

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

JAN 1 5 2014

Steven Charron Environmental Manager Global Montello Group Corporation 404 Wyman Street, Suite 425 Waltham, MA 02451

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Mobil - Station No. 2723 site located at 453 Washington Street, Wellesley, MA 02481, Norfolk County; Authorization # MAG910605

Dear Mr. Charron:

Based on the review of a Notice of Intent (NOI) submitted by Environmental Compliance Services, Inc, on behalf of your company Global Companies LLC, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR). With the absence of dilution to Fuller Brook the receiving stream, EPA determined that the DFR for each parameter is in the one to five (1-5) range. (See the RGP Appendix IV for Massachusetts facilities) Therefore, the limits for lead of 2.08 ug/L and iron of 1,600 ug/L, are required to achieve permit compliance at your site. Please note that these metal limitations have increased. The reason for the increase has to do with the new RGP regulations which allows for a limit increase based on the metal limit times the available case is 1.6. See footnote eleven at the end of the "Summary of Monitoring Parameters" listed below for further explanation.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on February 26, 2014. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

Julna Nurphy Thelma Murphy, Chief

Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc:

Robert Kubit, MassDEP Paul L. Criswell, Wellesley PWD Nicole Callahan, Environmental Compliance Services, Inc.

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:		MAG910605		
Authorization Issued:	Janua	ry, 2014		
Facility/Site Name:	Mobil	- Station No. 2723		
		Vashington St., Wellesley, MA 02481		
1	Email	address of owner: Scharron@globalp.com		
Legal Name of Operat	2 2 11 The second s	Global Montello Group Corporation		
Operator contact name, title, and Address:		Steven Charron		
		Email: same as the owner		
Estimated date of Completion:				
Category and Sub-Category:		Category I- Petroleum Related Site Remediation. Sub-category A. Gasoline Only Discharges		
RGP Termination Date:		September 10, 2015		
Receiving Water:		Fuller Brook		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	TODS THE TODS & ROW TH	Effluent Limit/Method#/ML
	Parameter	(All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
	2. Total Residual Chlorine (TRC) 1	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) ^{2,3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
\checkmark	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
\checkmark	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
\checkmark	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
\checkmark	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L

2	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
\checkmark	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
\checkmark	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
50-	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
d a	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
.vli	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
908	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
ài J	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
\pi	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
2	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
_	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
-	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
9/	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
())()	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
0	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

4

£.

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
de	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
1	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
21	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	m. Fluorene	X/Me#8270D/ML Sug/L,Me#610/ML Sug/L & Me#625/ML Sug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
V	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

۰.

5

	Ruent Linit/ Nathod#/ML Ruent Linit: are shown as Daily um Limit: unless denoted by a **. case it will be a Monthly Average Limit	$\frac{\text{Total Recoverable}}{\text{MA/Metal Limit}}$ $\frac{\text{H}^{10} = 50 \text{ mg/l}}{\text{CaCO3, Units} =}$ $\frac{\text{ug/l}^{(11/12)}}{\text{Ug/l}^{(11/12)}}$		Minimum level=ML		
	Metal parameter	Freshwater Limts	o I Polycyi carbons (Total Groo nitiyit puter	Arons	
_	39. Antimony	5.6		ML 10		
	40. Arsenic **	10	Contraction of the	ML	20	
	41. Cadmium **	0.2	- Anna	ML	10	
	42. Chromium III (trivalent) **	48.8		ML	15	
	43. Chromium VI (hexavalent) **	11.4	ranthene	ML	10	
	44. Copper **	5.2	southers	ML	15	
\checkmark	45. Lead **	2.08		ML	20	
	46. Mercury **	0.9		ML	02	
	47. Nickel **	29		ML	20	
	48. Selenium **	5	inthfacen	ML	20	
	49. Silver	1.2		ML	10	
	50. Zinc **	66.6	-cd) Pyre-	ML	15	
\checkmark	51. Iron	1,600	TL Polycol	ML	20	

	Other Parameters	Limit operador
\checkmark	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
\checkmark	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are

Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L, etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

^{**}pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

607 North Avenue, Suite 11, Wakefield, MA 01880 tel 781.246.8897 fax 781.246.8950 www.ecsconsult.com

December 31, 2013 ECS Project #95-220730

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02109-3912 ATTN: Remediation General Permit NOI Processing

RE: Remediation General Permit – Notice of Intent Mobil-branded Petroleum Retail Station 453 Washington Street Wellesley, Massachusetts 02481

To Whom It May Concern:

At the request of Global Companies LLC (Global), Environmental Compliance Services, Inc. (ECS) is submitting the attached Remediation General Permit (RGP) Notice of Intent (NOI) for the above-referenced location, referred to as the site. The property, located at 453 Washington Street in Wellesley, Massachusetts (here-in-after referred to as the "Site"), is a retail gas station and convenience store. This NOI is being submitted in order to obtain a permit for the operation of a temporary groundwater recovery and treatment system (GWTS) at the Site. The GWTS is required to be operated at the Site in order to allow for the removal and replacement of petroleum underground storage tanks (USTs) at the Site. Global anticipates that the UST replacement activities will begin on or about January 25, 2013 and will last for approximately 30 days. The RGP NOI, along with dilution factor calculations, is included in Attachment I. A Site Location Map, Site Map, Drainage Plan, and a System Flow Diagram are provided as Figures 1 through 4, respectively.

Based on previous investigations conducted at the Site, the average depth to groundwater beneath the Site ranges from approximately 5 to 9 feet (ft) below ground surface (bgs); however, soil excavation to a depth of approximately 15 ft bgs will be required for the UST installation. As such, operation of a GWTS will be required to facilitate the UST removal/installation activities.

On December 13, 2013, ECS personnel visited the Site in order to collect groundwater samples from an temporary groundwater monitoring point installed immediately adjacent to and downgradient of the current UST system (designated TW-B1), in the proposed soil excavation area. Per RGP Appendix III, the groundwater samples were analyzed for parameters applicable to Category I, Subcategory A (gasoline only sites). The laboratory analytical report for the groundwater samples collected on December 13, 2013 is included in Attachment II.

According to the Massachusetts Geographical Information System (MassGIS) and the tables and maps shown in Appendix I of the RGP, the Site and discharge areas are not located within an Area of Critical Environmental Concern (ACEC) or Habitats of Rare Wetland Wildlife. A review of information on the U.S. Fish and Wildlife Service website indicates that the project will not impact federally-listed threatened or endangered species, and no further coordination with the U.S. Fish and Wildlife Service was necessary. A copy of the documents reviewed to make this determination along with the "no species present" letter is included in Attachment III. Additionally, there are no structures located at the Site that are listed on the National Register of Historic Places. A list of structures on Washington Street in Wellesley, MA with designation on the National Register is included in Attachment IV.

If you have any questions, or require additional information, please contact the undersigned.

Sincerely, ENVIRONMENTAL COMPLIANCE SERVICES, INC.

un Callahan

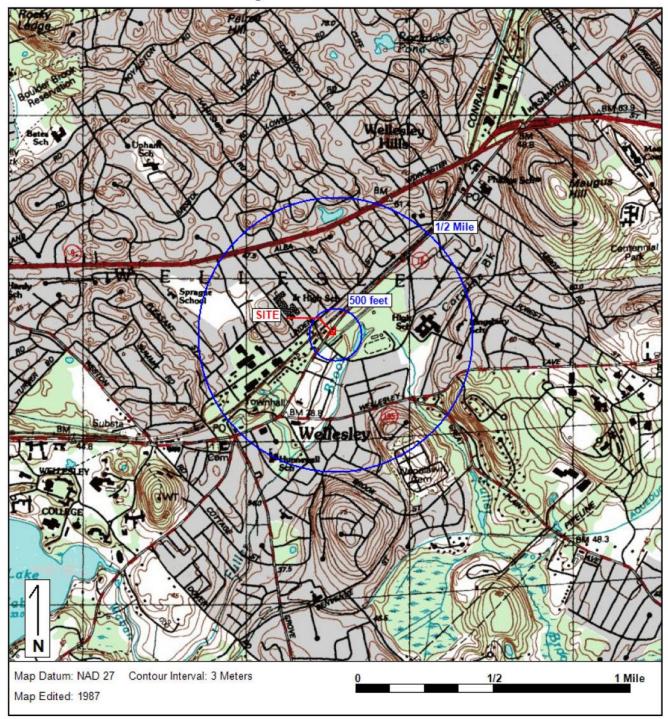
Nicole Callahan Project Manger

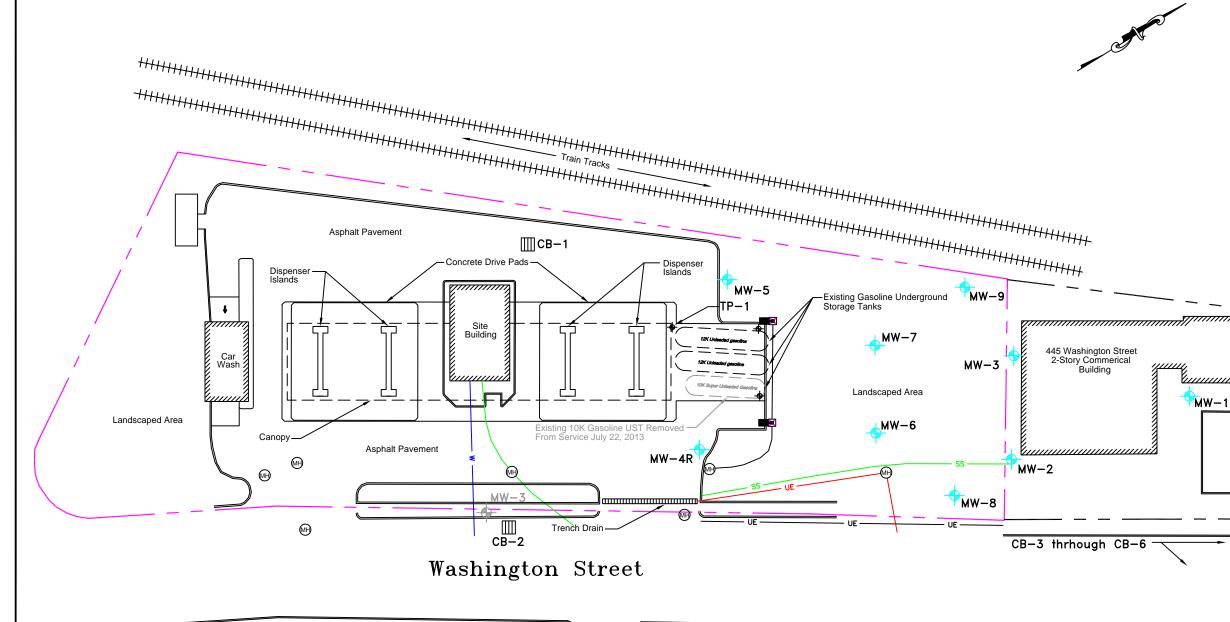
FIGURES:

Figure 1	Site Locus
Figure 2	Site Plan
Figure 3	Drainage Plan
Figure 4	System Flow Diagram

ATTACHMENTS:

Attachment I	Remediation General Permit Notice of Intent
Attachment II	Laboratory Analytical Report
Attachment III	Endangered Species Act Eligibility
Attachment IV	National Historic Preservation Act Eligibility


FIGURES


Environmental Compliance Services, Inc. 10 State Street Woburn, MA 01801 Phone 781.246.8897 Fax 781.246.8950 www.ecsconsult.com

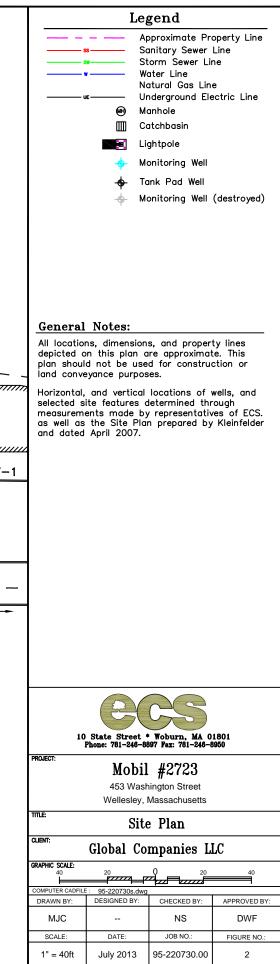
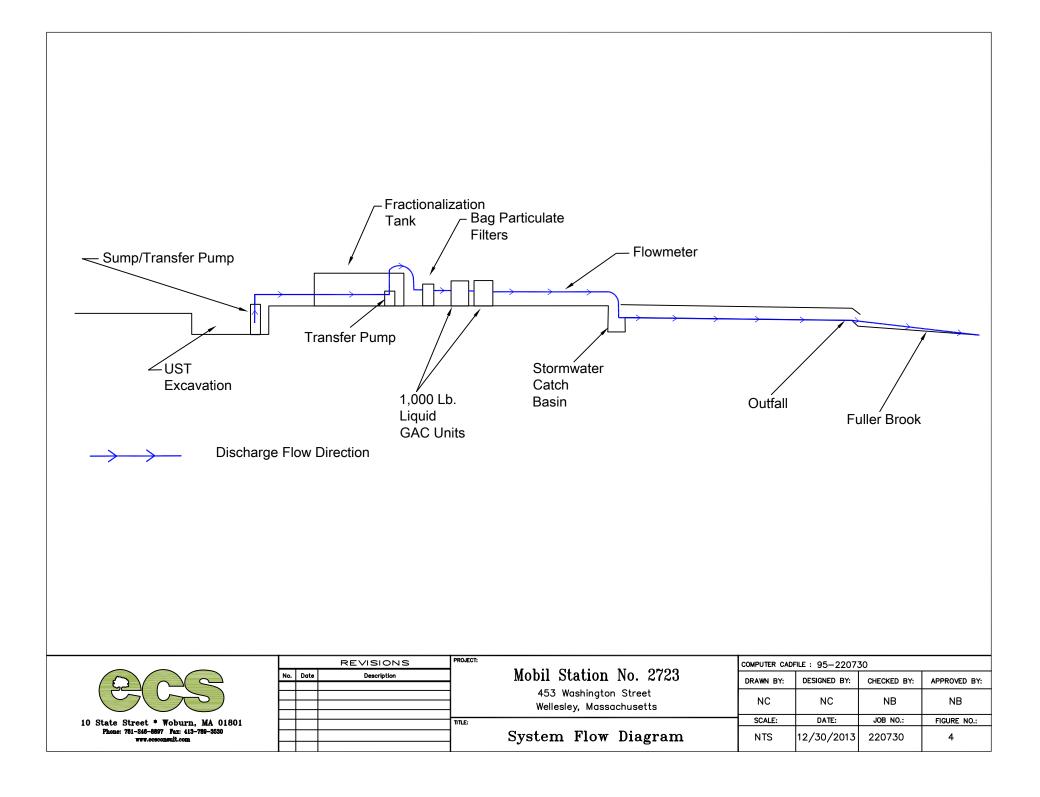

GMG #2723- 435 Washington St, Wellesley, MA 435 Washington Street Wellesley, MA 02482

Figure 1: SITE LOCUS

Base Map: U.S. Geological Survey: Quadrangle Location: Framingham, MA Lat/Lon: 42 18' 9" NORTH, 71 17' 11" WEST - UTM Coordinates: 19 311540 EAST / 4685895 NORTH Generated By: Kevin Collins



Legend Approximate Property Line Sanitary Sewer Line Storm Sewer Line Water Line Natural Gas Line Overhead Electric Line Manhole Catchbasin 🍘 🛛 Water Gate le Fire Hydrant 🗢 Utility Pole 🔘 Drain Manhole 🛄 Catch Basin All locations, dimensions, and property lines depicted on this plan are approximate. This plan should not be used for construction or land conveyance purposes. Horizontal, and vertical locations of wells, and selected site features determined through measurements made by representatives of ECS. 10 State Street * Woburn, Massachusetts 01801 Phone: 781-246-8897 Fax: 781-246-8950 Mobil No. 2723 453 Washington Street Wellesley, Massachusetts

Drainage Plan

Global Companies LLC

GRAPHIC SCALE:		0	
50	25	_V 25_	50
	P7777_P		
COMPUTER CADFI	E 195-220730.dw	/g	
DRAWN BY	DESIGNED BY	CHECKED BY	APPROVED BY:
NC	NC	NC	MC
SCALE: DATE:		JOB NO.:	FIGURE ND.:
1' = 50'	Dec 2013	95-220730	3

ATTACHMENT I

<u>B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit</u>

1. General facility/site information.	Please	provide the	following	information	about the site:
--	--------	-------------	-----------	-------------	-----------------

a) Name of facility/site : Wellesley Mobil - Station No. 2723		Facility/site mailing address:			
Location of facility/site : longitude: 42.302527 latitude: -71.286419	Facility SIC code(s):	Street: 453 Washingto	n Street		
b) Name of facility/site owner:		Town: Wellesley	Town: Wellesley		
Email address of facility/site owner: Scharron@globalp.com Telephone no. of facility/site owner : (781) 786-6320		State: MA	Zip: 02481	County: Norfolk	
Fax no. of facility/site owner: Address of owner (if different from site):		Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:			
Street: 404 Wyman Street, Suite 425					
Town: Waltham	State: MA	Zip: 02451	County: Middlesex		
c) Legal name of operator :	Operator tel	elephone no: (781) 786-6320			
Global Montello Group Corp.	Operator fax	x no.:	Operator email:	scharron@globalp.com	
Operator contact name and title: Steven Ch	narron - Environm	nental Manager			
Address of operator (if different from Street:					
Town:	State:	Zip:	County:		

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? YN, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? YO NO, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? YO NO 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? YO NO 				
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O N O. If Y, please list: site identification # assigned by the state of NH or MA: permit or license # assigned: state agency contact information: name, location, and telephone number: f) Is the site/facility covered by any other EPA permit, including: Multi-Sector General Permit? Y O N O. Final Dewatering General Permit? Y O N O. Final Dewatering General Permit? Y O N O. EPA Construction General Permit? Y O N O. Individual NPDES permit? Y O N O. Individual NPDES permit? Y O N O. Support Water quality related individual or general permit? Y O. 				
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y_O_N_O_			
h) Based on the facility/site information and any historical sampling data, identify the sub-category into which the potential discharge falls.				
Activity Category	Activity Sub-Category			
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination 			
II - Non Petroleum Site Remediation	 A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites 			
III - Contaminated Construction Dewatering	 A. General Urban Fill Sites <a> B. Known Contaminated Sites <a> 			

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites _
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks _
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:								
The petroleum station replacing their underground fuel storage tanks and dewatering will be necessary during removal and replacement activities. The discharge will be assocaited with dewatering activities.								
b) Provide the following information about each discharge:								
1) Number of discharge points: 1	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Max. flow 0.168 Is maximum flow a design value ? Y O N O Average flow (include units) 0.117 cubic ft/sec Is average flow a design value or estimate? Estimate							
	each discharge within 100 feet: g pt.2: lat. pt.4: lat. long. pt.6: lat. long.							
4) If hydrostatic testing, total volume of the discharge (gals):N/A	5) Is the discharge intermittent <u>o</u> or seasonal <u>O</u> ? Is discharge ongoing? Y <u>O</u> N <u>o</u>							
c) Expected dates of discharg	e (mm/dd/yy): start 01/26/2013 end 02/26/2013							
d) Please attach a line drawing or flow schematic showing water flow through the facility including:								
waters(s). See flow schematic attached	contributing flow from the operation. 3. treatment units, and 4. discharge points and receiving							
Waters(s).								

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ily value	Average daily value	
Parameter *	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Tvpe</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)			×	1	Grab	SM25040	5,000	114,000	46.64	114,000	31.09
2. Total Residual Chlorine (TRC)				0							
3. Total Petroleum Hydrocarbons (TPH)			×	1	Grab	SW846/810	200	2,900	1.19	2,900	0.79
4. Cyanide (CN)	57125			0							
5. Benzene (B)	71432		×	1	Grab	8260	50	1,040	0.43	1,040	0.28
6. Toluene (T)	108883		×	1	Grab	8260	50	2,660	1.09	2,660	0.73
7. Ethylbenzene (E)	100414		×	1	Grab	8260	50	210	0.09	210	0.06
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207		×	1	Grab	8260	50	768	0.31	768	0.21
9. Total BTEX ²	n/a		×	1	Grab	8260	50	4,678	1.91	4,678	1.28
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934	×		1	Grab	846/8111	0.01	<0.01	0	<0.01	0
11. Methyl-tert-Butyl Ether (MtBE)	1634044		×	1	Grab	8260	5.0	22.4	0.01	22.4	0.01
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×		1	Grab	8260	5.0	<5.0	0	<5.0	0

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

 ² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
 ³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	Minimum	Maximum dai	ily value	Average daily	v value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	Grab	8260	5.0	<5.0	0	<5.0	0
14. Naphthalene	91203		×	1	Grab	8260	5.0	7.10	0	7.10	0
15. Carbon Tetrachloride	56235			0							
16. 1,2 Dichlorobenzene (o-DCB)	95501			0							
17. 1,3 Dichlorobenzene (m-DCB)	541731			0							
18. 1,4 Dichlorobenzene (p-DCB)	106467			0							
18a. Total dichlorobenzene				0							
19. 1,1 Dichloroethane (DCA)	75343			0							
20. 1,2 Dichloroethane (DCA)	107062			0							
21. 1,1 Dichloroethene (DCE)	75354			0							
22. cis-1,2 Dichloroethene (DCE)	156592			0							
23. Methylene Chloride	75092			0							
24. Tetrachloroethene (PCE)	127184			0							
25. 1,1,1 Trichloro-ethane (TCA)	71556			0							
26. 1,1,2 Trichloro-ethane (TCA)	79005			0							
27. Trichloroethene (TCE)	79016			0							

					<u>Sample</u>	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride	75014			0							
(Chloroethene)				0							
29. Acetone	67641			0							
30. 1,4 Dioxane	123911			0							
31. Total Phenols	108952			0							
32. Pentachlorophenol (PCP)	87865			0							
33. Total Phthalates (Phthalate esters) ⁴				0							
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817			0							
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)				0							
a. Benzo(a) Anthracene	56553			0							
b. Benzo(a) Pyrene	50328			0							
c. Benzo(b)Fluoranthene	205992			0							
d. Benzo(k)Fluoranthene	207089			0							
e. Chrysene	21801			0							
f. Dibenzo(a,h)anthracene	53703			0							
g. Indeno(1,2,3-cd) Pyrene	193395			0							
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)				0							

⁴ The sum of individual phthalate compounds.

					Sample	Analytical	Minimum	<u>Maximum dai</u>	ily value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	Level (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
h. Acenaphthene	83329			0							
i. Acenaphthylene	208968			0							
j. Anthracene	120127			0							
k. Benzo(ghi) Perylene	191242			0							
l. Fluoranthene	206440			0							
m. Fluorene	86737			0							
n. Naphthalene	91203			0							
o. Phenanthrene	85018			0							
p. Pyrene	129000			0							
	85687; 84742; 117840; 84662;			0							
37. Total Polychlorinated Biphenyls (PCBs)	131113; 117817.										
38. Chloride	16887006	<u> </u>	<u> </u>	0			Į				
39. Antimony40. Arsenic	7440360			0							
40. Arsenic 41. Cadmium	7440382			0			<u> </u>				
41. Cadimum 42. Chromium III	7440439			0			ļ				
(trivalent)	16065831			0							
43. Chromium VI (hexavalent)	18540299			0							
44. Copper	7440508			0							
45. Lead	7439921		×	1	Grab	846/6010	7.5	23.9	0.01	23.9	0.01
46. Mercury	7439976			0							
47. Nickel	7440020			0							
48. Selenium	7782492			0							
49. Silver	7440224			0							
50. Zinc	7440666			0							
51. Iron	7439896		×	1	Grab	846/6010	15	18,000	7.36	18,000	4.91
Other (describe):				0							

					<u>Sample</u>	Analytical	Minimum	Maximum daily value		Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? $Y \bigcirc N \bigcirc$	If yes, which metals? Lead, Iron		
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: Lead DF: 1.65 Metal: DF: Metal: DF: Metal: DF: Etc. Etc.	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? $Y _ O$ N O If Y, list which metals: Lead, Iron		

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

The water from the UST excavation will be pumped into a frac tank for settling, then through two (2) bag filter units in parallel, two (2) 1,000-lb liquid granular activated carbon (GAC) vessels in series, and a flow meter prior to discharge. The treated water will be discharged to a catch basin located in Washington Street which connects to the Town of Wellesley drainage system to an outfall located approximately 500 feet southeast of the Site which drains to Fuller Brook.

b) Identify each	Frac. tank 🗵	Air stripper 🗖	Oil/water separator	Equalization tanks \Box	Bag filter 🗵	GAC filter 🗵
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge 50 gpm Maximum flow rate of treatment system 75 gpm Design flow rate of treatment system 75 gpm									
d) A description of chemical additive	es being used or	planned to be use	ed (attach MSDS s	heets):					
None.									
5. Receiving surface water(s). Pleas	se provide inform	mation about the r	eceiving water(s),	using separate she	eets as necessary:				
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain 🗵	Wetlands 	Other (describe)				
b) Provide a narrative description of	the discharge pa	athway, including	the name(s) of the	receiving waters:					
The catch basin located in Washington Stre									
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas. 									
d) Provide the state water quality classification of the receiving water N/A									
e) Provide the reported or calculated	seven day-ten y	vear low flow $(7Q)$	10) of the receivin	g water 0.11	cfs				

f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y_O_ N_O_ If yes, for which pollutant(s)?

Is there a final TMDL? Y_O_N_O_If yes, for which pollutant(s)? Listed as impaired due to Sediment, no TMDL.

Please attach any calculation sheets used to support stream flow and dilution calculations.

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

 $A \underline{\bigcirc} B \underline{\bigcirc} C \underline{\bigcirc} D \underline{\bigcirc} E \underline{\bigcirc} F \underline{\bigcirc}$

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y_O N_O Underway_O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? YO NO

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 \bigcirc 2 \bigcirc 3 \bigcirc

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

Data reviewed to make the above ESA and NHPA Eligibility determinations is attached as Appendix III and IV.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Mohil Statim #2723
Operator signature: Steven Olum
Printed Name & Title: Steven Charron, Environmental Manager
Date: $12 - 31 - 13$

B. Submission of NOI to EPA - All operators applying for coverage under this General Permit must submit a completed Notice of Intent (NOI) to EPA. Signed and completed NOI forms and attachments must be submitted to EPA-NE at:

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912 ATTN: Remediation General Permit NOI Processing

or electronically mailed to NPDES.Generalpermits@epa.gov

or faxed to the EPA Office at 617-918-0505

If filling out the suggested NOI form electronically on EPA's website, the signature page must be signed and faxed or mailed to EPA at the fax number and/or address listed above.

<u>1. Filing with the states</u> - A copy of any NOI form filed with EPA-NE must also be filed with state agencies. The state agency may elect to develop a state specific form or other information requirements.

a) <u>Discharges in Massachusetts</u> - In addition to the NOI, permit applicants must submit copies of the State Application Form BRPWM 12, Request for General Permit coverage for the RGP. The application form and the Transmittal Form for Permit Application and Payment may be obtained from the Massachusetts Department of Environmental Protection (MassDEP) website at <u>www.state.ma.us/dep</u>. Municipalities are fee-exempt, but should send a copy of the transmittal form to that address for project tracking purposes. All applicants should keep a copy of the transmittal form and a copy of the application package for their records.

1) A copy of the NOI, the transmittal form, a copy of the check, and Form BRPWM 12 should be sent to:

Massachusetts Department of Environmental Protection Division of Watershed Management 627 Main Street, 2nd floor Worcester, MA 01608

2) A copy of the transmittal form and the appropriate fee should be sent to:

Massachusetts Department of Environmental Protection P.O. Box 4062 Boston, MA 02111

Please note: Applicants for discharges in Massachusetts should note that under 310 CMR 40.000, *as a matter of state law*, the general permit only applies to discharges that are **not** subject to the

Remediation General Permit Appendix V - NOI Massachusetts Contingency Plan (MCP) and 310 CMR 40.000. Therefore, discharges subject to the MCP are **not** required to fill out and submit the State Application Form BRPWM 12 or pay the state fees. However, they must submit a NOI to EPA.

b) <u>Discharges in New Hampshire</u> - applicants must provide a copy of the Notice of Intent to:

New Hampshire Department of Environmental Services Water Division Wastewater Engineering Bureau P.O. Box 95 Concord, New Hampshire 03302-0095.

<u>2. Filing with Municipalities</u> - A copy of the NOI must be submitted to the municipality in which the proposed discharge would be located.

Dilution Factor

DF = (Qd + Qs)/Qd DF = (0.168 cfs +0.11 cfs)/.168 cfs DF = 1.65

ATTACHMENT II

Report Date: 17-Dec-13 15:17

Final Report
Re-Issued Report
Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

Environmental Compliance Services 10 State Street Woburn, MA 01801 Attn: Matthew Carey

Project: Global Wellesley - 453 Washington St Project #: 95-220730

Laboratory ID	<u>Client Sample ID</u>	Matrix	Date Sampled	Date Received
SB81988-01	TW-B1	Ground Water	13-Dec-13 10:00	13-Dec-13 18:40

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Juiole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 22 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Sp	bectrum Analytical, Inc.		Project #: 95-220	730				
Proje	ect Location: Glo	bal Wellesley - 453 Was	hington St	RTN:					
This	form provides ce	ertifications for the follo	wing data set: S	SB81988-01					
Matr	ices: Ground W	^v ater							
CAM	[Protocol								
✓ 8260 VOC CAM II A		✓ 7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A			
8270 SVOC CAM II B		7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B			
✓ 6010 Metals CAM III A		6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B			
	-	Affirmative responses	to questions A through I	F are required for "Presu	mptive Certainty" status				
Α	Were all samples received in a condition consistent with those described on the Chain of Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?								
B	Were the analyt protocol(s) follo	✓ Yes No							
С	Were all require protocol(s) impl	✓ Yes No							
D	Does the laborat Assurance and (✓ Yes No							
E	a. VPH, EPH, a b. APH and TO	Yes No Yes No							
F	Were all applicated in a lateral second seco	✓ Yes No							
	-	Responses to ques	tions G, H and I below ar	re required for "Presump	tive Certainty" status				
G	Were the report	Yes 🗸 No							
		at achieve "Presumptive C in 310 CMR 40. 1056 (2)(k)		essarily meet the data usabl	ility and representativeness				
Н	Were all QC per	Yes 🗸 No							
Ι	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?								
All ne	gative responses a	re addressed in a case narr	utive on the cover page of th	is report.					
				pon my personal inquiry of v knowledge and belief, acci		ing the			
					Ariole L	eja_			
					Nicole Leja Laboratory Director	r			

Laboratory Director Date: 12/17/2013

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 1.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1312005

Analyte quantified by quadratic equation type calibration.

1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,2-Dibromo-3-chloropropane 1,4-Dioxane 2-Hexanone (MBK) 4-Methyl-2-pentanone (MIBK) Bromochloromethane Bromodichloromethane Bromoform Carbon tetrachloride cis-1,3-Dichloropropene Dibromochloromethane Naphthalene n-Butylbenzene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene

This affected the following samples:

1330279-BLK1 1330279-BS1 1330279-BSD1 S314697-ICV1 S315299-CCV1 TW-B1

Laboratory Control Samples:

1330279 BS/BSD

SW846 8260C

Laboratory Control Samples:

1330279 BS/BSD

Ethyl tert-butyl ether percent recoveries (72/69) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

TW-B1

Samples:

S315299-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,2,3-Trichlorobenzene (22.0%) Acrylonitrile (26.7%) Ethanol (20.7%) Ethyl tert-butyl ether (-27.8%) Methyl tert-butyl ether (-28.7%) tert-Butylbenzene (27.8%)

This affected the following samples:

TW-B1

1330279-BLK1 1330279-BS1 1330279-BSD1 TW-B1

SB81988-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB81988-01RE1 TW-B1

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:	Environmental Compliance Services - Woburn, MA					
Project:	Global Wellesley - 453 Washington St / 95-220730					
Work Order:	SB81988					
Sample(s) received on:	12/13/2013					
Received by:	Jessica Hoffman					

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

- 1. Were custody seals present?
- 2. Were custody seals intact?
- 3. Were samples received at a temperature of $\leq 6^{\circ}$ C?
- 4. Were samples cooled on ice upon transfer to laboratory representative?
- 5. Were samples refrigerated upon transfer to laboratory representative?
- 6. Were sample containers received intact?
- 7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
- 8. Were samples accompanied by a Chain of Custody document?
- 9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
- 10. Did sample container labels agree with Chain of Custody document?
- 11. Were samples received within method-specific holding times?

<u>Yes</u>	<u>No</u>	<u>N/A</u>
		\checkmark
\checkmark		
\Box	\checkmark	
\checkmark		
\checkmark		
\checkmark		
\checkmark		

Sample Identification TW-B1 SB81988-01				<u>Client Project #</u> 95-220730		<u>Matrix</u> <u>C</u> Ground Water			Collection Date/Time 13-Dec-13 10:00		Received 13-Dec-13		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Prganic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V	-	GS1										
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 5.00	D	μg/l	5.00	3.24	5	SW846 8260C	17-Dec-13	17-Dec-13	NAA	1330279	
67-64-1	Acetone	< 50.0	D	µg/l	50.0	12.8	5	I		u	"		
107-13-1	Acrylonitrile	< 2.50	D	µg/l	2.50	2.38	5	I		н	"		
71-43-2	Benzene	915	E, D	µg/l	5.00	3.34	5				"		
108-86-1	Bromobenzene	< 5.00	D	µg/l	5.00	3.60	5	н		н	"		
74-97-5	Bromochloromethane	< 5.00	D	µg/l	5.00	3.55	5	н		н	"		
75-27-4	Bromodichloromethane	< 2.50	D	µg/l	2.50	2.40	5			н			
75-25-2	Bromoform	< 5.00	D	µg/l	5.00	3.02	5			н			
74-83-9	Bromomethane	< 10.0	D	µg/l	10.0	5.70	5				"		
78-93-3	2-Butanone (MEK)	57.8	D	µg/l	50.0	9.67	5			н			
104-51-8	n-Butylbenzene	< 5.00	D	µg/l	5.00	2.81	5			н			
135-98-8	sec-Butylbenzene	< 5.00	D	µg/l	5.00	4.10	5			н			
98-06-6	tert-Butylbenzene	< 5.00	D	µg/l	5.00	3.72	5						
75-15-0	Carbon disulfide	< 10.0	D	µg/l	10.0	6.40	5			н			
56-23-5	Carbon tetrachloride	< 5.00	D	µg/l	5.00	2.74	5	n		н	"		
108-90-7	Chlorobenzene	< 5.00	D	µg/l	5.00	3.27	5			н			
75-00-3	Chloroethane	< 10.0	D	µg/l	10.0	5.00	5			н			
67-66-3	Chloroform	< 5.00	D	µg/l	5.00	3.44	5			н			
74-87-3	Chloromethane	< 10.0	D	µg/l	10.0	7.36	5			н			
95-49-8	2-Chlorotoluene	< 5.00	D	µg/l	5.00	3.96	5			н			
106-43-4	4-Chlorotoluene	< 5.00	D	µg/l	5.00	3.66	5			н			
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10.0	D	µg/l	10.0	6.00	5				"		
124-48-1	Dibromochloromethane	< 2.50	D	µg/l	2.50	1.72	5						
106-93-4	1,2-Dibromoethane (EDB)	< 2.50	D	µg/l	2.50	1.80	5	I		н	"		
74-95-3	Dibromomethane	< 5.00	D	µg/l	5.00	3.33	5	"		н	"		
95-50-1	1,2-Dichlorobenzene	< 5.00	D	µg/l	5.00	3.34	5			н			
541-73-1	1,3-Dichlorobenzene	< 5.00	D	µg/l	5.00	3.56	5			н			
106-46-7	1,4-Dichlorobenzene	< 5.00	D	µg/l	5.00	3.12	5			н			
75-71-8	Dichlorodifluoromethane (Freon12)	< 10.0	D	µg/l	10.0	2.24	5				"		
75-34-3	1,1-Dichloroethane	< 5.00	D	µg/I	5.00	3.40	5				"		
107-06-2	1,2-Dichloroethane	< 5.00	D	µg/l	5.00	3.90	5	H			"		
75-35-4	1,1-Dichloroethene	< 5.00	D	µg/l	5.00	2.44	5	"			"		
156-59-2	cis-1,2-Dichloroethene	< 5.00	D	µg/l	5.00	3.58	5	H			"		
156-60-5	trans-1,2-Dichloroethene	< 5.00	D	µg/l	5.00	4.16	5	"					
78-87-5	1,2-Dichloropropane	< 5.00	D	µg/l	5.00	3.86	5	H			"		
142-28-9	1,3-Dichloropropane	< 5.00	D	µg/l	5.00	4.04	5	"			"		
594-20-7	2,2-Dichloropropane	< 5.00	D	µg/l	5.00	4.36	5	"			"		
563-58-6	1,1-Dichloropropene	< 5.00	D	µg/l	5.00	3.18	5	"					
10061-01-5	cis-1,3-Dichloropropene	< 2.50	D	µg/l	2.50	1.82	5	n		н			
10061-02-6	trans-1,3-Dichloropropene	< 2.50	D	µg/l	2.50	2.50	5	n		н			
100-41-4	Ethylbenzene	243	D	µg/l	5.00	4.76	5	n		н			
87-68-3	Hexachlorobutadiene	< 2.50	D	µg/l	2.50	2.44	5	n		н	"		
591-78-6	2-Hexanone (MBK)	< 50.0	D	µg/l	50.0	3.29	5			н			

This laboratory report is not valid without an authorized signature on the cover page.

TW-B1 SB81988	-01				<u>Project #</u> 20730		<u>Matrix</u> Ground Wa		ection Date 3-Dec-13 10			<u>ceived</u> Dec-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
	organic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V		GS1										
98-82-8	Isopropylbenzene	5.10	D	µg/l	5.00	3.10	5	SW846 8260C	17-Dec-13	17-Dec-13	NAA	1330279	
99-87-6	4-Isopropyltoluene	< 5.00	D	μg/l	5.00	3.04	5	"		"		"	
1634-04-4	Methyl tert-butyl ether	22.4	D	μg/l	5.00	3.26	5	н					
108-10-1	4-Methyl-2-pentanone (MIBK)	< 50.0	D	μg/l	50.0	13.8	5	и			"		
75-09-2	Methylene chloride	< 10.0	D	μg/l	10.0	4.74	5				"		
91-20-3	Naphthalene	7.10	D	μg/l	5.00	2.90	5						
103-65-1	n-Propylbenzene	5.90	D	µg/l	5.00	3.79	5	н		н			
100-42-5	Styrene	< 5.00	D	μg/l	5.00	3.08	5	u		н			
630-20-6	1,1,1,2-Tetrachloroethane	< 5.00	D	µg/l	5.00	3.36	5	н		н			
79-34-5	1,1,2,2-Tetrachloroethane	< 2.50	D	µg/l	2.50	1.58	5			н			
127-18-4	Tetrachloroethene	< 5.00	D	μg/l	5.00	3.72	5	u		н			
108-88-3	Toluene	1,780	E, D	μg/l	5.00	4.06	5	н		н			
87-61-6	1,2,3-Trichlorobenzene	< 5.00	D	µg/l	5.00	1.88	5	н		н			
120-82-1	1,2,4-Trichlorobenzene	< 5.00	D	µg/l	5.00	1.80	5	"		н			
108-70-3	1,3,5-Trichlorobenzene	< 5.00	D	μg/l	5.00	3.92	5	"		н			
71-55-6	1,1,1-Trichloroethane	< 5.00	D	μg/l	5.00	2.91	5	u		н			
79-00-5	1,1,2-Trichloroethane	< 5.00	D	μg/l	5.00	3.21	5	"		н			
79-01-6	Trichloroethene	< 5.00	D	μg/l	5.00	3.78	5	п		н			
75-69-4	Trichlorofluoromethane (Freon 11)	< 5.00	D	μg/l	5.00	3.14	5	и			"		
96-18-4	1,2,3-Trichloropropane	< 5.00	D	µg/l	5.00	3.68	5	н		н			
95-63-6	1,2,4-Trimethylbenzene	31.0	D	µg/l	5.00	3.78	5	н		н			
108-67-8	1,3,5-Trimethylbenzene	6.55	D	µg/l	5.00	3.72	5	н		н			
75-01-4	Vinyl chloride	< 5.00	D	µg/l	5.00	4.04	5	н		н			
179601-23-1	m,p-Xylene	535	D	μg/l	10.0	8.20	5			н			
95-47-6	o-Xylene	248	D	µg/l	5.00	4.41	5	н		н			
109-99-9	Tetrahydrofuran	< 10.0	D	µg/l	10.0	7.21	5	н		н			
60-29-7	Ethyl ether	< 5.00	D	μg/l	5.00	3.46	5			н			
994-05-8	Tert-amyl methyl ether	< 5.00	D	µg/l	5.00	3.60	5	u			"		
637-92-3	Ethyl tert-butyl ether	8.40	D	μg/l	5.00	3.91	5			н			
108-20-3	Di-isopropyl ether	< 5.00	D	μg/l	5.00	3.64	5			н			
75-65-0	Tert-Butanol / butyl alcohol	< 50.0	D	µg/l	50.0	43.2	5						
123-91-1	1,4-Dioxane	< 100	D	µg/l	100	60.0	5	н		н	"		
110-57-6	trans-1,4-Dichloro-2-buten e	< 25.0	D	µg/l	25.0	3.68	5	н		u	"		
64-17-5	Ethanol	< 2000	D	µg/l	2000	175	5	"			"		
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	106			70-13	0 %		u			"		
2037-26-5	Toluene-d8	99			70-13	0 %				н	"		
17060-07-0	1,2-Dichloroethane-d4	126			70-13	0 %				н	"		
1868-53-7	Dibromofluoromethane	106			70-13	0 %					"		
	of Volatile Organic Compounds b	014/04/0	GS1										

Prepared by method SW846 5030 Water MS

TW-B1	SB81988-01			<u>Client F</u> 95-22	-		<u>Matrix</u> Ground Wa		ection Date B-Dec-13 10			<u>ceived</u> Dec-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
<u>Re-analysis</u>	of Volatile Organic Compounds b	<u>y SW846</u>	GS1										
<u>8260</u>		(-t MO											
Prepared 76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 50.0	D	µg/l	50.0	32.4	50	SW846 8260C	17-Dec-13	17-Dec-13	NAA	1330279	
67-64-1	Acetone	< 500	D	μg/l	500	128	50						
107-13-1	Acrylonitrile	< 25.0	D	μg/l	25.0	23.8	50	н					
71-43-2	Benzene	1,040	D	μg/l	50.0	33.4	50	н					
108-86-1	Bromobenzene	< 50.0	D	μg/l	50.0	36.0	50	u		н			
74-97-5	Bromochloromethane	< 50.0	D	μg/l	50.0	35.5	50			u			
75-27-4	Bromodichloromethane	< 25.0	D	μg/l	25.0	24.0	50			u			
75-25-2	Bromoform	< 50.0	D	μg/l	50.0	30.2	50	н		u	"		
74-83-9	Bromomethane	< 100	D	µg/l	100	57.0	50	I					
78-93-3	2-Butanone (MEK)	< 500	D	μg/l	500	96.7	50	I		н			
104-51-8	n-Butylbenzene	< 50.0	D	µg/l	50.0	28.1	50						
135-98-8	sec-Butylbenzene	< 50.0	D	µg/l	50.0	41.0	50			н			
98-06-6	tert-Butylbenzene	< 50.0	D	µg/l	50.0	37.2	50			н			
75-15-0	Carbon disulfide	< 100	D	µg/l	100	64.0	50			н	"		
56-23-5	Carbon tetrachloride	< 50.0	D	µg/l	50.0	27.4	50			н			
108-90-7	Chlorobenzene	< 50.0	D	µg/l	50.0	32.7	50			н			
75-00-3	Chloroethane	< 100	D	µg/l	100	50.0	50			u			
67-66-3	Chloroform	< 50.0	D	µg/l	50.0	34.4	50	н			"		
74-87-3	Chloromethane	< 100	D	µg/l	100	73.6	50				"		
95-49-8	2-Chlorotoluene	< 50.0	D	µg/l	50.0	39.6	50	n		н	"		
106-43-4	4-Chlorotoluene	< 50.0	D	µg/l	50.0	36.6	50			н	"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 100	D	µg/l	100	60.0	50	n			"		
124-48-1	Dibromochloromethane	< 25.0	D	µg/l	25.0	17.2	50			u	"		
106-93-4	1,2-Dibromoethane (EDB)	< 25.0	D	µg/l	25.0	18.0	50			u			
74-95-3	Dibromomethane	< 50.0	D	µg/l	50.0	33.3	50			н			
95-50-1	1,2-Dichlorobenzene	< 50.0	D	µg/l	50.0	33.4	50			u	"		
541-73-1	1,3-Dichlorobenzene	< 50.0	D	µg/l	50.0	35.6	50	H		н	"		
106-46-7	1,4-Dichlorobenzene	< 50.0	D	µg/l	50.0	31.2	50			н	"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 100	D	µg/l	100	22.4	50	8		u	"		
75-34-3	1,1-Dichloroethane	< 50.0	D	µg/l	50.0	34.0	50						
107-06-2	1,2-Dichloroethane	< 50.0	D	µg/l	50.0	39.0	50				"		
75-35-4	1,1-Dichloroethene	< 50.0	D	µg/l	50.0	24.4	50				"		
156-59-2	cis-1,2-Dichloroethene	< 50.0	D	µg/l	50.0	35.8	50						
156-60-5	trans-1,2-Dichloroethene	< 50.0	D	µg/l	50.0	41.6	50				"		
78-87-5	1,2-Dichloropropane	< 50.0	D	µg/l	50.0	38.6	50	н		н	"		
142-28-9	1,3-Dichloropropane	< 50.0	D	µg/l	50.0	40.4	50	н		н	"		
594-20-7	2,2-Dichloropropane	< 50.0	D	µg/l	50.0	43.6	50			н	"		
563-58-6	1,1-Dichloropropene	< 50.0	D	µg/l	50.0	31.8	50			н	"		
10061-01-5	cis-1,3-Dichloropropene	< 25.0	D	µg/l	25.0	18.2	50				"		
10061-02-6	trans-1,3-Dichloropropene	< 25.0	D	µg/l	25.0	25.0	50				"		
100-41-4	Ethylbenzene	210	D	µg/l	50.0	47.6	50				"		
87-68-3	Hexachlorobutadiene	< 25.0	D	µg/l	25.0	24.4	50						

Sample Id TW-B1 SB81988	81988-01				<u>Project #</u> 20730		<u>Matrix</u> Ground Wa		r 13-Dec-13 10:00				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Re-analysis	of Volatile Organic Compounds b	y SW846	GS1										
8260													
	by method SW846 5030 V		5										
591-78-6	2-Hexanone (MBK)	< 500	D	µg/l	500	32.9	50	SW846 8260C	17-Dec-13	17-Dec-13	NAA "	1330279	
98-82-8	Isopropylbenzene	< 50.0	D	µg/l	50.0	31.0	50						
99-87-6	4-Isopropyltoluene	< 50.0	D	µg/l	50.0	30.4	50						
1634-04-4	Methyl tert-butyl ether	< 50.0	D	µg/l	50.0	32.6	50						
108-10-1	4-Methyl-2-pentanone (MIBK)	< 500	D	µg/l	500	138	50	"				•	
75-09-2	Methylene chloride	< 100	D	µg/l	100	47.4	50	н			"		
91-20-3	Naphthalene	< 50.0	D	µg/l	50.0	29.0	50				"		
103-65-1	n-Propylbenzene	< 50.0	D	µg/l	50.0	37.9	50	u		н	"		
100-42-5	Styrene	< 50.0	D	µg/l	50.0	30.8	50	u		н	"		
630-20-6	1,1,1,2-Tetrachloroethane	< 50.0	D	µg/l	50.0	33.6	50	H		н	"		
79-34-5	1,1,2,2-Tetrachloroethane	< 25.0	D	µg/l	25.0	15.8	50				"		
127-18-4	Tetrachloroethene	< 50.0	D	µg/l	50.0	37.2	50	н			"		
108-88-3	Toluene	2,660	D	µg/l	50.0	40.6	50	н			"		
87-61-6	1,2,3-Trichlorobenzene	< 50.0	D	µg/l	50.0	18.8	50	н			"		
120-82-1	1,2,4-Trichlorobenzene	< 50.0	D	µg/l	50.0	18.0	50				"		
108-70-3	1,3,5-Trichlorobenzene	< 50.0	D	µg/l	50.0	39.2	50				"		
71-55-6	1,1,1-Trichloroethane	< 50.0	D	µg/l	50.0	29.1	50				"		
79-00-5	1,1,2-Trichloroethane	< 50.0	D	µg/l	50.0	32.1	50				"		
79-01-6	Trichloroethene	< 50.0	D	µg/l	50.0	37.8	50	II		н	"		
75-69-4	Trichlorofluoromethane (Freon 11)	< 50.0	D	µg/l	50.0	31.4	50	n					
96-18-4	1,2,3-Trichloropropane	< 50.0	D	µg/l	50.0	36.8	50	II		н	"		
95-63-6	1,2,4-Trimethylbenzene	< 50.0	D	µg/l	50.0	37.8	50	н			"		
108-67-8	1,3,5-Trimethylbenzene	< 50.0	D	µg/l	50.0	37.2	50	н			"		
75-01-4	Vinyl chloride	< 50.0	D	µg/l	50.0	40.4	50	н			"		
179601-23-1	m,p-Xylene	550	D	µg/l	100	82.0	50	н			"		
95-47-6	o-Xylene	218	D	µg/l	50.0	44.1	50				"		
109-99-9	Tetrahydrofuran	< 100	D	µg/l	100	72.1	50	н			"		
60-29-7	Ethyl ether	< 50.0	D	µg/l	50.0	34.6	50	н			"		
994-05-8	Tert-amyl methyl ether	< 50.0	D	µg/l	50.0	36.0	50				"		
637-92-3	Ethyl tert-butyl ether	< 50.0	D	µg/l	50.0	39.1	50	н		н	"		
108-20-3	Di-isopropyl ether	< 50.0	D	µg/l	50.0	36.4	50			н	"		
75-65-0	Tert-Butanol / butyl alcohol	< 500	D	μg/l	500	432	50						
123-91-1	1,4-Dioxane	< 1000	D	µg/l	1000	600	50				"		
110-57-6	trans-1,4-Dichloro-2-buten e	< 250	D	µg/l	250	36.8	50						
64-17-5	Ethanol	< 20000	D	μg/l	20000	1750	50			п	"		
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	105			70-13	0 %		н					
2037-26-5	Toluene-d8	99			70-13	0 %		н			"		
17060-07-0	1,2-Dichloroethane-d4	126			70-13	0 %					"		
1868-53-7	Dibromofluoromethane	110			70-13	0 %				н	"		
Microextr	actable Organic Compound	s											

Sample Id TW-B1 SB81988	dentification -01				<u>Project #</u> 20730		<u>Matrix</u> Ground Wa		ection Date 3-Dec-13 10			<u>ceived</u> Dec-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Microextr	actable Organic Compounds	5											
106-93-4	1,2-Dibromoethane (EDB)	< 0.0100		µg/l	0.0100	0.00740	1	SW846 8011	16-Dec-13	16-Dec-13	DS	1330131	
Extractab	le Petroleum Hydrocarbons												
Fingerprintin Prepared	ng by GC by method SW846 3510C												
8006-61-9	Gasoline	Calculated as		mg/l	0.2	0.2	1	SW846 8100Mod.	16-Dec-13	16-Dec-13	SEP	1330133	
68476-30-2	Fuel Oil #2	< 0.2		mg/l	0.2	0.2	1						
68476-31-3	Fuel Oil #4	< 0.2		mg/l	0.2	0.02	1						
68553-00-4	Fuel Oil #6	< 0.2		mg/l	0.2	0.2	1						
M09800000	Motor Oil	< 0.2		mg/l	0.2	0.2	1						
8032-32-4	Ligroin	< 0.2		mg/l	0.2	0.05	1						
J00100000	Aviation Fuel	< 0.2		mg/l	0.2	0.05	1						
	Hydraulic Oil	< 0.2		mg/l	0.2	0.02	1				"		
	Dielectric Fluid	< 0.2		mg/l	0.2	0.05	1				"		
	Unidentified	2.9		mg/l	0.2	0.05	1			н			
	Other Oil	Calculated as		mg/l	0.2	0.02	1	п					
	Total Petroleum Hydrocarbons	2.9		mg/l	0.2	0.02	1	n		n	"		
Surrogate rec	coveries:												
3386-33-2	1-Chlorooctadecane	67			40-14	0 %					"		
Total Met	als by EPA 200/6000 Series N	Aethods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			CPA	1330144	
Total Met	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0009	1	SW846 6010C	16-Dec-13	16-Dec-13	arf	1330156	
7440-38-2	Arsenic	0.0050		mg/l	0.0040	0.0018	1			н			
7440-39-3	Barium	0.218		mg/l	0.0050	0.0007	1						
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0008	1						
7440-47-3	Chromium	0.0060		mg/l	0.0050	0.0009	1				"		
7439-89-6	Iron	18.0		mg/l	0.0150	0.0074	1	н			"		
7439-92-1	Lead	0.0239		mg/l	0.0075	0.0020	1	н			"		
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0030	1				"		
Total Met	als by EPA 200 Series Metho	ods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	16-Dec-13	16-Dec-13	LR	1330157	х
General C	Chemistry Parameters												
	Total Suspended Solids	114		mg/l	5.0	1.7	1	SM2540D	16-Dec-13	17-Dec-13	BD	1330190	х

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1330279 - SW846 5030 Water MS									-	
Blank (1330279-BLK1)					Pro	nared & Analy	zed: 17-Dec-1	3		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00		μg/l	1.00		pareu & Analy	2eu. 17-Dec-1	<u>.</u>		
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.50		μg/l	0.50						
Benzene	< 1.00		μg/l	1.00						
Bromobenzene	< 1.00		μg/l	1.00						
Bromochloromethane	< 1.00		µg/l	1.00						
Bromodichloromethane	< 0.50		µg/l	0.50						
Bromoform	< 1.00		μg/l	1.00						
Bromomethane	< 2.00		µg/l	2.00						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.00		μg/l	1.00						
sec-Butylbenzene	< 1.00		µg/l	1.00						
tert-Butylbenzene	< 1.00		μg/l	1.00						
Carbon disulfide	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		μg/l	1.00						
Chlorobenzene	< 1.00		μg/l	1.00						
Chloroethane	< 2.00		μg/l	2.00						
Chloroform	< 1.00		μg/l	1.00						
Chloromethane	< 2.00		μg/l	2.00						
2-Chlorotoluene	< 1.00		μg/l	1.00						
4-Chlorotoluene	< 1.00		µg/l	1.00						
1,2-Dibromo-3-chloropropane	< 2.00		µg/l	2.00						
Dibromochloromethane	< 0.50		µg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		µg/l	0.50						
Dibromomethane	< 1.00		µg/l	1.00						
1,2-Dichlorobenzene	< 1.00		µg/l	1.00						
1,3-Dichlorobenzene	< 1.00		µg/l	1.00						
1,4-Dichlorobenzene	< 1.00		µg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		µg/l	2.00						
1,1-Dichloroethane	< 1.00		µg/l	1.00						
1,2-Dichloroethane	< 1.00		µg/l	1.00						
1,1-Dichloroethene	< 1.00		µg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		µg/l	1.00						
trans-1,2-Dichloroethene	< 1.00		µg/l	1.00						
1,2-Dichloropropane	< 1.00		µg/l	1.00						
1,3-Dichloropropane	< 1.00		µg/l	1.00						
2,2-Dichloropropane	< 1.00		µg/l	1.00						
1,1-Dichloropropene	< 1.00		µg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		µg/l	0.50						
trans-1,3-Dichloropropene	< 0.50		µg/l	0.50						
Ethylbenzene	< 1.00		µg/l	1.00						
Hexachlorobutadiene	< 0.50		µg/l	0.50						
2-Hexanone (MBK)	< 10.0		µg/l	10.0						
Isopropylbenzene	< 1.00		µg/l	1.00						
4-Isopropyltoluene	< 1.00		µg/l	1.00						
Methyl tert-butyl ether	< 1.00		µg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0						
Methylene chloride	< 2.00		µg/I	2.00						
Naphthalene	< 1.00		μg/l	1.00						
n-Propylbenzene	< 1.00		μg/l	1.00						
Styrene	< 1.00		µg/l	1.00						
1,1,1,2-Tetrachloroethane	< 1.00		µg/l	1.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Kesun	Tidg	Omis	KDL	Level	result	JUNEU	Linits	NI D	LIIIII
Batch 1330279 - SW846 5030 Water MS					_					
Blank (1330279-BLK1)				0.50	Pre	pared & Analy	zed: 17-Dec-10	<u>5</u>		
1,1,2,2-Tetrachloroethane	< 0.50		µg/l	0.50						
Tetrachloroethene	< 1.00		μg/l	1.00						
	< 1.00		μg/l	1.00						
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	< 1.00 < 1.00		µg/l	1.00 1.00						
	< 1.00 < 1.00		µg/l	1.00						
1,3,5-Trichlorobenzene 1,1,1-Trichloroethane	< 1.00 < 1.00		µg/l	1.00						
1,1,2-Trichloroethane	< 1.00		µg/l	1.00						
Trichloroethene	< 1.00		μg/l μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00			1.00						
1,2,3-Trichloropropane	< 1.00		µg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00		µg/l	1.00						
Vinyl chloride	< 1.00		μg/l μg/l	1.00						
m,p-Xylene	< 2.00			2.00						
o-Xylene	< 1.00		μg/l μg/l	1.00						
Tetrahydrofuran	< 2.00		μg/l	2.00						
Ethyl ether	< 1.00		μg/l	1.00						
Tert-amyl methyl ether	< 1.00		μg/l	1.00						
Ethyl tert-butyl ether	< 1.00		μg/l	1.00						
Di-isopropyl ether	< 1.00		μg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.00		μg/l	5.00						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromofluorobenzene	50.9		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.7		µg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	63.7		µg/l		50.0		127	70-130		
Surrogate: Dibromofluoromethane	56.1		µg/l		50.0		112	70-130		
LCS (1330279-BS1)					Pre	pared & Analy	zed: 17-Dec-13	3		
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.1		µg/l		20.0		116	70-130		
Acetone	22.5		µg/l		20.0		112	70-130		
Acrylonitrile	25.3		µg/l		20.0		127	70-130		
Benzene	20.2		µg/l		20.0		101	70-130		
Bromobenzene	22.3		µg/l		20.0		112	70-130		
Bromochloromethane	23.5		µg/l		20.0		118	70-130		
Bromodichloromethane	21.7		µg/l		20.0		108	70-130		
Bromoform	19.9		μg/l		20.0		100	70-130		
Bromomethane	20.8		μg/l		20.0		104	70-130		
2-Butanone (MEK)	22.7		μg/l		20.0		114	70-130		
n-Butylbenzene	19.0		μg/l		20.0		95	70-130		
sec-Butylbenzene	23.7		μg/l		20.0		119	70-130		
tert-Butylbenzene	25.6		μg/l		20.0		128	70-130		
Carbon disulfide	19.8		μg/l		20.0		99	70-130		
Carbon tetrachloride	22.3		μg/l		20.0		111	70-130		
Chlorobenzene	20.1		μg/l		20.0		100	70-130		
Chloroethane	22.0		μg/l		20.0		110	70-130		
Chloroform	21.7		μg/l		20.0		109	70-130		
Chloromethane	19.5		μg/l		20.0		98	70-130		
2-Chlorotoluene	21.3		μg/l		20.0		107	70-130		
4-Chlorotoluene	22.6		µg/l		20.0		113	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1330279 - SW846 5030 Water MS					-					
LCS (1330279-BS1)					Dro	nared & Anoly	zed: 17-Dec-1	3		
1,2-Dibromo-3-chloropropane	19.2		μg/l		20.0	purcu & Andly	96	<u>-</u> 70-130		
Dibromochloromethane	21.3				20.0		96 107	70-130		
1,2-Dibromoethane (EDB)	21.3		μg/l μg/l		20.0		107	70-130		
Dibromomethane	22.0		μg/i		20.0		107	70-130		
1,2-Dichlorobenzene	21.4		μg/i μg/l		20.0		107	70-130		
1,3-Dichlorobenzene	23.0		μg/i		20.0		115	70-130		
1,4-Dichlorobenzene	20.0		μg/l		20.0		100	70-130		
Dichlorodifluoromethane (Freon12)	20.9		μg/l		20.0		105	70-130		
1,1-Dichloroethane	20.9		μg/l		20.0		104	70-130		
1,2-Dichloroethane	23.2		μg/l		20.0		116	70-130		
1,1-Dichloroethene	20.5		μg/l		20.0		102	70-130		
cis-1,2-Dichloroethene	21.5		μg/l		20.0		107	70-130		
trans-1,2-Dichloroethene	21.6		μg/l		20.0		108	70-130		
1,2-Dichloropropane	18.9		µg/l		20.0		94	70-130		
1,3-Dichloropropane	21.2		μg/I		20.0		106	70-130		
2,2-Dichloropropane	18.4		μg/l		20.0		92	70-130		
1,1-Dichloropropene	21.4		μg/l		20.0		107	70-130		
cis-1,3-Dichloropropene	18.0		μg/l		20.0		90	70-130		
trans-1,3-Dichloropropene	18.8		µg/l		20.0		94	70-130		
Ethylbenzene	21.7		µg/l		20.0		108	70-130		
Hexachlorobutadiene	23.1		µg/l		20.0		116	70-130		
2-Hexanone (MBK)	22.1		µg/l		20.0		111	70-130		
Isopropylbenzene	21.0		μg/l		20.0		105	70-130		
4-Isopropyltoluene	19.4		μg/l		20.0		97	70-130		
Methyl tert-butyl ether	14.3		μg/l		20.0		71	70-130		
4-Methyl-2-pentanone (MIBK)	21.8		μg/l		20.0		109	70-130		
Methylene chloride	20.7		µg/l		20.0		104	70-130		
Naphthalene	22.0		µg/l		20.0		110	70-130		
n-Propylbenzene	23.3		µg/l		20.0		117	70-130		
Styrene	21.7		µg/l		20.0		108	70-130		
1,1,1,2-Tetrachloroethane	20.3		µg/l		20.0		102	70-130		
1,1,2,2-Tetrachloroethane	22.8		µg/l		20.0		114	70-130		
Tetrachloroethene	22.4		µg/l		20.0		112	70-130		
Toluene	20.9		µg/l		20.0		104	70-130		
1,2,3-Trichlorobenzene	24.4		µg/l		20.0		122	70-130		
1,2,4-Trichlorobenzene	20.0		µg/l		20.0		100	70-130		
1,3,5-Trichlorobenzene	22.0		µg/l		20.0		110	70-130		
1,1,1-Trichloroethane	19.7		µg/l		20.0		98	70-130		
1,1,2-Trichloroethane	20.5		µg/l		20.0		102	70-130		
Trichloroethene	19.9		μg/l		20.0		99 130	70-130		
Trichlorofluoromethane (Freon 11)	23.9		μg/l		20.0		120 108	70-130		
1,2,3-Trichloropropane	21.5		μg/l		20.0		108	70-130		
1,2,4-Trimethylbenzene	22.6		μg/l		20.0		113 115	70-130		
1,3,5-Trimethylbenzene Vinyl chloride	23.1		µg/l		20.0		115	70-130		
m,p-Xylene	21.8 42.6		µg/l		20.0 40.0		109	70-130 70-130		
m,p-xylene o-Xylene	42.6 21.7		µg/l		40.0 20.0		106			
Tetrahydrofuran	21.7		µg/l		20.0		109	70-130 70-130		
Ethyl ether	22.3 21.2		µg/l		20.0		106	70-130 70-130		
Tert-amyl methyl ether	21.2		µg/l		20.0		106	70-130 70-130		
Ethyl tert-butyl ether	21.4 14.4		μg/l μg/l		20.0		72	70-130		
Di-isopropyl ether	17.4		µg/l		20.0		87	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• • • •	Kesuit	Flag	Units	KDL	Level	Kesuit	70KEC	Linits	KFD	LIIIII
Batch 1330279 - SW846 5030 Water MS					_			_		
LCS (1330279-BS1)						pared & Analy	zed: 17-Dec-1			
Tert-Butanol / butyl alcohol	175		µg/l		200		87	70-130		
1,4-Dioxane	208		µg/l		200		104	70-130		
trans-1,4-Dichloro-2-butene	18.3		µg/l		20.0		92	70-130		
Ethanol	483		µg/l		400		121	70-130		
Surrogate: 4-Bromofluorobenzene	52.4		µg/l		50.0		105	70-130		
Surrogate: Toluene-d8	51.4		µg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	61.0		µg/l		50.0		122	70-130		
Surrogate: Dibromofluoromethane	55.0		µg/l		50.0		110	70-130		
LCS Dup (1330279-BSD1)					Pre	pared & Analy	zed: 17-Dec-1	<u>3</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.9		µg/l		20.0		99	70-130	15	20
Acetone	23.0		µg/l		20.0		115	70-130	2	20
Acrylonitrile	23.5		µg/l		20.0		118	70-130	7	20
Benzene	19.1		µg/l		20.0		96	70-130	5	20
Bromobenzene	20.9		µg/l		20.0		104	70-130	7	20
Bromochloromethane	21.7		µg/l		20.0		109	70-130	8	20
Bromodichloromethane	20.5		µg/l		20.0		103	70-130	5	20
Bromoform	19.2		µg/l		20.0		96	70-130	4	20
Bromomethane	19.8		µg/l		20.0		99	70-130	5	20
2-Butanone (MEK)	23.4		µg/l		20.0		117	70-130	3	20
n-Butylbenzene	17.7		µg/l		20.0		88	70-130	7	20
sec-Butylbenzene	21.7		µg/l		20.0		108	70-130	9	20
tert-Butylbenzene	23.2		µg/l		20.0		116	70-130	10	20
Carbon disulfide	18.0		µg/l		20.0		90	70-130	10	20
Carbon tetrachloride	20.6		µg/l		20.0		103	70-130	8	20
Chlorobenzene	19.3		μg/l		20.0		96	70-130	4	20
Chloroethane	19.9		μg/l		20.0		100	70-130	10	20
Chloroform	20.5		μg/l		20.0		103	70-130	6	20
Chloromethane	18.1		μg/l		20.0		91	70-130	7	20
2-Chlorotoluene	19.5		µg/l		20.0		97	70-130	9	20
4-Chlorotoluene	21.0		μg/l		20.0		105	70-130	7	20
1,2-Dibromo-3-chloropropane	20.2		μg/l		20.0		101	70-130	5	20
Dibromochloromethane	20.5		μg/l		20.0		103	70-130	4	20
1,2-Dibromoethane (EDB)	21.9		μg/l		20.0		109	70-130	4	20
Dibromomethane	20.8		μg/l		20.0		104	70-130	3	20
1,2-Dichlorobenzene	19.7		μg/l		20.0		98	70-130	7	20
1,3-Dichlorobenzene	21.3		μg/l		20.0		106	70-130	8	20
1,4-Dichlorobenzene	18.6		μg/l		20.0		93	70-130	8	20
Dichlorodifluoromethane (Freon12)	17.9		μg/l		20.0		90	70-130	16	20
1,1-Dichloroethane	20.0		μg/l		20.0		100	70-130	4	20
1,2-Dichloroethane	22.2		μg/l		20.0		111	70-130	5	20
1,1-Dichloroethene	19.1		μg/l		20.0		95	70-130	7	20
cis-1,2-Dichloroethene	21.5		μg/l		20.0		108	70-130	0.2	20
trans-1,2-Dichloroethene	20.1		μg/l		20.0		100	70-130	7	20
1,2-Dichloropropane	18.1		μg/l		20.0		90	70-130	4	20
1,3-Dichloropropane	20.2		μg/l		20.0		101	70-130	5	20
2,2-Dichloropropane	16.7		μg/l		20.0		84	70-130	9	20
1,1-Dichloropropene	19.7		μg/l		20.0		98	70-130	9	20
cis-1,3-Dichloropropene	17.4		μg/l		20.0		87	70-130	3 4	20
trans-1,3-Dichloropropene	17.4		μg/l		20.0		92	70-130	4	20
Ethylbenzene	20.4				20.0		92 102	70-130	6	20 20
Hexachlorobutadiene	20.4 21.3		µg/l		20.0		102	10-130	U	20 20

					Spike	Source		%REC		RPE
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1330279 - SW846 5030 Water MS										
LCS Dup (1330279-BSD1)					Pre	pared & Analy	zed: 17-Dec-10	<u>3</u>		
2-Hexanone (MBK)	22.0		µg/l		20.0		110	70-130	0.7	20
Isopropylbenzene	19.7		µg/l		20.0		99	70-130	6	20
4-Isopropyltoluene	18.6		µg/l		20.0		93	70-130	4	20
Methyl tert-butyl ether	14.1		µg/l		20.0		70	70-130	1	20
4-Methyl-2-pentanone (MIBK)	21.3		µg/l		20.0		106	70-130	2	20
Methylene chloride	19.6		µg/l		20.0		98	70-130	5	20
Naphthalene	21.1		µg/l		20.0		106	70-130	4	20
n-Propylbenzene	21.9		µg/l		20.0		110	70-130	6	20
Styrene	20.7		µg/l		20.0		104	70-130	5	20
1,1,1,2-Tetrachloroethane	18.9		µg/l		20.0		95	70-130	7	20
1,1,2,2-Tetrachloroethane	22.7		μg/l		20.0		113	70-130	0.7	20
Tetrachloroethene	20.1		μg/l		20.0		101	70-130	11	20
Toluene	19.1		μg/I		20.0		95	70-130	9	20
1,2,3-Trichlorobenzene	22.8		µg/l		20.0		114	70-130	7	20
1,2,4-Trichlorobenzene	18.6		µg/l		20.0		93	70-130	7	20
1,3,5-Trichlorobenzene	20.6		µg/l		20.0		103	70-130	7	20
1,1,1-Trichloroethane	18.3		µg/l		20.0		92	70-130	7	20
1,1,2-Trichloroethane	19.9		μg/l		20.0		100	70-130	3	20
Trichloroethene	18.2		µg/l		20.0		91	70-130	9	20
Trichlorofluoromethane (Freon 11)	21.2		μg/l		20.0		106	70-130	12	20
1,2,3-Trichloropropane	21.2		μg/l		20.0		106	70-130	2	20
1,2,4-Trimethylbenzene	21.1		μg/l		20.0		106	70-130	7	20
1,3,5-Trimethylbenzene	21.7		μg/l		20.0		108	70-130	6	20
Vinyl chloride	19.9		μg/l		20.0		100	70-130	9	20
m,p-Xylene	40.0		μg/l		40.0		100	70-130	6	20
o-Xylene	21.1		μg/l		20.0		106	70-130	3	20
Tetrahydrofuran	21.2		µg/l		20.0		106	70-130	5	20
Ethyl ether	20.6		µg/l		20.0		103	70-130	3	20
Tert-amyl methyl ether	20.7		μg/l		20.0		103	70-130	4	20
Ethyl tert-butyl ether	13.9	QM9	μg/l		20.0		69	70-130	4	20
Di-isopropyl ether	16.9		μg/l		20.0		84	70-130	3	20
Tert-Butanol / butyl alcohol	173		μg/l		200		86	70-130	1	20
1,4-Dioxane	203		μg/l		200		102	70-130	2	20
trans-1,4-Dichloro-2-butene	18.1		μg/l		200		90	70-130	1	20
Ethanol	455		μg/l		400		114	70-130	6	20
Surrogate: 4-Bromofluorobenzene	52.7		μg/l		50.0		105	70-130		
Surrogate: Toluene-d8	51.0		μg/I		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	60.2		μg/I		50.0		120	70-130		
Surrogate: Dibromofluoromethane	55.5		μg/l		50.0		111	70-130		

Microextractable	Organic	Compounds -	Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1330131 - General Preparation SVOC										
Blank (1330131-BLK1)					Pre	pared & Analy:	zed: 16-Dec-1	<u>3</u>		
1,2-Dibromoethane (EDB)	< 0.0100		μg/l	0.0100						
LCS (1330131-BS1)					Pre	pared & Analy:	zed: 16-Dec-1	<u>3</u>		
1,2-Dibromoethane (EDB)	0.109		μg/l	0.0100	0.100		109	50-150		
LCS Dup (1330131-BSD1)					Pre	pared & Analy:	zed: 16-Dec-1	<u>3</u>		
1,2-Dibromoethane (EDB)	0.105		µg/l	0.0100	0.100		105	50-150	4	50

			•		•					
.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1330133 - SW846 3510C										
Blank (1330133-BLK1)					Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Gasoline	< 0.2		mg/l	0.2						
Fuel Oil #2	< 0.2		mg/l	0.2						
Fuel Oil #4	< 0.2		mg/l	0.2						
Fuel Oil #6	< 0.2		mg/l	0.2						
Motor Oil	< 0.2		mg/l	0.2						
Ligroin	< 0.2		mg/l	0.2						
Aviation Fuel	< 0.2		mg/l	0.2						
Hydraulic Oil	< 0.2		mg/l	0.2						
Dielectric Fluid	< 0.2		mg/l	0.2						
Unidentified	< 0.2		mg/l	0.2						
Other Oil	< 0.2		mg/l	0.2						
Total Petroleum Hydrocarbons	< 0.2		mg/l	0.2						
Surrogate: 1-Chlorooctadecane	0.0318		mg/l		0.0500		64	40-140		
LCS (1330133-BS2)					Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Fuel Oil #2	8.5		mg/l	0.2	10.0		85	40-140		
Surrogate: 1-Chlorooctadecane	0.0462		mg/l		0.0500		92	40-140		
LCS Dup (1330133-BSD2)					Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Fuel Oil #2	8.3		mg/l	0.2	10.0		83	40-140	2	200
Surrogate: 1-Chlorooctadecane	0.0460		mg/l		0.0500		92	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1330156 - SW846 3005A										
Blank (1330156-BLK1)					Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Iron	< 0.0150		mg/l	0.0150						
Silver	< 0.0050		mg/l	0.0050						
Chromium	< 0.0050		mg/l	0.0050						
Barium	< 0.0050		mg/l	0.0050						
Cadmium	< 0.0025		mg/l	0.0025						
Lead	< 0.0075		mg/l	0.0075						
Selenium	< 0.0150		mg/l	0.0150						
Arsenic	< 0.0040		mg/l	0.0040						
LCS (1330156-BS1)					Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Iron	1.31		mg/l	0.0150	1.25		105	85-115		
Arsenic	1.25		mg/l	0.0040	1.25		100	85-115		
Selenium	1.26		mg/l	0.0150	1.25		101	85-115		
Lead	1.21		mg/l	0.0075	1.25		97	85-115		
Chromium	1.26		mg/l	0.0050	1.25		101	85-115		
Barium	1.25		mg/l	0.0050	1.25		100	85-115		
Silver	1.17		mg/l	0.0050	1.25		94	85-115		
Cadmium	1.27		mg/l	0.0025	1.25		102	85-115		
LCS Dup (1330156-BSD1)					Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Iron	1.34		mg/l	0.0150	1.25		107	85-115	2	20
Silver	1.18		mg/l	0.0050	1.25		94	85-115	0.7	20
Selenium	1.27		mg/l	0.0150	1.25		101	85-115	0.6	20
Lead	1.22		mg/l	0.0075	1.25		98	85-115	1	20
Chromium	1.27		mg/l	0.0050	1.25		101	85-115	0.6	20
Cadmium	1.28		mg/l	0.0025	1.25		102	85-115	0.6	20
Barium	1.27		mg/l	0.0050	1.25		102	85-115	1	20
Arsenic	1.26		mg/l	0.0040	1.25		100	85-115	0.5	20

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	itesuit	Thug	Olitis	IGE	Level	Result	/mee	Linns	Iu D	Linit
Batch 1330157 - EPA200/SW7000 Series										
Blank (1330157-BLK1)					Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Mercury	< 0.00020		mg/l	0.00020						
LCS (1330157-BS1)					Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Mercury	0.00463		mg/l	0.00020	0.00500		93	85-115		
Duplicate (1330157-DUP1)			Source: S	B81988-01	Pre	pared & Analy	zed: 16-Dec-1	3		
Mercury	< 0.00020		mg/l	0.00020		BRL				20
Matrix Spike (1330157-MS1)			Source: S	B81988-01	Pre	pared & Analy	zed: 16-Dec-1	3		
Mercury	0.00511		mg/l	0.00020	0.00500	BRL	102	80-120		
Matrix Spike Dup (1330157-MSD1)			Source: S	B81988-01	Pre	pared & Analy	zed: 16-Dec-1	3		
Mercury	0.00512		mg/l	0.00020	0.00500	BRL	102	80-120	0.3	20
Post Spike (1330157-PS1)			Source: S	B81988-01	Pre	pared & Analy	zed: 16-Dec-1	<u>3</u>		
Mercury	0.00482		mg/l	0.00020	0.00500	BRL	96	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1330190 - General Preparation										
Blank (1330190-BLK1)					Pre	pared: 16-Dec	-13 Analyzed	: 17-Dec-13		
Total Suspended Solids	< 5.0		mg/l	5.0						
LCS (1330190-BS1)					Pre	pared: 16-Dec	-13 Analyzed	: 17-Dec-13		
Total Suspended Solids	98.0		mg/l	10.0	100		98	90-110		

Notes and Definitions

- D Data reported from a dilution
- E This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.
- GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.
- QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes wirgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Wisk

Custody Seals: Present Intact Broken Refrigerated DI VOA Frozen Soil Jar Frozen	Condition upon recept: Custod					14	
riananane le sensolt in	E-mail to	3/12 YRUO	12/13	L'H		nd	B
marey & lest on sult in	mat(Date: Time: Time: Time:	121 121	Received by:	R	Relinquished by:	Rel
		*	1		-		
2-1/1.a.Mc1							
5							
	· ·						
culent notified infinition	2						
nut 5 (340 - 1 Nazsza)		I					
4 year recent of	× × × × × ×	81.2	6 60	00:01	21/51/41	Tw-81	488-01
1 × 1	VOCI TOTA RCO TS TP EC	# of A # of C # of F	Type Matri	Time:	Date:	Sample Id:	Lab Id:
JAK	S H-81		x		C=Composite	G=Grab C=	
DA/QC Reporting Level	n - 8° tota	Glass					
MA DEP MCP CAM Report: Yes No		Containers:		WW=Wastewater =Sludge A=Air	IS	GW=G Water	DW=Drinking Water O=Oil SW= Surface
QA/QC Reporting Notes: * additional charges may apply	List preservative code below: $2 4 4 - \lambda 1 $	7=CH ₃ OH	6=Ascorbic Acid 12=	0 ₃ 5=NaOH 0 ₄ 11=	$3=H_2SO_4$ $4=HNO_3$ ed Water $10=H_3PO_4$	$S2O_3$ 2=HCl O_4 9= Deioniz	1=Na ₂ S2O ₃ 8= NaHSO ₄
Callehon	Sampler(s): N	RQN: Gubbal 215	÷.	P.O. No.:	1 1221 +	Matt Cara	Project Mgr.
453 wasningtonst state: MA	Location: 453 wash		×		2	[_ c. \	
Gibbal Weinester	Site Name: Chlobal L				2		
+30	Project No.: 95-220	- Agawam	To: <u>EQ</u>	Invoice To:	0 mo	Els- wabur	Report To:
Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed: 12/17/13 All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	ECORD	CHAIN OF CUSTODY R	OF CU Page_	HAIN	0	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	SP
30 81983 1p							

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Revised Feb 2013

00

ATTACHMENT III

United States Department of the Interior

FISH & WILDLIFE SERVICE

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 7, 2013

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

(http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Mr. Brett Hillman of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours, Thomas R. Chapman

Supervisor New England Field Office

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
	Dwarf wedgemussel	Endangered	Mill River	Whately
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
Suffolk	Piping Plover	Threatened	Coastal Beaches	Winthrop
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster

-Eastern cougar and gray wolf are considered extirpated in Massachusetts.

-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

Remediation General Permit Appendix I

Areas of Critical Environmental Concern (ACEC) in Massachusetts

This appendix presents the June 2009 list of Massachusetts ACECs, Towns with ACECs within their Boundaries, and a map showing ACECs. If the project proposed is located in one of the communities listed on the "Towns with ACECs within their Boundaries", the project may be located in an ACEC.

To confirm whether the project location is in an ACEC, contact the local Conservation Commission or the Massachusetts Department of Conservation & Recreation (DCR) ACEC program at:

Elizabeth Sorenson, Director
ACEC Program
Massachusetts Department of Conservation and Recreation
Bureau of Planning and Resource Protection
251 Causeway St., Ste. 700, Boston, MA 02114-2104
Phone: 617-626-1394
Email: Elizabeth.Sorenson@state.ma.us
Fax: 617-626-1349

For further information, please reference the Massachusetts DCR ACEC Program Home website at: <u>http://www.mass.gov/dcr/stewardship/acec/index.htm</u>

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN June 2009

Total Approximate Acreage: 268,000 acres Approximate acreage and designation date follow ACEC names below.

Bourne Back River (1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp (1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley (12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed (1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor (600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog (8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills (500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed (4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed (14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp (16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay (2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin (1,350 acres, 1995) Lee and Stockbridge Karner Brook Watershed (7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds (8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary (1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag (25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay (9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River (160 acres, 1980) Bourne

Rumney Marshes (2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System (9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin (13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

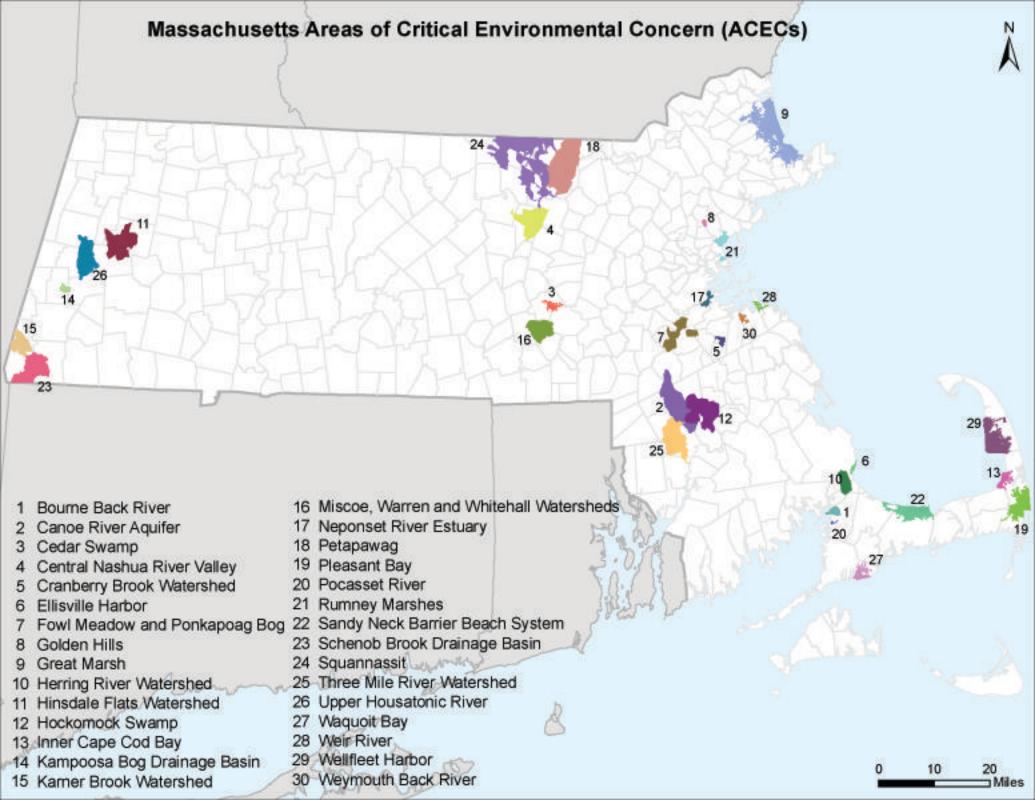
Upper Housatonic River (12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

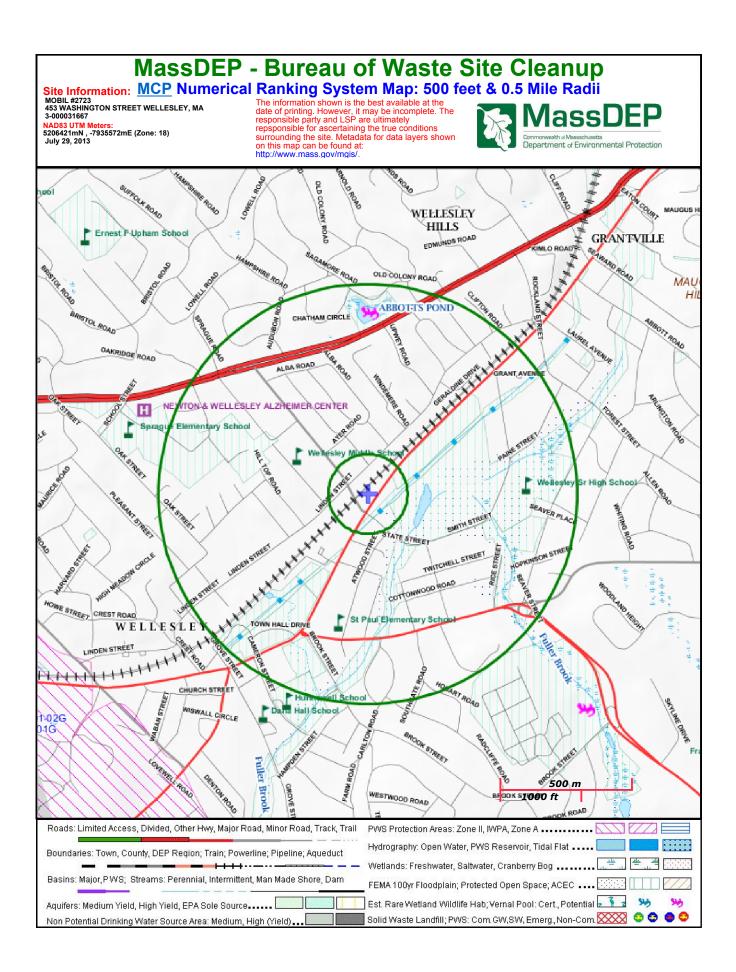
Waquoit Bay (2,580 acres, 1979) Falmouth and Mashpee

Weir River (950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor (12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River (800 acres, 1982) Hingham and Weymouth


ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.


Towns with ACECs within their Boundaries

•

June 2009

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	Ū.	Schenob Brook
,	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
Booton	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	Offeans	Pleasant Bay
Doume	Bourne Back River	Pepperell	Petapawag
		i eppereir	Squannassit
Ducintuca	Herring River Watershed	Doru	
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp		Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Runney Marshes
Eastham	Inner Cape Cod Bay	C	Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer		Fowl Meadow and Ponkapoag Bog
Laston	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth		Taunton	Hockomock Swamp
	Waquoit Bay Canoe River Aquifer	Taunton	Canoe River Aquifer
Foxborough Gloucester	Great Marsh		Three Mile River Watershed
		Truno	
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
0	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River		Upper Housatonic River
	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
•	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River	·	,
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
Lancaster	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
200	Upper Housatonic River		
Lonov	Upper Housatonic River		
Lenox			
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog Neponset River Estuary		

ATTACHMENT IV

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Wellesley; Street Name: washington; Resource Type(s): ü, Area, Building, Burial Ground, Object, Structure;

lnv. No.	Property Name	Street	Town	Year
WEL.211	Saint John the Evangelist Church	Washington St	Wellesley	1881
WEL.438	East Lodge - Wellesley College	Washington St	Wellesley	1869
WEL.442	Barn, The - Recreation and Exercise Building	Washington St	Wellesley	1862
WEL.447	Durant Cottage Homestead - Wellesley College	Washington St	Wellesley	1850
WEL.476	Wellesley College Club - Wellesley College	Washington St	Wellesley	1963
WEL.920	Lovewell Shoe Factory Site	Washington St	Wellesley	1868
WEL.946	Cheney Bridge	Washington St	Wellesley	1897
WEL.947	Washington Street Bridge	Washington St	Wellesley	1932
WEL.308	Parker House	44 Washington St	Wellesley	1851
WEL.404		51-57 Washington St	Wellesley	1924
WEL.39	North School House	56 Washington St	Wellesley	1858
WEL.53	Bullock - Locke House	76 Washington St	Wellesley	1873
WEL.77	Valentine, Mary House	82 Washington St	Wellesley	1861
WEL.486	Morse, Frank G. House	85 Washington St	Wellesley	1897
WEL.341	Beal, Capt. Peter M. House	103 Washington St	Wellesley	1880
WEL.1485	Beal, Capt. Peter M. Carriage House	103 Washington St	Wellesley	1848
WEL.292	Flanagan, Bridget House	119 Washington St	Wellesley	1865
WEL.293	Fahey, Honora House	123 Washington St	Wellesley	1870
WEL.100	Lincoln, John L. House	130 Washington St	Wellesley	1865
WEL.263	Lincoln House	135 Washington St	Wellesley	1865
WEL.49	Hazelton - Barton House	162 Washington St	Wellesley	1848
WEL.225	Stone - Fuller House	189 Washington St	Wellesley	1848
WEL.24	Wellesley Hills Congregational Church Parsonage	196 Washington St	Wellesley	1868
WEL.280	Lincoln - Shurtleff House	200 Washington St	Wellesley	1862
WEL.207	First Congregational Church of Wellesley Hills	207 Washington St	Wellesley	1902
WEL.99	Wellesley Hills Branch Library	210 Washington St	Wellesley	1927

Thursday, December 26, 2013

Page 1 of 3

Inv. No.	Property Name	Street	Town	Year
WEL.1487	Wilder, Charles T. Barn	211 Washington St	Wellesley	1865
WEL.60	Wellesley Friendly Aid Building	219 Washington St	Wellesley	1883
WEL.33	Dadmun, Daniel House	229 Washington St	Wellesley	1824
WEL.321	Ware, Dexter House	251 Washington St	Wellesley	1809
WEL.408	McLeod Block	253 Washington St	Wellesley	1886
WEL.406	Hale's Magnovox	254 Washington St	Wellesley	1940
WEL.919	Wellesley Hills Square Clock Tower	305 Washington St	Wellesley	1928
WEL.979	Elm Park	305 Washington St	Wellesley	1908
WEL.980	Elm Park Drinking Fountain	305 Washington St	Wellesley	1920
WEL.981	Elm Park Stone Entrance Pillars	305 Washington St	Wellesley	2004
WEL.198	Unitarian Church of Wellesley Hills	309 Washington St	Wellesley	1888
WEL.470	Livermore - Rice House	309 Washington St	Wellesley	1874
WEL.411	Institute Building	316 Washington St	Wellesley	1912
WEL.490	Stanwood, Frederick House	323 Washington St	Wellesley	1916
WEL.145	Intermediate Building	324 Washington St	Wellesley	1894
WEL.231	Parker - Peck House	325 Washington St	Wellesley	1868
WEL.413	Fraser's Flower Shop	330 Washington St	Wellesley	1941
WEL.414	Belvedere Apartments	336 Washington St	Wellesley	1930
WEL.21	Boston and Albany Railroad Station	339 Washington St	Wellesley	1885
WEL.415	Wellesley Hills Trust Company	342 Washington St	Wellesley	1928
WEL.332	DeFazio Building	346-360 Washington St	Wellesley	1889
WEL.28	Wellesley Community Playhouse	380-384 Washington St	Wellesley	1921
WEL.416	Maddix, Forrest N. Commercial Block	400 Washington St	Wellesley	1924
WEL.102	Wellesley Hills Railroad Station and Post Office	404 Washington St	Wellesley	1855
WEL.268	Grantville School	408-410 Washington St	Wellesley	1855
WEL.93	McIntosh, Sylvester House	414 Washington St	Wellesley	1869
WEL.354	McIntosh, Sylvester House	418 Washington St	Wellesley	1868
WEL.355	McIntosh, Sylvester House	422 Washington St	Wellesley	1869
WEL.356	Coulter, George E. House	428 Washington St	Wellesley	1871
WEL.357	Coulter, George E. House	432 Washington St	Wellesley	1874
WEL.118	Hendrick, Edmund G Garrett, Joseph House	465 Washington St	Wellesley	1854
WEL.43	Kingsbury House	477 Washington St	Wellesley	1811
WEL.139	Buck, Augustus H. House	496 Washington St	Wellesley	1878
WEL.204	Saint Paul Catholic Church	502 Washington St	Wellesley	1916
WEL.1	Wellesley Town Hall	525 Washington St	Wellesley	1882
WEL.420	Norman Block	540-550A Washington St	Wellesley	1910
WEL.422	Waban Block	564-570 Washington St	Wellesley	1915
WEL.423	Morton Block	570-574 Washington St	Wellesley	1929
Thursday, De	cember 26, 2013			Page 2 of 3

lnv. No.	Property Name	Street	Town	Year
WEL.424	Holman Block	573-587 Washington St	Wellesley	1922
WEL.95	Wellesley Inn, The	576 Washington St	Wellesley	1860
WEL.380	Grant, Daniel House	592A Washington St	Wellesley	1868
WEL.378	Little, Elbridge House	594 Washington St	Wellesley	1869
WEL.379	Little, Elbridge Barn	594R Washington St	Wellesley	1869
WEL.260	Kilborn - Wiswall House	599 Washington St	Wellesley	1865
WEL.383	Ryan, Edward H. House	600 Washington St	Wellesley	1904
WEL.202	Saint Andrew's Episcopal Church	618 Washington St	Wellesley	1894
WEL.120	Stevens, Francis H. House	619 Washington St	Wellesley	1876
WEL.185	Smith, Sarah House	626 Washington St	Wellesley	1896
WEL.186	Harris, Mary House	629 Washington St	Wellesley	1895
WEL.15	Cunningham, Robert House - Wellesley College	631 Washington St	Wellesley	1830
WEL.187	Lovewell, Charles House - Elms, The	637 Washington St	Wellesley	1922
WEL.188	Lovewell, Charles Baker House - Wellesley College	641 Washington St	Wellesley	1848
WEL.80	Gray, James House - Wellesley College	672 Washington St	Wellesley	1861
WEL.477	Webber - Durant Estate	735 Washington St	Wellesley	1854
WEL.17	Smith, Capt. Aaron House - Hunnewell Estate	745 Washington St	Wellesley	1755
WEL.234	Clarke, W. L. House - Wellesley College	756 Washington St	Wellesley	1873
WEL.131	Lower Lodge - Hunnewell Estate	811 Washington St	Wellesley	1866
WEL.135	Pines, The - Hunnewell Estate	828 Washington St	Wellesley	1871
WEL.127	'Wellesley' - Hunnewell Estate	845 Washington St	Wellesley	1851
WEL.1481	Wellesley Summer House - Hunnewell Estate	845 Washington St	Wellesley	1852
WEL.133	Cottage, The - Hunnewell Estate	848 Washington St	Wellesley	1871
WEL.130	Upper Lodge - Hunnewell Estate	849 Washington St	Wellesley	1865
WEL.128	Gardner's Cottage - Hunnewell Estate	855 Washington St	Wellesley	1855
WEL.1479	Kingsley House	860 Washington St	Wellesley	1970
WEL.19	Morrill, Dr. Isaac House - Hunnewell Estate	863 Washington St	Wellesley	1775
WEL.134	Oaks, The - Hunnewell Estate	866 Washington St	Wellesley	1892
WEL.1478	Oaks, The Garage	866R Washington St	Wellesley	
WEL.136	Caretaker's House - Hunnewell Estate	890 Washington St	Wellesley	1901
WEL.3	Welles - Richardson House - Hunnewell Estate	891 Washington St	Wellesley	1763
WEL.126	Hunnewell Farm - Hunnewell Estate	901 Washington St	Wellesley	1765
WEL.1480	Hunnewell Farm Barn - Hunnewell Estate	901 Washington St	Wellesley	1884