

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAI L RETURN RECEIPT REQUESTED FEB 0 4 2014

.

Martin F. Hilfinger Senior Project Manager 100 Crossing Boulevard Framingham, MA 01702

Re: Authorization to discharge under the Remediation General Permit (RGP) – 910000. Cumberland Farms Inc., site located at 99 Calef Highway, Epping, NH 03042, Rockingham County, Authorization # NHG910064

Dear Mr. Hilfinger:

Based on the review of a Notice of Intent (NOI) submitted by AECOM Environment on behalf of Cumberland Farms Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the check list does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: <u>http://www.epa.gov/region1/npdes/mass.html#dgp</u>.

Please note the enclosed checklist includes parameters you have marked "Believed Present," and may or may have not exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 5.72 for this site is within

a dilution range greater than five to ten (>5 to 10), established in the RGP. (See the RGP Appendix IV for New Hampshire facilities). Therefore, the limits for trivalent chromium of 138 ug/L, copper of 14.5 ug/L, nickel of 290 ug/L and iron of 5,000 ug/L, are required to achieve permit compliance at your site.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported this project will be completed on Mach 31, 2014. Regardless of its termination date you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or alvarez.victor@epa.gov, if you have any questions.

Sincerely,

Julma Murphy, Thelma Murphy, Chief Storm Water and Construction Permits Section

Enclosure

cc: Jeffrey Andrews, NHDES Sean Crowell, AECOM Environment

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Permit Numb	er:	NHG910064	
Authorization Issued: Janua		nry, 2014	
Facility/Siete Name:	-	berland Farms Inc.	
Facility/Site Address: 99 Ca		lef Highway/Rte 125, Epping, NH 03042	
		address of owner; Phone n: <u>Mhilfinger@cumberldguf.com</u> : hone No. 5082704484	
Legal Name of Operato	or:	Cumberland Farms Inc.	
Operator contact name, title, and Address:		Martin H. Hilfinger, Project Manager, 100 Crossing Boulevard, Framingham, MA 01702, Middlesex County	
		Email Same as the Owner	
Estimated Date of Com	pletion	March 31, 2014	
Category and Sub-Category:		Category II- Non Petroleum Site Remediation. Sub-category C. Primarily Heavy Metals Sites	
Receiving Water:		Lamprey River	

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/l) **, 50 mg/l for hydrostatic testing **, Me#60.2/5mL
-	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/l ** Saltwater = 7.5 ug/l **/ Me#330.5/ML 20ug/L
	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/l/ Me# 1664A/5.0mg/LmL
	4. Cyanide (CN) ^{2, 3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/l **/ Me#335.4/ML 5ug/L
	5. Benzene (B)	5ug/L /50.0 ug/l for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
Add	7. Ethylbenzene (E)	(limited as ug/L total BTEX))/ Me#8260C/ ML 2ug/L
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX))/ Me#8260C/ ML 2ug/L
	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/l)/ Me#8260C/ ML 2ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
264	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l /Me#8260C/ ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only (ug/L)/ Me#8260C/ ML 10ug/L
ahren	13. tert-Amyl Methyl Ether (TAME)	Monitor Only (ug/L) /Me#8260C/ ML 10ug/L
	14. Naphthalene ⁵	20 ug/l /Me#8260C/ ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/l /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/l /Me#8260C/ ML 5ug/L
√	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/l /Me#8260C/ ML 5ug/L
V	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/l /Me#8260C/ ML 5ug/L
-	18a. Total dichlorobenzene	763 ug/l - NH only /Me#8260C/ ML5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/l /Me#8260C/ ML 5ug/L
dina.	20. 1,2 Dichloroethane (DCA)	5.0 ug/l /Me#8260C/ ML 5ug/L
\checkmark	21. 1,1 Dichloroethene (DCE)	3.2 ug/l/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/l /Me#8260C/ ML 5ug/L
11 State	23. Methylene Chloride	4.6 ug/l/Me#8260C/ ML 5ug/L
184	24. Tetrachloroethene (PCE)	5.0 ug/l /Me#8260C/ ML 5ug/L
2999	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/l/Me#8260C/ ML 5ug/L
167	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/l /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/l /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/l /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only (ug/L) /Me#8260C/ ML 50ug/L
	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML50 ug/L
	31. Total Phenols	300 ug/l Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML50 ug/L
NO.94	32. Pentachlorophenol (PCP)	1.0 ug/l /Me#8270D/ML5ug/L,Me#604 &625/ML10ug/L
	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML5ug/L,Me#606/ML10ug/L& Me#625/ML5ug/L
	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/l /Me#8270D/ML5ug/L,Me#606/ML10ug/L8 Me#625/ML5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/l

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	a. Benzo(a) Anthracene 7	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
	b. Benzo(a) Pyrene ⁷	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
	d. Benzo(k)Fluoranthene 7	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
1	e. Chrysene ⁷	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
1.10	f. Dibenzo(a,h)anthracene 7	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
	g. Indeno(1,2,3-cd) Pyrene 7	0.0038 ug/l /Me#8270D/ ML5ug/L, Me#610/ML5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/l
	h. Acenaphthene	X/Me#8270D/ML5ug/L,Me#610/ML5ug /L & Me#625/ML5ug/L
	i. Acenaphthylene	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L & Me#625/ML5ug/L
	j. Anthracene	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L & Me#625/ML5ug/L
	k. Benzo(ghi) Perylene	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L & Me#625/ML5ug/L
No.	I. Fluoranthene	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L & Me#625/ML5ug/L
	m. Fluorene	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L & Me#625/ML5ug/L
have	n. Naphthalene 5	20 ug/l / Me#8270D/ ML5ug/L, Me#610/ML5ug/L & Me#625/ML5ug/L
	o. Phenanthrene	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L & Me#625/ML5ug/L
	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML5ug/L & Me#625/ML5ug/L
u d	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L / Me# 608/ ML 0.5 ug/L
\checkmark	38. Chloride	Monitor only/Me# 300.0/ ML 0.1ug/L

÷.,

	<u>Total Recoverable</u> <u>NH/Metal Limit</u> <u>H ¹⁰ = 25 mg/l</u> <u>CaCO3, Units = ug/l</u> (11/12)	<u>Minimum</u> level=ML	5
Metal parameter	Freshwater Limits dilution		

.

5		<u>Total Recoverable</u> <u>NH/Metal Limit</u> <u>H ¹⁰ = 25 mg/l</u> <u>CaCO3, Units = ug/l</u> <u>(11/12)</u>		<u>Minimum</u> level=ML	
14	Metal parameter	Freshwater Limits	dilution		15 .4
	39. Antimony	141	1998 B	ML	10
	40. Arsenic **	10	36	ML	20
	41. Cadmium **	0.8		ML	10
	42. Chromium III (trivalent) **	138.0	a part Merce	ML	15
	43. Chromium VI (hexavalent) **	11.4		ML	10
\checkmark	44. Copper **	14.5	· · · · · · · · · · · · · · · · · · ·	ML	15
	45. Lead **	0.5	COUT SCOT	ML	20
	46. Mercury **	0.9		ML	02
	47. Nickel **	80.5	1978 (SQ 7).	ML	20
	48. Selenium **	5		ML	20
	49. Silver	0.4	A CLARATER S	ML	10
	50. Zinc **	37		ML	15
\checkmark	51. Iron	5,00	0	ML	20

	Other Parameters	Limit
	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
\checkmark	54. pH Range for Class B Waters in NH	6.5-8.3; 1/Month/Grab13
	55. pH Range for Class SB Waters in NH	6.5-8; 1/Month/Grab13
	56.	
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
	59.	
-	60. Maximum Change in Temperature in NH- Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in NH– Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62.	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in NH– Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in NH– Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : 99 Calef Highway	Facility/site mailing address:				
Location of facility/site : longitude: ^{71.0724} latitude: ^{43.0322}	Facility SIC code(s): 5211	Street: 99 Calef Highway/Ro	oute 125		
b) Name of facility/site owner:		Town: Epping	Town: Epping		
Email address of facility/site owner: Mhilfinger@cumberlandgulf.com		State:	Zip:	County: Rockingham	
Telephone no. of facility/site owner : (508) 2	.70-4484				
Fax no. of facility/site owner : (781) 459-0454	4	Owner is (check one): 1. Federal <u>O</u> 2. State/Tribal <u>O</u>			
Address of owner (if different from site):	3. Private • 4. Other • if so, describe:				
Street: 100 Crossing Boulevard					
Town: Framingham	State: MA	Zip: 01702	County: Middlesex		
c) Legal name of operator :	lephone no: (508) 270-4484				
Cumberland Farms Inc.	Operator fax	x no.: (781) 459-0454	Operator email:	mhilfingr@cumberlandgulf.com	
Operator contact name and title: Martin Hilfinger Senior Project Manager					
Address of operator (if different from owner):	Street: 100 Crc	00 Crossing Boulevard			
Town: Framingham	State: 01702	Zip: MA	County: Middlesex		

Remediation General Permit Appendix V - NOI Page 10 of 22

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y_ON_O, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y_ONO, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y_ONO 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y_ONO 			
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O NO If Y, please list: site identification # assigned by the state of NH or mA: permit or license # assigned: state agency contact information: name, location, and telephone number: 	 f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y ○ N ○, if Y, number: 2. Final Dewatering General Permit? Y ○ N ○, if Y, number: 3. EPA Construction General Permit? Y ○ N ○, if Y, number: 4. Individual NPDES permit? Y ○ N ○, if Y, number: 5. any other water quality related individual or general permit? Y ○ N ○, if Y, number: 		
	an Area of Critical Environmental Concern (ACEC)? Y O N O		
h) Based on the facility/site information and any historical discharge falls.	al sampling data, identify the sub-category into which the potential		
Activity Category	Activity Sub-Category		
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites		
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites _K		
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites		

Remediation General Permit Appendix V - NOI Page 11 of 22

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites _
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites _
	C. Hydrostatic Testing of Pipelines and Tanks
	D. Long-Term Remediation of Contaminated Sumps and Dikes _
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit) _

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:					
CFI is purchasing the property to build a gas station. Excavation will occur for the installment of Underground Storage Tanks, 30' wide by 30' long by 15' deep. Groundwater to be discharged will occur at this point. Dewatering will occur during construction of foundation footers and drainage on site.					
b) Provide the following information about each discharge:					
1) Number of discharge 2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? 1 Max. flow 0.56 cfs Is maximum flow a design value? Y o N o 1 Average flow (include units) 0.28 cfs Is average flow a design value or estimate?					
3) Latitude and longitude of each discharge within 100 feet: pt.1: lat long pt.3: lat long pt.5: lat long pt.7: lat long pt.8: lat long pt.7: lat long pt.8: lat long pt.6: lat long pt.7: lat long pt.8: lat long pt.7: lat long pt.8: lat long					
4) If hydrostatic testing, 5) Is the discharge intermittent _O or seasonal _O ? total volume of the Is discharge ongoing? Y _O N_O					
c) Expected dates of discharge (mm/dd/yy): start Jan 27, 2014 end Mar 31, 2014					
d) Please attach a line drawing or flow schematic showing water flow through the facility including:					
1. sources of intake water, 2. contributing flow from the operation, 3. treatment units, and 4. discharge points and receiving					
waters(s).					

Remediation General Permit Appendix V - NOI

т

Page 12 of 22

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
Parameter *	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)			×	1	grab	SM2540D	5000	161,000	219.38	161,000	109.69
2. Total Residual Chlorine (TRC)		×		1	grab	SM4500-CI-G	200	<200	0	<200	0
3. Total Petroleum Hydrocarbons (TPH)		×									
4. Cyanide (CN)	57125	×		1	grab	EPA.335.4	3.6	<3.6	0	<3.6	0
5. Benzene (B)	71432	×		1	grab	SW846 8260C	1	<1	0	<1	0
6. Toluene (T)	108883	×		1	grab	SW846 8260C	1	<1	0	<1	0
7. Ethylbenzene (E)	100414	×		1	grab	SW846 8260C	1	<1	0	<1	0
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		1	grab	SW846 8260C	2	<2	0	<2	0
9. Total BTEX ²	n/a	×		1	grab	SW846 8260C	2	<2	0	<2	0
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934	X		1	grab	SW846 8260C	0.05	<0.05	0	<.05	0
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	grab	SW846 8260C	1	<1	0	<1	0
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×		1	grab	SW846 8260C	10	<10	0	<10	0

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the

Test Methods and Minimum Levels associated with each parameter provided in Appendix VI. 2 BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

Remediation General Permit Appendix V - NOI

Page 13 of 22

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	grab	SW846 8260C	1	<1	0	<1	0
14. Naphthalene	91203	×		1	grab	SW846 8260C	1	<1	0	<1	0
15. Carbon Tetrachloride	56235	×		1	grab	SW846 8260C	1	<1	0	<1	0
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		1	grab	SW846 8260C	1	<1	0	<1	0
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	grab	SW846 8260C	1	<1	0	<1	0
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	grab	SW846 8260C	1	<1	0	<1	0
18a. Total dichlorobenzene		×		1	grab	SW846 8260C	3	<3	0	<3	0
19. 1,1 Dichloroethane (DCA)	75343	×		1	grab	SW846 8260C	1	<1	0	<1	0
20. 1,2 Dichloroethane (DCA)	107062	×		1	grab	SW846 8260C	1	<1	0	<1	0
21. 1,1 Dichloroethene (DCE)	75354	×		1	grab	SW846 8260C	1	<1	0	<1	0
22. cis-1,2 Dichloroethene (DCE)	156592	X		1	grab	SW846 8260C	1	<1	0	<1	0
23. Methylene Chloride	75092	×		1	grab	SW846 8260C	2	<2	0	<2	0
24. Tetrachloroethene (PCE)	127184	×		1	grab	SW846 8260C	1	<1	0	<1	0
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		1	grab	SW846 8260C	1	<1	0	<1	0
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		1	grab	SW846 8260C	1	<1	0	<1	0
27. Trichloroethene (TCE)	79016	×		1	grab	SW846 8260C	1	<1	0	<1	0

Remediation General Permit Appendix V - NOI Page 14 of 22

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	grab	SW846 8260C	1	<1	0	<1	0
29. Acetone	67641	×		1	grab	SW846 8260C	10	<10	0	<10	0
30. 1,4 Dioxane	123911	×		1	grab	SW846 8260C	20	<20	0	<20	0
31. Total Phenols	108952	×		1	grab		1	<1	0	<1	0
32. Pentachlorophenol (PCP)	87865	×		1	grab	846 3510C	1	<1	0	<1	0
33. Total Phthalates (Phthalate esters) ⁴		×		1	grab	846 3510C	5	<5	0	<5	0
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×		1	grab	846 3510C	6	<6	0	<6	0
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×		1	grab	846 3510C	10	<10	0	<10	0
a. Benzo(a) Anthracene	56553	×		1	grab	846 3510C	5	<5	0	<0.1	0
b. Benzo(a) Pyrene	50328	×		1	grab	846 3510C	.2	<0.2	0	<0.2	0
c. Benzo(b)Fluoranthene	205992	X		1	grab	846 3510C	.1	<0.1	0	<0.1	0
d. Benzo(k)Fluoranthene	207089	×		1	grab	846 3510C	.5	<0.5	0	<0.5	0
e. Chrysene	21801	×		1	grab	846 3510C	5	<5	0	<5	0
f. Dibenzo(a,h)anthracene	53703	×		1	grab	846 3510C	.1	<0.1	0	<0.1	0
g. Indeno(1,2,3-cd) Pyrene	193395	×		1	grab	846 3510C	.1	<0.1	0	<0.1	0
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×		1	grab	846 3510C	100	<100	0	<40	0

⁴The sum of individual phthalate compounds.

Remediation General Permit Page 15 of 22 Appendix V - NOI

					61-	A malating l	Minimum	Maximum dai	ily value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Sample</u> <u>Type</u> <u>(e.g.,</u> <u>grab)</u>	<u>Analvtical</u> <u>Method</u> <u>Used</u> (method #)	Level (ML) of <u>Test</u> Method	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
h. Acenaphthene	83329	×		1	grab	846 3510C	5	<5	0	<5	0
i. Acenaphthylene	208968	×		1	grab	846 3510C	5	<5	0	<5	0
j. Anthracene	120127	×		1	grab	846 3510C	5	<5	0	<5	0
k. Benzo(ghi) Perylene	191242	×		1	grab	846 3510C	5	<5	0	<5	0
1. Fluoranthene	206440	×		1	grab	846 3510C	5	<5	0	<5	0
m. Fluorene	86737	×		1	grab	846 3510C	5	<5	0	<5	0
n. Naphthalene	91203	×		1	grab	846 3510C	5	1.05	0	1.05	0
o. Phenanthrene	85018	×		1	grab	846 3510C	5	<5	0	<5	0
p. Pyrene	129000	×		1	grab	846 3510C	5	<5	0	<5	0
37. Total Polychlorinated Biphenyls (PCBs)	85687; 84742; 117840; 84662; 131113; 117817.	X									
38. Chloride	16887006	×	×	1	grab	EPA 300.0	1000	17900	24.391	17900	12.19
39. Antimony	7440360	×		1	grab	SW846 6010C	6	<6	0	<6	0
40. Arsenic	7440382	×		1	grab	USEPA 6000/7000	.01	<0.01	0	<0.01	0
41. Cadmium	7440439	×		1	grab	USEPA 6000/7000	.005	<0.005	0	<0.005	0
42. Chromium III (trivalent)	16065831		×	1	grab	SW846 6010C	10	14.5	.020	14.5	.010
43. Chromium VI (hexavalent)	18540299	×		1	grab	SW846 6010C	50	0	0	0	0
44. Copper	7440508		×	1	grab	SW846 6010C	5	13	.018	13	.009
45. Lead	7439921	×		1	grab	USEPA 6000/7000	.015	<.015	0	<.015	0
46. Mercury	7439976	×		1	grab	EPA 245.1	0.3	<0.3	0	<0.3	0
47. Nickel	7440020		X	1	grab	SW846 6010C	5	8.6	0.012	8.6	0.006
48. Selenium	7782492	×		1	grab	USEPA 6000/7000	.05	<0.05	0	<0.05	0
49. Silver	7440224	×		1	grab	USEPA 6000/7000	.1	<0.1	0	<0.1	0
50. Zinc	7440666	×		1	grab	SW846 6010C	35	<35	0	<35	0
51. Iron	7439896		×	1	grab	SW846 6010C	1500	12,200	16.623	12,200	8.412
Other (describe):				1	grab				0		0

Remediation General Permit Appendix V - NOI Page 16 of 22

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Marvucan</u> <u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? $Y \odot N O$	If yes, which metals? Iron, Copper
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF: 5.72 Metal: DF: 5.72	Look up the limit calculated at the corresponding dilution factor in Appendix IV . Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y_ O N_O_ If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

Water will be pumped from the excavation through 4 gel floc socks in parallel. Then, it will pass though a 20,000 gallon weir tank, a frac tank for settling, then through 20 micron bag filters (6). An aeration blower will be used in the weir tanks if necessary for better removal efficiency. The system discharges to a effluent manhole adjacent to the site. One train is proposed but a second train

b) Identify each	Frac. tank 🗵	Air stripper 🗖	Oil/water separator		Equalization tanks \Box	Bag filter 🗵	GAC filter
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):	Gel fl	floc socks, weir tank, aeratio	n blower.	

Remediation General Permit Appendix V - NOI Page 17 of 22

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge 125 gpm Maximum flow rate of treatment system 250 gpm Design flow rate of treatment system 125 gpm
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):
Brand name HaloKlear: Gel-Floc and HaloKlear: DBP-2100 will be used as a flocculant to increase settling potential of the iron in the water.

5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:

a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain 🗵	Wetlands 	Other (describe):					
b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters: Into a storm drain, outfall into the Lamprey River										
 c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.										
d) Provide the state water quality cla	ssification of th	e receiving water	В							
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water 3.0 cfs Please attach any calculation sheets used to support stream flow and dilution calculations.										
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y_O_ N_O_ If yes, for which pollutant(s)?										
Is there a final TMDL? Y_O_ N_O_ If yes, for which pollutant(s)? Dissolved Oxygen, pH										

Remediation General Permit Appendix V - NOI Page 18 of 22

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

 $A \underline{O} B \underline{O} C \underline{O} D \underline{O} E \underline{O} F \underline{O}$

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y_O N_O Underway_O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? $Y \underbrace{O}_{N} O$

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 \bigcirc 2 \bigcirc 3 \bigcirc

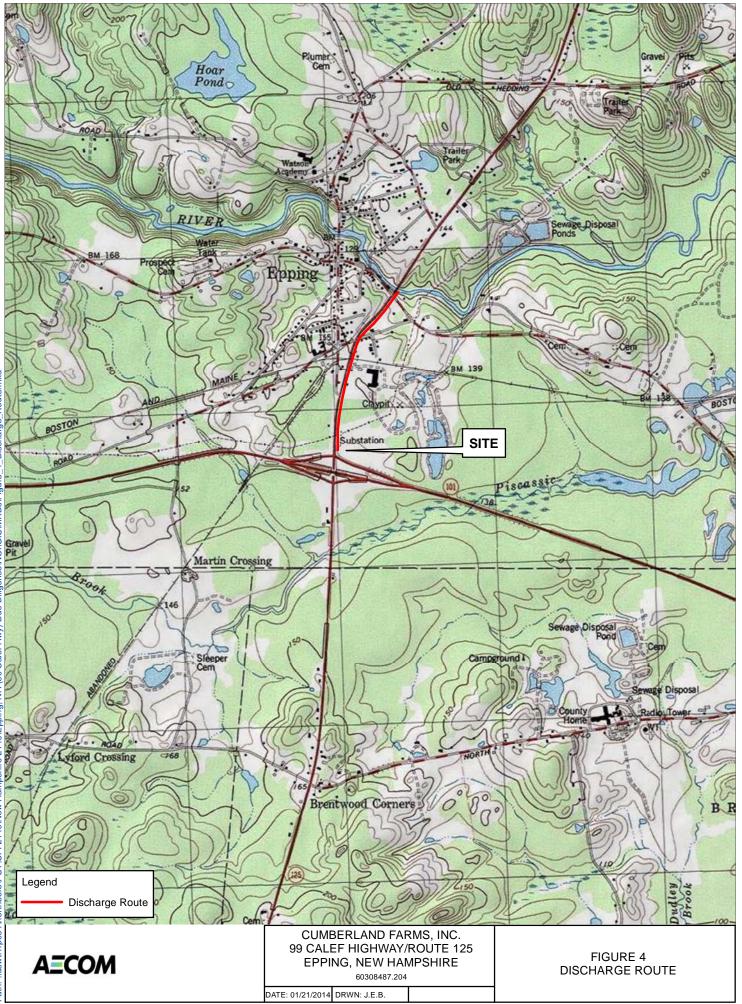
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

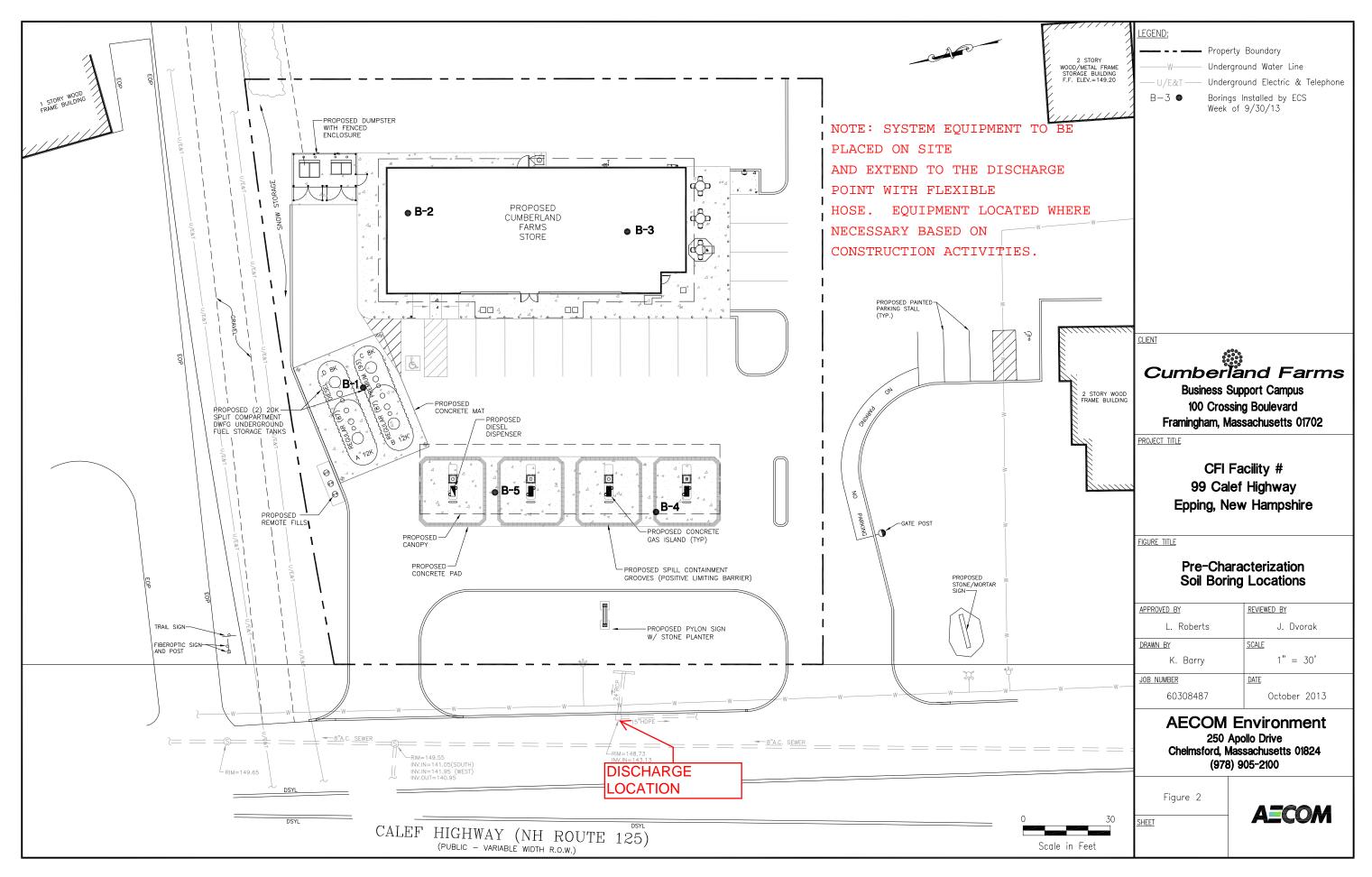
7. Supplemental information.

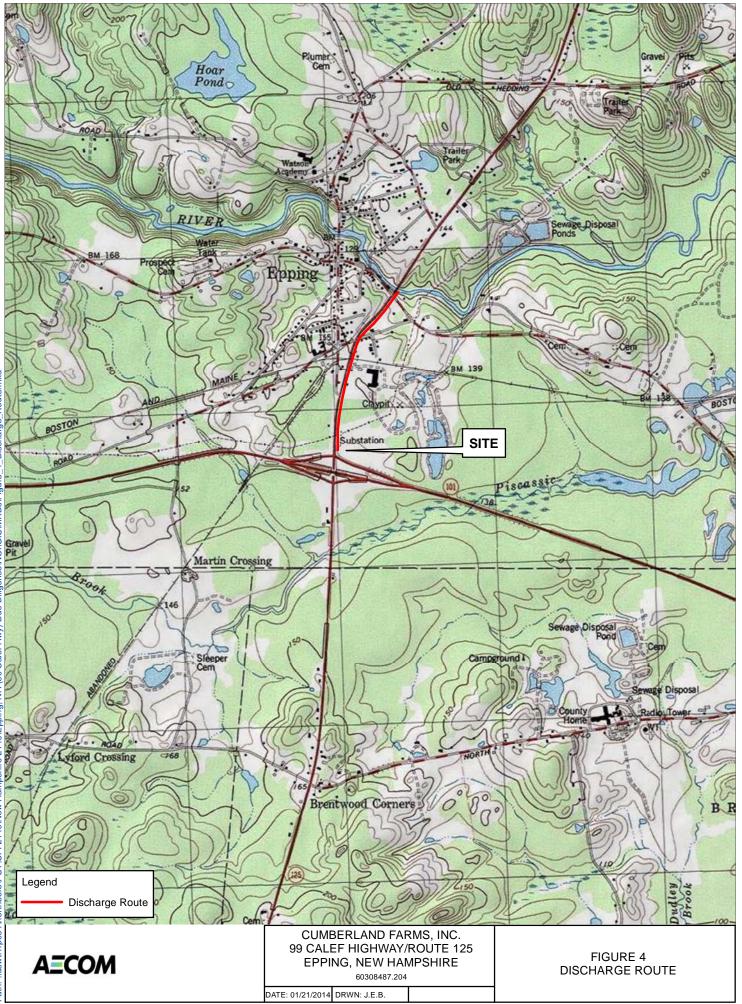
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

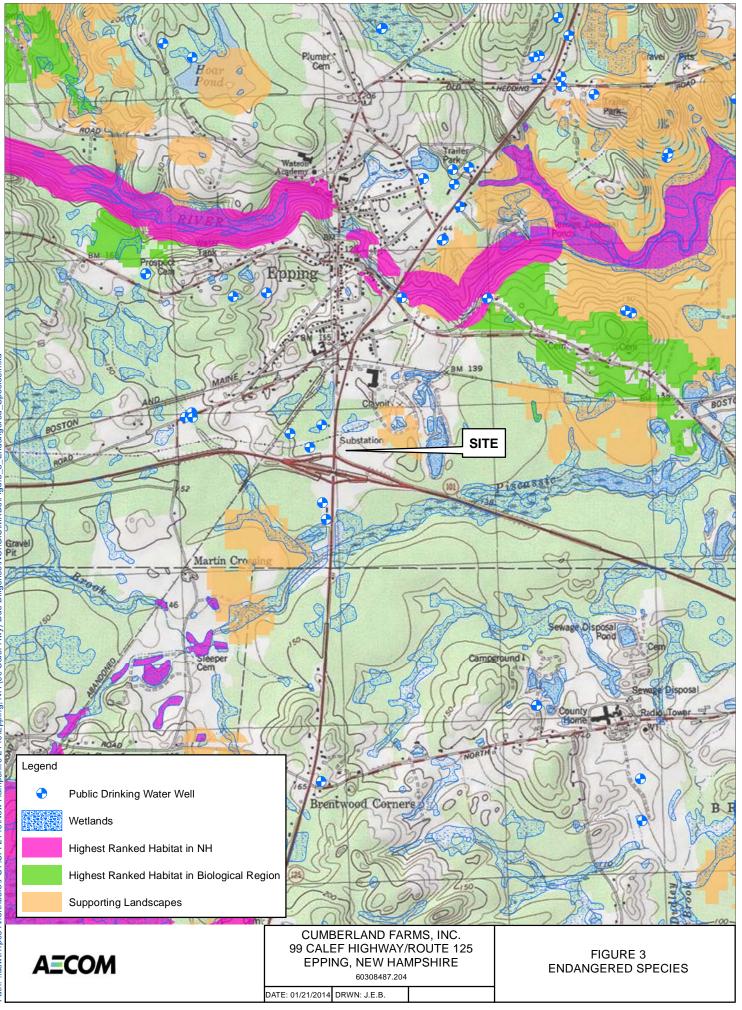
Discharge will be completed during the duration of construction activities on the site.

According to directions found on the New England Field Office of the U.S. Fish and Wildlife Service website, the site was found to be free of any endangered or threatened species. Although data from the website indicates that the threatened plan the whorled pegonia is found in Epping, it is not found in the site area. Additional endangered species GIS maps of the area were also consulted and it was found that no other endangered species were found in the area. Due to these reasons, it was determined that Criterion B in section 6 (a) was applicable.


Remediation General Permit Appendix V - NOI Page 19 of 22


8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:


I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.


Facility/Site Name:	99 Calef Highway
Operator signature:	Mai DI Mic
Printed Name & Title	Martin F. Hilfinger Senior Project Manager
Date: //	21/14

Remediation General Permit Appendix V - NOI Page 20 of 22

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 7, 2013

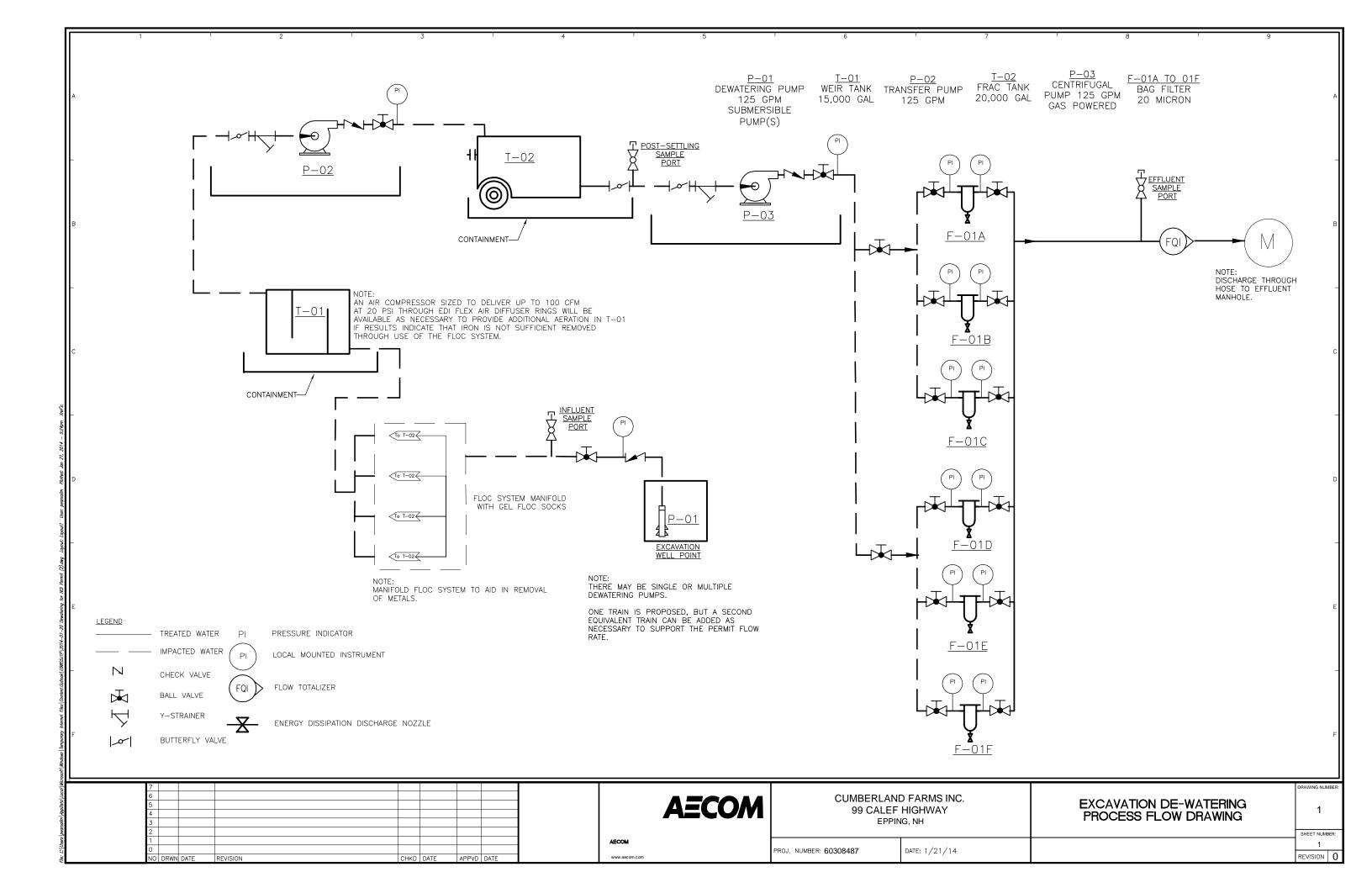
To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

(http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Mr. Brett Hillman of this office at 603-223-2541 if we can be of further assistance.


Sincerely yours, Thomas R. Chapman

Supervisor New England Field Office

Dilution Factor

$$= \left(\frac{Q_d + Q_s}{Q_d}\right) * 0.9$$
$$= \left(\frac{0.56_{cfs} + 3.0_{cfs}}{0.56_{cfs}}\right) * 0.9$$

= 5.72

Sample ID	B-1	
Sample Type		NH AGQS
Date	10/3/2013	
Total Metals by USEPA 6000/7000 Series Meth		
Silver	BDL	0.1
Arsenic	BDL	0.01
Barium	0.0346	2
Cadmium	BDL	0.005
Chromium	0.0072	0.1
Lead	BDL	0.015
Selenium	BDL	0.05
Total Metals by USEPA 200 Series Methods (r		0.00
Mercury	BDL	NSA
NH Full List VOCs by Method 8260 (µg/L)	DDL	Nort
1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	NSA
Acetone	BDL	6000
Acrylonitrile	BDL	5
Benzene	BDL	5
Bromobenzene	BDL	NSA
Bromochloromethane	BDL	NSA
Bromodichloromethane	BDL	0.6
Bromoform	BDL	4
	BDL	10
Bromomethane		
2-Butanone (MEK)	BDL	4000
n-Butylbenzene	BDL	260
sec-Butylbenzene	BDL	260
tert-Butylbenzene	BDL	260
Carbon disulfide	BDL	70
Carbon tetrachloride	BDL BDL	5 100
Chlorobenzene	BDL	NSA
Chloroethane	BDL	
Chloroform Chloromethane	BDL	70 30
2-Chlorotoluene	BDL	100
4-Chlorotoluene	BDL	NSA
1,2-Dibromo-3-chloropropane	BDL	0.2
Dibromochloromethane	BDL	60
1,2-Dibromoethane (EDB)	BDL	0.05
Dibromomethane	BDL	NSA
1,2-Dichlorobenzene	BDL	600
,		
1,3-Dichlorobenzene	BDL	600 75
1,4-Dichlorobenzene	BDL	75
Dichlorodifluoromethane (Freon 12)	BDL	1000
1,1-Dichloroethane	BDL	81
1,2-Dichloroethane	BDL	5
1,1-Dichloroethene	BDL	7
cis-1,2-Dichloroethene	BDL	70
trans-1,2-Dichloroethene	BDL	100
1,2-Dichloropropane	BDL	5
1,3-Dichloropropane	BDL	NSA
2,2-Dichloropropane	BDL	NSA

Sample ID	B-1	
Sample Type	Grab	NH AGQS
Date	10/3/2013	INT AGEO
NH Full List VOCs by Method 8260 (µg/L) (cor		
1,1-Dichloropropene	BDL	NSA
cis-1,3-Dichloropropene	BDL	NSA
trans-1,3-Dichloropropene	BDL	NSA
Ethylbenzene	BDL	700
Hexachlorobutadiene	BDL	0.5
2-Hexanone (MBK)	BDL	010
Isopropylbenzene	BDL	800
4-Isopropyltoluene	BDL	260
SW846 8260C	BDL	13
4-Methyl-2-pentanone (MIBK)	BDL	2000
Methylene chloride	BDL	5
Naphthalene	1.05	20
n-Propylbenzene	BDL	260
Styrene	BDL	100
1,1,1,2-Tetrachloroethane	BDL	70
1,1,2,2-Tetrachloroethane	BDL	2
Tetrachloroethene	BDL	5
		1000
	BDL	
1,2,3-Trichlorobenzene	BDL	NSA
1,2,4-Trichlorobenzene	BDL	70
1,3,5-Trichlorobenzene	BDL	40
1,1,1-Trichloroethane	BDL	200
1,1,2-Trichloroethane	BDL	5
Trichloroethene	BDL	5
Trichlorofluoromethane (Freon 11)	BDL	2000
1,2,3-Trichloropropane	BDL	40
1,2,4-Trimethylbenzene	BDL	330
1,3,5-Trimethylbenzene	BDL	330
Vinyl chloride	BDL	2
m,p-Xylene	BDL	NSA
o-Xylene	BDL	NSA
Tetrahydrofuran	BDL	154
Ethyl ether	BDL	NSA
Tert-amyl methyl ether	BDL	140
Ethyl tert-butyl ether	BDL	40
Di-isopropyl ether	BDL	120
Tert-Butanol / butyl alcohol	BDL	40
1,4-Dioxane	BDL	3
trans-1,4-Dichloro-2-butene	BDL	NSA
Ethanol	BDL	NSA
NH Full List SVOCs by Method 846 3510C (µg	/L)	
Acenaphthene	BDL	420
Acenaphthylene	BDL	420
Aniline	BDL	NSA
Anthracene	BDL	2100
Azobenzene/Diphenyldiazene	BDL	NSA
Benzidine	BDL	0.8

Sample ID B-1									
Sample Type	Grab	NH AGQS							
Date	10/3/2013								
NH Full List SVOCs by Method 846 3510C (µg	/L) (continued)								
Benzo (a) anthracene	BDL	0.1							
Benzo (a) pyrene	BDL	0.2							
Benzo (b) fluoranthene	BDL	0.1							
sss	BDL	210							
Benzo (k) fluoranthene	BDL	0.5							
Benzoic acid	BDL	28000							
Benzyl alcohol	BDL	NSA							
Bis(2-chloroethoxy)methane	BDL	NSA							
Bis(2-chloroethyl)ether	BDL	10							
Bis(2-chloroisopropyl)ether	BDL	NSA							
Bis(2-ethylhexyl)phthalate	BDL	6							
4-Bromophenyl phenyl ether	BDL	NSA							
Butyl benzyl phthalate	BDL	NSA							
Carbazole	BDL	NSA							
4-Chloro-3-methylphenol	BDL	NSA							
4-Chloroaniline	BDL	28							
2-Chloronaphthalene	BDL	NSA							
2-Chlorophenol	BDL	35							
4-Chlorophenyl phenyl ether	BDL	NSA							
Chrysene	BDL	5							
Dibenzo (a,h) anthracene	BDL	0.1							
Dibenzofuran	BDL	NSA							
1,2-Dichlorobenzene	BDL	600							
1,3-Dichlorobenzene	BDL	600							
1,4-Dichlorobenzene	BDL	75							
3,3´-Dichlorobenzidine	BDL	1.3							
2,4-Dichlorophenol	BDL	21							
Diethyl phthalate	BDL	NSA							
Dimethyl phthalate	BDL	50000							
2,4-Dimethylphenol	BDL	140							
Di-n-butyl phthalate	BDL	800							
4,6-Dinitro-2-methylphenol	BDL	NSA							
2,4-Dinitrophenol	BDL	14							
2,4-Dinitrotoluene	BDL	10							
2,6-Dinitrotoluene	BDL	NSA							
Di-n-octyl phthalate	BDL	NSA							
Fluoranthene	BDL	280							
Fluorene	BDL	280							
Hexachlorobenzene	BDL	1							
Hexachlorobutadiene	BDL	0.5							
Hexachlorocyclopentadiene	BDL	50							
Hexachloroethane	BDL	1							
Indeno (1,2,3-cd) pyrene	BDL	0.1							
Isophorone	BDL	100							
2-Methylnaphthalene	BDL	280							
2-Methylphenol	BDL	40							
3 & 4-Methylphenol	BDL	NSA							

Sample ID	B-1	
Sample Type	Grab	NH AGQS
Date	10/3/2013	
NH Full List SVOCs by Method 846 3510C (µg		
Naphthalene	BDL	20
2-Nitroaniline	BDL	NSA
3-Nitroaniline	BDL	NSA
4-Nitroaniline	BDL	NSA
Nitrobenzene	BDL	NSA
2-Nitrophenol	BDL	NSA
4-Nitrophenol	BDL	NSA
N-Nitrosodimethylamine	BDL	NSA
N-Nitrosodi-n-propylamine	BDL	NSA
N-Nitrosodiphenylamine	BDL	NSA
Pentachlorophenol	BDL	1
Phenanthrene	BDL	210
Phenol	BDL	4000
Pyrene	BDL	210
Pyridine	BDL	NSA
1,2,4-Trichlorobenzene	BDL	70
1-Methylnaphthalene	BDL	NSA
2,4,5-Trichlorophenol	BDL	700
2,4,6-Trichlorophenol	BDL	5
Pentachloronitrobenzene	BDL	NSA
1,2,4,5-Tetrachlorobenzene	BDL	NSA
General Chemistry Parameters		
Flashpoint	>150° F	NSA
рН	5.84	NSA

Notes:

bgs - below ground surface ppm_v - parts per million by volume μg/L - micrograms per Liter, equivalent to parts per billion VOCs - Volatile Organic Compounds SVOCs - Semivolatile Organic Compounds PID - photoionization detector NH AGQS - New Hampshire Ambient Groundwater Quality Standards, Env-Or 600 BDL - below detection limit NSA - No standard available °F - degrees Fahrenheit Spectrum Analytical, Inc. - Criteria Comparison - Generated 12/23/2013 2:26 PM Client ID: Trip Blank Matrix: Aqueous Sampled: 10/3/2013

Method / Analyte	Units	Result	RDL	NH AGQS
SW846 8260C				
1,1,2-Trichlorotrifluoroethane (Freon 113)	µg/l	BRL	1	
Acetone	µg/l	BRL	10	6000
Acrylonitrile	µg/l	BRL	0.5	5
Benzene	µg∕l	BRL	1	5
Bromobenzene	µg∕l	BRL	1	
Bromochloromethane	µg∕l	BRL	1	
Bromodichloromethane	µg∕l	BRL	0.5	0.6
Bromoform	µg∕l	BRL	1	4
Bromomethane	µg∕l	BRL	2	10
2-Butanone (MEK)	µg∕l	BRL	10	4000
n-Butylbenzene	µg∕l	BRL	1	260
sec-Butylbenzene	µg∕l	BRL	1	260
tert-Butylbenzene	µg∕l	BRL	1	260
Carbon disulfide	µg∕l	BRL	2	70
Carbon tetrachloride	µg∕l	BRL	1	5
Chlorobenzene	µg/l	BRL	1	100
Chloroethane	µg∕l	BRL	2	
Chloroform	µg/l	BRL	1	70
Chloromethane	µg/l	BRL	2	30
2-Chlorotoluene	µg/l	BRL	1	100
4-Chlorotoluene	µg/l	BRL	1	
1,2-Dibromo-3-chloropropane	µg/l	BRL	2	0.2
Dibromochloromethane	µg/l	BRL	0.5	60
1,2-Dibromoethane (EDB)	µg/l	BRL	0.5	0.05
Dibromomethane	µg/l	BRL	1	
1,2-Dichlorobenzene	µg/l	BRL	1	600
1,3-Dichlorobenzene	µg/l	BRL	1	600
1,4-Dichlorobenzene	µg/l	BRL	1	75
Dichlorodifluoromethane (Freon12)	µg/l	BRL	2	1000
1,1-Dichloroethane	µg/l	BRL	1	81
1,2-Dichloroethane	µg/l	BRL	1	5
1,1-Dichloroethene	µg/l	BRL	1	7
cis-1,2-Dichloroethene	µg/l	BRL	1	70
trans-1,2-Dichloroethene	µg/l	BRL	1	100
1,2-Dichloropropane	µg/l	BRL	1	5
1,3-Dichloropropane	µg/l	BRL	1	
2,2-Dichloropropane	µg/l	BRL	1	
1,1-Dichloropropene	µg/l	BRL	1	
cis-1,3-Dichloropropene	µg/l	BRL	0.5	
trans-1,3-Dichloropropene	µg/l	BRL	0.5	700
Ethylbenzene	µg/l	BRL	1	700
Hexachlorobutadiene	µg/l	BRL	0.5	0.5

2-Hexanone (MBK)	µg/l	BRL	10	
Isopropylbenzene	μg/l	BRL	1	800
4-Isopropyltoluene	μg/l	BRL	1	260
Methyl tert-butyl ether	µg/l	BRL	1	13
4-Methyl-2-pentanone (MIBK)	µg/l	BRL	10	2000
Methylene chloride	µg/l	BRL	2	5
Naphthalene	μg/l	BRL	1	20
n-Propylbenzene	μg/l	BRL	1	260
Styrene	µg/l	BRL	1	100
1,1,1,2-Tetrachloroethane	µg/l	BRL	1	70
1,1,2,2-Tetrachloroethane	µg/l	BRL	0.5	2
Tetrachloroethene	µg/l	BRL	1	5
Toluene	µg/l	BRL	1	1000
1,2,3-Trichlorobenzene	µg/l	BRL	1	
1,2,4-Trichlorobenzene	µg/l	BRL	1	70
1,3,5-Trichlorobenzene	µg/l	BRL	1	40
1,1,1-Trichloroethane	µg/l	BRL	1	200
1,1,2-Trichloroethane	µg∕l	BRL	1	5
Trichloroethene	µg/l	BRL	1	5
Trichlorofluoromethane (Freon 11)	µg/l	BRL	1	2000
1,2,3-Trichloropropane	µg/l	BRL	1	40
1,2,4-Trimethylbenzene	µg/l	BRL	1	330
1,3,5-Trimethylbenzene	µg∕l	BRL	1	330
Vinyl chloride	µg/l	BRL	1	2
m,p-Xylene	µg/l	BRL	2	
o-Xylene	µg/l	BRL	1	
Tetrahydrofuran	µg/l	BRL	2	154
Ethyl ether	µg/l	BRL	1	
Tert-amyl methyl ether	µg/l	BRL	1	140
Ethyl tert-butyl ether	µg/l	BRL	1	40
Di-isopropyl ether	µg/l	BRL	1	120
Tert-Butanol / butyl alcohol	µg/l	BRL	10	40
1,4-Dioxane	µg/l	BRL	20	3
trans-1,4-Dichloro-2-butene	µg/l	BRL	5	
Ethanol	µg/l	BRL	400	

Comparison criteria values are provided as a convenience for client review.

The user should verify that these values are the most current, and that concentrations and units are accurate.

Please report any discrepancies to our Quality Assurance Department.

Report Date: 20-Jan-14 14:21

Final ReportRe-Issued ReportRevised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Laboratory Report

AECOM Environment 250 Apollo Drive Chelmsford, MA 01824 Attn: Cheryl Cormier

Project: CFI - Epping , NH Project #: 60308487

Laboratory ID	Client Sample ID	Matrix	Date Sampled	Date Received
SB83173-01	MW-1	Ground Water	13-Jan-14 16:25	14-Jan-14 10:50

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Juiole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 14 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 4.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 245.1/7470A

Samples:

SB83173-01 MW-1

The Reporting Limit has been raised to account for matrix interference. Mercury

SM4500-Cl-G

Samples:

SB83173-01 MW-1

The Reporting Limit has been raised to account for matrix interference. Total Residual Chlorine

SW846 6010C

Spikes:

1401253-MSD1 Source: SB83173-01

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Iron

1401253-PS1 Source: SB83173-01

The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

Iron

Samples:

SB83173-01 MW-1

IMRL raised to correlate to batch QC reporting limits.

Zinc

SW846 7196A/SM3500CrD

Samples:

SB83173-01 MW-1

The Reporting Limit has been raised to account for matrix interference.

Hexavalent Chromium

Sample Acceptance Check Form

Client:	AECOM Environment - Chelmsford, MA
Project:	CFI - Epping , NH / 60308487
Work Order:	SB83173
Sample(s) received on:	1/14/2014
Received by:	Allison Edens

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

- 1. Were custody seals present?
- 2. Were custody seals intact?
- 3. Were samples received at a temperature of $\leq 6^{\circ}$ C?
- 4. Were samples cooled on ice upon transfer to laboratory representative?
- 5. Were samples refrigerated upon transfer to laboratory representative?
- 6. Were sample containers received intact?
- 7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?
- 8. Were samples accompanied by a Chain of Custody document?
- 9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?
- 10. Did sample container labels agree with Chain of Custody document?
- 11. Were samples received within method-specific holding times?

Sample Identification MW-1 SB83173-01			<u>Client Project #</u> 60308487			<u>Matrix</u> Ground Wa		ollection Date/Time 13-Jan-14 16:25		<u>Received</u> 14-Jan-14			
CAS No.	Analyte(s)	Result F	lag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Gasoline R	Drganic Compounds ange Organics I by method VPH - EPA 503	30C Water											
	Gasoline Range Organics (C5-C12)	< 0.4 D		mg/l	0.4	0.009	5	Mod 8015	16-Jan-14	17-Jan-14	mp	1401113	Х
Surrogate re	coveries:												
615-59-8	2,5-Dibromotoluene (PID)	88			70-13	0 %		н			"		
615-59-8	2,5-Dibromotoluene (FID)	95			70-13	0 %		н			"		
Semivola	tile Organic Compounds by (GC											
	<u>ated Biphenyls</u> I by method SW846 3510C												
12674-11-2	Aroclor-1016	< 0.208		µg/l	0.208	0.0766	1	SW846 8082A	16-Jan-14	17-Jan-14	IMR	1401106	Х
11104-28-2	Aroclor-1221	< 0.208		μg/l	0.208	0.132	1				"		х
11141-16-5	Aroclor-1232	< 0.208		µg/l	0.208	0.108	1				"		х
53469-21-9	Aroclor-1242	< 0.208		µg/l	0.208	0.124	1	н			"		Х
12672-29-6	Aroclor-1248	< 0.208		µg/l	0.208	0.108	1	н			"		Х
11097-69-1	Aroclor-1254	< 0.208		µg/l	0.208	0.136	1				"		Х
11096-82-5	Aroclor-1260	< 0.208		µg/l	0.208	0.114	1	II		н	"		Х
37324-23-5	Aroclor-1262	< 0.208		µg/l	0.208	0.144	1				"		Х
11100-14-4	Aroclor-1268	< 0.208		µg/l	0.208	0.0859	1				"		Х
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	55			30-15	0 %		ı		n	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	60			30-15	0 %		n			"		
2051-24-3	Decachlorobiphenyl (Sr)	55			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	50			30-15	i0 %				u	"		
Diesel Ran	ole Petroleum Hydrocarbons ge Organics I by method SW846 3510C												
68476-30-2	Fuel Oil #2	< 0.2		mg/l	0.2	0.2	1	8015DM	15-Jan-14	16-Jan-14	SEP	1401054	
68476-31-3	Fuel Oil #4	< 0.2		mg/l	0.2	0.02	1				"		
68553-00-4	Fuel Oil #6	< 0.2		mg/l	0.2	0.2	1				"		
M09800000	Motor Oil	< 0.2		mg/l	0.2	0.2	1	I		н	"		
J00100000	Aviation Fuel	< 0.2		mg/l	0.2	0.06	1	н			"		
	Unidentified	< 0.2		mg/l	0.2	0.06	1				"		
	Other Oil	< 0.2		mg/l	0.2	0.02	1	II		н	"		
	Diesel Range Organics (DRO) C10-C28	< 0.2		mg/l	0.2	0.2	1	n		п	"		Х
Surrogate re	coveries:												
3386-33-2	1-Chlorooctadecane	56			40-14	0 %		н			"		
Total Me	tals by EPA 200/6000 Series	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			BJW	1400939	
	tals by EPA 6000/7000 Series												
7440-47-3	Chromium	0.0145		mg/l	0.0050	0.0009	1	SW846 6010C	17-Jan-14	20-Jan-14	TBC	1401253	Х
7440-50-8	Copper	0.0130		mg/l	0.0050	0.0011	1			17-Jan-14	"		Х
7439-89-6	Iron	12.2		mg/l	0.0150	0.0074	1	н					Х

This laboratory report is not valid without an authorized signature on the cover page.

Sample Identification MW-1 SB83173-01		<u>Client Project #</u> 60308487			<u>Matrix</u> Ground Water		Collection Date/Time 13-Jan-14 16:25		<u>Received</u> 14-Jan-14				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Met	als by EPA 6000/7000 Serie	es Methods											
7440-02-0	Nickel	0.0086		mg/l	0.0050	0.0007	1	SW846 6010C	17-Jan-14	17-Jan-14	EDT	1401253	Х
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0014	1			н	"		Х
7440-66-6	Zinc	< 0.0350	R06	mg/l	0.0350	0.0020	1			20-Jan-14	"		Х
Total Met	als by EPA 200 Series Meth	rods											
7439-97-6	Mercury	< 0.00030	R01	mg/l	0.00030	0.00008	1	EPA 245.1/7470A	17-Jan-14	20-Jan-14	LR	1401254	Х
General C	hemistry Parameters												
16065-83-1	Trivalent Chromium	0.0145		mg/l	0.0100	0.0053	1	Calculation	17-Jan-14	20-Jan-14	TBC	1401253	
7782-50-5	Total Residual Chlorine	< 0.200	R01,CIHT	mg/l	0.200	0.056	1	SM4500-CI-G	14-Jan-14 16:12	14-Jan-14 16:12	BD	1400962	
16887-00-6	Chloride	17.9		mg/l	1.00	0.124	1	EPA 300.0	14-Jan-14	14-Jan-14	EE	1400858	Х
18540-29-9	Hexavalent Chromium	< 0.050	R01,LIV	mg/l	0.050	0.015	1	SW846 7196A/SM3500CrD	14-Jan-14 11:50	14-Jan-14 12:01	TD/CA	1400925	Х
57-12-5	Cyanide (total)	< 0.00500		mg/l	0.00500	0.00360	1	EPA 335.4 / SW846 9012B	17-Jan-14	18-Jan-14	RLT	1401289	Х
	Total Suspended Solids	161		mg/l	5.0	1.7	1	SM2540D	14-Jan-14	16-Jan-14	CMB	1400901	Х

Volatile Organic Compounds - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1401113 - VPH - EPA 5030C Water										
Blank (1401113-BLK1)					Pre	pared: 16-Jan	-14 Analyzed	: 17-Jan-14		
Gasoline Range Organics (C5-C12)	< 0.4		mg/l	0.4						
Surrogate: 2,5-Dibromotoluene (PID)	42.1		mg/l		50.0		84	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	45.8		mg/l		50.0		92	70-130		
LCS (1401113-BS1)					Pre	pared: 16-Jan	-14 Analyzed	: 17-Jan-14		
Gasoline Range Organics (C5-C12)	272		mg/l		280		97	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	46.2		mg/l		50.0		92	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	50.7		mg/l		50.0		101	70-130		
LCS Dup (1401113-BSD1)					Pre	pared: 16-Jan	-14 Analyzed	: 17-Jan-14		
Gasoline Range Organics (C5-C12)	279		mg/l		280		100	70-130	3	25
Surrogate: 2,5-Dibromotoluene (PID)	46.1		mg/l		50.0		92	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	50.4		mg/l		50.0		101	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC	RPD	RPI Lim
narytų sj	Kesun	Flag	Units	KDL	Level	Result	/0REU	Limits	κrυ	Lim
atch 1401106 - SW846 3510C										
<u>Blank (1401106-BLK1)</u>					Pre	pared: 16-Jan	-14 Analyzed:	17-Jan-14		
Aroclor-1016	< 0.200		µg/l	0.200						
Aroclor-1016 [2C]	< 0.200		µg/l	0.200						
Aroclor-1221	< 0.200		µg/l	0.200						
Aroclor-1221 [2C]	< 0.200		µg/l	0.200						
Aroclor-1232	< 0.200		µg/l	0.200						
Aroclor-1232 [2C]	< 0.200		µg/l	0.200						
Aroclor-1242	< 0.200		µg/l	0.200						
Aroclor-1242 [2C]	< 0.200		µg/l	0.200						
Aroclor-1248	< 0.200		µg/l	0.200						
Aroclor-1248 [2C]	< 0.200		µg/l	0.200						
Aroclor-1254	< 0.200		µg/l	0.200						
Aroclor-1254 [2C]	< 0.200		µg/l	0.200						
Aroclor-1260	< 0.200		µg/l	0.200						
Aroclor-1260 [2C]	< 0.200		µg/l	0.200						
Aroclor-1262	< 0.200		µg/l	0.200						
Aroclor-1262 [2C]	< 0.200		µg/l	0.200						
Aroclor-1268	< 0.200		µg/l	0.200						
Aroclor-1268 [2C]	< 0.200		µg/l	0.200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.160		µg/l		0.200		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.170		µg/l		0.200		85	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.190		µg/l		0.200		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.180		µg/l		0.200		90	30-150		
LCS (1401106-BS1)					Pre	pared: 16-Jan	-14 Analyzed:	17-Jan-14		
Aroclor-1016	2.00		µg/l	0.200	2.50		80	40-140		
Aroclor-1016 [2C]	2.07		µg/l	0.200	2.50		83	40-140		
Aroclor-1260	2.12		µg/l	0.200	2.50		85	40-140		
Aroclor-1260 [2C]	1.98		μg/l	0.200	2.50		79	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.160		μg/l		0.200		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.160		µg/l		0.200		80	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.190		μg/l		0.200		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.170		μg/l		0.200		85	30-150		
LCS Dup (1401106-BSD1)						pared: 16-Jan	-14 Analyzed:	17-Jan-14		
Aroclor-1016	2.00		µg/l	0.200	2.50		80	40-140	0	20
Aroclor-1016 [2C]	2.14		μg/l	0.200	2.50		86	40-140	3	20
Aroclor-1260	2.12		µg/l	0.200	2.50		85	40-140	0	20
Aroclor-1260 [2C]	2.05		μg/l	0.200	2.50		82	40-140	3	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.160		μg/l		0.200		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.170		µg/l		0.200		85	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.190		μg/l		0.200		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.180		μg/l		0.200		90	30-150		

			-		-					
.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1401054 - SW846 3510C										
Blank (1401054-BLK1)					Pre	pared: 15-Jan	-14 Analyzed	: 16-Jan-14		
Fuel Oil #2	< 0.2		mg/l	0.2						
Fuel Oil #4	< 0.2		mg/l	0.2						
Fuel Oil #6	< 0.2		mg/l	0.2						
Motor Oil	< 0.2		mg/l	0.2						
Aviation Fuel	< 0.2		mg/l	0.2						
Unidentified	< 0.2		mg/l	0.2						
Other Oil	< 0.2		mg/l	0.2						
Diesel Range Organics (DRO) C10-C28	< 0.2		mg/l	0.2						
Surrogate: 1-Chlorooctadecane	0.0275		mg/l		0.0500		55	40-140		
LCS (1401054-BS2)					Pre	pared: 15-Jan	-14 Analyzed	: 16-Jan-14		
Fuel Oil #2	8.6		mg/l	0.2	10.0		86	40-140		
Surrogate: 1-Chlorooctadecane	0.0432		mg/l		0.0500		86	40-140		
LCS Dup (1401054-BSD2)					Pre	pared: 15-Jan	-14 Analyzed	: 16-Jan-14		
Fuel Oil #2	9.0		mg/l	0.2	10.0		90	40-140	5	200
Surrogate: 1-Chlorooctadecane	0.0473		mg/l		0.0500		95	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1401253 - SW846 3005A										
Blank (1401253-BLK1)					Pre	pared & Analy	zed: 17-Jan-1	4		
Iron	< 0.0150		mg/l	0.0150						
Antimony	< 0.0060		mg/l	0.0060						
Nickel	< 0.0050		mg/l	0.0050						
Zinc	< 0.0350		mg/l	0.0350						
Copper	< 0.0050		mg/l	0.0050						
Chromium	< 0.0050		mg/l	0.0050						
LCS (1401253-BS1)					Pre	pared & Analy	zed: 17-Jan-1	4		
Iron	1.32		mg/l	0.0150	1.25		106	85-115		
Copper	1.40		mg/l	0.0050	1.25		112	85-115		
Chromium	1.33		mg/l	0.0050	1.25		107	85-115		
Nickel	1.36		mg/l	0.0050	1.25		109	85-115		
Antimony	1.32		mg/l	0.0060	1.25		105	85-115		
Zinc	1.26		mg/l	0.0350	1.25		101	85-115		
LCS Dup (1401253-BSD1)					Pre	pared & Analy	zed: 17-Jan-1	4		
Iron	1.34		mg/l	0.0150	1.25		107	85-115	1	20
Zinc	1.26		mg/l	0.0350	1.25		101	85-115	0.5	20
Chromium	1.30		mg/l	0.0050	1.25		104	85-115	2	20
Copper	1.36		mg/l	0.0050	1.25		109	85-115	2	20
Antimony	1.35		mg/l	0.0060	1.25		108	85-115	2	20
Nickel	1.35		mg/l	0.0050	1.25		108	85-115	0.8	20
Matrix Spike (1401253-MS1)			Source: SI	B83173-01	Pre	pared & Analy	zed: 17-Jan-1	4		
Iron	13.2		mg/l	0.0150	1.25	12.2	77	75-125		
Chromium	1.28		mg/l	0.0050	1.25	0.0145	101	75-125		
Antimony	1.24		mg/l	0.0060	1.25	0.0019	99	75-125		
Nickel	1.24		mg/l	0.0050	1.25	0.0086	99	75-125		
Copper	1.31		mg/l	0.0050	1.25	0.0130	104	75-125		
Zinc	1.24		mg/l	0.0350	1.25	0.0335	97	75-125		
Matrix Spike Dup (1401253-MSD1)			Source: SI	B83173-01	Pre	pared & Analy	zed: 17-Jan-1	4		
Iron	13.9	QM4X	mg/l	0.0150	1.25	12.2	134	75-125	5	20
Chromium	1.28		mg/l	0.0050	1.25	0.0145	102	75-125	0.4	20
Copper	1.32		mg/l	0.0050	1.25	0.0130	105	75-125	1	20
Nickel	1.26		mg/l	0.0050	1.25	0.0086	100	75-125	2	20
Antimony	1.26		mg/l	0.0060	1.25	0.0019	100	75-125	1	20
Zinc	1.26		mg/l	0.0350	1.25	0.0335	98	75-125	1	20
Post Spike (1401253-PS1)			Source: SI	B83173-01	Pre	pared & Analy	zed: 17-Jan-1	4		
Iron	12.3	QM4X	mg/l	0.0150	1.25	12.2	10	80-120		
Copper	1.47		mg/l	0.0050	1.25	0.0130	116	80-120		
Zinc	1.23		mg/l	0.0350	1.25	0.0335	96	80-120		
Chromium	1.28		mg/l	0.0050	1.25	0.0145	101	80-120		
Nickel	1.39		mg/l	0.0050	1.25	0.0086	110	80-120		
			-							

Antimony

mg/l

1.36

0.0060

1.25

0.0019

109

80-120

Total Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1401254 - EPA200/SW7000 Series										
Blank (1401254-BLK1)					Pre	pared: 17-Jan-	14 Analyzed:	20-Jan-14		
Mercury	< 0.00030		mg/l	0.00030						
LCS (1401254-BS1)					Pre	pared: 17-Jan-	14 Analyzed	20-Jan-14		
Mercury	0.00444		mg/l	0.00030	0.00500		89	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1400858 - General Preparation										
Blank (1400858-BLK1)					Prep	pared & Analy	zed: 14-Jan-14			
Chloride	< 1.00		mg/l	1.00						
LCS (1400858-BS1)					Prep	pared & Analy	zed: 14-Jan-14			
Chloride	20.7		mg/l	1.00	20.0		103	90-110		
Reference (1400858-SRM1)					Prep	pared & Analy	zed: 14-Jan-14			
Chloride	25.5		mg/l	1.00	25.0		102	90-110		
Batch 1400901 - General Preparation										
Blank (1400901-BLK1)					Pre	pared: 14-Jan	-14 Analyzed:	16-Jan-14		
Total Suspended Solids	< 5.0		mg/l	5.0						
LCS (1400901-BS1)			0		Prer	oared: 14-Jan	-14 Analyzed:	16-Jan-14		
Total Suspended Solids	108		mg/l	10.0	100		108	90-110		
Batch 1400925 - General Preparation								00110		
Blank (1400925-BLK1)					Pror	arad & Analy	zed: 14-Jan-14			
Hexavalent Chromium	< 0.005		mg/l	0.005	Fiel	Jareu & Ariaiy	2eu. 14-Jan-14			
	< 0.000		ilig/i	0.000	Dree	anad Q Analy				
LCS (1400925-BS1)	0.052			0.005		bared & Analy	<u>zed: 14-Jan-14</u> 104	00.100		
Hexavalent Chromium	0.052		mg/l	0.005	0.0500			80-120		
Calibration Blank (1400925-CCB1)					Prep	bared & Analy	zed: 14-Jan-14			
Hexavalent Chromium	-0.0002		mg/l							
Calibration Blank (1400925-CCB2)					Prep	pared & Analy	zed: 14-Jan-14			
Hexavalent Chromium	0.0002		mg/l							
Calibration Check (1400925-CCV1)						pared & Analy	zed: 14-Jan-14			
Hexavalent Chromium	0.052		mg/l	0.005	0.0500		104	90-110		
Calibration Check (1400925-CCV2)					Prep	pared & Analy	zed: 14-Jan-14			
Hexavalent Chromium	0.052		mg/l	0.005	0.0500		105	90-110		
Duplicate (1400925-DUP1)			Source: SE	<u>383173-01</u>	Prep	pared & Analy	zed: 14-Jan-14			
Hexavalent Chromium	< 0.050		mg/l	0.050		BRL				20
Matrix Spike (1400925-MS1)			Source: SE	<u>383173-01</u>	Prep	pared & Analy	zed: 14-Jan-14			
Hexavalent Chromium	0.463		mg/l	0.050	0.500	BRL	93	85-115		
Matrix Spike Dup (1400925-MSD1)			Source: SE	<u>383173-01</u>	Prep	pared & Analy	zed: 14-Jan-14			
Hexavalent Chromium	0.467		mg/l	0.050	0.500	BRL	93	85-115	0.9	20
Reference (1400925-SRM1)					Prep	pared & Analy	zed: 14-Jan-14			
Hexavalent Chromium	0.025		mg/l	0.005	0.0250		102	85-115		
Batch 1400962 - General Preparation										
Blank (1400962-BLK1)					Prep	pared & Analy	zed: 14-Jan-14			
Total Residual Chlorine	< 0.020		mg/l	0.020						
LCS (1400962-BS1)			·		Pre	pared & Analv	zed: 14-Jan-14			
Total Residual Chlorine	0.048		mg/l	0.020	0.0500		96	90-110		
Calibration Blank (1400962-CCB1)			5			ared & Analy	zed: 14-Jan-14			
Total Residual Chlorine	0.001		mg/l		<u>- 10</u>	Jaroa a Anlary	200. 14 0011 14			
Calibration Blank (1400962-CCB2)			ingri		Pror	ared & Analy	zed: 14-Jan-14			
Total Residual Chlorine	0.002		mg/l			area a Anaiy	<u>260. 14-0011-14</u>			
	0.002		ing/l		Drow	arad & Anch	70d: 14 lon 14			
Calibration Check (1400962-CCV1) Total Residual Chlorine	0.050		mg/l	0.020	<u>Pre</u> 0.0500	Jaieu & Alidly	<u>zed: 14-Jan-14</u> 100	90-110		
	0.000		mg/1	0.020		arad ⁰ Are-1		30-110		
Calibration Check (1400962-CCV2)	0.040		m~//	0.020		Jareu & Analy	2ed: 14-Jan-14	00 110		
Total Residual Chlorine	0.049		mg/l	0.020	0.0500		98	90-110		
Duplicate (1400962-DUP1)			Source: SE		Prep		zed: 14-Jan-14			a -
Total Residual Chlorine	0.210		mg/l	0.200		0.180			15	20
Matrix Spike (1400962-MS1)			Source: SE				zed: 14-Jan-14			
Total Residual Chlorine	0.650		mg/l	0.200	0.500	0.180	94	80-120		
Matrix Spike Dup (1400962-MSD1)			Source: SE	<u>383173-01</u>	Prep	pared & Analy	zed: 14-Jan-14			

This laboratory report is not valid without an authorized signature on the cover page.

General	Chemistry	Parameters -	Quality	Control
---------	-----------	--------------	---------	---------

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1400962 - General Preparation										
Matrix Spike Dup (1400962-MSD1)			Source: S	B83173-01	Pre	pared & Analy	zed: 14-Jan-14	<u>1</u>		
Total Residual Chlorine	0.660		mg/l	0.200	0.500	0.180	96	80-120	2	200
Reference (1400962-SRM1)					Pre	pared & Analy	zed: 14-Jan-14	<u>1</u>		
Total Residual Chlorine	0.106		mg/l	0.020	0.114		93	85-115		
Batch 1401289 - General Preparation										
Blank (1401289-BLK1)					Pre	pared: 17-Jan-	-14 Analyzed	: 18-Jan-14		
Cyanide (total)	< 0.00500		mg/l	0.00500						
LCS (1401289-BS1)					Pre	pared: 17-Jan	14 Analyzed	: 18-Jan-14		
Cyanide (total)	0.272		mg/l	0.00500	0.300		91	90-110		
Reference (1401289-SRM1)					Pre	pared: 17-Jan	14 Analyzed	: 18-Jan-14		
Cyanide (total)	0.151		mg/l	0.00500	0.168		90	74.9-125		

Notes and Definitions

- D Data reported from a dilution
- QM4X The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
- R01 The Reporting Limit has been raised to account for matrix interference.
- R06 IMRL raised to correlate to batch QC reporting limits.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are considered out of hold time at the time of sample receipt.
- LIV The initial volume for this sample has been reduced due to sample matrix and/or historical data therefore elevating the reporting limit.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc. Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel Fuel Oil #4 - includes #4 fuel oil Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil Motor Oil - includes virgin and waste automobile oil Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha Aviation Fuel - includes kerosene, Jet A and JP-4 Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Nicole Leja Rebecca Merz

1	Relinquished by:	Lab Id: Sample Id: March March 83173-01 March	DW=Drinking Water GW=Groundwater O=Oil SW= Surface Water SO=Soil X1=X2= G=Grab C=Composi	DIFN	HECOM HECOM DECOLONIC HECOLONIC	SPECTRUM ANALYTICAL, INC. Feaming HANBAL TECHNOLOGY
	Received by:	1/13/14 1625 C Type	SO=Soil SL=Sludge A=Air X3= C=Composite	$c \int \partial \sqrt{c} F_{fp} P.O. No.:$ $4 = 4 = HNO_3 = NaOH$ $10 = H_3 PO_4 = 11 = 10$	A 0/824 Farm	CHAIN OF CUSTO
	01/14-14 10:50	Image: Second state Image: Second state Image:	/OA Vials Containers Amber Glass Containers Clear Glass Plastic	6=Ascorbic Acid 7=CH ₃ OH	5 Umberiand	F CUSTODY R
I I I I	Temp ^o C = EDD Format 	Chive Chiv		Sampler(s): $H P Q M$ $G_{POS} S M Q$ List preservative code below: QA/QC Reporting Notes: 5 2 2 4 4 * additional charges may apply	Project No.: 60308487 Site Name: Frring, NH Cay Caller Hay Location: Frring State: YH	RECORD Special Handling: Special Handling: Specia

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Revised Feb 2013

Material Safety Data Sheet

HaloKlear: Gel-Floc

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

Manufacturer's Name: Corporate Address: Manufacturer's Telephone: Emergency Telephone (24 Hours):

Material/Trade/Product Name: Synonyms: Chemical Name: Chemical Formula: CAS No.: Product Use: HaloSource, Inc. 1631 220th St. SE, Suite 100, Bothell, WA 98021 (425) 881-6464 (Monday-Friday, 8AM-5PM PDT) 800-424-9300 CHEMTREC (Domestic, North America) 703-527-3887 CHEMTREC (International, collect calls accepted) **HaloKlear: Gel-Floc MB** Chitosan Lactate Chitosan, 2-hydroxypropanoate (salt) Not available 66267-50-3 Flocculates soil contamination in storm water.

SECTION 2: COMPOSITION/INFORMATION ON INGREDIENTS

CAS NO.	HAZARDOUS INGREDIENT (S)	%	OSHA HAZARDOUS?
Trade Secret	Trade Secret	85 – 95	YES
Trade Secret	Trade Secret	15 – 5	YES

NOTE: See Section 8 for permissible exposure limits.

SECTION 3: HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

A fine, off-white powder with no odor.

This material/product may cause eye or skin irritation.

POTENTIAL HEALTH EFFECTS

EYE: May cause mechanical irritation. Will tend to form film on the surface of the eye causing blurred vision.

SKIN: Possible skin irritation or rash.

INHALATION: May aggravate pre-existing respiratory conditions or allergies. It may accumulate on linings of the nose and lungs resulting in dryness & coughing.

INGESTION: While it is not likely to be hazardous by ingestion, it may start dissolving and form a film on mucous membranes.

CHRONIC EXPOSURE/CARCINOGENICITY: Not known.

SIGNS AND SYMPTOMS OF OVEREXPOSURE: May cause mechanical irritation. Will tend to form film on the surface of the eye causing blurred vision. Skin irritation. It may accumulate on linings of the nose and lungs resulting in dryness & coughing. May start dissolving and form a film on mucous membranes.

AGGRAVATION OF PRE-EXISTING CONDITIONS: May aggravate pre-existing respiratory conditions or allergies.

POTENTIAL ENVIRONMENTAL EFFECTS: Avoid water if material is spilled; water will dissolve chitosan lactate forming a thick viscous solution or gelatinous mass.

SECTION 4: FIRST AID MEASURES

FIRST AID PROCEDURES

EYE CONTACT: Remove contact lenses (when applicable) and flush eyes with water for 15 minutes. Get medical attention if irritation persists.

SKIN CONTACT: Wash with soap and water. Get medical attention if irritation develops or persists.

INHALATION: If exposed to excessive levels of dust, remove to fresh air and get medical attention if cough or other symptoms develop.

INGESTION: Never give anything by mouth to an unconscious person. If swallowed, do not induce vomiting. Give large quantities of water. If available give several glasses of milk. Call a physician or poison control center immediately.

NOTE TO PHYSICIANS: None.

SECTION 5: FIRE FIGHTING MEASURES

FLASH POINT: Not available UPPER FLAMMABLE LIMIT: Not available FLAMMABLITY CLASS (OSHA): Not applicable AUTOIGNITION TEMPERATURE: Not available LOWER FLAMMABLE LIMIT: Not available FLAME PROPAGATION/BURNING RATE: Not available

UNIQUE FIRE PROPERTIES: Keep away from oxidizing agents and avoid open flames. Product may ignite at temperatures in excess of 400°F. Depending on moisture content and particle size, airborne dust of Chitosan lactate might explode in the presence of an ignition source. It is comparable to flour and wood dust.

HAZARDOUS COMBUSTION PRODUCTS: None known

EXTINGUISHING MEDIA: Water spray, CO₂ (carbon dioxide), foam or dry chemical.

PROTECTION OF FIREFIGHTERS: Do not enter confined fire space without full bunker gear (helmet with face shield, bunker coat, gloves and rubber boots), including a positive pressure NIOSH approved self-contained breathing apparatus. Water may be used to keep fire-exposed containers cool until fire is out.

SECTION 6: ACCIDENTAL RELEASE MEASURES

PERSONAL PROTECTIVE EQUIPMENT: See Section 8 (Personal Protective Equipment).

ENVIRONMENTAL PRECAUTIONS: AVOID WATER; water will dissolve chitosan lactate forming a thick viscous solution or gelatinous mass.

METHODS FOR CLEANING UP: The material may be vacuumed or collected for recovery or disposal.

SECTION 7: HANDLING AND STORAGE

SAFE HANDLING RECOMMENDATIONS

VENTILATION: Use with adequate ventilation.

FIRE PREVENTION: No special requirements.

SPECIAL HANDLING REQUIREMENTS: None.

SAFE STORAGE RECOMMENDATIONS

CONTAINMENT: Keep container closed when not in use.

STORAGE ROOM RECOMMENDATIONS: Store in cool, dry areas and away from incompatible substances.

INCOMPATIBLE MATERIALS: Strong oxidizing agents.

STORAGE CONDITIONS: Store in cool, dry areas and away from incompatible substances.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: No special ventilation is required. None required under normal conditions of use.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

EYE/FACE PROTECTION: For operations where eye contact can occur, wear safety glasses.

SKIN PROTECTION: For operations where skin contact can occur, wear impervious rubber or neoprene apron.

HAND PROTECTION: For operations where hand contact can occur, wear impervious rubber or neoprene gloves.

RESPIRATORY PROTECTION: If dust is generated, a dust mask may be needed. A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.

GOOD HYGEIENE/WORK PRACTICES: Always follow good hygiene/work practices by avoiding vapors or mists and contact with eyes and skin. Thoroughly wash hands after handling and before eating or drinking. Always wear the appropriate PPE when repairing or performing maintenance on contaminated equipment.

EXPOSURE GUIDELINES

PERMISSIBLE EXPOSURE LIMITS						
INGREDIENT	OSHA		WISHA		ACGIH (TLV)	
CAS NO.	TWA	STEL	TWA	STEL	TWA	STEL

HaloKlear: Gel-Floc

Page Number: 4 of 6

Not Applicable	Not	Not	Not	Not	Not	Not
	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

COLOR: Off-white. PHYSICAL FORM: Fine powder. pH: Not available VAPOR DENSITY: Not available MELTING POINT: Not available SOLUBILITY IN WATER: Soluble SHAPE: Fine powder. ODOR: None VAPOR PRESSURE: Not available BOILING POINT: Not available FREEZING POINT: Not available SPECIFIC GRAVITY OR DENSITY: Not available

NOTE: These physical data are typical values based on material tested but may vary from sample to sample. Values should not be construed as a guaranteed analysis of any specific lot or as specifications.

SECTION 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: Stable.

CONDITIONS TO AVOID: None known.

MATERIALS TO AVOID (INCOMPATIBILITY): Strong oxidizing agents.

HAZARDOUS DECOMPOSITION PRODUCTS: None known.

HAZARDOUS POLYMERIZATION: Not known.

SECTION 11: TOXICOLOGICAL INFORMATION

ORAL LD₅₀ (mice): >10g/kg

DERMAL LD₅₀ (rabbit): Not available.

SKIN IRRITATION: Not available.

EYE IRRITATION: Not available.

SKIN SENSITIZATION: Not available.

ADDITIONAL INFORMATION: Not available.

SECTION 12: ECOLOGICAL INFORMATION

ECOTOXICITY (in water):

Acute Toxicity

- Daphnia: LC50 135 mg/L
- Daphnia: LC25 Not Calculable
- Fathead Minnows: LC50 22.8 mg/L
- Fathead Minnows: LC25 16.9 mg/L

HaloKlear: Gel-Floc

- Rainbow Trout: LC50 6.4 mg/L
- Rainbow Trout: LC25 4.4 mg/L

Chronic Toxicity

- Rainbow Trout: LC50 (survival) 5.3 mg/L, 7 days
- Rainbow Trout: LC25 (survival) 4.8 mg/L, 7 days
- Rainbow Trout: EC25 (biomass) 3.5 mg/L, 7 days
- Fathead Minnows: LC50 (survival) 25.4 mg/L, 7 days
- Fathead Minnows: LC25 (survival) Not Calculable
- Fathead Minnows: EC25 (biomass) 13.9 mg/L, 7 days

MOBILITY: Not available.

PERSISTENCE AND DEGRADABILITY: Not available.

BIOACCUMULATIVE POTENTIAL: Not available.

ADDITIONAL INFORMATION: Not available.

SECTION 13: DISPOSAL CONSIDERATIONS

If this product as supplied becomes a waste, it <u>does not</u> meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal regulations. Consult state and local regulations regarding the proper disposal of this material.

NOTE: Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate.

SECTION 14: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT):

Proper Shipping Name:	Not Regulated
Hazard Class:	Not Regulated
Identification Number (UN Number):	Not Regulated
Packing Group (PG):	Not Regulated

SECTION 15: REGULATORY INFORMATION

TSCA STATUS: Listed

CERCLA REPORTABLE QUANTITY (RQ):

CHEMICAL NAME	RQ
Not applicable	Not applicable

SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (EHS):

CHEMICAL NAME	TPQ	RQ
---------------	-----	----

Not applicable	Not applicable	Not applicable
----------------	----------------	----------------

SARA TITLE III SECTION 311/312 HAZARD CATEGORIES: Does this product/material meet the definition of the following hazard classes according to the EPA 'Hazard Categories' promulgated under Sections 311 and 312 of SARA Title III?

ACUTE HEALTH HAZARD	CHRONIC HEALTH HAZARD	FIRE HAZARD	REACTIVE HAZARD	SUDDEN RELEASE OF PRESSURE
YES	NO	NO	NO	NO

SARA TITLE III SECTION 313 TOXIC CHEMICALS INFORMATION:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

CALIFORNIA PROPOSITION 65: The following chemical(s) is/are known to the state of California to cause cancer or reproductive toxicity:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

SECTION 16: OTHER INFORMATION

REVISION INFORMATION:

MSDS sections(s) changed since last revision of document:

• None, this is a new MSDS.

DISCLAIMER:

The above information is based upon information HaloSource, Inc. believes to be reliable and is supplied for informational purposes only. HaloSource, Inc. disclaims any liability for damage which results from the use of the above information and nothing contained therein shall constitute a guarantee, warranty (including fitness for a particular purpose) or representation with respect to the accuracy or completeness of the data, the product described or their use for any specific purpose even if that purpose is known to HaloSource, Inc. The final determination of the suitability of the information, the manner of use of the information or product and potential infringement is the sole responsibility of the user.

MSDS PREPARED BY: Jeremy Heath, EH&S Manager

Material Safety Data Sheet

HaloKlear: DBP-2100

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

Manufacturer's Name: Corporate Address: Manufacturer's Telephone: Emergency Telephone (24 Hours):

Material/Trade/Product Name: Synonyms: Chemical Name: Chemical Formula: CAS No.: EPA Registration #: Product Use: HaloSource, Inc. 1631 220th St. SE, Suite 100, Bothell, WA 98021 (425) 881-6464 (Monday-Friday, 8AM-5PM PDT) 800-424-9300 CHEMTREC (Domestic, North America) 703-527-3887 CHEMTREC (International, collect calls accepted) **HaloKlear: DBP-2100** Poly X Socks Proprietary Proprietary Proprietary Not applicable Flocculant

SECTION 2: COMPOSITION/INFORMATION ON INGREDIENTS

CAS NO.	COMPONENT	%	OSHA HAZARDOUS?
Trade Secret	Trade Secret	Trade Secret	YES

NOTE: See Section 8 for permissible exposure limits.

SECTION 3: HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

Off-white to tan, odorless powder.

May cause irritation to eyes and respiratory tract. May cause drying or chapping or skin.

WARNING! Can contain sufficient fines to cause a combustible dust explosion. Product will burn when in contact with a flame. See Section 5 Fire Fighting Measures for more information.

POTENTIAL HEALTH EFFECTS

EYE: Dry powder may cause foreign body irritation in some individuals.

SKIN: Prolonged contact with the dry powder may cause drying or chapping.

HaloKlear: DBP-2100

INHALATION: Hygroscopic properties of the product can form a paste or gel in the airway. Inhalation of dust may cause respiratory tract irritation. Excessive inhalation of dust may cause coughing and sneezing.

INGESTION: Not toxic if swallowed (less than a mouthful) based on available information.

CHRONIC EXPOSURE/CARCINOGENICITY: None of the components present in this material at concentrations of equal to or greater than 0.1% are listed by IARC, NTP, OSHA or ACGIH as a carcinogen.

AGGRAVATION OF PRE-EXISTING CONDITIONS: None known.

POTENTIAL ENVIRONMENTAL EFFECTS: Contains no substances known to be hazardous to the environment.

SECTION 4: FIRST AID MEASURES

FIRST AID PROCEDURES

EYE CONTACT: Remove contact lenses (if applicable), flush with water for 15 minutes. Call a physician.

SKIN CONTACT: Cleansing the skin after exposure is advisable.

INHALATION: If large amounts are inhaled, remove to fresh air and consult a physician.

INGESTION: Consult a physician if necessary.

NOTE TO PHYSICIANS: None.

SECTION 5: FIRE FIGHTING MEASURES

FLASH POINT: Not applicable UPPER FLAMMABLE LIMIT: Not available FLAMMABLITY CLASS (OSHA): Not applicable AUTOIGNITION TEMPERATURE: Not available LOWER FLAMMABLE LIMIT: Not available FLAME PROPAGATION/BURNING RATE: Not available

UNIQUE FIRE PROPERTIES: Combustible dust which can contain sufficient fines to cause a combustible dust explosion.

HAZARDOUS COMBUSTION PRODUCTS: Carbon dioxide, carbon monoxide.

EXTINGUISHING MEDIA: Water, dry chemical, carbon dioxide.

PROTECTION OF FIREFIGHTERS: Treat as a "Class A" fire. Product will burn when in contact with a flame. Self extinguishers when ignition source is removed. Tends to smolder. As in any fire, wear self-contained breathing apparatus pressure-demand, and full protective gear.

SECTION 6: ACCIDENTAL RELEASE MEASURES

PERSONAL PROTECTIVE EQUIPMENT: See Section 8 (Personal Protective Equipment).

ENVIRONMENTAL PRECAUTIONS: None known.

METHODS FOR CLEANING UP: Wet material on walking surfaces will be extremely slipper. Avoid dust formation. Use equipment designed specifically for combustible dust. Take precautionary measures against static discharges.

SECTION 7: HANDLING AND STORAGE

SAFE HANDLING RECOMMENDATIONS

VENTILATION: Avoid dust formation. Provide appropriate exhaust ventilation in places where dust is formed.

FIRE PREVENTION: Product may form combustible dust-air mixtures. Keep away from heat, flames, sparks, and other ignition sources. Avoid emptying package in or near flammable vapors. Static charges may cause flash fire.

SPECIAL HANDLING REQUIREMENTS: Remove material from eyes, skin and clothing.

SAFE STORAGE RECOMMENDATIONS

CONTAINMENT: No special containment needed.

STORAGE ROOM RECOMMENDATIONS: Store in a cool, dry, well-ventilated area away from direct heat.

INCOMPATIBLE MATERIALS: Strong oxidizing agents.

STORAGE CONDITIONS: Store in cool, dry place. Keep container closed when not in use; keep out of the reach of children.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: Provide natural or mechanical ventilation to control exposure levels below airborne exposure limits in this section.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

EYE/FACE PROTECTION: This product does not cause significant eye irritation or eye toxicity requiring special protection. Where there is significant potential for eye contact, wear chemical goggles and have eye flushing equipment available.

SKIN PROTECTION: Although this product does not present a significant skin concern, minimizes skin contamination by following good industrial practice.

HAND PROTECTION: Chemical resistant gloves are recommended to minimize potential irritation from handling.

RESPIRATORY PROTECTION: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use. Respirator use is not required for this product.

GOOD HYGEIENE/WORK PRACTICES: Always follow good hygiene/work practices by avoiding vapors or mists and contact with eyes and skin. Thoroughly wash hands after handling and before eating or drinking. Always wear the appropriate PPE when repairing or performing maintenance on contaminated equipment.

EXPOSURE GUIDELINES

PERMISSIBLE EXPOSURE LIMITS					
INGREDIENT	OSHA	WISHA	ACGIH (TLV)		

HaloKlear: DBP-2100

Page Number: 4 of 6

CAS NO.	TWA	STEL	TWA	STEL	TWA	STEL
Not Applicable	Not	Not	Not	Not	Not	Not
	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

COLOR: Off white to tan PHYSICAL FORM: Solid, powder pH: Approximately neutral (1% solution) VAPOR DENSITY: Not known MELTING POINT: Not known SOLUBILITY IN WATER: Fully soluble SHAPE: Powder ODOR: Odorless VAPOR PRESSURE: Not known BOILING POINT: Not known FREEZING POINT: Not known SPECIFIC GRAVITY OR DENSITY: Not known

NOTE: These physical data are typical values based on material tested but may vary from sample to sample. Values should not be construed as a guaranteed analysis of any specific lot or as specifications.

SECTION 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: Stable under recommended storage conditions

CONDITIONS TO AVOID: Avoid dust formation

MATERIALS TO AVOID (INCOMPATIBILITY): Strong oxidizing agents

HAZARDOUS DECOMPOSITION PRODUCTS: Carbon monoxide, carbon dioxide

HAZARDOUS POLYMERIZATION: Will not occur

SECTION 11: TOXICOLOGICAL INFORMATION

ORAL LD₅₀ (rat): >5,000 mg/kg

DERMAL LD₅₀ (rabbit): Not available

DERMAL LD₅₀ (rat): Not available

SKIN IRRITATION: Non-irritating (rabbit)

EYE IRRITATION: Non-irritating (rabbit)

SKIN SENSITIZATION: No skin allergy observed in gui8nea pig following repeated skin exposure

ADDITIONAL INFORMATION: The dry powder may cause foreign body irritation in some individuals. Prolonged contact with the dry powder may cause drying or chapping of the skin. Excessive inhalation of dust may be annoying and can mechanically impede respiration. Due to the hygroscopic properties, they can form a paste or gel in the airway.

SECTION 12: ECOLOGICAL INFORMATION

HaloKlear: DBP-2100

ECOTOXICITY: Contains no substances known to be hazardous to the environment or not degradable in waste water treatment plants.

MOBILITY: Not available

PERSISTENCE AND DEGRADABILITY: This product is biodegradable.

BIOACCUMULATIVE POTENTIAL: Inherently biodegradable.

ADDITIONAL INFORMATION:

- 96 Hour Acute Survival
 - \circ Rainbow Trout: LC₅₀ 491 mg/L, LC₂₅ 347 mg/L
 - Fathead Minnow: LC₅₀ 1110 mg/L, LC₂₅ 678 mg/L
- 7-Day Chronic Survival and Growth
 - Rainbow Trout: LC_{50} 510 mg/L, LC_{25} 390 mg/L
 - Fathead Minnow: LC₅₀ 605 mg/L, LC₂₅ 443 mg/L
 - Ceriodaphnia Dubia: LC₅₀ 352 mg/L, LC₂₅ 289 mg/L
- Rainbow Trout (Biomass): LC₅₀ 386 mg/L, LC₂₅ 262 mg/L
- Fathead Minnow (Biomass): LC₅₀ 505 mg/L, LC₂₅ 256 mg/L

SECTION 13: DISPOSAL CONSIDERATIONS

If this product as supplied becomes a waste, it <u>does not</u> meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal regulations. Consult state and local regulations regarding the proper disposal of this material.

NOTE: Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate.

SECTION 14: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT):

Proper Shipping Name:Not RegulatedHazard Class:Not RegulatedIdentification Number (UN Number):Not RegulatedPacking Group (PG):Not Regulated

SECTION 15: REGULATORY INFORMATION

TSCA STATUS: Component(s) listed

CERCLA REPORTABLE QUANTITY (RQ):

CHEMICAL NAME	RQ
Not applicable	Not applicable

SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (EHS):

CHEMICAL NAME	TPQ	RQ
Not applicable	Not applicable	Not applicable

SARA TITLE III SECTION 311/312 HAZARD CATEGORIES: Does this product/material meet the definition of the following hazard classes according to the EPA 'Hazard Categories' promulgated under Sections 311 and 312 of SARA Title III?

ACUTE HEALTH HAZARD	CHRONIC HEALTH HAZARD	FIRE HAZARD	REACTIVE HAZARD	SUDDEN RELEASE OF PRESSURE
YES	NO	YES	NO	NO

SARA TITLE III SECTION 313 TOXIC CHEMICALS INFORMATION:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

CALIFORNIA PROPOSITION 65: The following chemical(s) is/are known to the state of California to cause cancer or reproductive toxicity:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

SECTION 16: OTHER INFORMATION

REVISION INFORMATION:

MSDS sections(s) changed since last revision of document:

• None, this is a new MSDS.

DISCLAIMER:

The above information is based upon information HaloSource, Inc. believes to be reliable and is supplied for informational purposes only. HaloSource, Inc. disclaims any liability for damage which results from the use of the above information and nothing contained therein shall constitute a guarantee, warranty (including fitness for a particular purpose) or representation with respect to the accuracy or completeness of the data, the product described or their use for any specific purpose even if that purpose is known to HaloSource, Inc. The final determination of the suitability of the information, the manner of use of the information or product and potential infringement is the sole responsibility of the user.

MSDS PREPARED BY: Jeremy Heath, EH&S Manager