

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 1 5 Post Office Square, Suite 100 BOSTON, MA 02109-3912

CERTIFIED MAIL RETURN RECEIPT REQUESTED

APR 1 0 2013

David Walker Senior Project Manager Parcel 24 North LLC 75 State Street, 12th Floor Boston, MA 02109

Re: Authorization to discharge under the Remediation General Permit (RGP) – MAG910000. Parcel 24 site located at Hudson Street/Kneeland Street, Boston, MA 02134, Suffolk County; Authorization # MAG910570

Dear Mr. Walker:

Based on the review of a Notice of Intent (NOI) submitted on behalf of the MA Department of Transportation Highway Division by the firm McPhail Associates, Inc., for the site referenced above, the U.S. Environmental Protection Agency (EPA) hereby authorizes you, as the named Owner and Operator, to discharge in accordance with the provisions of the RGP at that site. Your authorization number is listed above.

The checklist enclosed with this RGP authorization indicates the pollutants which you are required to monitor. Also indicated on the checklist are the effluent limits, test methods and minimum levels (MLs) for each pollutant. Please note that the checklist does not represent the complete requirements of the RGP. Operators must comply with all of the applicable requirements of this permit, including influent and effluent monitoring, narrative water quality standards, record keeping, and reporting requirements, found in Parts I and II, and Appendices I – VIII of the RGP. See EPA's website for the complete RGP and other information at: http://www.epa.gov/region1/npdes/mass.html#dgp.

Please note the enclosed checklist includes parameters that exceeded Appendix III limits. The checklist also includes other parameters for which your laboratory reports indicated there was insufficient sensitivity to detect these parameters at the minimum levels established in Appendix VI of the RGP.

Also, please note that the metals included on the checklist are dilution dependent pollutants and subject to limitations based on selected dilution ranges and technologybased ceiling limitations. With the absence of dilution of freshwater into tidal water,

Complete and a service approximation of a start contract of a start and a second contract of a start second contract of the second second contract of the second second contract of a start second contract second contract of a start second contract of a

化正视子输出 网络花、根花雀、银木、银龙、花、银、银花、银花、银花、花、花花、花

APR 1 0 2013

Linesd Westwar Socials Propert Manager Hanna La Honne Lijf 75 Bally Surger, 17th Class Hanna MAN (2100

Burr quilderinghaug to developing worder the Reproduction transport receive clearly. ArXiv:0100001124.com 3.4 also for shall st Madami theme Remaining Street, Receive Market (COS) 5.1 million 1.1 million, Application R.M.Accellerton.

ing which the mean

(insult on the beauge with a blocker of finane (1600), sufficient data in behalf of the 64A, inpartment of Transport them (Eightway) (Stationary ()) on three 5dg(Paul) waveshawes, factor the sife polynomical above, the U.S. Prinolponeurabil Procession Superv. (167A) hereits interview with an the camped (Transic and Operative) to deatharge in a conductor methodic mercialize of the 641P in third are: Yore anthorized in resented above.

1 for characterizer particular to de stite PCOP approximation codiminant for particular relation processes in a maniferer with a state of the absorbing section efficient. State institution is a maximum relation of the formula of manifered and manifered and formation of the formula of manifered and manifered and formation of the formation Planne and the Planne and the formation of the formation of the Planne and the Planne and the Planne and the formation of the formation of the formation of the formation of the Planne and the Planne and the formation of the formation of the Planne and the formation of the formation of the Planne and the formation of the form

Otherso note the enclosed algebraic indicates parameters that concerted Approxima III finite it is a particular meaning in index their promising the other's your base avery reports indicated of our maximal filling in a single view to denote these promising at the existence being of our maximal filling of a single view to denote the existence of the evision of the classification is a promising of of the ROP.

A late physical mathematic the postate included on the clustering my deliver dependent pertinants and subject to there shared faceal on sets decident ranges and technology of constraints for the destroy of the destroy of effective of free water, and with leader. EPA determined that the Dilution Factor Range (DFR) for each parameter for this site is in the one and five (1-5) range. (See the RGP Appendix IV for Massachusetts facilities). Therefore, the limits for antimony of 5.6ug/L, arsenic of 36 ug/L, cadmium of 8.9 ug/L, trivalent chromium of 100 ug/L, hexavalent chromium of 50.3 ug/L, copper of 3.7 ug/L, lead of 8.5 ug/L, nickel of 8.2 ug/L, selenium of 71 ug/L, silver of 2.2 ug/L, zinc of 85.6 ug/L and iron of 1,000 ug/L, are required to achieve permit compliance at your site.

Finally, please note the checklist of pollutants attached to this authorization is subject to a recertification if the operations at the site result in a discharge lasting longer than six months. A recertification can be submitted to EPA within six (6) to twelve (12) months of operations in accordance with the 2010 RGP regulations.

This general permit and authorization to discharge will expire on September 9, 2015. You have reported that this project will terminate on June 5, 2015. You are required to submit a Notice of Termination (NOT) to the attention of the contact person indicated below within 30 days of project completion.

Thank you in advance for your cooperation in this matter. Please contact Victor Alvarez at 617-918-1572 or <u>Alvarez.Victor@epa.gov</u>, if you have any questions.

Sincerely,

Alma Murphy

Thelma Murphy, Manager Storm Water and Construction Permits Section

Enclosure

cc: Robert Kubit, MassDEP Paul Canavan, BWSC William J. Burns, McPhail Associates, LLC.

A second provide the second provides of a static second provide the second provides and provides of a second provide provide provide provides of a second provide provide provide provide provides of a second provide provides of a second provide provides of a second provide provide provide provide provides of a second provide pro

E. M. Barrasoni, J. 1999, and M. S. Martin, M. Statering, and S. Sagakar, and S. Satara, S. Satara, S. and Bayer, Providend that have a set of the state of th

12222324

ala parti da constante

s s geochierts

1.11 10 10 10 10 10 10 10

2010 Remediation General Permit Summary of Monitoring Parameters^[1]

April, Parcel Hudso	24				
Parcel	24				
Hudso					
-1.00	on Street/Kneeland St., Boston, MA 02134, Suffolk County				
Email	Email address of owner: Not Provided				
r:	Parcel 24 North LLC				
title,	David Walker, Senior Project Manager, 75 State Street, Boston, MA 02109. Suffolk County				
	Email: dwalker@newbostonfund.com				
ct	June 5, 2015.				
gory:	Category III. Contaminated Construction Dewatering. Sub- category B. Known Contaminated Sites				
10.55	September 10, 2015				
and the	Boston Harbor				
	r: title, ct				

Monitoring & Limits are applicable if checked. All samples are to be collected as grab samples

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)				
\checkmark	1. Total Suspended Solids (TSS)	30 milligrams/liter (mg/L) **, 50 mg/L for hydrostatic testing ** Me#160.2/ML5ug/L				
\checkmark	2. Total Residual Chlorine (TRC) ¹	Freshwater = 11 ug/L ** Saltwater = 7.5 ug/L **/ Me#330.5/ML 20ug/L				
\checkmark	3. Total Petroleum Hydrocarbons (TPH)	5.0 mg/L/ Me# 1664A/ML 5.0mg/L				
\checkmark	4. Cyanide (CN) 2, 3	Freshwater = 5.2 ug/l ** Saltwater = 1.0 ug/L **/ Me#335.4/ML 10ug/L				
	5. Benzene (B)	5ug/L /50.0 ug/L for hydrostatic testing only/ Me#8260C/ML 2 ug/L				
	6. Toluene (T)	(limited as ug/L total BTEX)/ Me#8260C/ ML 2ug/L				
t.	7. Ethylbenzene (E)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L				
12	8. (m,p,o) Xylenes (X)	(limited as ug/L total BTEX) Me#8260C/ ML 2ug/L				

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
V	9. Total Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) ⁴	100 ug/L/ Me#8260C/ ML 2ug/L
\checkmark	10. Ethylene Dibromide (EDB) (1,2- Dibromoethane)	0.05 ug/l/ Me#8260C/ ML 10ug/L
	11. Methyl-tert-Butyl Ether (MtBE)	70.0 ug/l/Me#8260C/ML 10ug/L
	12.tert-Butyl Alcohol (TBA) (TertiaryButanol)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
-	13. tert-Amyl Methyl Ether (TAME)	Monitor Only(ug/L)/Me#8260C/ML 10ug/L
\checkmark	14. Naphthalene ⁵	20 ug/L /Me#8260C/ML 2ug/L
V	15. Carbon Tetrachloride	4.4 ug/L /Me#8260C/ ML 5ug/L
62	16. 1,2 Dichlorobenzene (o- DCB)	600 ug/L /Me#8260C/ ML 5ug/L
	17. 1,3 Dichlorobenzene (m- DCB)	320 ug/L /Me#8260C/ ML 5ug/L
V	18. 1,4 Dichlorobenzene (p- DCB)	5.0 ug/L /Me#8260C/ ML 5ug/L
	18a. Total dichlorobenzene	763 ug/L - NH only /Me#8260C/ ML 5ug/L
	19. 1,1 Dichloroethane (DCA)	70 ug/L /Me#8260C/ ML 5ug/L
1	20. 1,2 Dichloroethane (DCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
\checkmark	21. 1,1 Dichloroethene (DCE)	3.2 ug/L/Me#8260C/ ML 5ug/L
	22. cis-1,2 Dichloroethene (DCE)	70 ug/L/Me#8260C/ ML 5ug/L
\checkmark	23. Methylene Chloride	4.6 ug/L/Me#8260C/ ML 5ug/L
V	24. Tetrachloroethene (PCE)	5.0 ug/L/Me#8260C/ ML 5ug/L
501	25. 1,1,1 Trichloro-ethane (TCA)	200 ug/L/Me#8260C/ ML 5ug/L
\checkmark	26. 1,1,2 Trichloro-ethane (TCA)	5.0 ug/L /Me#8260C/ ML 5ug/L
V	27. Trichloroethene (TCE)	5.0 ug/L /Me#8260C/ ML 5ug/L
V	28. Vinyl Chloride (Chloroethene)	2.0 ug/L /Me#8260C/ ML 5ug/L
V	29. Acetone	Monitor Only(ug/L)/Me#8260C/ML 50ug/L
/	30. 1,4 Dioxane	Monitor Only /Me#1624C/ML 50ug/L
V	31. Total Phenols	300 ug/L Me#420.1&420.2/ML 2 ug/L/ Me# 420.4 /ML 50ug/L
V	32. Pentachlorophenol (PCP)	1.0 ug/L /Me#8270D/ML 5ug/L,Me#604 &625/ML 10ug/L
V	33. Total Phthalates (Phthalate esters) ⁶	3.0 ug/L ** /Me#8270D/ML 5ug/L, Me#606/ML 10ug/L& Me#625/ML 5ug/L
V	34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	6.0 ug/L /Me#8270D/ML 5ug/L,Me#606/ML 10ug/L & Me#625/ML 5ug/L

÷

•

	Parameter	Effluent Limit/Method#/ML (All Effluent Limits are shown as Daily Maximum Limit, unless denoted by a **, in that case it will be a Monthly Average Limit)
V	35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	10.0 ug/L
\checkmark	a. Benzo(a) Anthracene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
V	b. Benzo(a) Pyrene ⁷	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	c. Benzo(b)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	d. Benzo(k)Fluoranthene 7	0.0038 ug/L /Me#8270D/ ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	e. Chrysene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	f. Dibenzo(a,h)anthracene 7	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML 5ug/L
\checkmark	g. Indeno(1,2,3-cd) Pyrene ⁷	0.0038 ug/L /Me#8270D/ML 5ug/L, Me#610/ML 5ug/L& Me#625/ML5ug/L
\checkmark	36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)	100 ug/L
~	h. Acenaphthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	i. Acenaphthylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	j. Anthracene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
V	k. Benzo(ghi) Perylene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	I. Fluoranthene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
\checkmark	m. Fluorene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	n. Naphthalene ⁵	20 ug/l / Me#8270/ML 5ug/L, Me#610/MI 5ug/L & Me#625/ML 5ug/L
V	o. Phenanthrene	X/Me#8270D/ML 5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
V	p. Pyrene	X/Me#8270D/ML5ug/L,Me#610/ML 5ug/L & Me#625/ML 5ug/L
	37. Total Polychlorinated Biphenyls (PCBs) ^{8,9}	0.000064 ug/L/Me# 608/ ML 0.5 ug/L
	38. Chloride	Monitor only/Me# 300.0/ ML 100 ug/L

h (M) taral muranin shi ai lease e	Total Recoverable	DERIGHT SERVICE
I brids that worsaft an	Motal limit @ U 10-	
and harmonization in and the second second	50 mg/l CaCO3 for	
and we how how and her weather a	discharges in	to the second
and the manual of the of the states	Massachusetts	Minimum
Metal parameter	(ug/l) 11/12	level=ML

	And his sector for Manual and solution	Saltwater		
\checkmark	39. Antimony	5.6/ML 10		
	40. Arsenic **	36/ML 20		24
\checkmark	41. Cadmium **	8.9/ML 10		
\checkmark	42. Chromium III (trivalent) **	100/ML 15		
\checkmark	43. Chromium VI (hexavalent)	50.3/ML 10	and and a second se	Ye
\checkmark	44. Copper **	3.7/ML 15	e Sacara	V
	45. Lead **	8.5/ML 20		
	46. Mercury **	1.1/ML 0.2	and an designed	X.
\checkmark	47. Nickel **	8.2/ML 20	C. Suchardian	Ve -
\checkmark	48. Selenium **	71/ML 20		
	49. Silver	2.2/ML 10	A Sector	No. No. 1
\checkmark	50. Zinc **	85.6/ML 15	A. CCC/060	V
\checkmark	51. Iron	1,000/ML 20		

	Other Parameters	Limit
\checkmark	52. Instantaneous Flow	Site specific in CFS
\checkmark	53. Total Flow	Site specific in CFS
	54. pH Range for Class A & Class B Waters in MA	6.5-8.3; 1/Month/Grab13
\checkmark	55. pH Range for Class SA & Class SB Waters in MA	6.5-8.3; 1/Month/Grab13
	56. pH Range for Class B Waters in NH	6.5-8; 1/Month/Grab13
	57. Daily maximum temperature - Warm water fisheries	83°F; 1/Month/Grab ¹⁴
	58. Daily maximum temperature - Cold water fisheries	68°F; 1/Month/Grab ¹⁴
	59. Maximum Change in Temperature in MA - Any Class A water body	1.5°F; 1/Month/Grab ¹⁴
	60. Maximum Change in Temperature in MA - Any Class B water body- Warm Water	5°F; 1/Month/Grab ¹⁴
	61. Maximum Change in Temperature in MA – Any Class B water body - Cold water and Lakes/Ponds	3°F; 1/Month/Grab ¹⁴
	62. Maximum Change in Temperature in MA – Any Class SA water body - Coastal	1.5°F; 1/Month/Grab ¹⁴
	63. Maximum Change in Temperature in MA – Any Class SB water body - July to September	1.5°F; 1/Month/Grab ¹⁴
	64. Maximum Change in Temperature in MA –Any Class SB water body - October to June	4°F; 1/Month/Grab ¹⁴
	0.000064 W/ Mex 608/ M. 0.5 W/	and the second s

Footnotes:

¹ Although the maximum values for TRC are 11ug/l and 7.5 ug/l for freshwater, and saltwater respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., Method 330.5, 20 ug/l). ² Limits for cyanide are based on EPA's water quality criteria expressed as micrograms per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported. ³ Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the Method 335.4 as listed in Appendix VI (i.e., 10 ug/l).

⁴ BTEX = sum of Benzene, Toluene, Ethylbenzene, and total Xylenes.

⁵ Naphthalene can be reported as both a purgeable (VOC) and extractable (SVOC) organic compound. If both VOC and SVOC are analyzed, the highest value must be used unless the QC criteria for one of the analyses is not met. In such cases, the value from the analysis meeting the QC criteria must be used.

⁶ The sum of individual phthalate compounds(not including the #34, Bis (2-Ethylhexyl) Phthalate . The compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measurement of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁷ Although the maximum value for the individual PAH compounds is 0.0038 ug/l, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI.

⁸ In the November 2002 WQC, EPA has revised the definition of Total PCBs for aquatic life as total PCBs is the sum of all homologue, all isomer, all congener, or all "Oroclor analyses."Total values calculated for reporting on NOIs and discharge monitoring reports shall be calculated by adding the measured concentration of each constituent. If the measure of a constituent is less than the ML, the permittee shall use a value of zero for that constituent. For each test, the permittee shall also attach the raw data for each constituent to the discharge monitoring report, including the minimum level and minimum detection level for the analysis.

⁹Although the maximum value for total PCBs is 0.000064 ug/l, the compliance limit is equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 0.5 ug/l for Method 608 or 0.00005 ug/l when Method 1668a is approved).
¹⁰ Hardness. Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc are Hardness Dependent.

¹¹ For a Dilution Factor (DF) from 1 to 5, metals limits are calculated using DF times the base limit for the metal. See Appendix IV. For example, iron limits are calculated using DF x 1,000ug/L (the iron base limit). Therefore DF is 1.5, the iron limit will be 1,500 ug/L; DF 2, then iron limit =1,000 x 2 =2,000 ug/L., etc. not to exceed the DF=5.

¹² Minimum Level (ML) is the lowest level at which the analytical system gives a recognizable signal and acceptable calibration point for the analyte. The ML represents the lowest concentration at which an analyte can be measured with a known level of confidence. The ML is calculated by multiplying the laboratory-determined method detection limit by 3.18 (see 40 CFR Part 136, Appendix B).

¹³pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test Method 150.1.

¹⁴ Temperature sampling per Method 170.1

atta 18. mar diserta interneti kan data tata tata banditata atta tata disertata tata diserta tata diserta di 1. tata diserta diserta da manda di San 1933 mar 19 mar dan manta di manta tata di tata di tata di 1. tata (2011) tata da manda da (2010) 1944 martino di martino da manta di tata di tata di tata di tata di tata 1. tata (2011) tata da manda da (2010) 1944 martino di tata di

and the state of a set of the set

es Bass ponto o test de la constant de la constant de la de la marte de la sub-la sub-la sub-la de la constant Es bass ponto o test de la constant de la constant de la desta de la constant de la constant de la constant de l

State operations of the base operation of the base operation of the base of the base operation operat

AN TENEDING INT - NUMBER THE VIEW AND ANT THE PRODUCT AND A REPORT OF AN A

where House is the survey of the states

NOTICE OF INTENT FOR DISCHARGE UNDER MASSACHUSETTS REMEDIAL GENERAL PERMIT MAG910000

PARCEL 24

BOSTON MASSACHUSETTS

to

U.S. Environmental Protection Agency and Massachusetts Department of Environmental Protection

March 21, 2013

Project No. 4575

March 21, 2013

U.S Environmental Protection Agency RGP-NOC Processing Municipal Assistance Unit (CMU) 1 Congress Street, Suite 1100 Boston, MA 02114-2023

Attention: RGP-NOC Processing

Reference: Parcel 24; Boston, Massachusetts Notice of Intent for Construction Dewatering Discharge Under Massachusetts Remedial General Discharge MAG910000

Ladies and Gentlemen:

The purpose of this letter report is to provide a summary of the site and groundwater quality information in support of an application for approval from the U.S. Environmental Protection Agency (EPA) for the temporary discharge of groundwater into the Fort Point Channel via the City of Boston storm drain system during construction at the above referenced site. Refer to **Figure 1** Project Location Plan for the general site locus.

These services were performed and this permit application was prepared with the authorization of Parcel 24 LLC. These services are subject to the limitations contained in **Appendix A**.

Existing Conditions

The Parcel 24 site is approximately 65,000 square-feet in plan area and is bounded by Kneeland Street to the north, the Albany Street ramp to the south and east, and by Hudson Street to the west. A series of access ramps for the Massachusetts Turnpike I-90/Interstate I-93 interchange are located along the eastern limits of Albany Street. It is understood that portions of the subject site were previously occupied by the former I-90/I-93 interchange structures including elevated roadways retained by bin walls, however, during construction of the new Central Artery/Tunnel Project (CA/T), roadways were relocated, bin walls were demolished and the site was used as a construction staging area. At the completion of the CA/T project, the site was regraded generally coincident with the grade of Hudson and Kneeland Streets and a soil berm was constructed against the Albany Street ramp overhang. Currently, the subject site is vacant and the ground surface across the site is grass-covered. Refer to **Figure 2**, Site Plan, for general site information.

Site and Regulatory History

In summary, available historical information indicates that the subject site was historically occupied by tidal flats across which wharfs formerly extended. Subsequently, this area of Boston was filled and new structures were built above the old wharfs. Structures understood to have previously occupied the site have included residential buildings, carpentry shops, iron shops, small mill construction and a chapel. In the early 1960's the structures were demolished and the J.F. Fitzgerald Expressway was constructed. The expressway was subsequently demolished in the early 2000's and replaced with the new Central Artery.

The current Massachusetts DEP database indicates that the subject site, identified as Chinatown Parcel 24, located at the corner of Kneeland and Hudson Streets is a DEP-listed MCP site. The subject site is listed with Release Tracking Number (RTN) 3-30586 due to releases of 2-methylnaphthalene, arsenic, barium and lead. The release of 2-methylnaphthalene was reported to the DEP on January 17, 2012.

GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERS 2269 Massachusetts Avenue Cambridge, Massachusetts 02140 617 / 868-1420

US EPA March 21, 2013 Page 2

Furthermore, subsequent subsurface exploration programs and chemical testing was conducted by McPhail Associates, LLC during 2011 and 2012 for disposal characterization purposes. As a result of the chemical testing, concentrations of arsenic, barium and lead were detected in soil on the subject site in excess of the applicable RCS-1 reporting standards, and were added to the existing RTN as part of the MCP Phase I Initial Site Investigation Report and Tier II Classification that was submitted to the Massachusetts Department of Environmental Protection on January 23, 2013.

In addition, trace levels of asbestos have been detected in soil on the western portion of the subject site. The trace levels of asbestos have been reported to the DEP as a 2-hour release condition as discussed with MA DEP Northeast Regional Office. The asbestos release was reported to the DEP on January 15, 2013 and is listed under RTN 3-31337.

Proposed Development

It is understood that the Parcel 24 site is to be developed into a mixed-income community including residential, retail and parking space. The proposed development is planned to include the construction of a 22-story apartment building fronting onto Kneeland Street at the northern end of the site, which transitions to a 10-story mid-rise structure within the central portion of the site, which steps downward toward a terraced park. Three levels of below-grade parking are planned to underlie the mid-rise structure and a groundwater detention system will underlie the park. A 6-story low-rise building is planned to be constructed at the southern end of the site as part of a second phase of development.

The three levels of below-grade parking planned beneath mid-rise structure will occupy a footprint of approximately 14,100 square-feet. It is understood that the lowest level slab of the below-grade parking will be located approximately 30 feet below the existing ground surface.

Construction Dewatering

In order to permit construction of the three levels of below grade parking that is proposed beneath the mid-rise building and to provide an effective groundwater cut-off during construction, a continuously interlocking steel sheet pile wall will be installed just beyond the perimeter foundation walls of the building foundation and will be embedded into the relatively impervious marine clay deposit. In addition, a perimeter groundwater "seal" will be provided by constructing the perimeter foundations a minimum of 12-inches below the surface of the marine clay deposit underlying the site.

Excavation for the below grade parking levels will extend to a depth of approximately 20 feet below the observed groundwater level. Hence, construction dewatering will be required within the groundwater cutoff area to allow construction of the below-grade portion of the concrete slab and foundations. The majority of the anticipated dewatering will occur during bulk excavation following the installation of the groundwater cut-off. Additional minor dewatering may occur during installation of the lowest elevation concrete slab and footings.

It is estimated that the typical continuous groundwater discharge required during the initial stages of the excavation phase of the construction will be on the order of 35 to 100 gallons per minute (GPM). The quantity of groundwater discharge is based on the relatively pervious nature of the existing granular fill material and the presence of the sheet piling surrounding the excavation which will act as a groundwater cut-off. A reduction in the rate of discharge is anticipated to occur during excavation of the less permeable organic deposit. A rate of discharge of 20 to 50 GPM is envisioned during this stage of excavation. These estimates of discharge do not include surface runoff which will be removed from the excavation during a limited duration of a rain storm and shortly thereafter.

US EPA March 21, 2013 Page 3

As shown the **Figures 2** and **3A**, two separate 12-inch diameter dedicated storm drains exist at the southern portion of the subject site. Both storm drains flow east beneath Albany Street and the adjacent Interstate I-93 highway. Just beyond Interstate I-93, both storm drains converge into a single 36-diameter drain pipe which runs east to a pump station located near an off-ramp that connects to the I-90 Turnpike. From the pump station, a 16-inch and a 42-inch diameter storm drain are shown to run southeast beneath access ramps to Interstate I-93, Kneeland Street and the MBTA railroad tracks. Both storm drains eventually discharge into the Fort Point Channel through outfalls identified as SDO308 and SDO309. The Fort Point Channel is considered a Class SB water body. The storm drain flow pattern and location of discharge into the Fort Point Channel are shown on plans provided by the Boston Water & Sewer Commission which are included as **Figures 3A** and **3B**.

Groundwater Treatment

A limited scope of groundwater testing, focusing on petroleum constituents and volatile organic compounds, has been performed at the subject site. The parameters for the groundwater analyses were based in part on the site history and concentrations of constituents detected in soil at the subject site. The results of groundwater testing have not indicated the presence of the constituents tested in excess of the RGP limits for discharge. However, as indicated above, the subject site is a DEP-listed release site due to Reportable Concentrations of 2-methylnaphthalene, arsenic, barium and lead that are present in soil. Given the scope of construction associated with redevelopment of the subject site, it is anticipated that soil particles impacted by these constituents will become suspended in the dewatered groundwater during excavation for the building foundation. As a result, the dewatered groundwater will require treatment prior to off-site discharge. Based upon the results of the soil and groundwater testing performed at the subject site in conjunction with the proposed scope of construction, it is our opinion that a settling tank and bag filters will be necessary to settle out particulate matter exhibiting elevated levels of 2-methylnaphthalene and metals in the water to meet the allowable discharge limits established by the US EPA prior to off-site discharge. Specifically, one settling tank, 5,000-gallon in capacity and two bag filters will be incorporated into the discharge system in series to meet allowable discharge limits for TSS, 2-methynaphthalene, arsenic, barium and lead established by the RGP for discharge into a saltwater body. A schematic of the treatment system is shown on Figure 4.

To document the effectiveness of the treatment system, samples of the discharge water will be obtained and tested for the presence of TSS, 2-methylnaphthalene, arsenic, barium, and lead prior to the start of discharge into the storm drain system. Should the pre-start up testing indicate that the levels of these compounds in the effluent exceed the limits established under the RGP, additional treatment of the effluent will be implemented prior to initial discharge. In addition, should other contaminants be detected within the discharge water during the construction dewatering phase of the project at levels that exceed the effluent limitations, mitigative measures will be implemented to meet the allowable discharge limits.

In conclusion, it is our opinion that groundwater at the site is acceptable for discharge into the Fort Point Channel via the City of Boston storm drain system under a Remedial General Permit. Sampling and analysis of the effluent will be carried out in accordance with the terms of the Remedial General Permit.

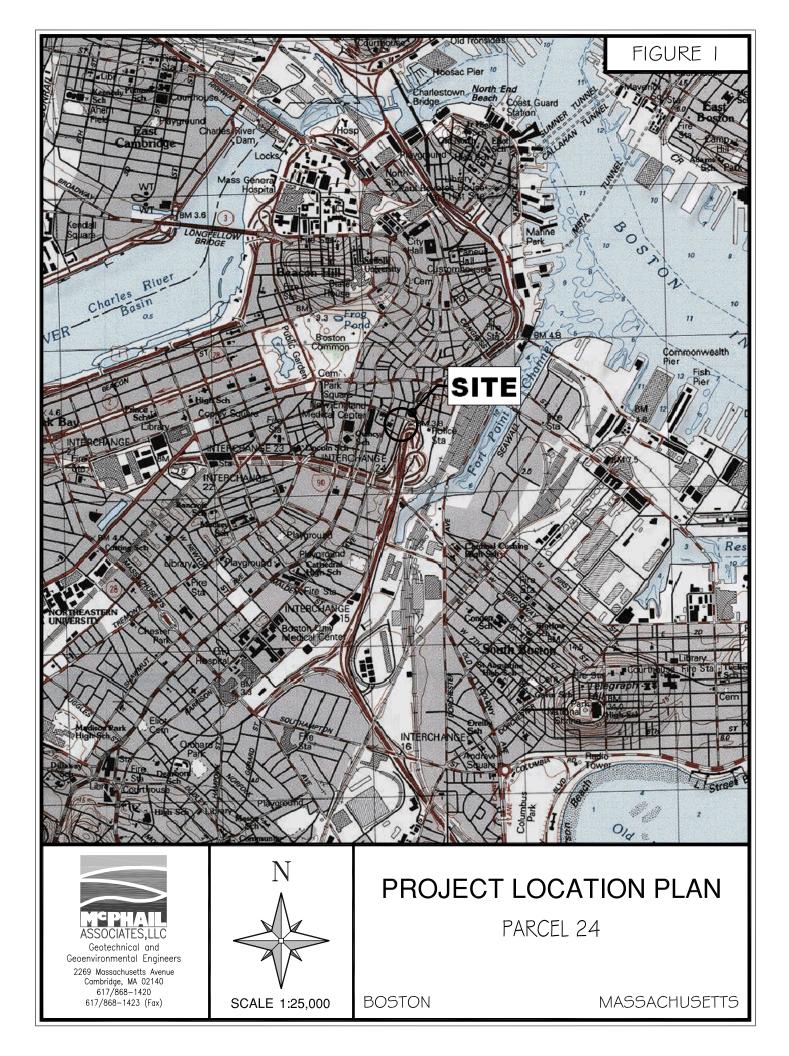
US EPA March 21, 2013 Page 4

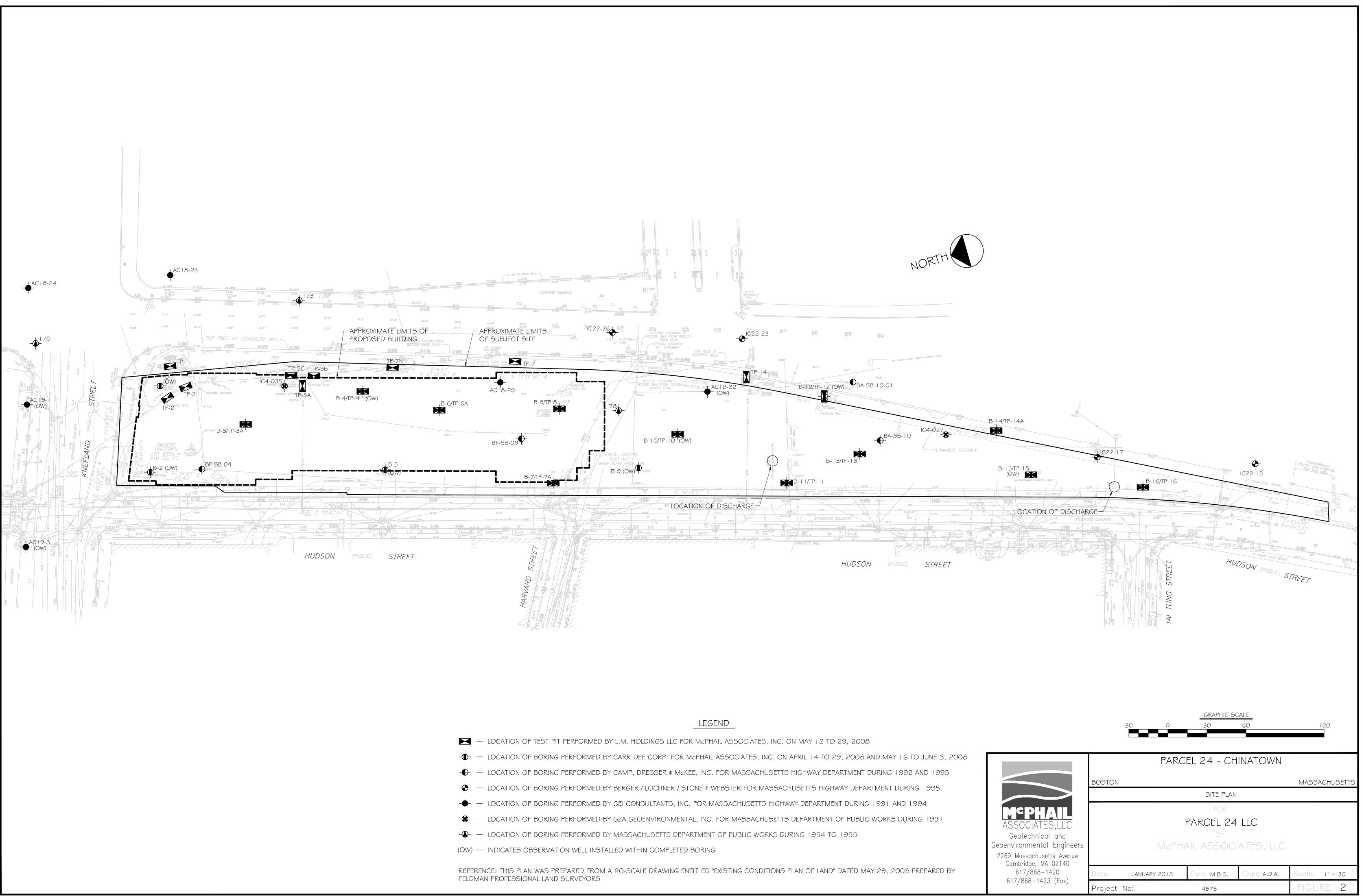
Supplemental information appended to this letter in support of the RGP includes the following;

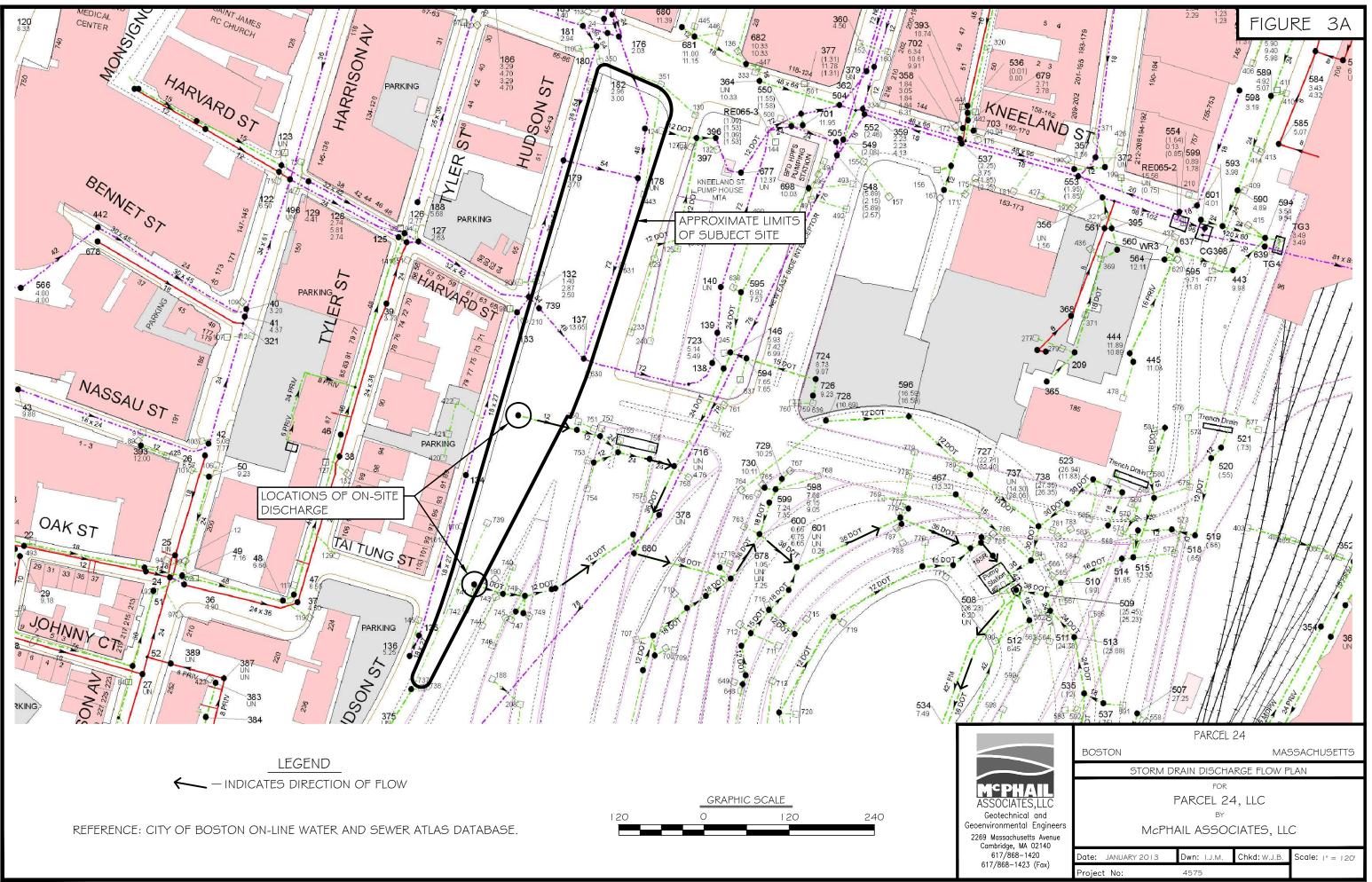
- Notice of Intent Transmittal Form for Permit Application (Appendix B)
- A summary of groundwater analysis (Appendix C, Table 1 and Groundwater Monitoring Reports);
- A review of Areas of Critical Cohcern and Endangered and Threatened Species (Appendix D);
- A review of National Historic Places (Appendix E); and
- Best Management Practice Plan (Appendix F)

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Very truly yours,


McPHAIL ASSOCIATES, LLC


William J. Burns


Peter J. DeChaves, L.S.P.

Peter J. DeChave Enclosures

F:\WP5\REPORTS\4575 RGP.wpd WJB/pjd

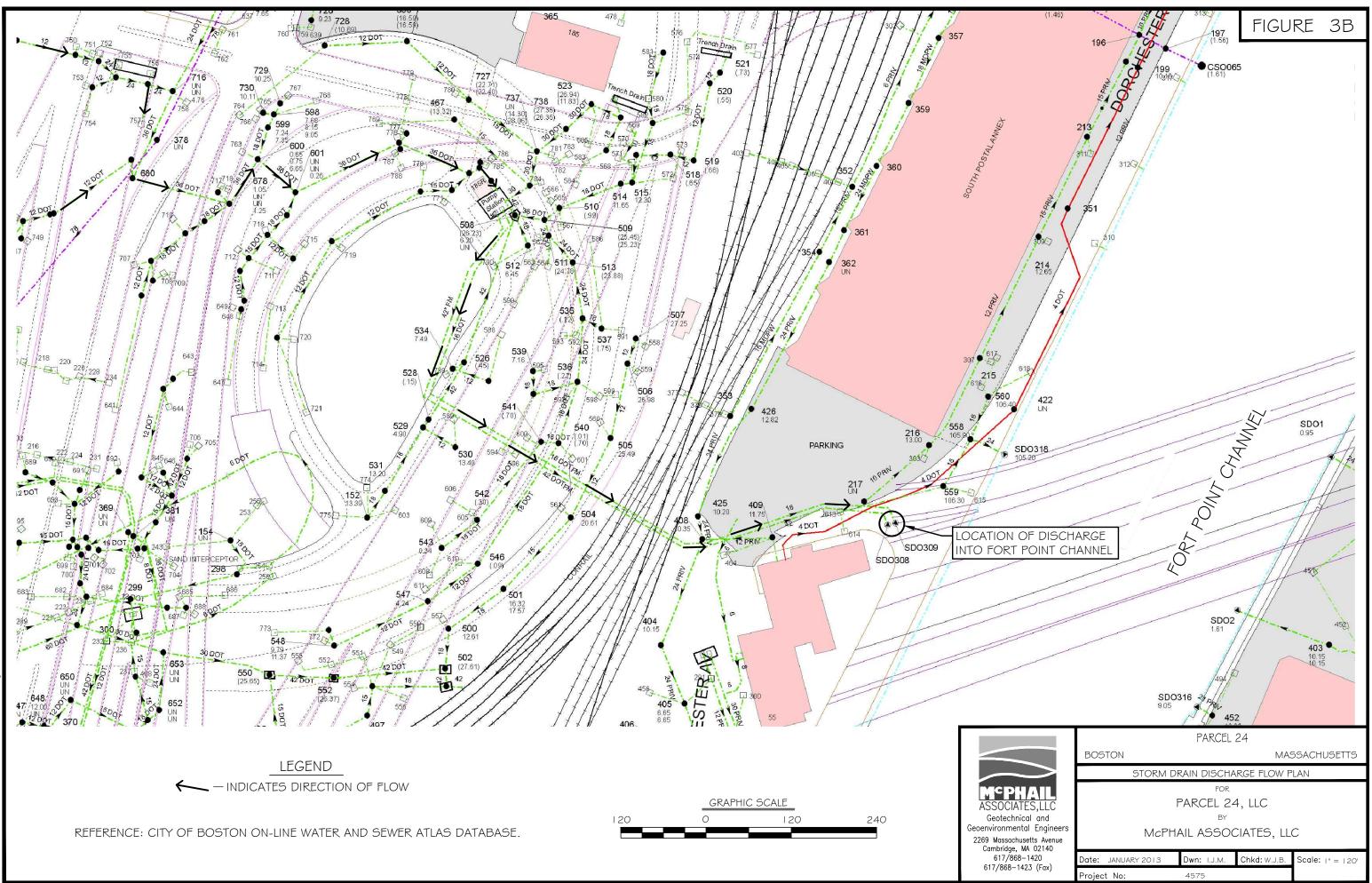
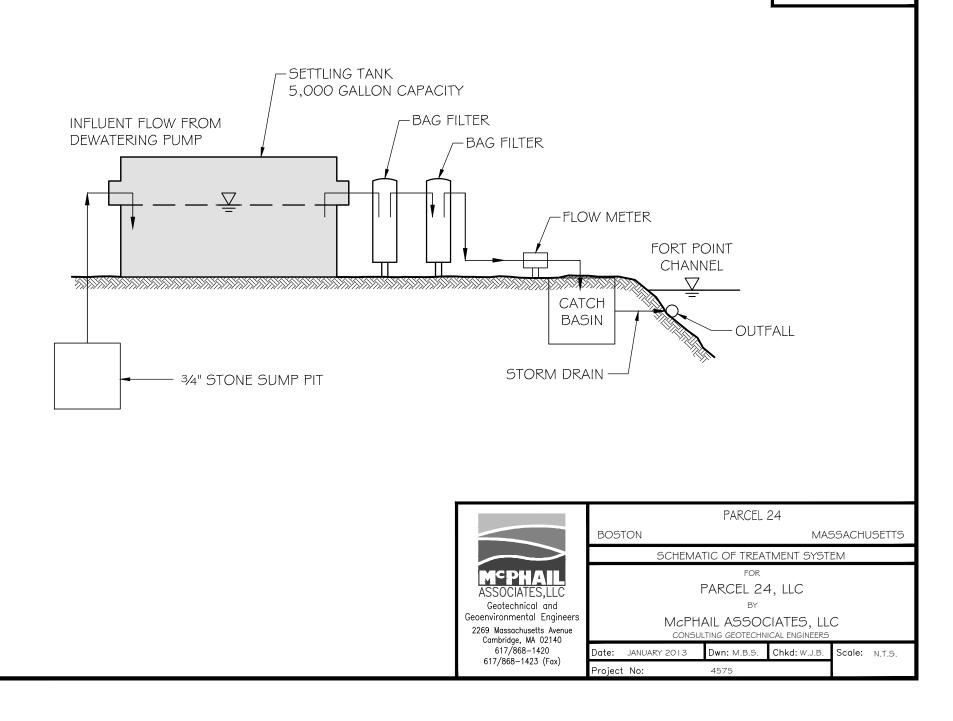



FIGURE 4

APPENDIX A

LIMITATIONS

The purpose of this report is to present the results of testing of groundwater samples obtained from monitoring wells located at the Parcel 24 site in Boston, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remedial General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the widely spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon chemical test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Chemical analyses have been performed for specific constituents during the course of this site assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Parcel 24, LLC and the Massachusetts Department of Transportation. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B

Notice of Intent Transmittal Form

Boston Water & Sewer Dewatering Discharge Permit Application

<u>B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit</u>

1. General facility/site information. Please provide the following information about the site:

a) Name of facility/site : Parcel 24		Facility/site mailing address:				
Location of facility/site : longitude: 71.06 latitude: 42.3491	Facility SIC code(s):	Street: Hudson Street/Kneeland Street				
b) Name of facility/site owner: MA Dept. of Highway Div	Transportation	Town: Boston				
Email address of facility/site owner:		State:	Zip: County:			
Telephone no. of facility/site owner :857-36	58-8804	МА	02134 Suffolk			
Fax no. of facility/site owner : 857-368-0601		Owner is (check one): 1. Federal <u>O</u> 2. State/Tribal <u>O</u>				
Address of owner (if different from site):		3. Private O 4. Other O if so, describe:				
Street: 10 Park Plaza						
Town: Boston	State: MA	Zip: 02116	County: Suffolk			
c) Legal name of operator :	Operator tel	ephone no: 617-878-7928				
Parcel 24 North LLC	Operator fax	x no.: 617-227-4727 Operator email: dwalker@newbostonf				
Operator contact name and title: Mr. David Walker						
Address of operator (if different from owner):	Street: 75 Stat	ate Street, 12th Floor				
Town: Boston	State: MA	Zip: 02109 County: Suffolk				

 d) Check Y for "yes" or N for "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Y_O_ N_O, if Y, number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Y_O_ N_O, if Y, date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Y_O_ N_O 4. For sites in Massachusetts, is the discharge covered under the Massachusetts Contingency Plan (MCP) and exempt from state permitting? Y_O_ N_O 							
 e) Is site/facility subject to any State permitting, license, or other action which is causing the generation of discharge? Y O NO If Y, please list: site identification # assigned by the state of NH or MA: permit or license # assigned: state agency contact information: name, location, and telephone number: 	 f) Is the site/facility covered by any other EPA permit, including: 1. Multi-Sector General Permit? Y ○ N ○, if Y, number: 2. Final Dewatering General Permit? Y ○ N ○, if Y, number: 3. EPA Construction General Permit? Y ○ N ○, if Y, number: 4. Individual NPDES permit? Y ○ N ○, if Y, number: 5. any other water quality related individual or general permit? Y ○ N_○, if Y, number: 						
g) Is the site/facility located within or does it discharge to	an Area of Critical Environmental Concern (ACEC)? Y_O_N_O_						
h) Based on the facility/site information and any historica discharge falls.	al sampling data, identify the sub-category into which the potential						
Activity Category	Activity Sub-Category						
I - Petroleum Related Site Remediation	 A. Gasoline Only Sites B. Fuel Oils and Other Oil Sites (including Residential Non-Business Remediation Discharges) C. Petroleum Sites with Additional Contamination 						
II - Non Petroleum Site Remediation	 A. Volatile Organic Compound (VOC) Only Sites B. VOC Sites with Additional Contamination C. Primarily Heavy Metal Sites 						
III - Contaminated Construction Dewatering	 A. General Urban Fill Sites B. Known Contaminated Sites 						

IV - Miscellaneous Related Discharges	A. Aquifer Pump Testing to Evaluate Formerly Contaminated Sites _
	B. Well Development/Rehabilitation at Contaminated/Formerly
	Contaminated Sites
	C. Hydrostatic Testing of Pipelines and Tanks _
	D. Long-Term Remediation of Contaminated Sumps and Dikes
	E. Short-term Contaminated Dredging Drain Back Waters (if not covered
	by 401/404 permit)

2. Discharge information. Please provide information about the discharge, (attaching additional sheets as necessary) including:

a) Describe the discharge activities for which the owner/applicant is seeking coverage:							
Temporary Construction Dewatering							
b) Provide the following information about each discharge:							
1) Number of discharge 2) What is the maximum and average flow rate of discharge (in cubic feet per second, ft ³ /s)? points: 2 2 Is maximum flow a design value ? Y O N O Average flow (include units) 0.078 ft ³ /s Is average flow a design value or estimate? estimate							
	pt.6: latlong;						
4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent or seasonal? Is discharge ongoing? Y N						
c) Expected dates of discharge (mm/dd/yy): start 05/01/2013 end 05/01/2015							
 d) Please attach a line drawing or flow schematic showing water flow through the facility including: 1. sources of intake water. 2. contributing flow from the operation. 3. treatment units. and 4. discharge points and receiving 							
waters(s), Please refer to the attached report							

3. Contaminant information.

a) Based on the sub-category selected (see Appendix III), indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

					Sample	Analytical	<u>Minimum</u>	Maximum dai	ly value	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	<u>Believed</u> <u>Absent</u>	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Tvpe</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
1. Total Suspended Solids (TSS)			×								
2. Total Residual Chlorine (TRC)											
3. Total Petroleum Hydrocarbons (TPH)				8	grab	98,EPH-04-1 <u>.1</u> +		173	0.094	113.9	0.02176
4. Cyanide (CN)	57125	×									
5. Benzene (B)	71432	×		2	grab	100, VPH-04-1.1	2	ND			
6. Toluene (T)	108883	×		2	grab	100, VPH-04-1.1	2	ND			
7. Ethylbenzene (E)	100414	×		2	grab	100, VPH-04-1.1	2	ND			
8. (m,p,o) Xylenes (X)	108883; 106423; 95476; 1330207	×		2	grab	100, VPH-04-1	2	ND			
9. Total BTEX ²	n/a	×		2	grab			ND			
10. Ethylene Dibromide (EDB) (1,2- Dibromoethane) ³	106934	×									
11. Methyl-tert-Butyl Ether (MtBE)	1634044	×		2	grab	100, VPH-04-1 +	3	ND			
12. tert-Butyl Alcohol (TBA) (Tertiary-Butanol)	75650	×									

^{*} Numbering system is provided to allow cross-referencing to Effluent Limits and Monitoring Requirements by Sub-Category included in Appendix III, as well as the Test Methods and Minimum Levels associated with each parameter provided in Appendix VI.

 $^{^{2}}$ BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes. 3 EDB is a groundwater contaminant at fuel spill and pesticide application sites in New England.

<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed <u>Absent</u>	Believed <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Sample</u> <u>Type</u> <u>(e.g.,</u> grab)	<u>Analytical</u> <u>Method</u> <u>Used</u> (method #)	Minimum Level (ML) of Test Method	<u>Maximum dai</u> concentration (ug/l)	<u>ly value</u> <u>mass</u> (kg)	<u>Average daily</u> <u>concentration</u> <u>(ug/l)</u>	<u>value</u> <u>mass</u> (kg)
13. tert-Amyl Methyl Ether (TAME)	9940508	×		4	grab	60 8260B	2.0	ND			
14. Naphthalene	91203	×		6	grab	1,8260B	4	ND			
15. Carbon Tetrachloride	56235	×		4	grab	60 8260B	0.5	ND			
16. 1,2 Dichlorobenzene (o-DCB)	95501	×		4	grab	60 8260B	2.5	ND			
17. 1,3 Dichlorobenzene (m-DCB)	541731	×		4	grab	60 8260B	2.5	ND			
18. 1,4 Dichlorobenzene (p-DCB)	106467	×		4	grab	60 8260B	2.5	ND			
18a. Total dichlorobenzene		×		4	grab	60 8260B		ND			
19. 1,1 Dichloroethane (DCA)	75343	×		4	grab	60 8260B	0.75	ND			
20. 1,2 Dichloroethane (DCA)	107062	×		4	grab	60 8260B	0.5	ND			
21. 1,1 Dichloroethene (DCE)	75354	×		4	grab	60 8260B	0.5	ND			
22. cis-1,2 Dichloroethene (DCE)	156592	×		4	grab	60 8260B	0.5	ND			
23. Methylene Chloride	75092	×		4	grab	60 8260B	5.0	ND			
24. Tetrachloroethene (PCE)	127184	×		4	grab	60 8260B	0.5	ND			
25. 1,1,1 Trichloro-ethane (TCA)	71556	×		4	grab	60 8260B		3.3	0.002	1.52	0.0003
26. 1,1,2 Trichloro-ethane (TCA)	79005	×		4	grab	60 8260B	0.5	ND			
27. Trichloroethene (TCE)	79016	×		4	grab	60 8260B	0.5	ND			

					Sample	Analytical	Minimum	Maximum dai	ily value	Average daily value	
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (<u>ML) of</u> <u>Test</u> <u>Method</u>	<u>concentration</u> (ug/l)	<u>mass</u> (kg)	<u>concentration</u> (ug/l)	<u>mass</u> (kg)
28. Vinyl Chloride (Chloroethene)	75014	×		4	grab	60 8260B	0.5	ND			
29. Acetone	67641		×	4	grab	60 8260B	<u> </u>	540	0.295	142.775	0.0273
30. 1,4 Dioxane	123911			4	grab	60 8260B	250	540	0.295	142.775	0.0273
31. Total Phenols	108952	×			grub	0002000	230				
32. Pentachlorophenol (PCP)	87865	×									
33. Total Phthalates (Phthalate esters) ⁴		×									
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	117817	×									
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)		×									
a. Benzo(a) Anthracene	56553	×	×	4	grab	98,EPH-04-1.1	10	ND			
b. Benzo(a) Pyrene	50328	×		4	grab	98,EPH-04-1.1	10	ND			
c. Benzo(b)Fluoranthene	205992	×		4	grab	98,EPH-04-1.1 +		ND			
d. Benzo(k)Fluoranthene	207089	×		4	grab	98,EPH-04-1.1 +	10	ND			
e. Chrysene	21801	×		4	grab	98,EPH-04-1.1	10	ND			
f. Dibenzo(a,h)anthracene	53703	×		4	grab	98,EPH-04-1.1 +	10	ND			
g. Indeno(1,2,3-cd) Pyrene	193395	×		4	grab	98,EPH-04-1.1 +	10	ND			
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		×									

⁴ The sum of individual phthalate compounds.

					Sample	Analytical	Minimum	Maximum dai	<u>ly value</u>	Average daily	value
<u>Parameter *</u>	<u>CAS</u> <u>Number</u>	Believed Absent	Believed Present	<u># of</u> <u>Samples</u>	<u>Type</u> (e.g., grab)	Method <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
h. Acenaphthene	83329	×		4	grab	98,EPH-04-1.1	10	ND			
i. Acenaphthylene	208968	×		4	grab	98,EPH-04-1.1	10	ND			
j. Anthracene	120127	×		4	grab	98,EPH-04-1.1	10	ND			
k. Benzo(ghi) Perylene	191242	×		4	grab	98,EPH-04-1.1	10	ND			
1. Fluoranthene	206440	×		4	grab	98,EPH-04-1.1	10	ND			
m. Fluorene	86737	×		4	grab	98,EPH-04-1.1	10	ND			
n. Naphthalene	91203	×		4	grab	98,EPH-04-1.1	10	ND			
o. Phenanthrene	85018	×		4	grab	98,EPH-04-1.1	10	ND			
p. Pyrene	129000	×		4	grab	98,EPH-04-1.1	10	ND			
	85687; 84742; 117840; 84662;	×									
37. Total Polychlorinated Biphenyls (PCBs)	131113; 117817.										
38. Chloride	16887006	×	×								┢───┥
39. Antimony40. Arsenic	7440360										<u> </u>
40. Arsenic 41. Cadmium	7440382	×	×								
41. Chromium III (trivalent)	7440439 16065831	×									
43. Chromium VI (hexavalent)	18540299	×									
44. Copper	7440508	×									
45. Lead	7439921		×								
46. Mercury	7439976	×									
47. Nickel	7440020	×									
48. Selenium	7782492	×									
49. Silver	7440224	×									
50. Zinc	7440666	×									
51. Iron	7439896	×									
Other (describe):			×								

					Sample	Analytical	Minimum	Maximum daily value		Average daily value	
Parameter *	<u>CAS</u> <u>Number</u>	Believed Absent	<u>Believed</u> <u>Present</u>	<u># of</u> Samples	<u>Type</u> (e.g., grab)	<u>Method</u> <u>Used</u> (method #)	<u>Level</u> (ML) of <u>Test</u> <u>Method</u>	concentration (ug/l)	<u>mass</u> (kg)	concentration (ug/l)	<u>mass</u> (kg)
2-methylnaphthalene			×								
Barium			×								

b) For discharges where **metals** are believed present, please fill out the following (attach results of any calculations):

Step 1: Do any of the metals in the influent exceed the effluent limits in Appendix III (i.e., the limits set at zero dilution)? $Y O N O$	If yes, which metals?
Step 2: For any metals which exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metal: DF: Metal: DF:	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y O N O If Y, list which metals:

4. Treatment system information. Please describe the treatment system using separate sheets as necessary, including:

a) A description of the treatment system, including a schematic of the proposed or existing treatment system:

A 5,000-gallon settling tank and bag filters in series

b) Identify each	Frac. tank 🗵	Air stripper 🗖	Oil/water separator	Equalization tanks \Box	Bag filter 🗵	GAC filter
applicable treatment unit (check all that apply):	Chlorination	De- chlorination	Other (please describe):			

Remediation General Permit Appendix V - NOI Page 17 of 22

c) Proposed average and maximum flow rates (gallons per minute) for the discharge and the design flow rate (s) (gallons per minute) of the treatment system: Average flow rate of discharge ³⁵ gpm Maximum flow rate of treatment system ¹⁰⁰ gpm Design flow rate of treatment system ¹⁰⁰ gpm
d) A description of chemical additives being used or planned to be used (attach MSDS sheets):

5. Receiving surface water(s). Please provide information about the receiving water(s), using separate sheets as necessary:

a) Identify the discharge pathway:	Direct to receiving water	Within facility (sewer)	Storm drain_⊠	Wetlands 	Other (describe):					
b) Provide a narrative description of the discharge pathway, including the name(s) of the receiving waters:										
Please refer to attached report for narrative	description and p	lan								
 c) Attach a detailed map(s) indicatin 1. For multiple discharges, number t 2. For indirect dischargers, indicate t The map should also include the location USGS topographical mapping), st 	he discharges se the location of the ation and distand	equentially. ne discharge to the ce to the nearest sa	e indirect conveyar anitary sewer as w	nce and the discha ell as the locus of						
d) Provide the state water quality cla	ssification of th	e receiving water	Class SB							
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water not calculatedcfs Please attach any calculation sheets used to support stream flow and dilution calculations.										
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Y O NO If yes, for which pollutant(s)? Priority organics and pathogens										
Is there a final TMDL? Y_O_ N_O	O_If yes, for w	hich pollutant(s)?	TMDL for pathogens							

6. ESA and NHPA Eligibility.

Please provide the following information according to requirements of Permit Parts I.A.4 and I.A.5 Appendices II and VII.

a) Using the instructions in Appendix VII and information on Appendix II, under which criterion listed in Part I.C are you eligible for coverage under this general permit?

 $A \underline{\bigcirc} B \underline{\bigcirc} C \underline{\bigcirc} D \underline{\bigcirc} E \underline{\bigcirc} F \underline{\bigcirc}$

b) If you selected Criterion D or F, has consultation with the federal services been completed? Y_O N_O Underway_O

c) If consultation with U.S. Fish and Wildlife Service and/or NOAA Fisheries Service was completed, was a written concurrence finding that the discharge is "not likely to adversely affect" listed species or critical habitat received? YO NO

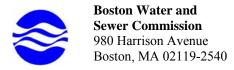
d) Attach documentation of ESA eligibility as described in the NOI instructions and required by Appendix VII, Part I.C, Step 4.

e) Using the instructions in Appendix VII, under which criterion listed in Part II.C are you eligible for coverage under this general permit? 1 \bigcirc 2 \bigcirc 3 \bigcirc

f) If Criterion 3 was selected, attach all written correspondence with the State or Tribal historic preservation officers, including any terms and conditions that outline measures the applicant must follow to mitigate or prevent adverse effects due to activities regulated by the RGP.

7. Supplemental information.

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.


Please refer to attached report

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Parcel 24
Operator signature: Dand Walkn
Printed Name & Title: Mr. David Walker Senior Project Manager
Date: 3 · 21 · 2013

Remediation General Permit Appendix V - NOI

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLIC	ANT PROVIDE IN	FORMATION HERE:						
Company Name: Parcel 24 Nor	h LLC	Address: 75 State Street; 1	2th Floor, Boston, MA 02109					
Phone number: <u>617-878-7928</u>		Fax number: 617-227-4727	,					
Contact person name: Mr. David	Walker	Title: Senior Project Manager						
Cell number:		Email address: _dwalker@ne	wbostonfund.com					
			(Specify):					
Owner's Information (if different	from above):							
Owner of property being dewatered	1: Massachusett	s Department of Transportat	lion					
Owner's mailing address: <u>10 Par</u>								
Location of Discharge & Propose								
Street number and name: Parce	l 24 site; Hudson	St./Kneeland St.Neighborhoo	od_Boston					
Discharge is to a: □ Sanitary Sew	er 🗆 Combined S	Sewer 🕱 Storm Drain 🗆 Oth	ner (specify):					
Describe Proposed Pre-Treatment	System(s): Oil/wate	er separator, settling tank, organo cl	ay media, granular activated carbon filter in series					
BWSC Outfall No. SDO308 & S	DO309 Receivir	ng Waters Fort Point Chan	nel					
	Inticipated Dates of D	Discharge): From <u>May 1, 2013</u>	To <u>May 1, 2015</u> Foundation Excavation Trench Excavation Other					
Permanent Discharges Foundation Drainage Accumulated Surface Water Non-contact/Uncontaminated Process 		Crawl Space/Footing Drain Non-contact/Uncontaminated Co						
 number, size, make and start reading. If discharging to a sanitary or combination. If discharging to a separate storm drain as other relevant information. Dewatering Drainage Permit will be discubility of the second state of the secon	of the discharge and the Note. All discharges to ed sewer, attach a copy of n, attach a copy of EPA lenied or revoked if appl Boston Water and Sew Engineering Customer 980 Harrison Avenue, Attn: Francis M. McLa E-mail: MclaughlinF@ Phone: 617-989-7208	e location of the point of discharge (i.e. o the Commission's sewer system will b of MWRA's Sewer Use Discharge perr 's NPDES Permit or NOI application, o icant fails to obtain the necessary perm ver Commission Services Boston, MA 02119 aughlin, Manager Engineering Custome bwsc.org Fax: 617-989-7716	the sewer pipe or catch basin). Include meter type, meter be assessed current sewer charges. nit or application. or NPDES Permit exclusion letter for the discharge, as well its from MWRA or EPA.					
BWSC Use Only: Date Received								

APPENDIX C

RESULTS OF GROUNDWATER ANALYSIS

During June 2008 and October 2011, groundwater samples were obtained from monitoring wells on the subject site and analyzed for the presence VOCs, EPH fractions with target PAHs and/or VPH fractions with target SVOCs. The results of chemical analyses performed on groundwater samples are summarized in **Table 1**.

Four (4) samples obtained from monitoring wells installed in borings B-2 (OW), B-4 (OW), B-9(OW) and B-15(OW) were analyzed for the presence of VOCs. With the exception of 1,1,1-trichloroethane, 2-butanone and acetone, VOCs were not detected above the laboratory method detection limits in the samples analyzed. The VOCs detected above the laboratory method detection limits exhibited concentrations below the applicable RCGW-2 reporting standards and applicable RGP limits for discharge.

A total of eight (8) groundwater samples were analyzed for the presence of EPH fractions and target PAHs. EPH fractions, C9-C18 Aliphatics and C11-C22 Aromatics were not detected above the laboratory method detection limits. EPH fraction C19-C36 Aliphatics were detected at concentrations ranging from below the laboratory method detection limit up to 0.17 milligrams per liter (mg/l), which is below the RCGW-2 reporting standard of 50 mg/l. The target PAHs were not detected above the laboratory method detection limits.

Two (2) groundwater samples were analyzed for the presence of VPH fractions and target VOCs. VPH fractions, C5-C8 Aliphatics, C9-C12 Aliphatics and C9-C10 Aromatics were not detected above the laboratory method detection limits. The target VOCs were not detected above the laboratory method detection limits.

Table 1 ANALYTICAL RESULTS - GROUNDWATER

Parcel 24 Boston, MA Project No. 4575

LOCATION		RGP	B-2 S1 6/3/08	B-4 S1 6/3/08	B-9 S1 6/3/08	B-15 S1 6/3/08	E-25	E-26	E-20 (OW)	B-23 (OW)
SAMPLING DATE	RCGW-2	Discharge	6/3/2008	6/3/2008	6/3/2008	6/3/2008	10/6/2011	10/6/2011	11/29/2011	11/29/2011
LAB SAMPLE ID	-	Limits	L0808157-01	L0808157-02	L0808157-03	L0808157-04	L1116143-01	L1116143-02	L1119804-01	L1119804-02
Extractable Petroleum Hydroca	arbons (ug/l)			•					
C9-C18 Aliphatics	5000	-	ND(105)	ND(103)	ND(102)	ND(103)	ND(100)	ND(100)	ND(100)	ND(100)
C19-C36 Aliphatics	50000		117	173	ND(102)	119	ND(100)	ND(100)	ND(100)	ND(100)
C11-C22 Aromatics, Adjusted	5000		ND(105)	ND(103)	ND(102)	ND(103)	ND(100)	ND(100)	ND(100)	ND(100)
2-Methylnaphthalene	2000		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Group II PAHs (ug/I)				·					·	
Acenaphthene	6000		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Acenaphthylene	40		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Anthracene	30		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Benzo(ghi)perylene	20		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Fluoranthene	200		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Fluorene	40		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Naphthalene	1000	20	ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Indeno(1,2,3-cd)Pyrene	100		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Phenanthrene	10000		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Pyrene	20		ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
SUM		10	ND	ND	ND	ND	ND	ND	ND	ND
Group I PAHs (ug/l)				·					·	
Benzo(a)anthracene	1000	0.0038	ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Chrysene	70	0.0038	ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Benzo(b)fluoranthene	400	0.0038	ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Benzo(k)fluoranthene	100	0.0038	ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Benzo(a)pyrene	500	0.0038	ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
Dibenzo(a,h)anthracene	40	0.0038	ND(10.5)	ND(10.3)	ND(10.2)	ND(10.3)	ND(10)	ND(10)	ND(10)	ND(10)
SUM		10	ND	ND	ND	ND	ND	ND	ND	ND
MCP Volatile Organics (ug/l)										
1,1,1-Trichloroethane	4000	200	ND(0.5)	3.3	1.5	0.78	-	-	-	-
Acetone	50000		ND(5)	18	540	8.1	-	-	-	-
2-Butanone	50000		ND(5)	ND(5)	7.6	ND(5)	-	-	-	-
SUM			ND	21.3	549.1	8.88	-	-	-	
Volatile Petroleum Hydrocarbo	ns (ug/l)			·					·	
C9-C10 Aromatics	7000		-	-	-	-	ND(50)	ND(50)	-	-
C5-C8 Aliphatics, Adjusted	3000		-	-	-	-	ND(50)	ND(50)	-	-
C9-C12 Aliphatics, Adjusted	5000		-	-	-	-	ND(50)	ND(50)	-	-
Benzene	2000		-	-	-	-	ND(2)	ND(2)	-	-
Toluene	40000		-	-	-	-	ND(2)	ND(2)	-	-
Ethylbenzene	5000		-	-	-	-	ND(2)	ND(2)	-	-
p/m-Xylene	5000		-	-	-	-	ND(2)	ND(2)	-	-
o-Xylene	5000		-	-	-	-	ND(2)	ND(2)	-	-
Total BTEX		100					ND	ND		
Methyl tert butyl ether	5000		-	-	-	-	ND(3)	ND(3)	-	-
Naphthalene	1000	20	-	-	-	-	ND(4)	ND(4)	-	-

TABLE 2 Calculations of Mass of Compounds

Parcel 24 Boston, Massachusetts McPhail Job No. 4575

Avg flow (GPM) =	100		
Avg Flow (MGD) =	0.144		
5 - (-)	-		
	Max	Max	
	Concentration	Concentration	
Compound #	(ug/l)	(mg/l)	MASS (kg)
1,1,1-trichloroethane	3	0.0033	0.002
Acetone	540	0.54	0.29478
C19-C36 Aliphatics	173.0	0.173	0.09444
Avg flow (GPM) =	35		
Avg Flow (MGD) =	0.0504		
3 ()			
	Max	Max	
	Concentration	Concentration	
Compound #	(ug/l)	(mg/l)	MASS (kg)
1,1,1-trichloroethane	2	0.00152	
Acetone	143	0.1428	0.02728
C19-C36 Aliphatics	113.90	0.1139	0.02176

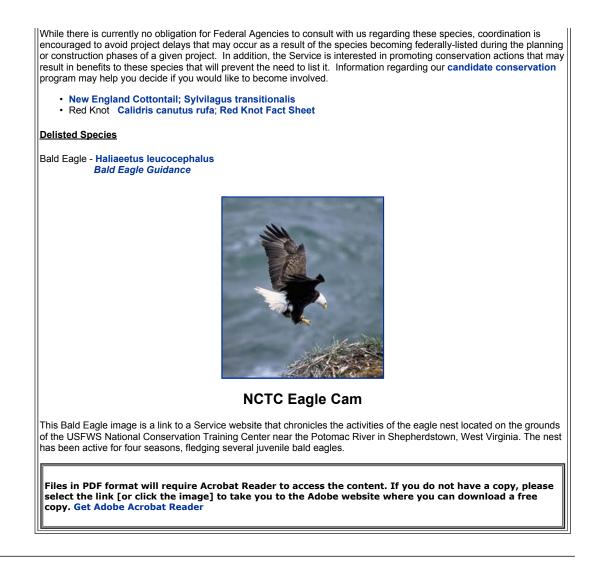
GPM = Gallons Per Minute MGD = Million Gallons Per Day ug/l = Micrograms per liter mg/l = Milligrams per liter kg = Kilograms

McPhail Associates, LLC

APPENDIX D

AREAS OF CRITICAL CONCERN, ENDANGERED AND THREATENED SPECIES

Based on an on-line edition of the Massachusetts Geographic Information Systems DEP Priority Resources Map, the subject site is not located within the boundaries of a Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site. Gateway Park, a protected open space is located approximately 500 feet to the east of the subject site.


The Resource Map indicates that there are no wetland areas on or within 500 feet of the subject site. Fort Point Channel, which is the location of discharge, is located approximately 1,500 feet to the east-northeast of the subject site. No areas designated as solid waste sites (landfills) are noted as being located within 1,000 feet of the site. The Fort Point Channel is a 303(d) water quality impaired water body for pollutants that include priority organics and pathogens.

A review of the most recent federal listing of threatened and endangered species published by the U.S. Fish and Wildlife Service did not identify the presence of threatened and/or endangered species or critical habitats at or in the vicinity of the discharge location and/or discharge outfall. In addition, a review of the Massachusetts Division of Fisheries and Wildlife on-line database did not indicate the presence of threatened or endangered species at the point of discharge and/or the discharge outfall.

Based upon the above, the site is considered criterion A pursuant to Appendix IV of the RGP.

New England Field Office Conserving the Nature of New England			
Thursday, January 31, 2013			
ENDANGERED SPECIES Overview	Endangered Species		
Consultation N.E. Listed Species Species Under Review			
Recovery Activities	New England Listed Species		
Habitat Conservation Images Biological Opinions	The following federally-listed species are protected in New England. This list includes links to species information on our National Fish and Wildlife Service website including current Federal Register documents, HCPs, Recovery Plans, Life History accounts.		
PARTNERS FOR FISH & WILDLIFE	<u>Vertebrates</u>		
Overview Restoration Initiatives	Mammals		
Species & Habitats of	Eastern Cougar -Puma (=Felis) concolor couguar		
Special Concern Accomplishments	Gray Wolf -Canis Iupus Indiana Bat - Myotis sodalis		
How to Participate	Canada Lynx - Lynx canadensis		
Habitat Restoration Links	Birds		
ENVIRONMENTAL	Atlantic Coast Piping Plover - Charadrius melodus		
CONTAMINANTS	Birds of North America Species Account Piping Plover Atlantic Coast piping plover website Piping Plover		
Overview	Roseate Tern – Sterna dougallii dougallii		
BTAG NRDAR	Birds of North America Species Account Roseate Tern		
Special Studies	Reptiles		
Oil Spills	Bog Turtle - Clemmys muhlenbergii Northern Redbelly Cooter (Plymouth redbelly turtle) Pseudemys rubriventris bangsii		
EDERAL ACTIVITIES	Northern Redbelly Cooter 5-year Review; (pdf size 1.6MB*) May 2007		
Overview Federal Projects &	Fish		
Permits	Atlantic Salmon - Salmo salar (Maine only)		
Wetland Permits FERC_ Hydropower	Maine Atlantic Salmon Atlas		
Projects	Invertebrates		
River Flow Protection			
Wind Energy Projects	Insects		
DUTREACH NH Envirothon	American Burying Beetle - Nicrophorus americanus Karner Blue Butterfly - Lycaeides melissa samuelis		
Kids Corner	Karner Blue Butterfly Fact sheet		
Let's Go Outside	Northeastern Beach Tiger Beetle - Cicindela dorsalis dorsalis Puritan Tiger Beetle - Cicindela puritana		
toff Dimeter	Draft Puritan Tiger Beetle; (pdf size 2.4MB*) 5-year Review		
taff Directory	Mussels		
Our Location	Dwarf Wedgemussel - Alasmidonta heterodon		
IOME	Dwarf Wedgemussel 5-Year Status Review 2007 (pdf size 1.14MB*)		
	Plants		
🖸 Bookmark 📲 🎡 灯	Jesup 's Milkvetch - Astragalus robbinsii var. jesupi Northeastern Bulrush - Scirpus ancistrochaetus		
	Sandplain Gerardia - Agalinis acuta		
	Small Whorled Pogonia - Isotria medeoloides Seabeach Amaranth - Amaranthus pumilus (historic)		
	American Chaffseed - Schwalbea americana (historic)		
	Eastern Prairie Fringed Orchid - Platanthera leucophaea (Maine only) Furbish's Lousewort - Pedicularis furbishiae (Maine only)		
	Candidate species and species recently delisted are identified below, including links for additional information regarding their status.		
	Candidate Species		
	The Service has recently completed a status assessment for the following species and determined that federally listing is "warranted, but precluded", i.e. the status of the species indicates that it should be listed but the listing is superceded by higher listing actions.		

New England Field Office, U.S. Fish and Wildlife Service

Last updated: October 28, 2010

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN June 2009

Total Approximate Acreage: 268,000 acres Approximate acreage and designation date follow ACEC names below.

Bourne Back River (1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp (1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley (12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed (1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor (600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog (8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills (500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed (4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed (14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp (16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay (2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin (1,350 acres, 1995) Lee and Stockbridge Karner Brook Watershed (7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds (8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary (1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag (25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay (9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River (160 acres, 1980) Bourne

Rumney Marshes (2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System (9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin (13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

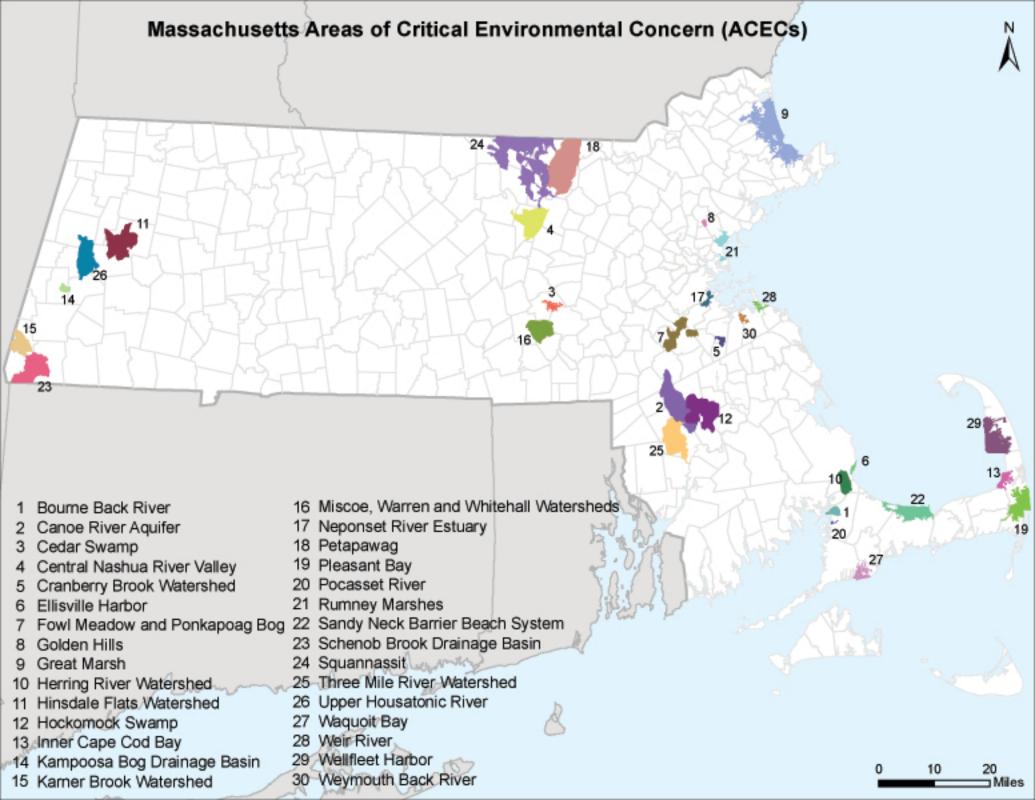
Upper Housatonic River (12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay (2,580 acres, 1979) Falmouth and Mashpee

Weir River (950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor (12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River (800 acres, 1982) Hingham and Weymouth


ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

•

June 2009

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	· ·	Schenob Brook
,	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
Booton	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	Officiality	Pleasant Bay
Doume	Bourne Back River	Pepperell	Petapawag
		i ebberen	Squannassit
Dusintus	Herring River Watershed	Doru	
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp		Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Runney Marshes
Eastham	Inner Cape Cod Bay	0	Golden Hills
	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer		Fowl Meadow and Ponkapoag Bog
Laoton	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
		Taunton	Hockomock Swamp
Falmouth	Waquoit Bay	raumon	
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh	T	Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
-	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River		Upper Housatonic River
	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River	11 milliop	
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
1.00	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
1	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
	Waquoit Bay		
Mashpee	Waqaan Day		
	Golden Hills		
Mashpee Melrose Milton			

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns	
Durnstable	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham	
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.	
· · ·	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Boume (north of the Cape Cod Canal)	
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield	
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport	
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Raynham and Taunton	
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark	
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury	
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester	
	Piping Plover	Threatened	Coastal Beaches	Glocester, Essex, Ipswich, Rowley, Revere Newbury, Newburyport and Salisbury	
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague	
	Dwarf wedgemussel	Endangered	Mill River	Whately	
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley	
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley	
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hadley, Hatfield, Amherst and Northampto	
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick	
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton	
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket	
	American burying beetle	Endangered	Upland grassy meadows	Nantucket	
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth Wareham and Mattapoisett	
	Northern Red-bellied cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymou Bourne, and Wareham	
Χ,	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.	
Suffolk	Piping Plover	Threatened	Coastal Beaches	Winthrop	
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster	

-Eastern cougar and gray wolf are considered extirpated in Massachusetts. -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide. -Critical habitat for the Northern Red-bellied cooter is present in Plymouth County.

7/31/2008

APPENDIX E

NATIONAL REGISTER OF HISTORIC PLACES

The National Register of Historic Places and Massachusetts Historical Commission on-line databases were reviewed for listings located within the immediate vicinity of the subject site in Boston, Massachusetts. A review of the most recent National Register of Historical Places for Suffolk County, Massachusetts did not identify records or addresses of Historic Places that exist in the immediate vicinity of the subject site and/or outfall location. The Massachusetts Historical Commission on-line database did identify buildings which are located on the opposite side of the Hudson Street from the subject site as being historic places. However, given that dewatering activities will be contained within the subject site and the ultimate point of discharge for the dewatered groundwater from the site is the Fort Point Channel, the dewatering and off-site discharge activities at the site are not considered to affect the historic places located in close proximity to the subject site.

Based upon the above, the site considered criterion 2 pursuant to Appendix IV of the RGP.

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Boston; Street Name: Hudson; Resource Type(s): Building, Structure, Burial Ground, Area;

Inv. No.	Property Name	Street	Town	Year
BOS.1803		3 Hudson St	Boston	1843
BOS.1804	Diamond, A. Building	5-9 Hudson St	Boston	1914
BOS.1805	Fuller, Charles - Bosworth, Royal Row House	11-23 Hudson St	Boston	1843
BOS.1801	Millard, Samuel Row House	14-18 Hudson St	Boston	1841
BOS.1802	Chinese Merchants Association Building	20 Hudson St	Boston	1949
BOS.2200	Cram, George W. Rowhouse	71 Hudson St	Boston	1840
BOS.2201	Cram, George W. Rowhouse	73 Hudson St	Boston	1840
BOS.2202	Cram, George W. Rowhouse	75 Hudson St	Boston	1840
BOS.2203	Cram, George W. Rowhouse	77 Hudson St	Boston	1840
BOS.2204	Cram, George W. Rowhouse	79 Hudson St	Boston	1840
BOS.2205		89 Hudson St	Boston	1845
BOS.2206		91 Hudson St	Boston	1845
BOS.2207		93 Hudson St	Boston	1845
BOS.2208		95 Hudson St	Boston	1845
BOS.2209		97 Hudson St	Boston	1845
BOS.2210		99 Hudson St	Boston	1845
BOS.2211		101 Hudson St	Boston	1845
BOS.2212		103 Hudson St	Boston	1845

APPENDIX F

Best Management Practice Plan

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant DischargeElimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that may occur at the Parcel 24 site located in Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

Construction dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation and directly into a treatment system consisting of an settling tank and bag filters in series. The effluent will be discharged through hoses into dedicated storm drains located at the southern portion of the subject site. Based upon a review of the Boston Water and Sewer Commission stormwater drain GIS database, the stormwater drains at the subject site ultimately discharge into the Fort Point Channel.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. This includes chemical testing required within days 1 and 3 of initial discharge and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Monthly monitoring reports will be compiled and maintained at the site

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include assessing the amount of sediment in the settling tank and the condition of the bag filters, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be covered within the overall site security plan.

No adverse affects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Fort Point Channel which is located 1,200 feet to east-northeast of the subject site. Groundwater will be pumped through a treatment system consisting of a settling tank and bag filters in series prior to discharge into the City of Boston storm drain system.

Management of Treatment System Materials

Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment contained in the settling tank will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations.