

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

NOV 1 4 2014

Chad Vincent Vice President of Project Management J. Derenzo Company Demolition 60 Gerard Street Boston, MA 02119

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Salem Harbor Station Plant Demolition site located at 24 Fort Avenue, Salem, MA 01970, Essex County; Authorization # MAG910647

Dear Mr. Vincent:

Based on the review of a Notice of Intent (NOI) submitted by Paul Lockwood from Lockwood Remediation Technologies, LLC, on behalf of J. Derenzo Company, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: <u>http://www.epa.gov/region1/npdes/mass.html#dgp</u>.

Please note the enclosed checklist includes parameters your consultant have marked "Believed Present." The checklist also includes other parameters for which the laboratory reports accompanying this NOI indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technologybased ceiling limitations. With the absence of dilution of freshwater into (Salem Harbor) tidal water, EPA determined that the Dilution Factor Range (DFR) for each parameter for this site is in the one and five (1-5) range. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for antimony of 5.6 ug/L, arsenic of 36 ug/L, cadmium of 8.9 ug/L, trivalent chromium of 100 ug/L, hexavalent chromium of 50.3 ug/L, copper of 3.7 ug/L, lead of 8.5 ug/L, mercury of 1.1ug/L, nickel of 8.2 ug/L, selenium of 71ug/L, zinc of 85.6 ug/L and iron of 1,000 ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on September 1, 2015. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphir

Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc: Robert Kubit, MassDEP Richard Rennard, Director Salem MA, PWD Paul Lockwood, Lockwood Remediation Technologies, LLC

2

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:	1 (Shee	MAG910647				
Authorization Issued:	Nover	nber, 2014				
Facility/Site Name:		Harbor Station Power Plant Demolition				
Facility/Site Address:	24 Fo	rt Avenue, Salem, MA 01970, Essex County				
	Email	address of owner: ssilverstein@footprintpower.com				
Legal Name of Operat	or:	J. Derenzo Company Demolition				
Operator contact name, title, and Address:		Chad Vincent, Vice President of Project Management, 60 Gerard Street, Boston, MA 02119				
HARRON HA WORK	SHE BOM	Email: cvincent@jdcdemoinc.com				
Estimated date of the s Completion:	site's	September 1, 2015				
Category and Sub-Cate	Stevense	Category I. Petroleum Related Site Remediation. Subcategory C Petroleum Sites with Additional Contamination.				
RGP Termination Date:	124 33	September 10, 2015				
Receiving Water:		Salem Harbor				
A MAR	a Press Pres	HDM (HDM)				
A STATE AND TOURS		VIDO HU . TOP CO'				

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	 Total Suspended Solids (TSS) 	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
1.00	4. Cyanide (CN) ^{2, 3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
4	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
0.986,	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
>>804	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
nti d	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
199	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
1/101	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
1380404	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
9	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
12	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates	3.0 ug/L ** /Me#8270D/ML 5ug/L,
1.04	(Phthalate esters) 6	Me#606/ML 10ug/L& Me#625/ML 5ug/L
12	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a ** in that case it will be a Monthly Average Limit)
-	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
V	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	b. Benzo(a) Pyrene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
~	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	g. Indeno(1,2,3-cd) Pyrene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
\checkmark	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
<u>.</u>	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

	 Venico e comoria como intria Parela *** solo brienciale secono como farel fue *** solo brienciale secono como farel fue *** ***<	MA/	Recove /Metal L 50 mg/l = ug/l	Minimum level=ML		
	Metal Parameters	App 0.01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ltwater Limits	hibyte sta	Aron
\checkmark	39. Antimony	a charles	5.6	prestering.	ML	10
\checkmark	40. Arsenic **	a series and	· · · · · · · · · · · · · · · · · · ·	36	ML	20
	41. Cadmium **	Largerete		8.9	ML	10
\checkmark	42. Chromium III (trivalent) **	1. 1868.10		100	ML	15
	43. Chromium VI (hexavalent) **	an promising		50.3	ML	10
\checkmark	44. Copper **	DS Daweak		3.7	ML	15
\checkmark	45. Lead **	u session		8.5	ML	20
\checkmark	46. Mercury **	MayEIO		1.1	ML	02
\checkmark	47. Nickel **	0,00388.0	1 News	8.2	ML	20
\checkmark	48. Selenium **	No relages		71	ML	20
	49. Silver	0.96003	- acto	2.2	ML	10
\checkmark	50. Zinc **	Noinbion.		85	ML	15
\checkmark	51. Iron	Insufficient	1,000	STARGE ALS	ML	20

Other Parameters	Limit
52. Instantaneous Flow	Site specific in CFS
53. Total Flow	Site specific in CFS
54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab13
57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab14
58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
64. Maximum Change in Temperature in MA – Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴
	 52. Instantaneous Flow 53. Total Flow 54. pH Range for Class A & Class B Waters in MA 55. pH Range for Class SA & Class SB Waters in MA 56. pH Range for Class B Waters in NH 57. Daily maximum temperature - Warm water fisheries 58. Daily maximum temperature - Cold water fisheries 59. Maximum Change in Temperature in MA - Any Class A water body 60. Maximum Change in Temperature in MA - Any Class B water body - Warm Water 61. Maximum Change in Temperature in MA - Any Class B water body - Cold water and Lakes/Ponds 62. Maximum Change in Temperature in MA - Any Class SA water body - Coastal 63. Maximum Change in Temperature in MA - Any Class SB water body - July to September 64. Maximum Change in Temperature in MA - Any Class SB

Footnotes:

6

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved). ¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³ pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

¹⁴ Temperature sampling per Method 170.1

October 31, 2014

U.S. Environmental Protection Agency–Region 1 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02109-3912 Attn.: Remediation General Permit NOI Processing

Reference: Notice of Intent NPDES Remediation General Permit Salem Harbor Station Power Plant 24 Fort Ave Salem, Massachusetts LRT Reference #2-1199

To whom it may concern:

On behalf of J. Derenzo Company Demolition (JDCD), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP), Massachusetts General Permit (MAG910000). This NOI was prepared in accordance with the general requirements of the NPDES and related guidance documentation provided by the US Environmental Protection Agency (EPA). The completed NOI form is provided in Appendix A.

Site Information

This NOI has been prepared for the management of water generated from construction dewatering for the demolition of the former power plant located at the Salem Harbor Station in Salem, Massachusetts (the Site). Please refer to Figure 1 for a locus map and an overview of the immediate area surrounding the Site. The work area is bounded to the south and east by Salem Harbor, to the north by Fort Avenue and to the west by Derby Street as depicted on Figure 2 Site Plan. The proposed discharge location is to one of four storm water outfalls which ultimately discharges to Salem Harbor on the east of the Site as depicted in Figure 3.

Work Summary

The work scope involves localized excavations for the demolition of various components (tanks, buildings, basins, etc.) associated with the former power plant at the Salem Harbor Station. This work requires dewatering within the excavations to complete work in the "dry". Water generated from the excavations will be handled in accordance with A Best Management Practices Plan included as Appendix B. To characterize water from the excavation, LRT collected a sample from a settling basin on October

24, 2014 per NPDES RGP requirements. These samples were analyzed for the parameters specified for this RGP NOI. Laboratory data reports for these samples are provided in Appendix C.

Discharge and Receiving Surface Water Information

Based on analytical results of groundwater samples collected by LRT, there are detectable concentrations of total suspended solids (TSS), semi-volatile organic compounds (SVOCs) and metals that exceed the applicable discharge concentrations. Although TSS concentrations exceed the discharge criteria, it is expected to be significantly reduced via settling occurring in influent equalization tank and also by the filtration that occurs as part of the wastewater treatment plant provided. Any residual VOCs or SVOCs are expected to be reduced by the carbon treatment. LRT has assumed that metal concentrations will be reduced via filtration and in conjunction with chemical that will reduce the TSS. Any residual dissolved metals will be further reduced with ion exchange media. Refer to Figure 4 for a proposed water treatment system layout.

Calculation of Dilution Criteria

For applications in Massachusetts, the following formula is used to calculate site specific dilution criteria:

DF = (Qd + Qs)/Qd DF = Dilution Factor Qd = Maximum flow rate of the discharge in cubic feet per second (cfs) Qs = Receiving water 7Q10 flow (cfs) where 7Q10 is the minimum flow for seven consecutive days with a reoccurrence interval of 10 years

The receiving water for the dewatering discharge for the site is the Salem Harbor. Since the receiving body is salt water, dilution calculations are not applicable. The applicable discharge standards for the site will be defined as saltwater standards in accordance with Appendix III of the NPDES RGP.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS) and the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, neither the Site nor the point where the proposed discharge reaches the receiving surface water body are Areas of Critical Environmental Concern (ACEC), Habitats of Rare Wetland Wildlife, Habitats of Rare Species or Estimated Habitats of Rare Wildlife or listed as a National Historic Place. Refer to Appendix D for supporting documentation.

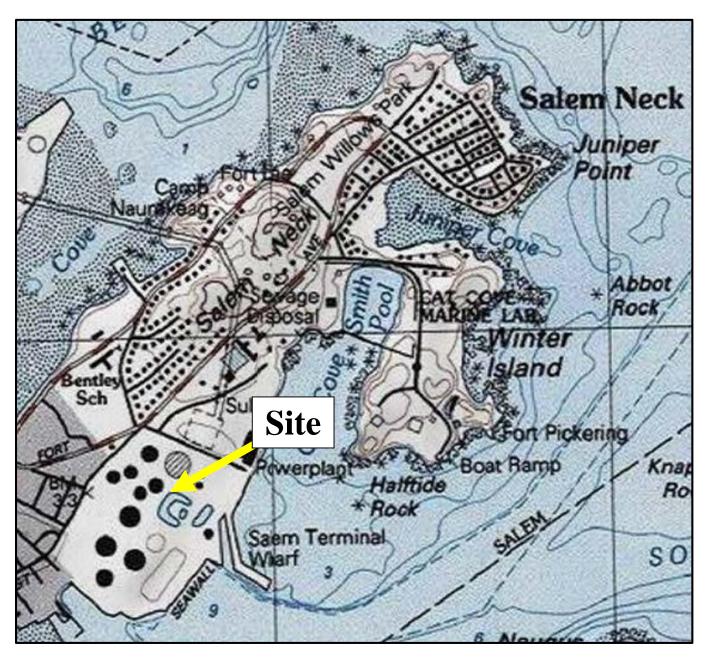
Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of JDCD, we are requesting coverage under the NPDES RGP for the discharge of wastewater

during construction activities to the wetlands located adjacent to the Site.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, JDCD has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications.

Please feel free to contact us at 774-450-7177 or at <u>plockwood@lrt-llc.net</u> if you have any questions or if you require additional information.


Sincerely, Lockwood Remediation Technologies, LLC

Paul Lockwood

Paul Lockwood President

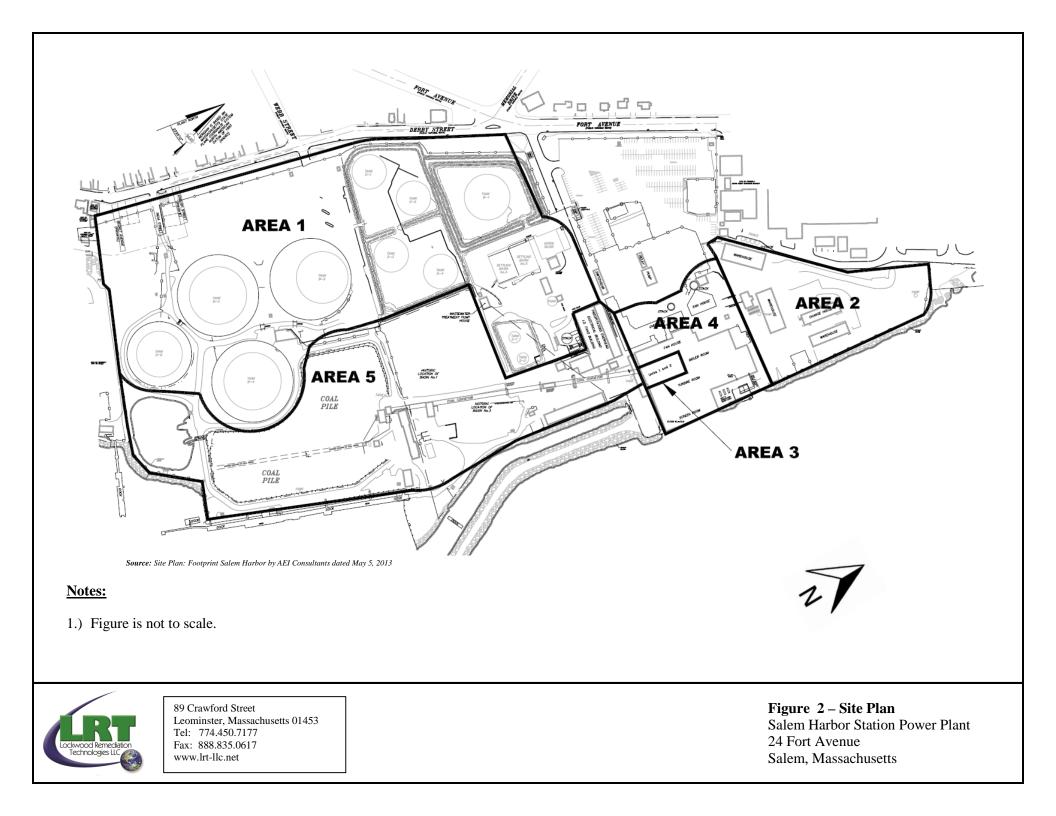
Attachments: Figure 1 - Locus Plan
Figure 2 - Site Plan
Figure 3 - Proposed Dewatering Discharge Location
Figure 4 - Proposed System Layout
Appendix A – NOI Form
Appendix B – Best Management Practices Plan
Appendix C – Laboratory Data
Appendix D – Federal Services Supporting Documentation
Appendix E – Material Safety Data Sheet

Figures

Source: Copyright: © 2013 National Geographic Society, i-cubed / DigitalGlobe, GeoEye, Microsoft

Notes:

1.) Figure is not to scale.


Site Location

Latitude: 42.524938 Longitude: -70.878224

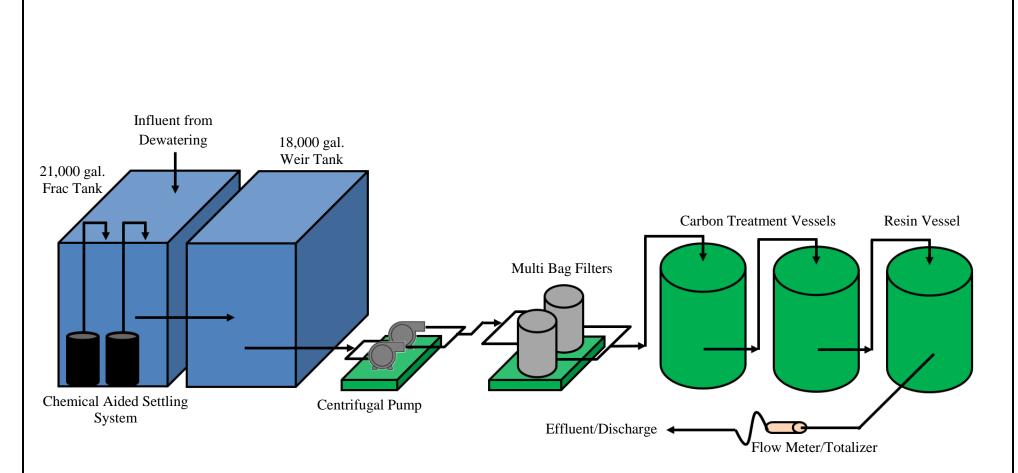
89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net **Figure 1 – Locus Plan** Salem Harbor Station Power Plant 24 Fort Avenue Salem, Massachusetts

Source: Imagery @2014 Google, Map data @2014 Google

Notes:

1.) Figure is not to scale.

KEY


Approximate Work Area Proposed Treatment Discharge Point 😵 Proposed Discharge Point

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Figure 3 – Proposed Dewatering Discharge Location Salem Harbor Station Power Plant 24 Fort Avenue Salem, Massachusetts

Notes:

- 1. This figure is not to scale.
- 2. The water treatment system is rated for 500 gallons per minute.
- 3. All discharge water shall be routed to the treatment system.
- 4. This figure is property of Lockwood Remediation Technologies, LLC.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Figure 4 – Proposed System Layout Salem Harbor Station Power Plant 24 Fort Avenue Salem, Massachusetts

Appendix A NOI Form

<u>B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit</u>

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site :		Facility/site mailing address:					
Location of facility/site : longitude: latitude:	Facility SIC code(s):	Street:					
b) Name of facility/site owner:	Town:						
Email address of facility/site owner:	State:	Zip:	County:				
Telephone no. of facility/site owner:							
Fax no. of facility/site owner:		Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:					
Address of owner (if different from site):							
Street:		-					
Town:	State:	Zip:	County:				
c) Legal name of operator :	Operator tele	ephone no:					
	Operator fax	x no.:					
Operator contact name and title:							
Address of operator (if different from owner):	Street:						
Town:	State:	Zip:	County:				

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? YN, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? YN, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? YN 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state 							
permitting? YN							
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y N If Y, please list: site identification # assigned by the state of NH or MA: permit or license # assigned: state agency contact information: name, location, and telephone number: 	 f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y N, if Y, number: 2. Final Dewatering General Permit? Y N, if Y, number: 3. EPA Construction General Permit? Y N, if Y, number: 4. Individual NPDES permit? Y N, if Y, number: 5. any other water quality related individual or general permit? Y N, if Y, number: 						
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? YN						
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential						
Activity Category	Activity Sub-Category						
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) 						
	C. Petroleum Sites with Additional Contamination						
II - Non Petroleum Site Remediation	 A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites 						
III - Contaminated Construction Dewatering	 A. General Urban Fill Sites B. Known Contaminated Sites 						

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge act	vities for which the owner/applicant is seeking coverage:
b) Provide the following info	rmation about each discharge:
1) Number of discharge points:	2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Max. flow Is maximum flow a design value ? Y N Average flow (include units) Is average flow a design value or estimate?
pt.1: latlong pt.3: latlong pt.5: latlong	each discharge within 100 feet: g; pt.2: lat long; g; pt.4: lat long; g; pt.6: lat long; g; pt.8: lat long; etc.
4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent or seasonal? Is discharge ongoing? Y N
c) Expected dates of discharg	e (mm/dd/yy): start end
	g or flow schematic showing water flow through the facility including: contributing flow from the operation, 3. treatment units, and 4. discharge points and receiving

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum daily value		Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)											
2. Total Residual Chlorine (TRC)											
3. Total Petroleum Hydrocarbons (TPH)											
4. Cyanide (CN)	57125										
5. Benzene (B)	71432										
6. Toluene (T)	108883										
7. Ethylbenzene (E)	100414										
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207										
9. Total BTEX ²	n/a										
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934										
11. Methyl-tert-Butyl Ether (MtBE)	1634044										
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650										

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

 ² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
 ³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	<u>Minimum</u>	<u>Maximum dai</u>	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508										
14. Naphthalene	91203										
15. Carbon Tetrachloride	56235										
16. 1,2 Dichlorobenzene (o-DCB)	95501										
17. 1,3 Dichlorobenzene (m-DCB)	541731										
18. 1,4 Dichlorobenzene (p-DCB)	106467										
18a. Total dichlorobenzene											
19. 1,1 Dichloroethane (DCA)	75343										
20. 1,2 Dichloroethane (DCA)	107062										
21. 1,1 Dichloroethene (DCE)	75354										
22. cis-1,2 Dichloroethene (DCE)	156592										
23. Methylene Chloride	75092										
24. Tetrachloroethene (PCE)	127184										
25. 1,1,1 Trichloro-ethane (TCA)	71556										
26. 1,1,2 Trichloro-ethane (TCA)	79005										
27. Trichloroethene (TCE)	79016										

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ily value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014										
29. Acetone	67641										
30. 1,4 Dioxane	123911										
31. Total Phenols	108952										
32. Pentachlorophenol (PCP)	87865										
33. Total Phthalates (Phthalate esters) ⁴											
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817										
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)											
a. Benzo(a) Anthracene	56553										
b. Benzo(a) Pyrene	50328										
c. Benzo(b)Fluoranthene	205992										
d. Benzo(k)Fluoranthene	207089										
e. Chrysene	21801										
f. Dibenzo(a,h)anthracene	53703										
g. Indeno(1,2,3-cd) Pyrene	193395										
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)											

⁴ The sum of individual phthalate compounds.

					<u>Sample</u>	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
h. Acenaphthene	83329										
i. Acenaphthylene	208968										
j. Anthracene	120127										
k. Benzo(ghi) Perylene	191242										
1. Fluoranthene	206440										
m. Fluorene	86737										
n. Naphthalene	91203										
o. Phenanthrene	85018										
p. Pyrene	129000										
	85687; 84742; 117840; 84662;										
37. Total Polychlorinated	131113;										
Biphenyls (PCBs)	117817.										
38. Chloride	16887006										
39. Antimony	7440360										
40. Arsenic	7440382										
41. Cadmium	7440439										
42. Chromium III (trivalent)	16065831										
43. Chromium VI (hexavalent)	18540299										
44. Copper	7440508										
45. Lead	7439921										
46. Mercury	7439976										
47. Nickel	7440020										
48. Selenium	7782492										
49. Silver	7440224										
50. Zinc	7440666										
51. Iron	7439896										
Other (describe):											

Remediation General Permit Appendix V - NOI Page 16 of 22

					Sample	Analytical	Minimum	<u>Maximum dai</u>	l <u>y value</u>	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

<i>Step 1:</i> Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? YN	If yes, which metals?
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF: Metal: DF: Metal: DF: Metal: DF: Etc. DF:	Look up the limit calculated at the corresponding dilution factor in Appendix IV . Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? YN If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

b) Identify each	Frac. tank	Air stripper	Oil/water separator	Equalization tanks	Bag filter	GAC filter
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

c) Proposed average and maximum the treatment system: Average flow rate of discharge Design flow rate of treatment system	gpm _ N	Maximum flow rat	-	-	
d) A description of chemical additive	es being used or	r planned to be use	ed (attach MSDS s	sheets):	
5. Receiving surface water(s). Pleas	se provide infor	mation about the r	receiving water(s)	, using separate sh	eets as necessary:
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain	Wetlands	Other (describe):
b) Provide a narrative description of	the discharge p	athway, including	the name(s) of the	e receiving waters:	:
 c) Attach a detailed map(s) indicatin 1. For multiple discharges, number the 2. For indirect dischargers, indicate the The map should also include the location 	he discharges see the location of t	equentially. he discharge to the	e indirect conveya	ince and the discha	0

on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.

d) Provide the state water quality classification of the receiving water___

f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y____ N____ If yes, for which pollutant(s)?

Is there a final TMDL? Y____ N____ If yes, for which pollutant(s)? _

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

A ____ B ____ C ____ D ____ E ____ F ____

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y____ N___ Underway____

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y____ N____

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 _____ 2 ____ 3 ____

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Footprint Power Salem Harbor
Operator signature: Cullit 300
Printed Name & Title: Chad Vincent/Vice President of Project Management
Date: 10/30/14

Appendix B Best Management Practices Plan

89 Crawford Street Leominster, MA 01453 Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

BEST MANAGEMENT PRACTICES PLAN

National Pollutant Discharge Elimination System – Remediation General Permit

Temporary Construction Dewatering Salem Harbor Station Power Plant Salem, Massachusetts

A Notice of Intent (NOI) for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) on behalf of J. Derenzo Company Demolition (JDCD) by Lockwood Remediation Technologies, LLC (LRT) in anticipation of temporary construction site dewatering for demolition of the former power plant located at the Salem Harbor Station in Salem, Massachusetts (the Site). This Best Management Practices Plan (BMPP) was prepared in accordance with the general requirements of the NPDES RGP, and related guidance documentation provided by the EPA. The BMPP is included as an Appendix to the NOI and will be posted at the Site during the time of the work as specified in the NOI.

Water Treatment and Management

Construction dewatering will be conducted from sumps located inside the excavations. The treatment system will include a frac tank, weir tank, bag filtration, carbon adsorption to reduce concentrations of compounds associated with petroleum and resin treatment to reduce concentrations of metals associated with fly ash on site. Additionally, a chemical feed system consisting of coagulant and flocculant will be utilized in the influent stream to further reduce TSS. The material safety data sheets for these chemicals are found in Appendix E. This NOI has been prepared for the management of dewatering from the Site; please refer to Figure 1 Locus Plan for an overview of the immediate area surrounding the Site. The proposed work area is referred to as Salem Harbor Station Power Plant as depicted on Figure 2 Site Plan. The proposed discharge location adjacent to the Site is presented on Figure 3.

Discharge Monitoring and Compliance

Routine Operation & Maintenance (O&M) will be completed on the water treatment system. Typical monitoring includes checking the condition of the treatment system and the collection of samples throughout the treatment system to verify the discharge is in compliance with the RGP. In the event that the system effluent is not within the discharge criteria of the RGP, modifications to the treatment system may occur until discharge compliance can be consistently achieved. Please refer to Figure 4 for a layout of the proposed treatment system.

The total monthly discharge will be monitored by a non-resettable flow meter and totalizer. Monthly monitoring reports will be compiled and maintained at the Site. Employees who have direct or indirect responsibility for enduring compliance with the RGP will be trained by the treatment system operator.

Potential sources of pollutants from the Site include TSS, petroleum related compounds and metals associated with fly ash. Dewatering effluent will be pumped directly to the treatment system from the excavations via sumps to minimize handling. The general contractor at the Site will establish staging areas on the Site away from the excavations and treatment system. Sediment collected in the frac/weir tank, spent bag filters and spent media used in the treatment system will be characterized and sent to an approved receiving facility for disposal.

Appendix C Laboratory Data

ANALYTICAL REPORT

Friday, October 31, 2014

Paul Lockwood LRT, LLC 89 Crawford Street Leominster, MA 01453

TEL: (774) 450-7177 FAX:

Project: 2-1199 Location: Salem Power Plant

Order No.: 1410186

Dear Paul Lockwood:

GeoLabs, Inc. received 1 sample(s) on 10/24/2014 for the analyses presented in the following report.

The laboratory results in this report relate only to samples submitted.

All data for associated QC met method or laboratory specifications, except when noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

David Mick Laboratory Director

For current certifications, please visit our website at www.geolabs.com Certifications: CT (PH-0148) - MA (M-MA015) - NH (2508) - RI (LA000252)

GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184 Tele: 781 848 7844 Fax: 781 848 7811

Date: 31-Oct-14

 CLIENT:
 LRT, LLC

 Project:
 2-1199

 Lab Order:
 1410186

CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

All extractable samples were extracted and analyzed and any Volatile samples were analyzed within method specified holding times and according to GeoLabs documented Standard Operating Procedure. No analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples.

SIGNATURE:

PRINTED NAME: David Mick

ming Mich

LAB DIRECTOR

DATE: 10/31/14

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

CLIENT:	LRT, LLC			Client Sample	e ID: GW1	02414
Lab Order:	1410186					/2014 9:30:00 AM
Project:	2-1199				ived: 10/24	
Lab ID:	1410186-001					UNDWATER
				1414	un. oko	UNDWATER
Analyses		Result	RL Q	ual Units	DF	Date Analyzed
NON-POLAR 1	1664A - E1664A					Analyst: CR
	Prep Method:		Prep	Date:		
Total Petroleur	n Hydrocarbons	ND	5.00	mg/L	1	10/31/2014
TOTAL SUSPE	ENDED SOLIDS - SM	2540D				Analyst: CR
	Prep Method:		Prep	Date:		
Total Suspende	ed Solids	1050	4.00	mg/L	1	10/27/2014
POLYCHLORI	NATED BIPHENYLS	- SW8082A				Analyst: KG
	Prep Method:	(SW3510B)	Prep	Date: 10/27/2	2014 10:27:4	3 AM
Aroclor 1016		ND	0.250	µg/L	1	10/28/2014
Aroclor 1221		ND	0.250	µg/L	1	10/28/2014
A		ND	0.250	µg/L	1	10/28/2014
Aroclor 1232						10/28/2014
Aroclor 1232 Aroclor 1242		ND	0.250	µg/L	1	
		ND ND	0.250 0.250	μg/L μg/L	1 1	10/28/2014
Aroclor 1242						10/28/2014 10/28/2014
Aroclor 1242 Aroclor 1248		ND	0.250	µg/L	1	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	hlorobiphenyl Sig 1	ND ND	0.250 0.250	μg/L μg/L	1 1	10/28/2014
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Decach Surr: Decach	hlorobiphenyl Sig 2	ND ND ND	0.250 0.250 0.250	μg/L μg/L μg/L	1 1 1	10/28/2014 10/28/2014
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Decach Surr: Decach	(A), 75 (770)	ND ND ND 73.4	0.250 0.250 0.250 30-150	µg/L µg/L %REC	1 1 1	10/28/2014 10/28/2014 10/28/2014
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Decach Surr: Decach Surr: Tetrach	hlorobiphenyl Sig 2	ND ND 73.4 91.7	0.250 0.250 0.250 30-150 30-150	μg/L μg/L μg/L %REC %REC	1 1 1 1	10/28/2014 10/28/2014 10/28/2014 10/28/2014
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Decach Surr: Decach Surr: Tetrach Surr: Tetrach	hlorobiphenyl Sig 2 hloro-m-Xylene Sig 1 hloro-m-Xylene Sig 2	ND ND 73.4 91.7 61.6 88.6	0.250 0.250 0.250 30-150 30-150 30-150	µg/L µg/L %REC %REC %REC	1 1 1 1 1	10/28/2014 10/28/2014 10/28/2014 10/28/2014 10/28/2014 10/28/2014
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Decach Surr: Decach Surr: Tetrach Surr: Tetrach	hlorobiphenyl Sig 2 hloro-m-Xylene Sig 1	ND ND 73.4 91.7 61.6 88.6	0.250 0.250 30-150 30-150 30-150 30-150	μg/L μg/L %REC %REC %REC %REC	1 1 1 1 1	10/28/2014 10/28/2014 10/28/2014 10/28/2014 10/28/2014 10/28/2014 Analyst: QS

Reported Date: 31-Oct-14

		Prep Method:	(SW3010A)	Pre	p Date:	10/28/2014 10:16:3	38 AM
Antimony			0.0180	0.0100	mg/L	. 1	10/28/2014
Arsenic			0.0990	0.0100	mg/L	1	10/28/2014
Cadmium			ND	0.0100	mg/L	1	10/28/2014
Chromium			0.0320	0.0100	mg/L	1	10/28/2014
Copper			0.0720	0.0100	mg/L	1	10/28/2014
Iron			16.4	0.0100	mg/L	1	10/28/2014
Lead			0.0560	0.0100	mg/L	1	10/28/2014
Nickel			0.0990	0.0100	mg/L	1	10/28/2014
Selenium			0.0510	0.0100	mg/L	1	10/28/2014
Oualifiers:	В	Analyte detected in th	ne associated Method B	lank	BRL B	elow Reporting Limit	
	E	Value above quantita	tion range		н н	lolding times for prepa	ration or analysis exceeded
	J	Analyte detected belo	w quantitation limits		ND N	lot Detected at the Rep	orting Limit
	RL	Reporting Limit			S S	pike Recovery outside	recovery limits

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

	L REPORT		Reported Date: 31-Oct-14					
CLIENT:	LRT, LLC			Client	Sample ID:	GW10	02414	
Lab Order:	1410186			Colle	ction Date:	10/24	/2014 9:30:00 AM	
Project:	2-1199				e Received:			
Lab ID:	1410186-001			Date			JNDWATER	
				Va. New Jobs (1997)				
Analyses		Result	RL Q	ual Unit	\$	DF	Date Analyzed	
TOTAL METAL	S BY ICP - SW60100	C					Analyst: QS	
	Prep Method:	(SW3010A)	Prep	Date:	10/28/2014 1	0:16:38	3 AM	
Silver		ND	0.0100	mg/L		1	10/28/2014	
Zinc		0.477	0.0100	mg/L		1	10/28/2014	
TOTAL MERCU	RY - E245.1						Analyst: EC	
	Prep Method:	(SW7470A/E245.1)	Pren	Date:	10/30/2014 3	36.45		
Morouri					10/00/2014 0			
Mercury		0.0006	0.0005	mg/L		1	10/30/2014	
SEMIVOLATILE	ORGANICS - SW82	270D					Analyst: ZYZ	
	Prep Method:	(SW3510)	Prep	Date:	10/28/2014 9	:41:55	АМ	
1,2,4-Trichlorob		(SW3510) ND	Prep 1.00	Date: µg/L	10/28/2014 9	: 41:55		
1,2,4-Trichlorobo 1,2-Dichloroben:	enzene				10/28/2014 9		10/28/2014 2:39:00 PM	
A A A A A A A A A A A A A A A A A A A	enzene zene	ND ND ND	1.00	µg/L	10/28/2014 9	1	10/28/2014 2:39:00 PN 10/28/2014 2:39:00 PN	
1,2-Dichloroben:	enzene zene ene	ND ND	1.00 1.00	μg/L μg/L	10/28/2014 9	1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze	enzene zene ene zene	ND ND ND	1.00 1.00 1.00	μg/L μg/L μg/L	10/28/2014 9	1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichloroben:	enzene zene zene zene ene	ND ND ND ND	1.00 1.00 1.00 1.00	μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichloroben: 1,3-Dinitrobenze	enzene zene zene zene ene zene	ND ND ND ND ND	1.00 1.00 1.00 1.00 2.50	μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichlorobenze 1,3-Dinitrobenze 1,4-Dichloroben:	enzene zene zene zene zene zene zene	ND ND ND ND ND ND	1.00 1.00 1.00 2.50 1.00	μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichlorobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 1,4-Dichlorobenze	enzene zene zene ene zene zene orophenol	ND ND ND ND ND ND ND	1.00 1.00 1.00 2.50 1.00 2.50	μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichlorobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachlo	enzene zene zene ene zene zene orophenol henol	ND ND ND ND ND ND ND ND	1.00 1.00 1.00 2.50 1.00 2.50 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichlorobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachlo 2,4,5-Trichloroph	enzene zene zene zene zene zene orophenol henol henol	ND ND ND ND ND ND ND ND ND	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichlorobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachle 2,4,5-Trichloroph 2,4,6-Trichloroph	enzene zene zene zene zene zene ene orophenol henol henol	ND ND ND ND ND ND ND ND ND ND	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PN 10/28/2014 2:39:00 PN	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichlorobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachle 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dichlorophen	enzene zene zene zene zene zene ene orophenol henol henol nol	ND ND ND ND ND ND ND ND ND ND ND	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PN 10/28/2014 2:39:00 PN	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichlorobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachle 2,4,5-Trichloroph 2,4,6-Trichlorophe 2,4-Dichlorophen 2,4-Dimethylphe	enzene zene zene zene zene ene orophenol henol henol henol	ND ND ND ND ND ND ND ND ND ND ND ND	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dinitrobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachle 2,4,5-Trichloroph 2,4-Dichlorophen 2,4-Dimethylphe 2,4-Dimethylphen	enzene zene zene zene zene ene prophenol henol henol henol henol henol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00 1.00 1.00 1.00 5.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dinitrobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachlo 2,4,5-Trichloroph 2,4-6-Trichlorophe 2,4-Dichlorophen 2,4-Dinitrophenc 2,4-Dinitrophenc	enzene zene zene zene zene ene orophenol henol henol henol nol enol ol enol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dinitrobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachlo 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dichlorophen 2,4-Dinitrophenc 2,4-Dinitrophenc 2,4-Dinitrotoluer 2,6-Dinitrotoluer	enzene zene zene zene zene ene orophenol henol henol henol nol enol ol enol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dinitrobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachle 2,4,5-Trichloroph 2,4-Dichlorophe 2,4-Dinitrophene 2,4-Dinitrophene 2,4-Dinitrophene 2,4-Dinitrotoluen 2,6-Dinitrotoluen 2-Chloronaphthe	enzene zene zene zene zene zene ene orophenol henol henol henol henol henol enol enol enol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dinitrobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachle 2,4,5-Trichloroph 2,4-Dichlorophe 2,4-Dinitrophene 2,4-Dinitrophene 2,4-Dinitrotoluen 2,6-Dinitrotoluen 2-Chlorophenol	enzene zene zene zene zene zene ene orophenol henol henol henol henol henol enol enol enol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dichloroben: 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachle 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dichlorophen 2,4-Dinitrophene 2,4-Dinitrotoluen 2,4-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2,-Chlorophenol 2-Methylnaphthe	enzene zene zene zene zene zene ene orophenol henol henol henol henol henol enol enol enol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 2.50 1.00 2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dinitrobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 2,3,4,6-Tetrachle 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dinitrophene 2,4-Dinitrophene 2,4-Dinitrotoluer 2,6-Dinitrotoluer 2,6-Dinitrotoluer 2-Chlorophenol 2-Methylphenol	enzene zene zene zene zene zene ene orophenol henol henol henol henol henol enol enol enol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 2.50 1.00 2.50 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AM 10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	
1,2-Dichloroben: 1,2-Dinitrobenze 1,3-Dinitrobenze 1,3-Dinitrobenze 1,4-Dichlorobenze 1,4-Dinitrobenze 2,3,4,6-Tetrachlo 2,4,5-Trichlorophe 2,4-Dichlorophen 2,4-Dinitrobluen 2,4-Dinitrobluen 2,4-Dinitrotoluen 2,6-Dinitrotoluen 2,6-Dinitrotoluen 2-Chloronaphtha 2-Chlorophenol 2-Methylphenol 2-Nitroaniline	enzene zene zene zene zene ene orophenol henol henol henol henol henol alene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.00 1.00 1.00 2.50 1.00 2.50 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10/28/2014 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/28/2014 2:39:00 PM 10/28/2014 2:39:00 PM	

В Analyte detected in the associated Method Blank Qualifiers: Е Value above quantitation range

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits

RL Reporting Limit

S Spike Recovery outside recovery limits

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

ANALYTICAL REPORT

CLIENT:	LRT, LLC	Client Sample ID: GW102414
Lab Order:	1410186	Collection Date: 10/24/2014 9:30:00 AM
Project:	2-1199	Date Received: 10/24/2014
Lab ID:	1410186-001	Matrix: GROUNDWATER

Analyses	Result	RL	Qual Unit	s DF	Date Analyzed
EMIVOLATILE ORGANICS - SW8	270D				Analyst: ZYZ
Prep Method:	(SW3510)	F	Prep Date:	10/28/2014 9:41:55	АМ
3-Nitroaniline	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
4,6-Dinitro-2-Methylphenol	ND	5.00	µg/L	1	10/28/2014 2:39:00 PM
4-Bromophenyl Phenyl Ether	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
4-Chloro-3-Methylphenol	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
4-Chloroaniline	ND	2.50	µg/L	1	10/28/2014 2:39:00 PM
4-Chlorophenyl Phenyl Ether	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
4-Nitroaniline	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
4-Nitrophenol	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Acenaphthene	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Acenaphthylene	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Acetophenone	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Aniline	ND	5.00	µg/L	1	10/28/2014 2:39:00 PM
Anthracene	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Azobenzene	ND	5.00	µg/L	1	10/28/2014 2:39:00 PM
Benz(a)Anthracene	0.790	0.100	µg/L	1	10/28/2014 2:39:00 PM
Benzidine	ND	5.00	µg/L	1	10/28/2014 2:39:00 PM
Benzo(a)Pyrene	1.11	0.100	µg/L	1	10/28/2014 2:39:00 PM
Benzo(b)Fluoranthene	1.67	0.100	µg/L	1	10/28/2014 2:39:00 PM
Benzo(g,h,i)Perylene	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Benzo(k)Fluoranthene	0.655	0.100	µg/L	1	10/28/2014 2:39:00 PM
Benzyl Alcohol	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Bis(2-Chloroethoxy)Methane	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Bis(2-Chloroethyl)Ether	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Bis(2-Chloroisopropyl)Ether	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Bis(2-Ethylhexyl)Phthalate	1.54	1.00	µg/L	1	10/28/2014 2:39:00 PN
Butyl Benzyl Phthalate	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Carbazole	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Chrysene	1.32	1.00	µg/L	1	10/28/2014 2:39:00 PM
Dibenz(a,h)Anthracene	ND	0.100	µg/L	1	10/28/2014 2:39:00 PM
Dibenzofuran	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Diethyl Phthalate	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Dimethyl Phthalate	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Di-n-Butyl Phthalate	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Di-n-Octyl Phthalate	ND	1.00	µg/L	1	10/28/2014 2:39:00 PM
Fluoranthene	2.83	1.00	µg/L	1	10/28/2014 2:39:00 PM
Fluorene	ND	1.00	μg/L	1	10/28/2014 2:39:00 PM

ers:	D	Analyte detected in the associated Method Blank	
	E	Value above quantitation range	

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits RL Reporting Limit

ND Not Detected at the Reporting Limit S Spike Recovery outside recovery limits

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

ANALYTICAL REPORT

-

CLIENT:	LRT, LLC	Client Sample ID: GW102414
Lab Order:	1410186	Collection Date: 10/24/2014 9:30:00 AM
Project:	2-1199	Date Received: 10/24/2014
Lab ID:	1410186-001	Matrix: GROUNDWATER

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
EMIVOLATILE ORGANICS - SW8	270D					Analyst: ZYZ
Prep Method:	(SW3510)	Р	rep Da	te: 10/28	3/2014 9:41:55 Al	VI
Hexachlorobenzene	ND	2.50		µg/L	1	10/28/2014 2:39:00 PM
Hexachlorobutadiene	ND	2.50		µg/L	1	10/28/2014 2:39:00 PM
Hexachloroethane	ND	1.00		µg/L	1	10/28/2014 2:39:00 PM
Indeno(1,2,3-cd)Pyrene	ND	0.100		µg/L	1	10/28/2014 2:39:00 PM
Isophorone	ND	1.00		µg/L	1	10/28/2014 2:39:00 PM
Naphthalene	ND	1.00		µg/L	1	10/28/2014 2:39:00 PM
Nitrobenzene	ND	1.00		µg/L	1	10/28/2014 2:39:00 PM
N-Nitrosodimethylamine	ND	5.00		µg/L	1	10/28/2014 2:39:00 PM
N-Nitrosodi-n-Propylamine	ND	1.00		µg/L	1	10/28/2014 2:39:00 PM
N-Nitrosodiphenylamine	ND	5.00		µg/L	1	10/28/2014 2:39:00 PM
Pentachlorophenol	ND	2.50		µg/L	1	10/28/2014 2:39:00 PM
Phenanthrene	1.60	1.00		µg/L	1	10/28/2014 2:39:00 PM
Phenol	ND	1.00		µg/L	1	10/28/2014 2:39:00 PM
Pyrene	2.52	1.00		µg/L	1	10/28/2014 2:39:00 PM
Pyridine	ND	5.00		µg/L	1	10/28/2014 2:39:00 PM
Surr: 2,4,6-Tribromophenol	41.4	15-110		%REC	1	10/28/2014 2:39:00 PM
Surr: 2-Fluorobiphenyl	32.2	30-130		%REC	1	10/28/2014 2:39:00 PM
Surr: 2-Fluorophenol	15.7	15-110		%REC	1	10/28/2014 2:39:00 PM
Surr: Nitrobenzene-d5	25.7	30-130	S	%REC	1	10/28/2014 2:39:00 PM
Surr: Phenol-d6	9.90	15-110	S	%REC	1	10/28/2014 2:39:00 PM
Surr: Terphenyl-d14	42.3	30-130		%REC	1	10/28/2014 2:39:00 PM

VOLATILE ORGANIC COMPOUNDS - SW8260B

Analyst: ZC

	Prep Method:		Pre	o Date:		
1,1,1,2-Tetrach	loroethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,1,1-Trichloroe	ethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,1,2,2-Tetrach	loroethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,1,2-Trichloroe	ethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,1-Dichloroeth	ane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,1-Dichloroeth	ene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,1-Dichloropro	pene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,2,3-Trichlorob	benzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,2,3-Trichlorop	propane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,2,4-Trichlorob	benzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Qualifiers:	B Analyte detected in th	e associated Method Bla	ink	BRL Below Re	eporting Limit	
	E Value above quantitat	ion range		H Holding t	imes for prepar	ration or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

RL Reporting Limit

S Spike Recovery outside recovery limits

GeoLabs, Inc.	
45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811	

ANALYTICAL REPORT

CLIENT:	LRT, LLC	Client Sample ID: GW102414
Lab Order:	1410186	Collection Date: 10/24/2014 9:30:00 AM
Project:	2-1199	Date Received: 10/24/2014
Lab ID:	1410186-001	Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUNDS	SW8260B				Analyst: ZC
Prep Method:		Prej	o Date:		
1,2,4-Trimethylbenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,2-Dibromo-3-Chloropropane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PN
1,2-Dibromoethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,2-Dichlorobenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,2-Dichloroethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,2-Dichloropropane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,3,5-Trimethylbenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,3-Dichlorobenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,3-Dichloropropane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
1,4-Dichlorobenzene	ND	2.00	μg/L	1	10/30/2014 2:35:00 PM
1,4-Dioxane	ND	500	µg/L	1	10/30/2014 2:35:00 PM
2,2-Dichloropropane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
2-Butanone	ND	10.0	µg/L	1	10/30/2014 2:35:00 PM
2-Chlorotoluene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
2-Hexanone	ND	10.0	µg/L	1	10/30/2014 2:35:00 PM
2-Methoxy-2-Methylbutane (TAME)	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
4-Chlorotoluene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
4-Isopropyltoluene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
4-Methyl-2-Pentanone	ND	5.00	µg/L	1	10/30/2014 2:35:00 PM
Acetone	ND	10.0	µg/L	1	10/30/2014 2:35:00 PM
Benzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Bromobenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Bromochloromethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Bromodichloromethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Bromoform	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Bromomethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PN
Carbon Disulfide	ND	2.00	µg/L	1	10/30/2014 2:35:00 PN
Carbon Tetrachloride	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Chlorobenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Chloroethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Chloroform	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Chloromethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PN
cis-1,2-Dichloroethene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
cis-1,3-Dichloropropene	ND	0.170	µg/L	1	10/30/2014 2:35:00 PN
Dibromochloromethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PN
Dibromomethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM

Qualifiers:	В	Analyte detected in the associated Method Blank	BRL	Below Reporting Limit
	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits J RL Reporting Limit

ND Not Detected at the Reporting Limit S Spike Recovery outside recovery limits

ANALYTICAL REPORT

Reported Date: 31-Oct-14

Analyses		Result	RL Qua	Units	DF	Date Analyzed
Lab ID:	1410186-001			Matrix	: GROU	NDWATER
Project:	2-1199			Date Received	: 10/24/	2014
Lab Order:	1410186			Collection Date	: 10/24/	2014 9:30:00 AM
CLIENT:	LRT, LLC			Client Sample ID	: GW10	2414

VOLATILE ORGANIC COMPOU	JNDS -	SW8260B
-------------------------	--------	---------

Prep Method:		Prep	o Date:		
Dichlorodifluoromethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Diethyl Ether	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Diisopropyl Ether	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Ethylbenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Ethyl-t-Butyl Ether	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Hexachlorobutadiene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Isopropylbenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Methyl Tert-Butyl Ether	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Methylene Chloride	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Naphthalene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
n-Butylbenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
n-Propylbenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
sec-Butylbenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Styrene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
t-Butyl Alcohol	ND	20.0	µg/L	1	10/30/2014 2:35:00 PM
tert-Butylbenzene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Tetrachloroethene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Tetrahydrofuran	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Toluene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
trans-1,2-Dichloroethene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
trans-1,3-Dichloropropene	ND	0.270	µg/L	1	10/30/2014 2:35:00 PM
Trichloroethene	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Trichlorofluoromethane	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Vinyl Chloride	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Xylenes, Total	ND	2.00	µg/L	1	10/30/2014 2:35:00 PM
Surr: 1,2-Dichloroethane-d4	95.1	70-130	%REC	1	10/30/2014 2:35:00 PM
Surr: 4-Bromofluorobenzene	122	70-130	%REC	1	10/30/2014 2:35:00 PM
Surr: Dibromofluoromethane	103	70-130	%REC	1	10/30/2014 2:35:00 PM
Surr: Toluene-d8	108	70-130	%REC	1	10/30/2014 2:35:00 PM

CHLORIDE - E300.0

Ana	lyst:	SUB

Analyst: ZC

		Prep Method:	Pre	p Date:		
Chloride		371	30.0 m		g/L 1	10/30/2014
Oualifiers:	В	Analyte detected in the associated Method Blank		BRL	Below Reporting Limit	
	Е	Value above quantitation range		Н	Holding times for prepa	ration or analysis exceeded
	J	Analyte detected below quantitation limits		ND	Not Detected at the Rep	orting Limit
	RL	Reporting Limit		S	Spike Recovery outside	recovery limits

ANALYTICA	AL REPORT			Reported I	Date: 31-00	et-14
CLIENT:	LRT, LLC			Client Sample	e ID: GW1	02414
Lab Order:	1410186			Collection I	Date: 10/24	/2014 9:30:00 AM
Project:	2-1199			Date Rece	ived: 10/24	/2014
Lab ID:	1410186-001			Ma	trix: GRO	UNDWATER
Analyses		Result	RL Qu	al Units	DF	Date Analyzed
CHLORIDE - E	300.0					Analyst: SUB
	Prep Method:		Prep	Date:		
NOTES: Analyzed by Pl	noenix Environmental Labora	atories M-CT007				
CYANIDE, TOT	AL - E335.4/9010					Analyst: SUB
	Prep Method:		Prep	Date:		
Cyanide NOTES:		ND	0.0100	mg/L	1	10/28/2014
Analyzed by Pl	noenix Environmental Labora	atories M-CT007				
TOTAL RESIDU	UAL CHLORINE- SM 450	00 CL-G				Analyst: SUB
	Prep Method:		Prep	Date:		
Total Residual (Chlorine	ND	0.0200 H	l mg/L	1	10/28/2014 5:45:00 PM

Analyzed by Phoenix Environmental Laboratories M-CT007

Qualifiers:	В	Analyte detected in the associated Method Blank	BRL	Below Reporting Limit
	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	RL	Reporting Limit	S	Spike Recovery outside recovery limits

1			-			-		-		-	1			1												-			
OF 2	structions For parameters and reporting limits	Ŷ		1						Lab Use Only		38UTA839M	. . .			_	_							0 = Other					
0 (report											n/10n/10	6	4	_	-	-	_	_	+	-			= 0				52	A-015)
PAGE	Sand	-				to			10	-	AR	24	$\frac{1}{1}$			+					-			B = Bag P = Plastic V = Voa	l C	2		1635	nh (2508) ma (ma-015) Ri (la000252)
PA	nuter			const		Plant				Requested			-	91P	-	+		-		+	-		11	84>		1			IH (2508) I (LA000)
	para			01014 92		DOWER	-61		20			2011 2 2011 2	15	AI 0	-	+		+			+	+	Containers:	A = Amber G = Glass S = Summa	Date / Time			114	
	h For		ce (s)	or nor (neasonable connuence rrotocols) State / Fed Program - Criteria			2-1199	LRT	6	- <u>></u>	223	Linnes	w[*	P 4P	_	+	-				+	-	Col	8 G A 8 G A 8 G A	- =	5		he,	
	Shee	1,00	Requirements: circle choice (s)	or nor (neasonable connuent State / Fed Program - Criteria		Project: Salem	G		0		(2)	<<	. M.	P IP	_	+		-	_	_	-	+		ther				101	
	anhed S	ant c	Its: circ	r (neasi		act: S	Project PO:	Invoice to *:		+		110	0	*****		+	_	_	-	_	-			7 = 0ther	20	+			
186	u att	hrani	uiremer	State		Proje	Proie	Invoi	┢	1	F			V 1A			+	+	_	_	+	-		aoh Ieoh	20	1		e	CT (PH-0148)
1410186	1 04 N	Start Comp	Requ							;		096	,D	3			+	_	_	-				5 = NaOH 6 = MEOH	10.2		1	0	
14	1) Please refer to the attached Sheet For pair	a) pH and tamp taken in the ficht		ennir					Preservative:			NUMBER		100										H2SO4	llo 1	A		Je	30 Days. / attorney"s
)Pleas	ADMMD	abadtaM GJM	DEP	Other			. Net	Prese			GeoLabs SAMPLE NUMBER		ł										3 = H2S04	R		0	les	s are NET including a
Ī	.7					11		-110				eoLabs (10186									Preservatives	cl NO3	Received by:		\langle	he	ment term on costs,
	Sample Handling: circle choice Filtration Done Not Needed	do do Y/N						さ				9		-		_	_						Pres	1 = Hcl 2 = HNO3	Recei				nd collect T 30 days.
	: circle ch Done Not Needed	Lab to do Lab to do	CW 1	S-1	g	450		9		┝		5 2 4 8		×	_	_	_				_	_	ee					-	r 90 days and beyo syond NE
	andling	e				- HL		wood		┝		PR-R-		2		_		_		_	_		Received on Ice			N		S	noved afte es above that go be
	mple H tration	Preservation	e (s)			r		Plack		NER		DASH-H		3		+	_	+	_		-		Receiv			1202	s f	8	will be ren th expens balances
Ē		Pre	Data Delivery: circle choice (s)		Ë	Phone:	Fax:	email: Plockwood		CONTAINER	-	⊢≻ ⋖ш		3(%)		+		+		-	+					14		R	ogether wi applied to
	JHO		ry: circle		ŀ				1	0	<u> </u>			64										A = Air 0T = Other	Date / Time	241			per year, to s, will be a
	98 4 4		Delive									≘		הדי-רורגטוכחט		2								A = Air 0T = 0i	Dat	101	· \r	20	n or 18% court cost
	boratori A 0218	 f 781.848.7811 m 	Data	Format:	Excel		CHICS	COL				SAMPLE Location / Id		יחוק										S = Soil 0 = Oil			4)	É CO	per mont fees and
	ental La tree, M	781.84			-							TOC		6010												1		(U)	e of 1.5%
	nvironm e, Brain	om f		~			ts to	000				-		Gui										ng Water			A	X	ient charg
	, Inc. E	8.7844 olabs.c	cle one	3-day 5 / 7-davs			Ford	leckueod			s	A∑ A∑	<u>م</u>	Bw										DW = Drinking Water SL = Sludge		P	<u>،</u>	THANK VC	late payr
	CHAIN OF CUSTODY RECORD GeoLabs, Inc. <i>Environmental Laboratories</i> 45 Johnson Lane, Braintree, MA 02184	p 781.848.7844 • www.geolabs.com	und: cir	2 <mark>3</mark>		-	יבמריז	4		TION	┝	_				-	-	_		+		+		SL		10		01/06/0	01/22/8
	- ·	a∛	Turnaround: circle one			LKT	- 00	Reul		COLLECTION		┝╶╴ᢓ╜	d C	Ŏ.									les:	d Water Water	d by:	N		00 00 40	
L	GeoLabs, Inc.			1-day 2-day		Client:	Address:	Contact:		0		D 4 F W		10/24/14									Matrix Codes:	GW = Ground Water WW = Waste Water	Relinquished by:	et n			curu source of churus 2010 minute the payment charge of 1.5% per month or 18% per year, together with expenses above and beyond collection costs, including attorney"s field and collection costs, including attorney"s field and count costs, will be applied to balances that go beyond NET 30 days.
	Ge					C	Ad	പ						101									Ma	WN MN	Reli	1		0107	

									VIC		< 8 0.1													٦
4				4					Lab Use Only		~	_	-		-			_	_	other				
2	D WAY			24					Lab	BE	UTARIAMIT									0 = Other				15)
(1)	Cedy																			lic			1635	(MA-0
DAGE	ron.						-		ted											B = Bag P = Plastic V = Voa	Say		16	NH (2508) MA (MA-015) RI (LA000252)
	, Ars		ocols)		lan-	34			Requested			\uparrow	1									T I	IU	NH (250 RI (LAOI
00	tions		ce Prote	5	5	199		-				+		17					Itainer	A = Amber G = Glass S = Summa	Date / Time	-	2	_
1410186	1, Ant	6 (S)	nfiden	Criteria	Pour	6611-E	LRT		Analysis			+							- S	A Q N	Da	-	194	
141	3) Metals include 5 total chronium, Antimony, Arenie. Cedmium, Cepper, lead, Nickel, Selenium, Silver, Zinc, Iron	Requirements: circle choice (s)	CT RCP (Reasonable Confidence Protocols)	State / Fed Program - Criteria	Salem Power Plant				An				-					_		J.			10	
	Spe chin eleni	circle	Reason	d Prog			ې * او •													7 = Other				1
	total La,S	nents:	RCP (F	ate / Fe	Proiect-	Project PO	Invoice to *:			3	hlorid)]	=								11/5	-	2	148)
	Nick	quirer	G	St		_ <u> </u>			1	5	PCB'	0	5							5 = NaOH 6 = MEOH	R	-	J	CT (PH-0148)
	relu red,	l &		1				L	i		~	+-		1					\parallel	5 6 =	ĝ.		Q	1
	per,		thods					Preservative:			GeoLabs SAMPLE NUMBER	2	\geq							504 25203	(lev)	-	K	30 Days. attorney"
	Cel		MCP Methods	DEP Other			H	Prese			AMPLE									3 = H2S04 4 = Na2S203	R	H	5	are NET cluding
			Σ				108				Labs S/	10106-10	S						atives	3	d by:/	C	pl	nt terms costs, in
	hoice d Y / N				たとした		-110				Geo	2	5						Preservatives	1 = Hcl 2 = HNO3	Received by:		S	II Paymer collection days.
	Sample Handling: circle choice Filtration Done Not Needed Lab to do Preservation Lab to do Y/N		GW-1		11 1		Analetet-ilc.NET	-		e		×	(╢─		╢╴			days * A beyond c 1 NET 30
	ling: c Dor Lab Lab		9.9	S-1 0C	- osh-h		Ofa	4		<u>د</u>	OZL								n Ice					after 90 ove and o beyond
	Hand tion				-HEE		ockin			Σ	: - = - ×	GW							Received on Ice			1	\sim	removed enses ab es that g
	Sample Har Filtration Preservation	ce (s)	email	щ			~		INER	a><	(2>								Rec			5	t	g will be with expe
		Data Delivery: circle choice (s)	еш	PDF	Phone:	Fax:	<u></u>		CONTAINER		~ сш	+							╢—			50.1	2	scounting ogether v
	CHAIN OF CUSTODY RECORD GeoLabs, Inc. Environmental Laboratories 45 Johnson Lane, Braintree, MA 02184 5 781.848.7844 • f 781.848.7811 www.geolabs.com	y: circl						1	0			0							-	r Other	Date / Time	14	12	All dis er year, t , will be
	EC	Jeliver									51- 757		E.							A = Air 0T = Other	Date	24	The second	USINESS or 18% p urt costs
	2184 7811	Data [Fax	Format: Excel							SAMPLE Location / ID	1	-							lios		10	R	YOUR BI month c
	MA (11 Labor), MA (12 Labor), 848.		ш° с	2 @				-			SAN	11he								S = Soil 0 = 0il				ECIATE ' .5% per fee
	CUSTODY ironmental Laboratorie Braintree, MA 02184 • f 781.848.7811 m					St.	chi					HI HEOL MS								ter				E APPRI arge of 1
	Envirol Envirol 16, Bra 14	a		ys.			Roc		L			S				_				king Wat e			\int°	/OU - W ment ch
	N O , Inc. on Lar 8.784 olabs.	cle on	3-day	5 / 7-days		Kind				SA	×8 ×	ME								DW = Drinking Water SL = Sludge				IHANK
	CHAIN OF CUSTODY R GeoLabs, Inc. <i>Environmental Laboratories</i> 45 Johnson Lane, Braintree, MA 02184 p 781.848.7844 • f 781.848.7811 www.geolabs.com	Turnaround: circle one	3	5		29 Crawberd	Lo,		NOI	-		P L				_	_		 4	SL		6.00	2	22/10
	Geo Geo P 7 WW	narou			10/1	89 (Paul		COLLECTION	F	-2-	2								/ater ater		P		CR.09/
	GeoLabs, Inc.	Tur	1-day	2-day		-	~		00			J M			_		_		 Matrix Codes:	GW = Ground Water WW = Waste Water	ished b	Y		I&P.C of
	GeoLa		Ļ	2-	Client:	Address:	Contact:			•	с — ш	hi/he/oj							Matrix	GW = G WW = V	Relinquished by:	Ph.		2010730.J&P.C of CR.09/22/10 THANK YOU - WE APPRECIATE YOUR BUSINESS All discounting will be removed after 90 days * All Payment terms are NET 30 Days. A late payment charge of 1.5% per month or 18% per year, together with expenses above and beyond collection costs, including attorney's fees and court costs, will be applied to balances that go beyond NET 30 days.
	1		-					4					1									٢		ы М

Appendix D Federal Services Supporting Documentation MACRIS Results

Massachusetts Cultural Resource Information MACRIS

MHC Home | MACRIS Home

Results

Get Results in Report Format

Spreadsheet

Below are the results of your search, using the following search criteria: Town(s): Salem Street No: 24 Street Name: Fort Ave Resource Type(s): Area, Building, Burial Ground, Object, Structure Name: Salem Harbor Station Power Plant

For more information about this page and how to use it, <u>click here</u>

No Results Found.

Trust Resources List

This resource list is to be used for planning purposes only — it is not an official species list.

Endangered Species Act species list information for your project is available online and listed below for the following FWS Field Offices:

New England Ecological Services Field Office 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 3301 (603) 223-2541 http://www.fws.gov/newengland

Project Name: Salem Harbor Station Power Plant

Trust Resources List

Project Location Map:

Project Counties:

Essex, MA

Geographic coordinates (Open Geospatial Consortium Well-Known Text, NAD83):

MULTIPOLYGON (((-70.8828201 42.5231076, -70.8809748 42.5254765, -70.8799877 42.5261091, -70.8769407 42.5284494, -70.8744946 42.5270294, -70.8760824 42.5242794, -70.8757391 42.5230775, -70.8746662 42.5226663, -70.8747521 42.5223817, -70.8770266 42.5231724, -70.8782711 42.521844, -70.8799448 42.5217175, -70.8801594 42.5216226, -70.8828201 42.5231076)))

Project Type:

Development

Trust Resources List

Endangered Species Act Species List (<u>USFWS Endangered Species Program</u>).

There are a total of 1 threatened or endangered species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fishes may appear on the species list because a project could cause downstream effects on the species. Critical habitats listed under the **Has Critical Habitat** column may or may not lie within your project area. See the **Critical habitats within your project area** section below for critical habitat that lies within your project area. Please contact the designated FWS office if you have questions.

Species that should be considered in an effects analysis for your project:

Birds	Status		Has Critical Habitat	Contact
Roseate tern (<i>Sterna dougallii dougallii</i>) Population: northeast U.S. nesting pop.	Endangered	<u>species</u> <u>info</u>		New England Ecological Services Field Office

Critical habitats within your project area:

There are no critical habitats within your project area.

FWS National Wildlife Refuges (<u>USFWS National Wildlife Refuges Program</u>).

There are no refuges found within the vicinity of your project.

FWS Migratory Birds (USFWS Migratory Bird Program).

The protection of birds is regulated by the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA). Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. For more information regarding these Acts see: http://www.fws.gov/migratorybirds/RegulationsandPolicies.html.

All project proponents are responsible for complying with the appropriate regulations protecting birds when planning and developing a project. To meet these conservation obligations, proponents should identify potential or existing project-related impacts to migratory birds and their habitat and develop and implement conservation measures that avoid, minimize, or compensate for these impacts. The Service's Birds of Conservation Concern

Trust Resources List

(2008) report identifies species, subspecies, and populations of all migratory nongame birds that, without additional conservation actions, are likely to become listed under the Endangered Species Act as amended (16 U.S.C 1531 et seq.).

For information about Birds of Conservation Concern, go to: <u>http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/BCC.html</u>.

To search and view summaries of year-round bird occurrence data within your project area, go to the Avian Knowledge Network Histogram Tool links in the Bird Conservation Tools section at: <u>http://www.fws.gov/migratorybirds/CCMB2.htm</u>.

For information about conservation measures that help avoid or minimize impacts to birds, please visit: <u>http://www.fws.gov/migratorybirds/CCMB2.htm</u>.

Migratory birds of concern that may be affected by your project:

There are **21** birds on your Migratory birds of concern list. The underlying data layers used to generate the migratory bird list of concern will continue to be updated regularly as new and better information is obtained. User feedback is one method of identifying any needed improvements. Therefore, users are encouraged to submit comments about any questions regarding species ranges (e.g., a bird on the USFWS BCC list you know does not occur in the specified location appears on the list, or a BCC species that you know does occur there is not appearing on the list). Comments should be sent to <u>the ECOS Help Desk</u>.

Species Name	Bird of Conservation Concern (BCC)	S p e c i e s Profile	Seasonal Occurrence in Project Area	
American Oystercatcher (Haematopus palliatus)	Yes	<u>species info</u>	Breeding	
American bittern (<i>Botaurus</i> <i>lentiginosus</i>)	Yes	<u>species info</u>	Breeding	
Bald eagle (Haliaeetus leucocephalus)	Yes	species info Year-round		
Black-billed Cuckoo (Coccyzus erythropthalmus)	Yes	species info	Breeding	
Blue-winged Warbler (Vermivora pinus)	Yes	species info	Breeding	
Canada Warbler (<i>Wilsonia canadensis</i>)	Yes	species info	Breeding	

Trust Resources List

Horned Grebe (Podiceps auritus)	Yes	species info	Wintering
Hudsonian Godwit (Limosa haemastica)	Yes	species info	Migrating
Least Bittern (Ixobrychus exilis)	Yes	species info	Breeding
Least tern (Sterna antillarum)	Yes	species info	Breeding
Peregrine Falcon (Falco peregrinus)	Yes	species info	Breeding
Pied-billed Grebe (<i>Podilymbus podiceps</i>)	Yes	species info	Breeding
Prairie Warbler (Dendroica discolor)	Yes	species info	Breeding
Purple Sandpiper (<i>Calidris maritima</i>)	Yes	species info	Wintering
Saltmarsh Sparrow (Ammodramus caudacutus)	Yes	species info	Breeding
Seaside Sparrow (Ammodramus maritimus)	Yes	species info	Breeding
Short-eared Owl (Asio flammeus)	Yes	species info	Wintering
Snowy Egret (Egretta thula)	Yes	species info	Breeding
Upland Sandpiper (Bartramia longicauda)	Yes	species info	Breeding
Wood Thrush (Hylocichla mustelina)	Yes	species info	Breeding
Worm eating Warbler (<i>Helmitheros vermivorum</i>)	Yes	species info	Breeding

NWI Wetlands (<u>USFWS National Wetlands Inventory</u>).

The U.S. Fish and Wildlife Service is the principal Federal agency that provides information on the extent and status of wetlands in the U.S., via the National Wetlands Inventory Program (NWI). In addition to impacts to wetlands within your immediate project area, wetlands outside of your project area may need to be considered in any evaluation of project impacts, due to the hydrologic nature of wetlands (for example, project activities may affect local hydrology within, and outside of, your immediate project area). It may be helpful to refer to

Trust Resources List

the USFWS National Wetland Inventory website. The designated FWS office can also assist you. Impacts to wetlands and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes. Project Proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate <u>U.S. Army Corps of Engineers</u> <u>District</u>.

Data Limitations, Exclusions and Precautions

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery and/or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Exclusions - Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Precautions - Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

The following wetland types intersect your project area in one or more locations:

Wetland Types	NWI Classification Code	Total Acres	
---------------	-------------------------	-------------	--

Trust Resources List

Estuarine and Marine Deepwater	<u>E1UBL</u>	1081.7693
--------------------------------	--------------	-----------

Appendix E Material Safety Data Sheet

MATERIAL SAFETY DATA SHEET

I. Chemical Product and Company Identification

Product Name: Nonionic / Anionic Polymer Product #s: LRT- 800 Series Polymers

Distributor: Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, Massachusetts 01453 Tel: 774-450-7177 Fax: 885-835-0617 Email: plockwood@Irt-Ilc.net

> For Chemical Emergency - Spill, Leak, Fire, Exposure or Accident Call **CHEMTEL** - Day or Night – 1800-255-3924

II. Composition and Ingredient Information

Components:	CAS #:
Anionic Polyacrylamide	25085-02-3
Permissible Exposure Limit (PEL):	No information available.
Threshold Limit Value (TLV):	Information not available.

III. Hazard Identification

Primary Routes of Exposure: Skin Contact - Eye Contact - Inhalation

Skin Contact: May cause irritation, especially after prolonged or repeated contact.

Eye Contact: Dust contact and solution may cause irritation.

Ingestion: May cause discomfort or gastrointestinal disturbance. Low oral toxicity.

Inhalation: Dust contact and solution may cause irritation.

Unusual Chronic Toxicity: None Known.

IV. First Aid Measures

- Skin Contact: Flush with plenty of soap and water for at least 15 minutes. If irritation persists, get medical attention.
- Eyes Contact: Immediately flush with water, continuing for 15 minutes. Immediately contact a physician for additional treatment.
- Ingestion: If conscious, immediately give 2 to 4 glasses of water, and induce vomiting by touching finger to back of throat or giving syrup of Ipecac.

CAUTION: If unconscious, having breathing or in convulsions, do not induce vomiting or give water. Remove to fresh air.

V. Fire-Fighting Measures

Inhalation:

Flash Point: Not flammable.

Flammable and Explosive Limits: UEL: ND LEL: ND

Hazardous Combustion Byproducts:

Thermal decomposition expected to produce carbon monoxide, carbon dioxide, and various nitrous oxides and some HCI vapors.

Extinguishing Media: Foam - Carbon Dioxide - Dry Chemical

AVOID USING WATER - MAY CAUSE EXTREMELY SLIPPERY CONDITIONS.

Special Fire-Fighting Procedures:	Wear self-contained breathing apparatus. Solutions of product are extremely slippery.
	Solutions of product are extremely slippery.

Unusual Fire and Explosion Hazards: Material and its solutions are extremely slippery.

VI. Accidental Release Measures

Procedures: Sweep up or shovel into metal or plastic container. Do not use water to clean area; product is very slippery when wet.

Waste Disposal: Incineration and/or disposal in a chemical landfill. Disposer must comply with Federal, State, and Local disposal or discharge laws.

<u>VII. Handling and Storage</u> Do not inhale mist if formed. Use normal personal hygiene and housekeeping. Store in a cool dry place.

VIII. Exposure Controls and Personal Protection

Eye Protection:	Safety glasses for normal handling conditions. Splash-proof goggles when handling solutions. Do not wear contact lens.
Hand Protection:	Rubber gloves.
Ventilation:	Local exhaust - if dusting occurs. Natural ventilation adequate in absence of dust.
Respiratory Protection:	If dusty conditions are encountered, wear NIOSH approved respirator.
Other Protection:	Eye wash recommended, full work clothing, add protective rubber clothing if splashing or repeated contact with solution is likely.

Page 3

IX. Physical and Chemical Properties

Appearance	White granular
State	Solid
Specific Gravity (Water = 1)	0.8 - 1.0
Solubility in Water	Complete

X. Stability and Reactivity

Stability: Product is stable as supplied.

Incompatibility: Oxidizing Agents may cause exothermic reaction.

Hazardous Decomposition or Byproducts:

Thermal decomposition expected to produce carbon oxides, and various nitrous oxides.

Hazardous Polymerization: Will not occur.

XI. Toxicological Information Not listed as a carcinogen by IARC, NTP, OSHA or ACGIH.

XII. Ecological Information This product or a similar product is toxic to fish.

XIII. Disposal Considerations

Incineration and/or disposal in chemical landfill. Disposer must comply with federal, state, and local disposal or discharge laws.

RCRA Status of Unused Material if Discarded: Not a hazardous waste.

Hazardous Waste Number: N/A

XIV. Transport Information

Not DOT regulated. Not a RCRA hazardous waste.

Label Instructions: Signal Word: "Caution! Products are extremely slippery!"

XV. Regulatory Information

Reportable Quantity (EPA 40 CFR 302): N/A

Threshold Planning Quantity (EPA 40 CFR 355): N/A

Toxic Chemical Release Reporting (EPA 40 CFR 372): N/A

SARA TITLE 3: Section 311 Hazard Categorizations (40CFR 370): N/A

SARA TITLE 3: Section 313 Information (40CFR 372): N/A

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Information (40CFR 302.4) N/A

US TSCA: Product is manufactured in compliance with all provisions of the Toxic Substances Control Act, 15 U.S.C.

XVI. Other Information

Health Flammability Reactivity Personal Protection	0 1 0 F	Scale 4 = Severe 3 = Serious 2 = Moderate 1 = Slight
		0 = Insignificant

Personal Protective Equipment Guide

A = Safety Glasses	G = Safety Glasses, Gloves, and Vapor Respirator
B = Safety Glasses, Gloves	H = Splash Goggles, Gloves, Apron, Vapor RespiratorC =
Safety Glasses, Gloves, Apron	I = Safety Glasses, Gloves, and
	Dust & Vapor Respirator
D = Gloves, Apron, Face shield	J = Splash Goggles, Gloves, Apron, and Dust & Vapor Respirator
E = Safety Glasses, Gloves, and	Dust K = Air Line Hood/Mask,
Respirator	Gloves, Full Suit, Boots
F = Safety Glasses, Gloves, Apr	on X = Ask supervisor for special
and Dust Respirator	handling instructions

ABBREVIATIONS:

ACGIH - American Conference of Governmental Industrial Hygienists OSHA - Occupational Safety and Health Administration TLV - Threshold Limit Value PEL - Permissible Exposure Limit TWA - Time Weighted Average STEL - Short-Term Exposure Limit ANSI - American National Standard Institute MSHA - Mine Safety and Health Administration NIOSH - National Institute for Occupational Safety & Health NA - Not Applicable NE - Not Established NR - Not Required PPE - Personal Protective Equipment LEL - Lower Exposure Level UEL - Upper Exposure Level

Product Name: LRT E50 MSDS #: 40 **Effective date:** 3/15/2004 **Page** 1 of 5

Section 1 – Chemical Product and Company Information

PRODUCT NAME: LRT E50 SYNONYMS: Water And Wastewater Treatment Coagulant/Flocculant DISTRIBUTOR: Lockwood Remediation Technologies, LLC 89 Crawford Street, Leominster, Massachusetts 01453 Tel: 774-450-7177 Fax: 885-835-0617

NFΡΔ	Rating
INFFA	Raung

HMIS Rating

HEALTH:	1	HEALTH:	1
FLAMMABILITY:	0	FLAMMABILITY:	0
REACTIVITY:	0	REACTIVITY:	0

EMERGENCY TELEPHONE NUMBER: CHEMTREC 1-800-424-9300

EMERGENCY OVERVIEW

Clear to slightly hazy, colorless to yellow liquid with no appreciable odor. May cause skin, eye and respiratory irritation.

Section 2 - Composition Information

INGF	REDIENTS	<u>CAS NO.</u>	<u>% WT/WT</u>	PEL		TLV
Trade	e Secret Ingredients	Trade Secret	100	*15 *5	mg/m^3 (TD) mg/m^3 (RF)	SOLUBLE SALTS: *2 mg/m^3 (TWA)
IARC:	*Aluminum metal, (as AI) <u>LISTED AS CARCINOGEN BY:</u> IARC: NO NTP: NO OSHA: NO ACGIH: NO					
PEL: STEL: HI: OM: ST:	OSHA Permissible Expo Short Term Exposure Lir Hazardous Ingredient Oil mist Skin TWA		ACGIH Threshol		3-hr TD: ND: INP: RF:	Total dust Nuisance dust Inhalable Particulate Respirable fraction

Product Name: LRT E50 MSDS #: 40 Effective date: 3/15/2004 Page 2 of 5

Section 3 - Hazards Identification

ROUTES OF EXPOSURE

INHALATION:	Inhalation	of mist or spray may irritate respiratory tract.
SKIN CONTACT:	,	e skin irritation, especially on prolonged contact.
SKIN ABSORBTION:	No Data	
EYE CONTACT:	Direct eye	e contact may cause irritation, redness, and swelling. Prolonged exposure to
	Aluminum	salts may cause conjunctivitis.
INGESTION:	May caus	e gastrointestinal irritation, nausea, vomiting and diarrhea.
EFFECTS OF OVEREXPOSURE		
ACUTE OVEREXPOSI	JRE: F	Possible eye, skin and respiratory tract irritation.
CHRONIC OVEREXPO	OSURE: N	May aggravate existing skin, eye, and lung conditions. Persons with kidney

disorders have an increased risk from exposure based on general information found on aluminum salts.

Section 4 - First Aid Measures

EYES:	Immediately flush with plenty of water for at least 15 minutes, holding eyelids apart to ensure flushing of the entire surface. Washing within one minute is essential to achieve maximum effectiveness. Seek medical attention.
SKIN:	Wash thoroughly with soap and water, remove contaminated clothing and footwear. Wash clothing before reuse. Get medical attention if irritation should develop.
INHALATION:	Remove to fresh air.
INGESTION:	Seek medical attention immediately. Give large amounts of water to drink. If vomiting should occur spontaneously, keep airway clear. Never give anything by mouth to an unconscious person.

NOTES TO PHYSICIAN: Aluminum soluble salts may cause gastroenteritis if ingested. Treatment includes the use of demulcents. Note: Consideration should be given to the possibility that overexposure to materials other an this product may have occurred.

Section 5 - Fire Fighting Measures

FLASHPOINT: NAPL AUTOIGNITION TEMPERATURE: NAPL	<u>FLAMMABLE LIMITS IN AIR, % BY VOLUME:</u> LOWER FLAMMABILITY LIMIT: NAPL UPPER FLAMMABILITY LIMIT: NAPL
EXTINGUISHING MEDIA: Water Spray, Carbon Die	oxide, Foam, Dry Chemical.
FIRE OR EXPLOSION HAZARDS: May produce ha	zardous fumes or hazardous decomposition products.
up pressure and	er solution and nonflammable. In a fire, this product may build rupture a sealed container; cool exposed containers with e self-contained breathing apparatus in confined areas; avoid s or dust.

Product Name: LRT E50 MSDS #: 40 **Effective date:** 3/15/2004 **Page** 3 of 5

Section 6 - Accidental Release Measures

Stop leaks. Clean up spill immediately. Build dikes as necessary to contain flow of large spills. Do not allow liquid to enter stream or waterways. For small spills, use soda ash or lime to neutralize, an inert material to absorb, or wash product to a chemical sewer. Place contaminated materials into containers and store in a safe place to await proper disposal. Wear adequate personal protective clothing and equipment. Caution use of soda ash or lime may generate carbon dioxide gas. Provide adequate ventilation to spill area. Approved breathing apparatus may be necessary.

Section 7 - Handling and Storage

PRECAUTIONARY STATEMENTS: CAUTION! MAY CAUSE IRRITATION. Avoid contact with eyes, skin, and clothing. Avoid breathing mist or spray. Wear chemical splash goggles, gloves, and protective clothing when handling. Use with adequate ventilation and employ respiratory protection where mist or spray may be generated. Wash thoroughly after handling. May be harmful if swallowed or inhaled. Keep away from heat and open flame. Keep container closed when not in use. FOR INDUSTRIAL USE ONLY.

HANDLING/STORAGE REQUIREMENTS:

Store in a cool, dry place away from direct heat. Keep container tightly closed when not in use. Do not store in unlined metal containers. Product may slowly corrode iron, brass, copper, aluminum and mild steel.

Section 8 - Exposure Controls/Personal Protection

VENTILATION REQUIREMENTS:	Local exhaust ventilation recommended.
EYE PROTECTION:	Chemical splash goggles and/or face shield.
SKIN PROTECTION:	Chemical resistant gloves.
RESPIRATORY PROTECTION:	When exposures exceed the PEL, use NIOSH/MSHA approved respirator in accordance with OSHA Respiratory Protection Requirements under 29 CFR 1910.134.
OTHER REQUIRED EQUIPMENT:	Standard work clothing and work shoes. Safety shower and eye wash located in immediate area.

Product Name: LRT E50 MSDS #: 40 **Effective date:** 3/15/2004 **Page** 4 of 5

Section 9 - Physical and Chemical Properties

APPEARANCE:	Clear to slightly haz	y, colorless to yellow liquid		
ODOR:	Odorless			
SOLUBILITY IN WATER:	Soluble	pH:	3.5 (AS IS)	
SPECIFIC GRAVITY (WATER=1):	1.33-1.35	DENSITY @ 25°C:	11.0-11.3	lb/gal
BOILING POINT:	~220°F(104°C)	MELTING POINT:	NAV	
FREEZING POINT:	~19°F(-7°C)	EVAPORATION RATE:	NAV	
VAPOR PRESSURE:	NAV	VAPOR DENSITY (AIR=1):	NAV	
VISCOSITY:	<50 cps	VOLATILES BY WEIGHT:	40-50%	

Section 10 - Stability and Reactivity

STABLE: YES	HAZARDOUS POLYMERIZATION: NO
CONDITIONS TO AVOID:	NONE
IINCOMPATIBLE MATERIALS:	Product is incompatible with alkalis.
DECOMPOSITION PRODUCTS:	Thermal decomposition may release toxic and/or hazardous gases such as aluminum, Cl2, and HCl.

Section 11 Toxicological Information

Skin Irritation (human):

150 mg/3D-I Mild irritation effects (1)

(1) "Cutaneous Toxicity" Drill, V. A. and P. Lazar, eds., New York, NY, Academic Press, 1977

Product Name: LRT E50 MSDS #: 40 Effective date: 3/15/2004 Page 5 of 5

Section 12 - Ecological Information

BOD5:	mg 02/mg: ppm: Biodegradable, %:	NAV NAV NAV	
BOD28:	mg 02/mg: ppm:	NAV NAV	
	Biodegradable, %:	NAV	
COD:	mg 02/mg:	NAV	
	ppm:	NAV	
	Biodegradable, %:	NAV	
Aquatic Toxic	ity:		
LC 50) (24 hour, static)	50 mg/L	Ceridaphnia dubia (1)
LC 50	(48 hour, static)	5 mg/L	Ceridaphnia dubia (1)

LC 50: Lethal concentration at which 50% of the subjects die

Generated from tests conducted by SEAUS Testing Laboratories Nov., 1993 using EPA /600-4-90/027

Section 13 - Disposal Considerations

Dispose of in accordance with all applicable federal, state and local regulations.

Section 14 - Transportation Information

DOT Proper Shipping Name: NOT APPLICABLE, NOT RESTRICTED

Harmonized Tariff Schedule Number: 2827.49.50 00

Section 15 - Regulatory Information

This product does not contain any ingredients subject to the reporting requirements of SARA Title III, Section 313 (40 CFR Part 372).

SARA Section 311/312: Acute Health Hazard.

TSCA: Components found in TSCA Inventory.

89 Crawford Street Leominster, MA 01453 Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

MATERIAL SAFETY DATA SHEET

Revision Date: 11/11

1.1 IDENTIFICATION OF PRODUCT.

Designation: - Activated carbon

1.2 COMPANY.

Lockwood Remediation Technologies, LLC	Phone:	774-450-7177
89 Crawford Street	Fax:	888-835-0617
Leominster, MA 01453		

2 HAZARDOUS AND OTHER INGREDIENTS.

Exposure limits may vary. It is recommended that information about locally applicable exposure limits be obtained.

%w/w Comp mg/m ³	bound	CAS No	MAK mg/m ³	TLV mg/m ³	PEL
(OSHA)			(Germany)	(ACGIH)	
100 mg/m3	Bituminous Carbon	7440-44-0		2 mg/m3	15

T dust

3 PHYSICAL DATA.

State:	Solid
Appearance:	Black granule, extradite, or powder
pH:	Not applicable
Boiling point or range:	Sublimes
Melting point or range:	3550 C (6422 F)
Vapor pressure:	1 @3586 C (6487 F)
Vapor density:	0.4
Density relative to water:	1.5 – 1.8 Specific gravity
Solubility in water:	Insoluble in water
Partition coefficient:	
(n-octanol/water):	
Other data:	odorless

4 FIRE AND EXPLOSION HAZARD DATA.

Fire, explosion and reactivity hazards:	Flammable.
Flammability and flammability limits:	Flammable.
Autoflammability:	Not applicable.
Explosive properties:	Non explosive.
Oxidizing properties:	Non oxidizing.

Fire fighting measures:

As with most organic solids, fire is possible at elevated temperatures or by contact with an ignition source.

Explosion:

Fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard. Minimum explosible concentration 0.140 g/l.

Fire Extinguishing Media:

Water or water spray.

Unusual Fire and Explosion Hazards:

Contact with strong oxidize such as ozone, liquid oxygen, chlorine, permanganate, etc., may result in fire.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

5 STABILITY AND REACTIVITY DATA.

The product is stable under normal handling and storage conditions.

Conditions to avoid:

Incompatibilities.

Materials to avoid:

Liquid air and oxidizing materials. Strong oxidizers such as ozone, liquid oxygen, chlorine, permanganate, etc

Hazardous decomposition products: and carbon monoxide.

Involvement in a fire causes formation of carbon dioxide

•

WARNING! FLAMMABLE SOLID. ACTIVATED CARBON AFFECTS THE RESPIRATORY AND CARDIOVASCULAR SYSTEMS.

CAUTION!!! Wet activated carbon removes oxygen from air causing a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such an area, sampling and work procedures for low oxygen levels should be taken to ensure ample oxygen availability, observing all local, state, and federal regulations.

J.T. Baker SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 1 - Slight Flammability Rating: 3 - Severe (Flammable) Reactivity Rating: 1 - Slight Contact Rating: 1 - Slight Lab Protective Equip: GOGGLES; LAB COAT; CLASS B EXTINGUISHER Storage Color Code: Orange (General Storage)

Potential Health Effects

Inhalation:

May cause mild irritation to the respiratory tract. The acute inhalation LC50 (Rat) is >64.4 mg/l (nominal concentration) for activated carbon.

Ingestion:

No adverse effects expected. May cause mild irritation to the gastrointestinal tract. The acute oral LD50 (Rat) is >10g/kg.

Skin Contact:

Not expected to be a health hazard from skin exposure. May cause mild irritation and redness. The primary skin irritation index (Rabbit) is 0.

Eye Contact:

No adverse effects expected. May cause mild irritation, possible reddening.

Chronic Exposure:

Prolonged inhalation of excessive dust may produce pulmonary disorders. The effects of long-term, low-level exposures to this product have not been determined. Safe handling of this material on a long-term basis should emphasize the avoidance of all effects from repetitive acute exposures.

Aggravation of Pre-existing Conditions:

No information found.

6. First Aid Measures

Inhalation:

Remove to fresh air. Get medical attention for any breathing difficulty.

Ingestion:

Give several glasses of water to drink to dilute. If large amounts were swallowed, seek medical attention.

Skin Contact:

Not expected to require first aid measures. Wash exposed area with soap and water. Seek medical attention if irritation develops.

Eye Contact:

Wash thoroughly with running water for at least 15 minutes. Seek medical attention if irritation develops.

7. Accidental Release Measures

Remove all sources of ignition. Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Spills: Clean up spills in a manner that does not disperse dust into the air. Use non-sparking tools and equipment. Reduce airborne dust and prevent scattering by moistening with water. Pick up spill for recovery or disposal and place in a closed container. Warning! Spent product may have absorbed hazardous materials.

8. Handling and Storage

Protect against physical damage. Store in a cool, dry well-ventilated location, away from any area where the fire hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfers to avoid static sparks. Storage and use areas should be No Smoking areas. Use non-sparking type tools and equipment, including explosion proof ventilation. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.

CAUTION!! Wet activated carbon removes oxygen from air causing a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such an area, sampling and work procedures for low oxygen levels should be taken to ensure ample oxygen availability, observing all local, state, and federal or national regulations.

9. Exposure Controls/Personal Protection

Exposure Guidelines: OSHA PEL*: 5mg/M3 (Respirable) ACGIH TLV*: 10 mg/M3 (Total) *PELs and TLVs are 8-hour TWAs unless otherwise noted.

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

For conditions of use where exposure to the dust or mist is apparent, a half-face dust/mist respirator may be worn. For emergencies or instances where the exposure levels are not known, use a full-face positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

Skin Protection:

Wear protective gloves and clean body-covering clothing.

Eye Protection:

Use chemical safety goggles. Maintain eye wash fountain and quick-drench facilities in work area.

10. Toxicological Information

Investigated as a reproductive effector.

\Cancer Lists\			
		Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Activated Carbon (7440-44-0)	No	No	None

11. Ecological Information

Environmental Fate: No information found.

Environmental Toxicity:

No information found.

12. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

13. Transport Information

Proper Shipping Name: NOT REGULATED Hazard Class: N/A Identification Number: N/A Packing Group: N/A

This product has been tested according to the United Nations *Transport of Dangerous Goods* test protocol for spontaneously combustible materials. It has been specifically determined that this product does not meet the definition of a self heating substance or any hazard class, and therefore is not a hazardous material and not regulated.

14. Regulatory Information

SARA TITLE III: N/A TSCA: The ingredients of this product are on the TSCA Inventory List. OSHA: Nonhazardous according to definitions of health hazard and physical hazard provided in the Hazard Communication Standard (29 CFR 1910.1200) CANADA

WHMIS CLASSIFICATION:

Not Classified **DSL#:** 6798 **EEC** Council Directives relating to the classification, packaging, and labeling of dangerous substances and preparations. **Risk (R) and Safety (S) phrases:** May be irritating to eyes (R36).

15. Other Information

NFPA Ratings: Health: 0 Flammability: 1 Reactivity: 0

Label Hazard Warning:

WARNING! FLAMMABLE SOLID. ACTIVATED CARBON AFFECTS THE RESPIRATORY AND CARDIOVASCULAR SYSTEMS.

Label Precautions:

Keep away from heat, sparks and flame. Avoid contact with eyes, skin and clothing. Avoid breathing dust. Keep container closed. Use with adequate ventilation. Wash thoroughly after handling.

Label First Aid:

If inhaled, remove to fresh air. Get medical attention for any breathing difficulty.

ION EXCHANGE RESINS

Product Name: CG10-H, CG10-H-ULTRA, CG10-H-LTOC, CG10-H-SC, CG10-H-NG, CG10-H-C, CG10-H-F, CG10-H-UPS, CG8-H, CG8-H-ULTRA, CG8-H-LTOC, CG8-H-SC, CG8-H-NG, CG8-H-C, CG8-H-F, CG8-H-UPS, CGS-H, CGS-H-C, CGS-H-F, CGS-H-UPS, CG6-H, GP-SAC-H

Cation Exchange Resin, Hydrogen Form

Effective Date: 11/1/07

1. Company Information:

Company Address:

ResinTech, Inc. 1 ResinTech Plaza 160 Cooper Road West Berlin, NJ 08091 USA

856-768-9600

856-768-9601

ixresin@resintech.com

www.resintech.com

Phone Number:

Fax Number:

Information Numbers:

Email: Website:

2. Composition/Ingredients:

Sulfonated copolymer of styrene and divinylbenzene in the hydrogen form.	CAS#	<u>69011-20-7 (35 – 65%)</u>
Water	CAS#	<u> 7732-18-5 (35 – 65%)</u>

This document is prepared pursuant to the OSHA Hazard Communication Standard (29CFR 1910.1200). In addition, other substances not 'Hazardous' per this OSHA Standard may be listed. Where proprietary ingredient shows, the identity may be made available as provided in this standard.

3. Physical/Chemical Data:

Boiling Point:	Not Applicable
Vapor Pressure (MM HG):	Not Applicable
Evaporation Rate (water = 1	1
Appearance & Odor:	Amber solid beads. No to low odor.
Specific Gravity:	1.2 (water = 1)
Melting Point (deg. F)	Not applicable
Solubility in Water:	Insoluble
Thermal:	May yield oxides of carbon and nitrogen
Vapor Density:	Not Applicable

Product Hazard Rating	Scale
Toxicity = 0	0 = Negligible
Fire = 0	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

4. Fire & Explosion Hazard Data

Flammable Limits: Unusual Fire & Explosion Hazards: 800 ° Deg. F Product is not combustible until moisture is removed, then resin starts to burn in flame at

Ion Exchange Resins

Combustion Products:

Extinguishing Media: Special Fire Fighting Procedures:

5. Reactivity Data

Stability: Conditions to Avoid: Hazardous by Products:

Materials to avoid contact with: Hazardous Polymerization: Storage:

6. Health Hazards & Sara (Right to Know)

Emergency First Aid Procedures: Skin Absorption: Ingestion:

Inhalation: Systemic & Other Effects:

Carcinogenicity: Sara – title 3, sections 311 & 312:

7. First Aid

Eyes:

Skin:

Ingestion:

Inhalation:

8. Control Measures

Respiratory protection:

Eye protection: Ventilation: Protective Gloves:

9. Safe handling procedures

In Case of Spills:

230 C. Autoignition occurs above 500C. Possible fire. Hazardous combustion products may include and are not limited to: hydrocarbons, sulfur oxides, organic sulfonates, carbon monoxide, carbon dioxide, benzene compounds. Water, CO₂, Talc, Dry Chemical MSHA/NIOSH approved self-contained breathing gear.

Stable

Temperatures above 400° F See Section 3 above for possible combustion products. Strong oxidizing agents (i.e. nitric acid) Material does not polymerize Store in a cool dry place

Contact with eyes can and skins can cause irritation. Skin absorption is unlikely due to physical properties. Single dose oral LD50 has not been determined. Single does oral toxicity is believed to be low. No hazards anticipated from ingestion incidental to industrial exposure. Vapors are unlikely due to physical properties. No specific data available, however, repeated exposures are not anticipated to cause any significant adverse effects. Not Applicable All ingredients are non-hazardous

Irrigate immediately with water for at least 5 minutes. Mechanical irritation only. No adverse effects anticipated by this route of exposure.

No adverse effects anticipated by this route of exposure incidental to proper industrial handling. No adverse effects anticipated by this route of

exposure.

Not required for normal uses if irritation occurs from breathing-get fresh air! Splash goggles Normal Not required.

Sweep up material and transfer to containers. Use caution – the floor will be slippery!

Ion Exchange Resins

Disposal Method: 10. Additional Information:	Bury resin in licensed landfill or burn in approved Incinerator according to local, state, and federal regulations. For resin contaminated with hazardous material, dispose of mixture as hazardous material according to local, state and federal regulations.	
Special precautions to be taken in handling and storage:	Practice reasonable care and caution. Metal equipment with feed, regenerant, resin form, and effluent of that process.	
TSCA Considerations:	Every different salt or ionic form of an ion-exchange resin is a separate chemical. If you use an ion- exchange resin for ion-exchange purposes and then remove the by-product resin from its vessel or container prior to recovery of the original or another form of the resin or of another chemical, the by- product resin must be listed on the TSCA Inventory (unless an exemption is applicable). It is the responsibility of the customer to ensure that such isolated, recycled by-product resins are in compliance with TSCA. Failure to comply could result in substantial civil or criminal penalties being assessed by the Environmental Production Agency.	
MSDS Status:	Canadian regulatory information added.	
11 Regulatory Information: (Not meant to be all inclusive—selected regulations represented)		

11. Regulatory Information: (Not meant to be all-inclusive-selected regulations represented.)

12.	Notice: Canadian Regulations:	The information herein is presented in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ from one location to another; it is the buyer's responsibility to ensure that its activities comply with federal, state or provincial, and local laws. The following specific information is made for the purpose of complying with numerous federal, state or provincial, and local laws and regulations.
	WHMIS Information:	The Canadian Workplace Hazardous Materials Information System (WHMIS) Classification for this product is: This product is not a "Controlled Product" under WHMIS.
	Canadian TDG Information:	For guidance, the Transportation of Dangerous Good Classification for this product is: Not Regulated.

While this information and recommendations set forth herein are believed to be accurate as of the date hereof, ResinTech, Inc. makes no warranty with respect hereto and disclaims all liability from reliance thereon.