

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

APR 2 4 2014

Matthew Young Senior Project Manager Cumberland Farms, Inc. 100 Crossing Boulevard Framingham, MA 01702

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Cumberland Farms Store #70031 site located at 150 South Main Street Middleborough, MA 02346, Middlesex County; Authorization # MAG910614

Dear Mr. Young:

Based on the review of a Notice of Intent (NOI) submitted by Environmental Compliance Services Inc., on behalf of Cumberland Farms, Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: <u>http://www.epa.gov/region1/npdes/mass.html#dgp</u>.

Please note the enclosed checklist includes the parameter total suspended solids which was detected at the site and your choose to marked "Believe Absent" and compounds, total petroleum hydrocarbons (TPHs) as well as benzene, toluene, ethyl-benzene, xylenes(BTX) and naphthalene which our experience has dictated these pollutants are common on sites like yours even though you reported "Believed Absent"; needs to be monitored to prevent potential contamination to the site's wetland receiving the treated effluent.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 8.86 for this site is within a dilution range greater than five to (>5-10) established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for lead of 6.5 ug/L, and iron of 5,000ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on 9/30/2014. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez.Victor@epa.gov, if you have any questions.

Sincerely,

huma Murphy

Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc: Robert Kubit, MassDEP Peter Sellers, Framingham PWD Michael Bricher, ECS, Inc.

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

150 S	2014 erland Farms Store#70031 outh Main Street, Middleborough, MA 021364, Plymouth County address of owner: <u>myoung@cumberlandgulf.com</u>			
Cumb 150 S Email	erland Farms Store#70031 outh Main Street, Middleborough, MA 021364, Plymouth County			
150 S Email	outh Main Street, Middleborough, MA 021364, Plymouth County			
r:	address of owner: myoung@cumberlandgulf.com			
	Cumberland Farms, Inc.			
title,	Matthew Young. Senior Project Manager Email: myoung@cumberlandfarms.com			
roject	9/30/2014			
gory:	Petroleum Related site Remediation. Subcategory A. Gasoline Only Sites			
194 3.734 61 3.751	September 9, 2015			
IN YOU	Wetlands to Nemasket River			
1	roject			

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
Nga	4. Cyanide (CN) ^{2, 3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
1-0	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
1	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
, Dr JM	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
\checkmark	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
314	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/
	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
oes0	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/
1	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
0.00	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
K.	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
4.55	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
196	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
0.1	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/
0.1	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
1911 1911	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
- By	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
B	33. Total Phthalates (Phthalate esters) ⁶ .	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
19	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
	a. Benzo(a) Anthracene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L

wister	Effluent Limit/Method#/ML
(Tellin	(All Effluent Limits are shown as Daily
Parameter	Maximum Limit, unless denoted by a **,
trissentine M	in that case it will be a Monthly Average
Carle and Group	Limit)
b. Benzo(a) Pyrene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L,
	Me#610/ML 5ug/L& Me#625/ML 5ug/L
c. Benzo(b)Fluoranther	ne 7 0.0038 ug/L /Me#8270D/ ML 5ug/L,
	Me#610/ML Sug/L& Me#625/ML Sug/L
d. Benzo(k)Fluoranthe	ne 7 0.0038 ug/L /Me#8270D/ ML 5ug/L,
	Me#610/ML 5ug/L& Me#625/ML 5ug/L
e. Chrysene 7	0.0038 ug/L /Me#8270D/ML 5ug/L,
	Me#610/ML 5ug/L& Me#625/ML 5ug/L
f. Dibenzo(a,h)anthrac	ene ⁷ 0.0038 ug/L /Me#8270D/ML 5ug/L,
	Me#610/ML 5ug/L& Me#625/ML 5ug/L
g. Indeno(1,2,3-cd) Py	rrene 7 0.0038 ug/L /Me#8270D/ML 5ug/L,
and the second	Me#610/ML Sug/L& Me#625/MLSug/L
36. Total Group II Poly	
Aromatic Hydrocarbons	s (PAH)
h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML
in Acchapitchene	5ug/L & Me#625/ML 5ug/L
i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML
1. Acenapricitylene	5ug/L & Me#625/ML 5ug/L
j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML
J. Antiliacene	5ug/L & Me#625/ML 5ug/L
k. Benzo(ghi) Peryle	V/Mo#9270D/MI Fug/L Mo#610/MI
R. Delizo(gill) Feryle	5ug/L & Me#625/ML 5ug/L
I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML
is ridorationerie	5ug/L & Me#625/ML 5ug/L
m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML
	5ug/L & Me#625/ML 5ug/L
n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML
n. Napricialene •	5ug/L & Me#625/ML 5ug/L
o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML
o. Flienanthrene	5ug/L & Me#625/ML 5ug/L
D. Durone	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L
p. Pyrene	.& Me#625/ML 5ug/L
37. Total Polychlorinate	be
Biphenyls (PCBs) 8, 9	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

(

for the contract of the most o	<u>Total Recoverable</u> <u>MA/Metal Limit</u> <u>H ¹⁰ = 50 mg/l</u> <u>CaCO3, Units =</u> <u>ug/l (11/12)</u>	Minii	<u>Minimum</u> level=ML		
Metal parameter	Freshwater Limts	anutristen to	in a co		
39. Antimony	5.6	ML	10		
40. Arsenic **	10	ML	20		

		<u>Total Recov</u> <u>MA/Metal</u> <u>H ¹⁰ = 50 r</u> <u>CaCO3, Un</u> <u>ug/l ^{(11/}</u>	Minimum level=ML		
	Metal parameter	Freshwater Limts	ene .	n (s)osn	a
	41. Cadmium **	0.2	soanitana	ML	10
	42. Chromium III (trivalent) **	48.8		ML	15
	43. Chromium VI (hexavalent)	11.4	anedanes	ML	10
	44. Copper **	5.2		ML	15
	45. Lead **	6.5	and stands	ML	20
	46. Mercury **	0.9	าววิจารีกา	ML	02
	47. Nickel **	29	124 (ba-1	ML	20
	48. Selenium **	5	PIY'S (DO)	ML	20
	49. Silver	1.2	Valida II	ML	10
1	50. Zinc **	66.6	Enconet	ML	15
\checkmark	51. Iron	5,000	50	ML	20

	Other Parameters	Limit		
/	52. Instantaneous Flow	Site specific in CFS		
V	53. Total Flow	Site specific in CFS		
\checkmark	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13		
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13		
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab13		
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴		
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14		
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴		
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴		
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴		
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴		
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴		
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴		

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved). ¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

7

¹⁴ Temperature sampling per Method 170.1

BUSINESS AND THE ENVIRONMENT CONVERGE

997 Millbury Street, Unit G, Worcester, MA 01607 tel 508.756.0151 fax 508.757.7063 www.ecsconsult.com

April 9, 2014 Project No. 93-200014.21

Mr. Victor Alvarez U.S. Environmental Protection Agency EPA-Region 1 5 Post Office Square Mail Code OEP06-4 Boston, MA 02109-3912

RE: Notice of Intent for Remediation General Permit Cumberland Farms Store #70031 105 South Main Street Middleborough, MA 02346 MassDEP RTN 4-15652

Dear Mr. Alvarez:

Environmental Compliance Services, Inc. (ECS) is pleased to provide supporting documentation for the Notice of Intent (NOI) for the Remediation General Permit (RGP) on behalf of Cumberland Farms, Inc. (CFI), for the above-referenced property. This NOI is being submitted in order to obtain a permit for the operation of a temporary groundwater recovery and treatment system (GWTS) at the Site. The GWTS is required to be operated at the Site in order to allow for the removal and replacement of petroleum underground storage tanks (USTs) during site redevelopment. A Site Locus is provided as Figure 1 and a Dewatering Discharge Location Plan is provided as Figure 2. A Flow Schematic of the dewatering treatment plan is included as Figure 3. A copy of the NOI form is provided as Attachment I.

System Design

Groundwater treatment will occur prior to discharge to the storm water manhole located along the southwestern property boundary. A plan detailing the location of the UST system and the proposed storm water manhole discharge location and drainage pathway is depicted on Figure 2.

The groundwater treatment system located on the Site will be composed of the following:

Submersible pneumatic pumps that collect groundwater from the UST excavation area, then recovered groundwater will be pumped into a 20,000 gallon frac tank (to settle out solids) and then processed through through particulate filters and two-1,000 lbs. liquid phase granular activated carbon (GAC) units for the treatment of recovered liquids. A line diagram of the groundwater treatment system is provided as Figure 3.

The proposed discharge location for treated groundwater is a catch basin (CB-1) located on the southwestern boundary of the subject property along South Main Street. This storm water catch basin (CB-1) discharges to a storm water drainage culvert along South Main Street. The storm water drainage culvert discharges into an outfall located approximately 250 feet south of the Site property boundary. This outfall discharges into bordering vegetated wetlands which ultimately discharges to the Nemasket River located approximately 2,500 feet southeast of the Site. Please refer to Figure 2 for the estimated storm drain path running toward the wetlands.

Average flow rate of discharge of treated groundwater from the system to the storm water line is expected to be approximately 50 gallons per minute (gpm). The design capacity of the groundwater treatment system is 75 gpm based upon data collected from comparable systems installed at other remedial sites operated/designed by ECS.

Influent Sample Analysis

Groundwater samples were collected from monitoring well MW-1 on March 13, 2014. These samples were submitted to Spectrum Analytical, Inc. of Agawam, Massachusetts under standard chain of custody protocol for analysis of total petroleum hydrocarbons (TPH) by USEPA Method 8100, volatile organic compounds (VOCs) by USEPA Method 8260B, total metals (iron and lead) by USEPA Method 200.7, and total suspended solids by SM2540D. A copy of the laboratory report and chains of custody record are provided as Attachment II.

Appendix III of the 2010 RGP under NPDES sets the effluent limitations for treatment system discharges. Groundwater analytical results of the samples collected from MW-1 on March 13, 2014 were compared to the Appendix III effluent limitations (www.epa.gov/region1/npdes/rgp.html). These results indicate that the petroleum constituents (i.e., benzene, total benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tert butyl ether (MTBE), and naphthalene) were not detected in the sample at concentrations above the applicable Appendix III effluent limitations for Subcategory A-gasoline only sites.

Receiving Waters Information

The receiving water for the treated groundwater discharge is the Nemasket River, located approximately 2,500 feet east of the Site. ECS consulted the online United States Geological Survey (USGS) Streamstats program to determine the 7Q10 flow rate at the discharge location (http://ma.water.usgs.gov/streamstats/, accessed April 4, 2014). Data obtained from the online resource indicated that the 7Q10 flow rate for Fall Brook, a tributuary to the Nemasket River at USGS station #01107400 (approximately 1 mile southeast of the Site) is 1.32 cubic feet per second (cfs). Based on data available, ECS calculated a 7Q10 flow rate for this area to be 79.2 cubic feet per minute.

Receiving Water Classification

ECS consulted the Massachusetts Department of Environmental Protection (MassDEP) Division of Water Pollution Control (http://www.mass.gov/eea/docs/dep/water/laws/i-thru-z/tblfig.pdf) to determine the classification for the receiving waters. The Nemasket River is listed as Class B surface water.

<u>Evaluation of Threatened or Endangered Species or Critical Habitat Located within</u> <u>Receiving Waters</u>

According to Massachusetts Geographic Information Systems (MassGIS) online maps for the Natural Heritage Endangered Species Program (NHESP) (2008), no Priority Habitat of Rare Species or Estimated Habitats of Rare Wildlife are located within the proposed at or immediately adjacent to the work zone area. The closest NHESP Estimated Habitats of Rare Wildlife in Wetland Areas Protected Open Spaces are located approximately 225 feet south/southwest of the Site, which is proximate to the discharge outfall location area. Given the fact there will be an onsite dewatering treatment system, the potential discharge will not have an adverse affect on the NHESP Estimated Habitats of Rare Wildlife. A copy of the MassGIS Resource Priority and NHESP Maps of the Site area is included in Attachment III.

Review of National Register of Historic Places

Listings of Historic Places within the Town of Sturbridge in the vicinity of the Site were obtained from the Massachusetts Cultural Resources Information System (MACRIS) online database at http://mhc-macris.net/towns.aspx (accessed April 4, 2014). Copies of the MACRIS report are provided as Attachment IV. The database indicated that there are no historic places located in close proximity to the Site and proposed discharge area. This project does not involve the demolition or rehabilitation of historic properties.

Lastly, environmental response actions are currently being conducted at this Site in accordance with the Massachusetts Contingency Plan (310 CMR 40.0000) under MassDEP RTN 4-15652. Accordingly, discharges subject to the MCP do not require the completion of state application form BRPWM 12 or pay state fees.

Should you have any questions or concerns regarding the contents of this letter or the NOI for the RGP, please do not hesitate to contact the undersigned at (508) 756-0151.

Sincerely, ENVIRONMENTAL COMPLIANCE SERVICES, INC.

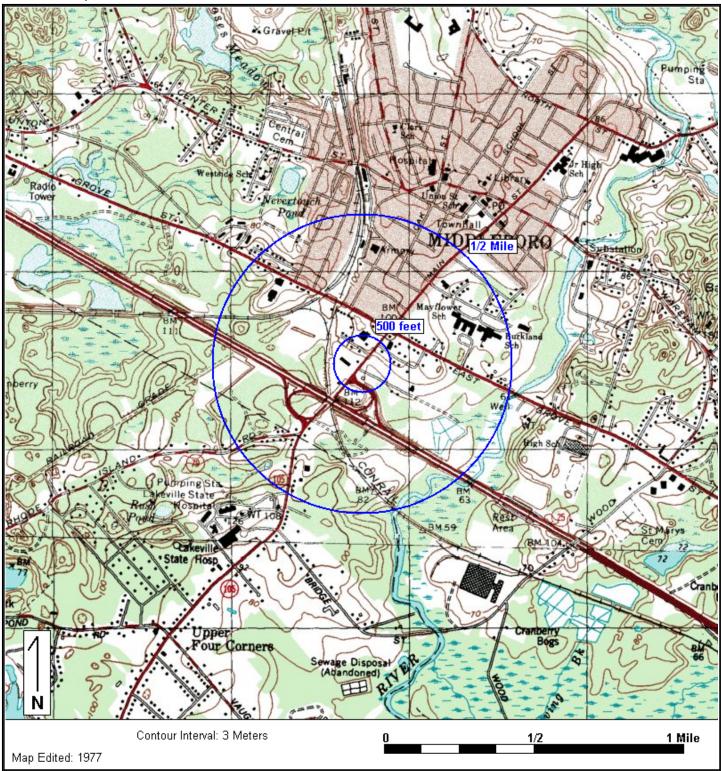
Michael C. Bricher, P.G., LSP Senior Project Manager

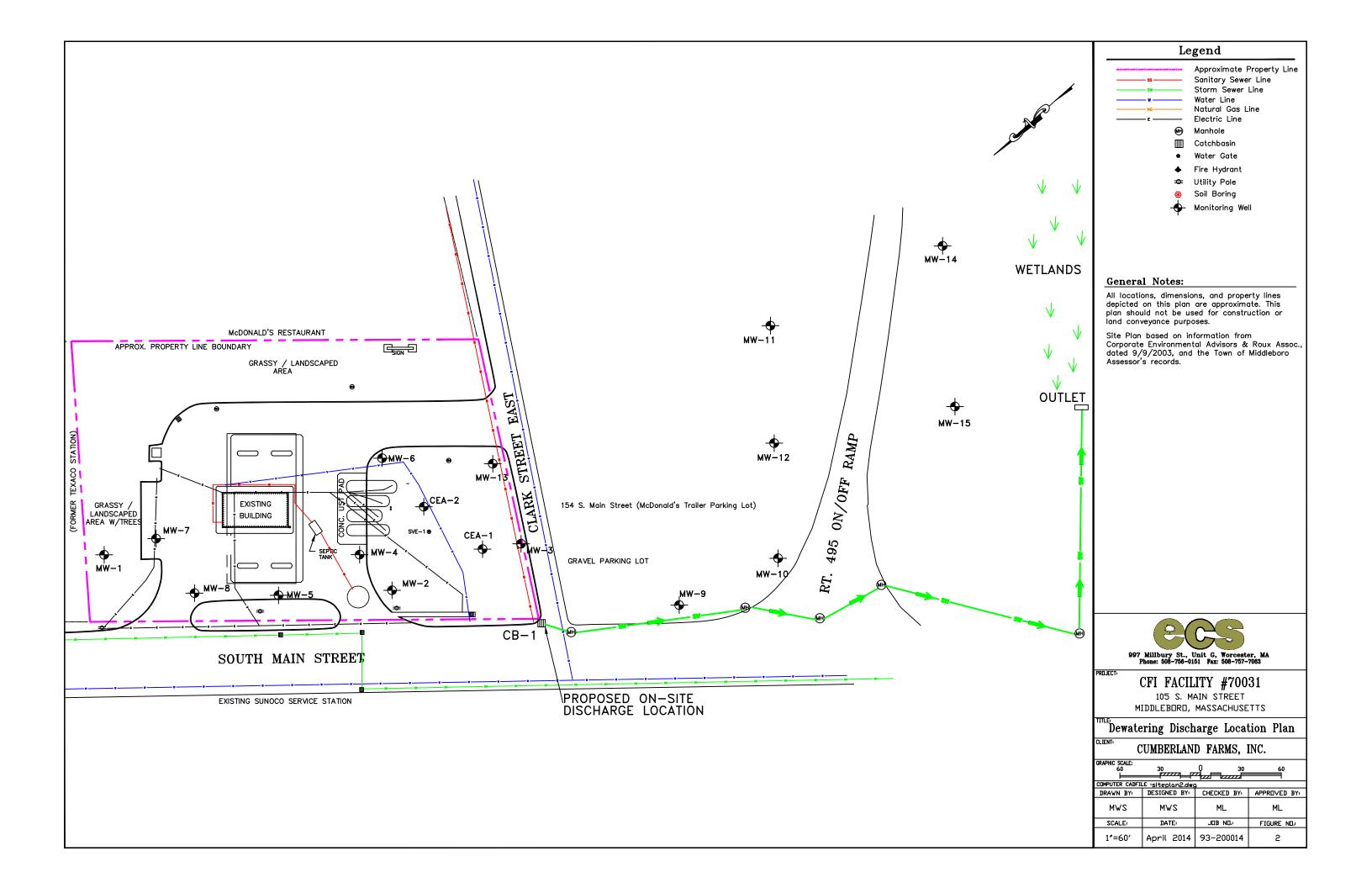
Matthew Young, Cumberland Farms, Inc., 100 Crossing Blvd, Framingham, MA 01702 Robert Kubit, MassDEP, Division of Watershed Management, 627 Main Street, Worcester, MA 01608
Christopher Peck, Department of Public Works Director, Town of Middleboro, 48
Wareham Street, Middleboro, MA 02346
George Ayoub, P.E., MassDOT Highway Division, District 5, 1000 County Street, Taunton, MA 02780

LIST OF ATTACHMENTS

Figures Figure 1: Site Locus Figure 2: Dewatering Discharge Location Plan Figure 3: Flow Schematic

Attachment I: NOI for the RGP Attachment II: Laboratory Analytical Reports and Chain of Custody Records Attachment III: On-line MassGIS Resource Priority & NHESP Maps Attachment IV: MACRIS Database Search Results


FIGURES


Environmental Compliance Services, Inc. 997 Millbury Street, Unit G Worcester, MA 01607 Phone 508.756.0151 Fax 508.757.7063 www.ecsconsult.com

CFI-MA-70031-Middleboro-150 S Main St 150 S Main Street Middleboro, MA 02346

Figure 1: SITE LOCUS

Base Map: U.S. Geological Survey; Quadrangle Location: Bridgewater, MA Lat/Lon: 41° 53' 3" NORTH, 70° 55' 8" WEST - UTM Coordinates: 19 340798 EAST / 4638700 NORTH Generated By: Christine DiMaio

Flow Schematic - Figure 3 FRACTIONALIZATIO PBAG FIL SUMP W/ TRANSP Flowmeter RABI

STRAPHING GAC

.

River

ATCH BAGIN

ATTACHMENT I

<u>B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit</u>

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site :	Facility/site mailing address:					
Location of facility/site : longitude: latitude:	Facility SIC code(s):	Street:				
b) Name of facility/site owner:		Town:				
Email address of facility/site owner:	State:	Zip:	County:			
Telephone no. of facility/site owner:						
Fax no. of facility/site owner :		Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:				
Address of owner (if different from site):						
Street:		-				
Town:	State:	Zip:	County:			
c) Legal name of operator :	Operator tele	ephone no:				
	Operator fax	x no.: Operator email:				
Operator contact name and title:						
Address of operator (if different from owner):	Street:					
Town:	Zip:	County:				

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? YN, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? YN, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y N 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state 								
permitting? YN								
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y N If Y, please list: site identification # assigned by the state of NH or MA: permit or license # assigned: state agency contact information: name, location, and telephone number: f) Is the site/facility covered by any other EPA permit, including: Multi-Sector General Permit? Y N, if Y, number: Sepa Construction General Permit? Y N, if Y, number: Individual NPDES permit? Y N, if Y, number: any other water quality related individual or general permit? Y 								
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? YN							
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential							
Activity Category	Activity Sub-Category							
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) 							
	C. Petroleum Sites with Additional Contamination							
II - Non Petroleum Site Remediation	 A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites 							
III - Contaminated Construction Dewatering	 A. General Urban Fill Sites B. Known Contaminated Sites 							

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:								
b) Provide the following info	rmation about each discharge:							
1) Number of discharge 2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? 1) Number of discharge 2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Max. flow Is maximum flow a design value? YN N Average flow (include units) Is average flow a design value or estimate?								
pt.1: latlong pt.3: latlong pt.5: latlong	each discharge within 100 feet: g; pt.2: lat long; g; pt.4: lat long; g; pt.6: lat long; g; pt.8: lat long; etc.							
4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent or seasonal? Is discharge ongoing? Y N							
c) Expected dates of discharg	e (mm/dd/yy): start end							
	g or flow schematic showing water flow through the facility including: contributing flow from the operation, 3. treatment units, and 4. discharge points and receiving							

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	<u>ly value</u>	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)											
2. Total Residual Chlorine (TRC)											
3. Total Petroleum Hydrocarbons (TPH)											
4. Cyanide (CN)	57125										
5. Benzene (B)	71432										
6. Toluene (T)	108883										
7. Ethylbenzene (E)	100414										
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207										
9. Total BTEX ²	n/a										
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934										
11. Methyl-tert-Butyl Ether (MtBE)	1634044										
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650										

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

 ² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
 ³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

					Sample	Analytical	<u>Minimum</u>	<u>Maximum dai</u>	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508										
14. Naphthalene	91203										
15. Carbon Tetrachloride	56235										
16. 1,2 Dichlorobenzene (o-DCB)	95501										
17. 1,3 Dichlorobenzene (m-DCB)	541731										
18. 1,4 Dichlorobenzene (p-DCB)	106467										
18a. Total dichlorobenzene											
19. 1,1 Dichloroethane (DCA)	75343										
20. 1,2 Dichloroethane (DCA)	107062										
21. 1,1 Dichloroethene (DCE)	75354										
22. cis-1,2 Dichloroethene (DCE)	156592										
23. Methylene Chloride	75092										
24. Tetrachloroethene (PCE)	127184										
25. 1,1,1 Trichloro-ethane (TCA)	71556										
26. 1,1,2 Trichloro-ethane (TCA)	79005										
27. Trichloroethene (TCE)	79016										

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ily value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014										
29. Acetone	67641										
30. 1,4 Dioxane	123911										
31. Total Phenols	108952										
32. Pentachlorophenol (PCP)	87865										
33. Total Phthalates (Phthalate esters) ⁴											
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817										
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)											
a. Benzo(a) Anthracene	56553										
b. Benzo(a) Pyrene	50328										
c. Benzo(b)Fluoranthene	205992										
d. Benzo(k)Fluoranthene	207089										
e. Chrysene	21801										
f. Dibenzo(a,h)anthracene	53703										
g. Indeno(1,2,3-cd) Pyrene	193395										
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)											

⁴ The sum of individual phthalate compounds.

					<u>Sample</u>	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
h. Acenaphthene	83329										
i. Acenaphthylene	208968										
j. Anthracene	120127										
k. Benzo(ghi) Perylene	191242										
1. Fluoranthene	206440										
m. Fluorene	86737										
n. Naphthalene	91203										
o. Phenanthrene	85018										
p. Pyrene	129000										
	85687; 84742; 117840; 84662;										
37. Total Polychlorinated	131113;										
Biphenyls (PCBs)	117817.										
38. Chloride	16887006										
39. Antimony	7440360										
40. Arsenic	7440382										
41. Cadmium	7440439										
42. Chromium III (trivalent)	16065831										
43. Chromium VI (hexavalent)	18540299										
44. Copper	7440508										
45. Lead	7439921										
46. Mercury	7439976										
47. Nickel	7440020										
48. Selenium	7782492										
49. Silver	7440224										
50. Zinc	7440666										
51. Iron	7439896										
Other (describe):											

Remediation General Permit Appendix V - NOI Page 16 of 22

					Sample	Analytical	Minimum	<u>Maximum dai</u>	l <u>y value</u>	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

<i>Step 1:</i> Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? YN	If yes, which metals?
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF: Metal: DF: Metal: DF: Metal: DF: Etc. DF:	Look up the limit calculated at the corresponding dilution factor in Appendix IV . Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? YN If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

b) Identify each	Frac. tank	Air stripper	Oil/water separator	Equalization tanks	Bag filter	GAC filter
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge gpm Maximum flow rate of treatment system gpm Design flow rate of treatment system gpm								
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):								
5. Receiving surface water(s). Pleas	se provide infor	mation about the r	receiving water(s)	, using separate sh	eets as necessary:			
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain	Wetlands	Other (describe):			
b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters:								
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based 								

on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.

d) Provide the state water quality classification of the receiving water___

f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y____ N____ If yes, for which pollutant(s)?

Is there a final TMDL? Y____ N____ If yes, for which pollutant(s)? _

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

A ____ B ____ C ____ D ____ E ____ F ____

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y____ N___ Underway____

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y____ N____

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 _____ 2 ____ 3 ____

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Cu	mberland Farms # 7	70031	иникисти и иникисти		na n	n an	
Operator signature:	No-1		99999-999999-99999-99999-99999-99999-9999		n de la factoria de la construcción de la dela meso de la construcción de la construcción de la construcción de	na karan	annaidh a' a lluin an anna ann ann ann ann ann ann ann a
Printed Name & Title:	Marthen	9. Young	Sch.or	Project	Manager		
Date: 4/9/14					an a de la companya d		nie and a final and a final a f Maria a final a

Remediation General Permit Appendix V - NOI Page 20 of 22

ATTACHMENT II

Report Date: 26-Mar-14 15:36

Final ReportRe-Issued ReportRevised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607 Attn: Matt Lyne

Project: CFI # 70031 - Middleboro, MA Project #: 93-2000014.21

Laboratory ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Sampled	Date Received
SB86045-01	MW-1	Ground Water	13-Mar-14 10:00	14-Mar-14 14:10

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Juiole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 18 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Sp	ectrum Analytical, Inc.		Project #: 93-200	0014.21		
Proje	ect Location: CFI	# 70031 - Middleboro, N	ЛА	RTN:			
This	form provides ce	rtifications for the follo	wing data set: S	SB86045-01			
Matr	ices: Ground W	ater					
CAM	l Protocol	1			· · · · · · · · · · · · · · · · · · ·	1	
1	260 VOC AM II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A	
	270 SVOC AM II B	1					
	010 Metals6020 Metals8082 PCB9012 Total9014 TotalCAM III ACAM III DCAM V ACyanide/PACCyanide/PACCAM VI ACAM VI ACAM VI ACAM VI A				Cyanide/PAC	6860 Perchlorate CAM VIII B	
		Affirmative responses	to questions A through I	F are required for "Presu	mptive Certainty" status		
А	A Were all samples received in a condition consistent with those described on the Chain of Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?						
B	Were the analytic protocol(s) follo		ociated QC requirements	specified in the selected	CAM	✓ Yes No	
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?						
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?						
E	 a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? 						
F				non-conformances identif o questions A through E)?		✓ Yes No	
		Responses to ques	tions G, H and I below ar	e required for "Presump	tive Certainty" status		
G	Were the reporti	ng limits at or below all	CAM reporting limits spe	cified in the selected CAI	M protocol(s)?	✓ Yes No	
		at achieve "Presumptive Co n 310 CMR 40. 1056 (2)(k)		ressarily meet the data usab	ility and representativeness		
Н	Were all QC per	formance standards spec	ified in the CAM protoco	l(s) achieved?		Yes 🗸 No	
Ι	Were results rep	orted for the complete ar	alyte list specified in the	selected CAM protocol(s)?	Yes 🗸 No	
All ne	gative responses ar	e addressed in a case narr	utive on the cover page of th	is report.			
	.			pon my personal inquiry of v knowledge and belief, acci		ing the	
					Ariole L	eja	
					Nicole Leja Laboratory Director	r	

Laboratory Director Date: 3/26/2014

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 0.4 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Spikes:

1406109-MS1 Source: SB86045-01

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Iron

1406109-MSD1 Source: SB86045-01

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Iron

1406109-PS1 Source: SB86045-01

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. Iron

SW846 8260C

Calibration:

1402033

SW846 8260C

Calibration:

1402033

Analyte quantified by quadratic equation type calibration.

1,1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,3,5-Trichlorobenzene Naphthalene n-Butylbenzene trans-1,4-Dichloro-2-butene

This affected the following samples:

1405987-BLK1 1405987-BS1 1405987-BSD1 MW-1 S401580-ICV1 S402776-CCV1

Laboratory Control Samples:

1405987 BS/BSD

Trichlorofluoromethane (Freon 11) percent recoveries (133/124) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

MW-1

Samples:

S402776-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,2,4-Trimethylbenzene (22.3%) Acrylonitrile (22.7%) Bromoform (30.0%) Trichlorofluoromethane (Freon 11) (25.3%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Tetrahydrofuran (-21.7%) trans-1,4-Dichloro-2-butene (-24.9%)

This affected the following samples:

1405987-BLK1 1405987-BS1 1405987-BSD1 MW-1

Sample Acceptance Check Form

Client:	Environmental Compliance Services - Worcester, MA
Project:	CFI # 70031 - Middleboro, MA / 93-2000014.21
Work Order:	SB86045
Sample(s) received on:	3/14/2014
Received by:	Allison Edens

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

- 1. Were custody seals present?
- 2. Were custody seals intact?
- 3. Were samples received at a temperature of $\leq 6^{\circ}$ C?
- 4. Were samples cooled on ice upon transfer to laboratory representative?
- 5. Were samples refrigerated upon transfer to laboratory representative?
- 6. Were sample containers received intact?
- 7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
- 8. Were samples accompanied by a Chain of Custody document?
- 9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
- 10. Did sample container labels agree with Chain of Custody document?
- 11. Were samples received within method-specific holding times?

\checkmark	

<u>Sample Identification</u> MW-1 SB86045-01			<u>Client Project #</u> 93-2000014.21		<u>Matrix</u> Ground Water			Collection Date/Time 13-Mar-14 10:00		<u>Received</u> 14-Mar-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Org	Prganic Compounds anic Compounds by SW846 8260 by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00		µg/l	1.00	0.65	1	SW846 8260C	20-Mar-14	20-Mar-14	NAA	1405987	
67-64-1	Acetone	< 10.0		µg/l	10.0	2.56	1				"		
107-13-1	Acrylonitrile	< 0.50		µg/l	0.50	0.48	1	н			"		
71-43-2	Benzene	< 1.00		µg/l	1.00	0.67	1	н		н	"		
108-86-1	Bromobenzene	< 1.00		µg/l	1.00	0.72	1	u		u			
74-97-5	Bromochloromethane	< 1.00		µg/l	1.00	0.71	1	н		н	"		
75-27-4	Bromodichloromethane	< 0.50		µg/l	0.50	0.48	1	н		н			
75-25-2	Bromoform	< 1.00		µg/l	1.00	0.60	1	н		н			
74-83-9	Bromomethane	< 2.00		µg/l	2.00	1.14	1	н		н			
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	1.93	1						
104-51-8	n-Butylbenzene	< 1.00		µg/l	1.00	0.56	1						
135-98-8	sec-Butylbenzene	< 1.00		µg/l	1.00	0.82	1						
98-06-6	tert-Butylbenzene	< 1.00		µg/l	1.00	0.74	1	н		н			
75-15-0	Carbon disulfide	< 2.00		µg/l	2.00	1.28	1	н		н			
56-23-5	Carbon tetrachloride	< 1.00		µg/l	1.00	0.55	1	н		н			
108-90-7	Chlorobenzene	< 1.00		µg/l	1.00	0.65	1	н		н			
75-00-3	Chloroethane	< 2.00		µg/l	2.00	1.00	1	н		н			
67-66-3	Chloroform	< 1.00		µg/l	1.00	0.69	1						
74-87-3	Chloromethane	< 2.00		μg/l	2.00	1.47	1						
95-49-8	2-Chlorotoluene	< 1.00		µg/l	1.00	0.79	1	н		н			
106-43-4	4-Chlorotoluene	< 1.00		µg/l	1.00	0.73	1	н		н			
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00		µg/l	2.00	1.20	1				"		
124-48-1	Dibromochloromethane	< 0.50		µg/l	0.50	0.34	1	н		н			
106-93-4	1,2-Dibromoethane (EDB)	< 0.50		µg/l	0.50	0.36	1	н		н			
74-95-3	Dibromomethane	< 1.00		µg/l	1.00	0.67	1						
95-50-1	1,2-Dichlorobenzene	< 1.00		μg/l	1.00	0.67	1						
541-73-1	1,3-Dichlorobenzene	< 1.00		µg/l	1.00	0.71	1						
106-46-7	1,4-Dichlorobenzene	< 1.00		µg/l	1.00	0.62	1						
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00		µg/l	2.00	0.45	1			н	"		
75-34-3	1,1-Dichloroethane	< 1.00		µg/l	1.00	0.68	1	н		н			
107-06-2	1,2-Dichloroethane	< 1.00		µg/l	1.00	0.78	1	н		н			
75-35-4	1,1-Dichloroethene	< 1.00		µg/l	1.00	0.49	1	н		н			
156-59-2	cis-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.72	1	н		н			
156-60-5	trans-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.83	1	н		н			
78-87-5	1,2-Dichloropropane	< 1.00		µg/l	1.00	0.77	1	н		н			
142-28-9	1,3-Dichloropropane	< 1.00		µg/l	1.00	0.81	1				"		
594-20-7	2,2-Dichloropropane	< 1.00		µg/l	1.00	0.87	1	н		н			
563-58-6	1,1-Dichloropropene	< 1.00		µg/l	1.00	0.64	1	н		н	"		
10061-01-5	cis-1,3-Dichloropropene	< 0.50		µg/l	0.50	0.36	1	н			"		
10061-02-6	trans-1,3-Dichloropropene	< 0.50		μg/l	0.50	0.50	1	н			"		
100-41-4	Ethylbenzene	< 1.00		μg/l	1.00	0.95	1	н			"		
87-68-3	Hexachlorobutadiene	< 0.50		µg/I	0.50	0.49	1				"		
591-78-6	2-Hexanone (MBK)	< 10.0		µg/l	10.0	0.66	1	"		n	"		

This laboratory report is not valid without an authorized signature on the cover page.

Sample Identification MW-1 SB86045-01				<u>Client Project #</u> 93-2000014.21		<u>Matrix</u> Ground Water			er 13-Mar-14 10:00			<u>Received</u> 14-Mar-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
	Organic Compounds													
	anic Compounds by SW846 8260													
98-82-8	by method SW846 5030 V Isopropylbenzene	< 1.00		μg/l	1.00	0.62	1	SW846 8260C	20-Mar-14	20-Mar-14	NAA	1405987		
99-87-6	4-Isopropyltoluene	< 1.00		μg/l	1.00	0.61	1	"	20-iviai-14	20-iviai-14	"	"		
1634-04-4	Methyl tert-butyl ether	< 1.00		μg/l	1.00	0.65	1	н						
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		μg/I	10.0	2.76	1				"			
75-09-2	Methylene chloride	< 2.00		μg/l	2.00	0.95	1	u .						
91-20-3	Naphthalene	< 1.00		μg/l	1.00	0.58	1	u		н				
103-65-1	n-Propylbenzene	< 1.00		μg/l	1.00	0.76	1	u		н	"			
100-42-5	Styrene	< 1.00		μg/l	1.00	0.62	1							
630-20-6	1,1,1,2-Tetrachloroethane	< 1.00		µg/l	1.00	0.67	1	н		н	"			
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50		µg/I	0.50	0.32	1	н			"			
127-18-4	Tetrachloroethene	< 1.00		µg/l	1.00	0.74	1	н		н	"			
108-88-3	Toluene	< 1.00		µg/l	1.00	0.81	1	u		н				
87-61-6	1,2,3-Trichlorobenzene	< 1.00		µg/l	1.00	0.38	1							
120-82-1	1,2,4-Trichlorobenzene	< 1.00		µg/l	1.00	0.36	1				"			
108-70-3	1,3,5-Trichlorobenzene	< 1.00		µg/l	1.00	0.78	1	н		н	"			
71-55-6	1,1,1-Trichloroethane	< 1.00		µg/l	1.00	0.58	1	н		н	"			
79-00-5	1,1,2-Trichloroethane	< 1.00		µg/l	1.00	0.64	1	u		н	"			
79-01-6	Trichloroethene	< 1.00		µg/l	1.00	0.76	1			н				
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00	0.63	1			u	"			
96-18-4	1,2,3-Trichloropropane	< 1.00		µg/l	1.00	0.74	1	н			"			
95-63-6	1,2,4-Trimethylbenzene	< 1.00		µg/l	1.00	0.76	1	н			"			
108-67-8	1,3,5-Trimethylbenzene	< 1.00		µg/I	1.00	0.74	1	н		н	"			
75-01-4	Vinyl chloride	< 1.00		µg/l	1.00	0.81	1			н	"			
179601-23-1	m,p-Xylene	< 2.00		µg/l	2.00	1.64	1	II		н	"			
95-47-6	o-Xylene	< 1.00		µg/l	1.00	0.88	1	II		н	"			
109-99-9	Tetrahydrofuran	< 2.00		µg/I	2.00	1.44	1				"			
60-29-7	Ethyl ether	< 1.00		µg/I	1.00	0.69	1	н		н	"			
994-05-8	Tert-amyl methyl ether	< 1.00		µg/l	1.00	0.72	1	u .		н	"			
637-92-3	Ethyl tert-butyl ether	< 1.00		µg/l	1.00	0.78	1	u .		н				
108-20-3	Di-isopropyl ether	< 1.00		µg/l	1.00	0.73	1							
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0	8.64	1	"				•		
123-91-1	1,4-Dioxane	< 20.0		µg/I	20.0	12.0	1							
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.00		µg/l	5.00	0.74	1			u				
64-17-5	Ethanol	< 400		µg/I	400	35.0	1				"			
Surrogate ree	coveries:													
460-00-4	4-Bromofluorobenzene	103			70-13	0 %				н	"			
2037-26-5	Toluene-d8	103			70-13	0 %				u	"			
17060-07-0	1,2-Dichloroethane-d4	114			70-13	0 %					"			
1868-53-7	Dibromofluoromethane	112			70-13	0 %		u		н	"			
F	ole Petroleum Hydrocarbons													

```
Prepared by method SW846 3510C
```

Sample Identification MW-1 SB86045-01				<u>Client Project #</u> 93-2000014.21		<u>Matrix</u> Ground Wate			Collection Date/Time ter 13-Mar-14 10:00			<u>Received</u> 14-Mar-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Fingerprintir	le Petroleum Hydrocarbons ng by GC by method SW846 3510C													
8006-61-9	Gasoline	< 0.2		mg/l	0.2	0.2	1	SW846 8100Mod.	19-Mar-14	21-Mar-14	SEP	1405818		
68476-30-2	Fuel Oil #2	< 0.2		mg/l	0.2	0.2	1			н	"			
68476-31-3	Fuel Oil #4	< 0.2		mg/l	0.2	0.02	1			н				
68553-00-4	Fuel Oil #6	< 0.2		mg/l	0.2	0.2	1			н				
M09800000	Motor Oil	< 0.2		mg/l	0.2	0.2	1			н	"			
8032-32-4	Ligroin	< 0.2		mg/l	0.2	0.05	1			н				
J00100000	Aviation Fuel	< 0.2		mg/l	0.2	0.05	1			н				
	Hydraulic Oil	< 0.2		mg/l	0.2	0.02	1			н	"			
	Dielectric Fluid	< 0.2		mg/l	0.2	0.05	1			н				
	Unidentified	< 0.2		mg/l	0.2	0.05	1			н				
	Other Oil	< 0.2		mg/l	0.2	0.02	1			н	"			
	Total Petroleum Hydrocarbons	< 0.2		mg/l	0.2	0.02	1	11		u	"			
Surrogate rec	coveries:													
3386-33-2	1-Chlorooctadecane	67			40-14	0 %		н		u	"			
Total Met	als by EPA 200/6000 Series	Methods												
	Preservation	Lab Preserved		N/A			1	EPA 200/6000 methods	17-Mar-14	17-Mar-14	LNB	1405689		
Total Met	als by EPA 6000/7000 Serie	s Methods												
7439-89-6	Iron	7.95		mg/l	0.0150	0.0122	1	SW846 6010C	21-Mar-14	26-Mar-14	TBC	1406109		
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1			26-Mar-14				
General C	Chemistry Parameters													
	Total Suspended Solids	398	LIV	mg/l	10.0	4.3	1	SM2540D	18-Mar-14	19-Mar-14	CMB	1405726	х	

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
		B						to		
atch 1405987 - SW846 5030 Water MS Blank (1405987-BLK1)					D	narod 9 A	zed 20 Mar 1	1		
	< 1.00			1.00	Pre	vareu & Analy	zed: 20-Mar-14	<u>T</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113) Acetone	< 1.00 < 10.0		µg/l	1.00 10.0						
Acetone	< 10.0 < 0.50		μg/l μg/l	10.0 0.50						
Benzene	< 0.50 < 1.00		μg/I μg/I	0.50 1.00						
Bromobenzene	< 1.00		μg/i μg/l	1.00						
Bromochloromethane	< 1.00		μg/i μg/l	1.00						
Bromodichloromethane	< 0.50		μg/i μg/l	0.50						
Bromoform	< 1.00		μg/l	1.00						
Bromomethane	< 2.00		μg/l	2.00						
2-Butanone (MEK)	< 10.0		μg/l	10.0						
n-Butylbenzene	< 1.00		μg/l	1.00						
sec-Butylbenzene	< 1.00		μg/l	1.00						
tert-Butylbenzene	< 1.00		µg/l	1.00						
Carbon disulfide	< 2.00		μg/I	2.00						
Carbon tetrachloride	< 1.00		μg/I	1.00						
Chlorobenzene	< 1.00		μg/I	1.00						
Chloroethane	< 2.00		μg/I	2.00						
Chloroform	< 1.00		µg/l	1.00						
Chloromethane	< 2.00		μg/l	2.00						
2-Chlorotoluene	< 1.00		µg/l	1.00						
4-Chlorotoluene	< 1.00		µg/l	1.00						
1,2-Dibromo-3-chloropropane	< 2.00		μg/l	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50						
Dibromomethane	< 1.00		μg/l	1.00						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		µg/I	1.00						
1,4-Dichlorobenzene	< 1.00		µg/I	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		µg/l	1.00						
1,1-Dichloroethene	< 1.00		µg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		µg/I	1.00						
trans-1,2-Dichloroethene	< 1.00		µg/l	1.00						
1,2-Dichloropropane	< 1.00		μg/l	1.00						
1,3-Dichloropropane	< 1.00		μg/l	1.00						
2,2-Dichloropropane	< 1.00		µg/l	1.00						
1,1-Dichloropropene	< 1.00		μg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		μg/l	0.50						
trans-1,3-Dichloropropene Ethylbenzene	< 0.50 < 1.00		µg/l	0.50						
Etnylbenzene Hexachlorobutadiene	< 1.00 < 0.50		μg/l	1.00 0.50						
2-Hexanone (MBK)	< 0.50 < 10.0		µg/l	0.50 10.0						
z-нехапопе (мык) Isopropylbenzene	< 10.0 < 1.00		μg/l μg/l	1.00						
4-Isopropyltoluene	< 1.00			1.00						
Methyl tert-butyl ether	< 1.00		μg/l μg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/i μg/l	10.0						
Methylene chloride	< 2.00		μg/i μg/l	2.00						
Naphthalene	< 1.00		μg/l	1.00						
n-Propylbenzene	< 1.00		μg/l	1.00						
Styrene	< 1.00		μg/l	1.00						
1,1,1,2-Tetrachloroethane	< 1.00		μg/l	1.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1405987 - SW846 5030 Water MS										
Blank (1405987-BLK1)					Pre	pared & Analy	zed: 20-Mar-14	<u>l</u>		
1,1,2,2-Tetrachloroethane	< 0.50		µg/l	0.50						
Tetrachloroethene	< 1.00		µg/l	1.00						
Toluene	< 1.00		µg/l	1.00						
1,2,3-Trichlorobenzene	< 1.00		µg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00		µg/l	1.00						
1,3,5-Trichlorobenzene	< 1.00		µg/l	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l	1.00						
1,1,2-Trichloroethane	< 1.00		μg/l	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
1,2,3-Trichloropropane	< 1.00		μg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00			1.00						
Vinyl chloride	< 1.00 < 1.00		µg/l	1.00						
•			µg/l							
m,p-Xylene	< 2.00		μg/l	2.00						
o-Xylene	< 1.00		µg/l	1.00						
Tetrahydrofuran	< 2.00		µg/l	2.00						
Ethyl ether	< 1.00		µg/l	1.00						
Tert-amyl methyl ether	< 1.00		µg/l	1.00						
Ethyl tert-butyl ether	< 1.00		µg/l	1.00						
Di-isopropyl ether	< 1.00		µg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0		µg/l	10.0						
1,4-Dioxane	< 20.0		µg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.00		µg/l	5.00						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromofluorobenzene	51.7		µg/l		50.0		103	70-130		
Surrogate: Toluene-d8	51.3		µg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.4		µg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	53.8		µg/l		50.0		108	70-130		
LCS (1405987-BS1)					Pre	pared & Analy	zed: 20-Mar-14	<u>L</u>		
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.2		µg/l		20.0		121	70-130		
Acetone	22.3		μg/l		20.0		112	70-130		
Acrylonitrile	24.6		μg/I		20.0		123	70-130		
Benzene	19.4		μg/l		20.0		97	70-130		
Bromobenzene	21.8		μg/l		20.0		109	70-130		
Bromochloromethane	23.2		μg/l		20.0		116	70-130		
Bromodichloromethane	23.2				20.0		110	70-130		
Bromoform	21.9		µg/l		20.0		125	70-130		
			µg/l							
Bromomethane	19.2		µg/l		20.0		96	70-130		
2-Butanone (MEK)	17.3		µg/l		20.0		86	70-130		
n-Butylbenzene	19.6		µg/l		20.0		98	70-130		
sec-Butylbenzene	22.4		µg/l		20.0		112	70-130		
tert-Butylbenzene	23.0		µg/l		20.0		115	70-130		
Carbon disulfide	19.9		µg/l		20.0		99	70-130		
Carbon tetrachloride	24.2		µg/l		20.0		121	70-130		
Chlorobenzene	20.3		µg/l		20.0		101	70-130		
Chloroethane	24.6		µg/l		20.0		123	70-130		
Chloroform	21.1		µg/l		20.0		105	70-130		
Chloromethane	25.3		µg/l		20.0		126	70-130		
2-Chlorotoluene	21.6		µg/l		20.0		108	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1405987 - SW846 5030 Water MS										
LCS (1405987-BS1)					Pre	pared & Analy	zed: 20-Mar-14	<u>1</u>		
1,2-Dibromo-3-chloropropane	25.3		µg/l		20.0		127	70-130		
Dibromochloromethane	23.1		µg/l		20.0		116	70-130		
1,2-Dibromoethane (EDB)	20.8		µg/l		20.0		104	70-130		
Dibromomethane	21.4		µg/l		20.0		107	70-130		
1,2-Dichlorobenzene	20.4		µg/l		20.0		102	70-130		
1,3-Dichlorobenzene	22.5		µg/l		20.0		112	70-130		
1,4-Dichlorobenzene	20.6		µg/l		20.0		103	70-130		
Dichlorodifluoromethane (Freon12)	24.5		µg/l		20.0		123	70-130		
1,1-Dichloroethane	19.2		µg/l		20.0		96	70-130		
1,2-Dichloroethane	22.2		µg/l		20.0		111	70-130		
1,1-Dichloroethene	23.8		µg/l		20.0		119	70-130		
cis-1,2-Dichloroethene	20.9		µg/l		20.0		104	70-130		
trans-1,2-Dichloroethene	20.3		μg/l		20.0		102	70-130		
1,2-Dichloropropane	18.2		μg/l		20.0		91	70-130		
1,3-Dichloropropane	19.4		µg/l		20.0		97	70-130		
2,2-Dichloropropane	25.3		μg/l		20.0		126	70-130		
1,1-Dichloropropene	21.2		µg/l		20.0		106	70-130		
cis-1,3-Dichloropropene	22.0		µg/l		20.0		110	70-130		
trans-1,3-Dichloropropene	22.0		µg/l		20.0		110	70-130		
Ethylbenzene	20.8		µg/l		20.0		104	70-130		
Hexachlorobutadiene	24.5		µg/l		20.0		122	70-130		
2-Hexanone (MBK)	17.3		µg/l		20.0		87	70-130		
Isopropylbenzene	21.8		µg/l		20.0		109	70-130		
4-Isopropyltoluene	20.8		µg/l		20.0		104	70-130		
Methyl tert-butyl ether	20.9		µg/l		20.0		104	70-130		
4-Methyl-2-pentanone (MIBK)	19.9		µg/l		20.0		99	70-130		
Methylene chloride	21.8		µg/l		20.0		109	70-130		
Naphthalene	22.3		µg/l		20.0		112	70-130		
n-Propylbenzene	21.8		µg/l		20.0		109	70-130		
Styrene	21.6		µg/l		20.0		108	70-130		
1,1,1,2-Tetrachloroethane	22.2		µg/l		20.0		111	70-130		
1,1,2,2-Tetrachloroethane	21.8		µg/l		20.0		109	70-130		
Tetrachloroethene	23.0		µg/l		20.0		115	70-130		
Toluene	20.2		µg/l		20.0		101	70-130		
1,2,3-Trichlorobenzene	21.4		µg/l		20.0		107	70-130		
1,2,4-Trichlorobenzene	22.4		µg/l		20.0		112	70-130		
1,3,5-Trichlorobenzene	23.2		µg/l		20.0		116	70-130		
1,1,1-Trichloroethane	23.2		µg/l		20.0		116	70-130		
1,1,2-Trichloroethane	19.2		µg/l		20.0		96	70-130		
Trichloroethene	19.3		µg/l		20.0		97	70-130		
Trichlorofluoromethane (Freon 11)	26.5	QM9	µg/l		20.0		133	70-130		
1,2,3-Trichloropropane	19.8		µg/l		20.0		99	70-130		
1,2,4-Trimethylbenzene	24.5		µg/l		20.0		123	70-130		
1,3,5-Trimethylbenzene	23.8		µg/l		20.0		119	70-130		
Vinyl chloride	20.2		µg/l		20.0		101	70-130		
m,p-Xylene	21.6		µg/l		20.0		108	70-130		
o-Xylene	22.2		μg/l		20.0		111	70-130		
Tetrahydrofuran	16.5		µg/l		20.0		82	70-130		
Ethyl ether	23.5		µg/l		20.0		118	70-130		
Tert-amyl methyl ether	18.2		µg/l		20.0		91	70-130		
Ethyl tert-butyl ether	20.9		μg/I		20.0		105	70-130		
Di-isopropyl ether	18.3		μg/l		20.0		91	70-130		

Analyte(s)	Docult	Floo	Linita	*דע	Spike	Source	0/DEC	%REC	רום ק	RPD Limit
anaryte(8)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1405987 - SW846 5030 Water MS										
LCS (1405987-BS1)					Pre	pared & Analy	zed: 20-Mar-14	<u>4</u>		
Tert-Butanol / butyl alcohol	239		µg/l		200		119	70-130		
1,4-Dioxane	196		µg/l		200		98	70-130		
trans-1,4-Dichloro-2-butene	15.6		µg/l		20.0		78	70-130		
Ethanol	462		µg/l		400		115	70-130		
Surrogate: 4-Bromofluorobenzene	52.7		μg/l		50.0		105	70-130		
Surrogate: Toluene-d8	51.2		µg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.6		µg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	55.1		µg/l		50.0		110	70-130		
LCS Dup (1405987-BSD1)					Pre	pared & Analy	zed: 20-Mar-1	4		
1,1,2-Trichlorotrifluoroethane (Freon 113)	22.9		µg/l		20.0		115	70-130	5	20
Acetone	20.6		µg/l		20.0		103	70-130	8	20
Acrylonitrile	23.6		µg/l		20.0		118	70-130	4	20
Benzene	18.7		μg/l		20.0		94	70-130	3	20
Bromobenzene	21.5		μg/l		20.0		108	70-130	1	20
Bromochloromethane	22.6		µg/l		20.0		113	70-130	2	20
Bromodichloromethane	21.2		µg/l		20.0		106	70-130	3	20
Bromoform	25.0		µg/l		20.0		125	70-130	0.2	20
Bromomethane	18.7		µg/l		20.0		93	70-130	2	20
2-Butanone (MEK)	17.5		µg/l		20.0		87	70-130	1	20
n-Butylbenzene	19.4		µg/l		20.0		97	70-130	1	20
sec-Butylbenzene	21.8		µg/l		20.0		109	70-130	2	20
tert-Butylbenzene	22.8		μg/l		20.0		114	70-130	1	20
Carbon disulfide	20.2		μg/l		20.0		101	70-130	1	20
Carbon tetrachloride	23.0		μg/l		20.0		115	70-130	5	20
Chlorobenzene	20.3		μg/l		20.0		101	70-130	0.1	20
Chloroethane	22.4		μg/l		20.0		112	70-130	10	20
Chloroform	20.3		μg/l		20.0		102	70-130	4	20
Chloromethane	24.0		μg/l		20.0		120	70-130	5	20
2-Chlorotoluene	21.1		μg/l		20.0		105	70-130	2	20
4-Chlorotoluene	21.4		μg/l		20.0		107	70-130	2	20
1,2-Dibromo-3-chloropropane	24.6		μg/l		20.0		123	70-130	3	20
Dibromochloromethane	22.7		μg/l		20.0		114	70-130	2	20
1,2-Dibromoethane (EDB)	20.4		μg/l		20.0		102	70-130	2	20
Dibromomethane	20.8		μg/l		20.0		104	70-130	3	20
1,2-Dichlorobenzene	20.3		μg/l		20.0		102	70-130	0.4	20
1,3-Dichlorobenzene	22.4		μg/l		20.0		112	70-130	0.4	20
1,4-Dichlorobenzene	19.8		μg/l		20.0		99	70-130	4	20
Dichlorodifluoromethane (Freon12)	24.4		μg/l		20.0		122	70-130	0.7	20
1,1-Dichloroethane	18.7		μg/l		20.0		94	70-130	3	20
1,2-Dichloroethane	21.5		μg/l		20.0		108	70-130	3	20
1,1-Dichloroethene	22.6		μg/l		20.0		113	70-130	5	20
cis-1,2-Dichloroethene	19.7		μg/l		20.0		98	70-130	6	20
trans-1,2-Dichloroethene	19.2				20.0		96	70-130	6	20
1,2-Dichloropropane	19.2		µg/l		20.0		90 88	70-130	3	20
1,3-Dichloropropane	17.6		µg/l		20.0		93	70-130	3	20 20
2,2-Dichloropropane	23.8		µg/l		20.0		93 119	70-130	4 6	20
			µg/l							
1,1-Dichloropropene	19.7		µg/l		20.0		99 108	70-130	7	20
cis-1,3-Dichloropropene	21.5		µg/l		20.0		108	70-130	2	20
trans-1,3-Dichloropropene	21.5		µg/l		20.0		108	70-130	2	20
Ethylbenzene	20.3		µg/l		20.0		101	70-130	2	20
Hexachlorobutadiene	23.6		µg/l		20.0		118	70-130	4	20

	D L		¥ ¥ .	40.57	Spike	Source	0/850	%REC	DEE	RPI
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1405987 - SW846 5030 Water MS										
LCS Dup (1405987-BSD1)					Pre	pared & Analy	zed: 20-Mar-14	<u>1</u>		
2-Hexanone (MBK)	17.1		µg/l		20.0		85	70-130	1	20
Isopropylbenzene	21.0		μg/l		20.0		105	70-130	4	20
4-Isopropyltoluene	20.4		µg/l		20.0		102	70-130	2	20
Methyl tert-butyl ether	20.2		μg/l		20.0		101	70-130	3	20
4-Methyl-2-pentanone (MIBK)	19.1		μg/l		20.0		95	70-130	4	20
Methylene chloride	21.0		µg/l		20.0		105	70-130	4	20
Naphthalene	21.1		µg/l		20.0		106	70-130	6	20
n-Propylbenzene	21.3		µg/l		20.0		106	70-130	3	20
Styrene	21.4		µg/l		20.0		107	70-130	1	20
1,1,1,2-Tetrachloroethane	21.5		µg/l		20.0		107	70-130	3	20
1,1,2,2-Tetrachloroethane	21.5		μg/l		20.0		108	70-130	1	20
Tetrachloroethene	22.6		μg/l		20.0		113	70-130	2	20
Toluene	19.3		µg/l		20.0		97	70-130	4	20
1,2,3-Trichlorobenzene	20.4		μg/l		20.0		102	70-130	5	20
1,2,4-Trichlorobenzene	21.4		μg/l		20.0		107	70-130	5	20
1,3,5-Trichlorobenzene	22.5		μg/l		20.0		113	70-130	3	20
1,1,1-Trichloroethane	22.1		μg/l		20.0		110	70-130	5	20
1,1,2-Trichloroethane	19.0		μg/l		20.0		95	70-130	1	20
Trichloroethene	17.8		μg/l		20.0		89	70-130	8	20
Trichlorofluoromethane (Freon 11)	24.8		μg/l		20.0		124	70-130	7	20
1,2,3-Trichloropropane	19.4		μg/l		20.0		97	70-130	2	20
1,2,4-Trimethylbenzene	24.0		μg/l		20.0		120	70-130	2	20
1,3,5-Trimethylbenzene	23.2		μg/l		20.0		116	70-130	2	20
Vinyl chloride	22.3		µg/l		20.0		112	70-130	10	20
m,p-Xylene	21.2		μg/l		20.0		106	70-130	1	20
o-Xylene	21.6		μg/l		20.0		108	70-130	3	20
Tetrahydrofuran	15.4		μg/l		20.0		77	70-130	7	20
Ethyl ether	23.0		μg/l		20.0		115	70-130	2	20
Tert-amyl methyl ether	17.8		μg/l		20.0		89	70-130	2	20
Ethyl tert-butyl ether	20.2		μg/i		20.0		101	70-130	3	20
Di-isopropyl ether	17.6		μg/i		20.0		88	70-130	4	20
Tert-Butanol / butyl alcohol	225		μg/i		200		112	70-130	6	20
1,4-Dioxane	184		μg/i μg/l		200		92	70-130	6	20
trans-1,4-Dichloro-2-butene	164				200		92 86	70-130	10	20
Ethanol	460		µg/l		20.0 400		115	70-130	0.4	20
			µg/l						0.4	20
Surrogate: 4-Bromofluorobenzene	53.0		μg/l		50.0		106	70-130		
Surrogate: Toluene-d8	51.2		µg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	53.6 54.4		µg/l		50.0 50.0		107 109	70-130 70-130		

			•		•					
analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1405818 - SW846 3510C										
Blank (1405818-BLK1)					Pre	pared & Analy	zed: 19-Mar-1	4		
Gasoline	< 0.2		mg/l	0.2						
Fuel Oil #2	< 0.2		mg/l	0.2						
Fuel Oil #4	< 0.2		mg/l	0.2						
Fuel Oil #6	< 0.2		mg/l	0.2						
Motor Oil	< 0.2		mg/l	0.2						
Ligroin	< 0.2		mg/l	0.2						
Aviation Fuel	< 0.2		mg/l	0.2						
Hydraulic Oil	< 0.2		mg/l	0.2						
Dielectric Fluid	< 0.2		mg/l	0.2						
Unidentified	< 0.2		mg/l	0.2						
Other Oil	< 0.2		mg/l	0.2						
Total Petroleum Hydrocarbons	< 0.2		mg/l	0.2						
Surrogate: 1-Chlorooctadecane	0.0396		mg/l		0.0500		79	40-140		
LCS (1405818-BS2)					Pre	pared & Analy	zed: 19-Mar-1	4		
Fuel Oil #2	9.0		mg/l	0.2	10.0		90	40-140		
Surrogate: 1-Chlorooctadecane	0.0467		mg/l		0.0500		93	40-140		
LCS Dup (1405818-BSD2)					Pre	pared & Analy	zed: 19-Mar-1	4		
Fuel Oil #2	9.2		mg/l	0.2	10.0		92	40-140	2	200
Surrogate: 1-Chlorooctadecane	0.0486		mg/l		0.0500		97	40-140		

	- ·				Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
Batch 1406109 - SW846 3005A										
Blank (1406109-BLK1)					Pre	pared: 21-Ma	-14 Analyzed	: 26-Mar-14		
Iron	< 0.0150		mg/l	0.0150						
Lead	< 0.0075		mg/l	0.0075						
LCS (1406109-BS1)					Pre	pared: 21-Ma	-14 Analyzed	: 26-Mar-14		
Iron	1.38		mg/l	0.0150	1.25		110	85-115		
Lead	1.20		mg/l	0.0075	1.25		96	85-115		
LCS Dup (1406109-BSD1)					Pre	pared: 21-Ma	-14 Analyzed	: 26-Mar-14		
Iron	1.36		mg/l	0.0150	1.25		109	85-115	1	20
Lead	1.20		mg/l	0.0075	1.25		96	85-115	0.5	20
Duplicate (1406109-DUP1)			Source: SI	B86045-01	Pre	pared: 21-Ma	-14 Analyzed	: 26-Mar-14		
Iron	7.55		mg/l	0.0150		7.95			5	20
Lead	0.0038	J	mg/l	0.0075		0.0040			5	20
Matrix Spike (1406109-MS1)			Source: SI	B86045-01	Pre	pared: 21-Ma	-14 Analyzed	: 26-Mar-14		
Iron	8.34	QM4X	mg/l	0.0150	1.25	7.95	31	75-125		
Lead	1.04		mg/l	0.0075	1.25	0.0040	83	75-125		
Matrix Spike Dup (1406109-MSD1)			Source: SI	B86045-01	Pre	pared: 21-Ma	-14 Analyzed	: 26-Mar-14		
Iron	8.60	QM4X	mg/l	0.0150	1.25	7.95	52	75-125	3	20
Lead	1.05		mg/l	0.0075	1.25	0.0040	84	75-125	1	20
Post Spike (1406109-PS1)			Source: Sl	B86045-01	Pre	pared: 21-Ma	-14 Analyzed	: 26-Mar-14		
Iron	8.54	QM4X	mg/l	0.0150	1.25	7.95	47	80-120		
Lead	1.05		mg/l	0.0075	1.25	0.0040	83	80-120		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1405726 - General Preparation										
Blank (1405726-BLK1)					Pre	pared: 18-Mar-	14 Analyzed	: 19-Mar-14		
Total Suspended Solids	< 5.0		mg/l	5.0						
LCS (1405726-BS1)					Pre	pared: 18-Mar-	14 Analyzed	: 19-Mar-14		
Total Suspended Solids	98.0		mg/l	10.0	100		98	90-110		

Notes and Definitions

- QM4X The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- LIV The initial volume for this sample has been reduced due to sample matrix and/or historical data therefore elevating the reporting limit.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes virgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Wisk

	Relinquisheddoy:		SB 8604/5-01 MW-1 3/13/14	ple Id:	G=Grab C=Composite	O=Oil SW= Surface Water SO=Soil X1= X2=	brinking Water GW=Groundwater	$S2O_3$ 2=HCl 3=H ₂ SO ₄ SO_4 9= Deionized Water	Project Mer. Math Lyne		MOLICINE /14		SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	
- D	Received by:		14 10:00 E SW	Time: Type		SL=Sludge A=Air X3=	Vas	4=HNO ₃ 5=NaOH 6=Ascorbic Acid 10=H ₃ PO ₄ 11=12=	P.O. No.: 48377		Framicyhan	Invoice To:	CHAIN OF CUSTODY	
Ar A 01001 • 413-780-0018 • FAX 413-789-4076 • www.spectrum-analytical.com	Date; Time: T 		¢ + ¢	4 of 4 of 4	VOA V Amber Clear G Plastic	Glass	Containers:	Acid 7=CH ₃ OH 12=	RQN:		span, Ma		JSTODY RE	
Condition upon receipt: Ambient locd	Temp ^o C D EDD Format		>		1 5, G		Analyses:	List preservative code below:	Sampler(s): N. Holmes	Location: 150 S. Main & , Middle Sona	Site Name: CFI 4 7003	Project No.: 93-200014-21	CORD	с а И
Condition upon receipt:// Custody Seals:	ne recsconsult.com	O.H.O.HRO AME		☐ Other State-specific reporting standards:	□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ THER II* □ THER IV*	QA/QC Reporting Level	MA DEP MCP CAM Report: Yest No	ow: QA/QC Reporting Notes: * additional charges may apply		Middlebora State: Ma		14-21	Special Handling: X Standard TAT - 7 to 10 business days □ Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	SA & LOOUS VILL

11 Almgren Drive • Agawam, MA 01001

Report Date: 07-Jun-13 15:16

Final Report
Re-Issued Report
Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607 Attn: Matt Lyne

Project: CFI # 2131 506 Main St. Sturbridge, MA Project #: 93-204810.21

Laboratory ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Sampled	Date Received
SB70749-01	ECS-8	Ground Water	31-May-13 09:15	03-Jun-13 16:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

ficole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 17 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

MassDEP Analytical Protocol Certification Form

Labo	oratory Name: Sp	pectrum Analytical, Inc.		Project #: 93-204	810.21	
Proje	ect Location: CF	I # 2131 506 Main St. St.	urbridge, MA	RTN:		
This	form provides co	ertifications for the follo	wing data set:	SB70749-01		
Matr	rices: Ground W	ater				
CAM	I Protocol					
/	260 VOC AM II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative responses	s to questions A through I	F are required for "Presu	mptive Certainty" status	
A			consistent with those des field or laboratory, and pr			✓ Yes No
В	Were the analyt protocol(s) follo		sociated QC requirements	specified in the selected	CAM	✓ Yes No
С			analytical response action d performance standard no	-	CAM	✓ Yes No
D			all the reporting requirements for the Acquisition and			✓ Yes No
E		-	Vas each method conducte he complete analyte list re	-	dification(s)?	Yes No Yes No
F			nd performance standard a ding all "No" responses to			✓ Yes No
		Responses to ques	tions G, H and I below ar	re required for "Presump	tive Certainty" status	
G	Were the report	ing limits at or below all	CAM reporting limits spe	cified in the selected CAI	M protocol(s)?	✓ Yes No
		nat achieve "Presumptive C in 310 CMR 40. 1056 (2)(k,	ertainty" status may not nec and WSC-07-350.	cessarily meet the data usab	ility and representativeness	
Н	Were all QC pe	rformance standards spec	ified in the CAM protoco	l(s) achieved?		Yes 🗸 No
I	Were results rep	ported for the complete a	nalyte list specified in the	selected CAM protocol(s)?	Yes 🗸 No
All ne	gative responses a	re addressed in a case narr	ative on the cover page of th	nis report.		
	•		lties of perjury that, based u al report is, to the best of my		- v	ing the
					Ariole L	eja
					Nicole Leja Laboratory Director	-

Laboratory Director Date: 6/7/2013

CASE NARRATIVE:

The samples were received 2.1 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1306017

Analyte quantified by quadratic equation type calibration.

1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene m,p-Xylene Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene

This affected the following samples:

1313105-BLK1 1313105-BS1 1313105-BSD1 ECS-8 S306376-ICV1 S306424-CCV1

Samples:

S306424-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

trans-1,4-Dichloro-2-butene (24.1%)

SW846 8260C

Samples:

S306424-CCV1

This affected the following samples:

1313105-BLK1 1313105-BS1 1313105-BSD1 ECS-8

Sample Acceptance Check Form

Client:	Environmental Compliance Services - Worcester, MA
Project:	CFI # 2131 506 Main St. Sturbridge, MA / 93-204810.21
Work Order:	SB70749
Sample(s) received on:	6/3/2013
Received by:	Jessica Hoffman

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

- 1. Were custody seals present?
- 2. Were custody seals intact?
- 3. Were samples received at a temperature of $\leq 6^{\circ}$ C?
- 4. Were samples cooled on ice upon transfer to laboratory representative?
- 5. Were samples refrigerated upon transfer to laboratory representative?
- 6. Were sample containers received intact?
- 7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
- 8. Were samples accompanied by a Chain of Custody document?
- 9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
- 10. Did sample container labels agree with Chain of Custody document?
- 11. Were samples received within method-specific holding times?

\checkmark	

Sample I ECS-8 SB70749	dentification			<u>Client F</u> 93-204	Project <u>#</u> 810.21		<u>Matrix</u> Ground Wa		ection Date -May-13 09			<u>ceived</u> Jun-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile C	Organic Compounds												
Volatile Org	anic Compounds by SW846 8260	-											
Prepared 76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha	<u>Vater MS</u> < 1.00		ug/l	1.00	0.65	1	SW846 8260C	05-Jun-13	05-Jun-13	GMA	1313105	
/0-10-1	ne (Freon 113)	< 1.00		µg/l	1.00	0.05	I	50040 02000	05-Juli-15	05-5011-15	GIVIA	1313105	
67-64-1	Acetone	< 10.0		µg/l	10.0	2.56	1				"		
107-13-1	Acrylonitrile	< 0.50		µg/I	0.50	0.46	1	н			"		
71-43-2	Benzene	< 1.00		µg/l	1.00	0.67	1	н			"		
108-86-1	Bromobenzene	< 1.00		µg/l	1.00	0.72	1				"		
74-97-5	Bromochloromethane	< 1.00		µg/l	1.00	0.71	1	u			"		
75-27-4	Bromodichloromethane	< 0.50		µg/l	0.50	0.48	1	u			"		
75-25-2	Bromoform	< 1.00		µg/l	1.00	0.60	1	u			"		
74-83-9	Bromomethane	< 2.00		µg/l	2.00	1.14	1	ı			"		
78-93-3	2-Butanone (MEK)	< 10.0		µg/l	10.0	1.73	1	ı			"		
104-51-8	n-Butylbenzene	< 1.00		µg/l	1.00	0.56	1	п			"		
135-98-8	sec-Butylbenzene	< 1.00		µg/l	1.00	0.82	1	п			"		
98-06-6	tert-Butylbenzene	< 1.00		µg/l	1.00	0.74	1	ı			"		
75-15-0	Carbon disulfide	< 2.00		µg/l	2.00	0.63	1	п			"		
56-23-5	Carbon tetrachloride	< 1.00		µg/l	1.00	0.55	1	ı			"		
108-90-7	Chlorobenzene	< 1.00		µg/l	1.00	0.65	1	ı			"		
75-00-3	Chloroethane	< 2.00		µg/l	2.00	1.03	1				"		
67-66-3	Chloroform	< 1.00		µg/l	1.00	0.69	1	п			"		
74-87-3	Chloromethane	< 2.00		µg/l	2.00	1.47	1	ı			"		
95-49-8	2-Chlorotoluene	< 1.00		µg/l	1.00	0.79	1				"		
106-43-4	4-Chlorotoluene	< 1.00		µg/I	1.00	0.73	1	п			"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00		µg/l	2.00	0.93	1	и			"		
124-48-1	Dibromochloromethane	< 0.50		µg/l	0.50	0.29	1	п			"		
106-93-4	1,2-Dibromoethane (EDB)	< 0.50		µg/l	0.50	0.33	1	п			"		
74-95-3	Dibromomethane	< 1.00		µg/l	1.00	0.67	1	п			"		
95-50-1	1,2-Dichlorobenzene	< 1.00		µg/l	1.00	0.67	1	п			"		
541-73-1	1,3-Dichlorobenzene	< 1.00		µg/l	1.00	0.71	1	п			"		
106-46-7	1,4-Dichlorobenzene	< 1.00		µg/l	1.00	0.62	1	п			"		
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00		µg/l	2.00	0.45	1	н					
75-34-3	1,1-Dichloroethane	< 1.00		µg/l	1.00	0.68	1						
107-06-2	1,2-Dichloroethane	< 1.00		µg/l	1.00	0.78	1						
75-35-4	1,1-Dichloroethene	< 1.00		µg/l	1.00	0.49	1						
156-59-2	cis-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.72	1						
156-60-5	trans-1,2-Dichloroethene	< 1.00		µg/l	1.00	0.68	1						
78-87-5	1,2-Dichloropropane	< 1.00		µg/l	1.00	0.71	1						
142-28-9	1,3-Dichloropropane	< 1.00		µg/l	1.00	0.81	1	u			"		
594-20-7	2,2-Dichloropropane	< 1.00		µg/l	1.00	0.60	1	u			"		
563-58-6	1,1-Dichloropropene	< 1.00		µg/l	1.00	0.64	1	u					
10061-01-5	cis-1,3-Dichloropropene	< 0.50		µg/l	0.50	0.25	1						
10061-02-6	trans-1,3-Dichloropropene	< 0.50		µg/l	0.50	0.50	1						
100-41-4	Ethylbenzene	< 1.00		µg/l	1.00	0.73	1						
87-68-3	Hexachlorobutadiene	< 0.50		µg/l	0.50	0.45	1						
591-78-6	2-Hexanone (MBK)	< 10.0		µg/l	10.0	0.54	1						

Sample Id ECS-8 SB70749	-01				<u>Project #</u> 810.21		<u>Matrix</u> Ground Wa		ection Date -May-13 09			<u>ceived</u> Jun-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	Organic Compounds												
	anic Compounds by SW846 8260 by method SW846 5030 V												
98-82-8	Isopropylbenzene	< 1.00		μg/l	1.00	0.62	1	SW846 8260C	05-Jun-13	05-Jun-13	GMA	1313105	
99-87-6	4-Isopropyltoluene	< 1.00		μg/l	1.00	0.61	1			н	"		
1634-04-4	Methyl tert-butyl ether	< 1.00		μg/l	1.00	0.65	1			н	"		
108-10-1	4-Methyl-2-pentanone (MIBK)	< 10.0		µg/l	10.0	0.93	1				"	•	
75-09-2	Methylene chloride	< 2.00		µg/l	2.00	0.69	1			н	"		
91-20-3	Naphthalene	< 1.00		µg/l	1.00	0.33	1	н		н	"		
103-65-1	n-Propylbenzene	< 1.00		μg/l	1.00	0.76	1			н	"		
100-42-5	Styrene	< 1.00		μg/l	1.00	0.62	1			н	"		
630-20-6	1,1,1,2-Tetrachloroethane	< 1.00		μg/l	1.00	0.63	1			н			
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50		μg/l	0.50	0.35	1			н			
127-18-4	Tetrachloroethene	< 1.00		μg/l	1.00	0.74	1			u	"		
108-88-3	Toluene	< 1.00		μg/l	1.00	0.81	1						
87-61-6	1,2,3-Trichlorobenzene	< 1.00		μg/l	1.00	0.38	1			н			
120-82-1	1,2,4-Trichlorobenzene	< 1.00		μg/l	1.00	0.36	1			н			
108-70-3	1,3,5-Trichlorobenzene	< 1.00		μg/l	1.00	0.78	1			н			
71-55-6	1,1,1-Trichloroethane	< 1.00		μg/l	1.00	0.58	1			н			
79-00-5	1,1,2-Trichloroethane	< 1.00		μg/l	1.00	0.64	1			н			
79-01-6	Trichloroethene	< 1.00		μg/l	1.00	0.76	1						
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00		μg/I	1.00	0.63	1	и		n	"		
96-18-4	1,2,3-Trichloropropane	< 1.00		μg/l	1.00	0.74	1						
95-63-6	1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00	0.76	1			н			
108-67-8	1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00	0.74	1			н			
75-01-4	Vinyl chloride	< 1.00		μg/l	1.00	0.81	1			н			
179601-23-1	m,p-Xylene	< 2.00		µg/l	2.00	1.64	1			н			
95-47-6	o-Xylene	< 1.00		μg/l	1.00	0.88	1			н			
109-99-9	Tetrahydrofuran	< 2.00		μg/l	2.00	1.44	1						
60-29-7	Ethyl ether	< 1.00		μg/l	1.00	0.69	1						
994-05-8	Tert-amyl methyl ether	< 1.00		μg/l	1.00	0.72	1						
637-92-3	Ethyl tert-butyl ether	< 1.00		μg/l	1.00	0.78	1						
108-20-3	Di-isopropyl ether	< 1.00		μg/l	1.00	0.73	1						
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/I	10.0	8.64	1	н		н	"		
123-91-1	1,4-Dioxane	< 20.0		μg/l	20.0	14.0	1	н		н	"		
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.00		μg/l	5.00	0.77	1			n	"	•	
64-17-5	Ethanol	< 400		µg/l	400	35.7	1		H	н	"		
Surrogate rec	coveries:												
460-00-4	4-Bromofluorobenzene	77			70-13	0 %					"		
2037-26-5	Toluene-d8	103			70-13	0 %					"		
1868-53-7	Dibromofluoromethane	116			70-13	0 %					"		
	ele Petroleum Hydrocarbons												
Fingerprintin Prepared	ng by GC by method SW846 3510C												
8006-61-9	Gasoline	< 0.2		mg/l	0.2	0.2	1	SW846 8100Mod.	05-Jun-13	06-Jun-13	SEP	1313064	

<u>Sample I</u> ECS-8 SB70749	dentification			<u>Project #</u> 4810.21		<u>Matrix</u> Ground Wa		ection Date -May-13 09			<u>ceived</u> Jun-13	
CAS No.	Analyte(s)	Result Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Extractab	le Petroleum Hydrocarbon	S										
<u>Fingerprintin</u> Prepared	ng by GC by method SW846 35100	2										
68476-30-2	Fuel Oil #2	< 0.2	mg/l	0.2	0.2	1	SW846 8100Mod.	05-Jun-13	06-Jun-13	SEP	1313064	
68476-31-3	Fuel Oil #4	< 0.2	mg/l	0.2	0.02	1				"		
68553-00-4	Fuel Oil #6	< 0.2	mg/l	0.2	0.2	1				"		
M09800000	Motor Oil	< 0.2	mg/l	0.2	0.2	1				"		
8032-32-4	Ligroin	< 0.2	mg/l	0.2	0.05	1						
J00100000	Aviation Fuel	< 0.2	mg/l	0.2	0.05	1						
	Hydraulic Oil	< 0.2	mg/l	0.2	0.02	1				"		
	Dielectric Fluid	< 0.2	mg/l	0.2	0.05	1				"		
	Unidentified	< 0.2	mg/l	0.2	0.05	1						
	Other Oil	< 0.2	mg/l	0.2	0.02	1						
	Total Petroleum Hydrocarbons	< 0.2	mg/l	0.2	0.02	1				"		
Surrogate ree	coveries:											
3386-33-2	1-Chlorooctadecane	54		40-14	0 %					"		
Total Met	tals by EPA 200/6000 Series	Methods										
	Preservation	Field Preserved	N/A			1	EPA 200/6000 methods			BJW	1313006	
Total Met	tals by EPA 6000/7000 Serie	s Methods										
7439-89-6	Iron	0.174	mg/l	0.0150	0.0074	1	SW846 6010C	05-Jun-13	05-Jun-13	EDT	1313007	
7439-92-1	Lead	< 0.0075	mg/l	0.0075	0.0020	1				"		
General (Chemistry Parameters											
	Total Suspended Solids	< 5	mg/l	5	2	1	SM2540D	05-Jun-13	06-Jun-13	BD	1313113	Х

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1313105 - SW846 5030 Water MS									-	
Blank (1313105-BLK1)					Pro	nared & Analy	zed: 05-Jun-13	3		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00		μg/l	1.00		pareo & Anaiy	2eu. 05-0011-10	2		
Acetone	< 10.0		μg/l	10.0						
Acrylonitrile	< 0.50		μg/l	0.50						
Benzene	< 1.00		μg/l	1.00						
Bromobenzene	< 1.00		μg/l	1.00						
Bromochloromethane	< 1.00		μg/l	1.00						
Bromodichloromethane	< 0.50		μg/l	0.50						
Bromoform	< 1.00		µg/l	1.00						
Bromomethane	< 2.00		µg/l	2.00						
2-Butanone (MEK)	< 10.0		µg/l	10.0						
n-Butylbenzene	< 1.00		µg/l	1.00						
sec-Butylbenzene	< 1.00		μg/l	1.00						
tert-Butylbenzene	< 1.00		μg/l	1.00						
Carbon disulfide	< 2.00		μg/l	2.00						
Carbon tetrachloride	< 1.00		μg/l	1.00						
Chlorobenzene	< 1.00		μg/l	1.00						
Chloroethane	< 2.00		μg/l	2.00						
Chloroform	< 1.00		μg/l	1.00						
Chloromethane	< 2.00		μg/l	2.00						
2-Chlorotoluene	< 1.00		µg/l	1.00						
4-Chlorotoluene	< 1.00		μg/l	1.00						
1,2-Dibromo-3-chloropropane	< 2.00		μg/l	2.00						
Dibromochloromethane	< 0.50		μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50		μg/l	0.50						
Dibromomethane	< 1.00		μg/l	1.00						
1,2-Dichlorobenzene	< 1.00		μg/l	1.00						
1,3-Dichlorobenzene	< 1.00		μg/l	1.00						
1,4-Dichlorobenzene	< 1.00		μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00		μg/l	2.00						
1,1-Dichloroethane	< 1.00		μg/l	1.00						
1,2-Dichloroethane	< 1.00		μg/l	1.00						
1,1-Dichloroethene	< 1.00		μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00		μg/l	1.00						
trans-1,2-Dichloroethene	< 1.00		μg/l	1.00						
1,2-Dichloropropane	< 1.00		μg/l	1.00						
1,3-Dichloropropane	< 1.00		μg/l	1.00						
2,2-Dichloropropane	< 1.00		μg/I	1.00						
1,1-Dichloropropene	< 1.00		µg/l	1.00						
cis-1,3-Dichloropropene	< 0.50		µg/l	0.50						
trans-1,3-Dichloropropene	< 0.50		µg/l	0.50						
Ethylbenzene	< 1.00		μg/l	1.00						
Hexachlorobutadiene	< 0.50		μg/l	0.50						
2-Hexanone (MBK)	< 10.0		μg/l	10.0						
Isopropylbenzene	< 1.00		μg/I	1.00						
4-Isopropyltoluene	< 1.00		μg/l	1.00						
Methyl tert-butyl ether	< 1.00		μg/I	1.00						
4-Methyl-2-pentanone (MIBK)	< 10.0		μg/I	10.0						
Methylene chloride	< 2.00		μg/l	2.00						
Naphthalene	< 1.00		μg/I	1.00						
n-Propylbenzene	< 1.00		μg/l	1.00						
Styrene	< 1.00		μg/l	1.00						
1,1,1,2-Tetrachloroethane	< 1.00		µg/l	1.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1313105 - SW846 5030 Water MS										
Blank (1313105-BLK1)					Pre	pared & Analy	zed: 05-Jun-13			
1,1,2,2-Tetrachloroethane	< 0.50		µg/l	0.50						
Tetrachloroethene	< 1.00		µg/l	1.00						
Toluene	< 1.00		μg/l	1.00						
1,2,3-Trichlorobenzene	< 1.00		µg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00		µg/l	1.00						
1,3,5-Trichlorobenzene	< 1.00		µg/l	1.00						
1,1,1-Trichloroethane	< 1.00		μg/l	1.00						
1,1,2-Trichloroethane	< 1.00		μg/l	1.00						
Trichloroethene	< 1.00		μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00		μg/l	1.00						
1,2,3-Trichloropropane	< 1.00		μg/l	1.00						
1,2,4-Trimethylbenzene	< 1.00		μg/l	1.00						
1,3,5-Trimethylbenzene	< 1.00		μg/l	1.00						
Vinyl chloride	< 1.00		μg/l	1.00						
m,p-Xylene	< 2.00		μg/l	2.00						
o-Xylene	< 1.00		μg/l	1.00						
Tetrahydrofuran	< 2.00		μg/l	2.00						
Ethyl ether	< 1.00		μg/l	1.00						
Tert-amyl methyl ether	< 1.00		μg/l	1.00						
Ethyl tert-butyl ether	< 1.00		μg/l	1.00						
Di-isopropyl ether	< 1.00		μg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
1,4-Dioxane	< 20.0		μg/l	20.0						
trans-1,4-Dichloro-2-butene	< 5.00		μg/l	5.00						
Ethanol	< 400		μg/l	400						
Surrogate: 4-Bromofluorobenzene	37.6		µg/l		50.0		75	70-130		
Surrogate: Toluene-d8	51.5		µg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	56.9		µg/l		50.0		114	70-130		
<u>LCS (1313105-BS1)</u>						pared & Analy	zed: 05-Jun-13			
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.5		µg/l		20.0		98	70-130		
Acetone	17.6		µg/l		20.0		88	70-130		
Acrylonitrile	19.4		µg/l		20.0		97	70-130		
Benzene	21.5		µg/l		20.0		108	70-130		
Bromobenzene	18.3		µg/l		20.0		92	70-130		
Bromochloromethane	19.8		µg/l		20.0		99	70-130		
Bromodichloromethane	20.7		µg/l		20.0		104	70-130		
Bromoform	18.5		µg/l		20.0		93	70-130		
Bromomethane	20.0		µg/l		20.0		100	70-130		
2-Butanone (MEK)	22.7		µg/l		20.0		113	70-130		
n-Butylbenzene	20.0		µg/l		20.0		100	70-130		
sec-Butylbenzene	20.3		µg/l		20.0		101	70-130		
tert-Butylbenzene	19.0		µg/l		20.0		95	70-130		
Carbon disulfide	18.3		µg/l		20.0		91	70-130		
Carbon tetrachloride	20.3		µg/l		20.0		102	70-130		
Chlorobenzene	20.1		µg/l		20.0		100	70-130		
Chloroethane	18.8		µg/l		20.0		94	70-130		
Chloroform	22.7		µg/l		20.0		113	70-130		
Chloromethane	22.0		µg/l		20.0		110	70-130		
2-Chlorotoluene	23.1		μg/l		20.0		115	70-130		
4-Chlorotoluene	22.1		µg/l		20.0		111	70-130		
1,2-Dibromo-3-chloropropane	19.9		µg/l		20.0		99	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 1313105 - SW846 5030 Water MS										
LCS (1313105-BS1)					Pre	oared & Analy	zed: 05-Jun-13	3		
Dibromochloromethane	19.2		μg/l		20.0		96	70-130		
1,2-Dibromoethane (EDB)	19.4		μg/l		20.0		97	70-130		
Dibromomethane	20.3		μg/l		20.0		102	70-130		
1,2-Dichlorobenzene	19.7		μg/l		20.0		98	70-130		
1,3-Dichlorobenzene	20.8		μg/l		20.0		104	70-130		
1,4-Dichlorobenzene	19.2		μg/l		20.0		96	70-130		
Dichlorodifluoromethane (Freon12)	20.3		μg/l		20.0		101	70-130		
1,1-Dichloroethane	20.0		µg/l		20.0		100	70-130		
1,2-Dichloroethane	22.3		μg/l		20.0		112	70-130		
1,1-Dichloroethene	18.0		µg/l		20.0		90	70-130		
cis-1,2-Dichloroethene	20.8		μg/l		20.0		104	70-130		
trans-1,2-Dichloroethene	17.4		μg/l		20.0		87	70-130		
1,2-Dichloropropane	21.2		μg/l		20.0		106	70-130		
1,3-Dichloropropane	21.1		μg/l		20.0		105	70-130		
2,2-Dichloropropane	24.7		μg/l		20.0		124	70-130		
1,1-Dichloropropene	20.6		μg/l		20.0		103	70-130		
cis-1,3-Dichloropropene	20.6		μg/l		20.0		103	70-130		
trans-1,3-Dichloropropene	20.8		µg/l		20.0		104	70-130		
Ethylbenzene	20.4		μg/l		20.0		102	70-130		
Hexachlorobutadiene	19.1		μg/l		20.0		96	70-130		
2-Hexanone (MBK)	22.0		μg/l		20.0		110	70-130		
Isopropylbenzene	21.2		μg/l		20.0		106	70-130		
4-Isopropyltoluene	20.6		μg/l		20.0		103	70-130		
Methyl tert-butyl ether	16.7		µg/l		20.0		83	70-130		
4-Methyl-2-pentanone (MIBK)	18.3		μg/l		20.0		91	70-130		
Methylene chloride	17.7		μg/l		20.0		88	70-130		
Naphthalene	18.8		μg/l		20.0		94	70-130		
n-Propylbenzene	19.7		μg/l		20.0		99	70-130		
Styrene	18.4		μg/l		20.0		92	70-130		
1,1,1,2-Tetrachloroethane	19.2		µg/l		20.0		96	70-130		
1,1,2,2-Tetrachloroethane	21.7		µg/l		20.0		108	70-130		
Tetrachloroethene	18.5		µg/l		20.0		93	70-130		
Toluene	20.1		μg/l		20.0		101	70-130		
1,2,3-Trichlorobenzene	18.0		µg/l		20.0		90	70-130		
1,2,4-Trichlorobenzene	17.8		μg/l		20.0		89	70-130		
1,3,5-Trichlorobenzene	19.0		μg/l		20.0		95	70-130		
1,1,1-Trichloroethane	21.4		μg/l		20.0		107	70-130		
1,1,2-Trichloroethane	21.2		μg/l		20.0		106	70-130		
Trichloroethene	20.7		μg/l		20.0		103	70-130		
Trichlorofluoromethane (Freon 11)	19.5		μg/l		20.0		98	70-130		
1,2,3-Trichloropropane	21.2		μg/l		20.0		106	70-130		
1,2,4-Trimethylbenzene	20.1		μg/l		20.0		101	70-130		
1,3,5-Trimethylbenzene	19.0		μg/l		20.0		95	70-130		
Vinyl chloride	20.8		μg/l		20.0		104	70-130		
m,p-Xylene	40.0		μg/l		40.0		100	70-130		
o-Xylene	19.5		μg/l		20.0		98	70-130		
Tetrahydrofuran	19.1		μg/l		20.0		95	70-130		
Ethyl ether	18.7		μg/l		20.0		93	70-130		
Tert-amyl methyl ether	23.4		µg/l		20.0		117	70-130		
Ethyl tert-butyl ether	20.6		µg/l		20.0		103	70-130		
Di-isopropyl ether	21.6		μg/l		20.0		108	70-130		
Tert-Butanol / butyl alcohol	223		µg/l		200		111	70-130		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1313105 - SW846 5030 Water MS										
LCS (1313105-BS1)					Pre	pared & Analy	zed: 05-Jun-1	3		
1,4-Dioxane	199		µg/l		200		99	70-130		
trans-1,4-Dichloro-2-butene	23.9		μg/l		20.0		120	70-130		
Ethanol	405		µg/l		400		101	70-130		
Surrogate: 4-Bromofluorobenzene	51.9		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	50.6		μg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	50.0		μg/l		50.0		100	70-130		
LCS Dup (1313105-BSD1)	00.0		P9/1			nared & Analy	zed: 05-Jun-1			
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.3		μg/l		20.0	barea a Anaiy	96		1	20
Acetone	19.3		μg/l		20.0		96	70-130	9	20
Acrylonitrile	20.3				20.0		102	70-130	5	20
Benzene	20.3		μg/l μg/l		20.0		102	70-130	0.3	20
Bromobenzene	18.5				20.0		92	70-130	0.8	20
	20.2		µg/l				101		2	20
Bromochloromethane Bromodichloromethane			µg/l		20.0		107	70-130		
	21.4		µg/l		20.0			70-130	3	20
Bromoform	19.2		µg/l		20.0		96	70-130	4	20
Bromomethane	18.8		µg/l		20.0		94	70-130	6	20
2-Butanone (MEK)	23.0		µg/l		20.0		115	70-130	1	20
n-Butylbenzene	19.9		µg/l		20.0		99	70-130	0.8	20
sec-Butylbenzene	20.1		µg/l		20.0		101	70-130	0.7	20
tert-Butylbenzene	19.0		µg/l		20.0		95	70-130	0.2	20
Carbon disulfide	17.9		µg/l		20.0		89	70-130	2	20
Carbon tetrachloride	20.0		µg/l		20.0		100	70-130	1	20
Chlorobenzene	20.2		µg/l		20.0		101	70-130	0.3	20
Chloroethane	18.6		µg/l		20.0		93	70-130	1	20
Chloroform	22.2		µg/l		20.0		111	70-130	2	20
Chloromethane	21.5		µg/l		20.0		107	70-130	3	20
2-Chlorotoluene	22.7		µg/l		20.0		113	70-130	2	20
4-Chlorotoluene	22.0		µg/l		20.0		110	70-130	0.8	20
1,2-Dibromo-3-chloropropane	20.6		µg/l		20.0		103	70-130	4	20
Dibromochloromethane	19.8		µg/l		20.0		99	70-130	3	20
1,2-Dibromoethane (EDB)	20.2		µg/l		20.0		101	70-130	4	20
Dibromomethane	20.6		µg/l		20.0		103	70-130	1	20
1,2-Dichlorobenzene	19.9		µg/l		20.0		100	70-130	1	20
1,3-Dichlorobenzene	20.7		µg/l		20.0		104	70-130	0.1	20
1,4-Dichlorobenzene	19.7		µg/l		20.0		98	70-130	2	20
Dichlorodifluoromethane (Freon12)	18.8		µg/l		20.0		94	70-130	7	20
1,1-Dichloroethane	19.8		µg/l		20.0		99	70-130	0.8	20
1,2-Dichloroethane	23.4		µg/l		20.0		117	70-130	5	20
1,1-Dichloroethene	18.3		µg/l		20.0		92	70-130	2	20
cis-1,2-Dichloroethene	20.6		µg/l		20.0		103	70-130	1	20
trans-1,2-Dichloroethene	17.3		µg/l		20.0		87	70-130	0.5	20
1,2-Dichloropropane	21.4		µg/l		20.0		107	70-130	0.7	20
1,3-Dichloropropane	21.6		µg/l		20.0		108	70-130	3	20
2,2-Dichloropropane	24.1		µg/l		20.0		120	70-130	3	20
1,1-Dichloropropene	20.2		μg/l		20.0		101	70-130	2	20
cis-1,3-Dichloropropene	20.9		μg/l		20.0		104	70-130	1	20
trans-1,3-Dichloropropene	21.1		μg/l		20.0		106	70-130	2	20
Ethylbenzene	20.4		µg/l		20.0		102	70-130	0.4	20
Hexachlorobutadiene	18.7		µg/l		20.0		94	70-130	2	20
2-Hexanone (MBK)	23.4		μg/l		20.0		117	70-130	6	20
Isopropylbenzene	21.1		μg/l		20.0		106	70-130	0.2	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
•										
Batch 1313105 - SW846 5030 Water MS					_					
LCS Dup (1313105-BSD1)						pared & Analy	zed: 05-Jun-13			
4-Isopropyltoluene	20.7		μg/l		20.0		103	70-130	0.3	20
Methyl tert-butyl ether	17.4		µg/l		20.0		87	70-130	5	20
4-Methyl-2-pentanone (MIBK)	19.0		µg/l		20.0		95	70-130	4	20
Methylene chloride	17.3		μg/l		20.0		86	70-130	2	20
Naphthalene	19.7		µg/l		20.0		98	70-130	5	20
n-Propylbenzene	19.6		µg/l		20.0		98	70-130	0.9	20
Styrene	18.4		µg/l		20.0		92	70-130	0.3	20
1,1,1,2-Tetrachloroethane	19.5		µg/l		20.0		98	70-130	2	20
1,1,2,2-Tetrachloroethane	21.5		µg/l		20.0		107	70-130	0.8	20
Tetrachloroethene	18.7		µg/l		20.0		94	70-130	1	20
Toluene	19.8		µg/l		20.0		99	70-130	1	20
1,2,3-Trichlorobenzene	18.6		µg/l		20.0		93	70-130	3	20
1,2,4-Trichlorobenzene	18.2		µg/l		20.0		91	70-130	2	20
1,3,5-Trichlorobenzene	19.3		µg/l		20.0		97	70-130	2	20
1,1,1-Trichloroethane	20.7		µg/l		20.0		103	70-130	3	20
1,1,2-Trichloroethane	21.6		µg/l		20.0		108	70-130	2	20
Trichloroethene	20.8		µg/l		20.0		104	70-130	0.6	20
Trichlorofluoromethane (Freon 11)	19.0		µg/l		20.0		95	70-130	3	20
1,2,3-Trichloropropane	22.0		µg/l		20.0		110	70-130	4	20
1,2,4-Trimethylbenzene	20.1		µg/l		20.0		100	70-130	0.3	20
1,3,5-Trimethylbenzene	19.1		µg/l		20.0		95	70-130	0.3	20
Vinyl chloride	20.2		µg/l		20.0		101	70-130	3	20
m,p-Xylene	39.4		µg/l		40.0		98	70-130	1	20
o-Xylene	20.1		µg/l		20.0		100	70-130	3	20
Tetrahydrofuran	19.1		µg/l		20.0		96	70-130	0.4	20
Ethyl ether	18.5		µg/l		20.0		93	70-130	0.7	20
Tert-amyl methyl ether	23.8		µg/l		20.0		119	70-130	2	20
Ethyl tert-butyl ether	21.5		µg/l		20.0		107	70-130	4	20
Di-isopropyl ether	22.9		µg/l		20.0		114	70-130	5	20
Tert-Butanol / butyl alcohol	207		µg/l		200		103	70-130	7	20
1,4-Dioxane	206		µg/l		200		103	70-130	4	20
trans-1,4-Dichloro-2-butene	25.1		µg/l		20.0		125	70-130	5	20
Ethanol	372		µg/l		400		93	70-130	9	20
Surrogate: 4-Bromofluorobenzene	51.8		µg/l		50.0		104	70-130		
Surrogate: Toluene-d8	49.6		µg/l		50.0		99	70-130		
Surrogate: Dibromofluoromethane	49.4		µg/l		50.0		99	70-130		

			-		-							
.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi		
atch 1313064 - SW846 3510C												
Blank (1313064-BLK1)					Pre	pared: 05-Jun	-13 Analyzed	: 06-Jun-13				
Gasoline	< 0.2		mg/l	0.2								
Fuel Oil #2	< 0.2		mg/l	0.2								
Fuel Oil #4	< 0.2		mg/l	0.2								
Fuel Oil #6	< 0.2		mg/l	0.2								
Motor Oil	< 0.2		mg/l	0.2								
Ligroin	< 0.2		mg/l	0.2								
Aviation Fuel	< 0.2		mg/l	0.2								
Hydraulic Oil	< 0.2		mg/l	0.2								
Dielectric Fluid	< 0.2		mg/l	0.2								
Unidentified	< 0.2		mg/l	0.2								
Other Oil	< 0.2		mg/l	0.2								
Total Petroleum Hydrocarbons	< 0.2		mg/l	0.2								
Surrogate: 1-Chlorooctadecane	0.0240		mg/l		0.0250		96	40-140				
LCS (1313064-BS2)					Pre	pared: 05-Jun	In-13 Analyzed: 06-Jun-13					
Fuel Oil #2	7.8		mg/l	0.2	10.0		78	40-140				
Surrogate: 1-Chlorooctadecane	0.0625		mg/l		0.0500		125	40-140				

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1313007 - SW846 3005A										
Blank (1313007-BLK1)					Pre	pared & Analy	zed: 05-Jun-13	3		
Iron	< 0.0150		mg/l	0.0150						
Lead	< 0.0075		mg/l	0.0075						
LCS (1313007-BS1)					Pre	pared & Analy	zed: 05-Jun-13	<u> </u>		
Iron	1.31		mg/l	0.0150	1.25		105	85-115		
Lead	1.37		mg/l	0.0075	1.25		109	85-115		
LCS Dup (1313007-BSD1)					Pre	pared & Analy	zed: 05-Jun-13	<u> </u>		
Iron	1.28		mg/l	0.0150	1.25		102	85-115	3	20
Lead	1.31		mg/l	0.0075	1.25		105	85-115	4	20
Duplicate (1313007-DUP1)			Source: SE	370749-01	Pre	pared & Analy	zed: 05-Jun-13	3		
Iron	0.178		mg/l	0.0150		0.174			2	20
Lead	< 0.0075		mg/l	0.0075		BRL				20
Matrix Spike (1313007-MS1)			Source: SE	<u>370749-01</u>	Pre	pared & Analy	zed: 05-Jun-13	<u>3</u>		
Iron	1.41		mg/l	0.0150	1.25	0.174	98	75-125		
Lead	1.28		mg/l	0.0075	1.25	BRL	103	75-125		
Matrix Spike Dup (1313007-MSD1)			Source: SE	<u>370749-01</u>	Pre	pared & Analy	zed: 05-Jun-13	<u>3</u>		
Iron	1.44		mg/l	0.0150	1.25	0.174	101	75-125	2	20
Lead	1.30		mg/l	0.0075	1.25	BRL	104	75-125	1	20
Post Spike (1313007-PS1)			Source: SE	370749-01	Pre	pared & Analy	zed: 05-Jun-13	3		
Lead	1.29		mg/l	0.0075	1.25	BRL	103	80-120		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1313113 - General Preparation										
Blank (1313113-BLK1)					Pre	pared: 05-Jun-	13 Analyzed:	06-Jun-13		
Total Suspended Solids	< 5		mg/l	5						
LCS (1313113-BS1)					Pre	pared: 05-Jun-	13 Analyzed:	06-Jun-13		
Total Suspended Solids	100		mg/l	10	100		100	90-110		

Notes and Definitions

dry	Sample results	reported on	dru	weight basis
ury	Sample results	reported on a	a ui y	weight basis

- NR Not Reported
- RPD Relative Percent Difference

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes virgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Rebecca Merz

rated DI VOA Frozen Soil Jar Frozen Revised Feb 2012	Condition upon receipt:	EAV 112 700 107			
+		ilors 2	6/3/13	C C T	A quite
Ison o private it is	E EDD Format		1 1	1 Kic	Man Anna
		Time:	Date:	A Received by:	Relinquished by:
	XXXX	P V	6 GW 3 1	5-31-13 9:15	SBIDINGOL ECS-8
Other State-specific reporting standards:	826 TPH TSS Total	# of P		Date: Time:	Lab Id: Sample Id:
□ NY ASP A*	C. TAI	enly	x VOA V Amber (C=Composite	G=Grab C=
QA/QC Reporting Level	<u>че,</u> С + Ф.			X3=	X1=X2=
MA DEP MCP CAM Report: Yes XNo	A Analyses:	Containers:	Con	ST=	Drinking Water GW=G SW= Surface Water
QA/QC Reporting Notes: * additional charges may apply	List preservative code below:	7=CH ₃ OH	6=Ascorbic Acid 7=C	4=HNO ₃ 5=NaOH 10= H ₃ PO ₄ 11=	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 8= NaHSO ₄ 9= Deionized Water
- A	Sampler(s): M. Strig	4: 46012	RON: 4		att isn 1
Studidse State: MAA	ob Main St.	+	0,		2
	Site Name: CFIA 2 (3				
5.21	Project No.: 93-2048/0		: CFT	Invoice To:	Report To: ECS-Workeste
Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	· Mm. 24-h · Samples di otherwise		Page of		SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY
Special Handling:)DY R	CHAIN OF CUSTODY RECORD	CHAIN	22
SB76749 RH					

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Report Date: 14-May-13 17:12

SB68779-01 SB68779-02 SB68779-03 SB68779-04 SB68779-05 SB68779-06

SB68779-07

Final Report Re-Issued Report Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

Environmental Compliance Services 997 Millbury Street, Unit G Worcester, MA 01607 Attn: Matt Ly

ECS-7i

ECS-8

Attn: Matt Lyn	e			
Laboratory ID	<u>Client Sample ID</u>	<u>Matrix</u>	Date Sampled	Date Received
SB68779-01	ECS-2	Ground Water	30-Apr-13 12:25	01-May-13 18:00
SB68779-02	ECS-3	Ground Water	30-Apr-13 10:35	01-May-13 18:00
SB68779-03	ECS-3i	Ground Water	30-Apr-13 10:12	01-May-13 18:00
SB68779-04	ECS-5i	Ground Water	30-Apr-13 09:00	01-May-13 18:00
SB68779-05	ECS-5D	Ground Water	30-Apr-13 08:25	01-May-13 18:00

Ground Water

Ground Water

Project #: 93-204810.21

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

30-Apr-13 09:47

30-Apr-13 11:21

Project: CFI # 2131 506 Main St. Sturbridge, MA

Juiole Leja

01-May-13 18:00

01-May-13 18:00

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 29 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

The following outlines the condition of all VPH samples contained within this report upon laboratory receipt.

Matrices	Ground Water		
Containers	✓ Satisfactory		
Sample Preservative	Aqueous (acid preserved)	N/A \checkmark pH \leq 2 pH>2	
	Soil or	✓ N/A Samples not received in Methanol	ml Methanol/g soil
	Sediment	Samples received in Methanol: covering soil/sediment not covering soil/sediment	1:1 +/-25% Other
		Samples received in air-tight container	1
Temperature	Received on ic	e \checkmark Received at $4 \pm 2 ^{\circ}\text{C}$	

Were all QA/QC procedures followed as required by the VPH method? *Yes* Were any significant modifications made to the VPH method as specified in section 11.3? *No* Were all performance/acceptance standards for required QA/QC procedures achieved? *Yes*

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Micole Leja

Nicole Leja Laboratory Director

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Sp	bectrum Analytical, Inc.		Project #: 93-204	810.21	
Proje	ct Location: CFI	[#2131 506 Main St. St	urbridge, MA	RTN:		
This 1	form provides ce	ertifications for the follo	wing data set:	SB68779-01 through SB68	3779-07	
Matr	ices: Ground W	/ater				
CAM	Protocol					
	260 VOC	7470/7471 Hg	MassDEP VPH	8081 Pesticides	7196 Hex Cr	MassDEP APH
C.	AM II A	CAM III B	CAM IV A	CAM V B	CAM VI B	CAM IX A
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
/)10 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative response	s to questions A through	F are required for "Presu	mptive Certainty" status	
A	~		consistent with those des field or laboratory, and p			✓ Yes No
B	Were the analyt protocol(s) follo		sociated QC requirements	specified in the selected (CAM	✓ Yes No
С	-		analytical response action d performance standard no	-	САМ	✓ Yes No
D			all the reporting requirements for the Acquisition and			✓ Yes No
E		-	Was each method conducte he complete analyte list re	-	dification(s)?	✓ Yes No Yes No
F			nd performance standard			✓ Yes No
		Responses to ques	tions G, H and I below a	re required for "Presump	tive Certainty" status	
G	Were the report	ing limits at or below all	CAM reporting limits spe	cified in the selected CAI	A protocol(s)?	Yes 🗸 No
		at achieve "Presumptive C in 310 CMR 40. 1056 (2)(k	Sertainty" status may not nec) and WSC-07-350.	cessarily meet the data usabl	lity and representativeness	
Н	Were all QC per	rformance standards spe	cified in the CAM protoco	l(s) achieved?		Yes 🗸 No
I	Were results rep	ported for the complete a	nalyte list specified in the	selected CAM protocol(s)?	Yes 🗸 No
All ne	gative responses a	re addressed in a case narr	ative on the cover page of th	is report.		·
			lties of perjury that, based u cal report is, to the best of m			ing the
					Ariole L	eja
					Nicole Leja Laboratory Director	r

CASE NARRATIVE:

The samples were received 2.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

Nitrate EPA Method 300.0 Case Narrative:

Due to instrument QA issues, samples SB68779-01 through -07 in this work order were analyzed outside of analytical hold time for nitrates via EPA method 300.0. With the exception of SB68779-07, analyzed 3.25 hours past the expiration time, all samples were analyzed within three hours of the hold time expiration.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 300.0

Calibration:

1309892-CCV2

Analyte percent recovery is outside individual acceptance criteria.

Nitrate as N (88%) Sulfate as SO4 (88%)

Quality Control is outside acceptance range; all affected samples have been re-analyzed.

Nitrate as N Sulfate as SO4

EPA 300.0

Calibration:

1309892-CCV2

This affected the following samples:

1309892-BLK1
1309892-BS1
1309892-CCV1
1309892-CCV2
1309892-CCV3
1309892-CCV4
1309892-CCV5
1309892-DUP1
1309892-MS1
1309892-MSD1
1309892-SRM1
ECS-2
ECS-3
ECS-3i
ECS-5D
ECS-5i
ECS-7i
ECS-8

1309892-CCV5

Analyte percent recovery is outside individual acceptance criteria.

Nitrate as N (85%) Sulfate as SO4 (84%)

Quality Control is outside acceptance range; all affected samples have been re-analyzed.

Nitrate as N Sulfate as SO4

This affected the following samples:

1309892-BLK1 1309892-BS1 1309892-CCV1 1309892-CCV2 1309892-CCV3 1309892-CCV4 1309892-CCV5 1309892-DUP1 1309892-MS1 1309892-MSD1 1309892-SRM1 ECS-2 ECS-3 ECS-3i ECS-5D ECS-5i ECS-7i ECS-8

Laboratory Control Samples:

1309892 SRM

This laboratory report is not valid without an authorized signature on the cover page. * Reportable Detection Limit

EPA 300.0

Laboratory Control Samples:

1309892 SRM

Nitrate as N percent recovery is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS-2 ECS-3 ECS-3i ECS-5D ECS-5i ECS-7i ECS-8

Sulfate as SO4 percent recovery is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

ECS-2	
ECS-8	

1311054 SRM

Sulfate as SO4 percent recovery is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

ECS-3 ECS-3i ECS-5D ECS-5i ECS-7i

Spikes:

1309892-MS1 Source: SB68779-07

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Nitrate as N Sulfate as SO4

1309892-MSD1 Source: SB68779-07

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Nitrate as N Sulfate as SO4

1310172-MS2 Source: SB68779-07RE1

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Nitrate as N

1310172-MSD2 Source: SB68779-07RE1

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Nitrate as N

1310817-MS1 Source: SB68779-05

14-May-13 17:12

EPA 300.0

Spikes:

1310817-MS1	Source: SB68779-05
The spike recovery w recovery.	vas outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS
Sulfate as SO4	
1310817-MSD1	Source: SB68779-05
The spike recovery w recovery.	vas outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS
Sulfate as SO4	
Duplicates:	
1310817-DUP1	Source: SB68779-05
RPD out of acceptant	ce range.
Sulfate as SO4	
Samples:	
SB68779-01	ECS-2
This result was analy	zed outside of the EPA recommended holding time.
Nitrate as N	
SB68779-02	ECS-3
This flag indicates the resulting in a biased f	e concentration for this analyte is an estimated value due to exceeding the calibration range or interferences final concentration.
Nitrate as N	
This result was analy	zed outside of the EPA recommended holding time.
Nitrate as N	
SB68779-02RE1	ECS-3
of control. As a result	y analyzed within the recommended method holding time; however, QC materials for the sample run were out It, the sample was immediately re-analyzed (outside the holding time).
Nitrate as N	
SB68779-03	ECS-3i
This flag indicates the resulting in a biased f	e concentration for this analyte is an estimated value due to exceeding the calibration range or interferences final concentration.
Nitrate as N	
This result was analy	zed outside of the EPA recommended holding time.
Nitrate as N	
SB68779-03RE1	ECS-3i
	y analyzed within the recommended method holding time; however, QC materials for the sample run were out It, the sample was immediately re-analyzed (outside the holding time).
Nitrate as N	· · · · · · · · · · · · · · · · · · ·
SB68779-04	ECS-5i

EPA 300.0

Samples:

SB68779-04	ECS-5i
This flag indicates the resulting in a biased fi	concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration.
Nitrate as N	
This result was analyz	ed outside of the EPA recommended holding time.
Nitrate as N	
SB68779-04RE1	ECS-5i
	analyzed within the recommended method holding time; however, QC materials for the sample run were out , the sample was immediately re-analyzed (outside the holding time).
Nitrate as N	
SB68779-05	ECS-5D
This flag indicates the resulting in a biased fi	concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration.
Nitrate as N	
This result was analyz	ed outside of the EPA recommended holding time.
Nitrate as N	
SB68779-05RE1 Sample was originally	<i>ECS-5D</i> analyzed within the recommended method holding time; however, QC materials for the sample run were out t, the sample was immediately re-analyzed (outside the holding time).
SB68779-05RE1 Sample was originally	analyzed within the recommended method holding time; however, QC materials for the sample run were out
SB68779-05RE1 Sample was originally of control. As a result	analyzed within the recommended method holding time; however, QC materials for the sample run were out
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06	analyzed within the recommended method holding time; however, QC materials for the sample run were out t, the sample was immediately re-analyzed (outside the holding time). ECS-7i concentration for this analyte is an estimated value due to exceeding the calibration range or interferences
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the	analyzed within the recommended method holding time; however, QC materials for the sample run were out t, the sample was immediately re-analyzed (outside the holding time). ECS-7i concentration for this analyte is an estimated value due to exceeding the calibration range or interferences
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N	analyzed within the recommended method holding time; however, QC materials for the sample run were out t, the sample was immediately re-analyzed (outside the holding time). ECS-7i concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration.
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N	analyzed within the recommended method holding time; however, QC materials for the sample run were out t, the sample was immediately re-analyzed (outside the holding time). ECS-7i concentration for this analyte is an estimated value due to exceeding the calibration range or interferences
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N This result was analyz Nitrate as N	analyzed within the recommended method holding time; however, QC materials for the sample run were out the sample was immediately re-analyzed (outside the holding time). ECS-7i concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration. ed outside of the EPA recommended holding time.
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N This result was analyz Nitrate as N SB68779-06RE1 Sample was originally	analyzed within the recommended method holding time; however, QC materials for the sample run were out t, the sample was immediately re-analyzed (outside the holding time). ECS-7i concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration.
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N This result was analyz Nitrate as N SB68779-06RE1 Sample was originally	analyzed within the recommended method holding time; however, QC materials for the sample run were out t, the sample was immediately re-analyzed (outside the holding time). <i>ECS-7i</i> concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration. ed outside of the EPA recommended holding time. <i>ECS-7i</i> analyzed within the recommended method holding time; however, QC materials for the sample run were out
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N This result was analyz Nitrate as N SB68779-06RE1 Sample was originally of control. As a result	analyzed within the recommended method holding time; however, QC materials for the sample run were out t, the sample was immediately re-analyzed (outside the holding time). <i>ECS-7i</i> concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration. ed outside of the EPA recommended holding time. <i>ECS-7i</i> analyzed within the recommended method holding time; however, QC materials for the sample run were out
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N This result was analyz Nitrate as N SB68779-06RE1 Sample was originally of control. As a result Nitrate as N SB68779-07	analyzed within the recommended method holding time; however, QC materials for the sample run were out , the sample was immediately re-analyzed (outside the holding time). <i>ECS-7i</i> concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration. ed outside of the EPA recommended holding time. <i>ECS-7i</i> ranalyzed within the recommended method holding time; however, QC materials for the sample run were out , the sample was immediately re-analyzed (outside the holding time).
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N This result was analyz Nitrate as N SB68779-06RE1 Sample was originally of control. As a result Nitrate as N SB68779-07 This result was analyz	analyzed within the recommended method holding time; however, QC materials for the sample run were out , the sample was immediately re-analyzed (outside the holding time). ECS-7i concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration. ed outside of the EPA recommended holding time. ECS-7i analyzed within the recommended method holding time; however, QC materials for the sample run were out , the sample was immediately re-analyzed (outside the holding time). ECS-8
SB68779-05RE1 Sample was originally of control. As a result Nitrate as N SB68779-06 This flag indicates the resulting in a biased fi Nitrate as N This result was analyz Nitrate as N SB68779-06RE1 Sample was originally of control. As a result Nitrate as N SB68779-07 This result was analyz Nitrate as N SB68779-07	analyzed within the recommended method holding time; however, QC materials for the sample run were out , the sample was immediately re-analyzed (outside the holding time). <i>ECS-7i</i> concentration for this analyte is an estimated value due to exceeding the calibration range or interferences nal concentration. ed outside of the EPA recommended holding time. <i>ECS-7i</i> analyzed within the recommended method holding time; however, QC materials for the sample run were out , the sample was immediately re-analyzed (outside the holding time). <i>ECS-8</i> ed outside of the EPA recommended holding time.

MADEP VPH 5/2004 Rev. 1.1

Samples:

SB68779-02 ECS-3

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB68779-03 ECS-3i

Analyte concentration is flagged as estimated due to exceeding the calibration range or interferences. The sample is not over the calibration range for the target analytes and/or marker compounds that make up the range therefore not diluted further.

C9-C10 Aromatic Hydrocarbons

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

C9-C10 Aromatic Hydrocarbons

SW846 6010C

Spikes:

1310536-MS1 Source: SB68779-03

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

1310536-MSD1 Source: SB68779-03

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Iron

Sample Acceptance Check Form

Client:	Environmental Compliance Services - Worcester, MA
Project:	CFI # 2131 506 Main St. Sturbridge, MA / 93-204810.21
Work Order:	SB68779
Sample(s) received on:	5/1/2013
Received by:	Tanya Krivolenko

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

- 1. Were custody seals present?
- 2. Were custody seals intact?
- 3. Were samples received at a temperature of $\leq 6^{\circ}$ C?
- 4. Were samples cooled on ice upon transfer to laboratory representative?
- 5. Were samples refrigerated upon transfer to laboratory representative?
- 6. Were sample containers received intact?
- 7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
- 8. Were samples accompanied by a Chain of Custody document?
- 9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
- 10. Did sample container labels agree with Chain of Custody document?
- 11. Were samples received within method-specific holding times?

\checkmark	

<u>Sample Id</u> ECS-2 SB68779	dentification -01				Project <u>#</u> 810.21		<u>Matrix</u> Ground Wa		ection Date 0-Apr-13 12			<u>ceived</u> May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
MADEP VP		20C Weter											
<u>Flepared</u>	by method VPH - EPA 503 C5-C8 Aliphatic Hydrocarbons	< 75.0	D	µg/I	75.0	5.55	5	MADEP VPH 5/2004 Rev. 1.1	11-May-13	11-May-13	MP	1310844	
	C9-C12 Aliphatic Hydrocarbons	< 25.0	D	µg/l	25.0	4.22	5			н	"		
	C9-C10 Aromatic Hydrocarbons	< 25.0	D	µg/I	25.0	1.12	5			n	"	•	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0	D	μg/l	75.0	7.10	5	8		n	"		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0	D	µg/l	25.0	4.68	5	н			"		
71-43-2	Benzene	< 5.00	D	µg/l	5.00	1.26	5	II		н	"		
100-41-4	Ethylbenzene	< 5.00	D	µg/l	5.00	1.41	5	II		н	"		
1634-04-4	Methyl tert-butyl ether	< 5.00	D	µg/l	5.00	1.55	5			н	"		
91-20-3	Naphthalene	< 5.00	D	µg/l	5.00	1.17	5	н			"		
108-88-3	Toluene	< 5.00	D	µg/l	5.00	1.28	5	n			"		
179601-23-1	m,p-Xylene	< 10.0	D	µg/l	10.0	2.76	5			н	"		
95-47-6	o-Xylene	< 5.00	D	µg/l	5.00	1.12	5	n		н			
Surrogate rec	coveries:												
615-59-8	2,5-Dibromotoluene (FID)	98			70-13	0 %				н	"		
615-59-8	2,5-Dibromotoluene (PID)	103			70-13	0 %					"		
Soluble M	letals by EPA 200/6000 Serie	es Methods											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/6010			LNB	1309889	
Soluble M	letals by EPA 6000/7000 Ser	ies Methods											
7439-89-6	Iron	< 0.0300		mg/l	0.0300	0.0149	1	SW846 6010C	08-May-13	14-May-13	lr	1310536	
General C	Chemistry Parameters												
14797-55-8	Nitrate as N	4.28	102	mg/l	0.100	0.0750	1	EPA 300.0	01-May-13 16:18	02-May-13 14:44	KK	1309892	Х
14808-79-8	Sulfate as SO4	18.0		mg/l	1.00	0.177	1	I			"		Х

<u>Sample I</u> ECS-3 SB68779	<u>dentification</u> -02				<u>Project #</u> \$810.21		<u>Matrix</u> Ground Wa		Collection Date/Time 30-Apr-13 10:35			<u>ceived</u> May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	Organic Compounds												
MADEP VP	H		GS1										
	by method VPH - EPA 50	30C Water											
	C5-C8 Aliphatic Hydrocarbons	1,990	D	μg/l	750	55.5	50	MADEP VPH 5/2004 Rev. 1.1	11-May-13	11-May-13	MP	1310844	
	C9-C12 Aliphatic Hydrocarbons	2,840	D	μg/l	250	42.2	50			H	"		
	C9-C10 Aromatic Hydrocarbons	4,320	D	μg/l	250	11.2	50	u		H	"		
	Unadjusted C5-C8 Aliphatic Hydrocarbons	6,980	D	μg/I	750	71.0	50						
	Unadjusted C9-C12 Aliphatic Hydrocarbons	7,160	D	μg/I	250	46.8	50						
71-43-2	Benzene	< 50.0	D	µg/l	50.0	12.6	50				"		
100-41-4	Ethylbenzene	988	D	µg/l	50.0	14.1	50						
1634-04-4	Methyl tert-butyl ether	< 50.0	D	µg/l	50.0	15.5	50			н			
91-20-3	Naphthalene	282	D	µg/l	50.0	11.7	50			н			
108-88-3	Toluene	280	D	µg/l	50.0	12.8	50						
179601-23-1	m,p-Xylene	3,150	D	µg/l	100	27.6	50			н			
95-47-6	o-Xylene	495	D	µg/l	50.0	11.2	50				"		
Surrogate red	coveries:												
615-59-8	2,5-Dibromotoluene (FID)	121			70-13	0 %				н			
615-59-8	2,5-Dibromotoluene (PID)	125			70-13	0 %							
General (Chemistry Parameters												
<u>Nitrate as N</u> Prepared	<u>l by IC</u> by method General Prepa	iration											
14797-55-8	Nitrate as N	< 0.100	E, 102	mg/l	0.100	0.0750	1	EPA 300.0	01-May-13 16:18	02-May-13 11:36	KK	1309892	Х
	of Nitrate as N by IC by method General Prepa	iration											
14797-55-8	Nitrate as N	0.870	HT5	mg/l	0.100	0.0750	1	EPA 300.0	03-May-13 16:28	04-May-13 06:12	KK	1310172	Х
14808-79-8	Sulfate as SO4	9.47		mg/l	1.00	0.177	1	EPA 300.0	14-May-13	14-May-13	KK	1311054	Х

<u>Sample Id</u> ECS-8 SB68779	<u>dentification</u> -07			<u>Client P</u> 93-204	•		<u>Matrix</u> Ground W		ection Date -Apr-13 11			<u>ceived</u> May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
MADEP VP	Prganic Compounds <u>H</u> by method VPH - EPA 503	30C Water											
<u></u>	C5-C8 Aliphatic Hydrocarbons	< 75.0	D	μg/l	75.0	5.55	5	MADEP VPH 5/2004 Rev. 1.1	11-May-13	11-May-13	MP	1310844	
	C9-C12 Aliphatic Hydrocarbons	< 25.0	D	μg/l	25.0	4.22	5				"		
	C9-C10 Aromatic Hydrocarbons	< 25.0	D	µg/l	25.0	1.12	5			н			
	Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0	D	μg/l	75.0	7.10	5			n	"		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0	D	µg/l	25.0	4.68	5	и			"		
71-43-2	Benzene	< 5.00	D	µg/l	5.00	1.26	5				"		
100-41-4	Ethylbenzene	< 5.00	D	μg/l	5.00	1.41	5			u			
1634-04-4	Methyl tert-butyl ether	< 5.00	D	μg/l	5.00	1.55	5			u			
91-20-3	Naphthalene	< 5.00	D	μg/l	5.00	1.17	5			н			
108-88-3	Toluene	< 5.00	D	μg/l	5.00	1.28	5			н			
179601-23-1	m,p-Xylene	< 10.0	D	μg/l	10.0	2.76	5			н			
95-47-6	o-Xylene	< 5.00	D	μg/l	5.00	1.12	5	н		н			
Surrogate rec	coveries:												
615-59-8	2,5-Dibromotoluene (FID)	107			70-13	0 %		п		н			
615-59-8	2,5-Dibromotoluene (PID)	110			70-13	0 %		п		н			
Soluble M	letals by EPA 200/6000 Serie	es Methods											
	Filtration	Field Filtered		N/A			1	EPA 200.7/3005A/6010			LNB	1309889	
Soluble M	letals by EPA 6000/7000 Ser	ies Methods											
7439-89-6	Iron	< 0.0300		mg/l	0.0300	0.0149	1	SW846 6010C	08-May-13	14-May-13	lr	1310536	
General C	Chemistry Parameters												
<u>Nitrate as N</u> Prepared	<u>by IC</u> by method General Prepa	ration											
14797-55-8	Nitrate as N	1.30	102	mg/l	0.100	0.0750	1	EPA 300.0	01-May-13 16:18	02-May-13 14:28	KK	1309892	Х
	of Nitrate as N by IC by method General Prepa	ration											
14797-55-8	Nitrate as N	1.73	102	mg/l	0.100	0.0750	1	EPA 300.0	03-May-13 16:28	04-May-13 08:31	KK	1310172	х
14808-79-8	Sulfate as SO4	15.3		mg/l	1.00	0.177	1	EPA 300.0	01-May-13	02-May-13	КК	1309892	Х

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1310844 - VPH - EPA 5030C Water										
Blank (1310844-BLK1)					Pre	pared & Analy	zed: 11-May-1	3		
C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0						
C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0						
C9-C10 Aromatic Hydrocarbons	< 25.0		µg/l	25.0						
Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0						
Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0						
Benzene	< 5.00		µg/l	5.00						
Ethylbenzene	< 5.00		µg/l	5.00						
Methyl tert-butyl ether	< 5.00		µg/l	5.00						
Naphthalene	< 5.00		µg/l	5.00						
Toluene	< 5.00		µg/l	5.00						
m,p-Xylene	< 10.0		µg/l	10.0						
o-Xylene	< 5.00		µg/l	5.00						
2-Methylpentane	< 5.00		µg/l	5.00						
n-Nonane	< 10.0		μg/I	10.0						
n-Pentane	< 10.0		µg/l	10.0						
1,2,4-Trimethylbenzene	< 5.00		µg/l	5.00						
2,2,4-Trimethylpentane	< 5.00		µg/l	5.00						
n-Butylcyclohexane	< 5.00		µg/l	5.00						
n-Decane	< 5.00		μg/I	5.00						
Surrogate: 2,5-Dibromotoluene (FID)	46.3		μg/I		50.0		93	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	48.6		µg/l		50.0		97	70-130		
LCS (1310844-BS1)					Pre	pared & Analy	zed: 11-May-1	<u>3</u>		
C5-C8 Aliphatic Hydrocarbons	64.7		µg/l		60.0		108	70-130		
C9-C12 Aliphatic Hydrocarbons	64.9		µg/l		60.0		108	70-130		
C9-C10 Aromatic Hydrocarbons	23.0		μg/l		20.0		115	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons	220		μg/l		200		110	70-130		
Unadjusted C9-C12 Aliphatic Hydrocarbons	87.9		µg/l		80.0		110	70-130		
Benzene	22.3		µg/l		20.0		111	70-130		
Ethylbenzene	22.2		µg/l		20.0		111	70-130		
Methyl tert-butyl ether	22.0		µg/l		20.0		110	70-130		
Naphthalene	21.9		µg/l		20.0		109	70-130		
Toluene	21.5		µg/l		20.0		107	70-130		
m,p-Xylene	44.7		µg/l		40.0		112	70-130		
o-Xylene	22.4		µg/l		20.0		112	70-130		
2-Methylpentane	20.4		µg/l		20.0		102	70-130		
n-Nonane	23.1		µg/l		20.0		115	70-130		
n-Pentane	19.6		µg/l		20.0		98	70-130		
1,2,4-Trimethylbenzene	23.2		μg/l		20.0		116	70-130		
2,2,4-Trimethylpentane	21.1		µg/l		20.0		106	70-130		
n-Butylcyclohexane	21.8		µg/l		20.0		109	70-130		
n-Decane	25.3		μg/l		20.0		126	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	53.3		µg/l		50.0		107	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	54.6		µg/l		50.0		109	70-130		
LCS Dup (1310844-BSD1)					Pre	pared & Analy	zed: 11-May-1	3		
C5-C8 Aliphatic Hydrocarbons	58.6		µg/I		60.0		98	70-130	10	25
C9-C12 Aliphatic Hydrocarbons	60.1		μg/l		60.0		100	70-130	8	25
C9-C10 Aromatic Hydrocarbons	24.4		µg/l		20.0		122	70-130	6	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	221		µg/l		200		110	70-130	0.5	25
Unadjusted C9-C12 Aliphatic Hydrocarbons	84.5		μg/l		80.0		106	70-130	4	25

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1310844 - VPH - EPA 5030C Water										
LCS Dup (1310844-BSD1)					Pre	pared & Analy	zed: 11-May-1	3		
Benzene	23.2		µg/l		20.0	paroa a rinarj	116		4	25
Ethylbenzene	23.3		μg/l		20.0		117	70-130	5	25
Methyl tert-butyl ether	22.8		μg/l		20.0		114	70-130	4	25
Naphthalene	24.1		μg/l		20.0		120	70-130	10	25
Toluene	22.5		μg/l		20.0		113	70-130	5	25
m,p-Xylene	46.9		μg/l		40.0		117	70-130	5	25
o-Xylene	23.5		μg/l		20.0		118	70-130	5	25
2-Methylpentane	23.3				20.0		105	70-130	3	25
n-Nonane	21.0		µg/l		20.0		100	70-130	6	25 25
n-Pentane			µg/l				122			
	20.2		µg/l		20.0			70-130	3	25
1,2,4-Trimethylbenzene	24.6		µg/l		20.0		123	70-130	6	25
2,2,4-Trimethylpentane	21.9		µg/l		20.0		109	70-130	4	25
n-Butylcyclohexane	23.1		µg/l		20.0		116	70-130	6	25
n-Decane	25.4		µg/l		20.0		127	70-130	0.5	25
Surrogate: 2,5-Dibromotoluene (FID)	57.6		μg/l		50.0		115	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	58.9		μg/l		50.0		118	70-130		
Duplicate (1310844-DUP1)			Source: SE	868779-01	Pre	pared & Analy	zed: 11-May-1	<u>3</u>		
C5-C8 Aliphatic Hydrocarbons	52.5	J,D	µg/l	75.0		54.4			4	50
C9-C12 Aliphatic Hydrocarbons	14.1	J,D	µg/l	25.0		13.6			3	50
C9-C10 Aromatic Hydrocarbons	9.97	J,D	µg/l	25.0		9.96			0.2	50
Unadjusted C5-C8 Aliphatic Hydrocarbons	52.5	J,D	µg/l	75.0		54.4			4	50
Unadjusted C9-C12 Aliphatic Hydrocarbons	24.0	J,D	µg/l	25.0		23.6			2	50
Benzene	< 5.00	D	µg/l	5.00		BRL				50
Ethylbenzene	< 5.00	D	µg/l	5.00		BRL				50
Methyl tert-butyl ether	< 5.00	D	µg/l	5.00		BRL				50
Naphthalene	< 5.00	D	μg/l	5.00		BRL				50
Toluene	< 5.00	D	μg/l	5.00		BRL				50
m,p-Xylene	< 10.0	D	μg/l	10.0		BRL				50
o-Xylene	< 5.00	D	μg/l	5.00		BRL				50
Surrogate: 2,5-Dibromotoluene (FID)	50.3		μg/l		50.0		101	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	52.4				50.0		105	70-130		
	52.4		µg/l							
<u>Matrix Spike (1310844-MS1)</u>		_	Source: SE	<u>568779-01</u>		-	zed: 11-May-1			
C5-C8 Aliphatic Hydrocarbons	66.2	D	μg/l		60.0	10.9	92	70-130		
C9-C12 Aliphatic Hydrocarbons	69.4	D	µg/l		60.0	2.72	111	70-130		
C9-C10 Aromatic Hydrocarbons	23.0	D	μg/l		20.0	1.99	105	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons Unadjusted C9-C12 Aliphatic	219 92.3	D D	μg/l μg/l		200 80.0	10.9 4.72	104 110	70-130 70-130		
Hydrocarbons	 .	F						R C 10 ⁻		
Benzene	22.1	D	μg/l		20.0	BRL	111	70-130		
Ethylbenzene	21.7	D	μg/l		20.0	BRL	108	70-130		
Methyl tert-butyl ether	22.7	D	µg/l		20.0	BRL	113	70-130		
Naphthalene	23.1	D	µg/l		20.0	BRL	115	70-130		
Toluene	21.3	D	μg/l		20.0	BRL	106	70-130		
m,p-Xylene	43.7	D	μg/l		40.0	BRL	109	70-130		
o-Xylene	21.9	D	μg/l		20.0	BRL	110	70-130		
2-Methylpentane	20.5	D	µg/l		20.0	BRL	102	70-130		
n-Nonane	24.4	D	µg/l		20.0	BRL	122	70-130		
n-Pentane	19.4	D	μg/l		20.0	BRL	97	70-130		
1,2,4-Trimethylbenzene	23.2	D	μg/l		20.0	BRL	116	70-130		
2,2,4-Trimethylpentane	22.5	D	μg/l		20.0	BRL	112	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1310844 - VPH - EPA 5030C Water										
<u>Matrix Spike (1310844-MS1)</u>			Source: SE	368779-01	Pre	pared & Analy	zed: 11-May-1	<u>3</u>		
n-Butylcyclohexane	22.9	D	µg/l		20.0	BRL	115	70-130		
n-Decane	24.6	D	µg/l		20.0	BRL	123	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	53.8		µg/l		50.0		108	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	55.3		µg/l		50.0		111	70-130		
Batch 1310860 - VPH - EPA 5030C Water										
<u>Blank (1310860-BLK1)</u>					Pre	pared & Analy	zed: 13-May-1	<u>3</u>		
C5-C8 Aliphatic Hydrocarbons	< 75.0		μg/l	75.0						
C9-C12 Aliphatic Hydrocarbons	< 25.0		µg/l	25.0						
C9-C10 Aromatic Hydrocarbons	< 25.0		µg/l	25.0						
Unadjusted C5-C8 Aliphatic Hydrocarbons	< 75.0		µg/l	75.0						
Unadjusted C9-C12 Aliphatic Hydrocarbons	< 25.0		μg/l	25.0						
Benzene	< 5.00		μg/l	5.00						
Ethylbenzene	< 5.00		μg/l	5.00						
Methyl tert-butyl ether	< 5.00		μg/l	5.00						
Naphthalene	< 5.00		µg/l	5.00						
Toluene	< 5.00		µg/l	5.00						
m,p-Xylene	< 10.0		µg/l	10.0						
o-Xylene	< 5.00		µg/l	5.00						
2-Methylpentane	< 5.00		μg/l	5.00						
n-Nonane	< 10.0		μg/l	10.0						
n-Pentane	< 10.0		μg/l	10.0						
1,2,4-Trimethylbenzene	< 5.00		μg/l	5.00						
2,2,4-Trimethylpentane	< 5.00		μg/l	5.00						
n-Butylcyclohexane	< 5.00		µg/l	5.00						
n-Decane	< 5.00		µg/l	5.00						
Surrogate: 2,5-Dibromotoluene (FID)	46.7		μg/l		50.0		93	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	49.2		µg/l		50.0		98	70-130		
LCS (1310860-BS1)						pared & Analy	zed: 13-May-1			
C5-C8 Aliphatic Hydrocarbons	56.2		µg/l		60.0		94	70-130		
C9-C12 Aliphatic Hydrocarbons	59.7		μg/l		60.0		99	70-130		
C9-C10 Aromatic Hydrocarbons	23.1		µg/l		20.0		116	70-130		
Unadjusted C5-C8 Aliphatic Hydrocarbons Unadjusted C9-C12 Aliphatic	215		µg/l		200		107	70-130		
Hydrocarbons	82.8		µg/l		80.0		104	70-130		
Benzene Ethylbenzene	22.8		µg/l		20.0		114 113	70-130		
-	22.7 22.3		µg/l		20.0 20.0		113	70-130 70-130		
Methyl tert-butyl ether Naphthalene	22.3		µg/l		20.0		109	70-130		
Toluene	21.9		µg/l		20.0		109	70-130		
m,p-Xylene	45.8		μg/l μg/l		40.0		114	70-130		
o-Xylene	22.9		μg/l		20.0		115	70-130		
2-Methylpentane	20.7		μg/l		20.0		103	70-130		
n-Nonane	23.5		μg/l		20.0		117	70-130		
n-Pentane	19.6		μg/l		20.0		98	70-130		
1,2,4-Trimethylbenzene	23.7		μg/l		20.0		119	70-130		
2,2,4-Trimethylpentane	21.3		μg/l		20.0		107	70-130		
n-Butylcyclohexane	22.8		μg/l		20.0		114	70-130		
n-Decane	24.5		μg/l		20.0		123	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	54.1				50.0		108	70-130		
Surrogate: 2,5-Dibromotoluene (PID) Surrogate: 2,5-Dibromotoluene (PID)	54.1 56.3		μg/l μg/l		50.0 50.0		108 113	70-130 70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1310860 - VPH - EPA 5030C Water										
LCS Dup (1310860-BSD1)					Pre	pared & Analy	/zed: 13-May-1	3		
C5-C8 Aliphatic Hydrocarbons	57.6		µg/l		60.0		96	70-130	2	25
C9-C12 Aliphatic Hydrocarbons	61.4		μg/I		60.0		102	70-130	3	25
C9-C10 Aromatic Hydrocarbons	22.4		μg/l		20.0		112	70-130	3	25
Unadjusted C5-C8 Aliphatic Hydrocarbons	210		μg/l		200		105	70-130	2	25
Unadjusted C9-C12 Aliphatic Hydrocarbons	83.8		μg/l		80.0		105	70-130	1	25
Benzene	21.9		μg/l		20.0		109	70-130	4	25
Ethylbenzene	21.8		μg/I		20.0		109	70-130	4	25
Methyl tert-butyl ether	21.7		μg/I		20.0		108	70-130	3	25
Naphthalene	21.1		μg/l		20.0		105	70-130	4	25
Toluene	21.2		μg/l		20.0		106	70-130	4	25
m,p-Xylene	44.1		µg/l		40.0		110	70-130	4	25
o-Xylene	22.1		μg/l		20.0		111	70-130	4	25
2-Methylpentane	19.8		μg/l		20.0		99	70-130	4	25
n-Nonane	22.1		μg/l		20.0		110	70-130	4 6	25
n-Pentane	18.5				20.0		93	70-130	6	25 25
1,2,4-Trimethylbenzene	22.7		µg/l		20.0		93 114	70-130	6 4	25 25
2,2,4-Trimethylpentane			µg/l				103			
	20.5		µg/l		20.0			70-130	4	25
n-Butylcyclohexane	21.5		µg/l		20.0		107	70-130	6	25
n-Decane	24.2		µg/l		20.0		121	70-130	1	25
Surrogate: 2,5-Dibromotoluene (FID)	52.6		µg/l		50.0		105	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	55.2		µg/l		50.0		110	70-130		
Duplicate (1310860-DUP1)			Source: SE	3 <u>68779-04</u>	Pre	pared & Analy	/zed: 13-May-1	<u>3</u>		
C5-C8 Aliphatic Hydrocarbons	51.6	J,D	µg/l	75.0		46.8			10	50
C9-C12 Aliphatic Hydrocarbons	10.5	J,D	µg/l	25.0		10.5			0	50
C9-C10 Aromatic Hydrocarbons	9.88	J,D	µg/l	25.0		10.1			2	50
Unadjusted C5-C8 Aliphatic Hydrocarbons	51.6	J,D	µg/l	75.0		46.8			10	50
Unadjusted C9-C12 Aliphatic Hydrocarbons	20.4	J,D	μg/l	25.0		20.6			1	50
Benzene	< 5.00	D	µg/l	5.00		BRL				50
Ethylbenzene	< 5.00	D	µg/l	5.00		BRL				50
Methyl tert-butyl ether	< 5.00	D	μg/l	5.00		BRL				50
Naphthalene	< 5.00	D	μg/l	5.00		BRL				50
Toluene	< 5.00	D	μg/l	5.00		BRL				50
m,p-Xylene	< 10.0	D	μg/I	10.0		BRL				50
o-Xylene	< 5.00	D	μg/I	5.00		BRL				50
Surrogate: 2,5-Dibromotoluene (FID)	53.6		µg/l		50.0		107	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	56.6		μg/l		50.0		113	70-130		
Matrix Spike (1310860-MS1)			Source: SE	368779-04		nared & Analy	/zed: 13-May-1			
C5-C8 Aliphatic Hydrocarbons	51.9	D	<u>μ</u> g/l		60.0	9.36	71	<u>-</u> 70-130		
C9-C12 Aliphatic Hydrocarbons	61.5	D	μg/l		60.0	9.30 2.10	99	70-130		
C9-C10 Aromatic Hydrocarbons	20.4	D			20.0	2.10	99 92	70-130		
•	20.4 186	D	µg/l				92 88			
Unadjusted C5-C8 Aliphatic Hydrocarbons Unadjusted C9-C12 Aliphatic	186 81.9	D	µg/l		200	9.36	88 97	70-130		
Hydrocarbons		D	µg/l		80.0	4.12 BDI		70-130		
Benzene	19.3	D	µg/l		20.0	BRL	97 01	70-130		
Ethylbenzene	18.2		μg/l		20.0	BRL	91	70-130		
Methyl tert-butyl ether	21.4	D	μg/l		20.0	BRL	107	70-130		
Naphthalene	23.1	D	μg/l		20.0	BRL	116	70-130		
Toluene	18.1	D	μg/l		20.0	BRL	90	70-130		
m,p-Xylene	37.4	D	μg/l		40.0	BRL	94	70-130		
o-Xylene	19.3	D	µg/l		20.0	BRL	97	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1310860 - VPH - EPA 5030C Water										
Matrix Spike (1310860-MS1)			Source: SE	68779-04	Pre	pared & Analy	zed: 13-May-1	3		
2-Methylpentane	15.3	D	µg/l		20.0	BRL	77	70-130		
n-Nonane	22.0	D	µg/l		20.0	BRL	110	70-130		
n-Pentane	14.1	D	µg/l		20.0	BRL	71	70-130		
1,2,4-Trimethylbenzene	20.6	D	µg/l		20.0	BRL	103	70-130		
2,2,4-Trimethylpentane	17.4	D	µg/l		20.0	BRL	87	70-130		
n-Butylcyclohexane	20.4	D	μg/l		20.0	BRL	102	70-130		
n-Decane	24.7	D	μg/l		20.0	BRL	123	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	57.0		µg/l		50.0		114	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	59.5		µg/l		50.0		119	70-130		

Soluble Metals b	y EPA (6000/7000 Se	ries Methods -	Quality Control
------------------	---------	--------------	----------------	------------------------

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1310536 - SW846 3005A										
Blank (1310536-BLK1)					Pre	pared: 08-May	/-13 Analyzed	<u>1: 14-May-13</u>		
Iron	< 0.0300		mg/l	0.0300						
LCS (1310536-BS1)					Pre	pared: 08-May	/-13 Analyzed	1: 14-May-13		
Iron	2.11		mg/l	0.0300	2.00		106	85-115		
LCS Dup (1310536-BSD1)					Pre	pared: 08-May	/-13 Analyzed	1: 14-May-13		
Iron	1.94		mg/l	0.0300	2.00		97	85-115	8	20
Duplicate (1310536-DUP1)			Source: Sl	B68779-01	Pre	pared: 08-May	/-13 Analyzed	<u>l: 14-May-13</u>		
Iron	< 0.0300		mg/l	0.0300		BRL				20
Matrix Spike (1310536-MS1)			Source: Sl	B68779-03	Pre	pared: 08-May	/-13 Analyzed	<u>l: 14-May-13</u>		
Iron	29.3	QM2	mg/l	0.0300	2.50	28.9	18	75-125		
Matrix Spike Dup (1310536-MSD1)			Source: SI	B68779-03	Pre	pared: 08-May	/-13 Analyzed	<u>l: 14-May-13</u>		
Iron	28.1	QM2	mg/l	0.0300	2.50	28.9	-29	75-125	4	20

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1309892 - General Preparation										
Blank (1309892-BLK1)					Pre	pared: 01-May	/-13 Analyzed	d: 02-May-13		
Sulfate as SO4	< 1.00		mg/l	1.00			,,,,,,,			
Nitrate as N	< 0.100		mg/l	0.100						
LCS (1309892-BS1)					Pro	nared: 01-May	-13 Analyzed	+ 02-May-13		
Sulfate as SO4	18.4		mg/l	1.00	20.0		92	90-110		
Nitrate as N	1.80		mg/l	0.100	2.00		90	90-110		
	1.00		ing/i	0.100		navadi 01 Mai				
Calibration Blank (1309892-CCB1) Sulfate as SO4	-0.174				Fie	pareu. UT-iviaj	/-13 Analyzed	<u>1. 02-1018y-15</u>		
Nitrate as N	-0.174		mg/l							
	0.00		mg/l		_					
Calibration Blank (1309892-CCB2)					Pre	pared: 01-May	/-13 Analyzed	<u>d: 02-May-13</u>		
Sulfate as SO4	-0.174		mg/l							
Nitrate as N	0.00		mg/l							
Calibration Blank (1309892-CCB3)					Pre	pared: 01-May	-13 Analyzed	d: 02-May-13		
Sulfate as SO4	-0.176		mg/l							
Nitrate as N	0.00		mg/l							
Calibration Blank (1309892-CCB4)					Pre	pared: 01-May	-13 Analyzed	d: 02-May-13		
Sulfate as SO4	-0.171		mg/l							
Nitrate as N	0.00		mg/l							
Calibration Blank (1309892-CCB5)					Pre	pared: 01-May	-13 Analyzed	d: 02-May-13		
Sulfate as SO4	-0.173		mg/l							
Nitrate as N	0.00		mg/l							
Calibration Check (1309892-CCV1)			-		Pre	pared: 01-May	-13 Analyzed	d: 02-Mav-13		
Sulfate as SO4	18.6		mg/l		20.0		93	90-110		
Nitrate as N	1.84		mg/l		2.00		92	90-110		
						narod: 01 May	-13 Analyzed			
Calibration Check (1309892-CCV2) Sulfate as SO4	17.6	R				pareu. UT-iviaj	88	-		
Nitrate as N	17.6	R	mg/l		20.0 2.00		88	90-110		
	1.75	K	mg/l					90-110		
Calibration Check (1309892-CCV3)						pared: 01-May	-13 Analyzed			
Sulfate as SO4	18.8		mg/l		20.0		94	90-110		
Nitrate as N	1.85		mg/l		2.00		92	90-110		
Calibration Check (1309892-CCV4)					Pre	pared: 01-May	/-13 Analyzed	d: 02-May-13		
Sulfate as SO4	18.0		mg/l		20.0		90	90-110		
Nitrate as N	1.81		mg/l		2.00		90	90-110		
Calibration Check (1309892-CCV5)					Pre	pared: 01-May	-13 Analyzed	d: 02-May-13		
Sulfate as SO4	16.7	R	mg/l		20.0		84	90-110		
Nitrate as N	1.70	R	mg/l		2.00		85	90-110		
Duplicate (1309892-DUP1)			Source: SE	<u>368779-07</u>	Pre	pared: 01-May	-13 Analyzed	d: 02-May-13		
Sulfate as SO4	15.1		mg/l	1.00		15.3			1	20
Nitrate as N	1.30		mg/l	0.100		1.30			0.08	20
Matrix Spike (1309892-MS1)			Source: SE	<u>368779-</u> 07	Pre	pared: 01-Ma	/-13 Analyzed	<u>d: 02-May-</u> 13		
Sulfate as SO4	23.1	QM4X	mg/l	1.00	5.00	15.3	157	90-110		
Nitrate as N	2.03	QM4X	mg/l	0.100	0.500	1.30	145	90-110		
Matrix Spike Dup (1309892-MSD1)			Source: SE				-13 Analyzed			
Sulfate as SO4	23.2	QM4X	mg/l	1.00	5.00	15.3	159	90-110	0.5	20
Nitrate as N	2.06	QM4X	mg/l	0.100	0.500	1.30	155	90-110 90-110	1	20
	2.00	-		0.100					,	20
Reference (1309892-SRM1) Sulfate as SO4	20.4	QM9	~~/	1.00		pareu: UT-May	-13 Analyzed	-		
	20.1	QM9	mg/l	1.00	25.0		80 82	90-110		
Nitrate as N	2.06		mg/l	0.100	2.50		82	90-110		
Batch 1310172 - General Preparation										
<u>Blank (1310172-BLK1)</u>					Pre	pared: 03-May	/-13 Analyzed	d: 04-May-13		
Nitrate as N	< 0.100		mg/l	0.100						

This laboratory report is not valid without an authorized signature on the cover page.

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1310172 - General Preparation										
LCS (1310172-BS1)					Bro	narod: 02 May	v-13 Analyzed	04 May 12		
Nitrate as N	2.16		mg/l	0.100	2.00	pareu. US-iviaj	108	90-110		
Duplicate (1310172-DUP2)			•	368779-07RE		pared: 03-May	y-13 Analyzed			
Nitrate as N	1.74		mg/l	0.100		1.73	<u>, 10 , 110, 200</u>	<u></u>	0.6	20
Matrix Spike (1310172-MS2)			Source: SE	368779-07RE	E 1 Pre	pared: 03-May	y-13 Analyzed	: 04-Mav-13		
Nitrate as N	2.26	QM4X	mg/l	0.100	0.400	1.73	132	90-110		
Matrix Spike Dup (1310172-MSD2)			Source: SE	368779-07RE	E 1 Pre	pared: 03-May	y-13 Analyzed	: 04-May-13		
Nitrate as N	2.23	QM4X	mg/l	0.100	0.400	1.73	125	90-110	1	20
Reference (1310172-SRM1)					Pre	pared: 03-May	y-13 Analyzed	: 04-May-13		
Nitrate as N	2.71		mg/l	0.100	2.50		108	90-110		
Batch 1310817 - General Preparation										
- Blank (1310817-BLK1)					Pre	pared & Analy	zed: 10-May-1	<u>3</u>		
Sulfate as SO4	< 1.00		mg/l	1.00						
LCS (1310817-BS1)					Pre	pared & Analy	zed: 10-May-1	3		
Sulfate as SO4	20.9		mg/l	1.00	20.0		105	90-110		
Duplicate (1310817-DUP1)			Source: SE	368779-0 <u>5</u>	Pre	pared & Analy	zed: 10-May-1	<u>3</u>		
Sulfate as SO4	11.4	QR5	mg/l	1.00		16.2			35	20
<u>Matrix Spike (1310817-MS1)</u>			Source: SE	3 <u>68779-05</u>	Pre	pared & Analy	zed: 10-May-1	<u>3</u>		
Sulfate as SO4	15.0	QM7	mg/l	1.00	4.00	16.2	-29	90-110		
Matrix Spike Dup (1310817-MSD1)			Source: SE	368779-0 <u>5</u>	Pre	pared & Analy	zed: 10-May-1	3		
Sulfate as SO4	15.7	QM7	mg/l	1.00	4.00	16.2	-12	90-110	5	20
Reference (1310817-SRM1)					Pre	pared & Analy	zed: 10-May-1	<u>3</u>		
Sulfate as SO4	25.7		mg/l	1.00	25.0		103	90-110		
Batch 1311054 - General Preparation										
Blank (1311054-BLK1)					Pre	pared & Analy	zed: 14-May-1	3		
Sulfate as SO4	< 1.00		mg/l	1.00						
LCS (1311054-BS1)					Pre	pared & Analy	zed: 14-May-1	<u>3</u>		
Sulfate as SO4	21.3		mg/l	1.00	20.0		106	90-110		
Reference (1311054-SRM1)					Pre	pared & Analy	zed: 14-May-1	<u>3</u>		
Sulfate as SO4	29.5	QM9	mg/l	1.00	25.0		118	90-110		

Volatile Organic Compounds - CCV Evaluation Report

analyte(s)	Average RF	CCRF	% D	Limit
Batch S305325				
Calibration Check (S305325-CCV1)				
Benzene	103031.1	107278.9	4.1	25
Ethylbenzene	67190.75	67854.55	1.0	25
Methyl tert-butyl ether	49816.42	52586.5	5.6	25
Naphthalene	45395.98	49073.6	8.1	25
Toluene	88942.26	87435.55	-1.7	25
m,p-Xylene	79799.08	80844	1.3	25
o-Xylene	66465.29	67338.2	1.3	25
2-Methylpentane	16077.27	15585.3	-3.1	25
n-Nonane	7381.322	6585.45	-10.8	30
n-Pentane	15972.28	15219.1	-4.7	25
	59089.68	63721.9	7.8	25
1,2,4-Trimethylbenzene	14279.88	13364.5	-6.4	25 25
2,2,4-Trimethylpentane				
n-Butylcyclohexane	7993.376	7201.35	-9.9	25
	5200.718	5107.45	-1.8	25
Calibration Check (S305325-CCV2)			10	
Benzene	103031.1	113426.8	10.1	25
Ethylbenzene	67190.75	71974.7	7.1	25
Methyl tert-butyl ether	49816.42	53602.1	7.6	25
Naphthalene	45395.98	50609	11.5	25
Toluene	88942.26	92765.85	4.3	25
m,p-Xylene	79799.08	85534.88	7.2	25
o-Xylene	66465.29	71028	6.9	25
2-Methylpentane	16077.27	16621.15	3.4	25
n-Nonane	7381.322	6152.05	-16.7	30
n-Pentane	15972.28	16348.35	2.4	25
1,2,4-Trimethylbenzene	59089.68	67523.75	14.3	25
2,2,4-Trimethylpentane	14279.88	13849.25	-3.0	25
n-Butylcyclohexane	7993.376	6895.55	-13.7	25
n-Decane	5200.718	4796.7	-7.8	25
atch S305374				
Calibration Check (S305374-CCV1)				
Benzene	103031.1	113116.8	9.8	25
Ethylbenzene	67190.75	72317.95	7.6	25
Methyl tert-butyl ether	49816.42	53126.2	6.6	25
Naphthalene	45395.98	47980.8	5.7	25
Toluene	88942.26	92945.65	4.5	25
m,p-Xylene	79799.08	86217.45	8.0	25
o-Xylene	66465.29	71289.9	7.3	25
2-Methylpentane	16077.27	17345.1	7.9	25
n-Nonane	7381.322	8297.9	12.4	30
n-Pentane	15972.28	16836.65	5.4	25
1,2,4-Trimethylbenzene	59089.68	67539.85	14.3	25
2,2,4-Trimethylpentane	14279.88	14982.55	4.9	25
n-Butylcyclohexane	7993.376	8448.45	4.9 5.7	25
n-Butytcyclonexane	5200.718	6183.4	5.7 18.9	25 25
	5200.718	0103.4	10.9	20
Calibration Check (S305374-CCV2)				
Benzene	103031.1	110727.1	7.5	25
Ethylbenzene	67190.75	72186.8	7.4	25
Methyl tert-butyl ether	49816.42	53621.35	7.6	25
Naphthalene	45395.98	50326.05	10.9	25
Toluene	88942.26	91120.85	2.4	25

Volatile Organic Compounds - CCV Evaluation Report

	Average				
Analyte(s)	RF	CCRF	% D	Limit	
Batch \$305374					
Calibration Check (S305374-CCV2)					
m,p-Xylene	79799.08	85409.43	7.0	25	
o-Xylene	66465.29	70301.6	5.8	25	
2-Methylpentane	16077.27	15734.85	-2.1	25	
n-Nonane	7381.322	6164.45	-16.5	30	
n-Pentane	15972.28	15340.65	-4.0	25	
1,2,4-Trimethylbenzene	59089.68	66581.35	12.7	25	
2,2,4-Trimethylpentane	14279.88	13264.05	-7.1	25	
n-Butylcyclohexane	7993.376	6623	-17.1	25	
n-Decane	5200.718	4725.7	-9.1	25	

Notes and Definitions

- CCE Analyte concentration is flagged as estimated due to exceeding the calibration range or interferences. The sample is not over the calibration range for the target analytes and/or marker compounds that make up the range therefore not diluted further.
- D Data reported from a dilution
- E This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.
- GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.
- HT5 Sample was originally analyzed within the recommended method holding time; however, QC materials for the sample run were out of control. As a result, the sample was immediately re-analyzed (outside the holding time).
- I02 This result was analyzed outside of the EPA recommended holding time.
- QM2 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
- QM4X The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
- QR5 RPD out of acceptance range.
- R Quality Control is outside acceptance range; all affected samples have been re-analyzed.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

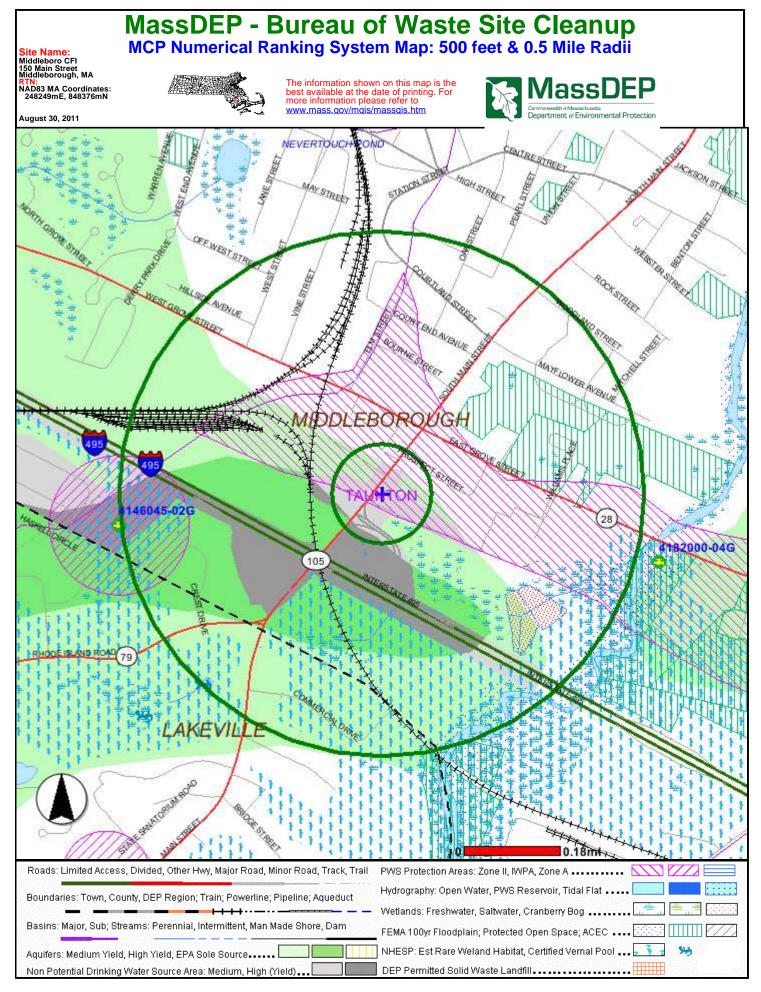
Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

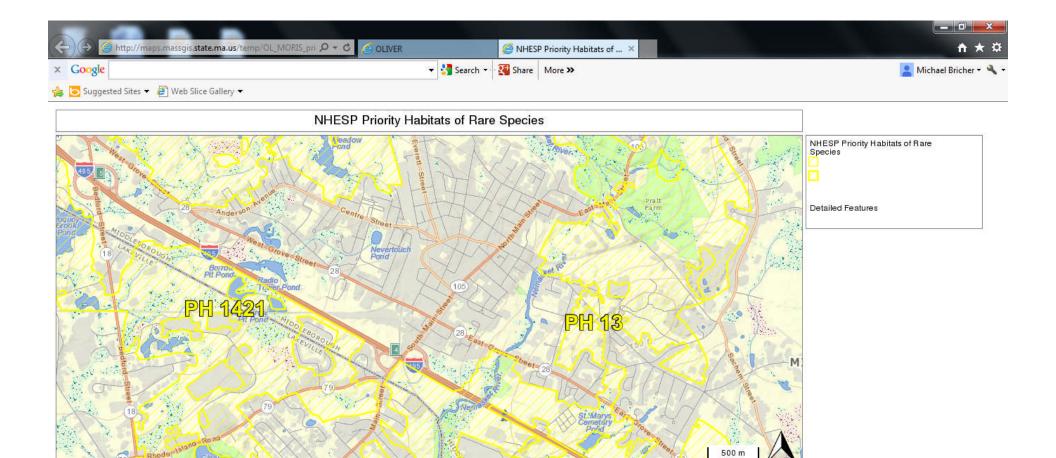
<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.


<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.


<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Wisk Rebecca Merz

ecial Handling Date Needed: ect to laboratory a notification needed sed of after 60 day ructed. $\ QA/QC Repor* additional chargCT DPH RCP RepQA/QC ReporQA/QC ReporNY ASP A*\Box NY ASP A*\Box NI Reduced*State-specific repor$	frigerated DI VOA Frozen Soil Jar Frozen Sam	11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-anatytical.com	FAX 413-789-40	-789-9018 •)1001 • 413	Agawam, MA	Imgren Drive	11	
$ \begin{array}{ c c c c c c } \hline \mbox{Retrongenerative} & \mbox{CHAIN OF CUSTODY RECORD} \\ \hline \mbox{runner, unsume transformed} \\ \hline runner, unsume tran$		Condition upon receip	X						
$ \begin{array}{ c c c c c c } \hline \label{eq:construction} \hline \end{tabular} \\ \hline $		÷.			(1en.	Com	to all the	1ª
$ \begin{array}{ c c c c c c } \hline \mbox{Withouthard} With$	+ cuu	D.J A E-mail to	18:00	MA	n	A Mon	12	and the stand	*
Normal regions CHAIN OF CUSTODY RECORD Rest frag and regions rege	1	1 NUL	1685	SFI	X	1 Herdel	J.C.	1	}
$\begin{array}{ c c c c c c } \hline \label{eq:constraint} \hline \end{tabular} \\ \hline \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \hline \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \hline \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \hline \end{tabular} $]		Date:	2	seived by:	R	nquished by:	Reli
$\begin{array}{c} \label{eq:constraint} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} tabula$			5		1				
$ \begin{array}{ c c c c c c } \hline \label{eq:construction} \hline \end{tabular} \\ \hline $				£.					
$ \begin{array}{ c c c c c c } \hline \label{eq:conversion} \\ \hline \end{tabular} \\ \hline $									5
$ \begin{array}{ c c c c c c } \hline \label{eq:conversion} \\ \hline \end{tabular} \\ \hline $		X	66			1121	-30-1	ECS-8	N D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		XXXX		-		5:47	-	ECS-7:	1. 10
$\begin{array}{ c c c c c c } \hline \label{eq:constraint} \hline \end{tabular} \end{tabular}$		XXXX	P			P:25		ECS-SN	A
$ \begin{array}{ c c c c c c c } \hline \label{eq:constraint} \\ \hline \end{tabular} \\ $		XXXX	2			9:00		ECS-5:	h
$\begin{array}{ c c c c c c } \hline \label{eq:constraint} \hline \end{tabular} \\ \hline \en$		XXXX	2			10:12		ECS-3:	8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\langle X \times \rangle$	-			10:35		ECS-3	1 R
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		X X X X,	2	-	1.0	12:25	30-1	S	10-11/180
$ \begin{array}{ c c c c c c c c } \hline \label{eq:second} \end{tabular} \begin{tabular}{c c c c c c c c c c c c c c c c c c c $	State-specific reporting standards:	N 5- D:	#	#		Time:		Sample Id:	Lab Id:
$ \begin{array}{ c c c c c c c } \hline \label{eq:constraint} \hline \end{tabular} \\ \hline $	TIER II*	PH its sse	of P	of V					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	ate	lastic	'OA V			omposite		
$ \begin{array}{ c c c c c c c } & \label{eq:character} \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Standard D No QC D DQA*	Ir							
CHAIN OF CUSTODY RECORD Standard Tr. Creating Fouring ANDALTICAL, INC. Page Import of Page Import of Import of Min. 24-hour of <	OA/OC Reporting Level	~ L	s						;
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MA DEP MCP CAM Report: Yes ANO	Analyses:	ontainers:	C		'=Wastewater	2		DW=Drinkir
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	* additional charges may apply	2//1				PO4 11=	10	Ē	8= NaHS
CHAIN OF CUSTODY RECORD CTRUMANALYTICAL, INC. Fouring Page of Page of Page of Page of of Page of Page of of Page of Page of of Page of Page of Page Of Of Page of Page Of Project No.: Page Sampler(s): Project No.: Page P		1			6=Ascorbio)		3 2=HC1	$1=Na_2$
CHAIN OF CUSTODY RECORD CTRUM ANALYTICAL, INC. Featuring ANIBAL TECHNOLOGY ECS-Wor(cs/FV) Invoice To: CFE Sdf-756-6151 Invoice To: CFE Sdf-756-6151 Invoice To: CFE		Maser	2N:		7601	P.O. No.	-	atthac	Project Mgr.
CHAIN OF CUSTODY RECORD PRECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY ECS-Worcestev Invoice To: CFE Site Name: CFE		Marst,					/	5-756-01	Telenhone #:
ECTRUM ANALYTICAL, INC. Frage CHAIN OF CUSTODY RECORD PRECTRUM ANALYTICAL, INC. Frage 0f Page 0f 1 PAULE ALL TECHNOLOGY Invoice To: CFIL	3	FIHAL							
CHAIN OF CUSTODY RECORD	0	93-0		1.	C	Invoice 7		C,~	Report To:
CHAIN OF CUSTODY RECORD	es disposed of after 60 days unless vise instructed.	· Sample: otherw	f	~	Pag			Featuring ANIBAL TECHNOLOGY	STR
NTV RECORD	Ts subject to laboratory approval. 4-hour notification needed for rushes.			Cor			(
Special Handling:	ard TAT - 7 to 10 business days TAT - Date Needed:	ECORD X	INV.	TOT	O E O	HAN	2	2	_
	Special Handling:		/						

ATTACHMENT III

▲ 🎼 🛱 🛱 🗣 😽 3:26 PM

1000 ft

N

ATTACHMENT IV

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Middleborough; Place: South Middleborough; Street No: 105; Street Name: south main;

Inv. No. Property Name	Street	Town	Year
------------------------	--------	------	------