage into compliance with EPA quality standards, as a condition to the continuation of discharge of that stormwater (also including groundwater) into an EPA regulated system into which the (property owner) drains, the owner will agree to maintain its water discharge with such EPA water quality standards.

The property owner and contractor shall at all times meet the conditions specified in the requisite legal agreement/affidavits.

All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces or property.

Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the

Contractor during the progress of work as directed by the Public Works Department.

Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.

Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.

Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.

Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.

This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.

The following special conditions as set forth below are part of the permit.

City Manager

Date

City Solicitor

Date

Commissioner of Public

Contractor

Date

Date

CC: Engineering Supervisor of Sewer Maintenance and Engineering Superintendent of Streets Commissioner of Inspectional Services

hinson

Property Manager: Corporate Entity President, General Partner or Trustee Trustee with Instrument of Authority

Shirley Banks Robinson Assistant Vice President

5-2013

Date

APPENDIX F

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number:	L1400799
Client:	Haley & Aldrich, Inc.
	465 Medford Street, Suite 2200
	Charlestown, MA 02129-1400
ATTN:	Todd Butler
Phone:	(617) 886-7424
Project Name:	130 CAMBRIDGE PARK DRIVE
Project Number:	35060-300
Report Date:	01/10/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	130 CAMBRIDGE PARK DRIVE
Project Number:	35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1400799-01	HA-7 (OW)	Not Specified	01/06/14 11:45
L1400799-02	TRIP BLANKS	Not Specified	01/06/14 00:00

Project Name:130 CAMBRIDGE PARK DRIVEProject Number:35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 130 CAMBRIDGE PARK DRIVE Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Case Narrative (continued)

Total Metals

The WG663230-4 MS recovery for iron (30%), performed on L1400799-01 (HA-7 (OW)), does not apply because the sample concentration is greater than four times the spike amount added.

The WG663223-4 MS recovery, performed on L1400799-01 (HA-7 (OW)), is below the acceptance criteria for zinc (48%). A post digestion spike was performed with an acceptable recovery of 108%.

The WG663223-3 Laboratory Duplicate RPD, performed on L1400799-01, is outside the acceptance criteria for nickel (31%) and zinc (185%). The elevated RPD has been attributed to the non-homogeneous nature of the sample utilized for the laboratory duplicate.

Dissolved Metals

The WG663478-4 MS recovery, performed on L1400799-01 (HA-7 (OW)), is below the acceptance criteria for antimony (71%). A post digestion spike was performed with an acceptable recovery of 108%.

The WG663478-4 MS recovery, performed on L1400799-01 (HA-7 (OW)), is below the acceptance criteria for silver (71%). A post digestion spike was performed with an unacceptable recovery of 62%. This has been attributed to sample matrix.

The WG663479-4 MS recovery, performed on L1400799-01 (HA-7 (OW)), is below the acceptance criteria for iron (70%). A post digestion spike was performed with an acceptable recovery of 80%.

The WG663478-3 Laboratory Duplicate RPD, performed on L1400799-01, is outside the acceptance criteria for selenium (42%). The elevated RPD has been attributed to the non-homogeneous nature of the sample utilized for the laboratory duplicate.

Solids, Total Suspended

L1400799-01 has an elevated detection limit due to limited sample volume available for analysis.

TPH

WG663282: A matrix spike could not be performed due to insufficient sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cythia Millia McQueen

Authorized Signature:

Title: Technical Director/Representative

Date: 01/10/14

ORGANICS

VOLATILES

			Serial_No	0:01101414:44
Project Name:	130 CAMBRIDGE PARK	DRIVE	Lab Number:	L1400799
Project Number:	35060-300		Report Date:	01/10/14
		SAMPLE RESULTS		
Lab ID:	L1400799-01		Date Collected:	01/06/14 11:45
Client ID:	HA-7 (OW)		Date Received:	01/06/14
Sample Location:	Not Specified		Field Prep:	See Narrative
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	01/09/14 10:43			
Analyst:	MM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1

					Ş	Serial_No	:01101414:44
Project Name:	130 CAMBRIDGE PA	RK DRIVE			Lab Nu	mber:	L1400799
Project Number:	35060-300				Report	Date:	01/10/14
		SAMPI		6			01/10/11
Lab ID:	L1400799-01				Date Coll	ected:	01/06/14 11:45
Client ID:	HA-7 (OW)				Date Rec	eived:	01/06/14
Sample Location:	Not Specified				Field Pre	o:	See Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	5.0		1
1,4-Dichlorobutane		ND		ug/l	5.0		1
1,2,3-Trichloropropane		ND		ug/l	5.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	5.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	2.5		1
Tetrahydrofuran		ND		ug/l	5.0		1
2,2-Dichloropropane		ND		ug/l	2.5		1
1,2-Dibromoethane		ND		ug/l	2.0		1
1,3-Dichloropropane		ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethan	e	ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	2.5		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	2.5		1
o-Chlorotoluene		ND		ug/l	2.5		1
p-Chlorotoluene		ND		ug/l	2.5		1
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	2.5		1
n-Propylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	2.5		1
1,2,4-Trichlorobenzene		ND		ug/l	2.5		1
1,3,5-Trimethylbenzene		ND		ug/l	2.5		1

						Serial_No	:01101414:44
Project Name:	130 CAMBRIDGE PA	RK DRIVE			Lab Nu	mber:	L1400799
Project Number:	35060-300				Report	Date:	01/10/14
		SAMP	LE RESULT	5			
Lab ID:	L1400799-01				Date Col	lected:	01/06/14 11:45
Client ID:	HA-7 (OW)				Date Rec	eived:	01/06/14
Sample Location:	Not Specified				Field Pre	p:	See Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	ıh Lab					
1,2,4-Trimethylbenzene		ND		ug/l	2.5		1
trans-1,4-Dichloro-2-bute	ne	ND		ug/l	2.5		1
Ethyl ether		ND		ug/l	2.5		1
Tert-Butyl Alcohol		ND		ug/l	10		1
•							

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	105		70-130	

	Serial_No	01101414:44
130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
35060-300	Report Date:	01/10/14
SAMPLE RESULTS		
L1400799-01	Date Collected:	01/06/14 11:45
HA-7 (OW)	Date Received:	01/06/14
Not Specified	Field Prep:	See Narrative
Water		
1,8260C-SIM(M)		
01/09/14 10:43		
MM		
	35060-300 SAMPLE RESULTS L1400799-01 HA-7 (OW) Not Specified Water 1,8260C-SIM(M) 01/09/14 10:43	130 CAMBRIDGE PARK DRIVELab Number:35060-300Report Date:SAMPLE RESULTSL1400799-01Date Collected:HA-7 (OW)Date Received:Not SpecifiedField Prep:Water1,8260C-SIM(M)01/09/14 10:43Uter

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - Westborough Lab							
1,4-Dioxane	ND		ug/l	3.0		1	

		Serial_No	:01101414:44
Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	SAMPLE RESULTS	6	
Lab ID:	L1400799-01	Date Collected:	01/06/14 11:45
Client ID:	HA-7 (OW)	Date Received:	01/06/14
Sample Location:	Not Specified	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	14,504.1	Extraction Date:	01/08/14 12:45
Analytical Date:	01/08/14 18:05		
Analyst:	GP		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough La	b						
1,2-Dibromoethane	ND		ug/l	0.010		1	A

		Serial_No:01101414:44
Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number: L1400799
Project Number:	35060-300	Report Date: 01/10/14
	SAMPLE RESULTS	
Lab ID:	L1400799-02	Date Collected: 01/06/14 00:00
Client ID:	TRIP BLANKS	Date Received: 01/06/14
Sample Location:	Not Specified	Field Prep: Not Specified
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	01/09/14 10:11	
Analyst:	MM	

Parameter	Result	Qualifier Ur	nits RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	uç	q/l 3.0		1
1,1-Dichloroethane	ND	uç	-		1
Chloroform	ND	uç	g/l 0.75		1
Carbon tetrachloride	ND	uç			1
1,2-Dichloropropane	ND	uç	g/l 1.8		1
Dibromochloromethane	ND	uç	g/l 0.50		1
1,1,2-Trichloroethane	ND	uç	g/l 0.75		1
Tetrachloroethene	ND	uç	g/l 0.50		1
Chlorobenzene	ND	uç	g/l 0.50		1
Trichlorofluoromethane	ND	uç	g/l 2.5		1
1,2-Dichloroethane	ND	uç	g/l 0.50		1
1,1,1-Trichloroethane	ND	uç	g/l 0.50		1
Bromodichloromethane	ND	uç	g/l 0.50		1
trans-1,3-Dichloropropene	ND	uç	g/l 0.50		1
cis-1,3-Dichloropropene	ND	uç	g/l 0.50		1
1,1-Dichloropropene	ND	uç	g/l 2.5		1
Bromoform	ND	uç	g/l 2.0		1
1,1,2,2-Tetrachloroethane	ND	uç	g/l 0.50		1
Benzene	ND	uį	g/l 0.50		1
Toluene	ND	uç	g/l 0.75		1
Ethylbenzene	ND	uç	g/l 0.50		1
Chloromethane	ND	uç	g/l 2.5		1
Bromomethane	ND	uç	g/l 1.0		1
Vinyl chloride	ND	uç	g/l 1.0		1
Chloroethane	ND	uç	g/l 1.0		1
1,1-Dichloroethene	ND	uç	g/l 0.50		1
trans-1,2-Dichloroethene	ND	uç	g/l 0.75		1
Trichloroethene	ND	uç	g/l 0.50		1
1,2-Dichlorobenzene	ND	uç	g/l 2.5		1
1,3-Dichlorobenzene	ND	uç	g/l 2.5		1
1,4-Dichlorobenzene	ND	uç	g/l 2.5		1

	Serial_No:0110					:01101414:44	
Project Name:	130 CAMBRIDGE PAR	RK DRIVE			Lab Nu	mber:	L1400799
Project Number:	35060-300				Report	Date:	01/10/14
•		SAMPI		5	•		
Lab ID:	L1400799-02				Date Coll	ected:	01/06/14 00:00
Client ID:	TRIP BLANKS				Date Rec	eived:	01/06/14
Sample Location:	Not Specified				Field Prep	o:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborough	n Lab					
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	5.0		1
1,4-Dichlorobutane		ND		ug/l	5.0		1
1,2,3-Trichloropropane		ND		ug/l	5.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	5.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	5.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	2.5		1
Tetrahydrofuran		ND		ug/l	5.0		1
2,2-Dichloropropane		ND		ug/l	2.5		1
1,2-Dibromoethane		ND		ug/l	2.0		1
1,3-Dichloropropane		ND		ug/l	2.5		1
1,1,1,2-Tetrachloroethane	e	ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	2.5		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	2.5		1
o-Chlorotoluene		ND		ug/l	2.5		1
p-Chlorotoluene		ND		ug/l	2.5		1
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	2.5		1
n-Propylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	2.5		1
1,2,4-Trichlorobenzene		ND		ug/l	2.5		1
1,3,5-Trimethylbenzene		ND		ug/l	2.5		1

						Serial_No	:01101414:44
Project Name:	130 CAMBRIDGE PAI	RK DRIVE			Lab Nu	umber:	L1400799
Project Number:	35060-300				Report	Date:	01/10/14
		SAMP		6			
Lab ID:	L1400799-02				Date Col	lected:	01/06/14 00:00
Client ID:	TRIP BLANKS				Date Rec	eived:	01/06/14
Sample Location:	Not Specified				Field Prep:		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
1,2,4-Trimethylbenzene		ND		ug/l	2.5		1
trans-1,4-Dichloro-2-bute	ne	ND		ug/l	2.5		1
Ethyl ether		ND		ug/l	2.5		1
Tert-Butyl Alcohol		ND		ug/l	10		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	108		70-130	

		Serial_No	01101414:44
Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	SAMPLE RESULTS		
Lab ID:	L1400799-02	Date Collected:	01/06/14 00:00
Client ID:	TRIP BLANKS	Date Received:	01/06/14
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C-SIM(M)		
Analytical Date:	01/09/14 10:11		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - W	estborough Lab						
1,4-Dioxane	ND		ug/l	3.0		1	

		Serial_No:01	101414:44
Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	SAMPLE RESULTS		
Lab ID:	L1400799-02	Date Collected:	01/06/14 00:00
Client ID:	TRIP BLANKS	Date Received:	01/06/14
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	14,504.1	Extraction Date:	01/08/14 12:45
Analytical Date:	01/08/14 18:21		
Analyst:	GP		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough La	ıb						
1,2-Dibromoethane	ND		ug/l	0.010		1	A

Project Name: Project Number:	130 CAMBRIDGE PAF 35060-300	Method	Blank A Quality Co			umber: t Date:	L1400799 01/10/14
Analytical Method: Analytical Date: Analyst:	14,504.1 01/08/14 17:18 GP				Extrac	ction Date:	01/08/14 12:45
Baramoto		Result	Qualifier	Unite	RI	МП	

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - W	/estborough Lab fo	r sample(s)	: 01-02	Batch:	WG663446-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260C-SIM(M)Analytical Date:01/09/14 09:39Analyst:MM

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM -	Westboroug	h Lab for s	ample(s):	01-02	Batch:	WG663745-3	
1,4-Dioxane	ND		ug/l	3.0			

L1400799

01/10/14

Lab Number:

Report Date:

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 3

35060-300

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:01/09/14 09:39Analyst:MM

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 0	1-02 Batch:	WG663747-3
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	
1,4-Dichlorobenzene	ND	ug/l	2.5	

L1400799

01/10/14

Lab Number:

Report Date:

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

Mothod Bla

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:01/09/14 09:39Analyst:MM

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 01	-02 Batch:	WG663747-3
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dibromomethane	ND	ug/l	5.0	
1,4-Dichlorobutane	ND	ug/l	5.0	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Styrene	ND	ug/l	1.0	
Dichlorodifluoromethane	ND	ug/l	5.0	
Acetone	ND	ug/l	5.0	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	5.0	
Vinyl acetate	ND	ug/l	5.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	
2-Hexanone	ND	ug/l	5.0	
Ethyl methacrylate	ND	ug/l	5.0	
Acrylonitrile	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,2-Dibromoethane	ND	ug/l	2.0	
1,3-Dichloropropane	ND	ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
Bromobenzene	ND	ug/l	2.5	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	

L1400799

01/10/14

Lab Number:

Report Date:

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 350

35060-300

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:01/09/14 09:39Analyst:MM

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough La	b for sample(s): 01	-02 Batch:	WG663747-3
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,3,5-Trichlorobenzene	ND	ug/l	2.0	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Methyl Acetate	ND	ug/l	10	
Ethyl Acetate	ND	ug/l	10	
Isopropyl Ether	ND	ug/l	2.0	
Cyclohexane	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	10	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/l	10	
Methyl cyclohexane	ND	ug/l	10	
p-Diethylbenzene	ND	ug/l	2.0	
4-Ethyltoluene	ND	ug/l	2.0	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	

Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	01/09/14 09:39
Analyst:	MM

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough La	b for sampl	e(s): 01-02	Batch:	WG663747-3	

Surrogate	%Recovery	/ Qualifier	Acceptance Criteria
ounogato		Quanner	Uniona
1,2-Dichloroethane-d4	100		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	107		70-130

Project Name:	130 CAMBRIDGE PARK DRIVE	Batch Quality Control	Lab Number:	L1400799
Project Number:	35060-300		Report Date:	01/10/14

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ole(s): 01-02	2 Batch: WG6	63446-2					
1,2-Dibromoethane	94		-		70-130	-		20	A

Project Name:	130 CAMBRIDGE PARK DRIVE	Batch Quality Control	Lab Number:	L1400799
Project Number:	35060-300		Report Date:	01/10/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s)	: 01-02 Batc	h: WG66374	45-1 WG663745-2	2		
1,4-Dioxane	117		115		70-130	2		25

Batch Quality Control

Project Number: 35060-300

Lab Number: L1400799 Report Date: 01/10/14

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG663747-1 WG663747-2 Methylene chloride 108 105 70-130 20 3 1,1-Dichloroethane 100 96 70-130 20 4 Chloroform 98 70-130 20 100 2 Carbon tetrachloride 20 105 103 63-132 2 1,2-Dichloropropane 96 70-130 20 99 3 Dibromochloromethane 63-130 20 100 92 8 1,1,2-Trichloroethane 91 83 70-130 9 20 Tetrachloroethene 100 93 70-130 20 7 Chlorobenzene 75-130 25 97 89 9 Trichlorofluoromethane 62-150 20 112 108 4 100 94 70-130 20 1.2-Dichloroethane 6 1,1,1-Trichloroethane 103 100 67-130 3 20 Bromodichloromethane 94 67-130 20 98 4 trans-1,3-Dichloropropene 87 70-130 20 95 9 cis-1,3-Dichloropropene 70-130 20 101 97 4 1,1-Dichloropropene 70-130 20 111 108 3 Bromoform 100 98 54-136 2 20 1,1,2,2-Tetrachloroethane 92 88 67-130 4 20 25 Benzene 97 93 70-130 4 Toluene 92 70-130 25 99 7 Ethylbenzene 91 70-130 20 98 7

Batch Quality Control

Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG663747-1 WG663747-2 Chloromethane 110 107 64-130 20 3 Bromomethane 110 113 39-139 3 20 Vinyl chloride 55-140 20 113 111 2 20 Chloroethane 116 114 55-138 2 1,1-Dichloroethene 102 99 61-145 25 3 20 trans-1.2-Dichloroethene 100 96 70-130 4 Trichloroethene 93 89 70-130 4 25 1.2-Dichlorobenzene 98 94 70-130 20 4 70-130 20 1.3-Dichlorobenzene 97 94 3 1,4-Dichlorobenzene 70-130 20 98 94 4 Methyl tert butyl ether 63-130 20 98 93 5 p/m-Xylene 99 91 70-130 8 20 o-Xylene 93 70-130 20 98 5 cis-1.2-Dichloroethene 70-130 20 103 100 3 Dibromomethane 70-130 20 100 98 2 1.4-Dichlorobutane 90 70-130 20 94 4 1,2,3-Trichloropropane 96 90 64-130 6 20 Styrene 97 90 70-130 7 20 Dichlorodifluoromethane 20 132 129 36-147 2 58-148 20 Acetone 128 131 2 Carbon disulfide 104 101 51-130 20 3

Batch Quality Control

Project Number: 35060-300

Lab Number: L1400799 Report Date: 01/10/14

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG663747-1 WG663747-2 2-Butanone 101 100 63-138 20 1 Vinyl acetate 92 88 70-130 20 4 4-Methyl-2-pentanone 90 59-130 20 94 4 20 2-Hexanone 93 84 57-130 10 Ethyl methacrylate 92 70-130 20 98 6 Acrylonitrile 70-130 20 104 97 7 Bromochloromethane 101 98 70-130 3 20 Tetrahydrofuran 98 100 58-130 2 20 2,2-Dichloropropane 63-133 20 103 100 3 1,2-Dibromoethane 89 70-130 20 98 10 90 70-130 20 1,3-Dichloropropane 97 7 1,1,1,2-Tetrachloroethane 96 90 64-130 6 20 Bromobenzene 94 70-130 20 98 4 n-Butylbenzene 53-136 20 93 89 4 sec-Butylbenzene 92 70-130 20 96 4 tert-Butylbenzene 92 70-130 20 95 3 o-Chlorotoluene 96 93 70-130 3 20 p-Chlorotoluene 96 93 70-130 3 20 1,2-Dibromo-3-chloropropane 41-144 20 84 80 5 Hexachlorobutadiene 63-130 20 103 101 2 Isopropylbenzene 97 94 70-130 3 20

Batch Quality Control

Project Number: 35060-300

Lab Number: L1400799 Report Date: 01/10/14

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG663747-1 WG663747-2 p-Isopropyltoluene 94 90 70-130 20 4 Naphthalene 96 91 70-130 5 20 n-Propylbenzene 88 69-130 20 91 3 20 1,2,3-Trichlorobenzene 96 95 70-130 1 1,2,4-Trichlorobenzene 101 94 70-130 20 7 1,3,5-Trimethylbenzene 64-130 20 95 91 4 1,3,5-Trichlorobenzene 98 96 70-130 2 20 1,2,4-Trimethylbenzene 92 89 70-130 3 20 trans-1,4-Dichloro-2-butene 70-130 20 104 102 2 Ethyl ether 59-134 20 93 91 2 Methyl Acetate 105 102 70-130 20 3 Ethyl Acetate 93 88 70-130 6 20 Isopropyl Ether 101 97 70-130 20 4 Cyclohexane 96 70-130 20 98 2 Tert-Butyl Alcohol 98 70-130 20 105 7 Ethyl-Tert-Butyl-Ether 98 70-130 20 101 3 Tertiary-Amyl Methyl Ether 100 94 66-130 6 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 109 106 70-130 3 20 Methyl cyclohexane 70-130 20 92 88 4 p-Diethylbenzene 70-130 20 94 91 3 4-Ethyltoluene 98 95 70-130 3 20

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02	Batch:	WG663747-1	WG663747-2				
1,2,4,5-Tetramethylbenzene	97			92		70-130	5		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		97		70-130	
Toluene-d8	103		99		70-130	
4-Bromofluorobenzene	98		101		70-130	
Dibromofluoromethane	107		104		70-130	

Project Name: Project Number:	130 CAMBRID 35060-300	GE PARK D	DRIVE		Matrix Spike Analysis Batch Quality Control			Lab Number: Report Date:		L1400799 01/10/14				
Parameter	Native Sample	MS Added	MS Found	MS %Recoverv	Qual	MSD Found	MSD %Recoverv	Qual	Recovery Limits	RPD	Qual	RPD Limits	Column	

_	Parameter	Sample	Audeu	Found	%Recovery	Qual I	Found	%Recovery	Quai	LIIIIIIIS	RPD	Quai	LIIIIIIS	Column
	Microextractables by GC -	Westborough Lat	o Associated	sample(s): 01-	02 QC Bate	ch ID: WG66	63446-3	QC Sample:	L140079	99-01 CI	ient ID: I	HA-7 (C	W)	
	1,2-Dibromoethane	ND	0.252	0.236	94		-	-		70-130	-		20	А

SEMIVOLATILES

			Serial_No:0	01101414:44
Project Name:	130 CAMBRIDGE PARK DRIV	E	Lab Number:	L1400799
Project Number:	35060-300		Report Date:	01/10/14
	SA	MPLE RESULTS		
Lab ID:	L1400799-01		Date Collected:	01/06/14 11:45
Client ID:	HA-7 (OW)		Date Received:	01/06/14
Sample Location:	Not Specified		Field Prep:	See Narrative
Matrix:	Water		Extraction Method:	EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	01/08/14 12:45
Analytical Date:	01/09/14 02:37			
Analyst:	JC			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1

						Serial_No	:01101414:44
Project Name:	130 CAMBRIDGE PA	RK DRIVE			Lab Nu	umber:	L1400799
Project Number:	35060-300				Report	Date:	01/10/14
		SAMP		5			
Lab ID: Client ID: Sample Location:	L1400799-01 HA-7 (OW) Not Specified				Date Col Date Rec Field Pre	ceived:	01/06/14 11:45 01/06/14 See Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westbo	orough Lab					
2,4,6-Trichlorophenol		ND		ug/l	5.0		1
p-Chloro-m-cresol		ND		ug/l	2.0		1
2-Chlorophenol		ND		ug/l	2.0		1
2,4-Dichlorophenol		ND		ug/l	5.0		1
2,4-Dimethylphenol		ND		ug/l	5.0		1
2-Nitrophenol		ND		ug/l	10		1
4-Nitrophenol		ND		ug/l	10		1
2,4-Dinitrophenol		ND		ug/l	20		1
4,6-Dinitro-o-cresol		ND		ug/l	10		1
Phenol		ND		ug/l	5.0		1
2-Methylphenol		ND		ug/l	5.0		1
3-Methylphenol/4-Methylp	phenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol		ND		ug/l	5.0		1
Benzoic Acid		ND		ug/l	50		1
Benzyl Alcohol		ND		ug/l	2.0		1
Carbazole		ND		ug/l	2.0		1
Pyridine		ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	47		21-120
Phenol-d6	28		10-120
Nitrobenzene-d5	54		23-120
2-Fluorobiphenyl	74		15-120
2,4,6-Tribromophenol	74		10-120
4-Terphenyl-d14	72		41-149

		Serial_No:01101414:44
Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number: L1400799
Project Number:	35060-300	Report Date: 01/10/14
	SAMPLE RESULTS	
Lab ID:	L1400799-01	Date Collected: 01/06/14 11:45
Client ID:	HA-7 (OW)	Date Received: 01/06/14
Sample Location:	Not Specified	Field Prep: See Narrative
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date: 01/08/14 12:46
Analytical Date:	01/09/14 12:53	
Analyst:	MW	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-S	SIM - Westborough Lal	b				
Acenaphthene	ND		ug/l	0.20		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.20		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.20		1
Benzo(a)anthracene	ND		ug/l	0.20		1
Benzo(a)pyrene	ND		ug/l	0.20		1
Benzo(b)fluoranthene	ND		ug/l	0.20		1
Benzo(k)fluoranthene	ND		ug/l	0.20		1
Chrysene	ND		ug/l	0.20		1
Acenaphthylene	ND		ug/l	0.20		1
Anthracene	ND		ug/l	0.20		1
Benzo(ghi)perylene	ND		ug/l	0.20		1
Fluorene	ND		ug/l	0.20		1
Phenanthrene	ND		ug/l	0.20		1
Dibenzo(a,h)anthracene	ND		ug/l	0.20		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20		1
Pyrene	ND		ug/l	0.20		1
1-Methylnaphthalene	ND		ug/l	0.20		1
2-Methylnaphthalene	ND		ug/l	0.20		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

% Recovery	Qualifier	Acceptance Criteria	
39		21-120	
27		10-120	
66		23-120	
61		15-120	
75		10-120	
80		41-149	
	39 27 66 61 75	39 27 66 61 75	% Recovery Qualifier Criteria 39 21-120 27 10-120 66 23-120 61 15-120 75 10-120

Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	01/09/14 01:23	Extraction Date:	01/08/14 12:45
Analyst:	JC		

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS -	- Westborough	h Lab for sample(s	s): 01 Batch:	WG663526-1
Benzidine	ND	ug/l	20	
1,2,4-Trichlorobenzene	ND	ug/l	5.0	
Bis(2-chloroethyl)ether	ND	ug/l	2.0	
1,2-Dichlorobenzene	ND	ug/l	2.0	
1,3-Dichlorobenzene	ND	ug/l	2.0	
1,4-Dichlorobenzene	ND	ug/l	2.0	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	
2,4-Dinitrotoluene	ND	ug/l	5.0	
2,6-Dinitrotoluene	ND	ug/l	5.0	
Azobenzene	ND	ug/l	2.0	
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	
Hexachlorocyclopentadiene	ND	ug/l	20	
Isophorone	ND	ug/l	5.0	
Nitrobenzene	ND	ug/l	2.0	
NDPA/DPA	ND	ug/l	2.0	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	
Butyl benzyl phthalate	ND	ug/l	5.0	
Di-n-butylphthalate	ND	ug/l	5.0	
Di-n-octylphthalate	ND	ug/l	5.0	
Diethyl phthalate	ND	ug/l	5.0	
Dimethyl phthalate	ND	ug/l	5.0	
Aniline	ND	ug/l	2.0	
4-Chloroaniline	ND	ug/l	5.0	
2-Nitroaniline	ND	ug/l	5.0	
3-Nitroaniline	ND	ug/l	5.0	
4-Nitroaniline	ND	ug/l	5.0	
Dibenzofuran	ND	ug/l	2.0	
n-Nitrosodimethylamine	ND	ug/l	2.0	

Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	01/09/14 01:23	Extraction Date:	01/08/14 12:45
Analyst:	JC		

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	S - Westborough	Lab for sa	mple(s):	01	Batch:	WG663526-1
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		5.0	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
2-Fluorophenol	51	21-120	
Phenol-d6	34	10-120	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	80	15-120	
2,4,6-Tribromophenol	100	10-120	
4-Terphenyl-d14	93	41-149	

Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	01/09/14 11:25	Extraction Date:	01/08/14 12:46
Analyst:	MW		

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/M	S-SIM - Westbo	rough Lab for sample	(s): 01	Batch: WG663527-1
Acenaphthene	ND	ug/l	0.20	
2-Chloronaphthalene	ND	ug/l	0.20	
Fluoranthene	ND	ug/l	0.20	
Hexachlorobutadiene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	0.20	
Benzo(a)anthracene	ND	ug/l	0.20	
Benzo(a)pyrene	ND	ug/l	0.20	
Benzo(b)fluoranthene	ND	ug/l	0.20	
Benzo(k)fluoranthene	ND	ug/l	0.20	
Chrysene	ND	ug/l	0.20	
Acenaphthylene	ND	ug/l	0.20	
Anthracene	ND	ug/l	0.20	
Benzo(ghi)perylene	ND	ug/l	0.20	
Fluorene	ND	ug/l	0.20	
Phenanthrene	ND	ug/l	0.20	
Dibenzo(a,h)anthracene	ND	ug/l	0.20	
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20	
Pyrene	ND	ug/l	0.20	
1-Methylnaphthalene	ND	ug/l	0.20	
2-Methylnaphthalene	ND	ug/l	0.20	
Pentachlorophenol	ND	ug/l	0.80	
Hexachlorobenzene	ND	ug/l	0.80	
Hexachloroethane	ND	ug/l	0.80	

Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	01/09/14 11:25	Extraction Date:	01/08/14 12:46
Analyst:	MW		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westb	orough Lab	for sampl	e(s): 01	Batch: WG663527-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	43	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	93	10-120
4-Terphenyl-d14	84	41-149

Batch Quality Control

Project Number: 35060-300

Lab Number: L1400799 Report Date: 01/10/14

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG663526-2 WG663526-3 Benzidine 39 10-75 30 34 14 1,2,4-Trichlorobenzene 73 82 39-98 12 30 Bis(2-chloroethyl)ether 69 40-140 30 69 0 30 1,2-Dichlorobenzene 70 73 40-140 4 1.3-Dichlorobenzene 70 40-140 30 67 4 30 1.4-Dichlorobenzene 68 70 36-97 3 3,3'-Dichlorobenzidine 104 106 40-140 2 30 2,4-Dinitrotoluene Q Q 24-96 3 30 101 104 2.6-Dinitrotoluene 40-140 30 88 90 2 92 40-140 30 Azobenzene 96 4 4-Chlorophenyl phenyl ether 102 40-140 30 98 4 4-Bromophenyl phenyl ether 99 117 40-140 17 30 Bis(2-chloroisopropyl)ether 60 40-140 30 60 0 Bis(2-chloroethoxy)methane 30 95 92 40-140 3 Hexachlorocyclopentadiene 42 40-140 30 40 5 84 40-140 30 Isophorone 100 17 Nitrobenzene 80 80 40-140 0 30 NDPA/DPA 100 101 40-140 1 30 Bis(2-ethylhexyl)phthalate 30 120 120 40-140 0 Butyl benzyl phthalate 40-140 30 99 109 10 Di-n-butylphthalate 109 114 40-140 30 4

Project Number: 35060-300 Lab Number: L1400799 Report Date: 01/10/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s):	01 Batch:	WG663526-2	WG663526-3			
Di-n-octylphthalate	137		135		40-140	1	30	
Diethyl phthalate	100		104		40-140	4	30	
Dimethyl phthalate	98		101		40-140	3	30	
Aniline	15	Q	16	Q	40-140	6	30	
4-Chloroaniline	40		41		40-140	2	30	
2-Nitroaniline	96		96		52-143	0	30	
3-Nitroaniline	70		73		25-145	4	30	
4-Nitroaniline	92		94		51-143	2	30	
Dibenzofuran	96		99		40-140	3	30	
n-Nitrosodimethylamine	56		55		22-74	2	30	
2,4,6-Trichlorophenol	100		103		30-130	3	30	
p-Chloro-m-cresol	106	Q	116	Q	23-97	9	30	
2-Chlorophenol	83		83		27-123	0	30	
2,4-Dichlorophenol	99		106		30-130	7	30	
2,4-Dimethylphenol	116		116		30-130	0	30	
2-Nitrophenol	100		95		30-130	5	30	
4-Nitrophenol	66		65		10-80	2	30	
2,4-Dinitrophenol	40		44		20-130	10	30	
4,6-Dinitro-o-cresol	40		44		20-164	10	30	
Phenol	39		39		12-110	0	30	
2-Methylphenol	74		73		30-130	1	30	

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

LCS LCSD %Recovery RPD %Recovery %Recovery Parameter Qual Qual Limits RPD Qual Limits Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG663526-2 WG663526-3 3-Methylphenol/4-Methylphenol 78 72 30-130 8 30 2,4,5-Trichlorophenol 30-130 30 103 106 3 Benzoic Acid 59 61 10-164 3 30 76 30 Benzyl Alcohol 76 26-116 0 Carbazole 102 111 55-144 8 30 Pyridine 17 10-66 30 16 6

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	62		63		21-120	
Phenol-d6	33		35		10-120	
Nitrobenzene-d5	90		78		23-120	
2-Fluorobiphenyl	85		85		15-120	
2,4,6-Tribromophenol	102		106		10-120	
4-Terphenyl-d14	93		101		41-149	

Project Number: 35060-300 Lab Number: L1400799 Report Date: 01/10/14

Parameter	LCS %Recovery G	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits					
emivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG663527-2 WG663527-3										
Acenaphthene	80	74	37-111	8	40					
2-Chloronaphthalene	80	72	40-140	11	40					
Fluoranthene	100	96	40-140	4	40					
Hexachlorobutadiene	73	68	40-140	7	40					
Naphthalene	76	71	40-140	7	40					
Benzo(a)anthracene	108	102	40-140	6	40					
Benzo(a)pyrene	93	85	40-140	9	40					
Benzo(b)fluoranthene	92	86	40-140	7	40					
Benzo(k)fluoranthene	95	87	40-140	9	40					
Chrysene	89	83	40-140	7	40					
Acenaphthylene	92	84	40-140	9	40					
Anthracene	97	91	40-140	6	40					
Benzo(ghi)perylene	93	80	40-140	15	40					
Fluorene	98	93	40-140	5	40					
Phenanthrene	87	83	40-140	5	40					
Dibenzo(a,h)anthracene	94	82	40-140	14	40					
Indeno(1,2,3-cd)Pyrene	100	87	40-140	14	40					
Pyrene	95	91	26-127	4	40					
1-Methylnaphthalene	82	74	40-140	10	40					
2-Methylnaphthalene	82	75	40-140	9	40					
Pentachlorophenol	100	98	9-103	2	40					

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

		LCS		LCSD		%Recovery			RPD	
Parame	eter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivo	atile Organics by GC/MS-SIM - Westt	oorough Lab As	sociated samp	ole(s): 01 Bat	ch: WG6635	27-2 WG663527	-3			
Hexa	chlorobenzene	80		75		40-140	6		40	
Hexa	chloroethane	74		69		40-140	7		40	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	46		46		21-120	
Phenol-d6	34		34		10-120	
Nitrobenzene-d5	86		82		23-120	
2-Fluorobiphenyl	88		78		15-120	
2,4,6-Tribromophenol	120		111		10-120	
4-Terphenyl-d14	95		95		41-149	

PCBS

		Serial_No:	01101414:44
Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14
	SAMPLE RESULTS		
Lab ID:	L1400799-01	Date Collected:	01/06/14 11:45
Client ID:	HA-7 (OW)	Date Received:	01/06/14
Sample Location:	Not Specified	Field Prep:	See Narrative
Matrix:	Water	Extraction Method:	EPA 608
Analytical Method:	5,608	Extraction Date:	01/07/14 01:07
Analytical Date:	01/07/14 13:07	Cleanup Method1:	EPA 3665A
Analyst:	JT	Cleanup Date1:	01/07/14
		Cleanup Method2:	EPA 3660B
		Cleanup Date2:	01/07/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - West	borough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	А
Aroclor 1232	ND		ug/l	0.250		1	А
Aroclor 1242	ND		ug/l	0.250		1	А
Aroclor 1248	ND		ug/l	0.250		1	А
Aroclor 1254	ND		ug/l	0.250		1	А
Aroclor 1260	ND		ug/l	0.200		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	А
Decachlorobiphenyl	62		30-150	А

01/07/14

Project Name:130 CAMBRIDGE PARK DRIVELab Number:L1400799Project Number:35060-300Report Date:01/10/14

Method Blank Analysis Batch Quality Control

Analytical Method:	5,608
Analytical Date:	01/07/14 13:44
Analyst:	JT

Extraction Method:	EPA 608
Extraction Date:	01/07/14 01:07
Cleanup Method1:	EPA 3665A
Cleanup Date1:	01/07/14
Cleanup Method2:	EPA 3660B
Cleanup Date2:	01/07/14

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	n Lab for s	ample(s):	01 Batch	n: WG663181-1	
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		А
Aroclor 1232	ND		ug/l	0.250		А
Aroclor 1242	ND		ug/l	0.250		А
Aroclor 1248	ND		ug/l	0.250		А
Aroclor 1254	ND		ug/l	0.250		А
Aroclor 1260	ND		ug/l	0.200		А

			Acceptance	;
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	49		30-150	А
Decachlorobiphenyl	64		30-150	A

Matrix Spike Analysis

Project Name:	130 CAMBRIDGE PARK DRIVE	Batch Quality Control	Lab Number:	L1400799
Project Number:	35060-300		Report Date:	01/10/14

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery Qu	ıal Limits	RPD	Qual Limits	<u>Column</u>
Polychlorinated Biphenyls by	GC - Westbor	ough Lab As	sociated samp	ole(s): 01 QC	C Batch ID	WG66318	31-3 QC Sample	e: L1400799-01	Client	ID: HA-7 (OW)	
Aroclor 1016	ND	2	1.19	60		-	-	40-140	-	50	А
Aroclor 1260	ND	2	1.24	62		-	-	40-140	-	50	А

	MS	;	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55				30-150	A
Decachlorobiphenyl	58				30-150	А

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s)	: 01 Batch:	WG663181-2	2				
Aroclor 1016	71		-		40-140	-		50	A
Aroclor 1260	75		-		40-140	-		50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55				30-150	A
Decachlorobiphenyl	80				30-150	А

Lab Duplicate Analysis Batch Quality Control

Project Name: 130 CAMBRIDGE PARK DRIVE Project Number: 35060-300

Lab Number: L1400799 **Report Date:**

RPD Parameter Native Sample **Duplicate Sample** Units RPD Qual Limits Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG663181-4 QC Sample: L1400799-01 Client ID: HA-7 (WO) ND ug/l Aroclor 1016 ND NC 50 А ND NC ND ug/l 50 Aroclor 1221 А ND ND Aroclor 1232 ug/l NC 50 А ND Aroclor 1242 ND ug/l NC 50 А Aroclor 1248 ND ND ug/l NC 50 А ND Aroclor 1254 ND ug/l NC 50 А ND Aroclor 1260 ND ug/l NC 50 А

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		57		30-150	А
Decachlorobiphenyl	62		62		30-150	А

METALS

Serial_No:01101414:44

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Matrix:	Water										
Sample Location:	Not Sp	ecified					Field Pr	ep:	See N	arrative	
Client ID:	HA-7 (OW)					Date Re	eceived:	01/06/	14	
Lab ID:	L1400	799-01					Date Co	ollected:	01/06/	14 11:45	
				SAMPL	E RES	ULTS					
Project Number:	35060	-300					Report	Date:	01/10/	14	
Project Name:	130 C/	AMBRIDGE	= PARK I	DRIVE			Lab Nu	mper:	L1400	799	

Antimony, Total	ND	mg/l	0.00100	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Arsenic, Total	0.00745	mg/l	0.00050	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Cadmium, Total	ND	mg/l	0.00020	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Chromium, Total	0.00309	mg/l	0.00100	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Copper, Total	0.00242	mg/l	0.00100	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Iron, Total	6.6	mg/l	0.05	 1	01/07/14 10:06 01/07/14 20:42	EPA 3005A	19,200.7	TT
Lead, Total	0.00097	mg/l	0.00050	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Mercury, Total	ND	mg/l	0.0002	 1	01/07/14 11:45 01/08/14 08:26	EPA 245.1	3,245.1	JH
Nickel, Total	0.00204	mg/l	0.00050	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Selenium, Total	ND	mg/l	0.00500	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Silver, Total	ND	mg/l	0.00040	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Zinc, Total	0.2837	mg/l	0.01000	 1	01/07/14 10:06 01/08/14 12:57	EPA 3005A	1,6020A	KL
Dissolved Metals - \	Vestborough Lab							
Antimony, Dissolved	0.00141	mg/l	0.00100	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL
Arsenic, Dissolved	0.00665	mg/l	0.00050	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL
Cadmium, Dissolved	ND	mg/l	0.00020	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL
Chromium, Dissolved	0.00218	mg/l	0.00100	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL
Copper, Dissolved	ND	mg/l	0.00100	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL
Iron, Dissolved	6.3	mg/l	0.05	 1	01/08/14 12:03 01/08/14 13:35	NA	19,200.7	TT
Lead, Dissolved	ND	mg/l	0.00050	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL
Mercury, Dissolved	ND	mg/l	0.0002	 1	01/07/14 11:45 01/08/14 08:49	EPA 245.1	3,245.1	JH
Nickel, Dissolved	0.00106	mg/l	0.00050	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL
Selenium, Dissolved	0.00984	mg/l	0.00500	 1	01/08/14 12:03 01/09/14 14:33	NA	1,6020A	KL
Silver, Dissolved	ND	mg/l	0.00040	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL
Zinc, Dissolved	0.01087	mg/l	0.01000	 1	01/08/14 12:03 01/08/14 15:46	NA	1,6020A	KL

Project Name:130 CAMBRIDGE PARK DRIVEProject Number:35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier Uni	ts RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbor	ough Lab for	r sample(s): 0	1 Batch:	WG6632	23-1				
Antimony, Total	ND	mg	/I 0.00	100	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Arsenic, Total	ND	mç	/I 0.00	050	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Cadmium, Total	ND	mg	/I 0.00	020	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Chromium, Total	ND	mg	/I 0.00	100	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Copper, Total	ND	mg	/I 0.00	100	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Lead, Total	ND	mç	/I 0.00	050	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Nickel, Total	ND	mg	/I 0.00	050	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Selenium, Total	ND	mg	/I 0.00	500	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Silver, Total	ND	mg	/I 0.00	040	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL
Zinc, Total	ND	mç	/I 0.01	000	1	01/07/14 10:06	01/08/14 12:17	7 1,6020A	KL

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westboro	ugh Lab	for sample(s): 01	Batch:	WG66323	30-1				
Iron, Total	ND		mg/l	0.05		1	01/07/14 10:06	01/07/14 20:34	19,200.7	TT

Prep Information	
------------------	--

Digestion Method: EPA 3005A

Parameter F	Result Qua	lifier Units	s RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Westboroug	h Lab for s	ample(s): 01	Batch:	WG66326	61-1				
Mercury, Total	ND	mg/l	0.000	92	1	01/07/14 11:45	01/08/14 08:10	3,245.1	JH

Prep Information

Digestion Method: EPA 245.1

Project Name:130 CAMBRIDGE PARK DRIVEProject Number:35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - West	borough Lab	for sample(s):	01 Batch	n: WG6	63264-1				
Mercury, Dissolved	ND	mg/l	0.0002		1	01/07/14 11:45	01/08/14 08:45	5 3,245.1	JH

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - We	estborough Lab for sar	nple(s):	01 Batch	n: WG6	63478-1				
Antimony, Dissolved	ND	mg/l	0.00100		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Arsenic, Dissolved	ND	mg/l	0.00050		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Cadmium, Dissolved	ND	mg/l	0.00020		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Chromium, Dissolved	ND	mg/l	0.00100		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Copper, Dissolved	ND	mg/l	0.00100		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Lead, Dissolved	ND	mg/l	0.00050		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Nickel, Dissolved	ND	mg/l	0.00050		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Selenium, Dissolved	ND	mg/l	0.00500		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Silver, Dissolved	ND	mg/l	0.00040		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL
Zinc, Dissolved	ND	mg/l	0.01000		1	01/08/14 12:03	01/08/14 15:35	5 1,6020A	KL

Prep Information

Digestion Method: NA

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Westl	oorough L	ab for sam	nple(s): 0	1 Batch	: WG6	63479-1				
Iron, Dissolved	ND		mg/l	0.05		1	01/08/14 12:03	01/08/14 13:27	19,200.7	TT

Prep Information

Digestion Method: NA

Batch Quality Control

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

LCSD %Recovery LCS **RPD** Limits %Recovery Qual %Recovery Limits RPD Parameter Qual Qual Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG663223-2 Antimony, Total 84 80-120 -Arsenic, Total 104 80-120 --Cadmium, Total 101 80-120 --Chromium, Total 80-120 100 --Copper, Total 103 80-120 _ -Lead. Total 103 80-120 --Nickel, Total 102 80-120 --Selenium, Total 80-120 109 -Silver, Total 80-120 95 --Zinc, Total 109 80-120 --Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG663230-2 85-115 Iron. Total 95 --Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG663261-2 Mercury, Total 85-115 92 -Dissolved Metals - Westborough Lab Associated sample(s): 01 Batch: WG663264-2 Mercury, Dissolved 85-115 94

Lab Control Sample Analysis

Batch Quality Control

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

Lab Number: L1400799 Report Date: 01/10/14

LCS LCSD %Recovery %Recovery Limits %Recovery RPD **RPD** Limits Parameter Dissolved Metals - Westborough Lab Associated sample(s): 01 Batch: WG663478-2 Antimony, Dissolved 103 -80-120 Arsenic, Dissolved 100 80-120 --Cadmium, Dissolved 94 80-120 --Chromium, Dissolved 80-120 94 --Copper, Dissolved 97 80-120 --Lead, Dissolved 100 -80-120 -Nickel, Dissolved 97 80-120 --Selenium, Dissolved 102 80-120 --Silver, Dissolved 90 80-120 --Zinc, Dissolved 104 80-120 --Dissolved Metals - Westborough Lab Associated sample(s): 01 Batch: WG663479-2 Iron. Dissolved 85-115 96 --

Matrix Spike Analysis Batch Quality Control

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

RPD MS MS Native MS MSD MSD Recovery Sample %Recovery Limits Added Found Found Limits Qual %Recovery Qual **RPD** Qual Parameter Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG663223-4 QC Sample: L1400799-01 Client ID: HA-7 (OW) ND 0.5 0.4800 96 80-120 20 Antimony, Total ND 0.12 0.1297 102 80-120 20 Arsenic. Total ---ND 0.051 0.04865 95 80-120 20 Cadmium. Total _ _ -Chromium, Total ND 0.2 0.1906 94 80-120 20 -_ _ Copper, Total ND 0.25 0.2490 99 -80-120 20 _ -Lead. Total ND 0.51 0.5177 101 80-120 20 ---Nickel, Total ND 0.5 0.4860 97 80-120 20 _ _ -Selenium, Total ND 0.12 0.120 100 80-120 20 _ -_ Silver, Total ND 0.05 0.04534 91 80-120 20 -_ -Zinc, Total ND 0.5 0.5224 48 Q 80-120 20 --_ Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG663230-4 QC Sample: L1400799-01 Client ID: HA-7 (OW) Iron, Total 6.6 1 6.9 Q 75-125 20 30 Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG663261-4 QC Sample: L1400789-01 Client ID: MS Sample Mercury, Total ND 0.005 0.0052 104 -70-130 20 -Dissolved Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG663264-4 QC Sample: L1400799-01 Client ID: HA-7 (OW) Mercury, Dissolved ND 0.005 0.0056 113 75-125 20

Matrix Spike Analysis Batch Quality Control

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

arameter	Native Sample	MS Added	MS Found	MS %Recovery		SD und	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Westboro	ugh Lab Associ	ated sample	e(s): 01 Q	C Batch ID: W	G663478-4	QC	Sample: L1400799-01	Client ID:	HA-7 (OW)	
Antimony, Dissolved	0.00141	0.5	0.3567	71	Q	-	-	80-120	-	20
Arsenic, Dissolved	0.00665	0.12	0.1218	96		-	-	80-120	-	20
Cadmium, Dissolved	ND	0.051	0.04713	92		-	-	80-120	-	20
Chromium, Dissolved	0.00218	0.2	0.1826	90		-	-	80-120	-	20
Copper, Dissolved	ND	0.25	0.2320	93		-	-	80-120	-	20
Lead, Dissolved	ND	0.51	0.4895	96		-	-	80-120	-	20
Nickel, Dissolved	0.00106	0.5	0.4660	93		-	-	80-120	-	20
Selenium, Dissolved	0.00984	0.12	0.125	96		-	-	75-125	-	20
Silver, Dissolved	ND	0.05	0.03572	71	Q	-	-	80-120	-	20
Zinc, Dissolved	0.01087	0.5	0.4945	97		-	-	80-120	-	20
Dissolved Metals - Westboro	ugh Lab Associ	ated sample	e(s): 01 Q	C Batch ID: W	G663479-4	QC	Sample: L1400799-01	Client ID:	HA-7 (OW)	
Iron, Dissolved	6.3	1	7.0	70	Q	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:130 CAMBRIDGE PARK DRIVEProject Number:35060-300

Lab Number:

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sample(s): 01	QC Batch ID:	WG663223-3 QC Sample:	L1400799-01	Client ID:	HA-7 (OW)	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00745	0.00773	mg/l	4		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00309	0.00326	mg/l	5		20
Copper, Total	0.00242	0.00254	mg/l	5		20
Lead, Total	0.00097	0.00101	mg/l	4		20
Nickel, Total	0.00204	0.00150	mg/l	31	Q	20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.2837	0.01069	mg/l	185	Q	20
otal Metals - Westborough Lab Associated sample(s): 01	QC Batch ID:	WG663230-3 QC Sample:	L1400799-01	Client ID:	HA-7 (OW)	
Iron, Total	6.6	6.4	mg/l	3		20
otal Metals - Westborough Lab Associated sample(s): 01	QC Batch ID:	WG663261-3 QC Sample:	L1400789-01	Client ID:	DUP Sample	e
Mercury, Total	ND	ND	mg/l	NC		20
Dissolved Metals - Westborough Lab Associated sample(s)	: 01 QC Batcl	h ID: WG663264-3 QC Sar	nple: L140079	9-01 Clien	it ID: HA-7 (0	OW)
Mercury, Dissolved	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 130 CAMBRIDGE PARK DRIVE Project Number: 35060-300 Lab Number: Report Date:

L1400799 01/10/14

Native Sample Duplicate Sample Units RPD **RPD Limits** Parameter Dissolved Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG663478-3 QC Sample: L1400799-01 Client ID: HA-7 (OW) Antimony, Dissolved 0.00141 ND mg/l NC 20 Arsenic, Dissolved 0.00665 0.00666 mg/l 0 20 Cadmium, Dissolved ND ND mg/l NC 20 Chromium. Dissolved 0.00218 0.00209 mg/l 4 20 Copper, Dissolved ND ND mg/l NC 20 Lead, Dissolved ND ND mg/l NC 20 Nickel, Dissolved 0.00106 0.00102 mg/l 4 20 Silver, Dissolved ND ND mg/l NC 20 Zinc, Dissolved 0.01087 0.01050 mg/l 3 20 Dissolved Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG663478-3 QC Sample: L1400799-01 Client ID: HA-7 (OW) 20 Selenium, Dissolved 0.00984 0.0150 mg/l 42 Q Dissolved Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG663479-3 QC Sample: L1400799-01 Client ID: HA-7 (OW) 20 Iron, Dissolved 6.3 6.3 mg/l 0

INORGANICS & MISCELLANEOUS

Project Name:	130 CAMBRIDGE PARK DRIVE	Lab Number:	L1400799
Project Number:	35060-300	Report Date:	01/10/14

SAMPLE RESULTS

Lab ID:	L1400799-01	Date Collected:	01/06/14 11:45
Client ID:	HA-7 (OW)	Date Received:	01/06/14
Sample Location:	Not Specified	Field Prep:	See Narrative
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total Suspended	ND		mg/l	10	NA	2	-	01/08/14 12:50	30,2540D	DW
Cyanide, Total	ND		mg/l	0.005		1	01/07/14 11:10	01/07/14 16:36	30,4500CN-CE	JO
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/07/14 01:05	30,4500CL-D	DE
ТРН	ND		mg/l	4.00		1	01/07/14 11:15	01/07/14 17:00	74,1664A	JO
Phenolics, Total	ND		mg/l	0.030		1	01/07/14 10:15	01/07/14 12:56	4,420.1	MP
Chromium, Hexavalent	ND		mg/l	0.010		1	01/07/14 01:15	01/07/14 01:35	30,3500CR-D	DE
Anions by Ion Chromato	graphy - Westb	orough l	_ab							
Chloride	328.		mg/l	25.0		50	-	01/08/14 18:05	44,300.0	AU

Project Name:130 CAMBRIDGE PARK DRIVEProject Number:35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Method Blank Analysis Batch Quality Control

Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	orough Lab for	sample(s): 01	Batch:	WG66	3157-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	01/07/14 01:15	01/07/14 01:35	30,3500CR-D	DE
General Chemistry - Westbo	orough Lab for	sample(s): 01	Batch:	WG66	3161-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	01/07/14 01:05	30,4500CL-D	DE
General Chemistry - Westbo	orough Lab for	sample(s): 01	Batch:	WG66	3224-1				
Phenolics, Total	ND	mg/l	0.030		1	01/07/14 10:15	01/07/14 12:55	4,420.1	MP
General Chemistry - Westbo	orough Lab for	sample(s): 01	Batch:	WG66	3250-1				
Cyanide, Total	ND	mg/l	0.005		1	01/07/14 11:10	01/07/14 15:55	30,4500CN-CE	JO
General Chemistry - Westbo	orough Lab for	sample(s): 01	Batch:	WG66	3282-1				
TPH	ND	mg/l	4.00		1	01/07/14 11:15	01/07/14 17:00	74,1664A	JO
General Chemistry - Westbo	orough Lab for	sample(s): 01	Batch:	WG66	3410-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	01/08/14 12:50	30,2540D	DW
Anions by Ion Chromatogra	phy - Westboro	ugh Lab for sar	mple(s):	01 Ba	atch: WG6	63603-1			
Chloride	ND	mg/l	0.500		1	-	01/08/14 17:29	44,300.0	AU

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300 Lab Number: L1400799 Report Date: 01/10/14

Parameter	LCS %Recovery Qua	LCSD al %Recovery Qu	%Recovery al Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG663157-2				
Chromium, Hexavalent	93	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG663161-2				
Chlorine, Total Residual	97	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG663224-2				
Phenolics, Total	106	-	82-111	-		12
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG663250-2				
Cyanide, Total	105	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG663282-2				
ТРН	80	-	64-132	-		34
Anions by Ion Chromatography - Westbo	orough Lab Associated sa	mple(s): 01 Batch: WG6	63603-2			
Chloride	100	-	90-110	-		

Matrix Spike Analysis

Project Name: Project Number:	130 CAMBRIDGE 35060-300	PARK DRI\	/E	Ba	tch Quality Cont	Lab Number: Report Date:	2110	L1400799 01/10/14	
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - We	estborough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG663157-4 Q	C Sample: L140	0799-01 Client ID	: HA-7 (OW))
Chromium, Hexavalent	ND	0.1	0.091	91	-	-	85-115	-	20
General Chemistry - We	estborough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG663224-4 Q	C Sample: L140	0807-02 Client ID	: MS Sample	е

Phenolics, Total	ND	0.8	0.86	108	-	-		77-124	-	12
General Chemistry - Westboroug	gh Lab Assoc	iated samp	le(s): 01 Q	C Batch ID: W	VG663250-4	QC Sample:	L1400799-01	Client ID: I	HA-7 (OW)	
Cyanide, Total	ND	0.2	0.206	103	-	-		90-110	-	30
Anions by Ion Chromatography -	Westboroug	h Lab Asso	ciated sampl	e(s): 01 QC	Batch ID: WO	663603-3	QC Sample: L1	400825-03	Client ID:	MS Sample
Chloride	ND	4	4.24	106	-	-		40-151	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name:130 CAMBRIDGE PARK DRIVEProject Number:35060-300

 Lab Number:
 L1400799

 Report Date:
 01/10/14

Parameter	Nat	ive S	ample	Duplicate Sa	mple U	nits R	PD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG663157-3	QC Sample	: L1400799-0	1 Client	t ID: HA	A-7 (OW)
Chromium, Hexavalent		ND		ND	r	ng/l I	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG663161-3	QC Sample	: L1400799-0	1 Clien	t ID: HA	A-7 (OW)
Chlorine, Total Residual		ND		ND	r	ng/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG663224-3	QC Sample	: L1400799-0	1 Clien	t ID: HA	A-7 (OW)
Phenolics, Total		ND		ND	r	ng/l I	NC		12
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG663250-3	QC Sample	: L1400799-0	1 Clien	t ID: HA	A-7 (OW)
Cyanide, Total		ND		ND	r	ng/l I	NC		30
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG663282-3	QC Sample	: L1400799-0	1 Clien	t ID: HA	A-7 (OW)
TPH		ND		ND	r	ng/l l	NC		34
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG663410-2	QC Sample	: L1400793-0	2 Clien	t ID: DL	JP Sample
Solids, Total Suspended		870)	860	r	ng/l	1		29
Anions by Ion Chromatography - Westbo Sample	orough Lab Associated	d sam	nple(s): 01 Q	C Batch ID: W	G663603-4	QC Sample:	L14008	25-03 C	Client ID: DUP
Chloride		ND	I	ND	r	ng/l I	NC		18

Project Name:130 CAMBRIDGE PARK DRIVEProject Number:35060-300

Lab Number: L1400799 Report Date: 01/10/14

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Container Info	Container Information Temp										
Container ID	Container Type	Cooler	рΗ		Pres	Seal	Analysis(*)				
L1400799-01A	Vial HCI preserved	A	N/A	2.4	Y	Absent	8260-SIM(14),8260(14)				
L1400799-01B	Vial HCI preserved	А	N/A	2.4	Y	Absent	8260-SIM(14),8260(14)				
L1400799-01D	Vial Na2S2O3 preserved	А	N/A	2.4	Y	Absent	504(14)				
L1400799-01E	Vial Na2S2O3 preserved	А	N/A	2.4	Y	Absent	504(14)				
L1400799-01F	Plastic 250ml HNO3 preserved	A	<2	2.4	Y	Absent	CU-6020S(180),FE-RI(180),SE- 6020S(180),ZN-6020S(180),CR- 6020S(180),NI-6020S(180),PB- 6020S(180),AG-6020S(180),AS- 6020S(180),HG-R(28),SB- 6020S(180),CD-6020S(180)				
L1400799-01G	Plastic 250ml HNO3 preserved	A	<2	2.4	Y	Absent	SE-6020T(180),CR- 6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180),HG- U(28),AS-6020T(180),SB- 6020T(180),AG-6020T(180),CD- 6020T(180)				
L1400799-01H	Plastic 250ml NaOH preserved	А	>12	2.4	Y	Absent	TCN-4500(14)				
L1400799-01I	Plastic 500ml unpreserved	А	7	2.4	Y	Absent	HEXCR-3500(1),TSS-2540(7)				
L1400799-01J	Plastic 500ml unpreserved	А	7	2.4	Y	Absent	CL-300(28),TRC-4500(1)				
L1400799-01K	Plastic 1000ml unpreserved	А	7	2.4	Y	Absent	8270TCL(7),8270TCL-SIM(7)				
L1400799-01L	Amber 1000ml H2SO4 preserved	А	<2	2.4	Y	Absent	TPHENOL-420(28)				
L1400799-01M	Amber 1000ml HCI preserved	А	N/A	2.4	Y	Absent	TPH-1664(28)				
L1400799-01N	Amber 1000ml HCI preserved	А	N/A	2.4	Y	Absent	TPH-1664(28)				
L1400799-01O	Amber 1000ml Na2S2O3	А	7	2.4	Y	Absent	PCB-608(7)				
L1400799-01P	Amber 1000ml Na2S2O3	А	7	2.4	Y	Absent	PCB-608(7)				
L1400799-02A	Vial HCI preserved	А	N/A	2.4	Y	Absent	8260-SIM(14),8260(14)				
L1400799-02B	Vial HCI preserved	А	N/A	2.4	Y	Absent	8260-SIM(14),8260(14)				
L1400799-02C	Vial Na2S2O3 preserved	А	N/A	2.4	Y	Absent	504(14)				

Container Comments

Project Name:130 CAMBRIDGE PARK DRIVEProject Number:35060-300

Lab Number: L1400799 Report Date: 01/10/14

Container Information

Container ID	Container Type	Cooler	nН
Container ID	Container Type	Coolei	рп

Temp deg C Pres Seal

Analysis(*)

Container Comments

L1400799-01O

L1400799-01P

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

Lab Number: L1400799

Report Date: 01/10/14

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

GLOSSARY

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: Data Usability Report

Project Name: 130 CAMBRIDGE PARK DRIVE

Project Number: 35060-300

Lab Number: L1400799

Report Date: 01/10/14

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

 Lab Number:
 L1400799

 Report Date:
 01/10/14

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 11, 2013

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;
EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;
EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan Sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Hatery & Aldrich, Inc. Halery & Martine St., CHAIN OF CUSTODY RECORD (1400,790, Phone (17) 886-7600 Basten, MA 22129-1400 CHAIN OF CUSTODY RECORD (1/9,0,790, Phone (17) 886-7600 Basten, MA 22129-1400 DELIVERY DATE (1/9,0,790, Phone (17) 886-7600 PROJECT NAME DELIVERY DATE (1/9,12,20,1400 Sample No. Date Time Depth Type Anatysis Requested M4 - 1/640 Image No. Date Time Depth Type Anatysis Requested M4 - 1/640 Image No. Date Time Depth Type Anatysis Requested M4 - 1/640 Image No. Date Torer Image No. <th>049</th> <th>COC</th> <th>edits by</th> <th>Gina</th> <th>I Hal.</th> <th>$\perp \perp /$</th> <th>8/14</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Se</th> <th>erial_No:0110</th> <th>01414:44</th>	049	COC	edits by	Gina	I Hal.	$\perp \perp / $	8/14							Se	erial_No:0110	01414:44
Direct Name Direct Name <thdirect name<="" th=""> <thdirect name<="" th=""></thdirect></thdirect>	HALEY& Ha ALDRICH Suit	5 Medford St., te 2200,			(CHA	IN C)F C	UST	ΓOD	Y F	REO	CORI	L140070	10 Fax	(617) 886-7600
BAA CONTACT FULL PROJECT MANAGER Total Profile Contact sample No. Date Tass Date Date Date	H&A FILE NO. 39	60 - 300	A		LA	BORAT	ORY	Hah	en 17	u.			DELIVERY	Z DATE		seef.
Andread Research Sample No. Date Type 1 Consumant Sample No. Date Type 1 Consumant Sample No. Date Type 1 Consumant Add of a product of the produ	PROJECT NAME 30	Combordo	e PK BY		AI	DDRESS				m A	2		TURNARO	UND TIME	5-24	4 0
Sample No. Dete Time Type I 2 3 3 4 5 4 6 1 1 Connection IAA = rt [rc] I_A_A = rt I_A_A = r	H&A CONTACT TEA	le But &	e		co	ONTACT		Ki	ia i	ß,			PROJECT	MANAGER	Todd	Butler
Image in Unit Image in Image in <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Anal</td><td>ysis Reque</td><td>sted</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								Anal	ysis Reque	sted						
Also analyze 8270/82705IM; Total //a //a //a //a Bargle and Retangithed by Received by Received by //a //a Staff Alsae //a //a //a //a /a /a Staff Alsae (a) //a //a /a /a /a /a Staff Alsae (a) //a /a	Sample No.	Date Ti	me Depth	Туре	L VOA	PAH only 7	Pesticides	C-ranges only EPH Full Suite	TPH (specify) TCLP (specify)	Reactivity Ignitability Corrosivity	6 11	12		(special instructions, prec		method numbers, etc.)
Image: State in the intervent in the intervent interven	HA-M/ow)	16/14 11	15 -	Ag		//	· / /	-	~ ~		/ -	-	18			
Also analyze 8270/8270SIM; Total and Dissolved Metals = Hg.Ag.As. C.C.C.C.U.NI.Pb Sb.Se.Zn.Fe; For S260 report both 8260 and 8260- SIM (1,4-Dixoane) Sampled and Relinquished by Received by War A, Ayyob Fins M. Ayyob Fins M				V										1 EDB/504		,
Also analyze 8270/8270SIM; Total and Dissolved Metals = Hg.Ag.As. C.C.C.C.U.NI.Pb Sb.Se.Zn.Fe; For S260 report both 8260 and 8260- SIM (1,4-Dixoane) Sampled and Relinquished by Received by War A, Ayyob Fins M. Ayyob Fins M			2011-1001-101-101-101-101-101-10-10-10-10			····	1	***					**************************************	2 Total Met	als moto	K (FF)
SIM (1,4-Dixoane) in Trial Check isampling Connection isampling Connection isampling Connection </td <td>29.919.959999.189.867.86586446446444999.949499999999799998999899999999999</td> <td></td> <td>1997 - 109 9 - 1999 - 102 San 1997 - 103 - 104 -</td> <td>tatoptg.~.p.~gtati</td> <td>****</td> <td>\uparrow</td> <td></td> <td></td> <td></td> <td></td> <td>***</td> <td></td> <td>ulajurajogajani sina majuralar dali bia</td> <td>5 01550(rent '</td> <td></td> <td></td>	29.919.959999.189.867.86586446446444999.949499999999799998999899999999999		1997 - 109 9 - 1999 - 102 San 1997 - 103 - 104 -	tatoptg.~.p.~gtati	****	\uparrow					***		ulajurajogajani sina majuralar dali bia	5 01550(rent '		
SIM (1,4-Dixoane) in Trial Check isampling Connection isampling Connection isampling Connection </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9/33</td> <td>17</td> <td>Traffintes</td>								+						9/33	17	Traffintes
SIM (1,4-Dixoane) in Trial Check isampling Connection isampling Connection isampling Connection </td <td>31/6/319/66/6/www.saasaa.aa.co.co.co.co.co.co.co.co.co.co.co.co.co.</td> <td></td> <td>tratt-tristing</td> <td>7</td> <td>Also ar</td> <td>nalyze</td> <td>e 8270/</td> <td>8270</td> <td>SIM; T</td> <td>otal</td> <td></td> <td>-</td> <td>********</td> <td>SHERCI</td> <td>12.</td> <td>_ 04</td>	31/6/319/66/6/www.saasaa.aa.co.co.co.co.co.co.co.co.co.co.co.co.co.		tratt-tristing	7	Also ar	nalyze	e 8270/	8270	SIM; T	otal		-	********	SHERCI	12.	_ 04
SIM (1,4-Dixoane) in Trial Check isampling Connection isampling Connection isampling Connection </td <td>********</td> <td></td> <td>anna, agas spy vince dan sina vina d</td> <td>6701-405</td> <td></td> <td>260114-</td>	********												anna, agas spy vince dan sina vina d	6701-405		260114-
SIM (1,4-Dixoane) in Trial Check isampling Connection isampling Connection isampling Connection </td <td></td> <td>_</td> <td></td> <td>78260</td> <td></td> <td>Diate</td>												_		78260		Diate
SIM (1,4-Dixoane) in Trial Check isampling Connection isampling Connection isampling Connection </td <td>91707981604444.14 malanaryogagaconalinakusiacali rasinonukusi kusing ng mgan</td> <td></td> <td>8 ICN</td> <td>v ∽δ</td> <td>260</td>	91707981604444.14 malanaryogagaconalinakusiacali rasinonukusi kusing ng mgan													8 ICN	v ∽δ	260
manages and kerninguistical by Proceever by Plant bill								200 ai				-		9 The Ph	end	
manages and kerninguistical by Proceever by Plant bill					SIM (1	,4-DD	koane)			and.	the second second		,	TRC. Le		
Print M. August Print M. C. August Print M. August <	Sampled and Relinquished by	Received h)y									· · · ·		Sampling Comments		
Print M. August Print M. C. August Print M. August <	Sign A Shan	Sign M.C	inter		/		-		~		ta da finisiran		VOA Vial	Sample Leb	mitted he	2 NPPES
Received by 40 Z30 Z30 1000 500 1000 40 Z30 1000 90 20 Z30 1000 90 40 Z30 1000 90 20 Z30 10000 90 20 Z30 1000 90 20 Z30 1000 90 20 Z30 10000 20 Z3			AUSA		minnet	*****							Amber Glass	PLP sermit	Please 1	Collow
Received by 40 Z30 Z30 1000 500 1000 40 Z30 1000 90 20 Z30 1000 90 40 Z30 1000 90 20 Z30 10000 90 20 Z30 1000 90 20 Z30 1000 90 20 Z30 10000 20 Z3	the les & Aldrich i	er Eim 112	A				/ /						Plastic Bottle	a woodin for	e tatil	. J. othall
Received by 40 Z30 Z30 1000 500 1000 40 Z30 1000 90 20 Z30 1000 90 40 Z30 1000 90 20 Z30 10000 90 20 Z30 1000 90 20 Z30 1000 90 20 Z30 10000 20 Z3	Date M. I'll Time Afr	Data 11/		30	ArA	D ABA	44	A- 4	-c 4-	ACA	~ A	fre I	Preservative	1 Zunit	a cura do	Loo from-
Sign Muth Solid EPA for the Reference of the solution of the solu				<u></u>	40 20	0 70	Inon Sm	1000	10 2VD	lon le	-	4	Volume 🚜 🖊	land minut	larisol	Lu Yho
Print W. Q.YA. Plumes Print W. Q.YA. Plumes VOA Vial irm (HA) Firm Mi/An Amber Glass pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [N] Time [153] pade [16] [Y] Time [153] Date 116] [Y] Sign [N] Procescrative Procescrative Firm Alpha (A) Firm Alpha (A) pade [16] [Y] Time [153] Date 116] [Y] A Sample chilled C NaOH E H_SOA G Mathanol F Mi/L SP Procescrative Procescrative Alpha (A) Time [153] Date V [A] Date V [A] Not A Time [153] Procescrative			· / //	~	70 1-3	0 20	1000 500	1000		it care it to				EPA Lo YI	PIP	og /ne
im Him Firm HiM Time /630 Amber Glass bate 116/14 Time /630 Clear Glass belinquished by Received by Preservative Evidence samples were tampered with? YES NO ign Mark Sign McDord Score rint Way AP Preservative Evidence samples were tampered with? YES NO int Way AP Print R (1404) Score No rint Way AP Print R (1404) Score Score pate 116/14 Time in SS Score Sample chilled C NaOH E H ₂ SO ₄ G Methanol FMc2 P3 Presumptive Certainty Data Pate /16/14 Time in SS Date Presumptive Certainty Data Package (Laboratory to use applicable DEP CAM methods) Presumptive Certainty Data Package (Laboratory to use applicable DEP CAM methods) Presumptive Certainty Data Presumptive Certainty Data and considered and identified herein. Required Reporting Limits and Data Quality Objectives Matrix Splike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. Store Store Store This Chain of Custody Record (specify) includes <td>Sign verse</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td>1</td> <td>1</td> <td></td> <td>VOA Vial</td> <td>En pero</td> <td>4 <u>1</u> 1</td> <td></td>	Sign verse								J	1	1		VOA Vial	En pero	4 <u>1</u> 1	
Date 116/14/Line Time 1630 Clear Glass Letinquished by Received by Preservative Evidence samples were tampered with? YES NO ign Marking Sign McArching Preservative Evidence samples were tampered with? YES NO ign Marking Sign McArching Preservative Evidence samples were tampered with? YES NO irm Alph q Print R (() 0 () () () () () () () ()			,									. fan en de				
Received by Evidence samples were tampered with? YES NO ign MMMM Sign MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	6 6 6 6			7						<u> </u>			-		***************************************	n a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a
ign March Sign Machala Lether Samples for MCP Metals and/or Cyanide are included and identified herein. This Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as appropriate. Laboratory should (specify if applicable)analyz. If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as appropriate. Laboratory should (specify if applicable)analyz. If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required. Required Reporting Limits and Data Quality Objectives Required Reporting Limits and Objectives Required Reporting Limits and Data Quality Objectives Required Reporting Limits and Quality Objec				0 6				*****	447 m 1944 m 1944 m 1947 m			udununulu	u laya nayang manyan ngingan kanangka mingan naya.			
rint Wayne Plymer irm Alpha and 16114 Time INSS Print R (Uport SUDT A Supple chilled C NaOH E H ₂ SO ₄ G Methanol T Mu 252 22 Date Uport Time 1755 B Sample filtered D HNO ₅ F HCL H Water/NaHSO4 (circle) Presumptive Certainty Data Package is needed, initial all sections: The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Matrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. This Chain of Custody Record (specify)			·							ļ		ufrancij.		-	-	S NO
Firm A part Firm A part A sample chilled C NaOH E H ₂ SO ₄ G Methanol A Mage 2 Date I full Time Time <th< td=""><td></td><td>Sign - V</td><td>veroca a</td><td>-034</td><td>-</td><td>*</td><td></td><td></td><td>-</td><td></td><td>u l'umu</td><td></td><td>Volume</td><td>If YES, please explain in se</td><td>ction below.</td><td>· · · · · · · · · · · · · · · · · · ·</td></th<>		Sign - V	veroca a	-034	-	*			-		u l'umu		Volume	If YES, please explain in se	ction below.	· · · · · · · · · · · · · · · · · · ·
Firm A part Firm A part A sample chilled C NaOH E H ₂ SO ₄ G Methanol A Mage 2 Date I full Time Time <th< td=""><td></td><td>Print R (</td><td>yourd s</td><td>Latt</td><td>1</td><td></td><td></td><td>PRESE</td><td>RVATION</td><td>KEY</td><td></td><td></td><td>- 14 C</td><td></td><td></td><td></td></th<>		Print R (yourd s	Latt	1			PRESE	RVATION	KEY			- 14 C			
Presumptive Certainty Data Package (Laboratory to use applicable DEP CAM methods) Presumptive Certainty Data Package is needed, initial all sections: The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Required Reporting Limits and Data Quality Objectives Matrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. RC-S1 S1 GW1 This Chain of Custody Record (specify) includes amples, does not include samples defined as Drinking Water Samples. RC-S2 S2 GW2 If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as appropriate. Laboratory should (specify if applicable) S3 GW3 RC-GW2 RC-GW2 RC-GW2 RC-GW2 RC-GW2 RC-GW2	Firm Alpha	Firm A	leha .	7~1~		chilled	C NaOI	H	E H ₂ SO ₂		G Metha	anol	4 Nol2 22	23	• Meteor 144030-300-004-4060-4744-01-7440-	11 a 5 militar da 5 militar de 18 militar
f Presumptive Certainty Data Package is needed, initial all sections: Required Reporting Limits and Data Quality Objectives The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Required Reporting Limits and Data Quality Objectives Matrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. RC-S1 S1 GW1 This Chain of Custody Record (specify) includes does not include samples defined as Drinking Water Samples. RC-S2 S2 GW2 If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as appropriate. Laboratory should (specify if applicable) S3 GW3 RC-GW2 RC-GW2 RC-GW2 RC-GW2 RC-GW2 RC-GW2	Date 1 6 1 4 Time 17 5	3 Date √	6714 Time	107	B Sample	filtered	D HNO	3	F HCL		H Water	/NaHS(04 (circle)			
The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty.	If Promotive Casteinte Date Ba	lease is used ad init	ial all gootionay	Pro	esumptive (Certainty I	Data Package	(Laborato	ry to use ap	plicable D	EP CAM	method	ls)	Demained Demasting I in the	and Data Onality	Oblections
Matrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. RC-S1 RC-S2 S2 GW1 If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as appropriate. Laboratory should (specify if applicable)analyz S3 GW3 GW4 GW3		•		CAM-VIT H	ave been or	will be col	lected, as ann	copriate. to :	neet the rea	uirements o	of Presumm	tive Cer	tainty.	redunea veborund rumuz		Objectives
This Chain of Custody Record (specify)includesdoes not include samples defined as Drinking Water Samples. If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as appropriate. Laboratory should (specify if applicable)analyz			-					pr						□ RC-S1	□ s1	GW1
If this Chain of Custody Record identifies samples defined as Drinking Water Samples, Trip Blanks and Field Duplicates are included and identified and analysis of TICs are required, as appropriate. Laboratory should (specify if applicable)analyz	· · · ·	• .	•				efined as Drin	king Water	Samples.							
as appropriate. Laboratory should (specify if applicable)analyz	If this Chain of Custod	v Record identifies se	amples defined as Deb	nkina Watar	Samples T.	in Blanks (and Field Down	licatee are is	uchuded and	identified a	nd analusi	s of ፕፕር	's are required	□ RC-GW1	🗆 S3	GW3
				-	Sampies, 11	י פאנשוים קיי	ana z iviu izup	noacos are ll	isinasa alu	aominou (are untity of		s are required,	RC-GW2	-	

4

-L

Haley & Aldreich, Inc. Haley & Aldreich, Inc. (677) 81 ALDRICH Boston, MA 0229-1400 CHAIN OF CUSTODY RECORD (147) 81 Read STLE NO. 3010 229-1400 LABORATORY Hilley, Int DELIVERY DATE (1 6/7) 81 READ STLE NO. 300 Class broken data 100 Class broken data ADDRESS DELIVERY DATE (1 6/7) 81 READ STLE NO. 300 Class broken data 110 Class broken data ADDRESS DELIVERY DATE (1 6/7) 81 Sample No. Date Time Depth Type 1 2 11/6 / 2.001 Sample No. Date Time Depth Type 1 2 11/6 / 2.001 11/6 / 2.001 K44 - 1/(sc.) If (1/4 / 1/15) Ag - - - (6 / 17 / 12 Number of Container
PROJECT NAME IO Charle broke fill ADDRESS Light broke fill TURNAROUND TIME Image: Fill fill H&A CONTACT Image: Fill fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill </th
H&A CONTACT Tell But But Be CONTACT Denta Date Time Depth Type I Image: State of the state o
Sample No. Date Time Depth Type I 2 7 7 9 1 2 7 7 9 1 1 2 7 7 9 1 1 2 7 9 1 <th1< th=""> 1 1 <th1< th=""> <th< td=""></th<></th1<></th1<>
Sample No. Date Time Depth Type I 2 7 7 9 1 2 7 7 9 1 1 2 7 7 9 1 1 2 7 9 1 <th1< th=""> 1 1 <th1< th=""> <th< td=""></th<></th1<></th1<>
H4-1/6w) 1/4/14 1/45 Aq 1
HA-11/6W 1/4/14 1/45 Ag 1
Sampled and Relinquished by Received by LIQUID LIQUID LIQUID
Sampled and Relinguished by Received by LiQUID VTSS 5 Hex Cr 12 Triph LiQUID Sampling Comments
Sampled and Relinquished by Received by Received by LIQUID VTSS 5/Hex Cr 5/Hex Cr 7/8260 12 Triph 5/Hex Cr 7/8260 12 Triph 6/PCB-6/208 7/8260
Sampled and Relinquished by Received by Sampling Comments
Sampled and Relinquished by Received by Sampling Comments
Sampled and Relinquished by Received by Sampling Comments
Sampled and Relinquished by Received by Sampling Comments
Sampled and Relinquished by Received by Sampling Comments
Sampled and Relinquished by Received by Sampling Comments
Sampled and Relinquished by Received by Sampling Comments
Sampled and Relinquished by Received by Sampling Comments
Sampled and Relinquished by Received by Sampling Comments
Sign A. Shay Sign M. Curtos
Prints, SHAY Print M. AUSUR
Halley & Aldrich, fer, Fim HIA
Date 16/14 Time 1600 Date 16/14 Time 16:30 AF AD A A A A A A A A A A A A A A A A A
Relinquished by Received by 40 250 250 1000 500 1000 40 250 1000 900 40 Volume #1 [evels as required by Sign Mayne for 500 1000 500 1000 40 250 1000 900 40 Volume #1 [evels as required by Solid
sign Mare for solar solar for the REP.
Print M. Myste VOA Vial
Firm (ALP) Firm Alpha
Date [16][Y Time 1630 Date 116][Y Time 1630 Clear Glass
Relinquished by Preservative Evidence samples were tampered with? YES NO
Sign Manual Sign Michael & CAN Volume If YES, please explain in section below.
Print Wayne Plumer Print RICLOY SLOTT PRESERVATION KEY
Firm Alpha Firm A A Sample chilled C NaOH E H2SO4 G Methanol 7 Mar 2223
Date 1/6/14 Time 1755 Date VGWY Time 1757 B Sample filtered D HNO3 F HCL H Water/NaHSO4 (circle)
Presumptive Certainty Data Package (Laboratory to use applicable DEP CAM methods)
riesumpuve certainty Data rackage (Laboratory to use applicable DEr CAM methods)
If Presumptive Certainty Data Package is needed, initial all sections: Required Reporting Limits and Data Quality Objectives The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty.
If Presumptive Certainty Data Package is needed, initial all sections: Required Reporting Limits and Data Quality Objectives
If Presumptive Certainty Data Package is needed, initial all sections: Required Reporting Limits and Data Quality Objective: The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Required Reporting Limits and Data Quality Objective: Matrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. RC-S1 S1 G This Chain of Custody Record (specify) includes does not include samples defined as Drinking Water Samples. RC-S2 S2 G
If Presumptive Certainty Data Package is needed, initial all sections: Required Reporting Limits and Data Quality Objectives The required minimum field QC samples, as designated in BWSC CAM-VII have been or will be collected, as appropriate, to meet the requirements of Presumptive Certainty. Required Reporting Limits and Data Quality Objectives Matrix Spike (MS) samples for MCP Metals and/or Cyanide are included and identified herein. Image: Spike (MS) Samples for MCP Metals and/or Cyanide are included and identified herein.

4...

-

÷.