

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1

5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

SEP 2 0 2013

James Newell Facilities Manager Tufts University 529 Boston Avenue Medford, MA 02115

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Tufts University Central Heating Plant site located at 100 North Hill Road, Medford, MA 02115; Authorization# MAG910597

Dear Mr. Newell:

Based on the review of a Notice of Intent (NOI) submitted by Dawn Horter from Capaccio Environmental Engineering, Inc., on behalf of Tufts University for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you the Owners' representative as the Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technology-based ceiling limitations. For each parameter the dilution factor 41.08 for this site is within a dilution range greater than ten to fifty (>10 - 50), established in the RGP. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for antimony of 60 ug/L, arsenic of 100 ug/L, cadmium of 2 ug/L, copper of 52 ug/L, selenium of 50 ug/L, and iron of 5,000ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on October 31, 2013. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Chief

Storm Water and Construction

Thilma Muphy

Permits Section

Enclosure

cc: Robert Kubit, MassDEP

Dawn Horter, Capaccio, Engineering, Inc.

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

NPDES Authorization Number:	1920 g	MAG910597					
Authorization Issued:	Septe	mber, 2013					
Facility/Site Name:		University Heating Plant					
Facility/Site Address:	CARRI	100 North Hill Road, Medford, MA 02115, Middlesex					
racincy/ Site Address.	Email	Email address of owner: james.newell@tufts.edu					
Legal Name of Operat	or:	Bond Brothers					
Operator contact name, title,		Thomas Walsh 145 Spring Street, Everett, 02149					
and Address:	los 8 v B	Email: twalsh@bondbrothers.com. Pn:617-349-6395					
Estimated date of Com	pletion:	October 31, 2013					
Category and Sub-Cate	egory:	Category I. Petroleum Related Site Remediation. Subcategory B. Fuel Oils and Other Oils Sites					
RGP Termination Date:	81814	September 10, 2015					
Receiving Water:	ALC: N	Mystic River					
TABLE IN ON	1229	C. DOS S. Commenced S. Street, and S					

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing **, Me#60.2/ML5ug/L
	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
$\sqrt{}$	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
	4. Cyanide (CN) ^{2, 3}	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
√	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
-	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L

	on Games 24 Cachul. LL	Effluent Limit/Method#/ML
	Parameter	(All Effluent Limits are shown as Daily
	T di dilitotoi	Maximum Limit, unless denoted by a **, in
		that case it will be a Monthly Average Limit)
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m-DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
-	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
-	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	
_	28. Vinyl Chloride (Chloroethene)	5.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	2.0 ug/L /Me#8260C/ ML 5ug/L
		Monitor Only(ug/L)/Me#8260C/ML 50ug/L
	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
111.00	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/MI 10ug/L& Me#625/ML 5ug/L
	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
/	a Ponzo(a) Antherson 7	0.0038 ug/L /Me#8270D/ ML 5ug/L,
	a. Benzo(a) Anthracene ⁷	Me#610/ML 5ug/L& Me#625/ML 5ug/L
/	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L,
_	b. belizo(a) Pyrelie	Me#610/ML 5ug/L& Me#625/ML 5ug/L
/	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L,
	c. benzo(b)i idoranthene	Me#610/ML 5ug/L& Me#625/ML 5ug/L
/	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L,
_	d. Belizo(k) i dolantilelle	Me#610/ML 5ug/L& Me#625/ML 5ug/L
/	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L,
20	THE ADDRESS OF THE PARTY OF THE	Me#610/ML 5ug/L& Me#625/ML 5ug/L
/	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
/ ,	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
L	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L

<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/ML 5ug/L & Me#625/ML 5ug/L
o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
37. Total Polychlorinated Biphenyls (PCBs) 8, 9	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
38. Chloride	Monitor only/Me# 300.0/ ML 0.1ug/L
Total Recove	

2	in the least muriliary at the control of the contro	Total Recovera MA/Metal Lim H ¹⁰ = 50 mg/ CaCO3, Units ug/l (11/12)	<u>it</u> / <u>/</u>	Minimum level=ML				
	Metal parameter	<u>Freshwater</u> <u>Limts</u>	Comment over vis	regionalistic and distributions				
√	39. Antimony	60	Car Well as A	ML 10				
<u> </u>	40. Arsenic **	100	ML	20				
V	41. Cadmium **	2	ML	10				
	42. Chromium III (trivalent) **	48.8	ML	, 15				
	43. Chromium VI (hexavalent) **	48.8	ML	10				
/_	44. Copper **	52	ML	15				
/_	45. Lead **	13	ML	20				
	46. Mercury **	0.9	ML	02				
	47. Nickel **	29	ML	20				
	48. Selenium **	50	ML	20				
	49. Silver	1.2	ML	10				
	50 . Zinc **	333	ML	15				
/	51. Iron	5,000	PALES BAY AS (BO)	ML 20				

Other Parameters	<u>Limit</u>
 52. Instantaneous Flow	Site specific in CFS
 53. Total Flow	Site specific in CFS
 54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab 13
56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab14
58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab14
59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab14
60. Maximum Change in Temperature in MA - Any Class B water body-Warm Water	5°F; 1/Month/Grab ¹⁴
61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
63. Maximum Change in Temperature in MA - Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of

the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

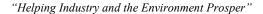
Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses." Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

10 Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are


Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratorydetermined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

September 3, 2013

Mr. Victor Alvarez
US Environmental Protection Agency
RGP-NOC Processing
Municipal Assistance Unit (CMU)
1 Congress Street, Suite 1100
Boston, Massachusetts 02114-2023

RE: EPA Remediation General Permit Notice of Intent

Tufts University/Central Heating Plant 100 North Hill Road Medford, Massachusetts RTN 3-29825

Dear Mr. Alvarez:

On behalf of Tufts University (TUFTS), Capaccio Environmental Engineering, Inc. (CAPACCIO) hereby submits the enclosed Notice of Intent with supporting documentation for an EPA Remediation General Permit (RGP) for the above-referenced location. The RGP is required to treat and discharge hydrocarbon-impacted water from dewatering activities during removal of two No. 6 and one No. 2 fuel oil underground storage tanks (USTs) and the installation of two new USTs at the facility. Figure 1 is a Site Location Map indicating the location of the property and Figure 2 is a Site Plan showing the layout of the property, location of the tankfield area and the location of the discharge point.

Groundwater will be encountered during installation of the new USTs. Groundwater will be evacuated to a frac tank for temporary storage prior to discharge. Discharge of the groundwater will be through a bag filter and a granular activated carbon unit. The groundwater treatment system will be designed to accommodate a maximum flow of 50 gallons per minute. A flow meter and flow totalizer will be placed immediately prior to discharge of the treated groundwater. Flow rates will be periodically monitored throughout discharging and the total amount of groundwater discharged will be recorded at the end of each day.

Treated groundwater will be discharged to a storm drain located adjacent to the site, which discharges to a stormwater main along Boston Avenue. Stormwater in the main flows north to discharge into the Mystic River. The discharge will be monitored in accordance with the RGP with in-line sample ports for the influent and effluent sample locations. Please note that the Mystic River is listed as a Class B waterway that is listed as an impaired waterway.

If you have any questions or require additional information, please do not hesitate to contact me at (508) 970-0033, ext. 118.

Sincerely,

Capaccio Environmental Engineering, Inc.

Dawn Horter, PG, LSP Senior Hydrogeologist

Enc: Notice of Intent and supporting documents

c: Jim Newell (TUFTS) MF 05-034.014

NPDES Permit No. MAG910000 NPDES Permit No. NHG910000

Remediation General Permit Appendix V

Notice of Intent (NOI) Suggested Forms & Instructions

I. Notice of Intent (NOI) Suggested Form and Instructions

In order to be covered by the remediation general permit (RGP), applicants must submit a completed Notice of Intent (NOI) to EPA Region I and the appropriate state agency. The owner or operator, as defined by 40 CFR § 122.2, means the owner or operator of any "facility or activity" subject to regulation under the NPDES program.

The following are three general "**operator**" scenarios (variations on any of these three are possible, especially as the number of owners and contractors increases):

- ▶ "Owner" as "Operator" sole permittee. The property owner designs the structures and control systems for the site, develops and implements the BMPP, and serves as general contractor (or has an on-site representative with full authority to direct day-to-day operations). Under the definition of operator, in this case, the "Owner" would be considered the "operator" and therefore the only party that needs permit coverage. Everyone else working on the site may be considered subcontractors and do not need to apply for permit coverage.
- "Contractor" as "Operator" sole permittee. The property owner hires a company (e.g., a contractor) to design the project and oversee all aspects, including preparation and implementation of the BMPP and compliance with the permit (e.g., a "turnkey" project). Here, the contractor would likely be the only party needing a permit. Similarly, EPA expects that property owners hiring a contractor or consultant to perform groundwater remediation work (e.g., due to a leaking fuel oil tank) would come under this type of scenario. EPA believes that the contractor, being a professional in the industry, should be the responsible entity rather than the individual. The contractor is better equipped to meet the requirements of both applying for permit coverage and developing and properly implementing the plans needed to comply with the permit. However, property owners would also meet the definition of "operator" and require permit coverage in instances where they perform any of the required tasks on their personal properties.
- ► "Owner" <u>and "Contractor" as "Operators" co-permittees</u>. The owner retains control over any changes to site plans, BMPPs, or wastewater conveyance or control designs, but the contractor is responsible for conducting and overseeing the actual activities (e.g., excavation, installation and operation of treatment train, etc.) and daily implementation of BMPP and other permit conditions. In this case, <u>both</u> parties need to apply for coverage.

Generally, a person would not be considered an "operator," and subsequently would not need permit coverage, if: 1) that person is a subcontractor hired by, and under the supervision of, the owner or a general contractor (e.g., if the contractor directs the

subcontractor's activities on-site, it is probably not an operator); or 2) the person's activities would otherwise result in the need for coverage under the RGP but another operator has legally assumed responsibility for the impacts of project activities.

A. Instructions for the Suggested Notice of Intent (NOI) - At a minimum, the Notice of Intent must include the following for each individual facility or site. Additional information may be attached as needed.

1. General facility/site information.

- a) Provide the facility/site name, mailing address, and telephone and fax numbers. Provide the facility Standard Industrial Classification (SIC) code(s), which can be found online at http://www.osha.gov/pls/imis/sic_manual.html. Provide the site location, including longitude and latitude.
- b) Provide the facility/site owner's name, address, email address, telephone and fax numbers, if different from the site information. Indicate whether the owner is a Federal, State/Tribal, private, or other entity.
- c) Provide the site operator's (e.g., contractor's) name, mailing address, telephone and fax numbers, and email address if different from the owner's information.
- d) For the site for which the application is being submitted, indicate whether:
 - 1) a prior NPDES permit exclusion has been granted for the discharge (if so, provide the tracking number of the exclusion letter);
 - 2) a prior NPDES application (Form 1 & 2C for reference, please visit http://www.epa.gov/region1/npdes/epa_attach.html) has ever been filed for the discharge (if so, provide the tracking number and date that the application was submitted to EPA);
 - 3) the discharge is a "new discharge" as defined by 40 CFR 122.2; and
 - 4) for sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000 and exempt from state permitting.
- e) Indicate whether there is any ongoing state permitting, licensing, or other action regarding the facility or site which is generating the discharge. If "yes," provide any site identification number assigned by the state of NH or MA, any permit or license number assigned, and the state agency contact information (e.g. name, location, telephone no.).
- f) Indicate whether or not the facility is covered by other EPA permits including:
 - the Multi-Sector General Permit (MSGP) http://cfpub.epa.gov/npdes/stormwater/msgp.cfm;
 - the Final NPDES General Permit for Dewatering Activity Discharges in Massachusetts and New Hampshire http://www.epa.gov/region1/npdes/dewatering.html;
 - 3) the EPA Construction General Permit http://cfpub.epa.gov/npdes/stormwater/cgp.cfm;
 - 4) an individual NPDES permit; or
 - 5) any other water quality-related individual or general permit.

If so, provide permit tracking number(s).

g) Indicate if the site/facility discharge(s) to an Area of Critical Environmental Concern (ACEC), as shown on the tables and maps in Appendix I.

h) Based on the nature of the facility/site and any historical sampling data, the applicant must indicate which of the sub-categories within which the potential discharge falls.

2. Discharge information.

- a) Describe the discharge activities to be covered by the permit. Attach additional sheets as needed.
- b) Provide the following information about each discharge:
 - 1) the number of discharge points;
 - 2) the maximum and average flow rate of the discharge in cubic feet per second. For the average flow magnitude, include the units and appropriate notation if this value is a calculated design value or estimate if technical/design information is not available;
 - 3) the latitude and longitude of each discharge with an accuracy of 100 feet (see EPA's siting tool at: http://www.epa.gov/tri/report/siting_tool);
 - 4) the total volume of potential discharge (gal), only if hydrostatic testing;
 - 5) whether the discharge(s) is intermittent or seasonal and if ongoing.
- c) Provide the expected start and end dates of discharge (month/day/year).
- d) Attach a line drawing or flow schematic showing water flow through the facility including:
 - 1) sources of intake water;
 - 2) contributing flow from the operation;
 - 3) treatment units; and
 - 4) discharge points and receiving waters(s).

3. Contaminant information.

In order to complete the NOI, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for the parameters applicable to the sub-category into which the discharge falls, as listed in Appendix III of the permit and selected in Part 1 of the NOI form, except as noted below.

Permittees shall provide additional sampling results with the NOI if such sampling already exists, or if the permittee has reason to believe the site contains additional contaminants not listed in Appendix III for that sub-category or contains additional contaminants not included in Appendix III.

The applicant may use historical data as a substitute for the new sample if the data was collected no more than 2 years prior to the "Submittal of the NOI" and if collected pursuant to:

- i. for sites in Massachusetts, 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E");
- ii. for sites in New Hampshire, New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act;
- a) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is believed present or believed absent in the potential discharge.

Based on the required sampling and analysis, the applicant must fill in the table, or provide a narrative description, with the following additional information for each chemical that is believed present (chemical that violate EPA's criteria limitations):

- 1) the number of samples taken (minimum of one sample for applicable parameters per Appendix III);
- 2) the type of sample (e.g. grab, composite, etc.);
- 3) the analytical method used, including the method number;
- 4) the minimum level (ML) of the method used (based on Appendix VI);
- 5) the maximum daily amount (concentration (ug/l) and mass (kg)) of each pollutant, based on the sampling data

lb/day (pounds per day) equals flow (in million gallons per day, MGD) times concentration in milligrams per liter (mg/l) times 8.34. Example: 2.5 MGD x 30 mg/l TSS x 8.34 = 625.5 lb TSS/day MGD = gallons per minute (gpm) x 0.00144 1 kg = 2.2 lbs

And:

6) the average daily amount (concentration and mass) of each pollutant, based on the sampling data.

If the results of any sampling indicate that pollutants exist in addition to those listed in Appendix III of the RGP of the permit, the applicant must also describe those contaminants on the NOI in boxes in section I.3.c.) on the line marked "Other," or use additional sheets as needed. Subsequently, EPA may require monitoring for such parameters or will decide if an individual permit is necessary.

c) Determination of Reasonable Potential and Allowable Dilution for Discharges of Metals:

If any *metals* are believed present in the potential discharge to freshwater¹, the applicant must follow the procedures below to determine the dilution factor for each metal.

Step 1: Initial Evaluation

- 1) The applicant must evaluate all metals believed present in the discharge subject to this permit, including "naturally occurring" metals such as dissolved and/or total Iron. Applicants must enter the highest detected concentration of the metal at zero dilution in the "Maximum value" column of the NOI.
- 2) Based on the maximum concentration of each metal, the applicant must perform an initial evaluation assuming zero dilution in the receiving water. The applicant must compare the metals concentrations in the untreated (intake) waters to the effluent limits contained in Appendix III.

¹Dilution factors may be available for discharges to saline waters but only with approval of the flow modeling information from the State prior to the submission of the NOI.

- i. If potential discharges (untreated influent) with metals contain concentrations above the concentration limits listed in Appendix III, applicant must proceed to step 2.
- ii. If potential discharges (untreated influent) with metals contain concentrations below the concentrations listed in Appendix III, the applicant may skip step 2 and those metals will **not** be subject to permit limitations or monitoring requirements.

Step 2: Calculation of Dilution Factor

1) **For applicants in NH**: If a metal concentration in a potential discharge (untreated influent) to **freshwater** exceeds the limits in Appendix III with zero dilution, the applicant shall evaluate the potential concentration considering a dilution factor (DF) using the formula below. **For sites in New Hampshire, the applicant must contact NH DES to determine the 7Q10 and dilution factor.**

$$DF = [(Qd + Qs)/Qd] \times 0.9$$

Where: DF = Dilution Factor

Qd = Maximum flow rate of the discharge in

cubic feet per second (cfs) (1.0 gpm = .00223 cfs)

Qs = Receiving water 7Q10 flow, in cfs, where 7Q10 is the annual

minimum flow for 7 consecutive days with a recurrence interval

of 10 years

0.9 = Allowance for reserving 10% of the assets in the receiving

stream as per Chapter ENV-Wq 1700, Surface Water Quality

Regulations

- i. Using the DF calculated from the formula above, the applicant must refer to the corresponding dilution range column in Appendix IV. The applicant then compares the maximum concentration of the metal entered on the NOI to the corresponding total recoverable metals limits listed in Appendix IV. Please note that for this reissuance the applicant will be permitted to determine a limit using any fraction within the 1-5 dilution factor range times the metal limit (for all regulated metals). For example: if the DF is 1.5, the Iron limit is 1,500 ug/L; if the DF is 1.5, the antimony limit is 8.4, etc. All limits above a dilution factor of 5 are maintained.
 - 1. If a metal concentration in the potential discharge (untreated influent) is less than the corresponding limit in Appendix IV, the metal will **not** be subject to permit limitations or monitoring requirements.
 - 2. If a metal concentration in the potential discharge (untreated influent) is equal to or exceeds the corresponding limit in Appendix IV, the applicant must reduce it in the effluent to a concentration below the applicable total recoverable metals limit in Appendix IV prior to discharge.

ii. In either case, the applicant must submit the results of this calculation as part of the NOI. EPA and NH DES will review the proposed effluent limitations for each metal and approve or disapprove the limits in the notification of coverage letter to the applicant.

2) For applicants in MA: If a metal concentration in a potential discharge (untreated influent) to freshwater exceeds the limits in Appendix III with zero dilution, the applicant must evaluate the potential concentration considering a dilution factor (DF) using the formula below.

$$DF = (Qd + Qs)/Qd$$

Where: DF = Dilution Factor

> Od = Maximum flow rate of the discharge in cubic feet per second

> > (cfs) (1.0 gpm = .00223 cfs)

Qs = Receiving water 7Q10 flow (cfs) where 7Q10 is the minimum

flow (cfs) for 7 consecutive days with a recurrence interval of

10 years

- i. The applicant may estimate the 7Q10 for receiving water by using available information such as nearby USGS stream gauging stations directly or by application of certain "flow factors," using historic streamflow publication information, calculations based on drainage area, information from state water quality offices, or other means. In many cases Massachusetts has calculated 7Q10 information using "flow factors" for a number of streams in the state. The source of the low flow value(s) used by the applicant must be included on NOI application form. Flow data can also be obtained from web applications such as the one located at: http://ma.water.usgs.gov/streamstats/.
- ii. Using the DF calculated from the formula above, the applicant must refer to the corresponding dilution range column in Appendix IV. The applicant then shall compare the maximum concentration of each metal entered on the NOI to the corresponding total recoverable metals limit listed in Appendix IV. Please note that for this reissuance the applicant will be permitted to determine a limit using any fraction of the 0-5 of DF times the metal limit (for all regulated metals). For example: if the DF is 1.5, the Iron limit is 1,500 ug/L; if the DF is 1.5, the antimony limit is 8.4, etc. Not to exceed DF of 5.
 - 1. If a metal concentration in the potential discharge (untreated influent) is less than the corresponding limit in Appendix IV, the metal will **not** be subject to permit limitations or monitoring requirements.
 - 2. If a metal concentration in a potential discharge (untreated influent) is equal to or exceeds the corresponding limit in Appendix IV, the applicant must reduce it in the effluent to a concentration below the applicable total recoverable metals limit in Appendix IV prior to discharge.

iii. The applicant must submit the results of this calculation as part of the NOI. EPA (and MassDEP where the discharge is not covered by 310 CMR 40.0000) will review the proposed effluent limitations for each metal and approve or disapprove the limits in the notification of coverage letter to the applicant.

4. Treatment system information.

- a) Provide a written description of the treatment train and how the system will be set up for each discharge and attach a schematic of the proposed or existing treatment system(s).
- b) Identify each major treatment unit (e.g. frac tanks, filters, air stripper, liquid phase/vapor phase activated carbon, oil/water separators, etc.) by checking all that apply and describing any additional equipment not listed. Attach additional sheets as needed.
- c) Provide the proposed average and maximum flow rates (in gallons per minute, gpm) for the discharge and the design flow rates (in gpm) of the treatment system. Clearly identify the component of the treatment with the most limited flow, i.e., the part of the treatment train that establishes the design flow.
- d) Describe any chemical additives being used, or planned to be used, and attach MSDS sheets for each. EPA may request further information regarding the chemical composition of the additive, potential toxic effects, or other information to insure that approval of the use of the additive will not cause or contribute to a violation of State water quality standards. Approval of coverage under the RGP will constitute approval of the use of the chemical additive(s). If coverage of the discharge under the RGP has already been granted and the use of a chemical additive becomes necessary, the permittee must submit a Notice of Change (NOC).

5. Receiving surface water(s) information.

- a) Identify the discharge pathway by checking whether it is discharged: directly to the receiving water (river, stream, or brook), within the facility (e.g., through a sewer drain), to a storm drain, to a wetland, or other receiving body.
- b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters into which discharge will occur.
- c) Provide a detailed map(s) indicating the location of the site and outfall(s) to the receiving water(s):
 - 1) For multiple discharges, the discharges should be numbered sequentially.
 - 2) In the case of indirect dischargers (to municipal storm sewer, etc) the map(s) must be sufficient to indicate the location of the discharge to the indirect conveyance and the discharge to the state classified surface water. The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.
- d) Provide the state water quality classification of the receiving water and the basin (for Massachusetts, the Surface Water Quality Standards (314 CMR 4.00) are available at http://www.mass.gov/dep/water/laws/regulati.htm#wqual) (for New Hampshire, contact the NH DES at (603) 271-2984).
- e) Specify the reported seven day-ten year low flow (7Q10) of the receiving water (see Section I.A.3) c. above). In New Hampshire, the 7Q10 must be provided by to the applicant by the New Hampshire Department of Environmental Services.

f) Indicate whether the receiving water is a listed 303(d) water quality impaired or limited water and if so, for which pollutants (see Section IX of the Fact Sheet for additional information).

For MA, the most updated integrated list of waters (CWA 303(d) and 305(b)) is available at http://www.mass.gov/dep/water/resources/tmdls.htm#info.

For NH, the most updated integrated list of waters (CWA 303(d) and 305(b)) is available at http://des.nh.gov/organization/divisions/water/wmb/swqa/index.htm.

Also, indicate if there is a final TMDL for any of the listed pollutants. For MA, final TMDLs can be found at: http://www.mass.gov/dep/water/resources/tmdls.htm and for NH, final TMDLs can be found at

http://des.nh.gov/organization/divisions/water/wmb/tmdl/index.htm. For more information, contact the states at: New Hampshire Department of Environmental Services, Watershed Management Bureau at 603-271-3503 or the Massachusetts Department of Environmental Protection at 508-767-2796 or 508-767-2873.

6. ESA and NHPA Eligibility.

As required in Parts I.A.4 and Appendix VII the operator of a site/facility must ensure that the potential discharge will not adversely affect endangered species, designated critical habitat, or national historic places that are in proximity to the potential discharge. If the potential discharge is to certain water bodies, the applicant must also submit a formal certification with the NOI that indicates the consultation, with the U.S. Fish and Wildlife Service and National Marine Fisheries Service (the Services), resulted in either a no jeopardy opinion or a written concurrence on a finding that the discharge is not likely to adversely affect any endangered species or critical habitat. Facilities should begin the consultation as early in the process as possible.

- a) Using the instructions in Appendix VII and information in Appendix II, indicate under which criterion listed you are eligible for coverage under this general permit.
- b) If you selected criterion D or F, indicate if consultation with the federal services has been completed or if it is underway.
- c) If consultation with the U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, indicate if a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat was received.
- d) Attach documentation of ESA eligibility as described below and required in Appendix VII, Part I.C, Step 4.
- Criterion A No federally-listed threatened or endangered species or federally-designated critical habitat are present: A copy of the most current county species list pages for the county(ies) where your site or facility and discharges are located. You must also include a statement on how you determined that no listed species or critical habitat are in proximity to your site or facility or discharge locations.
- Criterion B Section 7 consultation completed with the Service(s) on a prior project: A copy of the USFWS and/or NOAA Fisheries, as appropriate, biological opinion or concurrence on a finding of "unlikely to adversely effect" regarding the ESA Section 7 consultation.
- Criterion C Activities are covered by a Section 10 Permit: A copy of the USFWS and/or the NOAA Fisheries, as appropriate, letter transmitting the ESA Section 10 authorization.

- Criterion D Concurrence from the Service(s) that the discharge is "not likely to adversely affect" federally-listed species or federally-designated critical habitat (not including the four species of concern identified in Section I of Appendix I): A copy of the USFWS and/or the NOAA Fisheries, as appropriate, letter or memorandum concluding that the discharge is consistent with the general permit's "not likely to adversely affect" determination.
- Criterion E Activities are covered by certification of eligibility: A copy of the documents originally used by the other operator of your site or facility (or area including your site) to satisfy the documentation requirement of Criteria A, B, C or D.
- Criterion F Concurrence from the Service(s) that the discharge is "not likely to adversely affect" species of concern, as identified in Section I of Appendix I: A copy of the USFWS and/or the NOAA Fisheries, as appropriate, concurrence with the applicant's determination that the discharge is "not likely to adversely affect" listed species.
- e) Using the instructions in Appendix VII, identify which criterion listed in Part C makes you eligible for coverage under this general permit.
- f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
- **7. Supplemental information.** Applicants should provide any supplemental information needed to meet the requirements of the permit, including any analytical data used to support the application, and any certification(s) required.
- <u>8. Signature Requirements</u> The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : Tufts University/Cent	an Facilit	Facility/site mailing address:							
Location of facility/site : longitude: 71.11815 latitude: 42.40707947	Facility SI code(s): 8221	Street:	Central Heating Pla 100 North Hill Road Medford, MA 0211	d					
b) Name of facility/site owner:		Town:	Medford						
Email address of facility/site owner: james.newell@tufts.edu Telephone no. of facility/site owner: 617-62	State:		Zip: 02115		County: Middlesex				
Fax no. of facility/site owner :			Owner is (check one): 1. Federal O 2. State/Tribal O 3. Private O 4. Other O if so, describe:						
Address of owner (if different from site):			Tufts University						
Street: 529 Boston Avenue									
Town: Medford	State: MA	Zip: 02	Zip: 02115 County: Middlesex						
c) Legal name of operator :	Operator	telephone i	no: 617-387-3400)					
Bond Brothers	Operator	fax no.: 6	Operator email: twalsh@bondbrothers.						
Operator contact name and title: Thoma	as Walsh, Pro	oject Manage	er						
Address of operator (if different from owner):	Street:	145 Spring	45 Spring St.						
Town: Everett	State: M	A Zip:	02149	County:	Middlese	ex			

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the second	en filed for the discharge?
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? YONO If Y, please list: 1. site identification # assigned by the state of NH or MA: RTN3-29825 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number: MassDEP, 205 Lowell Street, Wilmington, MA 01887 g) Is the site/facility located within or does it discharge to	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O N O, if Y, number: 2. Final Dewatering General Permit? Y O N O, if Y, number: 3. EPA Construction General Permit? Y O N O, if Y, number: 4. Individual NPDES permit? Y O N O, if Y, number: 5. any other water quality related individual or general permit? Y O N O, if Y, number:
	al sampling data, identify the sub-category into which the potential
discharge falls.	
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered by 401/404 permit)
2. Discharge information. Please provide information	about the discharge, (attaching additional sheets as necessary) including
a) Describe the discharge activities for which the owner/a	pplicant is seeking coverage:
Potential groundwater discharge during removal of two No. 6 and o	one No. 2 fuel oil underground storage tanks located at the Central Heating Plant.
b) Provide the following information about each discharg	e:
	and average flow rate of discharge (in cubic feet per second, ft ³ /s)? s maximum flow a design value ? Y O N O s) 0.0446 cfs Is average flow a design value or estimate?
3) Latitude and longitude of each discharge within 100 fe pt.1: lat 42.407947 long 71.11815 pt.2: lat. pt.3: lat long pt.4: lat. pt.5: lat long pt.6: lat. pt.7: lat long pt.8: lat.	et: long. ; ;
4) If hydrostatic testing, total volume of the discharge (gals): 5) Is the discharge intermit Is discharge ongoing? Y	tent or seasonal?
c) Expected dates of discharge (mm/dd/yy): start Oct 15, 2013	
d) Please attach a line drawing or flow schematic showing 1. sources of intake water. 2. contributing flow from the cowaters(s). Attached	g water flow through the facility including: operation. 3. treatment units, and 4. discharge points and receiving
waters(s). Production	

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	<u>value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids (TSS)			×								
2. Total Residual Chlorine (TRC)		×									
3. Total Petroleum Hydrocarbons (TPH)			×	1	from MW	8100	500 ug/l	5800		5800	
4. Cyanide (CN)	57125	×									
5. Benzene (B)	71432	×		1	from MW	8260	1 ug/l	<1		<1	
6. Toluene (T)	108883	×		1	from MW	8260	1 ug/l	<1		<1	
7. Ethylbenzene (E)	100414	×		1	from MW	8260	1 ug/l	<1		<1	
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		1	from MW	8260	1 ug/l	<1		<1	
9. Total BTEX ²	n/a	×		1	from MW	8260	1 ug/l	<1		<1	
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934	×		1	from MW	8260	1 ug/l	<1		<1	
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		1	from MW	8260	2 ug/l	<2		<2	
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×									

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum dai	<u>mass</u> (kg)	Average daily concentration (ug/l)	walue mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		1	from MV	8260	5ug/l	<5		<5	
14. Naphthalene	91203	×		1	from MV	8260	1 ug/l	<1		<1	
15. Carbon Tetrachloride	56235	×		1	from MV	8260	1 ug/l	<1		<1	
16. 1,2 Dichlorobenzene (o-DCB)	95501	X		1	from MV	8260	1 ug/l	<1		<1	
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		1	from MV	8260	1 ug/l	<1		<1	
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		1	from MV	8260	1 ug/l	<1		<1	
18a. Total dichlorobenzene		×		1	from MV	8260	1 ug/l	<1		<1	
19. 1,1 Dichloroethane (DCA)	75343	×		1	from MV	8260	1 ug/l	<1		<1	
20. 1,2 Dichloroethane (DCA)	107062	×		1	from MV	8260	1 ug/l	<1		<1	
21. 1,1 Dichloroethene (DCE)	75354	×		1	from MV	8260	1 ug/l	<1		<1	
22. cis-1,2 Dichloroethene (DCE)	156592	×		1	from MV	8260	1 ug/l	<1		<1	
23. Methylene Chloride	75092	×		1	from MV	8260	5 ug/l	<1		<5	
24. Tetrachloroethene (PCE)	127184	×		1	from MV	8260	1 ug/l	<1		<1	
25. 1,1,1 Trichloro-ethane (TCA)	71556			1	from MV	8260	1 ug/l	<1		<1	
26. 1,1,2 Trichloro-ethane (TCA)	79005				from MV	8260	1 ug/l	<1		<1	
27. Trichloroethene (TCE)	79016			1	from MV	8260	1 ug/l	<1		<1	

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily	<u>value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		1	from MW	8260	1 ug/l	<1		<1	
29. Acetone	67641	×		1	from MW	8260	10 ug/l	<10		<10	
30. 1,4 Dioxane	123911	×		1	from MW	8260	100 ug/l	<100		<100	
31. Total Phenols	108952	×		1							
32. Pentachlorophenol (PCP)	87865	×		1							
33. Total Phthalates (Phthalate esters) ⁴		×		1							
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×		1							
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×		1	from MW	MassDEP	6 ug/l	<6		<6	
a. Benzo(a) Anthracene	56553	×		1	from MW	MassDEP	6 ug/l	<6		<6	
b. Benzo(a) Pyrene	50328	×		1	from MW	MassDEP	6 ug/l	<6		<6	
c. Benzo(b)Fluoranthene	205992	×		1	from MW	MassDEP	6 ug/l	<6		<6	
d. Benzo(k)Fluoranthene	207089	×		1	from MW	MassDEP	6 ug/l	<6		<6	
e. Chrysene	21801	×		1	from MW	MassDEP	6 ug/l	<6		<6	
f. Dibenzo(a,h)anthracene	53703	×		1	from MW	MassDEP	6 ug/l	<6		<6	
g. Indeno(1,2,3-cd) Pyrene	193395	×		1	from MW	MassDEP	6 ug/l	<6		<6	
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×		1	from MW	MassDEP	6 ug/l	<6		<6	

⁴The sum of individual phthalate compounds.

					Sample	Analytical	Minimum	Maximum dai	ly value	Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
h. Acenaphthene	83329	×		1	from MV	MassDEP	6 ug/l	<6		<6	
i. Acenaphthylene	208968	×		1	from MV	MassDEP	6 ug/l	<6		<6	
j. Anthracene	120127	×		1	from MV	MassDEP	6 ug/l	<6		<6	
k. Benzo(ghi) Perylene	191242	×		1	from MV	MassDEP	6 ug/l	<6		<6	
1. Fluoranthene	206440	X		1	from MV	MassDEP	6 ug/l	<6		<6	
m. Fluorene	86737	×		1	from MV	MassDEP	6 ug/l	<6		<6	
n. Naphthalene	91203	×		1	from MV	MassDEP	6 ug/l	<6		<6	
o. Phenanthrene	85018	×		1	from MV	MassDEP	6 ug/l	<6		<6	
p. Pyrene	129000	×		1	from MV	MassDEP	6 ug/l	<6		<6	
37. Total Polychlorinated Biphenyls (PCBs)	85687; 84742; 117840; 84662; 131113; 117817.	×		1	from MV	8082	0.6 ug/l	<0.6		<0.6	
38. Chloride	16887006	×									
39. Antimony	7440360	×		1	from MV	6010	0.1 mg/l	<100		<100	
40. Arsenic	7440382	×		1	from MV	6010	0.1 mg/l	<100		<100	
41. Cadmium	7440439	×									
42. Chromium III (trivalent)	16065831	×		1	from MV	6010	0.03 mg.l	<30		<30	
43. Chromium VI (hexavalent)	18540299	×		1	from MV	SM3500-CRD	0.02 mg/l	<20		<20	
44. Copper	7440508	×		1	from MV	6010	0.05 mg/l	<50		<50	
45. Lead	7439921	×		1	from MV	6020	0.001 mg/l	<1		<1	
46. Mercury	7439976	×		1	from MV	7470	0.0005 mg/l	<.5		<0.5	
47. Nickel	7440020			1	from MV	6010	0.02 mg/l	<20		<20	
48. Selenium	7782492	×		1	from MV	6010	0.1 mg/l	<200		<200	
49. Silver	7440224	×		1	from MV	6020	0.002 mg/l	<2		<2	
50. Zinc	7440666			1	from MV	6010	0.02 mg/l	40		40	
51. Iron	7439896			1	from MV	6010	0.1 mg/l	9720		9720	
Other (describe):		×									

				Sample	Analytica	Minimum	<u>Maximum</u>	daily value	Average daily	y va
Parameter *		sent Believ Prese		Type	Method Used (method #	(ML) of	concentratio (ug/l)	on mass (kg)	concentration (ug/l)]
										<u>][</u>
b) For discharges where Step 1: Do any of the real Appendix III (i.e., the step 2: For any metals dilution factor (DF) to instructions or as determined what is the dilution fare Metal: Metal: Metal: Etc. 4. Treatment system in the system is the discharge of the system in the s	metals in the inflimits set at zer which exceed using the formulation by the Sctor for application DF: DF: DF: DF: DF: DF: DF:	cluent excee to dilution)? The Append a in Part I. Attate prior to ble metals?	d the effluent YONC ix III limits, A.3.c (step 2) the submission be the treatment	calculate the of the NOI on of this NOI.	If yes, Iron Look of factor influe efflue concer factor Y Iron Iron	up the limit ca in Appendix ent have the po nt limits in Ap ntration above)? NO If Y	lculated at the IV. Do any otential to except the limit set the limit se	ne correspon of the metals ceed the corr i.e., is the int at the calcus metals:	s in the responding fluent	
Water evacuated from the through a minimum of one activated carbon unit to en	solids filter to ren	nove particula	ite matter. Follo	owing the solids f	ilter, the w	vater will be disch	narged througl	h a water-phas		nk
b) Identify each	Frac. tank	Air strip	per 🗖 Oil	/water separato	or 🗆	Equalization	on tanks 🔲 1	Bag filter 🗵	GAC filter	×
applicable treatment unit (check all that apply):	Chlorination		Oth	ner (please desc	eribe):				'	

c) Proposed average and maximum the treatment system: Average flow rate of discharge 20 Design flow rate of treatment system	gpm M		or the discharge ar		rate(s) (gallons per minute) of gpm
d) A description of chemical additive	es being used or	planned to be use	d (attach MSDS s	heets):	
None					
5. Receiving surface water(s). Pleas	se provide infor	mation about the r	eceiving water(s),	using separate she	eets as necessary:
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain <u>⊠</u>	Wetlands	Other (describe):
b) Provide a narrative description of					:
Discharge is to an adjacent storm drain whi	ch flows to Boston	Avenue and north to	Mystic River outfall.		
c) Attach a detailed map(s) indicatin 1. For multiple discharges, number to 2. For indirect dischargers, indicate to The map should also include the location USGS topographical mapping), so	he discharges se the location of thation and distance	equentially. The discharge to the ce to the nearest sa	e indirect conveyar anitary sewer as w	nce and the discharell as the locus of	<u> </u>
d) Provide the state water quality cla	ssification of the	e receiving water	Class B		
e) Provide the reported or calculated Please attach any calculation sheets					cfs
f) Is the receiving water a listed 3030	(d) water quality	impaired or limit	ed water? Y O	N_O_ If yes, for	which pollutant(s)?
Is there a final TMDL? Y O N	If yes, for w	hich pollutant(s)?	As, chlordane, chlorophylls, D	DT, DOS, e.coli, PCB,P,secchi d	isk transparency, sediment bioassays

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit? A O B O C O D O E O F O b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway
c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y O NOA
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.
e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 0 2 0 3 0
f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.
7. Supplemental information.
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.
Attachments include:
Water Flow Schematic
Laboratory Analytical Data Report
Dilution Factor Calculations
Dilution Factor Calculations Site Plan

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with

B. Submission of NOI to EPA - All operators applying for coverage under this General Permit must submit a completed Notice of Intent (NOI) to EPA. Signed and completed NOI forms and attachments must be submitted to EPA-NE at:

U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912 ATTN: Remediation General Permit NOI Processing

or electronically mailed to NPDES.Generalpermits@epa.gov

or faxed to the EPA Office at 617-918-0505

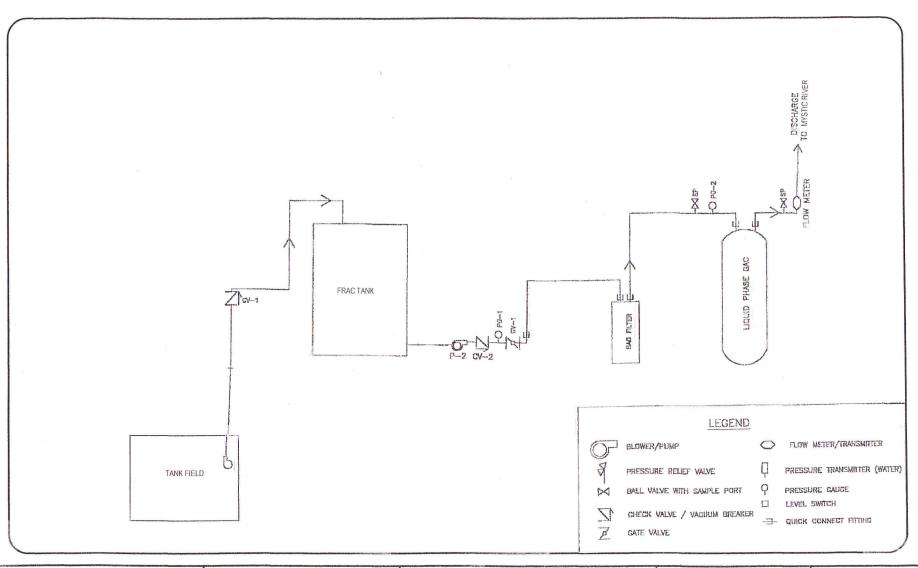
If filling out the suggested NOI form electronically on EPA's website, the signature page must be signed and faxed or mailed to EPA at the fax number and/or address listed above.

- <u>1. Filing with the states</u> A copy of any NOI form filed with EPA-NE must also be filed with state agencies. The state agency may elect to develop a state specific form or other information requirements.
- a) <u>Discharges in Massachusetts</u> In addition to the NOI, permit applicants must submit copies of the State Application Form BRPWM 12, Request for General Permit coverage for the RGP. The application form and the Transmittal Form for Permit Application and Payment may be obtained from the Massachusetts Department of Environmental Protection (MassDEP) website at www.state.ma.us/dep. Municipalities are fee-exempt, but should send a copy of the transmittal form to that address for project tracking purposes. All applicants should keep a copy of the transmittal form and a copy of the application package for their records.
 - 1) A copy of the NOI, the transmittal form, a copy of the check, and Form BRPWM 12 should be sent to:

Massachusetts Department of Environmental Protection Division of Watershed Management 627 Main Street, 2nd floor Worcester, MA 01608

2) A copy of the transmittal form and the appropriate fee should be sent to:

Massachusetts Department of Environmental Protection P.O. Box 4062 Boston, MA 02111


Please note: Applicants for discharges in Massachusetts should note that under 310 CMR 40.000, as a matter of state law, the general permit only applies to discharges that are **not** subject to the

Massachusetts Contingency Plan (MCP) and 310 CMR 40.000. Therefore, discharges subject to the MCP are **not** required to fill out and submit the State Application Form BRPWM 12 or pay the state fees. However, they must submit a NOI to EPA.

b) <u>Discharges in New Hampshire</u> - applicants must provide a copy of the Notice of Intent to:

New Hampshire Department of Environmental Services Water Division Wastewater Engineering Bureau P.O. Box 95 Concord, New Hampshire 03302-0095.

<u>2. Filing with Municipalities</u> - A copy of the NOI must be submitted to the municipality in which the proposed discharge would be located.

PROJECT TITLE: UST Excavation	CLIENT: Tufts University	Capaccio Environmental Engineering, Inc.	JOB NO: SCALE: REV:	05-034.007 1" = 2083'-0" A	SHEET: Figure 1	
DRAWING TITLE: Process Flow Diagram – Dewatering Treatment System (Typical)	JOB LOCATION: 100 North Hill Road Medford, MA 02155	293 Boston Post Road-West Marlborough, MA 01752 (508) 970-0033 * www.capaccio.com "Helping Industry and the Environment Prosper" © Copyright 2011 Capaccio Environmental Engineering, Inc.	DRW: CHK: ENG: DATE:	GJS DLH 08-17-13		SIZE:

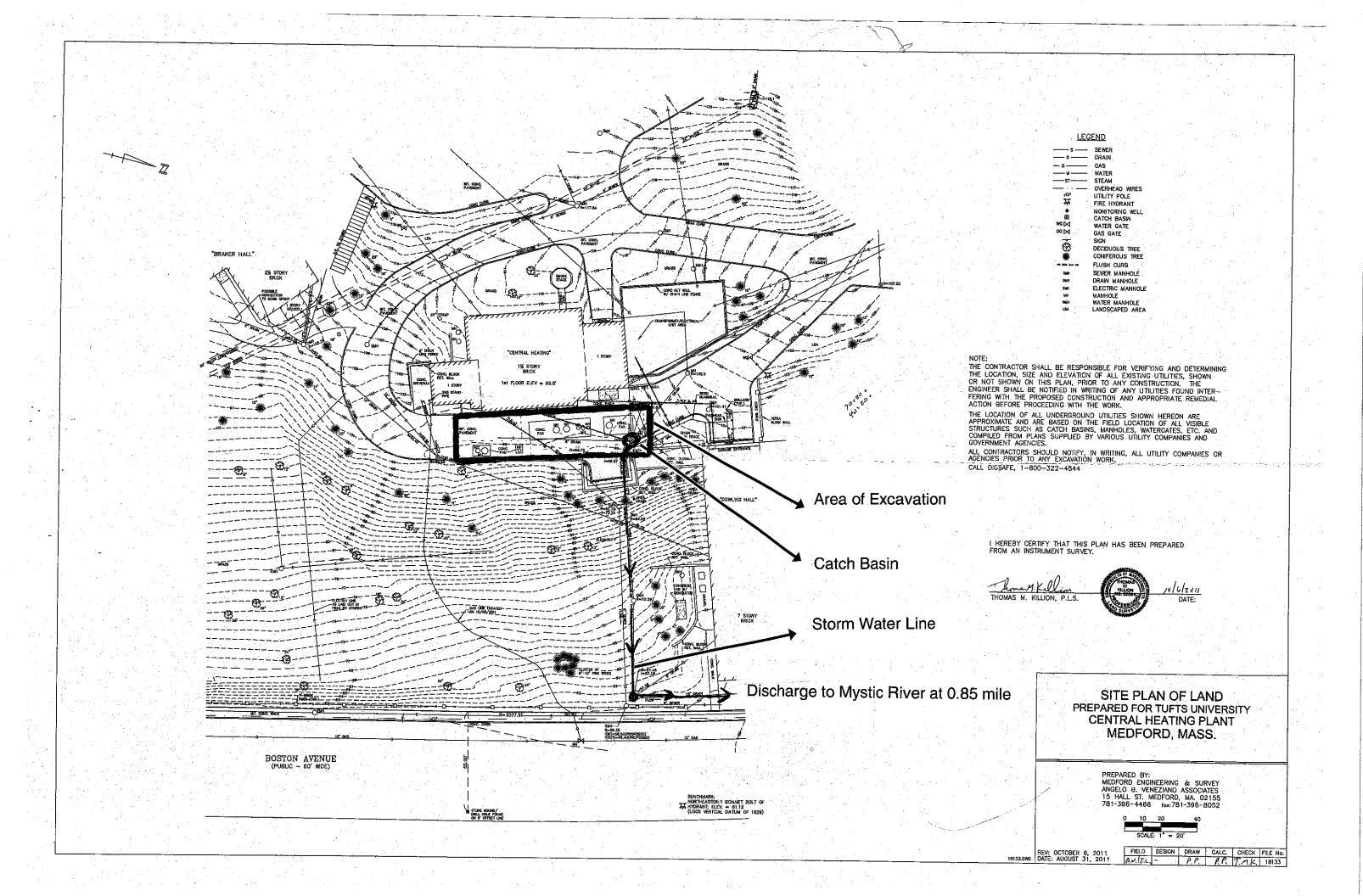
DILUTION FACTOR CALCULATION WORKSHEET NPDES REMEDIATION GENERAL PERMIT – NOTICE OF INTENT FORM

Site: Tufts University/Central Heating Plant Address: 100 North Hill Road, Medford, MA

Receiving Water: Mystic River

DF = (Qd + Qs) / Qd

Where:


DF = Massachusetts dilution factor

Qd = Maximum flow rate of the discharge in cubic feet per second (cfs), estimated at 50 gpm and 1.0 gpm = 0.00223 cfs

Qs = Receiving water 7Q10 flow (cfs), where 7Q10 is the maximum flow in cfs for 7 consecutive days with a recurrence interval of 10 years, estimated at 4.5 cfs based on United States Geological Survey, National Water Information System data

Therefore:

DF = (0.1115 cfs + 4.5 cfs) / 0.1115 cfs = 41.36

Appendix 1 Assessment Units and Integrated List Categories by Major Watershed

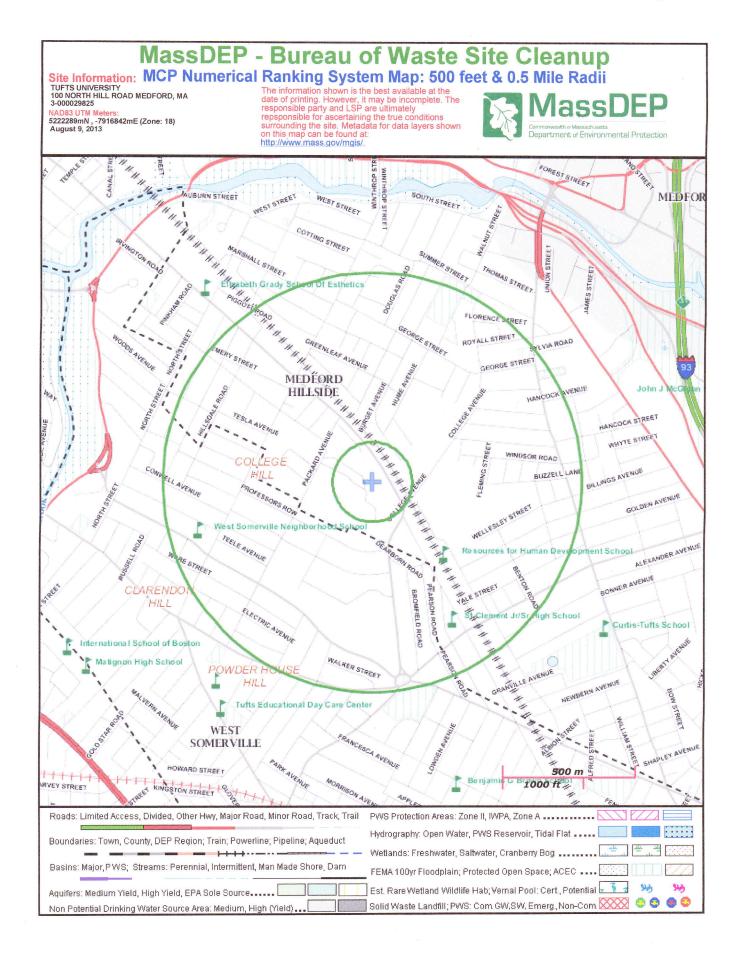
NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	CATEGORY
Cummings Brook	MA71-10	Headwaters east of Wright Street, Woburn to confluence with Fowle Brook,	2.1	MILES	3
		Woburn.			
Ell Pond	MA71014	Melrose	23	ACRES	5
Hills Pond	MA71018	Arlington	2	ACRES	4C
Horn Pond	MA71019	Woburn	108	ACRES	5
Lower Mystic Lake	MA71027	Arlington/Medford	93	ACRES	5
Malden River	MA71-05	Headwaters south of Exchange Street, Malden to confluence with Mystic River, Everett/Medford.	2.3	MILES	5
Mill Brook	MA71-07	Headwaters south of Massachusetts Avenue, Lexington to inlet of Lower Mystic Lake, Arlington (portions culverted underground).	3.9	MILES	5
Mill Creek	MA71-08	From Route 1, Chelsea/Revere to confluence with Chelsea River, Chelsea/Revere.	0.02	SQUARE MILES	5
Mystic River	MA71-02	Outlet Lower Mystic Lake, Arlington/Medford to Amelia Earhart Dam, Somerville/Everett.	4.9	MILES	5
Mystic River	MA71-03	Amelia Earhart Dam, Somerville/Everett to confluence with Boston Inner Harbor, Chelsea/Charlestown (Includes Island End River).	0.49	SQUARE MILES	5
Sales Crrek	MA71-12	Headwaters near Route 145, Revere to tidegate/confluence with Belle Isle Inlet, Boston/Revere.	0.008	SQUARE MILES	3
Shaker Glen Brook	MA71-11	Headwaters, west of Dix Road Extention, Woburn to confluence with Fowle Brook, Woburn (portion culverted underground).	1.5	MILES	3
Spot Pond	MA71039	Stoneham/Medford	290	ACRES	3
Spy Pond	MA71040	Arlington	98	ACRES	5
Unnamed Tributary	MA71-13	Unnamed tributary locally known as 'Meetinghouse Brook', from emergence south of Route 16/east of Winthrop Street, Medford to confluence with the Mystic River, Medford. (brook not apparent on 1985 Boston North USGS quad - 2005 orthophotos used to delineate stream)	0.1	MILES	5
Upper Mystic Lake	MA71043	Winchester/Arlington/Medford	176	ACRES	5
Wedge Pond	MA71045	Winchester	23	ACRES	5
Winn Brook	MA71-09	Headwaters near Juniper Road and the Belmont Hill School, Belmont to confluence with Little Pond, Belmont (portions culverted underground).	1.4	MILES	5
Winter Pond	MA71047	Winchester	18	ACRES	5
Narragansett Bay					
Bad Luck Brook	MA53-11	Headwaters, outlet Warren Upper Reservoir, Rehoboth to confluence with East Branch Palmer River, Rehoboth	1.7	MILES	3
Beaverdam Brook	MA53-10	Headwaters, southeast of Chestnut Street, Rehoboth to confluence with Palmer River, Rehoboth	2.9	MILES	3
Clear Run Brook	MA53-13	Headwaters, outlet unnamed pond northwest of Miller Street, Seekonk to confluence with Palmer River, Rehoboth	1.6	MILES	4A
East Branch Palmer River	MA53-08	Headwaters, near Stevens Corner Cemetery, Rehoboth to confluence with West Branch Palmer River (forming Palmer River), Rehoboth	7.2	MILES	3
Fullers Brook	MA53-12	Headwaters in wetland north of Jacobs Street, Seekonk to confluence with Palmer River, Rehoboth	1.7	MILES	3
Oak Swamp Brook	MA53-15	Headwaters in Oak Swamp east of School Street, Rehoboth to confluence with Rocky Run, Rehoboth	3	MILES	3
Palmer River	MA53-03	From Route 6 bridge, Rehoboth to state line, Swansea, MA/Barrington, RI	0.11	SQUARE MILES	4A

Massachusetts Category 5 Waters "Waters requiring a TMDL"

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	TMDL NO.
Mystic River	MA71-02	Outlet Lower Mystic Lake, Arlington/Medford to Amelia	4.9	MILES	(Fish-Passage Barrier*)	140.
		Earhart Dam, Somerville/Everett.	1.0	WILLO	Arsenic	
					Chlordane	
	A					
					Chlorophyll-a	
					DDT	
					Dissolved oxygen saturation	
					Escherichia coli	
					PCB in Fish Tissue	
					Phosphorus (Total)	
					Secchi disk transparency	
					Sediment Bioassays Chronic Toxicity	
The second secon					Freshwater	
Mystic River	MA71-03	Amelia Earhart Dam, Somerville/Everett to confluence	0.49	SQUARE	Ammonia (Un-ionized)	
		with Boston Inner Harbor, Chelsea/Charlestown		MILES	Fecal Coliform	
		(Includes Island End River).	8		Foam/Flocs/Scum/Oil Slicks	
		,			Other	
						_
				0	Oxygen, Dissolved	
			Petroleum Hydrod Sediment Bioassa		PCB in Fish Tissue	
					Petroleum Hydrocarbons	
				Sediment Bioassays Chronic Toxicity		
					Freshwater	
Carriband	14174646				Taste and Odor	
Spy Pond	MA71040	Arlington	98	ACRES	(Eurasian Water Milfoil, Myriophyllum	
					spicatum*)	
					Chlordane	
					DDT	
					Excess Algal Growth	
					Oxygen, Dissolved	
					Phosphorus (Total)	
Unnamed Tributary	MA71-13	Unnamed tributary locally known as 'Meetinghouse	0.1	MILES	Escherichia coli	
		Brook', from emergence south of Route 16/east of Winthrop Street, Medford to confluence with the Mystic River, Medford. (brook not apparent on 1985 Boston North USGS quad - 2005 orthophotos used to	0.1	WILLS	Escribicina con	
Upper Mystic Lake	NA 74040	delineate stream)				
Opper Mystic Lake	MA71043	Winchester/Arlington/Medford	176	ACRES	(Non-Native Aquatic Plants*)	
					Dissolved oxygen saturation	
				-	Oxygen, Dissolved	
Wedge Pond	MA71045	Winchester	23	ACRES	Oxygen, Dissolved	
					Phosphorus (Total)	
Winn Brook	MA71-09	Headwaters near Juniper Road and the Belmont Hill	1.4	MILES	(Physical substrate habitat alterations*)	
		School, Belmont to confluence with Little Pond, Belmont (portions culverted underground).	15.7	WILLS	Escherichia coli	

January, 2012 (2) Proposed Massachusetts Year 2012 Integrated List of Waters CN 400.0

* TMDL not required (Non-Pollutant)


FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Player	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Boume (north of the Cape Cod Canal)
Berkshire	Bog Turtle	Threatened	. Wetlands	Egremont and Sheffield
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Raynham and Taunton
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	. All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Glocester, Essex, Ipswich, Rowley, Revere Newbury, Newburyport and Salisbury
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague
	Dwarf wedgemussel	Endangered	Mill River	Whately
Hampshire	Small wherled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hadley, Hatfield, Amherst and Northampter
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Middlesex	Small wherled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
•	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
Plymouth	Piping Plover	Threatened	Coastal Benches	Scituate, Marshfield, Duxbury, Plymouth, Warsham and Mattapoisett
	Northern Red-bellied	Endangered	Inland Ponds and Rivers	Kingston, Middleberough, Carver, Plymout Bourne, and Wareham
A 1	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
Suffolk	Piping Plover	Threatened	Coastal Beaches	Winthrop
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.
-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

individuals from source populations in Canada may occur in Plymouth County.

-Critical habitat for the Northern Red-bellied cooter is present in Plymouth County.

CERTIFICATE OF ANALYSIS

Capaccio Environmental Eng. Attn: Ms. Dawn Horter 293 Boston Post Road - West Marlborough, MA 01752 **Date Received:** 7/23/13 **Date Reported:** 7/30/13

P.O. #: TUFTS NORTH HILL

Work Order #: 1307-15549

DESCRIPTION: TUFTS MEDFORD (GROUNDWATER SAMPLING)

Subject sample(s) has/have been analyzed by our Warwick, R.I. laboratory with the attached results.

Reference: All parameters were analyzed by U.S. EPA and Massachusetts Contingency Plan (MCP)

approved methodologies where applicable. The specific methodologies are listed in the methods column of the Certificate of Analysis.

Data qualifiers (if present) are explained in full at the end of a given sample's analytical results.

Certification #: RI-033, MA-RI015, CT-PH-0508, ME-RI015

NH-253700 A & B, USDA S-41844

This Certificate represents all data associated with the referenced work order and is paginated for completeness. The complete Certificate includes one attachment; the original Chain of Custody.

If you have any questions regarding this work, or if we may be of further assistance, please contact our customer service department.

Approved by:

Data Reporting

enc: Chain of Custody

Capaccio Environmental Eng.

Date Received: 7/23/13

Work Order #: 1307-15549

TUFTS MEDFORD (GROUNDWATER SAMPLING)

Sample # 001 SAMPLE DESCRIPTION: MW-2

SAMPLE TYPE: GRAB **SAMPLE DATE/TIME:** 7/23/2013 @ 10:30

	SAMPLE	DET.			DATE		
PARAMETER	RESULTS	LIMIT	UNITS	METHOD	ANALY?	ZED	ANALYST
pН	6.2		SU	SM 4500-H+B	7/23/13	15:55	PTT
Hexavalent Chromium	< 0.02	0.02	mg/l	SM3500-CR D	7/23/13	20:30	DM
Oil & Grease Gravimetric	1.7	0.5	mg/l	EPA 1664	7/24/13	7:09	BLY
ТРН							
TPH GC/FID	5800	500	ug/l	SW846 8100M	7/24/13	18:17	THP
Surrogate			RANGE	SW-846 8100	7/24/13	18:17	THP
2-Fluorobiphenyl	87		40-140%	SW-846 8100	7/24/13	18:17	THP
Extraction date	Extracted			SW846 3510	7/23/13	20:15	MMM
Pesticides / PCB'S							
Aldrin	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Alpha-BHC	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Beta-BHC	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Delta-BHC	< 0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Gamma-BHC	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Chlordane	<1.0	1.0	ug/l	SW-846 8081	7/26/13	13:29	JEB
4-4'-DDD	< 0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
4-4'-DDE	< 0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
4-4'-DDT	< 0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Dieldrin	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Endosulfan I	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Endosulfan II	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Endosulfan Sulfate	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Endrin	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Endrin Ketone	< 0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Heptachlor	<0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Heptachlor epoxide	< 0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Hexachlorobenzene	< 0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Methoxychlor	< 0.1	0.1	ug/l	SW-846 8081	7/26/13	13:29	JEB
Aroclor-1016	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
Aroclor-1221	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
Aroclor-1232	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
Aroclor-1242	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
Aroclor-1248	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
Aroclor-1254	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
Aroclor-1260	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
			~				

Capaccio Environmental Eng.

Date Received: 7/23/13

Work Order #: 1307-15549

TUFTS MEDFORD (GROUNDWATER SAMPLING)

Sample # 001 SAMPLE DESCRIPTION: MW-2

SAMPLE TYPE: GRAB

SAMPLE DATE/TIME: 7/23/2013 @ 10:30

	SAMPLE	DET.			DATE		
PARAMETER	RESULTS	LIMIT	UNITS	METHOD	ANALY	ZED	ANALYST
Aroclor-1262	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
Aroclor-1268	< 0.6	0.6	ug/l	SW-846 8082	7/26/13	11:22	JEB
Surrogate			RANGE	SW-846 8081	7/26/13	13:29	JEB
Tetrachloro-m-xylene (TCMX)	74		30-150%	SW-846 8081	7/26/13	13:29	JEB
Decachlorobiphenyl	44		30-150%	SW-846 8081	7/26/13	13:29	JEB
ЕРН/РАН							
C9-C18 Aliphatics	200	130	ug/l	MADEP	7/26/13	21:07	THP
C19-C36 Aliphatics	<130	130	ug/l	MADEP	7/26/13	21:07	THP
C11-C22 Aromatics	370	130	ug/l	MADEP	7/26/13	21:07	THP
TARGET PAH ANALYTES					7/26/13	21:07	THP
Naphthalene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
2-Methylnaphthalene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Acenaphthylene	<6	6	ug/I	MADEP	7/26/13	21:07	THP
Acenaphthene	<6	6	ug/l	MADEP	7/26/13	21:07	TIHP
Fluorene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Phenanthrene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Anthracene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Fluoranthene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Pyrene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Benzo(a)anthracene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Chrysene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Benzo(b)fluoranthene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Benzo(k)fluoranthene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Benzo(a)pyrene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Indeno(1,2,3-cd)pyrene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Dibenzo(a,h)anthracene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Benzo(g,h,i)perylene	<6	6	ug/l	MADEP	7/26/13	21:07	THP
Extraction Surrogates			RANGE		7/26/13	21:07	THP
5-alpha-Androstane	68		40-140%	MADEP	7/26/13	21:07	THP
Ortho-terphenyl	81		40-140%	MADEP	7/26/13	21:07	THP
Fractionation Surrogates			RANGE		7/26/13	21:07	THP
2-Fluorobiphenyl	82		40-140%	MADEP	7/26/13	21:07	THP
2-Bromonaphthalene	74		40-140%	MADEP	7/26/13	21:07	THP
Extraction date	Extracted			MADEP	7/25/13	9:58	KD

Total Metals Analyzed by ICP

Capaccio Environmental Eng.

Date Received: 7/23/13

Work Order #: 1307-15549

TUFTS MEDFORD (GROUNDWATER SAMPLING)

Sample # 001 SAMPLE DESCRIPTION: MW-2

SAMPLE TYPE: GRAB **SAMPLE DATE/TIME:** 7/23/2013 @ 10:30

		~~~~					
	SAMPLE	DET.			DATE		
PARAMETER	RESULTS	LIMIT	UNITS	<b>METHOD</b>	ANALY	ZED	ANALYST
Antimony	< 0.100	0.100	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Arsenic	<0.1	0.1	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Beryllium	< 0.001	0.001	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Chromium	< 0.03	0.03	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Copper	< 0.05	0.05	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Mercury	< 0.0005	0.0005	mg/l	SW-846 7470A	7/24/13	11:58	JRW
Nickel	< 0.02	0.02	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Selenium	<0.2	0.2	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Thallium	< 0.100	0.100	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Zinc	0.04	0.02	mg/l	SW-846 6010C	7/25/13	11:30	JRW
Extraction date	Extracted			SW846 3510	7/25/13	8:05	KD
ICP Digestion				SW-846 3005	7/24/13	23:02	OMC
Mercury Digestion				SW-846 7470A	7/24/13	11:00	JL
Total Metals Analyzed by ICP/MS							
Cadmium	< 0.001	0.001	mg/l	SW-846 6020A	7/25/13	12:11	PJC
Lead	< 0.001	0.001	mg/l	SW-846 6020A	7/25/13	12:11	PJC
Silver	0.002	0.001	mg/l	SW-846 6020A	7/25/13	12:11	PJC
ICPMS Digestion	Digested			SW-846 3020	7/24/13	23:24	OMC
Volatile Organic Compounds							
Acetone	<10	10	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Tertiary Amyl Methyl Ether	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Benzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Bromobenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Bromochloromethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Bromodichloromethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Bromoform	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Bromomethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
n-Butylbenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Sec-butylbenzene	1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
tert-Butylbenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Carbon Disulfide	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Carbon Tetrachloride	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Chlorobenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Dibromochloromethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Chloroethane	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL

Capaccio Environmental Eng.

Date Received: 7/23/13

Work Order #: 1307-15549

TUFTS MEDFORD (GROUNDWATER SAMPLING)

Sample # 001 SAMPLE DESCRIPTION: MW-2

SAMPLE TYPE: GRAB		SAMPL	E DATE/TIME:	7/23/2013 @ 10	0:30		
	SAMPLE	DET.			DATE		
PARAMETER	RESULTS	LIMIT	UNITS	<b>METHOD</b>	ANALYZ	ZED	ANALYST
Chloroform	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Chloromethane	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
2-Chlorotoluene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
4-Chlorotoluene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2-Dibromo-3-Chloropropane	<2	2	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2-Dibromoethane(EDB)	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Dibromomethane	<2	2	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,3-Dichlorobenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2-Dichlorobenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,4-Dichlorobenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
n-Propylbenzene	2	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Dichlorodifluoromethane	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
I,I-Dichloroethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2-Dichloroethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,1-Dichloroethene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
cis-1,2-Dichloroethene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
trans-1,2-Dichloroethylene	<2	2	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2-Dichloropropane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,3-Dichloropropane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
2,2-Dichloropropane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
I,I-Dichloropropene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
cis-1,3-Dichloropropene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
trans-1,3-Dichloropropylene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Diethyl ether	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Diisopropyl ether (DIPE)	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,4-Dioxane	<100	100	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Ethyl Tertiary Butyl Ether	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Ethylbenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Hexachlorobutadiene	< 0.5	0.5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
2-Hexanone	<10	10	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Isopropylbenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
p-Isopropyltoluene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
2-Butanone(MEK)	<10	10	ug/l	SW-846 8260B	7/24/13	15:29	MEL
4-Methyl-2-pentanone(MIBK)	<10	10	ug/l	SW-846 8260B	7/24/13	15:29	MEL
MTBE	<2	2	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Methylene Chloride	<5	5	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Naphthalene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL

Capaccio Environmental Eng.

Date Received: 7/23/13

Work Order #: 1307-15549

TUFTS MEDFORD (GROUNDWATER SAMPLING)

Sample # 001 SAMPLE DESCRIPTION: MW-2

**SAMPLE TYPE:** GRAB **SAMPLE DATE/TIME:** 7/23/2013 @ 10:30

		O			0.00		
	SAMPLE	DET.			DATE		
PARAMETER	RESULTS	LIMIT	UNITS	<b>METHOD</b>	ANALY	ZED	<b>ANALYST</b>
1,1,2-Trichloroethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Styrene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,1,1,2-Tetrachloroethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,1,2,2-Tetrachloroethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Tetrachloroethene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Tetrahydrofuran	<10	10	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Toluene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2,4-Trichlorobenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2,3-Trichlorobenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,1,1-Trichloroethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Trichloroethene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Trichlorofluoromethane	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2,3-Trichloropropane	<2	2	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,2,4-Trimethylbenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
1,3,5-Trimethylbenzene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Vinyl Chloride	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
o-Xylene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
m,p-Xylene	<1	1	ug/l	SW-846 8260B	7/24/13	15:29	MEL
Surrogates			RANGE	SW-846 8260B	7/24/13	15.29	MEL
Dibromofluoromethane	115		86-118%	SW-846 8260B	7/24/13	15:29	MEL
Toluene-d8	98		88-110%	SW-846 8260B	7/24/13	15:29	MEL
4-Bromofluorobenzene	92		86-115%	SW-846 8260B	7/24/13	15:29	MEL
1,2 Dichloroethane-d4	107		80-120%	SW-846 8260B	7/24/13	15:29	MEL
Semi-Volatile Organic Compounds							
Acenaphthene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Acenaphthylene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Anthracene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Benzidine	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Benzo(a)anthracene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Benzo(b)fluoranthene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Benzo(k)fluoranthene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Benzo(g,h,i)perylene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Benzo(a)pyrene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Bis(2-chloroethyl)ether	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Bis(2-Chloroethoxy)methane	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Bis(2-Chloroisopropyl)Ether	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF

Capaccio Environmental Eng.

Date Received: 7/23/13

Work Order #: 1307-15549

TUFTS MEDFORD (GROUNDWATER SAMPLING)

Sample # 001 SAMPLE DESCRIPTION: MW-2

**SAMPLE TYPE:** GRAB

**SAMPLE DATE/TIME:** 7/23/2013 @ 10:30

	SAMPLE	DET.			DATE		
PARAMETER	RESULTS	LIMIT	UNITS	METHOD	ANALY	ZED	<b>ANALYST</b>
Bis(2-ethylhexyl)phthalate	16	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
4-Bromophenyl phenyl ether	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Butylbenzyl phthalate	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2-Chloronaphthalene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
4-Chlorophenyl phenyl ether	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Chrysene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Dibenzo(a,h)anthracene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Di-n-butyl phthalate	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
1,2-Dichlorobenzene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
1,3-Dichlorobenzene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
1,4-Dichlorobenzene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
3,3'-Dichlorobenzidine	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Diethyl phthalate	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Dimethyl phthalate	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2,4-Dinitrotoluene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2,6-Dinitrotoluene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Di-n-octyl phthalate	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
1,2-Diphenylhydrazine	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Fluoranthene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Fluorene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Hexachlorobenzene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Hexachlorobutadiene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Hexachlorocyclopentadiene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Hexachlorocthane	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Indeno(1,2,3-cd)pyrene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Isophorone	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Naphthalene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Nitrobenzene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
N-nitrosodimethylamine	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
N-nitrosodiphenylamine	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
N-nitrosodi-n-propylamine	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Phenanthrene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Pyrene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
1,2,4-Trichlorobenzene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
4-Chloro-3-methylphenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2-Chlorophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2,4-Dichlorophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF

Capaccio Environmental Eng.

Date Received: 7/23/13

Work Order #: 1307-15549

TUFTS MEDFORD (GROUNDWATER SAMPLING)

Sample # 001 SAMPLE DESCRIPTION: MW-2

**SAMPLE TYPE:** GRAB

	SAMPLE	DET.			DATE		
PARAMETER	RESULTS	LIMIT	UNITS	METHOD	ANALY	ZED	ANALYST
2,4-Dimethylphenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2-Methyl-4,6-dinitrophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2,4-Dinitrophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2-Nitrophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
4-Nitrophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Pentachlorophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Phenol	<14	10	ug/l	SW-846 8270D	7/30/13	7:39	KF
2,4,5-Trichlorophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2,4,6-Trichlorophenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2-Methylnaphthalene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
2-Methylphenol	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
3 & 4-Methylphenols	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Acetophenone	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Aniline	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Azobenzene	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
4-Chloroaniline	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Dibenzofuran	<14	14	ug/l	SW-846 8270D	7/30/13	7:39	KF
Surrogates			RANGE	SW-846 8270D	7/30/13	7:39	KF
Phenol-d5	46		15-110%	SW-846 8270D	7/30/13	7:39	KF
2-Fluorophenol	57		15-110%	SW-846 8270D	7/30/13	7:39	KF
2,4,6-Tribromophenol	104		15-110%	SW-846 8270D	7/30/13	7:39	KF
Nitrobenzene-d5	91		30-130%	SW-846 8270D	7/30/13	7:39	KF
2-Fluorobiphenyl	90		30-130%	SW-846 8270D	7/30/13	7:39	KF
P-Terphenyl-d14	96		30-130%	SW-846 8270D	7/30/13	7:39	KF
Total Metals Analyzed by ICP							
Iron	9.72	0.100	mg/l	SW-846 6010C	7/25/13	11:30	JRW

**SAMPLE DATE/TIME:** 7/23/2013 @ 10:30

All QA/QC procedures required by the EPH Method were followed.

All Performance/Acceptance Standards for the required QA/QC procedures were achieved or otherwise stated.

No significant modifications were made to the EPH Method.

1307-15549 W.O. Number **MassDEP Analytical Protocol Certification Form** Laboratory Name: R.I. Analytical Laboratories Work Order No: 1307-15549 Project / Location: RTN : TUFTS MEDFORD (GROUNDWATER SAMPLING) This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 1307-15549-001 through 1307-15549-001 Matrices: Groundwater/Surface Water Soil / Sediment Drinking Water ☐ Air Other CAM Protocol (check all that apply below): 8260 VOC 7470/7471 Hg MassDEP VPH 8081 Pesticides 7196 Hex Cr MassDEP APH CAM V B CAM VI B CAM II A CAM III B CAM IV A CAM IX A TO-15 VOC 8270 SVOC 7010 Metals MassDEP EPH 8151 Herbicides 8330 Explosives CAM V C CAM IX B CAM IV B CAM VIII A CAM II B CAM III C 9014 Total Cyanide 6020 Metals 6010 Metals 8082 PCB 6860 Perchlorate 凶 PAC CAM VI A CAM III A CAM V A CAM V111 B CAM III D Affirmative responses to Questions A through F are required for "Presumptive Certainty" status Were all samples received in a condition consistent with those described on the Chain-of Custody, properly preserved (including Yes 🗆 No temperature) in the field or laboratory, and prepared/analyzed within method holding times? Yes D No Were the analytical methods(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? В Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Yes 🗆 No Guidelines for the Aquisition and Reporting of Analytical Data"? Yes 🗆 No a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications). □ Yes □ No b. APH and TO-15 Methods only: Was the complete analyte list reported for each method? Yes  $\square$  No Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Ouestions A through E)? Responses to Questions G,H and I below are required for "Presumptive Certainty" status □ Yes 🗶 No Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)? Data User Note: Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 10 CMR 40. 1056 (2)(k) and WSC-07-350. ☐ Yes 🗷 No 1 Were all QC performance standards specified in the CAM protocol(s) achieved? ☐ Yes No 1 Were results reported for the complete analyte list specified in the selected CAM protocol(s)? All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete. Position: Signature OA/OC Director Mike Hobin Printed Name: Date:

**Customer Name:** 

Capaccio Environmental Eng.

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

	-Method Blanks Results-							
Parameter	Units	Results	Date Analyzed					
Hexavalent Chromium	mg/l	<0.02	7/23/2013					
Oil & Grease Gravimetric	mg/l	< 0.5	7/24/2013					
Total Petroleum Hydrocarbons by	Method 8100 (Aqueous)							
TPH GC/FID	ug/l	<200	7/24/2013					
Extractable Petroleum Hydrocarb	ons with PAH (Aqueous)							
C9-C18 Aliphatics	ug/l	<100	7/26/2013					
C19-C36 Aliphatics	ug/l	<100	7/26/2013					
C11-C22 Aromatics	ug/l	<100	7/26/2013					
Target PAH Analytes			7/26/2013					
Naphthalene	ug/l	<5	7/26/2013					
2-Methylnaphthalene	ug/l	<5	7/26/2013					
Acenaphthylene	ug/l	<5	7/26/2013					
Acenaphthene	ug/l	<5	7/26/2013					
Fluorene	ug/l	<5	7/26/2013					
Phenanthrene	ug/l	<5	7/26/2013					
Anthracene	ug/l	<5	7/26/2013					
Fluoranthene	ug/l	<5	7/26/2013					
Pyrene	ug/l	<5	7/26/2013					
Benzo(a)anthracene	ug/l	<5	7/26/2013					
Chrysene	ug/l	<5	7/26/2013					
Benzo(b)fluoranthene	ug/l	<5	7/26/2013					
Benzo(k)fluoranthene	ug/l	<5	7/26/2013					
Benzo(a)pyrene	ug/l	<5	7/26/2013					
Indeno(1,2,3-cd)pyrene	ug/l	<5	7/26/2013					
Dibenzo(a,h)anthracene	ug/l	<5	7/26/2013					
Benzo(g,h,i)perylene	ug/l	<5	7/26/2013					
Extraction Surrogates	RANGE							
5-alpha-Androstane	40-140%	74	7/26/2013					
Ortho-terphenyl	40-140%	93	7/26/2013					
Fractionation Surrogates	RANGE							
2-Fluorobiphenyl	40-140%	97	7/26/2013					
2-Bromonaphthalene	40-140%	84	7/26/2013					
Pesticide/PCB's(Aqueous)								
Endrin Ketone	ug/l	< 0.1	7/26/2013					
Aldrin	ug/l	<0.1	7/26/2013					
Alpha-BHC	ug/l	< 0.1	7/26/2013					
Beta-BHC	ug/l	<0.1	7/26/2013					

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

	-Method B	Blanks Results-	
Parameter	Units	Results	Date Analyzed
Pesticide/PCB's(Aqueous) (cont'd)	)	, <u>, ,                                  </u>	
Delta-BHC	ug/l	<0.1	7/26/2013
Gamma-BHC	ug/l	<0.1	7/26/2013
Chlordane	ug/l	<0.5	7/26/2013
4-4'-DDD	ug/l	< 0.1	7/26/2013
4-4'-DDE	ug/l	< 0.1	7/26/2013
4-4'-DDT	ug/l	< 0.1	7/26/2013
Dieldrin	ug/l	< 0.1	7/26/2013
Endosulfan I	ug/l	< 0.1	7/26/2013
Endosulfan II	ug/l	<0.1	7/26/2013
Endosulfan Sulfate	ug/l	< 0.1	7/26/2013
Endrin	ug/l	<0.1	7/26/2013
Heptachlor	ug/l	< 0.1	7/26/2013
Heptachlor epoxide	ug/l	< 0.1	7/26/2013
Hexachlorobenzene	ug/l	< 0.1	7/26/2013
Methoxychlor	ug/l	<0.1	7/26/2013
Surrogate	RANGE		7/26/2013
Decachlorobiphenyl	30-150%	59	7/26/2013
Tetrachloro-m-xylene (TCMX)	30-150%	81	7/26/2013
Aroclor-1016	ug/l	< 0.5	7/26/2013
Aroclor-1262	ug/l	< 0.5	7/26/2013
Aroclor-1268	ug/l	<0.5	7/26/2013
Aroclor-1221	ug/l	< 0.5	7/26/2013
Aroclor-1232	ug/l	< 0.5	7/26/2013
Aroclor-1242	ug/l	<0.5	7/26/2013
Aroclor-1248	ug/l	< 0.5	7/26/2013
Aroclor-1254	ug/l	< 0.5	7/26/2013
Aroclor-1260	ug/l	< 0.5	7/26/2013
Volatile Organics by Method 8260			
Acetone	ug/l	<10	7/24/2013
Tertiary Amyl Methyl Ether	ug/l	<5	7/24/2013
Benzene	ug/l	<1	7/24/2013
Bromobenzene	ug/l	<1	7/24/2013
Bromochloromethane	ug/l	<1	7/24/2013
Bromodichloromethane	ug/l	<1	7/24/2013
Bromoform	ug/l	<1	7/24/2013
Bromomethane	ug/l	<1	7/24/2013
n-Butylbenzene	ug/l	<1	7/24/2013
Sec-butylbenzene	ug/l	<1	7/24/2013

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

	-Method	Blanks Results-	
Parameter	Units	Results	Date Analyzed
Volatile Organics by Method 826	0 (cont'd)	<u></u>	<u> </u>
tert-Butylbenzene	ug/l	<1	7/24/2013
Carbon Disulfide	ug/l	<5	7/24/2013
Carbon Tetrachloride	ug/l	<1	7/24/2013
Chlorobenzene	ug/l	<1	7/24/2013
Dibromochloromethane	ug/l	<1	7/24/2013
Chloroethane	ug/l	<5	7/24/2013
Chloroform	ug/l	<1	7/24/2013
Chloromethane	ug/l	<5	7/24/2013
2-Chlorotoluene	ug/l	<1	7/24/2013
4-Chlorotoluene	ug/l	<1	7/24/2013
1,2-Dibromo-3-Chloropropane	ug/l	<2	7/24/2013
1,2-Dibromoethane(EDB)	ug/l	<1	7/24/2013
Dibromomethane	ug/l	<2	7/24/2013
1,3-Dichlorobenzene	ug/l	<1	7/24/2013
1,2-Dichlorobenzene	ug/l	<1	7/24/2013
1,4-Dichlorobenzene	ug/l	<1	7/24/2013
n-Propylbenzene	ug/l	<1	7/24/2013
Dichlorodifluoromethane	ug/l	<5	7/24/2013
1,1-Dichloroethane	ug/l	<1	7/24/2013
1,2-Dichloroethane	ug/l	<1	7/24/2013
1,1-Dichloroethene	ug/l	<1	7/24/2013
cis-1,2-Dichloroethene	ug/l	<1	7/24/2013
trans-1,2-Dichloroethylene	ug/l	<2	7/24/2013
1,2-Dichloropropane	ug/l	<1	7/24/2013
1,3-Dichloropropane	ug/l	<1	7/24/2013
2,2-Dichloropropane	ug/l	<1	7/24/2013
1,1-Dichloropropene	ug/l	<1	7/24/2013
cis-1,3-Dichloropropene	ug/l	<1	7/24/2013
Diethyl ether	ug/l	<5	7/24/2013
Diisopropyl ether (DIPE)	ug/l	<5	7/24/2013
1,4-Dioxane	ug/l	<100	7/24/2013
Ethyl Tertiary Butyl Ether	ug/l	<5	7/24/2013
Ethylbenzene	ug/l	<1	7/24/2013
Hexachlorobutadiene	ug/l	<0.5	7/24/2013
2-Hexanone	ug/l	<10	7/24/2013
Isopropylbenzene	ug/l	<1	7/24/2013
p-Isopropyltoluene	ug/l	<1	7/24/2013
2-Butanone(MEK)	ug/l	<10	7/24/2013
4-Methyl-2-pentanone(MIBK)	ug/I	<10	7/24/2013

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

	-iviethod	Dianks Results-	
Parameter	Units	Results	Date Analyzed
Volatile Organics by Method 826	0 (cont'd)		
MTBE	ug/l	<2	7/24/2013
Methylene Chloride	ug/l	<5	7/24/2013
Naphthalene	ug/l	<1	7/24/2013
1,1,2-Trichloroethane	ug/l	<1	7/24/2013
Styrene	ug/l	<1	7/24/2013
1,1,1,2-Tetrachloroethane	ug/l	<1	7/24/2013
1,1,2,2-Tetrachloroethane	ug/l	<1	7/24/2013
Tetrachloroethene	ug/l	<1	7/24/2013
Tetrahydrofuran	ug/l	<10	7/24/2013
Toluene	ug/l	<1	7/24/2013
1,2,4-Trichlorobenzene	ug/l	<1	7/24/2013
1,2,3-Trichlorobenzene	ug/l	<1	7/24/2013
1,1,1-Trichloroethane	ug/l	<1	7/24/2013
Trichloroethene	ug/l	<1	7/24/2013
Trichlorofluoromethane	ug/l	<1	7/24/2013
1,2,3-Trichloropropane	ug/l	<2	7/24/2013
1,2,4-Trimethylbenzene	ug/l	<1	7/24/2013
1,3,5-Trimethylbenzene	ug/l	<1	7/24/2013
Vinyl Chloride	ug/l	<1	7/24/2013
o-Xylene	ug/l	<1	7/24/2013
m,p-Xylene	ug/l	<1	7/24/2013
trans-1,3-Dichloropropylene	ug/l	<1	7/24/2013
Surrogates	RANGE		7/24/2013
Dibromofluoromethane	86-118%	111	7/24/2013
Toluene-d8	88-110%	98	7/24/2013
4-Bromofluorobenzene	86-115%	91	7/24/2013
1,2 Dichloroethane-d4	80-120%	104	7/24/2013
Semi-Volatile Organics by Metho	d 8270 (Aqueous)		
Acenaphthene	ug/l	<5	7/26/2013
Acenaphthylene	ug/l	<5	7/26/2013
Anthracene	ug/l	<5	7/26/2013
Benzidine	ug/l	<5	7/26/2013
Benzo(a)anthracene	ug/l	<5	7/26/2013
Benzo(b)fluoranthene	ug/l	<5	7/26/2013
Benzo(k)fluoranthene	ug/l	<5	7/26/2013
Benzo(g,h,i)perylene	ug/l	<5	7/26/2013
Benzo(a)pyrene	ug/l	<5	7/26/2013
Bis(2-chloroethyl)ether	ug/l	<5	7/26/2013
	Č		

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

-Method Blanks Results-											
Parameter	Units	Results	Date Analyzed								
Semi-Volatile Organics by Metho	emi-Volatile Organics by Method 8270 (Aqueous) (cont'd)										
Bis(2-Chloroethoxy)methane	ug/l	<5	7/26/2013								
Bis(2-Chloroisopropyl)Ether	ug/l	<5	7/26/2013								
Bis(2-ethylhexyl)phthalate	ug/l	<5	7/26/2013								
4-Bromophenyl phenyl ether	ug/l	<5	7/26/2013								
Butylbenzyl phthalate	ug/l	<5	7/26/2013								
2-Chloronaphthalene	ug/l	<5	7/26/2013								
4-Chlorophenyl phenyl ether	ug/l	<5	7/26/2013								
Chrysene	ug/l	<5	7/26/2013								
Dibenzo(a,h)anthracene	ug/l	<5	7/26/2013								
Di-n-butyl phthalate	ug/l	<5	7/26/2013								
1,2-Dichlorobenzene	ug/l	<5	7/26/2013								
1,3-Dichlorobenzene	ug/l	<5	7/26/2013								
1,4-Dichlorobenzene	ug/l	<5	7/26/2013								
3,3'-Dichlorobenzidine	ug/l	<5	7/26/2013								
Diethyl phthalate	ug/l	<5	7/26/2013								
Dimethyl phthalate	ug/l	<5	7/26/2013								
2,4-Dinitrotoluene	ug/l	<5	7/26/2013								
2,6-Dinitrotoluene	ug/l	<5	7/26/2013								
Di-n-octyl phthalate	ug/l	<5	7/26/2013								
1,2-Diphenylhydrazine	ug/l	<5	7/26/2013								
Fluoranthene	ug/l	<5	7/26/2013								
Fluorene	ug/l	<5	7/26/2013								
Hexachlorobenzene	ug/l	<5	7/26/2013								
Hexachlorobutadiene	ug/l	<5	7/26/2013								
Hexachlorocyclopentadiene	ug/l	<5	7/26/2013								
Hexachloroethane	ug/l	<5	7/26/2013								
Indeno(1,2,3-cd)pyrene	ug/l	<5	7/26/2013								
Isophorone	ug/l	<5	7/26/2013								
Naphthalene	ug/l	<5	7/26/2013								
Nitrobenzene	ug/l	<5	7/26/2013								
N-nitrosodimethylamine	ug/l	<5	7/26/2013								
N-nitrosodiphenylamine	ug/l	<5	7/26/2013								
N-nitrosodi-n-propylamine	ug/l	<5	7/26/2013								
Phenanthrene	ug/l	<5	7/26/2013								
Pyrene	ug/l	<5	7/26/2013								
1,2,4-Trichlorobenzene	ug/l	<5	7/26/2013								
4-Chloro-3-methylphenol	ug/l	<5	7/26/2013								
2-Chlorophenol	ug/l	<5	7/26/2013								
2,4-Dichlorophenol	ug/l	<5	7/26/2013								

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

#### -Method Blanks Results-

	iairks Results-	<del></del>	
Parameter	Units	Results	Date Analyzed
Semi-Volatile Organics by Metho	od 8270 (Aqueous) (cont'd)	l	· ·
2,4-Dimethylphenol	ug/l <5		7/26/2013
2-Methyl-4,6-dinitrophenol	ug/l	<5	7/26/2013
2,4-Dinitrophenol	ug/l	<5	7/26/2013
2-Nitrophenol	ug/l	<5	7/26/2013
4-Nitrophenol	ug/l	<5	7/26/2013
Pentachlorophenol	ug/ì	<5	7/26/2013
Phenol	ug/l	<5	7/26/2013
2,4,6-Trichlorophenol	ug/l	<5	7/26/2013
2,4,5-Trichlorophenol	ug/l	<5	7/26/2013
3 & 4-Methylphenols	ug/l	<5	7/26/2013
2-Methylphenol	ug/l	<5	7/26/2013
4-Chloroaniline	ug/l	<5	7/26/2013
Dibenzofuran	ug/l	<5	7/26/2013
2-Methylnaphthalene	ug/l	<5	7/26/2013
Azobenzene	ug/l	<5	7/26/2013
Acetophenone	ug/l	<5	7/26/2013
Aniline	ug/l	<5	7/26/2013
Surrogates	RANGE		7/26/2013
Phenol-d5	15-110%	40	7/26/2013
2-Fluorophenol	15-110%	55	7/26/2013
2,4,6-Tribromophenol	15-110%	103	7/26/2013
Nitrobenzene-d5	30-130%	99	7/26/2013
2-Fluorobiphenyl	30-130%	93	7/26/2013
P-Terphenyl-d14	30-130%	127	7/26/2013
Metals (Aqueous)			
Antimony	mg/l	< 0.100	7/25/2013
Iron	mg/l	< 0.100	7/25/2013
Thallium	mg/l	< 0.100	7/25/2013
Mercury	mg/l	< 0.0005	7/24/2013
Arsenic	mg/l	< 0.1	7/25/2013
Beryllium	mg/l	< 0.001	7/25/2013
Chromium	mg/l	< 0.03	7/25/2013
Copper	mg/l	< 0.05	7/25/2013
Nickel	mg/l	< 0.02	7/25/2013
Selenium	mg/l	<0.2	7/25/2013
Zinc	mg/l	< 0.02	7/25/2013
	_		

# Metals by ICPMS (Aqueous)

Client: Capaccio Environmental Eng.

**WO** #: 1307-15549

**Date:** 7/30/2013

Parameter	Units	Results	Date Analyzed
Metals by ICPMS (Aqueous) (con	t'd)		
Cadmium	mg/l	< 0.001	7/25/2013
Lead	mg/l	< 0.001	7/25/2013
Silver	mg/l	< 0.001	7/25/2013

	r	T	<u> </u>	1			1	
Parameter	CRM	Spike	LCS	LCS	LCS Dup	LCS DUP	0/ 5	Data Analyzad
	Acceptance Limits	Conc	Conc	% Rec	Conc	% Rec	% RPD	Date Analyzed
Hexavalent Chromium		0.200	0.203	102			0	7/23/2013
	L M.41 J O							
Total Petroleum Hydrocar	bons by Method 8	100 (Aque 1000	ous) 864	86	754	75	14	7/24/2013
				80	734	13	14	7/24/2013
Extractable Petroleum Hyd	drocarbons with P		•	<b>50</b>	101		0	7/0 < /0.012
C9-C18 Aliphatics		300	174	58	191	64	9	7/26/2013
C19-C36 Aliphatics		400	376	94	366	92	3	7/26/2013
C11-C22 Aromatics		850	682	80	693	82	2	7/26/2013
Target PAH Analytes		50	26.6	52	21.0	(2	1.6	7/27/2012
Naphthalene		50	26.6	53	31.0	62	15	7/26/2013
2-Methylnaphthalene		50	28.8	58	33.5	67	15	7/26/2013
Acenaphthylene		50	32.2	64	36.6	73	13	7/26/2013
Acenaphthene		50	32.8	66	36.9	74	12	7/26/2013
Fluorene		50	36.6	73	39.3	79	7	7/26/2013
Phenanthrene		50	40.2	80	41.3	83	3	7/26/2013
Anthracene		50	42.8	86	42.8	86	0	7/26/2013
Fluoranthene		50	42.6	85	42.6	85	0	7/26/2013
Pyrene		50	42.8	86	42.7	85	0	7/26/2013
Benzo(a)anthracene		50	43.5	87	42.6	85	2	7/26/2013
Chrysene		50	44.1	88	43.3	87	2	7/26/2013
Benzo(b)fluoranthene		50	44.7	89	42.1	84	6	7/26/2013
Benzo(k)fluoranthene		50	46.3	93	43.5	87	6	7/26/2013
Benzo(a)pyrene		50	43.7	87	42.8	86	2	7/26/2013
Indeno(1,2,3-cd)pyrene		50	44.6	89	43.7	87	2	7/26/2013
Dibenzo(a,h)anthracene		50	45.5	91	44.2	88	3	7/26/2013
Benzo(g,h,i)perylene		50	44.9	90	43.8	88	2	7/26/2013
Extraction Surrogates								
5-alpha-Androstane			65		57			
Ortho-terphenyl			88		86			
Fractionation Surrogates	3							
2-Fluorobiphenyl			86		91			
2-Bromonaphthalene			80		84			
Pesticide/PCB's(Aqueous)								
Endrin Ketone		1.0	0.74	74	0.62	62	18	7/26/2013
Aldrin		1.0	0.71	71	0.61	61	15	7/26/2013
Alpha-BHC		1.0	0.71	71	0.60	60	17	7/26/2013
Beta-BHC		1.0	0.72	72	0.62	62	15	7/26/2013
Delta-BHC		1.0	0.71	71	0.60	60	17	7/26/2013
Gamma-BHC		1.0	0.71	71	0.61	61	15	7/26/2013
Chlordane		2.0	1.45	73	1.23	62	16	7/26/2013
4-4'-DDD		1.0	0.77	77	0.63	63	20	7/26/2013
4-4'-DDE		1.0	0.74	74	0.61	61	19	7/26/2013
4-4'-DDT		1.0	0.67	67	0.55	55	20	7/26/2013
Dieldrin		1.0	0.75	75	0.63	63	17	7/26/2013
Endosulfan I		1.0	0.75	75	0.63	63	17	7/26/2013
Endosulfan II		1.0	0.76	76	0.63	63	19	7/26/2013
Endosulfan Sulfate		1.0	0.71	71	0.59	59	18	7/26/2013
Endrin		1.0	0.73	73	0.61	61	18	7/26/2013
Heptachlor		1.0	0.73	73	0.62	62	16	7/26/2013
Heptachlor epoxide		1.0	0.74	74	0.63	63	16	7/26/2013

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

	CDM	C21	LCC	LCC	LCCB	LCCDID		
Parameter	CRM Acceptance Limits	Spike Conc	LCS Conc	LCS % Rec	LCS Dup Conc	LCS DUP % Rec	% RPD	Date Analyzed
Pesticide/PCB's(Aqueous)	(cont'd)							
Hexachlorobenzene		1.0	0.97	97	0.85	85	13	7/26/2013
Methoxychlor		1.0	0.81	81	0.66	66	20	7/26/2013
Surrogate								7/26/2013
Decachlorobiphenyl				0		0		7/26/2013
Tetrachloro-m-xylene (TCMX)				0		0		7/26/2013
Aroclor-1016		5.0	3.75	75	3.65	73	3	7/26/2013
Aroclor-1260		5.0	4.26	85	4.24	85	0	7/26/2013
olatile Organics by Metho	od 8260							
Acetone		500	530	106	530	106	0	7/24/2013
Tertiary Amyl Methyl Ether		50	44	88	45	90	2	7/24/2013
Benzene		50	54	108	54	108	0	7/24/2013
Bromobenzene		50	52	104	52	104	0	7/24/2013
Bromochloromethane		50	56	112	55	110	2	7/24/2013
Bromodichloromethane		50	54	108	53	106	2	7/24/2013
Bromoform		50	49	98	49	98	0	7/24/2013
Bromomethane		50	60	120	57	114	5	7/24/2013
n-Butylbenzene		50	45	90	45	90	0	7/24/2013
Sec-butylbenzene		50	47	94	46	92	2	7/24/2013
tert-Butylbenzene		50	48	96	47	94	2	7/24/2013
Carbon Disulfide		50	53	106	51	102	4	7/24/2013
Carbon Tetrachloride		50	52	104	51	102	2	7/24/2013
Chlorobenzene		50	52	104	52	104	0	7/24/2013
Dibromochloromethane		50	52	104	53	106	2	7/24/2013
Chloroethane		50	61	122	57	114	7	7/24/2013
Chloroform		50	54	108	54	108	0	7/24/2013
Chloromethane		50	52	104	50	100	4	7/24/2013
2-Chlorotoluene		50	52	104	51	102	2	7/24/2013
4-Chlorotoluene		50	52	104	51	102	2	7/24/2013
1,2-Dibromo-3-Chloropropane		50	45	90	46	92	2	7/24/2013
1,2-Dibromoethane(EDB)		50	53	106	54	108	2	7/24/2013
Dibromomethane		50	55	110	56	112	2	7/24/2013
1,3-Dichlorobenzene		50	50	100	51	102	2	7/24/2013
1,2-Dichlorobenzene		50	50	100	49	98	2	7/24/2013
1,4-Dichlorobenzene		50	51	102	51	102	0	7/24/2013
n-Propylbenzene		50	52	104	51	102	2	7/24/2013
Dichlorodifluoromethane		50	47	94	46	92	2	7/24/2013
1,1-Dichloroethane		50	55	110	53	106	4	7/24/2013
1,2-Dichloroethane		50	55	110	55	110	0	7/24/2013
1,1-Dichloroethene		50	50	100	50	100	0	7/24/2013
cis-1,2-Dichloroethene		50	49	98	48	96	2	7/24/2013
trans-1,2-Dichloroethylene		50	50	100	49	98	2	7/24/2013
1,2-Dichloropropane		50	54	108	53	106	2	7/24/2013

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

Parameter	CRM Acceptance Limits	Spike Conc	LCS Conc	LCS % Rec	LCS Dup Conc	LCS DUP % Rec	% RPD	Date Analyzed
Volatile Organics by Method	l 8260 (cont'd)							
1,3-Dichloropropane	,	50	56	112	56	112	0	7/24/2013
2,2-Dichloropropane		50	54	108	51	102	6	7/24/2013
1,1-Dichloropropene		50	51	102	49	98	4	7/24/2013
cis-1,3-Dichloropropene		50	50	100	50	100	0	7/24/2013
Diethyl ether		500	530	106	530	106	0	7/24/2013
Diisopropyl ether (DIPE)		50	46	92	49	98	6	7/24/2013
1,4-Dioxane		1000	860	86	800	80	7	7/24/2013
Ethyl Tertiary Butyl Ether		50	46	92	47	94	2	7/24/2013
Ethylbenzene		50	51	102	51	102	0	7/24/2013
Hexachlorobutadiene		50	41	82	42	84	2	7/24/2013
2-Hexanone		500	520	104	530	106	2	7/24/2013
Isopropylbenzene		50	50	100	49	98	2	7/24/2013
p-Isopropyltoluene		50	46	92	46	92	0	7/24/2013
2-Butanone(MEK)		500	540	108	540	108	0	7/24/2013
4-Methyl-2-pentanone(MIBK)		500	520	104	520	104	0	7/24/2013
MTBE		50	45	90	47	94	4	7/24/2013
Methylene Chloride		50	54	108	53	106	2	7/24/2013
Naphthalene		50	40	80	42	84	5	7/24/2013
1,1,2-Trichloroethane		50	55	110	56	112	2	7/24/2013
Styrene		50	52	104	51	102	2	7/24/2013
1,1,1,2-Tetrachloroethane		50	51	102	51	102	0	7/24/2013
1,1,2,2-Tetrachloroethane		50	53	106	54	108	2	7/24/2013
Tetrachloroethene		50	54	108	52	104	4	7/24/2013
Tetrahydrofuran		500	490	98	500	100	2	7/24/2013
Toluene		50	54	108	53	106	2	7/24/2013
1,2,4-Trichlorobenzene		50	40	80	41	82	2	7/24/2013
1,2,3-Trichlorobenzene		50	39	78	41	82	5	7/24/2013
1,1,1-Trichloroethane		50	52	104	50	100	4	7/24/2013
Trichloroethene		50	52	104	51	102	2	7/24/2013
Trichlorofluoromethane		50	55	110	52	104	6	7/24/2013
1,2,3-Trichloropropane		50	52	104	52	104	0	7/24/2013
1,2,4-Trimethylbenzene		50	50	100	49	98	2	7/24/2013
1,3,5-Trimethylbenzene		50	50	100	48	96	4	7/24/2013
Vinyl Chloride		50	52	104	51	102	2	7/24/2013
o-Xylene		50	50	100	50	100	0	7/24/2013
m,p-Xylene		100	100	100	100	100	0	7/24/2013
trans-1,3-Dichloropropylene		50	50	100	51	102	2	7/24/2013
Surrogates								
Dibromofluoromethane			109		108			
Toluene-d8			106		105			
4-Bromofluorobenzene			100		99			
1,2 Dichloroethane-d4			105		107			

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

Parameter	-Desires Dupikate Data Results-											
Accangalphthere	Parameter			1		_		% RPD	Date Analyzed			
Accangalphthere	emi-Volatile Organics by Method 8270 (Aqueous)											
Anthracene		` 1		51	102	48	96	6	7/30/2013			
Benzidine	Acenaphthylene		50	56	112	53	106	6	7/30/2013			
Benzo(n)anthracene   50   58   116   57   114   2   730/2013     Benzo(b)fluoranthene   50   48   96   49   98   2   750/2013     Benzo(b)fluoranthene   50   44   88   42   84   5   730/2013     Benzo(s)fluoranthene   50   42   84   37   74   13   730/2013     Benzo(s)flyrene   50   45   90   43   86   5   730/2013     Benzo(s)flyrene   50   45   90   41   82   9   730/2013     Bist2-chloroethylyhether   50   45   90   41   82   9   730/2013     Bist2-chloroethylyhether   50   45   90   41   82   9   730/2013     Bist2-chloroethylyhether   50   47   94   42   84   11   730/2013     Bist2-chloroethylyhether   50   52   104   50   100   4   730/2013     Bist2-chloroethylyhether   50   54   108   52   104   4   730/2013     Bist2-chlyresylphthalate   50   54   108   52   104   4   730/2013     Bist2-chlyresylphthalate   50   54   108   52   104   4   730/2013     Bisty-benzylphthalate   50   54   108   52   104   4   730/2013     Bisty-benzylphthalate   50   54   108   52   104   4   730/2013     Chlorotophenylphenylether   50   54   108   52   104   4   730/2013     Chlorotophenylphenylether   50   52   104   50   100   4   730/2013     Chlorotophenylphenylether   50   52   104   50   100   4   730/2013     Chlorotophenylphenylether   50   52   104   50   100   4   730/2013     Dientylphthalate   50   56   112   54   108   4   730/2013     Dientylphthalate   50   50   41   82   36   72   13   730/2013     L3-Dichlorobenzene   50   41   82   36   12   5   730/2013     L3-Dichlorobenzene   50   52   104   50   100   4   730/2013     L3-Dichlorobenzene   50   54   108   52   104   50   100   4   730/2013     L3-Dichlorobenzene   50   54   108   52   104   50   100   4   730/2013     L3-Dichlorobenzene   50   54   108   52   104   50   100   4   730/2013     L	Anthracene		50	55	110	54	108	2	7/30/2013			
Benzo(h)fluoranthene	Benzidine		50	36	72	21	42	53	7/30/2013			
Benzo(k)fluoranthene   50	Benzo(a)anthracene		50	58	116	57	114	2	7/30/2013			
Benzo(g,h.i)perylene	Benzo(b)fluoranthene		50	48	96	49	98	2	7/30/2013			
Benzo(a)pyrene   50	Benzo(k)fluoranthene		50	44	88	42	84	5	7/30/2013			
Bis(2-Chloroethylyhehrer   50	Benzo(g,h,i)perylene		50	42	84	37	74	13	7/30/2013			
Bis(2-Chloroethoxy)methane   50	Benzo(a)pyrene		50	45	90	43	86	5	7/30/2013			
Bis(2-Chloroisopropyl)Ether   50	Bis(2-chloroethyl)ether		50	45	90	41	82	9	7/30/2013			
Bis(2-ethylhexyl)phthalate			50	49	98	45	90	9	7/30/2013			
Harmomphenyl phenyl ether   50   54   108   52   104   4   7/30/2013	Bis(2-Chloroisopropyl)Ether		50	47	94	42	84	11	7/30/2013			
Burylberzyl phthalate   50   54   108   52   104   4   7/30/2013	Bis(2-ethylhexyl)phthalate		50	52	104	50	100	4	7/30/2013			
Chloropaphthalene	4-Bromophenyl phenyl ether		50	54	108	52	104	4	7/30/2013			
Chrysene	Butylbenzyl phthalate		50	54	108	52	104	4	7/30/2013			
Chrysene         50         52         104         50         100         4         7/30/2013           Dibenzo(a,h)anthracene         50         41         82         36         72         13         7/30/2013           Di-n-butyl phthalate         50         56         112         54         108         4         7/30/2013           1,2-Dichlorobenzene         50         41         82         35         70         16         7/30/2013           1,3-Dichlorobenzene         50         40         80         33         66         19         7/30/2013           1,4-Dichlorobenzene         50         39         78         33         66         17         7/30/2013           1,4-Dichlorobenzidine         50         52         104         50         100         4         7/30/2013           Diethyl phthalate         50         59         118         56         112         5         7/30/2013           2,4-Dinitrotoluene         50         56         112         54         108         4         7/30/2013           2,6-Dinitrotoluene         50         54         108         52         104         4         7/30/2013	2-Chloronaphthalene		50	49	98	47	94	4	7/30/2013			
Dibenzo(a,h)anthracene   50	4-Chlorophenyl phenyl ether		50	52	104	50	100	4	7/30/2013			
Di-n-butyl phthalate	Chrysene		50	52	104	50	100	4	7/30/2013			
1,2-Dichlorobenzene   50	Dibenzo(a,h)anthracene		50	41	82	36	72	13	7/30/2013			
1,2-Dichlorobenzene   50	Di-n-butyl phthalate		50	56	112	54	108	4	7/30/2013			
1,4-Dichlorobenzene   50   39   78   33   66   17   7/30/2013     3,3'-Dichlorobenzidine   50   52   104   50   100   4   7/30/2013     Diethyl phthalate   50   59   118   56   112   5   7/30/2013     Diethyl phthalate   50   56   112   54   108   4   7/30/2013     2,4-Dinitrotoluene   50   52   104   50   100   4   7/30/2013     2,6-Dinitrotoluene   50   54   108   52   104   4   7/30/2013     2,6-Dinitrotoluene   50   54   108   52   104   4   7/30/2013     2,6-Dinitrotoluene   50   54   108   52   104   4   7/30/2013     1,2-Diphenylhydrazine   50   57   114   56   112   2   7/30/2013     1,2-Diphenylhydrazine   50   57   114   56   112   4   7/30/2013     1,2-Diphenylhydrazine   50   58   116   56   112   4   7/30/2013     1,2-Diphenylhydrazine   50   53   106   50   100   6   7/30/2013     1,2-Diphenylhydrazine   50   40   80   34   68   16   7/30/2013     1,2-Diphenylhydrazine   50   42   84   37   74   13   7/30/2013     1,2-Diphenylhydrazine   50   40   80   36   72   11   7/30/2013     1,2-Diphenylhydrazine   50   53   106   50   100   6   7/30/2013     1,2-Diphenylhydrazine   50   44   88   39   78   12   7/30/2013     1,2-Diphenylhydrazine   50   48   96   43   86   11   7/30/2013	1,2-Dichlorobenzene		50	41	82	35	70	16	7/30/2013			
3,3'-Dichlorobenzidine   50   52   104   50   100   4   7/30/2013     Diethyl phthalate   50   59   118   56   112   5   7/30/2013     Dimethyl phthalate   50   56   112   54   108   4   7/30/2013     2,4-Dinitrotoluene   50   52   104   50   100   4   7/30/2013     2,6-Dinitrotoluene   50   54   108   52   104   4   7/30/2013     2,6-Dinitrotoluene   50   54   108   52   104   4   7/30/2013     Di-n-octyl phthalate   50   42   84   40   80   5   7/30/2013     1,2-Diphenylhydrazine   50   57   114   56   112   2   7/30/2013     Fluoranthene   50   58   116   56   112   4   7/30/2013     Fluorene   50   53   106   50   100   6   7/30/2013     Hexachlorobenzene   50   50   100   49   98   2   7/30/2013     Hexachlorobutadiene   50   40   80   34   68   16   7/30/2013     Hexachlorocyclopentadiene   50   42   84   37   74   13   7/30/2013     Hexachlorocyclopentadiene   50   42   84   37   74   13   7/30/2013     Hexachlorocyclopentadiene   50   37   74   31   62   18   7/30/2013     Hexachlorocyclopentadiene   50   40   80   36   72   11   7/30/2013     Indeno(1,2,3-ed)pyrene   50   40   80   36   72   11   7/30/2013     Isophorone   50   53   106   50   100   6   7/30/2013     Naphthalene   50   44   88   39   78   12   7/30/2013     Naphthalene   50   48   96   43   86   11   7/30/2013     Nitrobenzene   50   50   50   50   50   50   50   5	1,3-Dichlorobenzene		50	40	80	33	66	19	7/30/2013			
Diethyl phthalate         50         59         118         56         112         5         7/30/2013           Dimethyl phthalate         50         56         112         54         108         4         7/30/2013           2,4-Dinitrotoluene         50         52         104         50         100         4         7/30/2013           2,6-Dinitrotoluene         50         54         108         52         104         4         7/30/2013           Di-n-octyl phthalate         50         42         84         40         80         5         7/30/2013           1,2-Diphenylhydrazine         50         57         114         56         112         2         7/30/2013           Fluorene         50         58         116         56         112         4         7/30/2013           Fluorene         50         53         106         50         100         6         7/30/2013           Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorocytlopentadiene         50         42         84         37         74         13         7/30/2013           Indeno(	1,4-Dichlorobenzene		50	39	78	33	66	17	7/30/2013			
Dimethyl phthalate         50         56         112         54         108         4         7/30/2013           2,4-Dinitrotoluene         50         52         104         50         100         4         7/30/2013           2,6-Dinitrotoluene         50         54         108         52         104         4         7/30/2013           Di-n-octyl phthalate         50         42         84         40         80         5         7/30/2013           1,2-Diphenylhydrazine         50         57         114         56         112         2         7/30/2013           Fluoranthene         50         58         116         56         112         4         7/30/2013           Fluorene         50         53         106         50         100         6         7/30/2013           Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocyclopentadiene         50         37         74         31         62         18         7/30/2013	3,3'-Dichlorobenzidine		50	52	104	50	100	4	7/30/2013			
2,4-Dinitrotoluene         50         52         104         50         100         4         7/30/2013           2,6-Dinitrotoluene         50         54         108         52         104         4         7/30/2013           Di-n-octyl phthalate         50         42         84         40         80         5         7/30/2013           1,2-Diphenylhydrazine         50         57         114         56         112         2         7/30/2013           Fluoranthene         50         58         116         56         112         4         7/30/2013           Fluorene         50         53         106         50         100         6         7/30/2013           Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorobutadiene         50         40         80         34         68         16         7/30/2013           Hexachlorocyclopentadiene         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-ed)pyrene         50         40         80         36         72         11         7/30/2013 <td< td=""><td>Diethyl phthalate</td><td></td><td>50</td><td>59</td><td>118</td><td>56</td><td>112</td><td>5</td><td>7/30/2013</td></td<>	Diethyl phthalate		50	59	118	56	112	5	7/30/2013			
2,6-Dinitrotoluene         50         54         108         52         104         4         7/30/2013           Di-n-octyl phthalate         50         42         84         40         80         5         7/30/2013           1,2-Diphenylhydrazine         50         57         114         56         112         2         7/30/2013           Fluoranthene         50         58         116         56         112         4         7/30/2013           Fluorene         50         53         106         50         100         6         7/30/2013           Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorobutadiene         50         40         80         34         68         16         7/30/2013           Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocyclopentadiene         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-ed)pyrene         50         40         80         36         72         11         7/30/2013	Dimethyl phthalate		50	56	112	54	108	4	7/30/2013			
Di-n-octyl phthalate         50         42         84         40         80         5         7/30/2013           1,2-Diphenylhydrazine         50         57         114         56         112         2         7/30/2013           Fluoranthene         50         58         116         56         112         4         7/30/2013           Fluorene         50         53         106         50         100         6         7/30/2013           Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorocyclopentadiene         50         40         80         34         68         16         7/30/2013           Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocyclopentadiene         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013			50	52	104	50	100	4	7/30/2013			
1,2-Diphenylhydrazine         50         57         114         56         112         2         7/30/2013           Fluoranthene         50         58         116         56         112         4         7/30/2013           Fluorene         50         53         106         50         100         6         7/30/2013           Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorocyclopentadiene         50         40         80         34         68         16         7/30/2013           Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocthane         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           N-nitrosodim	2,6-Dinitrotoluene		50	54	108	52	104	4	7/30/2013			
Fluoranthene         50         58         116         56         112         4         7/30/2013           Fluorene         50         53         106         50         100         6         7/30/2013           Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorobutadiene         50         40         80         34         68         16         7/30/2013           Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocthane         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	Di-n-octyl phthalate		50	42	84	40	80	5	7/30/2013			
Fluorene         50         53         106         50         100         6         7/30/2013           Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorobutadiene         50         40         80         34         68         16         7/30/2013           Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocthane         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	1,2-Diphenylhydrazine		50	57	114	56	112	2	7/30/2013			
Hexachlorobenzene         50         50         100         49         98         2         7/30/2013           Hexachlorobutadiene         50         40         80         34         68         16         7/30/2013           Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocthane         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	Fluoranthene		50	58	116	56	112	4	7/30/2013			
Hexachlorobutadiene         50         40         80         34         68         16         7/30/2013           Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocthane         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	Fluorene		50	53	106	50	100	6	7/30/2013			
Hexachlorocyclopentadiene         50         42         84         37         74         13         7/30/2013           Hexachlorocthane         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	Hexachlorobenzene		50		100		98	2				
Hexachloroethane         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	Hexachlorobutadiene		50	40	80	34	68	16	7/30/2013			
Hexachloroethane         50         37         74         31         62         18         7/30/2013           Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	Hexachlorocyclopentadiene			42	84	37	74	13				
Indeno(1,2,3-cd)pyrene         50         40         80         36         72         11         7/30/2013           Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	• •		50		74		62	18	7/30/2013			
Isophorone         50         53         106         50         100         6         7/30/2013           Naphthalene         50         44         88         39         78         12         7/30/2013           Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	Indeno(1,2,3-cd)pyrene		50	40	80	36	72	11				
Naphthalene         50         44         88         39         78         12         7/30/2013           Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	· · · · · · · · · · · · · · · · · · ·				106		100	6				
Nitrobenzene         50         48         96         43         86         11         7/30/2013           N-nitrosodimethylamine         50         32         64         25         50         25         7/30/2013	Naphthalene		50		88	39	78		7/30/2013			
N-nitrosodimethylamine 50 32 64 25 50 25 7/30/2013									7/30/2013			
·												
	•					108	108	3				

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

Parameter	CRM Acceptance Limits	Spike Conc	LCS Conc	LCS % Rec	LCS Dup Conc	LCS DUP % Rec	% RPD	Date Analyzed		
Semi-Volatile Organics by	Method 8270 (Ag	ueous) (co	ont'd)							
N-nitrosodi-n-propylamine		50	55	110	52	104	6	7/30/2013		
Phenanthrene		50	51	102	49	98	4	7/30/2013		
Pyrene		50	59	118	57	114	3	7/30/2013		
1,2,4-Trichlorobenzene		50	43	86	37	74	15	7/30/2013		
4-Chloro-3-methylphenol		50	51	102	45	90	13	7/30/2013		
2-Chlorophenol		50	44	88	36	72	20	7/30/2013		
2,4-Dichlorophenol		50	52	104	46	92	12	7/30/2013		
2,4-Dimethylphenol		50	48	96	42	84	13	7/30/2013		
2-Methyl-4,6-dinitrophenol		50	49	98	47	94	4	7/30/2013		
2,4-Dinitrophenol		50	49	98	49	98	0	7/30/2013		
2-Nitrophenol		50	47	94	41	82	14	7/30/2013		
4-Nitrophenol		50	22	44	19	38	15	7/30/2013		
Pentachlorophenol		50	48	96	46	92	4	7/30/2013		
Phenol		50	20	40	16	32	22	7/30/2013		
2,4,6-Trichlorophenol		50	52	104	49	98	6	7/30/2013		
2,4,5-Trichlorophenol		50	52	104	49	98	6	7/30/2013		
3 & 4-Methylphenols		50	39	78	30	60	26	7/30/2013		
2-Methylphenol		50	42	84	33	66	24	7/30/2013		
4-Chloroaniline		50	57	114	48	96	17	7/30/2013		
Dibenzofuran		50	50	100	48	96	4	7/30/2013		
2-Methylnaphthalene		50	46	92	42	84	9	7/30/2013		
Azobenzene		50	57	114	56	112	2	7/30/2013		
Acetophenone		50	51	102	47	94	8	7/30/2013		
Aniline		50	101	202	59	118	53	7/30/2013		
Surrogates										
Phenol-d5			39		31					
2-Fluorophenol			54		39					
2,4,6-Tribromophenol			106		99					
Nitrobenzene-d5			101		88					
2-Fluorobiphenyl			92		86					
P-Terphenyl-d14			112		104					
Metals (Aqueous)										
Mercury		0.0020	0.0020	100	0.0021	105	5	7/24/2013		
Antimony		1.00	0.976	98	0.968	97	1	7/25/2013		
Thallium		1.00	1.02	102	0.976	98	4	7/25/2013		
Arsenic		1.00	1.0	100	1.0	100	0	7/25/2013		
Beryllium		1.00	1.01	101	1.00	100	1	7/25/2013		
Chromium		1.00	0.96	96	0.95	95	1	7/25/2013		
Copper		1.00	1.0	100	1.0	100	0	7/25/2013		
Nickel		1.00	1.0	100	1.01	101	1	7/25/2013		
Selenium		1.00	0.94	94	0.99	99	5	7/25/2013		

Client: Capaccio Environmental Eng.

**WO #:** 1307-15549 **Date:** 7/30/2013

Parameter	CRM Acceptance Limits	Spike Conc	LCS Conc	LCS % Rec	LCS Dup Conc	LCS DUP % Rec	% RPD	Date Analyzed
Metals (Aqueous) (cont'd) Iron		10.0	9.69	97	9.83	98	1	7/25/2013
Metals by ICPMS (Aqueou	ıs)							
Cadmium		0.050	0.048	96	0.049	98	2	7/25/2013
Lead		0.050	0.050	100	0.049	98	2	7/25/2013
Silver		0.050	0.048	96	0.048	96	0	7/25/2013

# Case Narrative

Date: 7/30/2013

Capaccio Environmental Eng. Attn: Ms. Dawn Horter 293 Boston Post Road - West Marlborough, MA 01752

All QA/QC procedures required by the EPH Method were followed. All performance/acceptance standards for the required QA/QC procedures were achieved or otherwise stated in this case narrative. A fractionation check was performed on the silica gel lot associated with this sample and found to pass the method criteria unless otherwise stated here. The data reported for this sample was not corrected for instrument/solvent baseline effects. No significant modifications were made to the EPH Method.

The following exceptions were noted for this Work Order:

The methods requested for pH, Oil & Grease Gravimetric, and TPH GC/FID are not listed in the table of contents for compendium of MCP analytical methods. Therefore, there is no guideline for presumptive certainty.

Semi Volatile Organics by 8270

Question G - The GW-2 reporting limits were not met for (Hexachlorobenzene, and Hexachlorobutadiene) in Sample -001(MW-2).

Question H - Laboratory control sample (7/30/13)/ laboratory control sample duplicate (7/30/13) had analytes outside the 40%-140% for base-neutrals and 30%-130% for acid compounds QC acceptance limits. Up to 10% are allowed to exceed the criteria. The specific outliers include, (Aniline LCS 202%). These analytes were not detected in the associated samples.

Question H - The RPD for (Benzidine 53%, N-nitrosodimethylamine 25%, Phenol 22%, 3&4-Methylphenols 26%, 2-Methylphenol 24%, and Aniline 53%) in the Laboratory control sample (7/30/13)/ laboratory control sample duplicate (7/30/13)was outside the 20% (water) QC acceptance limits.

Total Metals by 6010C, 6020A

Question G - The GW-3 reporting limits were not met for (Selenium) in Samples -001(MW-2).

Question I - Per the client's request, only a subset of the MCP analyte list for SW-846 Method 6010C, 6020A Total Metals is reported.

There were no additional exceptions or analytical issues to discuss concerning the testing requirements for the project.

Mike Hobin QA/QC Director

EST

51 Fremont Street Needham, MA 02494 Tel: 781-455-0003, Fax: 781-455-8336

CHAIN OF CUSTODY RECORD

RIAL

Laboratory:

THE THEF THE SE FOR Proj No. Tufts North Hill dhorter@capaccio.com 0588/0988 JAN X Comments: Capaccio Lab Report to: Billing Reference: EST to Invoice: Lab to Invoice: 7:00 Additional Information ЕЬН 2.40 CrVI PP13 Metals, Fe Analytical Information Ηd **FOG** HqT <del>629</del> MEAN WOLLD PUT DESOLAR ASSIS Data Enhancement to meet GW-2 or GW-3 standards. <del>229</del> Jone SPECIAL QA/QC or DATA Requirements: MATRIX 3. Drinking Water 5. Surface Water JedjC 2. Groundwater I. Wastewater Preservation NEOH MS2H 6. Other 4. Soil EONH HOBN VOA's MANOI # of bottles 508-970-0028 Туре Plastic 293 Boston Post Road Marlborough, MA Capaccio Environmental Engineering Glass 100 North Hill Road Medford, MA Matrix **Tufts Medford** Dawn Horter Sample Custody must be documented belo <u>જ</u> Fax: Fax: # 0 tel: Approved By: 1127/6 Date Groundwater Sampling 978-270-0193 Turnaround Information Field ID / Point of Collection Std. 10 Day Turnaround

5 Day RUSH

4 Day RUSH

3 Day RUSH

2 Day RUSH Associates, Inc. 1 Day RUSH Location ID # Project Name Description Contact Address Contact Phone # Address Client

1302-1559

If you have any questions or require additional information, please do not hesitate to contact me at (508) 970-0033, ext. 118.

Sincerely,

Capaccio Environmental Engineering, Inc.

Dawn Horter, PG, LSP Senior Hydrogeologist

Enc: Notice of Intent and supporting documents

c: Jim Newell (TUFTS) MF 05-034.014