

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED APR 1 7 2013

Matthew Bagedonow Project Manager CWC Builders 7 Wells Avenue Newton, MA 02459

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Parcel 6A site located at Mason and Porter Streets, Taunton, MA 02180 Bristol County; Authorization #MAG910571

Dear Mr. Bagedonow:

Based on the review of a Notice of Intent (NOI) submitted on behalf of Trinity Taunton Side Works, Inc., by the firm McPhill Associates, LLC, for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed check list includes parameters that exceeded Appendix III limits. In addition we have include pollutants for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note the current metals data submitted with the NOI application is for dissolved (filtered) metals and not for totals metals as required in the RGP regulations, for this reason all the metals listed on the Appendix IV list for Massachusetts discharges have been included in the check list for monitoring until you collect the required influent information for total metals during the initial six month discharge period and at that time

SITTED STATES ENVIRONMENTAL FROTECTION AGENCY Region 1 S.Post Office Square, State 100 Between M.A. 02109-2012

CHECKERO OF THE SECTION RECEIPT REQUESTED

APR 1 7 2013

Marrhew isagedonov. Project Manager CWC Buildess Yells Avente. Nanaton, MA 02159

Residential Parcel to descharge under the Remediation General Permit (RGP) beacted 2000. Parcel for site located at Mason and Perfer Streets. Taunton; MA 02180 Brestol County: Auderization #MAG910571

Dear Mr. Presedenova

Based on the review of a Notice of Imen; (NOI) submitted on behalf of Trinity Taunton Side Works, Inc., by the firm McPhill Associates, LLC. for the situ referenced above, the L.S. Environmental Protection Agency (EPA) hereby authorizes you as the named Operator, to discharge in accordance with the provisions of the RCP at that site. Your authorization regulater it listed above.

The checklist endowed with this RGP authorization indicates the pollucinus which you are required to monitor. Also indicated on the checklist are the effluent limits, text methods and minimum levels (MLs) for each pollucint. Please note that the electrist does not represent the complete requirements of the RGP. Operators into comply with all of the applicable requirements of this parmit, including influent and affluent monitoring, marrative water quality standards, record leeping, and reporting requirements. Found in Parts I and II, and Appendices I. Vill of the RGP. See EPA's velocite for the complete RGP and other arthropastics at litting way agargoversical important and standards.

Piesse note the exclosed elect. Its includes parameters that exceeded Appendix III limits in addition we have include pollutants for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established at Appendix VI of the EUP.

Also, please note the current metals data asymmetric with the NGS application is for dissolved (filtered) metals and not for totals metals as required in the RGP regulations, to this reason all the metals listed on the Appendix IV his for Massachusetts discharges have note included in the check list for monitoring until you collect the required influent according to the forther metals down the initial six arouth discharge neared and at that time

if you wish you may request a deletion of any metal(s), or for any other parameters, established for monitoring that are absent from the influent or not detected in accordance with the minimum levels established in Appendix VI of the RGP.

Also, please note the metals included on the checklist are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR) for fresh waters. Because no dilution was reported for wetland leading to Myrtle Brook, EPA determined that the DFR for each parameter is in the one and five (1-5) range. (See the RGP Appendix IV for Massachusetts facilities) Therefore, the limits for antimony of 5.6 ug/L, arsenic of 10 ug/L, cadmium of 0.2 ug/L, trivalent chromium of 48.8 ug/L, hexavalent chromium of 11.4 ug/L, copper of 5.2 ug/L, lead of 1.3 ug/L, mercury of 0.9 ug/L, nickel of 29 ug/L, selenium of 5 ug/L, silver of 1.2, zinc of 66.6 ug/L and iron of 1,000 ug/L, are required to achieve permit compliance at your site

Finally, please note the checklist of all the pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on December 1, 2013. If for any reason the discharge terminates sooner you are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or Alvarez. Victor@epa.gov, if you have any questions.

Sincerely,

Thelma Murphy, Manager Storm Water and Construction

Permits Section

Enclosure

cc: Robert Kubit, MassDEP

Fred Cornaglia Taunton, DPW

William J. Burns, McPhill Associates, LLC

if you wasn you may request a deletion of any metal(s), or for any other parameters, established for monitoring that are absent from the militent or not detected in accordance with the minimum levels established in Appendix V1 of the RUP.

Also please note the metals included on the electrics are dilution dependent pollutants and subject to limitations based on a dilution factor range (DFR) for fresh waters. Because no minipon was reported for wethind leading to Myrtie Brook. CPA determined that the DFR for each parameter is in the one and five (1.5) range. (See the RGP Appendix IV for Mieszachisetts facilities) Therefore, the limits for antimory of 5.6 ug/L, assente of 10 ug/L custimum of 0.2 ug/L, trivalent chromium of 18.8 ug/L, becausalent chromium of 11.1 ug/L, cupper of 5.2 ug/L lead of 1.3 ug/L mentury of 0.2 ug/L, nicke of 20 ug/L, and con of 1.000 ug/L, an assent to achieve permit compliance at your site.

I courte please note the objective of all the pollutants attached to this authorization is subject to a recertification of the operations after site result in a disobarge laming longer than are growths as growths as growth as a feed of the continued to EPA with it six (6) to twelve (12) meants of operations in accordance with the 2010 RGP regulations.

This general part it and authorization to discharge will expire on September 9, 2015. You have appointed that this project will terminate on December 1, 2013. If for any reason the discharge terminates focus you are required to submit a Notice of Termination (MOT) to the attention of the intention of the complete person addressed below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact victor Alvarez m.6.17-1218-1-722 or Alvarez Victor degragov, if you have any questions...

Alterionie'

Incline Murphy, Islandger Storm Water and Forstruction

ombrojur.

Robert Kabit, MassDEP
Fred Cornaglia Taunton, DPW
William J. Borns, McPhill Associates, LLC

2010 Remediation General Permit Summary of Monitoring Parameters [1]

NPDES Authorization Number:		MAG910571						
Authorization Issued:	April,	2013						
Facility/Site Name:	Parce							
Facility/Site Address: Maso		n and Porter Streets, Taunton, MA 02180, Bristol County						
	Email	address of owner: NunesD@trinityfinancial.com						
Legal Name of Operat		CWC Builders, Inc.						
Operator contact name, title, and Address:		Matthew Bagedonow: Project Manager 7 Wells Avenue, Newton, Mass 02459						
		Email:mbagedonow@cwcbuilders.com						
Estimated date of Com	pletion							
Category and Sub-Cate	egory:	Category III- Contaminated Construction Sites. Sub-category A. General Urban Fill Sites and Sub-category B. Known Contaminated Sites						
RGP Termination Date:		September 10, 2015						
Receiving Water:		Myrtle Brook via the city of Taunton drain system						
		(830)						

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	3422 31 400584010	Effluent Limit/Method#/ML
	<u>Parameter</u>	(All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
√	Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L
√	2. Total Residual Chlorine (TRC) 1	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L
√	Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L
√	4. Cyanide (CN) 2, 3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L
I	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L
Î	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
V	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/l
r	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/
	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
970	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
	16. 1,2 Dichlorobenzene (o-DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m-DCB)	320 ug/L /Me#8260C/ ML 5ug/L
	18. 1,4 Dichlorobenzene (p-DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
rd o	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
(I	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
17.7	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
961	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
/\ <u>@</u> i	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/
U.S.	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
√	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
√	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
√	33. Total Phthalates	3.0 ug/L ** /Me#8270D/ML 5ug/L,
٧	(Phthalate esters) ⁶	Me#606/ML 10ug/L& Me#625/ML 5ug/L
	34. Bis (2-Ethylhexyl)	6.0 ug/L /Me#8270D/ML
\checkmark	Phthalate [Di- (ethylhexyl) Phthalate]	5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

	<u>Parameter</u>	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
√	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	c. Benzo(b)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	d. Benzo(k)Fluoranthene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	f. Dibenzo(a,h)anthracene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
√	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
√	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/M 5ug/L & Me#625/ML 5ug/L
√	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√_	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
√	37. Total Polychlorinated Biphenyls (PCBs) ^{8, 9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
√	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

as beennous priestro voltan	<u>Total Recoverable</u> Metal Limit @ H ¹⁰ =	nuruser sleet s in Sys sol esim
a contact this revolder of	50 mg/l CaCO3 for discharges in	
Metal parameter	Massachusetts (ug/l) 11/12	Minimum level=ML

	IN Wheeler Limit Institute	<u>Freshwater</u>			
\checkmark	39. Antimony	5.6/ML	10		
\checkmark	40. Arsenic **	10/ML20		9	84
\checkmark	41. Cadmium **	0.2/ML10			
\checkmark	42. Chromium III (trivalent) **	48.8/ML15			
√	43. Chromium VI (hexavalent) **	11.4/ML10	orteograph	Blaten Jes BlatamonA	
\checkmark	44. Copper **	5.2/ML15	650 m (Sm A)	a losuas s	
√	45. Lead **	1.3/ML20			
\checkmark	46. Mercury **	0.9/ML0.2	angrull.	siosned d	No.
\checkmark	47. Nickel **	29/ML20			
√	48. Selenium **	5/ML20	rion in the	c Benzolb	1
$\sqrt{}$	49. Silver	1.2/ML10			
√	50. Zinc **	66.6/ML15	Fluoranti	d. Behra s	V
√	51. Iron	1,000/M	L 20		

	Other Parameters	<u>Limit</u>
√	52. Instantaneous Flow	Site specific in CFS
√	53. Total Flow	Site specific in CFS
\checkmark	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab ¹³
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab ¹³
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
`	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴
/	Barium	Monitoring Only

Footnotes:

Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l).
Limits for cyanide are based on EPA's water quality criteria expressed as

² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported.

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criterion for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of

the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as

listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).

10 Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratorydetermined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

Temperature sampling per Method 170.1

³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

Lend Bereiks in the Little College Cartille Living after well of Rid Cip., one

dentronad analysis desember was the Europe Company of the Part 1965, Approximate

NOTICE OF INTENT FOR DISCHARGE UNDER MASSACHUSETTS REMEDIAL GENERAL PERMIT MAG910000

PARCEL 6A

TAUNTON MASSACHUSETTS

to

U.S. Environmental Protection Agency and Massachusetts Department of Environmental Protection

March 26, 2013

U.S Environmental Protection Agency RGP-NOC Processing Municipal Assistance Unit (CMU) 1 Congress Street, Suite 1100 Boston, MA 02114-2023

Attention:

RGP-NOC Processing

Reference:

Parcel 6A; Taunton, Massachusetts

Notice of Intent for Construction Dewatering Discharge Under Massachusetts

Remedial General Discharge MAG910000

Ladies and Gentlemen:

The purpose of this letter report is to provide a summary of the site and groundwater quality information in support of an application for approval from the U.S. Environmental Protection Agency (EPA) for the temporary discharge of groundwater directly into Myrtle Brook via the City of Taunton storm drain system during construction at the above referenced site. Refer to **Figure 1** Project Location Plan for the general site locus.

These services were performed and this permit application was prepared with the authorization authorization of Trinity Taunton Sitework, Inc., a contracted representative of THA Mason, Inc. These services are subject to the limitations contained in **Appendix A**.

Existing Conditions

Fronting onto Mason Street to the west, the Parcel 6A site is bounded by residential properties to the south, Porter Street to the east, a railroad right- of-way to the northeast and the Greater Attleboro/Taunton Regional Transit Authority (GATRA) property to the northwest. The Parcel 6A site consists of a two adjoining parcels of land identified as Lots A and B which occupy a total area measuring approximately 6.44 acres. Currently the Parcel 6A site is an active construction site, the perimeter which is surrounded by a chain link fence. Prior to these recent construction activities, the Parcel 6A site was undeveloped. Refer to **Figure 2**, Site Plan, for general site information.

Site and Regulatory History

In summary, available historical information indicates that the subject site served as a railroad service and maintenance facility for many years. From 1888 to 1950 a large roundhouse structure was situated at the center of the site and a machine shop was attached to the western side of the roundhouse along with an associated coal storage shed, paint shop and wood shed. Further, the 1937 and 1950 Sanborn Maps indicate that a foundry was located on the southeastern portion of the subject site.

The above referenced historical operations have affected soil at the subject site. As a result, the DEP has been notified of two separate reporting conditions on Lots A and B to which Release Tracking Numbers (RTNs) 4-24295 and 4-695 have been assigned, respectively. The release condition reported on Lot A was identified during a recent assessment of soil which detected Reportable Concentrations of lead, antimony, arsenic, cadmium, nickel, and trichloroethene. With respect to Lot B, the DEP was initially notified of a petroleum release during April of 1989. Subsequently, subsurface assessments were conducted at the site which identified Reportable Concentrations of arsenic and petroleum hydrocarbons.

US EPA March 26, 2013 Page 2

In conjunction with the planned site redevelopment that is discussed below, it is understood that remediation will be conducted to reduce levels of the contaminants of concern in soil so that a Permanent Solution is achieved for both release conditions.

Proposed Development

The proposed development of Lot A is understood to consist of the construction of a 3-story mid-rise residential building identified as "Building A" and three 2 to 3-story wood framed multi-unit townhouse buildings identified as "Buildings B, C and D" across the western and central portions of the site. The proposed buildings are understood to contain no below-grade space. In addition, infrastructure improvements include a below grade storm drain system which consisting of drain lines and below grade storm water retention basins. At-grade parking, community gardens and playgrounds are also proposed for the subject site. It is understood that Lot B is planned to be utilized as a surface parking lot.

Construction Dewatering

Based upon the scope of site redevelopment in conjunction with the depth of groundwater measured at the site, it is anticipated that dewatering of groundwater will be necessary during excavation for some building foundations and below grade infrastructure improvements. In addition, rainwater is anticipated to accumulate within localized trenches after periods of heavy precipitation. It is anticipated that dewatering by means of strategically located sumps and trenches should suffice during construction operations.

It is estimated that the intermittent groundwater discharge will be required during deeper excavations that extend below the surface of groundwater which will be on the order of 35 to 50 gallons per minute (GPM). This estimate of discharge does not include surface runoff which will be removed from the excavation during the limited duration of a rain storm and shortly thereafter.

Construction dewatering will require the discharge of collected groundwater into the storm drain system under the requested Remedial General Permit. A review of available subgrade utility plans provided by the City of Taunton indicates that a dedicated 15-inch diameter storm drain runs beneath Mason Street. The dedicated storm drain beneath Mason street flows southeast connecting to a 15-inch diameter storm drain at the intersection of Myrtle Street. The 15-inch diameter storm drain flows southwest beneath Myrtle Street where it eventually resurfaces and discharges into an Myrtle Brook. The Brook flows to a wetland area located approximately 350 feet southeast of the subject site. The location of Mason Street with relation to the subject site is indicated on **Figure 2**. The location of the catch basin in which groundwater will be discharge and the flow path of the discharge is shown on plans provided by the City of Taunton which are included in **Figures 3A** and **3B**.

Groundwater Treatment

In our opinion, treatment of groundwater across a majority of the subject site will require a 5,000-gallon settling tank and bag filters in series to remove particulate matter containing elevated levels of metals in the effluent to meet allowable total suspended solids (TSS) and metal discharge limits established by the US EPA. However, during dewatering activities at the central portion of the subject site, located within the immediate vicinity of MAI-5, a granular activated carbon (GAC) filtration system will also be necessary to remove elevated levels of petroleum hydrocarbons that were detected in groundwater to meet allowable EPA established discharge limits for petroleum hydrocarbons. A schematic of the treatment system is

US EPA March 26, 2013 Page 3

shown on Figure 4.

To document the effectiveness of the treatment system, samples of the discharge water will be obtained and tested for the presence of TSS, total petroleum hydrocarbons and total metals prior to the start of discharge into the storm drain system. Should the pre-start up testing indicate that the levels of these compounds in the effluent exceed the limits established under the RGP, additional treatment of the effluent will be implemented prior to initial discharge. In addition, should other contaminants be detected within the discharge water during the construction dewatering phase of the project at levels that exceed the effluent limitations, mitigative measures will be implemented to meet the allowable discharge limits.

In conclusion, it is our opinion that groundwater at the site is acceptable for discharge into the wetland area via the City of Taunton storm drain system under a Remedial General Permit. Sampling and analysis of the effluent will be carried out in accordance with the terms of the Remedial General Permit.

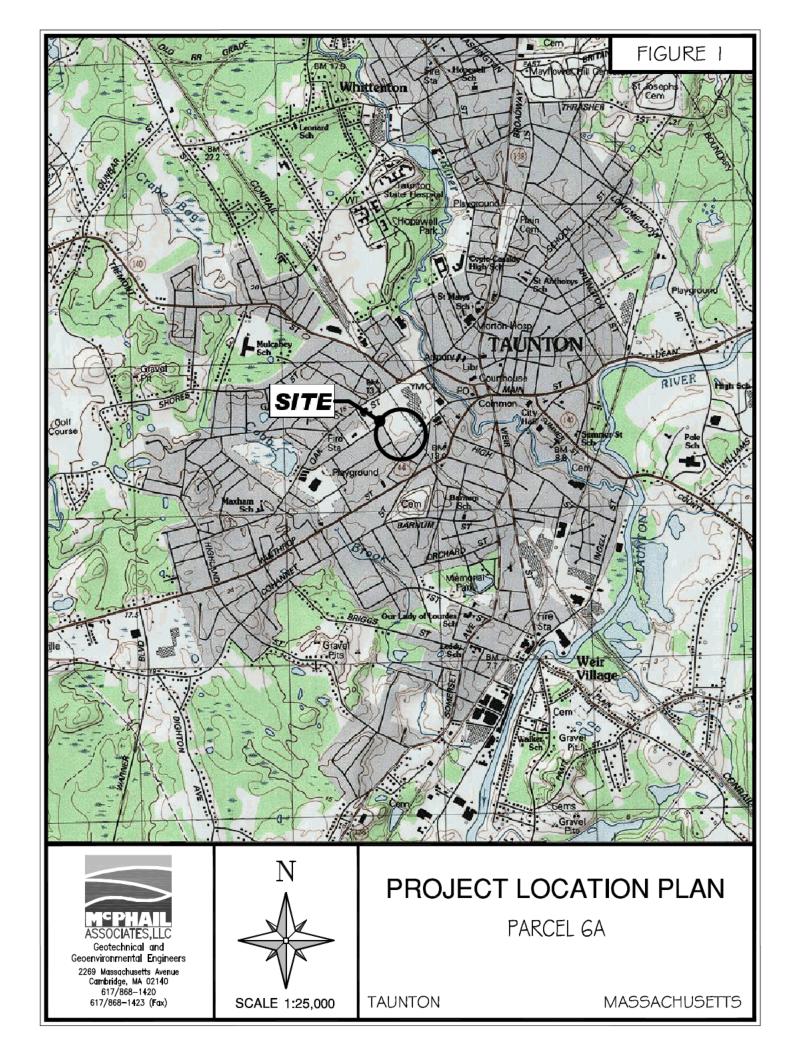
Supplemental information appended to this letter in support of the RGP includes the following;

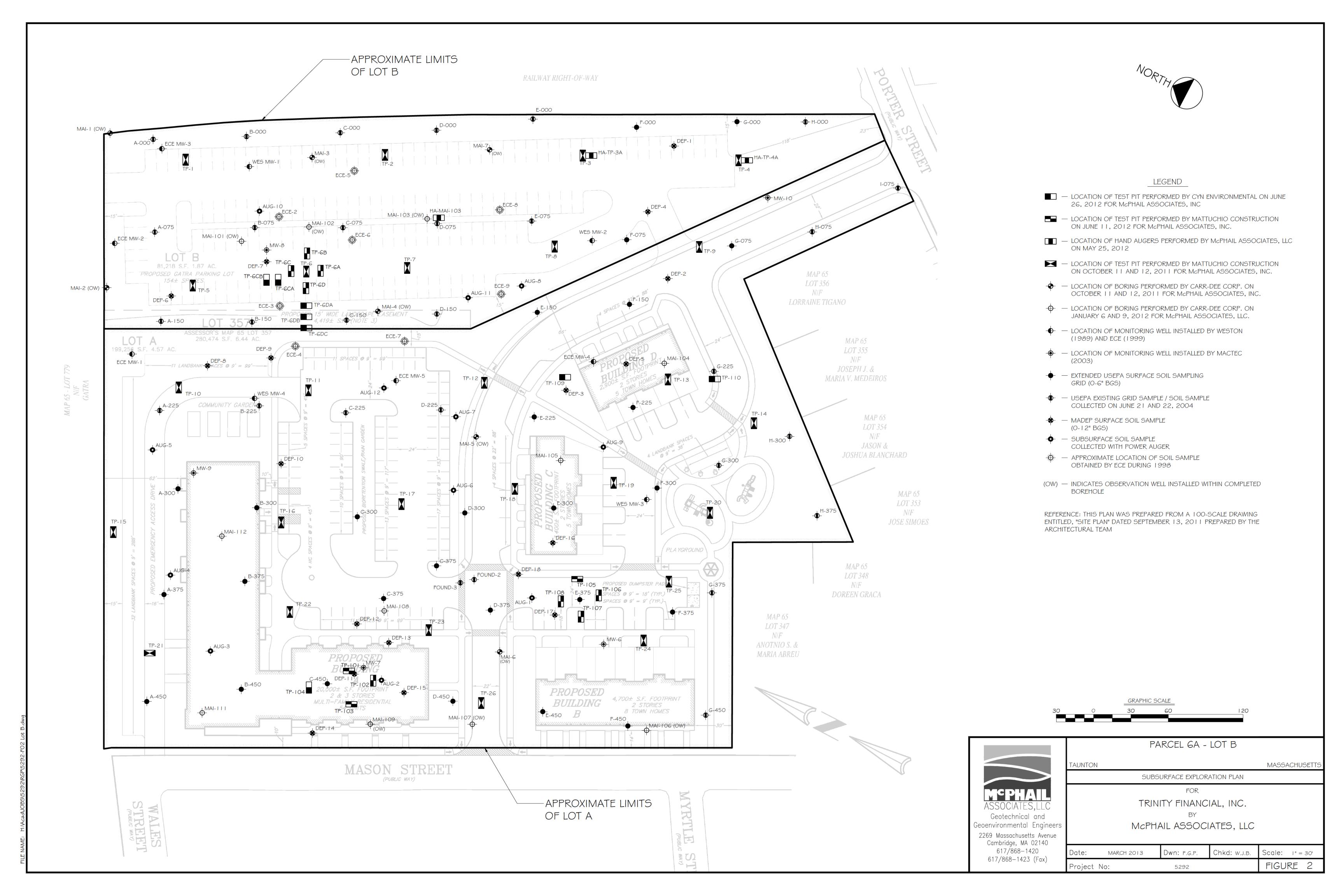
- Notice of Intent Transmittal Form for Permit Application (Appendix B)
- A summary of groundwater analysis (Appendix C, Table 1 and Groundwater Monitoring Reports);
- A review of Areas of Critical Concern and Endangered and Threatened Species in addition to the Consultation Letter received by the U.S. Fish and Wildlife Service (Appendix D);
- A review of National Historic Places (Appendix E); and
- Best Management Practice Plan (Appendix F)

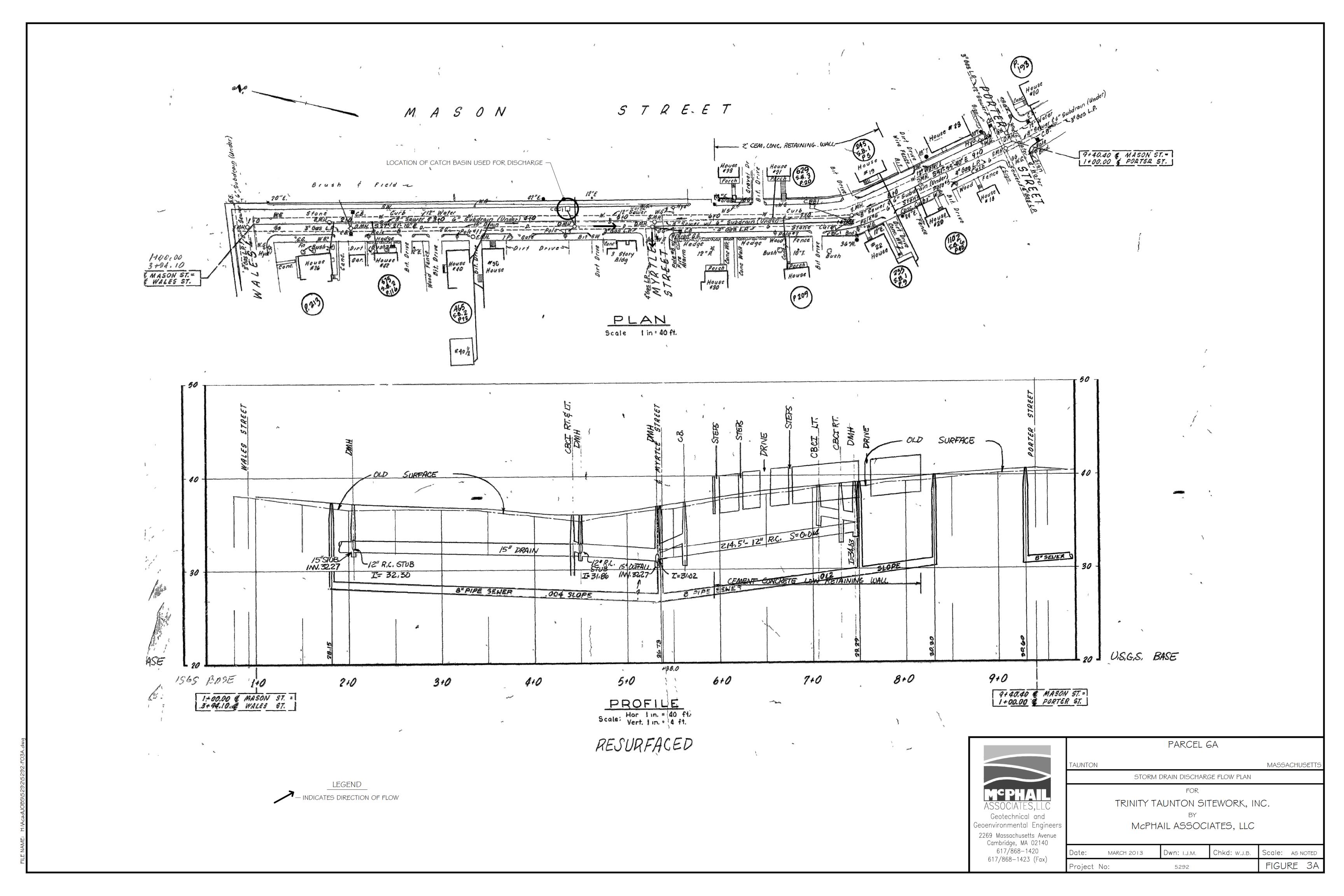
We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

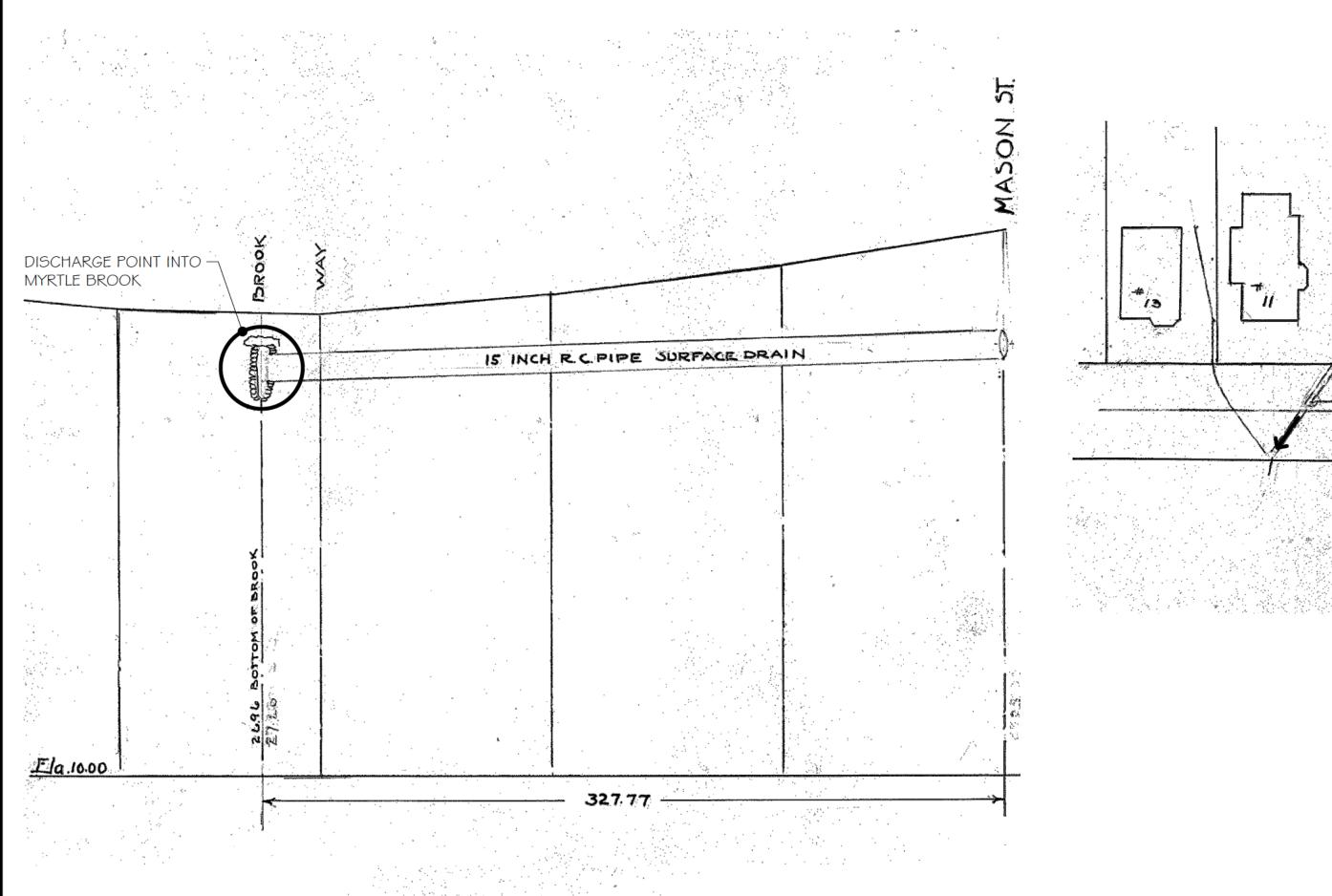
Very truly yours,

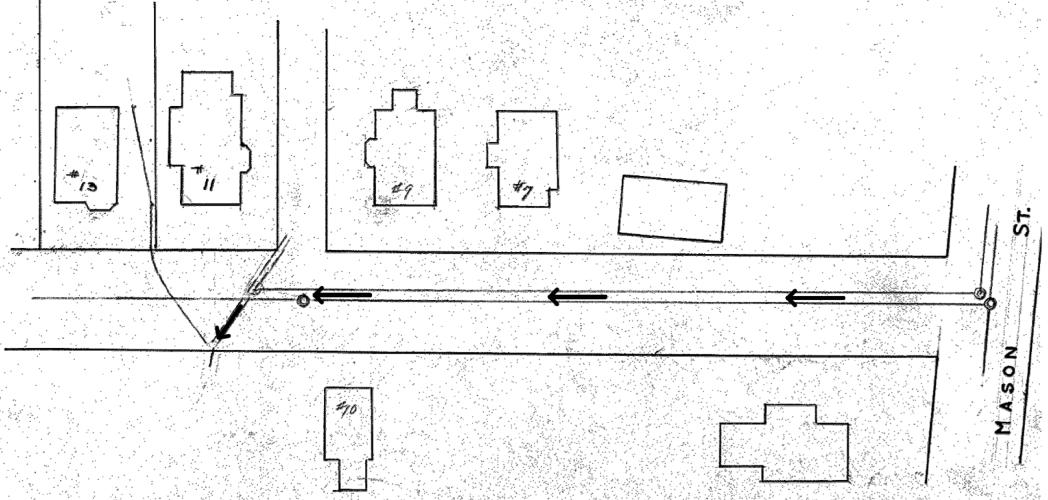
McPHAIL ASSOCIATES, LLC


William J. Burns


Peter J. DeChaves, L.S.P.


Enclosures


F:\WP5\REPORTS\5292 RGP.wpd


WJB/pjd

LEGEND

— INDICATES DIRECTION OF FLOW

CITY OF TAUNTON
ENGINEERING DEPARTMENT
PLAN & PROFILE
SHOWING SURFACE DRAIN
IN PART OF

MYRTLE STREET
Hor scale 1:40 Yent scale 1:4'
AK Crowell City Engineer
1938

Geotechnical and
Geoenvironmental Engineers
2269 Massachusetts Avenue
Cambridge, MA 02140
617/868-1420
617/868-1423 (Fax)

PARCEL 6A

TAUNTON MASSACHUSETTS

STORM DRAIN DISCHARGE FLOW PLAN

FOR

TRINITY TAUNTON SITEWORK, INC.

BY

McPHAIL ASSOCIATES, LLC

Date: MARCH 2013 Dwn: I.J.M. Chkd: W.J.B. Scale: AS NOTED

Project No: 5292 FIGURE 3B

APPENDIX A

LIMITATIONS

The purpose of this report is to present the results of testing of groundwater samples obtained from monitoring wells located at the Parcel 6A site in Taunton, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remedial General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the widely spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon chemical test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Chemical analyses have been performed for specific constituents during the course of this site assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Trinity Taunton Site Work, Inc. and CWC Builders, Inc. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B

Notice of Intent Transmittal Form

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : Parcel 6A		Facility/site mailing address:							
Location of facility/site : longitude: 71.1004 latitude: 41.8999	Facility SIC code(s):	Street:	Mason and Porter S	itreets					
b) Name of facility/site owner: Trinity Taun	ton Site Work Inc.	Town:	Town: Taunton						
Email address of facility/site owner: NunesD@trinityfinancial.com Telephone no. of facility/site owner: 617-720-8400				Zip: 02180	County: Bristol				
Fax no. of facility/site owner: 617-720-8401 Address of owner (if different from site):			Owner is (check one): 1. Federal 2. State/Tribal 3. Private 4. Other if so, describe:						
Street: 75 Federal Street; 4th Floor									
Town: Boston	State: MA	Zip: 02110		County: Suffolk					
c) Legal name of operator :	Operator tel	lephone no: 617-965-2800 ext. 117							
CWC Builders Inc.	Operator fax	k no.: 617	7-965-2880	Operator email: mbagedonow@cwcbuilders.co					
Operator contact name and title: Mr. Matthe	ew Bagedonow;	Project M	Manager						
Address of operator (if different from owner):	s Avenue								
Town: Newton	State: MA	Zip: 02	459	County: Middlesex					

d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for 2. Has a prior NPDES application (Form 1 & 2C) ever be Y O NO, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CF 4. For sites in Massachusetts, is the discharge covered unpermitting? Y O NO	en filed for the discharge?
e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O N O If Y, please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number:	f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y O N O, if Y, number: 2. Final Dewatering General Permit? Y O N O, if Y, number: 3. EPA Construction General Permit? Y N O, if Y, number: 4. Individual NPDES permit? Y O N O, if Y, number: 5. any other water quality related individual or general permit? Y O N O, if Y, number:
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y O N O
h) Based on the facility/site information and any historic discharge falls.	al sampling data, identify the sub-category into which the potential
Activity Category	Activity Sub-Category
I - Petroleum Related Site Remediation	A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination
II - Non Petroleum Site Remediation	A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites
III - Contaminated Construction Dewatering	A. General Urban Fill Sites B. Known Contaminated Sites

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites B. Well Development/Rehabilitation at Contaminated/Formerly Contaminated Sites C. Hydrostatic Testing of Pipelines and Tanks D. Long-Term Remediation of Contaminated Sumps and Dikes E. Short-term Contaminated Dredging Drain Back Waters (if not covered by 401/404 permit)
	tion about the discharge, (attaching additional sheets as necessary) including
a) Describe the discharge activities for which the own	ner/applicant is seeking coverage:
Temporary Construction Dewatering	
b) Provide the following information about each discl	narge:
1) Number of discharge points: 1	and average flow rate of discharge (in cubic feet per second, ft ³ /s)? Is maximum flow a design value? Y O N O units) 0.10035 ft3/s Is average flow a design value or estimate? estimate
3) Latitude and longitude of each discharge within 10 pt.1: lat 41.898 long 71.101 pt.2: pt.3: lat long pt.4: pt.5: lat long pt.6: pt.7: lat long pt.8:	lat. long. ; lat. long. ; lat. long. ;
4) If hydrostatic testing, total volume of the discharge (gals). 5) Is the discharge integrated in the discharge ongoing?	rmittent O or seasonal ? Y N O
c) Expected dates of discharge (mm/dd/yy): start 04/01	
d) Please attach a line drawing or flow schematic sho 1. sources of intake water. 2. contributing flow from t waters(s). Please refer to the attached report	wing water flow through the facility including: he operation, 3, treatment units, and 4, discharge points and receiving

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum date concentration (ug/l)	mass (kg)	Average daily concentration (ug/l)	walue mass (kg)
Total Suspended Solids (TSS)			×	1	grab			ND			
2. Total Residual Chlorine (TRC)											
3. Total Petroleum Hydrocarbons (TPH)			×	22	grab	98,EPH-04-1.1 +		12850	3.5	2499.78	0.61
4. Cyanide (CN)	57125	×									
5. Benzene (B)	71432	×		18	grab	100, VPH-04-1.1	2	ND			
6. Toluene (T)	108883	×		18	grab	100, VPH-04-1.1	2	ND			
7. Ethylbenzene (E)	100414	×		18	grab	100, VPH-04-1.1	2	ND			
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		18	grab	100, VPH-04-1 +	2	2.1	0.00057	2.01	0.0005
9. Total BTEX ²	n/a	×		18	grab			2.1	0.00057	2.01	0.0005
10. Ethylene Dibromide (EDB) (1,2-Dibromoethane) ³	106934	X									
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		18	grab	100, VPH-04-1	3	ND			
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×									

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

² BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.
³ EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum dai	mass (kg)	Average daily concentration (ug/l)	walue mass (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		18	grab	60 8260B	2.0	ND			
14. Naphthalene	91203	×		18	grab	1,8260B	4	5.6	0.0056	4.37	0.0011
15. Carbon Tetrachloride	56235	×		18	grab	60 8260B	0.5	ND			
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		18	grab	60 8260B	2.5	ND			
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		18	grab	60 8260B	2.5	ND			
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		18	grab	60 8260B	2.5	ND			
18a. Total dichlorobenzene		×		18	grab	60 8260B		ND			
19. 1,1 Dichloroethane (DCA)	75343	×		18	grab	60 8260B	0.75	ND			
20. 1,2 Dichloroethane (DCA)	107062	×		18	grab	60 8260B	0.5	ND			
21. 1,1 Dichloroethene (DCE)	75354	×		18	grab	60 8260B	0.5	ND			
22. cis-1,2 Dichloroethene (DCE)	156592	×		18	grab	60 8260B	0.5	ND			
23. Methylene Chloride	75092	×		18	grab	60 8260B	5.0	ND			
24. Tetrachloroethene (PCE)	127184	×		18	grab	60 8260B	0.5	ND			
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		18	grab	60 8260B	2	ND			
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		18	grab	60 8260B	0.5	ND			
27. Trichloroethene (TCE)	79016	×		18	grab	60 8260B	0.5	ND			

					Sample	Analytical	Minimum	Maximum dai	ily value	Average daily	<u>value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples			Level (ML) of Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		18	grab	60 8260B	0.5	ND			
29. Acetone	67641		×	18	grab	60 8260B		14	0.0038	9.11	0.0022
30. 1,4 Dioxane	123911	×		18	grab	60 8260B		110	0.03	95.28	0.02
31. Total Phenols	108952	×									
32. Pentachlorophenol (PCP)	87865	×									
33. Total Phthalates (Phthalate esters) ⁴		×									
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×									
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×									
a. Benzo(a) Anthracene	56553	×	×	8	grab	98,EPH-04-1.1	10	ND			
b. Benzo(a) Pyrene	50328	×		8	grab	98,EPH-04-1.1	10	ND			
c. Benzo(b)Fluoranthene	205992	×		8	grab	98,EPH-04-1.1 +	10	ND			
d. Benzo(k)Fluoranthene	207089	×		8	grab	98,EPH-04-1.1 +	10	ND			
e. Chrysene	21801	×		8	grab	98,EPH-04-1.1	10	ND			
f. Dibenzo(a,h)anthracene	53703	×		8	grab	98,EPH-04-1_1 +	10	ND			
g. Indeno(1,2,3-cd) Pyrene	193395	×		8	grab	98,EPH-04-1_1 +	10	ND			
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×									

⁴The sum of individual phthalate compounds.

					Sample	Analytical	Minimum	Maximum dai	ily value	Average daily	<u>v value</u>
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	# of Samples	Type (e.g., grab)	Method Used (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	(ug/l) (ks		mass concentration (ug/l)	
h. Acenaphthene	83329	×		22	grab	98,EPH-04-1.1		3.5	0.001	4.56	0.0011
i. Acenaphthylene	208968	×		8	grab	98,EPH-04-1.1	10	ND			
j. Anthracene	120127	×		8	grab	98,EPH-04-1.1	10	ND			
k. Benzo(ghi) Perylene	191242	×		8	grab	98,EPH-04-1.1	10	ND			
1. Fluoranthene	206440	×		8	grab	98,EPH-04-1.1	10	ND			
m. Fluorene	86737	×		22	grab	98,EPH-04-1.1		4.1	0.00112	4.61	0.0011
n. Naphthalene	91203	×		22	grab	98,EPH-04-1.1		4.9	0.00134	4.67	0.0011
o. Phenanthrene	85018	×		22	grab	98,EPH-04-1.1		3.2	0.00087	4.52	0.0011
p. Pyrene	129000	×		8	grab	98,EPH-04-1.1	10	ND			
37. Total Polychlorinated	85687; 84742; 117840; 84662; 131113;	×									
Biphenyls (PCBs)	117817.										
38. Chloride	16887006	×									
39. Antimony	7440360			14	grab			27	0.00737	6.84	0.0017
40. Arsenic	7440382			14	grab			40	0.01092	8.26	0.0020
41. Cadmium 42. Chromium III (trivalent)	7440439 16065831	×	×	14	grab grab			30	0.00819	11.5	0.0028
43. Chromium VI (hexavalent)	18540299										
44. Copper	7440508	×									
45. Lead	7439921			14	grab			890	0.24292	76	0.0187
46. Mercury	7439976	×		14	grab			0.58	0.0016	0.23	0.0001
47. Nickel	7440020			14	grab			41	0.0119	40.07	0.0098
48. Selenium	7782492	×									
49. Silver	7440224	×									
50. Zinc	7440666		×	14	grab			1200	0.32753	219.16	0.0538
51. Iron	7439896	×									
Other (describe):			×								

CAS Number	Believed Absent	Believed Present	# of Samples	Sample Type (e.g., grab)	Analytical Method Used (method #)	Minimum Level (ML) of Test Method	Maximum da concentration (ug/l)	mass (kg)	Average dails concentration (ug/l)	w value mass (kg)
	×									
		×	14	GRAB			47	0.01283	189.07	0.0464
		×	14	GKAB			4/	0.01283	189.07	0.0464
		Number Absent	Number Absent Present	Number Absent Present Samples	CAS Number Believed Absent Believed Present # of Samples Type (e.g., grab)	CAS Number Believed Absent Believed Present # of Samples Type (e.g., grab) Method Used (method #)	CAS Number Believed Absent # of Present # of Samples Type (e.g., grab) Method Used (method #) Level (ML) of Test Method	CAS Number Believed Absent # of Samples Type (e.g., grab) Method Used (method #) Level (ML) of Test (ug/l)	CAS Number Believed Absent # of Samples Type (e.g., grab) Method Used (method #) Level (ML) of Test (ug/l) concentration (ug/l) mass (kg)	CAS Number Believed Absent Believed Present # of Samples Type (e.g., grab) Method Used (method #) Level (ML) of Test (ug/l) concentration (ug/l) concentration (ug/l)

Step 1: Do any of the metals in the influent exceed the effluent limits in If ves, which metals? Appendix III (i.e., the limits set at zero dilution)? Y • N • antimony, arsenic, chromium, lead, nickel, and zinc Step 2: For any metals which exceed the **Appendix III** limits, calculate the Look up the limit calculated at the corresponding dilution dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI factor in Appendix IV. Do any of the metals in the instructions or as determined by the State prior to the submission of this NOI. **influent** have the potential to exceed the corresponding What is the dilution factor for applicable metals? effluent limits in Appendix IV (i.e., is the influent DF:N/A Metal: concentration above the limit set at the calculated dilution DF:N/A factor)? Metal: DF:N/A Y O N O If Y, list which metals: Metal: DF:N/A Metal: antimony, arsenic, chromium, lead, nickel, and zinc Etc.

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including: A description of the treatment system, including a schematic of the proposed or existing treatment system: A 5,000-gallon settling tank, bag filters and GAC Filter (as necessary) in series b) Identify each Frac. tank Air stripper Oil/water separator Equalization tanks Bag filter GAC filter applicable treatment De-Other (please describe): Chlorination unit (check all that chlorination apply):

c) Proposed average and maximum the treatment system: Average flow rate of discharge 45 Design flow rate of treatment system	gpm N	lons per minute) f Aaximum flow rat gpm			v rate(s) (gallons per minute) of gpm
d) A description of chemical additiv	es being used or	planned to be use	ed (attach MSDS s	sheets):	
5. Receiving surface water(s). Plea	se provide infor	mation about the r	eceiving water(s)	, using separate sh	eets as necessary:
a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain 🗵	Wetlands	Other (describe)
b) Provide a narrative description of	the discharge p	athway, including	the name(s) of the	e receiving waters	:
Please refer to attached report for narrative	description and p	lan			
c) Attach a detailed map(s) indicating 1. For multiple discharges, number to 2. For indirect dischargers, indicated The map should also include the loc on USGS topographical mapping), so	he discharges se the location of that ation and distand	equentially. he discharge to the ce to the nearest sa	e indirect conveya anitary sewer as w	ance and the discharge	
d) Provide the state water quality cla	ssification of th	e receiving water	Class B		
e) Provide the reported or calculated Please attach any calculation sheets	seven day-ten y used to support	vear low flow (7Q stream flow and d	10) of the receiving ilution calculation	ng water not calcula ns.	cfs
f) Is the receiving water a listed 303	(d) water quality	impaired or limit	ed water? Y O	N O If yes, for	r which pollutant(s)?
Is there a final TMDL? Y_O_N_	If yes, for w	hich pollutant(s)?			

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

A O B O C O D O E O F O

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y O N O Underway O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? Y N O

d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit?

1 O 2 O 3 O

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.

Please refer to attached report

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facili	ity/Site Name:	Parcel 6A
Facility/Site Name: Parcel 6A Operator signature: Mr. Matthew Bagedonow Project Manager		
Printe	ed Name &Title	Mr. Matthew Bagedonow Project Manager
١.		
Date:	3/25/13	

APPENDIX C

RESULTS OF GROUNDWATER ANALYSIS

Groundwater samples obtained by McPhail Associates in 2011 and 2012 were analyzed for dissolved metals, extractable petroleum hydrocarbons (EPH) fractions, and/or polynuclear aromatic hydrocarbons (PAHs). Groundwater samples previously obtained by WES and ECE were analyzed for the presence of total metals, EPH fractions, VOCs and/or PAHs. The results of groundwater chemical testing conducted by McPhail Associates, LLC, ECE and WES are attached and summarized in **Table 1**.

Extractable Petroleum Hydrocarbons

A total of twenty-two (22) groundwater samples have been obtained from monitoring wells at the subject site and analyzed for the presence of EPH and target PAHs. A value for total petroleum hydrocarbons (TPH) was derived utilizing the sum of the detected EPH fractions.

With the exception of monitoring well MAI-5, TPH concentrations calculated from the results of EPH testing were below the RGP effluent limit of 5,000 micrograms per liter (ug/l). The calculated sum of EPH fractions that were detected in the groundwater sample obtained from MAI-5 is 12,500 ug/l which exceeds the RGP effluent limit of 5,000 ug/l.

In addition, the analysis of groundwater samples for the presence of PAHs did not detect concentrations in excess of the applicable RGP effluents limits for discharge.

Volatile Organic Compounds

A total of eighteen (18) groundwater samples obtained from the subject site have been analyzed for the presence of VOCs. The results of the laboratory testing indicate that VOCs were either not detected above the laboratory method detection limits and/or were detected at concentrations below RGP effluent limits for discharge.

Metals

From 2003 through 2004, a total of fourteen (14) groundwater samples were obtained from nine monitoring wells at the subject site and analyzed for the presence of total antimony, arsenic, barium, chromium, lead, mercury, nickel, and zinc. The monitoring wells from which the samples were obtained included MW-1 through MW-4 and MW-6 through MW-10. Subsequently in 2011, groundwater samples were obtained from four separate monitoring wells located within the vicinity of the previously sampled monitoring wells. The samples were submitted for laboratory analysis for the presence of dissolved RCRA-8 metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver).

Of the fourteen (14) groundwater samples obtained from 2003 through 2004, only four (4) samples exhibited levels of total antimony, arsenic, chromium, lead, and nickel which exceeded the applicable RGP effluent limits for discharge. In addition, most of the groundwater samples that were obtained exhibited levels of zinc which exceeded the RGP effluent discharge limit of 66.6 ug/l. With the exception of barium, dissolved metals testing performed on groundwater samples obtained in 2011 did not detect concentrations

of metals in excess of the laboratory method detection limits. Barium was detected at concentrations which varied from 61 ug/l to 124 ug/l. Given the results of the dissolved metals analysis conducted on groundwater samples obtained from the subject site, the detected concentrations of total antimony, arsenic, chromium, lead, nickel and zinc are considered to be attributable to suspended solids in the samples.

In summary, an isolated area of groundwater at the subject site has been affected by levels of TPH which exceed the RGP effluent limit for discharge. The petroleum impacted groundwater is located at the central portion of the subject site in the immediate vicinity of monitoring well MAI-5. In addition, the results of dissolved metals testing recently completed at the subject site indicates that levels of total metals previously detected in groundwater at the subject site are likely attributable to suspended particles. At a minimum, treatment of dewatered groundwater will be required to reduce levels of suspended particles in the effluent prior to its discharge off-site into the City of Taunton storm drain system. Specifically groundwater will be pre-treated by passing the water through a 5,000-gallon sediment tank and bag filters in series prior to discharge. Within the vicinity of MAI-5, dewatered groundwater will require treatment to reduce levels of petroleum hydrocarbons prior to off-site discharge. As a result, water pumped from this area will also pass through a granular activities carbon filter that will be added after the bag filters.

TABLE 1 ANALYTICAL RESULTS-GROUNDWATER

Parcel 6A; Taunton, MA Project No. 5293

LOCATION	RGP	1	WES MW2	WES MW2	WES MWA	ECE MW1	ECE MW2	ECE MW2	ECE MW3 Dup	ECE MWA	MW 6	MW 7	MW 7 DUP	MW 8	MW 9	MW 10
SAMPLING DATE	Effluent	Method 1									1/14/2004				1/14/2004	
LAB SAMPLE ID	Limits	GW-3	10/14/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/16/2003	10/14/2003	1/14/2004	1/14/2004	1/14/2004	1/15/2004	1/14/2004	1/15/2004
General Chemistry	Limits	GW-3		l.				<u>l</u>								
Solids, Total Suspended (ug/l)	1	l		1	I	1		1		1		I	1		I	
MCP Dissolved Metals (ug/l)																
	_	000		1	ı	1		1		1		1	1		ı	
Arsenic, Dissolved		900														├
Barium, Dissolved		50000														├
Cadmium, Dissolved		4														├
Chromium, Dissolved		300	ND													
Lead, Dissolved		10														
Mercury, Dissolved		20														
Selenium, Dissolved		100														
Silver, Dissolved		7														<u> </u>
Total Metals (ug/l)																
Antimony	5.6		ND(7.8)	27	ND(5)	ND(5)	6	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
Arsenic	10		ND(9.7)	40	ND(5)	ND(5)	11	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
Barium			ND(200)	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)	47	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)
Chromium	11.4		ND(11)	30	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
Lead	1.3		ND(23)	890	ND(5)	11	32	ND(5)	ND(5)	63	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
Mercury	0.9		ND(0.2)	0.58	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	0.21	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)
Nickel	29		ND(40)	41	ND(40)	ND(40)	ND(40)	ND(40)	ND(40)	ND(40)	ND(40)	ND(40)	ND(40)	ND(40)	ND(40)	ND(40)
Zinc	66.6		390	590	120	1200	64	ND(20)	ND(20)	90	100	340	33	ND(0.2)	78	23
Extractable Petroleum Hydrod			- 555	- 555	.20	.200	01	112(20)	110(20)	, 00	.00	0.10	00	112(0.2)		
C9-C18 Aliphatics	dibons (agn)	50000	ND(110)	ND(120)	ND(100)	ND(110)	410	180	190	200	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)
C19-C36 Aliphatics	+	50000	ND(110)	230	ND(100)	160	520	340	420	230	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)
C11-C22 Aromatics, Adjusted		5000	ND(110)	210	ND(100)	300	1700	1700	2000	470	280	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)
Calculated Total Petroleum H	vdrooarbone (ug/l)		ND(110)	210	ND(100)	300	1700	1700	2000	470	200	ND(110)	(ווט (ווט)	ND(110)	ND(110)	ND(110)
TPH	5000		ND	140	ND	400	0000	0000	0040	000	000	ND	ND	ND	ND	ND
	5000	00000	ND ND	440	ND ND	460	2630	2220	2610	900	280	ND ND	ND ND	ND ND	ND ND	ND ND
2-Methylnaphthalene	0 11 5 4 11	20000	ND(1.1)	ND(1.2)	ND(1)	ND(1.1)	ND(1.1)	8.5	12	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)
Acenaphthene	Group II PAHs	6000	ND(1.1)	ND(1.2)	ND(1)	ND(1.1)	ND(1.1)	3	3.5	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)
Fluorene	Group II PAHs	40	ND(1.1)	ND(1.2)	ND(1)	ND(1.1)	ND(1.1)	3.6	4.1	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)
Naphthalene	20	20000	ND(1.1)	ND(1.2)	ND(1)	ND(1.1)	ND(1.1)	4	4.9	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)
Phenanthrene	Group II PAHs	10000	ND(1.1)	ND(1.2)	ND(1)	ND(1.1)	ND(1.1)	2.5	3.2	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)	ND(1.1)
Acenaphthylene	Group II PAHs	40														L
Anthracene	Group II PAHs	30														
Fluoranthene	Group II PAHs	200														<u> </u>
Pyrene	Group II PAHs	20														<u> </u>
Benzo(a)anthracene	0.0038	1000														1
Chrysene	0.0038	70														
Benzo(b)fluoranthene	0.0038	400														
Benzo(k)fluoranthene	0.0038	100														
Benzo(a)pyrene	0.0038	500														
Indeno(1,2,3-cd)Pyrene	0.0038	100														
Dibenzo(a,h)anthracene	0.0038	40														
Benzo(ghi)perylene	Group II PAHs	20	1	İ				1					1			
MCP Volatile Organics (ug/l)	, , , , , , , , , , , , , , , , , , , ,	1	1		ı	ı				ı		ı			ı	-
1,2,4-Trimethylbenzene			ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	7	4	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
1,4-Dioxane	Monitor Only	50000	ND(50)	ND(50)	ND(50)	110	ND(50)	ND(5)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)
Acetone	Monitor Only	50000	ND(30)	ND(10)	ND(30)	14	ND(10)	ND(10)	ND(10)	ND(30)	ND(30)	ND(30)	ND(30)	ND(10)	ND(30)	ND(30)
p/m-Xylene	Total BTEX 100		ND(10) ND(2)	ND(10) ND(2)	ND(10)	ND(2)	ND(10)	2.1	ND(10) ND(2)	ND(10) ND(2)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10) ND(2)
									· · · ·					· , ,		
Naphthalene	20	20000	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	5.6	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
SUM		<u> </u>	ND	ND	ND	124	ND	14.7	4	ND	ND	ND	ND	ND	ND	ND

TABLE 1 ANALYTICAL RESULTS-GROUNDWATER

Parcel 6A; Taunton, MA Project No. 5293

LOCATION	RGP		MAI-2 (OW)	MAI-3 (OW)	MAI-5 (OW)	MAI-6 (OW)		MAI-101 (OW)	MAI-102 (OW)	MAI-103 (OW)	MAI-1 (OW)			MAI-109 (OW)		RAM-3	RAM-3
SAMPLING DATE	Effluent	Method 1	10/21/2011	10/21/2011	10/21/2011	10/21/2011	11/4/2011	1/11/2012	1/11/2012	1/11/2012	1/11/2012	1/11/2012	1/11/2012	1/11/2012	1/11/2012	3/7/2013	3/7/2013
LAB SAMPLE ID	Limits	GW-3	L1117331-01	L1117331-02	L1117331-03	L1117331-04	L1118320-01	L1200565-01	L1200565-02	L1200565-03	L1200565-04	L1200565-05	L1200565-06	L1200565-07	L1200565-08	L1303875-01	L1303875-02
General Chemistry								_		_	T						,
Solids, Total Suspended (ug/l)			-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND(10000)
MCP Dissolved Metals (ug/l)								_		_	T						,
Arsenic, Dissolved		900	ND(5)	ND(5)	ND(5)	ND(5)	-	-	-	-	-	-	-	-	-	-	-
Barium, Dissolved		50000	63	61	73	124	-	-	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved		4	ND(4)	ND(4)	ND(4)	ND(4)	-	-	-	-	-	-	-	-	-	-	-
Chromium, Dissolved		300	ND(10)	ND(10)	ND(10)	ND(10)	-	-	-	-	-	-	-	-	-	-	-
Lead, Dissolved		10	ND(10)	ND(10)	ND(10)	ND(10)	-	-	-	-	-	-	-	-	-	-	-
Mercury, Dissolved		20	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	-	-	-	-	-	-	-	-	-	-	-
Selenium, Dissolved		100	ND(10)	ND(10)	ND(10)	ND(10)	-	-	-	-	-	-	-	-	-	-	-
Silver, Dissolved		7	ND(7)	ND(7)	ND(7)	ND(7)	-	-	-	-	-	-	-	-	-	-	-
Total Metals (ug/l)																	
Antimony	5.6																
Arsenic	10																
Barium													<u> </u>			<u> </u>	
Chromium	11.4																
Lead	1.3																
Mercury	0.9																<u> </u>
Nickel	29																
Zinc	66.6																
Extractable Petroleum Hydroca	rbons (ug/l)																
C9-C18 Aliphatics		50000	ND(100)	-	2160	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	-	-	-	-	ND(100)	-
C19-C36 Aliphatics		50000	ND(100)	-	7420	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	-	-	-	-	ND(100)	-
C11-C22 Aromatics, Adjusted		5000	ND(100)	-	3270	ND(100)	108	ND(100)	ND(100)	ND(100)	ND(100)	-	-	-	-	ND(100)	-
Calculated Total Petroleum Hyd	drocarbons (ug/l)															-
TPH	5000		ND		12850	ND	108	ND	ND	ND	ND					ND	1
2-Methylnaphthalene		20000	ND(10.1)	-	11.6	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Acenaphthene	Group II PAHs	6000	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Fluorene	Group II PAHs	40	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Naphthalene	20	20000	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Phenanthrene	Group II PAHs	10000	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Acenaphthylene	Group II PAHs	40	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Anthracene	Group II PAHs	30	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Fluoranthene	Group II PAHs	200	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Pyrene	Group II PAHs	20	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Benzo(a)anthracene	0.0038	1000	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Chrysene	0.0038	70	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Benzo(b)fluoranthene	0.0038	400	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Benzo(k)fluoranthene	0.0038	100	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Benzo(a)pyrene	0.0038	500	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Indeno(1,2,3-cd)Pyrene	0.0038	100	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Dibenzo(a,h)anthracene	0.0038	40	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	-
Benzo(ghi)perylene	Group II PAHs	20	ND(10.1)	-	ND(10.1)	ND(10)	ND(10)	ND(10.1)	ND(10)	ND(10.2)	ND(10.1)	-	-	-	-	-	_
MCP Volatile Organics (ug/l)	, ,		(,		\ . • /	()	(.0)	()	(/	(,	()	ı					
1,2,4-Trimethylbenzene			-	_	-	-	-	_	-	_	-	ND(2)	ND(2)	ND(2)	ND(2)	-	_
1,4-Dioxane	Monitor Only	50000	-	-	-	-	-	-	-	-	-	ND(250)	ND(250)	ND(250)	ND(250)	-	_
Acetone	Monitor Only	50000	-	-	-	-	-	-	_	-	-	ND(5)	ND(5)	ND(5)	ND(5)	-	-
p/m-Xylene	Total BTEX 100		-	-	-	-	-	-		-	-	ND(2)	ND(2)	ND(2)	ND(2)	-	-
Naphthalene	20	20000	-	-	-	-	-	-		-	-	ND(2)	ND(2)	ND(2)	ND(2)	-	-
SUM	20	20000	-	-		-	-	-			-	ND(2)	ND(2)	ND ND	ND(2)	-	
COIVI	<u>1</u>	<u>l</u>				_	-					עוו	שוו	שוו	שוו		

TABLE 2 Calculations of Mass of Compounds

Parcel 6A Taunton, Massachusetts McPhail Job No. 4575

Max flow (GPM) =	50		
Max Flow (MGD) =	0.072		
()			
	Max	Max	
		Concentration	
Compound #	(ug/l)	(mg/l)	MASS (kg)
Antimony	27.00	0.027	0.0073
Arsenic	40.00		
Barium	47.00		0.0128
Chromium	30.00	0.03	
Lead	890.00	0.89	
Mercury	0.58		
Nickel	41.00	0.00038	
Zinc	1200.00	1.2	
	12.00	0.012	
2-Methylnaphthalene			
Acenaphthene Fluorene	3.50	0.0035 0.0041	
	4.10 4.90		
Naphthalene		0.0049	
Phenanthrene	3.20	0.0032	
1,2,4-Trimethylbenzene	7.00	0.007	0.0019
1,4-Dioxane	110.00		
Acetone	14.00	0.014	
	0.40		
p/m-Xylene	2.10	0.0021	
p/m-Xylene Naphthalene	5.60	0.0056	0.0015
p/m-Xylene Naphthalene TPH	5.60 12850.00	0.0056	0.0015
p/m-Xylene Naphthalene TPH Avg flow (GPM) =	5.60	0.0056	0.0015
p/m-Xylene Naphthalene TPH	5.60 12850.00	0.0056	0.0015
p/m-Xylene Naphthalene TPH Avg flow (GPM) =	5.60 12850.00 45	0.0056	0.0015
p/m-Xylene Naphthalene TPH Avg flow (GPM) =	5.60 12850.00 45	0.0056	0.0015
p/m-Xylene Naphthalene TPH Avg flow (GPM) =	5.60 12850.00 45	0.0056	0.0015
p/m-Xylene Naphthalene TPH Avg flow (GPM) =	5.60 12850.00 45 0.0648	0.0056 12.85 Average	0.0015 3.5073
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) =	5.60 12850.00 45 0.0648 Average	0.0056 12.85 Average	0.0015 3.5073
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) =	5.60 12850.00 45 0.0648 Average Concentration	0.0056 12.85 Average Concentration	0.0015 3.5073 MASS (kg)
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) =	5.60 12850.00 45 0.0648 Average Concentration (ug/l)	0.0056 12.85 Average Concentration (mg/l) 0.00684	0.0015 3.5073 MASS (kg) 0.007
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84	0.0056 12.85 Average Concentration (mg/l) 0.00684	0.0015 3.5073 MASS (kg) 0.007
p/m-Xylene Naphthalene TPH Avg flow (GPM) =	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826	0.0015 3.5073 MASS (kg) 0.002 0.0046
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907	0.0015 3.5073 MASS (kg) 0.007 0.002 0.046 0.002
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907 0.0115	0.0015 3.5073 MASS (kg) 0.002 0.046 0.002 0.018
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.0826 0.18907 0.0115	MASS (kg) 0.007 0.007 0.002 0.044 0.002 0.018 0.006
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.0826 0.18907 0.0115 0.076 0.00023	0.0015 3.5073 MASS (kg) 0.007 0.002 0.046 0.002 0.018 0.000
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.0826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916	0.0015 3.5073 MASS (kg) 0.007 0.004 0.002 0.016 0.000 0.005
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.0826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916	MASS (kg) 0.007 0.007 0.007 0.008 0.001 0.008 0.008 0.008 0.008
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene Acenaphthene	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16 5.26	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.0826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916 0.00526 0.00456	MASS (kg) 0.007 0.007 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene Acenaphthene Fluorene	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16 5.26 4.56	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916 0.00526 0.00456 0.00461	MASS (kg) 0.007 0.007 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene Acenaphthene Fluorene Naphthalene	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16 5.26 4.56 4.61	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916 0.00526 0.00456 0.00461 0.00467	MASS (kg) 0.007 0.002 0.004 0.003 0.018 0.000 0.005 0.007 0.007 0.007 0.007
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene Acenaphthene Fluorene Naphthalene Phenanthrene	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16 5.26 4.56 4.61 4.67	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916 0.00526 0.00456 0.00461 0.00467	MASS (kg) 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene Acenaphthene Fluorene Naphthalene Phenanthrene 1,2,4-Trimethylbenzene	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16 5.26 4.56 4.61 4.67 4.52 2.39	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916 0.00526 0.00456 0.00461 0.00467 0.00452	MASS (kg) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene Acenaphthene Fluorene Naphthalene Phenanthrene 1,2,4-Trimethylbenzene 1,4-Dioxane	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16 5.26 4.56 4.61 4.67 4.52 2.39 95.28	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916 0.00526 0.00456 0.00461 0.00467 0.00452 0.00239 0.09528	MASS (kg) 0.007 0.007 0.007 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene Acenaphthene Fluorene Naphthalene Phenanthrene 1,2,4-Trimethylbenzene 1,4-Dioxane Acetone	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16 5.26 4.56 4.61 4.67 4.52 2.39 95.28 9.11	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916 0.00526 0.00456 0.00461 0.00467 0.00452 0.00239 0.09528 0.00911	MASS (kg) 0.007 0.007 0.007 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
p/m-Xylene Naphthalene TPH Avg flow (GPM) = Avg Flow (MGD) = Compound # Antimony Arsenic Barium Chromium Lead Mercury Nickel Zinc 2-Methylnaphthalene Acenaphthene	5.60 12850.00 45 0.0648 Average Concentration (ug/l) 6.84 8.26 189.07 11.50 76.00 0.23 40.07 219.16 5.26 4.56 4.61 4.67 4.52 2.39 95.28	0.0056 12.85 Average Concentration (mg/l) 0.00684 0.00826 0.18907 0.0115 0.076 0.00023 0.04007 0.21916 0.00526 0.00456 0.00461 0.00467 0.00452 0.00239 0.09528	MASS (kg) 0.007 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

GPM = Gallons Per Minute MGD = Million Gallons Per Day ug/l = Micrograms per liter mg/l = Milligrams per liter kg = Kilograms

ANALYTICAL REPORT

Lab Number: L1117331

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: PARCEL 6A

Project Number: 5292.9.00

Report Date: 11/01/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Project Name:
 PARCEL 6A
 Lab Number:
 L1117331

 Project Number:
 5292.9.00
 Report Date:
 11/01/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1117331-01	MAI-2 (OW)	TAUNTON	10/21/11 14:00
L1117331-02	MAI-3 (OW)	TAUNTON	10/21/11 13:30
L1117331-03	MAI-5 (OW)	TAUNTON	10/21/11 13:00
L1117331-04	MAI-6 (OW)	TAUNTON	10/21/11 12:35

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Εb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, pleas	se contact Client Services at 800-624-9220.
-----------------------------------	---

MCP Related Narratives

Sample Receipt

The element list for the Dissolved Metals analysis was supplied by the client.

EPH

At the client's request, the results for L1117331-02 are not reported.

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The WG497584-2/-3 LCS/LCSD RPD, associated with L1117331-01, -03 and -04, is above the acceptance criteria for Naphthalene (26%).

 Project Name:
 PARCEL 6A
 Lab Number:
 L1117331

 Project Number:
 5292.9.00
 Report Date:
 11/01/11

Case Narrative (continued)

Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Elizabeth & Simmons Elizabeth Simmons

Authorized Signature:

Title: Technical Director/Representative

Date: 11/01/11

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: PARCEL 6A Lab Number: L1117331

Project Number: 5292.9.00 **Report Date:** 11/01/11

SAMPLE RESULTS

Lab ID: Date Collected: 10/21/11 13:00

Client ID: MAI-5 (OW) Date Received: 10/21/11
Sample Location: TAUNTON Field Prep: Not Specified
Matrix: Water Extraction Method: EPA 3510C

 Analytical Method:
 98,EPH-04-1.1
 Extraction Date:
 10/23/11 17:14

 Analytical Date:
 10/26/11 16:10
 Cleanup Method1:
 EPH-04-1

Analyst: AS Cleanup Date1: 10/25/11

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbon	s - Westborough La	ıb				
C9-C18 Aliphatics	2160		ug/l	100		1
C19-C36 Aliphatics	7420		ug/l	100		1
C11-C22 Aromatics	3280		ug/l	100		1
C11-C22 Aromatics, Adjusted	3270		ug/l	100		1
Naphthalene	ND		ug/l	10.1		1
2-Methylnaphthalene	11.6		ug/l	10.1		1
Acenaphthylene	ND		ug/l	10.1		1
Acenaphthene	ND		ug/l	10.1		1
Fluorene	ND		ug/l	10.1		1
Phenanthrene	ND		ug/l	10.1		1
Anthracene	ND		ug/l	10.1		1
Fluoranthene	ND		ug/l	10.1		1
Pyrene	ND		ug/l	10.1		1
Benzo(a)anthracene	ND		ug/l	10.1		1
Chrysene	ND		ug/l	10.1		1
Benzo(b)fluoranthene	ND		ug/l	10.1		1
Benzo(k)fluoranthene	ND		ug/l	10.1		1
Benzo(a)pyrene	ND		ug/l	10.1		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.1		1
D benzo(a,h)anthracene	ND		ug/l	10.1		1
Benzo(ghi)perylene	ND		ug/l	10.1		1

Project Name: PARCEL 6A Lab Number: L1117331

Project Number: 5292.9.00 **Report Date:** 11/01/11

SAMPLE RESULTS

Lab ID: L1117331-03 Date Collected: 10/21/11 13:00

Client ID: MAI-5 (OW) Date Received: 10/21/11
Sample Location: TAUNTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	46		40-140	
o-Terphenyl	93		40-140	
2-Fluorobiphenyl	82		40-140	
2-Bromonaphthalene	112		40-140	

Project Name: PARCEL 6A Lab Number: L1117331

Project Number: 5292.9.00 **Report Date:** 11/01/11

SAMPLE RESULTS

Lab ID: Date Collected: 10/21/11 12:35

Client ID:MAI-6 (OW)Date Received:10/21/11Sample Location:TAUNTONField Prep:Not SpecifiedMatrix:WaterExtraction Method:EPA 3510C

 Analytical Method:
 98,EPH-04-1.1
 Extraction Date:
 10/23/11 17:14

 Analytical Date:
 10/26/11 16:54
 Cleanup Method1:
 EPH-04-1

Analyst: AS Cleanup Date1: 10/25/11

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarb	ons - Westborough La	b				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
D benzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: PARCEL 6A Lab Number: L1117331

Project Number: 5292.9.00 **Report Date:** 11/01/11

SAMPLE RESULTS

Lab ID: Date Collected: 10/21/11 12:35

Client ID: MAI-6 (OW) Date Received: 10/21/11
Sample Location: TAUNTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	49		40-140	
o-Terphenyl	68		40-140	
2-Fluorobiphenyl	78		40-140	
2-Bromonaphthalene	78		40-140	

Project Name: Lab Number: PARCEL 6A L1117331

Project Number: 5292.9.00 Report Date: 11/01/11

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 10/25/11 17:08

Analyst: AS

Extraction Method: EPA 3510C 10/23/11 17:14 Extraction Date: Cleanup Method1: EPH-04-1

Cleanup Date1: 10/25/11

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons 1	s - Westbo	rough Lab fo	r sample(s):	01,03-04	Batch: WG497584-
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	
Naphthalene	ND		ug/l	10.0	
2-Methylnaphthalene	ND		ug/l	10.0	
Acenaphthylene	ND		ug/l	10.0	
Acenaphthene	ND		ug/l	10.0	
Fluorene	ND		ug/l	10.0	
Phenanthrene	ND		ug/l	10.0	
Anthracene	ND		ug/l	10.0	
Fluoranthene	ND		ug/l	10.0	
Pyrene	ND		ug/l	10.0	
Benzo(a)anthracene	ND		ug/l	10.0	
Chrysene	ND		ug/l	10.0	
Benzo(b)fluoranthene	ND		ug/l	10.0	
Benzo(k)fluoranthene	ND		ug/l	10.0	
Benzo(a)pyrene	ND		ug/l	10.0	
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0	
Dibenzo(a,h)anthracene	ND		ug/l	10.0	
Benzo(ghi)perylene	ND		ug/l	10.0	

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
Chloro-Octadecane	63		40-140				
o-Terphenyl	70		40-140				
2-Fluorobiphenyl	88		40-140				
2-Bromonaphthalene	87		40-140				

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.00

Lab Number: L1117331

Report Date: 11/01/11

arameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sam	nple(s): 01,03-04	Batch: W	VG497584-2	WG497584-3		
C9-C18 Aliphatics	64		60		40-140	6		25
C19-C36 Aliphatics	84		79		40-140	6		25
C11-C22 Aromatics	78		69		40-140	12		25
Naphthalene	77		59		40-140	26	Q	25
2-Methylnaphthalene	82		65		40-140	23		25
Acenaphthylene	74		60		40-140	21		25
Acenaphthene	79		65		40-140	19		25
Fluorene	74		65		40-140	13		25
Phenanthrene	79		72		40-140	9		25
Anthracene	75		68		40-140	10		25
Fluoranthene	77		71		40-140	8		25
Pyrene	80		73		40-140	9		25
Benzo(a)anthracene	71		63		40-140	12		25
Chrysene	75		68		40-140	10		25
Benzo(b)fluoranthene	78		69		40-140	12		25
Benzo(k)fluoranthene	74		66		40-140	11		25
Benzo(a)pyrene	68		59		40-140	14		25
Indeno(1,2,3-cd)Pyrene	74		65		40-140	13		25
Dibenzo(a,h)anthracene	69		58		40-140	17		25
Benzo(ghi)perylene	74		66		40-140	11		25
Nonane (C9)	52		41		30-140	24		25

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.00

Lab Number: L1117331

Report Date: 11/01/11

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ktractable Petroleum Hydrocarbons -	Westborough Lab A	Associated s	ample(s): 01,03-04	Batch:	WG497584-2	WG497584-3		
Decane (C10)	62		50		40-140	21		25
Dodecane (C12)	69		58		40-140	17		25
Tetradecane (C14)	73		65		40-140	12		25
Hexadecane (C16)	78		74		40-140	5		25
Octadecane (C18)	81		78		40-140	4		25
Nonadecane (C19)	82		84		40-140	2		25
Eicosane (C20)	84		83		40-140	1		25
Docosane (C22)	82		80		40-140	2		25
Tetracosane (C24)	82		81		40-140	1		25
Hexacosane (C26)	83		82		40-140	1		25
Octacosane (C28)	80		79		40-140	1		25
Triacontane (C30)	83		82		40-140	1		25
Hexatriacontane (C36)	81		78		40-140	4		25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	73		67		40-140	
o-Terphenyl	71		60		40-140	
2-Fluorobiphenyl	85		77		40-140	
2-Bromonaphthalene	89		77		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

METALS

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

SAMPLE RESULTS

Lab ID: L1117331-03
Client ID: MAI-5 (OW)
Sample Location: TAUNTON
Matrix: Water

Date Collected: 10/21/11 13:00

Date Received: 10/21/11

Field Prep: Not Specified

Dilution Date Date Prep Analytical Method **Prepared** Method **Factor Analyzed Parameter** Result Qualifier Units RL MDL **Analyst** MCP Dissolved Metals - Westborough Lab Arsenic, Dissolved ND mg/l 0.005 1 10/25/11 11:30 10/27/11 09:56 EPA 3005A 97,6010B ΑI Barium, Dissolved 0.073 0.010 1 97,6010B mg/l 10/25/11 11:30 10/27/11 09:56 EPA 3005A ΑI ND 1 97,6010B 0.004 10/25/11 11:30 10/27/11 09:56 EPA 3005A ΑI Cadmium, Dissolved mg/l Chromium, Dissolved ND mg/l 0.01 1 10/25/11 11:30 10/27/11 09:56 EPA 3005A 97,6010B ΑI Lead, Dissolved ND 0.010 1 10/25/11 11:30 10/27/11 09:56 EPA 3005A 97,6010B mg/l ΑI Mercury, Dissolved ND 0.0002 1 10/25/11 18:30 10/26/11 12:52 EPA 7470A 97,7470A JΡ mg/l Selenium, Dissolved ND mg/l 0.010 1 10/25/11 11:30 10/27/11 09:56 EPA 3005A 97,6010B ΑI Silver, Dissolved ND mg/l 0.007 1 10/25/11 11:30 10/27/11 09:56 EPA 3005A 97,6010B ΑI

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

SAMPLE RESULTS

Lab ID: L1117331-04
Client ID: MAI-6 (OW)
Sample Location: TAUNTON
Matrix: Water

Date Collected: 10/21/11 12:35
Date Received: 10/21/11
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Wes	stborough L	.ab								
Arsenic. Dissolved	ND		mg/l	0.005		1	10/25/11 11:30) 10/27/11 09:59	EPA 3005A	97,6010B	Al
Barium, Dissolved	0.124		mg/l	0.003		1) 10/27/11 09:59		97,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004		1) 10/27/11 09:59		97,6010B	Al
Chromium, Dissolved	ND			0.004		1) 10/27/11 09:59		97,6010B	Al
	ND		mg/l	0.010		1		0 10/27/11 09:59		97,6010B	Al
Lead, Dissolved			mg/l			<u> </u>				97,7470A	
Mercury, Dissolved	ND		mg/l	0.0002		1		10/26/11 12:54		•	<u>JP</u>
Selenium, Dissolved	ND		mg/l	0.010		1 		10/27/11 09:59		97,6010B	Al
Silver, Dissolved	ND		mg/l	0.007		1	10/25/11 11:30) 10/27/11 09:59	EPA 3005A	97,6010B	Al

 Project Name:
 PARCEL 6A
 Lab Number:
 L1117331

 Project Number:
 5292.9.00
 Report Date:
 11/01/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals - V	Vestborough Lab for	sample(s)	: 01-0	4 Bat	ch: WG497	7975-1			
Arsenic, Dissolved	ND	mg/l	0.005		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Barium, Dissolved	ND	mg/l	0.010		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Cadmium, Dissolved	ND	mg/l	0.004		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Chromium, Dissolved	ND	mg/l	0.01		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Lead, Dissolved	ND	mg/l	0.010		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Selenium, Dissolved	ND	mg/l	0.010		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Silver, Dissolved	ND	mg/l	0.007		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals - Westborough Lab for sample(s): 01-04 Batch: WG498106-1									
Mercury, Dissolved	ND	mg/l	0.0002		1	10/25/11 18:30	10/26/11 12:42	97,7470A	JP

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.00

Lab Number: L1117331

Report Date:

11/01/11

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Westborough Lab Asso	ciated sample(s): 01-04	Batch: WG497975	5-2 WG49	7975-3			
Arsenic, Dissolved	115		112		80-120	3		20
Barium, Dissolved	107		106		80-120	1		20
Cadmium, Dissolved	112		109		80-120	3		20
Chromium, Dissolved	105		105		80-120	0		20
Lead, Dissolved	110		108		80-120	2		20
Selenium, Dissolved	115		112		80-120	3		20
Silver, Dissolved	109		108		80-120	1		20
MCP Dissolved Metals - Westborough Lab Associated sample(s): 01-04 Batch: WG498106-2 WG498106-3								
Mercury, Dissolved	110		110		80-120	0		20

Project Name:PARCEL 6ALab Number: L1117331Project Number:5292.9.00Report Date: 11/01/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ		Pres	Seal	Analysis(*)
L1117331-01A	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-01B	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-01C	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-01D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-01X	Plastic 1000ml HNO3 preserved sp	Α	<2	2	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-SE-6010S-10(180)
L1117331-02A	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	-
L1117331-02B	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	-
L1117331-02C	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-02D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-02X	Plastic 1000ml HNO3 preserved sp	Α	<2	2	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-SE-6010S-10(180)
L1117331-03A	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-03B	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-03C	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-03D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-03X	Plastic 1000ml HNO3 preserved sp	Α	<2	2	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-B-6010S-10(180),MCP-SE-6010S-10(180)

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1117331-04A	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-04B	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-04C	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-04D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-04X	Plastic 1000ml HNO3 preserved sp	А	<2	2	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-SE-6010S-10(180)

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

Data Qualifiers

P - The RPD between the results for the two columns exceeds the method-specified criteria.

Q - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

 \boldsymbol{R} - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised September 19, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <a href="https://doi.org/10.2016/journal.org/10

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. Organic Parameters: 608, 8081, 8082, 8330, 8151A, 624, 8260, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014A, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl, V,Zn); 245.1, SM4500H,B, EPA 120.1,

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 6020A, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 7196A, 3060A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B... Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 1312, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. Organic Parameters: EPA 3510C, 3005A, 3630C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540B, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

ALPHA	CUSTODY	PAGE OF	- Date Rec'd in Lab: 10/21/11 ALPHA Job #: 4/11/733/
WESTBORO, MA MANSFIELD, MA	Project Information		Report Information - Data Deliverables Billing Information
TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	Project Name: Parcel	LOA	□ FAX □ EMAIL □ Same as Client info PO #:
Client Information	Project Location: Taun	_	□ ADEx □ Add'l Deliverables
Client: McPhail Associates	Project#: 5292.9		Regulatory Requirements/Report Limits
Address: 269 MASS. AVE	1		State / Fed Program MA DEP Criteria RCS-I
CAMBRIDGE, MA 02140	ALPHA Quote #:	3 talconein	MA MCP PRESUMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO
Phone: 617 865 1420	Turn-Around Time		See No Are MCP Analytical Methods Required?
Fax:	Tarii-Alound Tille		☐ Yes ☑ Yes ☐ Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments)
Email:	⊠(Standard □ RUSH	only confirmed if pre-approved!)	☐ Yes 🖳 No Are CT RCP (Reasonable Confidence Protocols) Required?
	Date Due: 10/19/11	Time:	SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation Lab to do (Please specify below) Sample Specific Comments
These samples have been previously analyzed by Alpha Other Project Specific Requirements/Comme	100.		SAMPLE HANDLING Filtration
If MS is required , indicate in Sample Specific Comments w	hich samples and what tests MS to	be performed.	SAMPLE HANDLING Filtration Done Not needed
(Note: All CAM methods for inorganic analyses require MS	every 20 soil samples)		Not needed □ Lab to do
			Preservation D Lab to do
ALPHA Lab ID (Lab Lise Only) Sample ID	Collection	Sample Sampler's	s Please specify below)
(Lab Ge Gilly)	Date Time		
17331. / MAI-2 (OW)	10/21/11/14/60	H20 FBK	X x 2- Amber (L) 2- plastic
			d' pinotic
2 MAI-3 (OW)	10/21/11 133×	H20 FBK	×× u
	12.11)	1120 1014	
3 000 5 - 5 60 0	10 00		
MAI-5 (οω)	10/21/14/300	H20 FBK	× ×
(cuo) 2-IAM 4	10/21/11 1235	420 FBK	××
PLEASE ANSWER QUESTIONS ABOVE!		Container Type	Please print clearly, legibly and com-
IS YOUR PROJECT	no de la companya della companya della companya de la companya della companya del	Preservative	C B pletely. Samples can not be logged in and turnaround time clock will not
MAMCP or CTRCP?	Relinquished By:	Date/Time	Received By: Date/Time start until any ambiguities are resolve
	Wash	16/21 16 62 10/31/11 1805	All samples submitted are subject to Alpha's Terms and Conditions. 10 21 180 See reverse side.
FORM NO: 01-01 (rev. 18-Jan-2010)		INTOITH TOUC	10/CIN 1800 See levelse side

ANALYTICAL REPORT

Lab Number: L1200565

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: PARCEL 6A

Project Number: 5292.9.01

Report Date: 01/17/12

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Project Name:
 PARCEL 6A
 Lab Number:
 L1200565

 Project Number:
 5292.9.01
 Report Date:
 01/17/12

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1200565-01	MAI-101 (OW)	TAUNTON, MA	01/11/12 08:30
L1200565-02	MAI-102 (OW)	TAUNTON, MA	01/11/12 09:00
L1200565 03	MAI-103 (OW)	TAUNTON, MA	01/11/12 09:30
L1200565-04	MAI-1 (OW)	TAUNTON, MA	01/11/12 08:00
L1200565-05	MAI-106 (OW)	TAUNTON, MA	01/11/12 10:00
L1200565-06	MAI-107 (OW)	TAUNTON, MA	01/11/12 10:30
L1200565-07	MAI-109 (OW)	TAUNTON, MA	01/11/12 11:00
L1200565-08	MAI-111 (OW)	TAUNTON, MA	01/11/12 11:30

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 Report Date: 01/17/12

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status									
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO								
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO								
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES								

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Volatile Organics

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The WG513755-2 LCSD recovery, associated with L1200565-05 through -08, is below the acceptance criteria for 2-Hexanone (69%); however, it has been identified as a "difficult" analyte and is within the 40-160% acceptance limits. The results of the associated samples are reported; however, all results are considered to have a potentially low bias for this compound.

The WG513755-1/-2 LCS/LCSD RPDs, associated with L1200565-05 through -08, are above the acceptance criteria for 2-Butanone (25%) and 4-Methyl-2-pentanone (27%).

The initial calibration, associated with L1200565-05 through -08, did not meet the method required minimum

Serial_No:01171213:07

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

Case Narrative (continued)

response factors on the lowest calibration standards for 1,4-Dioxane (0.00304), as well as the average response factor for tert-Butyl alcohol and 1,4-Dioxane.

The continuing calibration standard, associated with L1200565-05 through -08, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

EPH

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cypthia fin Chen. Cynthia McQueen

Authorized Signature:

Title: Technical Director/Representative

Date: 01/17/12

ORGANICS

VOLATILES

01/11/12

Not Specified

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-05 Date Collected: 01/11/12 10:00

Client ID: MAI-106 (OW) Date Received: Sample Location: TAUNTON, MA Field Prep:

Matrix: Water
Analytical Method: 97,8260B
Analytical Date: 01/13/12 12:47

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethy benzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-05 Date Collected: 01/11/12 10:00

Client ID: MAI-106 (OW) Date Received: 01/11/12

Sample Location: TAUNTON, MA Field Prep: Not Specified

Dim-Xylene ND Ug1 2.0 - 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
p/m-Xylene ND ug/l 2.0 1 o-Xylene ND ug/l 1.0 1 o-Xylene ND ug/l 1.0 1 cis-1,2-Dichloroethene ND ug/l 2.0 1 Dibromomethane ND ug/l 2.0 1 Styrene ND ug/l 2.0 1 Obchforodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Acetonisulfide ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND <td< td=""><td>MCP Volatile Organics - Westborough</td><td>Lab</td><td></td><td></td><td></td><td></td><td></td></td<>	MCP Volatile Organics - Westborough	Lab					
o-Xylene ND ug/l 1.0 1 discl-12-Dichloroethane ND ug/l 1.0 1 discl-12-Dichloroethane ND ug/l 2.0 1 1.2,3-Trichloropropane ND ug/l 2.0 1 Slyrene ND ug/l 2.0 1 Dichlorodfluoromethane ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 2-Hasharone ND ug/l 5.0 1 2-Hasharone ND ug/l 5.0 1 2-Hasharone	Methyl tert butyl ether	ND		ug/l	2.0		1
cis.1,2-Dichloroethene ND ugh 1.0 — 1 Dibromomethane ND ugh 2.0 — 1 1,2,3-Trichloropropane ND ugh 2.0 — 1 Syrene ND ugh 1.0 — 1 Dichlorodifluoromethane ND ugh 5.0 — 1 Acetone ND ugh 5.0 — 1 Acetone ND ugh 5.0 — 1 2-butanone ND ugh 5.0 — 1 4-Methyl-2-pentanone ND ugh 5.0 — 1 4-Methyl-2-pentanone ND ugh 5.0 — 1 8-Denocolloromothane ND ugh 5.0 — 1 8-Terrahydrofuran ND ugh 5.0 — 1 1-2-Dibromoethane ND ugh 2.0 — 1 1-2-Dibromoethane ND	p/m-Xylene	ND		ug/l	2.0		1
Dibromomethane ND	o-Xylene	ND		ug/l	1.0		1
1,2,3-Trichloropropane ND ug/l 2,0 1	cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Styrene ND	Dibromomethane	ND		ug/l	2.0		1
Dichlorodiffluoromethane	1,2,3-Trichloropropane	ND		ug/l	2.0		1
Acetone ND ug/l 5.0 - 1 Carbon disulfide ND ug/l 2.0 - 1 2-Butanone ND ug/l 5.0 - 1 4-Methyl-2-pentanone ND ug/l 5.0 - 1 4-Methyl-2-pentanone ND ug/l 5.0 - 1 5-Carbon disulfide ND ug/l 5.0 - 1 4-Methyl-2-pentanone ND ug/l 5.0 - 1 5-Carbon disulfide ND ug/l 2.0	Styrene	ND		ug/l	1.0		1
Carbon disulfide ND ug/l 2.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.0 1 Tetrahydrofuran ND ug/l 2.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.0 1 1,1-Dichloropropane ND ug/l 2.0 1 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>2.0</td><td></td><td>1</td></t<>	Dichlorodifluoromethane	ND		ug/l	2.0		1
2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.0 1 Tetrahydrofuran ND ug/l 5.0 1 2,2-Dichloropropane ND ug/l 2.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.0 1 1,1-1,1-2-Tetrachloroethane ND ug/l 2.0 1 Bromobenzene ND ug/l 2.0 1 n-Buty berzene ND ug/l 2.0 1 sec-Buty benzene ND ug/l 2.0 1	Acetone	ND		ug/l	5.0		1
A-Methyl-2-pentanone ND Ug/l 5.0 1	Carbon disulfide	ND		ug/l	2.0		1
ND	2-Butanone	ND		ug/l	5.0		1
Bromochloromethane ND ug/l 2.0 - 1	4-Methyl-2-pentanone	ND		ug/l	5.0		1
Tetrahydrofuran	2-Hexanone	ND		ug/l	5.0		1
ND	Bromochloromethane	ND		ug/l	2.0		1
1,2-Ditromoethane ND ug/l 2,0 1 1,3-Dichloropropane ND ug/l 2,0 1 1,1,1,2-Tetrachloroethane ND ug/l 1,0 1 Bromobenzene ND ug/l 2,0 1 Bromobenzene ND ug/l 2,0 1 n-Buty benzene ND ug/l 2,0 1 sec-Buty benzene ND ug/l 2,0 1 sec-Buty benzene ND ug/l 2,0 1 tetr-Butylbenzene ND ug/l 2,0 1 p-Chlorotoluene ND ug/l 2,0 1 p-Chlorotoluene ND ug/l 2,0 1 Hexachlorobutadiene ND ug/l 2,0 1 Isopropylbenzene ND ug/l 2,0 1 Iso	Tetrahydrofuran	ND		ug/l	5.0		1
1,3-Dichloropropane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 1.0 1 Bromobenzene ND ug/l 2.0 1 n-Buty benzene ND ug/l 2.0 1 sec-Buty benzene ND ug/l 2.0 1 tert-Butylbenzene ND ug/l 2.0 1 tert-Butylbenzene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 tert-Butylbenzene ND ug/l 2.0 1 tert-Butylbenzene ND ug/l 2.0 1 tert-Butylbenzene ND ug/l 2.0 1 tert-Butyl-Tether ND ug/l 2.0 1 <t< td=""><td>2,2-Dichloropropane</td><td>ND</td><td></td><td>ug/l</td><td>2.0</td><td></td><td>1</td></t<>	2,2-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	1,2-Dibromoethane	ND		ug/l	2.0		1
ND	1,3-Dichloropropane	ND		ug/l	2.0		1
In-Buty benzene ND ug/l 2.0 1 sec-Buty benzene ND ug/l 2.0 1 tert-Butylbenzene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Isopropylteluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimeth	1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
sec-Buty benzene ND ug/l 2.0 1 tert-Butylbenzene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1	Bromobenzene	ND		ug/l	2.0		1
tert-Butylbenzene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Isopropyltoluene ND ug/l 2.0 1 In-P-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 In-P-ropy benzene ND ug/l 2.0 1 In-In-In-ropy benzene ND ug/l 2.0 1 In-In-In-ropy benzene ND ug/l 2.0 1 In-In-In-In-In-In-In-In-In-In-In-In-In-I	n-Buty benzene	ND		ug/l	2.0		1
o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 2.0 1 p-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1	sec-Buty benzene	ND		ug/l	2.0		1
p-Chlorotoluene ND ug/l 2.0 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 2.0 1 Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1 <td>tert-Butylbenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.0</td> <td></td> <td>1</td>	tert-Butylbenzene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 2.0 1 P-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	o-Chlorotoluene	ND		ug/l	2.0		1
Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 2.0 1 p-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	p-Chlorotoluene	ND		ug/l	2.0		1
Sopropylbenzene ND ug/l 2.0 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
p-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	Hexachlorobutadiene	ND		ug/l	0.60		1
Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	Isopropylbenzene	ND		ug/l	2.0		1
n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	p-Isopropyltoluene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	Naphthalene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	n-Propy benzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	1,2,4-Trimethylbenzene	ND		ug/l	2.0		1
Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	Ethyl ether	ND		ug/l	2.0		1
	Isopropyl Ether	ND		ug/l	2.0		1
Tertiary-Amyl Methyl Ether ND ug/l 2.0 1	Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1
	Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-05 Date Collected: 01/11/12 10:00

Client ID: MAI-106 (OW) Date Received: 01/11/12
Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

MCP Volatile Organics - Westborough Lab

1,4-Dioxane ND ug/l 250 -- 1

Acceptance Criteria Surrogate % Recovery Qualifier 1,2-Dichloroethane-d4 90 70-130 Toluene-d8 91 70-130 4-Bromofluorobenzene 102 70-130 Dibromofluoromethane 103 70-130

Project Name: Lab Number: L1200565 PARCEL 6A

Project Number: Report Date: 5292.9.01 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-06 Date Collected: 01/11/12 10:30

Matrix: Water Analytical Method: 97,8260B Analytical Date: 01/13/12 13:20

Analyst: MM

_ab ib.	21200000 00	Date Concetou.	01/11/12 10:00
Client ID:	MAI-107 (OW)	Date Received:	01/11/12
Sample Location:	TAUNTON, MA	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough I	Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethy benzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-06 Date Collected: 01/11/12 10:30

Client ID: MAI-107 (OW) Date Received: 01/11/12

Sample Location: TAUNTON, MA Field Prep: Not Specified

Sample Location.	TACINTOIN, IVIA			1 1010	a i iep.	Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics	s - Westborough Lab							
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	5.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
,2-Dibromoethane		ND		ug/l	2.0		1	
,3-Dichloropropane		ND		ug/l	2.0		1	
,1,1,2-Tetrachloroethane		ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Buty benzene		ND		ug/l	2.0		1	
ec-Buty benzene		ND		ug/l	2.0		1	
ert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
,2-Dibromo-3-chloropropar	ne	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
sopropylbenzene		ND		ug/l	2.0		1	
o-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propy benzene		ND		ug/l	2.0		1	
,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
,2,4-Trimethylbenzene		ND		ug/l	2.0		1	
Ethyl ether		ND		ug/l	2.0		1	
sopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
		.,						

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-06 Date Collected: 01/11/12 10:30

Client ID: MAI-107 (OW) Date Received: 01/11/12
Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

MCP Volatile Organics - Westborough Lab

1,4-Dioxane ND ug/l 250 -- 1

Acceptance Criteria Surrogate % Recovery Qualifier 1,2-Dichloroethane-d4 93 70-130 Toluene-d8 88 70-130 4-Bromofluorobenzene 95 70-130 Dibromofluoromethane 111 70-130

01/11/12

Not Specified

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-07 Date Collected: 01/11/12 11:00

Client ID: MAI-109 (OW) Date Received: Sample Location: TAUNTON, MA Field Prep:

Matrix: Water
Analytical Method: 97,8260B
Analytical Date: 01/13/12 13:52

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethy benzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-07 Date Collected: 01/11/12 11:00

Client ID: MAI-109 (OW) Date Received: 01/11/12

Sample Location: TAUNTON, MA Field Prep: Not Specified

Methyl tert buryl ether ND ug1 2.0 1 p/m-Xylene ND ug1 1.0 1 o Xylene ND ug1 1.0 1 o Xylene ND ug1 1.0 1 cls-1,2-Dichloroethere ND ug1 1.0 1 Dibromomethane ND ug1 2.0 1 1,2,3-Trichloropropane ND ug1 1.0 1 Styrene ND ug1 1.0 1 Obchdrodflowomethane ND ug1 5.0 1 Acetone ND ug1 5.0 1 Acetone ND ug1 5.0 1 Acetone ND ug1 5.0 1 Sebutanone ND ug1 5.0 1 Zebradone ND ug1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
prim Xylene ND ught 2.0 - 1 o Xylene ND ught 1.0 - 1 o Xylene ND ught 1.0 - 1 o Stall 1,2-Dicthoroethene ND ught 1.0 - 1 Dibromomethane ND ught 2.0 - 1 Styrene ND ught 1.0 - 1 Carbon Gauthe ND ught 2.0 - 1 Acatone ND ught 2.0 - 1 Carbon Gauthe ND ught 2.0 - 1 Acatone ND ught 2.0 - 1 Acatone ND ught 2.0 - 1 Acatone ND ught 2.0 - 1 Abustone ND ught 2.0 - 1 Attactone ND ught 2.0 - </th <th>MCP Volatile Organics - Westborough Lab</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	MCP Volatile Organics - Westborough Lab						
ND	Methyl tert butyl ether	ND		ug/l	2.0		1
cis.1,2-Dichloroethene ND ugil 1.0 1 Dibromomethane ND ugil 2.0 1 1,2,3-Trichloropropane ND ugil 1.0 1 Syrene ND ugil 1.0 1 Dichlorodifluoromethane ND ugil 5.0 1 Acetone ND ugil 5.0 1 Acetone ND ugil 5.0 1 2-betarone ND ugil 5.0 1 1-chemomethane ND ugil 2.0 1 1-2-Dibromoethane ND	p/m-Xylene	ND		ug/l	2.0		1
Dibromomethane ND	o-Xylene	ND		ug/l	1.0		1
1,2,3-Trichloropropane ND ug/l 2,0 1 Styrene ND ug/l 1,0 1 Dichlorodifluoromethane ND ug/l 2,0 1 Acetone ND ug/l 2,0 1 Carbon disulfide ND ug/l 5,0 1 2-Butanone ND ug/l 2,0 1 2-Butanone ND ug/l 2,0 1 2-Butanone ND ug/l 2,0 1 2-Eyeharanone ND ug/l 2,0 1 1,3-Dichloropropane ND u	cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Styrene ND Ug/l 1.0 1	Dibromomethane	ND		ug/l	2.0		1
Dichlorodiffluoromethane	1,2,3-Trichloropropane	ND		ug/l	2.0		1
Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 2.0 1 Carbon disulfide ND ug/l 5.0 1 Carbon disulfid	Styrene	ND		ug/l	1.0		1
Carbon disulfide ND ug/l 2.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.0 1 Tetrahydrofuran ND ug/l 5.0 1 12-Dibloropropane ND ug/l 2.0 1 1.2-Dibromoethane ND ug/l 2.0 1 1.3-Dichloropropane ND ug/l 2.0 1 Bromocharzene ND ug/l 2.0 1 n-Bu	Dichlorodifluoromethane	ND		ug/l	2.0		1
A-Methyl-2-pentanone ND ug/l 5.0 1	Acetone	ND		ug/l	5.0		1
ND	Carbon disulfide	ND		ug/l	2.0		1
Second ND	2-Butanone	ND		ug/l	5.0		1
Bromochloromethane ND Ug/l 2.0 1	4-Methyl-2-pentanone	ND		ug/l	5.0		1
Tetrahydrofuran ND ug/l 5.0 1 2,2-Dichloropropane ND ug/l 2.0 1 1 1,2-Dibromoethane ND ug/l 2.0 1 1 1,3-Dichloropropane ND ug/l 2.0 1 1 1,1,1,2-Tetrachloroethane ND ug/l 2.0 1 1 1,1,1,2-Tetrachloroethane ND ug/l 2.0 1 1 1 1,1,1,2-Tetrachloroethane ND ug/l 2.0 1 1 1 1 1 1 1 1	2-Hexanone	ND		ug/l	5.0		1
ND	Bromochloromethane	ND		ug/l	2.0		1
1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 1.0 1 Bromobenzene ND ug/l 2.0 1 n-Buty benzene ND ug/l 2.0 1 sec-Buty benzene ND ug/l 2.0 1 sec-Buty benzene ND ug/l 2.0 1 tetr-Butylbenzene ND ug/l 2.0 1 ce-Buty benzene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 2.0 1 Isopropylteluene ND ug/l 2.0 1	Tetrahydrofuran	ND		ug/l	5.0		1
1,3-Dichloropropane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 1.0 1 Bromobenzene ND ug/l 2.0 1 Bromobenzene ND ug/l 2.0 1 n-Buty benzene ND ug/l 2.0 1 sec-Buty benzene ND ug/l 2.0 1 sec-Buty benzene ND ug/l 2.0 1 tetr-Butylbenzene ND ug/l 2.0 1 tetr-Butylbenzene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2-3-Trichlorobenzene ND ug/l 2.0 1 1,2-3-Trichlorobenzene ND ug/l 2.0 1 1,2-4-Trichlorobenzene ND ug/l 2.0 1 1,2-4-Trichlorobenzene ND ug/l 2.0 1 1,2-4-Trimethylbenzene ND ug/l 2.0 1 1,2-4-Trimethylbenzene ND ug/l 2.0 1 1,2-4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Ethyl-Tetr-Butyl-Ether ND ug/l 2.0 1 Ethyl-Tetr-Butyl-Ether ND ug/l 2.0 1	2,2-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	1,2-Dibromoethane	ND		ug/l	2.0		1
ND	1,3-Dichloropropane	ND		ug/l	2.0		1
n-Buty benzene ND ug/l 2.0 1 sec-Buty benzene ND ug/l 2.0 1 tert-Butylbenzene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 N-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trim	1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
sec-Buty benzene ND ug/l 2.0 1 tetrt-Butylbenzene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 N-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,1,2,4-Trimethylbenzene ND ug/l 2.0 1	Bromobenzene	ND		ug/l	2.0		1
tert-Butylbenzene ND ug/l 2.0 1 o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 2.0 1 Isopropylbenzene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 In-Propy benzene ND ug/l 2.0 1 I.2,3-Trichlorobenzene ND ug/l 2.0 1 I.2,3-Trichlorobenzene ND ug/l 2.0 1 I.2,4-Trichlorobenzene ND ug/l 2.0 1 I.2,4-Trimethylbenzene ND ug/l 2.0 1 I.3,5-Trimethylbenzene ND ug/l 2.0 1	n-Buty benzene	ND		ug/l	2.0		1
o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND ug/l 2.0 1 1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 2.0 1 p-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1	sec-Buty benzene	ND		ug/l	2.0		1
P-Chlorotoluene ND ug/l 2.0 1	tert-Butylbenzene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 2.0 1 P-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	o-Chlorotoluene	ND		ug/l	2.0		1
Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 2.0 1 p-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 N-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	p-Chlorotoluene	ND		ug/l	2.0		1
Sopropylbenzene ND ug/l 2.0 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
p-Isopropyltoluene ND ug/l 2.0 1 Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	Hexachlorobutadiene	ND		ug/l	0.60		1
Naphthalene ND ug/l 2.0 1 n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	Isopropylbenzene	ND		ug/l	2.0		1
n-Propy benzene ND ug/l 2.0 1 1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	p-Isopropyltoluene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene ND ug/l 2.0 1 1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	Naphthalene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene ND ug/l 2.0 1 1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	n-Propy benzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene ND ug/l 2.0 1 1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene ND ug/l 2.0 1 Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
Ethyl ether ND ug/l 2.0 1 Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
Isopropyl Ether ND ug/l 2.0 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	1,2,4-Trimethylbenzene	ND		ug/l	2.0		1
Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1	Ethyl ether	ND		ug/l	2.0		1
	Isopropyl Ether	ND		ug/l	2.0		1
Tertiary-Amyl Methyl Ether ND ug/l 2.0 1	Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1
	Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 Report Date: 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-07 Date Collected: 01/11/12 11:00

Client ID: MAI-109 (OW) Date Received: 01/11/12
Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

MCP Volatile Organics - Westborough Lab

1,4-Dioxane ND ug/l 250 -- 1

Acceptance Criteria Surrogate % Recovery Qualifier 1,2-Dichloroethane-d4 93 70-130 Toluene-d8 89 70-130 4-Bromofluorobenzene 94 70-130 Dibromofluoromethane 111 70-130

01/11/12

Not Specified

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 Report Date: 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-08 Date Collected: 01/11/12 11:30

Client ID: MAI-111 (OW) Date Received: Sample Location: TAUNTON, MA Field Prep:

Matrix: Water
Analytical Method: 97,8260B
Analytical Date: 01/13/12 14:25

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethy benzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-08 Date Collected: 01/11/12 11:30

Client ID: MAI-111 (OW) Date Received: 01/11/12

Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	h Lab					
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	5.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Buty benzene	ND		ug/l	2.0		1
sec-Buty benzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propy benzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1
Ethyl ether	ND		ug/l	2.0		1
Isopropyl Ether	ND		ug/l	2.0		1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

1

Lab Number: **Project Name:** PARCEL 6A L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-08 Date Collected: 01/11/12 11:30

Client ID: Date Received: 01/11/12 MAI-111 (OW) Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor**

ug/l

250

MCP Volatile Organics - Westborough Lab

ND

Acceptance Criteria Surrogate % Recovery Qualifier 1,2-Dichloroethane-d4 95 70-130 Toluene-d8 85 70-130 4-Bromofluorobenzene 97 70-130 Dibromofluoromethane 94 70-130

1,4-Dioxane

 Project Name:
 PARCEL 6A
 Lab Number:
 L1200565

 Project Number:
 5292.9.01
 Report Date:
 01/17/12

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260B Analytical Date: 01/13/12 08:27

Analyst: MM

Parameter	Result	Qualifier	Uni	its	RL	MDL
MCP Volatile Organics	- Westborough Lab for	sample(s):	05-08	Batch:	WG513755-3	
Methylene chloride	ND		ug] /l	2.0	
1,1-Dichloroethane	ND		ug	j/l	1.0	
Chloroform	ND		ug	j/l	1.0	
Carbon tetrachloride	ND		ug]/	1.0	
1,2-Dichloropropane	ND		ug	j/l	1.0	
Dibromochloromethane	ND		ug]/	1.0	
1,1,2-Trichloroethane	ND		ug]/	1.0	
Tetrachloroethene	ND		ug	j/l	1.0	
Chlorobenzene	ND		ug]/	1.0	
Trichlorofluoromethane	ND		ug]/	2.0	
1,2-Dichloroethane	ND		ug]/	1.0	
1,1,1-Trichloroethane	ND		ug	1 /l	1.0	
Bromodichloromethane	ND		ug]/	1.0	
trans-1,3-Dichloropropene	ND		ug]/	0.50	
cis-1,3-Dichloropropene	ND		ug	1 /l	0.50	
1,1-Dichloropropene	ND		ug	1/ I	2.0	
Bromoform	ND		ug	1/ I	2.0	
1,1,2,2-Tetrachloroethane	ND		ug	1/ I	1.0	
Benzene	ND		ug	1/ I	0.50	
Toluene	ND		ug	1/ I	1.0	
Ethy benzene	ND		ug	1/ I	1.0	
Chloromethane	ND		ug	1/ I	2.0	
Bromomethane	ND		ug	1/ I	2.0	
Vinyl chloride	ND		ug	1 /l	1.0	
Chloroethane	ND		ug	1 /l	2.0	
1,1-Dichloroethene	ND		ug	1 /l	1.0	
trans-1,2-Dichloroethene	ND		ug	1/ I	1.0	
Trichloroethene	ND		ug]/	1.0	
1,2-Dichlorobenzene	ND		ug	1 /l	1.0	
1,3-Dichlorobenzene	ND		ug	1/ I	1.0	
1,4-Dichlorobenzene	ND		ug	1 /l	1.0	

 Project Name:
 PARCEL 6A
 Lab Number:
 L1200565

 Project Number:
 5292.9.01
 Report Date:
 01/17/12

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260B Analytical Date: 01/13/12 08:27

Analyst: MM

Parameter	Result	Qualifier	Uni	its	RL	MDL
MCP Volatile Organics	- Westborough Lab for	sample(s):	05-08	Batch:	WG513755-3	
Methyl tert butyl ether	ND		ug	ı/I	2.0	
p/m-Xylene	ND		ug	ı/I	2.0	
o-Xylene	ND		ug	ı/I	1.0	
cis-1,2-Dichloroethene	ND		ug	ı/I	1.0	
Dibromomethane	ND		ug	ı/I	2.0	
1,2,3-Trichloropropane	ND		ug	ı/I	2.0	
Styrene	ND		ug	ı/I	1.0	
Dichlorodifluoromethane	ND		ug	ı/I	2.0	
Acetone	ND		ug	ı/I	5.0	
Carbon disulfide	ND		ug	ı/I	2.0	
2-Butanone	ND		ug	ı/I	5.0	
4-Methyl-2-pentanone	ND		ug	ı/I	5.0	
2-Hexanone	ND		ug	ı/I	5.0	
Bromochloromethane	ND		ug	ı/I	2.0	
Tetrahydrofuran	ND		ug	ı/I	5.0	
2,2-Dichloropropane	ND		ug	ı/I	2.0	
1,2-Dibromoethane	ND		ug	ı/I	2.0	
1,3-Dichloropropane	ND		ug	ı/I	2.0	
1,1,1,2-Tetrachloroethane	ND		ug	ı/I	1.0	
Bromobenzene	ND		ug	ı/I	2.0	
n-Buty benzene	ND		ug	ı/I	2.0	
sec-Buty benzene	ND		ug	ı/I	2.0	
tert-Butylbenzene	ND		ug	ı/I	2.0	
o-Chlorotoluene	ND		ug	ı/I	2.0	
p-Chlorotoluene	ND		ug	ı/I	2.0	
1,2-Dibromo-3-chloropropa	ane ND		ug	ı/I	2.0	
Hexachlorobutadiene	ND		ug	ı/I	0.60	
Isopropylbenzene	ND		ug	ı/I	2.0	
p-Isopropyltoluene	ND		ug	ı/I	2.0	
Naphthalene	ND		ug	ı/I	2.0	
n-Propy benzene	ND		ug	ı/I	2.0	

Project Name: Lab Number: PARCEL 6A L1200565 **Project Number:** 5292.9.01 01/17/12

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260B Analytical Date: 01/13/12 08:27

Analyst: MM

Parameter	Result	Qualifier	Uni	its	RL	MDL	
MCP Volatile Organics - Westboro	ugh Lab for	sample(s):	05-08	Batch:	WG513755-3		
1,2,3-Trichlorobenzene	ND		ug	ı/I	2.0		
1,2,4-Trichlorobenzene	ND		ug	ı/I	2.0		
1,3,5-Trimethylbenzene	ND		ug	ı/I	2.0		
1,2,4-Trimethylbenzene	ND		ug	ı/I	2.0		
Ethyl ether	ND		ug	ı/I	2.0		
Isopropyl Ether	ND		ug	ı/I	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug	ı/I	2.0		
Tertiary-Amyl Methyl Ether	ND		ug	ı/I	2.0		
1,4-Dioxane	ND		ug	ı/I	250		

		Acceptance	
%Recovery	Qualifier	Criteria	
89		70-130	
89		70-130	
97		70-130	
106		70-130	
	89 89 97	%Recovery Qualifier 89 89 97	89 70-130 89 70-130 97 70-130

Project Name: PARCEL 6A

Project Number: 5292.9.01

Lab Number: L1200565

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ICP Volatile Organics - Westborough Lab A	ssociated samp	le(s): 05-08	Batch: WG5	13755-1	WG513755-2			
Methylene chloride	98		106		70-130	8		20
1,1-Dichloroethane	96		99		70-130	3		20
Chloroform	96		104		70-130	8		20
Carbon tetrachloride	115		122		70-130	6		20
1,2-Dichloropropane	103		112		70-130	8		20
Dibromochloromethane	108		106		70-130	2		20
1,1,2-Trichloroethane	94		99		70-130	5		20
Tetrachloroethene	105		114		70-130	8		20
Chlorobenzene	95		100		70-130	5		20
Trichlorofluoromethane	117		125		70-130	7		20
1,2-Dichloroethane	102		105		70-130	3		20
1,1,1-Trichloroethane	107		113		70-130	5		20
Bromodichloromethane	100		109		70-130	9		20
trans-1,3-Dichloropropene	91		96		70-130	5		20
cis-1,3-Dichloropropene	98		104		70-130	6		20
1,1-Dichloropropene	99		108		70-130	9		20
Bromoform	96		100		70-130	4		20
1,1,2,2-Tetrachloroethane	83		88		70-130	6		20
Benzene	101		104		70-130	3		20
Toluene	95		96		70-130	1		20
Ethylbenzene	94		100		70-130	6		20

Project Name: PARCEL 6A

Project Number: 5292.9.01

Lab Number: L1200565

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab As	ssociated samp	ole(s): 05-08	Batch: WG5	13755-1	WG513755-2			
Chloromethane	72		76		70-130	5		20
Bromomethane	111		113		70-130	2		20
Vinyl chloride	80		88		70-130	10		20
Chloroethane	90		101		70-130	12		20
1,1-Dichloroethene	107		114		70-130	6		20
trans-1,2-Dichloroethene	101		111		70-130	9		20
Trichloroethene	105		110		70-130	5		20
1,2-Dichlorobenzene	97		103		70-130	6		20
1,3-Dichlorobenzene	97		104		70-130	7		20
1,4-Dichlorobenzene	97		110		70-130	13		20
Methyl tert butyl ether	100		99		70-130	1		20
p/m-Xylene	95		102		70-130	7		20
o-Xylene	97		100		70-130	3		20
cis-1,2-Dichloroethene	98		108		70-130	10		20
Dibromomethane	115		128		70-130	11		20
1,2,3-Trichloropropane	83		91		70-130	9		20
Styrene	105		105		70-130	0		20
Dichlorodifluoromethane	75		80		70-130	6		20
Acetone	101		100		70-130	1		20
Carbon disulfide	130		111		70-130	16		20
2-Butanone	99		77		70-130	25	Q	20

Project Name: PARCEL 6A

Project Number: 5292.9.01

Lab Number: L1200565

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
CP Volatile Organics - Westborough Lab A	Associated samp	le(s): 05-08	Batch: WG5	13755-1	WG513755-2			
4-Methyl-2-pentanone	114		87		70-130	27	Q	20
2-Hexanone	79		69	Q	70-130	14		20
Bromochloromethane	109		118		70-130	8		20
Tetrahydrofuran	85		84		70-130	1		20
2,2-Dichloropropane	107		114		70-130	6		20
1,2-Dibromoethane	104		112		70-130	7		20
1,3-Dichloropropane	91		96		70-130	5		20
1,1,1,2-Tetrachloroethane	104		110		70-130	6		20
Bromobenzene	94		108		70-130	14		20
n-Butylbenzene	89		100		70-130	12		20
sec-Butylbenzene	92		104		70-130	12		20
tert-Butylbenzene	91		99		70-130	8		20
o-Chlorotoluene	85		94		70-130	10		20
p-Chlorotoluene	87		95		70-130	9		20
1,2-Dibromo-3-chloropropane	87		94		70-130	8		20
Hexachlorobutadiene	116		128		70-130	10		20
Isopropylbenzene	101		108		70-130	7		20
p-Isopropyltoluene	97		104		70-130	7		20
Naphthalene	94		102		70-130	8		20
n-Propylbenzene	89		99		70-130	11		20
1,2,3-Trichlorobenzene	101		106		70-130	5		20

Project Name: PARCEL 6A

Project Number:

5292.9.01

Lab Number: L1200565

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 05-08	Batch: WG	513755-1	WG513755-2			
1,2,4-Trichlorobenzene	108		112		70-130	4		20
1,3,5-Trimethylbenzene	91		96		70-130	5		20
1,2,4-Trimethylbenzene	90		97		70-130	7		20
Ethyl ether	110		112		70-130	2		20
Isopropyl Ether	85		86		70-130	1		20
Ethyl-Tert-Butyl-Ether	98		97		70-130	1		20
Tertiary-Amyl Methyl Ether	109		104		70-130	5		20
1,4-Dioxane	107		115		70-130	7		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery Qual		%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	94		101		70-130	
Toluene-d8	91		97		70-130	
4-Bromofluorobenzene	90		94		70-130	
Dibromofluoromethane	108		120		70-130	

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent B Absent

Container Info	rmation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1200565-01A	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-01B	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-01C	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	-
L1200565-01D	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	-
L1200565-02A	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-02B	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-03A	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-03B	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-04A	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-04B	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-05A	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-05B	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-06A	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-06B	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-07A	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-07B	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-08A	Vial HCI preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-08B	Vial HCI preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

Data Qualifiers

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised January 3, 2012 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. Organic Parameters: 608, 8081, 8082, 8330, 8151A, 624, 8260, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014A, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page Algorithms of Algorithms and Al

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 6020A, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 7196A, 3060A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B... Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Page Dinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (Organic Parameters: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 1312, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. Organic Parameters: EPA 3510C, 3005A, 3630C, 5030B, 625, 624, 608, 8081A, 8081B, 8082, 802A, 8151A, 8260B, 8270C, 8270D, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 3060A, 6010B, 6010C, 7196A, 7471A, 9010B, 9012A, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3546, 3580A, 3630C, 5035, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260B, 8270C, 8270D, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID: 460195. *NELAP Accredited.*Non-Potable Water (Inorganic Parameters: EPA 3005A,3015,1312,6010B,6010C,SM4500S-D, SM4500-CN-CE, Lachat 10-204-00-1-X. Organic Parameters: EPA 8260B)

Solid & Hazardous Waste (Inorganic Parameters: EPA 3050B, 1311, 1312, 6010B, 6010C, 9030B, 9010B, 9012A, 9014. Organic Parameters: EPA 5035, 5030B, 8260B.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

ΔΩ PHA	F CUSTODY	PAGE OF	- Date Rec'd in Lab: ししいした ALPHA	Job#: 21200565
WESTBORO, MA MANSFIELD, MA TEL: 508-898-9220 TEL: 508-822-9300	Project Information Project Name: Parce) (- 1		nformation s Client info PO #:
FAX: 508-898-9193 FAX: 508-822-3288 Client Information	Project Location: Taun	ton MA	□ ADEx □ Add'l Deliverables	
Client: McPhail Associates		.01	Regulatory Requirements/Report Limits State /Fed Program Criteria Gw	2/3
Cambridge, MA	Project Manager: Angular ALPHA Quote #:	talconeur	MA MCP PRESUMPTIVE CERTAINTY CT REASON	ABLE CONFIDENCE PROTO
Phone: (017 - 8(08 - 1420)	Turn-Around Time		□ Yes □ No	G? (If yes see note in Comments)
Email: These samples have been previously analyzed by Alpha Other Project Specific Requirements/Comm If MS is required, indicate in Sample Specific Comments (Note: All CAM methods for inorganic analyses require M	Date Due: 1171 1182012 nents/Detection Limits: which samples and what tests MS to		AMALYSIS	SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation For a control of the control of t
ALPHA Lab ID (Lab Use Only) Sample ID	Collection Date Time	Sample Sampler's Matrix Initials		Cab to do (Please specify below) Sample Specific Comments
0965 B-101 -01 MAI-101 (0W) [n 12 83 °	3 Hzo Ass	x	2-Amber Liter 2
-62 MAT - 102 (ou	3) 906	H20 ADS	x	1 2
-03 MAT - 103 (01		H20 RPJ	X	7
(wo) I-JAM HO-	800	#20 ADS	×	N 2
-05 MAI-106 (OU	0) 1000	5 H20 DP>	<u>x</u>	2-vials Z
-06 MAT-107 (00 -07 MAT-109 (00	1866	3	X	" 2
-07 MAI - 109 (ou -08 MAI - 111 (ou	11130	120 APS	X	. " 2
PLEASE ANSWER QUESTIONS ABOVE!	· · · · · ·	Container Type	AV	Please print clearly, legibly and com-
IS YOUR PROJECT MA MCP or CT RCP?	23 Religiquished By:	Preservative Date/Time	Received By: Date/Time	pletely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved.
FORM NO: 01-01 (rev. 18-Jan-2010)	Mugh	1/11/10 1735		Alpha's Terms and Conditions. See reverse side.

7A Volatile CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1200565

Instrument ID: Jack.i Calibration Date: 13-JAN-2012 Time: 06:50

Lab File ID: 0113A03 Init. Calib. Date(s): 10-NOV-2 10-NOV-2

Compound	RRF	RRF	MIN	%D	MAX %D	
		======			1	ŀ
dichlorodifluoromethane			1		20	F
chloromethane	.95786	.69159			20	
chloromethanevinyl chloride	.74427				20	-
bromomethane	.39483	.43865			$\frac{1}{20}$	
chloroethane	.39305	.35392			20	
trichlorofluoromethane	.82135	.96323			20	
ethyl ether	.27366				$\frac{1}{20}$	
1,1,-dichloroethene	.52913	.56455			20	
carbon disulfide	1.3417	1.7381	.1		20	F
freon-113	.49861	.54543	.1	-9	20	
iodomethane	.46115	.93248	.05	-102	20	
	.06123	.03081		50	20	F
acrolien	.59325		.1	2	20	
lacetone	1.17578				20	
trans-1,2-dichloroethene		.59823			20	
methyl acetate	.47873				20	
methyl tert butyl ether	1.4467				20	
Diisopropyl Ether	2.2812			15	20	
tert butyl alcohol	.04495	.04338	.05	4	20	F
1,1-dichioroethane	I . I 853			4	20	
Halothane		.55195			20	F
Ethyl-Tert-Butyl-Ether	1.8167			2	20	
vinyl acetate	1.0104			6	20	
lacrylonitrile	1.19335	.16312		16	20	
cis-1,2-dichloroethene	.65975	.64661		2	20	
2,2-dichloropropane	.8794	.9453	.05		20	
bromochloromethane	30073	.328	.05		20	
chloroform_carbontetrachloride	1.1719	1.1193		4	20	
carbontetrachloride	. 75039	.86341	.1	-15	20	
etnyl acetate	1.58943	1.48695		17	20	
tetrahydrofuran	.19351	.16475		15	20	
1,1,1-trichloroethane	93377	.9997	.1	-7	20	
1,1-dichloropropene	.86955	.8597	.05		20	
2-butanone	.27149		.1		20	
benzene		2.5217	.5	-1	20	
Tertiary-Amyl Methyl Ether	1.4357				20	
1,2-dichloroethane	. / / 0 6 4	.78864		-2	20	
trichloroethene	.67819	.71358	.2	-5	20	
l	l ———	l ———	l ———	l	l ———	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1200565

Instrument ID: Jack.i Calibration Date: 13-JAN-2012 Time: 06:50

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1200565

Instrument ID: Jack.i Calibration Date: 13-JAN-2012 Time: 06:50

Lab File ID: 0113A03 Init. Calib. Date(s): 10-NOV-2 10-NOV-2

FORM VII MCP-8260-10

Division of Thielsch Engineering, Inc.

March 11, 1999

Christine LeBlanc East Coast Engineering 1516A Front Street Marion, MA 02738

Dear Christine LeBlanc:

We appreciate this opportunity to provide you with our analytical services. ESS Laboratory is committed to providing the highest quality service. Our dedication to each client includes responsiveness to emergencies, dependable, well-written reports, and client services, which include the availability of all analysts to answer your inquiries.

Enclosed is your data report. The invoice for this project is being forwarded to your Accounts Payable Department unless other arrangements have previously been made with the laboratory. Samples will be disposed of thirty days after the final report has been mailed. If you have any questions or concerns, please feel free to call our Customer Service Department. We value our continued relationship and look forward to hearing from you in the future.

Sincerely,

ESS LABORATORY

Laurel Stoddard
Laboratory Director

Enclosure

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

PROJECT NARRATIVE

CLIENT: East Coast Engineering

CLIENT PROJECT ID: Parcel 6A Taunton

ESS PROJECT ID: 99030007

Sample Receipt

Four solid samples, which were originally received on February 11, 1999 as ESS Laboratory project 99020120, were relogged on March 1, 1999 as ESS Laboratory project 99030007 for the analysis specified on the enclosed Chain of Custody Record.

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan.

No unusual observations noted.

This signed Certificate of Analysis is our approved release of your analytical results. Beginning with this Project Narrative, the entire report has been paginated. The Chain of Custody is the final report page. This report should not be copied except in full without the approval of the laboratory.

End of project narrative.

Laurel Steddard/Eric Baanante

Laboratory Director/Operations Manager

3/15/99 ate

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

TCLP Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE-MW1 S1 0-2'

Date Sampled: 2/11/99

TCLP Extraction Date: 3/8/99

ESS Project ID: 99030007

ESS Sample ID: 99030007-01

Units: mg/L Dilution: 1

	- u.u. 0, 0, 0, 0			Percent Solid: N/A		
Test Name Result		MRL	TCLP Limit	mit Date Analyzed		Method
Lead	ND .	0.1	5	3/9/99	TA	1311/6010

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

TCLP Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW4 S2 5-7'

Date Sampled: 2/11/99

TCLP Extraction Date: 3/7/99

ESS Project ID: 99030007 ESS Sample ID: 99030007-04

Units: mg/L Dilution: 1

Percent Solid: N/A

Test Name	Result	3 653 7		Percent Solid: N/A Date Analyzed	Analyst	Method
1 Oct 1 valle		MRL	TCLP Limit			
Arsenic	ND	0.1	4			
Cadmium	ND	0.01		3/8/99 3/8/99	SAM	1311/6010
Chromium	ND	0.05	5	3/8/99 3/8/99	SAM SAM	1311/6010
Lead	22.6	0.1	5	3/8/99	SAM	1311/6010 1311/6010
Mercury	ND	0.0005	0.2	3/8/99	AR	1311/7470

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Division of Thielsch Engineering, Inc.

March 10, 1999

Christine LaBlanc East Coast Engineering 1516A Front Street Marion, MA 02738

Dear Christine LeBlanc:

We appreciate this opportunity to provide you with our analytical services. ESS Laboratory is committed to providing the highest quality service. Our dedication to each client includes responsiveness to emergencies, dependable, well-written reports, and client services, which include the availability of all analysts to answer your inquiries.

Enclosed is your data report. The invoice for this project is being forwarded to your Accounts Payable Department unless other arrangements have previously been made with the laboratory. Samples will be disposed of thirty days after the final report has been mailed. If you have any questions or concerns, please feel free to call our Customer Service Department. We value our continued relationship and look forward to hearing from you in the future.

Sincerely,

ESS LABORATORY

Laurel Stoddard Laboratory Director

Enclosure

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

PROJECT NARRATIVE

CLIENT: East Coast Engineering

CLIENT PROJECT ID: Parcel 6A Taunton

ESS PROJECT ID: 99030024

Sample Receipt

Ten liquid samples and one Trip Blank were received on March 2, 1999 for the analysis specified on the enclosed Chain of Custody Record.

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan.

Semivolatile Organics Analysis

Surrogate recoveries were outside of the recommended ranges for samples 99030024-02 and -07.

No other observations noted.

This signed Certificate of Analysis is our approved release of your analytical results. Beginning with this Project Narrative, the entire report has been paginated. The Chain of Custody is the final report page. This report should not be copied except in full without the approval of the laboratory.

End of project narrative.

Laurel Stoddard/Eric Baanante

Laboratory Director/Operations Manager

Date

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW3

Date Sampled: 3/1/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-01

Units: mg/L
Dilution: 1

Percent Solid: N/A

Fercent Solid: N/A					
Result	MRL	Date Analyzed	Analyst	Method	
ND	0.1	3/5/99	TA	6010	
ND	0.01	3/5/99		6010	
ND	0.05	3/5/99		6010	
ND	0.1	•		6010	
ND	0.0005	3/4/99	AR	7470	
	ND ND ND	ND 0.1 ND 0.01 ND 0.05 ND 0.1	Result MRL Date Analyzed ND 0.1 3/5/99 ND 0.01 3/5/99 ND 0.05 3/5/99 ND 0.1 3/5/99	Result MRL Date Analyzed Analyst ND 0.1 3/5/99 TA ND 0.01 3/5/99 TA ND 0.05 3/5/99 TA ND 0.1 3/5/99 TA ND 0.2005 20005 20005	

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By: LAS

Date: 3/11/99

Division of Thielsch Engineering, Inc.

CERTIFI	CATE	OF A	NAI	.YSX.
	~ L L L	U 1 11	<i>1111</i>	

81	100M	Total	Petroleum	Hydrocarbon
----	------	-------	-----------	-------------

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW3

Date Sampled: 3/1/99 Extraction Date: 3/2/99 Date Analyzed: 3/4/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-01

Units: mg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbons	ND	0.5
		-

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	74	39-137

Approved By:____

Date: 3 11 193

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW3 Date Sampled: 3/1/99

Date Analyzed: 3/4/99 Analyst: JR

ESS Project ID: 99030024 ESS Sample ID: 99030024-01

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 5 ml

Compound Name	Sample Amount: 5 ml		
	Result	MRI	
1.1.1.2-Tetrachloroethane	ND.	1111	
1,1,1-Trichloroethane	ND	1	
1.1,2,2-Tetrachloroethane	ND	1	
1,1,2-Trichloroethane	ND		
1,1-Dichloroethane	ND	1	
1.1-Dichloroethene	ND	. 1	
1,1-Dichloropropene	ND	. 2	
1.2 Dichlorobenzene	ND	<u> </u>	
1,2,3-Trichlorobenzene	ND		
1,2,3-Trichloropropane	ND	L 1	
1,2,4-Trichlorobenzene	ND	1	
1,2,4-Trimethylbenzene	ND	i 1	
1.2-Dibromo-3-Chloropropane	ND	1	
1,2-Dibromoethane	ND	2	
1.2-Dichloroethane	ND .	1	
1,2-Dichloropropane	ND	l .	
1.3 Dichlorobenzene	ND	i	
1.3,5-Trimethylbenzene	ND	i.	
1.3-Dichloropropane	ND	<u>l</u>	
1.4 Dichlorobenzene	ND	ļ.	
I-Chlorohexane	ND	. 1	
2.2-Dichloropropane	ND	1	
2-Butanone	ND	1	
2-Chlorotoluene	ND	20	
2-Hexanone	ND	1	
4-Chlorotoluene	ND	10	
l-Isopropyltoluene	ND	1	
4-Methyl-2-Pentanone	ND	1	
Acetone	ND	10	
Benzene	ND	20	
Bromobenzene		1	
Bromochloromethane	ND	1	
Bromodichloromethane	ND	1	
Bromoform	ND	į	
Bromomethane	;VD	2	
arbon Disulfide	ND ND	2	

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: WES MW3

ESS Project ID: 99030024 ESS Sample ID: 99030024-01

Carbon Tetrachloride ND MRL Chlorobenzene ND 1 Chloroethane ND 1 Chloroform ND 2 Chloromethane ND 1 Chloromethane ND 2 cis-1,2 Dichloropropene ND 1 cis-1,3-Dichloropropene ND 1 Dibromochloromethane ND 1 Dibromomethane ND 1 Mexical State	Compound Name	Result 256 Sampi	e 1D: 99030024-01
Chlorobenzene ND 1 Chloroethane ND 1 Chloroform ND 2 Chloromethane ND 2 cis-1,2 Dichloropropene ND 2 cis-1,3-Dichloropropene ND 0.5 Dibromochloromethane ND 0.5 Dibromomethane ND 1 Dichlorodifluoromethane ND 1 Dibromochloromethane ND 1 Ethylbenzene ND 0.6 Methylbenzene ND 1 Napthalene ND 1 ND 1 1 Napthalene ND 1 Sec-Butylbenzene ND 1 Styrene ND 1 Tetra			MRL
Chloroethane ND 1 Chloroform ND 2 Chloromethane ND 1 cis-1,2 Dichloropropene ND 2 cis-1,3-Dichloropropene ND 1 Dibromochloromethane ND 0.5 Dibromomethane ND 1 Dibromomethane ND 1 Ethylbenzene ND 1 Ethylbenzene ND 1 Hexachlorobutadiene ND 1 Isopropylbenzene ND 1 Methyl tert-Butyl Ether ND 1 Methylene Chloride ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 n-Propylbenzene ND 1 Nphalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 trans-1,2-Di			
Chloroform ND 2 Chloromethane ND 1 cis-1,2 Dichloroethene ND 2 cis-1,3-Dichloropropene ND 1 Dibromodifloromethane ND 0.5 Dibromomethane ND 1 Dichlorodifluoromethane ND 1 Ethylbenzene ND 1 Hexachlorobutadiene ND 2 Hexachlorobutadiene ND 1 Isopropylbenzene ND 0.6 Methyl tert-Butyl Ether ND 1 Methyl tert-Butyl Ether ND 1 Methylene Chloride ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 n-Propylbenzene ND 1 Napthalene ND 1 sec-Butylbenzene ND 1 ND 1 1 Styrene ND 1 tert-Butylbenzene ND 1 <			1
Chloromethane			2
cis-1,2 Dichloroethene ND 2 cis-1,3-Dichloropropene ND 1 Dibromochloromethane ND 0.5 Dibromomethane ND 1 Dichlorodifluoromethane ND 1 Ethylbenzene ND 1 Hexachlorobutadiene ND 1 Isopropylbenzene ND 0.6 Methyl tert-Butyl Ether ND 1 Methylene Chloride ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 Npothalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Tetrachloroethene ND 1 Trans-1,2-Dichloropropene ND 1 Trichloroethene ND 0.5			1
cis-1,3-Dichloropropene ND 1 Dibromochloromethane ND 0.5 Dibromomethane ND 1 Dichlorodifluoromethane ND 1 Ethylbenzene ND 1 Hexachlorobutadiene ND 1 Isopropylbenzene ND 1 Methyl tert-Butyl Ether ND 1 Methylene Chloride ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 n-Propylbenzene ND 1 Napthalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Tetrachloroethene ND 1 Trans-1,2-Dichloropropene ND 1 Trichloroethene ND 1 Trichlorodiuoromethane ND 1 Vilyl Chloride ND 2			2
Dibromochloromethane ND 0.5 Dibromomethane ND 1 Dichlorodifluoromethane ND 1 Ethylbenzene ND 2 Hexachlorobutadiene ND 1 Isopropylbenzene ND 0.6 Methyl tert-Butyl Ether ND 1 Methylene Chloride ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 n-Propylbenzene ND 1 Napthalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Tetrachloroethene ND 1 Toluene ND 1 trans-1,2-Dichloroethene ND 1 Trichloroethene ND 1 Trichloroethene ND 0.5 Trichloroiduoromethane ND 2			1
Dibromomethane			0.5
Dichlorodifluoromethane ND 1 Ethylbenzene ND 2 Hexachlorobutadiene ND 1 Isopropylbenzene ND 0.6 Methyl tert-Butyl Ether ND 1 Methylene Chloride ND 1 n-Butylbenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 Napthalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Tetrachloroethene ND 1 Toluene ND 1 trans-1,2-Dichloroethene ND 1 trans-1,3-Dichloropropene ND 1 Trichloroethene ND 0.5 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Yylane 1 2			1
Ethylbenzene ND 1 Hexachlorobutadiene ND 1 Isopropylbenzene ND 0.6 Methyl tert-Butyl Ether ND 1 Methylene Chloride ND 1 n-Butylbenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 Napthalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Tetrachloroethene ND 1 Toluene ND 1 trans-1,2-Dichloroethene ND 1 Trichloroethene ND 1 Trichloroethene ND 0.5 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Valence (Text) 2	·		1
Hexachlorobutadiene			2
Isopropylbenzene			. 1
Methyl tert-Butyl Ether ND ND ND ND ND ND ND N			0.6
Methylene Chloride ND 1 n-Butylbenzene ND 1 n-Propylbenzene ND 1 Napthalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Tetrahydrofuran ND 1 Toluene ND 1 trans-1,2-Dichloroethene ND 1 trans-1,3-Dichloropropene ND 1 Trichloroethene ND 0.5 Trichlorofluoromethane ND 0.5 Vinyl Chloride ND 2 Yulenes (Tetal) ND 2			1
n-Butylbenzene ND 1 n-Propylbenzene ND 1 Napthalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Toluene ND 1 trans-1,2-Dichloroethene ND 1 trans-1,3-Dichloropropene ND 1 Trichloroethene ND 1 Trichloroethene ND 1 Trichloroethene ND 1 Trichlorofluoromethane ND 1 Trichlorofluoromethane ND 1 Trichlorofluoromethane ND 1 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Vylenes (Testal)	Methylene Chleride		
n-Propylbenzene ND 1 Napthalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Toluene ND 1 trans-1,2-Dichloroethene ND 1 trans-1,3-Dichloropropene ND 1 Trichloroethene ND 1 Trichloroethene ND 1 Trichloroethene ND 1 Trichloroethene ND 1 Trichlorofluoromethane ND 1 Trichlorofluoromethane ND 1 Trichloride ND 1			1
Napthalene ND 1 sec-Butylbenzene ND 1 Styrene ND 1 tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Tetrahydrofuran ND 1 Toluene ND 1 trans-1,2-Dichloroethene ND 1 trans-1,3-Dichloropropene ND 1 Trichloroethene ND 1 Trichloroethene ND 1 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Yylenes (Tetal)			1
Styrene			1
Styrene		ND	1
tert-Butylbenzene ND 1 Tetrachloroethene ND 1 Tetrahydrofuran ND 1 Toluene ND 1 trans-1,2-Dichloroethene ND 1 trans-1,3-Dichloropropene ND 1 Trichloroethene ND 0.5 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Yylenes (Total) 2		ND ·	1
Tetrachloroethene		ND	1
Tetrahydrofuran	Tetanal 1	ND	1
Toluene ND 1 trans-1,2-Dichloroethene ND 1 trans-1,3-Dichloropropene ND 1 Trichloroethene ND 0.5 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Yylenes (Total)		ND .	1 T
trans-1,2-Dichloroethene ND 1 trans-1,3-Dichloropropene ND 1 Trichloroethene ND 0.5 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Yylenes (Total)		ND	1
trans-1,3-Dichloropropene ND 1 Trichloroethene ND 0.5 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Yylenes (Total)		ND	1.
Trichloroethene ND 0.5 Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Yylenes (Total)	trans-1,2-Dichloroethene	ND	L 1
Trichlorofluoromethane ND 1 Vinyl Chloride ND 2 Yylenes (Total) 2	trans-1,3-Dichloropropene	ND	1
Vinyl Chloride 2 Yylenes (Total) 2		ND	0.5
Vinyl Chloride Yylenes (Total)	i richlorofluoromethane .		1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Vinyl Chloride		
	Xylenes (Total)		2

	140
MRL = Method Reporting Limit.	ND = Not Detected above MRL.
Approved By: LAS	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW3 Date Sampled: 3/1/99

Date Extracted: 3/2/99 Date Analyzed: 3/4/99

Analyst: AC

ESS Project ID: 99030024 ESS Sample ID: 99030024-01

Units: µg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

Test Name	Result	
2-Methylnaphthalene	ND	MRI
Acenaphthene	ND	0.2
Acenaphthylene	ND	. 0.2
Anthracene	ND	0.2
Benzo(a)anthracene	A contract of the contract of	0.2
Benzo(a)pyrene	ND	0.2
Benzo(b)fluoranthene	ND	0.2
Benzo(g,h,i)perylene	ND	0.2
Benzo(k)fluoranthene	ND	0.2
Chrysene	ND	0.1
Dibenzo(a,h)Anthracene	ND	0.2
Fluoranthene	ND	0.2
Fluorene	ND	0.2
	ND	0.2
Indeno(1,2,3-cd)Pyrene	ND	
Naphthalene	ND	0.2
Phenanthrene	ND	0.2
Pyrene	ND	0.2

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Date: 3 11 93

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW4

Date Sampled: 3/1/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-03

Units: mg/L Dilution: 1

Percent Solid: N/A

Test Name			Percent Solid: N/	A	
Test ivame	Result	MRL	Date Analyzed	Analyst	Method
Arsenic Cadmium Chromium Lead Mercury	ND ND ND ND ND	0.1 0.01 0.05 0.1	3/5/99 3/5/99 3/5/99 3/5/99	SAM SAM SAM SAM	6010 6010 6010 6010
	ND	0.0005	3/4/99	AR	7470

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSI	CERTI.	FICA	TE C)F ,	ANA	LYSL
------------------------	--------	------	------	------	-----	------

8100M	Total	Petroleum	Hydrocarbon
-------	-------	-----------	-------------

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW4

Date Sampled: 3/1/99 Extraction Date: 3/2/99 Date Analyzed: 3/4/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-03

Units: mg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbons	13.7	0.5

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	70	39-137

Approved By: i25

Date: = 11159

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW4

Date Sampled: 3/1/99 Date Analyzed: 3/5/99

Analyst: MD

ESS Project ID: 99030024 ESS Sample ID: 99030024-03

Units: μg/L Dilution: 1

Percent Solid: N/A Sample Amount: 5 ml

Analyst: MD	Sample Amount: 5 ml		
Compound Name	Result	MRL	
1,1,1,2-Tetrachloroethane	ND	IVIRL.	
1,1,1-Trichloroethane	ND	1	
1,1,2,2-Tetrachloroethane	ND	1	
1,1,2-Trichloroethane	ND	l.	
1,1-Dichloroethane	ND	1	
1,1-Dichloroethene	ND	1	
1,1-Dichloropropene	ND	1	
1.2 Dichlorobenzene	ND	. 2	
1.2.3-Trichlorobenzene	ND	1	
1,2,3-Trichloropropane	ND	1	
1.2.4-Trichlorobenzene	ND	1	
1.2,4-Trimethylbenzene	14	1	
1,2-Dibromo-3-Chloropropane	ND	$\frac{1}{2}$	
1.2-Dibromoethane	ND	2	
1.2-Dichloroethane	ND	1	
1.2-Dichloropropane	ND	1	
1.3 Dichlorobenzene	ND	1	
1.3.5-Trimethylbenzene	2	1	
1,3-Dichloropropane	ND	1	
1.4 Dichlorobenzene	ND	1	
l-Chlorohexane	ND	1	
2.2-Dichloropropane	ND	1	
2-Butanone	ND	1	
2-Chlorotoluene	ND	20	
2-Hexanone	ND	1 ·	
4-Chlorotoluene	ND	10	
4-Isopropyltoluene	3	1	
4-Methyl-2-Pentanone	ND	1	
Acetone		10	
Benzene	ND	20	
Bromobenzene	ND	I	
Bromochloromethane	ND	1	
Bromodichloromethane	ND	Į	
Bromoform	ND	1	
Bromomethane	ND	2	
Carbon Disulfide	ND		
The state of the s	ND	- 1	

Fax: 401-461-4486

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW4

ESS Project ID: 99030024 ESS Sample ID: 99030024-03

Compound Name	Result	10. 99030024-03
Carbon Tetrachloride	ND	MRL
Chlorobenzene	ND	1
Chloroethane	ND	1
Chloroform	ND	2.
Chloromethane	ND	<u>I</u>
cis-1,2 Dichloroethene	ND	2
cis-1,3-Dichloropropene	ND	1
Dibromochloromethane	ND	0.5
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	1
Ethylbenzene	ND	2
Hexachlorobutadiene	ND	.1
Isopropylbenzene	2	0.6
Methyl tert-Butyl Ether	ND	. 1
Methylene Chloride	ND	1
n-Butylbenzene	ND	i
n-Propylbenzene	ND	
Napthalene	18	1
sec-Butylbenzene	3	í 1
Styrene	ND	1
tert-Butylbenzene	ND ·	. I
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
Toluene	ND	Д Т
trans-1,2-Dichloroethene	ND	1
trans-1,3-Dichloropropene	ND	0.5
Trichloroethene	ND	7
Trichlorofluoromethane	· ND	1
Vinyl Chloride	ND	2
Xylenes (Total)	ND	2

MRL = Method Reporting Limit.	ND = Not Detected above MRI
Approved By:	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering

Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW4

Date Sampled: 3/1/99 Date Extracted: 3/2/99 Date Analyzed: 3/4/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-03

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 1000 ml

Analyst: AC		
Test Name	Result	MRL
2-Methylnaphthalene	1.6	0.2
Acenaphthene	0.9	0.2
Acenaphthylene	0.3	0.2
Anthracene	0.4	0.2
Benzo(a)anthracene	0.8	0.2
Benzo(a)pyrene	0.6	0.2
Benzo(b)fluoranthene	1.2	0.2
Benzo(g,h,i)perylene	0.6	0.2
Benzo(k)fluoranthene	0.5	0.1
Chrysene	0.9	0.2
Dibenzo(a,h)Anthracene	0.2	0.2
Fluoranthene	1.7	0.2
Fluorene	1.3	0.2
Indeno(1,2,3-cd)Pyrene	0.6	0.2
Naphthalene	0.7	0.2
Phenanthrene	2.9	0.2
Pyrene	1.6	0.2

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Date:

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW1

Date Sampled: 3/1/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-08

Units: mg/L
Dilution: 1

Percent Solid: N/A

			refeem Soud. IVA			
Test Name	Result	MRL	Date Analyzed	Analyst	Method	
Arsenic	ND.	0.1	3/5/99	SAM	6010	
Cadmium	ND	0.01	3/5/99	SAM	6010	
Chromium	ND	0.05	3/5/99	SAM	6010	
Lead	ND	0.1	3/5/99	SAM	6010	
Mercury	ND	0.0005	3/4/99	AR	7470	
•						

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Date: 3 11 9

Division of Thielsch Engineering, Inc.

CERTIFI	CATE	OFA	NA.	TYSIS

8100M Total Petroleum Hydrocarbon

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW1

Date Sampled: 3/1/99 Extraction Date: 3/2/99 Date Analyzed: 3/6/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-08

Units: mg/L Dilution: 1

Percent Solid: N/A Sample Amount: 950 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbons	ND	0.53

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	96	39-137

Approved By:

Date: = 11199

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW1 Date Sampled: 3/1/99

Date Analyzed: 3/5/99

Analyst: JR

ESS Project ID: 99030024 ESS Sample ID: 99030024-08

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 5 ml

Allatyst. J.C	Sample Amount: 5 ml		
Compound Name	Result		MRL
1,1,1,2-Tetrachloroethane	ND		
1,1,1-Trichloroethane	ND		1
1,1,2,2-Tetrachloroethane	ND	•	1
1,1,2-Trichloroethane	ND		. 1
1,1-Dichloroethane	ND		1
1,1-Dichloroethene	ND		1
1,1-Dichloropropene	ND		
1,2 Dichlorobenzene	ND		2
1,2,3-Trichlorobenzene	ND		1
1,2,3-Trichloropropane	ND		1
1,2,4-Trichlorobenzene	ND		1
1,2,4-Trimethylbenzene	ND		1
1,2-Dibromo-3-Chloropropane	. ND		2
1,2-Dibromoethane	ND		1
1,2-Dichloroethane	ND		1
1,2-Dichloropropane	ND		1
1,3 Dichlorobenzene	ND		1
1.3,5-Trimethylbenzene	ND		1
1.3-Dichloropropane	ND		1
1,4 Dichlorobenzene	ND		1
1-Chlorohexane	ND		1
2.2-Dichloropropane	ND		1
2-Butanone	ND		20
2-Chlorotoluene .	ND		20 I
2-Hexanone	ND		10
4-Chlorotoluene	ND		
4-Isopropyltoluene	2		1
4-Methyl-2-Pentanone	ND		1
Acetone	ND		10
Benzene	ND		20
Bromobenzene	ND		Ĺ
Bromochloromethane	ND		1
Bromodichloromethane	ND		!
Bromoform	ND		1
Bromomethane	ND		2
Carbon Disulfide	ND		2
			:

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW1

ESS Project ID: 99030024 ESS Sample ID: 99030024-08

Compound Name	Result	MRL
Carbon Tetrachloride	ND	
Chlorobenzene	ND	. 1
Chloroethane	ND	2
Chloroform	ND	1
Chloromethane	ND	2
cis-1,2 Dichloroethene	ND	<u>.</u>
cis-1,3-Dichloropropene	ND	0.5
Dibromochloromethane	ND	1
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	2
Ethylbenzene	ND	_ 1
Hexachlorobutadiene	ND	0.6
Isopropylbenzene	ND	1
Methyl tert-Butyl Ether	ND	Ī
Methylene Chloride	ND	ī
n-Butylbenzene	ND	1
n-Propylbenzene	ND	
Napthalene	ND	1
sec-Butylbenzene	ND	1
Styrene	ND	1
tert-Butylbenzene	ND ·	ī
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
Toluene	ND	1
trans-1,2-Dichloroethene	. ND	1
trans-1,3-Dichloropropene	ND	0.5
Trichloroethene	ND	1
Trichlorofluoromethane	ND	2
Vinyl Chloride	ND	2
Xylenes (Total)	ND	1

MRL = Method Reporting Limit.		ND = Not Detected above MRL
Approved By: (25	Date:	3 11 9

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW1
Date Sampled: 3/1/99

Date Extracted: 2/3/99
Date Analyzed: 3/11/99

Analyst: RS

ESS Project ID: 99030024 ESS Sample ID: 99030024-08

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 950 ml

Test Name	Result	MRI
2-Methylnaphthalene	ND	
Acenaphthene	0.8	0.2
Acenaphthylene	ND	0.2
Anthracene	ND	0.2
Benzo(a)anthracene	ND	0.2
Benzo(a)pyrene	ND	0.2
Benzo(b)fluoranthene	0.2	0.2
Benzo(g,h,i)perylene	0.2	0.2
Benzo(k)fluoranthene	ND	0.2
Chrysene	ND ND	0.1
Dibenzo(a,h)Anthracene		0.2
Fluoranthene	ND .	0.2
Fluorene	ND	0.2
Indeno(1,2,3-cd)Pyrene	0.5	0.2
Naphthalene	0.2	0.2
Phenanthrene	0.5	0.2
Pyrene	0.2	0.2
- /	ND	0.2

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved I	Зу:	(B)
------------	-----	-----

Date: 3 12 89

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering

Client Project ID: Parcel 6A Taunton Client Sample ID: WES MW4

Date Sampled: 3/1/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-09

Units: mg/L Dilution: 1

Percent Solid: N/A

79 :		Percent Solid: N/	A	
Result	MRL	Date Analyzed	Analyst	Method
ND	0.1	3/5/99	SAM	(010
ND	0.01	3/5/99		6010 6010
	0.05	3/5/99	SAM	6010
ND ND			SAM	6010 7470
	ND ND ND	ND 0.1 ND 0.01 ND 0.05 ND 0.1	Result MRL Date Analyzed ND 0.1 3/5/99 ND 0.01 3/5/99 ND 0.05 3/5/99 ND 0.1 3/5/99	Result MRL Date Analyzed Analyst ND 0.1 3/5/99 SAM ND 0.01 3/5/99 SAM ND 0.05 3/5/99 SAM ND 0.1 3/5/99 SAM ND 0.1 3/5/99 SAM

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Date:

Division of Thielsch Engineering, Inc.

CERTIFI	CATE	OFA	NA	LYSIS

8100M Total Petroleum Hydrocarbon

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW4 Date Sampled: 3/1/99

Extraction Date: 3/2/99 Date Analyzed: 3/6/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-09

Units: mg/L Dilution: 1

Percent Solid: N/A Sample Amount: 950 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbons	ND	0.53

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits		
Ortho-terphenyl (OTP)	94	39-137		

Approved By:

Date: = 11197

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW4 Date Sampled: 3/1/99 Date Analyzed: 3/5/99

Analyst: JR

ESS Project ID: 99030024 ESS Sample ID: 99030024-09

Units: µg/L Dilution: 1 Percent Solid: N/A Sample Amount: 5 ml

Common d Nome			
Compound Name	Result		MR
1,1,1,2-Tetrachloroethane	ND		1111
1,1,1-Trichloroethane	ND	•	
1,1,2,2-Tetrachloroethane	ND		
1,1,2-Trichloroethane	ND		
1,1-Dichloroethane	ND		
1,1-Dichloroethene	ND		
1,1-Dichloropropene	ND		
1,2 Dichlorobenzene	ND		
1,2,3-Trichlorobenzene	ND		
1,2,3-Trichloropropane	ND	. •	
1,2,4-Trichlorobenzene	ND		,
1,2,4-Trimethylbenzene	ND		
1,2-Dibromo-3-Chloropropane	ND		
1,2-Dibromoethane	ND.	- ·	
1,2-Dichloroethane	ND		
l,2-Dichloropropane	ND	, -	
1,3 Dichlorobenzene	ND		
l,3,5-Trimethylbenzene	ND		
1,3-Dichloropropane	ND		
1.4 Dichlorobenzene	ND		
l-Chlorohexane	ND		
2.2-Dichloropropane	ND		
2-Butanone	ND		2
2-Chlorotoluene	ND		
2-Hexanone	ND		1:
4-Chlorotoluene	ND		
4-lsopropyltoluene	ND		
4-Methyl-2-Pentanone	ND		1.
Acetone	ND		10
Benzene	ND		20
Bromobenzene	ND ND		
3romochloromethane	ND		
Bromodichloromethane	ND		
Fromotorm			
Bromomethane	ND		:
arbon Disulfide	ND ND		:

39

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: WES MW4

ESS Project ID: 99030024 ESS Sample ID: 99030024-09

Compound Name	Result	MRL
Carbon Tetrachloride	ND	1
Chlorobenzene	ND	1 -
Chloroethane	· ND	2.
Chloroform	ND	1
Chloromethane	ND:	2
cis-1,2 Dichloroethene	· ND	1
cis-1,3-Dichloropropene	ND ·	0.5
Dibromochloromethane	ND	1
Dibromomethane	ND	. 1
Dichlorodifluoromethane	ND	2
Ethylbenzene	ND	1
Hexachlorobutadiene	ND	0.6
Isopropylbenzene	ND	1
Methyl tert-Butyl Ether	ND	1
Methylene Chloride	ND	1
n-Butylbenzene	ND	. 1
n-Propylbenzene	ND	1
Napthalene	ND	1
sec-Butylbenzene	ND	1
Styrene	ND ·	1
tert-Butylbenzene	ND	1
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
Toluene	ND	1
trans-1,2-Dichloroethene	ND	1
trans-1,3-Dichloropropene	ND	0.5
Trichloroethene	ND	1
Trichlorofluoromethane	ND	2
Vinyl Chloride	ND	2
Xylenes (Total)	ND	1

MRL = Method Reporting Limit.	
-------------------------------	--

ND = Not Detected above MRL.

Approved By:	Date: 3	111	199
--------------	---------	-----	-----

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: WES MW4

Date Sampled: 3/1/99 Date Extracted: 3/2/99

Date Analyzed: 3/11/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-09

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 950 ml

Analyst: RS

Test Name	Result	MRL
2-Methylnaphthalene	ND	0.2
Acenaphthene	ND	0.2
Acenaphthylene	ND	0.2
Anthracene	ND	0.2
Benzo(a)anthracene	ND	0.2
Benzo(a)pyrene	0.2	. 0.2
Benzo(b)fluoranthene	0.2	0.2
Benzo(g,h,i)perylene	0.2	0.2
Benzo(k)fluoranthene	ND	0.1
Chrysene	ND	0.2
Dibenzo(a,h)Anthracene	0.2	0.2
Fluoranthene	ND	0.2
Fluorene	ND	0.2
Indeno(1,2,3-cd)Pyrene	0.3	0.2
Naphthalene	ND	0.2
Phenanthrene	ND	0.2
Pyrene	ND	0.2

MRL	==	Method	Reporting	Limit.
-----	----	--------	-----------	--------

ND = Not Detected above MRL.

http://www.thielsch.com

Approved By: \QS	Date:	3	12	99	-	
------------------	-------	---	----	----	---	--

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW5

Date Sampled: 3/1/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-10

Units: mg/L

Dilution: 1 Percent Solid: N/A

			rescent Solid. 197	A	
Test Name	Result	MRL	Date Analyzed	Analyst	Method
:					
Arsenic	ND	0.1	3/5/99	SAM	6010
Cadmium	ND	0.01	3/5/99	SAM	6010
Chromium	ND	0.05	3/5/99	SAM	6010
Lead	ND	0.1	3/5/99	SAM	6010
Mercury	ND	0.0005	3/4/99	AR	7470

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANA.	L	YSIS
---------------------	---	------

8100M Total Petroleum Hydrocarbon

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW5

Date Sampled: 3/1/99 Extraction Date: 3/2/99

Date Analyzed: 3/6/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-10

Units: mg/L Dilution: 1

Percent Solid: N/A Sample Amount: 900 ml

Analyst: AS Test Name Result MRL Total Petroleum Hydrocarbons ND 0.56

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	98	39-137

Approved By:

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW5 Date Sampled: 3/1/99 Date Analyzed: 3/5/99

Analyst: JR

ESS Project ID: 99030024 ESS Sample ID: 99030024-10

Units: µg/L
Dilution: 1

Percent Solid: N/A
Sample Amount: 5 m

Sample Amount: 5 ml		
Result		MRL
		1
		1
ND .		1
ND		1.
ND		1
ND	·	ī
ND		2
ND		. 1
ND		1
ND		. 1
ND		1
		1
ND '		2
		1
		1
	•	1
ND		1
ND		1
ND		1
		1
		1
		1
	•	20
		1
		10
		10
		1
		10
		20
		20
		1
		l 1
		1
		1
		2
		2
	2 2 2 3 3 4 3 5 5 5 5 6 5 7 5 6 7 5 7 5 7 7 7 7 7 7 7	Result ND

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW5

ESS Project ID: 99030024 ESS Sample ID: 99030024-10

Compound Name	Result	e ID: 99030024-10 MRL
Carbon Tetrachloride	ND	IVIKL
Chlorobenzene	ND	1
Chloroethane	ND	1
Chloroform	ND	4. 1
Chloromethane	ND	1
cis-1,2 Dichloroethene	ND	2
cis-1.3-Dichloropropene	ND	1
Dibromochloromethane	ND	0.5
Dibromomethane	ND	1.
Dichlorodifluoromethane	ND	1
Ethylbenzene	ND	2
Hexachlorobutadiene	ND	, L
Isopropylbenzene	ND	0.6
Methyl tert-Butyl Ether	ND	1
Methylene Chloride	ND	į
n-Butylbenzene	ND	ļ 1
n-Propylbenzene	ND	1
Napthalene	ND	1
sec-Butylbenzene	ND	
Styrene	ND	1
tert-Butylbenzene	ND	1
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	
Toluene	ND	1
trans-1.2-Dichloroethene	ND	1
trans-1,3-Dichloropropene	ND	1
Trichloroethene	ND	0.5
Trichlorofluoromethane .	ND	1
Vínyl Chloride	ND	. 2
Xylenes (Total)	ND	2

	110
MRL = Method Reporting Limit.	ND = Not Detected above MRL.
Approved By:	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering
Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW5 Date Sampled: 3/1/99

Date Extracted: 3/2/99
Date Analyzed: 3/11/99

Analyst: RS

ESS Project ID: 99030024 ESS Sample ID: 99030024-10

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 900 ml

Test Name	Result	MRL
2-Methylnaphthalene	ND	0.2
Acenaphthene	ND ·	0.2
Acenaphthylene	ND	0.2
Anthracene	ND	0.2
Benzo(a)anthracene	ND	0.2
Benzo(a)pyrene	ND	0.2
Benzo(b)fluoranthene	0.2	0.2
Benzo(g,h,i)perylene	0.2	0.2
Benzo(k)fluoranthene	ND	0.1
Chrysene	ND	0.2
Dibenzo(a,h)Anthracene	ND	0.2
Fluoranthene	ND	0.2
Fluorene	ND	0.2
Indeno(1,2,3-cd)Pyrene	0.2	0.2
Naphthalene	ND	0.2
Phenanthrene	ND	0.2
Pyrene	ND	0.2

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By: <u>AS</u>

Date: 3 12 59

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: Trip Blank Date Sampled: 3/1/99

Date Analyzed: 3/5/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-11

> Units: µg/L Dilution: 1

Percent Solid: N/A

Analyst: JR	Sample Amount: 5 ml		
Compound Name	Result	··	MRL
1.1.1.2-Tetrachloroethane	ND		1
1.1.1-Trichloroethane	ND		1
1.1.2.2-Tetrachloroethane	ND:		1
1,1.2-Trichloroethane	ND.		1
1,1-Dichloroethane	ND		1
1,1-Dichloroethene	ND		1
1.1-Dichloropropene	ND	•	. 2
1.2 Dichlorobenzene	ND		1
1,2,3-Trichlorobenzene	ND		1
1.2.3-Trichloropropane	ND		1
1.2,4-Trichlorobenzene	ND		1
1.2.4-Trimethylbenzene	ND		1
1.2-Dibromo-3-Chloropropane	ND		. 2
1.2-Dibromoethane	ND		1
1.2-Dichloroethane	ND	•	1
1.2-Dichloropropane	ND		1
1.3 Dichlorobenzene	ND		1
1.3.5-Trimethylbenzene	ND .		1
1.3-Dichloropropane	ND		1
1.4 Dichlorobenzene	ND		1
l-Chlorohexane	ND		1
2.2-Dichloropropane	ND		1
2-Butanone	ND		20
2-Chlorotoluene .	ND		1
2-Hexanone	ND		. 10
4-C'hlorotoluene	ND		1.
4-Isopropyltoluene	ND		1
4-Methyl-2-Pentanone	ND		10
Acetone	ND		20
Benzene	ND		1
Bromobenzene	ND		1
Bromochloromethane	ND		1
Bromodichloromethane	ND		I
Bromoform	ND		2
Bromomethane	ND		2
Carpon Disulfide	ND		i

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: Trip Blank

ESS Project ID: 99030024 ESS Sample ID: 99030024-11

Compound Name	Result	MRL
Carbon Tetrachloride	ND .	
Chlorobenzene	ND	Î
Chloroethane	ND	2
Chloroform	ND	1
Chloromethane	ND	2
cis-1,2 Dichloroethene	ND	1
cis-1,3-Dichloropropene	ND	0.5
Dibromochloromethane	ND	1
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	2
Ethylbenzene	ND	1
Hexachlorobutadiene	ND	0.6
Isopropylbenzene	ND	1
Methyl tert-Butyl Ether	ND	1
Methylene Chloride	ND	1
n-Butylbenzene	ND	1
n-Propylbenzene	ND	1
Napthalene	ND	. 1
sec-Butylbenzene	ND	1
Styrene	ND	1
tert-Butylbenzene	ND	1
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
Toluene	ND	1
trans-1,2-Dichloroethene	ND	1
trans-1,3-Dichloropropene	ND	0.5
Trichloroethene	ND	1
Trichlorofluoromethane •	ND	2
Vinyl Chloride	ND	2
Xylenes (Total)	ND	1

MRL = Method Reporting Limit.	ND = Not Detected above MRL.
Approved By:	Date: 3 11 99

QUALITY CONTROL SECTION

Division of Thielsch Engineering, Inc.

CERTIFI	CATE	OF	1 1/4 1	י עטע
((Ir F	1 /V A /	

8100M Total Petroleum Hydrocarbon

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: Method Blank

Date Sampled: N/A Extraction Date: 3/2/99 Date Analyzed: 3/3/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: SGC0302-B3

Units: mg/L Dilution: 1

Percent Solid: N/A Sample Amount: 1000 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbons	ND	0.5

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	79	39-137

Approved By:

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS	
8100M Hydrocarl	on Fingerprint
Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: Method Blank Date Sampled: N/A Extraction Date: 3/4/99 Date Analyzed: 3/6/99	ESS Project ID: 99030024 ESS Sample ID: GC0304-B5 Units: mg/Kg Dilution: 1 Percent Solid: N/A Sample Amount: 1 g
Analyst: AS	Sumple Finding 1 5
Test Name Resu	lt MRL
Total Petroleum Hydrocarbons ND	7500
MRL = Method Reporting Limit.	ND = Not Detected above MRL.
Qualitative ID	
Sample below MRL therfore no qualitative identification of	can be made.
·	
Surrogate % Reco	very Limits
Ortho-terphenyl (OTP) 100	70-130

Approved By:	Date:	1/30
--------------	-------	------

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Volatile Organics Surrogate Recovery

Client Name: East Coast Engineering

Client Project ID: Parcel 6A Taunton

ESS Project ID: 99030024

Lab ID (Dilution)	DCE	TOL	BFB
99030024-01 (lx)	98	. 95	95
99030024-02 (1x)	99	95	94
99030024-03 (1x)	97	95	98
99030024-05 (1x)	98	96	97
99030024-06 (1x)	94.	96	98
99030024-07 (1x)	95	. 95	98
99030024-08 (1x)	97	95	95
99030024-09 (1x)	· 97	95	95
99030024-10 (1x)	98	97	97
99030024-11 (1x)	97	95	96
VMB030499B1 (1x)	97	96	95
VMB030599B1 (1x)	97	96	96

DCE = 1,2-Dichloroethane-d4	TOL = Toluene-d8	BFB = Bromofluorobenzene
Approved by:	3	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: Method Blank

Date Sampled: N/A
Date Analyzed: 3/4/99

Analyst: JR

ESS Project ID: 99030024 ESS Sample ID: VMB030499B1

Units: µg/L
Dilution: 1
Percent Solid: N/A
Sample Amount: 5 ml

Compound Name	Result	Dample Altount. 3 mi	NADT
1.1.1.2-Tetrachloroethane	ND		MRL
1,1,1-Trichloroethane	ND	•	1
1.1.2.2-Tetrachloroethane	ND		į,
1,1,2-Trichloroethane	ND		1
I, I-Dichloroethane	ND		1
1,1-Dichloroethene	ND	•	1
1,1-Dichloropropene	ND		1 2
1,2 Dichlorobenzene	ND		1
1.2,3-Trichlorobenzene	ND		1
1.2.3-Trichloropropane	ND		1
1.2,4-Trichlorobenzene	ND		1
1,2,4-Trimethylbenzene	ND		1
1,2-Dibromo-3-Chloropropane	ND		2
1.2-Dibromoethane	ND		1
1.2-Dichloroethane	ND		1
1.2-Dichloropropane	ND		. 1
1.3 Dichlorobenzene	ND		1
1.3.5-Trimethylbenzene	ND		1
1.3-Dichloropropane	ND		1
1.4 Dichlorobenzene	ND		1
1-Chlorohexane	ND	•	1
2.2-Dichloropropane	ND		1
2-Butanone	ND	•	20
2-Chlorotoluene	ND		1
2-Hexanone	ND		10
4-Chlorotoluene	ND		1
4-Isopropyltoluene	ND		Ī
4-Methyl-2-Pentanone	ND		10
Acetone	ND		20
Benzene	ND		1
Bromobenzene	ND		Ţ
Bromochloromethane	ND		1
Bromodichloromethane	ND		<u>.</u>
Bromoform	ND		
Bromomethane	ND		<u>.</u>
Carbon Disulfide	ND		<u></u>

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: Method Blank

ESS Project ID: 99030024

ESS	Sample	D:	VMB030499B1

		ample ID: VMB030499B1
Compound Name	Result	· MRL
Carbon Tetrachloride	ND	
Chlorobenzene	ND	1
Chloroethane	ND	2
Chloroform	ND	1
Chloromethane	ND	. 2
cis-1.2 Dichloroethene	ND ·	1
cis-1,3-Dichloropropene	ND	0.5
Dibromochloromethane	ND	0.5
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	2
Ethylbenzene	ND	1
Hexachlorobutadiene	ND	0.6
Isopropylbenzene	ND	0.0
Methyl tert-Butyl Ether	· ND	1
Methylene Chloride	ND	1
n-Butylbenzene	ND	1
n-Propylbenzene	ND	1
Napthalene	ND	1
sec-Butylbenzene	ND	. I
Styrene	ND	1
tert-Butylbenzene	ND	1
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
Toluene	ND	i T
trans-1,2-Dichloroethene	ND	1
trans-1.3-Dichloropropene	ND	0.5
Trichloroethene	ND	0.5
Trichlorofluoromethane .	ND	1
Vinyl Chloride	ND	2
Xylenes (Total)	ND	2.

MRL = Method Reporting Limit.	ND = Not Detected above MRL.
Approved By: LA3	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: Method Blank

Date Sampled: N/A Date Analyzed: 3/5/99

Analyst: MD

ESS Project ID: 99030024 ESS Sample ID: VMB030599B1

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 5 ml

Analyst: MD		Sample Amount: 5 ml		
Compound Name	Result		MRL	
1,1,1,2-Tetrachloroethane	ND		1	
1,1,1-Trichloroethane	ND		1	
1.1.2,2-Tetrachloroethane	ND		1	
1,1,2-Trichloroethane	ND		1	
1.1-Dichloroethane	ND		1	
1,1-Dichloroethene	ND		1	
1,1-Dichloropropene	ND		2	
1.2 Dichlorobenzene	ND		. 1	
1.2,3-Trichlorobenzene	ND		1	
1.2.3-Trichloropropane	ND	•	1	
1.2.4-Trichlorobenzene	ND		1	
1.2.4-Trimethylbenzene	ND		1	
1.2-Dibromo-3-Chloropropane	ND	•	2	
1.2-Dibromoethane	ND		1	
1.2-Dichloroethane	ND		1	
1.2-Dichloropropane	ND		1	
1.3 Dichlorobenzene	ND		1	
1.3.5-Trimethylbenzene	ND		1	
1.3-Dichloropropane	ND ·		1.	
1.4 Dichlorobenzene	ND		1	
1-Chlorohexane	ND		. 1	
2.2-Dichloropropane	ND		1	
2-Butanone	ND		20	
2-Chlorotoluene	ND		1	
2-Hexanone	ND	·	10	
4-Chlorotoluene	ND		1	
4-Isopropyltoluene	ND		1	
4-Methyl-2-Pentanone	ND		10	
Acetone	ND		20	
Benzene	ND		1	
Bromobenzene	ND		1	
Bromochloromethane	ND		1	
Bromodichloromethane	ND		1	
Bromoform	ND		1	
Bromomethane	ND		2	
urbon Disulfide	ND		7	
- 1100n Disulfide	ND		1	

Page 1 of 2 Tel.: 401-461-7181

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: Method Blank

ESS Project ID: 99030024 ESS Sample ID: VMB030599B1

Compound Name		e ID: \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(
	Result	MRL
Carbon Tetrachloride	ND	1
Chlorobenzene	ND	1
Chloroethane	ND	2
Chloroform	ND	1
Chloromethane	ND	2
cis-1,2 Dichloroethene	ND	1
cis-1.3-Dichloropropene	ND	0.5
Dibromochloromethane	ND	1
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	2
Ethylbenzene	ND ·	1
Hexachlorobutadiene	ND	0.6
Isopropylbenzene	ND	1
Methyl tert-Butyl Ether	ND	1
Methylene Chloride	ND	1
n-Butylbenzene	ND	1
n-Propylbenzene	ND· .	1
Napthalene	ND	. 1
sec-Butylbenzene	ND	1
Styrene	ND ·	. 1
tert-Butylbenzene	ND	1
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
foluene	ND .	1
trans-1.2-Dichloroethene	ND .	. L
trans-1.3-Dichloropropene	ND	1
Trichloroethene	ND	0.5
Frichlorofluoromethane .	ND	1
Vinyi Chloride	ND	2
Nylenes (Total)	ND	2

171	
MRL = Method Reporting Limit.	ND = Not Detected above MRL
Noproved By: LAS	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

POLYNUCLEAR AROMATIC HYDROCARBONS AQUEOUS SURROGATE RECOVERY

Client: East Coast Engineering

Client Project ID: Parcel 6A Taunton

ESS Project ID: 99030024

Sample ID	(DCB) #	(NBZ) #	(FBP)	(TPH)
·				
SGC0302-B3	80	. 116*	95	107
SGC0201-B3BS	80	44	104	108
99030024-01	76	112	96	64
99030024-02	47	69	63	32*
99030024-03	67	99	85	79
99030024-05	59	45	84	67
99030024-06	76	98	77	62
99030024-07		62	41*	41
99030024-08	67	99	82	62
99030024-09	66	103	83	72
99030024-10	66	101	78	88

" Column to be used to flag recovery values with an asterisk when outside QC Limits.

DCB = 1,2-DICHLOROBENZENE-D4 (16-110%)

NBZ = NITROBENZENE-D5 (35-114%)

FBP = 2-FLUOROBIPHENYL (43-116%)

TPH = P=TERPHENYL-D14 (33-141%)

			1 - 100
oproved by:	1	D	= 115177
-	<u>しんひ</u>	Date:	5110111
185 Eag		55.	

185 Frances Avenue, Cranston, RI 02910-2211

Tel.: 401-461-7181

Fax: 401-461-4-186

http://www.thielsch.com

ESS Laboratory

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: Method Blank

Date Sampled: N/A
Date Extracted: 3/2/99
Date Analyzed: 3/5/99

Analyst: AC

ESS Project ID: 99030024 ESS Sample ID: SGC0302-B3

Units: µg/L
Dilution: 1

Percent Solid: N/A Sample Amount: 1000 ml

Analyst: AC	•	
Test Name	Result	MRL
2-Methylnaphthalene	ND	0.2
Acenaphthene	ND	0.2
Acenaphthylene	ND	0.2
Anthracene	ND	
Benzo(a)anthracene	ND	0.2 0.2
Benzo(a)pyrene	ND	0.2
Benzo(b)fluoranthene	ND	
Benzo(g,h,i)perylene	ND	0.2
Benzo(k)fluoranthene	ND	0.2
Chrysene	ND	0.1
Dibenzo(a,h)Anthracene	ND	0.2
Fluoranthene	ND	0.2
Fluorene	ND	0.2
Indeno(1,2,3-cd)Pyrene	ND	0.2
Naphthalene	ND	0.2
Phenanthrene	ND	0.2
Pyrene	ND ND	0.2
	1417	0.2

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By: LiAS D	Date: 3	11/99
---------------------	---------	-------

ESS LABORATORY CERTIFICATIONS

U.S. Army Corps of Engineers
Soil and Water

Rhode Island: 179

Connecticut: PH-0750

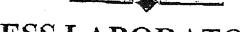
Maine: RI002

Massachusetts: M-RI002

New Hampshire:

Drinking Water: 242499-A

Wastewater: 242499-B


New Jersey: 78002

New York: 11313

Non Potable Water: 103991

Solid and Hazardous Waste: 104268

EST INC. Unvironmental Sampling Technology 85 Franklin Street Needham, MA 02194	ology) (СНА	IN O	F CUS	6 TO E				ORE						DRATOR CR					
Tel: (781) 455-0003 Fax: (781) 455- CLIENT: Fast Coast F ADDRESS: PO BOX 745 1. MARION, MA PHONE II: (508) 748 241 P.O. II CHENT CONTACT: Christia DESCRIPTION: LOT (6A)	AGIAC 50 F/ 1 02	.Bl	<i>202</i> 2			CONTAINEF P — Plastic G — Glass V — VOA B — Bacteri SAMPLE TY 1. Wastewalt 2. Groundwa 3. Drinking W 4. Soil 5. Surface W	a PE er tter Vater	1101	PALL (8100)		10 3 (45 B. 18, C. 16)	P	IALYSE	S				INSTI RU	SH	TION RNARO		
LOCATION (SAMPLE IDENTIFICATION)	SAMPLE	CONT.	AINÉ	R SAMI	PLING	6. OtherC CooL PRESERV	400	j	72	9								COM	MENTS		•	
WES MW3		Je e		10	1020	, Jec. b.	elow	√ √	√ √	<u>/</u>	<i>J</i>						-X _{ME}	MLS	FI	LIER	red to	,
ECE MUY	2			11	1130			Ĭ,	V	Z	V						3/4	1./99	MM	n	EST	
LUES MW!	2014			(/	1145		·	V ./		 	, H			11			P 01	LMA	TR/X	- Fr	only	r
ECE MWZ	2		+	11	1240 1310			<i>V</i>	V .		,			+			* ~	4B	70	FI	 D-R	
ECE MW 2 (OUP)	2			1/	1310			V	/	7,					-		M	ETH	15	ASK	P	
ECE MWI	2		-	11	1340			V	<u>/ </u>	4												
WES MW 4	2	1	1	,	1410			V	V	<u> </u>	V	-		++					· · · · · · · · · · · · · · · · · · ·	·····		
Trip Blank		6/1			1440 1A	HCU		V	<u> </u>	V /		\neg	- -			\dashv		•	····			
Sampler's Signature			-	Dia		unen I -	TD A LIDER		1410													
Jan cros Cho	کے		23	1 100	Time N	UMBER T	RANSFER	No yes	I	UISH	NBY	5	THANS	FERS	7)	UK		1 DAT		TIME 10:42		
ADDITIONAL COMMENTS: Each	Jample	<u>e q</u>	els		, , , ,	2	100	100	lin	uf	The state of the s	T.		W	J	1		12/9	7	1231	hn	
	> Non					3	- 			······································		1	X	~	1	A.	0	1		,		
1 1L G 1 250n	LPN)outi biez	62°.	100 TF (Metal	'a) '#') -	4										***		-	\dashv		1	
				81 CV/		<u>.</u>		~		······································		L	***************************************	~~~		·	~~~	1				

ESS LABORATORY

Environmental Analytical Laboratory

Division of Thielsch Engineering, Inc. 185 Frances Avenue Cranston, Rhode Island 02910-2211

following:

Analysis

Analysis Siloxanes

Services

Telephone: (401) 461-7181 Fax: (401) 461-4486 www.thielsch.com

FAX TRANSMISSION COVER SHEET Total Number of Pages (including this cover sheet): _______

Our certified laboratory provides a full range of services, including the Soil Characterization Petroleum Fingerprinting · Priority Pollutant Analysis Groundwater/Wastewater/ Drinking Water Analyses * PCBs and Pesticides From: - Trace Metals (ICAP/Furnace) Analysis Inorganic Analysis by Classic Methods, Flow Analyzer, and Ion Chromatography Organics by GC/Mass Spectroscopy Microbiology Analysis Massachusetts EPH/VPH Field Screening and Sample Technician

this message is meant for the use of the individual or entity to which it is addressed. This fax may contain privileged or confidential information that is intended for the recipient only. Any copying or unauthorized distribution of the enclosed imformation is prohibited. If you have received this communication incorrectly, please notify its immediately. Thank you for . your cooperation.

A

ESS Laboratory

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

8100M Hydrocarbon Fingerprint

Client:	East	Coast	Engine	ering
---------	------	-------	--------	-------

Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW4

Date Sampled: 3/1/99

Date Extracted: 3/2/99

Date Analyzed: 3/4/99

Analyst: AS

ESS Project ID: 99030024

ESS Sample ID: 99030024-03

Units: mg/L

Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbon	13.7	0.5
MRL = Method Reporting Limit		

Qualitative ID

This sample has the GC/FID characteristics that are similar to: unidentified components in the fuel oil range.

SURROGATE	%RECOVERY	ADVISORY LIMITS
Ortho-terphenyl (OTP)	70	39% - 137%

Approved by: EFP Date: 4/5/11

LSS Laborator,

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

	·	
Client: East Coast Engineering		ESS Project ID: 99030024
Client Project ID: Parcel 6A Ta	unton	ESS Sample ID: 99030024-03
Client Sample ID: ECE MW4		Units: mg/L
Date Sampled: 3/1/99		Dilution: 1
Date Extracted: 3/2/99		Percent Solid: N/A
Date Analyzed: 3/4/99		Sample Amount: 1000 ml
Analyst: AS		
Test Name	Result	MRL
Total Petroleum Hydrocarbon	13.7	. 0.5
MRL = Method Reporting Limit	en e	
Qualitative ID		
- Control of the Cont		
This sample has the GC/FID cha		
This sample has the GC/FID cha		ADVISORY LIMITS

185 Frances Avenue, Cranston, RI 02910-2211 Fax: 401-461-4486 Tel.: 401-461-7181 http://www.thielsch.com

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Lab Order:

0401069

Date Received: 1/15/04

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Collection Date
0401069-01A	MW 6	1/14/04
0401069-01B	MW 6	1/14/04
0401069-01C	MW 6	1/14/04
0401069-02A	MW 7	1/14/04
0401069-02B	MW 7	1/14/04
0401069-02C	MW 7	1/14/04
0401069-03A	MW 7-DUP	1/14/04
0401069-03B	MW 7-DUP	1/14/04
0401069-03C	MW 7-DUP	1/14/04
0401069-04A	MW 9	1/14/04
0401069-04B	MW 9	1/14/04
0401069-04C	MW 9	1/14/04
0401069-05A	Trip Blank	1/14/04

Lab Order:

0401069

Client:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name	·	Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
0401069-01A	MW 6	1/14/04	Groundwater	MCP VOCs 8260, EPA 5030B		1/21/04	
				EPA 5030B	1/21/04	R22269	
0401069-01B		***************************************		EPH, Water, Full List		1/22/04	
				AQPREP SEP FUNNEL: EPH	1/21/04	10940	
0401069-01C)401069-01C			EPA 7041 ANTIMONY, Total		1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10936	
				EPA 7060 ARSENIC, Total		1/20/04	
	•				1/19/04	10932	
				EPA 7421 LEAD, Total		1/20/04	
					1/19/04	10933	
				EPA 7470 MERCURY, Total		1/19/04	***************************************
				MERCURY PREP: EPA 245.1/7040	1/19/04	10922	
				EPA 7740 SELENIUM, Total		1/20/04	and the second s
ว ว ง				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10934	
ა				EPA 7841 THALLIUM, Total		1/20/04	
					1/19/04	10935	
				ICP METALS, TOTAL		1/19/04	
					1/19/04	10924	
401069-02A	MW 7			MCP VOCs 8260, EPA 5030B		1/21/04	
				EPA 5030B	1/21/04	R22269	
401069-02B				EPH, Water, Full List		1/22/04	····
				AQPREP SEP FUNNEL: EPH	1/21/04	10940	
401069-02C				EPA 7041 ANTIMONY, Total	,	1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10936	

Lab Order:

0401069

Client:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name	•	Analysis Date	
		·		Preparatory Test Name	Prep Date	Batch ID	TCLP Date
0401069-02C	MW 7	1/14/04	Groundwater	EPA 7060 ARSENIC, Total		1/20/04	n 1955 (1956) de la companya de la c
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10932	
				EPA 7421 LEAD, Total		1/20/04	
					1/19/04	10933	
				EPA 7470 MERCURY, Total		1/19/04	
				MERCURY PREP: EPA 245.1/7040	1/19/04	10922	
			**************************************	EPA 7740 SELENIUM, Total	***************************************	1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10934	
				EPA 7841 THALLIUM, Total		1/20/04	
					1/19/04	10935	
				ICP METALS, TOTAL		1/19/04	
					1/19/04	10924	
D101069-03A	MW 7-DUP			MCP VOCs 8260, EPA 5030B		1/21/04	
) }				EPA 5030B	1/21/04	R22269	
0401069-03B				EPH, Water, Full List		1/22/04	
				AQPREP SEP FUNNEL: EPH	1/21/04	10940	
0401069-03C		***************************************		EPA 7041 ANTIMONY, Total	***************************************	1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10936	
				EPA 7060 ARSENIC, Total	 	1/20/04	
					1/19/04	10932	
			,	EPA 7421 LEAD, Total		1/20/04	
					1/19/04	10933	
			To the second se	EPA 7470 MERCURY, Total	1,-4,	1/19/04	
				MERCURY PREP: EPA 245.1/7040	1/19/04	10922	

Lab Order:

0401069

Client:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
0401069-03C	MW 7-DUP	1/14/04	Groundwater	EPA 7740 SELENIUM, Total	****	1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10934	
				EPA 7841 THALLIUM, Total		1/20/04	
					1/19/04	10935	•
				ICP METALS, TOTAL		1/19/04	· · · · · · · · · · · · · · · · · · ·
					1/19/04	10924	
0401069-04A	MW 9			MCP VOCs 8260, EPA 5030B		1/21/04	
				EPA 5030B	1/21/04	R22269	
0401069-04B				EPH, Water, Full List		1/22/04	
				AQPREP SEP FUNNEL: EPH	1/21/04	10940	
)401069-04C				EPA 7041 ANTIMONY, Total		1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10936	
				EPA 7060 ARSENIC, Total		1/20/04	
9					1/19/04	10932	
<u> </u>	, , , , , , , , , , , , , , , , , , ,			EPA 7421 LEAD, Total		1/20/04	
•					1/19/04	10933	
				EPA 7470 MERCURY, Total		1/19/04	
				MERCURY PREP: EPA 245.1/7040	1/19/04	10922	
	<i>P P P P P P P P P P</i>		**************************************	EPA 7740 SELENIUM, Total		1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10934	
				EPA 7841 THALLIUM, Total		1/20/04	
					1/19/04	10935	
				ICP METALS, TOTAL	,	1/19/04	
					1/19/04	10924	

Lab Order:

0401069

Client:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
0401069-05A	Trip Blank	1/14/04	Aqueous	MCP VOCs 8260, EPA 5030B		1/21/04	
				EPA 5030B	1/21/04	R22269	

Merrimack, NH 03054

Office: (603) 174,2022 Fax: (603

. 049001

Project No.: 3651031003 Project Name: Taunton Parcel 6A Project Manager: M. Salve Hi AMRO Project No.: Samplers (Signature): Mike Aphelbam 040106 Project State: Sample ID Date/Time Matrix Total # Comp Grab **Analysis Required** Remarks Sampled of Cont. A= Air EPH & Size S= Soil GW= Ground W. WW= Waste W. 3 VOA 8260 DW= Drinking W. ZILAMIN McP O=Oil 1 250 BY Other= Specify MWG 1025 GW MW7 1210 GW X MW7-DUP 1210 GW 1450 MW9 GW Preservative: Cl-HCl, MeOH, N-HN03, S-H2SO4, Na-NaOH, O-Other Container Type: P- Plastic, G-Glass, V-Vial, T- Teflon, O-Other GW-3 Send Results To: Mark Salve H FAX No.: Seal Intact? P.O. No: GW-1* GW-2 MARTEL Eng +- Cons. Inc 781 246 SOLO MCP Level Needed: No N/A . Suite 301 Results Needed By: 5-000 *= May require additional cost 02155 Relinquished By Date/Time Received By PRIORITY TURNAROUND TIME AUTHORIZATION Before submitting samples for expedited TAT, you must have requested 115/04 in advance and received a coded AUTHORIZATION NUMBER. Samples arriving after 12:00 noon will be tracked and billed as received 0800 on the following day. AUTHORIZATION No. Mualde NOTES: Preservatives, Special reporting limits, Known Contamination, etc; Please print clearly, legibly and completely. Samples/can not be AMRO policy requires notification in writing to logged in and the turnaround time clock will not start until any 2 AMRD Intern QC 1 Like Amber the laboratory in cases where the samples were ambiguities are resolved. أمرلبطعيا collected from highly contaminated sites. Yellow: Accompanies Report White: Lab Copy Pink: Client Copy SHEET OF .

Merrimack, NH 03054

Client: MACTEC ENG. E CONS. INC. Project Name: TAUNTON PARCEL G'A	AMRO Date Re			040/069	
Ship via: (circle one) Fed Ex., UPS AMRO Courier,)				1-15-04	
Hand Del., Other Courier, Other:	Date Du	ue:		1-22-04	
	***************************************		·		
Items to be Checked Upon Receipt	<u> </u>	T	T		Ţ.
Army Samples received in individual plastic bags?	Yes	No	NA	Comments	
Custody Seals present?			<u></u>		
3. Custody Seals Intact?		<u> </u>	1		
			مرز		
4. Air Bill included in folder if received?	<u> </u>		1		
5. Is COC included with samples?					
6. Is COC signed and dated by client?	1			*	
7. Laboratory receipt temperature. TEMP = 6		•			
Samples rec. with iceice packsneither					
8. Were samples received the same day they were sampled?		/			
Is client temperature 4°C ± 2°C?			 		
If no obtain authorization from the client for the analyses.					
Client authorization from: Date: Obtained by:					
9. Is the COC filled out correctly and completely?	1				
10. Does the info on the COC match the samples?	1				
11. Were samples rec. within holding time?					
12. Were all samples properly labeled?					
13. Were all samples properly preserved?				1 EQU 15	
14. Were proper sample containers used?	1	~		1-EPH ADJUSTE	=0
15. Were all samples received intact? (none broken or leaking)					
16. Were VOA vials rec. with no air bubbles?	<u> </u>				
17. Were the sample volumes sufficient for requested analysis?	<u></u>				
18. Were all samples received?	1				
19. VPH and VOA Soils only:	1/				
·			1		
Sampling Method VPH (circle one): M=Methanol, E=EnCore (air-tight cont	ainer)	•			
Sampling Method VOA (circle one): M=Methanol, SB=Sodium Bisulfate, E=	EnCore, E	3=Bulk			
If M or SB:					
Does preservative cover the soil?					\neg
If NO then client must be faxed.					
Does preservation level come close to the fill line on the vial?					\neg
If NO then client must be faxed.					\neg
Were vials provided by AMRO?					\dashv
If NO then weights MUST be obtain	ned from	client			\dashv
Was dry weight aliquot provided?					\dashv
If NO then fax client and inform the	e VOA lab	ASAP.			ᅱ
20. Subcontracted Samples:	T		1		=
What samples sent:					
Where sent:					
Date:	 				
Analysis:	 				
TAT:			·		
1. Information entered into:	+				_
Internal Tracking Log?	-				
Dry Weight Log?					
·			المست		7
Client Log?					\neg
Composite Log?					
Filtration Log?			/		
		1	Date: /	-14-04	-1"
abeled By: CC Date: / -/6-C4 Checked By:	MG		Date: 📝	1-16-04	

Please Circle if: Sample= Soil Sample= Waste

AMRO ID:

0401069

۱ 🖈	Cample- Waste			·						
	· ·						List			T
					1		Preserv.		Volume	Final
		`	Volume	Preserv.	Initial	Acceptable?	Added by	Solution ID#	Preservative	adjusted
	Sample ID	Analysis	Sample	Listed	pН	YorN	AMRO	of Preserv.	Added	pH
	01A-04A	Voc	3-40ML	HCL	<u> </u>					Pil
ſ	01B-02B		2-1LA		22	·y				
Ī	03BQ	EPH	1-1 LA	MCL	22	5				
ŀ	(2)							5 /		<u> </u>
ŀ		EPH	1-1LA	HCL	6	N	HCL	R04864	2.0 ML	22
ŀ	043	EPH	4-1LA	HCL	22	У	2 8011	LES INTE	RNALQC	ONLY
L	01C-04C	METALS	1-50:0P	HNOS	22	- Ý				
	05A	_ VOC	1-40ML	HCL					2 2	
ſ				7-02			,			
r										
+							ļ			
+		· · · · · · · · · · · · · · · · · · ·								
-										
L		·						· · · · · · · · · · · · · · · · · · ·		
					'					
T									· · · · · · · · · · · · · · · · · · ·	
H										
+				··					<u></u>	
1		· ·					•			
L	•									
L										
Γ						· · · · · · · · · · · · · · · · · · ·				
			-							
+										·
-										
-										
L										
Γ	-								`	
									· · · · · · · · · · · · · · · · · · ·	
-									•	
-			· · ·							
-										
L										
L										
Γ								-		
r					<u> </u>					:
\vdash										
H				•						7
_			·	.`					-	
L										
۱										
)	L	L					L			

pH Checked By:

Date: pH adjusted By: CC

Date:

memos/forms/samplerec Rev.18 06/00

CASE NARRATIVE 0401069

GC/MS-VOLATILES WATER

- 1. Quadratic regression was utilized in the Initial Calibration performed on 11/15/03 on instrument V-1 for Vinyl acetate.
- 2. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) for Batch ID: R22269 was performed on sample MW 6 (0401069-01A). 13 compounds and 2 RPD had recoveries outside the QC limits.
- 3. A Laboratory Control Sample (LCS-01/21/04) (Batch ID: R22269) was performed. 3 compounds recovered outside the laboratory control limits.

MADEP-EPH WATER

1. The surrogate 1-Chlorooctadecane recovered below the QC limits (40-140%) at 36.3% in sample MW-7 (0401069-02B).

$\frac{TRACE\ METALS}{WATER}$

- 1. The %REC's for Arsenic in the Continuing Calibration Verification Standard (CCV) that bracketed the samples in this project (012004A GFAA analytical run) were 110.55% and 111.56% outside the MADEP-MCP acceptable limit (90-110%), however these %REC's were within the SW-846 7000series acceptable limits (80-120%). Arsenic was not detected in any sample.
- 2. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were performed on the sample MW 6 (0401069-01C). All %R's and %RPD's were within the laboratory QC limits with the exception of Thallium.

7		27 - 28 - 27 - 12 - 13	MADEP	MCP.	Analytic	al Meti	od Re	port Cert	lfication	Form		
Labora	atory Nam	e: AN	IRO Enviro	nmenta	al Laborat	tories, In	c. F	Project Nur	nber:	0401069		
Projec	t Location):	36510310	03 Tau	nton Parc	cel 6A	ı	ADEP RT	N 1			***************************************
040106	69-01	04010	69-02	0401069	9-03	0401069	04	0401069-05	5			
Sampl	e Matrice:	s:	Ground \	Water	Soil /	Sediment		Prinking Wat	ter 🗀	OtherMatr	ix 🗆	· · · · · · · · · · · · · · · · · · ·
Met	P SW-84 thods Us	ad	8260B 8270C		8151A 8081A		83: VP	30 🗆	6010B			/1A 🗹
	specified MAREP	d	8082		8021B		EP	H 🔽	70008	³ 🔽	Other	
Analy	npendium tical Meth call that a	ods	1 List Rele 2M - SW4 3/S SW 84	346 Me	thod 901	4 or MAI)EP Ph	/siological	ly Available hod analyt	e Cvamde	(PAC) M	ethod
A	n affirma	tive r	esponse t	o ques	tions A,	B, C and	d D is re	auired fo	r "Presum	otive Ce	rtaintv" s	atus
AW	lere all sa	mples	received be Chain of C	y the la	aboratory	in a con	dition c	onsistent v	vith that		(e) Yes	
th	is report f	ollowe	orocedures ed, includin meet appro	g the re	quireme	nt to note	e and di	scuss in a	narrative (ed in QC	(•) Yes	○ No ¹
Pr Qı	resumptiv	e Cerl uranc	al data inc ainty, as d e and Qua	escribe	d in Sect	ion 2.0 o	f the M	ADEP docu	ument CAN	/I VII A, ng of	(•) Yes	○ No ¹
			ethods on specified i		Was the on 11.3?	VPH or	EPH me	thod run w	vithout sigr	nificant	() Yes	⊙ No ¹
			se to ques							-	" status	
ac	chieved?		ormance st								() Yes	(e) No 1
F W	ported?		all analyte-						1.		(•) Yes	○ No ¹
5 41			wers must									
those	responsi	ble fo	ttest unde r obtainin je and bel	g the ii	nformatio	on, the r	nateria	erjury that containe	i, based u d in this a	pon my p nalytical	ersonal in report is,	nqury of to the
Signat Printe	turè:	Va N	anc	0/ 15	Leu	lart	,	osition: _/	1ab	D,	rect	02

Volatile Petroleum Hydrocarbons (VPH) Massachusetts Department of Environmental Protection (MADEP) Method 1.0 - January 1998 AMRO Modifications

This modification is based on the use of a purge and trap gas chromatography mass spectrometer (GC/MS) system to analyze samples for VPH. The hydrocarbon ranges are quantified using predominant mass fragmentation ions that are characteristic for the range being measured. This approach eliminates potential false positives for the target analytes while providing accurate hydrocarbon range data and also eliminates the double counting of aromatics in the C9-C12 Aliphatic Range. The C5-C8 Aliphatic Range and C9-C12 Aliphatic Range are quantified using m/z 43 which is the largest ion in the spectra of most low molecular weight aliphatics and the C9-C10 Aromatic Range is quantified using m/z 91, the tropylium ion, which is characteristic of all alkyl benzene aromatics. AMRO has evaluated both "fresh" and "weathered" gasoline reference materials from different sources to validate the accuracy of this ion set. No significant negative or positive bias has been observed in the quantitation of fresh or weathered gasolines. Recoveries meet all method criteria. Validation data has been reviewed by MADEP and is available on request.

The chromatographic column is a HP-624 capillary column that has been validated by GC/MS analysis of a gasoline standard to correctly identify the marker compounds and elution order of specific gasoline components. Batch quality control includes, at a minimum, method blank, laboratory control sample, and duplicate analysis. A matrix spike and/or matrix spike duplicate is analyzed if sufficient sample is submitted to the laboratory.

The Reporting Limit (RL) of this method for each of the collective aliphatic and aromatic ranges is approximately 0.6-2.5 mg/kg in soil and 25-100 µg/L in water. The RL of this method for the target analytes ranges from approximately 0.05-0.12 mg/kg in soil and 2.0-5.0 µg/L for water samples.

Extractable Petroleum Hydrocarbons (EPH)

Massachusetts Department of Environmental Protection (MADEP)

Method 1.0 - January 1998

AMRO Modifications

This modification is based on a solvent extraction and gas chromatography mass spectrometer (GC/MS) analysis. The hydrocarbon ranges are quantified using predominant mass fragmentation ions which are characteristic for the range being measured. This approach eliminates the silica gel solid-phase fractionation step. False positives for targeted PAH analytes are eliminated by using GC/MS as the primary analysis technique and non-petroleum interferences can be identified and often eliminated. The hydrocarbon ranges are quantified using predominant mass fragmentation ions that are characteristic and selective for the range being measured. The C9-C18 and C19-C36 Aliphatic Ranges are quantified using the combined ions m/z 43, 57, 67 and 71. These are the dominant fragment ions in aliphatic alkane and cycloaliphatic hydrocarbons present in the common distillate petroleum products. The C11-C22 Aromatic Range is quantified using ions m/z 50, 63, and 74. These are the principal unique and characteristic aromatic ring fragment ions in semivolatile aromatic hydrocarbons present in distillate petroleum products. AMRO has evaluated quantitative recovery using these ion sets for a wide variety of semivolatile petroleum products including diesel fuels, jet fuels, and motor oils. Accuracy of the aliphatic vs. aromatic quantitation has been reviewed by MADEP and is available on request.

The chromatographic column is a J&W Scientific DB-5ms capillary column. Internal standard calibration is performed using 5α -Androstane at a concentration of 20 ng/ μ L. o-Terphenyl and 1-Chlorooctadecane are added as surrogate compounds at 20 ng/ μ L in the sample extract. These two surrogates monitor the effects of the sample matrix and extraction efficiency. Two additional surrogates, 2-Fluorobiphenyl and 2-Bromonaphthalene, are added to the finished extract prior to analysis to monitor instrument performance. Batch quality control includes, at a minimum, a procedure blank, laboratory control sample and duplicate sample analysis. A matrix spike is analyzed if sufficient sample is submitted to the laboratory.

The Reporting Limit (RL) of this method for each of the collective aliphatic and aromatic ranges is approximately 50 mg/kg in soil and $100 \mu g/L$ in water. The RL of this method for the Target PAH analytes is approximately 0.25 mg/kg in soil; $1.0 \mu g/L$ for water when operating the GC/MS in full scan mode, and 0.1 $\mu g/L$ when operating the GC/MS in SIM mode. For sites requiring the lowest levels cited in the Massachusetts Contingency Plan for water, GC/MS in the Selected Ion Monitoring (SIM) mode is used.

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-01A

Client Sample ID: MW 6

Collection Date: 1/14/04

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET	SW8260B				Analyst: KT
Acetone	ND	10		µg/L	1	1/21/04 1:52:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Benzene	ND	1.0		µg/L	1	1/21/04 1:52:00 PM
Bromobenzene	ND	2.0		μg/L	1	1/21/04 1:52:00 PM
Bromochloromethane	: ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Bromoform	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Bromomethane	ND	2.0	•	µg/L	1	1/21/04 1:52:00 PM
sec-Butylbenzene	ND	2.0		μg/L	1	1/21/04 1:52:00 PM
n-Butylbenzene	ND	2.0		μg/ L	1	1/21/04 1:52:00 PM
tert-Butylbenzene	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Carbon disulfide	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Carbon tetrachloride	ND	2.0		μg/L	1	1/21/04 1:52:00 PM
Chlorobenzene	ND	2.0		μg/L	1	1/21/04 1:52:00 PM
Dibromochloromethane	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Chloroethane	· ND	5.0		μg/L	1	1/21/04 1:52:00 PM
Chloroform	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Chloromethane	ND	3.0		μg/L	1	1/21/04 1:52:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	1/21/04 1:52:00 PM
4-Chlorotoluene	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		μg/L	1.	1/21/04 1:52:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Dibromomethane	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
1,3-Dichlorobenzene	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
1,2-Dichlorobenzene	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
1,4-Dichlorobenzene	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
Dichlorodifluoromethane	ND	5.0		µg/L	1	1/21/04 1:52:00 PM
1,1-Dichloroethane	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	1/21/04 1:52:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	1/21/04 1:52:00 PM
trans-1,2-Dichloroethene	ND	2.0		μg/L	1	1/21/04 1:52:00 PM
1,2-Dichloropropane	ND	2.0	,	µg/L	1	1/21/04 1:52:00 PM
1,3-Dichloropropane	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	1/21/04 1:52:00 PM
1,1-Dichloropropene	ND	2.0		µg/L	1	1/21/04 1:52:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	1/21/04 1:52:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	1/21/04 1:52:00 PM
Diethyl ether	ND	5.0		μg/L	1	1/21/04 1:52:00 PM

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-01A

Client Sample ID: MW 6

Collection Date: 1/14/04

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	µg/L	1	1/21/04 1:52:00 PM
1,4-Dioxane	ND	50	μg/L	1	1/21/04 1:52:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L.	1	1/21/04 1:52:00 PM
Ethylbenzene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	1/21/04 1:52:00 PM
2-Hexanone	ND	10	μg/L	1	1/21/04 1:52:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
2-Butanone	ND	10	μg/L	1	1/21/04 1:52:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/21/04 1:52:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
Methylene chloride	ND	5.0	μg/L	1	1/21/04 1:52:00 PM
Naphthalene	ND	5.0	µg/L	. 1	1/21/04 1:52:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
Styrene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/21/04 1:52:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
Tetrahydrofuran	ND	10	µg/L	1	1/21/04 1:52:00 PM
Toluene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1 .	1/21/04 1:52:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	1/21/04 1:52:00 PM
Trichloroethene	ND	2.0	μ g/L	1	1/21/04 1:52:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	1/21/04 1:52:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	1/21/04 1:52:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/21/04 1:52:00 PM
o-Xylene	ND	2.0	µg/L	1	1/21/04 1:52:00 PM
m,p-Xylene	ND	2.0	µg/L	1	1/21/04 1:52:00 PM
Surr: Dibromofluoromethane	99.6	85-120	%REC	1	1/21/04 1:52:00 PM
Surr: 1,2-Dichloroethane-d4	96.3	75-124	%REC	1	1/21/04 1:52:00 PM
Surr: Toluene-d8	101	82-112	%REC	1	1/21/04 1:52:00 PM
Surr: 4-Bromofluorobenzene	107	77-117	%REC	1	1/21/04 1:52:00 PM

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-02A

Client Sample ID: MW 7

Collection Date: 1/14/04

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY MCP MET	SW8260B				Analyst: KT
Acetone	ND	10		µg/L	1	1/21/04 2:26:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
Benzene	ND	1.0		μg/L	1	1/21/04 2:26:00 PM
Bromobenzene	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
Bromochloromethane	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
Bromoform	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
Bromomethane	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
sec-Butylbenzene	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
n-Butylbenzene	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
tert-Butylbenzene	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
Carbon disulfide	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
Chlorobenzene	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
Dibromochloromethane	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
Chloroethane	ND	5.0		μg/L	1	1/21/04 2:26:00 PM
Chloroform	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
Chloromethane	ND	3.0		µg/L	1	1/21/04 2:26:00 PM
2-Chlorotoluene	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
4-Chlorotoluene	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		μg/L	1	1/21/04 2:26:00 PM
1,2-Dibromoethane	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
Dibromomethane	·ND	2.0		μg/L	1	1/21/04 2:26:00 PM
1,3-Dichlorobenzene	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
1,2-Dichlorobenzene	ND	2.0		µg/L	1	1/21/04 2:26:00 PM
1,4-Dichlorobenzene	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	1/21/04 2:26:00 PM
1,1-Dichloroethane	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	1/21/04 2:26:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
trans-1,2-Dichloroethene	ND	2.0		μġ/L	1	1/21/04 2:26:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	1/21/04 2:26:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	1/21/04 2:26:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	1/21/04 2:26:00 PM
Diethyl ether	ND	5.0		μg/L	1	1/21/04 2:26:00 PM

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-02A

Client Sample ID: MW 7

Collection Date: 1/14/04

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	μg/L	. 1	1/21/04 2:26:00 PM
1,4-Dioxane	ND	50	μg/L	. 1	1/21/04 2:26:00 PM
Ethyl Tertiary Butyl Ether	¹ND	2.0	μg/L	1	1/21/04 2:26:00 PM
Ethylbenzene	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
2-Hexanone	ND	10	μg/L	-1	1/21/04 2:26:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
2-Butanone	ND	10	μg/L	1	1/21/04 2:26:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/21/04 2:26:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
Methylene chloride	ND	5.0	μg/L	1	1/21/04 2:26:00 PM
Naphthalene	ND	5.0	μg/L	1	1/21/04 2:26:00 PM
n-Propylbenzene	∂ND	2.0	μg/L	1	1/21/04 2:26:00 PM
Styrene	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
Tetrachloroethene	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
Tetrahydrofuran	ND	10	µg/L	1	1/21/04 2:26:00 PM
Toluene	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
Trichloroethene	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
1,2,4-Trimethylbenzene	ND.	2.0	µg/L	1	1/21/04 2:26:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
o-Xylene	ND	2.0	µg/L	1	1/21/04 2:26:00 PM
m,p-Xylene	ND	2.0	μg/L	1	1/21/04 2:26:00 PM
Surr: Dibromofluoromethane	99.4	85-120	%REC	1	1/21/04 2:26:00 PM
Surr: 1,2-Dichloroethane-d4	97.1	75-124	%REC	1	1/21/04 2:26:00 PM
Surr: Toluene-d8	102	82-112	%REC	1	1/21/04 2:26:00 PM
Surr: 4-Bromofluorobenzene	107	77-117	%REC	1	1/21/04 2:26:00 PM

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069

Project: 36

3651031003 Taunton Parcel 6A

Lab ID:

0401069-03A

Client Sample ID: MW 7-DUP

Collection Date: 1/14/04

analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET	SW8260B				Analyst: K1
Acetone	ND	10		μg/L	1	1/21/04 3:00:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
Benzene	ND	1.0		µg/L	1	1/21/04 3:00:00 PM
Bromobenzene	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
Bromochloromethane	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
Bromoform	ND	2.0		µg/L	-1	1/21/04 3:00:00 PM
Bromomethane	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
sec-Butylbenzene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
n-Butylbenzene	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
tert-Butylbenzene	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
Carbon disulfide	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
Chlorobenzene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
Dibromochloromethane	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
Chloroethane	ND	5.0		'µg/L	1	1/21/04 3:00:00 PM
Chloroform	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
Chloromethane	ND	3.0		μg/L	1	1/21/04 3:00:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
4-Chlorotoluene	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
1,2-Dibromo-3-chloropropane	'ND	5.0		µg/L	1	1/21/04 3:00:00 PM
1,2-Dibromoethane	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
Dibromomethane	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
1,3-Dichlorobenzene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
1,2-Dichlorobenzene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
1,4-Dichlorobenzene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	1/21/04 3:00:00 PM
1,1-Dichloroethane	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	1/21/04 3:00:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
trans-1,2-Dichloroethene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
1,2-Dichloropropane	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
2,2-Dichloropropane	ND	2.0		µg/L	1	1/21/04 3:00:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	1/21/04 3:00:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	1/21/04 3:00:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	1/21/04 3:00:00 PM
Diethyl ether	ND	5.0		μg/L	1	1/21/04 3:00:00 PM

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-03A

Client Sample ID: MW 7-DUP

Collection Date: 1/14/04

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	μg/L	.1	1/21/04 3:00:00 PM
1,4-Dioxane	ND	50	µg/L	1	1/21/04 3:00:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
Ethylbenzene	ND	2.0	µg/L	1	1/21/04 3:00:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
2-Hexanone	ND	10	µg/L	1	1/21/04 3:00:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
2-Butanone	ND	10	μg/L	.1	1/21/04 3:00:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/21/04 3:00:00 PM
Methyl tert-butyl ether	ND	2.0	µg/L	1	1/21/04 3:00:00 PM
Methylene chloride	ND	5.0	μg/L	1	1/21/04 3:00:00 PM
Naphthalene	ND	5.0	µg/L	1	1/21/04 3:00:00 PM
n-Propylbenzene	. ND	2.0	μg/L	1	1/21/04 3:00:00 PM
Styrene	. ND	2.0	μg/L	1	1/21/04 3:00:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
Tetrahydrofuran	ND	10	μg/L	1	1/21/04 3:00:00 PM
Toluene	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
1,1,1-Trichloroethane	ND .	2.0	µg/L	1	1/21/04 3:00:00 PM
1,1,2-Trichloroethane	, ND	2.0	µg/L	1	1/21/04 3:00:00 PM
Trichloroethene	ND	2.0	µg/L	1	1/21/04 3:00:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	1/21/04 3:00:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	1/21/04 3:00:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	1/21/04 3:00:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
o-Xylene	ND	2.0	μg/L	1	1/21/04 3:00:00 PM
m,p-Xylene	ND	2.0	µg/L	1	1/21/04 3:00:00 PM
Surr: Dibromofluoromethane	99.4	85-120	%REC	. 1	1/21/04 3:00:00 PM
Surr: 1,2-Dichloroethane-d4	99.6	75-124	%REC	1	1/21/04 3:00:00 PM
Surr: Toluene-d8	103	82-112	%REC	1	1/21/04 3:00:00 PM
Surr: 4-Bromofluorobenzene	107	77-117	%RÉC	1	1/21/04 3:00:00 PM

Date: 26-Jan-04

CLIENT: Lab Order: Mactec E & C, Inc.

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-04A

Client Sample ID: MW 9

Collection Date: 1/14/04

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET SV	V8260B			·	Analyst: K1
Acetone	ND	10		μg/L	1	1/21/04 3:35:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Benzene	ND	1.0		µg/L	1	1/21/04 3:35:00 PM
Bromobenzene	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Bromochloromethane	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Bromoform	ND	2.0		μg/L	1	1/21/04 3:35:00 PM
Bromomethane	ND	2.0		μg/L	1	1/21/04 3:35:00 PM
sec-Butylbenzene	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
n-Butylbenzene	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
tert-Butylbenzene	ND	2.0	*	µg/L	1	1/21/04 3:35:00 PM
Carbon disulfide	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Chlorobenzene	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Dibromochloromethane	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Chloroethane	ND	5.0		µg/L	1	1/21/04 3:35:00 PM
Chloroform	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Chloromethane	ND	3.0		μg/L	1	1/21/04 3:35:00 PM
2-Chiorotoluene	ND	2.0		μg/L	1	1/21/04 3:35:00 PM
4-Chlorotoluene	ND	2.0		μg/L	1	1/21/04 3:35:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		µg/L	1	1/21/04 3:35:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Dibromomethane	ND	2.0		μg/L	1	1/21/04 3:35:00 PM
1,3-Dichlorobenzene	ND	2.0		μg/L	1	1/21/04 3:35:00 PM
1,2-Dichlorobenzene	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
1,4-Dichlorobenzene	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	1/21/04 3:35:00 PM
1,1-Dichloroethane	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	1/21/04 3:35:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	1/21/04 3:35:00 PM
cis-1,2-Dichloroethene	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
1,2-Dichloropropane	ЙD	2.0		µg/L	1	1/21/04 3:35:00 PM
1,3-Dichloropropane	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
2,2-Dichloropropane	ND	2.0		µg/L	1	1/21/04 3:35:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	1/21/04 3:35:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	1/21/04 3:35:00 PM
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	1/21/04 3:35:00 PM
Diethyl ether	ND	5.0		μg/L	1	1/21/04 3:35:00 PM

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-04A

Client Sample ID: MW 9

Collection Date: 1/14/04

Analyses	Result	RL (Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
1,4-Dioxane	ND	50	µg/L	1	1/21/04 3:35:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
Ethylbenzene	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
2-Hexanone	ND	10	μg/L	1	1/21/04 3:35:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
2-Butanone	ND	10	μg/L	1	1/21/04 3:35:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/21/04 3:35:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
Methylene chloride	ND	5.0	μg/L	1	1/21/04 3:35:00 PM
Naphthalene	ND	5.0	μg/L	1	1/21/04 3:35:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
Styrene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
Tetrachloroethene	ND	2.0	μg/L	11	1/21/04 3:35:00 PM
Tetrahydrofuran	ND	10	μg/L	1	1/21/04 3:35:00 PM
Toluene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
1,1,2-Trichlorgethane	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
Trichloroethene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
o-Xylene	ND	2.0	μg/L	1	1/21/04 3:35:00 PM
m,p-Xylene	ND	2.0	µg/L	1	1/21/04 3:35:00 PM
Surr: Dibromofluoromethane	99.9	85-120	%REC	1	1/21/04 3:35:00 PM
Surr: 1,2-Dichloroethane-d4	96.5	75-124	%REC	1	1/21/04 3:35:00 PM
Surr: Toluene-d8	103	82-112	%REC	1	1/21/04 3:35:00 PM
Surr: 4-Bromofluorobenzene	107	77-117	%REC	1	1/21/04 3:35:00 PM

Date: 26-Jan-04

CLIENT: Lab Order: Mactec E & C, Inc.

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-05A

Client Sample ID: Trip Blank

Collection Date: 1/14/04

Matrix: AQUEOUS

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET	SW8260B				Analyst: K1
Acetone	ND	10		μg/L	1	1/21/04 11:34:00 AM
Tertiary Amyl Methyl Ether	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
Benzene	ND	1.0		μg/L	1	1/21/04 11:34:00 AM
Bromobenzene	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
Bromochloromethane	ND	2.0		μg/L	1	1/21/04 11:34:00 AN
Bromodichloromethane	ND	2.0		μg/L	1	1/21/04 11:34:00 AN
Bromoform	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
Bromomethane	ND	2.0		μg/L	1 1	1/21/04 11:34:00 AN
sec-Butylbenzene	ND	2.0		μg/L	1	1/21/04 11:34:00 AM
n-Butylbenzene .	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
tert-Butylbenzene	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
Carbon disulfide	ND	2.0		µg/L	1	1/21/04 11:34:00 AN
Carbon tetrachloride	ND:	2.0		µg/L	1	1/21/04 11:34:00 AM
Chlorobenzene	ND	2.0		μg/L	1	1/21/04 11:34:00 AM
Dibromochloromethane	ND	2.0	•	µg/L	1	1/21/04 11:34:00 AM
Chloroethane	ND	5.0		µg/L	1	1/21/04 11:34:00 AN
Chloroform	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
Chloromethane	ND	3.0		μg/L	1	1/21/04 11:34:00 AM
2-Chlorotoluene	ND	2.0		µg/L	1	1/21/04 11:34:00 AN
4-Chlorotoluene	ND	2.0		µg/L	1	1/21/04 11:34:00 AN
1,2-Dibromo-3-chloropropane	ND	5.0		µg/L	1	1/21/04 11:34:00 AM
1,2-Dibromoethane	ND	2.0		µg/L	.1	1/21/04 11:34:00 AM
Dibromomethane	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
1,3-Dichlorobenzene	ND	2.0		μg/L	1	1/21/04 11:34:00 AM
1,2-Dichlorobenzene	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
1,4-Dichlorobenzene	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
Dichlorodifluoromethane	ND	5.0		μg/L	1	1/21/04 11:34:00 AM
1,1-Dichloroethane	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
1,2-Dichloroethane	ND	2.0		μg/L	1	1/21/04 11:34:00 AM
1,1-Dichloroethene	ND	1.0		µg/L	1	1/21/04 11:34:00 AM
cis-1,2-Dichloroethene	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
1,2-Dichloropropane	ND	2.0		µg/L	1	1/21/04 11:34:00 AM
1,3-Dichloropropane	ND	2.0		μg/L	1	1/21/04 11:34:00 AM
2,2-Dichloropropane	. ND	2.0		μg/L	1	1/21/04 11:34:00 AM
1,1-Dichloropropene	ND	2.0		μg/L	1	1/21/04 11:34:00 AM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	1/21/04 11:34:00 AM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	1/21/04 11:34:00 AM
Diethyl ether	ND	5.0		μg/L	1	1/21/04 11:34:00 AM

Date: 28-Jan-04

AMRO Environmental Laboratories Corp.

	QC SUMIMAKY KEFORI	Laboratory Control Spike
Mactec E & C, Inc.	0401069	3651031003 Taunton Parcel 6A
CLIENT:	Work Order:	Project:

Sample ID LCS-10940	Batch ID: 10940	Test Code	Test Code: MAEPH	Units: µg/L			Analysis D	ate 1/22/04	Analysis Date 1/22/04 1:24:00 PM	Prep Date	Prep Date 1/21/04	
Client ID:		Run ID:	SV-2_040122A	1122A			SedNo:	369712				
•	QC Sample			QC Spike Original Sample	at Sample			Ü	Original Sample			
Analyte	Result	교	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
n-Eicosane	15.23	1.0	µg/L	25	0	6.09	40	140	0			
n-Nonadecane	14.81	1.0	hg/L	25	0	59.2	40	140	0			
n-Nonane	12.58	1.0	Hg/L	25	0	50.3	40	140	0			
n-Octacosane	14.26	1.0	hg/L	25	0	57	4	140	0			
n-Tefradecane	12.62	1.0	hg/L	25	0	50.5	4	140	0			
Naphthalene	18.44	1.0	hg/L	25	0	73.8	4	140	0			
Acenaphthene	19.56	1.0	hg/L	25	0	78.2	4	140	0			
Anthracene	26.04	1.0	hg/L	25	0	104	40	140	0			
Pyrene	26.18	1.0	µg/L	25	0	105	40	140	0			
Chrysene	23.56	1.0	hg/L	25	0	94.2	40	140	0			
Surr: 1-Chlorooctadecane	10.44	1.0	ng/L	20	0	52.2	4	140	0			
Surr: 2-Bromonaphthalene	23.13	1.0	hg/L	20	0	116	40	140	0			
Surr: 2-Fluorobiphenyl	21.37	1.0	hg/L	20	0	107	40	140	0			
Surr: o-Terphenyl	19.24	1.0	µg/L	20	0	96.2	40	140	0			

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits Qualifiers: ND - Not Detected at the Reporting Limit

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Lab Order:

0401069

Lab ID:

0401069-01

Collection Date: 1/14/04

Lab ID: 0401069-01			Collection Da	ite: 1/14/04	l e e
Client Sample ID: MW 6			Mati	rix: GROU	NDWATER
Analyses	Result	RL	Qual Units	DF	Date Analyzed
ICP METALS TOTAL SW-846		SW6010B			Analyst: SJC
Barium	ND	200	μg/L	1	1/19/04 7:01:43 PM
Beryllium	ND	4.0	μg/L	1	1/19/04 7:01:43 PM
Cadmium	ND	5.0	μg/L	1	1/19/04 7:01:43 PM
Chromium	ND	10	μg/L	1	1/19/04 7:01:43 PM
Copper	ND	25	μg/L	1	1/19/04 7:01:43 PM
Nickel	ND	40	µg/L	1	1/19/04 7:01:43 PM
Silver	ND	7.0	µg/L	1	1/19/04 7:01:43 PM
Vanadium	ND	50	μg/L	1	1/19/04 7:01:43 PM
Zinc	100	20	µg/L	1	1/19/04 7:01:43 PM
ARSENIC, TOTAL		SW7060A			Analyst: APL
Arsenic	ND	5.0	µg/L	1	1/20/04 3:49:10 PM
MERCURY, TOTAL		SW7470A			Analyst: RK
Mercury	ND	0.20	μg/L	1	1/19/04 12:59:37 PM
LEAD, TOTAL		SW7421			Analyst: APL
Lead	ND	5,0	µg/L	1	1/20/04 3:49:10 PM
ANTIMONY, TOTAL		SW7041			Analyst: APL
Antimony	ND	5.0	μg/L	1	1/20/04 9:21:48 PM
SELENIUM, TOTAL		SW7740			Analyst: APL
Selenium	:ND	5.0	μg/L	1	1/20/04 3:49:10 PM
THALLIUM, TOTAL		SW7841			Analyst: APL
Thallium .	ND	5.0	μg/L	1	1/20/04 3:49:10 PM

Date: 22-Jan-04

CLIENT:	Mactec]	Mactec E & C, Inc.								200			
Work Order:	0401069									QC SUMMARY REPORT	IMARY	KEPO.	Z
Project:	3651031	3651031003 Taunton Parcel 6A									Sample	Sample Matrix Spike	ike
Sample ID 0401069-01CMS	-01CMS	Batch ID: 10924	Test Cod	Test Code: SW6010B	Units: µg/L			Analysis D	ate 1/19/04	Analysis Date 1/19/04 7:29:05 PM	Prep Date	Prep Date 1/19/04	
Client ID: MW 6			Run ID:	ICP-OPTIN	ICP-OPTIMA_040119B			SeqNo:	368881				
		QC Sample		Ü	QC Spike Original Sample	al Sample			Ü	Original Sample			
Analyte		Result	귐	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Baríum		4191	200	hg/L	4000	67.49	103	75	125	0			
Beryllium		6.777	4.0	hg/L	800	0.2256	97.2	75	125	0			
Cadmium		812.9	5.0	hg/L	800	0	102	75	125	0			
Chromium		3982	9	μg/L	4000	1.368	99.5	75	125	0			
Copper		1925	22	µg/L	2000	16.03	95.4	75	125	0	•	: ,	
Nickel		4034	40	µg/L	4000	7.352	101	75	125	0		3.	
Silver		402.8	7.0	µg/L	400	0	101	75	125	0			
Vanadium		4009	20	µg/L	4000	0	9	75	125	0			
Zinc		4203	70	hg/L	4000	100.4	103	75	125				
Sample ID 0401069-01CMSD	01CMSD	Batch ID: 10924	Test Cade	Code: SW6010B	Units: µg/L			Analysis Da	Analysis Date 1/19/04 7:35:23 PM	7:35:23 PM	Prep Date 1/19/04	1/19/04	
Client ID: MW 6			Run ID:	ICP-OPTIM	ICP-OPTIMA_040119B			SeqNo:	368882				
		QC Sample		O	QC Spike Original Sample	l Sample			0	Original Sample			
Analyte		Result	RL	Units	Amount		%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Ona
Barium		4184	200	µg/L	4000	67.49	103	75	125	4191	0.154	20	
Beryllium		775.6	4.0	hg/L	800	0.2256	6.96	75	125	777.9	0.293	70	
Cadmium		809.5	5.0	hg/L	800	0	101	75	125	812.9	0.42	20	
Chromium		3968	9	hg/L	4000	1.368	99.2	75	125	3982	0.354	20	
Copper		1926	25	hg/L	2000	16.03	95.5	75	125	1925	0.097	20	
Nickei		4018	40	hg/L	4000	7.352	100	75	125	4034	0.386	20	
Silver		401.8	7.0	hg/L	400	0	100	75	125	402.8	0.259	50	
Vanadium		3999	20	hg/L	4000	0	100	75	125	4009	0.262	20	
Zinc		4192	50	hg/L	4000	100.4	102	75	125	4203	0.266	50	

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

CLIENT: Work Order: Project:	Mactec E & C, Inc. 0401069 3651031003 Taunton Parcel 6A	6A					QC SUMMARY REPORT Method Blank	MARY I	Y REPORT Method Blank	日報1
Sample ID MB-10933 Client ID:	333 Batch ID: 10933	Test Code Run ID:	Test Code: SW7421 Run ID: GFAA-60	SW7421 Units: µg/L GFAA-6000_040120B		Analysis Date 1/20/04 3:33:19 PM SeqNo: 369143	4 3:33:19 PM	Prep Date 1/19/04	1/19/04	1
Analyte Lead	QC Sample Result ND	RL 5.0	Units µg/L	QC Spike Original Sample Amount Result	%REC	LowLimit HighLimit	Original Sample or MS Result	%RPD F	RPDLimit	Qua
Sample ID MB-10936 Client ID:	336 Batch ID: 10936	Test Code Run ID:	Test Code: SW7041 Run ID: GFAA-41	SW7041 Units: µg/L GFAA-4100_040120B		Analysis Date 1/20/04 9:05:03 PM SeqNo: 369210	4 9:05:03 PM	Prep Date 1/19/04	1/19/04	
Analyte	QC Sample Result	궚	Units	QC Spike Original Sample Amount Result ?	%REC	LowLimit HighLimit	Original Sample or MS Result	%RPD R	RPDLimit	Qua
Antimony	QN	5.0	hg/L							
Sample ID MB-10934 Client ID:	34 Batch ID: 10934	Test Code Run ID:	Test Code: SW7740 Run ID: GFAA-60	SW7740 Units: µg/L GFAA-6000_040120C		Analysis Date 1/20/04 3:33:19 PM SeqNo: 369163	4 3:33:19 PM	Prep Date 1/19/04	1/19/04	
Analyte	QC Sample Result	귬	Units	QC Spike Original Sample Amount Result ?	%REC	LowLimit HighLimit	Original Sample or MS Result	%RPD R	RPDLimit	Qua
Selenium	QN	5.0	hg/L							
Sample ID MB-10935	35 Batch ID: 10935	Test Code	Test Code: SW7841 Run ID: GFAA-60	SW7841 Units: µg/L GFAA-6000 040120D		Analysis Date 1/20/04 3:33:19 PM SeqNo: 369183	4 3:33:19 PM	Prep Date 1/19/04	1/19/04	
Analyte	QC Sample Result	RL	Units	riginal Sample Result	%REC	H	Original Sample or MS Result	%RPD R	RPDLimit	Ona
Thallium	QN	5.0	µg/l.							

048

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

B - Analyte detected in the associated Method Blank

QC SUMMARY REPORT Method Blank 3651031003 Taunton Parcel 6A Mactec E & C, Inc. 0401069 Work Order: CLIENT: Project:

Date: 22-Jan-04

Paralyke Sample ID MB-10924	Batch ID: 10924	Test Code	Test Code: SW6010B	Units: µg/L		Analysis Da	ate 1/19/04	Analysis Date 1/19/04 6:51:42 PM	Prep Dat	Prep Date 1/19/04		
Coc Sample Coc Sample Coc Spike Original Sample Co	Client ID:		Run ID:	ICP-OPTIM	IA_040119B		SeqNo:	368874				
NB 200 190/L 1		QC Sample		ď	C Spike Original Sample	a)		Ü	Original Sample			
MB-10932 Hg/L Hg/	Analyte	Result	R	Units		%REC	1	HighLimit	or MS Result	%RPD		Qua
MB-10922 A10 Hg/L Hg/L	Barium	QN	200	hg/L								
ND 10 190/L 19	Beryllium	0.1329	4.0	hg/L								~
MB-10922 Batch ID: 10922 Test Code: SW7470A Units: µg/L Analysis Date 11904 Seqho: Seqho	Cadmium	Q	5.0	hg/L								
ND 25 19/1.	Chromium	Q	10	hg/L								
ND 20 19/L	Copper	QN	25	µg/L								
MB-10932 Batch ID: 10932 Test Code: SW7060A Units: µg/L Amalysis Date 1/19/04 3:33:19 PM Prep Date 1/19/04	Nickel	QN	40	hg/L								
MB-10932 Batch ID: 10932 Test Code: SW7060A Units: µg/L Analysis Date 1/20/04 3:33:19 PM Prep Date 1/19/04	Silver	Q	7.0	hg/L								
Day MB-10932 Batch ID: 10932 Test Code: SW7060A Units: pg/L Analysis Date 1/20/04 3:33:19 PM Prep Date 1/19/04	Vanadium	Q	50	hg/L								
D MB-10932 Batch ID: 10932 Test Code: SW7060A Units: pg/L SeqNo: 369123 SeqNo: 369	Zinc	QN	20	hg/L								
Cample Amount Result Amount A	Sample ID MB-10932	Batch ID: 10932	Test Code:	SW7060A	Units: µg/l.		Analysis Da	ite 1/20/04	3:33:19 PM	Prep Date	1/19/04	
CC Sample Result Client ID:		Run ID:	GFAA-6000	_040120A		SeqNo:	369123					
ND 5.0 µg/L Result %REC LowLimit HighLimit or MS Result %RPD RPDLimit Result MB-10922 Batch ID: 10922 Test Code: SW74704 Units: µg/L SeqNo: 368786 SeqNo: 368786 Compiled Sample Result RL Units Amount Result %REC LowLimit HighLimit or MS Result %RPD RPDLimit		QC Sample		đ	C Spike Original Sample			0	riginal Sample			
NB -10922 Batch ID: 10922 Test Code: SW74704 Units: μg/L Analysis Date 1/19/04 12:51:41 PM Prep Date 1/19/04	Analyte	Result	늄			ł	- 1	-lighLimit	or MS Result	%RPD	RPDLimit	Qua
D MB-10922 Batch ID: 10922 Test Code: SW74704 Units: µg/L Analysis Date 1/19/04 12:51:41 PM Prep Date 1/19/04	Arsenic	QN	5.0	µg/L								
Run ID: HG-FIMS_040119A SeqNo: 368786 QC Sample	Sample ID MB-10922	Batch ID: 10922	Test Code:	SW7470A	Units: µg/L		Analysis Dat	te 1/19/04	12:51:41 PM	Prep Date	1/19/04	
QC Spike Original Sample Original Sample Result *RPD Imit ND 0.20 μg/L Original Sample Original Sample Original Sample Original Sample NRPD RPDLimit	Client ID:		Run ID:	HG-FIMS_0	40119A		SeqNo:	368786				
ND 0.20	Analyte	QC Sample Result			C Spike Original Sample Amount				riginal Sample or MS Result	%RPD	RPDLimit	Qua
	Mercury	QN	0.20	µg/L								

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

wery limits B - Analyte detected in the associated Method Blank

NA - Not applicable where J values or ND results occur

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Lab Order:

0401069

Lab ID: 0401069-04	Section 1		Collection Da	te: 1/14/04	
Client Sample ID: MW 9			Matr	ix: GROUN	NDWATER
Analyses	Result	RL	Qual Units	DF	Date Analyzed
ICP METALS TOTAL SW-846		SW6010B			Analyst: SJC
Barium	ND	200	μg/L	1	1/19/04 7:53:11 PM
Beryllium	ND	4.0	µg/L	1	1/19/04 7:53:11 PM
Cadmium	ND	5.0	µg/L	1	1/19/04 7:53:11 PM
Chromium	ND	10	µg/L	1	1/19/04 7:53:11 PM
Copper	ND	25	µg/L	1	1/19/04 7:53:11 PM
Nickel	ND	40	μg/L	1	1/19/04 7:53:11 PM
Silver	ND	7.0	μg/L	1	1/19/04 7:53:11 PM
Vanadium	ND	50	µg/L	1	1/19/04 7:53:11 PM
Zinc	78	20	µg/L	1	1/19/04 7:53:11 PM
ARSENIC, TOTAL		SW7060A			Analyst: APL
Arsenic	ND	5.0	μg/L	1	1/20/04 4:57:09 PM
MERCURY, TOTAL		SW7470A			Analyst: RK
Mercury	ND	0.20	μg/L	1	1/19/04 1:35:29 PM
LEAD, TOTAL		SW7421			Analyst: APL
Lead	ND	5.0	µg/L	1	1/20/04 4:57:09 PM
ANTIMONY, TOTAL		SW7041			Analyst: APL
Antimony	ND	5.0	μg/L	1	1/20/04 10:29:39 PM
SELENIUM, TOTAL		SW7740			Analyst: APL
Selenium	ND	5.0	μg/L	1	1/20/04 4:57:09 PM
THALLIUM, TOTAL		SW7841			Analyst: APL
Thallium	ND	5.0	μg/L	1	1/20/04 4:57:09 PM

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Lab Order;

0401069

Lab ID: 0401069-0	3		Collection T	Date: 1/14/04	
Client Sample ID: MW 7-DU	P	*		trix: GROU	
Analyses	Result	RL	Qual Units	DF	Date Analyzed
ICP METALS TOTAL SW-846		SW6010B		1	Analyst: SJC
Barium	ND	200	μg/L	1	1/19/04 7:47:25 PM
Beryllium	ND	4.0	μg/L	1	1/19/04 7:47:25 PM
Cadmium	ND	5.0	μg/L	1	1/19/04 7:47:25 PM
Chromium	ND	10	μg/L	1	1/19/04 7:47:25 PM
Copper	ND	25	µg/L	1	1/19/04 7:47:25 PM
Nickel	ND	40	μg/L	1	1/19/04 7:47:25 PM
Silver	ND	7.0	µg/L	1	1/19/04 7:47:25 PM
Vanadium	ND	50	μg/L	1	1/19/04 7:47:25 PM
Zinc	330	20	μg/L	1	1/19/04 7:47:25 PM
ARSENIC, TOTAL		SW7060A			Analyst: APL
Arsenic	ND	5.0	μg/L	1	1/20/04 4:48:39 PM
MERCURY, TOTAL	:	SW7470A			Analyst: RK
Mercury	ND	0.20	μg/L	1	1/19/04 1:31:34 PM
LEAD, TOTAL		SW7421			Analyst: APL
Lead	ND	5.0	µg/L	1	1/20/04 4:48:39 PM
ANTIMONY, TOTAL:		SW7041			Analyst: APL
Antimony	ND	5.0	µg/L	1	1/20/04 10:21:07 PM
SELENIUM, TOTAL	4	SW7740			Analyst: APL
Selenium	ND	·5.0	;µg/L	. 1	1/20/04 4:48:39 PM
THALLIUM, TOTAL	,	SW7841			Analyst: APL
Thallium	ND	5.0	µg/L	1	1/20/04 4:48:39 PM

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Lab Order:

0401069

Lab ID:	0401069-02	to the state of the		Collect	tion Date: 1/14/0)4
Client Sample ID:	MW 7				Matrix: GRO	UNDWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
ICP METALS TOTA	L SW-846		SW6010B	÷.	÷	Analyst: SJC
Barium		:ND	200	μg/L	1	1/19/04 7:41:39 PM
Beryllium		ND	4.0	μg/L	1	1/19/04 7:41:39 PM
Cadmium		ND	5.0	μg/L	1	1/19/04 7:41:39 PM
Chromium		:ND	10	µg/L	1	1/19/04 7:41:39 PM
Copper		ND	25	µg/L	1	1/19/04 7:41:39 PM
Nickel		ND	40	µg/L	1	1/19/04 7:41:39 PM
Silver		ND	7.0	μg/L	1	1/19/04 7:41:39 PM
Vanadium		ND	50	μg/L	1	1/19/04 7:41:39 PM
Zinc		340	20	μg/L	1	1/19/04 7:41:39 PM
ARSENIC, TOTAL			SW7060A			Analyst: APL
Arsenic		:ND	5.0	µg/L	1	1/20/04 4:40:38 PM
MERCURY, TOTAL			SW7470A			Analyst: RK
Mercury		ND	0.20	μg/L	1 ·	1/19/04 1:27:36 PM
LEAD, TOTAL			SW7421			Analyst: APL
Lead		ND	5.0	µg/L	1	1/20/04 4:40:38 PM
ANTIMONY, TOTAL	-		SW7041			Analyst: APL
Antimony		ND	5.0	µg/L	1	1/20/04 10:12:36 PM
SELENIUM, TOTAL	•		SW7740			Analyst: APL
Selenium		ND	5.0	μg/L	1	1/20/04 4:40:38 PM
THALLIUM, TOTAL	•		SW7841			Analyst: APL
Thallium		:ND	5.0	µg/L	1	1/20/04 4:40:38 PM
Thallium		:ND	5.0	µg/L	1	1/20/04 4:40:38 PM

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-05C

Client Sample ID: WES MW3

Collection Date: 10/16/03

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
ICP METALS TOTAL SW-846	SV	V6010B			Analyst: SJC
Barium	ND	200	μg/L	1	10/22/03 7:40:40 PM
Beryllium	ND	5.0	μg/L	1	10/22/03 7:40:40 PM
Cadmium	ND	5.0	µg/L	1	10/22/03 7:40:40 PM
Chromium	30	10	µg/L	1	10/22/03 7:40:40 PM
Nickel	41	40	µg/L	1	10/22/03 7:40:40 PM
Silver	ND	7.0	μg/L	1	10/22/03 7:40:40 PM
Vanadium	ND	50	μg/L	1	10/22/03 7:40:40 PM
Zinc	590	20	μg/L	1	10/22/03 7:40:40 PM
ARSENIC, TOTAL	SI	N7060A			Analyst: APL
Arsenic	40	15	μg/L	3	10/24/03 10:39:54 PM
MERCURY, TOTAL	SI	W7470A			Analyst: RK
Mercury	0.58	0.20	µg/L	1 .	10/21/03 1:50:48 PM
LEAD, TOTAL	SI	N7421			Analyst: APL
Lead	890	500	µg/L	100	10/24/03 4:35:31 PM
ANTIMONY, TOTAL	SI	N7041			Analyst: APL
Antimony.	27	5.0	µg/L	1	10/28/03 12:23:38 AM
SELENIUM, TOTAL	SI	N7740			Analyst: APL
Selenium	ND	5.0	μg/L	1	10/24/03 7:45:03 PM
THALLIUM, TOTAL	S	W7841			Analyst: APL
Thallium	ND	5.0	μg/L	1	10/24/03 7:45:03 PM

Date: 30-Oct-03

CLIENT:

Mactec E & C, Inc.

Lead

Antimony

Selenium

Thallium

ANTIMONY, TOTAL

SELENIUM, TOTAL

THALLIUM, TOTAL

Lab Order:

1

1

1

1

0310105

Analyst: APL

Analyst: APL

Analyst: APL

10/24/03 5:52:57 PM

10/28/03 1:34:56 AM

10/24/03 5:52:57 PM

10/24/03 5:52:57 PM

Project: 3	651031003 Taun	ton - Parcel GA				
Lab ID: Client Sample ID:	0310105-03 WES MW4			Collecti	on Date: 10/1 Matrix: GRO	4/03 DUNDWATER
Analyses		Result	RL	Qual Units	DF	Date Analyzed
ICP METALS TOTA	L SW-846		SW6010B			Analyst: SJC
Barium		ND	200	μg/L	1	10/22/03 8:26:51 PM
Beryllium		ND	4.0	μg/L	1	10/22/03 8:26:51 PM
Cadmium		ND	5.0	μg/L	1	10/22/03 8:26:51 PM
Chromium	•	ND	10	µg/L	1	10/22/03 8:26:51 PM
Nickel		ND	40	μg/L	1	10/22/03 8:26:51 PM
Silver		ND	7.0	µg/L	1	10/22/03 8:26:51 PM
Vanadium		ND	50	µg/L	1	10/22/03 8:26:51 PM
Zinc	•	120	20	µg/L	1	10/22/03 8:26:51 PM
ARSENIC, TOTAL	•	:	SW7060A			Analyst: APL
Arsenic		ND	5.0	μg/L	1	10/24/03 5:52:57 PM
MERCURY, TOTAL			SW7470A		•	Analyst: RK
Mercury		ND	0.20	µg/L	1	10/21/03 12:47:10 PM
LEAD, TOTAL			SW7421			Analyst: APL

5.0

5.0

5.0

5.0

SW7041

SW7740

SW7841

'µg/L

µg/L

μg/L

µg/L

ND

ND

ND

ND

CLIENT:

Mactec E & C, Inc.

Work Order:

0401069

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Sample Matrix Spike

Sample ID 0401069-01CMS	Batch ID: 10934	Test Code:	SW7740	Units: μ	g/L	······································	Analysis	Date 1/20/0	4 4:23:34 PM	Prep Dat	e 1/19/04	
Client ID: MW 6		Run ID:	GFAA-6	000_040120C			SeqNo:	369168				
	QC Sample			QC Spike Orig	inal Sample	•			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Selenium	35.78	5.0	µg/L	40	0	89.5	75	125	0			
Sample ID 0401069-01CMSD	Batch ID: 10934	Test Code:	SW7740	Units: μ	g/L		Analysis I	Date 1/20/04	4 4:32:16 PM	Prep Dat	e 1/19/04	
Client ID: MW 6		Run ID:	GFAA-6	000_040120C			SeqNo:	369169				
	QC Sample			QC Spike Orig	inal Sample)			Original Sample			
Analyte	Result	RL'	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Selenium	34.65	5.0	μg/L	40	0	86.6	75	125	35.78	3.22	20	
Sample ID 0401069-01CMS	Batch ID: 10935	Test Code:	SW7841	Units: μ	g/L	***************************************	Analysis I	Date 1/20/04	4:23:34 PM	Prep Date	e 1/19/04	
Client ID: MW 6		Run ID:	GFAA-6	000_04012 0 D			SeqNo:	369188				
•	QC Sample			QC Spike Orig	inal Sample	:			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Thallium	26.59	5.0	µg/L	40	0	66.5	75	125	0			S
Sample ID 0401069-01CMSD	Batch ID: 10935	Test Code:	SW7841	Units: μς	J/L		Analysis [Date 1/20/04	4:32:16 PM	Prep Date	1/19/04	
Client ID: MW 6		Run ID:	GFAA-60	000_040120D			SeqNo:	369189				
	QC Sample			QC Spike Origi	inal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Thatlium	25.78	5.0	μg/L	40	0	64.5	75	125	26.59	3.1	20	s

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 22-Jan-04

CLIENT:

Mactec E & C, Inc.

Work Order:

0401069

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Laboratory Control Spike

Sample ID LCS-10924	Batch ID: 10924	Test Code	: SW6010	3 Units: μ	ıg/L		Analysis	Date 1/19/0	4 6:55:30 PM	Prep Da	te 1/19/04	
Client ID:		Run ID:	ICP-OPT	IMA_040119B			SeqNo:	368875		•		
	QC Sample			QC Spike Orig	ginal Sample	.			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit		or MS Result	%RPD	RPDLimit	Qua
Barium	4177	200	μg/L	4000	0	104	80	120	. 0			
Beryllium	781.6	4.0	μg/L	800	. 0	97.7	80	120	0			
Cadmium	826.3	5.0	μg/L	800	0	103	80	120	0			
Chromium	4037	10	μg/L	4000	. 0	101	80	120	0			
Copper	1913	25	μg/L	2000	0	95.6	80	120	O O			
Nickel	4086	40	μg/L	4000	0	102	80	120	0			
Silver	404.2	7.0	μg/L	400	0.	101	80	120	. 0			
Vanadium	4055	50	μg/L	4000	0	101	80	120	0		•	
Zinc	4183	20	µg/L	4000	0	105	80	120	0			
Sample ID LCS-10932	Batch ID: 10932	Test Code	SW7060A	Units: µ	g/L		Analysis I	Date 1/20/04	3:41:18 PM	Prep Date	e 1/19/04	·
Client ID:		Run ID:	GFAA-60	00_040120A			SeqNo:	369124	e M			
	QC Sample			QC Spike Orig	inal Sample	;		(Original Sample			
Analyte	Result	RL	Units	Amount		%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Arsenic	47.7	5.0	µg/L	50	0	95.4	80	120	0			
Sample ID LCS-10922	Batch ID: 10922	Test Code:	SW7470A	Units: μο	g/L		Analysis [Date 1/19/04	12:55:39 PM	Prep Date	e 1/19/04	
Client ID:		Run ID:	HG-FIMS_	_040119A			SeqNo:	368787				
· ·	QC Sample			QC Spike Origi	inal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Mercury	4.084	0.20	μg/L	4	0	102	80	120	0		. j.,8	
Qualifiers: ND - Not De	etected at the Reporting Limit	S-	Spike Recov	ery outside acce	nted recovers	limite	R _ Analys	te detected in	the associated Meth	and Plank		
-	letected below quantitation limits		-	•	•	11111117	n - Wilark	ic actioned M	me essociated intelli	IOU DIBIIK		
J - Allalyte o	iciccica ociow quantitation iimiis	K-	KPD ontside	accepted recove	ery limits		NA - Not	applicable wh	ere J values or ND r	esults occur		

NA - Not applicable where J values or ND results occur

LOTA

AMRO Environmental Laboratories Corp.

Date: 30-Oct-03

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton - Parcel GA

Lab Order:

0310105

Lab ID: 0310105-02		·	Collection D	ate: 10/14/	/03
Client Sample ID: ECE MW4					JNDWATER
Analyses	Result	RL	Qual Units	DF	Date Analyzed
CP METALS TOTAL SW-846		SW6010B			Analyst: SJC
Barium	470	200	μg/L	1	10/22/03 8:13:04 PM
Beryllium	ND	4.0	µg/L	1	10/22/03 8:13:04 PM
Cadmium	ND	5.0	µg/L	. 1	10/22/03 8:13:04 PM
Chromium	ND	10	μg/L	1	10/22/03 8:13:04 PM
Nickel	ND	40	μg/L	1	10/22/03 8:13:04 PM
Silver	ND	7.0	μg/L	1	10/22/03 8:13:04 PM
Vanadium	. ND	. 50	μg/L	1	10/22/03 8:13:04 PM
Zinc	90	20	μg/L	. 1	10/22/03 8:13:04 PM
ARSENIC, TOTAL		SW7060A		·	Analyst: APL
Arsenic	ND	5.0	µg/L	1	10/24/03 5:44:01 PM
MERCURY, TOTAL		SW7470A			Analyst: RK
Mercury	0.21	0.20	µg/L	1	10/21/03 12:43:15 PM
EAD, TOTAL		SW7421			Analyst: APL
Lead	63	5.0	μg/L	1	10/24/03 5:44:01 PM
NTIMONY, TOTAL		SW7041			Analyst: APL
Antimony	ND	5.0	µg/L	1	10/28/03 1:26:09 AM
ELENIUM, TOTAL		SW7740	• .		Analyst: APL
Selenium	ND	5.0	µg/L	1	10/24/03 5:44:01 PM
HALLIUM, TOTAL		SW7841			Analyst: APL
Thallium	ND	5.0	µg/L	1	10/24/03 5:44:01 PM

111 Herrick Street, Merrimack, NH 03054 TEL: (603) 424-2022 · FAX: (603) 429-8496

January 28, 2004

ANALYTICAL TEST RESULTS

Mark Salvetti Mactec E & C, Inc. 107 Audubon Rd. Suite 301

Wakefield, MA 01880 TEL: 781-245-6606

FAX: (781) 249-5060

Subject: 3651031003 Taunton Parcel 6A

Workorder No.: 0401069

Dear Mark Salvetti:

AMRO Environmental Laboratories Corp. received 5 samples on 1/15/04 for the analyses presented in the following report.

AMRO operates a Quality Assurance Program which meets or exceeds National Environmental Laboratory Accreditation Conference (NELAC), state, and EPA requirements.

The enclosed Sample Receipt Checklist details the condition of your sample(s) upon receipt. Please be advised that any unused sample volume and sample extracts will be stored for a period of 60 days from sample receipt date (90 days for samples from New York). After this time, AMRO will properly dispose of the remaining sample(s). If you require further analysis, or need the samples held for a longer period, please contact us immediately.

This report consists of a total of 54 pages. This letter is an integral part of your data report. All results in this project relate only to the sample(s) as received by the laboratory and documented in the Chain-of-Custody. This report shall not be reproduced except in full, without the written approval of the laboratory. If you have any questions regarding this project in the future, please refer to the Workorder Number above.

Sincerely,

Nancy Stewart

Vice President/LabDirector

State Certifications: NH (NELAC): 1001, MA: M-NH012, CT: PH-0758, NY: 11278 (NELAC), ME: NH012 and

1001, NJ: NH125, RI: 00105, U.S. Army Corps of Engineers (USACE), Naval Facilities

Engineering Service Center (NFESC).

Hard copy of the State Certification is available upon request.

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Laboratory Control Spike

Batch ID: 10388	Test Code	: SW7421	Units: µg	/L		Analysis I	Date 10/23/0	3 8:04:39 PM	Prep Date	10/22/03	
	Run JD:	GFAA-6	000_031023B			SeqNo:	352315				
QC Sample		•	QC Spike Origin	nal Sample)		. (Original Sample			
Result	RL	Units	Amount			LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
51.9	5.0	μg/L	50	0	104	80	120	0			
Batch ID: 10391	Test Code	SW7041	Units: µg/	L		Analysis [Date 10/27/0	3 9:41:55 PM	Prep Date	10/22/03	
	Run ID:	GFAA-4	100_031027B			SeqNo:	352774				
QC Sample			QC Spike Origin	al Sample			(Original Sample	e e e e e e e e e e e e e e e e e e e	*	
Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
51.02	5.0	μg/L	50.1	0	102	80	120	0			
Batch ID: 10389	Test Code:	SW7740	Units: µg/	L.		Analysis D	ate 10/23/0	3 8:04:39 PM	Prep Date	10/22/03	
									•		
	Run ID:	GFAA-60	00_031023C			SeqNo:	352387		,		
QC Sample	Run ID:	GFAA-60	000_031023C QC Spike Origin	al Sample		SeqNo:		Original Sample	·		
QC Sample Result	Run ID:	GFAA-60 Units			%REC	SeqNo:	(Original Sample or MS Result	%RPD	RPDLimit	Qua
,			QC Spike Origin			·	C	•	%RPD	RPDLimit	Qua
Result	RL	Units µg/L	QC Spike Origin	Result 0	%REC	LowLimit 80	HighLimit 120	or MS Result		RPDLimit 10/22/03	Qua
Result 37.28	RL 5.0	Units µg/L SW7841	QC Spike Origin Amount 40	Result 0	%REC	LowLimit 80	HighLimit 120	or MS Result			Qua
Result 37.28	RL 5.0 Test Code:	Units µg/L SW7841	QC Spike Origin Amount 40 Units: µg/	Result 0	93.2	LowLimit 80 Analysis D	HighLimit 120 Pate 10/23/03 352414	or MS Result			Qua
Result 37.28 Batch ID: 10390	RL 5.0 Test Code:	Units µg/L SW7841	QC Spike Origin Amount 40 Units: µg/ 00_031023D	Result 0	%REC 93.2	LowLimit 80 Analysis D	HighLimit 120 Pate 10/23/03 352414	or MS Result 0 3 8:04:39 PM			Qua
	QC Sample Result 51.9 Batch ID: 10391 QC Sample Result 51.02	QC Sample Result RL 51.9 5.0 Batch ID: 10391 Test Code: Run ID: QC Sample Result RL 51.02 5.0	QC Sample Result RL Units 51.9 5.0 μg/L Batch ID: 10391 Test Code: SW7041 Run ID: GFAA-47 QC Sample Result RL Units 51.02 5.0 μg/L	Run ID: GFAA-6000_031023B QC Sample Result QC Spike Origin Amount 51.9 5.0 μg/L 50 Batch ID: 10391 Test Code: SW7041 Units: μg/Result Units: μg/Result QC Sample Result QC Spike Origin Amount QC Spike Origin Amount 51.02 5.0 μg/L 50.1	Run ID: GFAA-6000_031023B QC Sample Result QC Spike Original Sample Result QC Sample Result QC Spike Original Sample QC Spike Original Sample QC Spike Original Sample Result Spike Original Sample Result QC Spike Original Sample Original Sample Result Spike Original Sample Result QC Spike Original Sample Ori	Run ID: GFAA-6000_031023B QC Sample QC Spike Original Sample %REC	Run D: GFAA-6000_031023B SeqNo: QC Sample Result RL Units Amount Result %REC LowLimit 51.9 5.0 μg/L 50 0 104 80 Batch D: 10391 Test Code: SW7041 Units: μg/L Analysis Equal Run D: GFAA-4100_031027B SeqNo: QC Sample QC Spike Original Sample Result RL Units Amount Result %REC LowLimit 51.02 5.0 μg/L 50.1 0 102 80 Result Result 50.1 0 102 80 Result Result Result %REC Result %REC Result %REC Result %REC Result %REC %RE	QC Sample Result QC Spike Original Sample Res	Run ID: GFAA-6000_031023B SeqNo: 352315 QC Sample Result QC Spike Original Sample Coriginal Sample Result RL Units Amount Result %REC LowLimit HighLimit or MS Result 51.9 5.0 μg/L 50 0 104 80 120 0 Batch ID: 10391 Test Code: SW7041 Units: μg/L Analysis Date 10/27/03 9:41:55 PM Run ID: GFAA-4100_031027B SeqNo: 352774 QC Sample Result QC Spike Original Sample Original Sample Result RL Units Amount Result %REC LowLimit HighLimit or MS Result 51.02 5.0 μg/L 50.1 0 102 80 120 0	Run D: GFAA-6000_031023B SeqNo: 352315 QC Sample Result RL Units Amount Result %REC LowLimit HighLimit or MS Result %RPD 51.9 5.0 μg/L 50 0 104 80 120 0 Batch D: 10391 Test Code: SW7041 Units: μg/L Analysis Date 10/27/03 9:41:55 PM Prep Date Run D: GFAA-4100_031027B SeqNo: 352774 QC Sample QC Spike Original Sample Original Sample Result RL Units Amount Result %REC LowLimit HighLimit or MS Result %RPD 51.02 5.0 μg/L 50.1 0 102 80 120 0	Run D: GFAA-6000_031023B SeqNo: 352315 SeqNo: 352315

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

69

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Laboratory Control Spike

Sample ID LCS-10353	Batch ID: 10353	Test Code	: SW601	DB Units: μ	g/L		Analysis I	Date 10/22/	03 5:42:51 PM	Prep Dat	e 10/22/03	
Client ID:		Run ID:	ICP-OP	TIMA_031022C	-		SeqNo:	351219		•		
	QC Sample			QC Spike Orig	inal Sample				Original Sample		4	
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Barium	4288	200	μg/L	4000	0	107	80	120	0			
Beryllium	829.7	4.0	μg/L	800	0	104	80	120	0			
Cadmium	858.4	5.0	μg/L	800	0	107	80	120	0			
Chromium	4169	10	μg/L	4000	0	104	80	120	0			
Nickel	4268	40	μg/L	4000	0	107	80	120	0			
Silver	414.9	7.0	μg/L	400	0	104	80	120	0			
Vanadium	4169	50	µg/L	4000	0	104	80	120	0			
Zinc	4314	20	μg/L	4000	0	108	80	120				
Sample ID LCS-10387	Batch ID: 10387	Test Code	: SW7060	A Units: μς]/L		Analysis [ate 10/23/0	3 8:04:39 PM	Prep Date	10/22/03	
Client ID:		Run ID:	GFAA-6	000_031023A			SeqNo:	352279				
	QC Sample			QC Spike Orig	inal Sample				Original Sample			
Analyte	QC Sample Result	RL	Units	QC Spike Orig Amount	inal Sample Result		LowLimit	HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
		RL 5.0	Units µg/L				LowLimit 80		•	%RPD	RPDLimit	Qua
Arsenic	Result		µg/∟	Amount 50	Result 0	%REC	80	HighLimit 120	or MS Result		RPDLimit 10/21/03	Qua
Arsenic Sample ID LCS-10341	Result 49.76	5.0	μg/L SW7470	Amount 50	Result 0	%REC	80	HighLimit 120	or MS Result			Qua
Arsenic Sample ID LCS-10341	Result 49.76	5.0 Test Code	μg/L SW7470	Amount 50 A Units: µg	Result 0	%REC	80 Analysis D	HighLimit 120 Pate 10/21/0 350808	or MS Result			Qua
	Result 49.76 Batch ID: 10341	5.0 Test Code	μg/L SW7470	Amount 50 A Units: μς S_031021A	Result 0	%REC 99.5	80 Analysis D	HighLimit 120 Pate 10/21/0 350808	or MS Result 0 3 1:06:59 PM			Qua

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

89

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Sample Matrix Spike

Sample ID	0310133-01CMS	Batch ID: 10389	Test Code:	SW7740	Units: µg/	L		Analysis I	Date 10/23/0	3 10:37:41 PM	Prep Date	e 10/22/03	
Client ID:	ECE MW3		Run ID:	GFAA-60	000_031023C			SeqNo:	352403				
		QC Sample			QC Spike Origin	al Sample	•		:	Original Sample			
Analyte		Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Selenium		39.69	5.0	μg/L	40	0	99.2	75	125	0			
Sample ID	0310133-01CMSD	Batch ID: 10389	Test Code:	SW7740	Units: µg/	L		Analysis (Date 10/23/0	3 10:46:33 PM	Prep Date	10/22/03	***************************************
Client ID:	ECE MW3		Run ID:	GFAA-60	000_031023C			SeqNo:	352404				
		QC Sample			QC Spike Origin	al Sample	,		, (Original Sample			
Analyte		Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Selenium		39.79	5.0	μg/L	40	0	99.5	75	125	39.69	0.244	20	
Sample ID	0310133-01CMS	Batch ID: 10390	Test Code:	SW7841	Units: µg/	L.		Analysis [Date 10/23/0	3 10:37:41 PM	Prep Date	10/22/03	ecolita insurante
Client ID:	ECE MW3		Run ID:	GFAA-60	00_031023D			SeqNo:	352430				
								•					
		QC Sample			QC Spike Origin	al Sample		. •	(Original Sample			
Analyte		QC Sample . Result	RL	Units	QC Spike Origin	-	%REC	LowLimit		Original Sample or MS Result	%RPD	RPDLimit	Qua
Analyte Thallium		•		Units µg/L	•	-		LowLimit 75			%RPD	RPDLimit	Qua S
Thallium	0310133-01CMSD	Result	RL	µg/L	Amount	Result 0	%REC	75	HighLimit 125	or MS Result		RPDLimit 10/22/03	
Thallium	0310133-01CMSD ECE MW3	Result 10.38	RL 5.0	μg/L SW7841	Amount 40	Result 0	%REC	75	HighLimit 125	or MS Result			
Thallium Sample ID		Result 10.38	RL 5,0 Test Code:	μg/L SW7841	Amount 40 Units: µg/	Result 0	%REC 26	75 Analysis [HighLimit 125 Date 10/23/0 352431	or MS Result			
Thallium Sample ID		Result 10.38 Batch ID: 10390	RL 5,0 Test Code:	μg/L SW7841	Amount 40 Units: µg/ 00_031023D	Result 0	%REC 26	75 Analysis [HighLimit 125 Date 10/23/0 352431	or MS Result 0 3 10:46:33 PM			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-05A

Client Sample ID: Trip Blank

Collection Date: 1/14/04

Matrix: AQUEOUS

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	µg/L	1	1/21/04 11:34:00 AM
1,4-Dioxane	ND	50	μg/L	1	1/21/04 11:34:00 AM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
Ethylbenzene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
Hexachlorobutadiene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
2-Hexanone	ND	10	µg/L	1	1/21/04 11:34:00 AM
Isopropylbenzene	ND	2.0	µg/L	1	1/21/04 11:34:00 AM
4-Isopropyitoluenė	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
2-Butanone	ND	10	μg/L	1	1/21/04 11:34:00 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/21/04 11:34:00 AM
Methyl tert-butyl ether	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
Methylene chloride	ND	5:0	μg/L	1	1/21/04 11:34:00 AM
Naphthalene	ND	5.0	μg/L	1	1/21/04 11:34:00 AM
n-Propylbenzene	ND	2.0	µg/L	1	1/21/04 11:34:00 AM
Styrene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
Tetrachloroethene	ND	2.0	µg/L	1	1/21/04 11:34:00 AM
Tetrahydrofuran	ND	10	µg/∟	1	1/21/04 11:34:00 AM
Toluene	ND	2.0	µg/L	1	1/21/04 11:34:00 AM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
Trichloroethene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
Trichlorofluoromethane	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
Vinyl chloride	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
o-Xylene	ND	2.0	µg/∟	1	1/21/04 11:34:00 AM
m,p-Xylene	ND	2.0	μg/L	1	1/21/04 11:34:00 AM
Surr: Dibromofluoromethane	99.2	85-120	%REC	1	1/21/04 11:34:00 AM
Surr: 1,2-Dichloroethane-d4	102	75-124	%REC	1	1/21/04 11:34:00 AM
Surr: Toluene-d8	105	82-112	%REC	1	1/21/04 11:34:00 AM
Surr: 4-Bromofluorobenzene	109	77-117	%REC	1	1/21/04 11:34:00 AM

Date: 28-Jan-04

CLIENT:

Mactec E & C, Inc.

Work Order:

0401069

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Method Blank

Sample ID mb-01/21/04	Batch ID: R22269	Test Cod	e: SW8260	B Units: μ	g/L		Analysis I	Date 1/21/04	4 10:59:00 AM	Prep Date	e 1/21/04	
Client ID:		Run ID:	V-1_040	121A			SeqNo:	369312				
	QC Sample			QC Spike Orig	jinal Sample)			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Acetone	ND	10	μg/L									
Tertiary Amyl Methyl Ether	ND	2.0	μg/L									
Benzene	ND	1.0	μg/L									
Bromobenzene	ND	2.0	μg/L				•					
Bromochloromethane	ND	2.0	μg/L									
Bromodichloromethane	ND	2.0	µg/L									
Bromoform	ND	2.0	μg/L									
Bromomethane	ND	2.0	μg/L									
sec-Butylbenzene	ND	2.0	μg/L									
n-Butylbenzene	ND	2.0	μg/L									
tert-Butylbenzene	ND	2.0	μg/L									
Carbon disulfide	ND	2.0	μg/L									
Carbon tetrachloride	ND	2.0	μg/L									
Chlorobenzene	ND	2.0	μg/L									
Dibromochloromethane	·ND	2.0	μg/L									
Chloroethane	ND	5.0	μg/L									
Chloroform	ND	2.0	μg/L									
Chloromethane	ND	3.0	μg/L									
2-Chlorotoluene	ND	2.0	μg/L									
4-Chlorotoluene	ND	2.0	μg/L									
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L									
1,2-Dibromoethane	ND	2.0	μg/L									
Dibromomethane	ND	2.0	µg/L									
1,3-Dichlorobenzene	ND	2.0	μg/L									*
1,2-Dichlorobenzene	ND	2.0	μg/L						•			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits R - RPI

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

NA - Not applicable where J values or ND results occur

CLIENT: Work Order:	Mactec E & C, Inc. 0401069				QC SUMMARY REPORT
Project:	3651031003 Taunt	on Parcel 6A			Method Blank
1,4-Dichlorobenzer	ne	ND	2.0	μg/L	
Dichlorodifluorome	thane	ND	5.0	μg/L	
1,1-Dichloroethane	L	ND	2.0	µg/L	
1,2-Dichloroethane		ND	2.0	μg/L	
1,1-Dichloroethene		ND	1.0	μg/L	
cis-1,2-Dichloroeth	ene	ND	2.0	µg/L	
trans-1,2-Dichloroe	thene	ND	2.0	µg/L	
1,2-Dichloropropan	e	ND	2.0	μg/L	
1,3-Dichloropropan	e	ND	2.0	µg/L	
2,2-Dichloropropan	е	ND	2.0	µg/L	
1,1-Dichloropropen	е	ND	2.0	µg/L	
cis-1,3-Dichloropro	pene	ND	1.0	μg/L	
trans-1,3-Dichlorop	ropene	ND	1.0	µg/L	
Diethyl ether		ND	5.0	μg/L	
Diisopropyl ether		ND	2.0	µg/L	
1,4-Dioxane		ND	50	μg/L	
Ethyl Tertiary Butyl	Ether	ND	2.0	μg/L	
Ethylbenzene		ND	2.0	µg/L	
Hexachlorobutadie	ne	ND	2.0	μg/L	
2-Hexanone		ND	10	μg/L	
Isopropylbenzene		· ND	2.0	μg/L	
4-Isopropyitoluene		ND	2.0	μg/L	
2-Butanone		ND	10	μg/L	
4-Methyl-2-pentano	ne	ND	10	μg/L	
Methyl tert-butyl eth	ner	ND	2.0	µg/L	
Methylene chloride		ND	5.0	μg/L	
Naphthalene		ND	5.0	μg/L	
n-Propylbenzene		ND	2.0	μg/L	
Styrene		ND	2.0	µg/L	
1,1,1,2-Tetrachloroe	ethane	ND	2.0	μg/L	
1,1,2,2-Tetrachloroe		ND	2.0	μg/L	

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

B - Analyte detected in the associated Method Blank

Date: 28-Jan-04

CLIENT: Mactec E & Work Order: 0401069	ŕ	<i>c</i>						(QC SUMMARY	REPORT
	3 Taunton Parcel	0A							^**	
Tetrachloroethene	ND	2.0	μg/L							
Tetrahydrofuran	ND	10	μg/L							
Toluene	ND	2.0	μg/L							
1,2,4-Trichlorobenzene	ND	2.0	μg/L							
1,2,3-Trichlorobenzene	ND	2.0	μg/L							
1,1,1-Trichloroethane	ND	2.0	µg/L							
1,1,2-Trichloroethane	ND	2.0	μg/L							
Trichloroethene	ND	2.0	μg/L						•	
Trichlorofluoromethane	ND	2.0	µg/L							
1,2,3-Trichloropropane	ND	2.0	μg/L							
1,2,4-Trimethylbenzene	ND	2.0	μg/L							
1,3,5-Trimethylbenzene	ND	2.0	μg/L							
Vinyl chloride	ND	2.0	μg/L							
o-Xylene	ND	2.0	μg/L							
m,p-Xylene	ND	2.0	μg/L			* .				
Surr: Dibromofluoromethane	25.7	2.0	μg/L	25	0	103	85	120	0	
Surr: 1,2-Dichloroethane-d4	26.2	2.0	μg/L	25	0	105	75	124	0.	
Surr: Toluene-d8	26.51	2.0	μg/L	25	0	106	82	112	0	
Surr: 4-Bromofluorobenzene	26.97	2.0	μg/L	25	0	108	77	117	0	

Qualifiers: ND-

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Mactec E & C, Inc.

Work Order:

0401069

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Matrix Spike - Full List

Sample ID 0401069-01Amsf	Batch ID: R22269	Test Cod	e: SW8260	B Units: μg	/L		Analysis I	Date 1/21/04	17:37:00 PM	Prep Dat	e 1/21/04	
Client ID: MW 6		Run ID:	V-1_040	121A			SeqNo:	369310				
	QC Sample			QC Spike Origi	nal Sample			•	Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
Acetone	48.05	50	µg/L	100	0	48	70	130	0			JS
Tertiary Amyl Methyl Ether	85.2	10	μg/L	100	0	85.2	70	130	0			
Benzene	90.1	5.0	μg/L	100	0	90.1	81	115	0			
Bromobenzene	85.25	10	μg/L	100	0	85.2	83	118	. 0			
Bromochloromethane	91.7	10	µg/L	100	0	91.7	70	126	0			
Bromodichloromethane	79.9	10	µg/L	100	0	79.9	72	119	0			
Bromoform	66.15	10	μg/L	100	0	66.2	70	127	0		•	s
Bromomethane	88.8	10	μg/L	100	0	88.8	70	130	0			
sec-Butylbenzene	92.6	10	μg/L	100	0	92.6	70	130	0			
n-Butylbenzene	83.45	10	μg/L	100	0	83.4	70	130	0			
tert-Butylbenzene	89,55	10	μg/L	100	0	89.6	70	130	0			
Carbon disulfide	77.45	10	μg/L	100	0	77.4	70	130	0			
Carbon tetrachloride	94.35	10	μg/L	100	0	94.4	78	124	0			
Chlorobenzene	89	10	μg/L	100	0	89	80	115	0			
Dibromochloromethane	72.45	10	μg/L	100	0	72.4	70	127	0			
Chloroethane	91.45	25	μg/L	100	0	91.5	70	130	0			
Chloroform	87.4	10	μg/L	100	0	87.4	80	119	0			
Chloromethane	64.9	15	μg/L	100	0	64.9	70	130	0			s
2-Chlorotoluene	87.6	10	µg/L	100	0	87.6	70	130	0			
4-Chlorotoluene	84.9	. 10	µg/Ł	100	0	84.9	78	130	0			
1,2-Dibromo-3-chloropropane	62.7	25	μg/L	100	0	62.7	70	130	0			s
1,2-Dibromoethane	. 93	10	μg/L	100	0	93	70	130	0			
Dibromomethane	91.45	10	µg/L	100	0	91.5	70	129	0			
1,3-Dichlorobenzene	89.45	10	μg/L	100	0	89.4	81	130	0			
1,2-Dichlorobenzene	87,3	10	μg/L	100	0	87.3	80	124	0			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Work Order:	Mactec E & C 0401069	, Inc.								QC SUMMARY F	REPORT
Project:		Taunton Parcel	6 A							Matrix Spike	- Full List
1,4-Dichlorobenze	ne	88.45	10	μg/L	100	0	88.4	74	130	0	
Dichlorodifluorome		40.95	25	μg/L	100	0	41	70	130	0	s
1,1-Dichloroethane	9	89.85	10	μg/L	100	Ô	89.8	83	130	0	•
1.2-Dichloroethane		85.2	10	μg/L	100	0	85.2	70	125	0	
1,1-Dichloroethene		100	5.0	μg/L	100	0	100	72	130	0	
cis-1.2-Dichloroeth		85.5	10	μg/L	100	0	85.5	76	125	. 0	
trans-1,2-Dichloroe	ethene	95.6	10	μg/L	100	0	95.6	77	128	o	
1,2-Dichloropropar		85.65	10	μg/L	100	0	85.7	78	122	0	
1,3-Dichloropropar		78.75	10	μg/L	100	0	78.8	70	124	0	
2,2-Dichloropropan		92.1	10	μg/L	100	0	92.1	73	130	0	
1,1-Dichloropropen		87.1	10	μg/L	100	0	87.1	70	107	0	
cis-1,3-Dichloropro	репе	79.25	5.0	μg/L	100	0	79.2	70	115	0	
trans-1,3-Dichlorop	ropene	81.05	5.0	μg/L	100	0	81	70	129	0	
Diethyl ether	•	97.35	25	μg/L	100	0	97.4	70	130	0	
Diisopropyl ether		88.7	10	μ g /L	100	0	88.7	70	130	0	
1,4-Dioxane		199.6	250	μg/L	500	0	39.9	70	130	0	JS
Ethyl Tertiary Butyl	Ether	93	10	μg/L	100	0	93	70	130	0	
Ethylbenzene		94.8	10	μg/L	100	0	94.8	82	119	0	
Hexachlorobutadie	ne	86.4	10	μg/L	100	0	86.4	70	130	0	
2-Hexanone		16	50	µg/L	100	0	16	70	130	0	JS
Isopropylbenzene		87.9	10	μg/L	100	0	87.9	72	130	0	
4-Isopropyltoluene		85.85	10	μg/L	100	0	85.8	74	130	0	
2-Butanone		69.45	50	μg/L	100	0	69.4	70	130	. 0	S
4-Methyl-2-pentano	ne	86.25	50	μg/L	100	0	86.2	70	130	0	
Methyl tert-butyl eth	ner	122.9	10	μg/L	100	0	123	70	130	0	
Methylene chloride		91.25	25	μg/L	100	0	91.2	70	130	0	
Naphthalene		85.7	25	μg/L	100	0	85.7	70	140	o	•
n-Propylbenzene		88.7	10	μg/Ľ	100	0	88.7	71	130	0	
Styrene		89.35	10	μg/L	100	0	89.4	72	123	0	$e^{T} = \mathcal{I}_{e} + e^{T} \mathcal{I}_{e}$
1,1,1,2-Tetrachloroe	ethane	85.5	10	μg/L	100	0	85.5	83	118	0	
1,1,2,2-Tetrachloroe	ethane	74.8	10	µg/L	100	0	74.8	70	130	0	

Qualifiers: ND - Not Detected at the Reporting Limit

Date: 28-Jan-04

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Ţ	V
	∞

CLIENT:	Mactec E & C	C, Inc.								QC SUMMARY REPORT
Work Order:	0401069									
Project:	3651031003	Taunton Parcel 6A				•				Matrix Spike - Full List
Tetrachloroethene		103.4	10	µg/L	100	0	103	77	123	0
Tetrahydrofuran		75.35	50	µg/L	100	0	75.4	70	130	0
Toluene		95.95	10	µg/L	100	0	96	86	112	0
1,2,4-Trichlorobenze	ene	81.35	10	μg/L	100	0	81.4	70	133	0
1,2,3-Trichlorobenze	ene	88.75	10	μg/L	100	0	88.8	70	130	0
1,1,1-Trichloroethan	ne	96.3	10	μg/L	100	0	96.3	78	124	0
1,1,2-Trichloroethan	ne	91.7	10	μg/L	100	0	91.7	70	130	0
Trichloroethene		90.1	10	μg/L	100	0	90.1	83	112	0
Trichlorofluorometha	ane	101.2	10	µg/L	100	0	101	70	130	0
1,2,3-Trichloropropa	ine	75	10	μg/L	100	0	75	70	130	0
1,2,4-Trimethylbenz	ene	91	10	μg/L	100	0	91	78	129	0
1,3,5-Trimethylbenz	ene	90.65	10	μg/L	100	0	90.7	77	132	O
Vinyl chloride		88.65	10	μg/L	100	0	88.6	70	130	0
o-Xylene		100.2	10 .	μg/L	100	0	100	80	119	0
m,p-Xylene		198.4	10	μg/L	200	0	99.2	70	130	0
Surr: Dibromofluo	romethane	123.8	10	μg/L	125	0	99	85	120	0
Surr: 1,2-Dichloro	ethane-d4	117.1	10	μg/L	125	0	93.6	80	124	0
Surr: Toluene-d8		136.4	10	μg/L	125	0	109	82	112	0
Surr: 4-Bromofluo	robenzene	132.9	10	μg/L	125	0	106	77	117	0

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Mactec E & C, Inc.

Work Order: 0401069

CLIENT:

Project: 3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Date: 28-Jan-04

Matrix Spike Duplicate - Full List

Sample ID 0401069-01Amsdf	Batch ID: R22269	Test Code	e: SW8260B	Units: μ	g/L		Analysis I	Date 1/21/04	8:11:00 PM	Prep Date	e 1/21/04	
Client ID: MW 6		Run ID:	V-1_0401	21A			SeqNo:	369311				
	QC Sample			QC Spike Orig	inal Sample	!		(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Acetone	55.55	50	μg/L	100	0	55.6	70	173	48.05	14.5	20	s
Tertiary Amyl Methyl Ether	86.8	10	μg/L	100	0	86.8	70	130	85.2	1.86	20	
Benzene	88.25	5.0	μg/L	100	0	88.2	81	115	90.1	2.07	20	
Bromobenzene	89	10	μg/L	100	0	89	83	118	85.25	4.3	20	
Bromochloromethane	96.2	10	μg/L	100	0	96.2	70	126	91.7	4.79	20	
Bromodichloromethane	80.2	10	µg/L	100	0	80.2	72	119	79.9	0.375	20	
Bromoform	70.7	10	µg/L	100	0	70.7	70	127	66.15	6.65	20	
Bromomethane	83.75	10	µg/L	100	0	83.8	70	141	88.8	5.85	20	
sec-Butylbenzene	91.45	10	μg/L	100	0	91.5	70	130	92.6	1,25	20	
n-Butylbenzene	84.2	10	μg/L	100	0	84.2	70	144	83.45	0.895	20	
tert-Butylbenzene	91.3	10	μg/L	100	0	91.3	70	130	89.55	1.94	20	
Carbon disulfide	74.45	10	μg/L	100	0	74.4	70	141	77.45	3.95	20	
Carbon tetrachloride	91.1	10	μg/L	100	0	91.1	78	124	94.35	3.5	20	
Chlorobenzene	87.95	10	μg/L	100	0	88	80	115	89	1.19	20	
Dibromochloromethane	75.95	10	μg/L	100	0	76	70	127	72.45	4.72	20	
Chloroethane	84.5	25	µg/L	100	0	84.5	70	157	91.45	7.9	20	
Chloroform	88.3	10	μg/L	100	0	88.3	80	119	87.4	1.02	20	
Chloromethane	64.05	15	μg/L	100	0	64	70	158	64.9	1.32	20	S
2-Chlorotoluene	87.25	10	μg/L	100	0	87.2	70	130	87.6	0.4	20	
4-Chlorotoluene	85.2	10	μg/L	100	0	85.2	. 78	130	84.9	0.353	20	
1,2-Dibromo-3-chloropropane	76.55	25	μg/L	100	0	76.6	70	130	62.7	19.9	. 20	
1,2-Dibromoethane	93.35	10	μg/L	100	0	93.4	70	130	93	0.376	20	
Dibromomethane	94	10	μg/L	100	0	94	70	129	91.45	2.75	20	
1,3-Dichlorobenzene	91	10	μg/L	100	0	91	81	130	89.45	1.72	20	
1,2-Dichlorobenzene	90.45	10	µg/L	100	0	90.4	80	124	87.3	3.54	20	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

のどめ

Date: 28-Jan-04

CLIENT:	Mactec E & C	, Inc.						•		OC SUN	MMARY I	REPO)RT
Work Order:	0401069												
Project:	3651031003	Taunton Parcel	6A		·					Matrix Sp	ke Duplicat	e - Full	List
1,4-Dichlorobenzen	е	88.5	10	μg/L	100	0	88.5	74	130	88.45	0.0565	20	***************************************
Dichlorodifluoromet	hane	35.9	25	μg/L	100	0	35.9	70	183	40.95	13.1	20	s
1,1-Dichloroethane		89.4	10	μg/L	100	0	89.4	83	130	89.85	0.502	20	
1,2-Dichloroethane		87.9	10	μg/L	100	0	87.9	70	125	85.2	3.12	20	
1,1-Dichloroethene		100.9	5.0	µg/L	100	0	101	72	130	100	0.846	20	
cis-1,2-Dichloroethe	ene	87.05	10	µg/L	100	0	87	76	125	85.5	1.8	20	
trans-1,2-Dichloroet	thene	96.05	10	μg/L	100	0	96	77	128	95.6	0.47	20	
1,2-Dichloropropane	€	85.5	10	μg/L	100	0	85.5	78	122	85.65	0.175	20	
1,3-Dichloropropane	€	80.1	10	μg/L	100	0	80.1	40	124	78.75	1.7	20	
2,2-Dichloropropane	Э	82.35	10	μg/L	100	0	82.4	73	150	92.1	11.2	20	
1,1-Dichloropropene	9	86.95	10	μg/L	100	0	87	70	107	87.1	0.172	20	
cis-1,3-Dichloroprop	oene	79.95	5.0	μg/L	100	0	80	70	115	79.25	0.879	20	
trans-1,3-Dichloropr	ropene	84.95	5.0	μg/L	100	0	85	70	129	81.05	4.7	20	
Diethyl ether		107.2	25	μg/L	100	0	107	70	130	97.35	9.63	20	
Diisopropyl ether	,	88.55	10	μg/L	100	0	88.6	70	130	88.7	0.169	20	
1,4-Dioxane		589	250	µg/L	500	0	118	70	130	199.6	98.8	20	R
Ethyl Tertiary Butyl I	Ether .	92.1	10	μg/L	100	0	92.1	70	130	93	0.972	20	
Ethylbenzene		93.15	10	μg/L	100	0	93.2	82	119	94.8	1.76	20	
Hexachlorobutadien	ie	94.25	10	μg/L	100	0	94.2	70	149	86.4	8.69	20	
2-Hexanone		25.1	50	μg/L	100	0	25.1	70	130	16	44.3 2	20	JS
Isopropylbenzene		89.25	10	μg/L	100	0	89.2	72	134	87.9	1.52	20	
4-Isopropyltoluene		86.7	10	µg/L	100	0	86.7	74	130	85.85	0.985	20	
2-Butanone		72.65	50	μg/L	100	0	72.7	70	130	69.45	4.5	20	
4-Methyl-2-pentanor	ne	85.4	50	µg/L	100	0	85.4	70	130	86.25	0.99	20	
Methyl tert-butyl ethe	er	122.4	10	μg/L	100	0	122	70	141	122.9	0.367	20	
Methylene chloride		88.25	25	μg/L	100	0	88.2	70	141	91.25	3.34	20	
Naphthalene		88.7	25	μg/L	100	0	88.7	70	140	85.7	3.44	20	
n-Propylbenzene		89.55	10	μg/L	100	0	89.6	71	136	88.7	0.954	20	
Styrene		88.8	10	μg/L	100	0	88.8	72	123	89.35	0.617	20	
1,1,1,2-Tetrachloroe	thane	82.7	10	μg/L	100	0	82.7	83	118	85.5	3.33	20	s
1,1,2,2-Tetrachloroe	thane	78.65	10	μg/L	100	0	78,6	70	130	74.8	5.02	20	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Mactec	E & C, Inc.							,	QC SUM	MADV	DFDADT
Work Order: 040106	i9								_		
Project: 365103	1003 Taunton Parcel 6A								Matrix Spike	Duplicat	e - Full List
Tetrachioroethene	100.7	10	μg/L	100	0	101	77	123	103.4	2.74	20
Tetrahydrofuran	89.8	50	μg/L	100	0	89.8	70	130	75.35	17.5	20
Toluene	95.3	10	μg/L	100	. 0	95.3	86	112	95.95	0.68	20
1,2,4-Trichlorobenzene	95.55	10	μg/L	100	0	95.6	70	130	81.35	16.1	20
1,2,3-Trichlorobenzene	93.85	10	μg/L	100	0	93.8	70	130	88.75	5.59	20
1,1,1-Trichloroethane	94.7	10	μg/L	100	0	94.7	78	124	96.3	1.68	20
1,1,2-Trichloroethane	95.55	10	μg/L	100	. 0	95.6	70	130	91.7	4.11	20
Trichloroethene	87.2	10	μg/L	100	0	87.2	83	112	90.1	3.27	20
Trichlorofluoromethane	98.2	10	μg/L	100	O	98.2	70	130	101.2	3.01	20
1,2,3-Trichloropropane	79.4	10	μg/L	100	0	79.4	70	130	75	5.7	20
1,2,4-Trimethylbenzene	89.25	10	μg/L	100	0	89.2	78	129	91	1.94	20
1,3,5-Trimethylbenzene	90.8	10	µg/L	100	0	90.8	77	130	90.65	0.165	20
Vinyl chloride	86.05	10	μg/L	100	0	86	70	130	88.65	2.98	20
o-Xylene	93.65	10	µg/L	100	0	93.6	80	119	100.2	6.71	20
m,p-Xylene	194.1	10	μg/Ļ	200	0	97	70	143	198.4	2.19	20
Surr: Dibromofluoromethan	e 121.3	10	µg/L	125	0	97	85	120	0	0	0
Surr: 1,2-Dichloroethane-d4	120	10	μg/L	125	0	96	80	124	0	0	0
Surr: Toluene-d8	129.4	10	μg/L	125	0	104	82	112	0	0	0
Surr: 4-Bromofluorobenzen	e 129.8	10	μg/L	125	0	104	77	117	0	0	0

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Date: 28-Jan-04

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Mactec E & C, Inc.

Work Order:

0401069

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Laboratory Control Spike - Full List

Sample ID Icsf-01/21/04	Batch ID: R22269	Test Cod	le: SW8260E	3 Units: μ	g/L		Analysis I	Date 1/21/04	4 9:49:00 AM	Prep Date	e 1/21/04	
Client ID:		Run ID:	V-1_0401	21A			SeqNo:	369319				
	QC Sample			QC Spike Orig	jinal Sample				Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Acetone	14.11	10	μg/L	20	0	70.6	70	130	0			
Tertiary Amyl Methyl Ether	20.08	2.0	μg/L	20	0	100	70	130	0			
Benzene	18.7	1.0	μg/L	20	0	93.5	81	115	0			
Bromobenzene	17.99	2.0	μg/L	20	0	90	83	118	0			
Bromochloromethane	20.84	2.0	μg/L	20	0	104	70	126	0			
Bromodichloromethane	18.16	2.0	μg/L	20	0	90.8	72	119	0			
Bromoform	19.45	2.0	µg/L	20	0	97.3	70	127	0			•
Bromomethane	17.64	2.0	μg/L	20	0	88.2	70	130	0			
sec-Butylbenzene	17.75	2.0	μg/L	20	0	88.8	70	130	0			
n-Butylbenzene	16.5	2.0	μg/L	20	0	82.5	70	130	0			
tert-Butylbenzene	17.27	2.0	μg/L	20	0	86.4	70	130	, 0			
Carbon disulfide	15.51	2.0	μg/L	20	0	77.6	70	130	0			
Carbon tetrachloride	19.62	2.0	μg/L	20	0	98.1	78	124	0			•
Chlorobenzene	18.73	2.0	μg/L	20	0	93.6	80	115	0			
Dibromochloromethane	17.88	2.0	μg/L	20	0	89.4	70	127	0			
Chloroethane	16.69	5.0	μg/L	20	0	83.4	70	130	0			
Chloroform	18.95	2.0	μg/L	20	0	94.8	80	119	0			
Chloromethane	13.99	3.0	μg/L	20	0	70	70	130	0			S
2-Chlorotoluene	17.07	2.0	μg/L	20	0	85.4	70	130	0			
4-Chlorotoluene	16.86	2.0	µg/L	20	0	84.3	78	130	. 0			
1,2-Dibromo-3-chloropropane	18.76	5.0	μg/L	20	0	93.8	70	130	0		•	
1,2-Dibromoethane	22.04	2.0	µg/L	20	. 0	110	70	130	0			
Dibromomethane	21.5	2.0	μg/L	20	0	108	70	129	0			
1,3-Dichlorobenzene	18.49	2.0	μg/L	20	0	92.5	81	130	0			
1,2-Dichlorobenzene	18.66	2.0	μg/L	20	0	93.3	80	124	a			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT:	Mactec E & 0	C, Inc.								QC SUMMA	DV DEDA	DT
Work Order:	0401069									_		
Project:	3651031003	Taunton Parcel	6A						La	boratory Control	Spike - Full	List
1,4-Dichlorobenze	ne	18.16	2,0	µg/L	20	0	90.8	74	130	0		
Dichlorodifluorome	ethane	9.6	5.0	μg/L	20	0	48	10	130	0		
1,1-Dichloroethane	e	18.68	2.0	µg/L	20	0	93.4	83	134	0		
1,2-Dichloroethane	€	20.35	2.0	µg/L	20	0	102	70	125	0		
1,1-Dichloroethene	e	20.25	1.0	μg/L	20	0	101	72	130	0		
cis-1,2-Dichloroeth	nene	18.68	2.0	μg/L	20	0	93.4	76	125	0		
trans-1,2-Dichloroe	ethene	19.07	2.0	μg/L	20	0	95.4	77	128	0		
1,2-Dichloropropar	ne i	18.41	2.0	μg/L	20	0	92	78	122	0		
1,3-Dichloropropar	пе	17.71	2.0	μg/L	20	0	88.6	70	124	0		
2,2-Dichloropropar	1e	21.26	2.0	µg/L	20	0	106	73	130	0		
1,1-Dichloroproper	те	17.41	2.0	µg/L	20	0	87	70	107	0		
cis-1,3-Dichloropro	pene	17.9	1.0	μg/L	20	0	89.5	70	115	0	•	
trans-1,3-Dichlorop	propene	18.83	1.0	μg/L	20	Ö	94.2	70	129	0		
Diethyl ether		23.49	5.0	μg/L	20	. 0	117	70	130	0		
Diisopropyl ether		18.31	2.0	µg/L	20	0	91,6	70	130	0		
1,4-Dioxane		129.5	50	μg/L	100	0	130	70	130	. 0		
Ethyl Tertiary Butyl	l Ether	20.55	2.0	μg/L	20	0	103	70	130	0		
Ethylbenzene		18.94	2.0	μg/L	20	0	94.7	82	119	. 0		
Hexachlorobutadie	ne	20.09	2.0	μg/L	20	0	100	70	130	0		
2-Hexanone		9.58	10	μg/L	20	0	47.9	70	130	0		JS
Isopropylbenzene		17.24	2.0	μg/L	20	0	86.2	72	130	0		
4-Isopropyltoluene		17.02	2.0	μg/L	20	0	85.1	74	130	0		
2-Butanone		20.7	10	μg/L	20	0	104	70	130	0		
4-Methyl-2-pentano	one	21.52	10	µg/L	20	0	108	70	130	0		
Methyl tert-butyl eth	ner	26.14	2.0	µg/L	20	0	131	70	130	0		S
Methylene chloride		18.6	5.0	µg/L	20	0	93	70	141	0		
Naphthalene		19.55	5.0	μg/L	20	0	97.8	70	130	0		
n-Propylbenzene		17.05	2.0	μg/L	20	0	85.2	71	130	0		
Styrene		18.6	2.0	μg/L	20	0	93	72	123	0		
1,1,1,2-Tetrachloro	ethane	18.88	2.0	μg/L	20	0	94.4	83	118	0		
1,1,2,2-Tetrachloro		18.1	2.0	μg/L	20	0	90.5	70	130	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

Date: 28-Jan-04

UJJ

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401069-01B

Client Sample ID: MW 6

0401069

Project: Lab ID: 3651031003 Taunton Parcel 6A

Tag Number:

Collection Date: 1/14/04

Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDR	ROCARBONS	MAEPH		4:	Analyst: RKK
C9-C18 Aliphatic Hydrocarbons	ND	- 110	μg/L	1	1/22/04 2:27:00 PM
C19-C36 Aliphatic Hydrocarbons	ND	110	μg/L	1 .	1/22/04 2:27:00 PM
C11-C22 Aromatic Hydrocarbons	280	110	µg/L	1	1/22/04 2:27:00 PM
Naphthalene	ND.	1.1	μg/L	1	1/22/04 2:27:00 PM
2-Methylnaphthalene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Acenaphthylene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Acenaphthene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Fluorene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Phenanthrene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Anthracene	ND	1.1	µg/L	1	1/22/04 2:27:00 PM
Fluoranthene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Pyrene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Benz(a)anthracene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Chrysene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Benzo(b)fluoranthene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Benzo(k)fluoranthene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Benzo(a)pyrene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Dibenz(a,h)anthracene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Benzo(g,h,i)perylene	ND	1.1	μg/L	1	1/22/04 2:27:00 PM
Surr: 1-Chlorooctadecane	48.3	40-140	%REC	1	1/22/04 2:27:00 PM
Surr: 2-Bromonaphthalene	116	40-140	%REC	1	1/22/04 2:27:00 PM
Surr: 2-Fluorobiphenyl	107	40-140	%REC	1	1/22/04 2:27:00 PM
Surr: o-Terphenyl	107	40-140	%REC	1	1/22/04 2:27:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons

and things and sometiment of the transfer of t	
CERTIFICATION	
Were all QA/QC procedures required by the VPH or EPH method followed:	Yes No - If No, See Case Narrative
Were all performance/acceptance standards for required QA/QC procedures ac	chieved:No - If No, See Case Narrative
Were any significant modifications made to the method as specified in section 1	
I attest under the pains and penalties of perjury that, based upon my inquiry of the information, the material contained in this report is, to the best of my knowledge	those individuals immediately responsible for obtaining the e and belief, accurate and complete.
SIGNATURE:	DATE: 1-30-04
PRINTED NAME: Nancy Stewart	POSITION: Laboratory Director (or designee)

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

-		
-	0	
4	ယ	
	\triangle	

CLIENT:	Mactec E & C	C, Inc.							0	C SUMMARY	REPORT
Work Order:	0401069										
Project:	3651031003	Taunton Parcel 6	Ā						Labo	ratory Control Spik	te - Full List
Tetrachloroethene		22.24	2.0	μg/L	20	0	111	77	123	0	
Tetrahydrofuran	•	22.16	10	μg/L	20	0	111	70	130	0	
Toluene		19.73	2.0	μg/L	20	0	98.6	86	112	0	
1,2,4-Trichlorobenze	епе	21.4	2.0	μ g/L	20	0	107	70	130	0	
1,2,3-Trichlorobenze	ene	19.7	2.0	μg/L	20	0	98.5	70	130	0	
1,1,1-Trichloroethar	1e	19.94	2.0	μg/L	20	0	99.7	78	124	0	
1,1,2-Trichloroethan	ne .	20.9	2.0	μg/L	20	0	104	70	133	0	
Trichloroethene		18.56	2.0	μg/L	20	0	92.8	83	112	0	
Trichlorofluorometha	ane	21.28	2.0	μg/L	20	0	106	70	130	0	
1,2,3-Trichloropropa	ane	18.31	2.0	μg/L	20	0	91.6	70	130	0	
1,2,4-Trimethylbenz	ene	17.68	2.0	μg/L	20	0	88.4	78	129	0	
1,3,5-Trimethylbenz	ene	17.39	2.0	μg/L	20	0	87	77	130	0	
Vinyl chloride		17.53	2.0	μg/L	20	0	87.6	70	130	0	
o-Xylene		19.26	2.0	μg/ L	20	0	96.3	80	119	0	
m,p-Xylene		39.76	2.0	μg/L	40	0	99.4	70	130	0	
Surr: Dibromofluo	romethane	25.9	2.0	μg/L	25	0	104	85	120	0	
Surr: 1,2-Dichloro	ethane-d4	26.85	2.0	μg/L	25	0	107	80	124	0	
Surr: Toluene-d8		26.02	2.0	μg/L	25	0	104	82	112	0	
Surr: 4-Bromofluo	robenzene	28.3	2.0	µg/L	25	0	113	77	117	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

B - Analyte detected in the associated Method Blank

NA - Not applicable where J values or ND results occur

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

0401069

Client Sample ID: MW 7

Lab Order:

Tag Number:

Project:

3651031003 Taunton Parcel 6A

Collection Date: 1/14/04

Lab ID:

0401069-02B

Matrix: GROUNDWATER

Analyses	Result	RL.	Qual	Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDR	OCARBONS	MAEPH				Analyst: RK
C9-C18 Aliphatic Hydrocarbons	ND	140		µg/L-dry	1	1/22/04 2:58:00 PM
C19-C36 Aliphatic Hydrocarbons	ND	140		µg/L-dry	1	1/22/04 2:58:00 PM
C11-C22 Aromatic Hydrocarbons	ND	140		µg/L-dry	1	1/22/04 2:58:00 PM
Naphthalene	ND	1.4		μg/L-dry	1	1/22/04 2:58:00 PM
2-Methylnaphthalene	ND	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Acenaphthylene	ND.	1.4		μg/L-dry	1	1/22/04 2:58:00 PM
Acenaphthene	ND	1.4		μg/L-dry	1	1/22/04 2:58:00 PM
Fluorene	ND	1.4		μg/L-dry	1	1/22/04 2:58:00 PM
Phenanthrene	ND.	1.4		μg/L-dry	1	1/22/04 2:58:00 PM
Anthracene	ND	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Fluoranthene	ND	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Pyrene	ND	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Benz(a)anthracene	ND	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Chrysene	ND	1.4		μg/L-dry	1	1/22/04 2:58:00 PM
Benzo(b)fluoranthene	ND	1.4		μg/L-dry	1	1/22/04 2:58:00 PM
Benzo(k)fluoranthene	ND	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Benzo(a)pyrene	ND	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Dibenz(a,h)anthracene	ND	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.4		μg/L-dry	1	1/22/04 2:58:00 PM
Benzo(g,h,i)perylene	ŊD	1.4		µg/L-dry	1	1/22/04 2:58:00 PM
Surr: 1-Chlorooctadecane	36.3	40-140	s	%REC	1	1/22/04 2:58:00 PM
Surr: 2-Bromonaphthalene	108	40-140		%REC	1	1/22/04 2:58:00 PM
Surr: 2-Fluorobiphenyl	99.4	40-140		%REC	1	1/22/04 2:58:00 PM
Surr: o-Terphenyl	63.5	40-140		%REC	1	1/22/04 2:58:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CERTIFI	CATION
---------	--------

Were all QA/QC procedures required by the VPH or EPH method followed:

Were all performance/acceptance standards for required QA/QC procedures achieved: Yes ____ No - If No, See Case Narrative Were any significant modifications made to the method as specified in section 11.3: _ No

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PRINTED NAME: Nancy Stewart POSITION: Laboratory Director (or designee)

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

Date: 26-Jan-04

CLIENT: Lab Order: Mactec E & C, Inc.

0401069

Client Sample ID: MW 7-DUP

Tag Number:

Project:

3651031003 Taunton Parcel 6A

Collection Date: 1/14/04

Lab ID:

0401069-03B

Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDR	OCARBONS	MAEPH			Analyst: RKM
C9-C18 Aliphatic Hydrocarbons	ND	110	µg/L	1	1/22/04 3:35:00 PM
C19-C36 Aliphatic Hydrocarbons	ND	110	μg/L	1	1/22/04 3:35:00 PM
C11-C22 Aromatic Hydrocarbons	ND	110	µg/L	1	1/22/04 3:35:00 PM
Naphthalene	ND	1.1	µg/L	1	1/22/04 3:35:00 PM
2-Methylnaphthalene	ND	1.1	μg/L	1	1/22/04 3:35:00 PM
Acenaphthylene	ND.	1.1	µg/L	1	1/22/04 3:35:00 PM
Acenaphthene	ND	1.1	µg/L	1	1/22/04 3:35:00 PM
Fluorene	ND	1.1	μg/L	1	1/22/04 3:35:00 PM
Phenanthrene	ND	1.1	µg/L	1	1/22/04 3:35:00 PM
Anthracene	ND	1.1	µg/L	1	1/22/04 3:35:00 PM
Fluoranthene	ND	1.1	μg/L	1	1/22/04 3:35:00 PM
Pyrene	ND	1.1	µg/L	1	1/22/04 3:35:00 PM
Benz(a)anthracene	ND	1.1	µg/L	1	1/22/04 3:35:00 PM
Chrysene	ND	1.1	μg/L	1	1/22/04 3:35:00 PM
Benzo(b)fluoranthene	ND	1.1	μg/L	1	1/22/04 3:35:00 PM
Benzo(k)fluoranthene	ND	1.1	μg/L	1	1/22/04 3:35:00 PM
Benzo(a)pyrene	ND	1.1	μg/L	1 .	1/22/04 3:35:00 PM
Dibenz(a,h)anthracene	ND	1.1	µg/L	1	1/22/04 3:35:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.1	μg/L	1	1/22/04 3:35:00 PM
Benzo(g,h,i)perylene	ND	1.1	μg/L	1	1/22/04 3:35:00 PM
Surr: 1-Chlorooctadecane	47.5	40-140	%REC	1	1/22/04 3:35:00 PM
Surr: 2-Bromonaphthalene	112	40-140	%REC	1	1/22/04 3:35:00 PM
Surr: 2-Fluorobiphenyl	104	40-140	%REC	1	1/22/04 3:35:00 PM
Surr: o-Terphenyl	95.6	40-140	%REC	1	1/22/04 3:35:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CER	TIF	ICA.	TIO	N
UER	111	IUM		N

Were all QA/QC procedures required by the VPH or EPH method followed:

Were all performance/acceptance standards for required QA/QC procedures achieved:

Were any significant modifications made to the method as specified in section 11.3:

es ____ No - If No, See Case Narrative

Yes No - If No, See Case Narrative
No Yes - Details enclosed

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SIGNATURE:

E: Nancy Stayon

DATE:

1-30-04

PRINTED NAME: Nancy Stewart

POSITION: Laboratory Director (or designee)

Qualifiers: RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

Date: 26-Jan-04

CLIENT:

Mactec E & C, Inc.

Client Sample ID: MW 9

Lab Order:

0401069

Tag Number:

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401069-04B

Collection Date: 1/14/04

Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDR	OCARBONS	MAEPH			Analyst: RK
C9-C18 Aliphatic Hydrocarbons	ND	110	µg/L	1	1/22/04 4:06:00 PM
C19-C36 Aliphatic Hydrocarbons	ND	110	μg/L	1	1/22/04 4:06:00 PM
C11-C22 Aromatic Hydrocarbons	ND	110	μg/L	1	1/22/04 4:06:00 PM
Naphthalene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
2-Methylnaphthalene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Acenaphthylene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Acenaphthene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Fluorene	· ND	1.1	µg/L	1	1/22/04 4:06:00 PM
Phenanthrene	ND	1.1	µg/L	1	1/22/04 4:06:00 PM
Anthracene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Fluoranthene	ND	1.1	µg/L	1	1/22/04 4:06:00 PM
Pyrene	ND	1.1	µg/L	1	1/22/04 4:06:00 PM
Benz(a)anthracene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Chrysene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Benzo(b)fluoranthene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Benzo(k)fluoranthene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Benzo(a)pyrene	ND	1.1	µg/L	1	1/22/04 4:06:00 PM
Dibenz(a,h)anthracene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Benzo(g,h,i)perylene	ND	1.1	μg/L	1	1/22/04 4:06:00 PM
Surr: 1-Chlorooctadecane	56.1	40-140	%REC	1	1/22/04 4:06:00 PM
Surr: 2-Bromonaphthalene	105	40-140	%REC	1	1/22/04 4:06:00 PM
Surr: 2-Fluorobiphenyl	98.2	40-140	%REC	1	1/22/04 4:06:00 PM
Surr: o-Terphenyl	105	40-140	%REC	1	1/22/04 4:06:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CERT	IF	ICA'	TI	40
------	----	------	----	----

Were all QA/QC procedures required by the VPH or EPH method followed:

Yes ___ No - If No, See Case Narrative

Were all performance/acceptance standards for required QA/QC procedures achieved: _____No - If No, See Case Narrative Were any significant modifications made to the method as specified in section 11.3:

No Yes - Details enclosed

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PRINTED NAME: Nancy Stewart

POSITION: Laboratory Director (or designee)

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

Date: 28-Jan-04

CLIENT:

Mactec E & C, Inc.

Work Order:

0401069

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Method Blank

Sample ID MB-10940	Batch ID: 10940	Test Code	MAEPH	Units: μូ	g/L		Analysis I	Date 1/22/0	4 12:53:00 PM	Prep Date	e 1/21/04	
Client ID:		Run ID:	SV-2_04	0122A			SeqNo:	369711				
	QC Sample			QC Spike Orig	inal Sample				Original Sample			
Analyte	Result	RL.	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
C9-C18 Aliphatic Hydrocarbons	ND	100	µg/L									
C19-C36 Aliphatic Hydrocarbons	ND	100	μg/L									
C11-C22 Aromatic Hydrocarbons	ND	100	μg/L									
Naphthalene	ND	1.0	µg/L									
2-Methylnaphthalene	ND	1.0	μg/L									
Acenaphthylene	ND	1.0	µg/L									
Acenaphthene	ND	1.0	μg/L									
Fluorene	ND	1.0	μg/L									
Phenanthrene	ND	1.0	μg/L						**			
Anthracene	ND	1.0	μg/L									
Fluoranthene	ND	1.0	μg/L									
Pyrene	ND	1.0	μg/L			•		-				
Benz(a)anthracene	ND	1.0	μg/L									
Chrysene	ND	1.0	µg/L								•	
Benzo(b)fluoranthene	ND	1.0	μg/L						4.7	* .		
Benzo(k)fluoranthene	ND	1.0	μg/L						Automotive			
Benzo(a)pyrene	ND	1.0	µg/L									
Dibenz(a,h)anthracene	ND	1.0	µg/L									
ndeno(1,2,3-cd)pyrene	ND	1.0	μg/L									
Benzo(g,h,i)perylene	ND	1.0	μg/L									
Surr: 1-Chlorooctadecane	11.03	1.0	μg/L	20	0	55.2	40	140	0			
Surr: 2-Bromonaphthalene	22.72	1.0	μg/L	20	0	114	40	140	. 0			
Surr: 2-Fluorobiphenyl	20.42	1.0	µg/L	20	0	102	40	140	0			
Surr: o-Terphenyl	22.46	1.0	μg/L	20	0	112	40	140	0		•	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Mactec E & C, Inc.

Work Order: 0401069

Project: 3651031003 Taunton Parcel 6A

Date: 28-Jan-04

QC SUMMARY REPORT

Sample Duplicate

Sample ID 0401069-04BDUP	Batch ID: 10940	Test Cod	e: MAEPH	Units: µg	/L		Analysis I	Date 1/22/04	5:09:00 PM	Prep Date 1/21/04		
Client ID: MW 9		Run ID:	SV-2_04	0122A			SeqNo:	369719				
	QC Sample			QC Spike Origi	nal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
C9-C18 Aliphatic Hydrocarbons	ND	110	μg/L	0	0	0	0	0	0	0	50	
C19-C36 Aliphatic Hydrocarbons	ND	110	μg/L	0	0	0	0	0	0	0	50	
C11-C22 Aromatic Hydrocarbons	ND	110	μg/L	0	0	0	0	0	0	0	50	
Naphthalene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
2-Methylnaphthalene	ND	1.1	μg/L	0	0	0	٥	. 0	0	0	50	
Acenaphthylene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Acenaphthene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Fluorene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Phenanthrene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Anthracene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Fluoranthene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Pyrene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Benz(a)anthracene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Chrysene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Benzo(b)fluoranthene	ND	1.1	μg/L	0	0	0	0	0	. 0	0	50	
Benzo(k)fluoranthene	ND	1.1	μg/L	0	. 0	. 0	0	0	0	0	50	
Benzo(a)pyrene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Dibenz(a,h)anthracene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Indeno(1,2,3-cd)pyrene	ND	1.1	µg/L	. 0	0	0	0	0	0	0	50	
Benzo(g,h,i)perylene	ND	1.1	µg/L	0	.0	0	0	0	0	0	50	
Surr: 1-Chlorooctadecane	19.34	1.1	μg/L	21.28	0	90.9	40	140	0	0	0	
Surr: 2-Bromonaphthalene	24.81	1.1	μg/L	21.28	0	117	40	140	0	0	0	
Surr: 2-Fluorobiphenyl	22.31	1.1	μg/L	21.28	0	105	40	140	. 0	0	0	
Surr: o-Terphenyl	24.9	1.1	μg/L	21.28	0	117	40	140	0	0	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 28-Jan-04

CLIENT:

Mactec E & C, Inc.

Work Order:

0401069

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Sample Matrix Spike

4:38:00 PM	Prep Dat	e 1/21/04	-
		Prep Date 1/21/04 %RPD RPDLimit 0	
riginal Sample			
or MS Result	%RPD	RPDLimit	Qua
0			
0			
0			
Ō			
0			
0			
0			
0			
0			
0			
0			
0			
0			
0			
	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

.

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Sample Matrix Spike

Sample ID 0310133-01CMS	Batch ID: 10388	Test Code	: SW742	l Units: μι	g/L		Analysis	Date 10/23/	03 10:37:41 PM	Prep Da	te 10/22/03	
Client ID: ECE MW3		Run ID:	GFAA-6	6000_031023B			SeqNo:	352331	I	•		
	QC Sample			QC Spike Orig	inal Sampl	е			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Lead	46.27	5.0	µg/L	50	2.834	86.9	75	125	0			
Sample ID 0310133-01CMSD	Batch ID: 10388	Test Code	: SW7421	Units: μο	₃ /L		Analysis	Date 10/23/	03 10:46:33 PM	Prep Dat	e 10/22/03	
Client ID: ECE MW3		Run ID:	GFAA-6	000_031023B			SeqNo:	352332		•		
	QC Sample			QC Spike Origi	inal Sample	9			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Lead	46.02	5.0	µg/L	50	2.834	86.4	75	125	46.27	0.535	20	
Sample ID 0310133-01CMS	Batch ID: 10391	Test Code:	SW7041	Units: µg	ı/L		Analysis I	Date 10/27/0	3 11:39:02 PM	Prep Date	10/22/03	
Client ID: ECE MW3		Run ID:	GFAA-4	100_031027B			SeqNo:	352785		·		
	QC Sample			QC Spike Origi	nal Sample) ~-		(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Antimony	52.54	5.0	μg/L	50.1	0	105	75	125	0			
Sample ID 0310133-01CMSD	Batch ID: 10391	Test Code:	SW7041	Units: µg	/L		Analysis D	ate 10/27/0	3 11:47:59 PM	Prep Date	10/22/03	
Client ID: ECE MW3		Run ID:	GFAA-41	100_031027B			SeqNo:	352786				
	QC Sample			QC Spike Origin	nal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Antimony	53.33	5.0	µg/L	50.1	0	106	75	125	52.54	1.5	. 20	

Qualifiers:

9

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

U

AMRO Environmental Laboratories Corp.

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Sample Matrix Spike

Sample ID	0310133-01CMS	Batch ID: 10387	Test Code:	SW7060	A Units: μ	g/L		Analysis I	Date 10/23/0	3 10:37:41 PM	Prep Date	10/22/03	
Client ID:	ECE MW3		Run ID:	GFAA-6	000_031023A			SeqNo:	352294				
		QC Sample			QC Spike Orig	inal Sample			(Original Sample			
Analyte		Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Arsenic		62.23	5.0	µg/L	50	3.238	118	. 75	125	0			
Sample ID	0310133-01CMSD	Batch ID: 10387	Test Code:	SW7060	A Units: μι	g/L		Analysis I	Date 10/23/0	3 10:46:33 PM	Prep Date	10/22/03	
Client ID:	ECE MW3		Run ID:	GFAA-6	000_031023A			SeqNo:	352295				
		QC Sample			QC Spike Orig	inal Sample			(Original Sample			
Analyte		Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Arsenic		61.68	5.0	μg/L	50	3.238	117	75	125	62.23	0.886	20	
Sample ID	0310133-01CMS	Batch ID: 10341	Test Code:	SW7470	A Units: μο	j/L		Analysis [Date 10/21/0	3 1:22:52 PM	Prep Date	10/21/03	
Client ID:	ECE MW3		Run ID:	HG-FIMS	S_031021A			SeqNo:	350812				
		QC Sample			QC Spike Orig	inal Sample			(Original Sample			
Analyte		QC Sample Result	RL	Units	QC Spike Orig Amount	•	%REC	LowLimit	(HighLimit	Original Sample or MS Result	%RPD	RPDLimit	Qua
Analyte Mercury		•	RL 0.20	Units µg/L	, -	•		LowLimit 75		•	%RPD	RPDLimit	Qua
Mercury	0310133-01CMSD	Result		µg/L	Amount 4	Result 0	%REC	75	HighLimit 125	or MS Result		RPDLimit 10/21/03	Qua
Mercury	0310133-01CMSD ECE MW3	Result 4.059	0.20	μg/L SW74 70	Amount 4	Result 0	%REC	75	HighLimit 125	or MS Result			Qua
Mercury Sample ID		Result 4.059 - Batch ID: 10341	0.20 Test Code:	μg/L SW74 70	Amount 4 A Units: με	Result 0 a/L	%REC	75 Analysis I	HighLimit 125 Date 10/21/0 350813	or MS Result			Qua
Mercury Sample ID		Result 4.059	0.20 Test Code:	μg/L SW74 70	Amount 4 A Units: μς 5_031021A	Result 0 n/L inal Sample	%REC	75 Analysis I SeqNo:	HighLimit 125 Date 10/21/0 350813	or MS Result 0 3 1:26:50 PM			Qua

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Sample Matrix Spike

Sample ID 0310133-01CMS	Batch ID: 10353	Test Cod	le: SW6010	B Units: μ	g/L		Analysis	Date 10/22/	/03 7:05:33 PM	Prep Dat	e 10/22/03	
Client ID: ECE MW3		Run ID:	ICP-OPT	IMA_031022C			SeqNo:	351235	5	•		
	QC Sample			QC Spike Orig	inal Sample	•			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit		%RPD	RPDLimit	Qua
Barium	4272	200	μg/L	4000	21.83	106	75	125	0			
Beryllium	812,6	4.0	μg/L	800	. 0	102	75	125	-0			
Cadmium	843.8	5.0	μg/L	800	0	105	75	125	0			
Chromium	4077	10	μg/L	4000	2.456	102	75	125	0			
Nickel	4230	40	μg/L	4000	0	106	75	125	0			
Silver	411.1	7.0	μg/L	400	2.849	102	75	125	0			
Vanadium	4089	50	μg/L	4000	4.549	102	75	125	0			
Zinc	4270	20	µg/L	4000	14.16	106	75	125	0			
Sample ID 0310133-01CMSD	Batch ID: 10353	Test Code	e: SW601 0E	Units: μg	/L	Harith conductive and the	Analysis [Date 10/22/0	03 7:11:02 PM	Prep Date	10/22/03	
Client ID: ECE MW3		Run ID:	ICP-OPT	MA_031022C			SeqNo:	351236				
	QC Sample	•		QC Spike Origi	nal Sample			ا ا	Original Sample		and the second	
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Barium	4294	200	μg/L	4000	21.83	107	75	125	. 4272	0.523	20	
Beryllium	819.5	4.0	μg/L	. 800	0	102	75	125	812.6	0.848	20	
Cadmium	848.6	5.0	μg/L	800	. 0	106	75	125	843.8	0.575	20	
Chromium	4092	10	μg/L	4000	2.456	102	75	125	4077	0.364	20	
Nickel	4256	40	μg/L	4000	0	106	75	125	4230	0.613	20	
Silver	412.7	7.0	μg/L	400	2,849	102	75	125	411.1	0.377	20	
Vanadium	4116	50	μg/L	4000	4.549	103	75	125	4089	0.663	20	
Zinc	4292	20	µg/L	4000	14.16	107	75	125	4270	0.5	20	
										4.4		

Qualifiers:

(C)

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

__ _

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Method Blank

Sample ID MB-10388	Batch ID: 10388	Test Code:	SW7421	Units: μg/l			Analysis I	Tate 10/23/	03 7:56:00 PM	Pren Dat	e 10/22/03	
Client ID:	Batti ib. 10300	Run ID:		000_031023B	•		SeqNo:	352314		i icp bac	C 10/22/03	
	QC Sample			QC Spike Origina	•				Original Sample	W DDD	nnni ini	
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Lead	ND	5.0	µg/L									
Sample ID MB-10391	Batch ID: 10391	Test Code:	SW7041	Units: µg/L	•	•	Analysis I	Date 10/27/	03 9:33:02 PM	Prep Date	e 10/22/03	
Client ID:		Run ID:	GFAA-4	100_031027B			SeqNo:	352773	}			
	QC Sample			QC Spike Origina	I Sample				Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Antimony	ND	5.0	μg/L									
Sample ID MB-10389	Batch ID: 10389	Test Code:	SW7740	Units: μg/L	•		Analysis [Date 10/23/	03 7:56:00 PM	Prep Date	e 10/22/03	
Client ID:		Run ID:	GFAA-60	000_031 02 3C			SeqNo:	352386				
	QC Sample			QC Spike Origina	ıl Sample				Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Selenium	ND	5.0	μg/L									
Sample ID MB-10390	Batch ID: 10390	Test Code:	SW7841	Units: µg/L			Analysis [Date 10/23/	03 7:56:00 PM	Prep Date	e 10/22/03	
Client ID:		Run ID:	GFAA-60	00_031 02 3D			SeqNo:	352413				
	QC Sample			QC Spike Origina	l Sample				Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Thallium	ND	5.0	μg/L									

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

0

AMRO Environmental Laboratories Corp.

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Method Blank

Sample ID MB-10353	Batch ID: 10353	Test Code	: SW6010	B Units: μg/	L		Analysis	Date 10/22	/03 5:39:41 PM	Prep Da	te 10/22/03	Professional Control
Client ID:		Run ID:	ICP-OPT	IMA_031022C			SeqNo:	35121		, , , , , , , ,		
	QC Sample			QC Spike Origin	al Sample	9			Original Sample			
Analyte	Result	RL	Units	Amount		%REC	LowLimit	HighLimit		%RPD	RPDLimit	Qua
Barium	ND	200	μg/L		et.							
Beryllium	ND	4.0	μg/L									
Cadmium	ND	5.0	µg/L									
Chromium	1.356	10	μg/L									.1
Nickel	ND	40	μg/L									٠
Silver	3.336	7.0	µg/L									.1
Vanadium	1.003	50	μg/L				•					J
Zinc	5.084	20	µg/L		10 B			4.4			No.	J
Sample ID MB-10387	Batch ID: 10387	Test Code:	SW7060/	ν Units: μg/L	-		Analysis I	Date 10/23/	03 7:56:00 PM	Prep Date	10/22/03	***************************************
Client ID:		Run ID:	GFAA-60	00_031023A			SeqNo:	352278	i .	•		
	QC Sample			QC Spike Origina	al Sample	!			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Arsenic	ND	5.0	µg/L	*						, , , , , , , , , , , , , , , , , , ,		
Sample ID MB-10341	Batch ID: 10341	Test Code:	SW7470	. Units: μg/L	 		Analysis [Date 10/21/0	03 1:03:02 PM	Prep Date	10/21/03	<i>maximum</i>
Client ID:		Run ID:	HG-FIMS	_031021A			SeqNo:	350807				
	QC Sample			QC Spike Origina	ıl Samnle				Original Sample			
Analyte	Result	RL	Units	Amount	•	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
												

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-05C

Client Sample ID: WES MW3

Collection Date: 10/16/03

Matrix: GROUNDWATER

Analyses	Result	RL Q	ual Units	DF	Date Analyzed		
CP METALS TOTAL SW-846	SV	V6010B		Analyst: SJC			
Barium	ND	200	µg/L	1	10/22/03 7:40:40 PM		
Beryllium	ND	5.0	μg/L	1	10/22/03 7:40:40 PM		
Cadmium	ND	5.0	μg/L	1	10/22/03 7:40:40 PM		
Chromium	30	10	µg/L	1	10/22/03 7:40:40 PM		
Nickel	41	40	μg/L	1	10/22/03 7:40:40 PM		
Silver	ND	7.0	µg/L	1	10/22/03 7:40:40 PM		
Vanadium	ND	50	µg/L	1	10/22/03 7:40:40 PM		
Zinc	590	20	µg/L	1	10/22/03 7:40:40 PM		
ARSENIC, TOTAL	SI	N 7060A			Analyst: APL		
Arsenic	40	15	μg/L	3	10/24/03 10:39:54 PM		
MERCURY, TOTAL	SI	N7470A			Analyst: RK		
Mercury	0.58	0.20	μg/L	1 .	10/21/03 1:50:48 PM		
EAD, TOTAL	S	N7421			Analyst: APL		
Lead	890	500	µg/L	100	10/24/03 4:35:31 PM		
ANTIMONY, TOTAL	S	W7041			Analyst: APL		
Antimony,	27	5.0	µg/L	1	10/28/03 12:23:38 AM		
SELENIUM, TOTAL	S	W7740			Analyst: APL		
Selenium	ND	5.0	μg/L	1	10/24/03 7:45:03 PM		
THALLIUM, TOTAL	S	W7841			Analyst: API		
Thallium	ND	5.0	μg/L	1	10/24/03 7:45:03 PM		

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Laboratory Control Spike

Recovery Limit Summary

Sample ID: LCS-10402

RPD: 0 out of 10 outside limits

Spike Recovery: 0 out of 10 outside limits

೮೧

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Sample Matrix Spike Duplicate

Sample ID 0310133-01BMSD	Batch ID: 10402	Test Code	e: MAEPH	Units: µg	ı/L		Analysis I	Date 10/28/0	3 1:45:00 PM	Prep Date	e 10/27/03	
Client ID: ECE MW3		Run ID:	SV-2_03	V-2_031028A			SeqNo:	352984				
	QC Sample	QC Spike Original Sample					Original Sample					
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
n-Eicosane	15.77	1.0	μg/L	25	0	63.1	40	140	14.94	5.41	50	
n-Nonadecane	15.69	1.0	μg/L	25	0	62.8	40	140	14.64	6.92	50	
n-Nonane	16.34	1.0	μg/L	25	0	65.4	40	140	16.28	0.368	50	
n-Octacosane	13.96	1.0	μg/L	25	0	55.8	40	140	12.86	8.17	50	
n-Tetradecane	14.74	1.0	μg/L	25	0	58.9	40	140	13.48	8.93	50	
Naphthalene	26.75	1.0	μg/L	25	4.011	91	40	140	26.66	0.337	50	
Acenaphthene	29.21	1.0	μg/L	25	3.033	105	40	140	28,44	2.67	50	
Anthracene	26.11	1.0	μg/L	25	0	104	40	140	26.27	0.611	50	
Pyrene	25.01	1.0	μg/L	25	0	100	40	140	25.52	2	50	
Chrysene	21.32	1.0	μg/L	25	o o	85.3	40	140	20.9	1.97	50	
Surr: 1-Chlorooctadecane	13.73	1.0	μg/L	20	0	68.6	40	140	0	0	0	
Surr: 2-Bromonaphthalene	21.72	1.0	μg/L	20	0	109	40	140	0	0	0	
Surr: 2-Fluorobiphenyl	21.33	1.0	μg/L	20	. 0	107	40	140	0	0	0	
Surr: o-Terphenyl	16.9	1.0	μg/L	20	0	84.5	40	140	0	0	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Sample Matrix Spike

Sample ID 0310133-01BMS	Batch ID: 10402	Test Code	e: MAEPH	Units: μ	g/L		Analysis I	Date 10/28/0	3 1:14:00 PM	Prep Date	e 10/27/03	
Client ID: ECE MW3		Run ID:	SV-2_03	1028A			SeqNo:	352983				
	QC Sample	QC Sample QC Spike Original Sample						(
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
n-Eicosane	14.94	1.0	μg/L	25	0	59.8	40	140	0			
n-Nonadecane	14.64	1.0	μg/L	25	0	58.6	40	140	. 0			
n-Nonane	16.28	1.0	μg/L	25	0	65.1	40	140	0			
n-Octacosane	12.86	1.0	μg/L	25	0	51.4	40	140	0			
n-Tetradecane	13.48	1.0	μg/L	25	0	53.9	40	140	0			
Naphthalene	26.66	1.0	μg/L	25	4.011	90.6	40	140	0			
Acenaphthene	28.44	1.0	μg/L	25	3.033	102	40	140	0			
Anthracene	26.27	1.0	μg/L	25	0	105	40	140	0			
Pyrene	25.52	1.0	μg/L	25	0	102	40	140	Ó			
Chrysene	20.9	1.0	μg/L	25	0	83.6	40	140	0			
Surr: 1-Chlorooctadecane	10.34	1.0	μg/L	20	0	51.7	40	140	0			
Surr: 2-Bromonaphthalene	20.57	1.0	μg/L	20	0	103	40	140	0			
Surr: 2-Fluorobiphenyl	19.87	1.0	μg/L	20	0	99.3	40	140	0			
Surr: o-Terphenyl	16.32	1.0	μg/L	20	0	81.6	40	140	. 0			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

I mary to detected only quantitation minus

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Sample Matrix Spike Duplicate

Recovery Limit Summary

Sample ID: 0310133-01BMSD

RPD: 0 out of 10 outside limits Spike Recovery: 0 outside limits out of 20

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

B - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Method Blank

Sample ID MB-10402	Batch ID: 10402	Test Code	: MAEPH	Units	: μg/L			Analysis I	Date 10/28/	03 11:40:00 AM	Prep Dat	e 10/27/03	
Client ID:		Run ID:	SV-2_03	1028A				SeqNo:	352980		-	•	
	QC Sample			QC Spike	Original	l Sample				Original Sample			
Analyte	Result	RL	Units	Amount		Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
C9-C18 Aliphatic Hydrocarbons	ND	100	μg/L					, , , , ,			,		
C19-C36 Aliphatic Hydrocarbons	178.3	100	μg/L										
C11-C22 Aromatic Hydrocarbons	ND	100	μg/L										
Naphthalene	ND	1.0	μg/L										
2-Methylnaphthalene	ND	1.0	μg/L										
Acenaphthylene	ND	1.0	μg/L										
Acenaphthene	ND	1.0	μg/L										
Fluorene	ND	1.0	μg/L										
Phenanthrene	ND	1.0	μg/L										
Anthracene	ND	1.0	μg/L										
luoranthene	ND	1.0	μg/L										
Pyrene	ND	1.0	μg/L										
Benz(a)anthracene	ND ·	1.0	μg/L				:						
Chrysene	ND	1.0	μg/L										
Benzo(b)fluoranthene	ND	1.0	μg/L					114					
Benzo(k)fluoranthene	ND ND	1.0	µg/L										
Benzo(a)pyrene	ND	1.0	μg/L										
Dibenz(a,h)anthracene	ND	1.0	μg/L										
ndeno(1,2,3-cd)pyrene	ND	1.0	μg/L									•	
Benza(g,h,i)perylene	ND	1.0	μg/L										
Surr: 1-Chlorooctadecane	16.42	1.0	μg/L	20		0	82.1	40	140	0	and the second		
Surr: 2-Bromonaphthalene	21.9	1.0	μg/L	20		0	109	40	140	n		• • •	
Surr: 2-Fluorobiphenyl	22.14	1.0	μg/L	20		0	111	40	140		٠.		
Surr: o-Terphenyl	22.09	1.0	μg/L	20		0	110	40	140	n			
-			. •	*********					170	U			

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 11-Nov-03

AMRO Environmental Laboratories Corp.

CLIENT:	Mactec E & C, Inc.		C	Client Sample ID: WES MW3	WES N	MW3
Lab Order:	0310133			Tag Number:		
Project:	3651031003/03 Taunton - Parcel GA			Collection Date: 10/16/03	10/16/	03
Lab ID:	0310133-05B			Matrix:	GROU	Matrix: GROUNDWATER
Analyses	Result	RI.	RL Qual Units	Units	DF	Date Analyzed

Analyses	Kesuit	7	Cuai Omis	CHILIS	לע	Date Analyzed
EXTRACTABLE PETROLEUM HYDROCARBONS	ROCARBONS	MAEPH				Analyst: GG
C9-C18 Aliphatic Hydrocarbons	N	120		hg/L	-	10/28/03 3:51:00 PM
C19-C36 Aliphatic Hydrocarbons	230	120	w	µg/L		10/28/03 3:51:00 PM
C11-C22 Aromatic Hydrocarbons	210	120		hg/L	my.	10/28/03 3:51:00 PM
Naphthalene	N	1.2		J∕6rl		10/28/03 3:51:00 PM
2-Methylnaphthalene	ND	1.2		J/g₁	_	10/28/03 3:51:00 PM
Acenaphthylene	NO NO	1.2		µg/L	_	10/28/03 3:51:00 PM
Acenaphthene	ND	1.2		μg/L		10/28/03 3:51:00 PM
Fluorene	N	1.2		hg/L		10/28/03 3:51:00 PM
Phenanthrene	ND	1.2		µg/L		10/28/03 3:51:00 PM
Anthracene	8	1.2		hg/L		10/28/03 3:51:00 PM
Fluoranthene	ND	1.2		hg/L		10/28/03 3:51:00 PM
Pyrene	ND	1.2		hg/L	_	10/28/03 3:51:00 PM
Benz(a)anthracene	ND	1.2		µg∕L		10/28/03 3:51:00 PM
Chrysene	ND	1,2		J∕brt		10/28/03 3:51:00 PM
Benzo(b)fluoranthene	ND	1.2		µg/L		10/28/03 3:51:00 PM
Benzo(k)fluoranthene	ND	1.2		hg/L		10/28/03 3:51:00 PM
Benzo(a)pyrene	ND	1.2		hg/L		10/28/03 3:51:00 PM
Dibenz(a,h)anthracene	ND	1.2		hg/L	>	10/28/03 3:51:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.2		hg/L	 .	10/28/03 3:51:00 PM
Benzo(g,h,i)perylene	ND	1.2		µg/L		10/28/03 3:51:00 PM
Surr: 1-Chlorooctadecane	53.1	40-140		%REC		10/28/03 3:51:00 PM
Surr. 2-Bromonaphthalene	106	40-140		%REC	_	10/28/03 3:51:00 PM
Surr. 2-Fluorobiphenyl	108	40-140		%REC	-1	10/28/03 3:51:00 PM
Surr: o-Terphenyl	65.1	40-140		%REC	>	10/28/03 3:51:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CERTIFICATION

Were any significant modifications made to the method as specified in section 11.3: Were all QA/QC procedures required by the VPH or EPH method followed: Yes

Yes No - If No, See Case Narrative
No - Yes - Details enclosed

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PRINTED NAME: Nancy Stewart SIGNATURE: DATE: POSITION: Laboratory Director (or designee) 11/03

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit S-S
J-Analyte detected below quantitation limits R-R

S - Spike Recovery outside accepted recovery limits
R - RPD outside accepted recovery limits

ed recovery limits E - Value above quantitation range / limits # - See Case Narrative

B - Analyte detected in the associated Method Blank H - Method prescribed holding time exceeded

Date: 11-Nov-03

STIMMADV DEDOD	OC STIM					nc.	Mactec E & C,	CLIENT:
SUMMARY REPORT	QC SUM						0310133	Work Order:
Method Blan					rcel GA	Taunton - Par	3651031003/03	Project:
				μg/L	2.0	ND	ne	1,4-Dichlorobenzer
				μg/L	5.0	ND	ethane	Dichlorodifluorome
				μg/L	2.0	ND	Э	1,1-Dichloroethane
				µg/L	2.0	ND	е	1,2-Dichloroethane
				μg/L	1.0	ND	9	1,1-Dichloroethene
				μg/L	2.0	ND	iene	cis-1,2-Dichloroeth
				µg/L	2.0	ND	ethene	trans-1,2-Dichloroe
				μg/L	2.0	ND	ne	1,2-Dichloropropan
				μg/L	2.0	ND	пе	1,3-Dichloropropan
				μg/L	2.0	ND	ne	2,2-Dichloropropan
				μg/L	2.0	ND	ne :	1,1-Dichloropropen
				μg/L	1.0	ND	pene	cis-1,3-Dichloropro
				μg/L	1.0	ND	propene	trans-1,3-Dichlorop
				μg/L	5.0	ND		Diethyl ether
	•			μg/L	2.0	ND		Diisopropyl ether
				μg/L	50	ND		1,4-Dioxane
	•			μg/L	2.0	ND	l Ether	Ethyl Tertiary Butyl
				μg/L	2.0	ND		Ethylbenzene
				μg/L	2.0	ND	ne	Hexachlorobutadier
				μg/L	10	ND		2-Нехалопе
				μg/L	2.0	ND		Isopropylbenzene
				μg/L	2.0	ND		4-Isopropyltoluene
				μg/L	10	ND		2-Butanone
				μg/L	10	ND	ne	4-Methyl-2-pentano
				μg/L	2.0	ND	ner	Methyl tert-butyl eth
				μg/L	5.0	ND		Methylene chloride
en e	and the state of t		and the second of the second	μg/L	5.0	ND		Naphthalene
				µg/L	2.0	ND		-Propylbenzene
				μg/L	2.0	ND		Styrene
		•	•	μg/L	2.0	ND	ethane	,1,1,2-Tetrachloroe
				μg/L	2.0	ND		,1,2,2-Tetrachloroe

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

B - Analyte detected in the associated Method Blank

NA - Not applicable where J values or ND results occur

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Method Blank

Sample ID mb-10/27/03	Batch ID: R21240	Test Code	e: SW8260	B Units: μ	g/L		Analysis I	Date 10/27/0	03 4:13:00 PM	Prep Dat	e 10/27/03	
Client ID:		Run ID:	V-3_031	027A			SeqNo:	352230				
	QC Sample			QC Spike Orig	ginal Sample			,	Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
Acetone	ND	10	μg/L									
Tertiary Amyl Methyl Ether	ND	2.0	μg/L									
Benzene	ND	1.0	μg/L									
Bromobenzene	ND	2.0	µg/L									
Bromochloromethane	ND	2.0	µg/L									
Bromodichloromethane	ND	2.0	μg/L									
Bromoform	ND	2.0	μg/L									
Bromomethane	ND	2.0	µg/L									
sec-Butylbenzene	ND	2.0	μg/L								•	
n-Butylbenzene	ND	2.0	μg/L									
tert-Butylbeлzene	ND	2.0	μg/L									
Carbon disulfide	ND	2.0	μg/L									
Carbon tetrachloride	ND ND	2.0	μg/L									
Chlorobenzene	ND	2.0	μg/L									
Dibromochloromethane	ND	2.0	μg/L									
Chloroethane	ND	5.0	μg/L									
Chloroform ·	ND	2.0	µg/L						*			
Chloromethane	ND	3.0	μg/L									
2-Chlorotoluene	ND	2.0	μg/L									
4-Chlorotoluene	ND	2.0	μg/L							1.3		
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L .									
1,2-Dibromoethane	ND	2.0	μg/L			•						
Dibromomethane	ND	2.0	μg/L								e de la companya de l	
1,3-Dichlorobenzene	ND	2.0	μg/L									
1.2-Dichlorobenzene	ND	2.0	μg/L									

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

*,

CLIENT:	Mactec E & C, L	nc.							(OC STIME	LADV DEDAD
Work Order: 0	310133				•				•	SC SOMM	IARY REPOR
Project: 3	651031003/03	Taunton - Pa	rcel GA								Method Blan
Tetrachloroethene		ND	2.0	μg/L	***************************************				-		
Tetrahydrofuran		ND	10	μg/L							
Toluene		ND	2.0	µg/L							
1,2,4-Trichlorobenzene	•	ND	2.0	µg/L							
1,2,3-Trichlorobenzene	e	ND	2.0	µg/L							
1,1,1-Trichloroethane		ND	2.0	μg/L							
1,1,2-Trichloroethane		ND	2.0	μg/L							
Trichloroethene		ND	2.0	μg/L							
Trichlorofluoromethane	•	ND	2.0	μg/L							
1,2,3-Trichloropropane		ND	2.0	μg/L							
1,2,4-Trimethylbenzen	е	ND	2.0	μg/L					,		
1,3,5-Trimethylbenzen	е	ND	2.0	μg/L							
Vinyl chloride		ND	2.0	μg/L							
o-Xylene		ND	2.0	μg/L							•
m,p-Xylene		ND	2.0	μg/L							
Surr: Dibromofluoror	nethane	25.01	2.0	μg/L	25	0	100	85	120	0	
Surr: 1,2-Dichloroeth	ane-d4	24.55	2.0	μg/L	25	0	98.2	75	124	0	
Surr: Toluene-d8		24.31	2.0	µg/L	25	0	97.2	82	112	0	
Surr: 4-Bromofluorol	enzene	23.11	2.0	μg/L	25	0	92.4	77	117	0	

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Date: 11-Nov-03

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

Date: 11-Nov-03

QC SUMMARY REPORT					Inc.	Mactec E & 0	CLIENT:
						: 0310133	Work Order:
Method Blank				rcel GA	3 Taunton - Pa	3651031003/	Project:
			μg/L	2.0	ND	nzene	1,4-Dichlorobenze
			μg/L	5.0	ND	omethane	Dichlorodifluorome
			μg/L	2.0	ND	ane	1,1-Dichloroethane
•			μg/L	2.0	ND	апе	1,2-Dichloroethane
			μg/L	1.0	ND	ene	1,1-Dichloroethene
			μg/L	2.0	ND	oethene	cis-1,2-Dichloroeth
			μg/L	2.0	ND	oroethene	trans-1,2-Dichloroe
			μg/L	2.0	ND	pane	1,2-Dichloropropar
			μg/L	2.0	ND	pane	1,3-Dichloropropar
			μg/L	2.0	ND	pane	2,2-Dichloropropar
			μ g/L	2.0	ND	pene	1,1-Dichloroproper
			μg/L	1.0	ND	propene	cis-1,3-Dichloropro
			μg/L	1.0	ND	огоргорепе	trans-1,3-Dichlorop
			μg/L	5.0	ND		Diethyl ether
			μg/L	2.0	ND	er	Diisopropyl ether
			μg/L	50	ND		1,4-Dioxane
			μg/L	2.0	ND	lutyl Ether	Ethyl Tertiary Buty
			μg/L	2.0	ND		Ethylbenzene
			μg/L	2.0	ND	adiene	Hexachlorobutadie
			μg/L	10	ND		2-Hexanone
			μg/L	2.0	ND	ne	Isopropylbenzene
			μg/L	2.0	ND	ene	4-Isopropyltoluene
			µg/L	10	ND		2-Butanone
			µg/L	10	ND	tanone	4-Methyl-2-pentano
			µg/L	2.0	ND	l ether	Methyl tert-butyl et
			μg/L	5.0	ND	ride	Methylene chloride
			μg/L	5.0	ND		Naphthalene
	·		, μg/L	2.0	ND	e	n-Propylbenzene
			μg/L	2.0	ND		Styrene
			μg/L	2.0	ND	oroethane	1,1,1,2-Tetrachloro
	•		μg/L	2.0	ND		1,1,2,2-Tetrachloro

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

Mactec E & C, Inc.

Work Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

QC SUMMARY REPORT

Method Blank

Sample ID mb-10/25/03	Batch ID: R21231	Test Code	e: SW8260B	Units: µg	/L		Analysis I	Date 10/25/0	03 8:53:00 AM	Prep Dat	e 10/25/03	Constitution of the Consti
Client ID:		Run ID:	V-3_03102	25A			SeqNo:	352009		•		
	QC Sample		(QC Spike Origi	nal Sample	;			Original Sample			
Analyte	Result	RL	Units	Amount	•	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
Acetone	ND	10	μg/L						•			
Tertiary Amyl Methyl Ether	ND	2.0	μg/L									
Benzene	ND	1.0	µg/L									
Bromobenzene	ND	2.0	μg/L									
Bromochloromethane	ND	2.0	μg/L									
Bromodichloromethane	ND	2.0	µg/L									
Bromoform	ND	2.0	µg/L								•	
Bromomethane	ND	2.0	μg/L									
sec-Butylbenzene	ND	2.0	μg/L									
n-Butylbenzene	ND	2.0	μg/L									
tert-Butylbenzene	ND	2.0	μg/L						•			
Carbon disulfide	ND	2.0	μg/L						•			
Carbon tetrachloride	ND	2.0	μg/L									
Chlorobenzene	ND	2.0	μg/L									
Dibromochloromethane	ND	2.0	μg/L					1				
Chloroethane	ND	5.0	μg/L									
Chloroform	ND	2.0	μg/L									
Chloromethane	ND	3.0	μg/L		•							
2-Chlorotoluene	ND	2.0	μg/L									
4-Chlorotoluene	ND	2.0	μg/L									
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L									
1,2-Dibromoethane	ND	2.0	μg/L									
Dibromomethane	ND	2.0	μg/L									
1,3-Dichlorobenzene	ND	2.0	μg/L									
,2-Dichlorobenzene	ND	2.0	µg/L									

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

1

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Client Sample ID: WES MW3

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Collection Date: 10/16/03

Lab ID:

0310133-05A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	μg/L	. 1	10/27/03 8:20:00 PM
1,4-Dioxane	ND	50	μg/L	· 1	10/27/03 8:20:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
Ethylbenzene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
2-Hexanone	ND	10	μg/L	1	10/27/03 8:20:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
2-Butanone	ND	10	μg/L	1	10/27/03 8:20:00 PM
4-Methyl-2-pentanone	ND	10	μg/ L	1 .	10/27/03 8:20:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
Methylene chloride	ND	5.0	μg/L	1	10/27/03 8:20:00 PM
Naphthalene	ND	5.0	μg/L	• 1	10/27/03 8:20:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
Styrene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	10/27/03 8:20:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	10/27/03 8:20:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
Tetrahydrofuran	ND	10	µg/L	1	10/27/03 8:20:00 PM
Toluene	ND	2.0	µg/L	1	10/27/03 8:20:00 PN
1,2,4-Trichlorobenzene	ND	2.0	μg/L	. 1	10/27/03 8:20:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
Trichloroethene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
Trichlorofluoromethane	ND	2.0	μ g/L	1	10/27/03 8:20:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1 -	10/27/03 8:20:00 PM
Vinyl chloride	ND	2.0	µg/L	1	10/27/03 8:20:00 PM
o-Xylene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
m,p-Xylene	ND	2.0	μg/L	1	10/27/03 8:20:00 PM
Surr: Dibromofluoromethane	102	85-120	%REC	1	10/27/03 8:20:00 PM
Surr: 1,2-Dichloroethane-d4	93.2	75-124	%REC	1	10/27/03 8:20:00 PM
Surr: Toluene-d8	82.4	82-112	%REC	1	10/27/03 8:20:00 PM
Surr: 4-Bromofluorobenzene	90.0	77-117	%REC	1	10/27/03 8:20:00 PM

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-05A

Client Sample ID: WES MW3

Collection Date: 10/16/03

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUN	DS BY MCP MET	SW8260B				Analyst: Sk
Acetone	ND	10		μg/L	1	10/27/03 8:20:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		μg/L	· 1	10/27/03 8:20:00 PM
Benzene	ND	1.0		µg/L	1	10/27/03 8:20:00 PM
Bromobenzene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Bromochloromethane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	10/27/03 8:20:00 PM
Bromoform	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Bromomethane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
sec-Butylbenzene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
n-Butylbenzene	ND	2.0		µg/L	1	10/27/03 8:20:00 PM
tert-Butylbenzene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Carbon disulfide	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Carbon tetrachloride	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Chlorobenzene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Dibromochloromethane	ND	2.0		µg/L	1	10/27/03 8:20:00 PM
Chloroethane	ND	5.0		μg/L	1	10/27/03 8:20:00 PM
Chloroform	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Chloromethane	ND	3.0		μg/L	1	10/27/03 8:20:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
4-Chlorotoluene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		μg/L	1	10/27/03 8:20:00 PM
1,2-Dibromoethane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
Dibromomethane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
1,3-Dichlorobenzene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
1,2-Dichlorobenzene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
1,4-Dichlorobenzene	ND	2.0		µg/L	1	10/27/03 8:20:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	10/27/03 8:20:00 PM
1,1-Dichloroethane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	10/27/03 8:20:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
trans-1,2-Dichloroethene	·ND	2.0		μg/L	. 1	10/27/03 8:20:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	10/27/03 8:20:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	10/27/03 8:20:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	10/27/03 8:20:00 PM
Diethyl ether	ND	5.0		μg/L	1	10/27/03 8:20:00 PM

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order: 0310133

Project: Lab ID: 3651031003/03 Taunton - Parcel GA

0310133-04A

Client Sample ID: ECE MW1

Collection Date: 10/16/03

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
Diisopropyl ether	ND	. 2.0	μg/L	1	10/27/03 7:45:00 PM
1,4-Dioxane	110	50	μg/L	1	10/27/03 7:45:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Ethylbenzene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
2-Hexanone	ND	10	µg/L	1	10/27/03 7:45:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
4-Isopropyltoluene	ND	2.0	μg/ L	1	10/27/03 7:45:00 PM
2-Butanone	ND	10	µg/L	1	10/27/03 7:45:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	10/27/03 7:45:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Methylene chloride	ND	5.0	μg/L	1	10/27/03 7:45:00 PM
Naphthalene	ND	5.0	μ g /L	1	10/27/03 7:45:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Styrene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Tetrahydrofuran	ND	10	μg/L	1	10/27/03 7:45:00 PM
Toluene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Trichloroethene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Vinyl chloride	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
o-Xylene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
m,p-Xylene	ND	2.0	μg/L	1	10/27/03 7:45:00 PM
Surr: Dibromofluoromethane	102	85-120	%REC	1	10/27/03 7:45:00 PM
Surr: 1,2-Dichloroethane-d4	94.6	75-124	%REC	1	10/27/03 7:45:00 PM
Surr: Toluene-d8	89.2	82-112	%REC	1	10/27/03 7:45:00 PM
Surr: 4-Bromofluorobenzene	90.6	77-117	%REC	1	10/27/03 7:45:00 PM

Date: 06-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

3651031003 Taunton - Parcel GA

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

Sample ID LCSD-10362	Batch ID: 10362	Test Code:	MAEPH	Units: μο	3/L.		Analysis I	Date 10/24/0	3 12:56:00 AM	Prep Dat	e 10/22/03	
Client ID:		Run ID:	SV-2_031	023E			SeqNo:	351704		•		
	QC Sample			QC Spike Origi	nal Sample			(Original Sample		•	•
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
n-Eicosane	4.81	1.0	μg/L	25	0	19.2	40	140	2.09	78.8	50	SR
n-Nonadecane	4.765	1.0	µg/L	25	0	19.1	40	140	2.21	73.3	50	SR
n-Nonane	20.52	1.0	μg/L	25	0	82.1	40	140	14.36	35.3	50	•
n-Octacosane	4.09	1.0	μg/L	25	0	16.4	40	140	1.83	76.4	50	SR
n-Tetradecane	3.745	1.0	μg/L	25	0	15	40	140	1.88	66.3	50	SR
Naphthalene	26.64	1.0	μg/L	25	0	107	40	140	18.08	38.3	50	٠.,
Acenaphthene	26.45	1.0	µg/L	25	0	106	40	140	18.07	37.6	50	
Anthracene	29.52	1.0	μg/L	25	0	118	40	140	20.1	38	50	
Pyrene	29.17	1.0	μg/L	25	0	117	40	140	20.16	36.6	50	
Chrysene	20.43	1.0	μg/L	25	0	81.7	40	140	16.27	22.7	50	
Surr: 1-Chlorooctadecane	3.94	1.0	μg/L	20	0	19.7	40	140	. 0	0	. 0	s
Surr: 2-Bromonaphthalene	19.8	1.0	μg/L	20	0	99	40	140	0	0	0	
Surr: 2-Fluorobiphenyl	19.34	1.0	μg/L	20	0	96.7	40	140	0	0	0	
Surr: o-Terphenyl	18.23	1.0	μg/L	20	0	91.2	40	140	0	Ö	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

Date: 06-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

3651031003 Taunton - Parcel GA

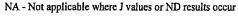
QC SUMMARY REPORT

Laboratory Control Spike

Sample ID LCS-10362	Batch ID: 10362	Test Code	MAEPH	Units: µg	3/L		Analysis I	Date 10/24/0	3 12:24:00 AM	Prep Date	e 10/22/03	
Client ID:		Run ID:	SV-2_03	1023E			SeqNo:	351703				
	QC Sample			QC Spike Origi	inal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
n-Eicosane	2.09	1.0	μg/L	25	0	8.36	40	140	0	*		s
n-Nonadecane	2.21	1.0	μg/L	25	0	8.84	40	140	0			S
n-Nonane	14.36	1.0	μg/L	25	0	57.5	40	140	0			
n-Octacosane	1.83	1.0	μg/L	25	0	7.32	40	140	0			S
n-Tetradecane	1.88	1.0	μg/L	25	0	7.52	40	140	0			S
Naphthalene	18.08	1.0	μg/L	25	0	72.3	40	140	0			
Acenaphthene	18.07	1.0	μg/L	25	0	72.3	40	140	0			
Anthracene	20.1	1.0	µg/L	25	0	80.4	40	140	0			
Pyrene	20.16	1.0	μg/L	25	0	80.6	40	140	0			
Chrysene	16.27	1.0	µg/L	25	0	65.1	40	140	0		**.	
Surr: 1-Chlorooctadecane	1.95	1.0	μg/L	. 20	0	9.75	40	140	0			S
Surr: 2-Bromonaphthalene	19.24	1.0	µg/L	20	0	96.2	40	140	0	•		
Surr: 2-Fluorobiphenyl	18.68	1.0	µg/L	20	0	93.4	40	140	0			
Surr: o-Terphenyl	17.46	1.0	μg/L	20	0	87.3	40	140	. 0			

Qualifiers:

ND - Not Detected at the Reporting Limit


J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank
NA - Not applicable where I values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CC N

Date: 06-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

3651031003 Taunton - Parcel GA

QC SUMMARY REPORT

Sample Duplicate

Sample ID 0310105-02BDUP	Batch ID: 10362	Test Code	: MAEPH	Units: μ	g/L		Analysis I	Date 10/24/0	3 2:29:00 AM	Prep Dat	e 10/22/03	
Client ID: ECE MW4		Run ID:	SV-2_03	1023E			SeqNo:	351707				
	QC Sample			QC Spike Orig	inal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
C9-C18 Aliphatic Hydrocarbons	283.7	120	μg/L	0	0	0	0	. 0	204.2	32.6	50	
C19-C36 Aliphatic Hydrocarbons	291.5	120	μg/L	0	0	0	0	0	229.2	23.9	50	
C11-C22 Aromatic Hydrocarbons	546.8	120	µg/L	0	0	0	0	. 0	470	15.1	50	
Naphthalene	ND	1.2	μg/L	0	0	0	0	0	0	0	50	
2-Methylnaphthalene	ND	1.2	µg/L	0	0	0	0	0	0	0	50	
Acenaphthylene	ND	1,2	μg/L	0	0	0	0	0	0	0	50	
Acenaphthene	ND	1.2	μg/L	0	0	0	0	0	0	0	50	
Fluorene	ND	1.2	μg/L	0	0	0	0	0	0	0	50	
Phenanthrene	ND	1.2	μg/L	. 0	0	0	0	0	0	0	50	
Anthracene	ND	1.2	μg/L	0	0	0	0	0	0	0	50	
Fluoranthene	ND	1.2	μg/L.	0	0	0	. 0	0	0	0	50	
Pyrene	ND	1.2	μg/L	0	0	Ō	0	0	0	0	50	
Benz(a)anthracene	ND	1.2	μg/L	0	0	0	0	0	0	0	50	
Chrysene	ND	1.2	μg/L	0	0	٥	0	0	0	0	50	•
Benzo(b)fluoranthene	ND	1.2	μg/L	0	. 0	0	. 0	0	0	0	50	
Benzo(k)fluoranthene	ND	1.2	μg/L	0	0	0	0	0	0	0	50	
Benzo(a)pyrene	ND	1.2	µg/L	0	0	0	0	0	0	0	50	
Dibenz(a,h)anthracene	ND	1.2	μg/L	0	0	0	0	0	0	0	50	
ndeno(1,2,3-cd)pyrene	ND	1.2	μg/L	0	0	0	. 0	0	0	0	-50	
Зепzo(g,h,i)perylene	ND	1.2	μg/L	0	0	0	0	0	0	0	50	
Surr: 1-Chlorooctadecane	10.55	1.2	μg/L	25	0	42.2	40	140	0	. 0	0	
Surr: 2-Bromonaphthalene	24.05	1.2	μg/L	25	0	96.2	40	140	0	0	0	
Surr: 2-Fluorobiphenyl	23.91	1.2	µg/L	25	0	95.6	40	140	0	. 0	0	
Surr: o-Terphenyl	20.84	1.2	μg/L	25	0	83.4	40	140	0	0	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

B - Analyte detected in the associated Method Blank NA - Not applicable where J values or ND results occur CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

3651031003 Taunton - Parcel GA

QC SUMMARY REPORT

Method Blank

Sample ID MB-10362	Batch ID: 10362	Test Code	: MAEPH	Units: µg	'L		Analysis [Date 10/23/0	03 11:53:00 PM	Prep Date	e 10/22/03	
Client ID:		Run ID:	SV-2_03	1023E			SeqNo:	351702				
	QC Sample			QC Spike Origin	nai Sample				Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
C9-C18 Aliphatic Hydrocarbons	ND	100	μg/L									
C19-C36 Aliphatic Hydrocarbons	ND	100	μg/L				•					
C11-C22 Aromatic Hydrocarbons	ND	100	µg/L									
Naphthalene	ND	1.0	μg/L									
2-Methylnaphthalene	ND	1.0	μg/L									
Acenaphthylene	ND	1.0	μg/L									
Acenaphthene	ND	1.0	μg/L									
luorene	ND	1.0	μg/L						•			
henanthrene	ND	1.0	μg/L									
Anthracene	ND	1.0	µg/L						-			
fluoranthene	- ND	1.0	μg/L					1.0				
Pyrene Pyrene	ND	1.0	µg/L									
Benz(a)anthracene	ND	1.0	μg/L			-						
Chrysene	ND	1.0	μg/L									
Benzo(b)fluoranthene	ND	1.0	μg/L									
Benzo(k)fluoranthene	ND	1.0	μg/L									
Benzo(a)pyrene	ND	1.0	µg/L									
Dibenz(a,h)anthracene	ND	1.0	μg/L									
ndeno(1,2,3-cd)pyrene	ND	1.0	μg/L									
Benzo(g,h,i)perylene	ND	1.0	μg/L									
Surr: 1-Chlorooctadecane	1.895	1.0	μg/L	20	0	9.48	40	140	0			· S
Surr: 2-Bromonaphthalene	17.76	1.0	μg/L	20	0	88.8	40	140	0			
Surr: 2-Fluorobiphenyl	17.68	1.0	μg/L	20	0	88.4	40	140	. 0			
Surr: o-Terphenyl	15	1.0	µg/L	20	0	75	40	140	0	e e		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

S

Date: 30-Oct-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310105

Project:

3651031003 Taunton - Parcel GA

Lab ID:

0310105-03B

Tag Number:

Client Sample ID: WES MW4

Collection Date: 10/14/03

Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDR	ROCARBONS	MAEPH				Analyst: RKK
C9-C18 Aliphatic Hydrocarbons	ND	100		μg/L	1	10/24/03 3:01:00 AM
C19-C36 Aliphatic Hydrocarbons	ND	100		μg/L	1	10/24/03 3:01:00 AM
C11-C22 Aromatic Hydrocarbons	ND	100		μg/L	1.	
Naphthalene	ND	1.0		μg/L	1	10/24/03 3:01:00 AM
2-Methylnaphthalene	ND	1.0		µg/L	1	10/24/03 3:01:00 AM
Acenaphthylene	ND	1.0		µg/L	1	10/24/03 3:01:00 AM
Acenaphthene	ND	1.0		µg/L	1	10/24/03 3:01:00 AM
Fluorene	ND	1.0		μg/L	i 4	10/24/03 3:01:00 AM
Phenanthrene	ND	1.0		μg/L	i	10/24/03 3:01:00 AM
Anthracene	ND	1.0			1	10/24/03 3:01:00 AM
Fluoranthene	ND	1.0		μg/L	1	10/24/03 3:01:00 AM
Pyrene	ND	1.0		μg/L	1	10/24/03 3:01:00 AM
Benz(a)anthracene	ND.	1.0		µg/L	1	10/24/03 3:01:00 AM
Chrysene	ND	1.0		µg/L	1	10/24/03 3:01:00 AM
Benzo(b)fluoranthene	ND			μg/L	1	10/24/03 3:01:00 AM
Benzo(k)fluoranthene	· ND	1.0		μg/L	1	10/24/03 3:01:00 AM
Benzo(a)pyrene	ND	1.0		µg/L	1 .	10/24/03 3:01:00 AM
Dibenz(a,h)anthracene	ND ND	1.0		µg/L	1	10/24/03 3:01:00 AM
Indeno(1,2,3-cd)pyrene	ND ND	1.0		µg/L	· 1	10/24/03 3:01:00 AM
Benzo(g,h,i)perylene		1.0		µg/L	1	10/24/03 3:01:00 AM
Sur: 1-Chlorooctadecane	ND	1.0		µg/L	1	10/24/03 3:01:00 AM
Surr: 2-Bromonaphthalene	32.6	40-140		%REC	1 .	10/24/03 3:01:00 AM
Surr: 2-Fluorobiphenyl	92.4	40-140		%REC	1	10/24/03 3:01:00 AM
	90.6	40-140		%REC	1	10/24/03 3:01:00 AM
Surr: o-Terphenyl	52.2	40-140		%REC	1	10/24/03 3:01:00 AM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CERTIFI	CATION
---------	--------

Were all QA/QC procedures required by the VPH or EPH method followed:

Yes No - If No, See Case Narrative
Yes No - If No, See Case Narrative

Were all performance/acceptance standards for required QA/QC procedures achieved: Were any significant modifications made to the method as specified in section 11.3:

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PRINTED NAME: Nancy Stewart

POSITION: Laboratory Director (or designee)

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

Date: 30-Oct-03

CLIENT:

Mactec E & C, Inc.

Client Sample ID: ECE MW4

Lab Order:

0310105

Tag Number:

Project:

3651031003 Taunton - Parcel GA

Collection Date: 10/14/03

Lab ID:

0310105-02B

Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDR	ROCARBONS	MAEPH			Analyst: RKK
C9-C18 Aliphatic Hydrocarbons	200	110	μg/L	1	10/24/03 1:58:00 AM
C19-C36 Aliphatic Hydrocarbons	230	110	µg/L	1	10/24/03 1:58:00 AM
C11-C22 Aromatic Hydrocarbons	470	110	μg/L	1	10/24/03 1:58:00 AM
Naphthalene	ND.	1.1	μg/L	1	10/24/03 1:58:00 AM
2-Methylnaphthalene	ND	1.1	μg/L	1	10/24/03 1:58:00 AM
Acenaphthylene	ND.	1.1	μg/L	1	10/24/03 1:58:00 AM
Acenaphthene	ND	1.1	μg/L	1	10/24/03 1:58:00 AM
Fluorene	ND	1.1	µg/L	1	10/24/03 1:58:00 AM
Phenanthrene	ND	1.1	μg/L	1.	10/24/03 1:58:00 AM
Anthracene	, ND	1.1	μg/L	1	10/24/03 1:58:00 AM
Fluoranthene	ND	1.1	µg/L	. 1	10/24/03 1:58:00 AM
Pyrene	· ND	1.1	µg/L	1	10/24/03 1:58:00 AM
Benz(a)anthracene	ND	1.1	μg/L	1	10/24/03 1:58:00 AM
Chrysene	ND	1.1	µg/L	1	10/24/03 1:58:00 AM
Benzo(b)fluoranthene	ND	1.1	µg/L	1	10/24/03 1:58:00 AM
Benzo(k)fluoranthene	ND	1.1	µg/L	1	10/24/03 1:58:00 AM
Benzo(a)pyrene	ND	1.1	μg/L	1	10/24/03 1:58:00 AM
Dibenz(a,h)anthracene	ND	1.1	μg/L	1	10/24/03 1:58:00 AM
Indeno(1,2,3-cd)pyrene	ND	1.1	μg/L	1	10/24/03 1:58:00 AM
Benzo(g,h,i)perylene	ND	1.1	μg/L	1	10/24/03 1:58:00 AM
Surr: 1-Chlorooctadecane	57.2	40-140	%REC	1	10/24/03 1:58:00 AM
Surr: 2-Bromonaphthalene	93.4	40-140	%REC	1	10/24/03 1:58:00 AM
Surr: 2-Fluorobiphenyl	93.0	40-140	%REC	1	10/24/03 1:58:00 AM
Surr: o-Terphenyl	90.2	40-140	%REC	1	10/24/03 1:58:00 AM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CERTIFICATIO	١	
--------------	---	--

Were all QA/QC procedures required by the VPH or EPH method followed:

Yes ____No - If No, See Case Narrative

Were all performance/acceptance standards for required QA/QC procedures achieved:
Were any significant modifications made to the method as specified in section 11.3:

Yes No - If No, See Case Narrative

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PRINTED NAME: Nancy Stewart

DATE: 11/07/03

POSITION: Laboratory Director (or designee

Qualifiers: RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

CLIENT: Work Order: Project:	Mactec E & C, 0310105 3651031003 Ta		GA					·			RY REPORT Spike - Full Lis
Tetrachloroethene		21.74	2.0	μg/L	20	0	109	77	123	0	
Tetrahydrofuran		17.86	10	μg/L	20	0	89.3	70	130	0	
Toluene		20.77	2.0	μg/L	20	0	104	86	112	0	
1,2,4-Trichlorobenze	ne	14.46	2.0	μg/L	20	0	72.3	70	130	0	
1,2,3-Trichlorobenze	ne	24.84	2.0	μg/L	20	0	124	70	130	0	
1,1,1-Trichioroethane	•	23.41	2.0	μg/L	20	0	117	78	124	0	
1,1,2-Trichloroethane	•	18.77	2.0	μg/L	20	0	93.8	70	133	0	
Trichloroethene		19.28	2.0.	μg/L	20	0	96.4	83	112	0	
Trichlorofluorometha	ne	18.8	2.0	μg/L	20	0	94	70	130	0	
1,2,3-Trichloropropar	ne	18.99	2.0	μg/L	20	0	95	70	130	0	•
1,2,4-Trimethylbenze	ne	22.29	2.0	μg/L	20	0	111	78	129	0	
1,3,5-Trimethylbenze	ne	23.52	2.0	μg/L	20	0	118	77	130	0	
Vinyl chloride		20.51	2.0	μg/L	20	0	103	70	130	0	
o-Xylene		20.82	2.0	μg/L	20	0	104	80	119	0	
m,p-Xylene		43.44	2.0	μg/L	40	0	109	70	130	0	
Surr: Dibromofluor	omethane	25.58	2.0	μg/L	25	0	102	85	120	0	
Surr: 1,2-Dichloroe	thane-d4	24.35	2.0	μg/L	25	0	97.4	80	124	0	
Surr: Toluene-d8		24.81	2.0	µg/L	25	. 0	99.2	82	112	. 0	
Surr: 4-Bromofluor	obenzene	22.65	2.0	μg/L	25	0	90.6	77	117	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

B - Analyte detected in the associated Method Blank

Date: 06-Nov-03

NA - Not applicable where J values or ND results occur

Date: 06-Nov-03

CLIENT:	Mactec E & (C, Inc.								QC SUMMAR	Y REPORT
Work Order:	0310105			•					т	. =	
Project:	3651031003	Taunton - Parcel	GA							aboratory Control S	spike - Full List
1,4-Dichlorobenzen	le	20.83	2.0	μg/L	20	0	104	74	130	0	
Dichlorodifluoromet	hane	19.87	5.0	μg/L	20	0	99.4	10	130	0	
1,1-Dichloroethane		21.01	2.0	μg/L	20	0	105	83	134	. 0	
1,2-Dichloroethane		20.89	2.0	µg/L	20	0	104	70	125	0	
1,1-Dichloroethene		19.95	1.0	μg/L	20	0	99.8	72	130	0	
cis-1,2-Dichloroethe	ene	19.95	2.0	µg/L	20	0	99.8	76	125	0	
trans-1,2-Dichloroet	thene	22.92	2.0	µg/L	20	0	115	77	128	0	
1,2-Dichloropropane	e	20.3	2.0	μg/L	20	0	102	78	122	0	
1,3-Dichloropropane	е	19.01	2.0	μg/L	20	0	95	70	124	0	
2,2-Dichloropropane	е	21.85	2.0	μg/L	20	0	109	73	130	0	
1,1-Dichloropropend	е	21.08	2.0	μg/L	20	0	105	70	107	0	•
cis-1,3-Dichloroprop	pene	19.01	1.0	μg/L	20	0	95	70	115	0	
trans-1,3-Dichlorope	ropene	18.84	1.0	μg/L	20	0	94.2	70	129	0	
Diethyl ether		19.79	5.0	μg/L	20	0	, 99	70	130	0	
Diisopropyl ether		20.8	2.0	μg/L	20	0	104	70	130	0	
1,4-Dioxane		67.4	50	μg/L	50	0	135	70	130	0	S
Ethyl Tertiary Butyl	Ether	26.55	2.0	μg/L	20	0	133	70	130	0	s
Ethylbenzene		21.53	2.0	μg/L	20	0	108	82	119	0	•
Hexachlorobutadien	ne	17.74	2.0	μg/L	20	0	88.7	70	130	0	
2-Hexanone		19.97	10	μg/L	20	0	99.8	70	130	0	
Isopropylbenzene		24.55	2.0	μg/L	20	0	123	72	130	0	en e
4-Isopropyltoluene		23.22	2.0	μg/L	20	0	116	74	130	0	
2-Butanone		19.27	10	μg/L	20	0	96.4	70	130	0	
4-Methyl-2-pentano	ne	18.29	10	µg/L	20	0	91.4	70	130	0	
Methyl tert-butyl eth	er	31.61	2.0	µg/L	20	0	158	70	130	0	S
Methylene chloride		21.86	5.0	µg/L	20	0	109	70	141	0	
Naphthalene		17.07	5.0	μg/L	20	0	85.4	70	130	0	
n-Propylbenzene		24.14	2.0	μg/L	20	0	121	71	130	0	
Styrene		21.34	2.0	μg/L	20	0	107	72	123	0	
1,1,1,2-Tetrachloroe	thane	21	2.0	μg/L	20	0	105	83	118	0	
1,1,2,2-Tetrachloroe		19.08	2.0	μg/L	20	0	95.4	70	130	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 06-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

3651031003 Taunton - Parcel GA

QC SUMMARY REPORT

Laboratory Control Spike - Full List

Sample ID lcsf-10/20/03	Batch ID: R21130	Test Cod	e: SW8260B	Units: p	ıg/L		Analysis I	Date 10/20/0	3 12:11:00 PM	Prep Dat	e 10/20/03	
Client ID:		Run ID:	V-3_03102	0A			SeqNo:	350510		•		
	QC Sample		(QC Spike Ori	ginal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result		LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Acetone	18.98	10	μg/L	20	0	94.9	70	130	0			······································
Tertiary Amyl Methyl Ether	22.05	2.0	μg/L	20	0	110	70	130	0			
Benzene	19.97	1.0	μg/L	20	0	99.8	81	115	. 0			
Bromobenzene	22.67	2.0	μg/L	20	0	113	83	118	0			
Bromochloromethane	20.65	2.0	µg/L	20	0	103	70	126	0			
Bromodichloromethane	17.92	2.0	μg/L	20	0	89.6	72	119	0			
Bromoform	18.66	2.0	μg/L	20	. 0	93.3	70	127	0			
Bromomethane	12.66	2.0	μg/L	20	. 0	63.3	70	130	0			s
sec-Butylbenzene	24.06	2.0	μg/L	20	0	120	70	130	0			
n-Butylbenzene	22.72	2.0	μg/L	20	0	114	70	130	0			
tert-Butylbenzene	22.61	2.0	μg/L	20	0	113	70	130	0			
Carbon disulfide	16.59	2.0	µg/L	20	0	83	70	130	0			
Carbon tetrachloride	22,04	2.0	μg/L	20	0	110	78	124	0			
Chlorobenzene	20.58	2.0	μg/L	20	. 0	103	80	115	0			
Dibromochloromethane	20.54	2.0	μg/L	20	0	103	70	127	0			
Chloroethane	19.67	5.0 ·	μg/L	20	0	98.4	70	130	0			
Chloroform	20.28	2.0	μg/L	20	0	101	80	119	0			
Chloromethane	24.09	3.0	μg/L	20	0	120	70	130	0			
2-Chlorotoluene	22.09	2.0	μg/L	20	0	110	70	130	0			
4-Chlorotoluene	22.15	2.0	μg/L	20	. 0	111	78	130	0			
1,2-Dibromo-3-chloropropane	15.19	5.0	μg/L	20	0	76	70	130	0			*
1,2-Dibromoethane	19.29	2.0	μg/L	20	0	96.5	70	130	n			
Dibromomethane	19.38	2.0	μg/L	20	0	96.9	70	129	0			
1,3-Dichlorobenzene	21.19	2.0	μg/L	20	0	106	81	130	0			
1,2-Dichlorobenzene	20.71	2.0	μg/L	20	0	104	80	124	. 0			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

∞

Date: 06-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

3651031003 Taunton - Parcel GA

QC SUMMARY REPORT

Matrix Spike Duplicate - Full List

Recovery Limit Summary

Sample ID: 0310105-01Amsdf

RPD: 0 out of 71 outside limits

Spike Recovery: 10 out of 142 outside limits

と

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT: Mactec E & C, Inc.

Work Order: 0310105

Project: 3651031003 Taunton - Parcel GA

April 102 April

220,000	i auditon - 1 arcci	UA								wpxxvmic		
Tetrachloroethene	102.3	10	μg/L	100	0	102	77	123	101.3	0.982	20	
Tetrahydrofuran	90.2	50	μg/L	100	0	90.2	70	130	91.95	1.92	20	
Toluene	96.45	10	μg/L	100	0	96.5	86	112	97.7	1.29	20	
1,2,4-Trichlorobenzene	65.85	10	μg/L	100	0	65.8	70	130	61.25	7.24	20	s
1,2,3-Trichlorobenzene	154.4	10	μg/L	100	0	154	70	130	150	2.86	20	s
1,1,1-Trichloroethane	103.6	10	μg/L	100	0	104	78	124	109.8	5.81	20	_
1,1,2-Trichloroethane	85.05	10	μg/L	100	0	85	70	130	90.75	6.48	20	
Trichloroethene	93.35	- 10	µg/L	100	0	93.4	83	112	92.5	0.915	20	
Trichlorofluoromethane	81.35	10	μg/L	100	0	81.4	70	130	84.7	4.03	20	
1,2,3-Trichloropropane	96.9	10	μg/L	100	0	96.9	70	130	92.65	4.48	20	
1,2,4-Trimethylbenzene	109.8	10	μg/L	100	0	110	78	129	107.4	2.21	20	
1,3,5-Trimethylbenzene	115.4	10	μg/L	100	0	115	77	130	112	2.9	20	
Vinyl chloride	87	10	μg/L	100	0	87	70	0	90.95	4.44	20	s
o-Xylene	97.15	10	μg/L	10 0	0	97.2	80	119	98.75	1.63	20	
m,p-Xylene	204.1	10	μg/L	200	0	102	70	143	203.2	0.442	20	
Surr: Dibromofluoromethane	126.4	10	μg/L	125	0	101	85	120	0	0	0	
Surr: 1,2-Dichloroethane-d4	120.8	10	μg/L	125	0	96.6	80	124	0	0	0	
Surr: Toluene-d8	119.1	10	µg/L	125	0	95.3	82	112	0	0	0	
Surr: 4-Bromofluorobenzene	107.7	10	μg/L	125	0	86.2	77	117	0	0	0	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

** *.

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

Date: 06-Nov-03

AMRO Environmental Laboratories Corp.

Date: 06-Nov-03

CLIENT:	Mactec E &	C, Inc.								QC SUM	MARVI	REPORT
Work Order:	0310105						•			-		
Project:	3651031003	Taunton - Parcel	GA		•				*	Matrix Spik	e Duplicate	e - Full Lis
1,4-Dichlorobenzer	ne	101.7	10	μg/L	100	0	102	. 74	130	97.2	4.48	20
Dichlorodifluorome	thane	88.6	25	μg/L	100	0	88.6	70	183	91.8	3.55	20
1,1-Dichloroethane	:	93.8	10	μg/L	100	0	93.8	83	130	98.4	4.79	20
1,2-Dichloroethane	•	93.85	10	μg/L	100	0	93.8	70	125	95.9	2.16	20
1,1-Dichloroethene	;	73.15	5.0	μg/L	100	0	73.2	72	130	83.9	13.7	20
cis-1,2-Dichloroeth	ene	91.5	10	μg/Ľ	100	0	91.5	76	125	96.3	5.11	20
trans-1,2-Dichloroe	ethene	105	10	µg/L	100	0	105	77	128	109.4	4.2	20
1,2-Dichloropropan	ie	92.75	10	µg/L	100	0	92.8	78	122	94.3	1.66	20
1,3-Dichloropropan	ie	92.5	10	μg/L	100	0	92.5	40	124	91.75	0.814	20
2,2-Dichloropropan	ie	90.45	10	μg/L	100	0	90.4	73	150	97.1	7.09	20
1,1-Dichloropropen	ie	97.55	10	μg/L	100	Ö	97.6	70	107	100.2	2.73	20
cis-1,3-Dichloropro	pene	81.8	5.0	μg/L	100	0	81.8	70	115	84.5	3.25	20
trans-1,3-Dichlorop	ropene	80.95	5.0	µg/L	100	0	81	70	129	84.05	3.76	20
Diethyl ether		90.4	25	μg/L	100	0	90.4	70	130	91.45	1.15	20
Diisopropyl ether		90	10	μg/L	100	0	90	70	130	93.45	3.76	20
1,4-Dioxane		297.4	250	μg/ L	250	0	119	70	130	176.6	51	0
Ethyl Tertiary Butyl	l Ether	102.8	10	μg/L	100	0	103	70	130	103.8	0.92	. 20
Ethylbenzene		103	10	μg/L	100	0	103	82	119	103.1	0.097	20
Hexachlorobutadie	ne	83.4	10	μg/L	100	0	83.4	70	149	81,55	2.24	20
2-Hexanone		105.8	50	μg/L	100	0	106	70	130	103	2.68	20
Isopropylbenzene		123.6	10	µg/L	100	0	124	72	134	122.4	0.935	20
4-Isopropyltoluene		110	10	μg/L	100	0	110	74	130	107	2.86	20
2-Butanone		90.3	50	μg/L	100	0	90.3	70	130	88.15	2.41	20
4-Methyl-2-pentano	one	93.5	50	μg/L	100	0	93.5	70	130	93.45	0.0535	20
Methyl tert-butyl eth	her	100.1	10	µg/l_	100	0	100	70	141	102.8	2.61	20
Methylene chloride		91	25	μg/L	100	. 0	91	70	141	94.05	3.3	20
Naphthalene		83.45	25	μg/L	100	0	83.4	70	140	80.5	3.6	20
n-Propylbenzene		120.6	10	μg/L	100	0	121	71	136	118.8	1.55	20
Styrene		93.85	10	μg/L	100	0	93.8	72	123	95.45	1.69	20
1,1,1,2-Tetrachloro	ethane	96.35	10	μg/L	100	0	96.4	83	118	98.05	1.75	20
1,1,2,2-Tetrachloro		101.9	10	µg/L	100	0	102	70	130	98.7	3.19	20
Qualifiers: ND -	Not Detected at the	ne Reporting Limit		S - Spike Recov	ery outside accep	ted recovery	limits	B - Analyte	detected in	the associated Meth	od Blank	······································

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 06-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

·3651031003 Taunton - Parcel GA

QC SUMMARY REPORT

Matrix Spike Duplicate - Full List

Sample ID 0310105-01Amsdf	Batch ID: R21130	Test Code	: SW8260B	Units: µg	/L	•	Analysis [Date 10/20/0	3 6:00:00 PM	Prep Date	10/20/03	
Client ID: WES MW2		Run ID:	V-3_03102	0A	•		SeqNo:	350365				
	QC Sample		(QC Spike Origii	nal Sample			(Original Sample		•	
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Acetone	94.05	50	μg/L	100	0	94	70	173	95.4	1.43	20	
Tertiary Amyl Methyl Ether	89.25	10	μg/L	100	0	89.2	70	130	92.65	3.74	20	
Benzene	93.3	5.0	μ g/L	100	0	93.3	81	115	96.2	3.06	20	
Bromobenzene	106.5	10	μg/L	100	0	106	83	118	105.8	0.612	20	
Bromochloromethane	95.25	10	μg/L	100	0	95.2	70	126	95.85	0.628	20	
Bromodichloromethane	78.9	10	μg/L	100	0	78.9	72	119	82.45	4.4	20	
Bromoform	75.55	10	μg/L	100	0	75.6	70	127	76.1	0.725	20	
Bromomethane	20.8	10	µg/L	100	0	20.8	70	141	22.3	6.96	20	s
sec-Butylbenzene	121	10	μg/L	100	0	121	70	130	118.6	2.09	20	_
n-Butylbenzene	111.7	10	μg/L	100	0	112	70	144	109.3	2.17	20	
tert-Butylbenzene	113.4	10	μg/L	100	0	113	70	130	110,1	2.95	20	
Carbon disulfide	69.15	10	μg/L	100	0	69.2	70	141	73.35	5.89	20	s
Carbon tetrachloride	97.25	10	µg/L	100	0	97.2	78	124	105.9	8.52	20	
Chlorobenzene	95.95	10	μg/L	100	0	96	80	115	95.8	0.156	20	
Dibromochloromethane	90.55	10	μg/L	100	0	90.6	70	127	89.25	1.45	20	
Chloroethane	83.1	25	µg/L	100	0	83.1	70	157	88.45	6.24	20	
Chloroform	93.2	10	μg/L	100	0	93.2	80	119	93.75	0.588	20	
Chloromethane	155.4	15	μg/L	100	0	155	70	158	160.4	3.1	20	
2-Chlorotoluene	108.4	10	μg/L	100	0	108	70	130	108.2	0.0923	20	
4-Chlorotoluene	109.6	10	µg/L	100	0	110	- 78	130	106.6	2.78	20	
1,2-Dibromo-3-chloropropane	80.7	25	μg/L	100	0	80.7	70	30	81.35	0.802	20	s
1,2-Dibromoethane	85.65	10	μg/L	100	0	85.7	70	130	88.7	3.5	.20	_
Dibromomethane	92.9	10	µg/L	100	0	92.9	70	129	96.85	4.16	20	
1,3-Dichlorobenzene	103.3	10	µg/L	100	0	103	81	130	99.55	3.7	20	
1,2-Dichlorobenzene	98.85	10	µg/L	100	0	98.8	80	124	94.35	4.66	20	

Qualifiers:

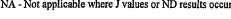
ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits


NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT:	Mactec E & C	C, Inc.		<u> </u>						QC SUMMARY	PEPORT
Work Order:	0310105									-	
Project:	3651031003	Taunton - Parcel	GA							Matrix Spil	ke - Full List
Tetrachloroethene		101.3	10	µg/L	100	0	101	77	123	. 0	
Tetrahydrofuran		91.95	50	μg/L	100	0	92	70	130	0	
Toluene		97.7	10	µg/L	100	0	97.7	86	112	0	
1,2,4-Trichlorobenze	ene	61.25	10	μg/L	100	0	61.2	70	133	0	S
1,2,3-Trichlorobenze	ene	150	10	μg/L	100	0	150	70	130	0	S
1,1,1-Trichloroethar	ne	109.8	10	μg/L	100	0	110	78	124	0	
1,1,2-Trichloroethar	ne	90.75	10	μg/L	100	0	90.8	70	130	0	
Trichloroethene		92.5	10	μg/L	100	0	92.5	83	112	0	
Trichlorofluorometh	ane	84.7	10	μg/L	100	0	84.7	70	130	0	
1,2,3-Trichloropropa	ane	92.65	10	µg/L	100	0	92.6	70	130	0	
1,2,4-Trimethylbenz	zene	107.4	10	μg/L	100	0	107	78	129	0	
1,3,5-Trimethylbenz	zene	112	10	μg/L	100	0	112	77	132	0	
Vinyl chloride		90.95	10	µg/L	100	0	91	70	130	0	
o-Xylene		98.75	10	µg/L	100	0	98.8	80	119	0	
m,p-Xylene		203.2	10	μg/L	200	0	102	70	130	0	
Surr: Dibromofluo	oromethane	128.1	10	μg/L	125	0	102	85	120	0	
Surr: 1,2-Dichlord	oethane-d4	116.8	.10	μg/L	125	0	93.4	80	124	0	
Surr: Toluene-d8		123.2	10	µg/L	125	0	98.6	82	112	0	
Surr: 4-Bromofluo	orobenzene	109.6	10	µg/L	125	0	87.7	77	117	. 0	

Qualifiers:

Date: 06-Nov-03

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT: Mactec E & C, Inc. **QC SUMMARY REPORT** Work Order: 0310105 Matrix Spike - Full List Project: 3651031003 Taunton - Parcel GA 1.4-Dichlorobenzene 97.2 10 μg/L 100 0 97.2 74 130 0 Dichlorodifluoromethane 91.8 25 100 μg/L 0 91.8 70 130 0 1.1-Dichloroethane 98.4 10 100 0 µg/L 98.4 83 130 0 1,2-Dichloroethane 95.9 10 μg/L 100 0 95.9 70 125 0 1,1-Dichloroethene 0 83.9 5.0 μg/L 100 83.9 72 130 0 cis-1,2-Dichloroethene 96.3 10 µg/L 100 0 96.3 76 125 0 trans-1,2-Dichloroethene 109.4 10 μg/L 100 0 109 77 128 0 1,2-Dichloropropane 94.3 10 μg/L 100 0 94.3 78 122 0 1,3-Dichloropropane 100 0 70 91.75 10 μg/L 91.8 124 0 2,2-Dichloropropane 97.1 10 μg/L 100 0 97.1 73 130 0 1,1-Dichloropropene 100.2 10 100 0 70 μg/L 100 107 0 cis-1,3-Dichloropropene 84.5 5.0 100 84.5 70 µg/L 115 0 0 trans-1,3-Dichloropropene 84.05 5.0 100 70 μg/L 84 129 0 Diethyl ether 91.45 25 μg/L 100 91.5 70 130 0 Diisopropyl ether 93.45 10 µg/L 100 93.4 70 130

250

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

0

0

0

0

0

0

0

70.6

104

103

81.6

103

122

107

88.2

93.4

103

80.5

119

95.4

98.7

98

94

70

70

82

. 70

70

72

74

70

70

70

70

70

71

72

83

70

130

130

119

130

130

130

130

130

130

130

130

140

130

123

118

130

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Qualifiers:

1,4-Dioxane

Ethylbenzene

2-Hexanone

2-Butanone

Naphthalene

Styrene

Ethyl Tertiary Butyl Ether

Hexachlorobutadiene

isopropylbenzene

4-Isopropyltoluene

4-Methyl-2-pentanone

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Methylene chloride

n-Propylbenzene

ND - Not Detected at the Reporting Limit

Date: 06-Nov-03

176.6

103.8

103.1

81.55

122.4

88.15

93.45

102.8

94.05

80.5

118.8

95.45

98.05

98.7

103

107

250

10

10

10

50

10

10

50

50

10

25

25

10

10

10

10

μg/L

µg/L

µg/L

µg/L

µg/L

μg/L

μg/L

µg/L

μg/L

µg/L

µg/L

μg/L

μg/L

ug/L

µg/L

μg/L

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 06-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

3651031003 Taunton - Parcel GA

QC SUMMARY REPORT

Matrix Spike - Full List

Sample ID 0310105-01Amsf	Batch ID: R21130	Test Code	e: SW8260E	Units: μ	ıg/L		Analysis [Date 10/20/0	3 5:24:00 PM	Prep Dat	e 10/20/03	
Client ID: WES MW2		Run ID:	V-3_0310	20A			SeqNo:	350364				
	QC Sample			QC Spike Orig	ginal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
Acetone	95.4	50	μg/L	100	0	95.4	70	130	0			
Tertiary Amyl Methyl Ether	92.65	10	μg/L	100	0	92.6	70	130	O _.			
Benzene	96.2	5.0	μg/L	100	0	96.2	81	115	0			
Bromobenzene	105.8	10	µg/L	100	0	106	83	118	0			
Bromochloromethane	95.85	10	µg/L	100	0	95.8	70	126	0			
Bromodichloromethane	82.45	10	μg/L	100	0	82.5	72	119	٥			
Bromoform	76.1	10	μg/L	100	0	76.1	70	127	0			
Bromomethane	22.3	10	µg/L	100	0	22.3	70	130	0			S
sec-Butylbenzene	118.6	10	µg/L	100	0	119	70	130	0			
n-Butylbenzene	109.3	10	μg/L	. 100	0	109	70	130	0,			
tert-Butylbenzene	110.1	10	μg/L	100	0	110	70	130	0			
Carbon disulfide	73.35	10	μg/L	100	0	73.4	70	130	0			
Carbon tetrachloride	105.9	10	μg/L	100	0	106	. 78	124	0			
Chlorobenzene	95.8	10	μg/L	100	0	95.8	80	115	0			
Dibromochloromethane	89.25	10	μg/L	100	0	89.2	70	127	0	٠		
Chloroethane	88.45	25	μg/L	100	0	88.4	70	130	0			
Chloroform	93.75	10	μg/L	100	Ō	93.8	80	119	0	٠		
Chloromethane	160.4	15	μg/L	100	0	160	70	130	0	,		S
2-Chlorotoluene	108.2	10	μg/L	100	0	108	70	130	0			
4-Chlorotoluene	106.6	10	μg/L	100	0	107	78	130	. 0			
1,2-Dibromo-3-chloropropane	81.35	25	µg/L	100	. 0	81.4	70	130	0			
1,2-Dibromoethane	88.7	10	μg/L	100	0	88.7	70	130	0			
Dibromomethane	96.85	10	µg/L	100	0	96.8	70	129	0			
,3-Dichlorobenzene	99.55	10	μg/L	100	0	99.6	81	130	0			
.2-Dichlorobenzene	94.35	10	μg/L	100	0	94.4	80	124	Ò			

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

CLIENT:	Mactec E & C, I	nc.							•		ADVADEDODA
Work Order:	0310105									QC SUMINI	ARY REPORT
Project:	3651031003 Tai	ınton - Parcel	GA								Method Blank
Tetrachloroethene		ND	2.0	μg/L				***************************************			
Tetrahydrofuran		- ND	10	μg/L							
Toluene		ND	2.0	μg/L							
1,2,4-Trichlorobena	zene	ND	2.0	μg/L							
1,2,3-Trichlorobena	zene	ND	2.0	μg/L							
1,1,1-Trichloroetha	пе	ND	2.0	µg/L							
1,1,2-Trichloroetha	ne	ND	2.0	μg/L	•					•	
Trichloroethene		ND	2.0	μg/L							
Trichlorofluorometh	nane	ND	2.0	μg/L							
1,2,3-Trichloroprop	ane	ND	2.0	μg/L							
1,2,4-Trimethylben	zene	ND	2.0	μg/L							
1,3,5-Trimethylben	zene	ND	2.0	μg/L							
Vinyl chloride		ND	2.0	μg/L			*				•
o-Xylene		ND	2.0	μg/L							
m,p-Xylene		ND	2.0	µg/L							
Surr: Dibromoflu	oromethane	25.14	2.0	μg/L	25	0	101	85	120	0	•
Surr: 1,2-Dichlor	oethane-d4	24.28	2.0	μg/L	25	0	97.1	75	124	0	
Surr: Toluene-d8	l .	24.51	2.0	μg/L	25	0	98	82 ·	112	0	
Surr: 4-Bromoflu	orobenzene	23.14	2.0	μg/L	25	Ó	92.6	77	117	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

a recovery minus

:

B - Analyte detected in the associated Method Blank

Date: 06-Nov-03

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 06-Nov-03

QC SUMMARY REPOR Method Blan			GA	& C, Inc. O3 Taunton - Parcel	CLIENT: Mactec E & Work Order: 0310105 Project: 3651031003
	·	·~/l			
		.g/L	2.0	ND	1,4-Dichlorobenzene
		ıg/L	5.0	ND	Dichlorodifluoromethane
		ıg/L	2.0	ND	1,1-Dichloroethane
		ıg/L	2.0	ND	1,2-Dichloroethane
		ıg/L	1.0	ND	1,1-Dichloroethene
		ıg/L 	2.0	ND	cis-1,2-Dichloroethene
		ıg/L	2.0	ND	trans-1,2-Dichloroethene
		ıg/L	2.0	· ND	1,2-Dichloropropane
		ıg/L	2.0	ND	1,3-Dichloropropane
		ıg/L	2.0	ND	2,2-Dichloropropane
		ıg/L	2.0	ND	1,1-Dichloropropene
•		ıg/L	1.0	ND	cis-1,3-Dichloropropene
		ıg/L	1.0	ND	trans-1,3-Dichloropropene
		ıg/L	5.0	ND	Diethyl ether
		ıg/L	2.0	ND	Diisopropyl ether
•		ıg/L	50	ND	1,4-Dioxane
		ıg/L	2.0	ND	Ethyl Tertiary Butyl Ether
		ıg/L	2.0	ND	Ethylbenzene
		ıg/L	2.0	ND	Hexachlorobutadiene
		ıg/L	10	ND	2-Hexanone
		ıg/L	2.0	ND	isopropylbenzene
		ıg/L	2.0	ND	4-isopropyltoluene
		ıg/L	10	ND	2-Butanone
·		ıg/L	10	ND	4-Methyl-2-pentanone
and the second of the second of the second		ıg/L	2.0	ND	Methyl tert-butyl ether
		ig/L	5.0	ND	Vethylene chloride
		g/L	5.0	ND	Naphthalene
		g/L	2.0	ND	n-Propylbenzene
		g/L	2.0	ND	Styrene
•		g/L	2.0	ND	1,1,1,2-Tetrachloroethane
		g/L	2.0	ND	1,1,2,2-Tetrachloroethane

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 06-Nov-03

CLIENT:

Mactec E & C, Inc.

Work Order:

0310105

Project:

3651031003 Taunton - Parcel GA

QC SUMMARY REPORT

Method Blank

Sample ID mb-10/20/03	Batch ID: R21130	Test Code	e: SW8260 E	Units: μg/	L		Analysis I	Date 10/20/0	3 1:19:00 PM	Prep Dat	e 10/20/03	
Client ID:		Run ID:	V-3_0310	20A			SeqNo:	350512	•			
	QC Sample			QC Spike Origin	al Sample)			Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit		or MS Result	%RPD	RPDLimit	Qua
Acetone	ND	10	µg/L									
Tertiary Amyl Methyl Ether	ND	2.0	μg/L									
Benzene	ND	1.0	μg/L									
Bromobenzene	ND	2.0	μg/L									
Bromochloromethane	ND	2.0	μg/L									
Bromodichloromethane	ND	2.0	μg/L									
Bromoform	ND	2.0	μg/L									
Bromomethane	ND	2.0	μg/L									
sec-Butylbenzene	ND	2.0	μg/L									
n-Butylbenzene	ND	2.0	μg/L									
tert-Butylbenzene	ND	2.0	μg/L									
Carbon disulfide	ND	2.0	μg/L									
Carbon tetrachloride	ND	2.0	μg/L									
Chlorobenzene	ND	2.0	μg/L									
Dibromochloromethane	ND	2.0	μg/L									
Chloroethane	ND	5.0	μg/L									
Chloroform	ND	2.0	μg/L									
Chloromethane	ND	3.0	μg/L									
2-Chlorotoluene	ND	2.0	μg/L									
4-Chlorotoluene	ND	2.0	μg/L					•				
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L									**
1,2-Dibromoethane	ND	2.0	μg/L									
Dibromomethane	ND	2.0	μg/L									
1,3-Dichlorobenzene	ND	2.0	μg/L						•			
1,2-Dichlorobenzene	ND	2.0	μg/L									

Qualifiers

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

Date: 30-Oct-03

CLIENT:

Mactec E & C, Inc.

Client Sample ID: WES MW4

Lab Order:

0310105

Collection Date: 10/14/03

Project: Lab ID: 3651031003 Taunton - Parcel GA 0310105-03A

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
1,4-Dioxane	ND	50	µg/L	1	10/20/03 9:30:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
Ethylbenzene	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
2-Hexanone	ND	10	μg/L	1	10/20/03 9:30:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
4-Isopropyitoluene	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
2-Butanone	ND	10	µg/L	1	10/20/03 9:30:00 PM
4-Methyl-2-pentanone	, ND	10	μg/L	, 1	10/20/03 9:30:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
Methylene chloride	ND	5.0	μg/L	1	10/20/03 9:30:00 PM
Naphthalene	ND	5.0	μg/L	1	10/20/03 9:30:00 PM
n-Propylbenzene	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
Styrene	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1 5	10/20/03 9:30:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
Tetrachloroethene	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
Tetrahydrofuran	ND	10	µg/L	1	10/20/03 9:30:00 PM
Toluene	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
Trichloroethene	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1.	10/20/03 9:30:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
Vinyl chloride	ND	2.0	μg/L	1	10/20/03 9:30:00 PM
o-Xylene	ŅD	2.0	μg/L	1	10/20/03 9:30:00 PM
m,p-Xylene	ND	2.0	µg/L	1	10/20/03 9:30:00 PM
Surr: Dibromofluoromethane	98.0	85-120	%REC	1	10/20/03 9:30:00 PM
Surr: 1,2-Dichloroethane-d4	98.2	75-124	%REC	1	10/20/03 9:30:00 PM
Surr: Toluene-d8	88.1	82-112	%REC	1	10/20/03 9:30:00 PM
Surr: 4-Bromofluorobenzene	90.9	77-117	%REC	1	10/20/03 9:30:00 PM

Date: 30-Oct-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310105

Project:

3651031003 Taunton - Parcel GA

Lab ID:

0310105-02A

Client Sample ID: ECE MW4

Collection Date: 10/14/03

Analyses	Result	RL	Qual I	Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	μ	ıg/L	1	10/20/03 8:55:00 PM
1,4-Dioxane	ND	50		ıg/L	1	10/20/03 8:55:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
Ethylbenzene	ND	2.0	·	ıg/L	1	10/20/03 8:55:00 PM
Hexachlorobutadiene	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
2-Hexanone	ND	10		ıg/L	1	10/20/03 8:55:00 PM
Isopropylbenzene	ND	2.0		ig/L	1	10/20/03 8:55:00 PM
4-Isopropyltoluene	ND	2.0	-	ıg/L	1	10/20/03 8:55:00 PM
2-Butanone	ND	10		ıg/L	1	10/20/03 8:55:00 PM
4-Methyl-2-pentanone	ND	10	μ	ıg/L	1	10/20/03 8:55:00 PM
Methyl tert-butyl ether	ND	2.0	-	ıg/L	1	10/20/03 8:55:00 PM
Methylene chloride	ND	5.0		ig/L	1	10/20/03 8:55:00 PM
Naphthalene	ND	5.0		ıg/L	1	10/20/03 8:55:00 PM
n-Propylbenzene	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
Styrene	ND	2.0		ıg/L	1 '	10/20/03 8:55:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μ	ıg/L	1	10/20/03 8:55:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μ	ıg/L	1	10/20/03 8:55:00 PM
Tetrachloroethene	ND	2.0	μ	ıg/L	1	10/20/03 8:55:00 PM
Tetrahydrofuran	ND	10	μ	ıg/L	1	10/20/03 8:55:00 PM
Toluene	ND	2.0	μ	ıg/L	1	10/20/03 8:55:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μ	ıg/L	1	10/20/03 8:55:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μ	ıg/L	1	10/20/03 8:55:00 PM
1,1,1-Trìchloroethane	ND	2.0	μ	ig/L	1	10/20/03 8:55:00 PM
1,1,2-Trichloroethane	ND	2.0	μ	ıg/L	1	10/20/03 8:55:00 PM
Trichloroethene	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
Trichlorofluoromethane	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
1,2,3-Trichloropropane	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
1,2,4-Trimethylbenzene	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
1,3,5-Trimethylbenzene	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
Vinyl chloride	ND	2.0		ig/L	1	10/20/03 8:55:00 PM
o-Xylene	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
m,p-Xylene	ND	2.0		ıg/L	1	10/20/03 8:55:00 PM
Surr: Dibromofluoromethane	101	85-120	9/	%REC	1	10/20/03 8:55:00 PM
Surr: 1,2-Dichloroethane-d4	94.9	75-124	9/	REC	1 (10/20/03 8:55:00 PM
Surr: Toluene-d8	93.0	82-112	%	4REC	1	10/20/03 8:55:00 PM
Surr: 4-Bromofluorobenzene	90.0	77-117	%	6REC	1	10/20/03 8:55:00 PM

Date: 30-Oct-03

CLIENT: Lab Order: Mactec E & C, Inc.

0310105

Project: Lab ID: 3651031003 Taunton - Parcel GA

0310105-03A

Client Sample ID: WES MW4

Collection Date: 10/14/03

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET	SW8260B				Analyst: SK
Acetone	ND	10		µg/L	1	10/20/03 9:30:00 PM
Tertiary Amyl Methyl Ether	ND:	2.0		µg/L	1	10/20/03 9:30:00 PM
Benzene	ND	1.0		µg/L	1.	10/20/03 9:30:00 PM
Bromobenzene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
Bromochloromethane	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
Bromoform	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
Bromomethane	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
sec-Butylbenzene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
n-Butylbenzene	ND	2.0		µg/L	1 .	10/20/03 9:30:00 PM
tert-Butylbenzene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
Carbon disulfide	ND	2.0		µg/L	·1	10/20/03 9:30:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
Chlorobenzene	ND	2.0		μg/L	1	10/20/03 9:30:00 PM
Dibromochloromethane	ND	2.0		μg/L	1	10/20/03 9:30:00 PM
Chloroethane	ND	5.0		µg/L	1	10/20/03 9:30:00 PM
Chloroform	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
Chloromethane	ND	3.0		µg/L	1	10/20/03 9:30:00 PM
2-Chlorotoluene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
4-Chlorotoluene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		µg/L	1	10/20/03 9:30:00 PM
1,2-Dibromoethane	ND	2.0		μg/L	1	10/20/03 9:30:00 PM
Dibromomethane	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
1,3-Dichlorobenzene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
1,2-Dichlorobenzene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
1,4-Dichlorobenzene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
Dichlorodifluoromethane	ND	5.0		µg/L	1	10/20/03 9:30:00 PM
1,1-Dichloroethane	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	10/20/03 9:30:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	10/20/03 9:30:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	10/20/03 9:30:00 PM
1,3-Dichloropropane	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
2,2-Dichloropropane	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
1,1-Dichloropropene	ND	2.0		µg/L	1	10/20/03 9:30:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	10/20/03 9:30:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	10/20/03 9:30:00 PM
Diethyl ether	ND	5.0		μg/L	1	10/20/03 9:30:00 PM

ANALYTICAL REPORT

Lab Number: L1117331

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: PARCEL 6A

Project Number: 5292.9.00

Report Date: 11/01/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11011116:17

 Project Name:
 PARCEL 6A
 Lab Number:
 L1117331

 Project Number:
 5292.9.00
 Report Date:
 11/01/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1117331-01	MAI-2 (OW)	TAUNTON	10/21/11 14:00
L1117331-02	MAI-3 (OW)	TAUNTON	10/21/11 13:30
L1117331 03	MAI 5 (OW)	TAUNTON	10/21/11 13:00
L1117331 04	MAI-6 (OW)	TAUNTON	10/21/11 12:35

Serial_No:11011116:17

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Εb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, pleas	se contact Client Services at 800-624-9220.
-----------------------------------	---

MCP Related Narratives

Sample Receipt

The element list for the Dissolved Metals analysis was supplied by the client.

EPH

At the client's request, the results for L1117331-02 are not reported.

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The WG497584-2/-3 LCS/LCSD RPD, associated with L1117331-01, -03 and -04, is above the acceptance criteria for Naphthalene (26%).

 Project Name:
 PARCEL 6A
 Lab Number:
 L1117331

 Project Number:
 5292.9.00
 Report Date:
 11/01/11

Case Narrative (continued)

Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Elizabeth & Simmons Elizabeth Simmons

Authorized Signature:

Title: Technical Director/Representative

Date: 11/01/11

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: PARCEL 6A Lab Number: L1117331

Project Number: 5292.9.00 **Report Date:** 11/01/11

SAMPLE RESULTS

Lab ID: Date Collected: 10/21/11 14:00

Client ID:MAI-2 (OW)Date Received:10/21/11Sample Location:TAUNTONField Prep:Not SpecifiedMatrix:WaterExtraction Method:EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 10/23/11 17:14
Analytical Date: 10/26/11 14:41 Cleanup Method1: EPH-04-1

Analyst: AS Cleanup Date1: 10/25/11

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative:

Laboratory Provided Preserved
Container

Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ns - Westborough La	ıb				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.1		1
2-Methylnaphthalene	ND		ug/l	10.1		1
Acenaphthylene	ND		ug/l	10.1		1
Acenaphthene	ND		ug/l	10.1		1
Fluorene	ND		ug/l	10.1		1
Phenanthrene	ND		ug/l	10.1		1
Anthracene	ND		ug/l	10.1		1
Fluoranthene	ND		ug/l	10.1		1
Pyrene	ND		ug/l	10.1		1
Benzo(a)anthracene	ND		ug/l	10.1		1
Chrysene	ND		ug/l	10.1		1
Benzo(b)fluoranthene	ND		ug/l	10.1		1
Benzo(k)fluoranthene	ND		ug/l	10.1		1
Benzo(a)pyrene	ND		ug/l	10.1		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.1		1
D benzo(a,h)anthracene	ND		ug/l	10.1		1
Benzo(ghi)perylene	ND		ug/l	10.1		1

Project Name: PARCEL 6A Lab Number: L1117331

Project Number: 5292.9.00 **Report Date:** 11/01/11

SAMPLE RESULTS

Lab ID: Date Collected: 10/21/11 14:00

Client ID: MAI-2 (OW) Date Received: 10/21/11
Sample Location: TAUNTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	66		40-140	
o-Terphenyl	65		40-140	
2-Fluorobiphenyl	82		40-140	
2-Bromonaphthalene	83		40-140	

Project Name: Lab Number: PARCEL 6A L1117331

Project Number: 5292.9.00 Report Date: 11/01/11

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 10/25/11 17:08

Analyst: AS

Extraction Method: EPA 3510C 10/23/11 17:14 Extraction Date: Cleanup Method1: EPH-04-1

Cleanup Date1: 10/25/11

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons 1	s - Westbo	rough Lab fo	r sample(s):	01,03-04	Batch: WG497584-
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	
Naphthalene	ND		ug/l	10.0	
2-Methylnaphthalene	ND		ug/l	10.0	
Acenaphthylene	ND		ug/l	10.0	
Acenaphthene	ND		ug/l	10.0	
Fluorene	ND		ug/l	10.0	
Phenanthrene	ND		ug/l	10.0	
Anthracene	ND		ug/l	10.0	
Fluoranthene	ND		ug/l	10.0	
Pyrene	ND		ug/l	10.0	
Benzo(a)anthracene	ND		ug/l	10.0	
Chrysene	ND		ug/l	10.0	
Benzo(b)fluoranthene	ND		ug/l	10.0	
Benzo(k)fluoranthene	ND		ug/l	10.0	
Benzo(a)pyrene	ND		ug/l	10.0	
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0	
Dibenzo(a,h)anthracene	ND		ug/l	10.0	
Benzo(ghi)perylene	ND		ug/l	10.0	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Chloro-Octadecane	63		40-140	
o-Terphenyl	70		40-140	
2-Fluorobiphenyl	88		40-140	
2-Bromonaphthalene	87		40-140	

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.00

Lab Number: L1117331

Report Date: 11/01/11

arameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sam	nple(s): 01,03-04	Batch: W	VG497584-2	WG497584-3		
C9-C18 Aliphatics	64		60		40-140	6		25
C19-C36 Aliphatics	84		79		40-140	6		25
C11-C22 Aromatics	78		69		40-140	12		25
Naphthalene	77		59		40-140	26	Q	25
2-Methylnaphthalene	82		65		40-140	23		25
Acenaphthylene	74		60		40-140	21		25
Acenaphthene	79		65		40-140	19		25
Fluorene	74		65		40-140	13		25
Phenanthrene	79		72		40-140	9		25
Anthracene	75		68		40-140	10		25
Fluoranthene	77		71		40-140	8		25
Pyrene	80		73		40-140	9		25
Benzo(a)anthracene	71		63		40-140	12		25
Chrysene	75		68		40-140	10		25
Benzo(b)fluoranthene	78		69		40-140	12		25
Benzo(k)fluoranthene	74		66		40-140	11		25
Benzo(a)pyrene	68		59		40-140	14		25
Indeno(1,2,3-cd)Pyrene	74		65		40-140	13		25
Dibenzo(a,h)anthracene	69		58		40-140	17		25
Benzo(ghi)perylene	74		66		40-140	11		25
Nonane (C9)	52		41		30-140	24		25

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.00

Lab Number: L1117331

Report Date: 11/01/11

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ktractable Petroleum Hydrocarbons -	Westborough Lab A	Associated s	ample(s): 01,03-04	Batch:	WG497584-2	WG497584-3		
Decane (C10)	62		50		40-140	21		25
Dodecane (C12)	69		58		40-140	17		25
Tetradecane (C14)	73		65		40-140	12		25
Hexadecane (C16)	78		74		40-140	5		25
Octadecane (C18)	81		78		40-140	4		25
Nonadecane (C19)	82		84		40-140	2		25
Eicosane (C20)	84		83		40-140	1		25
Docosane (C22)	82		80		40-140	2		25
Tetracosane (C24)	82		81		40-140	1		25
Hexacosane (C26)	83		82		40-140	1		25
Octacosane (C28)	80		79		40-140	1		25
Triacontane (C30)	83		82		40-140	1		25
Hexatriacontane (C36)	81		78		40-140	4		25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	73		67		40-140	
o-Terphenyl	71		60		40-140	
2-Fluorobiphenyl	85		77		40-140	
2-Bromonaphthalene	89		77		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

METALS

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

SAMPLE RESULTS

Lab ID: L1117331-01
Client ID: MAI-2 (OW)
Sample Location: TAUNTON
Matrix: Water

Date Collected: 10/21/11 14:00
Date Received: 10/21/11
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	tals - Wes	stborough L	ab								
Arsenic, Dissolved	ND		mg/l	0.005		1	10/25/11 11:30) 10/27/11 09:47	EPA 3005A	97,6010B	Al
Barium, Dissolved	0.063		mg/l	0.010		1	10/25/11 11:30) 10/27/11 09:47	EPA 3005A	97,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004		1	10/25/11 11:30) 10/27/11 09:47	EPA 3005A	97,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01		1	10/25/11 11:30) 10/27/11 09:47	EPA 3005A	97,6010B	Al
Lead, Dissolved	ND		mg/l	0.010		1	10/25/11 11:30) 10/27/11 09:47	EPA 3005A	97,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002		1	10/25/11 18:30) 10/26/11 12:48	EPA 7470A	97,7470A	JP
Selenium, Dissolved	ND		mg/l	0.010		1	10/25/11 11:30) 10/27/11 09:47	EPA 3005A	97,6010B	Al
Silver, Dissolved	ND		mg/l	0.007		1	10/25/11 11:30) 10/27/11 09:47	EPA 3005A	97,6010B	Al

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

SAMPLE RESULTS

Lab ID: L1117331-02
Client ID: MAI-3 (OW)
Sample Location: TAUNTON
Matrix: Water

Date Collected: 10/21/11 13:30
Date Received: 10/21/11
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MOD Discolus d Mad			- -								
MCP Dissolved Met	ais - wes	tborougn L	ab								
Arsenic, Dissolved	ND		mg/l	0.005		1	10/25/11 11:30	0 10/27/11 09:53	EPA 3005A	97,6010B	Al
Barium, Dissolved	0.061		mg/l	0.010		1	10/25/11 11:30	0 10/27/11 09:53	EPA 3005A	97,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004		1	10/25/11 11:30	0 10/27/11 09:53	EPA 3005A	97,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01		1	10/25/11 11:30	0 10/27/11 09:53	EPA 3005A	97,6010B	AI
Lead, Dissolved	ND		mg/l	0.010		1	10/25/11 11:30	0 10/27/11 09:53	EPA 3005A	97,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002		1	10/25/11 18:30) 10/26/11 12:50	EPA 7470A	97,7470A	JP
Selenium, Dissolved	ND		mg/l	0.010		1	10/25/11 11:30) 10/27/11 09:53	EPA 3005A	97,6010B	AI
Silver, Dissolved	ND		mg/l	0.007		1	10/25/11 11:30) 10/27/11 09:53	EPA 3005A	97,6010B	AI

 Project Name:
 PARCEL 6A
 Lab Number:
 L1117331

 Project Number:
 5292.9.00
 Report Date:
 11/01/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals - V	Vestborough Lab for	sample(s)	: 01-0	4 Bat	ch: WG497	7975-1			
Arsenic, Dissolved	ND	mg/l	0.005		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Barium, Dissolved	ND	mg/l	0.010		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Cadmium, Dissolved	ND	mg/l	0.004		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Chromium, Dissolved	ND	mg/l	0.01		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Lead, Dissolved	ND	mg/l	0.010		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Selenium, Dissolved	ND	mg/l	0.010		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al
Silver, Dissolved	ND	mg/l	0.007		1	10/25/11 11:30	10/27/11 09:38	97,6010B	Al

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab for	sample(s): 01-04	4 Bat	ch: WG498	106-1			
Mercury, Dissolved	ND	mg/l	0.0002		1	10/25/11 18:30	10/26/11 12:42	97,7470A	JP

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.00

Lab Number: L1117331

Report Date:

11/01/11

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Westborough Lab Asso	ciated sample(s): 01-04	Batch: WG497975	5-2 WG49	7975-3			
Arsenic, Dissolved	115		112		80-120	3		20
Barium, Dissolved	107		106		80-120	1		20
Cadmium, Dissolved	112		109		80-120	3		20
Chromium, Dissolved	105		105		80-120	0		20
Lead, Dissolved	110		108		80-120	2		20
Selenium, Dissolved	115		112		80-120	3		20
Silver, Dissolved	109		108		80-120	1		20
MCP Dissolved Metals - Westborough Lab Asso	ociated sample(s): 01-04	Batch: WG498106	6-2 WG498	8106-3			
Mercury, Dissolved	110		110		80-120	0		20

Project Name:PARCEL 6ALab Number: L1117331Project Number:5292.9.00Report Date: 11/01/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ		Pres	Seal	Analysis(*)
L1117331-01A	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-01B	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-01C	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-01D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-01X	Plastic 1000ml HNO3 preserved sp	Α	<2	2	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-SE-6010S-10(180)
L1117331-02A	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	-
L1117331-02B	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	-
L1117331-02C	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-02D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-02X	Plastic 1000ml HNO3 preserved sp	Α	<2	2	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-SE-6010S-10(180)
L1117331-03A	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-03B	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-03C	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-03D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-03X	Plastic 1000ml HNO3 preserved sp	Α	<2	2	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-B-6010S-10(180),MCP-SE-6010S-10(180)

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1117331-04A	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-04B	Amber 1000ml HCl preserved	Α	<2	2	Υ	Absent	EPH-DELUX-10(14)
L1117331-04C	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-04D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	-
L1117331-04X	Plastic 1000ml HNO3 preserved sp	А	<2	2	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-SE-6010S-10(180)

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

Data Qualifiers

P - The RPD between the results for the two columns exceeds the method-specified criteria.

Q - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

 \boldsymbol{R} - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:PARCEL 6ALab Number:L1117331Project Number:5292.9.00Report Date:11/01/11

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised September 19, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. Organic Parameters: 608, 8081, 8082, 8330, 8151A, 624, 8260, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014A, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl, V,Zn); 245.1, SM4500H,B, EPA 120.1,

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 6020A, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 7196A, 3060A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B... Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 1312, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. Organic Parameters: EPA 3510C, 3005A, 3630C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540B, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

ALPHA	CUSTODY	PAGE OF	- Date Rec'd in Lab: 10/21/11 ALPHA Job #: 4/11/733/
WESTBORO, MA MANSFIELD, MA	Project Information		Report Information - Data Deliverables Billing Information
TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	Project Name: Parcel	LOA	□ FAX □ EMAIL □ Same as Client info PO #:
Client Information	Project Location: Taun	_	□ ADEx □ Add'l Deliverables
Client: McPhail Associates	Project#: 5292.9		Regulatory Requirements/Report Limits
Address: 269 MASS. AVE	1		State / Fed Program MA DEP Criteria RCS-1
CAMBRIDGE, MA 02140	ALPHA Quote #:	3 talconein	MA MCP PRESUMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO
Phone: 617 865 1420	Turn-Around Time		See Yes ☐ No Are MCP Analytical Methods Required?
Fax:	Tarii-Alodiid Tillie		☐ Yes ☑ Yes ☐ Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments)
Email:	⊠(Standard □ RUSH	only confirmed if pre-approved!)	☐ Yes 🖳 No Are CT RCP (Reasonable Confidence Protocols) Required?
	Date Due: 10/19/11	Time:	SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation Lab to do (Please specify below) Sample Specific Comments
These samples have been previously analyzed by Alpha Other Project Specific Requirements/Comme	100.		SAMPLE HANDLING Filtration
If MS is required , indicate in Sample Specific Comments w	hich samples and what tests MS to	be performed.	SAMPLE HANDLING Filtration Done Not needed
(Note: All CAM methods for inorganic analyses require MS	every 20 soil samples)		Not needed □ Lab to do
			Preservation D Lab to do
ALPHA Lab ID (Lab Lise Only) Sample ID	Collection	Sample Sampler's	s Please specify below)
(Lab Ge Gilly)	Date Time		
17331. / MAI-2 (OW)	10/21/11/14/60	H20 FBK	X x 2- Amber (L) 2- plastic
			d' pinotic
2 MAI-3 (OW)	10/21/11 133×	H20 FBK	×× u
	12.11	1120 1014	
3 000 5 - 5 60 0	10 00		
MAI-5 (οω)	10/21/14/300	H20 FBK	× ×
(cuo) 2-IAM 4	10/21/11 1235	420 FBK	××
PLEASE ANSWER QUESTIONS ABOVE!		Container Type	Please print clearly, legibly and com-
IS YOUR PROJECT	no de la como	Preservative	C B pletely. Samples can not be logged in and turnaround time clock will not
MAMCP or CTRCP?	Relinquished By:	Date/Time	Received By: Date/Time start until any ambiguities are resolve
	Wash	16/21 16 62 10/31/11 1805	All samples submitted are subject to Alpha's Terms and Conditions. 10 21 180 See reverse side.
FORM NO: 01-01 (rev. 18-Jan-2010)		INTOITH FOOL	10/CIN 1800 See levelse side

ANALYTICAL REPORT

Lab Number: L1118320

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: PARCEL 6A
Project Number: 5292.9.00

Report Date: 11/10/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Project Name:
 PARCEL 6A
 Lab Number:
 L1118320

 Project Number:
 5292.9.00
 Report Date:
 11/10/11

Alpha Sample ID Client ID Sample Location Collection Date/Time

L1118320-01 MA1-3 (OW) TAUNTON 11/04/11 15:15

Project Name: PARCEL 6A Lab Number: L1118320

Project Number: 5292.9.00 Report Date: 11/10/11

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:PARCEL 6ALab Number:L1118320Project Number:5292.9.00Report Date:11/10/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were transported to the laboratory in a cooler with ice and delivered directly from the sampling site.

EPH

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

Elizabeth & Simmons Elizabeth Simmons

ALPHA

Date: 11/10/11

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: PARCEL 6A Lab Number: L1118320

Project Number: 5292.9.00 Report Date: 11/10/11

SAMPLE RESULTS

Lab ID: Date Collected: 11/04/11 15:15

Client ID:MA1-3 (OW)Date Received:11/04/11Sample Location:TAUNTONField Prep:Not SpecifiedMatrix:WaterExtraction Method:EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 11/05/11 14:32
Analytical Date: 11/07/11 17:12 Cleanup Method1: EPH-04-1

Analyst: AS Cleanup Date1: 11/07/11

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ns - Westborough La	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	108		ug/l	100		1
C11-C22 Aromatics, Adjusted	108		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
D benzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: PARCEL 6A Lab Number: L1118320

Project Number: 5292.9.00 **Report Date:** 11/10/11

SAMPLE RESULTS

Lab ID: Date Collected: 11/04/11 15:15

Client ID: MA1-3 (OW) Date Received: 11/04/11
Sample Location: TAUNTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	69		40-140	
o-Terphenyl	80		40-140	
2-Fluorobiphenyl	88		40-140	
2-Bromonaphthalene	86		40-140	

Project Name: PARCEL 6A Lab Number: L1118320

Project Number: 5292.9.00 **Report Date:** 11/10/11

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 98,EPH-04-1.1

Analyst: AS

Extraction Method: EPA 3510C Extraction Date: 11/05/11 14:32 Cleanup Method1: EPH-04-1

Cleanup Method1: EPH-04-1 Cleanup Date1: 11/07/11

arameter	Result	Qualifier	Units		RL	MDL	
extractable Petroleum Hydrocarbo	ns - Westbo	rough Lab fo	r sample(s):	01	Batch:	WG500389-1	
C9-C18 Aliphatics	ND		ug/l		100		
C19-C36 Aliphatics	ND		ug/l		100		
C11-C22 Aromatics	ND		ug/l		100		
C11-C22 Aromatics, Adjusted	ND		ug/l		100		
Naphthalene	ND		ug/l		10.0		
2-Methylnaphthalene	ND		ug/l		10.0		
Acenaphthylene	ND		ug/l		10.0		
Acenaphthene	ND		ug/l		10.0		
Fluorene	ND		ug/l		10.0		
Phenanthrene	ND		ug/l		10.0		
Anthracene	ND		ug/l		10.0		
Fluoranthene	ND		ug/l		10.0		
Pyrene	ND		ug/l		10.0		
Benzo(a)anthracene	ND		ug/l		10.0		
Chrysene	ND		ug/l		10.0		
Benzo(b)fluoranthene	ND		ug/l		10.0		
Benzo(k)fluoranthene	ND		ug/l		10.0		
Benzo(a)pyrene	ND		ug/l		10.0		
Indeno(1,2,3-cd)Pyrene	ND		ug/l		10.0		
Dibenzo(a,h)anthracene	ND		ug/l		10.0		
Benzo(ghi)perylene	ND		ug/l		10.0		

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Chloro-Octadecane	70		40-140	
o-Terphenyl	64		40-140	
2-Fluorobiphenyl	71		40-140	
2-Bromonaphthalene	70		40-140	

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.00

Lab Number: L1118320

Report Date: 11/10/11

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sam	ple(s): 01 Ba	tch: WG500389-2 WG5003	389-3		
C9-C18 Aliphatics	67		76	40-140	13		25
C19-C36 Aliphatics	83		99	40-140	18		25
C11-C22 Aromatics	95		94	40-140	1		25
Naphthalene	71		67	40-140	6		25
2-Methylnaphthalene	77		72	40-140	7		25
Acenaphthylene	75		69	40-140	8		25
Acenaphthene	74		70	40-140	6		25
Fluorene	73		72	40-140	1		25
Phenanthrene	75		77	40-140	3		25
Anthracene	75		75	40-140	0		25
Fluoranthene	75		76	40-140	1		25
Pyrene	77		78	40-140	1		25
Benzo(a)anthracene	72		74	40-140	3		25
Chrysene	73		74	40-140	1		25
Benzo(b)fluoranthene	74		79	40-140	7		25
Benzo(k)fluoranthene	70		73	40-140	4		25
Benzo(a)pyrene	70		70	40-140	0		25
Indeno(1,2,3-cd)Pyrene	70		72	40-140	3		25
Dibenzo(a,h)anthracene	64		68	40-140	6		25
Benzo(ghi)perylene	70		72	40-140	3		25
Nonane (C9)	57		58	30-140	2		25

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number:

5292.9.00

Lab Number: L1118320

Report Date: 11/10/11

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
xtractable Petroleum Hydrocarbons - Wes	tborough Lab As	sociated sa	ample(s): 01 Bate	ch: WG500389-2 WG500	0389-3		
Decane (C10)	62		68	40-140	9		25
Dodecane (C12)	68		67	40-140	1		25
Tetradecane (C14)	70		72	40-140	3		25
Hexadecane (C16)	82		78	40-140	5		25
Octadecane (C18)	74		82	40-140	10		25
Nonadecane (C19)	76		84	40-140	10		25
Eicosane (C20)	76		85	40-140	11		25
Docosane (C22)	77		83	40-140	8		25
Tetracosane (C24)	78		84	40-140	7		25
Hexacosane (C26)	76		84	40-140	10		25
Octacosane (C28)	76		83	40-140	9		25
Triacontane (C30)	78		86	40-140	10		25
Hexatriacontane (C36)	87		97	40-140	11		25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	78		75		40-140	
o-Terphenyl	70		73		40-140	
2-Fluorobiphenyl	76		79		40-140	
2-Bromonaphthalene	75		77		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name:PARCEL 6ALab Number:L1118320Project Number:5292.9.00Report Date:11/10/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Information				Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1118320-01A	Amber 1000ml HCl preserved	Α	<2	9	Υ	Absent	EPH-DELUX-10(14)
L1118320-01B	Amber 1000ml HCl preserved	Α	<2	9	Υ	Absent	EPH-DELUX-10(14)

Project Name:PARCEL 6ALab Number:L1118320Project Number:5292.9.00Report Date:11/10/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Serial_No:11101115:38

Project Name:PARCEL 6ALab Number:L1118320Project Number:5292.9.00Report Date:11/10/11

Data Qualifiers

P - The RPD between the results for the two columns exceeds the method-specified criteria.

Q - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:11101115:38

Project Name: PARCEL 6A Lab Number: L1118320
Project Number: 5292.9.00 Report Date: 11/10/11

REFERENCES

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised September 19, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <a href="https://doi.org/10.2016/journal.org/10

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. Organic Parameters: 608, 8081, 8082, 8330, 8151A, 624, 8260, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014A, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page 16 of 19 Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl, V,Zn); 245.1, SM4500H,B, EPA 120.1,

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 6020A, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 7196A, 3060A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B... Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 1312, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. Organic Parameters: EPA 3510C, 3005A, 3630C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540B, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

CHAIN O	F CUSTO	DY P	AGE	of 1	Date	Rec'd in	Lab:		1/4	{ 11	i .		AL	PH/	AJOB#: [118320
WESTBORO, MA MANSFIELD, MA	Project Informa	tion			Repo	ort Info	rmatio	n - Da	ta De	livera	ble	s	Ві	illing	Information
TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	Project Name:	arcel	(0A		□ F/	×Χ		I EMAI					D 9	Same	as Client info PO#:
Client Information		rav			□ A[Add'l I				-			
5 Client: McPhail tesociates	Project #:	5292	.9.00) ,,		atory F									
Address: 2269 MAS NE	l		Falco		-	Fed Pro									RCS-1
FAddress: 2269 MAS ME Cambrids, MA 02140	ALPHA Quote #:	')													NABLE CONFIDENCE PROTO
#Phone: 617-868-1420	Turn-Around Ti	me			∑X(Ye ☐ Ye	s DINi s DX(N		re MCF Matrix							DG? (If yes see note in Comments)
Fax:			•••		☐ Ye	/>					-				rotocols) Required?
Email:			confirmed if pre-app	oroved!)			/ /	*:/ ·.	72	/ /	,	/ .	/	/	/ / J
☐ These samples have been previously analyzed by Alpha	Date Due: \\/	1/.1)	Time:		AWALYSIS	/ /	<i>f</i> :	/ ,	/ /				/ /	/ /	SAMPLE HANDLING
Other Project Specific Requirements/Comm	and the second s				\$		/ ,	/ /	- /						/ Filtration L Done
If MS is required , indicate in Sample Specific Comments (Note: All CAM methods for inorganic analyses require M:		tests MS to b	e performed.		₹/;	₹/	/ /			/ - /	/	/ ,	/-	/ ,	/ D Not needed
					્રિશ] /		/ ,	/ /		/	/ /			☐ Lab to do Preservation B O T
ALPHA Lab ID	Col	ection	Sample	Sampler's	 /~/	/ /		/ /			/				Lab to do (Please specify below)
(Lab Use Only) Sample ID	Date	Time	Matrix	Initials	V - /	· / ·		· ·/		/	/ :	[/		Sample Specific Comments
8320-01 MAI-3 (0)	~) 1119/11	15.15	H20		X										2-Kniber(L) 2
						-									
All Stock					7 - 4										
The second secon		 					-							:	4 84.5
						-			-						
							ļ								
		· · · · · · · · · · · · · · · · · · ·						-							
(88)												.			
									٠	ļ		•			
					;									: -	
PLEASE ANSWER QUESTIONS ABOVE!			Conta	iner Type	A										Please print clearly, legibly and com-
IS YOUR PROJECT			Pre	eservative	B										pletely. Samples can not be logged in and turnaround time clock will not
ー1の エクリス ドスクスドレナー・ド	,				1		1		~						The state of the s
	Relinquished By:			e/Time		<u> </u>	egyed	By:	//		1	Date/	lime	-/	start until any ambiguities are resolved
MAMCP or CTRCP?	Relinquished By:			15530	p	e Re		By:	lz	1/	14	Date/ //	6	Z,	All samples submitted are subject to of Alpha's Terms and Conditions. See reverse side.

ANALYTICAL REPORT

Lab Number: L1200565

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: PARCEL 6A

Project Number: 5292.9.01

Report Date: 01/17/12

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Project Name:
 PARCEL 6A
 Lab Number:
 L1200565

 Project Number:
 5292.9.01
 Report Date:
 01/17/12

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1200565-01	MAI-101 (OW)	TAUNTON, MA	01/11/12 08:30
L1200565-02	MAI-102 (OW)	TAUNTON, MA	01/11/12 09:00
L1200565-03	MAI-103 (OW)	TAUNTON, MA	01/11/12 09:30
L1200565-04	MAI-1 (OW)	TAUNTON, MA	01/11/12 08:00
L1200565-05	MAI-106 (OW)	TAUNTON, MA	01/11/12 10:00
L1200565 06	MAI-107 (OW)	TAUNTON, MA	01/11/12 10:30
L1200565-07	MAI-109 (OW)	TAUNTON, MA	01/11/12 11:00
L1200565 08	MAI 111 (OW)	TAUNTON, MA	01/11/12 11:30

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 Report Date: 01/17/12

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO						
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO						
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Volatile Organics

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The WG513755-2 LCSD recovery, associated with L1200565-05 through -08, is below the acceptance criteria for 2-Hexanone (69%); however, it has been identified as a "difficult" analyte and is within the 40-160% acceptance limits. The results of the associated samples are reported; however, all results are considered to have a potentially low bias for this compound.

The WG513755-1/-2 LCS/LCSD RPDs, associated with L1200565-05 through -08, are above the acceptance criteria for 2-Butanone (25%) and 4-Methyl-2-pentanone (27%).

The initial calibration, associated with L1200565-05 through -08, did not meet the method required minimum

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

Case Narrative (continued)

response factors on the lowest calibration standards for 1,4-Dioxane (0.00304), as well as the average response factor for tert-Butyl alcohol and 1,4-Dioxane.

The continuing calibration standard, associated with L1200565-05 through -08, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

EPH

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cypthia fin Chen. Cynthia McQueen

Authorized Signature:

Title: Technical Director/Representative

Date: 01/17/12

PETROLEUM HYDROCARBONS

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 Report Date: 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-01 Date Collected: 01/11/12 08:30

Client ID: MAI-101 (OW) Date Received: 01/11/12

Sample Location: TAUNTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 01/12/12 10:23

Analytical Date: 01/14/12 20:55 Cleanup Method1: EPH-04-1

Analyst: NH Cleanup Date1: 01/13/12

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier				
		Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbons	- Westborough L	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.1		1
2-Methylnaphthalene	ND		ug/l	10.1		1
Acenaphthylene	ND		ug/l	10.1		1
Acenaphthene	ND		ug/l	10.1		1
Fluorene	ND		ug/l	10.1		1
Phenanthrene	ND		ug/l	10.1		1
Anthracene	ND		ug/l	10.1		1
Fluoranthene	ND		ug/l	10.1		1
Pyrene	ND		ug/l	10.1		1
Benzo(a)anthracene	ND		ug/l	10.1		1
Chrysene	ND		ug/l	10.1		1
Benzo(b)fluoranthene	ND		ug/l	10.1		1
Benzo(k)fluoranthene	ND		ug/l	10.1		1
Benzo(a)pyrene	ND		ug/l	10.1		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.1		1
D benzo(a,h)anthracene	ND		ug/l	10.1		1
Benzo(ghi)perylene	ND		ug/l	10.1		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-01 Date Collected: 01/11/12 08:30

Client ID: MAI-101 (OW) Date Received: 01/11/12
Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	48		40-140			
o-Terphenyl	79		40-140			
2-Fluorobiphenyl	77		40-140			
2-Bromonaphthalene	77		40-140			

Project Name: Lab Number: PARCEL 6A L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-02 Date Collected: 01/11/12 09:00

Client ID: MAI-102 (OW) Date Received: 01/11/12

Sample Location: Field Prep: Not Specified TAUNTON, MA

Matrix: Water **Extraction Method: EPA 3510C**

Extraction Date: Analytical Method: 98,EPH-04-1.1 01/12/12 10:23 Analytical Date: 01/14/12 21:26 Cleanup Method1: EPH-04-1

Analyst: NH Cleanup Date1: 01/13/12

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarb	ons - Westborough La	b				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
D benzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-02 Date Collected: 01/11/12 09:00

Client ID: MAI-102 (OW) Date Received: 01/11/12
Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	85		40-140			
o-Terphenyl	87		40-140			
2-Fluorobiphenyl	92		40-140			
2-Bromonaphthalene	91		40-140			

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 Report Date: 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-03 Date Collected: 01/11/12 09:30

Client ID: MAI-103 (OW) Date Received: 01/11/12

Sample Location: TAUNTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 01/12/12 10:23

Analytical Date: 01/14/12 21:57 Cleanup Method1: EPH-04-1

Analyst: NH Cleanup Date1: 01/13/12

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarb	ons - Westborough La	b				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.2		1
2-Methylnaphthalene	ND		ug/l	10.2		1
Acenaphthylene	ND		ug/l	10.2		1
Acenaphthene	ND		ug/l	10.2		1
Fluorene	ND		ug/l	10.2		1
Phenanthrene	ND		ug/l	10.2		1
Anthracene	ND		ug/l	10.2		1
Fluoranthene	ND		ug/l	10.2		1
Pyrene	ND		ug/l	10.2		1
Benzo(a)anthracene	ND		ug/l	10.2		1
Chrysene	ND		ug/l	10.2		1
Benzo(b)fluoranthene	ND		ug/l	10.2		1
Benzo(k)fluoranthene	ND		ug/l	10.2		1
Benzo(a)pyrene	ND		ug/l	10.2		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.2		1
D benzo(a,h)anthracene	ND		ug/l	10.2		1
Benzo(ghi)perylene	ND		ug/l	10.2		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-03 Date Collected: 01/11/12 09:30

Client ID: MAI-103 (OW) Date Received: 01/11/12
Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	60		40-140			
o-Terphenyl	76		40-140			
2-Fluorobiphenyl	80		40-140			
2-Bromonaphthalene	82		40-140			

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 Report Date: 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-04 Date Collected: 01/11/12 08:00

Client ID: MAI-1 (OW) Date Received: 01/11/12

Sample Location: TAUNTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 01/12/12 10:23

Analytical Date: 01/14/12 22:28 Cleanup Method1: EPH-04-1
Analyst: NH Cleanup Date1: 01/13/12

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier Un	its RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab			
C9-C18 Aliphatics	ND	ug	/I 100		1
C19-C36 Aliphatics	ND	ug	/I 100		1
C11-C22 Aromatics	ND	ug	/I 100		1
C11-C22 Aromatics, Adjusted	ND	ug	/I 100		1
Naphthalene	ND	ug	/I 10.1		1
2-Methylnaphthalene	ND	ug	/I 10.1		1
Acenaphthylene	ND	ug	/I 10.1		1
Acenaphthene	ND	ug	/I 10.1		1
Fluorene	ND	ug	/I 10.1		1
Phenanthrene	ND	ug	/I 10.1		1
Anthracene	ND	ug	/I 10.1		1
Fluoranthene	ND	ug	/I 10.1		1
Pyrene	ND	ug	/I 10.1		1
Benzo(a)anthracene	ND	ug	/I 10.1		1
Chrysene	ND	ug	/I 10.1		1
Benzo(b)fluoranthene	ND	ug	/I 10.1		1
Benzo(k)fluoranthene	ND	ug	/I 10.1		1
Benzo(a)pyrene	ND	ug	/I 10.1		1
Indeno(1,2,3-cd)Pyrene	ND	ug	/l 10.1		1
D benzo(a,h)anthracene	ND	ug	/I 10.1		1
Benzo(ghi)perylene	ND	ug	/l 10.1		1

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

SAMPLE RESULTS

Lab ID: L1200565-04 Date Collected: 01/11/12 08:00

Client ID: MAI-1 (OW) Date Received: 01/11/12
Sample Location: TAUNTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria					
Chloro-Octadecane	69		40-140					
o-Terphenyl	77		40-140					
2-Fluorobiphenyl	80		40-140					
2-Bromonaphthalene	79		40-140					

Project Name: PARCEL 6A Lab Number: L1200565

Project Number: 5292.9.01 **Report Date:** 01/17/12

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 01/14/12 12:35

Analyst: NH

Extraction Method: EPA 3510C
Extraction Date: 01/12/12 10:23
Cleanup Method1: EPH-04-1
Cleanup Date1: 01/13/12

Parameter	Result	Result Qualifier Uni		RL		MDL
Extractable Petroleum Hydrocar	bons - Westbo	rough Lab fo	r sample(s):	01-04	Batch:	WG513278-1
C9-C18 Aliphatics	ND		ug/l	100		
C19-C36 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		
Naphthalene	ND		ug/l	10.0)	
2-Methylnaphthalene	ND		ug/l	10.0)	
Acenaphthylene	ND		ug/l	10.0)	
Acenaphthene	ND		ug/l	10.0)	
Fluorene	ND		ug/l	10.0)	
Phenanthrene	ND		ug/l	10.0)	
Anthracene	ND		ug/l	10.0)	
Fluoranthene	ND		ug/l	10.0)	
Pyrene	ND		ug/l	10.0)	
Benzo(a)anthracene	ND		ug/l	10.0)	
Chrysene	ND		ug/l	10.0)	
Benzo(b)fluoranthene	ND		ug/l	10.0)	
Benzo(k)fluoranthene	ND		ug/l	10.0)	
Benzo(a)pyrene	ND		ug/l	10.0)	
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0)	
Dibenzo(a,h)anthracene	ND		ug/l	10.0)	
Benzo(ghi)perylene	ND		ug/l	10.0)	

Surrogate %Recovery Qualifier Criteria Chloro-Octadecane 73 40-140 o-Terphenyl 74 40-140				Acceptance
	Surrogate	%Recovery	Qualifier	Criteria
o-Terphenyl 74 40-140	Chloro-Octadecane	73		40-140
	o-Terphenyl	74		40-140
2-Fluorobiphenyl 79 40-140	2-Fluorobiphenyl	79		40-140
2-Bromonaphthalene 77 40-140	2-Bromonaphthalene	77		40-140

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.01

Lab Number: L1200565

Report Date: 01/17/12

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sam	ple(s): 01-04	Batch: WG513278-2 WG5	513278-3		
C9-C18 Aliphatics	49		60	40-140	20		25
C19-C36 Aliphatics	71		85	40-140	18		25
C11-C22 Aromatics	72		79	40-140	9		25
Naphthalene	60		67	40-140	11		25
2-Methylnaphthalene	67		76	40-140	13		25
Acenaphthylene	57		68	40-140	18		25
Acenaphthene	67		76	40-140	13		25
Fluorene	69		77	40-140	11		25
Phenanthrene	71		80	40-140	12		25
Anthracene	67		75	40-140	11		25
Fluoranthene	71		80	40-140	12		25
Pyrene	71		82	40-140	14		25
Benzo(a)anthracene	66		76	40-140	14		25
Chrysene	70		80	40-140	13		25
Benzo(b)fluoranthene	71		82	40-140	14		25
Benzo(k)fluoranthene	71		80	40-140	12		25
Benzo(a)pyrene	61		73	40-140	18		25
Indeno(1,2,3-cd)Pyrene	70		81	40-140	15		25
Dibenzo(a,h)anthracene	65		76	40-140	16		25
Benzo(ghi)perylene	69		79	40-140	14		25
Nonane (C9)	34		43	30-140	23		25

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 6A

Project Number: 5292.9.01

Lab Number: L1200565

Report Date: 01/17/12

arameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	y RPD	Qual	RPD Limits
xtractable Petroleum Hydrocarbons -	Westborough Lab A	ssociated sa	ample(s): 01-0)4 Batch:	WG513278-2	WG513278-3		
Decane (C10)	41		50		40-140	20		25
Dodecane (C12)	50		61		40-140	20		25
Tetradecane (C14)	56		69		40-140	21		25
Hexadecane (C16)	62		74		40-140	18		25
Octadecane (C18)	66		79		40-140	18		25
Nonadecane (C19)	67		80		40-140	18		25
Eicosane (C20)	68		81		40-140	17		25
Docosane (C22)	68		82		40-140	19		25
Tetracosane (C24)	70		84		40-140	18		25
Hexacosane (C26)	71		85		40-140	18		25
Octacosane (C28)	72		86		40-140	18		25
Triacontane (C30)	76		90		40-140	17		25
Hexatriacontane (C36)	86		99		40-140	14		25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	57		78		40-140	
o-Terphenyl	91		89		40-140	
2-Fluorobiphenyl	80		83		40-140	
2-Bromonaphthalene	79		82		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent B Absent

Container Info	rmation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1200565-01A	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-01B	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-01C	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	-
L1200565-01D	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	-
L1200565-02A	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-02B	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-03A	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-03B	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-04A	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-04B	Amber 1000ml HCl preserved	Α	<2	3	Υ	Absent	EPH-DELUX-10(14)
L1200565-05A	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-05B	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-06A	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-06B	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-07A	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-07B	Vial HCl preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-08A	Vial HCI preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)
L1200565-08B	Vial HCI preserved	В	N/A	3	Υ	Absent	MCP-8260-10(14)

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

Data Qualifiers

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:PARCEL 6ALab Number:L1200565Project Number:5292.9.01Report Date:01/17/12

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised January 3, 2012 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <a href="https://doi.org/10.2016/journal.org/10

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. Organic Parameters: 608, 8081, 8082, 8330, 8151A, 624, 8260, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014A, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page Algorithms of Algorithms and Al

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 6020A, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 7196A, 3060A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B... Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Page Dinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (Organic Parameters: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 1312, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. Organic Parameters: EPA 3510C, 3005A, 3630C, 5030B, 625, 624, 608, 8081A, 8081B, 8082, 802A, 8151A, 8260B, 8270C, 8270D, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 3060A, 6010B, 6010C, 7196A, 7471A, 9010B, 9012A, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3546, 3580A, 3630C, 5035, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260B, 8270C, 8270D, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID: 460195. *NELAP Accredited. Non-Potable Water* (Inorganic Parameters: EPA 3005A,3015,1312,6010B,6010C,SM4500S-D, SM4500-CN-CE, Lachat 10-204-00-1-X. Organic Parameters: EPA 8260B)

Solid & Hazardous Waste (Inorganic Parameters: EPA 3050B, 1311, 1312, 6010B, 6010C, 9030B, 9010B, 9012A, 9014. Organic Parameters: EPA 5035, 5030B, 8260B.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

₩ ZIPHA	F CUSTODY	PAGE OF	- Date Rec'd in Lab: ししいした ALPHA	Job#: 21200565
WESTBORO, MA MANSFIELD, MA TEL: 508-898-9220 TEL: 508-822-9300	Project Information Project Name: Parce) (- 1		nformation s Client info PO #:
FAX: 508-898-9193 FAX: 508-822-3288 Client Information	Project Location: Taun	ton MA	□ ADEx □ Add'l Deliverables	
Client: McPhail Associates		.01	Regulatory Requirements/Report Limits State /Fed Program Criteria Gw	2/3
Cambridge, MA	Project Manager: Angular ALPHA Quote #:	talconeur	MA MCP PRESUMPTIVE CERTAINTY CT REASON	ABLE CONFIDENCE PROTO
Phone: (017 - 8(08 - 1420)	Turn-Around Time		□ Yes □ No	G? (If yes see note in Comments)
Email: These samples have been previously analyzed by Alpha Other Project Specific Requirements/Comm If MS is required, indicate in Sample Specific Comments (Note: All CAM methods for inorganic analyses require M	Date Due: 1171 1182012 nents/Detection Limits: which samples and what tests MS to		AMALYSIS	SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation For a control of the control of t
ALPHA Lab ID (Lab Use Only) Sample ID	Collection Date Time	Sample Sampler's Matrix Initials		Cab to do (Please specify below) Sample Specific Comments
0965 B-101 -01 MAI-101 (0W) [n 12 83 °	3 Hzo Ass	x	2-Amber Liter 2
-62 MAT - 102 (ou	3) 906	H20 ADS	x	1 2
-03 MAT - 103 (01		H20 RPJ	X	7
(wo) I-JAM HO-	800	#20 ADS	×	N 2
-05 MAI-106 (OU	0) 1000	5 H20 D0>	<u>x</u>	2-vials Z
-06 MAT-107 (00 -07 MAT-109 (00	1866	3	X	" 2
-07 MAI - 109 (ou -08 MAI - 111 (ou	11130	120 APS	X	. " 2
PLEASE ANSWER QUESTIONS ABOVE!	· · · · · ·	Container Type	AV	Please print clearly, legibly and com-
IS YOUR PROJECT MA MCP or CT RCP?	23 Religiquished By:	Preservative Date/Time	Received By: Date/Time	pletely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved.
FORM NO: 01-01 (rev. 18-Jan-2010)	Mugh	1/11/10 1735		Alpha's Terms and Conditions. See reverse side.

7A Volatile CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1200565

Instrument ID: Jack.i Calibration Date: 13-JAN-2012 Time: 06:50

Lab File ID: 0113A03 Init. Calib. Date(s): 10-NOV-2 10-NOV-2

Compound	RRF	RRF	MIN	%D	MAX %D	
		======			1	ŀ
dichlorodifluoromethane			1		20	F
chloromethane	.95786	.69159			20	
chloromethanevinyl chloride	.74427				20	-
bromomethane	.39483	.43865			$\frac{1}{20}$	
chloroethane	.39305	.35392			20	
trichlorofluoromethane	.82135	.96323			20	
ethyl ether	.27366				$\frac{1}{20}$	
1,1,-dichloroethene	.52913	.56455			20	
carbon disulfide	1.3417	1.7381	.1		20	F
freon-113	.49861	.54543	.1	-9	20	
iodomethane	.46115	.93248	.05	-102	20	
	.06123	.03081		50	20	F
methylene chloride	.59325		.1	2	20	
lacetone	1.17578				20	
trans-1,2-dichloroethene		.59823			20	
methyl acetate	.47873				20	
methyl tert butyl ether	1.4467				20	
Diisopropyl Ether	2.2812			15	20	
tert butyl alcohol	.04495	.04338	.05	4	20	F
1,1-dichioroethane	I . I 853			4	20	
Halothane		.55195			20	F
Ethyl-Tert-Butyl-Ether	1.8167			2	20	
vinyl acetate	1.0104			6	20	
lacrylonitrile	1.19335	.16312		16	20	
cis-1,2-dichloroethene	.65975	.64661		2	20	
2,2-dichloropropane	.8794	.9453	.05		20	
bromochloromethane	30073	.328	.05		20	
chloroform_carbontetrachloride	1.1719	1.1193		4	20	
carbontetrachloride	. 75039	.86341	.1	-15	20	
etnyl acetate	1.58943	1.48695		17	20	
tetrahydrofuran	.19351	.16475		15	20	
1,1,1-trichloroethane	93377	.9997	.1	-7	20	
1,1-dichloropropene	.86955	.8597	.05		20	
2-butanone	.27149		.1		20	
benzene		2.5217	.5	-1	20	
Tertiary-Amyl Methyl Ether	1.4357				20	
1,2-dichloroethane	. / / 0 6 4	.78864		-2	20	
trichloroethene	.67819	.71358	.2	-5	20	
l	l ———	l ———	l ———	l	l ———	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1200565

Instrument ID: Jack.i Calibration Date: 13-JAN-2012 Time: 06:50

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1200565

Instrument ID: Jack.i Calibration Date: 13-JAN-2012 Time: 06:50

Lab File ID: 0113A03 Init. Calib. Date(s): 10-NOV-2 10-NOV-2

FORM VII MCP-8260-10

	4		MADER	MCP	Analytic	ai Meti	led Repo	rt/Centi	fication Form		75.41
Laboratory Name: AMRO Environmental Laboratories, Inc. Project Number: 0310133											
Pro	Project Location: 3651031003/03 Taunton - Parcel GA MADEP RTN 1										
031	0310133-01										
Con	Sample Matrices:										
	-		Ground	Water [Soil /	Sediment	Drin	king Wate	or Other	Matrix	
	MCP SW 84 Nethods Us		8260B	\checkmark	8151A		8330		6010B 🗹	7470	√1A 🗹
	. — <u> </u>		8270C		8081A	. 🗆	VPH		6020	9014	√1 ² □
11.	As specified MADER		8082		8021B		EPH	V	7000S ³ 🔽	Other	
	iompendium alytical Meth		1 List Rele	ase Tr	acking Ni	ımber (F	TN) if know	N n			
	eck all that a	* 1	2 M 5W- 3 S SW-84	6 Metr	mod 90 i jeds 7000	4 of MAI) Series	JEP Physic List individ	ologically ual meto	Available Cyar od analyte	ride (PAC) M	ethod
- Court	· ·	hhià)						4.5			-
	An affirma	tive :	response t	o ques	tions A,	B, C and	i D is requ	ired for	"Presumptive	Certainty" s	tatus
Α	Were all sa described o	mples	received I Chain of C	by the la sustody	aboratory documer	in a con ntation fo	dition cons	sistent wi set?	th that	(e) Yes	O No 1
В	Were all QA	VQC	procedures	requir	ed for the	specifie	d analytica	l method	(s)included in		1
	data that di	d not	meet appro	priate	equiremei performai	nt to note nce stan	e and discudards or gu	uss in a r uide lines	narrative QC s?	Yes	○ No '
С	Does the ar	nalytic	cal data inc	luded in	n this rep	ort meet	all the requ	uirement	s for ment CAM VII A	Yes	○ No ¹
	Quality Ass	urand	e and Qua	lity Cor	ntrol Guide	elines fo	r the Acqui	sition an	d Reporting of	,	
D	Analytical D	PH m	ethods on	ly:	Was the	VPH or I	EPH metho	od run wi	thout significan		
	modification	ıs, as	specified i	n Secti	on 11.3?		4			O Yes	● No ¹
	A										
									umptive Certai	nty" status	
b.n	achieved?	, bei	omance s	andaru	is and rec	ommen	Jadons Ioi	me spec	alled methods	○ Yes	No ¹
F	Were result	s for	all analyte-	list com	pounds /	element	s for the s	pecified i	method(s)	(C) V	O N 1
	reported?									Yes	○ No '
	and a few property and a few pro					_			ıl Laboratory ca		
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inqury of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.											
	A A										
Sigr	nature:	m	No	do	and I	<i>-</i>	Pos	ition: \mathcal{G}	BA Mana	ger	
Prin	ted Name:	39	mrA.	Nag	aib	~	Date);	11/11/03	}	

AMRO Environmental Laboratories Corp.

CLIENT: Mactec E & C, Inc.

Lab Order: 0310133

3651031003/03 Taunton - Parcel GA Project:

Lab ID: 0310133-01A Date: 11-Nov-03

Client Sample ID: ECE MW3

Collection Date: 10/16/03

Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET	SW8260B				Analyst: SK
Acetone	ND	10		μg/L	1	10/25/03 4:24:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
Benzene	ND	1.0		μg/L	1	10/25/03 4:24:00 PM
Bromobenzene	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
Bromochloromethane	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
Bromodichloromethane	ND	2.0		μg/L	. 1	10/25/03 4:24:00 PM
Bromoform	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
Bromomethane	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
sec-Butylbenzene	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
n-Butylbenzene	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
tert-Butylbenzene	ND	2.0		μg/L	. 1	10/25/03 4:24:00 PM
Carbon disulfide	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
Chlorobenzene	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
Dibromochloromethane .	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
Chloroethane	ND	5.0		µg/L	1	10/25/03 4:24:00 PM
Chloroform	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
Chloromethane	ND	3.0		μg/L	1	10/25/03 4:24:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
4-Chlorotoluene	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		µg/L	1	10/25/03 4:24:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
Dibromomethane	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
1,3-Dichlorobenzene	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
1,2-Dichlorobenzene	ND	2.0		µg/L	1	10/25/03 4:24:00 PM
1,4-Dichlorobenzene	ND .	2.0		µg/L	1	10/25/03 4:24:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	10/25/03 4:24:00 PM
1,1-Dichloroethane	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	10/25/03 4:24:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
trans-1,2-Dichloroethene	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	10/25/03 4:24:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	10/25/03 4:24:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	10/25/03 4:24:00 PM
Diethyl ether	ND	5.0		µg/L	1	10/25/03 4:24:00 PM

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-01A

Client Sample ID: ECE MW3

Collection Date: 10/16/03

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	µg/L	1	10/25/03 4:24:00 PM
1,4-Dioxane	ND	50	μg/L	1	10/25/03 4:24:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Ethylbenzene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
2-Hexanone	ND	10	μg/L	1	10/25/03 4:24:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
2-Butanone	ND	10	μg/L	1	10/25/03 4:24:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/25/03 4:24:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Methylene chloride	ND	5.0	μg/L	1	10/25/03 4:24:00 PM
Naphthalene	5.6	5.0	μg/L	1	10/25/03 4:24:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Styrene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Tetrahydrofuran	ND	10	μg/L	. 1	10/25/03 4:24:00 PM
Toluene	ND	2.0	µg/L	1	10/25/03 4:24:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Trichloroethene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
1,2,4-Trimethylbenzene	7.0	2.0	μg/L	1	10/25/03 4:24:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
Vinyl chloride	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
o-Xylene	ND	2.0	μg/L	1	10/25/03 4:24:00 PM
m,p-Xylene	2.1	2.0	μg/L	· 1	10/25/03 4:24:00 PM
Surr: Dibromofluoromethane	99.2	85-120	%REC	1	10/25/03 4:24:00 PM
Surr: 1,2-Dichloroethane-d4	94.0	75-124	%REC	1	10/25/03 4:24:00 PM
Surr: Toluene-d8	92.0	82-112	%REC	1	10/25/03 4:24:00 PM
Surr: 4-Bromofluorobenzene	91.2	77-117	%REC	1	10/25/03 4:24:00 PM

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-02A

Client Sample ID: ECE MW3DUP

Collection Date: 10/16/03

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET S	V8260B				Analyst: Sk
Acetone	ND	10		μg/L	1	10/25/03 4:59:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
Benzene	ND	1.0		µg/L	1	10/25/03 4:59:00 PM
Bromobenzene	ND	2.0		µg/L	. 1	10/25/03 4:59:00 PM
Bromochloromethane	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
Bromodichloromethane	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
Bromoform	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
Bromomethane	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
sec-Butylbenzene	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
n-Butylbenzene	ND ·	2.0		µg/L	1	10/25/03 4:59:00 PM
tert-Butylbenzene	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
Carbon disulfide	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
Carbon tetrachloride	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
Chlorobenzene	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
Dibromochloromethane	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
Chloroethane	ND	5.0		μg/L	1	10/25/03 4:59:00 PM
Chloroform	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
Chloromethane	ND	3.0		µg/L	1	10/25/03 4:59:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
4-Chlorotoluene	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		μg/ L	1	10/25/03 4:59:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
Dibromomethane	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
1,3-Dichlorobenzene	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
1,2-Dichlorobenzene	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
1,4-Dichlorobenzene	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	10/25/03 4:59:00 PM
1,1-Dichloroethane	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	10/25/03 4:59:00 PM
1,1-Dichloroethene	ND	1.0		µg/L	1	10/25/03 4:59:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
trans-1,2-Dichloroethene	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	10/25/03 4:59:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	10/25/03 4:59:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	10/25/03 4:59:00 PM
Diethyl ether	ND	5.0		µg/L	1	10/25/03 4:59:00 PM

tal Laboratories Corp. Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-02A

Client Sample ID: ECE MW3DUP

Collection Date: 10/16/03

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
1,4-Dioxane	ND	50	μg/L	1	10/25/03 4:59:00 PM
Ethyl Tertiary Butyl Ether	: ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Ethylbenzene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Hexachlorobutadiene	ND	2.0	µg/L	1	10/25/03 4:59:00 PM
2-Hexanone	ND	10	µg/L	1	10/25/03 4:59:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
2-Butanone	ND.	10	μg/L	1	10/25/03 4:59:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/25/03 4:59:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Methylene chloride	ND	5.0	µg/L	1	10/25/03 4:59:00 PM
Naphthalene	ND	5.0	μg/L	1	10/25/03 4:59:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Styrene	ND	2.0	µg/L	1	10/25/03 4:59:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	1	10/25/03 4:59:00 PM
1,1,2,2-Tetrachioroethane	ND	2.0	µg/L	1	10/25/03 4:59:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Tetrahydrofuran	ND	. 10	μg/L	1	10/25/03 4:59:00 PM
Toluene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1 .	10/25/03 4:59:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Trichloroethene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Trichlorofluoromethane	ND	2.0	µg/L	1	10/25/03 4:59:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
1,2,4-Trimethylbenzene	4.0	2.0	μg/L	1	10/25/03 4:59:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Vinyl chloride	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
o-Xylene	ND	2.0	μg/L	1	10/25/03 4:59:00 PM
m,p-Xylene	, ND	2.0	μg/L	1	10/25/03 4:59:00 PM
Surr: Dibromofluoromethane	103	85-120	%REC	1	10/25/03 4:59:00 PM
Surr: 1,2-Dichloroethane-d4	95.3	75-124	%REC	1	10/25/03 4:59:00 PM
Surr: Toluene-d8	88.5	82-112	%REC	1	10/25/03 4:59:00 PM
Surr: 4-Bromofluorobenzene	92.3	77-117	%REC	1	10/25/03 4:59:00 PM

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-03A

Client Sample ID: ECE MW2

Collection Date: 10/16/03

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET	SW8260B				Analyst: SK
Acetone	ND	10		μg/L	1	10/25/03 5:34:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Benzene	ND	1.0		μg/L	1	10/25/03 5:34:00 PM
Bromobenzene	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Bromochloromethane	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
Bromodichloromethane	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Bromoform	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Bromomethane	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
sec-Butylbenzene	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
n-Butylbenzene	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
tert-Butylbenzene	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
Carbon disulfide	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
Carbon tetrachloride	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Chlorobenzene	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
Dibromochloromethane	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Chloroethane	ND	5,0		μg/L	1	10/25/03 5:34:00 PM
Chloroform	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Chloromethane	ND	3.0		μg/L	1	10/25/03 5:34:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
4-Chlorotoluene	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		μg/L	1	10/25/03 5:34:00 PM
1,2-Dibromoethane	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Dibromomethane	ND	2.0		μ g /L	1	10/25/03 5:34:00 PM
1,3-Dichlorobenzene	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
1,2-Dichlorobenzene	NĐ	2.0		μg/L	1	10/25/03 5:34:00 PM
1,4-Dichlorobenzene	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
Dichlorodifluoromethane	ND	5.0		µg/L	1	10/25/03 5:34:00 PM
1,1-Dichloroethane	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	10/25/03 5:34:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1 ,	10/25/03 5:34:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	,1	10/25/03 5:34:00 PM
1,2-Dichloropropane	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	10/25/03 5:34:00 PM
2,2-Dichloropropane	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
1,1-Dichloropropene	ND	2.0		µg/L	1	10/25/03 5:34:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	10/25/03 5:34:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	10/25/03 5:34:00 PM
Diethyl ether	ND	5.0		μg/L	1	10/25/03 5:34:00 PM

Date:, 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-03A

Client Sample ID: ECE MW2

Collection Date: 10/16/03

Analyses	Result	RL (Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	µg/L	1	10/25/03 5:34:00 PM
1,4-Dioxane	ND	50	μg/L	1	10/25/03 5:34:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
Ethylbenzene	ND	2.0	μg/L ,	1	10/25/03 5:34:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
2-Hexanone	ND	10	µg/L	1	10/25/03 5:34:00 PM
Isopropylbenzene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
4-Isopropyltoluene	ND	2.0	µg/L	1	10/25/03 5:34:00 PM
2-Butanone	ND	10	µg/L	1	10/25/03 5:34:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	10/25/03 5:34:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
Methylene chloride	ND	5.0	μg/L	1	10/25/03 5:34:00 PM
Naphthalene	ND	5.0	μg/L	1	10/25/03 5:34:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
Styrene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
Tetrachloroethene	ND	2.0	µg/L	1	10/25/03 5:34:00 PM
Tetrahydrofuran	ND	10	μg/L	1	10/25/03 5:34:00 PM
Toluene	ND	2.0	µg/L	1	10/25/03 5:34:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
Trichloroethene	ND	2.0	µg/L	1	10/25/03 5:34:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	.1	10/25/03 5:34:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	1	10/25/03 5:34:00 PM
Vinyl chloride	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
o-Xylene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
m,p-Xylene	ND	2.0	μg/L	1	10/25/03 5:34:00 PM
Surr: Dibromofluoromethane	102	85-120	%REC	1	10/25/03 5:34:00 PM
Surr: 1,2-Dichloroethane-d4	97.6	75-124	%REC	1	10/25/03 5:34:00 PM
Surr: Toluene-d8	90.9	82-112	%REC	1	10/25/03 5:34:00 PM
Surr: 4-Bromofluorobenzene	90.7	77-117	%REC	1	10/25/03 5:34:00 PM

CLIENT: Macto

Mactec E & C, Inc.

0310133

Project:

Lab Order:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-04A

Date: 11-Nov-03

Client Sample ID: ECE MW1

Collection Date: 10/16/03

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET SV	V8260B				Analyst: Sk
Acetone	14	10		μg/L	1	10/27/03 7:45:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Benzene	ND	1.0		μg/L	~ 1	10/27/03 7:45:00 PM
Bromobenzene	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Bromochloromethane	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Bromodichloromethane	ND	2.0		µg/L	1	10/27/03 7:45:00 PM
Bromoform	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Bromomethane	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
sec-Butylbenzene	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
n-Butylbenzene	ND	2.0		µg/L	1	10/27/03 7:45:00 PM
tert-Butylbenzene	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Carbon disulfide	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Carbon tetrachloride	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Chlorobenzene	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Dibromochloromethane	ND	2.0		µg/L	1	10/27/03 7:45:00 PM
Chloroethane	ND	5.0		μg/L	1	10/27/03 7:45:00 PM
Chloroform	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
Chloromethane	ND	3.0		μg/L	1	10/27/03 7:45:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
4-Chlorotoluene	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		µg/L	1	10/27/03 7:45:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	1	10/27/03 7:45:00 PM
Dibromomethane	ND	2.0		µg/L	1	10/27/03 7:45:00 PM
1,3-Dichlorobenzene	ND	2.0		µg/L	1	10/27/03 7;45:00 PM
1,2-Dichlorobenzene	, N D	2.0		μg/L	1	10/27/03 7:45:00 PM
1,4-Dichlorobenzene	ND	2.0		µg/L	1	10/27/03 7:45:00 PM
Dichlorodifluoromethane	ND	5.0		µg/L	1	10/27/03 7:45:00 PM
1,1-Dichloroethane	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	10/27/03 7:45:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
trans-1,2-Dichloroethene	ND	2.0		µg/L	1	10/27/03 7:45:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	10/27/03 7:45:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	10/27/03 7:45:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	10/27/03 7:45:00 PM
Diethyl ether	ND	5.0		μg/L	1	10/27/03 7:45:00 PM

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Client Sample ID: ECE MW3

Lab Order:

0310133

Tag Number:

Project:

3651031003/03 Taunton - Parcel GA

Collection Date: 10/16/03

Lab ID:

0310133-01B

Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDROCARBONS		MAEPH				Analyst: GG
C9-C18 Aliphatic Hydrocarbons	180	110		μg/L	1	10/28/03 12:42:00 PM
C19-C36 Aliphatic Hydrocarbons	340	110	В	µg/L	1	10/28/03 12:42:00 PM
C11-C22 Aromatic Hydrocarbons	1,700	110		µg/L	1	10/28/03 12:42:00 PM
Naphthalene	4.0	1.1		μg/L	1	10/28/03 12:42:00 PM
2-Methylnaphthalene	8.5	1.1		µg/L	. 1	10/28/03 12:42:00 PM
Acenaphthylene	ND	1.1		µg/L	1	10/28/03 12:42:00 PM
Acenaphthene	3.0	1.1		µg/L	1	10/28/03 12:42:00 PM
Fluorene	3.6	1.1		μ̈g/L	1	10/28/03 12:42:00 PM
Phenanthrene	2.5	1.1		μg/L	1	10/28/03 12:42:00 PM
Anthracene	ND	1.1		μg/L	1	10/28/03 12:42:00 PN
Fluoranthene	ND	1.1		μg/L	1	10/28/03 12:42:00 PM
Pyrene	ND	1.1		μg/L	1	10/28/03 12:42:00 PM
Benz(a)anthracene	ND	1.1		µg/L	1	10/28/03 12:42:00 PM
Chrysene	ND	1.1		μg/L	1	10/28/03 12:42:00 PM
Benzo(b)fluoranthene	ND	1.1		μg/L	1	10/28/03 12:42:00 PM
Benzo(k)fluoranthene	ND	1.1		μg/L	1	10/28/03 12:42:00 PN
Benzo(a)pyrene	ND	1.1		μg/L	1	10/28/03 12:42:00 PM
Dibenz(a,h)anthracene	ND	1.1		μg/L	1	10/28/03 12:42:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.1		µg/L	1	10/28/03 12:42:00 PN
Benzo(g,h,i)perylene	ND	1.1		μg/L	1	10/28/03 12:42:00 PN
Surr: 1-Chlorooctadecane	60.1	40-140		%REC	1	10/28/03 12:42:00 PM
Surr: 2-Bromonaphthalene	106	40-140		%REC	1	10/28/03 12:42:00 PN
Surr: 2-Fluorobiphenyi	105	40-140		%REC	1	10/28/03 12:42:00 PM
Surr: o-Terphenyl	88.4	40-140		%REC	1	10/28/03 12:42:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CERTIFICAT	ION
------------	-----

Were all QA/QC procedures required by the VPH or EPH method followed:		No - If No, See Case Narrative
Were all performance/acceptance standards for required QA/QC procedures achieved:		No - If No, See Case Narrative
Were any significant modifications made to the method as specified in section 11.3:	No	Yes - Details enclosed
I attest under the pains and penalties of perjury that, based upon my inquiry of those inc	dividuals im	mediately responsible for obtaining the
information, the material contained in this report is, to the best of my knowledge and be	lief accurat	e and complete

SIGNATURE: DATE: 1/11/03
PRINTED NAME: Nancy Stewart POSITION: Laboratory Director (or designee)

Qualifiers: RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

Date: 11-Nov-03

CLIENT: Lab Order: Mactec E & C, Inc.

0310133

Project: 3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-02B

Client Sample ID: ECE MW3DUP

Tag Number:

Collection Date: 10/16/03

Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDROCARBONS		MAEPH	1.1			Analyst: GG
C9-C18 Aliphatic Hydrocarbons	190	100		μg/L	1	10/28/03 2:17:00 PM
C19-C36 Aliphatic Hydrocarbons	420	100	В	µg/L	1	10/28/03 2:17:00 PM
C11-C22 Aromatic Hydrocarbons	2,000	100		µg/L	1	10/28/03 2:17:00 PM
Naphthalene	4.9	1.0		µg/L	1 .	10/28/03 2:17:00 PM
2-Methylnaphthalene	12	1.0		μg/L	1	10/28/03 2:17:00 PM
Acenaphthylene	ND	1.0		µg/L	1	10/28/03 2:17:00 PM
Acenaphthene	3.5	1.0		µg/L	. 1	10/28/03 2:17:00 PM
Fluorene	4.1	1.0		µg/L	1	10/28/03 2:17:00 PM
Phenanthrene	3.2	1.0		µg/L	1 .	10/28/03 2:17:00 PM
Anthracene	ND	1.0		µg/L	1 .	10/28/03 2:17:00 PM
Fluoranthene	ND	1.0		µg/L	1	10/28/03 2:17:00 PM
Pyrene	ND	1.0		μg/L	1	10/28/03 2:17:00 PM
Benz(a)anthracene	ND	1.0		μg/L	1 .	10/28/03 2:17:00 PM
Chrysene	ND	1.0		μg/L	1	10/28/03 2:17:00 PM
Benzo(b)fluoranthene	ND	1.0		µg/L	1	10/28/03 2:17:00 PM
Benzo(k)fluoranthene	ND	1.0		µg/L	1	10/28/03 2:17:00 PM
Benzo(a)pyrene	ND	1.0		µg/L	. 1	10/28/03 2:17:00 PM
Dibenz(a,h)anthracene	ND	1.0		µg/L	1	10/28/03 2:17:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.0		µg/L	1	10/28/03 2:17:00 PM
Benzo(g,h,i)perylene	ND	1.0		μg/L	1	10/28/03 2:17:00 PM
Surr: 1-Chlorooctadecane	56.0	40-140		%REC	1	10/28/03 2:17:00 PM
Surr: 2-Bromonaphthalene	96.9	40-140		%REC	1	10/28/03 2:17:00 PM
Surr: 2-Fluorobiphenyl	96.9	40-140		%REC	1	10/28/03 2:17:00 PM
Surr: o-Terphenyl	89.4	40-140		%REC	1	10/28/03 2:17:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CERTIFI	CATION
----------------	--------

Were all QA/QC procedures required by the VPH or EPH method followed:

Yes No - If No, See Case Narrative

Were all performance/acceptance standards for required QA/QC procedures achieved:

No - If No, See Case Narrative

Were any significant modifications made to the method as specified in section 11.3:

Yes - Details enclosed

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Nancy Stewart

DATE: 11/1/03
POSITION: Laboratory Director (or designee)

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Client Sample ID: ECE MW2

Lab Order:

0310133

Tag Number:

Project:

3651031003/03 Taunton - Parcel GA

Collection Date: 10/16/03

Lab ID:

0310133-03B

Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
EXTRACTABLE PETROLEUM HYDROCARBONS		MAEPH	~			Analyst: GG	
C9-C18 Aliphatic Hydrocarbons	410	110		μg/L	1	10/28/03 2:48:00 PM	
C19-C36 Aliphatic Hydrocarbons	520	110	В	μg/L	1	10/28/03 2:48:00 PM	
C11-C22 Aromatic Hydrocarbons	1,700	110		µg/L	1	10/28/03 2:48:00 PM	
Naphthalene	ND.	1.1		μg/L	1	10/28/03 2:48:00 PM	
2-Methylnaphthalene	ND	1.1		μg/L	1	10/28/03 2:48:00 PM	
Acenaphthylene	ND	1.1		µg/L	1	10/28/03 2:48:00 PM	
Acenaphthene	ND	1.1		μg/L	1	10/28/03 2:48:00 PM	
Fluorene	ND	1.1		μg/L	1 '	10/28/03 2:48:00 PM	
Phenanthrene	ND	1,1		μg/L	1	10/28/03 2:48:00 PM	
Anthracene	ND	1.1		μg/L	1	10/28/03 2:48:00 PM	
Fluoranthene	ND	1.1		µg/L	1	10/28/03 2:48:00 PM	
Pyrene	ND	1.1		µg/L	1	10/28/03 2:48:00 PM	
Benz(a)anthracene	ND	1.1		µg/L	1	10/28/03 2:48:00 PM	
Chrysene	ND	1.1		μg/L	1	10/28/03 2:48:00 PM	
Benzo(b)fluoranthene	ND	1.1		µg/L	1	10/28/03 2:48:00 PM	
Benzo(k)fluoranthene	ND	1.1		μg/L	1	10/28/03 2:48:00 PM	
Benzo(a)pyrene	ND	1.1		µg/L	1	10/28/03 2:48:00 PM	
Dibenz(a,h)anthracene	ND	1.1		µg/L	1	10/28/03 2:48:00 PM	
Indeno(1,2,3-cd)pyrene	ND	1.1		µg/∟	1	10/28/03 2:48:00 PM	
Benzo(g,h,i)perylene	ND	1.1		µg/L	1	10/28/03 2:48:00 PM	
Surr: 1-Chlorooctadecane	57.7	40-140		%REC	1	10/28/03 2:48:00 PM	
Surr: 2-Bromonaphthalene	99.1	40-140		%REC	1	10/28/03 2:48:00 PM	
Surr: 2-Fluorobiphenyl	98.9	40-140		%REC	1	10/28/03 2:48:00 PM	
Surr: o-Terphenyl	76.4	40-140		%REC	1	10/28/03 2:48:00 PM	

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CE	RTI	FI	CA	TI	Ot	V
\sim	1 / 1 /		-		v	

Were all QA/QC procedures required by the VPH or EPH method followed:	Yes	No - If No, See Case Narrative
Were all performance/acceptance standards for required QA/QC procedures achieved:	∠_Yes	No - If No, See Case Narrative
Were any significant modifications made to the method as specified in section 11.3:	No	Yes - Details enclosed
to the standard terror terror and account of the standard terror and terror an		

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SIGNATURE:

Nancy Stewart

DATE: 1////03

POSITION: Laboratory Director (or decignos)

Qualifiers: RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

- See Case Narrative

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank H - Method prescribed holding time exceeded

Date: 11-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order: 0310133

3651031003/03 Taunton - Parcel GA Project:

Lab ID:

0310133-04B

Client Sample ID: ECE MW1

Tag Number:

Collection Date: 10/16/03

Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDR	OCARBONS	MAEPH				Analyst: GG
C9-C18 Aliphatic Hydrocarbons	ND	110		μg/L	1	10/28/03 3:20:00 PM
C19-C36 Aliphatic Hydrocarbons	160	110	В	µg/L	1	10/28/03 3:20:00 PM
C11-C22 Aromatic Hydrocarbons	300	110		μg/L	1	10/28/03 3:20:00 PM
Naphthalene	ND	1.1		μg/L	1	10/28/03 3:20:00 PM
2-Methylnaphthalene	ND	1.1		µg/L	1	10/28/03 3:20:00 PM
Acenaphthylene	ND	1.1		µg/L	1	10/28/03 3:20:00 PM
Acenaphthene	· ND	1.1		µg/L	1	10/28/03 3:20:00 PM
Fluorene	ND	1.1		μg/L	1	10/28/03 3:20:00 PM
Phenanthrene	ND	1.1		µg/L	1	10/28/03 3:20:00 PM
Anthracene	ND	1.1		μg/L	1	10/28/03 3:20:00 PM
Fluoranthene	ND	1.1		μg/L	1	10/28/03 3:20:00 PM
Pyrene	ND	1.1		μg/L	1	10/28/03 3:20:00 PM
Benz(a)anthracene	ND	1.1		µg/L	-1	10/28/03 3:20:00 PM
Chrysene	ND	1.1		μg/L	1	10/28/03 3:20:00 PM
Benzo(b)fluoranthene	ND	1.1		µg/L	1.	10/28/03 3:20:00 PM
Benzo(k)fluoranthene	ND	1.1		µg/L	1	10/28/03 3:20:00 PM
Benzo(a)pyrene	ND	1.1		µg/L	1	10/28/03 3:20:00 PM
Dibenz(a,h)anthracene	ND	1.1		μ g/ L	1	10/28/03 3:20:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.1		μg/L	1 .	10/28/03 3:20:00 PM
Benzo(g,h,i)perylene	ND	1.1		µg/L	1	10/28/03 3:20:00 PM
Surr: 1-Chlorooctadecane	73.8	40-140		%REC	1	10/28/03 3:20:00 PM
Surr: 2-Bromonaphthalene	99.0	40-140		%REC	1	10/28/03 3:20:00 PM
Surr: 2-Fluorobiphenyl	96.6	40-140		%REC	1	10/28/03 3:20:00 PM
Surr: o-Terphenyl	89.3	40-140		%REC	1	10/28/03 3:20:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CER	アル	IC A	

Were all QA/QC procedures required by the VPH or EPH method followed:

Yes ___ No - If No, See Case Narrative

Were all performance/acceptance standards for required QA/QC procedures achieved:

Yes ___ No - If No, See Case Narrative

Were any significant modifications made to the method as specified in section 11.3: No Yes - Details enclosed

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PRINTED NAME: Nancy Stewart

Qualifiers: RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-02C

Client Sample ID: ECE MW3DUP

Collection Date: 10/16/03

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
ICP METALS TOTAL SW-846	SI	V6010B			Analyst: SJC
Barium	ND	200	μg/L	1	10/22/03 7:16:32 PM
Beryllium	· ND	5.0	μg/L	1	10/22/03 7:16:32 PM
Cadmium	. ND	5.0	μg/L	. 1	10/22/03 7:16:32 PM
Chromium	. ND	10	μg/L	1	10/22/03 7:16:32 PM
Nickel	ND	40	μg/L	1	10/22/03 7:16:32 PM
Silver	ND	7.0	μg/L	1	10/22/03 7:16:32 PM
Vanadium	ND	50	μg/L	1	10/22/03 7:16:32 PM
Zinc	ND	20	µg/L	1	10/22/03 7:16:32 PM
ARSENIC, TOTAL	sv	V7060A			Analyst: APL
Arsenic	ND	5.0	μg/L	1	10/23/03 10:55:30 PM
MERCURY, TOTAL	sv	V7470A			Analyst: RK
Mercury	ND	0.20	μg/L	1	10/21/03 1:30:48 PM
EAD, TOTAL	sv	V7421			Analyst: APL
Lead	ND	5.0	µg/L	1	10/23/03 10:55:30 PM
NTIMONY, TOTAL	sv	V7041			Analyst: APL
Antimony	ND	5.0	μg/L	1	10/27/03 11:56:56 PM
SELENIUM, TOTAL	sv	V7740			Analyst: APL
Seleníum	ND	5.0	μg/L	1	10/23/03 10:55:30 PM
HALLIUM, TOTAL	sv	V7841			Analyst: APL
Thallium .	ND	5.0	μg/L	1	10/23/03 10:55:30 PM

AMRO Environmental Laboratories Corp.

	Mactec E & C, Inc.								QC SUMMARY REPORT	MARY	REPO]	. LY
Work Order: 0.	0310133								- - -)	Control C.	1,50
Project: 30	3651031003/03 Taunton - Parcel GA	rcel GA							Lat	oratory c	Laboratory Control Spire	ike
												I
Sample ID LCS-10402	2 Batch ID: 10402	Test Code: MAEPH	MAEPH	Units: µg/L		Ą	nalysis Da	ate 10/28/03	Analysis Date 10/28/03 12:11:00 PM	Prep Date	Prep Date 10/27/03	
Client ID:		Run ID:	SV-2_031028A	028A		σ	SeqNo:	352981				
	QC Sample			QC Spike Original Sample	ımple			0	Original Sample			
Analyte	Result	귐	Units	Amount Re	Result %	%REC Lo	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
n-Ficosane	23.19	1.0	ng/L	25	0	92.8	40	140	0			
n-Nonadecane	23.78	1.0	hg/L	25	0	95.1	40	140	0			
n-Nonane	15.52	1.0	hg/L	25	0	62.1	40	140	0			
n-Octacosane	20.4	1.0	µg/L	25	0	81.6	40	140	0			
n-Tetradecane	22.02	1.0	hg/L	25	0	88.1	40	140	0			
Naphthalene	23.84	1.0	µg/L	25	0	95.4	40	140	0			
Acenaphthene	25.16	1.0	hg/L	25	Ó	101	40	140	0			
Anthracene	28.67	1.0	hg/L	25	0	115	40	4	0			
Pvrene	26.7	1.0	µg/L	. 25	0	107	40	140	0			
Chrysene	24.33	1.0	hg/L	25	0	97.3	40	140	0			
Surr: 1-Chlorooctadecane		1.0	hg/L	20	0	83.3	40	140	0			
Surr: 2-Bromonaphthalene		1.0	hg/L	. 50	0	111	40	140	O			
Surr: 2-Fluorobipheny		1.0	µg/L	50	0	110	40	140	0			
Surr: o-Terphenyl		1.0	hg/L	20	0	102	4	140	0			

NA - Not applicable where J values or ND results occur B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate. J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Date: 27-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401077

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401077-01A

Client Sample ID: MW 8

Collection Date: 1/15/04

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET SV	V8260B				Analyst: K 1
Acetone	· ND	10		µg/L	1	1/23/04 3:04:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
Benzene	ND	1.0		μg/L	1	1/23/04 3:04:00 PM
Bromobenzene	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
Bromochloromethane	ND	2.0		·µg/L	1	1/23/04 3:04:00 PM
Bromodichloromethane	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
Bromoform	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
Bromomethane	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
sec-Butylbenzene	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
n-Butylbenzene	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
tert-Butylbenzene	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
Carbon disulfide	ND	2.0		μg/L	1,	1/23/04 3:04:00 PM
Carbon tetrachloride	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
Chlorobenzene	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
Dibromochloromethane	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
Chloroethane	ND	5.0		μg/L	1	1/23/04 3:04:00 PM
Chloroform	N D	2.0		μg/L	1	1/23/04 3:04:00 PM
Chloromethane	ND	3.0		μg/L	1	1/23/04 3:04:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
4-Chlorotoluene	ND	2.0		μg/Ł	1	1/23/04 3:04:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		µg/L	1	1/23/04 3:04:00 PM
1,2-Dibromoethane	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
Dibromomethane	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
1,3-Dichlorobenzene	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
1,2-Dichlorobenzene	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
1,4-Dichlorobenzene	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
Dichlorodifluoromethane	ND	5.0		µg/L	1	1/23/04 3:04:00 PM
1,1-Dichloroethane	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
1,2-Dichloroethane	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	1/23/04 3:04:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
trans-1,2-Dichloroethene	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
1,3-Dichloropropane	ND	2.0		µg/L	1	1/23/04 3:04:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	1/23/04 3:04:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	1/23/04 3:04:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	1/23/04 3:04:00 PM
Diethyl ether	ND	5.0		µg/L	1	1/23/04 3:04:00 PM

DATA COMMENT PAGE

Organic Data Qualifiers

- ND Indicates compound was analyzed for, but not detected at or above the reporting limit.
- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than the method detection limit.
- H Method prescribed holding time exceeded.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- # See Case Narrative

Inorganic Data Qualifiers

- ND or Indicates element was analyzed for, but not detected at or above the reporting limit.
- J Indicates a value greater than or equal to the method detection limit, but less than the quantitation limit.
- H Indicates analytical holding time exceedance.
- B Indicates that the analyte is found in the associated blank, as well as in the sample.
- MSA Indicates value determined by the Method of Standard Addition
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- R RPD outside accepted recovery limits
- RL Reporting limit; defined as the lowest concentration the laboratory can accurately quantitate.
- S Spike Recovery outside accepted recovery limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995
- # See Case Narrative

Report Comments:

- 1. Soil, sediment and sludge sample results are reported on a "dry weight" basis.
- 2. Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

Volatile Petroleum Hydrocarbons (VPH) Massachusetts Department of Environmental Protection (MADEP) Method 1.0 - January 1998 AMRO Modifications

This modification is based on the use of a purge and trap gas chromatography mass spectrometer (GC/MS) system to analyze samples for VPH. The hydrocarbon ranges are quantified using predominant mass fragmentation ions that are characteristic for the range being measured. This approach eliminates potential false positives for the target analytes while providing accurate hydrocarbon range data and also eliminates the double counting of aromatics in the C9-C12 Aliphatic Range. The C5-C8 Aliphatic Range and C9-C12 Aliphatic Range are quantified using m/z 43 which is the largest ion in the spectra of most low molecular weight aliphatics and the C9-C10 Aromatic Range is quantified using m/z 91, the tropylium ion, which is characteristic of all alkyl benzene aromatics. AMRO has evaluated both "fresh" and "weathered" gasoline reference materials from different sources to validate the accuracy of this ion set. No significant negative or positive bias has been observed in the quantitation of fresh or weathered gasolines. Recoveries meet all method criteria. Validation data has been reviewed by MADEP and is available on request.

The chromatographic column is a HP-624 capillary column that has been validated by GC/MS analysis of a gasoline standard to correctly identify the marker compounds and elution order of specific gasoline components. Batch quality control includes, at a minimum, method blank, laboratory control sample, and duplicate analysis. A matrix spike and/or matrix spike duplicate is analyzed if sufficient sample is submitted to the laboratory.

The Reporting Limit (RL) of this method for each of the collective aliphatic and aromatic ranges is approximately 0.6-2.5 mg/kg in soil and 25-100 μ g/L in water. The RL of this method for the target analytes ranges from approximately 0.05-0.12 mg/kg in soil and 2.0-5.0 μ g/L for water samples.

Extractable Petroleum Hydrocarbons (EPH) Massachusetts Department of Environmental Protection (MADEP) Method 1.0 - January 1998 AMRO Modifications

This modification is based on a solvent extraction and gas chromatography mass spectrometer (GC/MS) analysis. The hydrocarbon ranges are quantified using predominant mass fragmentation ions which are characteristic for the range being measured. This approach eliminates the silica gel solid-phase fractionation step. False positives for targeted PAH analytes are eliminated by using GC/MS as the primary analysis technique and non-petroleum interferences can be identified and often eliminated. The hydrocarbon ranges are quantified using predominant mass fragmentation ions that are characteristic and selective for the range being measured. The C9-C18 and C19-C36 Aliphatic Ranges are quantified using the combined ions m/z 43, 57, 67 and 71. These are the dominant fragment ions in aliphatic alkane and cycloaliphatic hydrocarbons present in the common distillate petroleum products. The C11-C22 Aromatic Range is quantified using ions m/z 50, 63, and 74. These are the principal unique and characteristic aromatic ring fragment ions in semivolatile aromatic hydrocarbons present in distillate petroleum products. AMRO has evaluated quantitative recovery using these ion sets for a wide variety of semivolatile petroleum products including diesel fuels, jet fuels, and motor oils. Accuracy of the aliphatic vs. aromatic quantitation has been validated using an EPA/API reference material and silica gel separation. Recoveries meet all method criteria. Validation data has been reviewed by MADEP and is available on request.

The chromatographic column is a J&W Scientific DB-5ms capillary column. Internal standard calibration is performed using 5α -Androstane at a concentration of 20 ng/ μ L. o-Terphenyl and 1-Chlorooctadecane are added as surrogate compounds at 20 ng/ μ L in the sample extract. These two surrogates monitor the effects of the sample matrix and extraction efficiency. Two additional surrogates, 2-Fluorobiphenyl and 2-Bromonaphthalene, are added to the finished extract prior to analysis to monitor instrument performance. Batch quality control includes, at a minimum, a procedure blank, laboratory control sample and duplicate sample analysis. A matrix spike is analyzed if sufficient sample is submitted to the laboratory.

The Reporting Limit (RL) of this method for each of the collective aliphatic and aromatic ranges is approximately 50 mg/kg in soil and 100 μ g/L in water. The RL of this method for the Target PAH analytes is approximately 0.25 mg/kg in soil; 1.0 μ g/L for water when operating the GC/MS in full scan mode, and 0.1 μ g/L when operating the GC/MS in SIM mode. For sites requiring the lowest levels cited in the Massachusetts Contingency Plan for water, GC/MS in the Selected Ion Monitoring (SIM) mode is used.

qc/qcmemos/forms/EphVph, Rev4, 08/28/03

		Ŋ	AADEP	MCP.	Analytic	al Meth	od Repo	ort Certif	ficatio	n Form		
Lab	oratory Name	e: AMR() Enviro	nmenta	l Laborat	tories, Inc	c. Pro	ject Num	ber:	040107	7	
Proj	ect Location	: 36	5103100	3 Tau	nton Parc	cel 6A	MA	DEP RTI	V 1			
040	1077-01	0401077-	-02									
San	nple Matrices	s:	Ground \	Vater	Soil /	Sediment	☐ Drii	nking Wate	er 🗀	OtherMa	ıtrix 🖂	
٨	MCP SW-846 Methods Use As specified i	id	8260B 8270C		8151A 8081A		8330 VPH		6010)	7470/	V1A ✓
	MADEP		8082		8021B		EPH	V	7000	os ³ 🔽	Other	
Ana	ompendium alytical Metho ock all that a	ods. 2.1 2.1	1 - SW-8	346 Me	thod 904	4 or MAE	TN) if kno EP Phys ist individ	ologically	/ Availa od ana	ble Cyanid lyte.	de (PAC) N	lethod
	An affirma	tive res	ponse t	o ques	tions A,	B, C and	l D is rea	uired for	"Presi	ımptive C	ertainty" s	status
Α	Were all sar described or	nples re	ceived t	y the la	aboratory	in a con	dition cor	sistent w			T	○ No ¹
В	Were all QA this report fo data that did	ollowed,	includin	g the re	equireme	nt to note	and disc	uss in a r	nàrrativ		(•) Yes	() No 1
С	Does the an Presumptive Quality Assu Analytical D	e Certair urance a	nty, as d	escribe	d in Sect	ion 2.0 o	f the MAD	EP docu	ment C		(•) Yes	O No 1
D	VPH and El modification				Was the on 11.3?	VPH or I	EPH meth	od run w	ithout s	ignificant	(.) Yes	(•) No 1
	A res	sponse	to ques	tions E	and F b	elow is	required	for "Pres	sumptiv	∕e Certain	ity" status	
Ε	Were all QC achieved?	perforn	nance st	andard	ls and red	commend	dations fo	r the spec	cified m	ethods	() Yes	(⊕) No ¹
F	Were results reported?	s for all	analyte-	list con	pounds /	/ element	s for the	specified	method	l(s)	(•) Yes	○ No ¹
	1 All No	O answe	ers must	be add	dressed i	n an atta	ched Env	ronmenta	al Labo	ratory case	l e narrative.	
tho	e undersign se responsil t of my knov	ble for d	obtainin	g the i	nformati	on, the r	naterial c	jury that, ontained	, based I in this	l upon my s analytic	personal al report is	inqury of , to the
_	nature:	Na	ncy	S/ 51	ewa	ert.	. Po:	sition:/	Lat 1-3	0-04	re cto	

CASE NARRATIVE 0401077

GC/MS-VOLATILES WATER

- 1. Quadratic regression was utilized in the Initial Calibration performed on 11/15/03 on instrument V-1 for Vinyl acetate.
- 2. A Laboratory Control Sample (LCS-01/23/04) and Laboratory Control Duplicate Sample (Batch ID: R22297) were performed. 4 compounds recovered outside the Quality Control Limits in both.

MADEP-EPH WATER

1. The surrogate 1-Chlorooctadecane recovered below the QC limits (40-140%) in sample MW 10 (0401077-02B) at 34.8%.

TRACE METALS WATER

- 1. The %REC's for Arsenic in the Continuing Calibration Verification Standard (CCV) that bracketed the samples in this project (012004A GFAA analytical run) were 110.55% and 111.56% outside the MADEP-MCP acceptable limit (90-110%), however these %REC's were within the SW-846 7000series acceptable limits (80-120%). Arsenic was not detected in any sample.
- 2. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) were not performed on the client's sample.

Merrimack, NH 03054 (603) 424-2022

Please Circle if: Sample= Soil Sample= Waste

AMRO ID:

0401077

Sample ID	Analysis	Volume Sample	Preserv. Listed	Initial pH	Acceptable? Y or N	List Preserv. Added by AMRO	Solution ID # of Preserv.	Volume Preservative Added	Final adjusted pH
01A-02A	Voc	3-40ML							
016-02B 01C-02C	EPH	2-1LA	NCL	42	У				
OIC-02C	METALS	1-500P	HNOZ	22	У				
•								·	

	·								
			е						
									-
							· · ·		
	***************************************	-							
						•			
	· · ·								
				,					
		· · · · · · · · · · · · · · · · · · ·							
					4 1 A 1				
					· .			· .	
								٠.	
			;	·		± .		<u> </u>	***************************************
			<u> </u>						<i>)</i>
									,

pH Checked By: CC

Date:

pH adjusted By:

Date:

1-19-04

qc/qcmemos/forms/samplerec Rev.18 06/00

Client: MACTEC ENGINEERING	AMRO II	<u> </u>		(603) 424-2022
Project Name: TAUNTIN FASCEL CA	Date Re			401077
Ship via: (circle one) Fed Ex., UPS (AMRO Courier)	Date Du			1-16-04
Hand Del., Other Courier, Other:	Date Du	€.		1-23-04
ntems to be Checked Upon Receipt	Yes	No	NIA	
1. Army Samples received in individual plastic bags?	100	. 140	NA	Comments
2. Custody Seals present?			1	
3. Custody Seals Intact?			1	
4. Air Bill included in folder if received?			V	
5. Is COC included with samples?			<u></u>	
6. Is COC signed and dated by client?	1			
7 Laboration consists to a series to a ser	1			
	-			
8. Were samples received the same day they were sampled?				
Is client temperature 4°C ± 2°C?		1		
1 Control of the Cont	V			
If no obtain authorization from the client for the analyses.				
Client authorization from: Date: Obtained by:	<u> </u>			
9. Is the COC filled out correctly and completely?	~			
10. Does the info on the COC match the samples?	V			
11. Were samples rec. within holding time?	V			
12. Were all samples properly labeled?	v	0		
13. Were all samples properly preserved?	ir			
14. Were proper sample containers used?	~			
15. Were all samples received intact? (none broken or leaking)	1			
16. Were VOA vials rec. with no air bubbles?				
17. Were the sample volumes sufficient for requested analysis?	V			
Were all samples received?				
VPH and VOA Soils only:			-	
Sampling Method VPH (circle one): M=Methanol, E=EnCore (air-tight conta	iner)		<u> </u>	
Sampling Method VOA (circle one): M=Methanol, SB=Sodium Bisulfate, E=	EnCore B	=Rulk		
If M or SB:	T	T		
Does preservative cover the soil?				
If NO then client must be faxed.				
Does preservation level come close to the fill line on the vial?				
If NO then client must be faxed.				
Were vials provided by AMRO?	<u> </u>			
If NO then weights MUST be obtain	67	110-4		
Was dry weight aliquot provided?	eu from c	llent .		
If NO then fax client and inform the	VOAlab	ACAD		
20. Subcontracted Samples:	VOA Iab	ASAP.		
What samples sent:			-	
Where sent:	<u> </u>			
Date:				
Analysis:				
TAT:		<u>. </u>		
21. Information entered into:				
Internal Tracking Log?	/			
Dry Weight Log?			2	
Client Log?			w	
Composite Log?			-	
Filtration Log?				
received By: CC- Date: /-/6-04 Logged in By: CC				1-19-04
Labeled By: CC Date: 1-19-04 Checked By:	MG		ate: 7	1-20-04

NA= Not Applicable

qc/qcmemos/forms/samplerec Rev.18 06/00

CHAIN-OF-CUSTODY RECORD

047550

Office: (603) 424-2022 Fax: (603) 429-8496

Project Manager: M. Salve Hi Project No.: 365/03/103 Project Name: Taraton Parul & A Samplers (Signature): AMRO Project No.: Mile Appelbarm 141117 Project State: Comp Grab **Analysis Required** Sample ID Date/Time Matrix Total # Remarks Sampled A= Air of Cont. ととい & Size S= Soil GW= Ground W. WW= Waste W. 2 x) L Am. DW= Drinking W. 1,253 05 O= Oil MAD 3 . V3A Other= Specify 1/1/2/1 GW 1020 MW8 Me MWID 1445 CW Preservative: CI-HCI, MeOH, N-HN03, S-H2SO4, Na-NaOH, O-Other Container Type: P- Plastic, G-Glass, V-Vial, T- Teflon, O-Other Send Results To: Mack Salvett GW-3 FAX No.: **Seal Intact?** P.O. No: GW-1* GW-2 MACTEC En. + Consilving. Inc 781 246 SULU MCP Level Needed: No N/A 107 Arduban Rd Dike 301 Results Needed By: Stel war *= May require additional cost makefield Ma UZ155 PRIORITY TURNAROUND TIME AUTHORIZATION Date/ Time Received By Relinquished By 1/16/04 Before submitting samples for expedited TAT, you must have requested in advance and received a coded AUTHORIZATION NUMBER. CURO Samples arriving after 12:00 noon will be tracked and billed as received on the following day. AUTHORIZATION No. Please print clearly, legibly and completely. Samples can not be NOTES: Preservatives, Special reporting limits, Known Contamination, etc; AMRO policy requires notification in writing to logged in and the turnaround time clock will not start until any the laboratory in cases where the samples were collected from highly contaminated sites. ambiguities are resolved. Pink: Client Copy SHEET White: Lab Copy Yellow: Accompanies Report

Lab Order:

0401077

Client:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
0401077-02C	MW 10	1/15/04	Groundwater	EPA 7060 ARSENIC, Total	<u> </u>	1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10932	
٠.	-	-		EPA 7421 LEAD, Total		1/20/04	
					1/19/04	10933	
				EPA 7470 MERCURY, Total		1/19/04	
				MERCURY PREP: EPA 245.1/7040	1/19/04	10922	·
		-		EPA 7740 SELENIUM, Total		1/20/04	· · · · · · · · · · · · · · · · · · ·
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10934	
				EPA 7841 THALLIUM, Total		1/20/04	
					1/19/04	10935	
			•	ICP METALS, TOTAL		1/19/04	
					1/19/04	10924	

Lab Order:

0401077

Client:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Analytical Test Name		Analysis Date	
				Preparatory Test Name	Prep Date	Batch ID	TCLP Date
0401077-01A	MW 8	1/15/04	Groundwater	MCP VOCs 8260, EPA 5030B		1/23/04	
				EPA 5030B	1/23/04	R22297	
0401077-01B				EPH, Water, Full List		1/26/04	
				AQPREP SEP FUNNEL: EPH	1/26/04	10963	
0401077-01C	V			EPA 7041 ANTIMONY, Total		1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10936	
				EPA 7060 ARSENIC, Total		1/20/04	
					1/19/04	10932	
	***************************************			EPA 7421 LEAD, Total		1/20/04	
					1/19/04	10933	
				EPA 7470 MERCURY, Total		1/19/04	
	•			MERCURY PREP: EPA 245.1/7040	1/19/04	10922	
				EPA 7740 SELENIUM, Total		1/20/04	
				EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10934	
				EPA 7841 THALLIUM, Total		1/20/04	
					1/19/04	10935	
				ICP METALS, TOTAL		1/19/04	
					1/19/04	10924	
0401077-02A	01 WM			MCP VOCs 8260, EPA 5030B		1/23/04	
				EPA 5030B	1/23/04	R22297	
0401077-02B				EPH, Water, Full List		1/26/04	
				AQPREP SEP FUNNEL: EPH	1/26/04	10963	
0401077-02C				EPA 7041 ANTIMONY, Total		1/20/04	
	,			EPA 3010 AQPREP TOTAL METALS: ICP/GFAA	1/19/04	10936	

(€. (

W

Date: 27-Jan-04

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton Parcel 6A

Lab Order:

0401077

Date Received: 1/16/04

Work Order Sample Summary

			:		or other Designation of the last of the la
Lab Sample ID	Client Sample ID			Collection Date	
0401077-01A	MW 8			1/15/04	
0401077-01B	MW 8			1/15/04	
0401077-01C	MW 8			1/15/04	
0401077-02A	MW 10	*		1/15/04	
0401077-02B	MW 10			1/15/04	
0401077-02C	MW 10			1/15/04	

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-04C

Client Sample ID: ECE MW1

Collection Date: 10/16/03

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
ICP METALS TOTAL SW-846		SW6010B				Analyst: SJC
Barium	ND	200		μg/L	1	10/22/03 7:35:31 PM
Beryllium	ND	5.0		μg/L	1	10/22/03 7:35:31 PM
Cadmium	ND	5.0		μg/L	1	10/22/03 7:35:31 PM
Chromium	ND	10		μg/L	1	10/22/03 7:35:31 PM
Nickel	ND	40		μg/L	. 1	10/22/03 7:35:31 PM
Silver	ND	7.0		µg/L	1	10/22/03 7:35:31 PM
Vanadium	ND	50		µg/L	1	10/22/03 7:35:31 PM
Zinc	1,200	20		μg/L	1	10/22/03 7:35:31 PM
ARSENIC, TOTAL		SW7060A				Analyst: APL
Arsenic	ND	5.0		μg/L	1	10/23/03 11:12:40 PM
MERCURY, TOTAL		SW7470A				Analyst: RK
Mercury	ND	0.20		µg/L	1	10/21/03 1:38:48 PM
EAD, TOTAL		SW7421				Analyst: APL
Lead	11	5.0		μg/L	1	10/23/03 11:12:40 PM
ANTIMONY, TOTAL		SW7041				Analyst: APL
Antimony .	ND	5.0		µg/L	1	10/28/03 12:14:45 AM
SELENIUM, TOTAL		SW7740				Analyst: APL
Selenium	ND	5.0		μg/L	1	10/23/03 11:12:40 PM
HALLIUM, TOTAL		SW7841				Analyst: APL
Thallium	ND	5.0		μg/L	1	10/23/03 11:12:40 PM

Date: 07-Nov-03

CLIENT:

Mactec E & C, Inc.

Lab Order:

0310133

Project:

3651031003/03 Taunton - Parcel GA

Lab ID:

0310133-03C

Client Sample ID: ECE MW2

Collection Date: 10/16/03

Barium ND 200 μg/L 1 10/22/03 7: Beryllium ND 5.0 μg/L 1 10/22/03 7: Cadmium ND 5.0 μg/L 1 10/22/03 7: Chromium ND 5.0 μg/L 1 10/22/03 7: Nickel ND 40 μg/L 1 10/22/03 7: Silver ND 7.0 μg/L 1 10/22/03 7: Vanadium ND 50 μg/L 1 10/22/03 7: Zinc 64 20 μg/L 1 10/22/03 7: ARSENIC, TOTAL SW7060A An An Arsenic 11 5.0 μg/L 1 10/24/03 1: MERCURY, TOTAL SW7470A An An Lead 32 5.0 μg/L 1 10/23/03 1: Lead 32 5.0 μg/L 1 10/23/03 1: Antimony 6.0 5.0 μg/L 1	yses	Result	RL (Qual Units	DF	Date Analyzed
Beryllium	METALS TOTAL SW-846	S	W6010B	-		Analyst: SJC
Cadmium ND 5.0 µg/L 1 10/22/03 7: Chromium ND 10 µg/L 1 10/22/03 7: Nickel ND 40 µg/L 1 10/22/03 7: Silver ND 7.0 µg/L 1 10/22/03 7: Vanadium ND 50 µg/L 1 10/22/03 7: Zinc 64 20 µg/L 1 10/22/03 7: ARSENIC, TOTAL SW7060A An An Arsenic 11 5.0 µg/L 1 10/24/03 10 MERCURY, TOTAL SW7470A An An Mercury ND 0.20 µg/L 1 10/23/03 11 LEAD, TOTAL SW7421 An Lead 32 5.0 µg/L 1 10/23/03 11 ANTIMONY, TOTAL SW7041 An An SELENIUM, TOTAL SW7740 An An Selenium ND 5.0 µg/L	um ·	ND	200	μg/L	1	10/22/03 7:30:22 PM
Chromium ND 10 μg/L 1 10/22/03 7: Nickel ND 40 μg/L 1 10/22/03 7: Silver ND 7.0 μg/L 1 10/22/03 7: Vanadium ND 50 μg/L 1 10/22/03 7: Zinc 64 20 μg/L 1 10/22/03 7: ARSENIC, TOTAL SW7060A Am Am Arsenic 11 5.0 μg/L 1 10/24/03 1: MERCURY, TOTAL SW7470A Am Am Mercury ND 0.20 μg/L 1 10/23/03 1: LEAD, TOTAL SW7421 Am Lead 32 5.0 μg/L 1 10/23/03 1: ANTIMONY, TOTAL SW7041 Am Antimony 6.0 5.0 μg/L 1 10/28/03 1: SELENIUM, TOTAL SW7740 Am Am Am	/llium	ND	5.0	μg/L	1	10/22/03 7:30:22 PM
Nickel ND 40 µg/L 1 10/22/03 7: Silver ND 7.0 µg/L 1 10/22/03 7: Vanadium ND 50 µg/L 1 10/22/03 7: Zinc 64 20 µg/L 1 10/22/03 7: ARSENIC, TOTAL SW7060A An Arsenic 11 5.0 µg/L 1 10/24/03 1: MERCURY, TOTAL SW7470A An Mercury ND 0.20 µg/L 1 10/21/03 1: LEAD, TOTAL SW7421 An Lead 32 5.0 µg/L 1 10/23/03 1: ANTIMONY, TOTAL SW7041 An Antimony 6.0 5.0 µg/L 1 10/28/03 1: SELENIUM, TOTAL SW7740 An Selenium ND 5.0 µg/L 1 10/28/03 1:	mium	ND	5.0	μg/L	1	10/22/03 7:30:22 PM
Silver ND 7.0 µg/L 1 10/22/03 7: Vanadium ND 50 µg/L 1 10/22/03 7: Zinc 64 20 µg/L 1 10/22/03 7: ARSENIC, TOTAL SW7060A An Arsenic 11 5.0 µg/L 1 10/24/03 10 MERCURY, TOTAL SW7470A An Mercury ND 0.20 µg/L 1 10/21/03 1: LEAD, TOTAL SW7421 An Lead 32 5.0 µg/L 1 10/23/03 1: ANTIMONY, TOTAL SW7041 An Antimony 6.0 5.0 µg/L 1 10/28/03 1: SELENIUM, TOTAL SW7740 An Selenium ND 5.0 µg/L 1 10/28/03 1:	omium	ND	10	μg/L	1	10/22/03 7:30:22 PM
Vanadium ND 50 μg/L 1 10/22/03 7: 2inc ARSENIC, TOTAL 64 20 μg/L 1 10/22/03 7: 2inc ARSENIC, TOTAL SW7060A An An Arsenic 11 5.0 μg/L 1 10/24/03 10 (:el	ND	40	µg/L	1	10/22/03 7:30:22 PM
Zinc 64 20 μg/L 1 10/22/03 7: ARSENIC, TOTAL SW7060A An Arsenic 11 5.0 μg/L 1 10/24/03 10 MERCURY, TOTAL SW7470A An Mercury ND 0.20 μg/L 1 10/21/03 11 LEAD, TOTAL SW7421 An Lead 32 5.0 μg/L 1 10/23/03 11 ANTIMONY, TOTAL SW7041 An Antimony 6.0 5.0 μg/L 1 10/28/03 11 SELENIUM, TOTAL SW7740 An Selenium ND 5.0 μg/L 1 10/23/03 11	er	ND	7.0	μg/L	1	10/22/03 7:30:22 PM
ARSENIC, TOTAL Arsenic 11 5.0 µg/L 1 10/24/03 10 MERCURY, TOTAL Mercury ND 0.20 µg/L 1 10/21/03 11 LEAD, TOTAL SW7421 ANTIMONY, TOTAL ANTIMONY, TOTAL ANTIMONY, TOTAL SW7041 ANTIMONY, TOTAL SW7740 SELENIUM, TOTAL SW7740 ND 5.0 µg/L 1 10/28/03 11 SELENIUM, TOTAL SW7740 ANTIMONY 1 10/23/03 11 SELENIUM, TOTAL	adium	ND	50	μg/L	1	10/22/03 7:30:22 PM
Arsenic 11 5.0 μg/L 1 10/24/03 10 MERCURY, TOTAL SW7470A An Mercury ND 0.20 μg/L 1 10/21/03 13 EAD, TOTAL SW7421 An Lead 32 5.0 μg/L 1 10/23/03 13 ANTIMONY, TOTAL SW7041 An Antimony 6.0 5.0 μg/L 1 10/28/03 13 SELENIUM, TOTAL SW7740 Selenium ND 5.0 μg/L 1 10/23/03 13	;	64	. 20	μg/L	1	10/22/03 7:30:22 PM
MERCURY, TOTAL SW7470A And Mercury ND 0.20 µg/L 1 10/21/03 1: EAD, TOTAL SW7421 And Lead 32 5.0 µg/L 1 10/23/03 1: ANTIMONY, TOTAL SW7041 Antimony 6.0 5.0 µg/L 1 10/28/03 1: SELENIUM, TOTAL SW7740 And Selenium ND 5.0 µg/L 1 10/23/03 1: Selenium ND 5.0 µg/L 1 10	ENIC, TOTAL	s	W7060A			Analyst: APL
Mercury ND 0.20 μg/L 1 10/21/03 13 EAD, TOTAL SW7421 And Lead 32 5.0 μg/L 1 10/23/03 13 ANTIMONY, TOTAL SW7041 And Antimony 6.0 5.0 μg/L 1 10/28/03 13 SELENIUM, TOTAL SW7740 And Selenium ND 5.0 μg/L 1 10/23/03 13	enic	11	5.0	µg/L	1	10/24/03 10:30:57 PM
LEAD, TOTAL SW7421 An Lead 32 5.0 μg/L 1 10/23/03 1 ANTIMONY, TOTAL SW7041 An Antimony 6.0 5.0 μg/L 1 10/28/03 1 SELENIUM, TOTAL SW7740 An Selenium ND 5.0 μg/L 1 10/23/03 1	CURY, TOTAL	S	W7470A			Analyst: RK
Lead 32 5.0 μg/L 1 10/23/03 1 ANTIMONY, TOTAL SW7041 Antimony 6.0 5.0 μg/L 1 10/28/03 1 SELENIUM, TOTAL SW7740 Antimony Antimony Antimony Antimony Antimony Selenium ND 5.0 μg/L 1 10/23/03 1	cury	ND	0.20	μg/L	1	10/21/03 1:34:48 PM
ANTIMONY, TOTAL SW7041 Antimony 6.0 5.0 μg/L 1 10/28/03 1: SELENIUM, TOTAL SW7740 Antimony ND 5.0 μg/L 1 10/23/03 1), TOTAL	S	W7421			Analyst: API
Antimony 6.0 5.0 μg/L 1 10/28/03 1: SELENIUM, TOTAL SW7740 An Selenium ND 5.0 μg/L 1 10/23/03 1	d	32	5.0	µg/L	1	10/23/03 11:03:57 PM
SELENIUM, TOTAL SW7740 An Selenium ND 5.0 μg/L 1 10/23/03 1	MONY, TOTAL	S	W7041			Analyst: API
Selenium ND 5.0 μg/L 1 10/23/03 1	mony	6.0	5.0	μg/L	1	10/28/03 12:05:50 AM
	ENIUM, TOTAL	S	W7740			Analyst: API
THALLIUM, TOTAL SW7841 Ar	enium	ND	5.0	µg/L	1	10/23/03 11:03:57 PM
	LIUM, TOTAL	S	W7841			Analyst: AP l
Thallium ND 5.0 μg/L 1 10/23/03 1	llium	ND	5.0	μg/L	1	10/23/03 11:03:57 PM

Date: 27-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order:

0401077

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401077-01A

Client Sample ID: MW 8

Collection Date: 1/15/04

Analyses	Result	RL	Qual Units	DF	Date Analyzed
Diisopropyl ether	ND	2.0	µg/L	1	1/23/04 3:04:00 PM
1,4-Dioxane	ND	50	µg/L	1	1/23/04 3:04:00 PM
Ethyl Tertiary Butyl Ether	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Ethylbenzene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
2-Нехалопе	ND	- 10	μg/L	1	1/23/04 3:04:00 PM
Isopropylbenzene	ND	2.0	μg/L	. 1	1/23/04 3:04:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
2-Butanone	ND	10	μg/L	1	1/23/04 3:04:00 PM
4-Methyl-2-pentanone	ND	. 10	μg/L	1	1/23/04 3:04:00 PM
Methyl tert-butyl ether	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Methylene chloride	ND	5.0	μg/L	1	1/23/04 3:04:00 PM
Naphthalene	ND	5.0	µg/L	1	1/23/04 3:04:00 PM
n-Propylbenzene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Styrene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Tetrachloroethene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Tetrahydrofuran	ND	10	μg/L	1	1/23/04 3:04:00 PM
Toluene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	1	1/23/04 3:04:00 PM
Trichloroethene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
o-Xylene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
m,p-Xylene	ND	2.0	μg/L	1	1/23/04 3:04:00 PM
Surr: Dibromofluoromethane	100	85-120	%REC	1	1/23/04 3:04:00 PM
Surr: 1,2-Dichloroethane-d4	104	75-124	%REC	1	1/23/04 3:04:00 PM
Surr: Toluene-d8	104	82-112	%REC	1	1/23/04 3:04:00 PM
Surr: 4-Bromofluorobenzene	108	77-117	%REC	1	1/23/04 3:04:00 PM

Date: 27-Jan-04

CLIENT:

Mactec E & C, Inc.

Lab Order: 0401077

Project:

3651031003 Taunton Parcel 6A

Lab ID:

0401077-02A

Client Sample ID: MW 10

Collection Date: 1/15/04

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
OLATILE ORGANIC COMPOUND	S BY MCP MET	SW8260B				Analyst: K 1
Acetone	ND	10		μg/L	1	1/23/04 3:40:00 PM
Tertiary Amyl Methyl Ether	ND	2.0		µg/L	1	1/23/04 3:40:00 PM
Benzene	ND	1.0		µg/L	1	1/23/04 3:40:00 PM
Bromobenzene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
Bromochloromethane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
Bromodichloromethane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
Bromoform	ND	2.0		µg/L	1	1/23/04 3:40:00 PM
Bromomethane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
sec-Butylbenzene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
n-Butylbenzene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
tert-Butylbenzene	ND	2.0		µg/L	1	1/23/04 3:40:00 PM
Carbon disulfide	ND	2.0		µg/L	1	1/23/04 3:40:00 PM
Carbon tetrachloride	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
Chlorobenzene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
Dibromochloromethane	, ND	2.0		µg/L	1	1/23/04 3:40:00 PM
Chloroethane	ND	5.0		μg/L	1	1/23/04 3:40:00 PM
Çhloroform	ND	2.0		µg/L	1	1/23/04 3:40:00 PM
Chloromethane	ND	3.0		μg/L	1	1/23/04 3:40:00 PM
2-Chlorotoluene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
4-Chlorotoluene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0		μg/L	1	1/23/04 3:40:00 PM
1,2-Dibromoethane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
Dibromomethane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,3-Dichlorobenzene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,2-Dichlorobenzene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,4-Dichlorobenzene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
Dichlorodifluoromethane	ND	5.0		μg/L	1	1/23/04 3:40:00 PM
1,1-Dichloroethane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,2-Dichloroethane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	1/23/04 3:40:00 PM
cis-1,2-Dichloroethene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
trans-1,2-Dichloroethene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,2-Dichloropropane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,3-Dichloropropane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
2,2-Dichloropropane	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
1,1-Dichloropropene	ND	2.0		μg/L	1	1/23/04 3:40:00 PM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	1/23/04 3:40:00 PM
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	1/23/04 3:40:00 PM
Diethyl ether	ND	5.0		μg/L	1	1/23/04 3:40:00 PM

	•
~	1

QC SUMMARY REPORT					Inc.	Mactec E & C,	CLIENT:
Method Blank				· A	ountan Darasi 6	0401077 3651031003 T	Work Order: Project:
						·····	*570.04
	•		μg/L	2.0	ND		1,4-Dichlorobenze
			μg/L	5.0	ND		Dichlorodifluorome
			µg/L	2.0	ND		1,1-Dichloroethane
			µg/L	2.0	ND		1,2-Dichloroethane
			μg/L	1.0	ND		1,1-Dichloroethene
			μg/L	2.0	ND	nene	cis-1,2-Dichloroeth
			µg/L	2.0	ND		trans-1,2-Dichloroe
			μg/L	2.0	ND	ne	1,2-Dichloropropar
			µg/L	2.0	ND	ne	1,3-Dichloropropar
			μg/L	2.0	ND	ne	2,2-Dichloropropar
			μg/L	2.0	ND	ne	1,1-Dichloroproper
			μg/L	1.0	ND	opene	cis-1,3-Dichloropro
			µg/L	1.0	ND	propene	trans-1,3-Dichlorop
			μg/L	5.0	ND		Diethyl ether
			µg/L	2.0	ND		Diisopropyl ether
			μg/L	50	ND		1,4-Dioxane
			μg/L	2.0	ND	rl Ether	Ethyl Tertiary Butyl
			μg/L	2.0	ND		Ethylbenzene
			μg/L	2.0	ND	ene	Hexachlorobutadie
			μg/L	10	ND	·	2-Hexanone
			µg/L	2.0	ND		Isopropylbenzene
			μg/L	2.0	ND	•	4-Isopropyltoluene
		•	μg/L	10	ND		2-Butanone
			μg/Ľ	10	ND	one	4-Methyl-2-pentano
			μg/L	2.0	ND	ther	Methyl tert-butyl eti
			µg/L	5.0	ND	:	Methylene chloride
			μg/L	5.0	ND		Naphthalene
			μg/L	2.0	ND		n-Propylbenzene
			μg/L	2.0	ND		Styrene
			μg/L	2.0	ND	ethane	1,1,1,2-Tetrachloro
			μg/L	2.0	ND		1,1,2,2-Tetrachloro

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

NA - Not applicable where J values or ND results occur

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT: Work Order:	Mactec E & C, Inc 0401077	. ,								QC SUMM	ARY REPORT
Project:	3651031003 Taur	nton Parcel 6A									Method Blank
Tetrachloroethene		ND	2.0	μg/L							
Tetrahydrofuran		ND	10	μg/L							
Toluene		ND	2.0	µg/L							
1,2,4-Trichlorobenz	ene	ND	2.0	μg/L							
1,2,3-Trichlorobenz	ene	ND	2.0	μg/L							
1,1,1-Trichloroethar	ne	ND	2.0	μg/L							
1,1,2-Trichloroethar	ne	ND	2.0	μg/L							
Trichloroethene		ND	2.0	μg/L							
Trichlorofluorometh	ane	ND	2.0	μg/L							
1,2,3-Trichloropropa	ane	ND	2.0	μg/L							
1,2,4-Trimethylbenz	zene	ND	2.0	μg/L							
1,3,5-Trimethylbenz	zene	ND	2.0	μg/L							
Vinyl chloride		ND	2.0	μg/L							
o-Xylene		ND	2.0	μg/L							
m,p-Xylene		ND	2.0	μg/L							
Surr: Dibromofluc	promethane	25.5	2.0	μg/L	25	. 0	102	85	120	0	
Surr: 1,2-Dichlord	ethane-d4	26.02	2.0	μg/L	25	0	104	75	124	0	
Surr: Toluene-d8		26.01	2.0	μg/L	25	0	104	82	112	,0	
Surr: 4-Bromofluc	orobenzene	28.7	2.0	µg/L	25	0	115	77	117	O	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ر مب Mactec E & C, Inc.

Work Order:

0401077

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Laboratory Control Spike - Full List

Sample ID Icsf-01/23/04	Batch ID: R22297	Test Code	e: SW8260B	Units: µ	g/L		Analysis I	Date 1/23/04	10:03:00 AM	Prep Dat	e 1/23/04	
Client ID:		Run ID:	V-1_04012	BA			SeqNo:	369765				
	QC Sample		Q	C Spike Orig	inal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qu
Acetone	31.32	10	μg/L	20	0	157	70	130	0			s
Tertiary Amyl Methyl Ether	18.78	2.0	μg/L	20	0	93.9	70	130	0			
Benzene	17.64	1.0	μg/L	20	0	88.2	81	115	0			
Bromobenzene	17.02	2.0	μg/L	20	0	85.1	83	118	0			
Bromochloromethane	20.58	2.0	µg/L	20	0	103	70	126	0			
Bromodichloromethane	17.93	2.0	µg/L	20	0	89.7	72	119	0			
Bromoform	18.22	2.0	µg/L	20	0	91.1	70	127	0			
Bromomethane	21.32	2.0	μg/L	20	0	107	70	130	0			
sec-Butylbenzene	17.23	2.0	µg/L	20	0	86.2	70	130	0			
n-Butylbenzene	16.19	2.0	μg/L	20	0	81	70	130	0			
tert-Butylbenzene	16,71	2.0	μ g/ L	20	0	83.6	70	130	0			
Carbon disulfide	13.35	2.0	μg/L	20	0	66.8	70	130	0			S
Carbon tetrachloride	18.99	2.0	μg/L	20	0	95	78	124	0			
Chlorobenzene	18.05	2.0	μg/L	20	0	90.2	80	115	0			
Dibromochloromethane	17.99	2.0	μg/L	20	0	90	70	127	0			
Chloroethane	20.14	5.0	μg/L	20	0	101	70	130	0			
Chloroform	18.4	2.0	μg/L	20	0	92	80	119	0			
Chloromethane	20.86	3.0	µg/L	20	0	104	70	130	0			
2-Chlorotoluene	16.69	2.0	μg/L	20	0	83.4	70	130	0			
4-Chlorotoluene	16,79	2.0	μg/L	20	0	84	78	130	0			
1,2-Dibromo-3-chloropropane	18.28	5.0	μg/L	20	0	91.4	70	130	0			
1,2-Dibromoethane	22.22	2.0	μg/L	20	0	111	70	130	0			
Dibromomethane	21.56	2.0	μg/L	20	0	108	70	129	0			
1,3-Dichlorobenzene	17.88	2.0	μg/L	20	0	89.4	81	130	0			
1,2-Dichlorobenzene	18.19	2.0	µg/L	20	0	91	80	124	0			

Qualifiers:

8

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

_

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

)

CLIENT: Work Order: Project:	Mactec E & 0401077 365103100	& C, Inc. O3 Taunton Parcel	6A							_	ARY REPORT ol Spike - Full List
1,4-Dichlorobenze	ne	18.18	2.0	μg/L	20	0	90.9	74	130	0	
Dichlorodifluorome	ethane	26.05	5.0	μg/L	20	~ 0	130	10	130	0	s
1,1-Dichloroethane	•	18.23	2.0	µg/L	20	0	91.2	83	134	0	•
1,2-Dichloroethane	•	19.62	2.0	µg/L	20	0	98.1	70	125	0	
1,1-Dichloroethene	•	18.12	1.0	μg/L	20	0	90.6	72	130	0	•
cis-1,2-Dichloroeth	ene	17.46	2.0	μg/L	20	0	87.3	76	125	0	
trans-1,2-Dichloroe	ethene	18.22	2.0	μg/L	20	0	91.1	77	128	0	
1,2-Dichloropropan	ie	17.48	2.0	μg/L	20	0	87.4	78	122	0	
1,3-Dichloropropan	ie	17.57	2.0	µg/L	20	0	87.8	70	124	0	
2,2-Dichloropropan	e ·	20,36	2.0	μg/L	20	Ō	102	73	130	0	
1,1-Dichloropropen	e	16.51	2.0	μg/L	20	0	82.6	70	107	0	
cis-1,3-Dichloropro	pene	17.82	1.0	μg/L	20	0	89.1	70	115	0	
trans-1,3-Dichlorop	ropene	19.27	1.0	µg/L	20	0	96.4	70	129	0	
Diethyl ether		23.12	5.0	µg/L	20	0	116	70	130	o	
Diisopropyl ether		17.62	2.0	µg/L	20	0	88.1	70	130	0	
1,4-Dioxane		129.8	50	µg/L	100	0	130	70	130	0	
Ethyl Tertiary Butyl	Ether	18.9	2.0	μg/L	20	0	94.5	70	130	0	•
Ethylbenzene		18.05	2.0	μg/L	20	0	90.2	82	119	0	
Hexachlorobutadier	ne	19.93	2.0	µg/L	20	0	99.7	70	130	0	
2-Hexanone		19.14	10	μ g/L	20	0	95.7	70	130	0	
Isopropylbenzene		16.57	2.0	μg/L	20	0	82.8	72	130	0	
4-Isopropyltoluene		16.38	2.0	µg/L	20	0	81.9	74	130	0	
2-Butanone		32.42	10	μg/L	20	O	162	70	130	0	S
4-Methyl-2-pentano	ne	24.29	10	µg/L	20	0	121	70	130	0	
Methyl tert-butyl eth	er	25.32	2.0	μg/L	20	0	127	70	130	0	
Methylene chloride		17.97	5.0	µg/L	20	0	89.8	70	141	0	
Naphthalene		18.85	5.0	µg/L	20	0	94.2	70	130	0	
n-Propylbenzene		16.44	2.0	μg/L	20	0	82.2	71	130	0	
Styrene		18.16	2.0	µg/L	20	0	90.8	72	123	0	er er grand state i de er
1,1,1,2-Tetrachloroe	thane	17.43	2.0	μg/L	20	0	87.2	83	118	0	
1,1,2,2-Tetrachloroe	thane	18.11	2.0	μg/L	20	0	90.6	70	130	0	

Qualifiers:

Date: 27-Jan-04

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

Mactec E & C, Inc.

0401077

QC SUMMARY REPORT

Project: 3651031003	Taunton Parcel 6	A						Labo	ratory Control Sp	oike - Full List
Tetrachloroethene	21.02	2.0	µg/L	20	0	105	77	123	0	
Tetrahydrofuran	22.02	10	μg/L	20	0	110	70	130	0	
Toluene	19.25	2.0	μg/L	20	0	96.2	86	112	0	
1,2,4-Trichlorobenzene	20.79	2.0	μg/L	20	0	104	70	130	0	
1,2,3-Trichlorobenzene	19.17	2.0	μg/L	20	0	95.8	70	130	0	
1,1,1-Trichloroethane	18.96	2.0	μg/L	20	0	94.8	78	124	0	
1,1,2-Trichloroethane	21.61	2.0	μg/L	20	0	108	70	133	0	
Trichloroethene	18.34	2.0	μg/L	20	0	91.7	83	112	0	
Trichlorofluoromethane	23.85	2.0	μg/L	20	0	119	70	130	0	
1,2,3-Trichloropropane	17.86	2.0	μg/L	20	0	89.3	70	130	0	
1,2,4-Trimethylbenzene	16.77	2.0	μg/L	20	0	83.8	78	129	0	
1,3,5-Trimethylbenzene	17.16	2.0	μg/L	20	0	85.8	77	130	0	
Vinyl chloride	23.33	2.0	μg/L	20	0	117	70	130	0	
o-Xylene	18.55	2.0	μg/L	20	0	92.8	80	119	0	
m,p-Xylene	37.82	2.0	μg/L	40	0	94.6	70	130	0	
Surr: Dibromofluoromethane	26.09	2.0	µg/L	25	0	104	85	120	0	
Surr: 1,2-Dichloroethane-d4	26.45	2.0	µg/L	25	0	106	80	124	0	
Surr: Toluene-d8	26.32	2.0	μg/L	25	0	105	82	112	0	
Surr: 4-Bromofluorobenzene	27.28	2.0	μg/L	25	0	109	77	117	0	

Qualifiers:

N

CLIENT:

Work Order:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Date: 27-Jan-04

CLIENT: Lab Order: Mactec E & C, Inc.

0401077

3651031003 Taunton Parcel 6A

Tag Number:

Client Sample ID: MW 8

Collection Date: 1/15/04

Project: Lab ID:

0401077-01B

Matrix: GROUNDWATER

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EXTRACTABLE PETROLEUM HYDR	COCARBONS	MAEPH			Analyst: RK
C9-C18 Aliphatic Hydrocarbons	ND	110	μg/L	1	1/26/04 6:28:00 PM
C19-C36 Aliphatic Hydrocarbons	ND	110	μg/L	1	1/26/04 6:28:00 PM
C11-C22 Aromatic Hydrocarbons	ND	110	μg/L	1	1/26/04 6:28:00 PM
Naphthalene	. ND	1.1	μg/L	1	1/26/04 6:28:00 PM
2-Methylnaphthalene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Acenaphthylene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Acenaphthene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Fluorene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Phenanthrene	. ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Anthracene	ND.	1.1	µg/L	1	1/26/04 6:28:00 PM
Fluoranthene	, ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Pyrene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Benz(a)anthracene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Chrysene	ND	1.1	μ g/L	1	1/26/04 6:28:00 PM
Benzo(b)fluoranthene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Benzo(k)fluoranthene	ND	1.1	µg/L	1	1/26/04 6:28:00 PM
Benzo(a)pyrene	ND	1.1	µg/L	1	1/26/04 6:28:00 PM
Dibenz(a,h)anthracene	ND	1.1	µg/L	1	1/26/04 6:28:00 PM
Indeno(1,2,3-cd)pyrene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Benzo(g,h,i)perylene	ND	1.1	μg/L	1	1/26/04 6:28:00 PM
Surr: 1-Chlorooctadecane	52.8	40-140	%REC	1	1/26/04 6:28:00 PM
Surr: 2-Bromonaphthalene	98.0	40-140	%REC	1	1/26/04 6:28:00 PM
Surr: 2-Fluorobiphenyl	89.4	40-140	%REC	1	1/26/04 6:28:00 PM
Surr: o-Terphenyl	102	40-140	%REC	1	1/26/04 6:28:00 PM

Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. EPH: C11-C22 Aromatic Hydrocarbons exclude the concentration of target PAH analytes. VPH: C5-C8 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range. C9-C12 Aliphatic Hydrocarbons exclude the concentration of target analytes eluting in this range and concentration of C9-C10 Aromatic Hydrocarbons.

CERT	IFIC	ATIC	N
------	-------------	------	---

Were all QA/QC procedures required by the VPH or EPH method followed:

Were all performance/acceptance standards for required QA/QC procedures achieved: ____ Yes Were any significant modifications made to the method as specified in section 11.3:

No - If No, See Case Narrative No Yes - Details enclosed

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PRINTED NAME: Nancy Stewart

POSITION: Laboratory Director (or designee)

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

- See Case Narrative

B - Analyte detected in the associated Method Blank

H - Method prescribed holding time exceeded

Date: 30-Oct-03

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton - Parcel GA

Lab Order:

0310105

Lab ID:	0310105-01	<u> </u>		Collec	tion Date:	10/14/	03
Client Sample ID:	WES MW2						NDWATER
Analyses		Result	RL	Qual Units		DF	Date Analyzed
ICP METALS TOTA	L SW-846		SW6010B				Analyst: SJC
Barium		ND	200	μg/L	*	1	10/22/03 8:08:01 PM
Beryllium		ND	4.0	µg/L		1	10/22/03 8:08:01 PM
Cadmium		ND	5.0	µg/L		1	10/22/03 8:08:01 PM
Chromium		11	10	μg/L		1	10/22/03 8:08:01 PM
Nickel		40	40	μg/L		1 -	10/22/03 8:08:01 PM
Silver		ND	7.0	µg/L		1	10/22/03 8:08:01 PM
Vanadium		ND	50	µg/L		1	10/22/03 8:08:01 PM
Zinc		390	20	µg/L		1	10/22/03 8:08:01 PM
ARSENIC, TOTAL	•		SW7060A		,		Analyst: APL
Arsenic		9.7	5.0	µg/L		1	10/27/03 5:24:28 PM
MERCURY, TOTAL			SW7470A				Analyst: RK
Mercury		ND	0.20	µg/L		1	10/21/03 12:39:19 PM
LEAD, TOTAL			SW7421				Analyst: APL
Lead		23	5.0	μg/L		1	10/24/03 5:35:18 PM
ANTIMONY, TOTAL	• .		SW7041				Analyst: APL
Antimony	•	7.8	5.0	μg/L		1	10/28/03 1:17:20 AM
SELENIUM, TOTAL			SW7740			i	Analyst: APL
Selenium		ND	5.0	μg/L		1	10/24/03 5:35:18 PM
THALLIUM, TOTAL			SW7841				Analyst: APL
Thallium		ND	5.0	µg/L		1	10/24/03 5:35:18 PM

Date: 30-Oct-03

CLIENT:

Mactec E & C, Inc.

Project:

3651031003 Taunton - Parcel GA

Lab Order:

0310105

Lab ID:

Lab ID:	0310105-02		·	Colle	ction Date:	10/14/0	03
Client Sample ID:	ECE MW4				Matrix:	GROU	NDWATER
Analyses		Result	RL	Qual Uni		DF	Date Analyzed
ICP METALS TOTA	L SW-846		SW6010B	-			Analyst: SJC
Barium		470	200	μg/L		1	10/22/03 8:13:04 PM
Beryllium	•	ND	4.0	μg/L		1	10/22/03 8:13:04 PM
Cadmium		ND	5.0	μg/L		1	10/22/03 8:13:04 PM
Chromium		ND	10	μg/L		1	10/22/03 8:13:04 PM
Nickel		ND	40	µg/L		1	10/22/03 8:13:04 PM
Silver		ND	7.0	μg/L		1	10/22/03 8:13:04 PM
Vanadium		ND	. 50	μg/L		1	10/22/03 8:13:04 PM
Zinc		90	20	μg/L		1	10/22/03 8:13:04 PM
ARSENIC, TOTAL			SW7060A				Analyst: APL
Arsenic		ND	5.0	μg/L		1	10/24/03 5:44:01 PM
MERCURY, TOTAL			SW7470A				Analyst: RK
Mercury		0.21	0.20	µg/L		1	10/21/03 12:43:15 PM
LEAD, TOTAL			SW7421	3			Analyst: APL
Lead		63	5.0	µg/L		1	10/24/03 5:44:01 PM
ANTIMONY, TOTAL			SW7041	*			Analyst: APL
Antimony		ND	5.0	µg/L		1	10/28/03 1:26:09 AM
SELENIUM, TOTAL			SW7740		•		Analyst: APL
Selenium		ND	5.0	µg/L		1	10/24/03 5:44:01 PM
THALLIUM, TOTAL	•		SW7841				Analyst: APL
Thallium		. ND	5.0	μg/L		1	10/24/03 5:44:01 PM

Date: 27-Jan-04

CLIENT:

Mactec E & C, Inc.

Thallium

Lab Order:

0401077

1/20/04 5:24:42 PM

Project: 3651031003 Taunton Parcel 6A Lab ID: 0401077-01 Collection Date: 1/15/04 Client Sample ID: MW 8 Matrix: GROUNDWATER Analyses Result RL Qual Units DF **Date Analyzed ICP METALS TOTAL SW-846** SW6010B Analyst: SJC Barium ND 200 μg/L 1/19/04 7:57:06 PM Beryllium ND 4.0 μg/L 1 1/19/04 7:57:06 PM Cadmium ND 5.0 μg/L 1 1/19/04 7:57:06 PM Chromium ND 10 μg/L 1 1/19/04 7:57:06 PM Copper ND 25 μg/L 1 1/19/04 7:57:06 PM Nickel ND 40 µg/L 1 1/19/04 7:57:06 PM Silver ND 7.0 µg/L 1 1/19/04 7:57:06 PM Vanadium ND 50 μg/L 1 1/19/04 7:57:06 PM Zinc ND 20 μg/L 1/19/04 7:57:06 PM ARSENIC, TOTAL SW7060A Analyst: APL Arsenic ND 5.0 μg/L 1 1/20/04 5:24:42 PM MERCURY, TOTAL SW7470A Analyst: RK Mercury ND 0.20 μg/L 1 1/19/04 1:47:15 PM LEAD, TOTAL SW7421 Analyst: APL Lead ND 5.0 µg/L 1 1/20/04 5:24:42 PM ANTIMONY, TOTAL SW7041 Analyst: APL Antimony ND 5.0 μg/L 1 1/20/04 10:55:53 PM **SELENIUM, TOTAL** SW7740 Analyst: APL Selenium ND 5.0 μg/L 1 1/20/04 5:24:42 PM THALLIUM, TOTAL SW7841 Analyst: APL

ND

5.0

μg/L

CLIENT:

Mactec E & C, Inc.

Work Order:

0401077

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

Sample ID LCSD-10963	Batch ID: 10963	Test Code	: MAEPH	Units: µg/l	L		Analysis I	Date 1/26/04	4:33:00 PM	Prep Date	e 1/26/04	
Client ID:		Run ID:	SV-2_040	0126A			SeqNo:	370012				
	QC Sample			QC Spike Origina	al Sample	+		(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
n-Eicosane	13.55	1.0	μg/L	25	0	54.2	40	140	17.53	25.6	50	
n-Nonadecane	13.36	1.0	µg/L	25	0	53.5	40	140	16.32	19.9	50	
n-Nonane	16.48	1.0	μg/L	25	0	65.9	40	140	12.78	25.3	50	
n-Octacosane	13.04	1.0	μg/L	25	0	52.2	40	140	15.9	19.8	50	
n-Tetradecane	11.6	1.0	μg/L	25	0	46.4	40	140	14.18	20	50	
Naphthalene	16.49	1.0	μg/L	25	0	66	40	140	16.8	1.83	50	
Acenaphthene	19.95	1.0	μg/L	25	0	79.8	40	140	20.62	3.3	50	
Anthracene	25.56	1.0	μg/L	25	0	102	40	140	26.8	4.76	50	
Pyrene	27.9	1.0	µg/L	25	0	112	40	140	29.42	5.29	50	
Chrysene	21.02	1.0	μg/L	25	0	84.1	40	140	25.87	20.6	50	
Surr: 1-Chlorooctadecane	9.17	1.0	μg/L	20	0	45.8	40	140	0	0	0	
Surr: 2-Bromonaphthalene	19.3	1.0	μg/L	20	0	96.5	40	140	0	0	0	
Surr: 2-Fluorobiphenyl	17.6	1.0	μg/L	20	0	88	40	140	0	0	0	
Surr: o-Terphenyl	19.91	1.0	µg/L	20	0	99.6	40	140	0	0	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

CLIENT:

Mactec E & C, Inc.

Work Order:

0401077

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Laboratory Control Spike

Sample ID LCS-10963	Batch ID: 10963	Test Code	e: MAEPH	Units: µ	ıg/L		Analysis	Date 1/26/04	4:02:00 PM	Prep Date	e 1/26/04	······································
Client ID:		Run ID:	SV-2_04	0126A			SeqNo:	370011		•		
	QC Sample			QC Spike Orig	ginal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
n-Eicosane	17.53	1.0	μg/L	25	0	70.1	40	140	0			***************************************
n-Nonadecane	16.32	1.0	µg/L	25	0	65.3	40	140	0			
n-Nonane	12.78	1.0	μg/L	25	0	51.1	40	140	0			
n-Octacosane	15.9	1.0	μg/L	25	0	63.6	40	140	0			
n-Tetradecane	14.18	1.0	µg/L	25	0	56.7	40	140	ū			
Naphthalene	16.8	1.0	µg/L	25	0	67.2	40	140	0			
Acenaphthene	20.62	1.0	μg/L	25	0	82.5	40	140	. 0			
Anthracene	26.8	1.0	μg/L	25	0	107	40	140	0			
Pyrene	29.42	1.0	μg/L	25	0	118	40	140	Ö	* .		
Chrysene	25.87	1.0	µg/L	25	0	103	40	140	. 0			
Surr: 1-Chlorooctadecane	11.7	1.0	μg/L	20	0	58.5	40	140	0			
Surr: 2-Bromonaphthalene	19.84	1.0	μg/L	20	0	99.2	40	140	0			
Surr: 2-Fluorobiphenyl	18.28	1.0	μg/L	20	0	91.4	40	140	. 0			
Surr: o-Terphenyl	20.68	1.0	µg/L	20	0	103	40	140	0			

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

NA - Not applicable where J values or ND results occur

B - Analyte detected in the associated Method Blank

AMRO Environmental Laboratories Corp.

Date: 27-Jan-04

CLIENT:

Mactec E & C, Inc.

Work Order: 0401077

Project:

3651031003 Taunton Parcel 6A

QC SUMMARY REPORT

Sample Duplicate

Sample ID 0401077-01BDUP	Batch ID: 10963	Test Code	MAEPH	Units: µg	J/L		Analysis I	Date 1/26/04	6:59:00 PM	Prep Date	e 1/26/04	
Client ID: MW 8		Run ID:	SV-2_04	0126A			SeqNo:	370016				
	QC Sample			QC Spike Origi	nal Sample			(Original Sample			
Analyte	Result	RL	Units	Amount	Result	%REC	LowLimit	HighLimit	or MS Result	%RPD	RPDLimit	Qua
C9-C18 Aliphatic Hydrocarbons	ND	110	μg/L	0	0	0	0	0	0	0	50	
C19-C36 Aliphatic Hydrocarbons	ND	110	μg/L	0	0	0	0	0	0	0	50	
C11-C22 Aromatic Hydrocarbons	ND	110	μg/L	0	0	0	0	0	0	0	50	
Naphthalene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
2-Methylnaphthalene	ND	1.1	μg/L	. 0	0	0	0	0	0	0	50	
Acenaphthylene	ND	1.1	µg/L	0	0	0	0	0	0	0	50	
Acenaphthene	ND	1.1	µg/L	0	0	0	0	0	0	0	50	
Fluorene	ND	1.1	µg/L	0	0	0	0	0	0	0	50	
Phenanthrene	ND	1.1	µg/L	0	0	0	0	0	0	. 0	50	
Anthracene	ND	1.1	µg/L	0	0	0	0	0	0	0	50	
Fluoranthene	ND	1.1	µg/L	0	0	0	0	0	0	0	50	
Pyrene	ND	1.1	μg/L	.0	0	0	0	0	0	0	50	
Benz(a)anthracene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Chrysene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Benzo(b)fluoranthene	ND	1.1	μg/L	0	. 0	. 0	0	0	. ·· 0	0	50	
Benzo(k)fluoranthene	ND	1.1	μg/L	0	0	0	0	0	0	0	50	
Benzo(a)pyrene	ND	1.1	μg/L	0	0	0	. 0	0	0	0	50	
Dibenz(a,h)anthracene	ND	1.1	μg/L	0	. 0	0	0	. 0	. 0	0	50	
Indeno(1,2,3-cd)pyrene	ND	1.1	μg/L	0	. 0	0	0	. 0	0	. 0	50	
Benzo(g,h,i)perylene	ND	1.1	μg/L	0	. 0	0	0	0	0	0	50	
Surr: 1-Chlorooctadecane	10.39	1.1	μg/L	22.22	0	46.8	40	140	0	0	0	
Surr: 2-Bromonaphthalene	20.64	1.1	μg/L	22.22	0	92.9	40	140	0	0	0	
Surr: 2-Fluorobiphenyl	19.33	1.1	μg/L	22.22	. 0	87	40	140 -	0		0	
Surr: o-Terphenyl	23.35	1.1	µg/L	22.22	0	105	40	140	0	0	. 0	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

NA - Not applicable where J values or ND results occur

RL - Reporting Limit; defined as the lowest concentration the laboratory can accurately quantitate.

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW2

Date Sampled: 3/1/99

ESS Project ID: 99030024

ESS Sample ID: 99030024-02

Units: mg/L
Dilution: 1

Percent Solid: N/A

			rercent Sond: N/	A	
Test Name	Result	MRL	Date Analyzed	Analyst	Method
Arsenic	ND	0.1	3/5/99	SAM	6010
Cadmium	ND	0.01	3/5/99	SAM	6010
Chromium	ND	0.05	3/5/99	SAM	6010
Lead	ND	0.1	3/5/99	SAM	6010
Mercury	ND	0.0005	3/4/99	AR	7470

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By 42

Date: 3/1/99

Division of Thielsch Engineering, Inc.

	~-~			~~	05	4	371	7	T767 7	_
i	CER7	ואנו	(.;A	I P.	Ur	A	IVA	5	. Y.S.L	`

8100M Total Petroleum Hydrocarh	8100M	Total	Petroleum	Hydrocarh
---------------------------------	-------	-------	-----------	-----------

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW2 Date Sampled: 3/1/99 Extraction Date: 3/2/99

Date Analyzed: 3/4/99

Analyst AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-02

Units: mg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

133,613,56, 13,5		
Test Name	Result	MRL
Total Petroleum Hydrocarbons	ND	0.5

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	73	39-137

Approved By:

185 Frances Avenue, Cranston, RI 02916-2211

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: WES MW2

Date Sampled: 3/1/99 Date Analyzed: 3/5/99

Analyst: JR

ESS Project ID: 99030024 ESS Sample ID: 99030024-02

Units: µg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 5 ml

Commandati	San	nple Amount: 5 ml
Compound Name	Result	MRI
1,1,1,2-Tetrachloroethane	ND	TYLL
1,1,1-Trichloroethane	ND	·
1,1,2,2-Tetrachloroethane	ND	
1,1,2-Trichloroethane	ND	1
1,1-Dichloroethane	ND	1
1,1-Dichloroethene	ND	
1,1-Dichloropropene	ND	1
1,2 Dichlorobenzene	ND	2
1,2,3-Trichlorobenzene	ND	1
1,2,3-Trichloropropane	ND	1
1,2,4-Trichlorobenzene	ND	. 1
1,2,4-Trimethylbenzene	ND	1
1,2-Dibromo-3-Chloropropane	ND	1
1,2-Dibromoethane	ND	2
1.2-Dichloroethane	ND	1
1,2-Dichloropropane	ND	1
1.3 Dichlorobenzene	ND	1
1.3,5-Trimethylbenzene	ND	1
1,3-Dichloropropane	ND	l .
1,4 Dichlorobenzene	ND	
l-Chlorohexane	ND	1
2.2-Dichloropropane	ND	1
2-Butanone	ND	1
2-Chlorotoluene	ND	20
2-Hexanone	ND	1
4-Chlorotoluene	ND	10
4-Isopropyltoluene	ND	1
4-Methyl-2-Pentanone	ND	1
Acetone	ND	10
Benzene	ND	20
Bromobenzene	ND	1
Bromochloromethane	ND	i
Bromodichloromethane	ND	I
Bromoform	ND	1
Bromomethane		2
arbon Disulfide	ND ND	2
	IAD	1

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: WES MW2

ESS Project ID: 99030024 ESS Sample ID: 99030024-02

Compound Name	- Result	MRL
Carbon Tetrachloride	ND .	1717
Chlorobenzene	ND	1
Chloroethane	ND	2
Chloroform	ND	1
Chloromethane	ND	2
cis-1,2 Dichloroethene	ND	1
cis-1,3-Dichloropropene	ND:	0.5
Dibromochloromethane	ND.	U. J
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	2
Ethylbenzene	ND	1
Hexachlorobutadiene	ND	0.6
Isopropylbenzene	ND	1
Methyl tert-Butyl Ether	ND	1.
Methylene Chloride	ND	1
n-Butylbenzene	ND	1
n-Propylbenzene	ND	1
Napthalene	ND	1
sec-Butylbenzene	ND	· 1
Styrene	ND	1
tert-Butylbenzene	ND	1
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
Toluene	ND	1
trans-1,2-Dichloroethene	ND	1
trans-1.3-Dichloropropene	ND	0.5
Trichloroethene	ND	1
Trichlorofluoromethane	· ND	2
Vinyl Chloride	ND	2
Xylenes (Total)	ND	1

	<u> </u>
MRL = Method Reporting Limit.	ND = Not Detected above MRL.
Approved By: LAS	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering ESS Project ID: 99030024
Client Project ID: Parcel 6A Taunton ESS Sample ID: 99030024-02

Client Sample ID: WES MW2

Date Sampled: 3/1/99

Dilution: 1

Date Fortmatted: 3/2/00

Date Extracted: 3/2/99 Percent Solid: N/A
Date Analyzed: 3/4/99 Sample Amount: 1000 ml

Analyst: AC

Test Name	Result	MRL
2-Methylnaphthalene	ND	0.2
Acenaphthene	ND	0.2
Acenaphthylene	ND	0.2
Anthracene	ND	0.2
Benzo(a)anthracene	ND	0.2
Benzo(a)pyrene	ND	0.2
Benzo(b)fluoranthene	ND	0,2
Benzo(g,h,i)perylene	ND	0.2
Benzo(k)fluoranthene	ND	0.1
Chrysene	ND	0.2
Dibenzo(a,h)Anthracene	ND	0.2
Fluoranthene	ND	0.2
Fluorene	ND	0.2
Indeno(1,2,3-cd)Pyrene	ND	0.2
Naphthalene	ND	0.2
Phenanthrene	ND	0.2
Pyrene	ND	0.2

	•			
Approved By:	6. W.S.	Date:	3/11/99	

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

B

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW3

Date Sampled: 3/1/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-05

Units: mg/L Dilution: 1

Percent Solid: N/A

	·	A				
Test Name	Result	MRL	Date Analyzed	Analyst	Method	
Arsenic	ND	0.1	3/5/99	SAM	6010	
Cadmium	ND	0.01	3/5/99	SAM	6010	
Chromium	ND	0.05	3/5/99	SAM	6010	
Lead	ND	0.1	3/5/99	SAM	6010	
Mercury	ND	0.0005	3/4/99	AR	7470	

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By: LAS

Date: 3 11 5

Division of Thielsch Engineering, Inc.

CERTIF.	ICATE.	OF	4 N A	I.YSI	75

8100M 7	Cotal	Petroleum	Hydroca	rhon
---------	-------	-----------	---------	------

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW3

Date Sampled: 3/1/99 Extraction Date: 3/2/99

Date Analyzed: 3/5/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-05

Units: mg/L

Dilution: 5
Percent Solid: N/A

Sample Amount: 975 ml

Result	MRL
107	2.56

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	75	. 39-137

Approved By: ______

Date: 7 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW3 Date Sampled: 3/1/99 Date Analyzed: 3/5/99

Analyst: JR

ESS Project ID: 99030024 ESS Sample ID: 99030024-05

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 5 ml

Compound Name	Result	MRL
1,1,1,2-Tetrachloroethane	ND	IVICE
1,1,1-Trichloroethane	ND	1
1,1,2,2-Tetrachloroethane	ND	1
1,1,2-Trichloroethane	ND	1
1,1-Dichloroethane	ND	1
1,1-Dichloroethene	ND	. 1
1,1-Dichloropropene	ND	2
1,2 Dichlorobenzene	ND	1
1,2,3-Trichlorobenzene	ND	<u>.</u> 1
1,2,3-Trichloropropane	. ND	1
1,2,4-Trichlorobenzene	ND	1
1,2,4-Trimethylbenzene	1 2	1
1,2-Dibromo-3-Chloropropane	ND	2
1,2-Dibromoethane	ND	1
1,2-Dichloroethane	ND	1
1,2-Dichloropropane	ND	1
1,3 Dichlorobenzene	ND	1
1,3,5-Trimethylbenzene	2	1
1,3-Dichloropropane	ND	1
1,4 Dichlorobenzene	ND	1
l-Chlorohexane	ND	1
2,2-Dichloropropane	ND	1
2-Butanone	ND	20
2-Chlorotoluene .	ND	1
2-Hexanone	ND	10
4-Chlorotoluene	ND	1
4-Isopropyltoluene	4	1
4-Methyl-2-Pentanone	ND	10
Acetone	ND	20
Benzene	ND	20 1
Bromobenzene	ND	1
Bromochloromethane	ND	1
Bromodichloromethane	ND	i .
Bromoform	ND	1
Bromomethane	ND	<u>-</u>
Carbon Disulfide	ND NO	<u> </u>

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW3

ESS Project ID: 99030024 ESS Sample ID: 99030024-05

Compound Name		le 1D: 99030024-05
	Result	MRL
Carbon Tetrachloride	ND	
Chlorobenzene	ND	1
Chloroethane	ND	2
Chloroform	ND	. 1
Chloromethane	ND	2
cis-1,2 Dichloroethene	ND	1
cis-1,3-Dichloropropene	ND	0.5
Dibromochloromethane	ND	
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	
Ethylbenzene	ND	ید 1
Hexachlorobutadiene	ND	0.6
Isopropylbenzene	2	0.0
Methyl tert-Butyl Ether	ND	1
Methylene Chloride	ND	1
n-Butylbenzene	2	1
n-Propylbenzene	ND	1
Napthalene	22	1
sec-Butylbenzene	3	1
Styrene	ND	1
tert-Butylbenzene	ND	1
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
Toluene	ND	1
trans-1.2-Dichloroethene	ND	1
trans-1,3-Dichloropropene	ND	Ţ
Trichloroethene	ND	0.5
Trichlorofluoromethane	ND	1
Vinyl Chloride	ND ND	2
Xylenes (Total)		2
Achienes (Total)	ND	1

	IND
MRL = Method Reporting Limit.	ND = Not Detected above MRL
Approved By: LAS	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW3

Date Sampled: 3/1/99 Date Extracted: 3/2/99 Date Analyzed: 3/5/99

Analyst: AC

ESS Project ID: 99030024 ESS Sample ID: 99030024-05

Units: µg/L Dilution: 1 Percent Solid: N/A Sample Amount: 975 ml

Test Name	Result	MRL
2-Methylnaphthalene	60′	10
Acenaphthene	36	10
Acenaphthylene	7.7	0.2
Anthracene	14	10
Benzo(a)anthracene	6.7	0.2
Benzo(a)pyrene	3.8	0.2
Benzo(b)fluoranthene	6 .8	0.2
Benzo(g,h,i)perylene	1.8	0.2
Benzo(k)fluoranthene	2.7	0.1
Chrysene	6.6	0.2
Dibenzo(a,h)Anthracene	0.2	0.2
Fluoranthene	29	10
Fluorene	55	10
Indeno(1,2,3-cd)Pyrene	2	0.2
Naphthalene	44	10
Phenanthrene	79	10
Pyrene	20	10

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:	,	W.S.	Date:	3	11)	99
Trpproved by.	1	1 1	Date.			, , ,

B

ESS Laboratory

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW2

Date Sampled: 3/1/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-06

Units: mg/L Dilution: 1

Percent Solid: N/A

ult MRL	Date Analyzed	Analyst	Method
		· · · · · · · · · · · · · · · · · · ·	
0.1	3/5/99	SAM	6010
0.01	3/5/99	SAM	6010
0.05	3/5/99		6010
0.1	3/5/99		6010
0.0005	3/4/99	AR	7470
)	0.01 0.05 0.1	0.01 3/5/99 0.05 3/5/99 0.1 3/5/99	0.01 3/5/99 SAM 0.05 3/5/99 SAM 0.1 3/5/99 SAM

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Date: 3 11 99

Division of Thielsch Engineering, Inc.

	CERTIFI	ICAT	EOF	ANAI	YSZ:
--	---------	------	-----	------	------

8100M	Total	Petroleum	Hydrocarbon
-------	-------	-----------	-------------

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW2

Date Sampled: 3/1/99 Extraction Date: 3/2/99 Date Analyzed: 3/4/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-06

Units: mg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

* ****** J 007		
Test Name	Result	MRL
Total Petroleum Hydrocarbons	14.6	0.5

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	64	39-137

Approved By:

Date: = |u|qq

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW2

Date Sampled: 3/1/99 Date Analyzed: 3/5/99

Analyst: MD

ESS Project ID: 99030024 ESS Sample ID: 99030024-06

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 5 ml

Company No.	Sample Amount: 5 ml			
Compound Name	Result	MR.		
1.1,1,2-Tetrachloroethane	ND	2741		
1,1,1-Trichloroethane	ND	•		
1,1.2,2-Tetrachloroethane	ND			
1,1,2-Trichloroethane	ND			
1,1-Dichloroethane	ND			
1,1-Dichloroethene	ND			
1,1-Dichloropropene	ND			
1,2 Dichlorobenzene	ND			
1,2,3-Trichlorobenzene	ND			
1,2,3-Trichloropropane	ND			
1,2,4-Trichlorobenzene	ND			
1.2,4-Trimethylbenzene	1	1		
1,2-Dibromo-3-Chloropropane	ND	1		
1,2-Dibromoethane	ND .	2		
1,2-Dichloroethane	ND .	1		
1.2-Dichloropropane	ND	1		
1,3 Dichlorobenzene	ND	1		
1,3.5-Trimethylbenzene	ND	1		
1.3-Dichloropropane	ND	1		
1.4 Dichlorobenzene	ND	1		
l-Chlorohexane	ND	1		
2.2-Dichloropropane		1		
2-Butanone	ND	1		
2-Chlorotoluene	ND	20		
2-Hexanone	ND	1		
1-Chlorotoluene	ND	10		
4-Isopropyltoluene	ND	1		
4-Methyl-2-Pentanone	ND	1		
Acetone	ND	10		
Benzene	ND	20		
Bromobenzene	ND	1		
	ND	1		
Bromochloromethane	ND	1		
Bromodichloromethane Bromotorm	ND	1		
	ND			
Bromomethane	ND	~		
Carbon Disulfide	ND	5.		

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW2

ESS Project ID: 99030024 ESS Sample ID: 99030024-06

Compound Name	Ess sample	e ID: 99030024-06
Carbon Tetrachloride	Result	MRL
Chlorobenzene	ND	1744
Chloroethane	ND	
Chloroform	ND	7
Chloromethane	ND	2. 1
	ND	2
cis-1,2 Dichloroethene	ND	1
cis-1,3-Dichloropropene	ND ·	0.5
Dibromochloromethane	ND	0.5
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	1
Ethylbenzene	ND .	2
Hexachlorobutadiene	ND.	1
Isopropylbenzene	ND	0.6
Methyl tert-Butyl Ether	ND	· · · · · · · · · · · · · · · · · · ·
Methylene Chloride	ND	1
n-Butylbenzene	ND	1 .
n-Propylbenzene	ND ·	1
Napthalene	2	1
sec-Butylbenzene	2	1
Styrene	ND	1
ert-Butylbenzene	ND	1
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	l .
Toluene	ND	1
rans-1,2-Dichloroethene	ND	I
rans-1,3-Dichloropropene	ND	1
Trichloroethene	ND	0.5
[richlorofluoromethane .	ND	1
Vinyl Chloride	ND	2
(Yvlenes (Total)	ND	2

Xylenes (Total)	ND 2
MRL = Method Reporting Limit.	ND = Not Detected above MRL.
Approved By:	Date: = 1199

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW2

Date Sampled: 3/1/99

Date Extracted: 3/2/99 Date Analyzed: 3/5/99

Analyst: AC

ESS Project ID: 99030024 ESS Sample ID: 99030024-06

Units: μg/L Dilution: 1

Percent Solid: N/A Sample Amount: 1000 ml

Analyst: AC	Sample Al	nount: 1000 ml
Test Name	Result	
2-Methylnaphthalene	13	MRL
Acenaphthene	16	10
Acenaphthylene	3.5	10
Anthracene	6.5	0.2
Benzo(a)anthracene	3.5	0.2
Benzo(a)pyrene	1.7	0.2
Benzo(b)fluoranthene	2.9	0.2
Benzo(g,h,i)perylene	1.1	0.2
Benzo(k)fluoranthene	1.5	0.2
Chrysene	3.6	0.1
Dibenzo(a,h)Anthracene	0.3	0.2
Fluoranthene	14	0.2
Fluorene	13	10
Indeno(1,2,3-cd)Pyrene	1.1	10
Naphthalene	4.1	0.2
Phenanthrene Pyrene	20	0.2
1 AIGHG	8.3	10
		0.2

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By: LAS	Date: 3 11 9	
------------------	--------------	--

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Dissolved Metals

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW2 DUP

Date Sampled: 3/1/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-07

Units: mg/L Dilution: 1

Percent Solid: N/A

		Torcom Sond. IVA						
Test Name	Result	MRL	Date Analyzed	Analyst	Method			
			,					
Arsenic	ND	0.1	3/5/99	SAM	6010			
Cadmium	ND	0.01	3/5/99	SAM	6010			
Chromium	ND	0.05	3/5/99	SAM	6010			
Lead	ND	0.1	3/5/99	SAM	6010			
Mercury	ND	0.0005	3/4/99	AR	7470			
•								

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By:

Date: 2 11 55

Division of Thielsch Engineering, Inc.

CERTIFI	CATE	OFA	NA	17:	7.77.7
		$OI \cdot I$	1 <i>1</i> 7 7	<i>۱1 -</i>	1011

81	00M	Total	Petro	leum	Hyd	rocar	·bon
----	-----	-------	-------	------	-----	-------	------

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW2 DUP

Date Sampled: 3/1/99 Extraction Date: 3/2/99 Date Analyzed: 3/6/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-07

Units: mg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbons	13	0.5

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	47	39-137

Approved By: (A)S

Date: 5 11 199

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

EPA Method 8260B

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW2 DUP

Date Sampled: 3/1/99 Date Analyzed: 3/5/99

Analyst: MD

ESS Project ID: 99030024 ESS Sample ID: 99030024-07

Units: µg/L Dilution: 1

Percent Solid: N/A Sample Amount: 5 ml

Sample Amount:		nount: 5 ml
Compound Name	Result	MRI
1,1,1,2-Tetrachloroethane	ND	1711(
1,1,1-Trichloroethane	ND	·
1,1,2,2-Tetrachloroethane	ND	1 1
1,1,2-Trichloroethane	ND	1
1,1-Dichloroethane	ND	1
1,1-Dichloroethene	ND	l
1,1-Dichloropropene	ND	1
1,2 Dichlorobenzene	ND	2
1,2,3-Trichlorobenzene	ND	1
1,2,3-Trichloropropane	ND	1
1,2,4-Trichlorobenzene	ND	1
1,2,4-Trimethylbenzene	2	1
1,2-Dibromo-3-Chloropropane	ND	1
1,2-Dibromoethane	ND	2
1,2-Dichloroethane	ND	1
1,2-Dichloropropane	ND	1
1,3 Dichlorobenzene	ND	1
1,3,5-Trimethylbenzene	ND	1
1,3-Dichloropropane	ND	1
1,4 Dichlorobenzene	ND	1
l-Chlorohexane	ND	1
2,2-Dichloropropane	ND	1
2-Butanone	ND	1
2-Chlorotoluene	ND	20
2-Hexanone	ND	1
4-Chlorotoluene	ND ND	10
-Isopropyltoluene		1
-Methyl-2-Pentanone	1	I
Acetone	ND	10
Benzene	ND	20
Bromobenzene	ND	1
Bromochloromethane	ND	1
Bromodichloromethane	ND	1
Bromoform	ND	1
Bromomethane	ND	· ·
Carbon Disulfide	ND	~ ?
STOOT DISHINGS	ND	

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW2 DUP

ESS Project ID: 99030024 ESS Sample ID: 99030024-07

Compound Name	Result	MRL
Carbon Tetrachloride	ND	
Chlorobenzene	ND	1
Chloroethane	ND	. 2
Chloroform	ND	1
Chloromethane	ND	2
cis-1,2 Dichloroethene	ND	<i>Z</i> ₁
cis-1,3-Dichloropropene	ND	0.5
Dibromochloromethane	ND	0.3
Dibromomethane	ND	1
Dichlorodifluoromethane	ND	2
Ethylbenzene	ND	2
Hexachlorobutadiene	ND	
Isopropylbenzene	1	0.6
Methyl tert-Butyl Ether	ND	1
Methylene Chloride	ND	1
n-Butylbenzene	ND	1
n-Propylbenzene	1	Ţ
Napthalene	2	1
sec-Butylbenzene	3	1
Styrene	ND	l 1
ert-Butylbenzene	ND	Ţ
Tetrachloroethene	ND	1
Tetrahydrofuran	ND	1
Toluene	ND	1
rans-1,2-Dichloroethene	ND	1
trans-1,3-Dichloropropene	ND	. [
Trichloroethene	ND	0.5
Trichlorofluoromethane	ND	1
Vinyl Chloride	ND ND	2
Xylenes (Total)	ND ND	2

MRL = Method Reporting Limit.	ND = Not Detected above MRL.
Approved By:	Date: 3 11 99

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Polynuclear Aromatic Hydrocarbons by EPA Method 8270c (SIM Modified)

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW2 DUP

Date Sampled: 3/1/99 Date Extracted: 3/2/99 Date Analyzed: 3/11/99

Analyst: RS

ESS Project ID: 99030024 ESS Sample ID: 99030024-07

Units: µg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

Test Name	Result	MRI
2-Methylnaphthalene	6	7
Acenaphthene	9.8	0.2
Acenaphthylene	ND	0.2
Anthracene	4.6	0.2
Benzo(a)anthracene	3.9	0.2
Benzo(a)pyrene	2.2	0.2
Benzo(b)fluoranthene	3.8	
Benzo(g,h,i)perylene	1.2	0.2
Benzo(k)fluoranthene	1.5	0.2
Chrysene	4.6	0.1
Dibenzo(a,h)Anthracene	0.5	0.2
Fluoranthene	9,3	0.2
Fluorene	9.8	5
Indeno(1,2,3-cd)Pyrene	1.6	0.2
Naphthalene	3.1	0.2
Phenanthrene	11.4	0.2
Pyrene	7.4	5

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Approved By: 435	Date:	224
------------------	-------	-----

Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

PROJECT NARRATIVE

CLIENT: East Coast Engineering

CLIENT PROJECT ID: Parcel 6A Taunton

ESS PROJECT ID: 99030024

Sample Receipt

Ten liquid samples and one Trip Blank were received on March 2, 1999 for the analysis specified on the enclosed Chain of Custody Record.

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan.

Semivolatile Organics Analysis

Surrogate recoveries were outside of the recommended ranges for samples 99030024-02 and -07.

No other observations noted.

This signed Certificate of Analysis is our approved release of your analytical results. Beginning with this Project Narrative, the entire report has been paginated. The Chain of Custody is the final report page. This report should not be copied except in full without the approval of the laboratory.

End of project narrative.

Laurel Stoddard/Eric Baanante

Laboratory Director/Operations Manager

PS: Revised on April 9, 1999. Enclosed please find the revised data report of laboratory test results for the analysis of the sample previously submitted to you. The corresponding replacement pages have been re-paginated, beginning with this Project Narrative, and are enclosed. Please discard the corresponding Certificate of Analysis pages.

http://www.thieisch.com

Division of Thielsch Engineering, Inc.

	CERTIF	ICATE	OF	ANA	I.Y.SI.S
1	(MKIIF.	$(\mathbf{L}, \mathbf{A}, \mathbf{L}, \mathbf{L})$	UII.	r_{11} v_{12}	<i></i>

8100M Hydrocarbon Fingerprint

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW3

Date Sampled: 3/1/99 Extraction Date: 3/2/99 Date Analyzed: 3/5/99

Analyst: AS

Qualitative ID

ESS Project ID: 99030024 ESS Sample ID: 99030024-05

Units: mg/L Dilution: 5

Percent Solid: N/A Sample Amount: 975 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbons	107	2.56

MRI	=	Method	Reno	orting	Limit.
IAIT		MANAGE	TOP	~~ ~~~~	********

ND = Not Detected above MRL.

This sample has the GC/FID characteristics that are similar to: fuel oil #2.	

Surrogate	% Recovery	Limits
()πho-terphenyl (OTP)	75	39-137

	ipproved By: FC	Date: 4/5-/51
--	-----------------	---------------

B

ESS Laborator,

Division of Thielsch Engineering, Inc.

CERTIF	CATE	COFA	NAI	YSYS

81	00M	Hydro	carbon	Fin	gerp	rint
----	-----	-------	--------	-----	------	------

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton

Client Sample ID: ECE MW2
Date Sampled: 3/1/99

Extraction Date: 3/2/99 Date Analyzed: 3/4/99

Analyst: AS

ESS Project ID: 99030024 ESS Sample ID: 99030024-06

Units: mg/L Dilution: 1

Percent Solid: N/A

Sample Amount: 1000 ml

Test Name	Result	MRL
Total Petroleum Hydrocarbons	14.6	0.5

MRL = Method Reporting Limit.

ND = Not Detected above MRL.

Qualitative ID	
This sample has the GC/FID characteristics that are similar to: fuel oil #2.	-

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	64	39-137

Approved By:___

4

Date: 4/5-/55

LSS Laborator,

Division of Thielsch Engineering, Inc.

8100M Hydrocarbon Fingerprint

Client Name: East Coast Engineering Client Project ID: Parcel 6A Taunton Client Sample ID: ECE MW2 DUP

Date Sampled: 3/1/99 Extraction Date: 3/2/99 Date Analyzed: 3/6/99

ESS Project ID: 99030024 ESS Sample ID: 99030024-07

Units: mg/L Dilution: 1

Percent Solid: N/A Sample Amount: 1000 ml

Test Name	Result		MRL
Total Petroleum Hydrocarbons	13		0.5
MRL = Method Reporting Limit.		ND = Not Detec	eted above MRL.

Qualitative ID This sample has the GC/FID characteristics that are similar to: fuel oil #2.

Surrogate	% Recovery	Limits
Ortho-terphenyl (OTP)	47	39-137

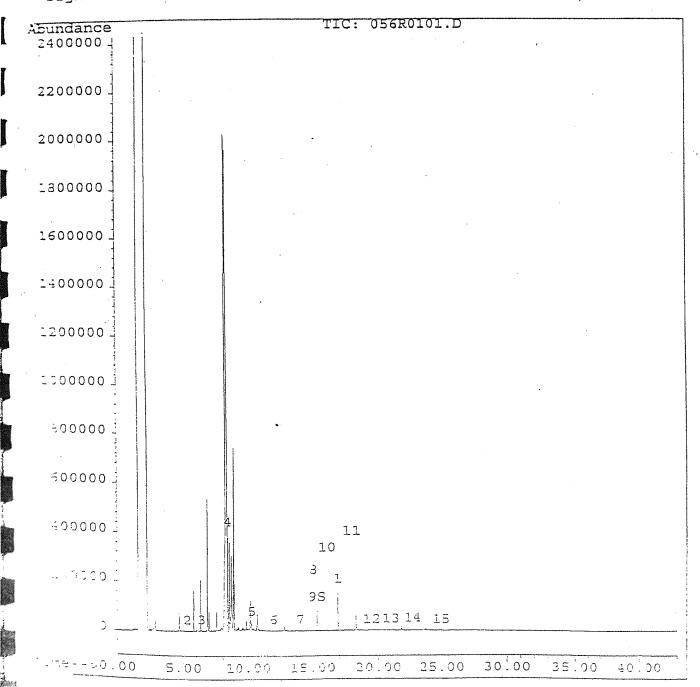
Date:

Quantitation Report

ata File : C:\HPCHE | L\DATA\GC030499\056R0101.F

acq On : 04 Mar 99 08:33 PM

: 99030024-03 sample MISC : ECE MWY


Quant Time: Mar 5 9:15 1999

: C:\HPCHEM\1\METHODS\99BTPH2C.M

Method Title : alkanes-front-GC2

Last Update : Tue Mar 02 18:25:48 1999 Response via : Multiple Level Calibration

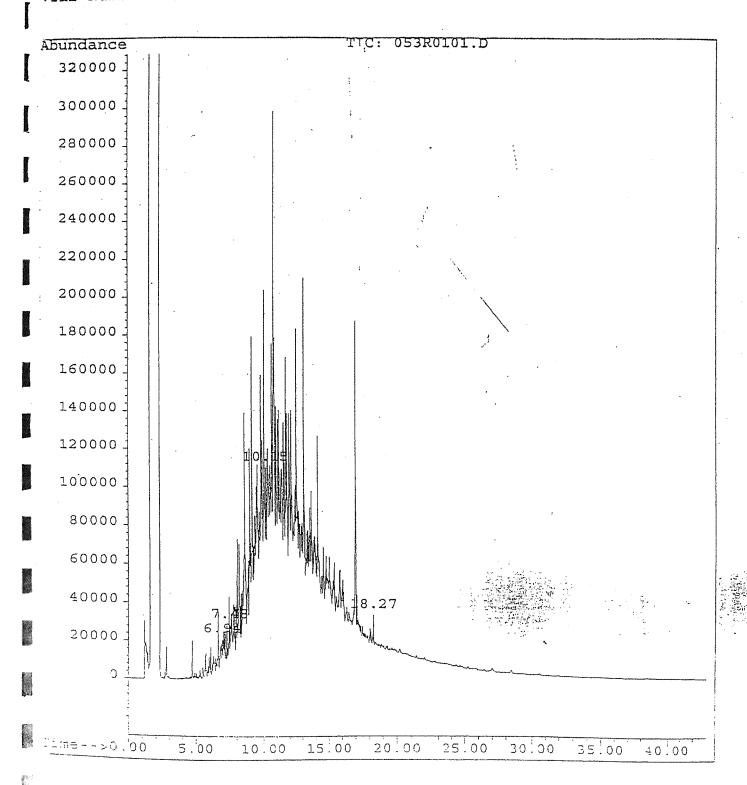
Volume Inj. : Signal Phase : Signal Info :

Vial: 56

Multiplr: 1.00

Operator: [GC]MS

Inst : GC-FID 2


File : C:\HPCHEM\1\DATA\GC030599\053R0101.D

Operator : [GC]MS

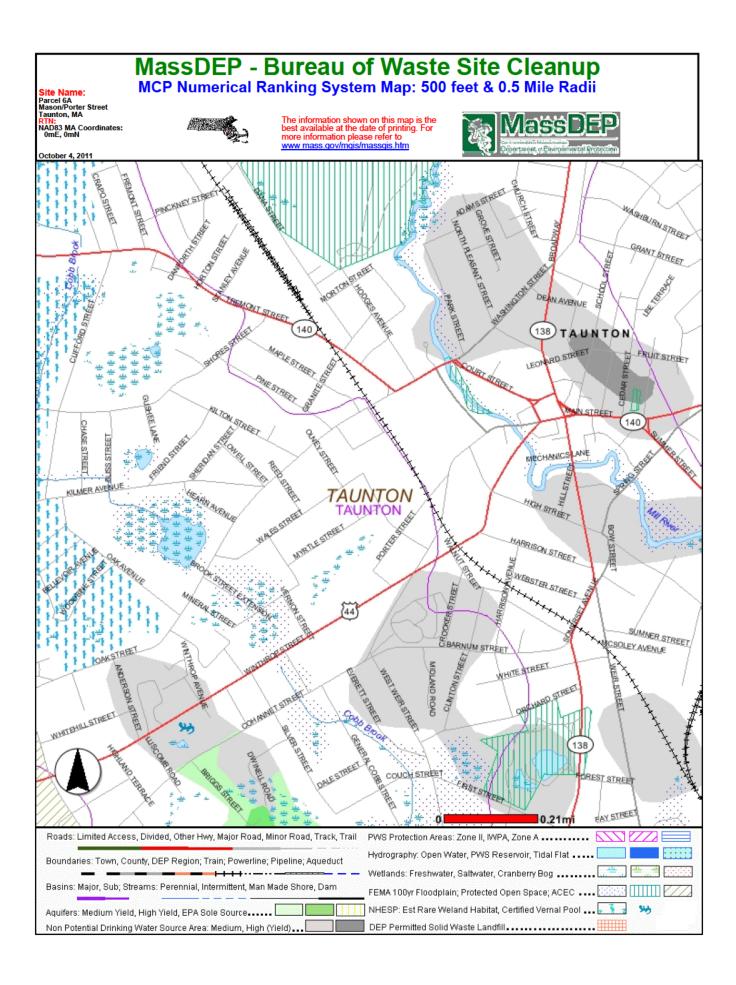
Acquired : 05 Mar 99 11:10 AM using AcqMethod 8100M.MTH

Instrument: GC-FID 2
Sample Name: 99030024-05,5X
Misc Info: ECE MW3

Vial Number: 53

APPENDIX D

AREAS OF CRITICAL CONCERN, ENDANGERED AND THREATENED SPECIES


Based on an on-line edition of the Massachusetts Geographic Information Systems DEP Priority Resources Map, the subject site is not located within the boundaries of a Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no areas designated as Protected Open Space, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site. According to the Taunton Board of Health there are no private wells within 1 mile of the subject site.

According to the Resource Map, the nearest water body is identified as the Mill River which is located approximately 900 feet to the northeast of the subject site. A portion of Mill River is listed as a Protected Open Space. Based upon the City of Taunton storm drain plans, a intermittent stream identified as Myrtle Brook is located approximately 250 feet to the southeast of the subject site. According to aerial photographs, Myrtle Brook discharges to a wetland area located approximately 300 feet to the southeast of the subject site.

Consultation with the U.S. Fish and Wildlife Service did not identify the presence of threatened and/or endangered species or critical habitats at or in the vicinity of the discharge location and/or discharge outfall. A copy of the Consolation Letter received by the U,S, Fish and Wildlife Service is included in this appendix. In addition, a review of the Massachusetts Division of Fisheries and Wildlife on-line database did not indicate the presence of threatened or endangered species at the point of discharge and/or the discharge outfall.

Based upon the above, the site is considered criterion B pursuant to Appendix IV of the RGP.

Map Output Page 1 of 1

United States Department of the Interior

FISH AND WILDLIFE SERVICE NEW ENGLAND ECOLOGICAL SERVICES FIELD OFFICE 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 03301

PHONE: (603)223-2541 FAX: (603)223-0104 URL: www.fws.gov/newengland

Consultation Tracking Number: 05E1NE00-2013-SLI-0126 March 20, 2013

Project Name: Parcel 6A

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project.

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, and proposed species, designated critical habitat, and candidate species that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

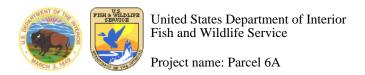
A Biological Assessment is required for construction projects (or other undertakings having

similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan


(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

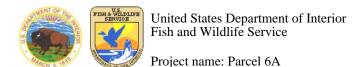
Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

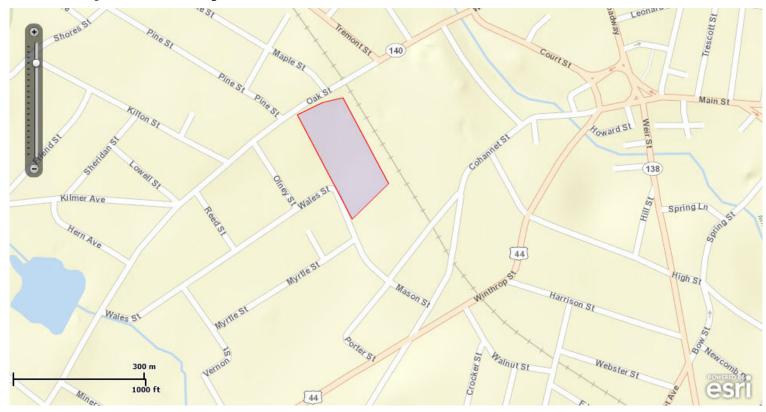
We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment

Official Species List

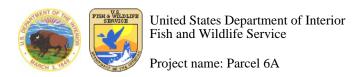

Provided by:

NEW ENGLAND ECOLOGICAL SERVICES FIELD OFFICE 70 COMMERCIAL STREET, SUITE 300 CONCORD, NH 03301 (603) 223-2541 http://www.fws.gov/newengland


Consultation Tracking Number: 05E1NE00-2013-SLI-0126

Project Type: Development

Project Description: The site consists of a 6.44-acre parcel of land located along Mason and Porter Streets in Taunton, Massachusetts. The site is bordered by a railroad right-of-way to the northeast, residential properties to the southeast, Mason Street to the southwest and the Greater Attleboro/Taunton Regional Transit Authority (GATRA) property to the northwest. Currently, the Parcel 6A site is an active construction site the perimeter which is surrounded by a chain link fenced.



Project Location Map:

 $\begin{array}{l} \textbf{Project Coordinates:} \ MULTIPOLYGON \ (((-71.1008974\ 41.9017285,\ -71.0996325\ 41.8999558,\ -71.1006399\ 41.8992211,\ -71.1021634\ 41.9013772,\ -71.1014553\ 41.9016327,\ -71.1008974\ 41.9017285))) \end{array}$

Project Counties: Bristol, MA

Endangered Species Act Species List

Species lists are not entirely based upon the current range of a species but may also take into consideration actions that affect a species that exists in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. Please contact the designated FWS office if you have questions.

There are no listed species identified for the vicinity of your project.

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN June 2009

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

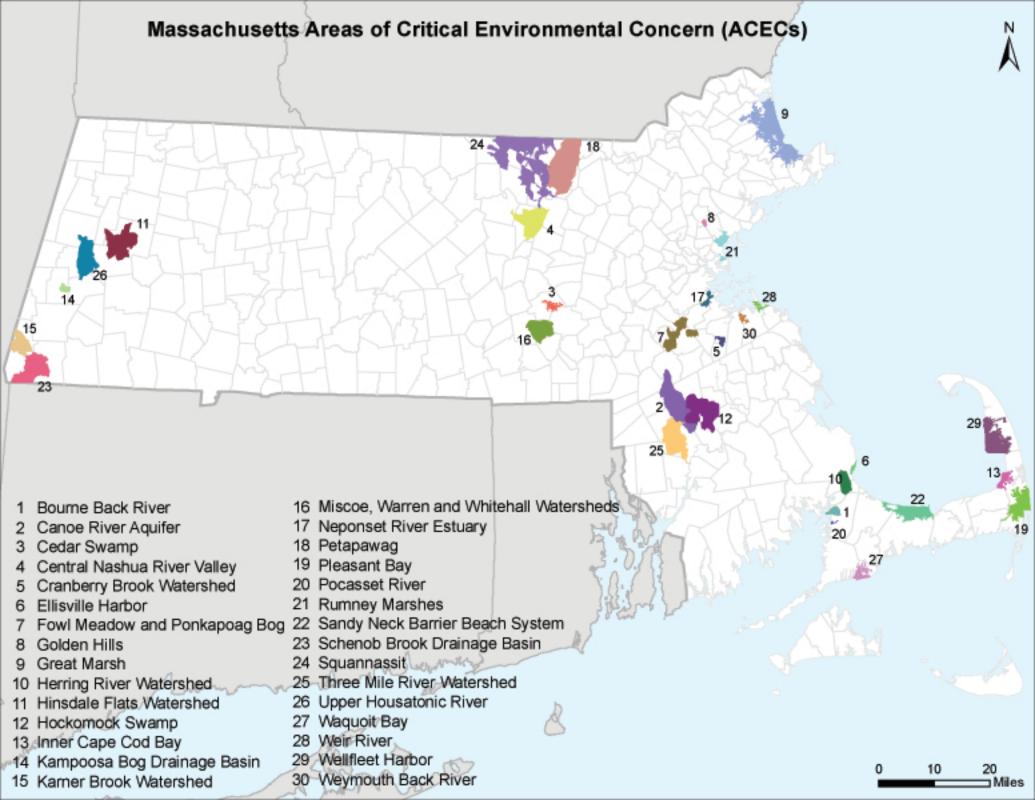
(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth


ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns wit	h ACECs within their Boundarie	es	June 2009
TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	•	Schenob Brook
,	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River		Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed		Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
Diomoto.	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp	,	Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay	Caagao	Golden Hills
Laothain	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer	Onaron	Fowl Meadow and Ponkapoag Bog
Laston	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer	radition	Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
Granton	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
Giotori	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley	Opton	Watersheds
Tiaivaiu	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
	Weir River	vvasimigion	Upper Housatonic River
Hingham	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
Πορκιπιοπ	Watersheds	Weymouth	Weymouth Back River
		Winthrop	Rumney Marshes
Hull	Cedar Swamp Weir River	vviitiiiop	Runney Marshes
	Great Marsh		
Ipswich			
Lancaster	Central Nashua River Valley		
1	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
Longy	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	FOWL MOODOW and Dankanage Rog		

Fowl Meadow and Ponkapoag Bog

Neponset River Estuary

Milton

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
•	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Boume (north of the Cape Cod Canal)
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Raynham and Taunton
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Glocester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague
1 10	Dwarf wedgemussel	Endangered	Mill River	Whately
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hadley, Hatfield, Amherst and Northampton
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
, , , , , , , , , , , , , , , , , , , ,	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth Bourne, and Wareham
٠,	Roseate Tern	Endangered	Coastal beaches and the Atlantic Occan	Plymouth, Marion, Wareham, and Mattapoisett.
Suffolk	Piping Plover	Threatened	Coastal Beaches	Winthrop
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

7/31/2008

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied cooter is present in Plymouth County.

APPENDIX E

NATIONAL REGISTER OF HISTORIC PLACES

The National Register of Historic Places and Massachusetts Historical Commission on-line databases were reviewed for listings located within the immediate vicinity of the subject site in Taunton, Massachusetts. A review of the most recent National Register of Historical Places for Bristol County, Massachusetts did not identify records or addresses of Historic Places that exist in the immediate vicinity of the subject site and/or outfall location. The Massachusetts Historical Commission on-line database identified one residential house located approximately 150 feet to the south of the subject site which is listed with the address of 19 Mason Street as being a historic place. However, given that dewatering activities will be contained within the subject site and the ultimate point of discharge for the dewatered groundwater from the site is over 400 feet to the southeast of the the 19 Mason Street property, the dewatering and off-site discharge activities at the site are not considered to affect the historic place located in close proximity to the subject site.

Based upon the above, the site considered criterion 2 pursuant to Appendix IV of the RGP.

Massachusetts Cultural Resource Information System

Scanned Record Cover Page

Inventory No: TAU.256

Historic Name: Maxim, L. W. House

Common Name:

Address: 19 Mason St

City/Town: Taunton

Village/Neighborhood: Taunton

Local No:

Year Constructed: C 1872

Architect(s):

Architectural Style(s): Greek Revival

Use(s): Single Family Dwelling House

Significance: Architecture

Area(s):

Designation(s):

The Massachusetts Historical Commission (MHC) has converted this paper record to digital format as part of ongoing projects to scan records of the Inventory of Historic Assets of the Commonwealth and National Register of Historic Places nominations for Massachusetts. Efforts are ongoing and not all inventory or National Register records related to this resource may be available in digital format at this time.

The MACRIS database and scanned files are highly dynamic; new information is added daily and both database records and related scanned files may be updated as new information is incorporated into MHC files. Users should note that there may be a considerable lag time between the receipt of new or updated records by MHC and the appearance of related information in MACRIS. Users should also note that not all source materials for the MACRIS database are made available as scanned images. Users may consult the records, files and maps available in MHC's public research area at its offices at the State Archives Building, 220 Morrissey Boulevard, Boston, open M-F, 9-5.

Users of this digital material acknowledge that they have read and understood the MACRIS Information and Disclaimer (http://mhc-macris.net/macrisdisclaimer.htm)

Data available via the MACRIS web interface, and associated scanned files are for information purposes only. THE ACT OF CHECKING THIS DATABASE AND ASSOCIATED SCANNED FILES DOES NOT SUBSTITUTE FOR COMPLIANCE WITH APPLICABLE LOCAL, STATE OR FEDERAL LAWS AND REGULATIONS. IF YOU ARE REPRESENTING A DEVELOPER AND/OR A PROPOSED PROJECT THAT WILL REQUIRE A PERMIT, LICENSE OR FUNDING FROM ANY STATE OR FEDERAL AGENCY YOU MUST SUBMIT A PROJECT NOTIFICATION FORM TO MHC FOR MHC'S REVIEW AND COMMENT. You can obtain a copy of a PNF through the MHC web site (www.sec.state.ma.us/mhc) under the subject heading "MHC Forms."

Commonwealth of Massachusetts
Massachusetts Historical Commission
220 Morrissey Boulevard, Boston, Massachusetts 02125
www.sec.state.ma.us/mhc

This file was accessed on:

Tuesday, March 26, 2013 at 10:57 AM

FORM B - BUILDING

MASSACHUSETTS HISTORICAL COMMISSION Office of the Secretary, State House, Boston

In Area no.

Form no.

256

4. Map. Draw sketch of building location	Anolo

4. Map. Draw sketch of building location in relation to nearest cross streets and other buildings. Indicate north.

homvo.		the house v	nry maps. in 1881.
Д	54.	口	
POPTER		A.	
□ 25 9 □ □ □ ▼ X	MASON	MYRTLE ST	d Matorica.
		WALES S	<u>T.</u>

vn Taunton
ress 19 Mason St.
ne
sent use Residence
sent owner David G. Seekell
cription:
post-1871
ourceStyle; Maps
e Greek Revival
Architect
Exterior wall fabric Clapboards
Outbuildings (describe)
Other features Corner pilasters, roof en-
tablature, dormers. 2/2 sash windows;
Door surround enclosed paneled sidelights
Entrance porch and Altered stoop added. Date c. 1960
MovedDate
5. Lot size:
One acre or lessx Over one acre
Approximate frontage 80'
Approximate distance of building from street
rol 22 daug) avaneriere no b ₁₅ rigeracidis of

T.W.

2/80

T.C.H.S.

(over)

6. Recorded by

Date

Organization

Original use			
Subsequent uses (if any) and	l dates		
Themes (check as many as	applicable)		
Aboriginal Agricultural Architectural The Arts Commerce Communication Community development	Conservation Education X Exploration/ settlement Industry Military Political	Recreation Religion Science/ invention Social/ humanitar Transportat	**************************************
Historical significance (incl	lude explanation of themes c	hecked above)	
porch and roof dorm	Despite the additioners, the structure extends entablature, corner	khibits Greek 1	Revival
	ate 19th century maps .W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	.W. Washburn in 1881.		as owned
by L.W. Maxim and J	W. Washburn in 1881. OTHER LOSS OTHER LO	TO T	# A STANON Control of the control

APPENDIX F

Best Management Practice Plan

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant DischargeElimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that may occur at the Parcel 24 site located in Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

Construction dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation and directly into a treatment system consisting of an settling tank and bag filters in series. The effluent will be discharged through hoses into dedicated storm drain located in Mason Street adjacent to the subject site. Based upon a review of the stormwater drain plans provided by the City of Taunton, the stormwater drains along Mason Street ultimately discharge into Mrytle Brook and its associated wetlands.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. This includes chemical testing required within days 1 and 3 of initial discharge and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Monthly monitoring reports will be compiled and maintained at the site

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include assessing the amount of sediment in the settling tank and the condition of the bag filters, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be covered within the overall site security plan.

No adverse affects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Myrtle Brook which is located 300 feet to southeast of the subject site. During a majority of the dewatering activities, groundwater will be pumped through a treatment system consisting of a settling tank and bag filters in series prior to discharge into the City of Taunton storm drain system. However, during dewatering activities within the vicinity of monitoring well MW-5 which is located at the central portion of the subject site, groundwater will be pumped through granular activated carbon (GAC) filter which will be added after the bag filters.

Management of Treatment System Materials

Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment contained in the settling tank and spent carbon from the GAC filter will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations.